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Abstract

Mathematical optimization is increasingly employed to solve chemical pro-

cess design tasks. Process design and process analysis tasks typically yield

non-linear problems with many continuous decision variables like operating

parameters and discrete decision variables like structural degrees of freedom.

Solving these mixed-integer nonlinear programs (MINLP) is very hard, in gen-

eral. Most often, heuristic or local optimization methods are employed to �nd

good solutions for MINLP. However, �nding a global solution is not guaran-

teed with those methods, making process insight or design decisions prone to

error due to bad local solutions. In contrast, global optimization algorithms

like branch-and-bound-methods are able to prove that solutions are globally

optimal but require more computational e�ort, in some cases prohibitively so.

In this work, capabilities for process analysis and process design using global

optimization are extended for several applications. Suitable model formula-

tions for solving the considered problems with standard software are provided,

exploiting properties of according models. A method for evaluating compu-

tational e�ort of solving global optimization problems is proposed, providing

comparability of results through statistical analysis. Multistage separation is

covered in the �rst set of applications. While standard approaches focus on

countercurrent designs, such restrictions are removed here to allow more gen-

eral con�gurations. Melt crystallization for a binary mixture is studied as a

benchmark process for multistage separation networks. The parameter depen-

dence of globally optimal solutions is studied and used to derive simple gener-

alized design rules for multistage separation. The initial results are extended

to multistage solution crystallization and multistage �ltration, demonstrating

the generalization of results to di�erent separation technologies. As the sec-

ond application, globally optimal �owsheet selection for conceptual process

design is studied with an exemplary process combining distillation and melt

crystallization units.



Zusammenfassung

Mathematische Optimierung wird zunehmend für die Prozessentwicklung in

der chemischen Verfahrenstechnik eingesetzt. Dabei führen kontinuierliche Ent-

scheidungsvariablen wie Betriebsparameter und diskrete Entscheidungsvaria-

blen wie strukturelle Freiheitsgrade oft zu nichtlinearen Optimierungsproble-

men. Gemischt-ganzzahlige nichtlineare Optimierungsprobleme (MINLP) sind

in der Regel sehr schwierig zu lösen. In den meisten Fällen werden heuristische

oder lokale Optimierungsmethoden verwendet, um gute Lösungen für MINLP

zu �nden. Allerdings können solche Methoden nicht garantieren ein globales

Optimum zu �nden, wodurch Prozessverständnis und Entwicklungsentschei-

dungen fehleranfällig gegenüber schlechten lokalen Lösungen werden. Im Ge-

gensatz dazu ermöglichen Algorithmen für globale Optimierung, beispielswei-

se sogenannte Branch-and-Bound-Methoden, den Nachweis, dass eine Lösung

global optimal ist. Dies erfordert jedoch einen deutlich höheren, in manchen

Fällen nicht vertretbaren, Rechenaufwand. In dieser Arbeit wird die Anwend-

barkeit von globaler Optimierung für Prozessanalyse und Prozessentwicklung

verschiedener verfahrenstechnischer Prozesse erweitert. Für die entsprechenden

Anwendungen werden Modellformulierungen bereitgestellt, die durch Ausnut-

zung der jeweiligen Modelleigenschaften einen vetretbaren Rechenaufwand für

globale Optimierung mittels Standardsoftware erlauben. Eine Methode zur Be-

wertung des Rechenaufwands für die globale Optimierung verschiedener Mo-

dellformulierungen wird vorgeschlagen. Vergleichbarkeit zwischen den Modell-

formulierungen wird durch statistische Analyse der Ergebnisse ermöglicht. Als

erstes Anwendungsgebiet werden mehrstu�ge Trennprozesse betrachtet. Ge-

genstromkon�gurationen stellen den üblichen Ansatz für diese Aufgabe dar.

Diese Beschränkung wird hier aufgehoben, um auch allgemeinere Kon�gura-

tionen zu ermöglichen. Als Benchmark-Prozess für mehrstu�ge Trennprozesse

wird die Schmelzkristallisation von Zweisto�gemischen betrachtet. Die Para-

meterabhängigkeit von global optimalen Lösungen wird untersucht und ge-

nutzt, um einfache, allgemeine Entwurfsregeln für mehrstu�ge Trennprozesse

abzuleiten. Die Ergebnisse des Benchmark-Prozesses werden auf mehrstu�ge

Lösungskristallisation und mehrstu�ge Filtration erweitert. Das zweite Anwen-

dungsgebiet ist die Flieÿbildauswahl für den konzeptionellen Prozessentwurf

mittels globaler Optimierung anhand eines Beispielprozesses, in dem Destilla-

tion und Schmelzkristallisation verwendet werden.
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Chapter 1

Introduction -

Hierarchical Design Frameworks

and Global Optimization

1
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Mathematical optimization is increasingly used to solve chemical process syn-

thesis and process design tasks. At the same time, complex process design

and process intensi�cation tasks typically lead to optimization problems that

are very di�cult to solve due to non-linearity as well as many continuous

and discrete decision variables. Continuously increasing capabilities of both

computers and algorithms have led to many new design methods based on

mathematical programming beside the more traditional methods employing

heuristics and shortcut evaluation. Careful consideration is required on which

method to apply to a given task due to the speci�c strengths of each method.

Heuristics and shortcut evaluation are computationally easy to solve but often

require restrictive assumptions resulting in limited model validity. Mathemat-

ical programming methods generally require more computational e�ort but

can be applied to more detailed problems. However, except for speci�c model

classes, they do not provide a measure for the quality of solutions or guarantee

to �nd the best solution to a given optimization problem.

Hierarchical Design Frameworks The engineering e�ort of complex de-

sign tasks may be addressed by combining methods with di�erent degrees of

accuracy and modeling detail [Douglas, 1985, Grossmann, 1985]. Solving de-

sign problems on a low level of detail for the most fundamental decisions allows

for discarding poor designs on that level and signi�cantly reducing the design

space. The problem is then solved again in subsequent steps for successively

smaller design spaces but with added layers of detail. Thereby, the e�ort of

making needlessly detailed decisions for poor designs is avoided. This con-

cept of a hierarchical decision procedure for process design was proposed in

[Douglas, 1985, 1988], stating therein that it followed similar ideas from the

arti�cial intelligence literature [e. g., Sacerdoti, 1974].

Various research groups later followed the hierarchical approach to process de-

sign [e. g., Sargent, 1998, Daichendt and Grossmann, 1998, Kravanja et al.,

2005]. The advantages of using di�erently detailed variants of a model for

their respective purposes within hierarchical design approaches are discussed

in [Sargent, 2005], emphasizing that �there is no such thing as a perfect model,

and all that we can hope to do is predict the evolution of a limited set of prop-

erties of the system of interest with reasonable accuracy�.
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More recently, the focus shifted from a hierarchy of decisions to a hierarchy of

modeling detail as the approach was formalized in a general process synthesis

framework [Kossack et al., 2006, Marquardt et al., 2008, Kossack et al., 2008].

This is still matching previous work due to the appropriate modeling detail

being determined by the purpose of a model and vice versa. Process alter-

natives are screened quickly based on low-detail models and poor designs are

discarded. The remaining problem is much smaller allowing it to be solved with

more detailed models to further reduce the search space for the best design.

This work is summarized in the context of conceptual design of distillation-

based hybrid separation processes in a recent review [Skiborowski et al., 2013].

A similar approach is used in [Franke et al., 2004, 2008] for the design of hy-

brid separation processes based on distillation and melt crystallization and in

[Kaspereit et al., 2012] for the design of hybrid processes for the production of

pure enantiomers.

Hierarchical design methods o�er the potential of signi�cantly reducing the

e�ort of solving engineering problems. However, using models with di�erent

levels of detail may change the values of optimal design and operating param-

eters. In other words, decisions based on simple models in early steps of a

hierarchical design framework may not be valid when moving to more detailed

models. Strategies for model simpli�cation that conserve optimal designs [e. g.,

Daichendt and Grossmann, 1998] and optimization under uncertainty are pos-

sible ways to consider model inaccuracies. A second way decisions in hierarchi-

cal design frameworks are adversely a�ected is by failing to identify the best

solution of optimization problems with multiple local optima. Optimization

algorithms terminating in poor local solutions may lead to good design op-

tions being discarded, also see [Nallasivam et al., 2013]. The problem of poor

local optima is addressed in this thesis by making decisions based on globally

optimal solutions. However, as outlined below, applying deterministic global

optimization to process design tasks as demonstrated in this work requires

additional consideration due to signi�cant computational e�ort.
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Deterministic Global Optimization Process design and process synthesis

tasks typically correspond to optimization problems of the form

min f(x)

g(x) ≤ 0

x ∈ X

(1.1)

with objective function f : X → R, constraints g : X → Rm and set X ⊂ Rn

that often include integer restrictions. The aim is to �nd globally optimal

solutions x∗ such that

f(x∗) ≤ f(x) for all x ∈ S. (1.2)

where S = {x∈X : g(x)≤0} is the feasible set.
It should be noted that Equation (1.1) includes problem classes in which any

local solution x̄

f(x̄) ≤ f(x) for all x ∈ S : ||x̄− x||2 < ε, ε > 0, (1.3)

also represent a global solution, e. g. linear or convex optimization. A simple

example for a convex optimization problem is depicted in Figure 1.1. E�cient

algorithms for solving optimization problems for local solutions are widely

available [Biegler and Grossmann, 2004, Grossmann and Biegler, 2004].

In contrast to that, the scope of global optimization is solving problems with

multiple local optima as sketched in Figure 1.2a, which typically is a di�-

cult task. Methods for global optimization strongly depend on the structure

of the problem. Specialized algorithms for �nding solutions of various highly

structured optimization problems are described in [Locatelli and Schoen, 2013,

Figure 1.1: Convex function f(x) on convex set S with global minimum (dot).
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(a) Calculation of lower bound (solid line) of objective function f(x) (dashed line)

for original set S and a known feasible or locally optimal solution (dot). Objective

function values are unknown except for selected points.

(b) Branching. Improved lower bounds for subsets resulting from subdivision of S.

(c) Updating best known feasible solution (dot). Discarding subsets not able to

improve best known feasible solution further.

Figure 1.2: Illustration of selected branch-and-bound algorithm steps with tree-like

representation for subdivisions of set S. Solid lines represent underestimators for

objective function f(x) (dashed line). Objective function values are unknown except

for selected points.
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Horst and Tuy, 1996]. A commonly applied method for solving more general

optimization problems is given by branch-and-bound (BB) algorithms [Lo-

catelli and Schoen, 2013], e. g. BARON [Tawarmalani and Sahinidis, 2005],

ANTIGONE [Misener and Floudas, 2014] and SCIP [Achterberg, 2007]. A

graphical representation of selected BB steps is given in Figure 1.2. In short,

BB algorithms calculate feasible solutions and lower bounds of f(x) for sub-

sets of S (Figure 1.2a). Those subsets are successively subdivided in order to

improve the quality of the bounds (Figure 1.2b). Subsets are discarded if their

lower bound is equal to or larger than the best known feasible solution, i. e. if it

is guaranteed that those subsets do not contain better solutions (Figure 1.2c).

This is repeated until all subsets are discarded and the best feasible solution

is returned as a global optimum. Note that function values are only evaluated

and known at a limited number of points although fully depicted in Figure 1.2.

Lower bound computation is an essential step and therefore an extensive topic

in BB algorithms. For a detailed description, the reader is referred to [Lo-

catelli and Schoen, 2013]. In general, an original problem that is hard to solve

is replaced by a more simple problem to obtain a globally valid lower bound

to the original optimal solution. A common method is to replace nonconvex

objective functions by convex underestimators (e. g. solid line in Figure 1.2a)

and nonconvex sets by convex relaxations. Resulting convex problems are then

solved globally with available algorithms. Underestimators and relaxations are

more accurate on smaller subsets, allowing to discard suboptimal or infeasi-

ble subsets sooner. Therefore, BB algorithms usually apply domain reduction

strategies to reduce the size of subsets in addition to the subdivision strat-

egy illustrated in Figure 1.2b. Choosing constraints that require less variables

may also result in smaller subsets and thus less computational e�ort. A third

option to reduce subset size is adding redundant constraints, i. e. constraints

that do not change the original feasible set S but are easy to evaluate (e. g.

adding n ≤ 2 to an+bn = cn with a, b, c, n ∈ Z+ according to Fermat's Last

Theorem). General branch-and-bound software may not recognize the special

structure or speci�c properties of a given optimization problem. Therefore,

problem speci�c properties may be exploited to improve the computational

performance of standard branch-and-bound algorithms.

It should be noted that high complexity, and consequently computational ef-
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fort, prevents many problems from being solved with BB algorithms [Locatelli

and Schoen, 2013]. In practice, such problems may be approached by searching

for good local solutions with heuristic methods, e. g. multistart heuristics. Al-

though these methods may �nd good solutions, they do not give global bounds

to evaluate the quality of solutions or guarantee to �nd a global solution. A

brief introduction of widely-used methods for such problems is given in [Biegler

and Grossmann, 2004, Grossmann and Biegler, 2004]. Heuristic methods are

not studied further here, since the scope of this work is to extend capabilities

to globally solve engineering problems with deterministic methods.

Outline of the Thesis As discussed above, it is computationally expensive

to solve complex design tasks directly for all necessary decisions. The direct

approach is currently only tractable, at best, for local or stochastic algorithms.

As an alternative strategy, hierarchical design frameworks allow utilizing de-

terministic global optimization whenever it is computationally feasible and

switching to other methods when the computational e�ort becomes too exces-

sive. With this approach, it is guaranteed that the most fundamental decisions

for design tasks are not adversely a�ected by poor local optima. In particular,

identifying global optima renders repeated optimization for the same problem

obsolete since, by de�nition, no better solution exists.

In this thesis, the application of deterministic global optimization to concep-

tual, �rst principles process models within hierarchical design frameworks is

proposed. By exploiting problem speci�c properties, model formulations are

provided that allow analysis and design of selected processes based on glob-

ally optimal solutions with more detailed models than previously published.

Chapter 2 covers the topic of evaluating model formulations with regard to

suitability for branch-and-bound algorithms. The methods developed in that

chapter are used in following chapters for model evaluation. In Chapter 3,

multistage separation networks are analyzed based on globally optimal solu-

tions. Usual restrictions to countercurrent con�gurations are removed to allow

for alternative network designs. Suitable model formulations are provided and

results are compared for three di�erent separation processes. Chapter 4 com-

prises a case study for the process design task of �owsheet selection, again
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based on globally optimal solutions. Conclusions and future perspectives fol-

low in Chapter 5.

Parts of this work are published in the following contributions:

[Ballerstein et al., 2011, 2014, Kunde and Kienle, 2015, Kunde et al., 2016,

Mertens et al., 2016].



Chapter 2

Evaluating Computational E�ort

of Global Optimization

9
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2.1 Introduction

In the following chapters, model formulations suitable for global optimization

will be provided and evaluated. A measure for computational performance

is required for evaluating model formulations and may be given by the CPU

time needed for an optimization task. The CPU time needed for a given task

depends on many parameters, starting with the hardware and software con�g-

uration of a computer system. In context of branch-and-bound algorithms, the

properties of an optimization problem are also important. The dimension and

solution landscape of the optimization problem, the applied algorithm as well

as desired numerical accuracy will in�uence the required CPU time. Keeping

all other in�uences �xed still leaves random e�ects like memory access times.

In this chapter, the suitability of the CPU time as a measure for computational

performance is assessed. GAMS 24.6.1 (Linux, 64bit) is applied with the global

solver BARON 15.9.22 utilizing CPLEX 12.6.3.0 and CONOPT 3.17A as sub-

solvers on a standard desktop computer with an Intel(R) Core(TM) i7-3770

CPU @ 3.40GHz. The CPU time used in the following studies is the CPU

time reported by BARON.

Note that quantitative results presented in this work are only expected to be

comparable to results obtained with identical or very similar hardware and

software con�gurations under equal conditions.

2.2 Reproducibility

The capability to reproduce results keeping the entire setup constant is checked

by repeatedly solving the nonlinear problem �gsg_0001� from MINLPLib2

[MIN, Bussieck et al., 2003], a library providing benchmark problems for

mixed-interger nonlinear programming and nonlinear programming. A global

solution to the optimization problem is calculated beforehand and provided

as an initial point. Solver options are kept at default values except for re-

served memory (GAMS option �m.workspace=2*1024�), relative gap between

primal and dual solution (GAMS option �optcr=0.0001�) and local search be-

fore branching (BARON option �NumLoc 0�).

Since prior information on the distribution of required CPU times is not avail-
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able, information on percentiles of this distribution is evaluated. A short

overview on this method is given in [Schmid and Huber, 2014]. The probabil-

ity of some percentile Pp lying between two values of a sorted list of random

samples xi, i = 1, . . . , N is described by a binomial distribution. The con�-

dence P that a percentile Pp lies above (or below) a sample xm for a number

of measurements N is then calculated as

P{xm ≤ Pp} = P{xN−m+1 ≥ P1−p}

= 1−
m−1∑
k=0

(
N

k

)
pk (1− p)N−k.

(2.1)

2.2.1 Single Core Operation

In Figure 2.1, the distribution of 500 samples for the CPU time required for

solving �gsg_0001� [MIN, Bussieck et al., 2003] is plotted together with 99%

con�dence intervals for the median M =P0.50, P0.02275 and P0.97725 of the true

CPU time distribution. This means, with 99% con�dence, less than 5% of the

distribution lies outside the range of 223.51 s to 225.3 s. These error bounds are

small compared to the median value. CPU time measurements for a constant

setup are therefore considered reproducible.

223.5 224 224.5 225 225.5
0
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CPU time reported by BARON / s
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Figure 2.1: Sample distribution of CPU time reported by BARON for solving

�gsg_0001� and 99% con�dence intervals for the median (white box), P0.02275 and

P0.97725 (whiskers) of the true CPU time distribution.

Note that P0.02275 and P0.97725 correspond to µ−2σ and µ+2σ for a normal dis-

tribution, with mean value µ and standard deviation σ. However, the sample



12

distribution does not resemble a normal distribution and therefore calculations

based on that assumption are not expected to be accurate. A larger sample

size would be necessary to validate this observation.

2.2.2 Multi Core Operation

The CPU of the utilized computer has four processor cores. This can be facil-

itated to reduce computational e�ort by spreading calculations over di�erent

cores. To study the in�uence of multi core operation on the CPU time distribu-

tion, instances of �gsg_0001� [MIN, Bussieck et al., 2003] are solved repeatedly

in four parallel queues. Only instances of the �rst queue are taken as samples,

so no pair of samples is calculated at the same time.

In Figure 2.2, the distribution of 500 samples for the CPU time required for

solving �gsg_0001� in parallel with three other instances of the same task

is plotted together with 99% con�dence intervals for the median M = P0.50,

P0.02275 and P0.97725.

The median CPU time is higher for multi core operation than for single core
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Figure 2.2: Sample distribution of CPU time reported by BARON for solving

�gsg_0001� in parallel with three other tasks and 99% con�dence intervals for the

median (white box), P0.02275 and P0.97725 (whiskers) of the true CPU time distribu-

tion.

operation. However, in both cases the range of values deviates little from the

respective median. Therefore, solving optimization tasks in parallel is deemed

suitable for comparing CPU times as long as the number of active queues is
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constant.

It should be noted that there is a BARON option to utilize parallelization for

solving linear subproblems, which is generally the step with the highest overall

CPU time demand. This option is not further studied here, since only cases

which allow running entirely parallel instances of GAMS are considered in this

work.

2.3 In�uences of Solver Characteristics

Beside obvious factors such as hardware, software, solver parameters, dimen-

sion of the problem and characteristics of the solution landscape, the computa-

tional performance of branch-and-bound algorithms also depends on seemingly

performance neutral properties. For instance, branching requires prioritiz-

ing variables over others. Insu�cient information for distinguishing possible

choices may be resolved with information from the programming code. Thus

the order in which variables are declared in the programming code may in�u-

ence branching decisions and therefore computation time signi�cantly although

it does not change the optimization problem itself. So whenever some perfor-

mance indicator like total number of iterations or CPU time is used to evaluate

the computational e�ort for an optimization problem, the result is also in�u-

enced by those seemingly neutral properties. In [Koch et al., 2011], this be-

havior, called �performance variability�, is described for solving mixed-integer

programs. An indicator for the performance variability is introduced in [Koch

et al., 2011] by the standard deviation divided by the average. To take non-

normal distributions into account, percentiles as de�ned above are used in this

thesis also for characterization of performance variability. Performance vari-

ability is illustrated in the following for random permutations of the order of

declaration for equality and inequality conditions of �gsg_0001�, solved in four

parallel queues. Solver options are kept at default values except for reserved

memory (GAMS option �m.workspace=2*1024�), relative gap between primal

and dual solution (GAMS option �optcr=0.0001�) and, for BARON only, local

search before branching (BARON option �NumLoc 0�). Initial solutions are

global optima as calculated using the respective solver combination.
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2.3.1 BARON/CPLEX/CONOPT

Figure 2.3 shows the distribution of 800 samples for solving �gsg_0001� with

random permutations of the equation order using BARON with CPLEX and

CONOPT as subsolvers. Based on the given samples, a normal distribution

is unlikely. The interval including 95% of the true distribution with 99%

con�dence according to Equation (2.1) stretches from approximately 60 s to

850 s, over one order of magnitude.
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Figure 2.3: Distribution of CPU time reported by BARON for solving 800 instances

of �gsg_0001� with random permutations of equation order and 99% con�dence

intervals for the median (white box), P0.02275 and P0.97725 (whiskers) of the true

CPU time distribution.

2.3.2 Other Solvers

Figure 2.4a shows the distribution of 800 samples for solving �gsg_0001� with

random permutations of the equation order reported by BARON using CLP

instead of CPLEX. SCIP 3.2 with CPLEX 12.6.3.0 and IPOPT 3.12 is used for

Figure 2.4b. The results show that large variations of the CPU time for random

permutations of the equation order also occur for those solver combinations.

2.4 Conclusion

The computational e�ort for an optimization task strongly depends on param-

eters like equation order and order of variables. Those parameters can not be
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kept constant when the computational performance of two di�erent formula-

tions of the same optimization problem is compared, e. g. for adding redundant

equations or eliminating intermediate variables. Therefore, comparing single

measurements gives only weak evidence on whether some problem formulation

requires less computational e�ort or not. More reliable results are achieved by

statistically evaluating in�uences on the computational performance, which is

applied in subsequent chapters of this thesis. All tested solver combinations

show the same behavior, thus only the combination of BARON with CPLEX
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(a) BARON using CLP and CONOPT
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(b) SCIP using CPLEX and IPOPT

Figure 2.4: Solver comparison. Distribution of CPU time and �solving time� for

solving 800 instances of �gsg_0001� with random permutations of equation order and

99% con�dence intervals for the median (white box), P0.02275 and P0.97725 (whiskers)

of the true distribution.
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and CONOPT will be applied throughout the rest of this work.



Chapter 3

Analysis of Multistage Separation

Networks

17
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3.1 Introduction

Process synthesis and design aims at reducing operational and investment costs

of industrial processes. Product separation and puri�cation is an essential step

in chemical processes and responsible for a signi�cant part of the overall costs.

Multistage separation is applied if a single separation step does not ful�ll yield

or purity requirements. Standard approaches to multistage separation focus on

countercurrent con�gurations. However, due to the restricted process topol-

ogy, this process con�guration may be suboptimal. Relaxing restrictions on

process topology also allows new and possibly more e�cient process con�g-

urations. Global deterministic optimization is used to identify novel process

con�gurations that are guaranteed to achieve the best objective values and to

analyze the behavior of globally optimal solutions of the model with regard

to parameter values. Based on this insight, promising candidates or design

strategies are provided for higher steps of hierarchical design frameworks with

more detailed process models.

This chapter is structured as follows. First, melt crystallization for a binary

mixture is studied as a benchmark process for multistage separation networks.

The mathematical description of this process is chosen su�ciently simple to

enable detailed parameter studies of globally optimal multistage separation

designs. The results obtained for melt crystallization are then extended to

multistage solution crystallization and multistage �ltration, demonstrating the

generalization of results to di�erent separation technologies.

3.2 Melt Crystallization

Crystallization processes are based on generating supersaturation in a liquid

phase as a driving force for crystal growth. Resulting crystals generally have

a composition di�erent from the original melt, enabling the separation of the

components of a mixture. The solubility of components in a mixture and there-

fore supersaturation depends on factors such as composition, temperature and

pressure. The process class of melt crystallization refers to crystallization in

liquid mixtures without a dedicated solvent by means of a temperature de-

crease. Melt crystallization is used for product puri�cation and separation
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in chemical processes, with solid layer melt crystallization being a subclass

of crystallization in which melt �ows over cooled surfaces to generate crystal

layers. This process often requires large equipment sizes for corresponding sur-

face areas. However, product separation can be implemented just by draining

remaining melt from the crystal layer before melting and collecting it sepa-

rately. An overview on di�erent processes using solid layer melt crystallization

is given in [Ulrich et al., 1996].

3.2.1 Process Model

Single Units

The phase behavior of the mixture considered in the following model, see Fig-

ure 3.1, is that of a binary eutectic system. The crystal layer is assumed to

incorporate impurities from the liquid melt, preventing the process from gen-

erating a pure crystal product in a single step. During solid layer melt crystal-

lization, the melt is cooled down to the crystallization temperature (Figure 3.1:

1) at a surface and a solid layer starts to form. The solid layer has a di�er-

ent composition than the melt, resulting in selective removal of one of the

components from the melt. As the crystal layer grows, the composition and

therefore also the crystallization temperature of the melt successively change

(Figure 3.1: 2). Due to increasing impurity concentration in the melt, newly

formed crystal product has more impurity inclusions than previously formed

layers (Figure 3.1: 3), resulting in a non-uniform composition of the overall

crystal layer.

The model applied here is based on the distribution of impurities between crys-

tals and remaining melt for constant process conditions, e. g. for very small

amounts of crystal product, using the di�erential distribution coe�cient kdiff

[Lewis et al., 2015]. It is de�ned as

kdiff =
wimpurity

ximpurity

, (3.1)

with the molar fraction of impurity in the crystal product wimpurity and in the

melt ximpurity. The di�erential distribution coe�cient kdiff needs to be less than

one for a reduction of impurity in the crystal product compared to the melt.
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Figure 3.1: Exemplary phase diagram for an eutectic system with progression during

crystallization due to cooling. The dashed line marks impurity inclusions in the solid

phase instead of ideally pure component B.

Note that the distribution coe�cient can also be de�ned using weight fractions,

as in [Wellingho� and Wintermantel, 1991].

Due to the non-uniform crystal layer composition, the overall distribution of

impurities deviates from the di�erential distribution coe�cient and is given by

the integral distribution coe�cient

kint =
wmean

impurity

xfeed
impurity

, (3.2)

with the average molar fraction of impurity in the overall crystal product

wmean
impurity and the mass fraction of impurity in the melt before crystallization

xfeed
impurity. The integral distribution coe�cient describes the separation e�ciency

of solid layer melt crystallization without explicitly calculating the transient

behavior of the process.

In this thesis, the impurity distribution is described by a constant di�erential

distribution coe�cient as in [Wellingho� andWintermantel, 1991] and [Micovic

et al., 2013]. For kdiff = const., the integral distribution coe�cient depends

solely on the yield Y , i. e. the ratio of crystal product amount to amount of

melt before crystallization, and is calculated as follows, see Appendix A.

kint =
1− (1− Y )kdiff

Y
(3.3)

For a yield Y approaching zero, the integral distribution coe�cient kint ap-

proaches the di�erential distribution coe�cient kdiff . The integral distribution

coe�cient increases with yield, up to kint(Y=1)=1. This means separation is

most e�cient for low yields and there is no separation if the entire feed is crys-

tallized. Note that the integral distribution coe�cient does not comprise any
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temperature dependence and therefore restrictions due to the eutectic point

are implemented separately as outlined further below.

The model equations describing the separation according to Wellingho� and

Wintermantel [1991] for each single stage n = 1, . . . , nCr as in Figure 3.2 read

Figure 3.2: Single melt crystallization unit with feed molar �ow Fn, crystal product

molar �ow Sn and liquid remainder molar �ow Ln with corresponding impurity molar

fractions.

Sn = YnFn, wimp,n = kint,nzimp,n,

Ln = Fn − Sn, ximp,nLn = zimp,nFn − wimp,nSn,

kint,n Yn = 1− (1− Yn)kdiff ,

(3.4)

with crystal yield Yn ∈ [0, 1] and integral distribution coe�cient kint,n ∈ [0, 1].

The molar fraction of impurity in the feed is denoted by zimp,n, in the crystal

product by wimp,n and in the liquid remainder by ximp,n. Molar �ows are de-

noted as Fn for unit feeds, Sn for crystal product and Ln for liquid remainder.

Physical restrictions due to the eutectic point and technical restrictions due

to a minimum cooling temperature pose additional model constraints. The

minimum cooling temperature is equivalent to a maximum molar fraction of

impurity based on the solid-liquid equilibrium. The more restrictive of both,

eutectic composition and temperature-based maximum impurity concentra-

tion, gives an upper bound xmax
imp for molar fractions of impurity in the melt

ximp,n on each single stage n = 1, . . . , nCr.

xmax
imp ≥ ximp,n, n = 1, . . . , nCr (3.5)

The yield Y is further restricted for non-zero feed impurities. Rewriting Equa-

tion (3.4) gives

ximp = (1− Y )kdiff−1 zimp. (3.6)

If the molar fraction of impurity in the liquid remainder ximp is bounded from

above, e. g. by the eutectic composition, the yield Y is also bounded from
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above by a value less than one. However, Y = 1, i. e. total crystallization, is

feasible for this model since L=0 in that case and therefore ximp is not de�ned.

The crystallization model comprises Equation (3.4). Equation (3.5) is imple-

mented as bounds to the respective variables.

Network of Crystallizer Units

A crystallizer network with stages n= 1, . . . , nCr numbered downwards as in

Figure 3.3 is considered. Recall that each stage n separates a molar feed �ow

Fn into crystal product Sn and liquid remainder Ln with molar fractions of the

impurity denoted as zimp,n, wimp,n and ximp,n, respectively. The feed of each

stage Fn is the sum of all crystal product �ows S and liquid remainder �ows

L connected to that stage and, if applicable for that stage, the crystallizer

feed �ow F InCr . The distribution of the feed �ow and connections between

stages are implemented using binary variables βInCr
n ∈ {0, 1}, βS

l,n ∈ {0, 1}
and βL

l,n ∈ {0, 1}, n= 1, . . . , nCr, l = 1, . . . , nCr. The variables βInCr
n , βS

l,n and

βL
l,n attain a value of one if and only if the feed enters at stage n, the crystal

product output of stage l is fed to stage n and the liquid remainder output of

stage l is fed to stage n, respectively. The mass balance equations for the feed

of each stage n = 1, . . . , nCr then read

Fn = F InCrβInCr
n +

nCr∑
l=1

Slβ
S
l,n +

nCr∑
l=1

Llβ
L
l,n, (3.7)

zimp,n Fn = zInCr
imp F

InCrβInCr
n +

nCr∑
l=1

wimp,l Slβ
S
l,n +

nCr∑
l=1

ximp,l Llβ
L
l,n. (3.8)

It is ensured that the feed enters exactly one stage by

nCr∑
n=1

βInCr
n = 1. (3.9)

The output �ow of each stage is connected to exactly one stage input or one

crystallizer product output by

nCr∑
n=1

βS
l,n + βS,Out1Cr

l = 1, l = 1, . . . , nCr, (3.10)

nCr∑
n=1

βL
l,n + βL,Out2Cr

l = 1, l = 1, . . . , nCr, (3.11)
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with βS,Out1Cr

l ∈ {0, 1} attaining a value of 1 if and only if the crystal product

output of stage l is connected to output Out1Cr and with βL,Out2Cr

l ∈ {0, 1}
attaining a value of 1 if and only if the liquid remainder output of stage l is

connected to output Out2Cr. The product �ows are then calculated as

FOut1Cr =
nCr∑
n=1

βS,Out1Cr
n Sn,

FOut2Cr =
nCr∑
n=1

βL,Out2Cr
n Ln,

(3.12)

zOut1Cr
imp FOut1Cr =

nCr∑
n=1

βS,Out1Cr
n wimp,n Sn,

zOut2Cr
imp FOut2Cr =

nCr∑
n=1

βL,Out2Cr
n ximp,n Ln.

(3.13)

It is required that each stage has at least one input.

nCr∑
l=1

(
βS
l,n + βL

l,n

)
+ βInCr

n ≥ 1, n = 1, . . . , nCr (3.14)

By de�nition, the stages are ordered in terms of purity of the stage feed.

zimp,n ≤ zimp,n+1, n = 1, . . . , nCr − 1 (3.15)

Recall that a process for separating mixture with two components is considered

here. Therefore, the crystal output �ow of each stage has a smaller impurity

concentration compared to the respective feed �ow and the liquid remainder

an increased impurity concentration. Since remixing of already puri�ed �ows

reduces e�ciency, possible connections for crystal outputs are limited to stages

closer to the respective overall product outlet by additional constraints.

βS
l,n = 0 for all 1 ≤ l ≤ n, n = 1, . . . , nCr (3.16)

βL
l,n = 0 for all n ≤ l ≤ nCr, n = 1, . . . , nCr (3.17)

All potential connections within the crystallizer network used in this work

are illustrated in Figure 3.3 (a) for a �xed number of stages nCr = 3. The

countercurrent cascade depicted in Figure 3.3 (b) will serve as the benchmark

for any other con�guration within this superstructure.
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(a) (b)

Figure 3.3: (a) Crystallizer network consisting of nCr = 3 stages with arbitrary

con�gurations. (b) Countercurrent crystallizer cascade with nCr stages and arbitrary

feed stage (βS
l,l−1 = 1, l = 2, . . . , nCr, βL

l,l+1 = 1, l = 1, . . . , nCr − 1, βS,Out1Cr
1 = 1,

βL,Out2Cr

nCr = 1). [Reprinted from Kunde et al., 2016, with permission from Elsevier]

Material balances for the overall separation network are included implicitly

in all material balances for the single units and the connections between units.

The overall material balances are added to the model as redundant equations

to tighten the model description.

F InCr = FOut1Cr + FOut2Cr (3.18)

zInCr
imp F

InCr = zOut1Cr
imp FOut1Cr + zOut2Cr

imp FOut2Cr (3.19)

The separation network model comprises Equations (3.8)-(3.15) and (3.18)-

(3.19). Equations (3.16)-(3.17) are implemented as bounds to the respective

variables.

Objective Function

Process costs are determined according to correlations from [Towler and Sin-

not, 2008]. The cost function accounts for annualized installed investment

costs of the crystallizer vessel as a heat exchanger, a storage tank for each

crystallization stage with the same capacity as the crystallizer and for the en-

ergy costs of the process. The capacity of the crystallizer is calculated as in

[Franke et al., 2008] and the required cooling according to [Wellingho� and

Wintermantel, 1991, Franke et al., 2008]. The resulting total annualized cost
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function is written in a condensed form as

JTAC = (a1

nCr∑
n=1

Sn s mol-1 + a2 + nCr(a3(
nCr∑
n=1

Sn s mol-1)a4 + a5)) $ a-1. (3.20)

Note that economic cost functions in the conceptual phase of a hierarchical de-

sign framework describe the qualitative behavior of process costs with respect

to model variables and give an estimate of the order of magnitude of the actual

costs. More detailed process models in higher steps of such a framework allow

for more detailed cost estimations.

The cost function JTAC is monotonically increasing with
∑nCr

n=1 Sn. Therefore,

for �xed values of stages nCr and feed �ow F InCr , economic cost is minimized

by minimizing crystallization e�ort JS [Mersmann, 2001].

JS =

∑nCr

n=1 Sn
F InCr

. (3.21)

The optimization problem is solved �rst with respect to the crystallization ef-

fort JS for each total number of stages nCr = 1, . . . , nCr,max. Then the total

number of stages with the lowest total annualized cost JTAC is selected as a

globally optimal solution for the original cost function.

3.2.2 Reformulation

Branch-and-bound algorithms rely on calculating globally valid bounds to the

optimal objective value in each region of the search space. Such strong state-

ments to optimality of solutions compared to local optimization coincide with

increased computational e�ort. The computational e�ort for branch-and-

bound algorithms scales with the number of variables and nonlinearities as

well as the types of nonlinearities. Models written for speci�c purposes other

than global optimization usually have di�erent requirements, e. g. variables

are chosen for readability or explicit equations are preferred for simulation

tools. Model formulations e�cient for simulation may be ine�cient for global

optimization, which o�ers potential for model reformulations. A reformulation

of the crystallization model with simpler and less nonlinear terms than in the

the original version is supplied in this section.



26

The main idea for this reformulation is using molar �ows of impurities de�ned

by

Simp,n = wimp,nSn, Limp,n = ximp,nLn, Fimp,n = zimp,nFn, (3.22)

instead of molar fractions.

Single Unit

Using Equation (3.22), the distribution of impurities is given by

Simp,n = kint,n Yn Fimp,n = (1− (1− Yn)kdiff )Fimp,n. (3.23)

A new variable Ỹn ∈ [0, 1] is introduced as

Ỹn = 1− Yn (3.24)

to write the set of equations for the crystallizer that replaces Equation (3.4).

For each stage n = 1, . . . , nCr, we have

Limp,n = Ỹ kdiff
n Fimp,n, Simp,n = Fimp,n − Limp,n,

Ln = Ỹ Fn, Sn = Fn − Ln.
(3.25)

Note that these de�nitions correspond to a yield for liquid remainder Ỹ and the

distribution of impurities to the liquid remainder. So for a yield Ỹ =1 we have

no crystal product and all impurity stays in the liquid. Corresponding to the

crystal yield in the original model formulation, the yield for liquid remainder

is restricted by upper bounds to the molar fraction of impurity in the liquid.

However, the case of Ỹ =0, i. e. total crystallization with no liquid remainder,

is feasible for this model although it is not reasonable for a real process.

Equation (3.5) is rewritten in terms of molar �ows as

xmax
imp Ln ≥ Limp,n, n = 1, . . . , nCr. (3.26)

Network of Crystallizer Units

Molar fractions in Equation (3.8) are substituted using Equation (3.22) to

obtain

Fimp,n = F InCr
imp β

InCr
n +

nCr∑
l=1

Simp,lβ
S
l,n +

nCr∑
l=1

Limp,lβ
L
l,n (3.27)
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for each n = 1, . . . , nCr, and in Equation (3.13) to obtain

FOut1Cr
imp =

nCr∑
n=1

βS,Out1Cr
n Simp,n, (3.28)

FOut2Cr
imp =

nCr∑
n=1

βL,Out2Cr
n Limp,n. (3.29)

Molar fractions are still used for the inlet composition zInCr
imp and the product

speci�cations for zOut1Cr
imp and zOut2Cr

imp . Quantities at the inlet of the separation

network are constant parameters. The impurity molar �ow at the inlet is

calculated by

F InCr
imp = zInCr

imp F
InCr . (3.30)

Additional equations for the outlet compositions are introduced as

FOut1Cr
imp = zOut1Cr

imp FOut1Cr , (3.31)

FOut2Cr
imp = zOut2Cr

imp FOut2Cr . (3.32)

Equation (3.15) is rewritten in terms of molar �ows as

Fimp,n Fn+1 ≤ Fimp,n+1 Fn, n = 1, . . . , nCr − 1. (3.33)

3.2.3 Redundant Con�gurations

The melt crystallization model used in this work allows that di�erent net-

work con�gurations have the same optimal objective value. This includes

redundant con�gurations not meaningful for process design as well as sets of

meaningful con�gurations that can not be discerned using the given level of

modeling detail. Some of the most simple cases of redundancies are excluded

from the search space by additional constraints, e. g. Equation (3.14) prevents

isolated stages without any incoming connections. For larger separation net-

works, redundant structures become more complex, e. g. isolated groups of

stages without connections to the feed or the product outlets of the separation

network. Complex constraints to address such structures increase the model

size and thus may increase the computational e�ort for global optimization.

In this work, instead of removing all redundant con�gurations from the search

space, possible sources of redundancy are discussed and according solutions
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are removed from optimization results.

One source of redundancy considered are inactive stages, i. e. stages with zero

crystal yield. Adding inactive stages to a con�guration does not change �ows

between the original stages. Therefore, the crystallization e�ort is the same

as without additional inactive stages, creating redundant globally optimal so-

lutions when using the crystallization e�ort as objective function. This type

of redundancy is treated by solving the problem for each possible number of

stages and selecting the globally optimal solution with the lowest number of

stages.

Economic cost of the process according to Equation (3.20) increases with in-

creasing stage number. Therefore, adding inactive stages does not introduce

redundant globally optimal solutions when minimizing economic cost.

A second source of redundant solutions are groups of stages isolated from the

overall feed or overall product outlets, e. g. Figure 3.4. If isolated stages have

nonzero crystal product �ows, according solutions are suboptimal due to in-

creased economic cost as well as crystallization e�ort and therefore are not

included in the set of globally optimal solutions. If isolated stages have zero

crystal product �ow they are treated the same as inactive stages.

Figure 3.4: Example for redundant con�gurations. Group of stages n= {2, 3} does
not have an overall feed.

Another source of redundancy is that a single crystallizer stage can be re-

placed by two stages with the same overall product �ows and crystallization

e�ort as shown in Figure 3.5. Both con�gurations are equivalent with regard
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(a) (b)

Figure 3.5: Equivalent (sub-)con�gurations when optimizing crystallization e�ort:

(a) Single crystallizer stage. (b) Two-stage crystallizer cascade.

to crystallization e�ort and product �ows for

Ỹ1 Ỹ2 = Ỹsingle (3.34)

with the liquid yield of the single crystallizer Ỹsingle and the liquid yields of

the two crystallizer stages Ỹ1,2. This is veri�ed for equal overall feed �ows

F1 =Fsingle as follows.

The liquid product �ows L2 and Lsingle are equal according to

L2 = Ỹ2 F2 = Ỹ2 L1 = Ỹ1 Ỹ2 F1 = Ỹsingle Fsingle = Lsingle (3.35)

Correspondingly, equality is shown for the liquid impurity �ows Limp,2 and

Limp,single.

Limp,2 = Ỹ kdiff
2 Fimp,2 = Ỹ kdiff

1 Ỹ kdiff
2 Fimp,1 = Ỹ kdiff

single Fimp,single = Limp,single (3.36)

The crystal product �ows then have to be equal due to mass conservation.

Finally, crystallization e�orts S1 + S2 and Ssingle are equal according to

S1 + S2 = F1 − L2 = (1− Ỹ1 Ỹ2)F1 = (1− Ỹsingle)Fsingle = Ssingle. (3.37)

This type of redundancy is also treated by identifying the globally optimal so-

lution with the lowest number of stages and does not occur when minimizing

economic cost.

The redundancies discussed above only create multiple globally optimal so-

lutions if the crystallization e�ort JS is used as the objective function, since

the number of stages increases for those redundant con�gurations. In con-

trast, multiple globally optimal solutions with regard to economic cost JTAC

require that the crystallization e�ort as well as the number of stages are equal.

Multiple solutions of this type are discussed together with the results of the

following computational studies.
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3.2.4 Computational Studies

This section deals with computational results based on the model formulations

for multistage melt crystallization given above. In the �rst part, the compu-

tational e�ort for solving the original model formulation and the reformulated

model is evaluated. The more e�cient of both model formulations is used

in the second part for a comprehensive analysis of model behavior based on

parameter studies of globally optimal solutions.

Computational E�ort

The CPU time required using the original formulation and the postulated

reformulation for �xed nCr is evaluated by minimizing the crystallization e�ort

JS for 800 model instances with random permutations of equation order, binary

variable order and positive variable order, similar to Chapter 2. Parameters

used for this test are given in Table 3.1. Solver options are kept at default

values except for reserved memory (GAMS option �m.workspace=2*1024�),

relative gap between primal and dual solution (GAMS option �optcr=0.0001�)

and local search before branching (BARON option �NumLoc 0�). A globally

optimal solution for each formulation is calculated beforehand with the same

solver and options and provided as an initial point. Doing this reduces the

optimization task to calculating lower bounds to prove global optimality of

the provided solution. Finding good local solutions as upper bounds to the

objective function is thereby removed as an in�uence on the computational

e�ort.

Table 3.1: Parameter and domain speci�cations for comparison of computational

e�ort between original model formulation and reformulation.

parameter value variable domain

kdiff 0.3 zOut1Cr
imp [0, 0.01]

zInCr
imp 0.7 zOut2Cr

imp [0.89, 1]

F InCr 1 mol s-1 z, Y, k [0, 1]

xmax
imp 0.9 S, L, F [0 mol s-1, 20 mol s-1]

nCr 4 β {0, 1}

As depicted in Figure 3.6, the median CPU time required for solving the
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reference case is reduced by one order of magnitude by using the reformulation.

Thus, the reformulated model is used in the following parameter studies.

Parameter Studies

Model parameters a�ecting the optimal con�guration of a crystallizer network

are the di�erential distribution coe�cient kdiff , the feed concentration of im-

purity zInCr , the product speci�cations zOut1Cr , zOut2Cr and, if applicable, the

parameters of an economic cost function. The eutectic composition is implic-

itly included in this set of parameters by limiting feasible values for the feed

composition and product speci�cations. A comprehensive characterization of

optimal solutions for the considered melt crystallization model is given in this

section using parameter studies for the di�erential distribution coe�cient and

the feed composition for both low and high product yield and purity. For each

case, the optimal design of countercurrent cascades is discussed as a reference

for potentially better alternative designs. Then, alternative designs with bet-

ter objective values than the countercurrent design are analyzed. Based on the

results, simpli�ed criteria for optimal design of multistage melt crystallization

processes are given.

In Case 1 and Case 2, optimal con�gurations with regard to economic cost are

presented for mixtures of isomers 2-methylundecanal and n-dodecanal. Physi-

cal data of this mixture and some analysis of modeling approaches and model

behavior based on local optimization is available in [Beierling and Ruether,

2012, Micovic et al., 2013, Beierling et al., 2014]. Weight fractions used in

these publications are equivalent to molar fractions used here since mixtures

of isomers are considered. Economic cost parameters comprise information

about speci�c physical parameter values of a mixture and equipment restric-

tions. Here, it is assumed that the same set of parameters, given in Table 3.2,

can be applied to the whole range of feed and product speci�cations as well as

separation e�ciencies.

Determination of accurate economic cost is highly dependent on many, proba-

bly uncertain, problem-speci�c parameters. For instance, the ratio of operating

cost to investment cost in Case 1 and Case 2 depends on energy prices, which

are not related to any process variables but depend on the country a plant

is operated in. Therefore, more general performance indicators are needed
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(b) Reformulated model.

Figure 3.6: Distribution of CPU time reported by BARON for solving 800 instances

of the crystallizer model with random permutations of equation and variable or-

der and 99% con�dence intervals for the median (white box), P0.02275 and P0.97725

(whiskers) of the true CPU time distribution.
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Table 3.2: Parameter speci�cations for economic cost function.

parameter value parameter value

a1 86849 a4 0.7

a2 5215 a5 2123.2

a3 1605.7

to compare optimization results for di�erent processes. The total amount of

crystal product required to separate a given feed according to yield and purity

speci�cation is a suitable measure of the required processing e�ort for this task.

The crystallization e�ort in�uences both operational cost and equipment size,

and it has comparable counterparts in other separation technologies. Thus, in

Case 3, multistage crystallizer networks that are optimal with regard to the

crystallization e�ort are analyzed.

Case 1: Low Product Yield and Purity The optimal multistage crystal-

lizer con�guration is determined by minimizing crystallization e�ort JS for each

number of stages nCr = 1, 2, 3, 4 and selecting the number of stages with lowest

economical cost JTAC, see Section 3.2.1. This is repeated for each considered

pair of di�erential distribution coe�cient and feed composition. Parameter

speci�cations and domain speci�cations for variables are given in Table 3.3.

The con�guration with the lowest objective value is chosen from each set of op-

timal con�gurations with di�erent numbers of stages and otherwise identical

parameter values. If con�gurations with equal objective values are encoun-

tered, the con�guration with the lowest number of stages is chosen. Objective

values within 1% of the value of the chosen con�guration are considered equal

to account for numerical imprecision. Solver options are kept at default values

except for reserved memory (GAMS option �m.workspace=2*1024�) and rel-

ative gap between primal and dual solution (GAMS option �optcr=0.0001�).

Feasible initial solutions are not provided.

In the following �gures, each di�erently colored region represents a di�erent

globally optimal con�guration of a crystallizer cascade or some property value

of such a con�guration, e. g. feed stage or number of stages. Each white dot

represents a set of parameters for which a global optimum is determined. The
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Table 3.3: Case 1. Parameter and domain speci�cations for in�uence of parameters

on globally optimal con�guration.

parameter value variable domain

kdiff {0.01, 0.02, ..., 0.5} zOut1Cr
imp [0, 0.05]

zInCr
imp {0.06, 0.08, ..., 0.84} zOut2Cr

imp [0.85, 1]

F InCr 1 mol s-1 z, Y, k [0, 1]

xmax
imp 0.9 S, L, F [0 mol s-1, 20 mol s-1]

nCr {1, 2, 3, 4} β {0, 1}

feed composition is normalized to the product speci�cations according to

zInCr
norm =

zInCr
imp − up(zOut1Cr

imp )

lo(zOut2Cr
imp )− up(zOut1Cr

imp )
. (3.38)

The molar fraction of impurity in the feed �ow zInCr
imp is limited by the normalized

feed impurity zInCr
norm ∈ [0, 1]. Outside of that interval the feed already ful�lls

product speci�cations and crystallization is not necessary.

First, the optimal design of countercurrent crystallizer cascades is discussed.

Values of binary variables are restricted according to Equations (3.39)-(3.42)

to limit the search space to countercurrent cascades.

βS
l,l−1 =1, l=2, . . . , nCr, (3.39)

βL
l,l+1 =1, l=1, . . . , nCr − 1, (3.40)

βS,Out1Cr
1 = 1, (3.41)

βL,Out2Cr

nCr = 1 (3.42)

The con�guration of a countercurrent cascade is fully characterized by the

number of stages and the feed stage position.

In Figure 3.7, parameter regions with di�erent optimal numbers of stages are

depicted. Su�ciently low product purity requirements (i. e. crystal product

speci�cation close to the feed composition) and high separation e�ciency (i. e.

small values for the di�erential distribution coe�cient) allows separation of a

mixture with one crystallization step. This case is represented by the lower

left region of Figure 3.7. With increasing purity requirements and decreasing

separation e�ciency, more stages are necessary for a separation task. The

optimal number of stages increases accordingly with increasing normalized
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feed impurity and distribution coe�cient, up to four stages in the upper right

region of Figure 3.7. As an example, the optimal number of stages for a

normalized feed impurity zInCr
norm = 0.4 is described. One stage is optimal up to

a distribution coe�cient kdiff of approximately 0.1. Two stages are optimal for

approximately 0.1<kdiff<0.3, and three stages for 0.3<kdiff<0.4.

The optimal position of the feed stage is treated in the same way as the
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Figure 3.7: Case 1. Globally optimal number of stages of countercurrent crystal-

lizer cascades. The dotted line shows the optimal number of stages for �xed feed

concentrations and varied distribution coe�cient values.

optimal number of stages. In Figure 3.8, regions with di�erent optimal feed

stages are depicted. The cost of multistage crystallization processes according

to the model used in this work can be minimized by minimizing the sum of

crystal product �ows over all stages. If the feed enters the �rst stage counted

from the top, i. e. the stage connected to the overall crystal product outlet,

the amount of overall crystal product has to be crystallized at least once.

If the feed enters the second stage of a countercurrent cascade the product

amount has to be crystallized at least twice, and so on, potentially increasing

process costs. However, larger di�erences of impurity concentration between

feed and feed stage necessitate larger recycle �ows, making higher feed stage

numbers more favorable for higher purity requirements and lower separation

e�ciency. The resulting optimal feed position is on the �rst stage counted
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from the top for low purity requirements and high separation e�ciency. The

optimal feed stage number increases with increasing normalized feed impurity

and distribution coe�cient, up to the fourth stage in the upper right region

of Figure 3.8. For a �xed value of the normalized feed impurity zInCr
norm = 0.4,

the �rst stage is the optimal feed position for a distribution coe�cient kdiff

of up to approximately 0.16. The second stage is the optimal feed position

for approximately 0.16 < kdiff < 0.31 and the third stage for 0.31 < kdiff <

0.45. Globally optimal con�gurations of a countercurrent crystallizer cascade,
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Figure 3.8: Case 1. Globally optimal feed stage position of countercurrent crystallizer

cascade, counted from top. The dotted line shows the optimal feed position for �xed

feed concentrations and varied distribution coe�cient values.

characterized by number of stages and feed position, are depicted in Figure 3.9.

It is a combination of Figure 3.7 and Figure 3.8, with each di�erently colored

region representing a unique combination of number of stages and feed position.

For example, for a distribution coe�cient of kdiff =0.2 a single crystallizer stage

is optimal for a normalized feed impurity zInCr
norm below approximately 0.05, a

crystallizer cascade with two stages and the feed on the �rst stage is optimal

for approximately 0.1<zInCr
norm< 0.3 and a crystallizer cascade with two stages

and the feed on the second stage is optimal for zInCr
norm above approximately 0.35.
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Figure 3.9: Case 1. Globally optimal con�guration of countercurrent crystallizer

cascade de�ned by number of stages and feed stage. Each patch represents a con-

�guration with a di�erent combination of number of stages and feed stage according

to Figure 3.7 and Figure 3.8. The dotted line shows optimal con�gurations for �xed

distribution coe�cient values and varied feed concentrations.

Next, optimal alternative con�gurations are discussed with regard to the re-

sults for countercurrent cascades. General con�gurations are characterized

by the number of stages, the feed stage position and the transport of crystal

product and of liquid remainder between stages. Recall that for countercurrent

cascades the crystal product is always transported to the stage with the next

lower number, and liquid remainder is transported to the stage with the next

higher number. For general con�gurations, connections between stages are not

limited to neighboring stages.

Parameter regions with optimal con�gurations di�erent from the countercur-

rent cascade are shown in Figure 3.10a. Regions with identical con�gurations

except for liquid remainder connections βL are represented as single patches

in that �gure. Regions where the countercurrent cascade is the optimal con-

�guration are not drawn for the sake of clarity. In Figure 3.10b, the objective

value JTAC of optimal alternative con�gurations relative to the countercurrent

cascade is given.

The results show large parameter regions with alternative con�gurations better
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(a) Parameter regions with optimal alternative con�gurations.
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(b) Relative cost of alternative con�gurations.

Figure 3.10: Case 1. (a) Globally optimal con�guration of general crystallizer net-

work determined by stage number, feed stage and crystal product transport. Only

regions with optimal solutions that are di�erent from the countercurrent cascade are

shown. The region with the largest di�erences is marked with A. (b) Relative cost

of alternative con�gurations compared to the countercurrent cascade.
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than the countercurrent cascade. Those regions are located around boundaries

between the regions depicted in Figure 3.8, i. e. regions with di�erent optimal

feed stage positions for the countercurrent cascade. This is valid regardless of

the optimal number of stages. The largest improvements, with over 20% less

cost for alternative con�gurations, are achieved in region A, which is also the

parameter region where the optimal feed position of a two-stage countercurrent

cascade switches from �rst to second stage, see Figure 3.9. Di�erences between

optimal alternative con�gurations and optimal countercurrent cascades are less

pronounced for larger numbers of stages and feed stage numbers.

Region A, the parameter region with the largest possible improvements, is now

considered in more detail. Located where the optimal countercurrent cascade

has two stages and the feed position switches from �rst to second stage, this re-

gion represents three di�erent globally optimal alternative con�gurations. All

optimal con�gurations, depicted in Figure 3.11, have three stages, the same

feed position and the same crystal product connections. However, the liq-

uid remainder from the �rst stage is transported to a di�erent stage for each

con�guration.

(a) (b) (c)

Figure 3.11: Case 1. Equivalent globally optimal con�gurations for region A in

Figure 3.10.

Repeating the parameter study for each �xed con�guration veri�es that the

same objective function values are reached within region A. Only con�guration

(c) is infeasible in a part of region A and has di�erent optimal objective values

if the con�guration is close to being infeasible.

Optimization results for a selected set of parameters are given in Figure 3.12

as an example for the interpretation of the entire parameter region A. Con�g-
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uration (b) is used for this example due to being a direct extension of coun-

tercurrent design (see Figure 3.12c).

For all three optimal con�gurations in parameter region A, the second stage is

used as the feed stage. This feed stage generates crystal product with purity

below speci�cation. The liquid remainder of the feed stage is then puri�ed

to above speci�cation by the remaining two stages. The crystal product with

purity above speci�cation is mixed with the crystal product of the feed stage

to exactly meet the product speci�cation. Using this structure avoids crys-

tallizing the whole product amount twice, as is the case for countercurrent

con�gurations with two stages and the second stage as feed position (Fig-

ure 3.12b). It also avoids large recycles from a stripping stage in the case of

the �rst stage being the feed position and the feed composition being far from

the product speci�cation (Figure 3.12a). Instead, there is a �pre-treatment�

stage that removes as much product as possible below the purity speci�cation

so that the speci�cation is still met by mixing with product from a two-stage

crystallizer.

(a) (b)

(c)

Figure 3.12: Case 1. Optimal operating parameters for selected con�gurations with

keff = 0.1 and zInCr
norm = 0.6625, corresponding to region A in Figure 3.10. Pairs of

numbers represent molar �ows and molar fractions of impurity. Con�guration (c),

equal to con�guration (b) in Figure 3.11, is rearranged for better readability.

The computational e�ort for characterizing globally optimal designs for sepa-
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ration networks using parameter studies is signi�cant. If a suitable measure for

ine�ciency is available, alternative con�gurations only have to be determined

for ine�cient countercurrent cascades, thus reducing computational e�ort. In

the following, re-mixing of puri�ed intermediate products is studied as a pos-

sible measure of ine�ciency in crystallizer networks.

The production rate of entropy of mixing σmix is a measure for mixing ine�-

ciencies. The entropy of mixing in crystallizer networks is determined by the

entropy di�erence between all molar �ows connected to each mixing point and

the resulting mixed �ows. The total entropy production rate σmix of a crystal-

lizer network, assuming mixing of ideal liquids [Stephan et al., 2010], is then

calculated as

σmix = R
nCr∑
n=1

Ln (ximp,n ln(ximp,n) + (1− ximp,n) ln(1− ximp,n))

+R
nCr∑
n=1

Sn (wimp,n ln(wimp,n) + (1− wimp,n) ln(1− wimp,n))

+RF InCr
(
zInCr

imp ln(zInCr
imp ) + (1− zInCr

imp ) ln(1− zInCr
imp )

)
−R

nCr∑
n=1

Fn (zimp,n ln(zimp,n) + (1− zimp,n) ln(1− zimp,n))

−RFOut1Cr
(
zOut1Cr

imp ln(zOut1Cr
imp ) + (1− zOut1Cr

imp ) ln(1− zOut1Cr
imp )

)
−RFOut2Cr

(
zOut2Cr

imp ln(zOut2Cr
imp ) + (1− zOut2Cr

imp ) ln(1− zOut2Cr
imp )

)
.

(3.43)

The results in Figure 3.13 show increased entropy production for countercur-

rent cascades at boundaries of regions with constant optimal feed position ac-

cording to Figure 3.8, indicating that increased re-mixing reduces the e�ciency

of one con�guration up to the point where another con�guration becomes more

e�cient. In contrast to countercurrent cascades, entropy production for opti-

mal alternative con�gurations is signi�cantly lower. According to Figure 3.10a,

increased entropy production for countercurrent cascades is only encountered

where alternative con�gurations are globally optimal. Large values of entropy

production are found close to boundaries of regions with constant optimal feed

stage position, on the side of smaller feed position values. Re-mixing is suitable

to identify these ine�cient countercurrent con�gurations, allowing for faster

screening for improved alternative con�gurations. However, there are also pa-

rameter regions where both the globally optimal alternative con�guration and
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the countercurrent cascade have low entropy production. Thus, identifying

the whole region of optimal alternative con�gurations still requires according

parameter studies.
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(a) Countercurrent cascade.
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(b) Alternative con�gurations.

Figure 3.13: Case 1. Entropy production rate for cost-optimal con�guration as a

measure for ine�ciency caused by re-mixing.
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Case 2: High Product Yield and Purity In the previous parameter

study, all model parameters except for purity requirements and cost coe�-

cients in the objective function are varied. In this parameter study, increased

purity requirements are considered. Results are generated in the same way as

for low product yield and purity and compared to that case. Parameter and

domain speci�cations for this case are given in Table 3.4. The parameter study

is done for countercurrent cascades according to Equations (3.39)-(3.42) and

for general con�gurations.

Table 3.4: Case 2. Parameter and domain speci�cations for in�uence of parameters

on globally optimal con�guration.

parameter value variable domain

kdiff {0.01, 0.02, ..., 0.5} zOut1Cr
imp [0, 0.01]

zInCr
imp {0.02, 0.04, ..., 0.88} zOut2Cr

imp [0.89, 1]

F InCr
imp 1 mol s-1 z, Y, k [0, 1]

xmax
imp 0.9 S, L, F [0 mol s-1, 20 mol s-1]

nCr {1, 2, 3, 4} β {0, 1}

Optimal number of stages and feed stage positions for countercurrent cas-

cades, depicted in Figure 3.14 and Figure 3.15, are qualitatively the same as

for low product yield and purity. Increased purity requirements lead to a larger

number of required stages and a larger feed stage number for the same sepa-

ration e�ciency. Accordingly, regions representing certain numbers of stages

in Figure 3.14 are shifted to lower distribution coe�cient values compared to

Figure 3.7. Regions representing certain feed stage positions in Figure 3.15 are

also shifted to lower distribution coe�cient values compared to Figure 3.8.

Globally optimal con�gurations di�erent from the countercurrent cascade are

found at the boundary of regions with constant countercurrent feed position,

compare Figure 3.15 and Figure 3.16. The number of regions with di�erent

optimal con�gurations and their relative position to each other is identical to

Case 1. Similar to Case 1, the largest improvements are found in region A,

where the optimal feed position for two-stage countercurrent cascades switches

from �rst to second stage. The region of interest is shifted to lower distribution

coe�cient values due to increased purity requirements and the cost reduction

compared to countercurrent cascades is slightly higher than in Case 1.
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Figure 3.14: Case 2. Globally optimal number of stages of countercurrent crystallizer

cascade, from one stage in the lower left region to four stages in the upper right region.
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Figure 3.15: Case 2. Globally optimal feed stage of countercurrent crystallizer cas-

cade, from �rst stage in the lower left region to fourth stage in the upper right

region.
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(a) Parameter regions with optimal alternative con�gurations.
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(b) Relative cost of alternative con�gurations.

Figure 3.16: Case 2. (a) Globally optimal con�gurations of general crystallizer sepa-

ration network determined by stage number, feed stage and crystal product transport

between stages. Only regions with optimal con�gurations that are di�erent from the

countercurrent cascade are shown. The region with the largest di�erences is marked

with A. (b) Relative cost of alternative con�gurations compared to the countercur-

rent cascade.
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Case 3: Crystallization E�ort as Objective Function In melt crys-

tallization, the amount of crystal produced by a single stage determines the

energy consumption and equipment size of that stage and thus the cost. Con-

sequently, process costs for multistage crystallization networks are determined

by the crystallization e�ort, i. e. the amount of crystal produced on all sin-

gle stages, see Equation (3.20). In general, lower crystallization e�ort for

a given separation task indicates more energy e�ciency and less equipment

size. Therefore, the crystallization e�ort allows for rating multistage melt

crystallization processes and comparing them with other multistage separa-

tion processes using equivalent objective functions. Results for optimal melt

crystallization networks with the crystallization e�ort as the objective function

are given below.

Note that the previous cases are already generated by minimizing the crys-

tallization e�ort for �xed numbers of stages and then selecting the number of

stages with the lowest economic cost. Results for the present case are gener-

ated by re-evaluating the optimization results of Case 1 for the crystallization

e�ort as the objective function, i. e. from optimization results with �xed num-

bers of stages nCr = 1, 2, 3, 4 the result with the lowest crystallization e�ort

is chosen. Recall, if the same objective value is achieved within 1% tolerance

with di�erent numbers of stages, the lowest number of stages is reported. Pa-

rameters for Case 3 are given in Table 3.3.

The resulting regions with globally optimal alternative con�gurations and their

relative objective values compared to countercurrent cascades is given in Fig-

ure 3.17.

Optimal con�gurations found for Case 1 are also the optimal con�gurations

for Case 3 and vice versa in corresponding parameter regions, e. g. region A

in Figure 3.17 has the same optimal con�gurations as region A in Figure 3.10.

This means, the crystallization e�ort is a suitable objective function for char-

acterizing optimal multistage con�gurations on this level of modeling detail.

However, the boundaries of optimal parameter regions are shifted. There are

also some additional regions with alternative con�gurations that show only

negligible improvements compared to countercurrent cascades.
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(a) Parameter regions with optimal alternative con�gurations.

no
rm

al
iz

ed
 fe

ed
 im

pu
rit

y 
z no

rm
In

C
r

 / 
1

distribution coefficient k
eff

 / 1

 

 

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

re
la

tiv
e 

co
st

 / 
1

0.6

0.7

0.8

0.9

1

distribution coefficient kdiff / 1

no
rm

al
iz

ed
fe

ed
im

pu
ri

ty
zIn

C
r

n
or

m
/

1

(b) Relative crystallization e�ort of alternative con�gurations.

Figure 3.17: Case 3. (a) Globally optimal con�gurations of general crystallizer sep-

aration network determined by stage number, feed stage and crystal product trans-

port. Only regions with optimal con�gurations that are di�erent from the counter-

current cascade are shown. The region with the largest di�erences is marked with

A. (b) Relative crystallization e�ort of alternative con�gurations compared to the

countercurrent cascade.
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3.2.5 Conclusion

All results are generated using deterministic global optimization ruling out

non-optimal local solutions as a possible source for misinterpretations. Pa-

rameter studies on melt crystallization networks reveal that alternative con�g-

urations are signi�cantly more e�cient than countercurrent cascades in certain

regions of process parameters, with up to 35% economical cost reduction ob-

served for considered cases. Process cost is reduced by decreasing the overall

crystallization e�ort through introduction of an additional stage. The cost

of this additional stage is compensated by reduced crystallizer sizes due to re-

duced re-mixing of puri�ed intermediate product and by avoiding to crystallize

a part of the �nal product twice.

The parameter regions of interest are easily found by investigating counter-

current con�gurations, which require low computational e�ort to solve. The

search for alternative con�gurations should be considered at boundaries of re-

gions with constant optimal feed position for countercurrent cascades. A quick

screening for ine�cient countercurrent cascades is also possible by testing for

increased re-mixing. This will not identify con�gurations that are ine�cient

in some other way.

Possible cost savings for alternative con�gurations are largest where optimal

countercurrent cascades have two stages and the feed position switches from

�rst to second stage. For that case it is su�cient to consider one alternative

con�guration beside countercurrent cascades. This lowers computational or

experimental e�ort for �nding the optimal con�guration even further.



49

3.3 Solution Crystallization

Solution crystallization is used to separate components of a mixture dissolved

a solvent. Supersaturation of the solution and thus crystallization is induced

by solvent removal. Theoretically, pure crystals can be achieved in one crys-

tallization step for eutectic mixtures. However, as discussed in the previous

section, impurity inclusions may require repeated crystallization to achieve

desired product purity or yield. The same is valid for mixtures forming solid

solutions, i. e. solids in which components form a single homogeneous phase. A

phase diagram for components A and B forming a solid solution without addi-

tional solvent is depicted in Figure 3.18. Each composition in the liquid phase

corresponds to a unique equilibrium composition in the solid phase. Therefore,

it is not possible to produce pure crystals from a mixture in one crystallization

step.

Figure 3.18: Exemplary phase diagram for solid solutions without an additional

solvent. The horizontal line represents corresponding equilibrium compositions in

the solid and liquid phase.

Dissolving the mixture of A and B in an additional solvent leads to a phase

diagram with three components, e. g. potassium sulfate and ammonium sul-

fate in water in Figure 3.19. Corresponding equilibrium compositions in the

liquid and solid phase are di�erent from each other, allowing for separation of

the binary mixture by repeated crystallization and dissolving.

In a recent study [Münzberg et al., 2016], a countercurrent stage-wise crystal-

lization process was found to be an e�cient means to separate a solid solution.

The considerations in that study are extended here to include con�gurations

di�erent from the countercurrent cascade. The in�uence of parameters on op-

timal design of multistage solution crystallization processes is shown in com-
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Figure 3.19: Phase diagram of potassium sulfate, ammonium sulfate and water at

65 °C, with potassium sulfate and ammonium sulfate forming solid solutions. Corners

represent pure components and edges binary mixtures. Gray lines depict correspond-

ing equilibrium compositions in the solid and liquid phase. Model from [Münzberg

et al., 2016], based on experimental data.

parison to the results for melt crystallization in Section 3.2.4.

3.3.1 Process Model

Single Units

The following crystallization model is taken from [Münzberg et al., 2016]. The

model describes batch-wise operated crystallization units. Each crystallization

unit performs the steps depicted in Figure 3.20. The feed to a unit consists

of a liquid mixture potentially also including crystals. Solvent is added to the

mixture to dissolve any crystals. In the actual crystallization step, solvent

is removed to induce crystallization. Finally, crystals and mother liquor are

separated and transferred to other units.

In [Münzberg et al., 2016], the production cycle is repeated to allow for semi-

continuous production and thus the compositions of feed and product mass in

each unit change from cycle to cycle. The original model is adapted here for

the limiting case of steady state operation of the process, i. e. compositions in
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Figure 3.20: Steps in each crystallization unit.

each unit are constant between cycles. In steady state, averaged mass �ows

are de�ned as ratios of feed or product masses and a given production cycle

time. The following model is given in terms of averaged mass �ows for better

comparability with the results in Section 3.2. Mass �ows of component �A�

enriched in the solid phase and cumulated mass �ows of both components �AB�

are used as variables. Mass �ows for solvent �S� are calculated when required.

The original model is further adapted to reduce the number of variables and

nonlinearities.

Crystallization units as in Figure 3.21 are numbered by n = 1, . . . , nCr, with

feed mass �ow Fi,n, crystal product mass �ow Si,n and liquid remainder mass

�ow Li,n for components i=A,AB, S. Calculating the feed �ow for each unit by

Figure 3.21: Single solution crystallization unit with feed mass �ow Fi,n, crystal

product mass �ow Si,n and liquid remainder mass �ow Li,n for components i =

A,AB, S.

mixing product �ows from other units is covered by the network model given

further below. The solvent content of the overall feed is adjusted to dissolve

any crystals and keep the solution in a saturated state. Since, by de�nition,

there are no crystals, the required solvent mass is calculated by assuming that

the solution is in equilibrium with a virtual solid phase. The phase equilibrium

is given by polynomial �ts to experimental data using mass fractions xi,n in

the feed mass �ow Lin
i,n and in the virtual solid phase wi,n with according index
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of components i. Resulting equations for the dissolution step are given below.

Lin
A,n = xin

A,n (Lin
AB,n + Lin

S,n) (3.44)

Lin
S,n = xin

S,n (Lin
AB,n + Lin

S,n) (3.45)

xin
A,n =

3∑
k=0

aA,k (win
A,n)k (3.46)

xin
S,n =

3∑
k=0

aS,k (win
A,n)k (3.47)

Solvent is removed to induce crystallization. Crystallization proceeds until

the solution is in equilibrium with the solid phase, i. e. the crystals. Solvent

content after the crystallization step is determined in the same way as for the

dissolution step. The superscript �cryst� denotes the state at the end of the

crystallization step.

Lcryst
A,n = xcryst

A,n (Lcryst
AB,n + Lcryst

S,n ) (3.48)

Lcryst
S,n = xcryst

S,n (Lcryst
AB,n + Lcryst

S,n ) (3.49)

xcryst
A,n =

3∑
k=0

aA,k (wcryst
A,n )k (3.50)

xcryst
S,n =

3∑
k=0

aS,k (wcryst
A,n )k (3.51)

Filtration is used to separate crystals from mother liquor. However, some

mother liquor may stick to the crystals. With zero solvent content in the

crystals themselves Scryst
S,n = 0, the crystal product including adherent mother

liquor proportional to the crystal mass Scryst
AB,n is calculated as follows, with ratio

parameter κ and superscript �out� denoting the state after �ltration. Note that

the composition of the mother liquor does not change in this step.

Sout
i,n = Scryst

i,n + κScryst
AB,n x

cryst
i,n , i = A,AB, S (3.52)

xout
i,n = xcryst

i,n , i = A,AB, S (3.53)

Product mass �ows and compositions directly after crystallization are not re-

quired for evaluation of the objective function. The desired outputs after

�ltration are calculated directly by using Equations (3.52)-(3.53). The phase
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equilibrium after crystallization, i. e. Equations (3.50)-(3.51), still applies.

Sout
S,n =

κ

1 + κ
xcryst

S,n (Sout
AB,n + Sout

S,n) (3.54)

Sout
A,n =

(
1

1 + κ
wcryst

A,n +
κ

1 + κ
xcryst

A,n

)
(Sout

AB,n + Sout
S,n) (3.55)

Lout
A,n = xcryst

A,n (Lout
AB,n + Lout

S,n) (3.56)

Lout
S,n = xcryst

S,n (Lout
AB,n + Lout

S,n) (3.57)

In addition, the mass balance equations for the whole crystallization unit read

Lin
i,n = Lout

i,n + Sout
i,n , i = A,AB. (3.58)

Note that the mass balance of solvent is not used here due to addition and

removal of solvent in intermediate steps.

The implicit equation system for calculating a single crystallization unit has

one remaining degree of freedom. The amount of solvent removed during

crystallization determines purity and yield of the product of a unit, enabling

optimization of the process.

The crystallization model comprises Equations (3.44)-(3.47), Equations (3.50)-

(3.51) and Equations (3.54)-(3.58). Note that a version of the crystallization

model adapted for scalable separation e�ciency is introduced for the parameter

studies in subsequent Section 3.3.2.

Network of Crystallizer Units

In [Münzberg et al., 2016], crystallization units are interconnected to form a

separation network. In particular, countercurrent operation is studied, i. e.

mother liquor and crystals of each unit are transferred to neighboring units to

be further processed. Here, a network for separating a mixture of two compo-

nents equivalent to that in Section 3.2, with crystallization stages n=1, . . . , nCr

numbered downwards, is considered. Adjustments are made to the model of

the separation network to account for using solution crystallization instead of

melt crystallization, particularly adding a solvent component to the model.

Each stage n separates a feed �ow into crystal product and liquid remainder.

The feed of each stage Lin
i,n is the sum of all crystal �ows Sout

i,l and mother liquor

�ows Lout
i,l connected to that stage and, if applicable for that stage, the crystal-

lization network feed �ow F InCr
i with i = A,AB, S. The distribution of the feed
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�ow and connections between stages are implemented using binary variables

βInCr
n ∈ {0, 1}, βS

l,n ∈ {0, 1} and βL
l,n ∈ {0, 1}, n= 1, . . . , nCr, l= 1, . . . , nCr. The

variables βInCr
n , βS

l,n and β
L
l,n attain a value of one if and only if the feed enters

at stage n, the crystal �ow of stage l is fed to stage n and the liquid remainder

�ow of stage l is fed to stage n, respectively. Feed mass balance equations for

each stage n=1, . . . , nCr then read

Lin
i,n = F InCr

i βInCr
n +

nCr∑
l=1

Lout
i,l β

L
l,n +

nCr∑
l=1

Sout
i,l β

S
l,n, i = A,AB. (3.59)

The solvent mass after mixing for each stage n=1, . . . , nCr is calculated as

Lmix
S,n =

nCr∑
l=1

Lout
S,l β

L
l,n +

nCr∑
l=1

Sout
S,l β

S
l,n. (3.60)

It is ensured that the feed enters exactly one stage by

nCr∑
n=1

βInCr
n = 1. (3.61)

The output �ow of each stage is connected to exactly one stage input or one

crystallizer product output by

nCr∑
n=1

βS
l,n + βS,Out1Cr

l = 1, l = 1, . . . , nCr, (3.62)

nCr∑
n=1

βL
l,n + βL,Out2Cr

l = 1, l = 1, . . . , nCr, (3.63)

with βS,Out1Cr

l ∈ {0, 1} attaining value 1 if and only if the crystal product

output of stage l is connected to output Out1Cr and with βL,Out2Cr

l ∈ {0, 1} at-
taining value 1 if and only if the liquid remainder output of stage l is connected

to output Out2Cr. The product �ows are then calculated as

FOut1Cr
i =

nCr∑
n=1

βS,Out1Cr
n Si,n, i = A,AB, (3.64)

FOut2Cr
i =

nCr∑
n=1

βL,Out2Cr
n Li,n, i = A,AB. (3.65)

Solvent is completely removed from the products. Product speci�cations are

given as bounds to mass fractions of component A at both outlets, zOut1Cr
A and
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zOut2Cr
A :

zOut1Cr
A,min FOut1Cr

AB ≤ FOut1Cr
A , (3.66)

zOut2Cr
A,max FOut2Cr

AB ≥ FOut2Cr
A . (3.67)

It is assumed that the stages are ordered in terms of feed composition. The

solid mass fraction of component A, enriched in the solid phase, is denoted as

wA.

win
A,n ≥ win

A,n+1, n = 1, . . . , nCr−1 (3.68)

Crystals are enriched in component A and mother liquor in component B.

Therefore, crystals are always transported in one direction of the crystallizer

cascade and mother liquor in the opposite direction.

βS
l,n = 0 for all 1 ≤ l ≤ n, n = 1, . . . , nCr (3.69)

βL
l,n = 0 for all n ≤ l ≤ nCr, n = 1, . . . , nCr (3.70)

All potential connections within the crystallizer network used in this work

are illustrated in Figure 3.22a for a �xed number of stages nCr = 3. The

countercurrent cascade depicted in Figure 3.22b serves as the benchmark for

any other con�guration within this superstructure.

The overall mass balances for the whole process are added to the model to

improve computational performance.

F InCr
i = FOut1Cr

i + FOut2Cr
i , i = A,AB. (3.71)

Mass �ows at the outlet are bounded by inlet mass �ows according to

up(FOut1Cr
i ) = F InCr

i , up(FOut2Cr
i ) = F InCr

i , i = A,AB. (3.72)

The separation network comprises Equations (3.59)-(3.68) and Equation (3.71).

Equations (3.69)-(3.70) and Equation (3.72) are implemented as bounds to re-

spective variables.

Objective Function

Both equipment size and energy consumption of solution crystallization pro-

cesses scale with the amount of solvent that needs to be evaporated. The
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(a) (b)

Figure 3.22: (a) Crystallizer network consisting of nCr = 3 stages with arbitrary

con�guration. (b) Countercurrent crystallizer cascade with nCr stages and arbitrary

feed stage (βS
l,l−1 = 1, l = 2, . . . , nCr, βL

l,l+1 = 1, l = 1, . . . , nCr−1, βS,Out1Cr
1 = 1,

βL,Out2Cr

nCr = 1).

evaporation e�ort Jevap is de�ned in [Münzberg et al., 2016] as the ratio of

total evaporated solvent to total feed without solvent. The objective function

accounts for solvent evaporated on each crystallization stage VS,n as well as

solvent that needs to be removed from the products.

Jevap =

∑nCr

n=1 VS,n + βOut1
n Sout

S,n + βOut2
n Lout

S,n

F InCr
AB

(3.73)

The mass of evaporated solvent is determined by the solvent content before and

after crystallization. The solvent content before crystallization is the maximum

of the solvent content directly after mixing and after the dissolution step. This

covers the case that, after mixing, there is already enough solvent to dissolve all

crystals. Since the evaporation e�ort Jevap is to be minimized, the evaporated

solvent VS,n for each stage n=1, . . . , nCr is implemented as

VS,n ≥ Lmix
S,n − Lout

S,n − Sout
S,n , (3.74)

VS,n ≥ Lin
S,n − Lout

S,n − Sout
S,n . (3.75)

The objective function model comprises Equations (3.73)-(3.75).

3.3.2 Computational Studies

This section deals with computational results based on the model for multistage

solution crystallization given above. The model behavior is analyzed below
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based on parameter studies of globally optimal solutions.

Selectivity Scaling

The following parameter studies include variation of the separation e�ciency

of the process. The original model from [Münzberg et al., 2016] does not

contain this option in a straight-forward way. An analogy between separation

e�ciency of distillation and solution crystallization drawn in [Münzberg et al.,

2016] is used here to enable scaling of separation e�ciency. The separation

of species A and B is characterized regardless of solvent content by using dry

mass fractions in the liquid phase xdry
i and in the solid phase wdry

i de�ned as

wdry
i := wi, i = A,B (3.76)

xdry
i :=

xi
xA + xB

, i = A,B. (3.77)

Similar to phase equilibrium diagrams used in binary distillation, an equi-

librium diagram for solution crystallization is depicted in Figure 3.23. The

�gure shows how the composition of a solid phase in equilibrium with a liquid

phase depends on the composition of that liquid phase. Phase equilibrium

Figure 3.23: In�uence of relative selectivity α on the solid-liquid phase equilibrium.

Increasing α increases the equilibrium concentration of B in the solid phase.

lines farther from the diagonal mean larger di�erences between crystal and

liquid composition and therefore better separation e�ciency. In ideal binary

distillation, the equilibrium line is determined by the relative volatility of both

components. A measure for separation e�ciency analogous to the relative

volatility is de�ned for crystallization as

wdry
B =

αB x
dry
B

αA x
dry
A + αB x

dry
B

, (3.78)
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with relative selectivity for the component enriched in the solid phase αA :=

1 and relative selectivity for the component depleted in the solid phase αB.

According to Equation (3.76) and Equation (3.77), dry mass fractions are

substituted to obtain

wB =
αB xB

xA + αB xB

. (3.79)

Rewriting Equation (3.79) allows for calculating αB from actual solid-liquid

phase equilibrium data.

αB =
wB xA

(1− wB)xB

(3.80)

Small values of αB imply an equilibrium line close to the lower right corner

of the phase diagram and correspondingly strong separation. Values close to

one indicate that there is little or no separation. Values above one mean that

B is enriched in the solid phase instead of A. Scaling of separation e�ciency

for solution crystallization is therefore possible through scaling of the relative

selectivity αB.

α̃B := kα αB (3.81)

The equilibrium solvent fraction in the liquid is not supposed to change with

scaling for a given crystal composition. Therefore,

x̃A + x̃B := xA + xB (3.82)

holds for the new mass fractions in the liquid x̃A and x̃B.

Combining de�nitions in Equations (3.80)-(3.82), the new equilibrium liquid

mass fraction of component A for a given composition of the solid phase is

calculated as

x̃A

(
1

kα
(1− xA − xS) + xA

)
= (1− xS)xA. (3.83)

The unscaled xA is substituted by x̃A in Equation (3.44) and Equation (3.56).

Two according instances of Equation (3.83) are added to the model.

The additional variables and equations required for selectivity scaling may

adversely in�uence computation time. For a scaling factor kα = 1, solutions

found by optimizing models with and without scaling are identical, allowing
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(a) Model without selectivity scaling.
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(b) Model with selectivity scaling.

Figure 3.24: Distribution of CPU time reported by BARON for solving 800 instances

of the solution crystallization model with random permutations of equation and

variable order and 99% con�dence intervals for the median (white box), P0.02275 and

P0.97725 (whiskers) of the true CPU time distribution. Four samples with CPU time

more than 300 s are outside the axes in (b).
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Table 3.5: Parameter values and domain speci�cations for Figure 3.24.

parameter value parameter value

(aA,0, aA,1) (0, 0.1949) (aA,2, aA,3) (−0.2905, 0.2474)

(aS,0, aS,1) (0.5149, 0.3131) (aS,2, aS,3) (−0.9066, 0.9268)

F InCr 1 kg s−1 zInCr
A 0.85

κ 0.01 kα 1

zOut1Cr
A,min 0.99 zOut2Cr

A,max 0.3

nCr 3

variable domain variable domain

w [0, 1] β {0, 1}
S, L, V [0 kg s−1, 20 kg s−1] x̃A [0, 0.1518]

xS [0.5149, 0.8482] xA [0, 0.1518]

direct comparison of di�erent model formulations. Parameters and domain

speci�cations for the computations are given in Table 3.5. The evaporation

e�ort of a countercurrent cascade with three stages is minimized for the original

model and the model including selectivity scaling. The according e�ect on the

computational e�ort for global optimization is shown in Figure 3.24. The

computation time for the model with scaling approximately doubles compared

to the model without scaling. This is a signi�cant increase but still feasible for

parameter studies.

Parameter Studies

Parameter studies are conducted to analyze the in�uence of key model parame-

ters on globally optimal separation network con�gurations. Model parameters

a�ecting the optimal con�guration of the crystallizer network are the phase

equilibrium coe�cients, selectivity scaling kα, the proportion of mother liquor

adhering to crystals κ, the inlet composition zInCr
A and the product purity re-

quirements zOut1Cr
A,min and zOut2Cr

A,max . The focus here is on selectivity scaling and

feed composition for comparison with corresponding studies in Section 3.2.4.

Mother liquor adhering to crystals and purity requirements are chosen such

that low numbers of stages are su�cient for the separation. Physical data for

the considered mixture of potassium sulfate (�A�) and ammonium sulfate (�B�)
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in water (�S�) at 65 °C is taken from [Münzberg et al., 2016]. The according

polynomial coe�cients are given in Table 3.6.

Table 3.6: Polynomial �t coe�cients for potassium sulfate (�A�) and ammonium

sulfate (�B�) in water (�S�) at 65 °C [Münzberg et al., 2016].

parameter value

(aA,0, aA,1, aA,2, aA,3) (0, 0.1949,−0.2905, 0.2474)

(aS,0, aS,1, aS,2, aS,3) (0.5149, 0.3131,−0.9066, 0.9268)

x
B
dry / 1

w
Bdr
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1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

kα=2.8

kα=1

kα=0.1

Figure 3.25: Range of scaled selectivity used in parameter study.

The phase equilibrium and its range of variation for the following parame-

ter study is depicted in Figure 3.25. Selectivity varies strongly over the whole

concentration range. Note that the equilibrium line crosses the diagonal for

selectivity scaling kα= 2.8 and values above, i. e. selectivity reverses for large

concentrations of B. In the following parameter studies, appropriate purity

requirements are chosen to avoid the region of selectivity reversal and account

for the reduced range of feasible compositions.

Parameter values and domain speci�cations for the parameter studies are given

in Table 3.7. Computational e�ort for solving the solution crystallization

model is very high for general con�gurations with more than three stages,

so the number of stages is limited to nCr≤3.

The feed composition is normalized to the product speci�cations for the fol-
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Table 3.7: Parameter values and domain speci�cations for solution crystallization

parameter study.

parameter value parameter value

F InCr 1 kg s−1 zInCr
A {0.35, 0.4, . . . , 0.85}

κ 0.01 kα {0.1, 0.2, . . . , 2.8}
zOut1Cr

A,min 0.9 zOut2Cr
A,max 0.3

nCr {1, 2, 3}
variable domain variable domain

w [0, 1] β {0, 1}
S, L, V [0 kg s−1, 20 kg s−1] x̃A [0, 0.19]

xS [0.5149, 0.8482] xA [0, 0.1518]

lowing �gures according to

zInCr
norm =

zOut1Cr
A,min − z

InCr
A

zOut1Cr
A,min − z

Out2Cr
A,max

. (3.84)

The normalized feed composition is higher for higher concentrations of com-

ponent B, depleted in the solid phase. The de�nition of zInCr
norm is equivalent to

the respective de�nition in Section 3.2.4.

Countercurrent con�gurations are generated by �xing variables βS
l,l−1 = 1, l=

2, . . . , nCr, βL
l,l+1 =1, l=1, . . . , nCr−1, βS,Out1Cr

1 = 1, βL,Out2Cr

nCr = 1. Figure 3.26

shows parameter regions for globally optimal con�gurations of countercurrent

crystallizer cascades. Increasing the value of kα increases the equilibrium con-

centration of B in the solid, thus reducing selectivity. Consequently, more

stages are needed for the given separation task for higher values of kα. More

crystallization steps are required to achieve a given purity if the selectivity

is low or the feed impurity is high. Therefore, the optimal feed position is

further away from the crystal product for increased values of kα and increased

normalized feed impurity. Consequently, the feed stage number is larger in

the upper right corner in Figure 3.26b. These results are in accordance with

results for multistage melt crystallization in Section 3.2.4.

Results for general crystallizer con�gurations are depicted in Figure 3.27.

Based on results in the previous Section 3.2.4, improved alternative con�g-

urations are expected in parameter regions where the optimal feed position



63

no
rm

al
iz

ed
 fe

ed
 im

pu
rit

y 
z no

rm
In

C
r

 / 
1

selectivity scaling factor kα / 1
0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1 2 3

selectivity scaling factor kα / 1

no
rm

al
iz

ed
fe

ed
im

pu
ri

ty
zIn

C
r

n
or

m
/

1

(a) Optimal number of stages.
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(b) Optimal feed stage position counted from top.

Figure 3.26: Globally optimal countercurrent crystallizer cascade con�gurations.

switches. This region is also found for the solution crystallization model con-

sidered here and marked as region A in Figure 3.27a. Alternative con�gurations

of the type found in region A require one more crystallizer stage than the cor-

responding optimal countercurrent cascade. Due to alternative con�gurations

being limited to a number of stages nCr ≤ 3 in this study, there is only one
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(b) Relative evaporation e�ort of alternative con�gurations.

Figure 3.27: (a) Globally optimal con�guration of general crystallizer network deter-

mined by stage number, feed stage and crystal product transport. Only regions with

optimal solutions that have at least 10% less evaporation e�ort than the countercur-

rent cascade are shown. (b) Relative evaporation e�ort of alternative con�gurations

compared to the countercurrent cascade.
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such region, associated with two-stage countercurrent cascades. Parameter re-

gions where optimal countercurrent cascades have three stages are therefore

excluded from more detailed considerations.

Region A o�ers the most improvement of alternative con�gurations compared

to countercurrent cascades. Alternative con�gurations in region A require as

low as 82% of the evaporated solvent that is used by optimal countercurrent

cascades. The optimal con�gurations in region A are depicted in Figure 3.28.

(a) (b) (c)

Figure 3.28: Equivalent globally optimal con�gurations for region A in Figure 3.27.

These are the same con�gurations as in the corresponding parameter regions

discussed in Section 3.2.4 This allows for applying the same strategies to �nd

optimal con�gurations for melt crystallization also to solution crystallization

processes. Con�guration (a) in Figure 3.28 is optimal in the entire region A.

Con�gurations (b) and (c) are only equivalent to con�guration (a) in parts

of region A. Additionally to region A, there are two other parameter regions

with signi�cant advantages of alternative con�gurations over countercurrent

cascades. The optimal con�gurations found in region B and C are depicted in

Figure 3.29. Figure 3.29b represents repeated partial solvent evaporation and

subsequent removal of crystals from the vessel. That structure is also formed

by stages n={1, 2} in con�guration Figure 3.29 (a). This type of structure is

discussed for melt crystallization in Section 3.2.3 as a redundant con�guration

equivalent to a single stage. However, for solution crystallization, equilibrium

concentrations and therefore separation characteristics in subsequent crystal-

lization steps are shifted by intermediate removal of crystals. In fact, this

improves separation e�ciency for the mixture considered in this section, as
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(a) (b)

Figure 3.29: Globally optimal con�gurations for (a) region B and (b) region C in

Figure 3.27.

illustrated for a small example in Table 3.8. Table 3.8 compares a single crys-

tallization stage with two stages connected such that the mother liquor of the

�rst stage is the feed of the second stage. For equal overall crystal mass �ow

and evaporation e�ort, the two-stage con�guration has higher purity products,

i. e. the fraction of impurity component B in the overall crystal product is less

for the con�guration with two stages. Distributing the crystal yield over sev-

eral stages actually allows separation without recycles in parameter regions

where a single stage is not feasible. Given a suitable technique to remove

crystals from the solution, this con�guration can be implemented as a batch

process in a single vessel with continuous evaporation and intermittent crystal

removal.

3.3.3 Conclusion

Deterministic global optimization is applied to �nd the best con�guration for

multistage solution crystallization. Reductions of evaporation e�ort over 20%

where observed when using alternative con�gurations instead of countercur-

rent cascades. This is lower than the crystallization e�ort reduction observed

for multistage melt crystallization processes in the previous section. However,

potential evaporation e�ort reductions strongly depend on the phase equilib-

rium and larger reductions are expected when considering di�erent mixtures.

The same con�gurations found for melt crystallization in the previous sec-

tion are also encountered for solution crystallization in the same parameter
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Table 3.8: Comparison of single crystallization unit with two connected units.

single crystallization unit two connected crystallization units

S = 0.6 kg s−1 S1 = 0.3 kg s−1, S2 = 0.3 kg s−1

zOut1Cr
B = 0.6482 zOut1Cr

B = 0.6297

Jevap = 1.7744 Jevap = 1.7744

shared parameters

parameter value parameter value

F InCr 1 kg s−1 zInCr
B 0.75

κ 0.01 kα 1

regions, allowing for generalization of corresponding design rules. Addition-

ally, repeated crystallization and crystal removal without recycle was found to

be an e�cient structure in large parameter regions. This structure generates

higher purity products than a single crystallization step for solution crystal-

lization, whereas in melt crystallization a single crystallizer stage and repeated

crystallization are equivalent. Based on these results, it is recommended to test

for both types of con�gurations in addition to the countercurrent cascade for

�nding optimal multistage separation networks.
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3.4 Filtration

Separating components of a mixture using a semi-permeable membrane is

called �ltration. A driving force, e. g. a pressure di�erence between both

sides of a membrane, causes permeation through the membrane. The �ow

of substances with high permeability with regard to that membrane is higher

than that of substances with low permeability. Consequently, components with

high permeability are concentrated in the permeate and components with low

permeability are concentrated in the retentate, see Figure 3.30. Di�erent phys-

ical properties can be used to separate or purify products via �ltration, e. g.

solubility or molecule size. Filtration does not require phase changes to sepa-

rate components of a mixture and is therefore potentially more e�cient than

e. g. distillation. Membrane fouling poses a possible disadvantage for �ltration

processes. An overview on �ltration processes is given in [Wijmans and Baker,

1995].

3.4.1 Process Model

Single Units

The model describes permeation through a dense membrane based on the

solution-di�usion model described in [Wijmans and Baker, 1995] and used

more recently in [Micovic et al., 2014]. The driving force for permeation is

a chemical potential di�erence between both sides of a membrane, which is

induced by a pressure di�erence. The resulting di�usive �ow is determined

by the permeability of participating substances. Substances with high per-

meability are enriched in the permeate �ow. Large permeabilities result in

large permeate �ows, while large di�erences between permeabilities of di�er-

ent species imply high selectivity.

The speci�c permeate �ow ji according to the solution-di�usion model [Wij-

mans and Baker, 1995] is

ji = kP,i

(
xi,feed − xi,perm exp

(
−νi ∆P

RT

))
(3.85)

with the molar fraction of component i on the feed side xi,feed and on the per-

meate side xi,perm, pressure di�erence ∆P and temperature T . The parameter
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kP,i speci�es the permeability of the membrane with regard to component i. It

is dependent on the considered species, membrane type, membrane geometry

and temperature. The molar volume of a species is denoted as νi. For binary

mixtures i=A,B as studied in this thesis, component A is considered to have

a better permeability compared to B and thus is enriched in the permeate.

Component B is considered to be an impurity being enriched in the retentate.

In this work, the membrane is assumed to be in contact with a one-dimensional

plug-�ow feed side according to Figure 3.30. The feed side is assumed to be

ideally mixed in directions other than the �ow direction. Note that this ne-

glects additional concentration polarization due to a boundary layer at the

membrane. The retentate is collected on the feed side at the end of the unit

Figure 3.30: Puri�ed permeate �ows through a membrane due to a pressure di�er-

ence, increasing the impurity concentration in the retentate.

and the permeate over the whole length of the membrane. Permeate is re-

moved from the feed stream, so the impurity concentration on the feed side

increases from inlet to outlet. Consequently, the permeate impurity concen-

tration also varies over the length of the unit. The overall permeate �ow for

a �ltration unit is calculated by integrating the speci�c permeate �ow ji over

the membrane area AM in �ow direction z.

Pi =

∫
AM

ji dA =

zM∫
0

ji
∂A

∂z
dz =

∂A

∂z

zM∫
0

ji dz (3.86)

The integral is solved approximately by assuming a linear pro�le for ji:
zM∫
0

ji dz ≈ (0.5 ji|z=0 + 0.5 ji|z=zM) zM. (3.87)

With AM = ∂A
∂z
zM, the integral permeate �ow for each membrane unit n =
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Figure 3.31: Single membrane unit with feed molar �ow Fi,n, permeate molar �ow

Pi,n and retentate molar �ow Ri,n for components i=A,B.

1, . . . , nM separating a feed molar �ow Fi,n into a permeate molar �ow Pi,n and

a retentate molar �ow Ri,n for components i= A,B as in Figure 3.31 is then

calculated as

Pi,n = AM (0.5 ji,n|z=0 + 0.5 ji,n|z=zM), (3.88)

ji,n|z=0 = kP,i

(
xi,n,feed|z=0 − xi,n,perm|z=0 exp

(
−νi ∆P

RT

))
, (3.89)

ji,n|z=zM = kP,i

(
xi,n,feed|z=zM − xi,n,perm|z=zM exp

(
−νi ∆P

RT

))
, (3.90)

with the molar fraction of component i= A,B on the feed side xi,feed and on

the permeate side xi,perm de�ned by

xi,n,feed|z=0
∑
i

Fi,n = Fi,n, xi,n,feed|z=zM
∑
i

Ri,n = Ri,n, (3.91)

xi,n,perm|z=0
∑
i

ji,n|z=0 = ji,n|z=0, xi,n,perm|z=zM
∑
i

ji,n|z=zM = ji,n|z=zM .

(3.92)

The composition on the feed side at the inlet is equal to that of the overall feed

of the membrane unit, and at the outlet it is equal to that of the retentate.

Concentration polarization due to a boundary layer at the membrane surface is

neglected for this level of modeling detail. The composition at the membrane

surface on the permeate side is equal to the permeate composition due to the

�ow direction being strictly from feed side to permeate side.

The mass balance equation for the whole membrane unit reads

Ri,n = Fi,n − Pi,n, i=A,B, n=1, . . . , nM. (3.93)

The permeation model comprises Equations (3.88)-(3.93). Note that the re-

sulting equation system for calculating the permeate �ow is implicit.
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Network of Filtration Units

A �ltration network with stages n = 1, . . . , nM numbered downwards is con-

sidered. Note that the structure of this network is equivalent to that in Sec-

tion 3.2. Recall that each stage n separates a feed �ow into permeate and

retentate. Molar �ows of all species i= A,B for feed Fi,n, permeate Pi,n and

retentate Ri,n are used as variables. According to Section 3.2.4 using molar

�ows is suitable for global optimization of separation networks. Additionally,

Pi,n occurs in the following permeation model. Also using it in the separa-

tion network model reduces the number of required variables. The feed of

each stage Fi,n is the sum of all permeate �ows Pi and retentate �ows Ri con-

nected to that stage and, if applicable for that stage, the membrane network

feed �ow F InM . The distribution of the feed �ow and connections between

stages are implemented using binary variables βInM
n ∈ {0, 1}, βP

l,n ∈ {0, 1} and
βR
l,n ∈ {0, 1}, n = 1, . . . , nM, l = 1, . . . , nM. The variables βInM

n , βP
l,n and βR

l,n

attain a value of one if and only if the feed enters at stage n, the permeate

�ow of stage l is fed to stage n and the retentate �ow of stage l is fed to stage

n, respectively. The mass balance equations for each stage n = 1, . . . , nM then

read

Fi,n = zInM
i F InM βInM

n +
nM∑
l=1

Pi,l β
P
l,n +

nM∑
l=1

Ri,l β
R
l,n, i=A,B (3.94)

It is ensured that the feed enters exactly one stage by

nM∑
n=1

βInM
n = 1. (3.95)

The output �ow of each stage is connected to exactly one stage input or one

network output by

nM∑
n=1

βP
l,n + βP,Out1M

l = 1, l = 1, . . . , nM, (3.96)

nM∑
n=1

βR
l,n + βR,Out2M

l = 1, l = 1, . . . , nM, (3.97)

with βP,Out1M

l ∈ {0, 1} attaining value 1 if and only if the permeate of stage l

is connected to output Out1M and with βR,Out2M

l ∈ {0, 1} attaining value 1 if
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and only if the retentate of stage l is connected to output Out2M.

The product �ows are calculated as

FOut1M
i =

nM∑
n=1

βP,Out1M
n Pi,n, i=A,B, (3.98)

FOut2M
i =

nM∑
n=1

βR,Out2M
n Ri,n, i=A,B. (3.99)

The mass balance for the whole separation network reads

zInM
i F InM = FOut1M

i + FOut2M
i , i=A,B, (3.100)

with total molar �ow F InM and molar fractions zInM
i at the inlet and molar

�ows at the outlets FOut1M
i and FOut2M

i .

The product speci�cations are given as bounds to molar fractions zOut1M
B and

zOut2M
B :

up(zOut1M
B )) ≥ zOut1M

B =
FOut1M

B

FOut1M
A + FOut1M

B

, (3.101)

lo(zOut2M
B )) ≤ zOut2M

B =
FOut2M

B

FOut2M
A + FOut2M

B

. (3.102)

This is written as linear inequalities

(1− up(zOut1M
B ))FOut1M

B ≤ up(zOut1M
B )FOut1M

A , (3.103)

(1− lo(zOut2M
B ))FOut2M

B ≥ lo(zOut2M
B )FOut2M

A . (3.104)

It is assumed that the stages are ordered in terms of feed composition.

zA,n ≥ zA,n+1, n = 1, . . . , nM − 1 (3.105)

zB,n ≤ zB,n+1, n = 1, . . . , nM − 1 (3.106)

Permeate gets enriched in one component of a binary mixture and retentate

in the other. Therefore, permeate is always transported in one direction of the

membrane cascade and retentate in the opposite direction.

βP
l,n = 0 for all 1 ≤ l ≤ n, n = 1, . . . , nM (3.107)

βR
l,n = 0 for all n ≤ l ≤ nM, n = 1, . . . , nM (3.108)



73

(a) (b)

Figure 3.32: (a) Membrane network consisting of nM =3 stages with arbitrary con-

�guration. (b) Countercurrent membrane cascade with nM stages and arbitrary

feed stage (βP
l,l−1 = 1, l = 2, . . . , nM, βR

l,l+1 = 1, l = 1, . . . , nM − 1, βP,Out1M
1 = 1,

βR,Out2M

nM = 1).

All potential connections within the membrane network used in this work

are illustrated in Figure 3.32a for a �xed number of stages nM = 3. The

countercurrent cascade depicted in Figure 3.32b will serve as the benchmark

for any other con�guration within this superstructure.

Following restrictions for molar fractions at the outlets are known.

zInM
B < lo(zOut2M

B ) ≤ zOut2M
B ≤ 1 (3.109)

0 ≤ zOut1M
B ≤ up(zOut1M

B ) < zInM
B (3.110)

This is used to calculate additional bounds for the molar �ows at the outlets

based on Equations (3.100)-(3.102).

FOut1M
A ≥ zInM

A F InM
A − 1− lo(zOut2M

B )

lo(zOut2M
B )

F InM
B , (3.111)

FOut2M
A ≤ 1− lo(zOut2M

B )

lo(zOut2M
B )

F InM
B , (3.112)

FOut2M
B ≥ zInM

B F InM
B − up(zOut1M

B )

1− up(zOut1M
B )

F InM
A , (3.113)

FOut1M
B ≤ up(zOut1M

B )

1− up(zOut1M
B )

F InM
A . (3.114)

The separation network model comprises Equations (3.94)-(3.100) and (3.103)-

(3.106). Equations (3.107)-(3.108) and (3.111)-(3.114) are implemented as
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bounds to the respective variables.

Objective Function

Both dimension of the unit and energy consumption required for a separation

task scale with overall permeate �ow. Therefore, the permeation e�ort, i. e.

the ratio of overall permeate �ow to feed �ow, is used as the objective function

that is minimized.

JP =

∑nM

n=1 Pn
F InM

(3.115)

The permeation e�ort JP is analogous to the crystallization e�ort JS in Sec-

tion 3.2, both penalizing the required amount to be processed for a given feed

mass. In the following parameter studies, optimization results with regard to

these objective functions will be compared.

3.4.2 Computational Studies

This section deals with computational results based on the multistage �ltration

model given above.

Redundant con�gurations

The separation networks considered in this section are analogous to those in

Section 3.2 for crystallization. Consequently, the same kinds of redundancies

are expected. Additionally, simpli�cations in Equation 3.87 introduce some

unrealistic model behavior. Approximation of the actual concentration pro�le

along the length of the membrane unit leads to the results shown in Table 3.9.

A membrane unit operated at a given pressure di�erence and temperature is

arbitrarily split in two units with the same overall area. The retentate of the

�rst unit is fed to the second unit and the permeate of both units is collected

as the overall product. If operated at the same pressure di�erence and tem-

perature, the setup of two units generates the same amount of permeate with

the same composition as the single membrane unit does. However, Table 3.9

shows that the numerical results for both setups are di�erent, favoring two

membrane units. The single unit has less permeate �ow and a higher per-

meate impurity concentration than two connected units. Approximating the
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concentration pro�le along the membrane underestimates the e�ective driving

force for the separation of the mixture. Implementing the same membrane

area with two units allows a closer approximation of the concentration pro�le

and thus a more e�cient separation. This undesired numerical e�ect is treated

by de�ning an o�set for rating alternative con�gurations as better than coun-

tercurrent cascades. Alternative con�gurations with only minor improvements

compared to countercurrent cascades are thus removed from the results.

Table 3.9: Comparison of single membrane unit with two connected units.

single membrane unit two connected membrane units

∆P = 35·105 Pa

T = 313.15 K

F InM = 1 mol s−1

zInM
B = 0.05

kP,A = 0.5411 mol s−1 m−2, kP,B = 0.02104 mol s−1 m−2

νA = 1.95446·10−4 m3 mol−1, νB = 4.69981·10−4 m3 mol−1

A = 6 m2 A1 = 3 m2, A2 = 3 m2

zOut1M
B = 0.01454 zOut1M

B = 0.01392

FOut1M = 0.56039 mol s−1 FOut1M = 0.56629 mol s−1

Parameter Studies

Parameter studies analogous to those in Section 3.2 are carried out to allow

for comparing globally optimal multistage separation processes based on dif-

ferent technologies. A mixture of decane (species A) and hexacosane (species

B) is considered with parameter values taken from [Micovic et al., 2014]. Con-

centrations of hexacosane in the parameter studies below are limited to the

same range as in the experiments carried out in [Micovic et al., 2014]. The

feed composition and the permeability coe�cient of component B are varied

for following parameter studies. The feed composition is normalized to the
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product speci�cations according to

zInM
B,norm =

zInM
B − up(zOut1M

B )

lo(zOut2M
B )− up(zOut1M

B )
. (3.116)

The permeability coe�cient of component B is normalized to a reference value

as

kP,B,norm =
kP,B

kP,B,ref

. (3.117)

Decreasing this value decreases permeation of component B, thereby increas-

ing selectivity of the desired permeation product A.

Parameter and domain speci�cations are given in Table 3.10. Pressure and

temperature are �xed to constant values. The membrane area AM,n for each

stage n is a decision variable that determines the permeate yield. The remain-

ing decision variables are the binary variables β determining the con�guration

of the multistage separation network.

Table 3.10: Parameter and domain speci�cations for multistage membrane parameter

studies.

parameter value variable domain

kP,B,norm {0.05, 0.1, . . . , 2} zOut1M
B [0, 0.005]

zInM
B {0.01, 0.015, . . . , 0.095} zOut2M

B [0.1, 1]

nM {1, 2, 3, 4} z [0, 1]

∆P 35·105 Pa P,R, F [0 mol s−1, 10 mol s−1]

T 313.15 K β {0, 1}
F InM 1 mol s−1 AM [0 m2, 100 m2]

kP,A 0.5411 mol s−1 m−2 ∗
j i [0 mol s−1 m−2, kP,i]

kP,B,ref 0.02104 mol s−1 m−2 ∗

νA 1.95446·10−4 m3 mol−1 ∗

νB 4.69981·10−4 m3 mol−1 ∗

∗ [Micovic et al., 2014]

Figure 3.33 shows the results for globally optimal countercurrent membrane

cascades. The optimal number of stages is depicted in Figure 3.33a and the

optimal feed stage position in Figure 3.33b. The optimal number of stages

decreases for lower permeability of the impurity component and, to a smaller
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(a) Optimal number of stages.
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(b) Optimal feed stage position counted from top.

Figure 3.33: Globally optimal countercurrent membrane cascade con�gurations.

degree, lower feed concentration of impurity. In particular, if the permeability

of component B is reduced by 50 % - 80 % compared to the reference value,

one stage instead of two is su�cient for the given separation. The optimal feed

stage position is further away from the permeate product outlet Out1 if the

impurity concentration in the feed or the impurity permeability is high. Thus,
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for impure feed and low desired product selectivity, the feed stage number,

counted from top, is higher.

Qualitatively, these are the same results as in Section 3.2 for varying feed com-

position and selectivity for a melt crystallization process. However, possible

generalization of design rules proposed in that section requires the results for

general multistage con�gurations to also be comparable. Figure 3.35 depicts

parameter ranges were alternative con�gurations are better than countercur-

rent cascades and their relative optimal objective function value. Note that

only regions with at least 10% improvement are shown in Figure 3.35a to ex-

clude solutions that are predominantly based on numerical e�ects as discussed

in Section 3.4.2. Regions with improved alternative con�gurations are located

were the optimal feed position for countercurrent cascades switches from one

stage to the next. Largest improvements are found were the optimal counter-

current feed position switches from the �rst stage to the second. In region A in

Figure 3.35a, the region with the largest improvements, there are three equiv-

alent optimal con�gurations. These con�gurations, depicted in Figure 3.34,

are the same as in the corresponding parameter region for multistage crystal-

lization. In summary, this leads to the same design rules as for multistage

crystallization. It is su�cient to analyze optimal countercurrent membrane

cascades and only search for alternative con�gurations close to were the opti-

mal feed position changes.

(a) (b) (c)

Figure 3.34: Equivalent globally optimal con�gurations for region A in Figure 3.35.
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(b) Relative permeation e�ort of alternative con�gurations.

Figure 3.35: (a) Globally optimal con�gurations of general �ltration network de-

termined by stage number, feed stage and permeate transport. Only regions with

optimal con�gurations that use at least 10% less permeate than the countercur-

rent cascade are shown. (b) Relative permeation e�ort for alternative con�gurations

compared to the countercurrent cascade.
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3.4.3 Conclusion

Deterministic global optimization is applied to �nd the best con�guration for

multistage �ltration processes. Reductions of evaporation e�ort over 35%

where observed when using alternative con�gurations instead of countercurrent

cascades similar to corresponding values for multistage melt crystallization.

The same con�gurations found for melt crystallization and solution crystal-

lization in the previous sections are also encountered for �ltration in the same

parameter regions. This allows for generalizing corresponding design rules

also to a separation process di�erent from crystallization. Repeated partial

�ltration, analogous to repeated partial melt crystallization, is supposed to be

equivalent to a single �ltration step but behaves di�erently due to model sim-

pli�cations. According con�gurations are removed from optimization results.

The �ndings in this and the previous sections shows that only a small set

of con�gurations needs to be tested to determine optimal separation network

con�gurations if the cost is proportional to the amount being processed.
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4.1 Introduction

Distillation is the most widely applied unit operation for separation, but it is

an inherently energy-intensive process due to the heat required for vaporizing

liquid streams [Górak and Sorensen, 2014]. A possible way to reduce energy

consumption and cost is by combining distillation with other separation pro-

cesses such as melt crystallization or �ltration, exploiting advantages of each

process. One such application is combining high capacity of distillation and

high selectivity of melt crystallization for separating close boiling mixtures and

azeotropes. These processes already have various industrial applications, see

[Franke et al., 2008].

In this chapter, the computational feasibility of globally optimal �owsheet se-

lection for conceptual process design is studied with an exemplary process

combining distillation and melt crystallization units. For that goal, suitable

models for both unit operations as well as �owsheet and objective function

are established. Furthermore, certain properties of the distillation model are

discussed and used to further reduce the computational e�ort for global opti-

mization.

Deterministic global optimization of separating a binary mixture with distil-

lation and melt crystallization was �rst considered with a simpli�ed model

version in [Ballerstein et al., 2014] and extended in [Kunde et al., 2016] to in-

clude multistage nonideal crystallization, an improved model formulation for

distillation and a more detailed objective function. The discussion is extended

here with an analysis of model properties and comparisons with related distil-

lation models from the literature. With respect to [Kunde et al., 2016], process

models are updated to better comply with Section 3.2. Although changes are

minuscule, according numerical results were recalculated.

4.2 Process Model

In [Müller et al., 2011, Schäfer et al., 2012], a new type of process utilizing

thermomorphic solvent systems for the hydroformylation of long-chain ole�nes

based on renewable resources is presented. Among other measures, the reaction

product of the process considered there requires the separation of a mixture of
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the closely boiling isomers n-dodecanal and 2-methylundecanal, which is ex-

emplary also for a large class of other binary isomeric mixtures. The mixture

of n-dodecanal and 2-methylundecanal is zeotropic and close to ideal in the

liquid phase and the vapor phase. Due to a relatively low separation factor

for closely boiling components, stand-alone distillation may not be economical

for this separation task. Therefore, this case study evaluates �owsheet options

combining a distillation unit with a second separation process: melt crystalliza-

tion. The solid-liquid phase diagram of n-dodecanal and 2-methylundecanal

resembles the simple eutectic type. Due to the eutectic composition being close

to pure 2-methylundecanal, only crystallization of n-dodecanal is practicable.

Liquid inclusions and liquid adherent to crystal layers reduce the maximum

possible purity achieved in one crystallization step. For more details on the

properties of mixtures of n-dodecanal and 2-methylundecanal, see [Beierling

and Ruether, 2012, Micovic et al., 2013, Beierling et al., 2013, 2014]. In this

chapter, �owsheet selection using a level of modeling detail corresponding to

early stages in hierarchical design frameworks is considered. Results obtained

by analyzing those models based on mathematical optimization may be ad-

versely a�ected by poor local solutions. Stochastic or local optimization does

not provide a measure to evaluate the quality of local optima and generally can

not guarantee to �nd globally optimal solutions. Therefore, globally optimal

solutions obtained with deterministic global optimization software are used for

�owsheet selection in this case study. Computational feasibility is achieved by

providing suitable model formulations for distillation and melt crystallization.

Globally optimal objective function values are used to rate available �owsheet

options. In context of hierarchical design frameworks, the �owsheet options

with the best rankings are deemed most promising for further study with more

detailed process models in subsequent design steps. The following model em-

ploys total molar �ows and molar �ows or molar fractions of 2-methylundecanal

as variables. 2-methylundecanal represents the low-boiling component in dis-

tillation and the impurity component in crystallization.

It should be noted that in a recent publication [Nallasivam et al., 2016], deter-

ministic global optimization of multicomponent distillation networks is consid-

ered for minimum re�ux conditions. This restriction to minimum re�ux allows

using the much less complex Underwood equations for ideal or near-ideal mix-
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tures instead of a full tray-to-tray model. Using a tray-to-tray model allows

any re�ux rate and potentially enables the extension of methods to nonideal

separation.

4.2.1 Distillation Column

The separation of isomers n-dodecanal and 2-methylundecanal by distillation is

considered. The steady-state distillation model employs the assumption of con-

stant molar over�ow due to similar enthalpies of vaporization for n-dodecanal

and 2-methylundecanal. This assumption is used instead of implementing a

full enthalpy balance. Each stage of the distillation column is assumed to be

in thermodynamic equilibrium, which is described su�ciently accurate with

constant relative volatilities.

Figure 4.1: Balance envelopes for the distillation column model with rectifying sec-

tion (top), feed section (middle), and stripping section (bottom). [Reprinted from

Kunde et al., 2016, with permission from Elsevier]

The distillation column comprises three sections as illustrated in Figure 4.1.

The stages of the stripping section including a total reboiler are labeled down-

wards by lr∈{1, . . . , lmax
r }. The stages of the rectifying section including a total

condenser are labeled upwards by ls ∈ {1, . . . , lmax
s }. The distillation column

superstructure allows for varying lengths of rectifying and stripping section.

The maximum number of stages in the rectifying and stripping section are

given by lmax
r and lmax

s , respectively. As explained further below, actual re-
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alizations of the superstructure generally have less stages than the maximum

number. The feed stage with saturated liquid feed �ow is labeled with �feed�.

The vapor �ow entering the feed stage from the stripping section is labeled

with �feed+1� and the liquid �ow entering the feed stage from the rectifying

section is labeled �feed−1�. The molar fraction of the low-boiling component

in internal liquid molar �ows is denoted as x∈ [0, 1], in internal vapor molar

�ows V as y ∈ [0, 1] and in external molar �ows F as z ∈ [0, 1], with molar

�ows being nonnegative. The distillate is labeled �Out1Col�, the bottoms as

�Out2Col� and the feed as �InCol�. The overall material balances for the column

then read

F InCol = FOut1Col + FOut2Col , and (4.1)

F InCol zInCol = FOut1Col zOut1Col + FOut2Col zOut2Col . (4.2)

Internal �ow ratios νr = V−FOut1Col

FOut1Col
∈ [0, 1] and νs = V

V+FOut2Col
∈ [0, 1] are used

as variables for internal material balances and implemented as

0 = (1− νr)V − FOut1Col , 0 = −νs (V + FOut2Col) + V. (4.3)

This allows writing internal material balances entirely without molar �ows as

yrect
lr+1 = νr x

rect
lr + (1− νr) z

Out1Col , lr = 1, . . . , lmax
r −1, (4.4)

0 = νs y
feed+1 − νs y

feed + νr νs x
feed−1 − xfeed + (1− νr νs) z

InCol , (4.5)

xstrip
ls+1 = νs y

strip
ls

+ (1− νs) z
Out2Col , ls = 1, . . . , lmax

s −1. (4.6)

Note that each set of values for νr and νs uniquely determines this set of equality

conditions. Using internal molar �ows instead would allow for di�erent sets of

values to result in the same set of equality conditions (see also Equation 4.3),

rendering the solution landscape more complex.

The phase equilibrium equations based on constant relative volatilities read

(αxrect
lr + (1− xrect

lr )) yrect
lr = αxrect

lr , lr = 1, . . . , lmax
r , (4.7)

(αxfeed + (1− xfeed)) yfeed = αxfeed, (4.8)

(αxstrip
ls

+ (1− xstrip
ls

)) ystrip
ls

= αxstrip
ls

, ls = 1, . . . , lmax
s . (4.9)

Due to using the assumption of total reboiler and total condenser, the mo-

lar fractions of the low-boiling component in the product outlets zOut1Col and
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zOut2Col are given as

zOut1Col = yrect
1 , zOut2Col = xstrip

1 . (4.10)

The column superstructure allows variable lengths of both stripping section

and rectifying section. The actual number of active stages is �xed by additional

constraints as in [Ballerstein et al., 2014], labeled as coupling conditions. As an

example, for a rectifying section with length lr, the coupling conditions enforce

equality of the liquid �ow leaving the stage with number lr and the liquid

�ow entering the feed stage labeled with �feed−1�. The total molar �ows are

equal due to the assumption of constant molar over�ow, reducing the coupling

condition to equal molar fractions xrect
lr

= xfeed−1. The stripping section is

treated analogously to the rectifying section. Binary variables βrect
lr
∈ {0, 1},

lr = 1, . . . , lmax
r , and βstrip

ls
∈{0, 1}, ls = 1, . . . , lmax

s are introduced to implement

variable lengths of column sections as

xfeed−1 =

lmax
r∑
lr=1

βrect
lr xrect

lr , xfeed =

lmax
r∑
lr=1

βrect
lr xrect

lr+1,

yfeed+1 =

lmax
s∑
ls=1

βstrip
ls

ystrip
ls

, xfeed =

lmax
s∑
ls=1

βstrip
ls

xstrip
ls+1,

(4.11)

lmax
r∑
lr=1

βrect
lr xrect

lr+1 =

lmax
s∑
ls=1

βstrip
ls

xstrip
ls+1. (4.12)

Equation (4.12) is derived by combining Equations (4.11) and is added to the

model for improved computational performance.

The number of stages in the rectifying section is �xed to lr by setting βrect
lr

=1

and the number of stages in the stripping section is �xed to ls by setting

βstrip
ls

=1. The numbers of stages in both sections are uniquely determined by

lmax
r∑
lr=1

βrect
lr = 1 and

lmax
s∑
ls=1

βstrip
ls

= 1. (4.13)

The total number of stages in the column lCol including rectifying section,

stripping section and feed stage is calculated as

lCol :=

lmax
r∑
lr=1

βrect
lr lr +

lmax
s∑
ls=1

βstrip
ls

ls + 1. (4.14)



87

The distillation model comprises Equation (4.1)-(4.14). In the following sec-

tion, properties of the distillation model are discussed and used to add further

constraints to the model.

4.2.2 Properties of Distillation Model

The molar fraction pro�le of the low-boiling component in this distillation col-

umn model is monotonically increasing from reboiler to condenser. Although

this is well-known, there seems to be no mathematically formal proof for this

behavior in the literature. Therefore, a proof is given below for the monotonic-

ity of the molar fraction pro�le of 2-methylundecanal in the stripping section

of the distillation column model as introduced in Section 4.2.1. The proof for

monotonicity in the rectifying section can be done analogously and is therefore

not shown here. Superscripts indicating the stripping section are omitted in

this section for better readability.

The mass balance for 2-methylundecanal, Equation (4.6), reads

xls+1 = ν y(xls) + (1− ν)x1 =: f(xls),

with the vapor molar fraction y(xls) being a function of the liquid molar frac-

tion xls . It will be shown that

xls+1 ≥ xls holds for all ls = 1, . . . , lmax
s −1.

For this, basic properties of the function for the vapor-liquid-equilibrium y(xls)

are considered �rst.

Observation 1. Let y : [0, 1]→ [0, 1] be de�ned by y(xls) :=
αxls

(α−1)xls+1
, with

parameter α>1. Then,

(a) y is strictly increasing on [0, 1], and

(b) y(xls) ≥ xls, for all xls ∈ [0, 1].

Proof. Statement (a) follows from the fact that the partial derivative

∂y

∂xls
(xls) =

α(
(α− 1)xls + 1

)2 > 0, for all xls ∈ [0, 1].
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As (α− 1)xls + 1>0 is satis�ed for each xls∈ [0, 1], the Statement (b) holds if

and only if αxls ≥ (α − 1)x2
ls

+ xls holds for all xls ∈ [0, 1]. As α − 1> 0, the

latter statement is equivalent to 0 ≥ x2
ls
− xls = xls (xls − 1) for all xls ∈ [0, 1],

which is true.

In particular, the proof shows that y(xls)>xls holds for all xls∈(0, 1). Now note

that the recursive formula f(xls) is a linear function in yls with non-negative

slope ν. As a direct consequence of Observation 1, the following properties of

f(xls) are obtained.

Observation 2. Let ν ∈ [0, 1] and x1 ∈ [0, 1] be given. Then, the function

f : [0, 1]→ R, xls 7→ f(xls) := ν y(xls) + (1− ν)x1

satis�es the following properties:

(a) f(x1) ≥ x1,

(b) f(xls) is monotonically non-decreasing on [0, 1],

(c) f(xls) ∈ [0, 1] holds for all xls ∈ [0, 1].

Proof. Using y(x1) ≥ x1 from Observation 1 leads to f(x1) = ν y(x1) + (1 −
ν)x1 ≥ ν x1 + (1− ν)x1 = x1 , which proves Statement (a).

Statement (b) follows from Observation 1 as ∂f
∂xls

(xls) = ν ∂y
∂xls

(xls) ≥ 0.

Statement (c) is true as the value f(xls) is a convex combination of the number

x1 ∈ [0, 1] and the number y(xls) ∈ [0, 1].

The proof of Statement (b) implies that f is strictly increasing on [0, 1] if

ν > 0.

Iteratively applying the results of Observation (2) �nally leads to

x1 ≤ f(x1) = x2 ≤ f(x2) = x3

≤ . . . ≤ f(xlmax
s −2) = xlmax

s −1 ≤ f(xlmax
s −1) = xlmax

s
.

Note that the properties discussed above are given implicitly by the model

equations, but are not necessarily recognized or exploited by general optimiza-

tion algorithms. Therefore, corresponding explicit constraints are added to

the model to improve the convergence rate of branch-and-bound algorithms.
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Based on the monotonicity of molar fraction pro�les, following constraints are

added to the distillation model.

xstrip
ls
≥ xstrip

ls−1, ystrip
ls
≥ ystrip

ls−1 , ls = 2, . . . , lmax
s (4.15)

xrect
lr ≤ xrect

lr−1, yrect
lr ≤ yrect

lr−1, lr = 2, . . . , lmax
r (4.16)

Molar fractions in consecutive stages of the rectifying and stripping section

are calculated by the recursion formulas de�ned in Equation (4.4) and Equa-

tion (4.6). Due to monotonicity, the �xed points yrect
∗ , xrect

∗ , ystrip
∗ , xstrip

∗ ∈ [0, 1]

of that recursion are bounds to the molar fractions on each stage. The def-

initions of the �xed points are added to the model as Equation (4.17) and

Equation (4.18).

xstrip
∗ = νs y

strip
∗ + (1− νs) z

Out2Col ,

(αxstrip
∗ + (1− xstrip

∗ )) ystrip
∗ = αxstrip

∗ ,
(4.17)

yrect
∗ = νr x

rect
∗ + (1− νr) z

Out1Col ,

(αxrect
∗ + (1− xrect

∗ )) yrect
∗ = αxrect

∗ .
(4.18)

The �xed points are used in the following constraints to implement bounds to

molar fractions in each column section.

xstrip
ls
≤ xstrip

∗ , ystrip
ls
≤ ystrip

∗ , ls = 1, . . . , lmax
s (4.19)

xrect
ls ≥ xrect

∗ , yrect
ls ≥ yrect

∗ , ls = 1, . . . , lmax
s (4.20)

Recall that the coupling conditions in Equation (4.11)-(4.12) ensure that molar

fractions in di�erent sections associated with each other are equal. Therefore,

feasible ranges for molar fractions in rectifying and stripping section are re-

quired to overlap, leading to

xrect
∗ ≤ xstrip

∗ , yrect
∗ ≤ ystrip

∗ . (4.21)

The distillation model de�ned in Section 4.2.1 is expanded by Equations (4.15)-

(4.21).

Note that in [Ballerstein et al., 2014] and [Mertens et al., 2016], the recursion

formulas in Equation (4.4) and Equation (4.6) are used to propagate bounds

on molar fractions from one stage to the next, starting from the outlets. This

leads to regions comprising all possible molar fraction pro�les in the column
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sections as well as possible feed stage positions as illustrated in Figure 4.2.

Monotonicity of molar fraction pro�les, as discussed above, is one of the key

requirements for this bound propagation. The technique is used to reduce the

domain in each node of a branch-and-bound algorithm, signi�cantly reduc-

ing computational e�ort. However, this technique requires alteration of the

optimization algorithm itself, which is outside the scope of this work.

(a) (b) (c)

Figure 4.2: Regions of all possible molar fraction pro�les and feed stage positions

for (a) loose bounds on outlet molar fractions, (b) tighter bounds and (c) infeasible

conditions.

Remark on Non-Ideal Phase Equilibria Monotonicity in binary distil-

lation columns also holds for general functions y, provided that all proper-

ties of Observations (1) and (2) are valid in [xlo, xup], 0 ≤ xlo < xup ≤ 1 and

x1 ∈ [xlo, xup]. This allows for applying monotonicity-based techniques for

a large range of binary mixtures. In particular, this also includes binary

azeotropic mixtures.

Remarks on Multicomponent Mixtures Monotonicity of molar fraction

pro�les in distillation columns does not hold in general for multicomponent

mixtures. However, for ideal phase equilibria, monotonicity holds for pseudo-

components x̃ and ỹ de�ned as

x̃j,n =

j∑
i=1

xi,n, ỹj,n =

j∑
i=1

yi,n, j = 1, . . . , NC−1, (4.22)
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with NC being the number of components in the mixture.

Given mass balances for the stripping section of a distillation column

xstrip
i,ls+1 = νs y

strip
i,ls

+ (1− νs) z
Out2Col
i , ystrip

i,1 = zOut2Col
i , (4.23)

and an ideal phase equilibrium with relative volatilities α1>α2>. . .>αNC
=1

(

NC − 1∑
i=1

(αi − 1)xstrip
i,ls

+ 1) ystrip
i,ls

= αix
strip
i,ls

(4.24)

for all ls = 1, . . . , lmax
s −1 and j = 1, . . . , NC−1, it is shown in [Mertens et al.,

2016] that

x̃strip
j,ls+1 ≥ x̃strip

j,ls
holds for all ls = 1, . . . , lmax

s −1, j = 1, . . . , NC−1. (4.25)

Note that this also implies monotonicity in the rectifying section. Conse-

quently, the bound tightening technique developed in [Ballerstein et al., 2014]

for binary mixtures is extended in [Mertens et al., 2016] to ideal multicompo-

nent mixtures.

However, monotonicity is actually not necessary for the bound tightening tech-

nique, but rather

x̃strip
j,ls
≥ x̃strip

j,1 holds for all ls = 2, . . . , lmax
s , j = 1, . . . , NC−1, (4.26)

which is true for general phase equilibria with

ỹstrip
j,ls
≥ x̃strip

j,ls
. (4.27)

This allows for extending the bound tightening strategy from [Ballerstein et al.,

2014] to non-ideal mixtures with according properties. The proof for Equa-

tion (4.26) is given in Appendix B.

4.2.3 Countercurrent Crystallizer Cascade

This section describes a crystallization process for the separation of n-dodecanal

and 2-methylundecanal. The solid-liquid equilibrium of the considered mix-

ture is of the simple eutectic type. The eutectic point is close to pure 2-

methylundecanal. Therefore, only crystallization of n-dodecanal with impu-

rities of 2-methylundecanal is considered. Crystal product impurities are de-

scribed by a constant di�erential distribution coe�cient as in [Wellingho� and
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Wintermantel, 1991, Micovic et al., 2013]. The according experimental data

is published in [Micovic et al., 2013] and [Beierling and Ruether, 2012]. Based

on the conditions outlined above, the model presented in Section 3.2 is applied

in this section as well. The con�guration is �xed to a countercurrent cascade

with two stages, depicted in Figure 4.3.

Figure 4.3: Countercurrent two-stage crystallizer with arbitrary feed stage. Molten

crystal product is transported upwards. Liquid remainder is transported downwards.

[Reprinted from Kunde et al., 2016, with permission from Elsevier]

Mass balances for the input of each stage read

F1 = F InCrβInCr
1 + S2 (4.28)

Fimp,1 = F InCr
imp β

InCr
1 + Simp,2 (4.29)

F2 = F InCrβInCr
2 + L1 (4.30)

Fimp,2 = F InCr
imp β

InCr
2 + Limp,1, (4.31)

with the feed stage being determined by binary variables βInCr
1 , βInCr

2 ∈{0, 1}.
The following constraint ensures that exactly one of the stages is appointed as

feed stage.

βInCr
1 + βInCr

2 = 1 (4.32)

Model equations describing separation by melt crystallization read for each

stage n=1, 2:

Limp,n = Ỹ kdiff
n Fimp,n, Simp,n = Fimp,n − Limp,n,

Ln = Ỹ Fn, Sn = Fn − Ln.
(4.33)

Output �ows of the crystallizer unit are de�ned as

FOut1Cr = S1, FOut1Cr
imp = Simp,1, (4.34)

FOut2Cr = L2, FOut2Cr
imp = Limp,2. (4.35)
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Molar fractions of impurity in the liquid remainder are constrained to values

below its eutectic value xeut due to eutectic-type solid-liquid phase behav-

ior. Practical limitations to the minimum cooling temperature may further

restrict feasible values for the molar fraction of 2-methylundecanal. For simple

eutectic-type solid-liquid phase behavior, each equilibrium temperature corre-

sponds to a uniquely determined equilibrium composition on each side of the

eutectic point. Therefore it is su�cient to determine a maximum molar frac-

tion of 2-methylundecanal xmax
imp to cover both eutectic point and temperature

limitations, whichever is more restrictive. Physical data of 2-methylundecanal

and n-dodecanal from [Micovic et al., 2013] is used here. The constraint is

implemented as

xmax
imp Ln ≥ Limp,n, n = 1, 2. (4.36)

4.2.4 Flowsheet Options

A straight-forward approach is used to generate �owsheet options for this case

study. More complex process engineering tasks may require a systematic gen-

eration of �owsheet options as covered by the literature [e. g., Holtbruegge

et al., 2014, Quaglia et al., 2015].

Flowsheets comprising up to two melt crystallization units and one distillation

column are considered. Distillation is capable of separating the binary mixture

of n-dodecanal and 2-methylundecanal into pure substances, while crystalliza-

tion is practically only suitable to produce pure n-dodecanal due to the position

of the eutectic point, thus reducing the number of feasible �owsheets. Further

�owsheet options are excluded by forbidding streams previously enriched in n-

dodecanal from mixing with those enriched in 2-methylundecanal. Each �ow is

directed to exactly one unit or alternatively collected as one of the two overall

product �ows, stream splitting is not considered. The resulting six �owsheets

are listed in Figure 4.4, with the mixture feed �ow labeled as �N,iso�, product

concentrated in n-dodecanal labeled as �N� and product concentrated in 2-

methylundecanal labeled as �iso�. Model parameters and speci�cations of the

separation task determine the feasibility and optimality of those remaining

�owsheets, which will be identi�ed using deterministic global optimization.

Note that �owsheet candidates for this process are also studied in [Micovic



94

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Flowsheet options. The square symbol represents a countercurrent crys-

tallizer cascade with two stages and arbitrary feed stage. Unit outlets assigned with

�N� are collected at product outlet �Out1Sys� and unit outlets assigned with �iso�

are collected at product outlet �Out2Sys�. [Reprinted from Kunde et al., 2016, with

permission from Elsevier]

et al., 2013] using stochastic optimization. However, �owsheet option (b) in

Figure 4.4 is not included there. The following mass balances are added to

model the di�erent �owsheet options, with system feed inlet �Insys� and sys-

tem product outlets �Out1sys� and �Out2sys�.

F InCr = F InsysβCr
sys + FOut2ColβCr

Col2 (4.37)

F InCr
imp = zInsysF InsysβCr

sys + zOut2ColFOut2Col βCr
Col2 (4.38)

F InCol = F InsysβCol
sys + FOut1CrβCol

Cr1 + FOut2CrβCol
Cr2 (4.39)

zInColF InCol = zInsysF InsysβCol
sys + FOut1Cr

imp βCol
Cr1 + FOut2Cr

imp βCol
Cr2 (4.40)

FOut1sys = FOut1Col + FOut2Crβsys1
Cr2 (4.41)

zOut1sysFOut1sys = zOut1ColFOut1Col + FOut2Cr
imp βsys1

Cr2 (4.42)

FOut2sys = FOut2Colβsys2
Col2 + FOut1Crβsys2

Cr1 (4.43)

zOut2sysFOut2sys = zOut2ColFOut2Colβsys2
Col2 + FOut1Cr

imp βsys2
Cr1 (4.44)

Binary parameters β are used to �x di�erent �owsheet variants. Parameter

values for according �owsheet options are given in Table 4.1.
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Table 4.1: Parameter values de�ning �owsheet options in Figure 4.4.

�owsheet option βCr
sys βCol

sys βCol
Cr1 βsys2

Cr1 βCol
Cr2 βsys1

Cr2 βsys2
Col2 βCr

Col2

(a) 1 0 0 1 1 0 1 0

(b) 1 0 0 1 1 0 0 1

(c) 1 0 1 0 0 1 1 0

(d) 0 1 0 0 0 0 1 0

(e) 0 1 0 1 0 1 0 1

(f) 0 1 0 1 1 0 0 1

Each feasible process variant needs to satisfy product purity requirements,

which is implemented by setting an upper bound to zOut1Sys and a lower bound

to zOut2Sys . In addition to the equations above, an overall mass balance for the

entire separation network is included in the model as follows.

zInsysF Insys = zOut1sysFOut1sys + zOut2sysFOut2sys (4.45)

4.2.5 Objective Function

An economic objective function adopted from [Micovic et al., 2013, Franke

et al., 2004, 2008] and used in [Kunde et al., 2016] is also used here to evaluate

the di�erent �owsheet options. The main features of the cost model, which is

mostly based on estimations from [Douglas, 1988], are described below. The

original publications are referred to for more details on the cost model.

Total annual costs (TAC) of the process are used as the objective function.

The objective function comprises operating costs and annualized investment

costs for both the distillation column and the melt crystallization units. Cal-

culating the contributions of shell and packings of the distillation column to

the investment costs requires knowledge of the column diameter. The �ooding

point model from [Ma¢kowiak, 2010] is adapted here to estimate the column

diameter. Approximating the required column cross section area for 80% of

the critical vapor �ow velocity as a linear function of liquid and vapor molar

�ows assuming constant physical properties leads to a su�ciently accurate es-

timation with low computational e�ort. Of course, this measure also implies

that coe�cients in the cost model need to be adjusted accordingly for di�erent

case studies. Providing heat through steam for the desired vapor �ow and
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cooling water for heat removal at the condenser determine the operating costs

of the distillation column. The crystallizer units require a heat exchanger as

well as a storage tank for each stage as investments. The equipment size is

designed for crystallization in a single vessel and using tanks for intermediate

storage to enable multistage operation. The capacity of the storage tanks is

the same as the maximum capacity of the crystallizer. The cooling required for

producing a desired amount of crystal is used to calculate the operating costs

for the crystallizer units according to [Wellingho� and Wintermantel, 1991].

The cost model employed in this work contains many parameters speci�c to

the design task of the considered case study, reducing comparability to other

design tasks. However, computational feasibility as one of the main topics of

this case study requires �rst and foremost reproducible computational results.

Therefore, the complete objective function written in the condensed form that

was used for implementation is provided below.

JTAC =

( 17544V s mol−1

+2364.5 (0.2 lCol + 4)0.82
(
0.2378V s mol−1 + 0.0221FOut2Col s mol−1

)0.533

+2009.7 lCol
(
0.2378V s mol−1 + 0.0221FOut2Col s mol−1

)
−171.4 lCol

(
0.2378V s mol−1 + 0.0221FOut2Col s mol−1

)0.5

+173.6 lCol + 42030 (
nCr∑
n=1

Sn s mol−1)0.65 + nCr 3186.8 (
nCr∑
n=1

Sn s mol−1)0.32

+23465
nCr∑
n=1

Sn s mol−1 )e a−1

(4.46)

4.3 Computational Results

This section deals with computational results for the �owsheet selection prob-

lem de�ned above. First, the e�ect on computational performance of adding

redundant equations to the model is evaluated. The computationally more

e�cient model formulation is then used to calculate optimal cost values for

each �owsheet option.
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4.3.1 E�ect of Monotonicity Constraints on Computa-

tion Time

Additional constraints may be used by a solver to more e�ciently reduce the

search space during optimization, but they also increase model size. The e�ect

of including redundant constraints on the computation time for solving the dis-

tillation column model is evaluated in this section. The distillation model in

Section 4.2.1 is solved with regard to objective function Equation (4.46) with

and without the monotonicity constraints developed in Section 4.2.2. Prod-

uct purity constraints are applied directly to the column outlets compositions

zOut1Col and zOut1Col . Results are obtained by using BARON 15.9.22 (GAMS

24.6.1, Linux, x64). CPLEX 12.6.3 and CONOPT 3.17A are facilitated as

subsolvers for BARON. The solver options are left at default values except for

the BARON option �NumLoc 0� and the termination condition �optcr�, the rel-

ative di�erence between upper and lower bound, which was set to 0.0001. The

processes are run consecutively in a virtual Linux environment on a standard

desktop computer (Intel® Core� i5-6500 @ 3.20GHz). The memory allocated

to each process is 2048MB. Global solutions as calculated beforehand by the

solver are provided as initial solutions. This reduces the task of the solver

to proving global optimality of the initial solution and thus removes search-

ing for good local solutions as an in�uence on computation time. Parameter

and domain speci�cations are given in Table 4.2, the resulting computation

time is depicted in Figure 4.5. Including the monotonicity constraints Equa-

tions (4.15)-(4.21) leads to a reduction of the median computation time for

solving the optimization problem from over 100 s to less than 50 s. Therefore,

monotonicity constraints are also used in the following calculations.

Table 4.2: Monotonicity constraints: Parameter and domain speci�cations for com-

putation time comparison.

parameter value variable domain variable domain

F InSys 1 mol s−1 lCol [3, 50] V [0 mol s−1, 20 mol s−1]

zInsys 0.1 zOut2Col [0, 0.01] F [0 mol s−1, 1 mol s−1]

lmax
r 50 zOut1Col [0.99, 1] β {0, 1}
lmax
s 50 x, y, ν [0, 1]
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(a) Distillation column model without monotonicity constraints.
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(b) Distillation column model with monotonicity constraints.

Figure 4.5: Distribution of CPU time reported by BARON for solving 500 instances

of the distillation column model with random permutations of equation and variable

order and 99% con�dence intervals for the median (white box), P0.02275 and P0.97725

(whiskers) of the true CPU time distribution.
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4.3.2 Comparison of Mixed-Integer Design Models

There are numerous ways to implement models for distillation column opti-

mization [Barttfeld et al., 2003, Grossmann et al., 2005]. One such imple-

mentation is selected for comparison of computational performance with the

model presented in this work. The same setup as in Section 4.3.1 is solved for

the well known distillation model formulation described in [Viswanathan and

Grossmann, 1993]. This reference model uses liquid molar �ows instead of �ow

ratios and a di�erent superstructure to implement variable column con�gura-

tions, illustrated in Figure 4.6. Monotonicity constraints like Equations (4.15)-

(4.21) in Section 4.2.2 can not be implemented in a straight-forward way for

the reference model and are thus not included. Using the reference model,

the optimization problem is not solved in ten hours of computation time for

a single run. The lower bound for the objective value of the reference model

calculated after this time is 57.2 % of the global optimum. Even considering

statistical variation of computation time, this is orders of magnitude slower

than solving the optimization problem using the model formulation proposed

in this work. The full equations of the reference model as well as parameter

and domain speci�cations are listed in Appendix C.

Figure 4.6: Column model superstructure as presented in [Viswanathan and Gross-

mann, 1993] with variable feed position and distillate re�ux position.
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4.3.3 Comparison with Fenske-Underwood-Gilliland

Short-cut methods are often applied to obtain �rst estimates for distillation

column designs in early steps of design frameworks. One of the most prominent

methods is based on the work of Fenske, Underwood and Gilliland, see Ap-

pendix D for a detailed description. The so called Fenske-Underwood-Gilliland

(F-U-G) method provides a correlation between number of stages and re�ux

ratio for a given separation task, which is used for economical evaluation and

optimization. It does not require a full tray-by-tray column model and there-

fore allows faster calculation. However, the F-U-G method deploys an empiri-

cal correlation in addition to the assumptions made for the tray-by-tray model

in Section 4.2.1, introducing deviations from the exact solution. Figure 4.7

shows two example calculations comparing the F-U-G method and results ob-

tained from the model given in Section 4.2.1. The results are calculated for

�xed product speci�cations, obtaining a feasible solution for the vapor �ow for

each �xed number of stages with GAMS/BARON. Figure 4.7 demonstrates

that the F-U-G method �ts the exact solution well in some cases, but may

also express deviations over 20% in both number of stages and vapor �ow in

other cases. Therefore, it should be followed up by more rigorous methods

when deployed as a �rst step in hierarchical design frameworks.
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(a) Case 1: zIn=0.5, F In=1mol s−1,

α=1.3, zOut1=0.95, zOut2=0.05, q=1
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Figure 4.7: Correlation between number of stages and vapor �ow for binary separa-

tion tasks.
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4.3.4 Optimal Flowsheet Results

In this section, �owsheet options for the separation of n-dodecanal and 2-

methylundecanal using distillation and crystallization units are evaluated based

on globally optimal solutions of a conceptual process model. Utilizing deter-

ministic global optimization prevents results from being adversely a�ected by

poor local optima. Hierarchical design frameworks pro�t from this strategy as

later design steps rely on optimization results from prior steps.

The deterministic global optimization software BARON 11.5.2 (GAMS 23.9.5,

Linux, x64) is applied for minimizing the objective function of the process

model described above. CPLEX 12.4.0.1 and CONOPT 3.15G are chosen as

subsolvers required by BARON for linear programming and non-linear pro-

gramming. Solver options are set to default values except. Only the termina-

tion condition �optcr�, the relative di�erence between upper and lower bound,

is set to 0.0001. Note that only one global optimum is identi�ed using these

options even in the case of multiple global optima. The GAMS processes are

executed consecutively with 2048MB of memory allocated to each process. A

standard desktop computer (Intel® Core� i5-6500 @ 3.20GHz) with a vir-

tual Linux environment is used for the computations.

There is no initial solution provided to the solver. Finding good local solutions

early allows for more e�cient bounding and thereby in�uences the overall com-

putation time. Therefore, the complete evolution of upper and lower bound

to the objective function during branch-and-bound is reported Table 4.3 lists

the parameters and domains of variables used in this case study.

GAMS reports the size of the optimization problem as 1008 equality and in-

equality conditions and 525 variables with 156 of these being binary variables.

The model has 3640 nonzero elements with 1816 being non-linear. The su-

perstructure for the distillation column allows approximately 3200 possible

con�gurations and the operating parameters correspond to two real-numbered

degrees of freedom. The superstructures for the distillation units each allow

two possible con�gurations with two real-numbered degrees of freedom for the

operating parameters.

The computational results are given in Figure 4.8. The computation time

ranges in the order of over twelve minutes to under �ve hours, which is feasible

for this optimization task also considering the size of the problem. Flowsheet
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Table 4.3: Parameter and domain speci�cations for the hybrid separation process.

[Reprinted from Kunde et al., 2016, with permission from Elsevier]

parameter value variable domain

F InSys 1.8 mol s−1 lCol [3, 80]

zInSys 0.1 zOut1Sys [0, 0.01]

kdiff 0.086a zOut2Sys [0.99, 1]

xminT 0.9 w, x, y, z, Y, k, ν [0, 1]

α 1.37 S, L, V, F [0 mol s−1, 64.8 mol s−1]

lmax
r 80 β {0, 1}
lmax
s 80

a[Beierling and Ruether, 2012, Beierling et al., 2013]

option (b) (see Figure 4.4 for the graphical representation) is identi�ed as the

globally optimal �owsheet. The optimal cost of �owsheet option (b) is ap-

proximately 2% lower than the optimal cost of �owsheet option (a), which is

essentially the same �owsheet without feedback loops. The feedback �ow in

�owsheet option (b) is small resulting in a correspondingly small di�erence of

the objective function values for both �owsheets. However, the modeling detail

of conceptual process models used in this design step does not cover possible

undesired e�ects of feedback loops that may arise in later design steps with

more detailed models. Therefore, both �owsheet options (a) and (b) should

be included in further investigations. The stand-alone distillation column (d)

is better than �owsheet options (c) and (e) despite added crystallizer units.

Note that parallelization is expected to signi�cantly increase computational

performance as is already implied in Chapter 2. As a second note, good local

optima are quickly determined by BARON. The majority of time is spent on

identifying solutions within the range of the termination conditions and on

converging the lower bound to prove that no better solution exists. Recall,

lower bounds to the objective function for evaluation of the quality of local

solutions are not provided by local or stochastic methods, potentially leading

to wrong results for the design task.

It should be noted that the computational performance may strongly depend

on the software version of BARON and utilized subsolvers. Figure 4.9 depicts

the computation time for solving �owsheet option (c) with selected GAMS
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Figure 4.8: Optimization progress and globally optimal objective function for each

�owsheet option. Same order as in Figure 4.4.

versions and according versions of BARON and subsolvers. Hardware, soft-

ware and options are the same as for Figure 4.8. A globally optimal solution is

provided as initial point. The resulting computation time varies over one order

of magnitude, with newer software versions not being strictly faster than older

versions. Regardless of this variation, the model formulation presented in this

work provides a feasible method for obtaining globally optimal solutions for

conceptual design of combined distillation/melt crystallization processes.

4.4 Conclusion

Flowsheet selection is a fundamental step in process design that is adversely

a�ected by poor local optima. Application of deterministic global optimization

for reliable �owsheet selection is demonstrated for a process combining distil-

lation and melt crystallization units. Providing suitable model formulations

allows for globally solving more complex models than previously published.

This enables using tray-by-tray distillation models instead of or subsequent

to shortcut methods, e. g. Fenske-Underwood-Gilliland, in hierarchical design

frameworks, increasing model validity for the cost of increased model complex-

ity.
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Hierarchical design frameworks allow to apply deterministic global optimiza-

tion when computationally feasible and only switch to other methods when

it becomes necessary. Thereby the most fundamental choices for design tasks

solved in hierarchical frameworks can be guaranteed not to su�er from poor lo-

cal optima. In this work the application of deterministic global optimization to

conceptual process models originating from early design stages or lower steps

of a hierarchical design framework is demonstrated. Suitable model formula-

tions are provided that allow analysis and design of selected processes based

on globally optimal solutions.

The work presented here allows to extend the application of global optimization

to new processes. As one of the results, design rules for multistage separation

processes are derived from analyzing the in�uence of process parameters on

globally optimal con�gurations. In more detail, multistage con�gurations for

three separation processes, namely melt crystallization, solution crystallization

and �ltration, are studied using global optimization. The �ndings are qualita-

tively the same in all three cases, allowing for generalization of corresponding

design rules.

The complexity of problems solved globally is increased by exploiting problem-

speci�c properties. Most notably, speci�c monotonicity properties for distil-

lation column models are proven and exploited to reduce the computational

e�ort of global optimization.

Furthermore, a method based on statistical analysis for evaluating the compu-

tational e�ort of solving optimization problems with branch-and-bound algo-

rithms is proposed.

Process design tools based on global optimization require suitable problem for-

mulations and solution methods to at least partly compensate the increased

computational e�ort compared to local optimization. Model formulations

adapted to the applied algorithm and solution methods exploiting problem-

speci�c properties enable signi�cant reduction of the computational e�ort for

global optimization. However, general solvers are not guaranteed to identify

all bene�cial properties of a problem. As a future perspective, this may be

addressed by a database compiling suitable problem formulations and accord-

ing specialized solution algorithms. Such a database may provide the means

to determine global solutions to commonly encountered problems.



Appendix A

Integral Distribution Coe�cient

for Melt Crystallization

The di�erential distribution coe�cient is a measure for the e�ciency of separa-

tion by crystallization processes. It is used in this work for melt crystallization

of eutectic mixtures with impurity inclusions in the crystals. The di�erential

distribution coe�cient is de�ned as the molar fraction of impurities in the crys-

tal wimp divided by the molar fraction of impurities in the liquid ximp [Lewis

et al., 2015]:

kdiff :=
wimp

ximp

. (A.1)

Note that kdiff is de�ned for in�nitely small amounts of crystal produced, i. e.

a constant composition of the liquid during the crystallization.

The de�nition of kdiff can be rewritten as

∂Simp

∂S
= kdiff

Limp

L
, (A.2)

with S and L being the amounts (or cumulated molar �ows) of the crystal and

the liquid, respectively.

The integral distribution coe�cient is de�ned as

kint :=
wend

imp

xstart
imp

=
Send

imp

Send

Lstart

Lstart
imp

, (A.3)

With superscripts �start� and �end� describing conditions before and after crys-

tallization, respectively.
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Two intermediate steps are needed to determine kint. Firstly, Send is obtained

from the de�nition of the crystal yield Y .

Y :=
Send

Lstart
(A.4)

Secondly, the cumulative amount of impurity in the crystal Send
imp is calculated,

starting from the equation for kdiff . In this context, the crystal amount S

can be interpreted as the crystallization progress, with S=Sstart = 0 meaning

zero progress and S = Send meaning completed crystallization. Reordering

Equation (A.2) leads to

1

Lstart
imp − Simp

∂Simp

∂S
= kdiff

1

Lstart − S
, (A.5)

which is integrated over the crystallization progress S from Sstart to Send with

the assumption of kdiff :=constant to obtain

Lstart
imp

Lstart
imp − Send

imp

=

(
Lstart

Lstart − Send

)kdiff

. (A.6)

Note that if kdiff depends on the crystallization progress, this integration gets

more complicated and may only be solved analytically for special choices of

kdiff(S). Rearranging this result and using the de�nition in Equation (A.4)

leads to the formula for calculating the cumulative impurity in the crystal

Send
imp as a function of the yield Y :

Send
imp = Lstart

imp

(
1− (1− Y )kdiff

)
. (A.7)

Recall the de�nition for kint in Equation (A.3). The intermediate results in

Equation (A.4) and Equation (A.7) are used to rewrite kint for constant di�er-

ential distribution coe�cients in terms of kdiff and Y only.

kint =
1− (1− Y )kdiff

Y
(A.8)



Appendix B

A Property of Multicomponent

Distillation

In this section, it is shown that

x̃j,ls ≥ x̃j,1 (B.1)

holds for pseudo-components de�ned as

x̃j,ls =

j∑
i=1

xi,ls , ỹj,ls =

j∑
i=1

yi,ls , (B.2)

in mixtures of NC species with invariable order of relative volatilities

α1>α2>. . .>αNC
=1 (B.3)

for the stripping section of a distillation column with mass balance equation

xj,ls+1 = ν yj,ls + (1− ν)xj,1. (B.4)

for all species j=1, . . . , NC−1 and stages ls =1, . . . , lmax
s . Superscripts indicat-

ing the stripping section are omitted in this section for better readibility.

First, a property of the phase equilibrium is discussed in Observation 3. Then,

Equation (B.1) is proven in Observation 4. Note that this proof also implies

a corresponding property in the rectifying section of a distillation column.

Also note that relative volatilities do not need to be constant, rendering Equa-

tion (B.1) valid for a class of non-ideal multicomponent mixtures.
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Observation 3. Let α ∈ RNC, x,y ∈ [0, 1]NC and x̃, ỹ ∈ [0, 1]NC−1 be given,

with

α1 > α2 > . . . > αNC
> 1,

NC∑
i=1

xi = 1,

x̃j =

j∑
i=1

xi, ỹj =

j∑
i=1

yi, j = 1, . . . , NC−1,

then the function

g : [0, 1]NC → RNC , x 7→ yi :=
αi xi∑NC

k=1 αk xk
, i = 1, . . . , NC,

satis�es the property

ỹj ≥ x̃j for all j=1, . . . , NC−1.

Proof. Let x̄j ∈ [0, 1], x̄j =
∑NC

i=j+1 xi, and relative volatilities α̃j ∈ [αj, α1],

ᾱj ∈ [αNC
, αj+1] be de�ned by

α̃j :=

∑j
i=1 αixi∑j
i=1 xi

, ᾱj :=

∑NC

i=j+1 αixi∑NC

i=j+1 xi
.

Then ỹj satis�es

ỹj =
α̃jx̃j

α̃jx̃j + ᾱjx̄j
≥ α̃jx̃j
α̃jx̃j + α̃jx̄j

=
α̃jx̃j

α̃j(x̃j + x̄j)
= x̃j

for all j=1, . . . , NC−1.

Observation 4. Let ν ∈ [0, 1] and x̃1 ∈ [0, 1]NC−1 be given. Then, the iteration

de�ned by

f : [0, 1]NC−1 → RNC−1, x̃ls 7→ x̃ls+1 := ν y(x̃ls) + (1− ν) x̃1

satis�es the following property:

x̃j,ls ≥ x̃j,1 holds for all j=1, . . . , NC−1, ls =1, . . . , lmax
s .

Proof. Observation 3 is used to show that

x̃j,2 = ν ỹj,1 + (1− ν) x̃j,1 ≥ ν x̃j,1 + (1− ν) x̃j,1 = x̃j,1.

Now suppose x̃j,ls−1 ≥ x̃j,1, then

x̃j,ls = ν ỹj,ls−1 + (1− ν) x̃j,1 . . .

≥ ν x̃j,ls−1 + (1− ν) x̃j,1 ≥ ν x̃j,1 + (1− ν) x̃j,1 = x̃j,1,

which completes the proof.



Appendix C

Reference Distillation Model

Given below is an implementation of a distillation model with variable length

and variable feed stage given in [Viswanathan and Grossmann, 1993]. Param-

eter and domain speci�cations are listed in Table C.1. The feasible solution

space of this model is equivalent to that of the model used in Section 4.3.1

except for restrictions on the domain of liquid �ows L. Liquid �ows L do not

appear in the latter model and therefore no domain is de�ned.

Objective function:

JTAC =

( 17544V s mol−1

+2364.5 (0.2 lCol + 4)0.82
(
0.2378V s mol−1 + 0.0221FOut2Col s mol−1

)0.533

+2009.7 lCol
(
0.2378V s mol−1 + 0.0221FOut2Col s mol−1

)
−171.4 lCol

(
0.2378V s mol−1 + 0.0221FOut2Col s mol−1

)0.5

+173.6 lCol )e a−1

(C.1)

Mass balances for each stage:

0 = βInCol
1 F InColzInCol + V (y2 − y1)− L1 x1 + βL

1 L
reflux y1 (C.2)

0 = βInCol
l F InColzInCol + V (yl+1 − yl)

+ Ll−1 xl−1 − Ll xl + βL
l L

reflux y1, l = 2, . . . , lmax−1
(C.3)

0 = βInCol
lmax F

InColzInCol + V (xlmax − ylmax)

+ Llmax−1 xlmax−1 − Llmax xlmax + βL
lmax Lreflux y1

(C.4)
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Mass balance for liquid �ow:

0 = βInCol
1 F InCol − L1 + βL

1 L
reflux (C.5)

0 = βInCol
l F InCol + Ll−1 − Ll + βL

l L
reflux, l = 2, . . . , lmax (C.6)

Phase equilibrium:

0 = (−yl ((α− 1)xl + 1) + αxl), l = 1, . . . , lmax (C.7)

Mass balance for condenser:

0 = Lreflux − V + FOut1Col (C.8)

Mass balance for whole column:

0 = F InCol − FOut1Col − FOut2Col (C.9)

0 = F InCol zInCol − FOut1Col y1 − FOut2Col xlmax (C.10)

Con�guration constraints:

1 =
∑
l

βInCol
l , 1 =

∑
l

βL
l , 0 ≤

∑
l

βInCol
l −

∑
l

βL
l (C.11)

Calculation of column length:

0 = −lCol + lmax + 1−
lmax∑
l=1

βL
l l (C.12)

Table C.1: Alternative distillation model: Parameter and domain speci�cations.

parameter value variable domain variable domain

F InCol 1 mol s−1 lCol [3, 50] x, y [0, 1]

zInCol 0.1 xlmax [0, 0.01] V, L [0 mol s−1, 20 mol s−1]

lmax 50 y1 [0.99, 1] F [0 mol s−1, 1 mol s−1]

β {0, 1}



Appendix D

Fenske-Underwood-Gilliland

Method for Global Optimization

This chapter describes an implementation of the distillation column design

method based on the works of Fenske, Underwood and Gilliland. The notation

is kept close to that of the distillation model in Section 4.2.1. The method

is given below for mixtures of NC components since it is generally applied

to multicomponent mixtures. The Fenske-Underwood-Gilliland equations are

solved in GAMS with branch-and-bound solver BARON. In the following,

superscripts denoting the distillation column are omitted for simplicity.

The minimum stage number is determined via the Fenske equation [Fenske,

1932] using the pre-de�ned light key component iLK and heavy key component

iHK:

0 = −
(
αiLK

αiHK

)lCol
min

FOut1
iHK

FOut2
iLK

+ FOut1
iLK

FOut2
iHK

. (D.1)

In case of binary mixtures αiHK
equals one. Note that non-key components are

not considered in the equation above, resulting in deviations from the exact

solution for multicomponent mixtures.

The minimum re�ux ratio is calculated with the Underwood method, described
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in e. g. [Doherty et al., 2008]:

0 = −(1− q) +
NC∑
i=1

αi z
In
i bij, j = 1, . . . , NC−1, (D.2)

0 = β2,j β1,j+1 (−Vmin +
NC∑
i=1

αi F
Out1
i bij), j = 1, . . . , NC−1, (D.3)

0 = −bij (αi − φj) + 1, i = 1, . . . , NC, j = 1, . . . , NC−1, (D.4)

with variables φ obeying α1≥φ1≥α2≥φ2≥ . . ..
Equation (D.3) is only applied for distributing components, e. g. if and only if

corresponding binary control variables β ∈{0, 1} equal one, otherwise control
variables equal zero. Non-distributing components are determined by probing

for output �ows with infeasible values. The control variables are calculated as

0 = −Vprobe,min +
NC∑
i=1

αi F
Out1
probe,i bij, j = 1, . . . , NC−1 (D.5)

0 ≥ −β1,j z
In
j F

In + FOut1
probe,j, j = iLK, . . . , N

C, (D.6)

0 ≤ −β1,j z
In
j F

In + zIn
j F

In + FOut1
probe,j, j = iLK, . . . , N

C, (D.7)

0 ≥ −β2,j z
In
j F

In + zIn
j F

In − FOut1
probe,j, j = 1, . . . , iHK, (D.8)

0 ≤ −β2,j z
In
j F

In + 2 zIn
j F

In − FOut1
probe,j, j = 1, . . . , iHK, (D.9)

e. g. if FOut1
probe,j<0 then β1,j =0 and component j is non-distributing; otherwise,

if FOut1
probe,j>0 then β1,j =1.

The control variables are used to set actual recovery rates for non-distributing

components.

0 ≥ −β1,j z
In
j F

In + FOut1
j , j = iLK, . . . , N

C (D.10)

0 ≥ −β2,j z
In
j F

In + zIn
j F

In − FOut1
j , j = 1, . . . , iHK (D.11)

Note that auxiliary variables bij may be unbounded when considering the equa-

tions given above, therefore they are arti�cially restricted to large values. Note

that a bilinear implementation of the Underwood equations is also given in

[Nallasivam et al., 2016] for the global optimization of near-ideal multicompo-

nent distillation at minimum re�ux conditions.

The correlation between actual number of stages and re�ux ratio in [Gilliland,
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1940] is applied in the version from [Eduljee, 1975] with vapor molar �ow V

instead of re�ux ratio:

0 = −(lCol − lCol
min) + 0.75 (1− a0.5668) (lCol + 1), (D.12)

0 = (1− a)V − Vmin, (D.13)

with auxiliary variable a∈ [0, 1].

Mass balances for the distillation column read

0 = −F In zIn
j + FOut1

j + FOut2
j , j = 1, . . . , NC, (D.14)

0 = −FOut1 +
NC∑
i=1

FOut1
i , (D.15)

0 = −FOut2 +
NC∑
i=1

FOut2
i . (D.16)

Additional restrictions for the distillate �ow FOut1 read

0 ≥ −Vmin + FOut1, (D.17)

0 ≥ −V + FOut1. (D.18)

Product speci�cations are given as molar fractions of the respective desired

products at both outlets zOut1 and zOut2:

0 = −zOut1 FOut1 +

iLK∑
i=1

FOut1
i , (D.19)

0 = −zOut2 FOut2 +
NC∑
i=iHK

FOut2
i . (D.20)

Table D.1: Fenske-Underwood-Gilliland: Domain speci�cations.

variable domain variable domain

lCol, lCol
min [1, 200] V [0 mol s−1, 100F In]

FOut1
probe [−20F In, 20F In] F [0 mol s−1, F In]

a [0, 1] β {0, 1}
b [−1·105, 1·105]
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