
Mathematische Annalen (2025) 393:2187–2226
https://doi.org/10.1007/s00208-025-03291-7 Mathematische Annalen

The equivariant spectral flow and bifurcation for
functionals with symmetries: part I

Marek Izydorek1 · Joanna Janczewska1 ·Maciej Starostka2 ·
Nils Waterstraat2

Received: 9 December 2023 / Revised: 11 September 2025 / Accepted: 12 September 2025 /
Published online: 19 September 2025
© The Author(s) 2025

Abstract
We consider bifurcation of critical points from a trivial branch for families of func-
tionals that are invariant under the orthogonal action of a compact Lie group. Based
on a recent construction of an equivariant spectral flow by the authors, we obtain a
bifurcation theorem that generalises well-established results of Smoller and Wasser-
man as well as Fitzpatrick, Pejsachowicz and Recht. Finally, we discuss first examples
of strongly indefinite systems of differential equations where the mentioned classical
approaches fail but an invariance under an orthogonal action of a compact groupmakes
our methods applicable and yields the existence of bifurcation.

Mathematics Subject Classification Primary 58E09; Secondary 58J30 · 58E07 ·
34C25

1 Introduction

Let H be a real separable Hilbert space of infinite dimension and f : I × H → R a
continuousmap such that each fλ:= f (λ, ·) : H → R isC2 with derivatives depending
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continuously on the parameter λ ∈ I :=[0, 1]. Let 0 be a critical point of all fλ and
consider the family of equations

(∇ fλ)(u) = 0,

which now has u = 0 as solution for all λ ∈ I . A parameter value λ0 ∈ I is called a
bifurcation point (of critical points) if in every neighbourhood U ⊂ I × H of (λ0, 0)
there is some (λ, u) such that (∇ fλ)(u) = 0 and u �= 0. The existence of bifurcation
points is a classical problem in nonlinear analysis that has been systematically studied
for many decades. A central role is played by the second derivative D2

0 fλ at the
critical point 0 ∈ H , which is a symmetric bounded bilinear form on H . By the Riesz-
representation theorem it uniquely determines a selfadjoint operator Lλ on H such
that

〈Lλu, v〉H = (D2
0 fλ)(u, v), u, v ∈ H , (1)

which is called the Hessian of f at 0 ∈ H . Note that it is an immediate consequence
of the implicit function theorem that Lλ is not invertible if λ is a bifurcation point.
Krasnoselskii considered in the sixties the case that Lλ = IH −λK , where IH denotes
the identity on H and K is a compact selfadjoint operator. He showed in a celebrated
theorem that the bifurcationpoints of f are exactly those parameter values forwhich Lλ

has a non-trivial kernel or, in other words, 1
λ
is an element of the spectrum σ(K ) of the

compact operator K . More generally, let us now assume that the selfadjoint operators
Lλ are Fredholm, i.e., they have a finite dimensional kernel and a closed range. The
following generalisation of Krasnoselskii’s work is nowadays a common result in
nonlinear analysis that can be found e.g. in the monographs [19, 23]. Henceforth,
we denote by μ−(S) the Morse index of a selfadjoint Fredholm operator S, i.e., the
number of negative eigenvalues of S counted with multiplicities.

Theorem 1.1 If μ−(Lλ) < ∞ for all λ ∈ I , L0, L1 are invertible and

μ−(L0) �= μ−(L1), (2)

then there is a bifurcation point of critical points of f in (0, 1).

It is readily seen that the invertibility of L0 and L1 cannot be lifted in this theorem
(cf. [11, §12.2]). However, there is ample motivation to relax the assumption on the
finiteness of theMorse indices and condition (2). Firstly, sometimes symmetries of the
functionals affect the applicability of (2). For example, if the spectra of the operators Lλ

are symmetric in some neighbourhood about 0, then the Morse indices are necessarily
constant and the above theorem cannot be applied. Secondly, the finitness of theMorse
indices excludes various important applications. For example,when studying solutions
of Hamiltonian systems or non-cooperative elliptic systems of PDE as critical points of
a suitable functional, the appearing operators Lλ will usually not meet this condition.

The obstacle caused by constant Morse-indices was treated by Smoller andWasser-
man in their seminal work [31] as follows. Assume that G is a compact Lie group that

123



The equivariant spectral flow and bifurcation for functionals… 2189

acts orthogonally on H and that each functional fλ is invariant under the action of G,
i.e., fλ(gu) = fλ(u) for all g ∈ G and u ∈ H . Then the Hessians Lλ are readily seen
to be G-equivariant, i.e., Lλ(gu) = gLλu. If now μ−(Lλ) < ∞, then the direct sum
E−(Lλ) of all eigenspaces with respect to negative eigenvalues is of finite dimension.
As E−(Lλ) is easily seen to be invariant under the action of G, this space is a finite
dimensional representation of the Lie group G. The terminology of a nice Lie group,
that was introduced in [31], will be recalled below in Sect. 3.

Theorem 1.2 Assume that G is nice, L0, L1 are invertible and μ−(Lλ) < ∞ for all
λ ∈ I . If

E−(L0) � E−(L1), (3)

where ∼= stands for isomorphic representations of G, then there is a bifurcation point
of critical points for f in (0, 1).

Note that Theorem 1.1 follows from Theorem 1.2 as isomorphic representations are of
the same dimension and μ−(Lλ) = dim(E−(Lλ)). Smoller and Wasserman applied
Theorem 1.2 in [31] to study bifurcation of radial solutions of semilinear elliptic
equations.

There have been various attempts to generalise Theorem 1.1 to the case when
μ−(Lλ) = ∞. Theseweremostly tailored to specific applications like, e.g., bifurcation
of branches of periodic solutions of Hamiltonian systems (cf. e.g. [20, 33]). A very
general approach to this problem was introduced by Fitzpatrick, Pejsachowicz and
Recht in [12]. The spectral flow is an integer-valued homotopy invariant that is defined
for any path L = {Lλ}λ∈I of selfadjoint Fredholm operators that was introduced by
Atiyah, Patodi and Singer in [5] in connection with the Atiyah-Singer Index Theorem.
Roughly speaking, the spectral flow counts the net number of eigenvalues crossing 0
whilst the parameter λ of the path traverses the interval. We recall the construction of
the spectral flow below in Sect. 2 and now just mention that if μ−(Lλ) < ∞ for all
λ ∈ I , then

sf(L) = μ−(L0) − μ−(L1).

Thus the following main theorem of [12] is a natural generalisation of Theorem 1.1
which is applicable to any family of functionals fλ such that the associated Hessians
Lλ in (1) are Fredholm operators.

Theorem 1.3 If L0, L1 are invertible and

sf(L) �= 0 ∈ Z, (4)

then there is a bifurcation point of critical points of f in (0, 1).

Let us note that there are various efficient methods to compute the spectral flow,
e.g., dimension reductions or crossing forms, that were in particular developed for
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applications in symplectic geometry (cf. e.g. [13, 29]). These have yielded several
bifurcation theorems for various types of differential equations, e.g., [13, 27, 35, 37].

A natural question about Theorem 1.3 is if (4) can be further relaxed. For example,
if the spectra of the operators Lλ are symmetric about 0 by some symmetry of the
functionals fλ, then necessarily sf(L) vanishes as net number of eigenvalues crossing
through 0. But if in this case there are pairs of eigenvalues crossing the axis in oppo-
site direction, one might still have the idea that there should be a bifurcation point.
Interestingly, this is not necessarily the case by the following theorem of Alexander
and Fitzpatrick from [1].

Theorem 1.4 Let L = {Lλ}λ∈I be a path of selfadjoint Fredholm operators and λ0 ∈
(0, 1) such that Lλ is invertible for λ �= λ0. If sf(L) = 0, then there exist an open
interval J ⊂ [0, 1] containing λ0, an open ball B ⊂ H and a continuous family
f : J × B → R of C2-functionals such that Lλ are the Hessians of fλ at 0 ∈ H and
∇ fλ(0) = 0 holds for λ ∈ J , but there is no bifurcation of critical points for f in J .

The previous theorem suggests that Theorem 1.3 is optimal, and indeed the predicted
phenomenon is not at all pathologic as there are natural examples of differential
equations to which Theorem 1.4 applies [22].

The aimof thiswork is to introduce a result that generalises all previouslymentioned
theorems about the existence of bifurcation and which shows that despite of Theorem
1.4 there is still bifurcation under a suitable symmetry assumption on the functionals
fλ. The authors recently introduced in [17] the G-equivariant spectral flow sfG(L)

for paths of selfadjoint Fredholm operators L = {Lλ}λ∈I that are equivariant under
the orthogonal action of a compact Lie group, i.e., Lλ(gu) = g(Lλu) for all u ∈ H
and g ∈ G. This novel homotopy invariant is an element of the representation ring
RO(G) that was introduced by Segal in [30]. It was shown in [17] that

F(sfG(L)) = sf(L) ∈ Z

by a natural homomorphism F : RO(G) → Z that we recall below in Sect. 2. Thus
even if the spectral flow sf(L) ∈ Z vanishes, sfG(L) can be non-trivial in RO(G).
Moreover, if μ−(Lλ) < ∞, then

sfG(L) = [E−(L0)] − [E−(L1)] ∈ RO(G), (5)

where the square brackets stand for isomorphism classes of representations of the
compact Lie group G. Consequently, if in this case sfG(H) �= 0 ∈ RO(G), then
E−(L0) and E−(L1) are non-isomorphic G-representations and thus (3) holds. The
main theorem of this work is Theorem 3.1 below, which states that if L0, L1 are
invertible and sfG(L) is non-trivial in the representation ring RO(G) of the compact
Lie groupG, then there is a bifurcation point of critical points of f . As already said, this
is a strong statement as it implies Theorem 1.2 and Theorem 1.3 (and thus ultimately
also Theorem 1.1). The price to pay is that it is a rather challenging task to join the
proofs of Theorem 1.2 and Theorem 1.3 and the majority of this paper is devoted
to this issue. On the other hand, it turns out that sfG(L) is quite applicable. Indeed,
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major tools for computing the classical spectral flow sf(L) in Z carry over to the G-
equivariant case in RO(G) and pave the way to various applications to Hamiltonian
systems and PDEs that are invariant under actions of subgroups of the matrix groups
O(n) or SO(n). However, to introduce these methods for computing sfG(L) in detail
and a thorough discussion of applications require a second part of this work. Here we
instead focus on examples that shall give an impression on how the equivariant spectral
flow works as bifurcation invariant, when the classical one in Theorem 1.3 vanishes
and thus fails to show bifurcation. We firstly consider the finite Lie groups Z2 as well
asZ2⊕Z2 and study bifurcation for critical points of even functionals fλ as in [9]. Our
first example is a Dirichlet problem of a system of nonlinear ODEs, where we illustrate
that the particular choice of the group action can heavily affect the applicability of our
main Theorem 3.1. Interestingly, the right choice in this example has no non-trivial
fixed points, which thus makes clear that our Theorem 3.1 is in general not just a
restriction of the original problem to a fixed-point space of the action. As second class
of examples, we consider bifurcation of homoclinic solutions of even Hamiltonian
systems. There have been many studies devoted to bifurcation for functionals that are
invariant under orthogonal actions of compact Lie groups by degree theory (see e.g.
[6] and ref. therein). As those methods only apply to functionals where the Hessians
Lλ are compact perturbations of a fixed operator, homoclinic solutions are out of
their scope. Finally, we consider strongly indefinite systems of elliptic PDEs that are
invariant under an action of the continuous Lie group SO(2). In the non-equivariant
case these systems have recently been studied by the second and the last author in
[18]. It turns out that the obtained dimension reductions for the classical spectral flow
work in the present setting as well and allow to compute the equivariant spectral flow
for investigating bifurcation by Theorem 3.1. This shall particularly emphasize the
strength of our findings and should be an appetizer for the study of continuous group
actions in the upcoming second part.

The paper is structured as follows. In the next two sections we recap the classical
spectral flow, introduce the G-equivariant spectral flow from [17] and state our main
theorem. Section4 provides a first pillar of the proof of our main theorem. We show
the existence of a G-equivariant parametrix for any path of G-equivariant selfadjoint
Fredholm operators, which allows to reduce a path of Hessians to a normal form. In
Sect. 5 we use the result of Theorem 4.1 to prove Theorem 3.1, which we do in several
steps. In the final section of this paper we discuss the announced examples which
should stress the high applicability of our work.

2 The G-equivariant spectral flow

The aim of this section is to introduce theG-equivariant spectral flow, where we follow
the authors recent work [17]. Let us first recap the definition of the classical spectral
flow.

Let H be a real separable Hilbert space and let FS(H) be the set of all selfadjoint
Fredholm operators on H with the norm topology. It was shown by Atiyah and Singer
in [4] that FS(H) has three connected components
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FS+(H):={T ∈ FS(H) : σess(T ) ⊂ (0,+∞)}
FS−(H):={T ∈ FS(H) : σess(T ) ⊂ (−∞, 0)},

and

FS i (H):=FS(H) \ FS±(H),

where σess(T ) denotes the essential spectrum, i.e., the set of all λ ∈ R such that λ−T
is not a Fredholm operator. The operators in FS+(H) have a finite Morse index

μ−(T ) = dim
(⊕μ<0{u ∈ H : Tu = μu}) , (6)

i.e., they have at most finitely many negative eigenvalues including multiplicities. In
general, for every T ∈ FS(H), there is a neighbourhood of 0 that either belongs to
the resolvent set or it contains finitely many eigenvalues including multiplicities (cf.
[34, 36]).

Let now L = {Lλ}λ∈I be a path inFS(H). As the spectra of the operators Lλ cannot
accumulate at 0, it can be shown that there is a partition 0 = λ0 < . . . < λN = 1 of
the unit interval and ai > 0, i = 1, . . . N , such that [λi−1, λi ] � λ 
→ χ[−ai ,ai ](Lλ) ∈
L(H) are continuous families of finite rank projections, where χ[a,b](T ) denotes the
spectral projection of a selfadjoint operator T with respect to the interval [a, b] ⊂ R.
Then, for i = 1, . . . , N , the spaces E(Lλ, [0, ai ]):= im(χ[0,ai ](Lλ)), λi−1 ≤ λ ≤ λi ,
are finite dimensional and the spectral flow of the path L was defined by Phillips in
[26] by

sf(L) =
N∑

i=1

(dim(E(Lλi , [0, ai ])) − dim(E(Lλi−1 , [0, ai ]))) ∈ Z. (7)

Note that E(Lλ, [0, a]) is the direct sum of the eigenspaces of Lλ for eigenvalues in
the interval [0, a].

Let now G be a compact Lie group. A (real) representation of G is a pair (V , ρ)

consisting of a finite dimensional (real) vector space V and a group homomorphism
ρ : G → GL(V ). Two representations (V1, ρ1), (V2, ρ2) of G are isomorphic if there
is an isomorphism α : V1 → V2 that isG-equivariant, i.e., ρ2(g)◦α = α◦ρ1(g) for all
g ∈ G. Two representations ofG can be added by the direct sum and this turns the set of
isomorphism classes of representations ofG into a commutativemonoid. The elements
of the associated Grothendieck group RO(G) are formal differences [U ] − [V ] of
isomorphism classes of G-representations modulo the equivalence relation generated
by [U ]− [V ] ∼ [U ⊕W ]− [V ⊕W ]. The neutral element in RO(G) is [V ]− [V ] for
any G-representation V , and the inverse element of [U ] − [V ] is [V ] − [U ]. RO(G)

was introduced by Segal in [30], who called it the representation ring of G as the
tensor product of representations actually yields a ring structure on this Grothendieck
group. We follow this terminology even though we will never use the ring structure
of RO(G) and consider it merely as an abelian group.
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Let now G be a compact Lie group that acts orthogonally on H . We denote by
FS(H)G the set of G-equivariant selfadjoint Fredholm operators, i.e.,

T (gu) = g(Tu), u ∈ H , g ∈ G,

and by FS±(H)G and FS i (H)G the corresponding subsets of the connected
components of FS(H).

Let now L = {Lλ}λ∈I be a path inFS(H)G . As the operators Lλ areG-equivariant,
it follows that the spaces E(Lλ, [0, a]) in (7) are G-invariant. Thus they define equiv-
alence classes of G-representations and consequently the idea of (7) carries over to
RO(G) by setting

sfG(L) =
N∑

i=1

([E(Lλi , [0, ai ])] − [E(Lλi−1, [0, ai ])]) ∈ RO(G). (8)

Phillips proved in [26] that (7) only depends on the path L and not on the choices
of the partition 0 = λ0 < . . . < λN = 1 of the unit interval and the numbers
ai > 0. Recently, the authors showed in [17] that the same is true for (8) in RO(G),
and thus this equivariant spectral flow is well defined. Note that if G is trivial, then
representations are isomorphic if and only if they are of the same dimension. Hence
RO(G) ∼= Z in this case and (8) can be identified with the ordinary spectral flow (7).
In general, there is a canonical homomorphism

F : RO(G) → Z, [U ] − [V ] 
→ dim(U ) − dim(V ),

and it follows from (7) and (8) that

F(sfG(L)) = sf(L). (9)

Consequently, the classical spectral flow of L has to vanish if sfG(L) is trivial. On the
other hand, in [17] there is a simple example of a path ofG = Z2-equivariant operators
such that sfG(L) ∈ RO(G) ∼= Z ⊕ Z is non-trivial even though sf(L) = 0 ∈ Z.

Finally, it was shown in [17] that all basic properties of the spectral flow hold
mutatis mutandis for its G-equivariant generalisation (8), e.g.,

(i) If Lλ ∈ GL(H) ∩ FS(H)G for all λ ∈ I , then

sfG(L) = 0 ∈ RO(G). (10)

(ii) Let H = H1⊕H2, where H1, H2 areG-invariant and such that Lλ |Hi∈ FS(Hi )
G

for i = 1, 2, λ ∈ I . Then

sfG(L) = sfG(L |H1) + sfG(L |H2) ∈ RO(G). (11)
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(iii) If L, L ′ are two paths in FS(H)G such that L1 = L ′
0, then

sfG(L ∗ L ′) = sfG(L) + sfG(L ′) ∈ RO(G), (12)

where L ∗ L ′ denotes the concatenation of L ′ and L .
(iv) If the path L− is defined by L−

λ = L1−λ, λ ∈ I , then

sfG(L−) = − sfG(L) ∈ RO(G). (13)

(v) If h : I × I → FS(H)G is a homotopy such that h(s, 0) and h(s, 1) are invertible
for all s ∈ I , then

sfG(h(0, ·)) = sfG(h(1, ·)) ∈ RO(G). (14)

Moreover, let us recall the following proposition from [17, Prop. 3.2], where E−(T )

denotes the direct sum of the eigenspaces with respect to negative eigenvalues of an
operator T ∈ FS+(H).

Proposition 2.1 If L = {Lλ}λ∈I is a path in FS+(H)G, then

sfG(L) = [E−(L0)] − [E−(L1)] ∈ RO(G).

Finally, let us note that further properties of the G-equivariant spectral flow, and in
particular a generalisation of (14) to homotopies with non-invertible endpoints, can
be found in [17, §2.3]. The latter is necessary for the following proposition about
compact perturbations in FS(H)G .

Proposition 2.2 Let L = {Lλ}λ∈I and L ′ = {L ′
λ}λ∈I be paths in FS(H)G such that

L0 = L ′
0, L1 = L ′

1 and Lλ − L ′
λ is compact for all λ ∈ I . Then

sfG(L) = sfG(L ′).

Proof We set Kλ = Lλ − L ′
λ and first note that by assumption K0 = K1 = 0. Thus

h : I × I → FS(H)G, h(s, λ) = L ′
λ + sKλ

is a homotopy with fixed endpoints such that h(0, λ) = L ′
λ and h(1, λ) = Lλ. This

shows the claimed equality as the spectral flow is invariant under homotopies with
fixed endpoints by [17, Cor. 2.9]. ��
Wenote that the previous proposition in particular applies to the case that Lλ = A+Kλ

and L ′
λ = A+ K0, λ ∈ I , for some fixed A ∈ FS(H)G and a closed path {Kλ}λ∈I of

compact selfadjoint G-equivariant operators. Then sfG(L) = sfG(L ′) = 0 ∈ RO(G)

as it directly follows from the definition (8) that the spectral flow of a constant path
vanishes.
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3 Main theorem and corollaries

We consider equations of the type ∇ fλ(u) = 0, where f : I × H → R is a family
of C2-functionals on an infinite dimensional real separable Hilbert space H , and we
assume that ∇ fλ(0) = 0 for all λ ∈ I , i.e. 0 ∈ H is a critical point of all functionals
fλ. A bifurcation point is a parameter value λ∗ ∈ I at which non-trivial critical points
branch off from the trivial ones I×{0}, i.e., in every neighbourhood of (λ∗, 0) ∈ I×H
there is some (λ, u) such that ∇ fλ(u) = 0 and u �= 0. A crucial role for studying
the existence of bifurcation points is played by the family of Hessians Lλ, which are
bounded selfadjoint operators on H that are induced by the second derivatives D2

0 fλ of
fλ at 0 ∈ H as in (1). It is a common assumption that the operators Lλ are Fredholm,
i.e., they are elements of the space FS(H) introduced in the previous section. Let
us now assume in addition that each fλ is G-invariant, i.e., f (gu) = f (u), g ∈ G,
where G is a compact Lie group acting orthogonally on H . Under this assumption,
the operators Lλ are G-equivariant, i.e. Lλ(gu) = g(Lλu) by [16, §1.3]. Thus the
G-equivariant spectral flow sfG(L) is defined.

Henceforth, we assume that G is nice in the sense of Smoller and Wasserman’s
work [31], i.e., any orthogonal representations E and F of G are isomorphic if the
quotients D(E)/S(E) and D(F)/S(F) of the unit discs by the unit spheres have the
sameG-equivariant homotopy type. Let us stress that, e.g., ifG0 denotes the connected
component of the identity in G, then G is nice if G/G0 is trivial or a finite product of
Z2 or Z3. Thus, in particular, S1, O(n) and SO(n) are nice. The following theorem is
the main result of this work.

Theorem 3.1 If Lλ ∈ FS(H)G, λ ∈ I , L0,L1 are invertible and

sfG(L) �= 0 ∈ RO(G),

then there is a bifurcation point of critical points for f .

The following corollary is an immediate consequence of Proposition 2.1 and Theorem
3.1. It is the main result of Smoller and Wasserman’s work [31] that we stated in the
introduction in Theorem 1.2.

Corollary 3.2 If Lλ ∈ FS+(H)G, λ ∈ I , L0,L1 are invertible and E−(L0) and
E−(L1) are not isomorphic as G-representations, then there is a bifurcation point of
critical points for f .

By (9), we also reobtain the main theorem of Fitzpatrick, Pejsachowicz and Recht’s
work [12] that we stated in the introduction in Theorem 1.3.

Corollary 3.3 If Lλ ∈ FS(H), λ ∈ I , L0,L1 are invertible and sf(L) �= 0 ∈ Z, then
there is a bifurcation point of critical points for f .

Finally, let us emphasize that Theorem 1.1 and Krasnoselskii’s bifurcation theorem
(of which we reminded above Theorem 1.1) are immediate consequences of both
Corollary 3.2 and Corollary 3.3. Consequently, they ultimately are also covered by
our Theorem 3.1.
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4 The G-equivariant cogredient parametrix

We call an operator Q ∈ L(H) a symmetry if it is of the form Q = P − (IH − P) =
2P − IH for an orthogonal projection P which has infinite dimensional kernel and
range. Note that any symmetry Q satisfies Q2 = IH and Q ∈ FS i (H). Moreover, Q
is G-equivariant if and only if im(P) and ker(P) are G-invariant subspaces of H .

The aim of this section is the proof of the following theorem, which is a pillar of
the proof of Theorem 3.1. Henceforth we denote by KS(H) the space of all selfad-
joint compact operators with the norm topology, and by KS(H)G its G-equivariant
elements. Similarly, GL(H)G stands for the G-equivariant invertible operators.

Theorem 4.1 Let L = {Lλ}λ∈I be a path in FS i (H)G. Then there is a G-equivariant
symmetry Q ∈ FS i (H)G and paths M = {Mλ}λ∈I in GL(H)G and K = {Kλ}λ∈I in
KS(H)G such that

M∗
λLλMλ = Q + Kλ, λ ∈ I .

The remainder of this section is devoted to the proof of this theorem. Let us first sketch
the idea. We consider for a fixed G-equivariant symmetry Q ∈ FS i (H)G the map

πQ : GL(H)G × KS(H)G → FS i (H)G , πQ(M, K ) = MQM∗ + K . (15)

Note that im(πQ) is indeed in FS i (H)G as G acts orthogonally and thus the adjoint
M∗ is G-equivariant as well. Clearly Theorem 4.1 is shown if we can prove that for
some Q, the path L can be lifted to GL(H)G ×KS(H)G , i.e., if there is a continuous
map L̃ : I → GL(H)G × KS(H)G such that Lλ = πQ ◦ L̃ for all λ ∈ I . In the
non-equivariant case, this was done in [12] by showing that (15) is the projection of
a fibre bundle. Then the desired lifting of L can be obtained from a global section of
the pullback bundle of (15) by L , which exists as the latter bundle has a contractible
base space.

Unfortunately, in our more general setting, πQ is not necessarily surjective, which
affects the argument of [12]. Indeed, we will see below that in general im(πQ) is a
union of connected components of FS i (H)G if G is non-trivial. Moreover, at the
end of this section we provide an example where these components are not all of
FS i (H)G .

Before we begin the proof of Theorem 4.1, we note the following simple lemma
about functional calculus that will be used throughout the rest of the paper.

Lemma 4.2 Let T ∈ L(H) be selfadjoint and f : σ(T ) → R a continuous function
on the spectrum of T . If T is G-equivariant, then so is f (T ).

Proof Note that p(T ) is G-equivariant for every polynomial, and for every ε > 0
there is a polynomial such that ‖ f − p‖∞ < ε on σ(T ). Hence it follows for g ∈ G
that

‖ f (T )g − g f (T )‖ ≤ ‖ f (T )g − p(T )g‖ + ‖gp(T ) − g f (T )‖ ≤ 2‖p(T ) − f (T )‖
≤ 2‖p − f ‖∞ ≤ 2ε,
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which implies that f (T )g = g f (T ). ��
The following quite technical proposition shows the existence of a local section of
(15). Let us point out that even in the case of a trivial group action, the result is
more general than the corresponding Lemma 2.2 in [12]. The latter only constructs a
section in a neighbourhood of any symmetry in FS i (H)G which is not enough for
our purposes due to the already mentioned lack of surjectivity of πQ .

Proposition 4.3 For any S ∈ FS i (H)G there is a G-equivariant symmetry QS, an
open neighbourhoodUS of S inFS i (H)G and amap σS : US → GL(H)G×KS(H)G

such that

(πQS ◦ σS)(T ) = T for all T ∈ US .

Proof Let K be the orthogonal projection onto the kernel of S. Then K ∈ KS(H)G

as ker(S) is G-invariant and of finite dimension, and moreover

V :=S + K ∈ GL(H)G . (16)

Henceforth we denote by P+(V ) = χ(0,∞)(V ) and P−(V ) = χ(−∞,0)(V ) the projec-
tions on the positive and negative spectral subspaces of V . Note that these operators
are G-equivariant by Lemma 4.2. We set

QS = 2P+(V ) − IH ∈ FS i (H)G (17)

and choose a neighbourhood Ũ ⊂ FS i (H)G of QS that consists of invertible opera-
tors. As above, we let P+(T ) and P−(T ) denote the orthogonal projections onto the
positive and negative spectral subspaces for T ∈ Ũ which are again G-equivariant.
As P±(T ) continuously depend on T ∈ Ũ and as GL(H)G is open, there is a
neighbourhood U ⊂ Ũ of QS such that

P+(T )P+(QS) + P−(T )P−(QS) ∈ GL(H)G, T ∈ U ,

where we use that this operator is the identity for T = QS . Consequently, for each
T ∈ U , the restriction of P±(T ) to im(P±(QS)) is a bijection onto im(P±(T )).
Henceforth, we set H±:= im(P±(QS)) to simplify notation.

We now consider for T ∈ U the bilinear form on H+ defined by

B(T )(u, v) = 〈T P+(T )u, P+(T )v〉, u, v ∈ H+.

Then clearly B(T ) is bounded, symmetric and positive definite. Moreover, B(T ) is
G-invariant as T and P+(T ) are G-equivariant and G acts orthogonally. Let T̃ be the
Riesz-representation of B(T ), i.e., the unique selfadjoint operator such that

B(T )(u, v) = 〈T̃ u, v〉, u, v ∈ H+.
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As T̃ is unique and B(T ) is G-invariant, it is readily seen that T̃ is G-equivariant.

Thus, again by Lemma 4.2, the inverse square-root S+(T ):=T̃− 1
2 is G-equivariant as

well. Moreover,

〈u, v〉 = 〈T̃−1T̃ u, v〉 = 〈T̃− 1
2 T̃ u, T̃− 1

2 v〉 = 〈T̃ T̃− 1
2 u, T̃− 1

2 v〉 = B(T )(T̃− 1
2 u, T̃− 1

2 v)

= 〈T P+(T )T̃− 1
2 u, P+(T )T̃− 1

2 v〉 = 〈T̃− 1
2 P+(T )T P+(T )T̃− 1

2 u, v〉
= 〈S+(T )P+(T )T P+(T )S+(T )u, v〉, u, v ∈ H+,

which implies that

S+(T )P+(T )T P+(T )S+(T ) = IH+ . (18)

In the same way, we can construct a family S− : U → GL(H−)G such that for all
T ∈ U

−〈u, v〉 = 〈S−(T )P−(T )T P−(T )S−(T )u, v〉, u, v ∈ H−,

and thus

S−(T )P−(T )T P−(T )S−(T ) = −IH− . (19)

If we now define S0 : U → GL(H)G by

S0(T ) = P+(T )S+(T )P+(QS) − P−(T )S−(T )P−(QS),

then it follows from (18) and (19) that

S0(T )∗T S0(T ) = P+(QS) − P−(QS) = QS, T ∈ U .

Consequently, the map

σ : U → GL(H)G × KS(H)G, σ (T ) = ((S0(T )−1)∗, 0),

satisfies

(πQS ◦ σ)(T ) = πQS ((S0(T )−1)∗, 0) = (S0(T )−1)∗QSS0(T )−1 = T , T ∈ U .

(20)

Let us recall that U is a neighbourhood of the symmetry QS that was defined in (17).
Our next aim is to get a section σV in a neighbourhood UV of V in (16). In [12] it was
noted that G:=GL(H) × KS(H) is a topological group with respect to

(M, K ) · (M̃, K̃ ) = (MM̃, K + MK̃M∗), (21)
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and there is an action τ of G on FS i (H) defined by

τh(L) = MLM∗ + K , L ∈ FS i (H), h = (M, K ) ∈ G.

Now GL(H)G × KS(H)G is a closed subgroup of G and the action τ restricts to an

action of it on FS i (H)G . We set h:=(|V | 12 , 0) ∈ GL(H)G × KS(H)G and see by
functional calculus that

τh(QS) = |V | 12 QS|V | 12 = V ,

where (17) is used as well as the obvious equality
√|x |(2χ(0,∞)(x) − 1)

√|x | = x ,
x ∈ R. Thus UV :=τh(U) is an open neighbourhood of V in FS i (H)G . We set

σV : UV → GL(H)G × KS(H)G , σV (T ) = h · σ(τh−1(T )), T ∈ UV ,

where h = (|V | 12 , 0) ∈ GL(H)G × KS(H)G as above and the group multiplication
(21) is used. To show that πQS ◦ σV = id |UV , first note that for any h1, h2 ∈
GL(H)G × KS(H)G ,

πQS (h1 · h2) = τh1(πQS (h2)),

which directly follows from the definition of τ and (21). Thus by (20)

(πQS ◦ σV )(T ) = πQS (h · σ(τh−1(T ))) = τh(πQS (σ (τh−1(T ))))

= τh(τh−1(T )) = T , T ∈ UV ,
(22)

as claimed. Finally, we set h̃ = (IH ,−K ) ∈ GL(H)G × KS(H)G and define US =
τh̃(UV ) as well as

σS : US → GL(H)G × KS(H)G, σS(T ) = h̃ · σV (τh̃−1(T )), T ∈ US .

Then US is an open neighbourhood of S and the same computation as in (22) shows
that indeed πQS ◦ σS = id |US , which ends our proof. ��
The following lemma and its corollary concern the image of the map πQ .

Lemma 4.4 Let Q1, Q2 be symmetries and πQ1 , πQ2 the associated maps in (15). If
im(πQ1) ∩ im(πQ2) �= ∅, then im(πQ1) = im(πQ2).

Proof If S ∈ im(πQ1) ∩ im(πQ2), then there are (M1, K1), (M2, K2) ∈ GL(H)G ×
KS(H)G such that

S = πQ1(M1, K1) = πQ2(M2, K2).

Thus

S = M1Q1M
∗
1 + K1 = M2Q2M

∗
2 + K2,
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which implies

Q2 = M−1
2 M1Q1M

∗
1 (M−1

2 )∗ + M−1
2 (K1 − K2)(M

−1
2 )∗.

If we now set h̃ = (M−1
2 M1, M

−1
2 (K1 − K2)(M

−1
2 )∗) ∈ GL(H)G × KS(H)G , then

a direct computation yields

πQ2(h) = πQ1(h · h̃), h ∈ GL(H)G × KS(H)G .

Thus im(πQ2) ⊂ im(πQ1), which actually shows the lemma by swapping Q1 and Q2
in the argument. ��

Corollary 4.5 For every symmetry Q, the image of πQ is a union of connected
components of FS i (H)G.

Proof We show that im(πQ) is open and closed in FS i (H)G . Firstly, if S ∈ im(πQ),
then by Proposition 4.3 there is an open neighbourhood US of S in FS i (H)G and
a symmetry QS such that US ⊂ im(πQS ). Thus, by Lemma 4.4, US ⊂ im(πQ)

showing that the latter set is open. Secondly, let {Sn}n∈N ⊂ im(πQ) be a sequence that
converges to some S ∈ FS i (H)G . Again by Proposition 4.3, there is a neighbourhood
US of S in FS i (H)G and a symmetry QS such that US ⊂ im(πQS ). Now Sn ∈ US

for sufficiently large n, which by Lemma 4.4 implies that US ⊂ im(πQ) and thus
S ∈ im(πQ). Consequently, the image of πQ is closed, which finishes the proof. ��
In what follows we denote by BQ the image of the map πQ for a given symmetry
Q. Moreover, note that if Q ∈ FS i (H)G is a symmetry and we set S = Q in
Proposition 4.3, then (16) and (17) show that QQ = Q. Consequently, for every
symmetry Q ∈ FS i (H)G there is some S ∈ FS i (H)G such that QS = Q. Henceforth
we simplify our notation by not specifying S anymore.

Proposition 4.6 The map πQ : GL(H)G × KS(H)G → BQ is the projection of a
locally trivial fibre-bundle with fibre given by the isotropy group of Q ∈ FS i (H)G.

Proof The proof is almost identical to [12, Prop. 2.4], but we sketch the argument for
the convenience of the reader. By Proposition 4.3 there is an open subset UQ ⊂ BQ

and a local section σ of πQ on UQ . Then

η : UQ × π−1
Q (Q) → π−1

Q (UQ), η(S, h) = σ(S) · h

is a local trivialisation over UQ with inverse

η−1(h) = (πQ(h), (σ ◦ πQ)(h))−1 · h).

Now this trivialisation can be transported to any point T ∈ BQ as follows. As πQ

is surjective onto BQ , there is some h̃ ∈ GL(H)G × KS(H)G such that πQ(h̃) =
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τh̃(Q) = T . Then U :=τh̃(UQ) is a neighbourhood of T and τh̃ : UQ → U is a
homeomorphism. Now a local trivialisation over U is given by

η′ : U × π−1
Q (Q) → π−1

Q (U), η′(S, h) = h̃ · σ(τh̃−1(S)) · h,

which shows the claim of the proposition. ��

Now we finally have everything at hand to prove Theorem 4.1 along the lines that
we already sketched at the beginning of this section. Let L = {Lλ}λ∈I be a path in
FS i (H)G . Then the trace L(I ) of L is contained in a path componentC ofFS i (H)G .
Now let S ∈ C be arbitrary and let Q be the associated proper symmetry by Propositon
4.3. By the previous proposition,

πQ : GL(H)G × KS(H)G → BQ (23)

is the projection of a locally trivial fibre-bundle and clearly C ⊂ BQ by Corollary 4.5.
Let (E, I , π) be its pullback by L , i.e., the bundle having

E = {(λ, h) ∈ I × (GL(H)G × KS(H)G) : Lλ = πQ(h)}

as total space and as bundle projection π the restriction of the projection onto the
first component. Note that the projection onto the second component I × (GL(H)G ×
KS(H)G) → GL(H)G × KS(H)G yields a bundle map from E to the total space
of (23). By composing with this map, sections of (E, I , π) yield liftings of L , and
thus the desired map L̃ : I → GL(H)G × KS(H)G such that Lλ = πQ ◦ L̃λ for all
λ ∈ I . Now (E, I , π) is a bundle over the contractible space I and thus trivial. As the
triviality of the bundle implies the existence of a globally defined section, this proves
Theorem 4.1.

Aswe have pointed out before, themain difficulty in the above argument in compar-
ison to [12] is that BQ can be different from FS i (H)G . The applications in this paper
in Sect. 6 deal with the rather simple case of aG = Z2-action.We conclude this section
by an example which shows that even in this case BQ �= FS i (H)G is possible. Let H
be an infinite dimensional Hilbert space and consider on H ⊕ H the Z2-action which
maps (u, v) to (u,−v) by its non-trivial element. Then every equivariant operator is
of diagonal form. If we now take the proper symmetry Q(u, v) = (u,−v), then we
obtain for M = diag(A, B) ∈ GL(H ⊕H)Z2 and K = diag(C, D) ∈ KS(H ⊕H)Z2

πQ(M, K ) =
(
AA∗ + C 0

0 −BB∗ + D

)

and thus every element in BQ is of the form diag(S, T ), where the essential spectrum
of S is on the positive half-line and the essential spectrum of T is on the negative
half-line. Thus the proper symmetry Q̃:= − Q, Q̃(u, v) = (−u, v) is not an element
of BQ .
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5 Proof of Theorem 3.1

We note at first that it suffices to prove the theorem in the case that the Hessians Lλ

are strongly indefinite, i.e., Lλ ∈ FS i (H)G , λ ∈ I . Indeed, if f : I × H → R is a
family of G-invariant functionals as in Theorem 3.1 such that Lλ ∈ FS(H)G , λ ∈ I ,
then consider the family of functionals f : I × H × H × H → R given by

f λ(w, u, v) = fλ(u) + 1

2
‖w‖2 − 1

2
‖v‖2.

Clearly, this family has the same bifurcation points of critical points as f , and f is
G-invariant under the orthogonal action g(w, u, v) = (w, gu, v). Finally, the corre-
sponding path of Hessians L = {Lλ}λ∈I has the same G-equivariant spectral flow by
(11).

Thus we henceforth assume that Lλ ∈ FS i (H)G , λ ∈ I , and obtain from Theorem
4.1 a G-equivariant cogredient parametrix for L , i.e., a path M : I → GL(H)G such
that

M∗
λLλMλ = Q + Kλ, λ ∈ I , (24)

where Kλ are G-equivariant and compact, and Q ∈ FS i (H)G is a G-equivariant
symmetry. Note that the functionals of the family f̃ : I × H → R, f̃λ(u) = fλ(Mλu)

are G-invariant and ∇ f̃λ(u) = M∗
λ(∇ fλ)(Mλu) so that f̃λ and fλ have the same

bifurcation points of critical points. Moreover, the Hessians L̃λ of f̃λ are given by
L̃λ = M∗

λLλMλ. Note that L̃λ ∈ FS(H)G , λ ∈ I and thus the G-equivariant spectral
flow is defined.

Lemma 5.1 The paths of operators L and L̃ from above have the same G-equivariant
spectral flow, i.e.,

sfG(L) = sfG(L̃) ∈ RO(G).

Proof We note at first that L̃ is homotopic to the path {M∗
0 LλM0}λ∈I and the corre-

sponding homotopy does not affect the spectral flow by (14) as L0, L1 ∈ GL(H) by
the assumptions of Theorem 3.1. Now consider the polar decomposition M0 = UR

of M0, where U = M0(M∗
0M0)

− 1
2 is orthogonal and R = (M∗

0M0)
1
2 is selfadjoint

and positive. Moreover, U and R are G-equivariant by Lemma 4.2. We have

M∗
0 LλM0 = RU∗LλUR, λ ∈ I ,

and see that the homotopy

{((1 − s)R + s IH )U∗LλU ((1 − s)R + s IH )}(s,λ)∈I×I

deforms {M∗
0 LλM0}λ∈I into the path {U∗LλU }λ∈I . Note that also this homotopy does

not affect the spectral flow by (14) as L0, L1 ∈ GL(H) and (1−s)R+s IH ∈ GL(H)

123



The equivariant spectral flow and bifurcation for functionals… 2203

for all s ∈ I . Finally, for any a > 0,

U∗ : E(Lλ, [0, a]) → E(U∗LλU , [0, a]), λ ∈ I ,

is a G-equivariant isomorphism and thus

[E(Lλ, [0, a])] = [E(U∗LλU , [0, a])], λ ∈ I .

Consequently, it follows from the definition (8) that {U∗LλU }λ∈I and L have the same
G-equivariant spectral flow, which proves the lemma. ��
In summary, we can henceforth assume without loss of generality that Lλ = Q +
Kλ, λ ∈ I , where the operators Kλ are compact, selfadjoint and G-equivariant, and
Q = P − (IH − P) for some G-equivariant orthogonal projection P having infinite
dimensional kernel and range.

5.1 Reduction to finite dimensions I

We begin by a technical lemma on decomposing H into finite dimensional invariant
subspaces. Note that in case of a trivial group action, this is merely the existence of an
orthonormal basis. In the general case, our proof very much relies on the Kuratowski-
Zorn lemma, as it is also used in [16, Cor. 5.4 (a)], and thus appears three times in our
argument below.

Lemma 5.2 There is a sequence of finite-dimensional G-invariant subspaces Hn ⊂ H,
n ∈ N, such that

Hn ⊂ Hn+1 and Pnu
n→∞−−−→ u for all u ∈ H ,

where Pn denotes the orthogonal projection onto Hn.

Proof Let F be the set of all subsets B ⊂ H such that

(i) ‖x‖ = 1 for all x ∈ B,
(ii) 〈x, y〉 = 0 for all x, y ∈ B, x �= y,
(iii) for all x ∈ B there exists a subspace V ⊂ H of finite dimension such that

Gx :={gx : g ∈ G} ⊂ V .

Note that F is not empty as every representation of G on an infinite dimensional
Banach space has a finite dimensional subrepresentation by [16, Cor. 5.4 (a)]. We now
partially order F by inclusion and aim to use the Kuratowski-Zorn lemma. If E ⊂ F
is totally ordered, then the union of all elements in E satisfies (i) − (i i i) from above
and thus is an upper bound for E . Consequently, there exists a maximal element B∗ of
F . As B∗ is orthonormal and H is separable, B∗ is countable, say B∗ = {e1, e2, . . .}.
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We now let Hn be the intersection of all G-invariant subspaces of H that contain
{e1, . . . , en}. Note that Hn is of finite dimension by (i i i). Moreover,

U :=
∞⋃

n=1

Hn

is a G-invariant subspace of H . Now assume that U �= H . Then U⊥ is a G-invariant
subspace and thus contains a finite dimensional subrepresentation. The latter claim is
trivial if U⊥ is of finite dimension, and otherwise again follows by [16, Cor. 5.4 (a)].
Now we take an element v, ‖v‖ = 1, of this finite dimensional subrepresentation of
U⊥. Then B∗ ∪ {v} ∈ F is larger than B∗ which contradicts the maximality. Thus
U = H , which in particular implies that (Pn)n∈N weakly converges to the identity. ��

Let us recall that Q = P − (IH − P) for some orthogonal projection P having infinite
dimensional kernel and range.

Corollary 5.3 There is a sequence of finite dimensional G-invariant subspaces Hn ⊂
H, n ∈ N, such that

Hn ⊂ Hn+1, [Pn, Q] = 0, n ∈ N, and Pnu
n→∞−−−→ u for all u ∈ H ,

where Pn denotes the orthogonal projection onto Hn.

Proof Wedenote by H+ the image of P and by H− its kernel, which are both invariant
under G and of infinite dimension. By Lemma 5.2, there are finite-dimensional G-

invariant subspaces H±
n ⊂ H±

n+1 ⊂ H±, n ∈ N, such that P±
n u

n→∞−−−→ u, u ∈ H±, for
the orthogonal projections P±

n onto H±
n in H±. We set Hn :=H+

n ⊕ H−
n and note that

Pn :=P+
n + P−

n is the orthogonal projection onto Hn if we regard P±
n as orthogonal

projection on H with kernel extended to H∓. Now the first and the third claimed
property are satisfied. The remaining one follows from

PnQ − QPn = (P+
n + P−

n )(P − (IH − P)) − (P − (IH − P))(P+
n + P−

n )

= P+
n P − P−

n (IH − P) − PP+
n + (IH − P)P−

n = 0,

where we use that P1P2 = P2P1 = P1 for orthogonal projections P1, P2 such that
im(P1) ⊂ im(P2). ��

Note that as Pn commutes with Q by the previous lemma, it follows that Q(Hn) = Hn

as well as Q(H⊥
n ) = H⊥

n .

Lemma 5.4 There is n0 ∈ N such that for all n ≥ n0

(i) (IH − Pn)Lλ |H⊥
n

∈ GL(H⊥
n ), λ ∈ I ,

(ii) sLλ + (1− s)((IH − Pn)Lλ(IH − Pn) + PnLλPn) ∈ GL(H), λ = 0, 1, s ∈ I .
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Proof We note at first that

(IH − Pn)Lλ |H⊥
n

= Q + (IH − Pn)Kλ |H⊥
n

is a compact perturbation of an invertible operator and thus Fredholm of index 0.
Consequently, to prove the first assertion, we only need to show that (IH − Pn)Lλ |H⊥

n
is injective.

Since {Kλ}λ∈I is a continuous family of compact operators, the set {Kλ(u) : λ ∈
I , ‖u‖ = 1} is relatively compact. Therefore, as IH − Pn uniformly converges to 0
on compact subsets of H , there exists n0 ∈ N such that

‖(IH − Pn)Kλu‖ ≤ 1

2
‖u‖, u ∈ H , λ ∈ I , n ≥ n0.

Moreover, ‖Qu‖ = ‖u‖, u ∈ H , as Q is orthogonal, and thus

‖(IH − Pn)Lλu‖ = ‖Qu + (IH − Pn)Kλu‖ ≥ 1

2
‖u‖, u ∈ H⊥

n ,

showing the injectivity of (IH − Pn)Lλ |H⊥
n
.

To show (ii), we note at first that by a simple calculation

sLλ + (1 − s)((IH − Pn)Lλ(IH − Pn) + PnLλPn)

= Q + sKλ + (1 − s)((IH − Pn)Kλ(IH − Pn) + PnKλPn),

which are all Fredholm operators of index 0. We now assume by contradiction that n0
as in the assertion does not exist. Then there are sequences (un)n∈N, ‖un‖ = 1, and
(sn)n∈N such that

Qun + snK0un + (1 − sn)((IH − Pn)K0(IH − Pn)un + PnK0Pnun) = 0, n ∈ N.

As K0 is compact and Pn converges on compact subsets of H to the identity, we see
that there is a convergent subsequence of (Qun). Henceforth, we denote this sequence
by the same indices and assume as well that (sn) converges to some s∗ ∈ I . It follows
from the invertibility of Q that (un) converges to some u ∈ H of norm 1. Thus

lim
n→∞(IH − Pn)K0(IH − Pn)un = 0, lim

n→∞ PnK0Pnun = K0u,

and so

L0u = Qu + K0u = Qu + s∗K0u + (1 − s∗)K0u = 0

in contradiction to the invertibility of L0. Of course, the same argument applies to the
invertible operator L1. ��
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Wenowset Ln
λ:=PnLλ |Hn : Hn → Hn and note that these operators areG-equivariant.

It follows from (10), (11) and Proposition 2.1 that for n ≥ n0

sfG(L) = sfG(Ln) = [E−(L1)] − [E−(L0)] ∈ RO(G) (25)

and thus the Hessians are reduced to finite dimensions.

5.2 Reduction to finite dimensions II

For reducing the nonlinear problem to finite dimensions, we need the following tech-
nical lemma from [17, Lem. 3.7] that was shown in the non-equivariant case in [12,
24].

Lemma 5.5 Let H be a real Hilbert space and G a compact Lie group acting orthog-
onally on H. Let U ⊂ H be an open invariant subset of H containing 0 ∈ U and
f : I × U → R a continuous one-parameter family of G-invariant C2-functionals.
Let F(λ, u):=(∇ fλ)(u) and assume that F(λ, 0) = 0 for all λ ∈ I . Suppose that
there is an orthogonal decomposition H = X ⊕ Y , where X is G-invariant and of
finite dimension, and such that for

F(λ, u) = (F1(λ, x, y), F2(λ, x, y)) ∈ X ⊕ Y , u = (x, y) ∈ X ⊕ Y ,

we have that (DyF2)(λ, 0, 0) : Y → Y is invertible for all λ ∈ I . Then:

(i) There are an open ball BX = B(0, δ) ⊂ X and a unique continuous family of
equivariant C1-maps η : I × BX → Y such that η(λ, 0) = 0 for all λ ∈ I , and

F2(λ, x, η(λ, x)) = 0, (λ, x) ∈ I × BX . (26)

(ii) Let the family of functionals f : I × BX → R and the map F : I × BX → X be
defined by

f (λ, x) = f (λ, x, η(λ, x)), F(λ, x) = F1(λ, x, η(λ, x)).

Then f is a continuous family of G-invariant C2-functionals on BX and

∇ f (λ, x) = F(λ, x), (λ, x) ∈ I × BX ,

which is a G-equivariant map.

We now set X = Hn , Y = H⊥
n and consider the splitting F = (Fn

1 , Fn
2 ), where

Fn
1 (λ, u, v) = PnF(λ, u, v), Fn

2 (λ, u, v) = (IH − Pn)F(λ, u, v).

As DvFn
2 (λ, 0, 0) = (IH − Pn)Lλ |H⊥

n
: H⊥

n → H⊥
n is an isomorphism for n ≥ n0 by

Lemma 5.4, we obtain from the previous lemma a family of G-invariant functionals

123



The equivariant spectral flow and bifurcation for functionals… 2207

f : I ×BHn → R for some ball BHn ⊂ Hn such that every bifurcation point of critical
points of f is a bifurcation point of f . Consequently, our aim is now to show that f
has a bifurcation point of critical points from the trivial branch if (25) is non-trivial in
RO(G).

Proposition 5.6 For the Hessians L
n
λ of the G-invariant functionals f λ at 0 ∈ Hn,

there exists n1 ≥ n0 such that L
n
λ is invertible and

[E−(L
n
λ)] = [E−(Ln

λ)], λ = 0, 1,

for n ≥ n1.

Proof Let ηnλ : BHn → H⊥
n be the continuous family of C1-maps from Lemma 5.5

for the splitting H = Hn ⊕ H⊥
n , and set An

λ:=D0η
n
λ. Note that A

n
λ is G-equivariant.

By differentiating (26) implicitly, we obtain

An
λ = −(DvF

n
2 (λ, 0, 0))−1DuF

n
2 (λ, 0, 0) = −((IH − Pn)Lλ |H⊥

n
)−1(IH − Pn)Lλ |Hn .

In the first part of the proof of Lemma 5.4 we obtained

‖(IH − Pn)Lλu‖ ≥ 1

2
‖u‖, u ∈ H⊥

n , n ≥ n0,

which shows that

‖((IH − Pn)Lλ |H⊥
n

)−1‖ ≤ 2, n ≥ n0, λ = 0, 1.

Using once again that Lλ = Q + Kλ and

‖(IH − Pn)Kλ‖ → 0, n → ∞, (27)

by the compactness of Kλ, this yields

‖An
λ‖ ≤ 2‖(IH − Pn)(Q + Kλ) |Hn ‖ ≤ 2‖(IH − Pn)Kλ‖ → 0, n → ∞, (28)

which we note for later reference.
We now consider L

n
λ and note at first that

L
n
λ = PnLλ(IHn + An

λ) = Ln
λ + PnLλA

n
λ.

Let us introduce twopaths {Mn
(s,λ)}s∈I ,λ = 0, 1, ofG-equivariant selfadjoint operators

on Hn by

Mn
(s,λ) = Ln

λ + sPnLλA
n
λ.

We now aim to find n1 ∈ N such that Mn
(s,0) and Mn

(s,1) are invertible for all s ∈ I and
n ≥ n1.
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We first note that there is k1 ∈ N and a constant C > 0 such that for λ = 0, 1 and
all n ≥ k1

‖Ln
λu‖ = ‖PnLλu‖ ≥ C‖u‖, u ∈ Hn . (29)

Indeed, as Lλ is invertible for λ = 0, 1, there is a constant C > 0 such that

‖Lλu‖ ≥ 2C‖u‖, u ∈ H , λ = 0, 1.

Now by direct computation

PnLλu = Lλu − (IH − Pn)Kλu, u ∈ Hn,

and (27) implies that there is k1 ∈ N such that for n ≥ k1

‖(IH − Pn)Kλu‖ ≤ C‖u‖, u ∈ H ,

which shows (29). Finally, by (28) there is k2 ∈ N such that ‖Lλ‖‖An
λ‖ ≤ C for all

n ≥ k2, λ = 0, 1. Consequently, if n ≥ n1:=max{k1, k2},

‖Mn
(s,λ)u‖ ≥ ‖Ln

λu‖ − s‖PnLλA
n
λu‖ ≥ 2C‖u‖ − ‖Lλ‖‖An

λ‖‖u‖ ≥ C‖u‖

for λ = 0, 1 and 0 ≤ s ≤ 1. Thus Mn
(s,λ) : Hn → Hn is injective and hence invertible

on the finite dimensional space Hn . Note that the proposition is shown if we prove that

[E−(Mn
(0,λ))] = [E−(Mn

(1,λ))], n ≥ n1, (30)

for λ = 0, 1. As Mn
(s,λ) is invertible for all s ∈ I , the maps [0, 1] � s 
→

χ(−∞,0)(Mn
(s,λ)) ∈ L(Hn) are continuous. Thus there is a partition 0 = s0 ≤ s1 ≤

. . . ≤ sk = 1 such that

‖χ(−∞,0)(M
n
(s j ,λ)) − χ(−∞,0)(M

n
(s j−1,λ))‖ < 1. (31)

Moreover, these projections are G-equivariant as their images are invariant and G
acts orthogonally. We now shorten our notation by setting P:=χ(−∞,0)(Mn

(s j ,λ)),

Q:=χ(−∞,0)(Mn
(s j−1,λ)), and we claim that im(P) and im(Q) are isomorphic as G-

representations. To prove this, we first note that the G-equivariant map U :=PQ +
(IH − P)(IH − Q) maps im(P) into im(Q). Moreover, a direct computation yields

(QP + (IH − Q)(IH − P))U = IH − (P − Q)2.

As ‖P − Q‖ < 1 by (31), the right hand side is an isomorphism and consequently
U is injective. Thus U |im(P): im(P) → im(Q) is a G-equivariant isomorphism and
so [E−(Mn

(s j ,λ))] = [E−(Mn
(s j−1,λ))] for j = 1, . . . , k. Thus (30) is shown, which

eventually finishes the proof of the proposition. ��
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In conclusion, by (25) and the previous proposition, we have reduced Theorem 3.1 to
finite dimensions, i.e., we only need to prove it under the additional assumption that
dim(H) < ∞.

5.3 Equivariant Conley index and end of the proof

The aim of this final step of the proof is to show Theorem 3.1 under the additional
assumption that dim(H) < ∞. The proof is based on the equivariant Conley index,
for which we mainly follow Bartsch’s monograph [7].

Let φλ : R × H → H be the flow of the equation

u′(t) = −(∇ fλ)(u(t)) (32)

and note that its stationary solutions are the critical points of fλ. Here we assume
without loss of generality that the flow is global, which can be achieved bymultiplying
fλ by a smooth cut-off function in a neighbourhood of 0 ∈ H and this does not affect
the existence of bifurcation of critical points from 0 ∈ H . Note that ϕλ(t, ·) : H → H
is equivariant.

For a G-invariant subset U ⊂ H we denote by

inv(U , ϕλ) = {u ∈ H : ϕλ(t, u) ∈ U for all t ∈ R}

the maximal (flow-)invariant subset of U , which clearly is G-invariant as well. A
compact invariant set S ⊂ H is called isolated if there is a compact G-invariant
neighbourhood U of S such that S = inv(U , ϕλ) and S ⊂ intU . In this case U is
called an isolating neighbourhood of S. If S ⊂ H is an isolated invariant set, then a
pair (N1, N0) of compact G-invariant subsets N0 ⊂ N1 is called a G-index pair for S
if

• N1 \ N0 is an isolating neighbourhood of S,
• N0 is positively invariant with respect to N1, which means that if u ∈ N0 and

ϕλ(t, u) ∈ N1 for all 0 ≤ t ≤ t ′, then ϕλ(t, u) ∈ N0 for all 0 ≤ t ≤ t ′,
• N0 is an exit set for N1, which means that if u ∈ N1 and ϕλ(t, u) /∈ N1 for some
t > 0 then there is t ′ ∈ [0, t) such that ϕλ(t ′, u) ∈ N0 and ϕλ([0, t ′], u) ⊂ N1.

If U ⊂ H is an isolating neighbourhood for the flow ϕλ, then there is a G-index
pair for S = invU , and if (N1, N0), (N ′

1, N
′
0) are two G-index pairs for S, then the

quotient spaces N1/N0 and N ′
1/N

′
0 are homotopy equivalent by a base point preserving

G-equivariant homotopy equivalence. Thus it is sensible to define the G-equivariant
Conley index C(U , ϕλ) of S as the based G-homotopy type [N1/N0, [N0]], where
(N1, N0) is any G-index pair for S. Finally, let us recall that by the continuation
theorem for the Conley index C(U , ϕ0) = C(U , ϕ1) ifU is an isolating neighbourhood
for ϕλ for all λ ∈ I .

Let us now come back to bifurcation of critical points and let us recall that u ≡ 0 ∈
H is a stationary solution of (32) for all λ ∈ I . Suppose that there is no bifurcation
point. Since any isolated critical point is an isolated invariant set, there exists ε > 0
such that U = D(0, ε) is an isolating neighbourhood for all ϕλ, λ ∈ I . This implies
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that C(U , ϕ0) = C(U , ϕ1). On the other hand, we know that [E−(L0)] �= [E−(L1)],
i.e., these spaces are non-isomorphicG-representations. AsG is nice, this implies that
the quotients D0/∂D0 and D1/∂D1 are not G-homotopic, where Dλ denotes the unit
disc of E−(Lλ) for λ = 0, 1. In our case C(U , ϕλ) = [Dλ/∂Dλ, [∂Dλ]] for λ = 0, 1.
This contradicts the equality C(U , ϕ0) = C(U , ϕ1), and consequently the assumption
that there are no bifurcation points.

6 First examples of bifurcation of critical points

The aim of this section is to illustrate Theorem 3.1 by examples of functionals fλ that
are invariant under an action of the discrete groupsZ2,Z2⊕Z2 or the continuous group
SO(2). Let us point out that an upcoming second part of our work is going to transfer
various methods for computing the classical spectral flow (7) to its G-equivariant
generalisation (8), which will yield more sophisticated examples. Here we restrict on
rather elementary, but instructive ones, that show how the G-equivariant spectral flow
(8) works: as for the G-equivariant degree (e.g. [6, 16]), its job is to decompose the
space behind the scenes into G-equivariant subspaces and to find non-trivial solutions
of the non-linear problem in them, even though the classical bifurcation invariant
might fail by symmetry reasons. All our three examples focus on different aspects
of this issue. We begin by an ODE, where we show that a wise choice of the group
action may be needed to apply Theorem 3.1 successfully. Moreover, as this action has
a trivial fixed-point space, this first example also shows in an elementary way that
Theorem 3.1 is far more subtle than just restricting a bifurcation problem to a fixed
point space of the action in an obvious way. Afterwards we discuss a closed path of
Hamiltonian systems under homoclinic boundary conditions which explicitly shows
that the G-equivariant spectral flow can be non-trivial for closed paths and thus in
general does not only depend on the endpoints of the path. This is in strong contrast
to Rybicki’s G-equivariant degree (e.g. [15]). In both of our first two examples G is
one of the simplest non-trivial groups, namely Z2 or Z2 ⊕ Z2. In our final example
we instead consider a class of indefinite elliptic PDEs as in, e.g., [15, 27] or [18], and
an action of the continuous group SO(2), where we compute the equivariant spectral
flow by a dimension reduction that has recently been studied for the classical spectral
flow in [18]. This shall particularly be an appetizer for the study of continuous group
actions in the upcoming second part of our work.

We now first recap some basics that are needed in the second and third example
below. As all real irreducible representations of Z2 are one dimensional, every real
k-dimensional representation is up to isomorphism a k×k diagonal matrix of the form
diag(1, . . . , 1,−1, . . . ,−1). Thus we obtain an isomorphism φ : RO(Z2) → Z ⊕ Z

of abelian groups by setting

φ([E] − [F]) = (dim(E) − dim(F), dim(EG) − dim(FG)), (33)

where EG ⊂ E and FG ⊂ F denote the spaces of fixed points under the group action.

123



The equivariant spectral flow and bifurcation for functionals… 2211

Lemma 6.1 Let H be a real separable Hilbert space on which G = Z2 acts
orthogonally. Then for every path L = {Lλ}λ∈I in FS(H)G

φ(sfG(L)) = (sf(L), sf(L |HG )) ∈ Z ⊕ Z, (34)

where HG is the fixed point set of the action of G. Moreover,

sf(L) = sf(L |HG ) + sf(L |(HG )⊥). (35)

Proof Note that HG reduces the operators Lλ and thus we indeed obtain a path of
selfadjoint operators L |HG= {Lλ |HG }λ∈I that all have finite dimensional kernels.
Moreover, im(Lλ |HG ) = im(Lλ |HG∩(ker Lλ)⊥) and the latter set is closed in im(Lλ) as
Lλ |(ker Lλ)⊥: (ker Lλ)

⊥ → im(Lλ) is a homeomorphism. Consequently, im(Lλ |HG )

is closed in H and thus in HG . Therefore the operators Lλ |HG are in FS(HG) and
so sf(L |HG ) is defined. Likewise the restriction L |(HG )⊥ to the invariant subspace
(HG)⊥ is an element of FS((HG)⊥), and now (35) follows from (11).

Finally, (34) is a simple consequence of (7), (8) and (33) when noting that

E(Lλ, [0, a])G = HG ∩ E(Lλ, [0, a]) = E(Lλ |HG , [0, a])

for any a > 0. ��
For applying (34) below we also need a common method to compute the classical
spectral flow (7) (see [29, 35]). Let L = {Lλ}λ∈I be a path in FS(H) that is contin-
uously differentiable in the parameter λ. We call λ ∈ I a crossing if ker(Lλ) �= {0},
and the associated crossing form is the quadratic form defined by

�(L, λ)[u] = 〈L̇λu, u〉, u ∈ ker(Lλ),

where L̇λ denotes the derivativewith respect toλ. A crossingλ ∈ I is regular if�(L, λ)

is non-degenerate. Regular crossings are isolated and thus every path L parametrised
by a compact interval I can only have finitely many of them. Finally, if L = {Lλ}λ∈I
has only regular crossings and if L0, L1 are invertible, then the spectral flow (7) is
given by

sf(L) =
∑

λ∈I
sgn(�(L, λ)), (36)

where sgn(�(L, λ)) denotes the signature of the quadratic form �(L, λ) (see [35,
Thm. 2.7]).

Finally, let us note that the irreducible representations of

SO(2) =
{(

cos(φ) − sin(φ)

sin(φ) cos(φ)

)
: φ ∈ [0, 2π ]

}
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are the one-dimensional trivial representation ρ and the non-trivial representations ρ j ,
j ∈ N, given by

ρ j (g) =
(
cos(φ) − sin(φ)

sin(φ) cos(φ)

) j

=
(
cos( jφ) − sin( jφ)

sin( jφ) cos( jφ)

)
, g ∈ SO(2). (37)

Note that the representation ρ− j is isomorphic to ρ j . If we build formal differences in
the Grothendieck group, it is readily seen that RO(SO(2)) is isomorphic (as abelian
group) to the polynomial ring Z[x]. Moreover, if sf SO(2)(L) = ∑∞

n=0 anx
n ∈ Z[x]

under this identification for some path L in FS(H)SO(2), then it follows from (9) that
sf(L) = a0 + 2

∑∞
n=1 an ∈ Z.

6.1 An ODE example

Let us denote by γ the generator of the group Z2 and by α, β the generators of the
group Z2 ⊕ Z2. In what follows,

• V is the 1-dimensional real representation of Z2 such that γ v = −v for every
v ∈ V ;

• Vα is the 1-dimensional real representation of Z2 ⊕ Z2 such that αv = −v and
βv = v for every v ∈ Vα;

• Vβ is the 1-dimensional real representation of Z2 ⊕ Z2 such that αv = v and
βv = −v for every v ∈ Vβ .

Note that Vα and Vβ are non-isomorphic representations of Z2 ⊕ Z2. To shorten
notation, we henceforth use the same letter Z for R

2, V ⊕ V and Vα ⊕ Vβ .
Now let F : [0, 1] × Z → R be defined by

F(λ, u, v) = λ
(
ev2 sin(u2) − sin(v2)

)
.

We see at once that F is Z2-invariant if Z = V ⊕ V , and it is Z2 ⊕ Z2-invariant if
Z = Vα ⊕ Vβ . Consequently, ∇Fz : [0, 1] × Z → Z is an equivariant map.

Now consider the following family of strongly indefinite ODEs

⎧
⎪⎪⎨

⎪⎪⎩

−u′′ = 2λuev2 cos(u2) in (0, π),

v′′ = 2λv
(
ev2 sin(u2) − cos(v2)

)
in (0, π),

u(0) = u(π) = v(0) = v(π) = 0.

(38)

The solutions of (38) are critical points of the functional fλ : H1
0 ((0, π), Z) → R

defined by

fλ(u, v) = 1

2

∫ π

0

(
u′2(t) − v′2(t)

)
dt +

∫ π

0
F(λ, u(t), v(t))dt .
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Obviously,

(u(t), v(t)) = (0, 0), t ∈ [0, π ],

is a solution of (38) for every λ ∈ [0, 1]. The second derivative of fλ at (0, 0) is given
by

D2
0 fλ(w1, w2) =

∫ π

0

(
u′(t)p′(t) − v′(t)q ′(t)

)
dt

+
∫ π

0
(u(t), v(t))

(
2λ 0
0 −2λ

)(
p(t)
q(t)

)
dt,

where w1 = (u, v), w2 = (p, q) ∈ H1
0 ((0, π), Z).

We now aim to find an explicit formula for the Riesz representation Lλ of D2
0 fλ,

which we need to compute the equivariant spectral flow. The set of elements

{(sin(mt), 0) : m ∈ N} ∪ {(0, sin(nt)) : n ∈ N}

is an orthogonal Schauder basis of H1
0 ((0, π), Z). Let H1 and H2 be the closures in

H1
0 ((0, π), Z) of the subspaces spanned by

{(sin(mt), 0) : m ∈ N} and {(0, sin(nt)) : n ∈ N},

so that H1
0 ((0, π), Z) ∼= H1 ⊕ H2. Note that, if Z = V ⊕ V , then H1 ⊕ H2 is an

orthogonal representation of Z2 and γ (x, y) = (−x,−y) for all (x, y) ∈ H1 ⊕ H2.
If, on the other hand, Z = Vα ⊕ Vβ , then H1 ⊕ H2 is an orthogonal representation of
Z2⊕Z2 such that α(x, y) = (−x, y) and β(x, y) = (x,−y) for all (x, y) ∈ H1⊕H2.

Let now j : H1
0 ((0, π), Z) → L2((0, π), Z) be the canonical inclusion and let

j∗ : L2((0, π), Z) → H1
0 ((0, π), Z) be its conjugate. Then the Riesz representation

Lλ : H1 ⊕ H2 → H1 ⊕ H2

of D2
0 fλ, is given by

Lλ(u, v) = (u − 2λ j∗u,−v + 2λ j∗v) (39)

for every (u, v) ∈ H1 ⊕ H2. Note that Lλ = T + Kλ for an isomorphism T and a path
K = {Kλ}λ∈I of compact operators. Moreover,

Lλ(sin(mt), 0) =
(
sin(mt) − 2λ

m2 sin(mt), 0

)
=
(
1 − 2λ

m2

)
(sin(mt), 0)

for all m ∈ N, and

Lλ (0, sin(nt)) =
(
0,− sin(nt) + 2λ

n2
sin(nt)

)
=
(

−1 + 2λ

n2

)
(0, sin(nt))
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for all n ∈ N. Thus Lλ is an isomorphism for every λ �= 1
2 and dim ker L 1

2
= 2. These

findings allow to compute the equivariant spectral flows under the group actions from
above.

We just need to note that, if Z = V ⊕ V , then every 1-dimensional subspace of
H1 ⊕ H2 is isomorphic to the representation V of Z2. Moreover, if Z = Vα ⊕ Vβ

then every 1-dimensional subspace of H1 is isomorphic to the representation Vα of
Z2 ⊕ Z2, and every 1-dimensional subspace of H2 is isomorphic to the representation
Vβ of Z2 ⊕ Z2. Consequently, we obtain for the path L = {Lλ}λ∈I

sf(L) = 0 if Z = R
2,

sfZ2(Lλ) = [V ] − [V ] = 0 ∈ RO(Z2) if Z = V ⊕ V ,

and

sfZ2⊕Z2(Lλ) = [Vβ ] − [Vα] �= 0 in RO(Z2 ⊕ Z2) if Z = Vα ⊕ Vβ.

Hence λ∗ = 1
2 is a bifurcation point for the parametrised system (38), which would

not have been found by applying the classical Theorem 1.3. Furthermore, also our
equivariant version of this theorem fails if the symmetry of the functionals in Theorem
3.1 is chosen too naively.

Finally, let us have a closer look at this example. Denote by (α) and (β) the
subgroups of Z2 ⊕ Z2 generated by α and β, respectively. Then

(H1 ⊕ H2)
(α) = {0} × H2 = H2

and

(H1 ⊕ H2)
(β) = H1 × {0} = H1.

As∇ fλ respects symmetries ofZ2⊕Z2, one has∇ f (α)
λ : H2 → H2 and∇ f (β)

λ : H1 →
H1, which shows that

∇ fλ(H1) ⊂ H1 and ∇ fλ(H2) ⊂ H2.

Since

∇ ( fλ|Hi

) = PHi ◦ ∇ fλ|Hi ,

where PHi is the orthogonal projection onto Hi , i = 1, 2,

∇ ( fλ|Hi

) = (∇ fλ) |Hi , i = 1, 2.

Thus, in order to find critical points of fλ in Hi , it is enough to look for zeroes of
∇ ( fλ|Hi

)
, i = 1, 2. An easy computation shows that the Riesz representation of
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D2
0( fλ|Hi ) is Li

λ : Hi → Hi , where Li
λ = Lλ|Hi , i = 1, 2. Since sf(L1) = −1

and sf(L2) = 1, we have bifurcation of critical points in H1 and H2 by Theorem
1.3. This gives us two families of critical points of fλ that bifurcate from ( 12 , 0) ∈
[0, 1] × H1

0 ((0, π), R
2). In fact, applying the Krasnoselskii-Rabinowitz theorem (see

[2]), we actually obtain two branches of global bifurcation.

6.2 Homoclinics of Hamiltonian systems

Note that the operators Lλ in the previous section are of the type Lλ = T + Kλ for
a fixed T ∈ FS(H)G and compact operators Kλ. Thus for (38) the spectral flow of
the corresponding Hessians Lλ in (39) actually only depends on the endpoints L0 and
L1 by Proposition 2.2. In particular, if we would consider in such setting equations,
where the corresponding paths of Hessians L are closed, then sfG(L) = 0 as we
explained below Proposition 2.2. The aim of this section is to construct a G = Z2-
invariant family of functionals f such that the Hessians L are a loop in FS(H)G

having a non-vanishing G-equivariant spectral flow. Thus by Theorem 3.1 there is a
bifurcation point of critical points that could not have been found by any invariant that
only depends on the endpoints L0, L1 of the path such as [6, 10] and [15]. Moreover,
our example also has the feature that sf(L) = 0 and consequently Theorem 1.3 fails
as well.

LetH : I ×R×R
2n → R be a smooth map and consider the Hamiltonian systems

{
Ju′(t) + ∇uHλ(t, u(t)) = 0, t ∈ R

lim
t→±∞ u(t) = 0, (40)

where λ ∈ I and

J =
(
0 −In
In 0

)
(41)

is the standard symplectic matrix. In what follows, we assume that H is of the form

Hλ(t, u) = 1

2
〈A(λ, t)u, u〉 + R(λ, t, u), (42)

where A : I × R → L(R2n) is a family of symmetric matrices, R(λ, t, u) vanishes
up to second order at u = 0, and there are p > 0, C ≥ 0 and r ∈ H1(R, R) such that

|D2
u R(λ, t, u)| ≤ r(t) + C |u|p.

Moreover, we suppose that Aλ:=A(λ, ·) : R → L(R2n) converges uniformly in λ to
families

Aλ(+∞):= lim
t→∞ Aλ(t), Aλ(−∞):= lim

t→−∞ Aλ(t), λ ∈ I , (43)
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and that the matrices J Aλ(±∞) are hyperbolic, i.e. they have no eigenvalues on the
imaginary axis. Note that by (42),∇uHλ(t, 0) = 0 for all (λ, t) ∈ I ×R, so that u ≡ 0
is a solution of (40) for all λ ∈ I .

Let us now briefly recall the variational formulation of the equations (40) from [25,
§4]. The bilinear form b(u, v) = 〈Ju′, v〉L2(R,R2n), u, v ∈ H1(R, R

2n), extends to a

bounded form on the well known fractional Sobolev space H
1
2 (R, R

2n). Under the

assumption (42), the map f : I × H
1
2 (R, R

2n) → R given by

fλ : H 1
2 (R, R

2n) → R, fλ(u) = 1

2
b(u, u) + 1

2

∫ ∞

−∞
〈A(λ, t)u(t), u(t)〉 dt

+
∫ ∞

−∞
R(λ, t, u(t)) dt

is C2. Moreover, it was shown in [25] that its critical points are the classical solutions
of (40) and each sequence of critical points that converges to a bifurcation point
actually converges in C1(R, R

2n). Finally, the second derivative of fλ at the critical

point 0 ∈ H
1
2 (R, R

2n) is given by

D2
0 fλ(u, v) = b(u, v) +

∫ ∞

−∞
〈A(λ, t)u(t), v(t)〉 dt (44)

and, by using the hyperbolicity of J Aλ(±∞), it can be shown that the corresponding

Riesz representations Lλ : H 1
2 (R, R

2n) → H
1
2 (R, R

2n) are Fredholm (cf. [25], [29]).
Consequently, the operators Lλ are selfadjoint Fredholm operators, and it follows by
elliptic regularity that the kernel of Lλ consists of the classical solutions of the linear
differential equation

{
Ju′(t) + A(λ, t)u(t) = 0, t ∈ R

lim
t→±∞ u(t) = 0. (45)

The stable and the unstable subspaces of (45) are

Es(λ, 0) = {u(0) ∈ R
2n : Ju′(t) + A(λ, t)u(t) = 0, t ∈ R; u(t) → 0, t → ∞},

Eu(λ, 0) = {u(0) ∈ R
2n : Ju′(t) + A(λ, t)u(t) = 0, t ∈ R; u(t) → 0, t → −∞},

and it is clear that (45) has a non-trivial solution if and only if Es(λ, 0) and Eu(λ, 0)
intersect non-trivially.

Denote by g the non-trivial element of G = Z2. We set

ρ(g) =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟
⎠ (46)
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and consider Hamitonian systems in R
4 (cf. [3, 9]), where

A(λ, t) =

⎛

⎜
⎜
⎝

aλ(t) 0 cλ(t) 0
0 bλ(t) 0 dλ(t)

cλ(t) 0 eλ(t) 0
0 dλ(t) 0 hλ(t)

⎞

⎟
⎟
⎠ (47)

is equivariant under the action of G for any functions a, b, c, d, e, h : I × R → R.
Now the fixed point space of our action is

HG = {(u1, u2, u3, u4) ∈ H
1
2 (R, R

4) : u2 = u4 = 0}

and it follows from (44) that the kernel of Lλ |HG is made of the solutions of the
Hamiltonian systems

⎧
⎪⎨

⎪⎩

J

(
u′
1

u′
3

)
+
(
aλ(t) cλ(t)
cλ(t) eλ(t)

)(
u1
u3

)
= 0, t ∈ R

lim
t→±∞ u(t) = 0,

(48)

in R
2, and likewise the kernel of Lλ |(HG )⊥ consists of the solutions of

⎧
⎪⎨

⎪⎩

J

(
u′
2

u′
4

)
+
(
bλ(t) dλ(t)
dλ(t) hλ(t)

)(
u2
u4

)
= 0, t ∈ R

lim
t→±∞ u(t) = 0.

(49)

We now use an example of Pejsachowicz from [25] to construct a loop of operators
L = {Lλ}λ∈I such that sf(L) = 0 but sfG(L) ∈ RO(Z2) is non-trivial. To keep our
formulas as simple as possible, we use instead of I = [0, 1] as parameter interval
[−π, π ] and consider for λ ∈ [−π, π ] the matrix family

Ã(λ, t) =
(
aλ(t) cλ(t)
cλ(t) eλ(t)

)
=
{

(arctan t)J Sλ, t ≥ 0

(arctan t)J S0, t < 0,
, (50)

where

Sλ =
(
cos(λ) sin(λ)

sin(λ) − cos(λ)

)
.

Note that Ã(−π, t) = Ã(π, t) for all t ∈ R.
The space R

2 is symplectic with respect to the canonical symplectic form ω0(u, v) =
〈Ju, v〉R2 . As the matrices (50) converge uniformly in λ to families of hyperbolic
matrices for t → ±∞, it can be shown that the stable and unstable spaces Es(λ, 0),
Eu(λ, 0) are Lagrangian subspaces of R

2 (cf. e.g. [35, Lemma 4.1]). This implies in
particular that Es(λ, 0) and Eu(λ, 0) are one-dimensional for all λ ∈ [−π, π ].

123



2218 M. Izydorek et al.

To find non-trivial solutions of (48), we now consider Eu(λ, 0) ∩ Es(λ, 0) �= {0}.
By a direct computation it can be checked that

u−(t) =
√
t2 + 1 e−t arctan(t)

(
1
0

)
, t ≤ 0,

u+(t) =
√
t2 + 1 e−t arctan(t)

(
cos

(
λ
2

)

sin
(

λ
2

)
)

, t ≥ 0,

are solutions of (48) on the negative and positive half-line, respectively. As they
extend to global solutions and since t arctan(t) → ∞ as t → ±∞, we see that
u−(0) ∈ Eu(λ, 0) and u+(0) ∈ Es(λ, 0). As u+(0) and u−(0) are linearly dependent
if and only if λ = 0, we conclude that (48) has a non-trivial solution if and only if
λ = 0, and the kernel of L0 |HG is the span of

u∗(t) =
√
t2 + 1 e−t arctan(t)

(
1
0

)
, t ∈ R.

Next we compute the spectral flow of L |HG by a crossing form (36). We need to
consider

�(L |HG , 0)[u∗] =
∫ ∞

−∞

〈 ˙̃A(0, t)u∗(t), u∗(t)
〉
dt,

where

˙̃A(0, t) =
{

(arctan t)J Ṡ0, t ≥ 0

0, t < 0,

and

Ṡ0 =
(
0 1
1 0

)
.

Consequently,

�(L |HG , 0)[u∗] =
∫ ∞

0

〈 ˙̃A(0, t)u∗(t), u∗(t)
〉
dt +

∫ 0

−∞

〈 ˙̃A(0, t)u∗(t), u∗(t)
〉
dt

=
∫ ∞

0
arctan(t)〈J Ṡ0u∗(t), u∗(t)〉 dt

= −
∫ ∞

0
arctan(t)(t2 + 1)e−2t arctan(t) dt < 0,

which shows that �(L |HG , 0) is non-degenerate and of signature −1 as quadratic
form on the one-dimensional kernel of L0 |HG . Therefore, by (36), sf(L |HG ) = −1
and so sfZ2(L) is non-trivial in RO(Z2) by (34). Thus for these functions a, c and e
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there is a bifurcation point of critical points of f by Theorem 3.1, and consequently
also bifurcation of solutions of (40) from the trivial solution. Let us once again point
out, that this bifurcation point cannot be found by invariants that only depend on the
endpoints of the path L .
Note that we have not yet chosen functions b, d and h in (47), which we now do in
a way such that sf(L) = 0 ∈ Z to obtain an example where also Theorem 1.3 is not
applicable. Let us firstly point out that it readily follows from (7) that the spectral flow
changes its sign if we reverse the orientation of the path of operators. We now set for
t ∈ R and λ ∈ [−π, π ]

bλ(t) = a−λ(t), hλ(t) = e−λ(t), dλ(t) = c−λ(t).

Then Lλ |(HG )⊥= L−λ |HG and thus sf(L |(HG )⊥) = − sf(L |HG ) = 1. It follows
from (35) that sf(L) = 0 and so our example has all the required properties.

6.3 An indefinite system of elliptic PDE

In this final section we consider the non-discrete compact Lie group SO(2) and an
indefinite system of PDEs that has been studied in this setting by the equivariant
degree, e.g., in [15].

For a smooth bounded domain � ⊂ R
n , we are looking for bifurcation of solutions

of the family of equations

{
A�u(x) = ∇uF(λ, u(x)) in �

u(x) = 0 on ∂�,
(51)

where λ ∈ I :=[0, 1], A:= diag{a1, .., ap} ∈ Mat(p, R), ai ∈ {±1}, i = 1, . . . , p and

F : I × R
p → R

is a C2-map such that

(A1) 0 is a critical point of Fλ:=F(λ, ·) : R
p → R for all λ ∈ I . In what follows,

we set

Bλ:=∇2
uF(λ, 0) ∈ Mat(p, R).

(A2) There exist C > 0 and 1 ≤ s < (n + 2)(n − 2)−1 if n ≥ 3 such that

|∇2
uF(λ, u)| ≤ C(1 + |u|s−1).

If n = 2, we instead require that s ∈ [1,∞), and for n = 1 we do not impose
any growth condition on F .

Note that the constant function u ≡ 0 is a solution of (51) for all λ ∈ I and thus it is
sensible to ask for bifurcation from this trivial branch of solutions. This problem has
recently been studied by the second and fourth author in [18], where a spectral flow
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formula was obtained that can show the existence of bifurcation by Theorem 1.3. In
this section we modify the setting by assuming an invariance under a natural action of
SO(2) that yields bifurcation by our main Theorem 3.1. Let us first briefly recall the
variational setting, where H1

0 (�) is the standard Sobolev space and H :=⊕p
i=1 H

1
0 (�)

is a Hilbert space with respect to

〈u, v〉H :=
p∑

i=1

〈ui , vi 〉H1
0 (�) , u = (u1, . . . , u p), v = (v1, . . . , vp) ∈ H .

We consider the map f : I × H → R given by

f (λ, u):=1

2

∫

�

p∑

i=1

(−ai |∇ui (x)|2) dx −
∫

�

F(λ, u(x)) dx . (52)

It follows from assumption (A2) that there exists h ∈ C2(I × R
p, R) such that

F(λ, u) = 1

2
〈Bλu, u〉 + h(λ, u)

and for every λ ∈ I , we have ∇u h(λ, 0) = 0 as well as ∇2
u h(λ, 0) = 0.

Now f is in C2(I × H , R) under the assumptions (A1) − (A2) (cf. [28]) and the
gradient of f (λ, ·) : H → R is of the form

∇u f (λ, u) = Tu + Kλu − ∇uη(λ, u).

Here T : H → H is the selfadjoint invertible operator Tu = −Au, Kλ : H → H is
the selfadjoint compact operator which implicitly is given by

〈Kλu, v〉H = −
∫

�

〈Bλu(x), v(x)〉Rp dx, (53)

and η : I × H → R is the C2-map defined by

η(λ, u) =
∫

�

h(λ, u(x)) dx,

where ∇uη(λ, 0) = 0 as well as ∇2
uη(λ, 0) = 0 for all λ ∈ I . The critical points of

fλ:= f (λ, ·) : H → R are the weak solutions of (51), and thus in particular 0 ∈ H is
a critical point of all fλ, λ ∈ I . Moreover, the Hessians ∇2

u fλ(0) at the critical point
0 ∈ H are the selfadjoint operators

Lλ:=T + Kλ. (54)

Note that these are compact perturbations of an invertible operator and hence Fred-
holm. Accordingly L:={Lλ}λ∈I is a path of selfadjoint Fredholm operators so that the
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spectral flow of L is defined. Moreover, the kernel of Lλ consists of the solutions of
the linearised equations

{
A�u(x) = Bλu(x) in �

u = 0 on ∂�,
(55)

where Bλ is the Hessian matrix of F(λ, ·) : R
p → R at 0 as in (A1). Thus Lλ is

invertible if and only if (55) has no non-trivial solution.
Now let us consider an orthogonal group action of SO(2) onR

p and the corresponding
induced action on H by

(gu)(x) = gu(x), x ∈ �.

Henceforth we assume

(A3) The map F is G invariant, i.e., F(λ, (gu)(x)) = F(λ, u(x)), x ∈ �, g ∈ G.

We now firstly consider the case p = 4, which allows to get a group action of SO(2)
on H = H1

0 (�, R
4) by

gu(x):=
((

ρs(g) 0
0 ρt (g)

)
u

)
(x) , (56)

where s, t ∈ N, s �= t , andρs, ρt denote the corresponding irreducible representations
in (37). By a simple computation, we see that for A = diag{−1,−1, 1, 1}

〈gu, gv〉H = 〈u, v〉H and 〈Agu, gu〉H = 〈Au, u〉H , for all u, v ∈ H ,

and with (A3), this implies that the functional f in (52) is invariant under G with
respect to the action (56). The assumption (A3) implies that Bλ is equivariant with
respect to (56). For simplicity we henceforth assume as in [15] that

Bλ = λI4 ∈ Mat(4, R). (57)

Let us now consider the equivariant spectral flow sf SO(2)(L) for the path of Hessians
L in (54). As in [18], we consider the subspaces Hk ⊂ H , k ∈ N, where

Hk = span{ fkei : i = 1, . . . , 4},

ei , i = 1, . . . , 4, are the standard basis vectors ofR4 and ( fk)k∈N are the eigenfunctions
of the scalar Dirichlet problem

{−�u(x) = αu(x) in �

u = 0 on ∂�.

Let us recall that there is a countable number of eigenvalues (αk)k∈N, which are
all positive and called the Dirichlet eigenvalues of the domain �. We order these
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eigenvalues by αk ≤ αl for k ≤ l and assume that fk is the eigenfunction of αk . As
shown in [18], the spaces Hk , k ∈ N, are an orthogonal decomposition of H and there
is some k0 ∈ N such that Lλ is invertible on

V :=
(

k0⊕

k=1

Hk

)⊥
.

As all spaces Hk , and thus V as well as

U :=
k0⊕

k=1

Hk,

are invariant under the action (56) and under the operators Lλ, we see by (11) and (10)
that sfSO(2)(L) = sfSO(2)(L |U ). SinceU is of finite dimension, and by the invariance
of the Hk under the action and operators we can further decompose by Proposition 2.1
and (11) to obtain

sfSO(2)(L) = sfSO(2)(L |U ) = [E−(L0 |U )] − [E−(L1 |U )]

=
k0∑

k=1

[E−(L0 |Hk )] − [E−(L1 |Hk )] =
k0∑

k=1

[E−(Lk
0)] − [E−(Lk

1)],
(58)

where E−(Lλ |U ), λ ∈ I , denotes the direct sum of eigenspaces with respect to
negative eigenvalues of Lλ |U as in Proposition 2.1, and where we denote by Lk

λ the
matrix representation of the restriction of Lλ to the invariant subspace Hk with respect
to the basis { fkei : i = 1, . . . , 4}. By (57) and a direct calculation we obtain that

Lk
0 =

(
I2 0
0 −I2

)
, Lk

1 =
(

(1 − 1
αk

)I2 0
0 (−1 − 1

αk
)I2

)

and note that −1 is the only negative eigenvalue of Lk
0 and

E−(Lk
0) = span{ fkei : i = 3, 4}.

Moreover, E−(Lk
0) is a two-dimensional real SO(2)-representation given by

ρE−(Lk
0)

= ρt .
To compute the SO(2)-equivariant spectral flow, we now need to inspect the matrices
Lk
1. Let us firstly consider those k ∈ N with Dirichlet eigenvalues αk ≥ 1 of �. Then

−1 − 1
αk

is the only negative eigenvalue of Lk
1 and

E−(Lk
1) = span{ fkei : i = 3, 4}.

123



The equivariant spectral flow and bifurcation for functionals… 2223

Thus, comparing with Lk
0, we see that E−(Lk

0) = E−(Lk
1) and both spaces are the

same SO(2)-representations, i.e.,

[E−(Lk
0)] − [E−(Lk

1)] = 0 ∈ RO(SO(2)). (59)

Secondly, we consider those k ∈ N with Dirichlet eigenvalues αk < 1 of �. Now all
eigenvalues of Lk

1 are negative and thus E
−(Lk

1) = Hk . Moreover, the corresponding
SO(2)-representation of E−(Lk

1) is ρE−(Lk
1)

= ρs ⊕ ρt . Thus, again comparing with

Lk
0, we see that

[E−(Lk
0)] − [E−(Lk

1)] = [ρt ] − [ρs ⊕ ρt ] = −[ρs] �= 0 ∈ RO(SO(2)) (60)

and finally obtain from (58), (59) and (60) that

sfSO(2)(L) =
k0∑

k=1

[E−(Lk
0)] − [E−(Lk

1)] = −|{k ∈ N : αk < 1}| [ρs], (61)

where |{. . .}| stands for the cardinality of a set. Thus we have a non-trivial SO(2)-
equivariant spectral flow on every domain having a Dirichlet eigenvalue less than 1
as, e.g., any two dimensional disc of radius greater than

√
6 (see [18, §6]). Note that

by applying the map F in (9), we see from (61) that

sf(L) = −2 |{k ∈ N : αk < 1}|. (62)

This implies that sfSO(2)(L) �= 0 ∈ RO(SO(2)) if and only if sf(L) �= 0 ∈ Z and
thus bifurcation points could have also been found by applying Theorem 1.3.
Let us now further elaborate on this example and consider the path L̃ = {L̃λ}λ∈I
on H × H = H1

0 (�, R
8), where L̃λ = (Lλ) ⊕ (−Lλ). Moreover, we consider for

s, t ∈ N, s �= t , the action of SO(2) on H × H

gu(x):=

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

ρs(g) 0 0 0
0 ρs(g) 0 0
0 0 ρt (g) 0
0 0 0 ρt (g)

⎞

⎟⎟
⎠ u

⎞

⎟⎟
⎠ (x) , (63)

where ρs and ρt are the irreducible representations (37). If we follow the argument
used to obtain (58) in this case, there is again some k0 ∈ N such that

sfSO(2)(L̃) =
k0∑

k=1

[E−(L̃k
0)] − [E−(L̃k

1)], (64)
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where we now denote by L̃k
λ the matrix representation of the restriction of L̃λ to the

invariant subspace Hk × Hk with respect to the bases { fkei : i = 1, . . . , 4} in Hk . By
a direct calculation we obtain that

L̃k0 =

⎛

⎜
⎜
⎝

I2 0 0 0
0 −I2 0 0
0 0 −I2 0
0 0 0 I2

⎞

⎟
⎟
⎠ , L̃k1 =

⎛

⎜
⎜
⎜
⎝

(1 − 1
αk

)I2 0 0 0

0 (−1 − 1
αk

)I2 0 0

0 0 (−1 + 1
αk

)I2 0

0 0 0 (1 + 1
αk

)I2

⎞

⎟
⎟
⎟
⎠

.

Again we note that −1 is the only negative eigenvalue of L̃k
0, where now

E−(L̃k
0) = span{ fkei : i = 3, 4, 5, 6}.

Moreover, E−(L̃k
0) is the four-dimensional representation of SO(2) given by

ρE−(L̃k
0)

= ρs ⊕ ρt . (65)

Let us now consider thematrices L̃k
1 and again firstly focus on theDirichlet eigenvalues

αk ≥ 1. Then−1− 1
αk
,−1+ 1

αk
are the only negative eigenvalues, E−(L̃k

1) = E−(L̃k
0)

and ρE−(L̃k
1)
is as in (65). If, secondly, we consider the Dirichlet eigenvalues αk < 1

of �, then 1 − 1
αk
, −1 − 1

αk
are the negative eigenvalues,

E−(L̃k
1) = span{ fkei : i = 1, 2, 3, 4},

and E−(L̃k
1) is the four-dimensional representation

ρE−(L̃k
1)

= 2 · ρs . (66)

To summarise, we obtain for k ∈ N with αk ≥ 1

[E−(L̃k
0)] − [E−(L̃k

1)] = [ρs ⊕ ρt ] − [ρs ⊕ ρt ] = 0RO(SO(2)),

whereas (65) and (66) yield for k ∈ N with αk < 1

[E−(L̃k
0)] − [E−(L̃k

1)] = [ρs ⊕ ρt ] − [2 · ρs] = [ρt ] − [ρs] �= 0RO(SO(2)).

Thus by (64) the SO(2)-equivariant spectral flow of the path L̃ is given by

sfSO(2)(L̃) =
k0∑

k=1

[E−(L̃k
0)] − [E−(L̃k

1)]

= |{k ∈ N : αk < 1}| ([ρt ] − [ρs]) ∈ RO(SO(2))

and yields bifurcation for (51) if the underlying domain � has a Dirichlet eigenvalue
less than 1. Note that instead Theorem 1.3 is not directly applicable, as by (9)

sf(L̃) = F(sfSO(2)(L̃)) = |{k ∈ N : αk < 1}| (2 − 2) = 0 ∈ Z,
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which is a consequence of the implemented symmetry in the definition of the operators
L̃λ, λ ∈ I . On the other hand, any cyclic group Zk can be regarded as a subgroup
of SO(2). If we assume that s and t are relatively prime and consider Zs , Zt , then
H1:=(H × H)Zs = H × {0} and H2:=(H × H)Zt = {0} × H yield a decomposition
H = H1 ⊕ H2. Now the same argument as in the final paragraph of Sect. 6.1 shows
that the critical points of fλ in Hi are given by the zeroes of ∇( f |Hi ), i = 1, 2. As
L̃λ |H1= Lλ and L̃λ |H2= −Lλ, λ ∈ I , it follows from (62) that there is bifurcation
of critical points in H1 and H2 by Theorem 1.3.
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