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Abstract

We consider bifurcation of critical points from a trivial branch for families of func-
tionals that are invariant under the orthogonal action of a compact Lie group. Based
on a recent construction of an equivariant spectral flow by the authors, we obtain a
bifurcation theorem that generalises well-established results of Smoller and Wasser-
man as well as Fitzpatrick, Pejsachowicz and Recht. Finally, we discuss first examples
of strongly indefinite systems of differential equations where the mentioned classical
approaches fail but an invariance under an orthogonal action of a compact group makes
our methods applicable and yields the existence of bifurcation.

Mathematics Subject Classification Primary 58E(09; Secondary 58J30 - 58E07 -
34C25

1 Introduction

Let H be a real separable Hilbert space of infinite dimensionand f : I x H — R a
continuous map such thateach f;:=f(x, -) : H — Ris C? with derivatives depending
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continuously on the parameter A € I:=[0, 1]. Let O be a critical point of all f; and
consider the family of equations

(V) =0,

which now has u = 0 as solution for all A € /. A parameter value A9 € [ is called a
bifurcation point (of critical points) if in every neighbourhood U C I x H of (19, 0)
there is some (A, u) such that (V f3)(u) = 0 and u # 0. The existence of bifurcation
points is a classical problem in nonlinear analysis that has been systematically studied
for many decades. A central role is played by the second derivative D(z) f>. at the
critical point 0 € H, which is a symmetric bounded bilinear form on H. By the Riesz-
representation theorem it uniquely determines a selfadjoint operator L; on H such
that

(Lyu,v)g = (D§f)(u,v), u,veH, (1)

which is called the Hessian of f at 0 € H. Note that it is an immediate consequence
of the implicit function theorem that L, is not invertible if A is a bifurcation point.
Krasnoselskii considered in the sixties the case that L, = Iy — ALK, where Iy denotes
the identity on H and K is a compact selfadjoint operator. He showed in a celebrated
theorem that the bifurcation points of f are exactly those parameter values for which L,
has a non-trivial kernel or, in other words, 1'is an element of the spectrum o (K) of the
compact operator K. More generally, let us now assume that the selfadjoint operators
L) are Fredholm, i.e., they have a finite dimensional kernel and a closed range. The
following generalisation of Krasnoselskii’s work is nowadays a common result in
nonlinear analysis that can be found e.g. in the monographs [19, 23]. Henceforth,
we denote by u_(S) the Morse index of a selfadjoint Fredholm operator S, i.e., the
number of negative eigenvalues of S counted with multiplicities.

Theorem 1.1 If u_(L;) < oo forall A € I, Ly, L are invertible and

m—(Lo) # u—(L1), (2)
then there is a bifurcation point of critical points of f in (0, 1).

It is readily seen that the invertibility of Ly and L cannot be lifted in this theorem
(cf. [11, §12.2]). However, there is ample motivation to relax the assumption on the
finiteness of the Morse indices and condition (2). Firstly, sometimes symmetries of the
functionals affect the applicability of (2). For example, if the spectra of the operators L,
are symmetric in some neighbourhood about 0, then the Morse indices are necessarily
constant and the above theorem cannot be applied. Secondly, the finitness of the Morse
indices excludes various important applications. For example, when studying solutions
of Hamiltonian systems or non-cooperative elliptic systems of PDE as critical points of
a suitable functional, the appearing operators L; will usually not meet this condition.

The obstacle caused by constant Morse-indices was treated by Smoller and Wasser-
man in their seminal work [31] as follows. Assume that G is a compact Lie group that
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acts orthogonally on H and that each functional fj is invariant under the action of G,
i.e., fa(gu) = fo(u) forall g € G and u € H. Then the Hessians L are readily seen
to be G-equivariant, i.e., Ly (gu) = gL u. If now u_(Lj,) < oo, then the direct sum
E~(L,) of all eigenspaces with respect to negative eigenvalues is of finite dimension.
As E7(L,) is easily seen to be invariant under the action of G, this space is a finite
dimensional representation of the Lie group G. The terminology of a nice Lie group,
that was introduced in [31], will be recalled below in Sect. 3.

Theorem 1.2 Assume that G is nice, Lo, L1 are invertible and u— (L)) < oo for all
rel If

E™(Lo) # E (L), 3

where = stands for isomorphic representations of G, then there is a bifurcation point
of critical points for f in (0, 1).

Note that Theorem 1.1 follows from Theorem 1.2 as isomorphic representations are of
the same dimension and p_(L;) = dim(E~ (L,)). Smoller and Wasserman applied
Theorem 1.2 in [31] to study bifurcation of radial solutions of semilinear elliptic
equations.

There have been various attempts to generalise Theorem 1.1 to the case when
u—(L,) = oo.These were mostly tailored to specific applications like, e.g., bifurcation
of branches of periodic solutions of Hamiltonian systems (cf. e.g. [20, 33]). A very
general approach to this problem was introduced by Fitzpatrick, Pejsachowicz and
Rechtin [12]. The spectral flow is an integer-valued homotopy invariant that is defined
for any path L = {L, },e; of selfadjoint Fredholm operators that was introduced by
Atiyah, Patodi and Singer in [5] in connection with the Atiyah-Singer Index Theorem.
Roughly speaking, the spectral flow counts the net number of eigenvalues crossing 0
whilst the parameter A of the path traverses the interval. We recall the construction of
the spectral flow below in Sect.2 and now just mention that if ©_(L;) < oo for all
A € I, then

sf(L) = u—(Lo) — pn—(L1).
Thus the following main theorem of [12] is a natural generalisation of Theorem 1.1

which is applicable to any family of functionals f, such that the associated Hessians
L; in (1) are Fredholm operators.

Theorem 1.3 If Lo, L are invertible and
sf(L) #0 € Z, “4)

then there is a bifurcation point of critical points of f in (0, 1).

Let us note that there are various efficient methods to compute the spectral flow,
e.g., dimension reductions or crossing forms, that were in particular developed for
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applications in symplectic geometry (cf. e.g. [13, 29]). These have yielded several
bifurcation theorems for various types of differential equations, e.g., [13, 27, 35, 37].

A natural question about Theorem 1.3 is if (4) can be further relaxed. For example,
if the spectra of the operators Lj are symmetric about 0 by some symmetry of the
functionals f;, then necessarily sf(L) vanishes as net number of eigenvalues crossing
through 0. But if in this case there are pairs of eigenvalues crossing the axis in oppo-
site direction, one might still have the idea that there should be a bifurcation point.
Interestingly, this is not necessarily the case by the following theorem of Alexander
and Fitzpatrick from [1].

Theorem 1.4 Let L = {L)}yes be a path of selfadjoint Fredholm operators and Ly €
(0, 1) such that L) is invertible for . # Ag. If sf(L) = 0, then there exist an open
interval J C [0, 1] containing Ao, an open ball B C H and a continuous family
f:J x B — R of C2-functionals such that L; are the Hessians of f at0 € H and
V £,.(0) = 0 holds for A € J, but there is no bifurcation of critical points for f in J.

The previous theorem suggests that Theorem 1.3 is optimal, and indeed the predicted
phenomenon is not at all pathologic as there are natural examples of differential
equations to which Theorem 1.4 applies [22].

The aim of this work is to introduce a result that generalises all previously mentioned
theorems about the existence of bifurcation and which shows that despite of Theorem
1.4 there is still bifurcation under a suitable symmetry assumption on the functionals
fi. The authors recently introduced in [17] the G-equivariant spectral flow sfg (L)
for paths of selfadjoint Fredholm operators L = {L,},¢; that are equivariant under
the orthogonal action of a compact Lie group, i.e., L) (gu) = g(Lyu) forallu € H
and g € G. This novel homotopy invariant is an element of the representation ring
RO (G) that was introduced by Segal in [30]. It was shown in [17] that

F(sfg(L)) = sf(L) € Z

by a natural homomorphism F : RO(G) — Z that we recall below in Sect.2. Thus
even if the spectral flow sf(L) € Z vanishes, sf(L) can be non-trivial in RO (G).
Moreover, if u_ (L)) < oo, then

stG(L) =[E~ (Lo)] — [E"(L1)] € RO(G), )

where the square brackets stand for isomorphism classes of representations of the
compact Lie group G. Consequently, if in this case sfG(H) # 0 € RO(G), then
E~(Lg) and E~ (L) are non-isomorphic G-representations and thus (3) holds. The
main theorem of this work is Theorem 3.1 below, which states that if Lo, L are
invertible and sf (L) is non-trivial in the representation ring RO (G) of the compact
Lie group G, then there is a bifurcation point of critical points of f. As already said, this
is a strong statement as it implies Theorem 1.2 and Theorem 1.3 (and thus ultimately
also Theorem 1.1). The price to pay is that it is a rather challenging task to join the
proofs of Theorem 1.2 and Theorem 1.3 and the majority of this paper is devoted
to this issue. On the other hand, it turns out that sfs (L) is quite applicable. Indeed,
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major tools for computing the classical spectral flow sf(L) in Z carry over to the G-
equivariant case in RO (G) and pave the way to various applications to Hamiltonian
systems and PDEs that are invariant under actions of subgroups of the matrix groups
O(n) or SO (n). However, to introduce these methods for computing sf (L) in detail
and a thorough discussion of applications require a second part of this work. Here we
instead focus on examples that shall give an impression on how the equivariant spectral
flow works as bifurcation invariant, when the classical one in Theorem 1.3 vanishes
and thus fails to show bifurcation. We firstly consider the finite Lie groups Z, as well
as Zo @ Z, and study bifurcation for critical points of even functionals f; asin [9]. Our
first example is a Dirichlet problem of a system of nonlinear ODEs, where we illustrate
that the particular choice of the group action can heavily affect the applicability of our
main Theorem 3.1. Interestingly, the right choice in this example has no non-trivial
fixed points, which thus makes clear that our Theorem 3.1 is in general not just a
restriction of the original problem to a fixed-point space of the action. As second class
of examples, we consider bifurcation of homoclinic solutions of even Hamiltonian
systems. There have been many studies devoted to bifurcation for functionals that are
invariant under orthogonal actions of compact Lie groups by degree theory (see e.g.
[6] and ref. therein). As those methods only apply to functionals where the Hessians
L, are compact perturbations of a fixed operator, homoclinic solutions are out of
their scope. Finally, we consider strongly indefinite systems of elliptic PDEs that are
invariant under an action of the continuous Lie group SO(2). In the non-equivariant
case these systems have recently been studied by the second and the last author in
[18]. It turns out that the obtained dimension reductions for the classical spectral flow
work in the present setting as well and allow to compute the equivariant spectral flow
for investigating bifurcation by Theorem 3.1. This shall particularly emphasize the
strength of our findings and should be an appetizer for the study of continuous group
actions in the upcoming second part.

The paper is structured as follows. In the next two sections we recap the classical
spectral flow, introduce the G-equivariant spectral flow from [17] and state our main
theorem. Section4 provides a first pillar of the proof of our main theorem. We show
the existence of a G-equivariant parametrix for any path of G-equivariant selfadjoint
Fredholm operators, which allows to reduce a path of Hessians to a normal form. In
Sect. 5 we use the result of Theorem 4.1 to prove Theorem 3.1, which we do in several
steps. In the final section of this paper we discuss the announced examples which
should stress the high applicability of our work.

2 The G-equivariant spectral flow

The aim of this section is to introduce the G-equivariant spectral flow, where we follow
the authors recent work [17]. Let us first recap the definition of the classical spectral
flow.

Let H be a real separable Hilbert space and let FS(H) be the set of all selfadjoint
Fredholm operators on H with the norm topology. It was shown by Atiyah and Singer
in [4] that FS(H) has three connected components
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FST(H):={T € FS(H) : 0,55(T) C (0, +00)}
FS™(H):={T € FS(H) : 0,55(T) C (—00, 0)},

and
FS'(H):=FS(H)\ FS*(H),

where o, (T) denotes the essential spectrum, i.e., the set of all A € R such that . — T
is not a Fredholm operator. The operators in FS™(H) have a finite Morse index

u—(T) = dim (GB,KO{M eH: Tu= uu}) , (6)

i.e., they have at most finitely many negative eigenvalues including multiplicities. In
general, for every T € FS(H), there is a neighbourhood of 0 that either belongs to
the resolvent set or it contains finitely many eigenvalues including multiplicities (cf.
[34, 36]).

Letnow L = {L, },c; beapathin FS(H). As the spectra of the operators L, cannot
accumulate at 0, it can be shown that there is a partition 0 = Ag < ... < Ay = 1 of
the unitinterval and a; > 0,i =1, ... N, suchthat [A;_1, A;]1 3 A = X[—q;,4;1(L2) €
L(H) are continuous families of finite rank projections, where x|, 5)(T) denotes the
spectral projection of a selfadjoint operator 7" with respect to the interval [a, b] C R.
Then, fori =1, ..., N, the spaces E(Ly, [0, a;1):=1m(x[0,¢;1(L2)), 2i—1 < X < A;,
are finite dimensional and the spectral flow of the path L was defined by Phillips in
[26] by

N

Sf(L) =Y (dim(E(Ly,;, [0, a;])) — dim(E(Ly,_,, [0, a;])) € Z. (N
i=1

Note that E(L;, [0, a]) is the direct sum of the eigenspaces of L, for eigenvalues in
the interval [0, a].

Let now G be a compact Lie group. A (real) representation of G is a pair (V, p)
consisting of a finite dimensional (real) vector space V and a group homomorphism
p : G — GL(V). Two representations (Vy, p1), (Va, p2) of G are isomorphic if there
is anisomorphism« : Vi — V5 thatis G-equivariant, i.e., p2(g)oa = aop1(g) forall
g € G.Tworepresentations of G can be added by the direct sum and this turns the set of
isomorphism classes of representations of G into acommutative monoid. The elements
of the associated Grothendieck group RO (G) are formal differences [U] — [V] of
isomorphism classes of G-representations modulo the equivalence relation generated
by [U]—[V]~ [U® W] —[V & W]. The neutral elementin RO(G) is [V]—[V] for
any G-representation V, and the inverse element of [U] — [V]is [V] — [U]. RO(G)
was introduced by Segal in [30], who called it the representation ring of G as the
tensor product of representations actually yields a ring structure on this Grothendieck
group. We follow this terminology even though we will never use the ring structure
of RO(G) and consider it merely as an abelian group.
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Let now G be a compact Lie group that acts orthogonally on H. We denote by
FS(H)C the set of G-equivariant selfadjoint Fredholm operators, i.e.,

T(gu)=g(Tu), ueH, gegG,

and by F ST(H)S and FS'(H)C the corresponding subsets of the connected
components of FS(H).

Letnow L = {L, },c; beapathin FS(H ). Asthe operators L are G-equivariant,
it follows that the spaces E(L;, [0, a]) in (7) are G-invariant. Thus they define equiv-
alence classes of G-representations and consequently the idea of (7) carries over to
RO(G) by setting

N
sfg(L) = Z ([E(L3;» [0, aiD] = [E(Lj,;_;, [0, a;D]) € RO(G). ®)

i=1

Phillips proved in [26] that (7) only depends on the path L and not on the choices
of the partition 0 = X9 < ... < Ay = 1 of the unit interval and the numbers
a; > 0. Recently, the authors showed in [17] that the same is true for (8) in RO (G),
and thus this equivariant spectral flow is well defined. Note that if G is trivial, then
representations are isomorphic if and only if they are of the same dimension. Hence
RO(G) = Z in this case and (8) can be identified with the ordinary spectral flow (7).
In general, there is a canonical homomorphism

F:RO(G)—Z, [U]l-[V]+ dimU) — dim(V),
and it follows from (7) and (8) that
F(sfg(L)) = sf(L). ©)

Consequently, the classical spectral flow of L has to vanish if sf (L) is trivial. On the
other hand, in [17] there is a simple example of a path of G = Z;-equivariant operators
such that sfg(L) € RO(G) = Z @ Z is non-trivial even though sf(L) =0 € Z.

Finally, it was shown in [17] that all basic properties of the spectral flow hold
mutatis mutandis for its G-equivariant generalisation (8), e.g.,

() If L, € GL(H) N FS(H)C forall A € I, then
sfG(L) =0 € RO(G). (10)

(ii) Let H = Hy @ H,, where Hy, Hy are G-invariant and such that L, |y, € FS(H;)¢
fori =1,2,A € I. Then

sfG(L) = sfG(L |m) +sfG(L |n,) € RO(G). (11)
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(iii) If L, L’ are two paths in FS(H)© such that L| = Ly, then
sfG(L % L) = sfg(L) + sfg(L') € RO(G), (12)

where L * L’ denotes the concatenation of L” and L.
(iv) If the path L™ is defined by L;” = L1, A € I, then

sfg(L™) = —sfg(L) € RO(G). (13)

V) fh:IxI— FS(H)C isa homotopy such that 4 (s, 0) and i (s, 1) are invertible
for all s € I, then

sfg(h(0, ) = sfg(h(l,-)) € RO(G). (14)

Moreover, let us recall the following proposition from [17, Prop. 3.2], where E~(T)
denotes the direct sum of the eigenspaces with respect to negative eigenvalues of an
operator T € FST(H).

Proposition 2.1 If L = {L;}sc; is a path in FST(H)C, then
sfG(L) = [E~ (Lo)] — [E™ (L1)] € RO(G).

Finally, let us note that further properties of the G-equivariant spectral flow, and in
particular a generalisation of (14) to homotopies with non-invertible endpoints, can
be found in [17, §2.3]. The latter is necessary for the following proposition about
compact perturbations in FS(H)C.

Proposition 2.2 Let L = {L;}e; and L' = {L' },¢1 be paths in FS(H) such that
Lo =Ly Ly =L} and L) — L} is compact for all » € I. Then

sfg(L) = sfg(L).
Proof We set K, = L, — L’A and first note that by assumption Ko = K| = 0. Thus
holxI— FS(H),  h(s,») =L +sKk,
is a homotopy with fixed endpoints such that 4(0, 1) = L; and h(1, LX) = L,. This
shows the claimed equality as the spectral flow is invariant under homotopies with
fixed endpoints by [17, Cor. 2.9]. O
We note that the previous proposition in particular applies to the case that L, = A+ K,
and L}, = A+ Ko, A € I, for some fixed A € FS(H)C and a closed path {K} },e7 of
compact selfadjoint G-equivariant operators. Then sfG (L) = sfg (L") =0 € RO(G)

as it directly follows from the definition (8) that the spectral flow of a constant path
vanishes.
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3 Main theorem and corollaries

We consider equations of the type V fi(u) = 0, where f : I x H — R is a family
of C2-functionals on an infinite dimensional real separable Hilbert space H, and we
assume that V 3 (0) = O forall A € I,1i.e. 0 € H is a critical point of all functionals
fo- A bifurcation point is a parameter value A* € I at which non-trivial critical points
branch off from the trivial ones 7 x {0}, i.e., in every neighbourhood of (A*, 0) € I x H
there is some (A, u) such that V f;, (1) = 0 and u # 0. A crucial role for studying
the existence of bifurcation points is played by the family of Hessians L, which are
bounded selfadjoint operators on H that are induced by the second derivatives D% fo.of
frat0 € H asin (1). Itis a common assumption that the operators L, are Fredholm,
i.e., they are elements of the space FS(H) introduced in the previous section. Let
us now assume in addition that each fj is G-invariant, i.e., f(gu) = f(u), g € G,
where G is a compact Lie group acting orthogonally on H. Under this assumption,
the operators L; are G-equivariant, i.e. L;(gu) = g(Lyu) by [16, §1.3]. Thus the
G-equivariant spectral flow sf (L) is defined.

Henceforth, we assume that G is nice in the sense of Smoller and Wasserman’s
work [31], i.e., any orthogonal representations E and F of G are isomorphic if the
quotients D(E)/S(E) and D(F)/S(F) of the unit discs by the unit spheres have the
same G-equivariant homotopy type. Let us stress that, e.g., if Go denotes the connected
component of the identity in G, then G is nice if G/Gy is trivial or a finite product of
Zy or Z3. Thus, in particular, S', O (n) and SO (n) are nice. The following theorem is
the main result of this work.

Theorem 3.1 If L) € FSH)C, A € I, Lo, L are invertible and
sfG(L) #0 € RO(G),

then there is a bifurcation point of critical points for f.

The following corollary is an immediate consequence of Proposition 2.1 and Theorem
3.1. It is the main result of Smoller and Wasserman’s work [31] that we stated in the
introduction in Theorem 1.2.

Corollary3.2 If L, € FSY(H)Y, 1 € I, Lo, L, are invertible and E~(L¢) and
E~(Ly) are not isomorphic as G-representations, then there is a bifurcation point of
critical points for f.

By (9), we also reobtain the main theorem of Fitzpatrick, Pejsachowicz and Recht’s
work [12] that we stated in the introduction in Theorem 1.3.

Corollary 3.3 If Ly € FS(H), » € I, Lo,L; are invertible and sf(L) # 0 € Z, then
there is a bifurcation point of critical points for f.

Finally, let us emphasize that Theorem 1.1 and Krasnoselskii’s bifurcation theorem
(of which we reminded above Theorem 1.1) are immediate consequences of both
Corollary 3.2 and Corollary 3.3. Consequently, they ultimately are also covered by
our Theorem 3.1.
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4 The G-equivariant cogredient parametrix

We call an operator Q € L(H) a symmetry if it is of the form Q = P — (I — P) =
2P — Iy for an orthogonal projection P which has infinite dimensional kernel and
range. Note that any symmetry Q satisfies 0% = Iy and Q € FS'(H). Moreover, Q
is G-equivariant if and only if im(P) and ker(P) are G-invariant subspaces of H.
The aim of this section is the proof of the following theorem, which is a pillar of
the proof of Theorem 3.1. Henceforth we denote by CS(H) the space of all selfad-
joint compact operators with the norm topology, and by KXS(H)? its G-equivariant
elements. Similarly, GL(H )¢ stands for the G-equivariant invertible operators.

Theorem 4.1 Let L = {L,}ses be a path in FS'(H)C. Then there is a G -equivariant
symmetry Q € FS'(H)C and paths M = {M) }»c1 in GL(H)® and K = {K)}s.c1 in
KS(H)C such that

M;L)\M)LZQ—G—K)L, rel.

The remainder of this section is devoted to the proof of this theorem. Let us first sketch
the idea. We consider for a fixed G-equivariant symmetry Q € FS'(H)® the map

7o : GL(H)® x KS(H)® — FS'(H)®, mno(M,K)=MQOM*+K. (15)

Note that im(rp) is indeed in FS {(H)® as G acts orthogonally and thus the adjoint
M* is G-equivariant as well. Clearly Theorem 4.1 is shown if we can prove that for
some Q, the path L can be lifted to GL(H)® x KS(H)Y, i.e., if there is a continuous
map L:1— GL(H)® x KS(H)¢ such that L; = Qo L forall » € I.In the
non-equivariant case, this was done in [12] by showing that (15) is the projection of
a fibre bundle. Then the desired lifting of L can be obtained from a global section of
the pullback bundle of (15) by L, which exists as the latter bundle has a contractible
base space.

Unfortunately, in our more general setting, 7 is not necessarily surjective, which
affects the argument of [12]. Indeed, we will see below that in general im(g) is a
union of connected components of F. S'(H)Y if G is non-trivial. Moreover, at the
end of this section we provide an example where these components are not all of
FS'(H)C.

Before we begin the proof of Theorem 4.1, we note the following simple lemma
about functional calculus that will be used throughout the rest of the paper.

Lemmad4.2 Let T € L(H) be selfadjoint and f : o (T) — R a continuous function
on the spectrum of T. If T is G-equivariant, then so is f(T).

Proof Note that p(T) is G-equivariant for every polynomial, and for every ¢ > 0
there is a polynomial such that | f — pllec < € on o (T). Hence it follows for g € G
that

IF(T)g = &f (DI = 1f(T)g = p(T)gll + lgp(T) = gf (DI = 2 p(T) — f(D)
<2[lp = flleo = 2,
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which implies that f(T)g = gf(T). O

The following quite technical proposition shows the existence of a local section of
(15). Let us point out that even in the case of a trivial group action, the result is
more general than the corresponding Lemma 2.2 in [12]. The latter only constructs a
section in a neighbourhood of any symmetry in FS'(H)¢ which is not enough for
our purposes due to the already mentioned lack of surjectivity of ¢.

Proposition 4.3 For any S € .TSi(H)G there is a G-equivariant symmetry Qs, an
open neighbourhoodUs of S in FS* (H)C anda mapos : Us — GL(H)° xKS(H)¢
such that

(mogo005)(T)=T forall T e€lUs.

Proof Let K be the orthogonal projection onto the kernel of S. Then K € KS(H)¢
as ker(S) is G-invariant and of finite dimension, and moreover

V:=S+ K € GL(H)°. (16)

Henceforth we denote by P (V) = x(0,00)(V) and P_(V) = x(—c0,0)(V) the projec-
tions on the positive and negative spectral subspaces of V. Note that these operators
are G-equivariant by Lemma 4.2. We set

Qs =2P(V) — Iy € FS'(H)® (17)

and choose a neighbourhood UcFS: (H)C of Qg that consists of invertible opera-
tors. As above, we let P, (T) and P_(T) denote the orthogonal projections onto the
positive and negative spectral subspaces for T € U which are again G-equivariant.
As P4 (T) continuously depend on 7' € U and as GL(H)Y is open, there is a
neighbourhood U € U of Qg such that

Py(T)P+(Qs) + P_(T)P_(Qs) e GL(H)®, T eU,

where we use that this operator is the identity for 7 = Qg. Consequently, for each
T € U, the restriction of PL(T) to im(P+(Qs)) is a bijection onto im(P+(T)).
Henceforth, we set H1:=1im(P+(Qy)) to simplify notation.

We now consider for T € U the bilinear form on H, defined by

B(T)(wu,v) = (T Py(T)u, PL(T)v), u,ve Hy.

Then clearly B(T) is bounded, symmetric and positive definite. Moreover, B(T) is
G-invariant as T and Py (T) are G-equivariant and G acts orthogonally. Let T be the
Riesz-representation of B(7T), i.e., the unique selfadjoint operator such that

B(T)(u,v) = (Tu,v), u,veH,.
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As T is unique and B(T) is G-invariant, it is readily seen that T is G-equivariant.
Thus, again by Lemma 4.2, the inverse square-root S (T)::T_% is G-equivariant as
well. Moreover,

~ ~ ~ 1~
w,v) = (T Tu,v) = (T 2Tu, T~

~ 1 ~ 1 ~ 1 ~ 1
T 2u, T 2v) = B(TY(T 2u, T 2v)

=

v) =

(
— (TPL(T)YT " 2u, Po(T)T2v) = (T2 Po(T)T Po(T)T 2 u, v)
= (S+ (M) P+ (T)T P(T)S4+(T)u,v), u,v e Hy,

which implies that
S+ ()P (T)T P (T)S(T) = In,. (18)

In the same way, we can construct a family S_ : &/ — GL(H_)Y such that for all
TelU

—(u, v) = (S_(T)P_(T)T P_(T)S_(T)u,v), u,veH_,
and thus
S_(T)P_(T)TP_(T)S_(T) = —1Iy . (19)
If we now define Sy : i/ — GL(H)® by
So(T) = Pr(T)S(T) P (Qs) — P_(T)S—(T)P_(Qs),
then it follows from (18) and (19) that
So(T)*TSo(T) = P+(Qs) — P-(Qs) = Qs, T €lU.
Consequently, the map
0 :U — GL(H)® x KS(H)®, o(T) = ((So(T)~H*,0),
satisfies

(mog 0 o)NT) = o ((So(T)™H*,0) = (So(T) " H*QsSo(T) ™' =T, Tel.
(20)

Let us recall that ¢/ is a neighbourhood of the symmetry Qg that was defined in (17).
Our next aim is to get a section oy in a neighbourhood Uy of V in (16). In [12] it was

noted that G:=GL(H) x KS(H) is a topological group with respect to

(M,K)-(M,K)=(MM,K + MKM?"), 1)
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and there is an action T of G on FS'(H) defined by
(L) = MLM*+ K, LeFS(H), h=M,K)eg.

Now GL(H)% x KS(H)® is a closed subgroup of G and the action T restricts to an
action of it on FS'(H)C. We set h::(|V|%, 0) € GL(H)Y x KS(H)® and see by
functional calculus that

1 1
n(Qs) = |V[20sIV[2 =V,

where (17) is used as well as the obvious equality v/[x[(2x(0,00)(x) — D/Ix] = x,
x € R. Thus Uy :=1; () is an open neighbourhood of V in FS'(H)C. We set

oy :Uy — GL(H)® x KS(H)®, oy(T)=h-o(t,-1(T)), T €Uy,

where h = (|V|%, 0) € GL(H)® x KS(H)C as above and the group multiplication
(21) is used. To show that mpg o oy = id |y, first note that for any hy, hy €
GL(H)® x KS(H)°,

wos(hy - ha) = 13, (o5 (h2)),
which directly follows from the definition of t and (21). Thus by (20)

(mog 0ov)(T) = mos(h -0 (7,-1(T))) = gz (0 (1,-1(T))))

(22)
=ty (T =T, Tely,

as claimed. Finally, we set h = (Iy,—K) € GL(H)% x KS(H)% and define Us =
7; (Uy) as well as

o5 :Us - GL(H)® x KS(H)®, os(T) =h-oy(t;-1(T)), T €Us.

Then Uy is an open neighbourhood of S and the same computation as in (22) shows
that indeed g o o5 = id |4, which ends our proof. O

The following lemma and its corollary concern the image of the map 7.

Lemma4.4 Let Q1, O be symmetries and wg,, 7, the associated maps in (15). If
im(wg,) Nim(wg,) # ¥, then im(np,) = im(7wg,).

Proof If § € im(rgp,) Nim(wg,), then there are (M1, K1), (M>, K») € GL(H)G X
KS(H)C such that

S=mg, (M1, K1) = mg,(M3, K2).
Thus

S=MQ M|+ K =MQ:M;+ K>,
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which implies
02 = My ' My Q M} (M5 )" + M3 (Ky — Ko)(M5 )

If we now set i = (M ' My, My ' (K| — K2)(M;")*) € GL(H)? x KS(H)Y, then
a direct computation yields

w0, (h) =g, (h-h), heGLH)® x KS(H)°.

Thus im(rrp,) C im(7g,), which actually shows the lemma by swapping QO and Q>
in the argument. O

Corollary 4.5 For every symmetry Q, the image of wg is a union of connected
components of FS' (H)C.

Proof We show that im(;() is open and closed in F. S'(H)S. Firstly, if S € im(rp),
then by Proposition 4.3 there is an open neighbourhood Us of S in FS'(H)® and
a symmetry Qg such that s C im(wgg). Thus, by Lemma 4.4, Us C im(mg)
showing that the latter set is open. Secondly, let {S,,},en C im(7) be a sequence that
converges to some S € FS' (H)C. Again by Proposition 4.3, there is a neighbourhood
Us of S in FS'(H)C and a symmetry Qg such that ifs C im(mgg). Now S, € Us
for sufficiently large n, which by Lemma 4.4 implies that (/g C im(wp) and thus
S € im(mp). Consequently, the image of 7 is closed, which finishes the proof. O

In what follows we denote by Bo the image of the map ¢ for a given symmetry
Q. Moreover, note that if Q € FS'(H)% is a symmetry and we set S = Q in
Proposition 4.3, then (16) and (17) show that Qg9 = Q. Consequently, for every
symmetry Q € FS'(H)C thereissome S € FS'(H)C suchthat Q5 = Q.Henceforth
we simplify our notation by not specifying S anymore.

Proposition 4.6 The map mg : GL(H)¢ x KS(H)¢ — By is the projection of a
locally trivial fibre-bundle with fibre given by the isotropy group of Q € FS'(H)°.

Proof The proof is almost identical to [12, Prop. 2.4], but we sketch the argument for
the convenience of the reader. By Proposition 4.3 there is an open subset Uy C By
and a local section o of wg on Ug. Then

n:Ug x nél(Q) — nél(L{Q), n(S,h)=0(S)-h
is a local trivialisation over U/ with inverse
n~'(h) = (mo(h), (0 o) (h) ™" - h).

Now this trivialisation can be transported to any point 7 € By as follows. As mg
is surjective onto By, there is some h € GL(H)% x KS(H)¢ such that mo(h) =
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7;(Q) = T. Then U:=1;(Ug) is a neighbourhood of T and 7;; : Uy — U is a
homeomorphism. Now a local trivialisation over I{ is given by

W Ux'(Q) = mp W), 0 (S, k) =h ot () h,
which shows the claim of the proposition. O

Now we finally have everything at hand to prove Theorem 4.1 along the lines that
we already sketched at the beginning of this section. Let L = {L;},cs be a path in
FS! (H)C. Then the trace L(I) of L is contained in a path component C of FS' (H)C.
Now let S € C be arbitrary and let Q be the associated proper symmetry by Propositon
4.3. By the previous proposition,

7o : GL(H)® x KS(H)® — By (23)

is the projection of a locally trivial fibre-bundle and clearly C C B¢ by Corollary 4.5.
Let (E, I, m) be its pullback by L, i.e., the bundle having

E={(\h)elx (GLH)® x KS(H)°): L; =ng(h))

as total space and as bundle projection 7 the restriction of the projection onto the
first component. Note that the projection onto the second component / x (GL(H)% x
KS(H)®) — GL(H)® x KS(H)? yields a bundle map from E to the total space
of (23). By composing with this map, sections of (E, I, m) yield liftings of L, and
thus the desired map L:1— GL(H)® x KS(H)S such that L, = Qo L, for all
A € I.Now (E, I, ) is a bundle over the contractible space / and thus trivial. As the
triviality of the bundle implies the existence of a globally defined section, this proves
Theorem 4.1.

As we have pointed out before, the main difficulty in the above argument in compar-
ison to [12] is that Bg can be different from FS {(H)©. The applications in this paper
in Sect. 6 deal with the rather simple case of a G = Z;-action. We conclude this section
by an example which shows that even in this case Bg # FS {(H)C is possible. Let H
be an infinite dimensional Hilbert space and consider on H @ H the Z;-action which
maps (u, v) to (u, —v) by its non-trivial element. Then every equivariant operator is
of diagonal form. If we now take the proper symmetry Q(u, v) = (u, —v), then we
obtain for M = diag(A, B) € GL(H @ H)?? and K = diag(C, D) € KS(H ® H)™

AA*+C 0
7o (M, K) =< 0 —BB*—I—D)

and thus every element in By is of the form diag(S, T'), where the essential spectrum
of S is on the positive half-line and the essential spectrum of 7 is on the negative
half-line. Thus the proper symmetry Q:= — Q, Q(u, v) = (—u, v) is not an element
of Bg.
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5 Proof of Theorem 3.1

We note at first that it suffices to prove the theorem in the case that the Hessians L
are strongly indefinite, i.e., L, € FSi(H)G, A€ [.Indeed,if f: I x H— Risa
family of G-invariant functionals as in Theorem 3.1 such that L) € FS(H )G, rel,
then consider the family of functionals f : I x H x H x H — R given by

= _ LTS S
Frlw.u,v) = filw) + S wll” = "

Clearly, this family has the same bifurcation points of critical points as f, and f is
G-invariant under the orth(igonal_action g(w, u,v) = (w, gu, v). Finally, the corre-
sponding path of Hessians L = {L, },<s has the same G-equivariant spectral flow by
an.

Thus we henceforth assume that L; € FS' (H)C, A € I, and obtain from Theorem
4.1 a G-equivariant cogredient parametrix for L, i.e., apath M : I — GL(H)Y such
that

M{LyM, = Q + K;, rel, (24)

where K are G-equivariant and compact, and Q € FS'(H)C is a G-equivariant
symmetry. Note that the functionals of the family f I xH — R, f,\ u) = fL,(Myu)
are G-invariant and fo(u) M*(fo)(MAu) so that f;\ and f) have the same
bifurcation points of critical points. Moreover, the Hessians L; of f are given by
LA = M} L; M,. Note that L, € FS(H)C, » € I and thus the G- -equivariant spectral
flow is deﬁned.

Lemma 5.1 The paths of operators L and L from above have the same G-equivariant
spectral flow, i.e.,

sfg(L) = sfg(L) € RO(G).
Proof We note at first that L is homotopic to the path {Mg‘ L; My},.er and the corre-

sponding homotopy does not affect the spectral flow by (14) as Lo, L; € GL(H) by
the assumptions of Theorem 3.1. Now consider the polar decomposition My = UR

of My, where U = MO(MS‘MO)_% is orthogonal and R = (M(;"Mo)% is selfadjoint

and positive. Moreover, U and R are G-equivariant by Lemma 4.2. We have
MGLyMo = RU*L,UR, r€l,

and see that the homotopy

{(1=9)R+sIpU L, U((1 —$)R + sIy)} s, pelxI

deforms {M L; Mo}.c; into the path {U*L; U },¢;. Note that also this homotopy does
not affect the spectral flow by (14)as Lo, L1 € GL(H) and (1 —s)R+sly € GL(H)
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for all s € I. Finally, for any a > 0,
U*:E(L,;,[0,a]) > EQU*L,U,[0,a]), rel,
is a G-equivariant isomorphism and thus
[E(L;,[0,aD] =[EU*L\U,[0,a])], rel.

Consequently, it follows from the definition (8) that {U*L; U}, <y and L have the same
G-equivariant spectral flow, which proves the lemma. O

In summary, we can henceforth assume without loss of generality that L, = Q +
K;, A € I, where the operators K, are compact, selfadjoint and G-equivariant, and
Q = P — (Ig — P) for some G-equivariant orthogonal projection P having infinite
dimensional kernel and range.

5.1 Reduction to finite dimensions |

We begin by a technical lemma on decomposing H into finite dimensional invariant
subspaces. Note that in case of a trivial group action, this is merely the existence of an
orthonormal basis. In the general case, our proof very much relies on the Kuratowski-
Zorn lemma, as it is also used in [16, Cor. 5.4 (a)], and thus appears three times in our
argument below.

Lemma 5.2 Thereis a sequence of finite-dimensional G -invariant subspaces H, C H,
n € N, such that

H, C Hyy1 and Pyu = u forallu e H,

where P, denotes the orthogonal projection onto H,,.

Proof Let F be the set of all subsets B C H such that

@) |lx]l =1forallx € B,
(i) (x,y)=0forallx,y € B,x # y,
(iii) for all x € B there exists a subspace V C H of finite dimension such that

Gx:={gx:geG}CV.

Note that F is not empty as every representation of G on an infinite dimensional
Banach space has a finite dimensional subrepresentation by [16, Cor. 5.4 (a)]. We now
partially order F by inclusion and aim to use the Kuratowski-Zorn lemma. If £ C F
is totally ordered, then the union of all elements in £ satisfies (i) — (iii) from above
and thus is an upper bound for £. Consequently, there exists a maximal element B* of
F. As B* is orthonormal and H is separable, B* is countable, say B* = {ej, e2, ...}.

@ Springer



2204 M. Izydorek et al.

We now let H, be the intersection of all G-invariant subspaces of H that contain
{e1, ..., en}. Note that H, is of finite dimension by (iii). Moreover,

o
U::U H,
n=1

is a G-invariant subspace of H. Now assume that U # H.Then U~ is a G-invariant
subspace and thus contains a finite dimensional subrepresentation. The latter claim is
trivial if U~ is of finite dimension, and otherwise again follows by [16, Cor. 5.4 (a)].
Now we take an element v, ||v|| = 1, of this finite dimensional subrepresentation of
U+t. Then B* U {v} € F is larger than B* which contradicts the maximality. Thus
U = H, which in particular implies that (P,),cn weakly converges to the identity. O

Letusrecall that Q = P — (Ig — P) for some orthogonal projection P having infinite
dimensional kernel and range.

Corollary 5.3 There is a sequence of finite dimensional G-invariant subspaces H, C
H, n €N, such that

H, C Hyy1, [Pn,Q]1=0,neN, and Pnum)uforallueH,

where P, denotes the orthogonal projection onto Hy,.

Proof We denote by H™ the image of P and by H ~ its kernel, which are both invariant
under G and of infinite dimension. By Lemma 5.2, there are finite-dimensional G-

invariant subspaces Hni C Hﬁl C H*,n € N, such that P”iu =y u,u € HE, for
the orthogonal projections Pni onto H in H*. We set H,:=H, ® H,” and note that
P,:=P;" + P, is the orthogonal projection onto H, if we regard P,jt as orthogonal
projection on H with kernel extended to HT. Now the first and the third claimed
property are satisfied. The remaining one follows from

PyQ — QP = (P + P))(P— (g —P)—(P— (g —P)PF+P))
= PP~ P, (In = P) = PP} + Iy — P)P, =0,

where we use that P1 P, = P, P} = P for orthogonal projections P, P> such that
im(P;) C im(P). O

Note that as P, commutes with Q by the previous lemma, it follows that Q(H,) = H,
as well as Q(H;') = H-.

Lemma 5.4 There is ng € N such that for all n > ng

(i) Iy — Po)Ly |yr€ GL(H,), A€l
(ii) sLy + (1 —$)((Ig — P,)Ly(Ig — P,) + P,L, P,) e GL(H), »=0,1,s¢€l.
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Proof We note at first that
Iy = PLy |gi= 0+ (In — P)Ky. |y
is a compact perturbation of an invertible operator and thus Fredholm of index O.
Consequently, to prove the first assertion, we only need to show that (I — P,)L; | Hi
is injective.
Since {K },¢; is a continuous family of compact operators, the set {K; (1) : A €

I, ||lu|| = 1} is relatively compact. Therefore, as Iy — P, uniformly converges to 0
on compact subsets of H, there exists ng € N such that

1
(Ug — P)Koul < §||M||, ueH,rel,n>n.
Moreover, | Qu|| = |lull, u € H, as Q is orthogonal, and thus

1
I = P Loull = | Qu + Iy — P)Kyull = Zlull, u € H}

n>

showing the injectivity of (I — P,)L; | Ht-
To show (ii), we note at first that by a simple calculation

sLy + 0 —s)((Ug — P)Ly(Ig — Py) + P,L; Py)
=Q0+sKy+ (1 —=5)((Ug — Po)Ki(Ig — Py) + PyK; Py),

which are all Fredholm operators of index 0. We now assume by contradiction that n
as in the assertion does not exist. Then there are sequences (u,),eN, ||un]| = 1, and
($n)nen such that
Quy + sy Kouy + (1 —s,)((Ug — Py)Ko(Ig — Ppup + P, KoPyu,) =0, neN.
As Ky is compact and P, converges on compact subsets of H to the identity, we see
that there is a convergent subsequence of (Qu,). Henceforth, we denote this sequence
by the same indices and assume as well that (s;,) converges to some s* € [. It follows
from the invertibility of Q that (u,) converges to some u € H of norm 1. Thus

lim (Ig — P,)Ko(Ig — Pyu, =0, lim P,KoP,u, = Kou,

n—o00 n—oo
and so

Lou = Qu + Kou = Qu + s*Kou + (1 — s*)Kou =0

in contradiction to the invertibility of Lg. Of course, the same argument applies to the
invertible operator L. O
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Wenowset LY:=P,L; |p,: H, — H, andnote that these operators are G-equivariant.
It follows from (10), (11) and Proposition 2.1 that for n > ny

sfG(L) = sfG(L") = [E~(LD] = [E™ (Lo)] € RO(G) (25)

and thus the Hessians are reduced to finite dimensions.

5.2 Reduction to finite dimensions I

For reducing the nonlinear problem to finite dimensions, we need the following tech-
nical lemma from [17, Lem. 3.7] that was shown in the non-equivariant case in [12,
24].

Lemma 5.5 Let H be a real Hilbert space and G a compact Lie group acting orthog-
onally on H. Let U C H be an open invariant subset of H containing 0 € U and
f : 1 x U — R a continuous one-parameter family of G-invariant C*-functionals.
Let F(A,u):=(V f3)(u) and assume that F(A,0) = O for all . € 1. Suppose that

there is an orthogonal decomposition H = X @ Y, where X is G-invariant and of
finite dimension, and such that for

Fo,u)=F1(Ax,y), b0, x,y) e X®Y, u=x,y) e X®Y,

we have that (DyF2)(A,0,0) : Y — Y is invertible for all A € 1. Then:

(i) There are an open ball Bx = B(0,8) C X and a unique continuous family of
equivariant C'-maps n : I x Bx — Y such that n(x,0) = 0 for all » € I, and

(A, x,n(A,x)) =0, (A, x)el x By. (26)

(ii) Let the family of functionals f : I x Bx — R and the map F : I x Bx — X be
defined by

fOux)=fx, 0. x),  F@,x)=Fi(, x,n0, x).
Then f is a continuous family of G-invariant C*-functionals on Bx and
Vi) =F@,x), (.x) €lxBy,

which is a G-equivariant map.

Wenowset X = H,,Y = HnL and consider the splitting ' = (F}', F}'), where
F{’()"a u, v) = PI‘IF()"’ u, v)’ F;(A‘a u, U) = (IH - Pn)F()“a u, U).

As DyF}(%,0,0) = (I — Py Ly |12 H- — H," is anisomorphism for n > ng by
Lemma 5.4, we obtain from the previous lemma a family of G-invariant functionals
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fiIx Bp, — Rforsomeball By, C H, such that every bifurcation point of critical
points of f is a bifurcation point of f. Consequently, our aim is now to show that f
has a bifurcation point of critical points from the trivial branch if (25) is non-trivial in
RO(G).

Proposition 5.6 For the Hessians ZK of the G-invariant functionals f, at 0 € Hy,
there exists n1 > nq such that LZ is invertible and

[E-(LD1=[E~(LDH], »=0,1,

forn > njy.

Proof Let 0! : By, — H;- be the continuous family of C!-maps from Lemma 5.5
for the splitting H = H,, ® Hnl, and set AY:=Dgny}. Note that A} is G-equivariant.
By differentiating (26) implicitly, we obtain

A} = —(DyF}(%,0,0) "' Dy F5 (1, 0,0) = —((In — P)Ly |y) ™ (U — Po) Ly |8, -

In the first part of the proof of Lemma 5.4 we obtained

s = no,

I PoLoull = Shul, w < B
which shows that
1T = POLy Iy~ <2, n=no, 2 =0, 1.
Using once again that L) = Q + K, and
(g — P Kyl — 0, n— oo, 27
by the compactness of K, this yields

IASN < 20Un — Pa)(Q + K3) |h, 1| < 2I(e — P)Ks | — 0, n— oo, (28)

which we note for later reference.
. —hn
We now consider L, and note at first that

Ly = P,Ly(Iy, + A7) = L + P,L; A

Letus introduce two paths { M (" sy sels A = 0, 1, of G-equivariant selfadjoint operators
on H, by

MZM) =LY +sP,LyAY.

We now aim to find n; € N such that M(ns,O) and M<”S ) are invertible for all s € I and
n>nj.
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We first note that there is k; € N and a constant C > 0 such that for A = 0, 1 and
alln > k;

IL5ull = | PaLyull = Cllull, u € Hy. (29)
Indeed, as L, is invertible for A = 0, 1, there is a constant C > 0 such that
[L)ul =2C|lull, ue H, »=0,1.
Now by direct computation
P,Lyu=Lu— (Iyg — P,)K)u, ue H,,
and (27) implies that there is k1 € N such that for n > k;
(g — P Kyull < Cllull, weH,

which shows (29). Finally, by (28) there is k> € N such that ||L||[|A}|| < C for all
n > ky, A =0, 1. Consequently, if n > n1:=max{ky, k2},

MG syull = ILSull — sl PaLaAjull = 2Cull — ILAINIAZ ull = Cllull

forh=0,1and0 <s < 1. Thus M " .y H, = H, is injective and hence invertible
on the finite dimensional space H,,. Note that the proposition is shown if we prove that

[E™ (M ;)] = [E7(M{; ;)] n>ny, (30)

for A = 0,1. As M is invertible for all s € [, the maps [0,1] > s >
X(—o0 0)(M(3 A)) € E(H ) are continuous. Thus there is a partition 0 = sg < 51 <
. < s = 1 such that

X (—00.0) (M ) = X(—00,0) (Mg, )1l < 1. (31)

Moreover, these projections are G-equivariant as their images are invariant and G
acts orthogonally. We now shorten our notation by setting P:= X(—oo,O)(M(rg/ A)),

Q=X (-00,0) (M<”Sj71 A)), and we claim that im(P) and im(Q) are isomorphic as G-
representations. To prove this, we first note that the G-equivariant map U:=P Q +
(Ig — P)(Ig — Q) maps im(P) into im(Q). Moreover, a direct computation yields

(QP+ (g — Q)Iy — P)YU = Iy — (P — Q)%
As ||P — Q|| < 1 by (31), the right hand side is an isomorphism and consequently
U is injective. Thus U [im(p): im(P) — im(Q) is a G-equivariant isomorphism and

so [E~ (M(S A))] = [E*(M” A))] for j = 1,...,k. Thus (30) is shown, which
eventually ﬁmshes the proof of the proposition. O
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In conclusion, by (25) and the previous proposition, we have reduced Theorem 3.1 to
finite dimensions, i.e., we only need to prove it under the additional assumption that
dim(H) < oo.

5.3 Equivariant Conley index and end of the proof

The aim of this final step of the proof is to show Theorem 3.1 under the additional
assumption that dim(H) < oo. The proof is based on the equivariant Conley index,
for which we mainly follow Bartsch’s monograph [7].

Let ¢ : R x H — H be the flow of the equation

u'(t) = —(V ) () (32)

and note that its stationary solutions are the critical points of fj. Here we assume
without loss of generality that the flow is global, which can be achieved by multiplying
J». by a smooth cut-off function in a neighbourhood of 0 € H and this does not affect
the existence of bifurcation of critical points from 0 € H. Note that ¢, (¢, ) : H —> H
is equivariant.

For a G-invariant subset U C H we denote by

inv(U, @) ={ue H: ¢(t,u) e U forallt € R}

the maximal (flow-)invariant subset of U, which clearly is G-invariant as well. A
compact invariant set S C H is called isolated if there is a compact G-invariant
neighbourhood U of S such that § = inv(U, ¢,) and S C intU. In this case U is
called an isolating neighbourhood of S. If S C H is an isolated invariant set, then a
pair (N1, No) of compact G-invariant subsets Ny C N is called a G-index pair for S
if
e Nj\ Np is an isolating neighbourhood of §,
e N is positively invariant with respect to Ni, which means that if © € Ny and
@ (t,u) € Ny forall0 <r </, then ¢y (t,u) € Noforall0 <t <?/,
e Ny is an exit set for N1, which means that if u € Ny and ¢, (¢, u) ¢ N for some
t > 0 then there is ¢’ € [0, t) such that @, (', u) € Ny and ¢, ([0, t'], u) C Nj.

If U C H is an isolating neighbourhood for the flow ¢,, then there is a G-index
pair for S = inv U, and if (N1, Ng), (N7, Né) are two G-index pairs for S, then the
quotient spaces N1 /No and N /N, are homotopy equivalent by a base point preserving
G-equivariant homotopy equivalence. Thus it is sensible to define the G-equivariant
Conley index C(U, ¢,) of S as the based G-homotopy type [N1/No, [Nol], where
(N1, Np) is any G-index pair for S. Finally, let us recall that by the continuation
theorem for the Conley index C(U, ¢g) = C(U, ¢1) if U is an isolating neighbourhood
for ¢ forall A € 1.

Let us now come back to bifurcation of critical points and let us recall thatu = 0 €
H is a stationary solution of (32) for all A € I. Suppose that there is no bifurcation
point. Since any isolated critical point is an isolated invariant set, there exists € > 0
such that U = D(0, €) is an isolating neighbourhood for all ¢,, A € I. This implies
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that C(U, ¢9) = C(U, ¢1). On the other hand, we know that [E~(Lg)] # [E~(L1)],
i.e., these spaces are non-isomorphic G-representations. As G is nice, this implies that
the quotients Dy/d Dy and D1/d D are not G-homotopic, where D, denotes the unit
disc of E~(L;) for . =0, 1. In our case C(U, ¢,) = [D;/dD;, [0D;,]] for . =0, 1.
This contradicts the equality C(U, o) = C(U, ¢1), and consequently the assumption
that there are no bifurcation points.

6 First examples of bifurcation of critical points

The aim of this section is to illustrate Theorem 3.1 by examples of functionals f; that
are invariant under an action of the discrete groups Z,, Z, @ Z, or the continuous group
SO(2). Let us point out that an upcoming second part of our work is going to transfer
various methods for computing the classical spectral flow (7) to its G-equivariant
generalisation (8), which will yield more sophisticated examples. Here we restrict on
rather elementary, but instructive ones, that show how the G-equivariant spectral flow
(8) works: as for the G-equivariant degree (e.g. [6, 16]), its job is to decompose the
space behind the scenes into G-equivariant subspaces and to find non-trivial solutions
of the non-linear problem in them, even though the classical bifurcation invariant
might fail by symmetry reasons. All our three examples focus on different aspects
of this issue. We begin by an ODE, where we show that a wise choice of the group
action may be needed to apply Theorem 3.1 successfully. Moreover, as this action has
a trivial fixed-point space, this first example also shows in an elementary way that
Theorem 3.1 is far more subtle than just restricting a bifurcation problem to a fixed
point space of the action in an obvious way. Afterwards we discuss a closed path of
Hamiltonian systems under homoclinic boundary conditions which explicitly shows
that the G-equivariant spectral flow can be non-trivial for closed paths and thus in
general does not only depend on the endpoints of the path. This is in strong contrast
to Rybicki’s G-equivariant degree (e.g. [15]). In both of our first two examples G is
one of the simplest non-trivial groups, namely Z, or Z, @ Z;. In our final example
we instead consider a class of indefinite elliptic PDEs as in, e.g., [15, 27] or [18], and
an action of the continuous group SO (2), where we compute the equivariant spectral
flow by a dimension reduction that has recently been studied for the classical spectral
flow in [18]. This shall particularly be an appetizer for the study of continuous group
actions in the upcoming second part of our work.

We now first recap some basics that are needed in the second and third example
below. As all real irreducible representations of Z, are one dimensional, every real
k-dimensional representation is up to isomorphism a k x k diagonal matrix of the form
diag(l,...,1,—1,..., —1). Thus we obtain an isomorphism ¢ : RO(Z,) - Z ® Z
of abelian groups by setting

H([E]—[F)) = (dim(E) — dim(F), dim(E®) — dim(F%)), (33)

where E¢ C E and FC C F denote the spaces of fixed points under the group action.
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Lemma 6.1 Let H be a real separable Hilbert space on which G = Z, acts
orthogonally. Then for every path L = {Lj}ser in FS(H)®

¢ (stg(L)) = (st(L), sf(L |p6)) € LS L, (34)
where HC is the fixed point set of the action of G. Moreover,

Proof Note that H¢ reduces the operators L; and thus we indeed obtain a path of
selfadjoint operators L |yo= {L) |gc}rer that all have finite dimensional kernels.
Moreover,im(Lj |g6) = 1im(Lx |56 nker 1,1 ) and the latter setis closed inim(L;) as
Ly (ker ;)L (ker L;)*+ — im(L,) is a homeomorphism. Consequently, im(Lj |gG)
is closed in H and thus in H. Therefore the operators L; | yo are in FS(H Gy and
so sf(L |yc) is defined. Likewise the restriction L | y6). to the invariant subspace
(H%)1 is an element of FS((H%)1), and now (35) follows from (11).
Finally, (34) is a simple consequence of (7), (8) and (33) when noting that

E(L3,[0,a)% = HS N E(Ly, [0,a]) = E(Ly | yc, [0, al)

forany a > 0. O

For applying (34) below we also need a common method to compute the classical
spectral flow (7) (see [29, 35]). Let L = {Lj},cs be a path in FS(H) that is contin-
uously differentiable in the parameter A. We call A € I a crossing if ker(L;) # {0},
and the associated crossing form is the quadratic form defined by

C(L, M)[u]l = (Lau,u), ueker(Ly),

where L;, denotes the derivative with respect to A. A crossing A € [ isregularif I'(L, 1)
is non-degenerate. Regular crossings are isolated and thus every path L parametrised
by a compact interval I can only have finitely many of them. Finally, if L = {L; }y¢s
has only regular crossings and if Lo, L are invertible, then the spectral flow (7) is
given by

sf(L) =Y sgn(I'(L, 1)), (36)

rel
where sgn(I"(L, A)) denotes the signature of the quadratic form I'(L, A) (see [35,

Thm. 2.7]).
Finally, let us note that the irreducible representations of

| [cos(¢p) —sin(p) .
SO2) = {(sin(¢) cos(e) ) . ¢ €0, 2n]}
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are the one-dimensional trivial representation p and the non-trivial representations p/,
Jj € N, given by

i(g) = (oosw») —sin(¢)>" _ (oos<j¢> — sin(jg)

sin(¢) cos(¢) sin(j¢) cos(j¢) )v g € SO(2). 37)

Note that the representation p~/ is isomorphic to p/. If we build formal differences in
the Grothendieck group, it is readily seen that RO (SO(2)) is isomorphic (as abelian
group) to the polynomial ring Z[x]. Moreover, if sfgp)(L) = Z:o:o apx" € Z[x]
under this identification for some path L in FS(H)S°® | then it follows from (9) that
sf(LYy=ap+2Y 2, a, € Z.

6.1 An ODE example

Let us denote by y the generator of the group Z, and by «, 8 the generators of the
group Zp @ Z;. In what follows,

e V is the 1-dimensional real representation of Z; such that yv = —v for every
veV;
e V, is the 1-dimensional real representation of Zy & Z, such that vv = —v and

Bv = v forevery v € V;
e Vg is the 1-dimensional real representation of Zp & Z; such that v = v and
Bv = —v forevery v € Vg.

Note that V,, and Vg are non-isomorphic representations of Z, ® Z;. To shorten
notation, we henceforth use the same letter Z for R%, V @ V and Vo @ Vp.
Now let F: [0, 1] x Z — R be defined by

F,u,v)=2»x (e”2 sin(u?) — sin(vz)) .

We see at once that F is Zy-invariant if Z = V @ V, and it is Zy @ Zj-invariant if
Z =V, ® Vg. Consequently, VF,: [0, 1] x Z — Z is an equivariant map.
Now consider the following family of strongly indefinite ODEs

" =2 ue? cos(u?) in (0, ),
v/ =2Av (6”2 sin(u?) — cos(vz)) in (0, ), (38)
u(0) =u(mr) =v0) =v(r) =0.

The solutions of (38) are critical points of the functional f; : H(} (0,m7),Z) - R
defined by

Fu, v) = l/n (u’2(r) —_ v’z(t)) dt + /ﬂ FOu, u(t), v(0))dt.
2 Jo 0
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Obviously,
@), v() =(0,0), ¢t €[0, ],

is a solution of (38) for every A € [0, 1]. The second derivative of f; at (0, 0) is given
by

D f (w1, wa) = /O (W' ()p' ) = V' (g (1)) dt

T 212 0 p()
+ u(t), v(t dt,
/0 (u(r) ())(0 _m) (q(t)
where wi = (u, v), w2 = (p, q) € Hj (0, ), Z).
We now aim to find an explicit formula for the Riesz representation L, of D% Frs
which we need to compute the equivariant spectral flow. The set of elements

{(sin(m1), 0) : m € N} U{(0, sin(nt)): n € N}

is an orthogonal Schauder basis of Hol((O, ), Z). Let H; and H> be the closures in
HO1 ((0, ), Z) of the subspaces spanned by

{(sin(mt),0) : m € N} and {(0, sin(nt)): n € N},
so that H(} ((0,7),Z) = H @& H>. Note that, if Z = V @ V, then H; @ H; is an
orthogonal representation of Z; and y (x, y) = (—x, —y) for all (x,y) € H & H>.
If, on the other hand, Z = V,, @ Vg, then H; & H> is an orthogonal representation of
Zr ®7Zy suchthata(x, y) = (—x, y)and B(x, y) = (x, —y) forall (x, y) € H; & H>.
Let now j: H(} 0, m),2) —> LZ((O, 1), Z) be the canonical inclusion and let
¥ L2((0, ), Z) — HO1 ((0, ), Z) be its conjugate. Then the Riesz representation
Ly, HH®H,— H & H

of D(z) fr., 1s given by

Ly (u,v) = (u—21j"u, —v+21j*v) (39)

for every (u, v) € H; @ H>. Note that L, = T + K, for an isomorphism 7" and a path
K = {K,})ecs of compact operators. Moreover,

. . 2%, 2) .
L, (sin(mt), 0) = (sm(mt) —— sin(mt), O) = (l — —2) (sin(mt), 0)
m m
forall m € N, and
. . 21 . 2) .
L, (0, sin(nt)) = (0, —sin(nt) + 7 s1n(nt)) = <—1 + n—z) (0, sin(nt))
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forall n € N. Thus L, is an isomorphism for every A # 1 » and dim ker L 1= = 2. These

findings allow to compute the equivariant spectral flows under the group actlons from
above.

We just need to note that, if Z = V @ V, then every 1-dimensional subspace of
Hi @ H, is isomorphic to the representation V of Z,. Moreover, if Z = V, ® Vg
then every 1-dimensional subspace of H; is isomorphic to the representation V,, of
Z» ® 71, and every 1-dimensional subspace of H> is isomorphic to the representation
Vg of Z, @ Z,. Consequently, we obtain for the path L = {Lj}5¢;

sf(L) =0 if Z = R?,

sfz7,(L;) =[V]=[VI=0€ RO(Z) it Z=V YV,
and
stz,@7,(Ly) =[Vg] = [Vul #0in RO(Zy ® Zo) it Z =V, @ V.

Hence A* = % is a bifurcation point for the parametrised system (38), which would
not have been found by applying the classical Theorem 1.3. Furthermore, also our
equivariant version of this theorem fails if the symmetry of the functionals in Theorem
3.1 is chosen too naively.

Finally, let us have a closer look at this example. Denote by («) and (8) the
subgroups of Z, @ Z, generated by « and 8, respectively. Then

(H, @ H)™ = {0} x Hy = Hy

and

(H1 @ H)P = Hy x {0} =

As 'V f; respects symmetries of Zo @7y, one has V f, (@), i Hy — Hyand V f, B, cH —
H, which shows that

Vfi(H) C Hy and V f5,(Hy) C H>.
Since
V (fil#) = Pr, oV filh;,
where P, is the orthogonal projection onto H;, i =1, 2,
V(film) =)l i =12

Thus, in order to find critical points of f; in H;j, it is enough to look for zeroes of
v ( fxlyl.), i = 1,2. An easy computation shows that the Riesz representation of
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Di(folm) is Li: H; — H;, where L} = L;|p,, i = 1,2. Since sf(L!) = —1
and sf(L?) = 1, we have bifurcation of critical points in H; and H, by Theorem
1.3. This gives us two families of critical points of f; that bifurcate from (%, 0) e
[0, 1] x H] ((0, 7r), R?). In fact, applying the Krasnoselskii-Rabinowitz theorem (see
[2]), we actually obtain two branches of global bifurcation.

6.2 Homoclinics of Hamiltonian systems

Note that the operators L) in the previous section are of the type L) = T + K for
afixed T € FS(H)® and compact operators K. Thus for (38) the spectral flow of
the corresponding Hessians L; in (39) actually only depends on the endpoints Lj and
L1 by Proposition 2.2. In particular, if we would consider in such setting equations,
where the corresponding paths of Hessians L are closed, then sfg(L) = 0 as we
explained below Proposition 2.2. The aim of this section is to construct a G = Zj-
invariant family of functionals f such that the Hessians L are a loop in FS(H)¢
having a non-vanishing G-equivariant spectral flow. Thus by Theorem 3.1 there is a
bifurcation point of critical points that could not have been found by any invariant that
only depends on the endpoints Lg, L of the path such as [6, 10] and [15]. Moreover,
our example also has the feature that sf(L) = 0 and consequently Theorem 1.3 fails
as well.

Let H : I x R x R?* — R be a smooth map and consider the Hamiltonian systems

Ju'(t) + Vi Ho(t, u(®) =0, teR
lim u(f) =0, (40)
t—=+o00
where A € I and
(01,
J = <In 0 > (41)

is the standard symplectic matrix. In what follows, we assume that H is of the form
1
Ho(t, u) = Z(AQ, Du, u) + RO 1, 1), (42)

where A : I x R — L(R?") is a family of symmetric matrices, R(A, f, u) vanishes
up to second order at u = 0, and there are p > 0,C > Oandr € H! (R, R) such that

ID2R(A, t,u)| < r(t) + Clul?.

Moreover, we suppose that Ay :=A(A,:) : R — L(R?) converges uniformly in A to
families

AA(+OO)3=t1_i)IgoAA(t), Ax(—00)1=t_l)ir_nooAx(t), rel, (43)
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and that the matrices J A (£00) are hyperbolic, i.e. they have no eigenvalues on the
imaginary axis. Note that by (42), V, H; (t,0) = Oforall (A,7) € I xR, sothatu =0
is a solution of (40) forall A € I.

Let us now briefly recall the variational formulation of the equations (40) from [25,
§4]. The bilinear form b(u, v) = (Ju/, V) L2 R21)s Us U € H'(R, R?"), extends to a
bounded form on the well known fractional Sobolev space H > (R, R?"). Under the
assumption (42), the map f : I x H2 (R, R*") — R given by

o]

1 1 1
fH. H2(R, ]RZ”) - R, filu)= Eb(u, u) + 5/ (AA, Hu(t), u(t)) dt

—00

+/Oo RO\, t,u(t))dt

—00

is C2. Moreover, it was shown in [25] that its critical points are the classical solutions
of (40) and each sequence of critical points that converges to a bifurcation point
actually converges in C!(R, R?"). Finally, the second derivative of f; at the critical

point0 € H 2 (R, R?") is given by

o0
D(z)f,\(u, v) = b(u,v) + / (A, Hu(t), v(t)) dt (44)

—0o0
and, by using the hyperbolicity of J A, (£00), it can be shown that the corresponding
Riesz representations Ly, : H 3(R, R¥") — H? (R, R2") are Fredholm (cf. [25], [29]).
Consequently, the operators L are selfadjoint Fredholm operators, and it follows by
elliptic regularity that the kernel of L, consists of the classical solutions of the linear

differential equation

{ Ju' @)+ A, Du@) =0, teR
(45)

i ) =0

The stable and the unstable subspaces of (45) are

ES(A,0) = {w(0) e R : Ju'(t) + A, Hu(@®) =0, t € Ry u(t) — 0,1 — o0},
E*(%,0) = {u(0) e R : Ju'(t) + AL, DHu(t) =0, t € Ry u(t) — 0,1 — —o0},
and it is clear that (45) has a non-trivial solution if and only if E*(A, 0) and E* (X, 0)

intersect non-trivially.
Denote by g the non-trivial element of G = Z;. We set

)

—
O = O O
S OO

p(g) = (46)

coo=
co |l
|

R
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and consider Hamitonian systems in R4 (cf. [3, 9]), where

a (1) 0 ¢ (1) 0
0 byt) 0 dy@)

a@) 0 e@ 0
0 du(® 0 hi(®)

A, 1) = (47)

is equivariant under the action of G for any functions a, b, c,d,e,h : [ x R — R.
Now the fixed point space of our action is
G 1 4
H :{(ulaMZau3»u4)€H2(R,R):uz:u4:O}

and it follows from (44) that the kernel of L, |gc is made of the solutions of the
Hamiltonian systems

u a(t) o)\ (ur) _
I (ué) + <Ck(f) ex(t)) (uz) =0, 1<k (48)
t—ljgloou(t) =0,

in R2, and likewise the kernel of Ly |( HG)L consists of the solutions of

ul by (1) dk(t)> <u2> B
Jim u() =0.

We now use an example of Pejsachowicz from [25] to construct a loop of operators
L = {L;}es such that sf(L) = 0 but sfg(L) € RO(Z,) is non-trivial. To keep our
formulas as simple as possible, we use instead of / = [0, 1] as parameter interval
[—m, m] and consider for A € [—rm, 7] the matrix family

; (50)

A1) = <ax(l‘) CAU))

(1) exn(r)

(arctant)JS;,, t>0
(arctant)JSg, t <O,

where

S — cos(A) sin(A)
= \sin(r) —cos(h) /)~

Note that A(—x, 1) = A(w, 1) forall € R.

The space R? is symplectic with respect to the canonical symplectic form wo(u, v) =
(Ju, v)g2. As the matrices (50) converge uniformly in A to families of hyperbolic
matrices for t — o0, it can be shown that the stable and unstable spaces E* (4, 0),
E*(), 0) are Lagrangian subspaces of R? (cf. e.g. [35, Lemma 4.1]). This implies in
particular that E¥(A, 0) and E* (A, 0) are one-dimensional for all > € [—m, 7].
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To find non-trivial solutions of (48), we now consider E* (X, 0) N E* (A, 0) # {0}.
By a direct computation it can be checked that

u_(t) = V12 4 1 e~ actan (é) , 1 <0,
—tarctan(r) (€08 (%)
uy(t) =12 4 1 toretan 2], t>0,

sin (3)

are solutions of (48) on the negative and positive half-line, respectively. As they
extend to global solutions and since t arctan() — oo as t — =£00, we see that
u_(0) € E*(A,0)and uy(0) € ES(X, 0). As u4(0) and u_(0) are linearly dependent
if and only if A = 0, we conclude that (48) has a non-trivial solution if and only if
A =0, and the kernel of Lo |yc is the span of

ue(t) = V12 + 1 ¢~ arctan® <(1)) , teR.

Next we compute the spectral flow of L |gc by a crossing form (36). We need to
consider

o0

(L [y, 0)[u+] :/ <X(0, t)u*(t),u*(t)> dt,

—00
where
A0 = (arctant)J Sy, >0

0, t <0,
and

: 01

o= (01).
Consequently,

0

(L g, O)ua] = /0 (A, w0, ) dr + /

—00

(A, Dua0), ) ar
=/ arctan (£)(J Soux (1), us (1)) dt
0
= —/ arctan(?) (1> + 1)e~ 2 @@ g; —
0

which shows that I'(L |g,;, 0) is non-degenerate and of signature —1 as quadratic
form on the one-dimensional kernel of Lo |gc. Therefore, by (36), sf(L |gc) = —1
and so sfz, (L) is non-trivial in RO(Z,) by (34). Thus for these functions a, ¢ and e
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there is a bifurcation point of critical points of f by Theorem 3.1, and consequently
also bifurcation of solutions of (40) from the trivial solution. Let us once again point
out, that this bifurcation point cannot be found by invariants that only depend on the
endpoints of the path L.

Note that we have not yet chosen functions b, d and & in (47), which we now do in
a way such that sf(L) = 0 € Z to obtain an example where also Theorem 1.3 is not
applicable. Let us firstly point out that it readily follows from (7) that the spectral flow
changes its sign if we reverse the orientation of the path of operators. We now set for
teRand A € [—m, 7]

bi(t) =a_ (1), hy@) =e_,(1), dp@) =c_,(1).

Then L; |(g6yr1= L_j |yc and thus sf(L |g6y1) = —sf(L |ze) = 1. It follows
from (35) that sf(L) = 0 and so our example has all the required properties.

6.3 An indefinite system of elliptic PDE

In this final section we consider the non-discrete compact Lie group SO(2) and an
indefinite system of PDEs that has been studied in this setting by the equivariant
degree, e.g., in [15].

For a smooth bounded domain 2 C R”, we are looking for bifurcation of solutions
of the family of equations

{AAu(x) =V, F(A,u(x)) in Q 51)

ux) =0 on 092,
where A € I:=[0, 1], A:=diag{ay, .., a,} € Mat(p,R),a; € {£1},i =1,..., pand
F:I xR - R

is a C2-map such that

(A1) O is a critical point of F:=F (%, -) : R? — R for all » € I. In what follows,
we set

B;:=V2F(%,0) € Mat(p, R).
(A2) Thereexist C > 0and 1 <s < (n+2)(n —2)~ 1 if n > 3 such that
IV2F(h, )] < C(1+ ul™h.

If n = 2, we instead require that s € [1, 00), and for n = 1 we do not impose
any growth condition on F.

Note that the constant function u = 0 is a solution of (51) for all A € I and thus it is
sensible to ask for bifurcation from this trivial branch of solutions. This problem has
recently been studied by the second and fourth author in [18], where a spectral flow
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formula was obtained that can show the existence of bifurcation by Theorem 1.3. In
this section we modify the setting by assuming an invariance under a natural action of
S O(2) that yields bifurcation by our main Theorem 3.1. Let us first briefly recall the
variational setting, where H& (£2) is the standard Sobolev space and H:= @f’z 1 HOl (2)
is a Hilbert space with respect to

P
(I/l, v>H=Z<ulvvl>HOl(Q)v u= (ulv"~au[7)7 V= (vla "'7v[7) € H

i=1

We consider the map f : I x H — R given by
1 P
2
Foi=y [ Y avuwPd- [ Fouwan 62
2Jeig @

It follows from assumption (A2) that there exists & € C%(I x R?, R) such that
1
f()‘ﬂ M) = z (B)uus u) + h()"v M)

and for every A € I, we have V, h(A, 0) = 0 as well as V,f h(x,0)=0.
Now f is in C2(I x H,R) under the assumptions (A1) — (A2) (cf. [28]) and the
gradient of f(X,-) : H — Ris of the form

Vuf,u)=Tu+ Kyu — Vyn(h,u).

Here T : H — H is the selfadjoint invertible operator Tu = —Au, K) : H — H is
the selfadjoint compact operator which implicitly is given by

(Ko v) g == [ (B o) (53)
and n: I x H — R is the C%-map defined by
n(k, u) =/h()»,u(x))dx,
Q

where V,n(A,0) = 0 as well as Vgn(k, 0) = O for all » € I. The critical points of
fri=f(, ) : H— R are the weak solutions of (51), and thus in particular O € H is
a critical point of all f3, A € I. Moreover, the Hessians V,f /».(0) at the critical point
0 € H are the selfadjoint operators

L,:=T + K. 54

Note that these are compact perturbations of an invertible operator and hence Fred-
holm. Accordingly L:={L,},¢; is a path of selfadjoint Fredholm operators so that the
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spectral flow of L is defined. Moreover, the kernel of L, consists of the solutions of
the linearised equations

{ AAu(x) = Byu(x) in (55)

u =0 on 0%2,

where B, is the Hessian matrix of F(A,-) : R? — R at 0 as in (A1). Thus L, is
invertible if and only if (55) has no non-trivial solution.

Now let us consider an orthogonal group action of SO(2) on R” and the corresponding
induced action on H by

(gu)(x) = gu(x), x e Q.

Henceforth we assume
(A3) The map F is G invariant, i.e., F (A, (gu)(x)) = F(r,u(x)), x € 2, g € G.

We now firstly consider the case p = 4, which allows to get a group action of SO(2)
on H = H} (2, R*) by

awi= (76 0 ) 1) . (56)

wheres,t € N, s # t,and p°®, p’ denote the corresponding irreducible representations
in (37). By a simple computation, we see that for A = diag{—1, —1, 1, 1}

(gu, gv)y = (u,v)y and (Agu,gu)y = (Au,u)y, forall u,veH,
and with (A3), this implies that the functional f in (52) is invariant under G with
respect to the action (56). The assumption (A3) implies that B, is equivariant with
respect to (56). For simplicity we henceforth assume as in [15] that

By = ALy € Mat(4, R). (57)

Let us now consider the equivariant spectral flow sfgo2) (L) for the path of Hessians
L in (54). As in [18], we consider the subspaces Hy C H, k € N, where

Hy =span{fre; : i =1,...,4},

ei,i =1, ...,4,arethestandard basis vectors of R* and ( fi)en are the eigenfunctions
of the scalar Dirichlet problem

—Au(x) = au(x) inQ
u=2~0 on 0%2.

Let us recall that there is a countable number of eigenvalues (otx)ren, Which are
all positive and called the Dirichlet eigenvalues of the domain 2. We order these
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eigenvalues by oy < «; for k < [ and assume that f; is the eigenfunction of ax. As
shown in [18], the spaces Hg, k € N, are an orthogonal decomposition of H and there
is some ko € N such that L, is invertible on

1

As all spaces Hy, and thus V as well as

ko
U:= @ H,
k=1

are invariant under the action (56) and under the operators L;, we see by (11) and (10)
that sfso(2) (L) = sfso2)(L |v). Since U is of finite dimension, and by the invariance
of the Hj under the action and operators we can further decompose by Proposition 2.1
and (11) to obtain

sfso@) (L) = sfso)(L lv) = [E™ (Lo lv)] — [E” (L1 |v)]
ko ko
=Y [E" (Lo lu)] — [E~ (L1 lu)] = Y _[E~ (LI — [E~ (L],
k=1 k=1
(58)
where E~ (L) |y), A € I, denotes the direct sum of eigenspaces with respect to
negative eigenvalues of L, |y as in Proposition 2.1, and where we denote by Ll; the

matrix representation of the restriction of L, to the invariant subspace Hj with respect
to the basis { fxe; : i = 1,...,4}. By (57) and a direct calculation we obtain that

(B0 (A= 0
0 0—-5L)’ ! 0 (—1—0%)12

and note that —1 is the only negative eigenvalue of Lg and
E~ (L) = span{ fre; : i =3, 4}.
Moreover, E~ (LS) is a two-dimensional real SO(2)-representation given by
PE=(Lky =P "
To compute the S O (2)-equivariant spectral flow, we now need to inspect the matrices

L]f. Let us firstly consider those k € N with Dirichlet eigenvalues o > 1 of 2. Then
e # is the only negative eigenvalue of Lll‘ and

E~(L%) = span{ fye; : i =3, 4}.
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Thus, comparing with L’é, we see that £ ’(L’é) =E ’(L’f) and both spaces are the
same SO(2)-representations, i.e.,

[E7(LH)] = [E~(L5)]1 =0 € RO(SO(2)). (59)

Secondly, we consider those k € N with Dirichlet eigenvalues o < 1 of 2. Now all
eigenvalues of L’l‘ are negative and thus E _(L]f ) = Hj. Moreover, the corresponding
SO(2)-representation of E~(LY) is py ;1) = o' @ p'. Thus, again comparing with

L’(‘), we see that
[E-(LY)]1 - [E- (LD =[p"1—[p* @ p'1 = —[p']1 #0 € ROSO2))  (60)

and finally obtain from (58), (59) and (60) that

ko
sfso@ (L) = Y [ET(LOI—[E-(LHI =tk eN: ax < 1} [p], (61
k=1

where |{...}| stands for the cardinality of a set. Thus we have a non-trivial SO(2)-
equivariant spectral flow on every domain having a Dirichlet eigenvalue less than 1
as, e.g., any two dimensional disc of radius greater than N (see [18, §6]). Note that
by applying the map F in (9), we see from (61) that

sf(L) = 2|{keN: ap < 1}|. (62)

This implies that sfso2)(L) # 0 € RO(SO(2)) if and only if sf(L) # 0 € Z and
thus bifurcation points could have also been found by applying Theorem 1.3.

Let us now further elaborate on this example and consider the path L= {Z el
on H x H = H}(Q,R®), where L; = (L) ® (—L;). Moreover, we consider for
s,t € N, s #£ ¢, the action of SO(2) on H x H

pig) 0 0 0
— 0 p'(e) 0 O

0 0 0 oo

where p* and p’ are the irreducible representations (37). If we follow the argument
used to obtain (58) in this case, there is again some ko € N such that

ko

sfso) (D) = Y _[E~(LH)] — [E~ (L], (64)
k=1
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where we now denote by Z’; the matrix representation of the restriction of L; to the
invariant subspace Hy x Hj with respect to the bases { fxe; : i = 1,...,4}in Hi. By
a direct calculation we obtain that

L 0 0 0 (1=l 0 0 0
1
Tk _ 0-Ihb 0 O , Tk _ 0 (_1_@)12 0 0
=10 0 -1 0 ! 0 0 (=l+gh 0
00 04 0 0 0 (d+bn

Again we note that —1 is the only negative eigenvalue of Lk, where now
E~ (LK) = span{ fye; : i =3,4,5,6).
Moreover, E ’(Z’é) is the four-dimensional representation of SO(2) given by
pE*(Zﬁ) =p' @ Pt~ (65)

Let us now consider the matrices Zk and again firstly focus on the Dirichlet eigenvalues
o > 1.Then —1— E —1 +7 are the only negative eigenvalues, £~ (Lk) =E" (L )
and pp- @ is as in (65). If, secondly, we consider the Dirichlet eigenvalues oy < 1

of 2, then1 — @’ —-1- E are the negative eigenvalues,
E~(L%) = span{fie; : i = 1,2,3,4},
and E ’(Z’l‘ ) is the four-dimensional representation
PE-(Th = 2. 0. (66)
To summarise, we obtain for k € N with o > 1
[E=(LE1 - [E~ (L] = [p* @ p'1— [0° ® p'] = Oro(s02))-
whereas (65) and (66) yield for k € N with oy < 1
[E~(LH1 - [E- L) =[p* @ p'1—[2- p*1 = [p'] = [0°] # Oro(s02)-
Thus by (64) the SO(2)-equivariant spectral flow of the path Lis given by

ko
sfso)(L) = Y [E~(LH]1 - [E~(L)]
k=1
=tk e N: ax < 1} (1p'] — [p°]) € RO(SO(2))

and yields bifurcation for (51) if the underlying domain €2 has a Dirichlet eigenvalue
less than 1. Note that instead Theorem 1.3 is not directly applicable, as by (9)

sf(L) = F(sfso)(L) = [fk e N: o < 1}|2—2) =0 € Z,
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which is a consequence of the implemented symmetry in the definition of the operators
Ly, A € I. On the other hand, any cyclic group Z; can be regarded as a subgroup
of SO(2). If we assume that s and ¢ are relatively prime and consider Z;, Z;, then
Hy:=(H x H)% = H x {0} and Hy:=(H x H)" = {0} x H yield a decomposition
H = H| & H>. Now the same argument as in the final paragraph of Sect. 6.1 shows
that the critical points of fj in H; are given by the zeroes of V(f |g;),i =1, 2. As
L; |#,= L, and L; | = —Lj, A € 1, it follows from (62) that there is bifurcation
of critical points in Hy and H by Theorem 1.3.
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