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Plants with higher dispersal capabilities
follow ‘abundant-centre’ distributions but
such patterns remain rare in animals
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% Check for updates The ‘abundant-centre” hypothesis posits that a species’ abundance is highest at

its range centre and declines towards its range edge. Recently, the hypothesis
has been much debated, with supporting empirical evidence remaining lim-
ited. Here, we test the hypothesis on 3660 species using 5,703,589 abundance
observations. We summarise species-level patterns and test the effects of
dispersal-related species traits and phylogeny on abundance-distance rela-
tionships. Support for the hypothesis is dependent on taxonomic group, with
abundant-centre patterns being more pronounced for plants but non-
significant when summarised across all animals. Dispersal capability does not
explain abundance-distance relationships in animals but likely explains
abundance patterns in non-woody plants. Phylogeny improves models of
abundance-distance patterns for plants but not for animals. Despite this,
controlling for phylogeny yields non-significant group-level results for plants,
suggesting that only certain, phylogenetically clustered plant groups may
conform to abundant-centre patterns. Overall, we demonstrate that abundant-
centre patterns are not a general ecological phenomenon; they tend to not
apply to animals but can manifest in certain plant groups, depending on dis-
persal capabilities and evolutionary histories. Leveraging species’ traits that
account for dispersal improves models of abundant-centre patterns across
geographic space.

Understanding patterns of biodiversity and the processes that drive
them across varying spatial, temporal and taxonomic scales is a shared
goal within macroecological and biogeographical research'. Such
information is essential to improving our understanding of species’
responses to environmental change, with applications to invasive
species management*® and conservation planning®’.

A common approach to studying macroecological processes
and patterns is to develop and test ecogeographical “rules” or

“hypotheses”. As outlined by Baiser et al®., over the last decade, the study
of ecogeographical rules has seen a resurgence due to increased data
availability, methodological advancements and the need for applied
research efforts, for example in invasive species management™° and
environmental change research™" Historically, many ecogeographical
rules were developed to describe scaling relationships in species’
diversity”, body mass', range size", and geographical distributions of
populations’, such as the ‘abundant-centre’ hypothesis.
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The abundant-centre hypothesis derives from early ideas pro-
posed by Grinnell'®, who likened the distribution and dispersal of
animal populations to those of gas molecules occupying a vacuum''%,
The abundant-centre hypothesis posits that species’ abundances are
highest in their range centres and decline towards their range
edges”**. The hypothesis assumes that 1) a species’ geographic range
is a representation of its environmental or ecological niche” and 2)
that environmental conditions are more optimal near the centre of a
species’ range and less optimal towards the range edges'®*. Since its
inception, the abundant-centre hypothesis has been debated by mac-
roecologists and biogeographers alike”>” . It has been tested within
many taxonomic groups including birds***?, vascular plants® ™, reef
fishes™**¥, mammals®™*, and coastal invertebrates™***, It has also
been tested across taxonomic groups’?**’. Previous studies have
employed an array of methodological approaches, such as focusing on
centrality”>*® as opposed to marginality'*’.

Initially, the abundant-centre hypothesis has been tested across
species’ geographic space'”?***, Support for the hypothesis remains
scarce and recent research has shifted focus towards exploring
abundance distributions across species’ environmental or ecological
niche space??0*41485051  gpecifically, Dallas et al.” tested the
abundant-centre hypothesis across the geographical and the ecologi-
cal niche spaces of 1400 species of North American birds, mammals,
freshwater fishes and trees, concluding no consistent relationships
between abundance and distance from range centre (hereafter
‘abundance-distance relationships’) in either case. Relatedly, Sporbert
et al.*® tested multiple macroecological rules, including the abundant-
centre hypothesis, on 517 species of European vascular plants, sug-
gesting that mixed support for abundant-centre patterns are likely
driven by various environmental factors. It is often assumed that
species’ abundance is positively correlated with environmental suit-
ability (an assumption of niche modelling), but this is far from always
being the case™ To date, inconclusive empirical support for the
abundant-centre hypothesis has been repeatedly found across geo-
graphic and ecological niche space”*****’, It also remains unclear why
abundant-centre patterns are rarely dominant (although others have
concluded support**?). Explanations may include differences in the
methods used, interpretation of results or taxonomic groups studied,
e.g., species that possess certain life histories such as juvenile plank-
tonic life stages*c.

A major assumption of the hypothesis is that it assumes a species
is in equilibrium with its environment, and that environmental condi-
tions influencing abundance change gradually and monotonically from
the range centre towards the range edge—as implied by Grinnell’.
Similarly, it also assumes that conspecific populations are equally
adapted to their environments, with recent research using species
distribution models challenging this notion, instead finding that spe-
cies demonstrate local adaptation across their ranges*. The hypoth-
esis also assumes that optimal environments occur in the centre of a
species’ range and that the environment is strongly spatially auto-
correlated. Accounting for these broad assumptions when testing the
hypothesis, we would expect to find that species with higher dispersal
capabilities, such as birds, larger-bodied mammals (e.g., large-bodied
ungulates vs. small mammals) and plants with faster life cycles (e.g.,
non-woody vs. woody plants), may tend to follow abundant-centre
patterns. These species may be better at tracking changing
environments>>*¢, maintaining higher abundances in their range cen-
tres where environmental conditions are assumed to be most
favourable”. Given this, the underlying assumptions of equilibrial
population dynamics across a species’ geographic range assumes that
population fluctuations are trivial, and that the species is not actively
expanding its range.

Since the foundational work of Martinez-Meyer et al.,*® explora-
tion of abundant-centre patterns has shifted towards ecological niche
space. However, no clear consensus has been reached within the

scientific community as to which type of “space” is most appropriate to
test this highly debated hypothesis, as the evidence supporting either
perspective remains unconvincing. Calculating abundance-distance
relationships in ecological niche space requires high-resolution data,
to accurately capture the niche of the species at the micro-scale, which
are often unavailable for most macroecological studies. Furthermore,
the same environmental space would be required across all taxonomic
groups, using the same environmental predictors, which may be more
meaningful for some species than others. As such, fundamental
research opportunities remain outstanding in geographic space, which
can be explored with available large-scale species distribution data.
One of many potential research avenues relates to linking species’
ecological characteristics (species traits), as proxies for dispersal
capabilities®®, to sampled abundance estimates.

Notably, multi-species analyses could be biased due to phylogenetic
non-independence between taxa®*®. Lack of consideration and quanti-
fication of species’ evolutionary relatedness limits our understanding of
global abundance-distance relationships, resulting in calls for more
robust studies incorporating appropriate comparative phylogenetic
techniques®’. To date, other than Dallas et al.”>, who explored the effects
of body size and phylogenetic relatedness on support for the abundant-
centre hypothesis, and Rivadeneira et al.”, who linked evolutionary his-
tory and traits to porcelain crab (Porcellanidae spp.) abundance dis-
tributions, there have been no examinations of the effects of species’
traits or phylogeny on support for the hypothesis across large taxonomic
and spatial scales.

In this study, we use a trait-based and comparative phylogenetic
approach to test the abundant-centre hypothesis across five major
taxonomic groups: birds, mammals, freshwater fishes, reef fishes and
plants. Given that previous research has suggested that support for the
hypothesis may be scale-dependent”*, and abundance patterns might
be closely related to species’ dispersal capabilities”***, we also
explore the effects of spatial scale and body size.

Based on previous research on animal distributions, we may
expect to find differences between taxonomic groups, aligning with
abundant-centre patterns, due to variation in dispersal capabilities
between taxa®. Specifically, larger-bodied animals may be expected to
conform more to such patterns as they are better able to track chan-
ging environments®* (Table S1). Furthermore, omnivorous diets are
known to affect dispersal capability, and thus we expect to find a
dietary effect on abundance-distance relationships®. Dispersal cap-
ability in plants is also known to correlate with height, and to a lesser
degree with seed mass®, with taller species and those with smaller
seeds being able to disperse further®. Therefore, we expect to find
height and seed mass effects on plant abundance-distance relation-
ships (Table S1). In line with r/K-selection theory, species towards the
faster end of the fast-slow life-history continuum (i.e., r-selected spe-
cies) may be better able to track changing environments due to their
rapid population fluctuations, relative to K-selected species®”S, Simi-
larly, based on previous research we expect to find effects of functional
group®’, life span, and life form’, on plant abundance-distance rela-
tionships (Table S1). Faster-growing species (e.g., grasses and herbs),
and shorter-lived species (e.g., annuals and biennials), should be more
likely to conform to abundant-centre patterns relative to their longer-
lived and slower-growing congeners (e.g., trees). In addition, if
abundant-edge distributions accurately represent invasion fronts—
benefiting invasive species when dispersing”’—then we may expect
invasive species to not conform to abundant-centre patterns
(Table S1). Dispersal capability is an important process that moderates
a species’ range size’’; therefore, we expect that species with larger
ranges are better adapters to the wider environment and will conform
to abundant-centre patterns. Concurrently, terrestrial species dis-
tributed at higher latitudes tend to have larger ranges’, and abundant-
centre patterns may be more detectable at higher latitudes (Table S1).
Finally, if abundant-centre patterns manifest themselves in species
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Table 1| An overview of the sampling effort for this study

Study Taxa Compiled Used in analyses

N species N observations N species N observations
Animals
Shalom et al.” Reef fishes 1235 3,066,573 131 2,898,878
Dallas et al.”® Birds, mammals and freshwater fishes 1848 859,307 1716 793,217
Santini et al.” Birds and mammals 104 4145 90 3694
Freeman & Beehler® Birds 129 3225 13 2825
Feldman et al.”” Birds 6 312 4 208
Martinez-Gutiérrez et al.* Mammals 1 72 1 72
Wen et al.* Mammals 5 46 4 85
Chaiyes et al.” Mammals 1 30 1 30
Total (N animals) 3329 3,933,710 3060 3,698,959
Plants
Sporbert et al.*® Herbs, dwarf shrubs and shrubs 532 2,059,847 480 1,654,725
Dallas et al.® Trees 162 389,404 120 349,905
Phiri et al.”! Dwarf shrub 1 124
McMinn et al.'” Herb 1 42
Dixon et al.** Herb 1 18
Baer & Maron'®® Herb 1 n
Gao et al.” Tree 1 5
Total (N plants) 699 2,449,451 600 2,004,630
Total (N total) 4028 6,383,161 3660 5,703,589

Table depicts the number of studies included, taxonomic group, number of species and observations used to calculate global abundance-distance relationships for 3660 species. Due to limited
coverage of species trait data, some species were omitted prior to statistical analyses. N =sample size. Abundance-distance and trait data underlying this table are provided in Dryad at https://doi.

org/10.5061/dryad.zgmsbccj2.

groups that possess similar dispersal capabilities through trait com-
binations, then we may expect to find abundant-centres nested within
phylogenetically clustered taxa. To test this, we expect to find strong
phylogenetic signals for abundant-centre conforming taxa but not for
those that do not conform to the expected pattern.

Here, we use field observations of abundance to explore the
effects of dispersal capability on species’ abundance patterns using
traits as proxies. We examine differences in conformity to abundant-
centre patterns between taxonomic groups and test for the effects of
spatial scale by compiling the following data for animals: 1) taxonomic
group (categorical), 2) body size (cm; g), 3) invasive status (binary), 4)
feeding guild (categorical), 6) extent (km), 7) grain (km?) and 8) focus
(km?); and for plants: 1) functional group (categorical), 2) mean plant
height (m), 3) invasive status (binary), 4) life span (categorical), 5) life
form (categorical), 6) seed mass (mg), 7) extent (km), 8) grain (km?)
and 9) focus (km?. To explore spatial patterns within global
abundance-distance relationships, we also compiled geographic data
for species-level range sizes (km?) and calculated absolute latitudes (°)
from range centroids.

We compute abundance-distance correlation coefficients
(transformed to Fisher’s Z values) which quantify the relationships
between species’ abundance and distance to range centroids from 14
published studies covering 3060 animal and 600 plant species. Col-
lectively, we analyse 3,698,959 and 2,004,630 abundance observa-
tions for animals and plants, respectively (Table 1; Fig. 1a). The animal
dataset includes 1683 bird species, 1,131 reef fish species, 202 mammal
species and 44 freshwater fish species (Fig. 1a-d; Fig. 1f). The plant
dataset comprises 386 herb species, 120 trees, 65 grasses and
29 shrubs (Fig. 1e). On average, there were 1209 +1944 (+ SD) animal
abundance observations (range: 5-11,948), and 3341+ 5182 (range:
5-67,486) plant abundance observations (Table 1). Using separate
weighted linear effects models to summarise the compiled correlation
coefficients from abundance-distance relationships into grand mean
and subgroup average Fisher’s Z values, we test for the effects of

dispersal-related traits and range size variables on conformity to
abundant-centre patterns (Table S2). To account for differences in
Fisher’s Z precision, we weighted each transformed correlation coef-
ficient by the natural logarithm of the number of abundance
observations.

Our results suggest that plants with better dispersal capabilities
tend to conform to abundant-centre patterns. For animals, support for
abundant-centre patterns is negligible across all taxonomic groups.
Accounting for species’ evolutionary histories improves models of
abundance-distance relationships in geographic space but only for
plants. Phylogenetically clustered taxa, such as non-woody plants,
tend to conform to abundant-centre patterns. Evolutionary history did
not explain abundance-distance relationships in animals, and thus
evidence for abundant-centre patterns in animals remains weak.

Results

Abundance-distance relationships are relatively rare across
taxonomic groups

Overall, global abundance-distance relationships differed between the
animal and the plant data sets. Animals showed no clear abundant-
centre patterns (Fig. 2a-d; Fig. 3a; grand mean of Fisher’s
Z=0.006+0.004 (SE), t=1447, df = 3059, p=0.148), with 47%
(n=1430; neoeq = 3060) of animal species showing negative correlations
between abundance and distance from the range centroid (indicative of
an abundant-centre pattern) (Table 2). Of these negative correlations,
43% (n=620 of 1430) were statistically significant, i.e., p<0.05. Reef
fishes and mammals generally did not conform to abundant-centre
patterns, with 33% (n =370 of 1131) and 50% (n =101 of 202) of species
within these groups having negative abundance-distance correlations,
respectively (Fig. 2c, d; Table 2). Birds and freshwater fishes showed
some support for abundant-centre patterns. However, these between-
group differences were marginal, with 56% (n=936 of 1683) and 52%
(n=23 of 44) of species showing negative abundance-distance corre-
lations, respectively (Fig. 2a, b; Table 2).
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Fig. 1| Spatial distribution of 5,703,589 abundance observations for

3660 species compiled this study. a all taxonomic groups combined, b birds,

c freshwater fishes, d mammals, e plants and f reef fishes. Data for 3060 animal and
600 plant species were subsequently used for statistical analyses. Maps represent
the number of species with abundance data per 2.5° grid cell (for display purposes

b) Birds

692

d) Mammals g
e L T 29
E s () &
K T :
s T R 18
-ul . . ‘::“.‘
L B | S
. g B 10
t','.i.' =
L 4 4
.
1
f) Reef fishes .’_
498
12TV Ve o 289
s 7 s
1
L 136
I
rll . -
. s Mo

only), reprojected into the Robinson projection. Values range from dark purple
(low number of species) to light yellow (high number species), with breaks obtained
using a square-root transformation. Data underlying this figure are provided in
Dryad at https://doi.org/10.5061/dryad.zgmsbccj2.

Plants generally showed some consistency with the abundant-
centre hypothesis (Fig. 2e-h; Fig. 3b; grand mean of Fisher’s
Z=-0.08+0.005 (SE), t=-15.7, p<0.001), with 75% (n =446 of 600)
of plant species having negative correlations between abundance and
distance from the range centroid (Table 2). Of these negative corre-
lations, 75% (n=332 of 446) were statistically significant. Grasses,
herbs and shrubs tended to follow abundant-centre patterns with 82%
(n=53 of 65), 84% (n=332 of 386) and 62% (n=18 of 29) of species
possessing negative abundance-distance correlations, respectively
(Fig. 2e-g; Table 2). Trees were the only plant subgroup inconsistent
with abundant-centre patterns, with only 44% (n = 53 of 120) of species
showing negative abundance-distance correlations (Fig. 2h; Table 2).

Accounting for species traits and range size can improve models
of abundant-centre patterns across geographic space

We used a stepwise model selection approach to test the significance
of different predictor variables for the distribution of Fishers Z scores
for animal (i.e., taxonomic group, invasive status, body mass, feeding
guild, absolute latitude and log;, range size) and plant species (i.e.,
functional group, invasive status, life form, absolute latitude, and log;o
seed mass). For animals, the most parsimonious model included the
taxonomic group and logy, transformed range size with predicted
negative abundance-distance relationships for birds, positive rela-
tionships for mammals and reef fishes, and a positive effect of log;o
range size on abundance-distance relationships (Fig. 3a; Table S3).

For plants, the most parsimonious model included the functional
group, invasive status, absolute latitude and log;o transformed seed
mass. This model predicted negative abundance-distance relationships
for grasses and herbs, more negative relationships for invasive versus
non-invasive plants and a negative effect of log;o seed mass and absolute
latitude on abundance-distance relationships (Fig. 3b; Table S3).

Repeating this stepwise variable selection approach for the dif-
ferent taxonomic groups yielded different sets of significant pre-
dictors. For birds and freshwater fishes, feeding guild was the only
significant predictor indicating that herbivorous species showed more
negative abundance-distance relationships than carnivores or omni-
vores (Table S4). For reef fishes, there was a significant negative effect
of absolute latitude on abundance-distance relationships (Table S4).
However, there were no significant predictors of abundance-distance
relationships for mammals (Table S4). Within plant taxa, grasses and
herbs showed more negative relationships at higher latitudes, whereas
a higher number of negative relationships were found for invasive
shrubs relative to non-invasive species, and for those with larger seed
mass (Table S4). For trees, none of the predictors were significantly
related to the observed differences in abundance-distance relation-
ships (Table S4).

Interactions between species traits and geographic variables
Separately within the animal and the plant data sets, we explored
whether linear models could be improved by incorporating bivariate
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interactions between predictor variables. For each data set, we calcu-
lated all fixed effect combinations and bivariate interaction terms and
selected the most important interactions based on the Akaike Infor-
mation Criterion (AIC) (Burnham & Anderson 2002). For animals, there
were important interaction effects between taxonomic group and
feeding guild (group x feeding guild: F; ¢ =3.875, p <0.001), body size
(group x body size: F;3=4.251, p=0.005) and latitude (group x

latitude: F;3=12.111, p<0.0001) (Fig. 4a-c; Table S5). These interac-
tions indicated that omnivorous mammals and reef fishes more closely
approached the expected abundance-distance pattern (while being
non-significant compared to herbivorous or carnivorous species which
had significantly positive relationships) (Fig. 4a; Table S5). Larger-
bodied mammals were more likely to conform to abundant-centre
patterns (Fig. 4b), as were mammals and freshwater fishes from higher
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Fig. 2 | Kernel density plots for global abundance-distance correlations for
3660 animal and plant species. Abundance-distance relationships were calcu-
lated using Spearman’s Rank Correlation Coefficients (r,) visualised for animal
taxonomic group (birds, freshwater fishes, mammals and reef fishes) and plant
functional group (grasses, herbs, shrubs and trees). An ‘abundant-centre’ dis-
tribution would be expected to feature predominantly negative r values (illu-
strated in top-left panel). a Kernel density distribution of abundance-distance
relationships for 1683 bird species, b Kernel density distribution of
abundance-distance relationships for 44 freshwater fish species, ¢ Kernel density

distribution of abundance-distance relationships for 202 mammal species,

d Kernel density distribution of abundance-distance relationships for 1131 reef fish
species, e Kernel density distribution of abundance-distance relationships for 65
grass species, fKernel density distribution of abundance-distance relationships for
386 herb species, g Kernel density distribution of abundance-distance relation-
ships for 29 shrub species, and h) Kernel density distribution of
abundance-distance relationships for 120 tree species. Source data are provided as
a Source Data file.

a) Animals <+—————— Towards an 'abundant-centre' distribution
Birds ——
Freshwater fishes g
Mammals —0—
Reef fishes ——
Range size (km?) ®
Grand mean ’

0.0 01

Fisher's Z scores
Fig. 3 | Modelled effects of significant species traits and geographical variables
on abundance-distance relationships (Fisher’s Z) for 3060 animal species and
600 plant species, by predictor group. a Effects of species traits and geographical
variables for 3060 animal species, and b effects of species traits and geographical
variables for 600 plant species. Negative Fisher’s Z scores (left of dotted line)
indicate an ‘abundant-centre’ distribution effect. Group-level Z values were derived
from marginal mean estimates for categorical predictors (animals: Taxonomic

b) Plants <+— Towards an 'abundant-centre' distribution
Grasses —_—
Herbs —e—
Shrubs —
Trees —0—
Invasive —_——
Non-invasive = 5
Seed mass (mg) +
Absolute latitude (°) —e—
Grand mean <>
-0.2 0.1 00

Fisher's Z scores

group, Invasiveness and Feeding guild; plants: Functional group, Invasive and Life
Form) and from regression relationships for continuous predictors (animals: log;o
Body size (cm; g), Absolute latitude (°) and log;o Range size (km?); plants: log;o
Mean plant height (m), Absolute latitude (°), log;o Range size (km?) and log;o Seed
mass (mg), each scaled to unit variance) (see Table S4 for interaction model out-
puts). Error bars represent approximated 95% confidence intervals. Source data are
provided as a Source Data file.

latitudes (Fig. 4c; Table S5). For plants, there was a significant inter-
action effect between functional group and seed mass (functional
group x seed mass: Fi3=6.483, p<0.001) (Fig. 5a; Table S5), with
shrubs that have larger seeds tending to support abundant-centre
patterns, whereas invasive species with larger seed mass tended not to
conform with this pattern (Fig. 5Sb; Table S5).

Phylogenetic signals in abundance-distance relationships
Accounting for phylogenetic relatedness did not improve the model fit
for the animal data set (Table 3). Conversely, for plants, incorporating
the phylogenetic correction matrix with the observed value of Pagel's A
(-0.2) significantly improved the model fit and removed the sig-
nificance of the estimated grand mean effect (Fisher's Z=-0.04,
t=-0.98, p=0.33). Similarly, our model residuals (tested separately
for the bird, fish, mammal, and plant data sets) were mostly indepen-
dent of species phylogenetic relatedness - again, except for the cal-
culation of the grand mean effect in the plant data set (Table 3).

Discussion

Across what is, to our knowledge, the most extensive global dataset on
animal and plant species abundances to have been used for testing the
abundant centre hypothesis, we observed that global
abundance-distance relationships followed taxon-specific patterns,
often including both positive and negative values. Our findings bring
some clarity to previous research which yielded little to no support for

the abundant-centre hypothesis”7-»3*3¢43374 However, in contrast to
these studies, we observed that some plant groups appeared to follow
abundant-centre patterns, whereas animals did not show any strong
tendency toward such patterns. Inclusion of dispersal-related species
traits and evolutionary histories improved some of our models of
abundance-distance relationships. We expected to find conformity to
abundant-centre patterns in species with higher dispersal capabilities.
We found that dispersal capability does not explain
abundance-distance relationships in animals but likely explains such
patterns in non-woody plants, which may be better at tracking chan-
ging environments due to shorter generation times and higher dis-
persal abilities. Our findings suggest that plant species less limited by
dispersal constraints are more likely to follow abundant-centre pat-
terns in geographic space. Inclusion of phylogenetic relatedness in
abundance-distance relationships returned a phylogenetic signal for
certain taxonomic groups, indicating that abundance-distance rela-
tionships are not a general phenomenon but are restricted to phylo-
genetically clustered taxa.

Underlying assumptions may explain why global
abundance-distance relationships remain relatively rare
Fundamental assumptions of the abundant-centre hypothesis are that
aspecies is in equilibrium with its environment and that environmental
conditions influencing abundance change gradually and mono-
tonically from the range centre towards the range edge. Violation of
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Table 2 | Spearman Rank Correlation Coefficients (rs) exploring relationships between abundance and distance from geo-
graphic range centroids for 3060 animal and 600 plant species

Predictors/subgroups N spp. (%/taxonomic group) % total rs <0 (% subgroup)® % p <0.05 rs 2 0 (% subgroup)® % p <0.05
data set
Animals 3060 (100) 83.3 1430 (46.7) 43.4 1630 (53.3) 49.4
Group
Birds 1683 (55) 45.8 936 (55.6) 35.3 747 (44.4) 25.4
Freshwater fishes 44 (1.4) 1.2 23 (52.3) 34.8 21(47.7) 23.8
Mammals 202 (6.6) 55 101 (50) 34.7 101 (50) 35.6
Reef fishes 131 (37) 30.8 370 (32.7) 21.8 761 (67.3) 75.6
Invasive status
Invasive 41 (1.3) 1.1 21(51.2) 28.6 20 (48.8) 60
Non-invasive 3019 (98.7) 82.1 1409 (46.7) 43.6 1610 (53.3) 49.3
Feeding guild
Carnivores 1436 (46.9) 39.1 619 (43.1) 44.9 817 (56.9) 53.1
Herbivores 610 (19.9) 16.6 288 (47.2) 42 322 (52.8) 491
Omnivores 1014 (33.1) 27.6 523 (51.6) 42.3 491 (48.4) 43.6
Plants 600 (100) 16.4 446 (74.3) 74.6 154 (25) 40.9
Functional group
Grasses 65 (10.8) 1.8 53 (81.5) 69.8 12 (18.5) 25
Herbs 386 (64.3) 10.5 322 (86) 81.6 64 (16.6) 40.6
Shrubs 29 (4.8) 0.8 18 (62.1) 71.8 1 (37.9) 63.6
Trees 120 (20) 3.3 53(44.2) 34 67 (55.8) 40.3
Invasive status
Invasive 23(3.8) 0.6 20 (87) 95 3(13) 0
Non-invasive 577 (96.2) 15.8 426 (73.8) 73.7 151(26.2) 4.7
Life form
Geophytes 20 (3.3) 0.5 16 (80) 81.3 4 (20) 25
Hemicryptophytes 256 (42.7) 7 218 (85.2) 80.3 38 (14.8) 26.3
Phanerophytes 186 (31) 5.1 99 (53.2) 52.5 87 (46.8) 43.7
Therophytes 138 (23) 4.2 113 (83.7) 81.3 25 (16.3) 56
Life span
Annuals 66 (11) 1.8 51(77.3) 78.4 15 (22.7) 46.7
Annuals/Biennials 10 (1.7) 0.3 9 (90) 88.9 1(10) 0
Biennials 21(3.5) 0.6 18 (85.7) 72.2 3(14.3) (o]
Biennials/Perennials 9 (1.5) 0.2 5 (55.6) 80 4 (44.4) 25
Perennials 494 (82.3) 13.5 363 (73.5) 73.8 131 (26.5) 42

“Bold values show abundance-distance relationships that exceed more than 50% of the predictor group.

Negative rs values, i.e., rs < O, indicate ‘abundant-centre’ patterns where species abundance is highest in the geographic range centre and declines towards the range edges. rs > O indicates an inverse
‘abundant-edge’ pattern. Correlation coefficient weights in relation to the entire data set are also presented. Percentage of statistically significant correlations (p < 0.05) also presented. Correlation
coefficient summaries only shown for categorical predictors. Data underlying this table are provided in Dryad at https://doi.org/10.5061/dryad.zgmsbccj2.

these assumptions may explain why global abundance-distance rela-
tionships were relatively rare across most taxonomic groups. It may be
even more challenging to detect abundant-centre patterns in species
with fine-scale habitat selection, where changes in structural hetero-
geneity, orography, aspect, soil type, microclimate and availability of
cover structures influence a species’ abundance throughout time
and space.

A recent study found general support for abundant-centre pat-
terns in birds*’, despite other studies suggesting that these patterns
are rarely detected in this group”*. We failed to detect a strong pat-
tern in our bird data. Wing morphology has been shown to be an
important predictor of dispersal distance in birds’”>’. To account for
this, we conducted a supplementary analysis exploring the effects of
the Hand-Wing Index (HWI) on global abundance-distance relation-
ships for 1,683 bird species (see Supplementary Methods). We
extracted HWI values from the AVONET database’” and found no sig-
nificant HWI effect on modelled bird abundance-distance relation-
ships (F1 1681 = 0.0004, p = 0.986, R’ = < 0.001; Table S9). This suggests

that dispersal capability in birds does not explain abundance-distance
relationships across geographic space.

As predicted, invasive animals did not show support for abundant-
centre patterns; however, they also did not show significantly positive
abundance-distance relationships, which might be expected of invasion
fronts®, Unlike other studies®®, our test of the abundant-centre
hypothesis was global in its approach. Prior to this study, the largest
existing test of the hypothesis found weak support for abundant-centre
patterns in geographic and ecological niche space”. The authors also
attempted to explain variation in abundance-distance relationships by
exploring the effects of body size, range size and climatic niche area®.
We decided not to use the range size variable calculated by Dallas et al.,*
who interpreted minimum convex polygons (MCPs) around sampling
points as proxies for a species’ range, and instead sourced most of our
range size estimates from published IUCN expert range maps”. Only
where expert range maps were unavailable, we used MCPs for some
terrestrial species with small ranges, i.e., understudied species. It must be
noted that MCPs have a coarse outer edge at low sampling intensities
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Fig. 4 | Important interaction effects of species traits on abundance-distance
relationships (Fisher’s Z) for 3060 animal species. Negative Fisher’s Z scores (left
of dotted line) indicate an ‘abundant-centre’ distribution effect, derived from a
linear model weighted by the number of abundance observations per species.

Absolute latitude (°)

Interactions modelled as marginal joint effects (Table S5) for a Group x Feeding
guild, b Group x log;o Body size (cm; g), ¢ Group x Absolute latitude (°) and d) log;o
Body size (cm; g) x Absolute latitude (°). a Error bars represent 95% confidence
intervals. Source data are provided as a Source Data file.

and are therefore sensitive to outliers®®, and sampling efforts only cover
most of a species’ range in exceptional circumstances (such as thorough
field surveys of endemic species on small islands®). Furthermore, Dallas
et al.” used eBird data to test range-wide abundant-centre patterns in
North American birds, which may introduce challenges associated with
sampling procedures when calculating abundance-distance
relationships®. To ensure that our approach was as comprehensive as
possible, we also included the largest data set on birds from Dallas
et al.”; however, we are aware that caution must be used when inter-
preting the results because of the known issues with the use of presence-
only data. Traits included in Dallas et al.”—body size, range size and
climatic niche area — explained very little variation within their models
(birds: R?=3%; trees = R?=3%, mammals: R*=4% and freshwater fishes:
R’=2%), whereas our most parsimonious trait interactions models
explained 5% of model heterogeneity for animals and 16% for plants. An
explanation for this may simply lie in the number of dispersal-related
traits used to test the hypothesis or the choice of methods used (more
robust analytical techniques, which may be more appropriate when
testing broad-scale relationships between species abundances and their
environments”~%,

The use of species traits to explore global abundance-distance
relationships enabled strong signals to be detected within a

comparatively large data set. Compared to animals, our trait-based
method appeared to work better when explaining support for
abundant-centre patterns in plants, suggesting that other processes
that remain untested here may contribute to the unexplained het-
erogeneity in observed abundance-distance patterns. Biotic and
abiotic processes may include, but are not limited to, interspecific
interactions®, spatiotemporal patterns in resource availability®®, cli-
mate and environmental suitability®*, geodiversity®’, and pressures
from human activities®. Failure to account for phylogeny in ecological
regression models may violate independence assumptions®, although
previous evidence suggests that phylogeny has no broad effect on
modelled abundance-distance relationships at the species level®.
Here, we demonstrate that incorporating species’ evolutionary his-
tories in models of abundance-distance relationships can improve
model robustness and generalizability. However, this effect appears to
depend strongly on the taxonomic group studied, and was only sig-
nificant in plant species for which common traits through shared
ancestries might jointly influence the strength of the
abundance-distance relationships. Pagel’s A assumes that traits follow
a Brownian motion model of evolution® which is likely a broad over-
simplification (but may also explain some of the observed patterns in
our dataset). Furthermore, it should be note that the metric used to
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modelled as marginal joint effects (Table S5) for a Functional group x log;o Seed
mass (mg) and b Invasive status x log;, Seed mass (mg). Source data are provided as
a Source Data file.

Table 3 | Tests for phylogenetic signals in
abundance-distance relationships for birds, freshwater and
reef fishes, mammals, and plants

a) Goodness of fit measures for intercept-only models with different values
for Pagel's A.

Species AIC)-0° AIC)-* AlCysit” Air estimate®
group

Birds 484.3 2251 484.3 <0.0001
Fishes -813.4 241.5 -813.4 <0.0001
Mammals 318.5 510.8 318.5 <0.0001
Plants -664.9 64.2 -683.3 0.177***

b) Test for phylogenetic signals in residuals of models with increasing
complexity.

SpECies )\grand meana )\fixeda )\interactionsa
group

Birds <0.0001 <0.0001 <0.0001
Fishes <0.0001 <0.0001 <0.0001
Mammals <0.0001 <0.0001 <0.0001
Plants 0.177*** <0.0001 <0.0001

“Bold values indicate statistically significant phylogenetic signal effects.

a) shows the Akaike Information Criterion (AIC) values for intercept-only generalised least-
squares models (estimated with maximum likelihood) including a phylogenetic correlation
structure with Pagel's A either set to zero (AO; no phylogenetic signal), set to one (A1; full phy-
logenetic signal) or set to the observed phylogenetic signal for Fisher’s Z values (Afit). b) shows
phylogenetic signal statistics (based on Pagel’s \) and respective p-values for the residuals from
weighted linear effects models that either included only the intercept (Agrand mean). the set of
significant fixed effects from the most parsimonious models (Afixeq. C.f., Fig. 3), or the important
interactions and their fixed effects (Aineractions, C-f-, Figs. 4 and 5). Data underlying this table are
provided in Dryad at https://doi.org/10.5061/dryad.zgmsbccj2.

*** p<0.001.

calculate phylogenetic signal in our data set will likely influence the
results obtained®’.

Our focus on species’ dispersal capabilities responds to recent
research®® which found dispersal to be an important process driving
abundance-distance patterns within simulated environments. Other
research has found that species that are better dispersers tend not to
conform to abundant-centre patterns*®. However, Ntuli et al.*® tested
the abundant-centre hypothesis on intertidal species with planktonic
life stages, and direct comparisons with our findings may not yield

ecologically meaningful conclusions. In the context of the taxonomic
groups included in our analysis, our use of dispersal-related species
traits suggests that dispersal capabilities should be accounted for
when testing macroecological hypotheses such as the abundant-
centre hypothesis.

Similar to other tests of the abundant-centre hypothesis, our
sampling approach involves caveats. One limitation relates to the
underlying abundance database used, which inherently vary in differ-
ent sampling protocols, time periods studied, study sites and taxo-
nomic focus. We explored the effects of underlying databases within
each study on abundance-distance relationships for animals and
plants as part of our supplementary analyses (see Supplementary
Methods). There were significant effects of the underlying database in
both animal (F;30s5;=14.364, p<0.0001) and plant (F;s0g=66.302,
p <0.0001) data sets, contributing 3% and 10% of variation within our
animal and plant abundance-distance relationships, respectively
(Table S6; Table S7). These signals may simply be an artifact of the
species included within each data set, as duplicated species data
between studies were removed prior to analysis and abundance data
from the study with the higher number of observations was retained. In
addition to this, most species’ geographical ranges are likely to have
been under-sampled, and abundance estimates are mostly not derived
from the full extents of their ranges.

Our test of the hypothesis assumes that conspecific populations
are equally adapted to the environment. However, there is local
adaptation across some species’ ranges®*, which we were unable to
account for using our approach. Species that have undergone histor-
ical range contractions, either naturally or from human activities, may
become ecologically marginalised’®, which may introduce error into
our assessments of abundance-distance relationships. We attempted
to account for this by exploring how abundance-distance relation-
ships manifest in species that have undergone historical range con-
tractions. Using historical range data from the PHYLACINE database”
(version 1.2), we found no significant effect of historical range con-
tractions on global abundance-distance relationships in 202 mammal
species (F1200=1.242, p=0.266, R°=0.001; Table S10). Despite not
finding a significant effect of historical range contractions on
abundance-distance relationships, it is important to consider that our
study investigates natural processes using data from a human-
modified world. Future research should leverage available historical
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range data across multiple taxonomic groups and explore, in detail,
the effects of natural and human historical range dynamics on
abundance-distance relationships.

Sampling efforts are likely to be influenced by differences in data
quantity and quality between taxa. For example, bird abundance data
are more readily available from open-source repositories (such as
eBird - ebird.org) than abundance data for most other taxa. We
attempted to account for this by weighting the linear models by the
natural logarithm of species sample size, such that better-sampled
species were assigned larger weights in our analyses than less-sampled
species. Even though we employed a global approach to testing the
abundant-centre hypothesis, our study is still bound by the geo-
graphical constraints of the studies included within our data set. This is
demonstrated by the geographical biases within our data set (see
Fig. 1), which may influence our findings. There were notable taxo-
nomic gaps within our data set, and a skew towards more commonly
sampled groups. During our literature searches, we were unable to
obtain any abundance estimates for reptiles, amphibians, marine
mammals, pelagic fishes, corals, fungi and most invertebrate groups.

Despite these limitations, we were able to calculate
abundance-distance relationships for 4036 species, with 3,660 used in
our analyses. Due to the volume of species data included in this study,
we were unable to control for spatiotemporal differences between
migratory and non-migratory species abundances, which have been
shown to influence support for the abundant-centre hypothesis™.
However, previous research has suggested otherwise”*’. Our supple-
mentary analyses on a data set of 1,683 bird species suggest that
migratory strategy has no effect on global abundance-distance rela-
tionships (Fy 1680 = 0.526, p=0.591, R?= < 0.001; Table S8); this aspect
warrants further attention by future studies. We focused on testing the
hypothesis by a measure of centrality as opposed to marginality.
Depending on the shape of a species’ geographic range, such measures
can differ largely as occurrences far from the range centroid can also
be far from the range edge". All of the studies included in our analyses
specifically tested the abundant-centre hypothesis in some form.
Relatedly, preference towards the publication of studies that find
positive support for abundant-centre patterns over those that do not
may be apparent, which should be taken into consideration when
interpreting our findings. Finally, we searched for studies published in
English, French and Spanish, but did not obtain any relevant search
results in languages other than English, which is a limitation of our
results. We suspect this is due to the search terms being optimised for
literature published in English.

Our study indicates that accounting for dispersal-related traits
and phylogeny improves models of abundant-centre patterns across
geographic space. Future tests of the abundant-centre hypothesis
should aim to (i) include data for under-represented taxonomic
groups, such as reptiles, amphibians and fungi, to enhance our overall
understanding of broad-scale patterns of species’ abundances, and (ii)
compare relationships between abundant-centre patterns and habitats
at the micro-scales. Finally, we recommend that future tests of the
abundant-centre hypothesis attempt to examine other processes, such
as interspecific interactions and impacts of human activities, which
may underlie abundance-distance relationships and account for
additional unexplained heterogeneity in our data set.

Methods

Literature searches

We conducted a systematic literature search on 23rd July 2021 by
querying the ISI Web of Science database (apps.webofknowledge.com)
with the following search string for an initial broad search: “(abundan*
OR abundance-cent* OR abundant niche-cent* OR niche cent* OR
abundant-centre hypothesis) AND (range OR geographic range OR
range size OR range edge OR species distribution)” using the TITLE
field. We retained all studies that 1) comprised peer-reviewed primary

studies, 2) presented globally extensive abundance point observations
across all taxonomic groups, 3) were published between 1990 and
2020, 4) included extractable data relating to observed/estimated
abundance counts and 5) were published in English, French or Spanish
language.

Examination of the returned studies (V= 818) revealed that some
key literature was missing from our results. Therefore, we used the
studies returned from our initial search as reference sources for
additional key search terms to derive an optimised search string using
the litsearchr R package®”. Search terms were extracted from unique
study titles, abstracts and tagged keywords (e.g., terms such as ‘range
edge’, ‘abundance’ and ‘species range’). We built a keyword co-
occurrence network and quantitatively assessed potential search
terms using a 60% cumulative cut-off point®’. Resulting search terms
(N=326) were grouped into either 1) the ‘species group’, 2) ‘geo-
graphic group’ or 3) ‘both groups’ depending on whether the term
referred to a species concept or geographic concept. Grouping refers
to the string of search terms either side of the Boolean operator ‘AND’.
We manually removed irrelevant search terms (N=268; e.g., ‘field
sites’, ‘habitat patch’ and ‘statistically significant’) and retained the
most relevant search terms (N=58) which formed our optimised
search string (Table S11). To verify whether our resulting search string
was fully optimised, we cross-referenced four key articles that we
expected to be included in the optimised search results*****%*‘—all of
which were included. We queried the Web of Science database using
our optimised search string and obtained 531 studies. After screening
of titles and abstracts, we retained 23 studies for data extraction.

We supplemented our Web of Science literature search with the
studies included within the foundational synthesis by Sagarin &
Gaines”. We then conducted a snowball search of the literature that
cited Sagarin & Gaines" up until 31st December 2020. This resulted in a
combined literature database of 1109 studies. Due to non-conformity
to our selection criteria, we excluded 1000 studies after screening
titles and abstracts and an additional 95 studies after screening of full
texts, leaving us with 14 studies that were suitable for data extraction.

Data extraction and processing

From each study, and for each species, we extracted raw abundance
values and distance from the species’ geographic range centroids (in
km). Corresponding authors were contacted via email correspondence
if data were not publicly available. Where data were not publicly
available and the corresponding author was unable to provide the
data, we extracted abundance and distance data from appropriate
figures within the published articles using the web-based tool Web-
PlotDigitizer (version 4.5)°. If abundance data were available but dis-
tance values were not, global range maps were obtained in shapefile
formats for each species and range centroids were calculated. We
obtained global range shapefiles for terrestrial mammals from the
IUCN Red List” and for birds from the BirdLife Data Zone (version
2020.1)**, thus accounting for the entire ranges for migratory and non-
migratory species. IUCN range maps have been criticized due to
oversimplification of species’ ranges derived from sampling bias™ but
represent the most comprehensive spatial data set available for our
study species. If global polygon range maps for particularly under-
sampled taxonomic groups were unavailable, e.g., invertebrates and
some plant species (N spp. = 8), we downloaded species occurrence
point data from the Global Biodiversity Information Facility (https://
www.gbif.org). Occurrence data were then cleaned using the Coordi-
nateCleaner package’® and manual checks were performed to remove
any remaining outliers’’. We calculated minimum convex hulls for
terrestrial species, in an attempt to not overestimate their global range
sizes by accounting for unsuitable terrestrial environments, which we
interpreted as proxies for global species ranges and calculated range
centroids using QGIS (version 3.14.16)°%. Then, we calculated the geo-
desic distances on a sphere (km) between the sampling sites with
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associated abundance values to obtain the distance to the species’
range centroid, using the WGS84 co-ordinate reference system.
Abundance and distance values were log;o-transformed prior to sta-
tistical analyses to account for scaling inconsistencies. Species with
unresolved species level taxonomies (N=106) as well as species with
fewer than five observations were omitted from the analysis. We cal-
culated Spearman Rank Correlation Coefficients (r;) between
log;o(abundance) and log;o(distance) values (Fig. 2). Negative r; values
are consistent with an ‘abundant-centre’ distribution (Fig. 2).

Spatial scale effects on abundance-distance relationships

We used three measurements to attempt to explore the effect of scale
on ‘abundant-centre’ patterns: 1) we calculated the study extent (km),
i.e., the spatial extent at which the study was conducted, encompass-
ing the total study area between sampling locations in the data. This
was measured using both latitudinal and longitudinal measurements.
Initially, we used four categorical levels: ‘Local’ < 250 km, ‘Landscape’ >
251-500 km, ‘Regional’ > 501-1500 km and ‘Continental’ > 1501 km. 2)
We calculated the grain (km?), i.e., the spatial scale at which data were
collected, which is important because the area of the base unit defines
the spatial scale of the study?®, and variation in grain may be reflected
in population abundance estimates'®. Grain was extracted from each
study by taking the base unit area for each sampling technique, e.g.,
sampling units measured in km 3) We calculated study focus (km?),
defined as the spatial scale at which data were analysed. Often, abun-
dance estimates from individual sampling sites are averaged across
larger sampling areas, e.g. a protected area sampled using a number of
line transects and multiple sampling points along each transect, with
abundance values averaged across all the sampling points to produce
an estimate for each transect. In most cases, grain and focus were the
same for a given study, e.g. when abundance data were recorded in the
form of points within a species’ geographic range. Grain and focus
values were log;o transformed due to the large variation in the range of
these values. We then plotted the distribution of the log;o-transformed
values on separate histograms and visualised the natural breaks in the
data. Using these we binned both grain and focus into two new cate-
gorical levels: ‘small’ and ‘large’ (-10 to -3 and -3 to 3 on log;o scale,
respectively). We decided to drop extent from our analyses due to
uneven sample sizes: data for only three groups (birds, mammals and
plants) global 2717 species vs. local 146 species. We also dropped focus
from our analyses because the natural break categorical bins were
identical to those for grain. Grain was subsequently omitted from the
statistical analyses due to its strong correlation with animal species
group and plant functional group variables and thus could not be
included within the same models due to colinearity.

Compilation of dispersal-related species traits and geographic
variables

We compiled six dispersal-related species traits for animal and eight
traits for plant species to examine their effects on abundance-distance
relationships (Table 1; Table S2). Traits were selected based on the
morphological and/or ecological characteristics of the study species
and included: for animals 1) taxonomic group (categorical), 2) body
size (continuous), 3) invasive status (binary 1,0) and 4) feeding guild
(categorical); and for plants: 1) functional group (categorical), 2) mean
plant height (m), 3) seed mass (mg), 4) invasive status (binary 1,0), 5)
life span (categorical) and 6) life form (categorical) (see Table 1 for an
overview and Table S3 for justifications for the inclusion of each spe-
cies trait/geographic variable). To explore spatial patterns within glo-
bal abundance-distance relationships, we also compiled geographic
data for species-level range sizes (km?) and absolute latitudes (°).

To examine the effects of body size, we compiled body mass (g)
data for mammals and birds, and snout-vent lengths (SVL; cm) for
freshwater and reef fishes to produce the trait variable ‘body size’. For
plants, we used mean plant height (m) as a proxy for body size. Mean

plant height was used instead of maximum plant height as these were
the only data available for our selected species, and notable effects of
plant height on species abundance patterns would be reflected in
either measurement. Where plant height and seed mass data were
unavailable, we supplemented our data with gap-filled
measurements'®'” which were estimated using Bayesian Hier-
archical Probabilistic Matrix Factorization'®. Trait data for plant
functional groups were sourced from the BiolFlor database'** and the
corresponding levels ‘dwarf shrub’ (N=11 species) and ‘subshrub’
(N=4 species) were merged into the level ‘shrub’ to produce four
distinct categorical levels: ‘grasses’, ‘herbs’, ‘shrubs’ and ‘trees’. Plant
life-form data followed the classification of Raunkizer'® but due to
small sample sizes for ‘chamaephytes’ (woody plants with perennating
buds borne close to the soil surface), we merged these with the ‘pha-
nerophytes’ (woody perennial plants with buds at a distance from the
surface, such as trees and shrubs). Invasive status was assessed using a
binary approach (1 = invasive and 0 = non-invasive) according to the
Invasive Species Specialist Group’s Global Invasive Species Database
(http://www.iucngisd.org/gisd/). For both animal and plant species,
absolute latitude (°) was calculated as the absolute value of the range
centroid. The following species traits/geographic variables were log;o-
transformed prior to analysis: body size (cm; g), mean plant height (m),
seed mass (mg) and range size (km?) to account for right-skew within
the data. We tested for, but did not find, collinearity between con-
tinuous explanatory variables using a correlation threshold value >
0.70 in the hmisc'*® package with visualisations created in the pheat-
map package'” (Fig. SI).

Statistics and reproducibility

All data analyses were performed R (version 4.0.5)'°. No statistical
method was used to predetermine sample size. Due to small sample
sizes (N =9 species), invertebrate abundance data were excluded from
the statistical analyses. Coefficients from Spearman’s rank correlation
between species’ abundances and range-centre distances were trans-
formed to Fisher’s Z scores (to achieve approximate normality), using
the package metafor'®. We analysed the animal and plant data sepa-
rately because of different sets of trait combinations and the different
sampling methods (e.g., abundances estimated from line transects for
animals vs. vegetation plot-based cover estimates for plants). In all
analyses, the influence of each Fisher’s Z score was weighted by the
natural logarithm of the sample size (to down-weight the influence of
sparsely sampled species).

Grand mean effects and linear modelling

We calculated the grand mean Fisher's Z scores of
abundance-distance relationships as weighted averages of Fisher’s Z
values (using weighted intercept-only models), which we determined
to be significant if the approximated 95% confidence intervals of the
estimated intercept did not include zero.

To explore the effects of dispersal-related species traits and
geographic variables on abundance-distance relationships, we
expanded the weighted intercept-only models by including the species
traits and geographic variables as fixed effects (hereafter ‘predictors’).
We determined the significance of these predictors using a stepwise
model selection approach in which we started with a full model and
(stepwise) removed non-significant predictors (based on F-tests on the
explained variation between nested models) until we reached the most
parsimonious models that included only statistically significant pre-
dictors. From these most parsimonious models, we calculated the
marginal effects of each significant predictor using the ggeffects
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package'°.

Interactions between predictor variables
To explore any potential interaction effects between the suggested
predictors, we applied a multimodel inference approach™. Separately
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for animal and plant data, we constructed all weighted linear effects
models for any combination and two-way interactions between all
tested predictors, accumulating 40,069 models for the animal dataset
and 1450 models for the plant dataset. All competing models were
ranked by the AIC™, which favours the models that explain the highest
amount of variation with the smallest number of fixed and interaction
effects (using the dredge function of the MuMin package'). From the
emerging set of best models (those with a AAIC of <2 from the best
model), we extracted all included fixed effects and interaction terms
into two interaction models (separately for animal and plant data)
from which we calculated the marginal interactions effects again with
the ggeffects package.

Testing for phylogenetic signals in abundance-distance
relationships

To test for phylogenetic signal in our models and model residuals, we
assembled phylogenies for a data subset consisting of 1645 birds (on
1547 nodes), 1151 freshwater and reef fishes (on 1031 nodes), and 201
mammals (on 184 nodes) from the Open Tree of Life (OTL)"*™ using
the rotl R package™. The plant phylogeny was obtained from the
phylogenetic backbone of sPlot (version 3.0)'°" which is also based
on the OTL with additional resolution and included 589 species on
552 nodes.

Separately for birds, fishes, mammals, and plant data, we com-
pared the AIC values between three generalized least square models
(estimated with maximum likelihood) that included a phylogenetic
correlation matrix"® with three different values of Pagel’s A, a robust
index of phylogenetic signal in continuous traits". A A value of zero
indicates no phylogenetic signal, whereas a value of one indicates full
branch length separation, i.e. full phylogenetic signal. In addition to
this, we used a further A value calculated from the distribution of
Fisher’s Z values to reflect the observed phylogenetic evolution with
the phylosig function from the phytools package'. In addition to the
model comparison, we tested whether the residuals from our linear
models were significantly predicted by species’ phylogenetic related-
ness. For this, we re-calculated the intercept-only model, the most
parsimonious model (with fixed effects), and the interaction model
(with important fixed and interaction terms) for the birds, fishes,
mammals, and plant data set and tested the significance of the phy-
logenetic signal using Pagel’s A again using the phylosig function from
the phytools package. See supplement.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The abundance-distance correlation coefficients, trait, and range data
generated in this study have been deposited in the Dryad database
[https://doi.org/10.5061/dryad.zgmsbccj2]. Original abundance data
sources are outlined in Table S6 in the supplementary informa-
tion. Source data are provided with this paper.

Code availability
R code associated with this article is has been deposited in the Dryad
database [https://doi.org/10.5061/dryad.zgmsbccj2].
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