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ABSTRACT
Laser ablation U–Pb single zircon geochronology was applied to four peraluminous granite and granodiorite samples from the 
Bassiès pluton in the Central Pyrenees (France) yielding a wide range of concordant ages from early Carboniferous (Tournaisian, 
351 Ma) to early Permian (Artinskian, 285 Ma). Emplacement of the Bassiès pluton occurred incrementally during the main 
Variscan deformation phase, with increased activities every 7–15 Myr and a peak at around 321 Ma. Evolution of the Bassiès 
pluton is more complex than the previously published single age of 312 Ma implied, underscoring the importance of synorogenic 
Variscan magmatism within the Axial Zone. Supported by geochronologic data from other plutons and gneiss domes, the notion 
that magmatism in the Axial Zone was confined to the late- to post-orogenic phase (315–295 Ma) is refuted. A possible thermal 
source for the long-lasting widespread plutonism in the Variscan crust is the TUZO mantle plume.

1   |   Introduction

In contrast to other Phanerozoic orogens (e.g., Von Blanckenburg 
et  al.  1998; Kalsbeek et  al.  2001; Rosenberg  2004; Oliver 
et  al.  2008), synorogenic plutonism in mid- and upper crustal 
levels of the Variscan orogen is widespread, suggesting an ex-
ceptional thermal structure. In the Pyrenean Axial Zone, 
more than 30 plutons cover approximately 20% of the area 
(Figure  1a). Timing of pluton emplacement provides import-
ant age constraints for the tectonometamorphic evolution of 
the Variscan Pyrenees (e.g., Mezger and Régnier 2016). Recent 
laser ablation U–Pb single zircon studies of plutons (Bossòst, 
Soulcem) and dikes intruding the Aston gneiss dome (Mezger 
and Gerdes 2016; Schnapperelle et al. 2020) have shown that the 
magmatic history of the Variscan Pyrenees extends beyond the 
previously proposed 15 Myr (e.g., Denèle et al. 2014).

A key area to study possible long-term magmatic activity in 
the Axial Zone is the Bassiès pluton whose shape and mag-
netic fabric suggest that it was emplaced prior to or early 
during the major Variscan deformation phase D2 (Evans 
et al. 1997; Gleizes et al. 1997). A single U–Pb zircon ID-TIMS 
age of 312 ± 2 Ma has been interpreted as the emplacement age 
of the pluton (Paquette et al. 1997). However, the pluton's com-
positional zoning, leucogranite centre and granodiorite rim 
suggest multiple emplacement events or phases instead of one 
singular event. In this study, we apply whole rock geochem-
ical analyses and laser ablation U–Pb geochronology on sin-
gle zircons from four granitoid samples of the Bassiès pluton. 
The resulting range of zircon ages covers most of the Variscan 
orogeny from the Visean to the early Permian, raising the im-
portant question about the source for the long-term magmatic 
activity.
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provided the original work is properly cited.
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2   |   Geologic Setting

The Variscan basement of the Pyrenees, the Axial Zone, contains 
three major lithotectonic units: (1) Ediacaran to Carboniferous 
metasedimentary rocks, (2) orthogneisses with Ordovician pro-
tolith ages, and (3) numerous Carboniferous to early Permian 
plutons.

The Bassiès pluton covers an area of approximately 90 km2 in 
the Central Pyrenees and has the shape of an E-W oriented 
parallelogram (Figure  1). It intruded Ediacaran-Ordovician 
metasedimentary rocks resulting in a 1–2 km wide contact au-
reole (Evans et  al.  1997). The pluton displays a magmatic zo-
nation with leucogranite in the centre and successive zones of 

two-mica monzogranite, biotite monzogranite, and granodio-
rite at the margin (Figure 1b; Gleizes et al. 1991). The northern 
boundary of the pluton is defined by the Alpine North Pyrenean 
fault (Evans et al. 1997).

Evans et al. (1997) propose that the Bassiès pluton was emplaced 
in a sinistral strike-slip pull-apart setting between a regional D1 
compression and D2 transpression. This tectonic transition has 
been linked to an increase in magmatic activity (e.g., Denèle 
et al. 2009; Cochelin et al. 2021). After crystallisation, the plu-
ton and its contact aureole behaved as a rigid body within the 
surrounding metasedimentary rocks, resulting in its asymmet-
ric shape and clockwise rotation during D2 dextral transpression 
(Evans et al. 1997).

FIGURE 1    |    (a) Major lithotectonic units of the Pyrenean Axial Zone (Baudin et al. 2008, modified after Mezger (2009)). Rectangle indicates lo-
cation of Bassiès pluton. (b) Map of the Bassiès pluton showing compositional zonation and major faults. Modified after Colchem et al. (1997) and 
Casteras et al. (1969), BGRM maps 1086 and 1087. Note that there is no compositional zonation in map 1087. Stars indicate locations of analysed 
samples. For each sample, the youngest U–Pb zircon age is shown. Ages in italics indicate 98%–102%, bold indicates 95%–105% concordance. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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3   |   Analytical Methods

Four samples collected from the monzogranite, granodio-
rite and granite zones outlined by the official BRGM geologic 
maps (Casteras et al. 1969; Colchem et al. 1997) were selected 
for single zircon U–Pb LA-ICPMS analyses (Figures  1; S1, S2 
in Supporting Information). Modal and geochemical analy-
ses show that the lithologic differences between the samples 
are minor, lying close together in the granite and granodiorite 
fields (Tables  S1, S2; Figures  S3, S4). Zircon grains were ex-
tracted by standard mineral separation procedures (File  S1). 
Cathodoluminescence (CL)-imaging of zircons was used to se-
lect analytical spots (Figures S59–S83). Uranium, thorium and 
lead isotopes were analysed with a Thermo-Fisher-Scientific 
Element 2 XR double focused sector field ICP-MS coupled to a 
New Wave Research UP-193 nm ultraviolet laser system.

4   |   Single Zircon U–Pb Results

Ages are calculated from analyses that lie within 95%–105% con-
cordance and range from 285.0 ± 4.3 to 351.6 ± 7.5 Ma for all four 
samples (Table 1, Figures S5–S58). In addition, one Ordovician 
(455 ± 7.9 Ma) and one Neoproterozoic (625 ± 13 Ma) age were re-
corded. Descriptions of samples, petrological, geochemical and 
U–Pb data are listed in the Supporting Information (Figures S1–
S82, Tables S1–S8).

BAS-1, a peraluminous s-type granodiorite/quartz monzonite 
(Figures  S1–S4; Tables  S1, S2; see also for following samples), 
yields the youngest age of all four samples, 285.0 ± 4.3 Ma 
(Table  1, Figure  S8). The main concordant age cluster is 

at 320.8 ± 2.4 Ma. Additional clusters lie at 295.2 ± 2.7 Ma, 
300.7 ± 4.5 Ma, 308.3 ± 2.6 Ma and 329.5 ± 3.4 Ma. The overall 
average age calculated from 28 analyses is 308.3 ± 5.4 Ma.

BAS-2, a peraluminous s-type granite near the northern mar-
gin of the pluton, yields a youngest zircon age at 293.3 ± 3.1 Ma 
(Figure S23). Three additional clusters occur at 305.5 ± 2.0 Ma, 
317.6 ± 1.9 Ma and 329.9 ± 2.4 Ma. The average age from 34 anal-
yses is 312.5 ± 4.4 Ma.

BAS-3, a peraluminous s-type granodiorite from the eastern 
rim of the pluton, has its youngest zircon age at 301.9 ± 3.2 Ma 
(Figure S37). Two additional clusters are at 319.4 ± 2.7 Ma and 
329.3 ± 2.7 Ma. The average age from 17 analyses is 317.6 ± 6.1 Ma.

BAS-4, a peraluminous s-type granite from the centre of the 
pluton, has its youngest age at 314.8 ± 3.8 Ma (Figure S50). Two 
clusters lie at 325.5 ± 3.8 Ma and 342.2 ± 3.8 Ma and an addi-
tional single age of 351.6 ± 7.5 Ma. The average age from 12 anal-
yses is 327.9 ± 8.3 Ma.

5   |   Discussion of Age Data

U–Pb zircon analyses are commonly reported with 95%–105% 
concordance (Ludwig  1998), resulting in several age clusters 
that can be eliminated by constricting the concordance require-
ments to 98%–102% (Table 2). For all four samples, 91 analyses 
fall in the 95%–105% range; 38 analyses satisfy the 98%–102% 
concordance. The age spread in both concordance ranges is 
nearly identical. Individual samples display a range of zircon 
ages spanning 17–40 Myr, almost 65 Myr for all four samples 

TABLE 1    |    U–Pb zircon age groups of the Bassiès pluton.

Sample 
number Age (Ma)a

Age (all 
data) (Ma)

Individual samples

BAS 1 285.0 ± 4.3 295.2 ± 2.7 300.7 ± 2.6 308.3 ± 2.6 320.8 ± 2.6 329.8 ± 3.4 n.d. 308.3 ± 5.4

(n = 2)c (n = 5) (n = 2) (n = 6) (n = 7) (n = 4) (n = 28)

BAS 2 n.d.b 293.3 ± 3.1 305.5 ± 2.0 n.d. 317.6 ± 1.9 329.9 ± 2.4 n.d. 312.5 ± 4.4

(n = 4) (n = 10) (n = 12) (n = 8) (n = 34)

BAS 3 n.d. n.d. 301.9 ± 3.2 n.d. 319.4 ± 2.7 329.3 ± 2.7 n.d. 317.6 ± 6.1

(n = 4) (n = 6) (n = 1) (n = 17)

BAS 4 n.d. n.d. n.d. 314.8 ± 3.8 325.5 ± 3.4 n.d. 342.2 ± 3.8 327.9 ± 8.3

(n = 3) (n = 4) (n = 4) (n = 12)

351.6 ± 7.5

(n = 4)

Bassiès average age group

285 295 304 310 320 329 345

Note: Detailed information on location and complete analytical data sets are presented in Tables S3–S8 in the Supporting Information. Bold values: mean of grouped 
local maxima of age distributions.
a95%–105% concordance.
bn.d.: = no data.
cNumber of analyses.
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combined, from 351 to 285 Ma (Figure 2, Figures S5–S58). The 
ages are not evenly distributed but seem to form clusters at 7–15 
Myr intervals (Table 1; Figures 2, 3).

The wide range of clustered zircon ages, structural data and 
compositional zonation of the Bassiès pluton imply a complex 
emplacement history (Evans et  al.  1997; Gleizes et  al.  1997). 
Zircons with older cores and younger rims (Figure 2g,h) indicate 
that the Bassiès pluton is not the result of a single intrusive event 
as the ID-TIMS age of 312 Ma obtained from one monzogran-
ite sample suggested (Paquette et al. 1997). Instead, we propose 
that the Bassiès pluton was assembled over several ten million 
years as a succession of smaller intrusions. Thus, the youngest 
zircon ages of ~285 Ma represent the final magmatic pulses and 
not the emplacement age of the pluton.

Prolonged emplacements of plutons have been documented by 
geochronologic studies in the North American Cordillera and the 
western European Variscides. Large plutons of the Sierra Nevada 
Batholith were assembled over periods of 7–12 Myr (Coleman 
et al. 2004, 2016; Davis et al. 2012; Frazer et al. 2014). The Montes 
de Toledo batholith in the Central Iberian Zone is composed of 
three different granitoid series that were emplaced between 316 
and 297 Ma, over a period of 19 Myr (Merino Martínez et al. 2014). 
Coleman et al. (2004) consider magma crystallisation over such 
time periods too long for individual plutons to exist as magma 
chambers. Instead, they propose that such plutons were assem-
bled as a series of incrementally emplaced intrusions.

In the Pyrenean Axial Zone, long-term pluton assemblages 
have not been recognised, although recent U–Pb zircon stud-
ies of the Lys-Caillaouas dome and Posets pluton reported ex-
tended age ranges of 20 Myr (Lopez-Sanchez et al. 2019; Esteban 
et al. 2021). Felsic dikes that intruded the orthogneiss core of the 
Aston dome in the central Axial Zone record Variscan zircon 

ages spanning > 70 Myr (Schnapperelle et al. 2020). Although 
not constrained by geochronology, an anisotropy of magnetic 
susceptibility (AMS) study of the Saint-Laurent–La Jonquera 
pluton suggests synkinematic sequential or incremental em-
placement of multiple granitoid sheets during D2 dextral trans-
pression (Olivier et al. 2016). In the North Pyrenean Zone, U–Pb 
zircon geochronology of the Agly and Trois Seigneurs massifs 
record age ranges of 37 Myr and 40 Myr, respectively (Vanardois 
et al. 2022; Connop et al. 2024).

Geochronological studies of Pyrenean intrusions analysed a very 
small number of samples (n ≤ 3) that may not be representative 
of the intrusion history. Prior to 2000, analyses were performed 
as ID-TIMS, which resulted in single dates that were interpreted 
as emplacement ages. Considering a complex pluton assem-
blage (e.g., Coleman et  al.  2004), we suggest these ages record 
only a snapshot of the emplacement history of a Variscan plu-
ton. Though the plutons in the Pyrenean Axial Zone are smaller 
in size (15–660 km2) than the Sierra Nevada and Montes de 
Toledo batholiths (1200–2000 km2), a similar long assemblage 
period on the order of tens of Myr can be assumed. Zircon cores 
within Bassiès pluton samples are 20 Ma older than their rims 
(Figure  2g,h). These grains display oscillatory zoning without 
xenocrystic cores, that is, no overgrowth on older grains from as-
similated wall-rocks or detrital zircons (Figures 2g,h, S59–S83).

The current consensus that Variscan magmatism of the Pyrenean 
Axial Zone is confined to a narrow 20 Myr period during the 
latest Carboniferous–earliest Permian (Denèle et al. 2014, and 
references therein) does not concur with the results of our study. 
Instead, we propose that magmatism was already widespread 
during the early Carboniferous. The zircon ages of granitoids 
from the Bassiès pluton span more than 65 Myr beginning in 
the Tournaisian. Mezger and Gerdes  (2016) reported similar 
early Variscan ages (339–336 Ma) from the Bossòst and Soulcem 

TABLE 2    |    U–Pb zircon age groups of the Bassiès pluton (conservative).

Sample 
number Age (Ma)a Age (all data) (Ma)

Individual samples

BAS 1 285.0 ± 4.3 298.7 ± 4.3 308.3 ± 2.6 n.d.b 323.9 ± 2.7 n.d. 307.9 ± 8.1

(n = 2)c (n = 2) (n = 5) (n = 6) (n = 15)

BAS 2 n.d. 292.2 ± 4.1 n.d. 316.1 ± 2.6 n.d. 331.3 ± 3.3 315.0 ± 9.5

(n = 2) (n = 5) (n = 4) (n = 12)

BAS 3 n.d. n.d. n.d. n.d. 324.5 ± 3.5 337.7 ± 7.1 324.7 ± 9.3

(n = 4) (n = 1) (n = 5)

BAS 4 n.d. n.d. n.d. 317.6 ± 3.9 n.d. 334.7 ± 5.2 323.0 ± 10

(n = 3) (n = 2) (n = 5)

Bassiès average age group

285 295 308 316 324 333

Note: Detailed information on location and complete analytical data sets are presented in Tables S3–S8 in the Supporting Information. Bold values: mean of grouped 
local maxima of age distributions.
a98%–102% concordance.
bn/a: = no data.
cNumber of analyses.
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320 Terra Nova, 2025

FIGURE 2    |    Combined single zircon U–Pb analyses of four Bassiès pluton granitoids. Left column presents ages within 95%–105% concordance, 
right column within 98%–102% concordance. (a, b) Histograms and probability density plots (bin width = 2 Ma). (c, d) 206Pb/238U-207Pb/235U concor-
dia diagrams. (e, f) Weighted averages ages. Black horizontal lines indicate mean ages. (g, h) Cathodoluminescence images of zircons from samples 
BAS 1 and BAS 4 with different core and rim ages. Diameter of analytical spots is 30 μm. Percentage of concordance is given. See text for discussion. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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granites, situated within gneiss domes of the central Pyrenees. 
Another granitic sample from the Soulcem intrusion yields con-
cordant zircon ages ranging from 361 to 302 Ma (Schnapperelle 
et al. 2020).

6   |   Evolution of the Bassiès Pluton

Tournaisian and early Visean zircon ages indicate that the earli-
est magmatic phase of the Bassiès pluton coincides with crustal 
thickening that led to the Variscan D1 deformation (Figure 3a). 
Little is known about D1, but it did not seem to have resulted in 
a significantly thickened crust with partial melting and magma 
production at its base (De Hoÿm de Marien et al. 2019).

The number of zircon ages increases from 333 Ma on and 
reaches a maximum at 321 Ma, which is interpreted as the main 
magmatic pulse of the Bassiès pluton (Figure 3b). It corresponds 
with a change in the tectonic setting in the Axial Zone from 
mainly N-S compression to dextral transpression (D2a), accom-
panied by widespread HT-LP and local HT-MP metamorphism 
in the Axial Zone (Carreras and Cappella 1994; Druguet 2001; 
Mezger et al. 2004; Denèle et al. 2009).

Subsequent magmatic pulses at 315 and 305 Ma occurred under 
the increasingly transpressive deformation phase D2b associated 
with local orogen-parallel extension of the middle crust in the 
Axial Zone (Figure 3c). In the Bassiès pluton, granitoid intru-
sions became dominant. The youngest zircon ages (299 and 
285 Ma) are coeval with the last Variscan deformation phase 
D3, which was dominated by dextral shear zones through-
out the Axial Zone (Carreras 2001; Denèle et al. 2009; Mezger 
et al. 2012).

7   |   Source of Long-Lasting Magmatism

Evidence for widespread magmatism in the Pyrenean Axial 
Zone starting in the early Carboniferous is mounting, but its 
origin remains unclear. For northwest Iberia, Gutierrez-Alonso 
et  al.  (2018) postulate that subduction of the Gondwana mar-
gin led to partial melting of a thickened crust and subsequent 
Visean magmatism. Lopez-Sanchez et al. (2019) propose a simi-
lar process for the Axial Zone without providing additional evi-
dence. Thermobarometric modelling of metasedimentary rocks 
and migmatites from the eastern Axial Zone (Canigou massif, 
Roc de Frausa) yielded peak pressures of 6.5–7.5 kbar for M1 

FIGURE 3    |    Schematic not-to-scale evolution model of the Bassiès pluton from the early Carboniferous to the earliest Permian displayed in SW–
NE oriented cross-sections. The colours of intrusions refer to the main magmatic events shown on the right. D1, D2, D3 refer to the main Variscan 
deformation periods. Grey arrows represent compression. See text for discussion. [Colour figure can be viewed at wileyonlinelibrary.com]
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metamorphism, indicating a thickened crust that could have 
undergone thermal weakening (Aguilar et al. 2015; De Hoÿm de 
Marien et al. 2019). However, such medium-pressure metamor-
phism has been recorded only locally.

High-pressure assemblages that record a significantly thickened 
crust are absent in the Pyrenean Axial Zone. Likewise, the Axial 
Zone does not contain eclogites or blueschists that could provide 
evidence of an intracontinental subduction zone as proposed by 
Kroner and Romer (2013). Only the latest post-304 Ma magmatic 
phase can be attributed to northwestward subduction of the 
Western Paleotethys oceanic lithosphere underneath Pangaea, 
synchronous with D3 transpressional shearing (Druguet 
et al. 2014; Pereira et al. 2014).

Although the direct cause for long-term sustained magmatism 
starting in the early Carboniferous or before is still elusive, a 
possible source could be a thermal anomaly caused by a mantle 
plume, which was originally proposed by Simancas et al. (2006) 
for SW Iberia in the early Carboniferous. Torsvik et al.  (2014) 
and Franke et al.  (2017) suggest that the TUZO mantle plume 
likely underlaid northern Gondwana starting in the Ordovician 
and lasted at least until the Permian.

8   |   Conclusions

Single zircon U–Pb ages from granitoids of the Bassiès pluton 
in the Central Pyrenean Axial Zone span a nearly continuous 
range from 351 to 285 Ma, covering most of the evolution of the 
Pyrenean Variscan orogeny. Age clusters indicate discrete mag-
matic pulses every 7–15 Myr, with the main emplacement taking 
place at around 321 Ma. The implications of this wide age range 
recorded in one pluton reflecting almost the complete range re-
ported from Variscan magmatism in the Pyrenees are twofold: 
(1) The Bassiès pluton was not emplaced during one single event 
at 312 Ma but was assembled by incremental intrusions over a 
long period (~65 Myr) during the Variscan deformation phases 
D1, D2, and possibly D3. (2) Widespread magmatism in the Axial 
Zone already occurred during the Tournaisian, corroborating 
studies of other Pyrenean plutons and gneiss domes. The source 
of early Variscan magmatism remains elusive. A long-lived 
mantle plume (TUZO) situated underneath northern Gondwana 
could have provided the thermal anomaly that initiated early 
Carboniferous magmatic activity and sustained until the devel-
opment of regular late-orogenic magmatism and postorogenic 
extension.
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