
Code Generation for
Model Predictive Control
of Embedded Systems

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von
Juan Pablo Menendez Zometa

geboren am 29. Mai 1980 in Santa Tecla

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik
der Otto-von-Guericke-Universität Magdeburg

Gutachter:
Prof. Dr.-Ing. Rolf Findeisen

Prof. Dr. Daniel Limon

eingereicht am 23. August 2016
Promotionskolloquium am 12. Mai 2017

Acknowledgements

This thesis is the result of the work done as a research assistant at the Systems Theory
and Automatic Control group of Prof. Rolf Findeisen, at the Otto-von-Guericke Univer-
sity in Magdeburg, Germany.
This work would have not been possible without the support of innumerable people.

Special thanks go to Prof. Findeisen for his supervision and support, and to friends,
colleagues and family for their encouragement.

III

Contents

1. Introduction 1
1.1. Linear model predictive control for embedded systems 2
1.2. Contribution . 6
1.3. Outline . 8

2. Model predictive control for embedded systems 11
2.1. Embedded digital control systems . 11

2.1.1. Digital control of linear dynamic systems 11
2.1.2. Cyber-physical systems: real-time embedded systems 15

2.2. On-line optimization . 19
2.2.1. Basics of convex optimization . 19
2.2.2. Quadratic programs . 20
2.2.3. Optimization theory for quadratic programs 21

2.3. Model predictive control for linear systems 23
2.3.1. A basic MPC setup . 25
2.3.2. MPC as a QP . 26
2.3.3. General moving horizon control formulation 27

2.4. Summary . 28

3. Tailored on-line optimization software tools for MPC 29
3.1. Exploiting the properties of the MPC algorithm 29

3.1.1. Known-ahead maximum computation time 29
3.1.2. Partial use of the solution by the controller 30
3.1.3. Similarities between consecutive problems 31
3.1.4. Special structure of the data . 33
3.1.5. Soft constraints . 34

V

Contents

3.2. Tailored optimization software tools . 35
3.2.1. Interior point methods . 36
3.2.2. Active set methods . 38
3.2.3. Gradient methods . 40
3.2.4. Comments on explicit methods 41

3.3. A novel optimization algorithm for embedded MPC 41
3.3.1. Fast gradient method . 42
3.3.2. Augmented Lagrangian method 45
3.3.3. The ALM+FGM algorithm for MPC 49
3.3.4. ALM+FGM for embedded MPC 53

3.4. Summary . 55

4. General description of multistage problems 57
4.1. General formulation of multistage problems 57

4.1.1. Motivational example . 58
4.1.2. Abstract formulation of multistage problems 59

4.2. Reformulation as a condensed optimization problem 64
4.2.1. Reformulation as a general QCQP 64
4.2.2. Reformulation as a QCQP in standard form 67
4.2.3. Special case: condensed QP . 70

4.3. High-level multistage specification language 72
4.3.1. Code generation of condensed formulation 74

4.4. Summary . 75

5. muAO-MPC: a free code generation tool for embedded MPC 77
5.1. Core features . 77
5.2. Automatic generation of C code . 79

5.2.1. Forming and solving the condensed QP 80
5.2.2. Solving the QP with the ALM+FGM algorithm 81
5.2.3. Further controller performance improvements 82

5.3. Examples: code generation for a microcontroller 83
5.3.1. Setup description . 83
5.3.2. Considered Embedded Hardware 84
5.3.3. Results . 84

VI

Contents

5.3.4. Discussion . 85
5.4. Summary . 88

6. Application examples 91
6.1. Low-end example: A direct current motor 91

6.1.1. System description . 91
6.1.2. Generating a fast embedded MPC controller 93
6.1.3. Results . 93

6.2. High-performance example: An autonomous vehicle 95
6.2.1. System description . 95
6.2.2. MPC Implementation . 97
6.2.3. Discussion . 99

6.3. Summary . 101

7. Conclusions 103
7.1. Outlook . 104

A. Forming a condensed parametric quadratic program 119

B. System Matrices 123
B.1. Simulation examples . 123
B.2. Application examples . 124

VII

Abstract

The internet of things is a novel paradigm based on networked physical devices that
interact with their environment. This paradigm enables the improvement of existing
technologies, and is likely to serve as the basis for yet unforeseen technological ad-
vancements. An internet-of-things device works on a computer network, and typically
integrates sensors and actuators. At the core of any device is an embedded computer,
commonly with very low computational capabilities. Model predictive control is an ad-
vanced control method likely to play a role in future internet-of-things applications as
a way to improve the performance of networked cyber-physical systems. Therefore, the
easy implementation of model predictive control on embedded hardware is of interest.
Model predictive control is based on the repeated solution of an optimization problem

that allows to naturally handle multi-input multi-output systems subject to constraints.
At every sampling time, inputs to the system are determined that optimize the pre-
dicted state evolution up to a certain future time instance. For this, an optimization
problem must be solved in real time at each sampling period. This makes the implemen-
tation of model predictive control on embedded systems challenging. The difficulty on
the implementation arises due to the combination of two factors: the limited computa-
tional capabilities of today’s embedded hardware and the relatively high computational
demands of solving the necessary optimization problem. The efficient and reliable im-
plementation of model predictive control requires a tailored implementation.
A starting point for the efficient implementation is that for a given model predictive

control formulation, the optimization problem belongs to a often narrow problem class
(e.g. a quadratic program) with a particular structure. This structure does not change
for many applications, and from one sampling time to the next only the problem data
is different. The few available tools often exploit the special multistage structure of
model predictive control problems. This leads to code whose computational complexity
grows linearly with the horizon length by exploiting the sparsity of the problem. An
alternative are, especially for short horizon lengths, condensed formulations.

IX

Contents

We present a universal code generation tool that exploits condensed parametric formu-
lations tailored for linear time-invariant discrete-time model predictive control. As base
we introduce a simple modeling language that presents an easy to formulate model pre-
dictive control problems. Based on this language, we outline how one can automatically
generate C code that is tailored towards dense solution approaches, which are espe-
cially suitable for low-performance and memory-constrained embedded processors. We
furthermore implement an optimization algorithm tailored for model predictive control
that explicitly takes into account the limitations of embedded hardware.
The presented modeling language is intuitive and easy to use, and offers great flexibil-

ity in the problem formulation. We demonstrate via several examples that the outlined
code generation approach allows for fast solutions even on low-cost embedded platforms.

X

Deutsche Kurzfassung

Das Internet der Dinge ist ein neues Paradigma, welches auf vernetzten physikalischen
Geräten basiert, die mit ihrer Umgebung interagieren. Dieses Paradigma ermöglicht
die Verbesserung von existieren Technologien und wird wahrscheinlich als Grundlage für
noch unvorhergesehene technologische Fortschritte dienen. Ein Internet-der-Dinge-Gerät
arbeitet auf einem Computer und bezieht typischerweise Sensoren und Aktoren mit
ein. Im Kern eines jeden Gerätes befindet sich ein eingebetteter Computer, welcher für
gewöhnlich über eine geringe Rechenleistung verfügt. Modellprädiktive Regelung ist eine
erweiterte Methode in der Regelungstechnik, die wahrscheinlich eine zukünftige Rolle in
der Anwendung des Internets der Dinge spielen wird. Sie stellt einen Weg dar, die
Leistung von vernetzten cyber-physikalischen Systemen zu verbessern. Deshalb ist die
einfach umsetzbare Implementierung von modellprädiktiver Regelung auf eingebetteter
Hardware von Interesse.
Modellprädiktive Regelung ist ein fortschrittliches Regelungsverfahren, basierend auf

der wiederholten Lösung eines Optimierungsproblems, mit dem auf einfache Weise auch
Mehrgrößensysteme und Systeme mit Beschränkungen behandelt werden können. Zu je-
dem Abtastzeitpunkt wird ein Eingang für das System berechnet, welcher die prädizierte
Systementwicklung optimiert. Somit muss zu jedem Abtastzeitpunkt wiederholt und
in Echtzeit ein Optimierungsproblem gelöst werden. Die wiederholte Lösung dieser
Probleme macht die Implementierung der Modellprädiktiven Regelung auf eingebet-
teten Systemen zu einer Herausforderung. Die Schwierigkeiten, die bei der Umsetzung
entstehen sind auf eine Kombination von zwei Faktoren zurückzuführen: die begren-
zte Rechenleistung eingebetteter Systeme sowie die relativ hohen Rechenanforderungen
zur Lösung der Optimierungsprobleme. Daraus folgt, dass eine effiziente Umsetzung
der Modellprädiktiven Regelung eine maßgeschneiderte problemspezifische Implemen-
tierung erfordert. Für ein gegebenes Modellprädiktives Regelungsproblem gehört das
entsprechende Optimierungsproblem oftmals zu einer speziellen Klasse (z.B. Quadratis-
ches Programm) mit spezieller Struktur. In vielen Anwendungen bleibt diese Struktur

XI

Contents

von einem Abtastzeitpunkt zum nächsten konstant, es ändern sich lediglich die Prob-
lemdaten. Die wenigen, verfügbaren Software-Tools nutzen die inhärente Struktur der
Modellprädiktiven Regelung aus, was zu einem linearen Wachstum der Rechenkomplex-
ität mit der Länge des Prediktionshorizonts führt. Diese Implementierungen nutzen
oft dünnbesetzte Matrizen zur Beschleunigung der Lösung des Optimierungsproblems
aus. In einigen Fällen, insbesondere für Probleme mit kurzen Prädiktionshorizonten auf
eingebetteten Systemen, sind allerdings kondensierte Formulierungen besser geeignet. In
dieser Arbeit wird ein Software-Tool zur Codegenerierung vorgestellt, welches auf einer
parametrischen Formulierung der linearen zeitinvarianten diskreten Modellprädiktive
Regelung beruht. Hierzu wird zunächst eine einfache Modellierungssprache vorgestellt,
welche erlaubt modellprädiktive Regelungsprobleme einfach zu formulieren. Auf Basis
dieser Sprache wird umrissen, wie automatisch C-Code generiert werden kann, der die
Verwendung kondensierter Lösungsansätze ermöglicht. Darüber hinaus wird ein Op-
timierungsalgorithmus implementiert, der die Einschränkungen eingebetteter Systeme
berücksichtigt. Die vorgestellte Modellierungssprache ist intuitiv und bietet große Flex-
ibilität bei der Problemformulierung. Anhand einiger Beispiele wird demonstriert, dass
der vorgestellte Ansatz der Codegenerierung zur schnellen Lösung von Modellprädiktiven
Regelungsproblemen, auch auf preisgünstigen eingebetteten Systemen, ermöglicht.

XII

1. Introduction

Despite many conceptual and theoretical advances, the systematic use of advanced con-
trol approaches for constrained system in industrial applications is still limited [1]. Often
simpler unconstrained methods like a proportional-integral control might be sufficient to
stabilize a system with constraints. In such cases, a more complex algorithm that can ex-
plicitly take into account the constraints may be, due to technical and economic reasons,
hard to justify even if it delivers superior closed-loop performance [1]. A notable excep-
tion is the process industry, where model predictive control (MPC) [2, 3, 4, 5, 6, 7, 8]
has been consistently applied for nearly four decades [9]. This is due several factors,
including that the processes are slow and that operation near state constraints offers
great economic benefits.

In recent years, the use of MPC has been applied to a broad range of applications,
e.g. path-following in robotics [10], building climate control [11], control of water canals
[12], and biomedical applications such as artificial pancreases [13].

In the case of fast embedded systems subject to constraints, MPC has been tradition-
ally considered difficult to apply due to the high computational demands of the MPC
algorithm relative to the computational capabilities of embedded computers. Therefore,
a widespread use of MPC on embedded applications has been limited in the past and
has only gained momentum in recent years. The constantly decreasing cost/performance
ratio of computers, and, most importantly, the recent improvement in MPC-tailored op-
timization algorithms has made the implementation of MPC in embedded hardware
possible [14, 15, 16, 17], albeit still challenging on low-cost devices. This work attempts
to further simplify the application of MPC on low-cost embedded systems by introducing
a new code generation software tool for MPC that explicitly considers the limitations of
low-cost embedded hardware. The two main components of the generated code are an
efficient optimization solver and data structures tailored for embedded applications.

1

1. Introduction

1.1. Linear model predictive control for embedded
systems

Model predictive control is an advanced control method that takes into account system
constraints, and is based on repeated optimization using information of a prediction
model. According to [7, Ch. 1], model predictive control is the only generic control
method that can routinely deal with constraints. Furthermore, [8] states that MPC
is “perhaps, the most general way of posing the process control problem in the time
domain”. The fact that it is generic implies that a broad range of applications that deal
with the control of constrained systems can be considered within the MPC framework. A
further appeal of MPC is that it is conceptually intuitive, although its inner operation
rely on complex and less intuitive concepts. Many types of MPC formulations exist.
What all of them have in common are the explicit use of a mathematical model to make
predictions and a receding horizon optimization [18]. MPC has been developed at least
in three major streams: the industrial or classical setting, the one based on adaptive
control, and the synthesis approach [8]. We focus here on the synthesis approach. Two
of the main characteristic of this approach are the use of state-space models and stability
guarantees [18].

To this end, we consider the linear discrete-time dynamical system

x+ = Ax+Bu+ h(w)

subject to input and state constraints

u ∈ U, x ∈ X,

with x the current state, x+ the successor state, u the input to the system and h(w) a
function affine in the parameter w. This parameter represents a reference trajectory or
a known disturbances (or a combination of them), for example. The input constraints
U are often determined by actuator limits. Examples are the minimum and maximum
voltage that can be applied to an electric motor, or the maximum aperture of a valve.
These are usually hard constraints, i.e. they are enforced by the hardware and, under
normal operation, cannot be violated. The state constraints X are usually determined
by several factors, such as safety, comfort, and efficiency. These are commonly artificially

2

1.1. Linear model predictive control for embedded systems

introduced by design. For example the acceleration of a vehicle can be artificially limited
for comfort reasons, or the temperature or pressure of a chemical process can be limited
for economic and safety reasons. These types of constraints are often considered as soft.
In practice they may be violated, e.g. due to several sources of uncertainty in the control
loop like disturbances and model-plant mismatch. In other words, soft constraints are
desired limits that, in case of not being respected, the controller can relax.

To control this type of constrained system, we use the following linear MPC problem
formulation:

minimize
u

N−1∑
j=0

`(xj, uj, wj) + `N(xN , wN)

subject to xj+1 = Axj +Buj + h(wj) j = 0, ..., N − 1
uj ∈ U j = 0, ..., N − 1
xj ∈ X j = 0, ..., N − 1
xN ∈ Xf ⊆ X

x0 = x.

(1.1)

The stage cost `(xj, uj, wj), the terminal cost `N(xN , wN) and the terminal constraint set
Xf constitute the three ingredients that help establish stability of the closed-loop system,
[19]. The horizon length is given by N . The stage cost is commonly used to determine
the desired behavior by way of weighting matrices. Both, the stage and terminal costs,
are commonly quadratic functions. The MPC formulation is an optimization problem
that needs to be solved at each sampling time. The solution to the problem for the state
x at the current sampling time is used to compute the current control input u (see [3,
Ch. 2] for further details).

Note that the stage cost `(xj, uj, wj) is repeated for j = 0, · · · , N − 1. Thus, in this
work we would refer to MPC as belonging to the broader class of multistage problems.
This classification also includes moving horizon estimation problems [3, Ch. 3].

We are particularly interested in MPC problems like (1.1) with a quadratic cost and
affine inequality constraints and affine equality constraints (i.e. the linear dynamics).
Such problems lead to quadratic programs (QP). To find a solution using iterative algo-
rithms, the MPC problem is often brought into a special form. We distinguish between
two types of problem formulations: sparse and condensed.

3

1. Introduction

On the one hand, sparse formulations exploit the multi-stage nature of MPC to achieve
a computational complexity that grows linearly with the horizon length, instead of cu-
bically in the case of non-tailored interior point methods [20]. On the other hand,
condensed problem formulations use dense matrices without a directly exploitable struc-
ture. The computational complexity of a condensed solver typically grows cubically or
quadratically with the horizon length. In general, condensed formulations are preferred
in cases where the horizon length is short. In embedded applications, the horizon length
is often selected to be as short as possible, while still delivering suitable performance.
Thus, condensed formulations can be of computational advantage for embedded applica-
tions. One specific problem that benefits from a condensed formulation is the case when
the number of states is much larger than the number of inputs. For example, stochastic
MPC formulations based on polynomial chaos expansion show this property [21].
One often cited drawback of MPC is that its computational requirements are sig-

nificantly higher in comparison to simpler unconstrained controllers. This is partic-
ularly relevant when implementing MPC on an embedded computer. An embedded
computer in general provides only a small fraction of the computational performance
of a modern desktop computer. Implementing MPC on an embedded computer is in
general challenging. Although nowadays very powerful off-the-shelf microprocessors are
cheaply available, in some applications, for technical or economical requirements, low-
cost resource-limited embedded processors need to be used. Technical limitations may
include low energy consumption, small footprint, etc. Furthermore, in cost-sensitive
applications, the cheapest processor that can do the job is typically selected.
A great amount of research has been performed recently that aims at speeding up

MPC implementations. Of particular interest are automatic code generation methods
for MPC for embedded systems. [22, 23, 24, 25]. The current state of research on this
field can be split into two branches: tailored solvers and automatic code generators.
One way to speed up finding a solution is the use of explicit MPC [26]. In this

approach, the solutions are computed off-line and stored in a lookup table. This approach
has high memory requirements and is in general limited to problems of small size [27].
In the following, we restrict our attention to MPC approaches that require solving an
optimization problem on-line. We focus on optimization algorithms that iteratively
search for a solution to the optimization problem. That is, the algorithm looks for a
point that minimizes the value of the cost function and that, at the same time, satisfies
all constraints.

4

1.1. Linear model predictive control for embedded systems

A large variety of literature exist in the field of optimization [28, 29, 30]. Of particular
interest in this work are convex optimization problems [31]. Although convex problems
can be solved reliably, an off-the-shelf general purpose solver might not be fast enough
for an MPC application. Furthermore, such a solver might be difficult to use on an
embedded platform due to software dependencies and hardware limitations. This has
motivated the development of solvers that take into account the MPC characteristics
and limitations of embedded applications. Among the most commonly exploited charac-
teristics are the MPC structure and warm starting. The former commonly refers to the
exploitation of the banded structure of the problem matrices arising due to the predic-
tive nature of MPC. Warm start refers to the use of the solution to the MPC problem
at the previous sampling time as the initial guess for the solution of the problem at the
current sampling time.
One of the first reported on-line algorithms that fully exploited the MPC structure

for linear systems was presented in [20], which used a primal-dual interior point method
(IPM). This has been the base for recent code generation tools tailored for MPC like
the ones presented in [22, 23]. Primal-dual IPMs spends the first iterations finding
the so-called central path. Once in that path, the algorithm can quickly converge to a
solution. Hence, these methods do not typically make much progress on improving the
quality of the solution on the very first iterations. Furthermore, primal-dual IPM are
difficult to warm start [27]. This might restrict the application of tailored primal-dual
IPMs on embedded applications where acceptable performance can be attained by rough
solutions and only very limited time is available to compute the solutions. Alternatively,
a tailored primal barrier IPM that can be warm started was discussed in [32]. This
method is in general not as fast and accurate as primal-dual methods, but may offer a
good trade-off between speed an accuracy for embedded applications. Finally, active-set
methods have also been tailored to efficiently solve optimization problems arising from
MPC, with perhaps the most popular being the online active set strategy [27], and its
implementation, called qpOASES [33].
In general, the theoretical computational bounds are much larger than the ones ob-

served in practice for interior point methods [31, 34] and active set methods [29, 35].
In safety-critical applications, error bound certification might be required. First-order
methods in general have tighter bounds, and may be preferred for such applications.
Some theoretical contribution in this direction have been made in [36, 37, 38].
The second branch of research aiming to speed up MPC has been automatic code

5

1. Introduction

generation tools. These tools commonly consist on a parser of a high-level domain-
specific language, and a code generator of a tailored optimization solver. Typically the
C programming language [39] is used for the generated code. Commonly, the generated
code does not depend on external software libraries, i.e. an appropriate C compiler (e.g.
[40]) suffices to generate executable binaries for a hardware target platform.
Several parsers for general purpose optimization problems exist, e.g. YALMIP [41],

AMPL [42], and CVX [43]. However, these are mainly used to feed data to general
purpose optimization routines, i.e. the solver does not take into account many of the
characteristics of each problem at hand, which makes them in general less efficient. In
contrast, CVXGEN, [44] generates embedded solvers for convex quadratic programs. In
the CVXGEN context, embedded means that, given a problem with certain character-
istics, solvers that exploit these characteristics are generated. CVXGEN reports several
orders of magnitude improvements in the solution time compared to CVX [44]. Neverthe-
less, the C code generated by CVXGEN grows very quickly in size (see Subsection 3.2.1
for further details). While CVXGEN can handle MPC problems [45], the generated code
does not exploit the structure inherent in MPC. The combination of QCML and ECOS
as presented in [24], the former being a parser and the latter being a stand alone general
purpose second-order cone program solver [46], is based on similar ideas as CVXGEN.
Both CVXGEN and QCML do not eliminate the equality constraints due to the system
dynamics, leading to a sparse formulation.
In [47] two code generation tools are presented. One is FiOrdOs, which based on

first-order methods that do not exploit structure inherent in MPC [48]. The other
one is FORCES, a structure-exploiting primal-dual interior point method [22]. Parsers
specific to nonlinear MPC have also been developed. The ACADO toolkit [49] is a C++
software tool that provides C-code generation capabilities for continuous-time nonlinear
MPC problems [50]. Although it is possible to use the ACADO toolkit for discrete-
time linear systems as well, the generated code is bulkier than code tailored for linear
discrete-time MPC problems.

1.2. Contribution

This work addresses the computational drawback of MPC without compromising its
advantages. The main contribution is a free MPC software tool called µAO-MPC that

6

1.2. Contribution

simplifies the deployment of MPC controllers, while at the same time taking into consid-
eration the computational limitation inherent to embedded processors. Because µAO-
MPC relies on a flexible problem formulation, it can be used to deploy moving horizon
estimators as well. In this sense, we retain the main advantages of the MPC framework,
namely its intuitiveness and generality, while at the same time addressing one of its main
cited drawbacks, i.e. prohibitive computational requirements for embedded computers.
Broadly speaking, µAO-MPC consist of three parts: a parser for a simple MPC prob-

lem specification, a C code generator and a tailored optimization algorithm. The typical
workflow is as follows: the user specifies an MPC problem using a language that closely
resembles the way MPC problems are expressed mathematically. This specification is
parsed and transformed into an optimization problem, in particular a quadratic program
(QP) with dense matrices. Finally, C code is generated that contains the QP together
with a first-order optimization algorithm that can approximately solve the optimization
problem efficiently.
In this work, we follow an approach similar to CVXGEN in the way of how MPC

problems are expressed (i.e. simple text-based mathematical representation). We focus
however on code generation of embedded MPC solvers for computationally limited sys-
tems using first-order methods, similar to FiOrdOs. At the moment, we have focused on
solving QPs and our results show that µAO-MPC generates code of much smaller size
than CVXGEN. One key difference from our approach and all other existing parser/code
generators for linear systems is that we eliminate the equality constraints to derived a
condensed formulation. Furthermore, the solver we use finds control inputs appropri-
ate for certain types of embedded control faster than CVXGEN. This control inputs
are based on rough approximate solutions, which are nevertheless in many applications
good enough for control. We do not compare our results against FiOrdOs, but we would
expect that µAO-MPC and FiOrdOs deliver similar performance in many situation. A
full comparison with many optimization algorithms is beyond the scope of this work.
The main contribution is therefore not in the field of convex optimization, but rather
on the implementation aspects of automatic code generation tools for model predictive
control on embedded systems.
In this work we extend the results presented in [25] by introducing a method and a

parser that automatically generates easily usable code for the efficient on-line solution
based on a condensed formulation. This approach, which is specially tailored for linear
time-invariant MPC problems, allows (besides QP formulations) the consideration of

7

1. Introduction

linear programs (arising e.g. in min-max robust MPC [51]), quadratically constrained
quadratic programs (arising in robust MPC by adding ellipsoidal constraints [52]) and
second-order cone programs (arising in stochastic MPC [53]). We show how to system-
atically go from the MPC description to the condensed formulation using the proposed
method. Thus, we extend µAO-MPC capabilities two-fold: first, the presented approach
allows to generate data tailored for linear programs, quadratically constrained programs
and second order cone programs in dense form. Second, we extend the family of prob-
lems that can be considered by introducing a multistage modeling language. This allows
not only to consider a broader range of multistage problems, but also moving horizon
estimation problems and special filtering problems. Note that we focus here on the gen-
eration of the dense problem data, and not on a particular solver. To the best of our
knowledge, this is the first tailored tool for linear time-invariant discrete-time MPC that
can automatically parse, condense the data, and generate easily usable code. Loosely
related, but tailored towards continuous-time nonlinear systems is the ACADO Toolkit
[49, 50].

1.3. Outline

This work is organized as follows. In Chapter 2 we describe the overall setup, namely
digital control of embedded systems and the MPC algorithm. We discuss the properties
of embedded systems most relevant to MPC applications. In particular, we discuss the
computational limitations of embedded systems. Furthermore, we present the theoretical
foundations of convex optimization applied in particular to convex quadratic programs.
In Chapter 3 we discuss optimization algorithms tailored for embedded MPC. We

briefly discuss some state-of-the-art approaches. The chapter focuses on a novel opti-
mization algorithm tailored for embedded MPC applications. The algorithm is based on
an augmented Lagrangian method combined with Nesterov’s fast gradient method (the
ALM+FGM algorithm).
In Chapter 4 we introduce a general MPC language specification. We show how some

types of MPC problems specified using this language can be transformed into condensed
parametric quadratically constrained quadratic programs in a structured way.
Chapter 5 presents µAO-MPC , an automatic code generation tool for MPC written

in Python. The software generates portable C-code for MPC problems specified in

8

1.3. Outline

the language introduced in Chapter 4. By default the generated condensed QPs are
solved using the tailored ALM+FGM algorithm discussed in Chapter 3. We show with
some simulation examples µAO-MPC ’s suitability for embedded applications, taken into
account the properties discussed in Chapter 2.
In Chapter 6 we present two application examples that again demonstrate that µAO-

MPC is appropriate for a specific type of embedded applications, namely those that can
be warm started, are well conditioned and where rather rough approximate solutions
deliver good closed-loop performance.
In Chapter 7 we present our conclusions and discuss some ideas for future work.

9

2. Model predictive control for
embedded systems

Nowadays, most closed-loop control schemes are implemented on digital systems. This is
mainly due to the flexibility provided by software implementations, and the ubiquity of
microprocessors. Furthermore, there is a strong body of control theory and software tools
that covers the design of digital control systems. Particularly well developed is the theory
of linear unconstrained single-input single-output systems [54, 55]. Usually, the analysis
is performed in the frequency domain (i.e. z-transform for discrete-time systems). In
the case of unconstrained multi-input multi-output (MIMO) systems, modern control
methods exist that are well established, such asH2 andH∞ control [54, Ch. 40]. Optimal
control methods together with state-space representations are commonly used for the
control synthesis of MIMO systems [56, 57]. In the case of constrained MIMO systems,
model predictive control (MPC) is the most widespread technique [7, 8].
This chapter lays the theoretical foundations needed for a basic understanding of the

main characteristics of MPC for embedded systems.

2.1. Embedded digital control systems

This section describes the most relevant characteristics of digitally implemented control
systems.

2.1.1. Digital control of linear dynamic systems

We start this section with a few definitions motivated by [55]. We expand later on some
concepts that are key for the further development of this topic.
Figure 2.1 shows the general scheme of a digital control system. We first focus on the

right part of the figure, which represents the analog (or continuous) part of the control

11

2. Model predictive control for embedded systems

CPU DAC

ADC

Plant

Sensor

ûk u(t) y(t)

w(t)

v(t)

ŷk

Clock

Figure 2.1.: Block diagram of a basic digital control system, adapted from [55].

system. These are represented with grey boxes. We consider the plant to be any physical
process that needs to be controlled. Most of the physical plants of interest are dynamical
systems which are continuous in nature. We want to modify the behavior y(t) of the
plant with a control input u(t). The variable w(t) represents disturbances. Finally, we
capture the magnitude of physical variables of the plant via sensors. We use v(t) to
denote disturbances or noise in the sensor. All these variables change continuously in
time.
Let us now turn our attention to the middle part of Figure 2.1, which represents the

bridge between the digital and the analog part of the control system, represented by the
grey/white boxes. The analog-to-digital converter (ADC) samples a physical variable
and then converts this value into a digital number representation. We assume that these
samples are taken at constant time intervals, which are driven by the clock. We call
the interval between any two samples the sampling period. The signals generated by the
ADC vary only at discrete times, more precisely at every t = kT , with T the sampling
period, and k = 0, 1, This type of signals are called discrete signals. For simplicity
of notation, we write any discrete signal y(kT) in the form yk. A system that has an
interface to continuous signals (e.g. y(t)) and discrete signals (e.g. yk) is known as a
sampled-data system [54, Ch. 12]. Additionally, the ADC represents the value of yk

12

2.1. Embedded digital control systems

as a digital number with a limited number of binary digits. This introduces the effect
known as quantization, which refers to the effect of representing yk as a value ŷk that
has been approximated to a certain precision. Digital computers work, therefore, with
digital signals, i.e. signals that are both quantized and discrete.
In the middle part of Figure 2.1 the digital-to-analog converter (DAC) is also depicted,

which performs the opposite function of the ADC. The same concepts apply. The main
difference is that the DAC usually implements a zero-order hold to keep the analog signal
constant during a whole sampling period (the ADC also does this, but only for a fraction
of the sampling period).
Finally, on the left side of the figure we have the digital part of our control system,

represented by white boxes. The central processing unit (CPU) is in charge of computing
a control action ûk based on the current sensor information ŷk via a control algorithm.
Two of the most important factors that affect the performance of sampled data systems

are quantization and the sampling period. If the sampling period is sufficiently small, and
the quantization effects are negligible, a sampled-data control system might behave in
some cases almost identically to a continuous-time control system [54, Ch. 15]. Usually,
in cost-sensitive embedded control systems the sample period and quantization effects
are not negligible and need to be taken into account in the design of the control system.
We further expand the concepts and effects of quantization and the sampling period in
the following.

Quantization

Loosely speaking, quantization is an effect where a digital number with limited precision
approximates a real number [54, Ch. 15]. Consider a signal z ∈ Qz ⊆ R in the
interval [z, z] that is represented by the quantized value ẑ. The set Qz can represent
the values of a continuous signal (e.g. Qz = R) or of a digital signal (i.e. z is itself
quantized). The bounds z and z represent, for example, actuator or sensor limits. In
this context we define quantization Φ : Qi → Qo as a nonlinear map from the set
Qi = {z ∈ Qz ⊆ R | z ≤ z ≤ z} to the set Qo = {ẑ ∈ R | ẑ = z + sρ(z − z)}, where
ρ = 2−l, with l ∈ Z is the number of bits available to represent the digital number and
s ∈ Z, 0 ≤ s ≤ (2l − 1) is the full range of raw binary values. Note that Qo is defined
by an affine function of integer numbers. Other definitions are also possible, e.g. using
logarithmic functions.

13

2. Model predictive control for embedded systems

The quantization Φ is usually defined in either of the following two ways. The first is
truncation, which means mapping a real number in Qi to the largest previous number
in Qo. The second way is round-off, which is more commonly used in control computers.
Round-off simply maps any number in Qi to the nearest number in Qo. We assume in
the following that the quantization function uses round-off.
We define the maximum quantization error β for Φ as

β = 1
2ρ(z − z). (2.1)

Furthermore, for the mapping Φ : z 7→ ẑ we have β ≤ |z − ẑ|. For example, consider
the quantization happening in the ADC and the DAC. In the former case, we have
Φ : y(kT) 7→ ŷk with Qz = R. In the latter case, the main difference is that the input
set Qi is now also defined for a quantized signal, with Qz possibly defined similarly as
Qo (i.e. quantized).
Quantization have different effects in the CPU than in the ADC or the DAC. In many

applications, the round-off errors for floating-point operations performed by the CPU
can be neglected. However, floating-point arithmetic can be sometimes replaced by fixed-
point arithmetic. The notation Qa.b denotes binary fixed-point numeric representation
using a + b + 1 bits, with a integer bits, b fractional bits and 1 sign bit. For example,
Q13.18 denotes 32-bit binary fixed-point numeric representation, with 13 integer bits
plus 1 sign bit and 18 fractional bits. Fixed-point arithmetic operations are performed
in general more efficiently (in terms of energy and speed) than floating-point operations.
The main drawback of fixed-point arithmetic is an increase in round-off errors due to
the lower precision when compared to floating-point arithmetic. See [58] for a discussion
of fixed-point arithmetic used in model predictive control.
In contrast to the CPU, quantization effects play a major role on the DAC and ADC,

because these components use shorter word sizes (commonly between 8 and 16 bits). The
maximum quantization error β may be large enough to noticeably degrade performance
in cost-sensitive applications, where 8-bit or 10-bit DACs and ADCs are typically used.

Sampling period

The selection of the sampling rate is commonly based on a rule of thumb and a trade-off
between cost and performance. The first thing to consider is that the sample rate ωs
must be at least twice the bandwidth ωb of the closed-loop. The ratio ωs

ωb
> 2 is given by

14

2.1. Embedded digital control systems

the Nyquist-Shannon sampling theorem, which states that a signal that is a bandlimited
by ωb is uniquely characterized by its uniform samples taken with a frequency ωs > 2ωb,
see [54, Ch. 16]. In practice, higher ratios are required to have a smooth time response.
The following rule of thumb is commonly used [55]:

20 < ωs
ωb

< 40.

In [54, Ch. 16] other possible heuristic rules are also discussed.
The next consideration in determining the sampling rate is cost. In general, higher

sampling rates imply better closed-loop performance. If cost is no concern, a powerful
processor can be used that allows a very high sampling rate (e.g. ωs

ωb
> 40). For

cost-sensitive applications, the sampling rate is selected as the lowest that meet all
performance requirements: fast disturbance rejection, smooth time behavior, etc.
Although there exist applications that may benefit from a variable sampling period,

we focus here on systems with constant sampling period. Furthermore, we only deal with
continuous-time systems discretized via zero-order hold on the inputs, i.e. we consider
discrete-time systems of the form xk+1 = f(xk, uk). As a side note, when using very
fast sampling rates an incremental model of the form dxk = f(xk, uk, T) [59] might be
necessary for the closed-loop control of embedded systems [58].

2.1.2. Cyber-physical systems: real-time embedded systems

The term embedded system has different meanings in different contexts. In this work, we
define an embedded system as a dedicated microprocessor-based system that controls a
physical process. Recently, the term cyber-physical systems has been applied to describe
embedded systems that control physical processes in real time [60, 61], possibly via
a computer network. This term has also different scopes in different disciplines, and
some authors emphasize the communication between embedded systems in the provided
definition [62]. We summarize the main characteristics of cyber-physical systems that
are relevant for later chapters.

Hardware

There exist a broad spectrum of microprocessors. We focus on devices at the bottom
end of the spectrum in terms of computational capabilities, namely microcontrollers.

15

2. Model predictive control for embedded systems

Even among microcontrollers there is a broad range of options. The CPU for example
is driven by clock frequencies usually in the range of several tens to a few hundred
megahertz. Another distinctive features is the word size, which is typically 8-bit, 16-bit
or 32-bit. For computationally intensive applications, like the MPC algorithm, 32-bit
microcontrollers are in general preferred. We briefly describe the most relevant hardware
characteristics of microntrollers: the processor (or CPU) and the memory. In the case
of the processor, we base our discussion on a popular family of 32-bit microprocessors:
ARM Cortex-M. These state-of-the-art processors are nowadays in widespread use and
are well suited for applications with complex data processing requirements like MPC
[63, Ch. 1]. For a detailed description of this family of processors see [63].
We start by discussing the arithmetic capabilities of a microcontroller. Let us first

consider the low-cost Cortex-M3 microprocessor. This CPU lacks a floating-point unit
(FPU). This means that only integer arithmetic can be performed directly on hardware.
Integer addition and multiplication can be executed in one clock cycle, whereas division
needs several cycles. Furthermore, floating-point operations are emulated by software,
with additions and multiplications being several times slower than their integer counter-
parts. Empirical evidence shows that fixed-point operations (add, multiply) are around
4 times faster than floating-point operations for the Cortex-M3 [25] as well as for the
classical ARM-7TDMI microprocessor [64]. In contrast, the more expensive Cortex-M4
includes digital signal processing (DSP) capabilities and, optionally, a single-precision
FPU. This allows to execute 32-bit floating-point arithmetic operations directly on hard-
ware.
The next big component of a microcontroller is memory. We distinguish between two

types of memory: program memory, and data memory. The former is a non-volatile stor-
age typically based on flash technology. It is commonly between ten kilobytes and a few
megabytes, and is sometimes colloquially called ROM (read-only memory). The latter
is a volatile type of storage typically based on SRAM (static random-access memory),
and has a capacity of one kilobyte to a few hundred kilobytes.

Real-time systems

We now introduce some concepts related to applications that process data in real-time.
We take most of our definitions from [60]. A real-time system is one whose correctness
is based not only on the correctness of the results of the computations but also on the

16

2.1. Embedded digital control systems

physical time at which these results are produced.
A deadline is the time by which a result must be produced. Deadlines can be classified

in three types: firm, soft and hard. A firm deadline is characterized by the fact that a
result is no longer useful after the deadline has passed. If the deadline is soft, a result
that missed the deadline can still be used. A hard deadline is one that, if missed, failure
or catastrophic consequences may result. It follows that any hard deadline is a firm
deadline.
Similar as in the classification of deadlines, real-time systems are also separated in

soft and hard real-time systems (also called safety-critical systems). The former is any
real-time system with no hard deadlines, whereas the latter is a real-time system that
must meet at least one hard deadline.
In this work, we consider digital control applications with firm deadlines. Depending

on the application, a control system may be soft or hard real-time. In the case of soft
real-time control systems, missing a deadline may result in degradation of performance.
Another important concept is that of temporal determinism, which means that the

response time for any event is known. Computational delay is the time it takes the mi-
croprocessor to execute the control algorithm. The variation on the computational delay
is called the control jitter. We consider an algorithm to be (temporally) deterministic,
if the control jitter is much smaller than the computational delay.

Software

Within software we make the distinction between application, operating system and
compiler. We provide loose definitions of these terms, adapted from [65, Ch. 1]. An
application performs an user-defined task. A digital control algorithm is considered an
application. It may be a state observer, a model predictive control algorithm, etc.
The operating system is in charge of interfacing the application with the hardware.

A real-time operating system (RTOS) is additionally in charge, among other things, of
task scheduling. The control application is one of the many tasks that run concurrently
on the CPU. The RTOS scheduling algorithm guarantees, under certain conditions, that
our control algorithm is executed periodically with a constant sampling period [65, 66].
In embedded applications the C programming language [39], or simply C, and C++

are commonly used. However, C presents certain advantages over C++, namely: for
embedded hardware targets, object-oriented C++ may carry penalty on computational

17

2. Model predictive control for embedded systems

performance and power consumption when compared to procedural C [67]. Furthermore,
for embedded targets, C compilers are more common than C++ compilers.

We use the term compiler as a broad term to denote the process of translating the user
source code into binary code executable by the microcontroller. Hence, in this context a
compiler also includes a preprocessor, an assembler, and a linker. The source code refers
to both, the application and the operating system. In embedded systems, an application
is commonly written entirely in C or C++, whereas the OS is usually a mix of C/C++
and hardware specific assembler code.

Memory management

Although the topic of memory management is a complex one (see [65, Ch. 3]), here we
reduce it to two simplified cases: dynamic and static memory allocation. A program-
ming language typically offers only certain types of memory management functionality.
Dynamic memory allocation is done during program execution. In C and C++ for in-
stance, dynamic allocation is done with a call to the malloc function. In C++ the new
operator can also be used to dynamically allocate memory. Furthermore, an RTOS is in
charge of allocating memory for each task using the functionality provided by the base
language.

The main advantage of dynamic allocation is that it offers flexibility. That is, the
amount of memory required by certain types of data (e.g. arrays) does not need to
be known at compile time. However, a dynamic memory allocation algorithm does not
show temporal determinism [68, 69]. Therefore, its use is restricted in real-time systems.
Moreover, the use of dynamic memory allocation is prohibited in critical systems accord-
ing to the MISRA-C standard, [70]. Furthermore, some embedded C/C++ compilers
do not implement dynamic memory allocation algorithms.

In contrast, static memory allocation is made at compile time. As its name implies,
the amount of memory cannot be change during runtime. If the size of the data involved
changes, the affected code needs to be recompiled. The main advantage is that there
are no runtime penalties. Therefore, static memory allocation is commonly required in
real-time applications.

18

2.2. On-line optimization

2.2. On-line optimization

This section introduces some of the basic concepts of on-line optimization, which is
fundamental for the implementation of MPC.

2.2.1. Basics of convex optimization

Before we proceed, let us state some required definitions. The following presentation is
based on [31].

We consider an optimization problem of the form

minimize
y∈Rny

f0(y)

subject to fi(y) ≤ 0, for all i ∈ I,
fi(y) = 0, for all i ∈ E ,

(2.2)

where the functions fi are smooth real-valued functions in Rny and I and E are each a
finite set of indices. The function f0 : Rny → R is called the cost function or objective
function. The vector y ∈ Rny is the optimization variable. The functions fi : Rny →
R, i ∈ I and fi : Rny → R, i ∈ E are called inequality and equality constraint functions,
respectively. A point y is feasible if it satisfies all constraints. Problem (2.2) is said to
be feasible if there exist at least one feasible point. Otherwise it is called infeasible. The
set containing all feasible points is called the constraint set or feasible set. The optimal
value f ∗0 of problem (2.2) is defined as:

f ∗0 = inf{f0(x) | fi(x) ≤ 0, ∀ i ∈ I, fi(x) = 0, ∀ i ∈ E}.

A solution y∗ to problem (2.2), also called an optimal point, is a point that is feasible
and for which f0(y∗) = f ∗0 holds. A feasible point y is called ε-suboptimal if satisfies
f0(y) ≤ f ∗0 + ε, for ε > 0. We call ε the suboptimality level.
An optimization problem is called convex if the cost function is convex, the inequality

constraint functions are convex, and the equality constraint functions are affine (i.e.
fi(y) = Diy−di, for all i ∈ E). This implies that the feasible set of a convex optimization
problem is convex.

19

2. Model predictive control for embedded systems

2.2.2. Quadratic programs

Of particular interest in this work are quadratic optimization problem (QP) of the form:

minimize
y∈Rny

1
2y

THy + gTy

subject to Cy ≤ c,

Dy = d.

(2.3)

With respect to (2.2) we have f0(y) = 1
2y

THy + gTy, fi(y) = Diy − di, for all i ∈ E ,
and fi(y) = Ciy − ci, i ∈ I. If we replace the affine inequality constraints in (2.3) with
quadratic constraints we obtain the problem:

minimize
y∈Rny

1
2y

THy + gTy

subject to 1
2y

TPiy + qT
i y ≤ ri, for all i ∈ I,

Dy = d,

with Pi symmetric positive semi-definite, the problem is called a quadratically constrained
quadratic program (QCQP). This type of problem arises in various MPC setups, see for
example [71, 72]. A related problem is the second-order cone program (SOCP) of the
form:

minimize
y∈Rny

1
2y

THy + gTy

subject to ‖P̄iy + p̄i‖2 ≤ q̄T
i y + r̄i, for all i ∈ I,

Dy = d.

SOCPs arise in many engineering applications [73], including stochastic MPC problems
[53, 74, 75]. We are mainly interested in QPs without equality constraints, which in
standard form are represented as:

minimize
y∈Rny

1
2y

THy + gTy

subject to Cy ≤ c.

(2.4)

In general, a QP is convex if and only if the Hessian matrix H is symmetric positive
semi-definite. Furthermore, we focus on strictly convex QPs. A QP is called strictly
convex if and only if HT =H > 0. Strict convexity implies that if a solution y∗ exists

20

2.2. On-line optimization

then it is unique. Additionally, strict convexity is an important property exploited by
many optimization algorithms, and in particular by the method discussed in Section 3.3.

2.2.3. Optimization theory for quadratic programs

One important concept is that of duality, since it commonly exploited by optimization
algorithms. We start by defining the Lagrangian function of problem (2.2), which is
called the primal problem, as

L(y, λ) = f0(y) +
∑
i∈E∪I

λifi(y), (2.5)

where λ denotes a Lagrange multiplier vector. Then, the Lagrange dual function is
defined as the minimum value of the Lagrangian over y for some fixed λ,

g0(λ) = inf
y∈Dy

L(y, λ) = f0(y) +
∑
i∈E∪I

λifi(y). (2.6)

One important characteristic of the dual function is that it is concave, even if problem
(2.2) is not convex, [31, Ch. 5]. The Lagrange dual problem for problem (2.2) is defined
as

maximize g0(λ)

subject to λi ≥ 0, i ∈ I,
(2.7)

which is itself a convex optimization problem. We say that strong duality holds if the
optimal value of dual problem g∗0 equals the optimal value of the primal problem f ∗0 .
Duality is important since, for a strictly convex quadratic program (2.8) (for which strong
duality holds), the solution to the primal problem can be readily found by solving the
dual problem. Many optimization algorithms solve directly the primal problem, others
solve the dual problem instead to find the solution of the primal, or exploit information
of both primal and dual problems to find a solution.
We are interested in quadratic programs of the form (2.4). If the gradient and con-

straint vector depend on a parameter w ∈ Rnw , we have the parametric problem P(w):

minimize
y∈Rny

1
2y

THy + g(w)Ty

subject to Cy ≤ c(w),
(2.8)

21

2. Model predictive control for embedded systems

with c(w) ∈ Rnc . In MPC applications, this parameter is commonly given by (a com-
bination of) the current state vector x, a reference trajectory, known disturbances. For
notational simplicity and where no confusion may arise, the dependency on the param-
eter w will be dropped.
For our further discussion, we need a few further definitions.

Definition 1 (Feasible set). For the quadratic program P(w) the feasible set is given by

F(w) = {y ∈ Rny | Cy ≤ c(w)}. (2.9)

Definition 2 (Active set). Consider problem P(w). A constraint Ciy ≤ ci(w), 1 ≤ i ≤
nc is called active at y ∈ F(w) 6= ∅ if Ciy = ci(w) holds, and inactive otherwise. The
set of indices

A(y;w) = {i ∈ {1, . . . , nc} | Ciy = ci(w)} (2.10)

is called set of active constraints or simply active set. If y∗ is the solution to P(w) we
call A(y∗;w) optimal active set.

Definition 3 (LICQ). Given the pair (y, w), the constraints ĉi(y;w) = Ciy − ci(w),
and the active set A(y;w), we say that the linear independence constraint qualification
(LICQ) holds if the set of active constraint gradients {∇ĉi(y;w), i ∈ A(y;w)}, is linearly
independent.

Now we are ready to introduce the first-order optimality conditions, also known as
Karush-Kuhn-Tucker (KKT) conditions (taken from [29, Theorem 12.1]), which charac-
terize an optimal point.

Theorem 1 (First-order optimality conditions). Suppose that y∗ is a local solution to
(2.2), that the functions fi in (2.2) are continuously differentiable, and that the LICQ
holds at y∗. Then there is a Lagrange multiplier vector λ∗, with components λ∗i , i ∈ E∪I,
such that the following conditions are satisfied at (y∗, λ∗):

∇L(y∗, λ∗) = 0,
fi(y∗) ≤ 0, ∀ i ∈ I,
fi(y∗) = 0, ∀ i ∈ E ,

λ∗i ≥ 0, ∀ i ∈ I,
λ∗i fi(y∗) = 0, ∀ i ∈ I ∪ E .

(2.11)

22

2.3. Model predictive control for linear systems

A proof can for example be found in [29, Ch. 12].
For convex problems like (2.8), the KKT conditions provide sufficient and necessary

conditions for a pair (y∗, λ∗) to be optimal. The point y∗ is the unique minimizer if the
problem is strictly convex. Furthermore, if the LICQ holds, for any given y∗ the optimal
Lagrange multiplier λ∗ is also unique.
For the discussion of the active set optimization algorithm and the explicit MPC

method in Chapter 3, the following definitions are needed.

Definition 4 (Set of feasible parameters). The set of feasible parameters of a parametric
quadratic program is given by

W = {w ∈ Rnp | F(w) 6= ∅}. (2.12)

Definition 5 (Critical region). Let a strictly convex quadratic program P(w) with w ∈ W
be given. Furthermore, let y∗(w) denote the solution and A(y∗(w);w) the corresponding
optimal active set. Then, for every index set A ⊆ {1, . . . , nc}, the critical region of W
is given by

CRA = {w ∈ W | A(y∗(w);w) = A}. (2.13)

2.3. Model predictive control for linear systems

We are ready to introduce the model predictive control algorithm. We consider the
linear MPC setup of the form (1.1). Figure 2.2 depicts the behavior of a system being
controlled by a discrete MPC implementation. At time tk = kT , k ∈ Z and T the
sampling period, we estimate the state x̂k from measurements ŷk, typically using a state
observer. The MPC algorithm uses x̂k and the linear model of the system to predict
the future trajectory of the state xk for the following N steps. With this information,
a minimization problem is solved to find the input sequence uk that optimizes a given
performance criterion for the given horizon N . In the figure, the continuous function
φ(t, x̂k,uk) (shown in dashed red) represents the nominal state evolution starting at
x̂k under the influence of the input uk. The predictive state trajectory xk coincides
with φ(t, x̂k,uk) at each sampling time tk (represented by black dots over φ(tk, ·)). The
discrete-time MPC algorithm has no knowledge of φ(·), though. We have included this
continuous time plot in the figure to simplify explanation of the concept. Furthermore,

23

2. Model predictive control for embedded systems

t

x, u

tk tk+1 tk+Ntk+2 tk+N+1tk+N−1

x̂k

x̂k+1

x̂k+2

φ(t,x̂k,uk)

φ(t,x̂k+1,uk+1)

uk

uk+1

. . .

xk

xk+1

N

N

Figure 2.2.: A visual representation of the MPC algorithm.

uk is held constant at each sampling interval (a zero-order hold), as is common for digital
controllers [7].
Ideally, the state trajectory of the controlled system would follow the trajectory

φ(t, x̂k,uk). However, due to several effects which are often not included in the MPC
model (disturbances, model-plant mismatch, errors in the state estimation, quantiza-
tion of the input, etc.), the real system follows a slightly different trajectory under the
influence uk during the interval from tk to tk+1 (shown in solid red).
At the next sampling period tk+1, we repeat the process. We first take a new mea-

surement ŷk+1 and estimate x̂k+1. We then compute the input sequence uk+1 (dashed
blue) for the next following N steps, and apply the first part of uk+1 (solid blue) to the
real system during the current sampling interval, and so on for the subsequent sampling
times tk, k = 2, 3 . . .
To simplify our discussion, we focus on one particular moving horizon setup, namely

regulation to the origin of a constrained linear system. We describe this sample setup
in the following.

24

2.3. Model predictive control for linear systems

2.3.1. A basic MPC setup

We considered discrete-time linear time-invariant systems subject to input and state
constraints described by

x+ =Ax+Bu, (2.14)

where x ∈ X ⊆ Rn, and u ∈ U ⊂ Rm are the system state and input at the current
sampling time, respectively. The successor state is denoted by x+. The considered input
constraint set U is a convex and compact box set containing the origin. Moreover, the
state constraint set X is a closed (not necessarily bounded) convex set with the origin in
its interior. These type of constraints are commonly found in practice (see [3, Ch. 1]).

The discrete-time system and input matrices are represented by A and B, respectively.
We assume the pair (A,B) to be stabilizable. The control objective is to bring the system
to a desired equilibrium point while satisfying all constraints. For simplicity and without
loss of generality, in this section we only consider regulation to the origin.

MPC is a natural candidate to solve the constrained regulation problem. The MPC
controller needs to solve at each sampling time k an optimization problem parameterized
by the current state x. This problem is, for the conditions given above, defined as follows:

minimize
u

1
2

N−1∑
j=0

(‖xj‖2
Q + ‖uj‖2

R) + 1
2‖xN‖

2
P

subject to xj+1 = Axj +Buj, j = 0, ..., N − 1,
u ≤ uj ≤ u, j = 0, ..., N − 1,
e ≤ Exxj + Euuj ≤ e, j = 0, ..., N − 1,
f ≤ FxN ≤ f,

x0 = x,

(2.15)

where N ≥ 2 is an integer denoting the prediction horizon. We consider positive definite
quadratic forms ‖w‖2

S = wTSw > 0 and ‖w‖2
S = 0 only if w = 0, with S a symmetric

positive definite matrix. The matrices Q, R and P are symmetric positive definite and
denote the states, input and terminal weighting matrices, respectively. If Q is symmetric
positive semi-definite, an additional requirement for stability is needed, namely that the
pair (A,Q) is detectable [3, Ch. 2]. The matrices Q and R, loosely speaking, are a

25

2. Model predictive control for embedded systems

specification of the desired controller behavior. The term `(xj, uj) = 1
2(‖xj‖2

Q + ‖uj‖2
R)

is called stage cost, whereas `N(xN) = 1
2‖xN‖

2
P is called terminal cost. Furthermore,

the box set U is defined by the lower and upper bounds u and u. Similarly, the state
constraints X are defined by the bounds e and e, and the matrices Ex ∈ Rq×n and
Eu ∈ Rq×m. The terminal state constraint set Xf ⊆ X is a polytope defined by the
triplet f , f and F ∈ Rr×n. This set, together with the cost function, is often used to
guarantee closed-loop stability [3, Ch. 2].
We optimize over the input sequence u = {u0, . . . , uN−1} ∈ U = UN . The state

constraints further impose the constraints u ∈ UN(x) = {u ∈ U | x(x,u) ∈ X}.
The state sequence x(x,u) ∈ R(N+1)n describes the trajectory followed by the states of
system (2.14) starting at x and under the input sequence u, i.e. x(x,u) = {x0 = x, x1 =
Ax0 + Bu0, . . . , xN = AxN−1 + BuN−1}. The set X = {x ∈ R(N+1)n | xk ∈ X, k =
0, . . . , N − 1, xN ∈ Xf} denotes the state trajectories satisfying all constraints. Thus,
UN(x) is the set of feasible input sequences of problem (2.15) for a given x.
In an MPC scheme, the first element of the optimal input sequence u∗ is used as

feedback control action, i.e. during each sampling period u = u∗0 is applied to the plant.
In many applications, it is safe to assume that the input sequence found by optimization
algorithms is indeed u∗. However, in the case of embedded systems with fast sampling
rate, the MPC controller may only have enough time to compute u∼ ∈ UN(x), a (possibly
rough) approximation to u∗.

2.3.2. MPC as a QP

Most implementations of optimization algorithms cannot directly solve problems like
(2.15). Therefore, the MPC problem needs to be brought into a form that can be
directly used together with a tailored solver.
The MPC optimization problem (2.15) can be brought into the following equivalent

form (refer to Appendix A)

minimize
u∈RNm

1
2uTHu + g(x)Tu

subject to Cu ≤ c(x).
(2.16)

Compared to (2.4), we see that the gradient vector g(x) is now given by a function
g : Rn → RNm. Similarly, the inequality constraint functions also depend on x, in

26

2.3. Model predictive control for linear systems

particular c : Rn → R2((m+q)N+r). Problem (2.16) is known as parametric QP, and
is parameterized by the variable x. Note that this problem does not include equality
constraints (i.e. E = ∅).
There are several ways to guarantee strict convexity of (2.16). In the case of setpoint

stabilization (2.15), selecting the (symmetric) weighting matrices such thatQ ≥ 0, P ≥ 0
and R > 0 guarantees that the Hessian matrix is symmetric positive definite.
A MPC problem like (2.16) can be reliably solved by many commercial (e.g. MAT-

LAB, Gurobi) and non-commercial (e.g. CVXOPT [76], OpenOpt [77]) optimization
packages [78]. Nevertheless, to efficiently apply MPC on embedded systems, a solver
needs to exploit the structure of problems like (2.16) that are derived from (2.15). Next
chapter addresses this topic.

2.3.3. General moving horizon control formulation

So far, we have only consider one particular type of MPC problem. However, one of the
strengths of moving horizon formulation is that is general and therefore can deal with
a great variety of problems. Nevertheless, we focus our attention on problems that can
be equivalently expressed as a parametric quadratic program P(p) of the form:

minimize
u

1
2uTHu + g(p)Tu

subject to Cu ≤ c(p),
(2.17)

with H and C constant matrices, and g(p) and c(p) vectors affine in each of the param-
eters of the parameter sequence p.
Note that (2.16) is the standard QP representation the MPC setup (2.15). This

particular problem (regulation to the origin subject to constraints) has the state vector
x as its only parameter. That is, (2.16) is a particular case of (2.17) in which p consist
of a single parameter x, i.e. p = {x}. In general, p may consist of several parameters
that depend on the MPC problem at hand. Thus, formulation (2.17) allows us to
consider a broad range of problems, including, but not limited to: setpoint stabilization,
trajectory tracking [79, 80], systems with dead time [81], and systems with known-ahead
disturbances [11, 82]. Notable systems that cannot be expressed in form (2.17) are time-
varying systems, nonlinear systems, and formulations with weighting matrices varying
with time.

27

2. Model predictive control for embedded systems

Require: At each sampling time k = 0, 1, . . . get the parameter sequence pk
1: Find the solution u∗ to problem (2.17) for p = pk
2: Assign the MPC control action uk = u∗0
3: return uk

Algorithm 1: Model predictive control algorithm

The MPC scheme that was intuitively described in Figure 2.2 is formally presented in
Algorithm algorithm 1.

2.4. Summary
We presented a general description of the characteristics of the problems we are inter-
ested in. We introduced digital control of embedded systems and outlined important
concepts that are relevant for MPC applications. We focused first on the limitations of
embedded computers. We then introduced the model predictive control algorithm for
linear systems, and showed that it is, under certain conditions, equivalent to a convex
optimization problem. We presented the theoretical foundations of convex optimization
which are needed in the following chapters. In particular, we discussed convex quadratic
programs, a type of optimization problem commonly arising in linear MPC. In the next
chapter we discuss how problems like (2.17) can be solved efficiently, while at the same
time taking the limitations of embedded systems into account.

28

3. Tailored on-line optimization
software tools for MPC

This chapter discusses how optimization algorithms can be tailored for efficient MPC
implementations. We start by describing the main properties of the MPC algorithm that
need to be taken into account. It follows the discussion on how some of these properties
are exploited by state-of-the-art tailored optimization software tools. We then present
a novel optimization algorithm that takes into account the properties of MPC and is
well suited for embedded system. This allows the algorithm to achieve good controller
performance with the limited computational resources available on embedded hardware
platforms.

3.1. Exploiting the properties of the MPC algorithm

In this section we discuss the most relevant properties of the MPC algorithm that need
to be taken into account in embedded systems. These properties can be used to develop
efficient MPC implementations. We discuss some methods that work well in practice.
From a theoretical perspective, however, they present some challenges. We, therefore,
emphasize in the following the practical implications of these ideas, while we only briefly
mention some theoretical aspects.

3.1.1. Known-ahead maximum computation time

As discussed in Section 2.1, one fundamental assumption that is commonly made in
digital control systems is that the sampling period is constant. This imposes a limit on
what the maximum computational time of the MPC algorithm can be. Because an MPC
scheme runs alongside with several other software components on the same processor,
the exact available computational time for the MPC can in most cases only determined

29

3. Tailored on-line optimization software tools for MPC

empirically. Nevertheless, an important requirement of each of the software components
involved is that they have a deterministic computational time. It is therefore desirable
to have a known maximum computation time of Algorithm 1, and in particular of the
optimization algorithm used to solve QP (2.17).
Typically these problems are solved by iterative numerical algorithms that compute

a ε-suboptimal point (refer to Section 2.2). The suboptimality level ε determines the
number of iterations the algorithm needs to perform. The number of iterations is in turn
limited by the available computation time. For embedded systems, where the available
computing time is usually the most restricting criterion, it might only be possible to
find rough (and perhaps even infeasible) approximations to u∗. In many situations,
however, these approximations have been observed to provide a surprisingly good close-
loop performance, see [32, 64], and the examples in Chapter 6. Tailored algorithms, like
the ones discussed later in this chapter, can usually find good approximations rather
quickly.
Many algorithms have theoretically deterministic execution times for any given num-

ber of iterations. Nevertheless, their software implementation may render the algorithm
non-deterministic. In particular, some implementation may rely on dynamic memory
allocation, or on transcendental functions like logarithms or square roots. These oper-
ations are usually implemented on a compiler or math library and are typically non-
deterministic. While this may not be an issue if enough computation time is available,
it could make the algorithm not suited for a real-time embedded MPC implementation.
It is worth mentioning that many theoretical developments rely on the assumption

that the QPs are solved exactly. These discrepancies between the solution u∗ and an
approximation u∼ can be considered as perturbations if they are small enough. In this
context, small enough implies that the observed closed-loop performance is acceptable.
Expensive high-precision applications may have different performance requirements than
a cost-sensitive microcontroller application. Examples of the latter case are presented
in Chapter 6.

3.1.2. Partial use of the solution by the controller

In general, in any MPC scheme only part of the computed solution u∗ is used as control
input. Typically, only the first vector element u∗0 of the solution sequence is applied to
the dynamical system. The rest of the sequence is simply discarded. If we now take

30

3.1. Exploiting the properties of the MPC algorithm

into account the limited computation time available, we are only able to to compute
the approximate solution u∼, from which we apply the first element u∼0 . This is re-
peated at each sampling time. It should be clear from this that the actual performance
of the closed-loop control depends only on u∼0 , and only indirectly on how good an
approximation the whole sequence u∼ is.
Being more precise, for any given trajectory consisting of TN points, the performance

of the approximate closed-loop trajectory can be quantified by the cost

Jp =
TN−1∑
k=0
‖x∗k − x∼k ‖2

Q + ‖u∗k − u∼k ‖2
R, (3.1)

where x∗k and u∗k are the state and input at point k in an optimal MPC closed-loop
trajectory. Similarly, x∼k and u∼k are the state and input at point k in a closed-loop
trajectory based on suboptimal MPC. A lower value of (3.1) indicates a better nominal
performance.
This criterion allows us to compare the nominal closed-loop performance reached by

different QP solvers under tight time constraints, as is usually the case in embedded
systems. In other words, given an upper limit on the computation time, the solver that
provides the lowest Jp might be preferred for the MPC controller. Alternatively, given
an upper limit on Jp (whose value depends on the application), the solver that requires
the least computational effort would be preferred.

3.1.3. Similarities between consecutive problems

So far, we have only consider the implementation aspects of MPC from the perspective
of the controller, i.e., we only use the first part of the approximate solution as a control
input, while discarding the rest. From the perspective of the optimization algorithm,
the complete approximate solution is key for improving the solutions in the following
sampling instances, and, therefore, the controller performance. This is based on the fact
that many optimization algorithms, and in particular all of the algorithms discussed in
this chapter, work iteratively. They start their first iteration with an initial guess of the
solution, and with consecutive iterations they converge to the solution u∗. Therefore, it
is of great importance to choose a good initial guess, i.e., one that gets the algorithm
closer to u∗ in less iterations. The use of a previous solution to compute an initial guess
for the current problem is known as warm start ([3, Ch. 2]).

31

3. Tailored on-line optimization software tools for MPC

Although several methods exits to provide an optimization algorithm with a good
initial guess, we focus here on the shift method ([4, Ch. 10]). The shift method can
also be used to find initial guesses of the Lagrange multipliers for some algorithms. This
method is commonly used in applications where there exist a time similarity between
any two consecutive MPC problems. Let us explain with an example what is meant
by time similarity. Consider the MPC setup (2.15), and its equivalent QP form (2.16)
(denoted by P(p) for the general case (2.17)). For any two consecutive sampling times
tk1 and tk2 we have the states xk1 and xk2 = Axk1 +Bu∗k1 as parameters. Here, u∗k1 is the
first part of the solution to P(xk1). In this case, the MPC problems P(xk1) and P(xk2)
have a time similarity.
In general, the shift method works as follows: it considers the approximate solution

sequence u∼ = {u∼0 , u∼1 , . . . , u∼N−1} (computed at the previous sampling interval), and
from it we compute the initial guess for the current sampling interval:

u0 = {u∼1 , . . . , u∼N−1, u
0
N−1}, (3.2)

with the term u0
N−1 to be chosen.

The simplest choices are u0
N−1 = u∼N−1, or u0

N−1 = 0. However, this might result in
an infeasible initial guess u0. A more complex value that guarantees a feasible initial
guess can be computed by finding the solution u∗N,1 for the MPC problem with N = 1
and x0 = xN , and setting u∼N−1 = u∗N,1. Finally, the control action of a linear quadratic
regulator can also be used as u∼N−1. This guarantees nominal stability of the MPC
problem under particular conditions, see [3] for details.
For embedded applications, when a warm start is used, any of the simplest approaches

of the shift method might be preferred, i.e. choosing u0
N−1 = u∼N−1, or u0

N−1 = 0. In these
simple cases the shift method relies only on copying data, i.e. it does not involve any
arithmetic operations. This makes it particularly attractive for embedded applications,
as it is easy to implement and the computational requirements are relatively small. The
theoretical implications of using an infeasible initial guess are beyond the scope of this
work. Nevertheless, using u0

N−1 = 0 works well in practice for the algorithm presented
in Section 3.3.
The shift method in general provides good initial guesses only for certain families

of problems, e.g. gradient methods and active set methods. A notable exception are
primal-dual interior point methods, which require an initial point satisfying certain char-

32

3.1. Exploiting the properties of the MPC algorithm

acteristic that a previous solution does not typically fulfill, [20]. It is worth mentioning
that, in some applications, using a single predetermined sequence as initial guess at ev-
ery sampling instance may deliver better performance (see [15]). This way of proceeding
is known as cold starting the MPC algorithm.

3.1.4. Special structure of the data

The matrices that form the cost function and the constraints of QPs arising from MPC
have particular structures that can be exploited by tailored algorithms.

Hessian matrix

As outlined, there are two common ways to express the general MPC problem into a
standard QP form: sparse and condensed formulation.
In the sparse QP formulation the Hessian typically has a block tridiagonal structure.

Tailored algorithms can exploit this structure in a way that makes the computational
cost only slightly higher than O(N) [20, 83], with N being the horizon length.
In a condensed QP, the resulting Hessian matrix is dense and does not show a directly

exploitable structure. For optimization algorithms like active set and interior-point
methods, the computational cost (in terms of memory requirements and arithmetic op-
erations) for obtaining a solution using a dense Hessian is often proportional to N3.
For gradient-based methods, the computational complexity is proportional to N2. Ap-
pendix A exemplifies how to form a condensed QP for the MPC problem (2.15).
In general, the condensed QP formulation is preferred when short horizons are used.

For very long horizons, the quadratic (or cubic) dependence of the complexity on N

makes the use of the condensed formulation impractical. What represents a short or
long horizon is application dependent. In other words, the decision of whether to use a
sparse or condensed formulation is to be made on a case-by-case basis. A rule of thumb
states that a condensed formulation is preferred if the number of states is much larger
than the number of inputs and the horizon is not too long (say less than 30 steps) [7].
In the case of stochastic MPC formulations based on polynomial chaos expansion [84],
a condensed formulation allows the efficient implementation on a microcontroller of, for
example, a stochastic MPC problem with 30 states, 1 input and a horizon length of 5
steps [21].

33

3. Tailored on-line optimization software tools for MPC

In embedded applications, the horizon length is often selected to be as short as pos-
sible, while still delivering suitable performance, thus condensed formulations can be of
computational advantage due to lower memory and CPU requirements. Furthermore,
the condition number of the Hessian increases if the horizon length is increased [36,
Corollary 1]. A Hessian with a low condition number is in general desired. Furthermore,
in many embedded applications a well conditioned Hessian may greatly improve the
overall algorithm performance (cf. Subsection 3.3.4). Therefore, in the following, we
focus on condensed QPs formulations.

Constraints

The constraint matrices can also be treated as condensed or sparse. Furthermore, as
mentioned in Subsection 2.3.1, in MPC applications a strict separation can be made
between input constraints, u ∈ U and state constraints x ∈ X. Very frequently, the
input constraint set is defined as U = {u ∈ Rm | u ≤ u ≤ u}, and the state constraint
set is given by X = {x ∈ Rn | e ≤ Exx + Euu ≤ e}. Take for example MPC problem
(2.15), which can be concisely expressed as the QP (2.17). The constraint Cu ≤ c(p)
has the matrices with the following structure

C =

I

−I
Ĉ

−Ĉ

 , c(p) =

u
u
ĉ(p)
−ĉ(p)

 , (3.3)

which can be split into the box constraints u ≤ u ≤ u which are in this case param-
eter independent, and the more general ĉ(p) ≤ Ĉu ≤ ĉ(p). Taking into account this
particular structure can significantly speed up an optimization algorithm.

3.1.5. Soft constraints

In general, in model predictive control the constraints on the states cannot be strictly
enforced. They might be violated due to prediction horizons that are too short, or,
as is common in real applications, due to differences between the nominal and actual
closed-loop behavior. In the nominal case, full and exact state information is considered.
Furthermore, a perfect model of the plant is assumed without (unknown) disturbances.

34

3.2. Tailored optimization software tools

These conditions are not met in real applications, and may result in violation of state
constraints. This implies that the optimization problem becomes infeasible, and cannot
be solved. Obviously, this is an undesired on-line behavior that should be avoided. One
approach is to replace the hard state constraints with soft constraints. The constraints
in the inputs are left unchanged.

One way to implement soft constraints is to introduce slack variables s ≥ 0. The
hard state constraints x ≤ x is then rewritten as x ≤ x + s. If there are no violations
of the original constraints, then s = 0. Otherwise, if constraint xi is violated, then
si > 0. Furthermore, the cost function is modified to include a metric of the cost of
any constraint violation si > 0. There are several ways to modify the cost function. In
MPC, it is preferable that the new cost function gives an exact penalty method. An
exact penalty soft problem means that if the original hard problem is feasible, the same
solution is obtained for the soft problem. In [85], the authors present an exact penalty
that is a combination of `1-norms and squared `2-norms. In [86] a method is discussed
to provide a lower bound on how heavy the infeasibilities are to be penalized in the cost
function to guarantee an exact penalty method under certain conditions.

As stated above, the use of soft constraints avoids infeasibility of the parametric QP.
An MPC implementation could explicitly include slack variables in the formulation.
Alternatively, the QP solver could implicitly relax the state constraints. The algorithm
described in Section 3.3 follows the latter approach.

3.2. Tailored optimization software tools

In this section, we shortly discuss several software tools of state-of-the-art algorithms
tailored for MPC. We briefly describe the algorithms on which these tools are based, and
provide a concise explanation on how each implementation exploits the MPC properties.

Before we continue, we repeat here for easier reference the optimization problem (2.2):

minimize
y∈Rny

f0(y)

subject to fi(y) ≤ 0, for all i ∈ I,
fi(y) = 0, for all i ∈ E ,

(3.4)

35

3. Tailored on-line optimization software tools for MPC

and the first-order optimality (KKT) conditions (2.11):

∇L(y∗, λ∗) = 0,
fi(y∗) ≤ 0, ∀ i ∈ I,
fi(y∗) = 0, ∀ i ∈ E ,

λ∗i ≥ 0, ∀ i ∈ I,
λ∗i fi(y∗) = 0, ∀ i ∈ I ∪ E .

(3.5)

3.2.1. Interior point methods

Interior point methods (IPM) can be broadly classified as primal or primal-dual. Tai-
lored primal-dual methods often outperform primal barrier methods, in particular where
very accurate solutions are required, [31, Ch. 11.7]. IPMs can deal with a broad va-
riety of convex problems, including QPs, quadratically constrained quadratic programs
(QCQP), and second-order cone programs (SOCP). One of the first IPMs tailored for
MPC was presented in [20] based on a primal-dual approach. Tailored primal IPMs have
been discussed in [32, 87]. Here, we briefly discuss primal-dual methods, in particular
with Mehrotra predictor-corrector [88], as there are several recent relevant results for
code generation of MPC algorithms using these methods. Of interest here are the code
generating tools based on primal-dual IPMs for QPs [44], QCQPs [22, 23], and SOCPs
[24, 46, 89].
A primal-dual IPM start with an initialization phase that searches for a point (y, λ)

such that the optimization variable y satisfies all inequality constraints strictly (i.e.
fi(y) < 0, i ∈ I) and the dual variable satisfies λ > 0. This step usually involves solving
a linear system of equations.
Once this initialization point is found, a primal-dual search direction must be com-

puted. This requires solving a linear system based on the linearization of the KKT
conditions (3.5) (sometimes called Newton system). The resulting Newton system has
the structure S F T

F 0

 ∆v1

∆v2

 =
 r1

r2

 , (3.6)

where S is symmetric positive semidefinite, and F has full row rank. At each iteration
of the IPM method, the Newton system needs to be solved for two different right hand
sides, i.e. it is solved once to find a scaling direction, and a second time to compute

36

3.2. Tailored optimization software tools

the centering-plus-correction directions (see [44] for details). With the solutions of these
two Newton systems, an updated pair of primal and dual variables can be computed.
The main computational burden of IPM lays in solving the Newton systems, which

have the structure (3.6). Therefore, using methods that exploit their structure is ad-
vantageous. Several implementations of primal-dual IPM exist. We focus here on the
software tool CVXGEN [44], FORCES, [22], and ECOS/QCML [24, 46].
CVXGEN is a parser-solver that uses a high-level description of convex optimizations

problems (only QPs are considered at the time of this writing) to generate tailored
embedded solvers based on IPMs. An embedded solver, in the CVXGEN context, is one
that takes into account the inherited properties of a problem family (e.g. QPs with some
particular features) to generate code that is self-contained. This in strong contrast to a
general solver, which attempts to solve a broader class of problems (e.g. QPs) without
any previous information about the particular problem instance. An embedded solver
is usually orders of magnitude faster than a general solver. CVXGEN reports solving
some small problems 10, 000 times faster than the general parser/solver CVX. The high-
level problems description of CVXGEN makes it really easy to generate fast embedded
solvers for MPC [90]. However, CVXGEN follows by design an explicit approach to code
generation. This implies that the size of the generated code quickly grows with problem
size [44]. This restricts CVXGEN to problems of moderate size, in general. For low-cost
embedded systems, where there is little memory available (say a few 100 kB), CVXGEN
might be further restricted to problems of small size [25].
FORCES is as well a code generation tool that uses a IPM similar to the one used

by CVXGEN. However, FORCES code generation is less sensitive to problem size. Fur-
thermore, FORCES explicitly takes into account the MPC problem structure. This can
make FORCES several times faster than CVXGEN for MPC applications with long
horizons [22]. In addition, FORCES can deal with QCQPs problems. QCQPs arise in
various MPC setups, see for example [71, 72]. FORCES is a MATLAB based toolbox
that, in contrast to CVXGEN, does not use a high-level language specification. The
problem formulation of FORCES is very explicit. A simple MPC formulation that in
CVXGEN would be around 10 lines, in FORCES takes around 100 lines. A commercial
version of FORCES provides a simpler formulation.
A third code generation tool based on primal-dual IPMs for SOCPs is the combination

ECOS/QCML. ECOS is a general purpose solver for small to medium size SOCPs.
QCML is a parsing and code generating tool for ECOS. SOCPs arise in many engineering

37

3. Tailored on-line optimization software tools for MPC

applications [73], including stochastic MPC problems [53, 75].
In the context of MPC, one of the often cited drawbacks of primal-dual methods

is their difficulty to be warm started (see [91, 92] and references therein). CVXGEN,
FORCES and ECOS do not implement warm starting strategies. Thus, although very
efficient, these solvers can be outperformed by other optimization methods in MPC
applications that can fully exploit warm start. This can make a primal-dual IPM solver
less effective for embedded applications with tight computational deadlines [25]. Next
we present two algorithms that can be easily warm started, namely active set methods,
and gradient based methods.

3.2.2. Active set methods

The basic idea behind active set methods is to fix a set of active constraints (called the
working set) and solve a much easier equality constrained QP. Active constraints are
added to or removed from the working set at each iteration of the algorithm until the
optimal active set, and hence the solution to the original problem, is found. Active set
methods can be broadly classified in primal and dual methods. We focus on the tailored
dual approach called online active set strategy [27] and the implementation qpOASES
[33]. We refer to [35] for a detail presentation of the online active set strategy.

Online active set strategy at a glance

Fundamental to the online active set strategy is the introduction of a homotopy to go
from one critical region to another (refer to Section 2.2 for the definitions of critical
region, and optimal active set). At each iteration, the online active set strategy method
computes a step direction for the primal and dual variables by solving a KKT system
(with a structure like (3.6)) based on the difference of a previous point y0 (either the
solution of a previous QP or a point from the previous iteration) and the optimal point
y∗ (see Figure 3.1).
From this, a maximum homotopy step length τmax ∈ [0, 1] can be computed, with

τmax = min{1, τdual
max , τ

prim
max }. From this, two possible actions are possible: If τmax = 1,

a solution has been found and the algorithm stops iterating, otherwise if τmax < 1 the
current working set needs to be modified and the procedure to find a new homotopy
must be repeated. More specifically, if τmax = τdual

max a constraint needs to be removed

38

3.2. Tailored optimization software tools

y0

y∗

τmax<1

τmax=1

Figure 3.1.: Homotopy paths for a QP across multiple critical regions, adapted from [27].

from the working set. If τmax = τprim
max then a constraint must be added to the working

set.
Active set methods in general require a feasible point as initial guess. One of the

advantages of dual active set methods, with respect to primal ones, is that finding a
dual feasible starting point is straightforward for strictly convex QPs.

Exploiting MPC properties in online active set methods

In general, the algorithm should stop iterating only if τmax = 1, i.e. an optimal point y∗

is found. In a MPC application, the algorithm may be stopped at a suboptimal point
y∼ where τmax < 1. Due to the homotopy, this points lies on the boundary of a critical
region of the current QP. The online active set method can use this information for
warm starting the QP at the next sampling time (see [35, Ch. 3]). Furthermore, this
method uses a so-called hot start procedure that consist on warm starting plus reusing
the matrix factorizations employed to solve the KKT system. These greatly speeds up
the solutions of consecutive QPs. Furthermore, the maximum number of arithmetic
operations are fixed for any given QP.
The online active set strategy has been implemented in qpOASES [33], an open-

source software implemented using the C++ programming language. qpOASES has
been successfully used in linear MPC applications directly or with slight modifications
[35, Ch.5] as well as in nonlinear ones as a solver embedded in the ACADO toolkit [49].
qpOASES is a quite mature QP solver that exploits many of the properties of the MPC

problem inherited from the active set strategy. It can be hot started and deals with input
box constraints explicitly. qpOASES relies on dynamic memory allocation, i.e. it makes
extensive use of the new operator. This, and the fact that is implemented in C++, may

39

3. Tailored on-line optimization software tools for MPC

pose several drawbacks for embedded applications. Some embedded C/C++ compilers
do not implement dynamic memory allocation algorithms, which makes qpOASES un-
usable in such cases. Moreover, dynamic memory allocation is not deterministic. This
last point implies that, although the online active set strategy itself has deterministic
computation time, the use of dynamic memory allocation by qpOASES renders the im-
plementation non-deterministic. This might not have a noticeable effect on applications
with enough computational power. However, for MPC applications with tight real-time
deadlines, this can have a significant impact in closed-loop performance due to missed
deadlines. See the discussion in Subsection 2.1.2.

3.2.3. Gradient methods

In this section we focus on tailored algorithms based on gradient and Lagrange relaxation
methods. We especially focus on the MATLAB toolbox FiOrdOs [48], an implementation
that generates C-code based on this algorithm, is also discussed.
FiOrdOs directly the dual problem (2.7) for convex quadratic programs using first-

order methods. To apply first-order methods the gradient of (2.7) must be computed.
This in turn implies that the problem defined by the Lagrange dual function (2.6) are be
solved. To achieve this, two optimization problems must be solved in a nested way. In
this context, problem (2.7) is called outer problem and (2.6) is the inner problem. FiOr-
dOs implements classical gradient methods, and a fast gradient method (see Section 3.3
for a brief description of the fast gradient method). Furthermore, FiOrdOs allows to
compute off-line a pre-conditioner of the Hessian by solving a semi-definite program.
This can significantly improve the convergence rate of the fast gradient method (see
Subsection 3.3.4). Furthermore, for certain problem structures, a certificate of sub-
optimality can be provided given a maximum number of iterations of the fast gradient
method [36, 47].
FiOrdOs takes into account the separation of input and state constraints. It considers

problems where the optimization variable y belongs to a simple set, which is defined as
the Cartesian product of elementary simple sets. An elementary simple set is one that
is convex, closed and its projection is easy to compute. Examples of such sets are box
sets, Euclidean balls, second-order cones, and simplexes. Restricting the optimization
variable to such sets allows the efficient use of gradient methods.
Overall, FiOrdOs is a powerful code-generation tool that allows fine configuration for

40

3.3. A novel optimization algorithm for embedded MPC

the algorithms. However, the syntax is very technical and might be daunting for users
of MPC not familiar with optimization theory.

3.2.4. Comments on explicit methods

An alternative approach to solving a parametric QP on-line is to find off-line the QP
solutions for all possible parameters and recall the solution for a particular parameter
on-line. This is often referred to as explicit MPC, c.f. [26]. The main idea is to use the
critical regions of the parametric QP to form a polytopic representation of the solution
(see Figure 3.1). Inside each critical region, the solution to the QP is given by an affine
function of the parameter. Obtaining this representation, which is guaranteed to have
a finite number of partitions, is typically done off-line. The on-line computation is then
limited to identifying to which region the current parameter belongs to. This is done
by means of a look-up table stored in memory. Once this region is identified, the affine
function corresponding to this region is evaluated to find the optimal point.
A drawback of explicit methods is that number of regions grows quickly with problem

size. Thus storing the resulting number of regions, and quickly selecting the optimal
critical region, may present some challenges in embedded systems. There have been
improvements with respect to these two aspects in the recent years, see [93] and references
therein. Still, explicit methods are in general restricted to problems of small size. A
typical MPC problem for which an explicit approach can be applied has one or two
inputs, less than ten states, and up to four free control moves (i.e. a very short control
horizon).
The main advantage of explicit methods is that for small problems, a solution can be

found much quicker than on-line methods. Furthermore, parallelization can be easily
exploited by, for example, field-programmable gate array technology [94]. In general,
explicit methods are suitable for problems of small size with very fast sampling rates
and where memory limitations are not a big concern.

3.3. A novel optimization algorithm for embedded MPC

We present a novel optimization algorithm specifically developed to exploit the properties
of MPC (discussed in Section 2.1) and at the same time take into account the limitations
of embedded sytems (presented in Section 3.1). The algorithm is based on an augmented

41

3. Tailored on-line optimization software tools for MPC

Lagrangian method combined with Nesterov’s fast gradient method, [83, 95]. We start by
describing the fast gradient method and the augmented Lagrangian method in a general
setting. Afterwards we discuss how the two algorithms are combined and applied to
efficiently solve MPC problems in embedded systems.

3.3.1. Fast gradient method

We briefly describe how the fast gradient method (FGM) [96] can be applied for solving
a convex optimization problem of the form

minimize
y∈Y

f0(y), (3.7)

which is a particular case of (3.4). Here, the set Y ⊂ Rny is convex and compact. In
the following, we briefly present the main properties of the fast gradient method. This
subsection is based on [97, Ch. 2], where a thorough treatment of the FGM can be
found.
We first define some important concepts.

Definition 6 (Lipschitz continuity of gradient). The gradient of a continuously differ-
entiable function ∇f0(y) is called Lipschitz continuous on Y if there exists a Lipschitz
constant L ≥ 0 such that for any y, z ∈ Y we have

‖∇f0(z)−∇f0(y)‖ ≤ L‖z − y‖. (3.8)

Definition 7 (Strong convexity). A continuously differentiable function f0(y) is called
strongly convex on Y if there exists a strong convexity parameter φ > 0 such that for
any y, z ∈ Y we have

f0(z) ≥ f0(y) +∇fT
0 (y)(z − y) + φ

2‖z − y‖
2. (3.9)

Definition 8 (Projection onto a set). Let Y be a closed set and z ∈ Rny . Then the
projection of z onto Y is defined as

PY(z) = arg min
y∈Y
‖y − z‖. (3.10)

For a continuously differentiable function f0(y) whose gradient is Lipschitz continuous

42

3.3. A novel optimization algorithm for embedded MPC

the projection of the gradient step onto the feasible set Y is computed as follows:

GY(z) = PY(z − 1
L
∇f0(z)). (3.11)

We call GY(z) the projected gradient step of f0 onto Y .

Fast gradient method for convex problems

The fast gradient method belongs to a family of optimal methods that make use of an
estimate sequence. In contrast, classical gradient methods rely on a relaxation sequence
f(yk+1) ≤ f(yk). The advantage of using an estimate sequence is that it takes into ac-
count the global topological properties of convex functions. In comparison, a relaxation
sequence works on a narrower scope of the function. Enforcing a relaxation sequence
might be inefficient for some problems.
In the following, we assume that the gradient of f0 is Lipschitz continuous and f0 is

strongly convex, with φ > 0. Furthermore, the constraint set is a simple set for which
the projected gradient step can be explicitly computed. In Subsection 3.3.3 we show
that these assumptions are satisfied by the considered MPC setup.
Let us first look at why we require these properties on problem (3.7). The Lipschitz

continuity of the gradient of f0 is required to compute the projection onto the set Y .
To build an estimate sequence the strong convexity of f0 is additionally required. To
compute a vector z for the current step k on the estimate sequence, we make use of two
auxiliary scalar sequences αk and βk. The scalar sequence βk, k ≥ 0 is computed as

βk = (αk)2(1− αk)/((αk)2 + αk+1), (3.12)

where
(αk+1)2 = (1− αk+1)(αk)2 + φ

L
αk+1, (3.13)

with 0 <
√

φ
L
≤ α0. In these two relations (αk)2 denotes αk to the power of 2.

Our last assumption limit us to use a simple set. Examples of such sets are box,
simplex, and Euclidean balls. We are particularly interested in box constraint sets.
Specially we consider the set Y = {y ∈ Rny | y

i
≤ yi ≤ yi, i = 1, . . . , ny}, for which

the projection (3.10) is simply computed as the entry-wise arithmetic saturation. So the
i-th component of PY(z), with z ∈ Rny , is computed as

43

3. Tailored on-line optimization software tools for MPC

Require: y0 ∈ Y , 0 <
√

φ
L
≤ α0 < 1

1: set z = y0

2: for k = 0→ kmax − 1 do
3: compute yk+1 = GY(z)
4: compute αk+1 ∈ (0, 1) from (3.13)
5: compute βk from (3.12)
6: compute z = yk+1 + βk(yk+1 − yk)
7: end for
8: return yk+1

Algorithm 2: Fast gradient method for convex problems

Require: y0 ∈ Y , ν from (3.16)
1: set z = y0

2: for k = 0→ kmax − 1 do
3: compute yk+1 = GY(z)
4: compute z = yk+1 + ν(yk+1 − yk)
5: end for
6: return yk+1

Algorithm 3: Fast gradient method for strictly convex problems

PY(z)i =

yi if zi > yi

y
i

if zi < y
i

zi otherwise.
(3.14)

More concisely, it can be equivalently expressed as

PY(z) = max(y,min(y, z)), (3.15)

where max and min are applied entry-wise. It follows that the projected gradient step
(3.11) is easily computed. The FGM is summarized in Algorithm 2.
For strictly convex problems we can set α0 =

√
φ
L
, and from (3.13) we get a constant

αk = α0, k = 1, Moreover, from (3.12) we also get a constant βk = ν, k = 0, . . ., with

ν =
√
L−
√
φ√

L+
√
φ
. (3.16)

In this case, the FGM turns out to be even simpler, as can be seen in Algorithm 3.

44

3.3. A novel optimization algorithm for embedded MPC

The fast gradient method shows a convergence of O(1) min(
√
κ ln(1/ε),

√
L/ε), with

ε the suboptimality level, and κ = L/φ the condition number of the cost function’s
Hessian [97, Theorem 2.2.3]. In comparison, a gradient method shows a convergence
of O(1) min(κ ln(1/ε), L/ε). This implies that the fast gradient method is much faster
when the Hessian has a very low condition number.
We have shown how the FGM can deal with problems like (3.7). This type of problem

have constraints that only restrict the domain of the problem directly, i.e. y ∈ Y . We
consider next convex problems with a more general type of constraints.

3.3.2. Augmented Lagrangian method

In this subsection, we deal with the more general optimization problem (3.4). The
basic idea behind the augmented Lagrangian method (ALM) is to solve a series of
unconstrained optimization problems instead of solving the original constrained problem
at once. The following presentation is based on [29, Ch. 12, Ch. 17]

ALM for problems with equality constraints

Consider the equality constrained problem (i.e. I = ∅)

minimize
y∈Rny

f0(y)

subject to fi(y) = 0, i ∈ E .
(3.17)

The Lagrangian function (cf. (2.5)) for this problem is given by

L(y, λ) = f0(y) +
∑
i∈E

λifi(y), (3.18)

and the augmented Lagrangian function for this problem is defined as

LA(y, λ, µ) = f0(y) +
∑
i∈E

λifi(y) + µ

2
∑
i∈E

f 2
i (y). (3.19)

Here µ is the penalty parameter. Compared to the Lagrangian function L(y, λ), the
augmented Lagrangian LA(y, λ, µ) additionally penalizes infeasibilities (i.e. fi(y) 6= 0)
by squaring them and scaling them by µ

2 .

45

3. Tailored on-line optimization software tools for MPC

Let us first take an intuitive approach to justify the use of the ALM method. We
formalize these ideas later. We want to solve the unconstrained problem

minimize
y∈Rny

LA(y, λ, µ). (3.20)

Observe from the KKT conditions (3.5) that if we have knowledge of the optimal La-
grange multiplier λ∗, then the minimizer y∗ of LA(y, λ∗, µ) is also the solution to (3.17).
To see this, note that ∇yLA(y∗, λ∗, µ) = ∇yL(y∗, λ∗) = 0. Recall that for convex un-
constrained problems, a sufficient and necessary conditions for a point y to be optimal
is ∇yf0(y) = 0, which can also be derived from (3.5) with I = E = ∅. In this par-
ticular case, we can find the solution y∗ simply by solving an unconstrained problem.
Now consider the more realistic case in which λ∗ is unknown. First recall that the
term µ

2
∑
i∈E f

2
i (y) penalizes infeasibilities. Intuition then tells us that the solution y∼

to LA(y, λ, µ) should be a better approximation to y∗ for higher values of µ.

Let us now combine the influence of these two factors, namely the knowledge of λ∗

and the value of the penalty parameter µ. We additionally assume that a numerical
optimization algorithm solves the problem only approximately. Let then yk denote the
approximate minimizer of the function LA(y, λk, µk). For a µk large enough we have

0 ≈ ∇yLA(yk, λk, µk) = ∇f0(yk) +
∑
i∈E

(λki + µkfi(yk))∇fi(yk).

From this and the KKT conditions we can deduce that

λ∗i ≈ λki + µkfi(yk), ∀ i ∈ E , (3.21)

and from it we have
fi(yk) ≈

1
µk

(λ∗i − λki), ∀ i ∈ E .

From this last relation, we can observe that the infeasibilities become smaller either
by increasing µk or by using a λk that is close to the optimal multiplier vector λ∗.
Furthermore, from (3.21) we can derive a relation for an improved estimate of λ∗:

λk+1
i = λki + µkfi(yk), ∀ i ∈ E . (3.22)

We refer to this relation as the multiplier update.

46

3.3. A novel optimization algorithm for embedded MPC

Require: λ0, µ
1: for k = 0, . . . , kmax − 1 do
2: Find yk = arg minLA(y, λk, µ)
3: Compute λk+1

i = λki − µfi(yk), ∀ i ∈ E
4: end for
5: return yk, λk+1

Algorithm 4: Augmented Lagrangian method (ALM)

Having now a better estimate of λ∗, it makes sense to find an improved estimate of
y∗ by iteratively minimizing LA using better estimates of λ∗ at each iteration. This is
the basic idea of the augmented Lagrangian method, which is presented in Algorithm 4
(for constant µ).

ALM for quadratic programs

Let us now apply the augmented Lagrangian method to the quadratic program (2.4). In
particular, we consider QPs with constraints having the structure (3.3) that arise from
MPC problems. That is, QP (2.4) can be expressed in the form

minimize
y∈Rny

f0(y)

subject to y ≤ y ≤ y

c ≤ Ĉy ≤ c,

(3.23)

which is the type of QP typically arising from the MPC setup considered in this work.
Although this QP contains inequality constraints only, the equality constrained ALM
can still be applied by introducing slack variables.
The following is based on [98, Ch.5]. Problem (3.23) is equivalent to

minimize
y≤y≤y, s

f0(y)

subject to ci ≤ Ĉiy + si ≤ ci,

si = 0, ∀ i ∈ C,

(3.24)

where C denotes the set of indices for mixed constraints. Note that we are now mini-
mizing with respect to the vector (yT, sT)T. If we apply the ALM to the equality s = 0

47

3. Tailored on-line optimization software tools for MPC

we obtain
minimize
y≤y≤y, s

f0(y) +
∑
i∈C

(λki si + µ

2 s
2
i)

subject to ci ≤ Ĉiy + si ≤ ci, ∀ i ∈ C,
(3.25)

and the multiplier update is given by

λk+1
i = λki + µski , ∀ i ∈ C. (3.26)

We can minimize (3.25) first with respect to s for each fixed y, such that

minimize
c≤Ĉy+s≤c

f0(y) +
∑
i∈C

(λki si + µ

2 s
2
i), (3.27)

is equivalent to ∑
i∈C

minimize
ci≤Ĉiy+si≤ci

(λki si + µ

2 s
2
i). (3.28)

This problem is a sum of scalar optimization problem which can be solved analytically.
Consider the unconstrained case of each subproblem i ∈ C, whose solution is given by
ŝi, the scalar for which the derivative of f̃i(si) = λki si + µ

2s
2
i with respect to si is zero.

We then have
df̃i(si)

dsi
= λki + µsi,

from which it follows that
ŝi = −λ

k
i

µ
.

With this in mind, the constrained problem (3.28) has the solution ŝi if ci ≤ Ĉiy+ŝi ≤ ci.
Otherwise, i belongs to the active set, i.e. the solution is given by:

s∗i (λki , y) =

ci − Ĉiy if λki + µ(c− Ĉiy) < 0
ci − Ĉiy if λki + µ(c− Ĉiy) > 0
−λki /µ otherwise.

(3.29)

Then, the minimum of (3.28) is given by

p̌∗i (λki , y) = λki s
∗
i (λki , y) + µ

2 s
∗
i (λki , y)2, ∀ i ∈ C. (3.30)

Using these results, we can eliminate the explicit dependence on s from problem (3.25),

48

3.3. A novel optimization algorithm for embedded MPC

which is then equivalent to

minimize
y≤y≤y

f0(y) +
∑
i∈C

p̌∗i (λki , y). (3.31)

This problem in turn can be solved using the fast gradient method if the condition
described in Subsection 3.3.1 are met.
So far, we have outlined the FGM and the ALM for a convex QP derived from an

MPC setup. However, we haven’t yet explicitly shown that the MPC problem (2.15)
in fact meets the necessary conditions for these methods to apply. The next subsection
deals with this challenge in detail.

3.3.3. The ALM+FGM algorithm for MPC

In the following we tailor the ALM combined with the FGM to the MPC problem.
We discuss how the particular characteristics of MPC are used to efficiently apply the
ALM+FGM algorithm.
We first take into account that the MPC problem is equivalent to the parametric QP

(2.17). We assume, that for any parameter p we get a problem in one of the following
two forms: input constrained problem (3.7), or mixed constraint problem (3.23). Next,
we discuss these two cases in detail.

Input constrained case

We start by expressing (3.7) using the MPC input sequence u as optimization variable:

minimize
u∈U

1
2uTHu + gTu. (3.32)

Here we have U = {u | u ≤ u ≤ u}, and we denote the cost function as f IC
0 =

1
2uTHu + gTu. As discussed in Subsection 3.3.1, the FGM can efficiently solve this type
of problems under certain conditions. The fast gradient method was first proposed in
the MPC context in [99]. Recall that in Subsection 2.3.2 we discussed strict convexity
of an MPC problem, which required having a positive definite Hessian of the QP’s cost
function. As mentioned in Subsection 3.3.1, the basic requirements for the applicability
of the FGM are the Lipschitz continuity of the gradient of f IC

0 and the strong convexity
of f IC

0 . Furthermore, the Lipschitz constant L and the strong convexity parameter φ

49

3. Tailored on-line optimization software tools for MPC

Require: initial guess u0, current p
1: form (3.32) for the given p
2: set w = u0

3: for j = 0→ jin − 1 do
4: compute uj+1 = GIC

U (w)
5: compute w = uj+1 + ν(uj+1 − uj)
6: end for
7: return uj+1

Algorithm 5: Fast gradient method (FGM) for MPC with input constraints

are given by the maximum and minimum eigenvalues of H, respectively. Consequently,
strong convexity of f IC

0 is guaranteed by H > 0. This in turn allows us to select a
constant scalar parameter ν for the FGM, given by (3.16), which greatly simplifies the
FGM implementation (see Algorithm 3).

The gradient of the cost function is given by

∇f IC
0 (u) = Hu + g. (3.33)

The projected gradient step of a point w ∈ RNm onto the set U is computed by

GIC
U (w) = PU(w− 1

L
∇f IC

0 (w)), (3.34)

where
PU(w) = max(u,min(u,w)). (3.35)

The final step is to compute an extra step

w = uj+1 + ν(uj+1 − uj), (3.36)

and then repeat the procedure as shown in Algorithm 5.

50

3.3. A novel optimization algorithm for embedded MPC

Mixed constraints case

As in the input constrained case, we start this section with problem (3.23) using the
MPC input sequence as optimization variable:

minimize
u∈U

1
2uTHu + gTu

subject to c ≤ Ĉu ≤ c,
(3.37)

Applying the augmented Lagrangian method for double sided constraints (3.31), to
problem (3.37) we have

minimize
u∈U

fMC
0 (u;λi), (3.38)

where
fMC

0 (u;λi) = 1
2uTHu + gTu + p̌∗(u;λi). (3.39)

The term p̌∗(u;λi) is given by (3.30) so that for any λ

p̌∗(u;λ) = min
s∈RNq+r

λTs + µ

2‖s‖
2
2

s. t. c ≤ Ĉu + s ≤ c,
(3.40)

where s is a slack variable. We are looking for the pair of vectors u∗, λ∗. The former
is the minimizer of (3.37), whereas the latter is the Lagrange multiplier that together
with u∗ minimizes (3.38). The finite sequence {λ0, . . . , λiex} that approximates λ∗ is
computed using p̌∗(u;λi), given that (3.40) is solved analytically. The next element in
the sequence is given by the multiplier update, which is computed as

λi+1 = S(u∗i, λi), (3.41)

where u∗i denotes the minimizer of (3.38) using λi instead of λ∗, i.e.:

u∗i = arg min
u∈U

fMC
0 (u;λi), (3.42)

and
S(u, λ) = min(λ(u, λ), 0) + max(λ̄(u, λ), 0). (3.43)

51

3. Tailored on-line optimization software tools for MPC

The jth element of λ(u, λ), and λ̄(u, λ) are given by

λj(u, λ) = λj + µ(Ĉju− cj),
λj(u, λ) = λj + µ(Ĉju− cj),

(3.44)

respectively. To find an approximation ui of the minimizer u∗i, we use the FGM. To
apply the FGM, we need to show that there exist a Lipschitz constant for the gradient
of fMC

0 (u;λ) and a convexity parameter for fMC
0 (u;λ).

In [83, Proposition 1] it is shown that a Lipschitz constant L for ∇fMC
0 is given by

L = ‖H + µĈTĈ‖ and a strong convexity parameter φ for fMC
0 is given by the smallest

eigenvalue of H. For every λi of the sequence, we need to find an approximate minimizer
ui. We proceed iteratively similarly to the input constrained case. The main difference
is the cost function fMC

0 (u;λi) and its gradient, which is now given by

∇fMC
0 (u;λi) = Hu + g +∇p̌∗(u;λi), (3.45)

and the gradient of (3.40) is computed as

∇p̌∗(u;λi) = ĈTS(u, λi). (3.46)

The projected gradient step is in this case given by

GMC
U (w;λi) = PU(w− 1

L
∇fMC

0 (w;λi)), (3.47)

where PU is computed as in (3.35). The final extra step of the FGM is computed as in
(3.36). The FGM is given in this scenario by Algorithm 6.

The augmented Lagrangian method (ALM) is outlined in Algorithm 7. Note that the
complete algorithm ALM+FGM requires two iteration loops, the internal loop corre-
sponds to the FGM, and the external loop to the multiplier update of the ALM. The
algorithm has therefore only three tuning parameters: the first two are the maximum
number of iterations of each loop, and are denoted as iex (external loop) and jin (internal
loop), and the last is the penalty parameter µ of the ALM. We discuss next why the
ALM+FGM algorithm is well suited for embedded MPC applications.

52

3.3. A novel optimization algorithm for embedded MPC

Require: initial guess u0, multiplier λi
1: set w = u0

2: for j = 0→ jin − 1 do
3: compute uj+1 = GMC

U (w;λi)
4: compute w = uj+1 + ν(uj+1 − uj)
5: end for
6: return uj+1

Algorithm 6: Fast gradient method for MPC with mixed constraints.

Require: Initial guesses λ0, u0, current p.
1: form (3.37) for the given p
2: for i = 0, . . . , iex − 1 do
3: Find ui+1 using Algorithm 6 with

initial guess ui, and parameters λi
4: Compute λi+1 = S(ui+1, λi)
5: end for
6: return λi+1, ui+1

Algorithm 7: Augmented Lagrangian method for MPC with mixed constraints.

3.3.4. ALM+FGM for embedded MPC

Perhaps one of the main characteristics that differentiate the ALM+FGM algorithm
from other approaches is that it not only exploits the MPC properties discussed in
Section 3.1, but at the same time, it also takes into account the limitations of embedded
systems discussed in Section 2.1.

Exploiting the properties of MPC

In Section 3.1, we showed that the parametric QP arising from MPC has several prop-
erties that can be exploited to get efficient MPC implementations. For a given number
of external and internal iterations (iex, jin) of Algorithm 7, the number of arithmetic
operations of the complete algorithm is fixed. Furthermore, the involved operations are
only additions and multiplications. On a modern embedded computational platform,
these operations are temporally deterministic. This in turn implies that the algorithm
itself will show temporal determinism for a fixed number of iterations. In Chapter 5,
we discuss the implementation of the algorithm, and we show with examples that it is
indeed deterministic.

53

3. Tailored on-line optimization software tools for MPC

Cold start or warm start strategies can easily be implemented. Here, not only an
initial guess for the input vectors can be supplied, but also for the Lagrange multipliers.
In the case of warm start using the shift method, a feasible initial guess for the inputs is
straightforward to find for box constraints. Furthermore, the last element of (3.2) can
be determined off-line. In the case of the Lagrange multipliers, the only restriction on a
multiplier for a problem like (2.8) is that λi ≥ 0. However, if the QP is formulated with
explicit use of double sided constraints as in (3.37), the Lagrange multipliers can also
take negative values. Therefore, setting an unknown multiplier to zero is always a safe
strategy when using the shift method for warm starting.
The special structure of the constraints can also be exploited. The FGM takes care

of the input constraints. These are treated as hard constraints, as is usual in MPC.
The state constraints are dealt with by the ALM, and are implicitly treated as soft
constrained. In Chapter 5 we show that for certain values of the penalty parameter
µ ≥ µ, the ALM+FGM behaves as an exact penalty method.

Numerical conditioning

The condition number of the internal problem is given by

κ = L/φ = ‖H + µĈTĈ‖
λmin(H) . (3.48)

Recall that the convergence rate of the fast gradient method depends on the value of κ,
as in (3.48). This in turn is bounded below by the condition number of the Hessian κH .
Therefore, a reduction of κH implies a reduction of κ itself, and thus faster convergence
of the FGM. One way to do reduce the condition number of κH is to compute a pre-
conditioner for H, [36]. Another way is to compute the weighting matrices of the MPC
problem such that κH is reduced [100]. In Chapter 5 we discuss the latter strategy.
A further benefit of having a low condition number is more reliable numerical results

on embedded platforms. A rule of thumb states that the conditioning of the Hessian is
proportional to the accumulation of round-off errors in the solution of a QP [101]. This
is of particular importance in embedded systems using single precision (32-bit) floating-
point computations, and even more so when using fixed-point computations. It follows
that a low value of κH , and thus of κ, has two benefits: a faster convergence rate of the
ALM+FGM algorithm and reduced numerical errors on embedded platforms.

54

3.4. Summary

3.4. Summary
In this chapter, we discussed the main properties of embedded MPC that are exploited
by tailored optimization algorithms. We briefly reviewed some existing approaches,
highlighting their strengths and weaknesses. Afterward, we presented a novel optimiza-
tion algorithm based on an augmented Lagrangian method combined with Nesterov’s
fast gradient method (the ALM+FGM algorithm). This algorithm can be easily warm
started, which, for certain MPC problems, offers an speed advantage in finding a solu-
tion. Furthermore, the ALM+FGM inherently deals with soft constraints. This avoids
running into infeasible problems on-line. Due to the convergence rate of the FGM, this
algorithm works best for MPC problems that are well conditioned, i.e. where κH , the
condition number of the Hessian of the QP, is low. The ALM+FGM relies only on
multiplications and additions. This implies that, for a fixed number of iterations of the
ALM+FGM, the algorithm shows temporal determinism. Furthermore, this makes the
ALM+FGM simple to implement using fixed-point arithmetic. The use of fixed-point
operations is limited to cases where the round-off errors remain small. The magnitude
of this errors is related to the condition number of the Hessian of the QP. Furthermore,
we saw that the horizon length is directly proportional to κH . In addition, due to lim-
itations of embedded applications, it is common to select horizon lengths that are just
long enough for good closed-loop performance. Therefore, we focused our discussion to
problems where the horizon length is not too long. In such cases, a condensed QP has in
general lower memory and CPU requirements and is thus preferred to a sparse QP. The
next chapter presents a systematic approach to turn a rather general MPC formulation
into a condensed QP, which can then be solve efficiently using the presented approach.

55

4. General description of multistage
problems

This chapters describes in detail the family of multistage problems we consider in this
thesis. We use the term multistage problem to describe a broad class of problems that
include model predictive control and moving horizon estimation.

We start this chapter giving a formal mathematical description of the general type of
multistage problems we consider. In previous chapters we showed that condensed formu-
lations are preferred to sparse formulations in many embedded applications. Therefore,
we show later in the chapter how the presented multistage setup can be transformed
into a condensed parametric optimization problem. Afterwards we introduce a high-
level language that greatly simplifies formulating the considered multistage problems.

4.1. General formulation of multistage problems

In this section we use the following notation: we denote matrices with capital letters,
whereas vectors and scalars are denoted with lowercase letters. Bold face letters denote
arrays (or sequences) of vectors or matrices. The dimension of the array will be stated
explicitly. We will write for example that P is a 3-dimensional array. This implies that
Pkji is a matrix. Similarly, the term ui is a vector from the 1-dimensional array (i.e. the
sequence) u.

57

4. General description of multistage problems

4.1.1. Motivational example

Consider the following optimization problem:

minimize
u

N−1∑
i=0
‖ui‖2

R +
N∑
i=1
‖xi‖2

Q

subject to xi+1 = Axi +Bui, i = 0, ..., N − 1,
x0 = xk.

We aim at expressing this type of problems using a single general formulation. To
that end, we introduce the following relation:

ϑji = Djiu + Pjip + Ejie. (4.1)

Let us express the optimization problem above in terms of the vector sequences ϑj,
with j = {0, 1, 2}. We start by defining parameter xk as the vector p and x as the vector
sequence e. We define e to be equal to ϑ2, and each of the vectors ϑ2i is to be expressed
in the form (4.1). Thus, we can express x0 = xk as e0 = p, which in turn is equivalent
to:

ϑ20 = P20p

with P20 = I and D20, E20 equal to zero matrices of appropriate size. The next vector
of the sequence x is given by x1 = Ax0 + Bu0, which is equivalent to e1 = Ae0 + Bu0,
and can be expressed as:

ϑ21 = E21e + D21u

with E21 =
[
A 0 · · · 0

]
, and D21 =

[
B 0 · · · 0

]
.

More generally the expression xi+1 = Axi + Bui, i = 0, . . . , N − 1, can be brought
into form (4.1) in the following way:

xi+1 = Axi +Bui, i = 0, . . . , N − 1
xi = Axi−1 +Bui−1, i = 1, . . . , N
ei = Aei−1 +Bui−1, i = 1, . . . , N
ϑ2i = E2ie + D2iu, i = 1, . . . , N.

58

4.1. General formulation of multistage problems

The matrices E2i, and D2i, for i = 1, . . . , N are respectively given by

E21 =
[
A 0 · · · 0

]
, E22 =

[
0 A · · · 0

]
, · · · , E2N =

[
0 · · · 0 A

]
,

and

D21 =
[
B 0 · · · 0

]
, D22 =

[
0 B · · · 0

]
, · · · , D2N =

[
0 · · · 0 B

]
.

The cost function can be represented in terms of (4.1) in a similar fashion. The term∑N
i=1 ‖xi‖2

Q is equivalent to ∑N
i=1 ‖ϑ0i‖2

M0i
, which can be expressed as:

ϑ0i = E0ie, i = 1, . . . , N

with M0i = Q for i = 1, . . . , N and

E01 =
[

0 I 0 · · · 0
]
, E02 =

[
0 0 I · · · 0

]
, · · · , E0N =

[
0 0 · · · 0 I

]
.

Similarly, the term ∑N−1
i=0 ‖ui‖2

R is equal to ∑N−1
i=0 ‖ϑ1i‖2

M1i
, with ϑ1i = D1iu, i =

0, . . . , N − 1, and M1i = R for i = 0, . . . , N − 1 and

D00 =
[
I 0 · · · 0

]
, D01 =

[
0 I · · · 0

]
, · · · , D0(N−1) =

[
0 · · · 0 I

]
.

This simple example introduces the basic idea behind the multistage formulation we
present in this chapter. With this in mind, we formally introduce the formulation. Later
in this section we present a complete example.

4.1.2. Abstract formulation of multistage problems

We consider multistage problems described by the following optimization problem:

minimize
u

∑
j∈Q

∑
i∈Vj

(‖ϑji‖2
Mji

+ nT
jiϑ
−
ji)

subject to ϑji ≤ 0, for all i ∈ Vj, j ∈ Ia,
‖ϑji‖2

Mji
+ nT

jiϑ
−
ji ≤ 0, for all i ∈ Vj, j ∈ Iq,

eji = ϑji, for all i ∈ Vj, j ∈ E ,

(4.2)

59

4. General description of multistage problems

where ϑ−ji ∈ Rrnji , and ϑji ∈ Rrϑji need to satisfy

ϑji = cji + Djiu +
∑
k∈P

Pkjipk +
∑
k∈E

Ekjiek. (4.3)

Here u ∈ Rru denotes the optimization variable, and p is a 2-dimensional array of nP
parameters. In this context, pk ∈ Rrpk represents the parameter k ∈ P = {0, . . . , nP−1}.
The parameter pk can be a single vector or a sequence of vectors. Similarly, e is a 2-
dimensional array of nE vectors that denotes auxiliary vector terms. Thus, for all j ∈ E ,
ej is defined through an equality constraint. The term c is a 2-dimensional array of
vectors that are constant. The array D is a 2-dimensional array of matrices, M is a
2-dimensional array of symmetric matrices, and n is a 2-dimensional array of vectors.
The arrays P and E are 3-dimensional arrays of matrices.

The indexes for the cost function are given by the set Q = {0, . . . , nQ − 1}, with nQ
the number of quadratic forms being added, and the set Vj = {0, . . . , nj − 1}, with nj
the number of vectors in the sequence ϑj. The index for the inequality constraints is
given by Ia = {nQ, . . . , nQ+nIa− 1}, where nIa denotes the number of affine inequality
constraints, and by Iq = {nQ + nIa , . . . , nQ + nIa + nIq − 1}, where nIq denotes the
number of quadratic inequality constraints. We define the index set I = Ia ∪ Iq =
{nQ, . . . , nQ + nI − 1}, where nI = nIa + nIq denotes the total number of inequality
constraints. We use the symbol ≤ to denote vector inequalities (j ∈ Ia) as well as
scalar inequalities (j ∈ Iq) with a slight abuse of notation. The index for the equality
constraints is given by the set E = {nQ+nI , . . . , nQ+nI+nE−1}, where nE denotes the
number of equality constraints. Note that ϑji is affine with respect to the optimization
variable u and to each parameter pk, k ∈ P .

To avoid recursive definitions of eji, we impose the following restriction on the equality
constraints (4.2):

ej0 = ϑ0
j0, for all j ∈ E , (4.4a)

eji = ϑ+
ji, for all i ∈ Vj − {0}, j ∈ E , (4.4b)

(4.4c)

60

4.1. General formulation of multistage problems

with

ϑ0
j0 = cj0 + Dj0u +

∑
k∈P

Pkj0pk +
∑
k∈Ej

Ekj0ek, (4.4d)

ϑ+
ji = cji + Djiu +

∑
k∈P

Pkjipk +
∑
k∈Ej

Ekjiek + E+
jjiej, (4.4e)

and E+
jji has the columns that multiply the terms eji, i ≥ i equal to zero. Furthermore,

the set Ej = {j ∈ E | j < j} denotes the indexes of equality constraints that have
an index inferior than the current index j. This avoids recursive definitions of equality
constraints, i.e. each eji only depends on symbols that have been previously defined. In
other words, E+

jj is a block lower triangular matrix.

The restrictions (4.4) characterize the predictive nature of the multistage problems
we consider in this work. To see this, note first that ϑ0

j0 simply states that the first
element ej0 of any auxiliary vector ej does not depend on ej itself. Additionally, note
that ϑ+

ji limits eji to only depend on parts of the full vector ej that have been previously
defined. Because we start with the index 0, eji depends only on eji, with 0 ≤ i < i, and
i ∈ Vj − {0}. In other words, if i denotes the discrete-time index, eji does not depend
on current or future values, it only depends on past eji, with 0 ≤ i < i. Furthermore, if
the dynamics are of the form ej(i+1) = f(eji), the matrix E+

jj is block diagonal.

Note that both ϑ0
j0 and ϑ+

ji may depend on other auxiliary vectors ek, k ∈ Ej, i.e. any
other vector that has been already defined. For example, assume E = {0, 1, 2}. First we
treat the vectors in e0, which do not depend on other ej, j ∈ E , except only partly on
itself. Afterwards we treat the vectors in e1, that may only depend on e0, and partly on
e1. Finally, we construct e2, which may depend on e0, e1 and only partly on itself.

At first glance, the general description given by (4.2) may not look like the typical
MPC problem described in Subsection 2.3.1. However, note that if nT

jϑ
−
j = 0, ∀ j ∈ Q,

the cost function is basically a sum of quadratic forms, i.e.
nQ−1∑
j=0

nj−1∑
i=0
‖ϑji‖2

Mji
. The

scalar nj resembles a horizon length and nQ is simply the number of quadratic forms
being added. Note that for each j = 0, . . . , nQ − 1 we can have a different value for nj.
This allows to specify explicitly a prediction horizon and a control horizon, for instance.
Furthermore, note that the equality constraints assign ϑji to an auxiliary vector eji.
From this, the full term ej, as defined in (4.4), can then be replaced in the cost and
constraint functions if needed. An example might best illustrate the resemblance.

61

4. General description of multistage problems

MPC as a multistage problem

Consider the case where we need to track a trajectory in the states and inputs for a
linear system with a known disturbance, i.e. xk+1 = Axk + Buk + wk. Our parameter
sequence is p = {x,w, x̌, ǔ}, with nP = 4. Here, x denotes the current state of the
system, w the sequence of known disturbances for a given horizon N , and x̌ and ǔ are
the state and input trajectories to be tracked for the same horizon. We assume that The
MPC problem has box constraints in the inputs, and is subject to state constraints. We
can represent this MPC problem as:

minimize
u

N−1∑
i=0

(‖ui − ǔi‖2
R + ‖xi − x̌i‖2

Q) + ‖xN − x̌N‖2
P

subject to u ≤ ui ≤ u, i = 0, ..., N − 1,
c ≤ Cxxi + Cuui ≤ c, i = 0, ..., N − 1,
f ≤ CfxN ≤ f,

xi+1 = Axi +Bui + wi, i = 0, ..., N − 1,
x0 = x.

Let us focus first on the cost function, which in the general formulation (4.2) looks
like:

∑
j∈Q

∑
i∈Vj

‖ϑji‖2
Mji

+ nT
jiϑ
−
ji =

1∑
j=0

nj−1∑
i=0
‖ϑji‖2

Mji
,

=
N−1∑
i=0
‖ϑ0i‖2

M0i
+

N∑
i=0
‖ϑ1i‖2

M1i
,

=
N−1∑
i=0
‖D0iu + P31ip3‖2

M0i
+

N∑
i=0
‖E61ie6 + P21ip2‖2

M1i
,

=
N−1∑
i=1
‖ui − ǔi‖2

R +
N−1∑
i=0
‖xi − x̌i‖2

Q + ‖xN − x̌N‖2
P .

Thus, for this case nQ = 2. Additionally, we have M0i = R and M1i = Q for
i = 0, . . . , N − 1, and M1N = P . The terms nT

jiϑ
−
ji are all zero. The integers nj take

the values n0 = N and n1 = N + 1 for j = 0, 1, respectively. Important to note is that
the newly introduced sequence x represents an auxiliary sequence ek, k = 6 ∈ E . The
equality constraints are discuss below. The matrices D0i, P30i, E61i and P21i in this case

62

4.1. General formulation of multistage problems

basically take out the vector i from the corresponding sequences. For example, in the
case of the sequence u the matrices D0i are:

D00 =
[
I 0 · · · 0

]
, D01 =

[
0 I · · · 0

]
, · · · , D0(N−1) =

[
0 · · · 0 I

]
,

with I and 0 denoting identity and zero matrices of appropriate size, respectively. The
matrices P30i, E61i and P21i are defined similarly. In the case of the last two we use −I
instead of I.

The constraints on the inputs:

u ≤ ui ≤ u, i = 0, ..., N − 1,

are equivalent to two one-sided vector inequalities, i.e. ui ≤ u and −ui ≤ −u, i =
0, . . . , N −1. The inequality indexes are j = 2, 3 with n2 = n3 = N . The first inequality
will be translated to (D2iu + c2i) ≤ 0, with D2i defined identically as D0i and c2i = −u,
for i = 0, . . . , N − 1. The other inequality is constructed in a similar fashion.

The more complex mixed inequalities constraints can be expressed by (4.2) in a similar
way:

c ≤ Cxxi + Cuui ≤ c, i = 0, ..., N − 1,
f ≤ CfxN ≤ f,

which, just as in the input constraint case, can be expressed as two one-sided inequality
constraints. We have j = 4, 5 and n4 = n5 = N . The matrices in (4.2) (D4, etc.) take a
similar form as for the input constraint case. The exact values are not discussed in detail
here. Note that both, the input and mixed constraint, define our set I = {2, 3, 4, 5}.

Let us now define our equality constraints. We only need to define the state vector
sequence x as an auxiliary vector. This relation can be expressed in the following form:

xi+1 = Axi +Bui + wi, i = 0, . . . , N − 1,
x0 = x.

Note that the above two expressions define the single vector sequence x. Moreover,
it complies with the restrictions given by (4.4). The equality index set is defined as
E = {6}, and n6 = N + 1. Thus, the sequence e6 is defined by e6i = P06ip0, for i = 0,
together with e6i = E66ie6 +D6iu+P16ip1, for i = 1, . . . , N . In the former expression we

63

4. General description of multistage problems

have P060 = I because p0 = x is simply a vector, not a sequence. In the latter expression
the matrices D61 to D6N have the same structure as D00 to D0(N−1), respectively. The
main difference is that we use B instead of I. For example

D61 =
[
B 0 · · · 0

]
, D62 =

[
0 B · · · 0

]
, · · · , D6N =

[
0 · · · 0 B

]
.

If we stack these matrices vertically (note that D60 is a zero matrix), we get the complete
matrix:

D6 =

0 0 · · · 0 0
B 0 · · · 0 0
...
0 0 · · · B 0
0 0 · · · 0 B

.

The same applies for E66i and P16i, i = 1, . . . , N , but instead using A and I, respectively.
Formulation (4.2) allows to consider a broad range of multistage problems, besides

setpoint stabilization and trajectory tracking. Further examples are MPC for systems
with dead time [81], and for systems with known-ahead disturbances [11, 82]. A different
class of multistage problems that can also be considered are moving horizon estimation
(MHE) problems [3, Ch. 4]. Next we show that the considered multistage formulation
can be expressed in a particular type of parametric optimization problem.

4.2. Reformulation as a condensed optimization problem

We describe how the multistage setup (4.2) can be brought into a form suitable for direct
use for optimization.

4.2.1. Reformulation as a general QCQP

The multistage setup (4.2) is in its most general form a quadratically constrained
quadratic program (QCQP). With some slight modifications, formulation (4.2) can rep-
resent second-order cone programs (SOCP), a class of problems related to QCQPs.
Quadratic programs (QPs) and linear programs (LPs) are special cases of QCQPs [31,
Ch. 4]. How the problem data needs to be organized to compute a solution depends on
the solver. Many general purpose solvers (e.g. CVXOPT and ECOS) require the data

64

4.2. Reformulation as a condensed optimization problem

in a form similar to

minimize
u

1
2uTHu + g(p)Tu

subject to 1
2uTH iu + gi(p)Tu ≤ di(p), i = 0, . . . , nQCQP − 1.

(4.5)

Some solvers may also accept the data in this form with some minor changes. For
example, the tailored QP solvers qpOASES and the ALM+FGM algorithm presented
in Section 3.3 require input box constraints to be separated from the rests of inequality
constraints and accept double-sided constraints. However, recent tailored approaches
require the data in non-standard forms that allows them to better exploit the sparse
structure of MPC, in particular for problems with long horizons, see [22, 23, 32].
We are aiming at having a condensed QCQP which is well suited for embedded appli-

cations (see Subsection 3.1.4). This requires the elimination of the equality constraints.
The following Lemma provides a way to achieve this.

Lemma 1. Problem (4.2) with its equality constraints subject to the restrictions (4.4)
can be expressed as an optimization problem without equality constraints of the form:

minimize
u

∑
j∈Q

(‖ϑ̂j‖2
M̂j

+ nT
j ϑ̂
−
j)

subject to ϑ̂j ≤ 0, for all j ∈ Ia,
‖ϑ̂ji‖2

Mji
+ nT

jiϑ̂
−
ji ≤ 0, for all i ∈ Vj, j ∈ Iq,

(4.6)

with the vectors ϑ̂j, ϑ̂−j for all j ∈ Q ∪ I given by:

ϑ̂j = ĉj + D̂ju +
∑
k∈P

P̂kjpk, (4.7)

and M̂j being a block diagonal matrix.

Proof. The main task is to replace each vector sequence ej, j ∈ E in all ϑj, j ∈ Q ∪ I,
i.e. to replace each equality where it correspond in the cost or inequality constraints.
The first step is to form the vectors ej from each eji. The core of the formulation is the
representation of vector (4.3), for which we define the vector sequence:

ϑj = cj + Dju +
∑
k∈P

Pkjpk +
∑
k∈E

Ekjek, (4.8)

65

4. General description of multistage problems

with ϑj ∈ Rrϑj , and rϑj
= ∑

i∈Vj

rϑji
. Note that, because eji is equal to ϑji, eji also

depends on the rest of auxiliary vectors ej (including itself). This means that for any
ϑji we actually have the nested form:

ϑji = cji + Djiu +
∑
k∈P

Pkjipk +
∑
c∈E

Ecjiec,

= cji + Djiu +
∑
k∈P

Pkjipk +
∑
c∈E

Ecji(cc + Dcu +
∑
k∈P

Pkcpk +
∑
k∈E

Ekcek),

which in turn can be simply written as

ϑji = ĉji + D̂jiu +
∑
k∈P

P̂kjipk +
∑
k∈E

Êkjiek, (4.9)

with
ĉji = cji +

∑
c∈E

Ecjicc,

D̂ji = Dji +
∑
c∈E

EcjiDc,

P̂kji = Pkji +
∑
c∈E

EcjiPkc,

Êkji =
∑
c∈E

EcjiEkc.

(4.10)

Note that the nested form (4.9) has the same structure as the general form (4.3).
This implies that several levels of nesting are possible. Eventually, when all equality
constraints have been replaced (we have reached the deepest level of nesting), eji =
ϑji does not depend on e. This is guaranteed by the restrictions (4.4) imposed on e.
Therefore, we obtain the following vector:

ϑ̂ji = cji + Djiu +
∑
k∈P

Pkjipk +
∑
c∈E

Ecjiec,

= cji + Djiu +
∑
k∈P

Pkjipk +
∑
c∈E

Ecji(cc + Dcu +
∑
k∈P

Pkcpk),

which can be written as:

ϑ̂ji = ĉji + D̂jiu +
∑
k∈P

P̂kjipk.

Here ĉji, D̂ji and P̂kji are given by (4.10). Thus, the full vector ϑ̂j correspond to (4.7).

66

4.2. Reformulation as a condensed optimization problem

It follows that problem (4.2) can be equivalently represented by (4.6) with the vectors
ϑ̂j, ϑ̂−j given by (4.7) for all j ∈ Q∪ I, and M̂j being a block diagonal matrix given by:

M̂j =

Mj0 0 · · · 0

0 Mj1 · · · 0
...
0 0 · · · Mj(nj−1)

 .

Although Lemma 1 provides a way to eliminate the equality constraints, the resulting
problem is in a form unsuitable for direct use in standard numerical solvers. We next
discuss a further reformulation leading to a standard formulation.

4.2.2. Reformulation as a QCQP in standard form

Problem (4.6) is clearly a quadratically constrained quadratic program. However, we
want to have it in standard form (4.5). The following Lemma guarantees that this
transformation can always be done.

Lemma 2. The optimization problem (4.6) is equivalent to:

minimize
u

1
2uTHu + g(p)Tu

subject to 1
2uTH iu + gi(p)Tu ≤ di(p), i = 0, . . . , nQCQP − 1,

(4.11)

where H and H are constant matrices, and the vectors g(p), gi(p), di(p) are of the form

g(p) = ĝ +
∑
k∈P

Ĝkpk.

Proof. Let us first consider how to bring the cost ∑
j∈Q

(‖ϑ̂j‖2
M̂j

+ nT
j ϑ̂
−
j) in (4.6) into the

67

4. General description of multistage problems

form 1
2uTHu + g(p)Tu in (4.11). For any quadratic form we have

‖ϑ̂j‖2
M̂j

= ϑ̂T
jM̂jϑ̂j,

= (ĉj + D̂ju +
∑
k∈P

P̂kjpk)TM̂j(ĉj + D̂ju +
∑
k∈P

P̂kjpk),

= (D̂ju)TM̂jD̂ju + 2(ĉj +
∑
k∈P

P̂kjpk)TM̂jD̂ju + d̂(p),

= uTD̂T
jM̂jD̂ju + 2(D̂T

jM̂j(ĉj +
∑
k∈P

P̂kjpk))Tu + d̂(p),

= uTD̂T
jM̂jD̂ju + 2(D̂T

jM̂j ĉj +
∑
k∈P

D̂T
jM̂jP̂kjpk)Tu + d̂(p),

(4.12)

where d̂(p) = (ĉj + ∑
k∈P

P̂kjpk)TM̂j(ĉj + ∑
k∈P

P̂kjpk). The cost for this term is then

∑
j∈Q
‖ϑ̂j‖2

M̂j
= uT(

∑
j∈Q

D̂T
jM̂jD̂j)u + 2

∑
j∈Q

(D̂T
jM̂j ĉj +

∑
k∈P

D̂T
jM̂jP̂kjpk)Tu, (4.13)

where we omitted the terms that do not depend on the minimization variable (i.e. d̂(p)).
Similarly, for any affine term

ϑ̂−j = D̂−j u + ĉ−j +
∑
k∈P

P̂−kjpk,

= D̂−j u + d̂−j (p),
(4.14)

with d̂−j (p) = ĉ−j + ∑
k∈P

P̂−kjpk, the cost is simply given by

∑
j∈Q

nT
j ϑ̂
−
j = (

∑
j∈Q

nT
jD̂−j)u, (4.15)

where we omitted the term d̂−j (p). The cost ∑
j∈Q

(‖ϑ̂j‖2
M̂j

+ nT
j ϑ̂
−
j) is equivalent to∑

j∈Q
‖ϑ̂j‖2

M̂j
+ ∑

j∈Q
nT
j ϑ̂
−
j , i.e. the addition of (4.13) and (4.15). From this and from

(4.13), the Hessian matrix in (4.11) is given by

H = 2
∑
j∈Q

D̂T
jM̂jD̂j. (4.16)

Similarly, the (transposed) gradient vector in (4.11) consist of the factors in the terms

68

4.2. Reformulation as a condensed optimization problem

that are affine with respect to u in (4.13) and (4.15), that is:

g(p) = 2
∑
j∈Q

(D̂T
jM̂j ĉj +

∑
k∈P

D̂T
jM̂jP̂kjpk) +

∑
j∈Q

D̂−T
j nj,

=
∑
j∈Q

(2D̂T
jM̂j ĉj + D̂−T

j nj) +
∑
k∈P

∑
j∈Q

2D̂T
jM̂jP̂kjpk.

This can be concisely written as

g(p) = ĝ +
∑
k∈P

Ĝkpk, (4.17)

with
ĝ =

∑
j∈Q

(2D̂T
jM̂j ĉj + D̂−T

j nj),

and
Ĝk =

∑
j∈Q

2D̂T
jM̂jP̂kj.

It is important to observe that in (4.17) the gradient vector is given by a constant vector
plus a linear combination of the parameters.

Let us now consider the inequality constraints in (4.11). There are two important
differences between the cost and the constraint functions. The first difference is that
in the cost all terms independent of the optimization variable are discarded, whereas in
the constraint these terms are gathered in d(p). The second difference is that the cost
is a scalar, whereas in the description (4.2) we have a combination of vector and scalar
inequalities, identified by j ∈ Ia and j ∈ Iq, respectively.

Let us first focus on the scalar constraints, which in this case are quadratic inequality
constraints. The Hessian matrix H i and gradient vector gi(p), i = 0, . . . , nQCQP − 1 in
(4.11) are computed similarly as H and g(p) in the cost, as described above using (4.12),
(4.14), (4.16) and (4.17). The main difference is that H i and gi(p) are not summation
of several terms. We have therefore that the Hessian for each inequality is given by
Hji = 2D̂T

jiM̂jiD̂ji for all i ∈ Vj, j ∈ Iq, cf. (4.16). The gradient vectors gji(p) can be
constructed similarly from (4.17). The remaining term di(p) in the inequality in (4.11)
is computed by adding d̂ji(p) in (4.12) and nT

jid̂−ji(p) from (4.14) for i ∈ Vj, j ∈ Iq.

69

4. General description of multistage problems

4.2.3. Special case: condensed QP

In the following we will restrict our attention to QPs. A great variety of multistage
formulations can be represented as QPs, such as nominal MPC for setpoint stabilization
of linear systems (see [3, 7])
A QP is a particular case of QCQP (4.11) in which all constraints are affine. Affine

inequalities are a special case of the quadratic inequalities with H i = 0 and gi(p) = gi.
Unlike the quadratic constraints, all affine constraints can be stacked together in one
single vector inequality representation Cu ≤ c(p). For the inequality constraint we have
from (4.14):

C =

D̂nQ

D̂nQ+1
...

D̂nQ+nIa−1

 , (4.18)

and

c(p) = −

ĉnQ

ĉnQ+1
...

ĉnQ+nIa−1

+
∑
k∈P

P̂knQ

P̂k(nQ+1)
...

P̂k(nQ+nIa−1)

pk

 . (4.19)

Recall the definition of the set of indexes for the affine inequality constraints: Ia =
{nQ, . . . , nQ + nIa − 1}, where nIa denotes the number of affine inequality constraints.
The MPC setup (4.2) then has no quadratic constraints (Iq = ∅) and can be brought

into this form:
minimize

u
uTHu + g(p)Tu

subject to Cu ≤ c(p).
(4.20)

Here H, g(p), C and c(p) are given by (4.16) to (4.19), respectively.
QP (4.20) has a particular data structure, which allows to further exploit some prop-

erties of optimization algorithms, like the ones discussed in Chapter 3, and in particular
the ALM+FGM algorithm from Section 3.3.

Characteristics of the data

One of the main characteristic of the QP (4.20) is that the Hessian matrix H is constant.
This allows to compute off-line the eigenvalues of this matrix, which is generally a com-

70

4.2. Reformulation as a condensed optimization problem

plex computation. The eigenvalues play a key role in the solution of many optimization
algorithm, as discussed in Chapter 3. Similarly, the constraint matrix C is also constant.
This again is exploited by some of the algorithms presented in Chapter 3.
A second characteristic of problem (4.20) is that the gradient vector g(p) and in-

equality constraint vector c(p) are simply the addition of a constant vector plus a linear
combination of the parameters. Again, this allows to compute off-line all the involved
matrices that are constant. Then, the on-line computation of g and c is limited to only
matrix-vector operations, as discussed next.

On-line computational requirements

Of interest here is the requirements of computing the parametric terms g(p) and c(p),
given by (4.17) and (4.19), respectively. These vectors need to be computed on-line by
the MPC controller once per sampling period.
Let us first consider g(p) ∈ Rru . Each parameter pk ∈ Rrpk is multiplied by a matrix

Ĝk ∈ Rru×rpk , k ∈ P . The result of each product is then added to the vector ĝ ∈ Rru .
This leads to a total number of operations of

nPru + ru
∑
k∈P

rpk
.

Similarly for c(p) ∈ RrIa
ϑ , where rIa

ϑ = ∑
j∈Ia

rϑj
represents the number of inequality

constraints, each parameter pk ∈ Rrpk is multiplied by a matrix P̂k ∈ RrIa
ϑ
×rpk , k ∈ P .

The result of each product is then added to the vector ĉ ∈ RrIa
ϑ . It follows that the total

number of operations becomes

nPr
Ia
ϑ + rIa

ϑ

∑
k∈P

rpk
.

In many cases, the vectors g and c may depend respectively on a subset Pg and Pc of
the parameters set P . This implies that the matrices Ĝk, k ∈ P−Pg, and P̂k, k ∈ P−Pc
are zero. Exploiting this fact allows to save unnecessary computations.
The main advantage of expressing a problem in the form (4.20) is that, because most

terms have been computed off-line, the computation of the QP is very fast (compared to
computing all terms on-line). This also has the advantage that the on-line code is very
simple and is limited to simple matrix vector additions and multiplications.

71

4. General description of multistage problems

The main disadvantage of the presented approach is that it may require some effort
to go from the general multistage formulation (4.2) to the condensed QP (4.20). Never-
theless, the transformation is systematic and can be realized via software. We present a
tool that achieves this in Chapter 5.

4.3. High-level multistage specification language

Note that formulation (4.2) is a non-intuitive abstract representation of a multistage
problem. This section introduces a domain specific language (DSL) that is based on
(4.2) but brings back the intuitiveness of MPC.
This DSL allows to specify a broad class of linear multistage problems in a natural way.

The considered DSL consist of the following main parts: the declaration of variables, a
cost function to be minimized, and a set of equality and inequality constraints.
We explain the main components of the DSL using a rather simple example. Consider

the general regulation to the origin problem with input and state constraints. The MPC
formulation is given by (2.15), which we repeat here for ease of reference:

minimize
u

1
2

N−1∑
j=0

(‖xj‖2
Q + ‖uj‖2

R) + 1
2‖xN‖

2
P

subject to xj+1 = Axj +Buj, j = 0, ..., N − 1,
u ≤ uj ≤ u, j = 0, ..., N − 1,
e ≤ Exxj + Euuj ≤ e, j = 0, ..., N − 1,
f ≤ FxN ≤ f,

x0 = xk.

(4.21)

This problem is specified by the plain text presented in Listing 4.1. The DSL closely
resembles the mathematical representation of the MPC problem. We describe in the
following how each component is specified in the DSL.

Declaration of variables

The parameters keyword identifies all the vectors, or vector sequences, that are to be
specified online. The variable keyword identifies the optimization variable. The auxs
keyword denotes the equality constraint variable that needs to be eliminated to get a

72

4.3. High-level multistage specification language

condensed formulation. It is assumed that the restrictions (4.4) hold. For all these
identifiers, the number of elements in the sequence, as well as the length of each vector
element, need to be specified. This is done using the format v[a:b](m), where v is the
name of the sequence, m is the length of each vector in the sequence, and a and b denote
the index of the first and last element of the sequence. To refer to the element i of this
sequence, we use the notation v[i]. In the case that a parameter is not a sequence (i.e.
it is a single vector), only the vector length need to be specified, i.e. v(m). To refer
to this vector no indexing is required in later parts of the problem specification, i.e. it
suffices to write v.
All other non-numeric symbols that are not keywords are automatically taken as

having a fixed, although yet unknown, shape and value. These fixed symbols need to
be specified off-line at a later stage. For the example in Listing 4.1, symbols with fixed
values are the prediction horizon N, the system matrices A and B, the vector lengths m
and n, etc.

The cost function

The keyword minimize identifies the text following it as the cost function to be mini-
mized. Several special keywords are accepted, for example the sum(h[i], i=a:b) de-
notes the summation of the real valued functions hi for i = a, . . . , b. The keyword
quad(v,M) denotes the quadratic form ‖v‖2

M . As we only deal with problems that can
be transformed into a QCQP (or a related form such as SOCP, QP or LP), the cost
function is restricted to be the summation of linear and quadratic terms.

Listing 4.1: Domain specific language example: regulation to the origin.
1 parameters xk(n)
2 auxs x[0:N](n)
3 minimize sum(quad(x[j],Q) + quad(u[j],R), j=0:N-1) + quad(x[N],P)
4 variable u(m,N)
5 subject to
6 x[j+1] = A*x[j] + B*u[j], j=0:N-1
7 u_lb <= u[j] <= u_ub, j=0:N-1
8 e_lb <= Ex*x[j] + Eu*u[j] <= e_ub, j=0:N-1
9 f_lb <= F*x[N] <= f_ub

10 x[0] = xk

73

4. General description of multistage problems

The constraints

The DSL allows to specify equality constraints, and single- and double-sided inequality
constraints. The constraints follow the format in (4.2). As seen in the example, the
equality and inequality constraints optionally accept an index variable and its range.
The constraints can be quadratic or affine. For example, the prediction inherent in the
MPC problem is described by the mathematical expression

xj+1 = Axj +Buj, j = 0, . . . , N − 1,

which in the DSL can be written as x[j+1] = A*x[j] + B*u[j], j=0:N-1.
It is also possible to denote terminal state constraints like flb ≤ FxN ≤ fub using the

expression f_lb <= F*x[N] <= f_ub.

Comparison to other tools

The proposed DSL is very similar to the language used in CVXGEN, and QCML. One
key difference is the explicit declaration of an auxs variable used to eliminate equality
constraints. Another difference is that we define the parameters exclusively as the
vectors that are not constant (i.e. pk in (4.2)). Finally, in our formulation the dimensions
are inferred from the given variables.

4.3.1. Code generation of condensed formulation

We shortly describe how all presented ideas are applied to generate C code for a con-
densed formulation. A problem description P written in the DSL needs first to be
created. The problem needs to fit formulation (4.2) and needs to comply with (4.4). An
example of a valid P is shown in Listing 4.1. To create code for a particular instance of
P we require the data D. In our example D consist of the numerical values of A, B, N ,
n, etc. With this information, the sequences c, D P and E that define all ϑji in P can be
computed, as presented in the MPC example found in Section 4.1. By applying Lemmas
1 and 2 we obtain the dense matrices H and C in the standard QP formulation (4.20),
as well as ĝ, Ĝk in (4.17) and ĉ, P̂k in (4.19). Finally, based on this data, C code is
generated for the functions g(p) and c(p). This procedure is summarized in Algorithm
8.

74

4.4. Summary

Require: problem description P and instance data D
1: Parse P and bring into form (4.2)
2: Create vectors (4.3) using D
3: Apply Lemma 1 to eliminate equality constraints
4: Apply Lemma 2 to get H, C, g(p), and c(p) as in (4.20).
5: Generate C code to compute g(p), and c(p) using (4.17) and (4.19).

Algorithm 8: Code-generation of condensed formulation

4.4. Summary
In this chapter we presented a general formulation of multistage problems (e.g. MPC
and MHE) that can be expressed as a condensed parametric optimization program,
namely as a QCQP. We showed that for multistage problems like (4.2) for which the
equality constraints satisfy the conditions (4.4), it is always possible to get a general
QCQP without equality constraints (4.6). Furthermore, we showed that for any given
set of parameters, a condensed QCQP in standard form can be computed following some
rules.
Because expressing an multistage problem in the form (4.2) is in general complicated,

we introduced a domain specific language that closely resembles the way how MPC and
MHE problems are expressed mathematically. The presented language specification is
not limited to represent problems like (4.2), which only accept parameters as vectors.
For instance, problems where some of the matrices are specified as parameters are also
considered, allowing to specify, e.g. problems with time-varying dynamics. We will
nevertheless limit our discussion in the following chapters to problems like (4.2) mainly
for the following reasons. First, it is a problem formulation that can be used in a broad
range of embedded applications. Second, problems like (4.2) can be represented in the
form (4.5), which can be efficiently computed on-line. Furthermore, several popular
general purpose and tailored solvers require the problem formulation in a form similar
to (4.5).
The next chapter describes a software tool that takes a problem in the DSL repre-

sentation of (4.2) and generates C-code to solve QPs like (4.20). The proposed DSL
captures well the main characteristic of various multistage formulations.

75

5. muAO-MPC: a free code generation
tool for embedded MPC

The automatic code generation presented in this chapter is based on a software tool
developed in the framework of this thesis called µAO-MPC as first presented in [25].
µAO-MPC is a Python-based free software whose main function is to automatically
generate ready-to-use MPC controller code.
In this chapter, we do not intend to explain in detail how to use the tool (for informa-

tion on the use of the software we refer to [102]). We rather elaborate on the principles on
which µAO-MPC is based and the goals it pursues. We first discuss the core features of
µAO-MPC followed by the generation of C-code tailored for the MPC problem described
in Chapter 4. This tailored code exploits many of the properties of the ALM+FGM al-
gorithm described in Section 3.3. We expand our discussion with methods to enhance
the performance of the on-line MPC controller. We close this chapter with an example.

5.1. Core features

µAO-MPC explicitly takes into account the limitations of embedded computers dis-
cussed in Section 2.1. The main limitations of embedded hardware can be roughly split
into two parts: low amount of memory and low numerical throughput. The former
includes ROM and RAM. The latter not only means low CPU clock frequencies, but
also limitations on the arithmetic operations and precision. An additional limitation of
embedded computers is related to software. Usually, the compilers used for embedded
targets have a different set of features than their regular (non-embedded) counterparts.
Those limiting factors have been considered in the development of µAO-MPC .
The MPC setup is described in a intuitive manner, using the language described in

Section 4.3. From this description, we generate code for solving a condensed QP. The

77

5. muAO-MPC: a free code generation tool for embedded MPC

code generated by µAO-MPC is portable C code that does not depend on external
libraries. Moreover, it only relies on additions and multiplications. This last fact simpli-
fies the implementation of an algorithm using fixed-point arithmetic. A few examples of
fixed-point arithmetic using the proposed algorithm can be found in [25, 64, 83]. µAO-
MPC supports by default the generation of code based on single and double precision
floating-point and fixed-point arithmetics. Additionally, µAO-MPC provides Python,
MATLAB and SIMULINK interfaces to the generated C code. Further extensions are
also possible, such as adapting µAO-MPC to generate C-code that can be used as input
for field-programmable gate array synthesis software [103].
µAO-MPC takes a strict separation approach for forming and solving the problem.

In this context, we refer to forming a problem (i.e. a QCQP or a related form) to the
process of computing the numerical values of the Hessian matrix, gradient vector, etc.
from a parametric problem description and a given set of parameters, like (4.5). Forming
the problem is based on the setup presented in Section 4.1. The process of solving the
problem involves using an optimization algorithm, like the ones presented in Chapter 3,
to find the solution to a problem that has been already formed. µAO-MPC by default
generates code for both processes.
Although µAO-MPC can automatically generate C-code to form QCQPs, SOCPs,

and QPs, at the time of this writing the automatically generated solver can only deal
with QPs. Nevertheless, the strict separation of former and solver enables the use of
third-party solvers to deal with the generated QCQPs and SOCPs formers (see [74]).
We recently developed a proof-of-concept implementation of an automatically generated
solver for SOCPs based on a primal-barrier interior point method [74]. The discussion
of this implementation is beyond the scope of this work. In the following we focus on
automatic code generation of MPC problems that can be expressed as QPs.
The default solver used by µAO-MPC is the ALM+FGM algorithm described in

Section 3.3. Although forming and solving the QP are independent of each other, they
both explicitly take into account the embedded systems limitations. Moreover, this
separation allows the user of µAO-MPC to use any QP solver, while still using the
intuitive high-level formulation presented in Section 4.3. algorithms.
By default, solving the QP is based on the algorithm presented in Section 3.3. As

the fast gradient method performs particularly well for problems with Hessians with low
condition numbers, µAO-MPC includes an off-line tool that helps reduce the condition
number of the QP Hessian. This tool is based on the method presented in [100].

78

5.2. Automatic generation of C code

OFF LINE

solve_problem()

setup_problem()

ONLINE

ctl

generate_data()

mpc

Text files

form_problem()

Python

C

Problem P Data D

Parse P
Load D
Data processing (Alg. 8)

C templates

solver/former data

Figure 5.1.: µAO-MPC ’s code generation data flow. Arrows denote the flow of data.
Diamonds denote an object’s functions.

As a last remark, it is important to note that µAO-MPC is not intended to be used
as a general purpose QP solver. Given that the QPs used in a MPC context have
many particularities, we consider µAO-MPC as a tool to easily implement efficient MPC
controllers on embedded hardware. More specifically, µAO-MPC usually quickly finds
approximate solutions to the QPs that deliver good controller performance. We further
discuss this topic in Subsection 5.2.3.

5.2. Automatic generation of C code

The automatic code generation can be broadly split in parsing, preprocessing, and gen-
eration of code for functions and data (see Figure 5.1). Parsing refers to interpreting
a string of symbols specified by a language grammar. In Section 4.3 we specified the
language grammar of µAO-MPC . In the preprocessing step, a user-provided problem
description P is parsed and analyzed to identify certain patterns that fit into specified

79

5. muAO-MPC: a free code generation tool for embedded MPC

structures (the function setup_mpc_problem in Figure 5.1). These structures identify if
a problem is a SOCP, a QCQP, or a QP, for example. Furthermore, we might look for the
presence (or absence) of input box constraints, and mixed constraints. Finally, the code
generation of functions and data is based on the use of template files. A template file is
a text file that is almost like C code, except that it contains certain keywords that are
to be replaced with appropriate values after preprocessing. Once all keywords have been
replaced, the result is C code tailored for the specified optimization problem. To any
problem P at least one data D must be specified. µAO-MPC separates the generation of
code and data. This allows certain flexibility during early testing and simulation phases,
where the data changes frequently, but the problem structure remains the same. This
is illustrated in the middle part of Figure 5.1, where the function setup_mpc_problem
creates the object mpc, which provides the method generate_data that transform the
data D for problem P using the methods presented in Chapter 4, in particular Algorithm
8. As illustrated in the bottom part of Figure 5.1, the generated code consist of C-code
for the solver and former functionality, which is separated of the C-code for data. How-
ever they both are use together in the ctl object to solve a problem using µAO-MPC ’s
default solver (the function solve_problem), or to just form a problem (the function
form_problem) to be solved by a third-party solver.

5.2.1. Forming and solving the condensed QP

In Subsection 2.1.2 we discussed the advantages and disadvantages of dynamic and static
memory allocation. We exploit the inherent flexibility of automatic code generation to
produce code with either dynamic or static memory allocation. The former can be
used for simulations, where the size of some arrays changes frequently (for example, by
changing the horizon length). The latter is appropriate for real-time deployment once
the data size has been fixed. Except for how memory is allocated, the generated code
in both cases is functionally identical.
As previously mentioned, the functionality of the code is split into forming the QP

and solving the QP. Although the code for forming and solving are independent of each
other, they are by default used in as a bundle. Forming the QP is one of the most
computationally expensive parts of the (off-line) code generation. However, this results
in the (on-line) code for forming the QP being extremely simple, as only a few matrix
vectors operations need to be performed on-line.

80

5.2. Automatic generation of C code

As with any optimization algorithm, the ALM+FGM will excel in some applications
but in some others it will be outperformed by a different algorithm. µAO-MPC by design
allows the use of a different QP solvers, instead of the ALM+FGM. The only restriction
on the solver is that it needs to accept the data in the form provided by µAO-MPC .
Notable examples that can be used without modifications are MATLAB’s quadprog,
and qpOASES. With some minor rearrangement of constraints matrices, solvers like
CVXOPT can also be used.

5.2.2. Solving the QP with the ALM+FGM algorithm

The default algorithm used by µAO-MPC is described in Section 3.3. Of particular
interest here is its application to the MPC problem, discussed in Subsection 3.3.3.

Computing off-line data

One of the main design objectives of µAO-MPC is to perform off-line as many operations
as possible. These operations need to be performed only once, avoiding the need to be
computed by an embedded processor on-line at each sampling time. The FGM requires
a Lipschitz constant L and a strong convexity parameter φ. How the values of these
parameters are computed depends on the particular type of problem. In Subsection 3.3.3
we identified two cases: input constraints and mixed constraints. In the former case, L
and φ can be computed from the eigenvalues of H. In the latter case, L also depends on
the constraint matrix Ĉ and the penalty parameter µ. In both cases, the scalar sequence
ν can be computed off-line based on the values of L and φ.
We have assumed so far that we have enough information to compute L, φ and there-

fore ν. From the MPC problem (4.20), we have H and C constant (therefore Ĉ is also
constant).
Note from (3.34) and (3.47) that we need to multiply the gradient of the cost function

by the factor L−1. These operation can be partly performed off-line. We say partly
because although we have a constant H, the gradient vector depends on the parameters
p. Nevertheless, from (4.17) we can multiply ĝ and Ĝ by L−1 off-line. Note however
that in the case of mixed constraints, the projected gradient step (3.47) depends on the
term (3.46). In this case, we also need to compute L−1Ĉ.

81

5. muAO-MPC: a free code generation tool for embedded MPC

Selection of on-line parameters

All the required constants are automatically computed by the code generation procedure.
This leaves only two parameters of the algorithm to be selected by the user: the number
of inner and outer iterations (refer to Algorithm algorithm 7, Section 3.3). These two
parameters effectively set the computation time of the algorithm. Unlike other tailored
algorithms, µAO-MPC by design does not check how good the computed solution is.
The emphasis is put on a deterministic computation time independently of the reached
suboptimality. This is motivated by the observation that, in practical applications, even
rough solutions often deliver acceptable performance (see [32] and Chapter 6 for some
examples).

5.2.3. Further controller performance improvements

In Section 2.1 we presented the main limitations of embedded applications. Furthermore,
in Section 3.1 we discussed the main characteristics of the MPC optimization problems
that can be exploited. In Subsection 3.3.4 we saw how the ALM+FGM takes into
account the particularities of MPC for embedded applications. Here we briefly discuss
how µAO-MPC implements these ideas.
In Subsection 3.3.4 we discussed how a lower condition number of the Hessian κH

implies a faster convergence of the ALM+FGM algorithm. Furthermore, we have shown
how L, φ and µ are related to κH . µAO-MPC implements an off-line procedure aimed at
reducing the value of κH [100]. This procedure exploits the available degrees of freedom
in the MPC problem to find suitable weighting matrices that deliver a similar controller
performance and, at the same time, reduce the condition number of the Hessian. More
specifically, for a given trajectory considered typical for the application, a nonlinear op-
timization problem finds new weighting matrices of an MPC controller that minimize
the distance between the desired and the new trajectory. One constraint of the opti-
mization problem is that the condition number of the Hessian must be lower than a
certain threshold, typically a value below 100.
In Subsection 3.3.4 we mentioned the effects of quantization and round-off errors in

different numeric representations. µAO-MPC allows to automatically generate code
that uses either floating-point arithmetic (either single or double precision) or fixed-
point arithmetic. The latter case is, however, only done as a proof of concept. The
correct execution of arithmetic operations is not guaranteed (e.g. there are no checks for

82

5.3. Examples: code generation for a microcontroller

overflow). In Chapter 6 we demonstrate with an example that fixed-point MPC control
is possible with µAO-MPC under certain conditions.

5.3. Examples: code generation for a microcontroller

This section exemplifies the automatic code generation for a microcontroller. We will
leave the discussion of the implementation on real systems for the next chapter.

5.3.1. Setup description

We consider two examples that are representative of some of the problem classes handled
by µAO-MPC. MPC is run on a real-time embedded operating system (RTOS) [104]. We
take the gcc ARM embedded toolchain (gcc-arm) [105] to create the binary executables
from the generated code.
We compare µAO-MPC against CVXGEN. Although CVXGEN deals with general

convex optimization problems and it is not aimed at microcontroller applications (the
memory requirements are relatively high), it allows us to highlight some of the features
and limitations of µAO-MPC . The code generated by CVXGEN is able to handle the
considered problems and run in real-time on a µC without modifications, except for
using single precision instead of the default double precision floating-point. The systems
being controlled are a simple robotic arm, and a more complex aircraft. The detailed
specifications of both systems are provided in Appendix B.1.

Robotic arm

We consider the example found in [83]. It is a model of a real 2-link robotic arm with
four states (two of which are constrained) and two constrained inputs. The discretization
time is 4 ms, and we use a prediction horizon of 5 steps.

Aircraft

As a second example we consider a more complex system, a model of a Cessna 500 aircraft
linearized at constant speed [7]. The problem has 4 states, and one input. There are
inputs, outputs, and slew-rate constraints. The slew-rate constraint is considered by

83

5. muAO-MPC: a free code generation tool for embedded MPC

adding an additional state to the discrete-time formulation. The horizon length is 10
steps. The system is sampled at 0.5 s intervals.

5.3.2. Considered Embedded Hardware

We considered two different embedded test platforms based on the 32-bit ARM Cortex-
M family of microcontrollers. As a low-cost platform we use a STM32VLDISCOVERY
board based on a ARM Cortex-M3 with a clock rate of 24 MHz, 64 kB of flash and 8
kB of RAM. As a high-performance platform we use a STM32F4DISCOVERY board
based on a ARM Cortex-M4 with a clock rate of 168 MHz, 1 MB of flash, and 192 kB of
RAM. It incorporates a single precision floating-point unit, as well as DSP capabilites.

5.3.3. Results

The executable binaries of the code generated by CVXGEN were too large to fit into
the flash memory of the low-cost board. Therefore, we only used that board to explore
the possibility of using the fixed-point option of µAO-MPC. Compared to floating-point
arithmetic, fixed-point arithmetic decreases computation time by nearly four times. Note
that the use of fixed-point was only possible on the robotic arm example. In general,
fixed-point arithmetic is limited to problems with good numerical properties (e.g. well
scaled and well conditioned).
Table 5.1 summarizes the memory demands of both algorithms in the high-performance

µC. The flash requirements of the CVXGEN binaries increase rapidly with problem com-
plexity and are several times larger than the binaries of µAO-MPC. The amount of stack
required by the CVXGEN controller thread was in the kilobytes range for both exam-
ples, two orders of magnitude more than that of our implementation. As a comparison, a
recommended value for very simple tasks is 256 bytes per thread [104]. In an RTOS each
thread or task requires its own stack space, which is statically allocated in RAM and
usually determined empirically. Here we use a common heuristic procedure. We start
by assign a typical value of 256 bytes to the RTOS thread in which the MPC algorithm
is running. If the thread runs (does not run), we half (double) the amount of MPC’s
thread RAM. We repeat until the algorithm stops (starts) executing correctly.
We observed that both algorithms have deterministic execution times, i.e. each re-

quires (nearly) constant time to perform a fixed number of iterations. We measure the

84

5.3. Examples: code generation for a microcontroller

Table 5.1.: Memory demands on the high-performance µC
Robotic arm Aircraft

Resource µAO-MPC CVXGEN µAO-MPC CVXGEN
Flash memory 11 kB 80 kB 13 kB 220 kB
Stack memory 16 B 2048 B 32 B 4096 B

time required to reach an acceptable controller performance. Conventionally, to com-
pare the speed of two optimization algorithms, we measured the time they require to
reach a certain suboptimality level. For control purposes, the approach discussed in
Subsection 3.1.2 is more suitable to determine the nominal controller performance. For
comparison, we consider a trajectory that starts at an initial state and ends at the origin.
We first use CVXOPT to find the optimal input and state trajectories. We then com-
pare them with the approximate input and state trajectories obtained by the embedded
platform. Each trajectory consists of TN + 1 points. We start with a very low number
of maximum iterations that the algorithm can perform, thus limiting the performance
and the maximum computation time. To measure how good the performance of the
controller in each case is, we compute the cost (cf. (3.1)):

Jp =
TN−1∑
k=0
‖x∗k − x∼k ‖2

Q + ‖u∗k − u∼k ‖2
R,

where x∗k, u∗k are the state x and input u at point k in the optimal trajectory computed
by CVXOPT. Similarly, x∼k , u∼k are the approximated state and input computed by one
of the algorithms. We then gradually increase the maximum number of iterations and
measure the time it takes the algorithm to perform that many iterations (denoted as
tcpu). For CVXGEN, we have increased the maximum number of iterations by 1 each
time. For µAO-MPC we try to use values that will help us in the discussion (many are
selected to approximately double the previous execution time). For the aircraft example
we start at x0 = [0, 0, 0,−400, 0] with TN = 40. For the robotic arm example we use
x0 = [−1, 0, 1, 0] and TN = 400. The results are shown in Fig. 5.2.

5.3.4. Discussion

Fig. 5.2 shows that overall for the considered examples, µAO-MPC reaches good con-
troller performance with less computational effort than CVXGEN. Exemplarily, the

85

5. muAO-MPC: a free code generation tool for embedded MPC

0.5 1.5 2.5 3.5 4.5
tcpu [ms]

10−3

10−1

101
J
p

Robotic arm

0 3 6 9 12
tcpu [ms]

10−2

100

102

J
p

Aircraft

Figure 5.2.: Comparison of the controller performance with limited computation time for
the considered systems. µAO-MPC is shown in dotted lines, CVXGEN in
dashed lines. The shaded area indicates where the performance is considered
poor in each case. Note the logarithmic scale with respect to Jp.

robotic arm example shows that to obtain Jp ≈ 10−1 (which we arbitrarily define as
acceptable in this case using a visual criterion) our algorithm requires about half the
time of CVXGEN (approximately 1.5 vs. 2.8 ms). However, if solutions of much higher
precision are needed (Jp < 10−4), CVXGEN will require less time than µAO-MPC. The
same trend holds for the more complex aircraft example.

From a different perspective, if we limit the computation time for the robotic arm
to be below 1.7 ms, from Fig. 5.2 we can expect the performance of µAO-MPC to
be better than that of CVXGEN. In Fig. 5.3, the trajectories for this particular case
are compared to the exact trajectory, which confirms what we expected. The plots
correspond to CVXGEN limited to perform 3 iterations, and µAO-MPC with iex = 6,
jin = 3 and µ = 2000. Similarly, fixing the time to approximately 9 ms for the aircraft
example, µAO-MPC yields a better controller performance, as can be seen in Fig. 5.4.
In this case, CVXGEN was limited to 9 iterations, and µAO-MPC used iex = 2, jin = 24
and µ = 100.

There are several reasons that may explain the different controller performances. One
reason is that CVXGEN is a general purpose solver that can manage a wider range of
convex optimization problems, whereas our algorithm has been specifically tailored for
problems like (2.15) (e.g. box constraints are handled very efficiently). Additionally,
CVXGEN is based on a primal-dual interior point method and does not implement any

86

5.3. Examples: code generation for a microcontroller

0.0 0.4 0.8 1.2 1.6
t [s]

−1.0

−0.5

0.0

ω
2

[r
ad

/s
]

Speed of link 2

0.0 0.4 0.8 1.2 1.6
t [s]

−25.0

−12.5

0.0

u
2

[%
]

Input of link 2

Figure 5.3.: Trajectories for the robotic arm example, for computation time tcpu ≈ 1.7
ms. Three trajectories are shown for link 2 of the arm: exact from CVXOPT
(solid lines), and the approximate solutions from CVXGEN (dashed), and
µAO-MPC (dotted). The solid and dotted lines are almost indistinguish-
able. The shaded area denotes constraints.

warm start strategy, whereas our algorithm can take full advantage of this strategy.
Another reason is that our code only relies on additions and multiplications, which are
cheap one-cycle operations in the considered µC (Cortex-M4). CVXGEN in contrast,
must perform a large amount of divisions every iteration (each division requires several
cycles).

As an insight, our MPC optimization algorithm converges faster if the Hessian of the
QP is well conditioned. In the aircraft case, the Hessian has a condition number of
around 25. Such a low number is, however, not a coincidence. The original aircraft
problem, as presented in [7], uses identity matrices as weighting matrices. This results
in a Hessian with a condition number in the order of 105. We use µAO-MPC ’s off-line
help function discussed in Subsection 5.2.3 to reduce the condition number. Similarly,
applying this method to the robotic arm problem we get a condition number of around
2. This allows the use of fixed-point arithmetics, which for the considered low-cost µC
increases the numerical throughput four times compared to floating-point arithmetics.

87

5. muAO-MPC: a free code generation tool for embedded MPC

0 5 10 15 20
t [s]

−5

5

15

25

x
2

[d
eg

]
Pitch angle

0 5 10 15 20
t [s]

−400

−300

−200

−100

0

x
4

[m
]

Altitude

0 5 10 15 20
t [s]

−5

5

15

25

35

ẋ
4

[m
/s

]

Altitude rate

0 5 10 15 20
t [s]

−12

−8

−4

0

4

u
[d

eg
]

Elevator angle

Figure 5.4.: Trajectories for the aircraft example, for computation time tcpu ≈ 9 ms.
Three trajectories are shown: exact from CVXOPT (solid lines), and the
approximate solutions from CVXGEN (dashed), and µAO-MPC (dotted).
The solid and dotted lines are almost indistinguishable. The shaded area
denotes constraints.

5.4. Summary

We presented µAO-MPC , a software tool for the automatic code generation of MPC
controllers. µAO-MPC uses a generic yet intuitive MPC problem specification, based
on the ideas presented in Chapter 4. From it, portable library-free C-code is generated
for forming and solving a QP. Forming a QP refers to computing the numerical values
of the QP matrices given a set of parameters. To solve the formed QP, µAO-MPC by
default implements a tailored ALM+FGM algorithm as presented in Chapter 3. An
optional intermediate step is the off-line numerical conditioning of the problem, which

88

5.4. Summary

has a dramatic influence on the algorithm performance and the required number of
iterations. The generated code has deterministic maximal computation time, has low
requirements on ROM and RAM and, for well-conditioned problems, usually reaches
good controller performance with relatively low computational demands.
We presented some examples considering real embedded platforms that demonstrate

the scenarios were the ALM+FGM offers a real advantage. More specifically, the algo-
rithm works extremely well for applications that take advantage of warm start, where
rough approximate solutions deliver good closed-loop performance, and that are well
conditioned. As shown in the simulation examples, the ALM+FGM algorithm may not
be of advantage for applications where very precise solutions are required.
Because we follow a strict separation of forming and solving a QP, the C-code gener-

ated by µAO-MPC can easily be used with a different QP. We have successfully combined
µAO-MPC with qpOASES, CVXGEN, MATLAB’s quadprog and CVXOPT.
The next chapter presents some real applications that show that the ALM+FGM

delivers good closed-loop performance for fast mechatronic systems running in hardware
with very tight computational constraints.

89

6. Application examples

In this chapter we demonstrate the suitability of the proposed approach using two ap-
plication examples. We first discuss the implementation on a low-cost microcontroller.
Afterwards, an autonomous-driving vehicle example using a high-performance micro-
controller is discussed. µAO-MPC has proven effective in several embedded applica-
tions, such as gust load alleviation on an aircraft [106], and active vibration attenuation
[107, 108].

6.1. Low-end example: A direct current motor

We present an implementation of the proposed ALM+FGM algorithm using a low-cost
microcontroller unit (MCU), underpinning that the approach is well suited for low cost
platforms. We briefly explain the tuning of the algorithm and discuss the results. The
example presented in this section is based on a popular educational platform, the LEGO®
MINDSTORM® NXT.

6.1.1. System description

We consider the motion control of a direct current (DC) motor using the NXT platform
(Fig. 6.1). Our goal is to use MPC to drive the system to the origin with limited angular
speed starting from an arbitrary position.
The DC motor is modeled in continuous time as

ÿ = − 1
T
ẏ + K

T
w (6.1)

where T is the motor time constant, K the input amplification factor, y the rotor’s
angular position and w the energy input to the system. The continuous-time system in

91

6. Application examples

NXT Brick

M
θ

unxt

Figure 6.1.: The NXT setup. Left, the NXT brick and motor. Right, a schematic view
of the setup.

state-space form is given by ẋnxt = Anxtxnxt +Bnxtunxt with:

Anxt =
0 1

0 − 1
T

 , Bnxt =
 0
K
T

 , (6.2)

where T = 0.062 s and K = 0.154 s−1. The system state is described by the vector
xnxt = [θ θ̇]T and unxt is the energy input (see Fig. 6.1). The state θ denotes the
rotor’s angular position in radians, and θ̇ represents the rotor’s angular speed in radians
per second. For demonstration purposes, we want the angular speed to be constrained
between −10 ≤ θ̇ ≤ 10. The input unxt is a pulse-width-modulated (PWM) voltage in
percentage, i.e. it is limited in hardware to be between −100% and 100%. The input is
therefore constrained between −100 ≤ unxt ≤ 100.
The NXT Brick uses an Atmel AT91SAM7S256 microcontroller which includes an

ARM7TDMI processor core, 64 kB RAM, and 256 kB flash memory. The clock frequency
is 48 MHz. ARM7 processors are based on legacy architecture which is similar in features
to the Cortex-M3 architecture. It has a 32-bit integer arithmetic logic unit, but lacks a
floating-point unit (FPU). Floating point operations are therefore emulated by software.
ARM7TDMI provides two instruction sets: ARM and Thumb. We only use the former
(the standard 32-bit instruction set), as the latter did not deliver any advantage for the
considered application. We refer to [109] for further details.
The NXT Brick inputs unxt are limited to integer values. Thus, the applied inputs

to the motor are quantized. In this case, it would be similar to a 8-bit DAC, with

92

6.1. Low-end example: A direct current motor

only 28 = 256 states. This in turn implies a relatively high quantization error (see
Section 2.1). In particular, from (2.1), we have that the maximum quantization error
in the inputs is β = 0.5%. This error is independent of the MPC controller, and limits
the overall performance that MPC scheme can achieve even if exact solutions are used.
We argue that due to this quantization, we should not aim to obtain exact solutions, as
they are computationally expensive. Instead we should compute approximate solutions
that are close to β. This criterion offers in many applications a good trade-off between
computational time and closed-loop performance.
To deploy the ALM+FGM algorithm in real time, we use the open-source nxtOSEK

real-time operating system (RTOS) [110]. nxtOSEK allows us to develop real-time
applications written in C for the NXT, using different task scheduling policies with
timer resolutions down to 1 ms. The whole RTOS and the application code are first
cross-compiled in a standard PC, then downloaded into the flash memory. During run-
time, they both (the RTOS and the user application) are copied from flash into RAM.
This means, that although we have 256 kB of flash available, we are limited by RAM to
64 kB of memory.

6.1.2. Generating a fast embedded MPC controller

The design of an MPC controller allows some freedom in the choice of application depen-
dent parameters, like the sampling period and horizon length. To simplify the discus-
sion, we take them as fixed to the following values: sampling period of 4 ms and horizon
length of 10 steps. These values offer a good trade-off between control performance and
available computation time for the considered application.
In an initial test, we determined the computational capabilities of our hardware for

the given setup. In real time, we could only perform 1 iteration of Algorithm 6 (the
main computational burden of the ALM+FGM method) using single-precision floating-
point arithmetic. The use of Q15.16 fixed-point arithmetic allows us to perform up to 6
iterations with, however, an inferior numeric precision.

6.1.3. Results

Fig. 6.2 shows the simulated step response of our system for an initial condition x(t0)T =
[3.5 0]. The exact trajectory (i.e. computed by exact minimization using CVXOPT)

93

6. Application examples

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

θ
Angular position [rad]

0.0 0.1 0.2 0.3 0.4 0.5
−12

−9

−6

−3

0

θ̇

Angular velocity [rad/s]

0.0 0.1 0.2 0.3 0.4 0.5
t

−120
−100
−80
−60
−40
−20

0
20

u
n
x
t

Input voltage[%]

Figure 6.2.: Comparison in simulation of trajectories using exact minimization (black
dotted) and approximations by µAO-MPC (solid grey).

and the approximated trajectory (computed by µAO-MPC) are shown. We perform 3
external iterations and 2 internal iterations of the ALM+FGM algorithm, with warm
starting and Q15.16. The computation time on the MCU is 3.8 ms and the compiled
code size is around 15 kB. We see that the input constraints are always satisfied.
Fig. 6.3 shows the experimental step response for the current setup. Both plots,

the simulation and the real experiment use the same µAO-MPC code with the same
ALM+FGM parameters. The state θ̇ is estimated by a discrete steady-state Kalman
filter (see [111]) relying on measurements of the angular position θ. The constraint
on θ̇ is violated by less than 10% during the trajectory. This is mainly due to model
plant mismatch and state estimation errors. Note the active soft constraints. Even if
the constraints are violated and thus rendering the original hard-constrained problem
infeasible, the ALM+FGM finds a solution that steers the system back to the original
feasible set. Furthermore, the ALM+FGM behaves in this case as an exact penalty
method. We can visually confirm this from the simulations, cf. Figure 6.2, where the
ALM+FGM delivers identical plots to the original hard-constrained problem when the

94

6.2. High-performance example: An autonomous vehicle

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

θ

Angular position [rad]

0.0 0.1 0.2 0.3 0.4 0.5
−12

−9

−6

−3

0

θ̇

Angular velocity [rad/s]

0.0 0.1 0.2 0.3 0.4 0.5
t

−120
−100
−80
−60
−40
−20

0
20

u
n
x
t

Input voltage [%]

Figure 6.3.: Experimental step response of the NXT DC motor setup using µAO-MPC .

constraints are not violated.
As visible, µAO-MPC allows us to solve similarly sized problems on low-cost embedded

microcontrollers, with limited computational power, low numeric precision, and little
memory, using the software tool presented in this document.

6.2. High-performance example: An autonomous vehicle
We considered an autonomous four-wheeled vehicle driving on a continuous belt (Fig.
6.4). The objective is to stabilize the car at different points inside the drive surface
while satisfying constraints on the inputs and states. A thorough description of the
experimental setup and the validation of the MPC algorithm follows.

6.2.1. System description

The autonomous car is equipped with a high-performance Infineon TriCore TC1796
microcontroller which includes 256 kB RAM, 2 MB flash ROM, a 32-bit FPU and runs

95

6. Application examples

ul

ϕ

l

pl

pf f

s

uf

0

ϕ

l

pf f

s

0

pl

3.0 m

1.5 m

Figure 6.4.: Experimental setup: left, the real car (top) and its schematic showing the
system states. On the right, the real belt and car (top) and a schematic
view.

with a clock frequency of 150 MHz. The car is equipped with a gyroscope, several
distance sensors, and Hall sensors on the rear wheels. Using these sensors, full-state
information is provided on-line to the controller by a Kalman filter. The car is on a 1:10
scale: approximately 20 cm long by 10 cm wide. It drives on a continuous belt that has a
length of 3.0 m and a width of 1.5 m. The car can position itself within that surface with
a clearance to the borders of about 0.3 m, i.e. the effective drive area is 2.4× 0.9 m2.
The position of the car is with respect to a coordinate frame fixed to the ground with
the origin on the lower left corner of the belt frame (see Fig. 6.4).

The forward and lateral dynamics of the car are nonlinear and coupled. Nevertheless,
for a constant speed of the belt, one can linearize the car dynamics. This results in
two decoupled linear systems, one for the forward dynamics and another for the lateral
dynamics of the car. With the belt speed fixed at 1.3 m/s (about 45 km/h at 1:10 scale),
the forward dynamics are described by the continuous time system ẋf = Acfxf + Bc

fuf ,
with:

Acf = [0 1
0 −10] , Bc

f = [0
35] , xf = [pf

s] .

96

6.2. High-performance example: An autonomous vehicle

Here pf is the car forward position with respect to the origin, s the car speed in car’s
coordinate system, and uf the applied torque of the motor (refer to Fig. 6.4). Similarly,
the lateral dynamics are given by ẋl = Aclxl +Bc

l ul, with

Acl =
[0 1.8 0

0 0 1
0 0 −7.7

]
, Bc

l =
[0

0
11.5

]
, xl =

[
pl
ϕ
ϕ̇

]
,

with pl the lateral position of the car with respect to the origin, ϕ the angle of the car
with respect to the forward axis, ϕ̇ the angular velocity of the car, and the ul the angle
of the steering wheels with respect to the car forward axis (refer to Fig. 6.4).
Clearly, two single-input controllers can be designed to stabilize the car. For the sake

of discussion, however, we will consider the two-input system given by:

Ac =
[
Ac

f 0
0 Ac

l

]
, Bc =

[
Bc

f 0
0 Bc

l

]
, x = [xf

xl
] , u = [uf

ul
] . (6.3)

We discretize (6.3) using a zero-order hold on the inputs with a sampling period of
5 ms. We drop the superscript (·)c in the system matrices to denote the corresponding
discrete time matrices, such that x+ = Ax+Bu.
Both input are physically constrained to be in the interval [−1, 1]. In the case of uf ,
−1 represents full motor brake, and 1 full motor power, with values in between. For ul,
−1 means steering angle completely to the left, while 1 completely to the right.

6.2.2. MPC Implementation

As already stated, the main purpose of this example is to demonstrate the suitability
of the presented ALM+FGM algorithm and its implementation using µAO-MPC as an
embedded MPC controller. We require that the states constraints −0.1 ≤ ϕ ≤ 0.1 are
satisfied. Additionally, we introduce inputs constraints such that −0.15 ≤ ul ≤ 0.15,
and −0.35 ≤ uf ≤ 0.05. These constraints keep the car in the range where the linear
model is still sufficiently good. We use the matrices and parameters shown in Appendix
B.2 for our MPC controller. In particular, we use a horizon length of 10 steps.
Fig. 6.5 shows a comparison of the exact and the approximate solution trajectories for

the considered MPC setup. The exact trajectory is computed using CVXOPT, whereas
the approximate trajectory are obtained using µAO-MPC . We set the ALM+FGM al-
gorithm to perform just 1 FGM iteration, and 4 ALM iterations plus warm starting.
The condition number of the internal problem κ ≈ 3.3 allows to use a very low number

97

6. Application examples

0 2 4 6 8 10
t

−0.4
−0.3
−0.2
−0.1
0.0
0.1

p f
Forward position [m]

0 2 4 6 8 10
t

−0.02

0.00

0.02

0.04

0.06

u
f

Forward motor torque [-1, 1]

0 2 4 6 8 10
−0.1

0.0

0.1

0.2

0.3

ϕ̇

Angular velocity [rad/s]

0 2 4 6 8 10
−0.05

0.00

0.05

0.10

0.15

ϕ

Angular position [rad]

0 2 4 6 8 10
−0.4
−0.3
−0.2
−0.1
0.0
0.1

p l

Lateral position [m]

0 2 4 6 8 10
−0.2

−0.1

0.0

0.1

0.2

u
l

Steering angle [-1, 1]

Figure 6.5.: Comparison in simulation of trajectories using exact minimization (black
dotted) and approximations by our algorithm (solid grey). The trajectories
are almost indistinguishable from each another.

of iterations, and in particular only 1 iteration of the internal loop. From Fig. 6.5 we
observe that the approximation seems to be good enough for control.

We proceed to implement the MPC controller on the embedded platform using SIMULINK
as development environment. The implementation of MPC is conceptually simple and
rather straightforward to do using µAO-MPC . For the given setup, the MPC needs
about 4 ms to be executed. The rest of the software (state estimation, real-time oper-
ating system, etc.) take less than 1 ms to execute. Thus, we are using the maximum
number of iterations we could achieve for the given sampling period of 5 ms. The size
of the binary file downloaded to the car’s ROM is about 30 kB. In Fig. 6.6 we show
the behavior of the MPC controller, and we additionally compare it to unconstrained
control.

98

6.2. High-performance example: An autonomous vehicle

0 2 4 6 8 10 12 14 16
t

−0.4

−0.2

0.0

0.2

0.4

p f

Forward position [m]

0 2 4 6 8 10 12 14 16
t

−0.30
−0.15
0.00
0.15
0.30
0.45

u
f

Forward motor torque [-1, 1]

0 2 4 6 8 10 12 14 16
−0.4

−0.2

0.0

0.2

0.4

ϕ̇

Angular velocity [rad/s]

0 2 4 6 8 10 12 14 16
−0.05

0.00

0.05

0.10

0.15

ϕ

Angular position [rad]

0 2 4 6 8 10 12 14 16
−0.4

−0.2

0.0

0.2

p l

Lateral position [m]

0 2 4 6 8 10 12 14 16
−0.2

−0.1

0.0

0.1

0.2

u
l

Steering angle [-1, 1]

Figure 6.6.: Comparison of experiments using linear unconstrained control (dashed
black) and our MPC implementation (solid gray). Shaded areas denote
constraints. Dashed areas denote the 10 % setpoint error band.

6.2.3. Discussion

To estimate the low computational requirements of the proposed algorithm, we com-
pare µAO-MPC again against CVXGEN. To perform our computational comparison,
we use high-performance the STM32F4-DISCOVERY board described in Section 5.3.
This platform together with embedded RTOS ChibiOS gives us more flexibility in the
simulations and is easily accessible. Thus, it is better suited for comparison purposes.
We additionally use a desktop computer equipped with a Intel Core i7-2600 CPU (Ci7-
PC) clocked at 3.4 GHz running Ubuntu Linux 12.04. This may give the reader an
intuitive feeling of the speed of the algorithm. Note that we compare the algorithms
using the controller performance Jp, as defined in (3.1), Subsection 3.1.2, and not the
exactness/sub-optimality of the solution u∼. A thorough comparison of both algorithms
is beyond the scope of this work.

In this example, CVXGEN requires a maximum of 4 interior point iterations to get

99

6. Application examples

a value of Jp slightly higher than that of µAO-MPC (i.e. CVXGEN controller delivers
slightly worse performance). Under these conditions and on the CM4-µC, we measure a
computational time of 0.7 ms for µAO-MPC ’s ALM+FGM whereas CVXGEN requires
4.3 ms on the CM4-µC. Recall that in the car’s µC we determined that µAO-MPC
needs 4 ms. Although we have not attempted to run CVXGEN on the car, by cross
multiplication we estimate that CVXGEN would require around 24.6 ms in the car’s µC.
In the (non real-time) Ci7-PC and for the same conditions, the average computation

time of 20000 runs is about 0.007 ms for µAO-MPC and 0.07 ms for CVXGEN. Neverthe-
less, from the presented examples we observe that our algorithm performs extremely well
under conditions frequently found in embedded applications, namely: well conditioned
problems that make use of warm starting and require only rough approximations.
With regard to the memory requirements, the code generated by µAO-MPC compiled

into a binary of 22 kB in size for the CM4-µC, with a significant part of it being problem
data, e.g. the Hessian matrix H takes about 1.6 kB. In this case µAO-MPC needed at
most 128 bytes of RAM, an acceptable amount for embedded applications.
Let us now make a few remarks about the comparison of controllers shown in Fig-

ure 6.6. We will focus for the moment only on the MPC performance. The first thing to
note is that the input constraints on ul and uf are always satisfied. The state constraint
on ϕ, on the contrary, is shortly violated at the beginning of the motion (nearly 20%
at about 0.5 s), but µAO-MPC quickly brings ϕ back to the constrained region. This
violation of constraints is due to imperfect data (measurements, modeling, etc.) and is
to be expected in applications.
An alternative way to satisfy constraints on states is to use an LQR with high penalties

on such states. The price to pay is degradation of performance when working near the
constraints due to the linear nature of the LQR. In this case, we use two independent
(unconstrained) LQR controllers: one for the forward dynamics, and another for the
lateral dynamics. Both controllers are compared in Figure 6.6: constrained (MPC) and
unconstrained (two LQRs). If we focus first on the forward dynamics, we observe that
the LQR presents a much higher overshoot. We have explicitly tuned the controller in
this way to make it reach the 10% region of the pf set-point approximately at the same
time as the MPC controller. MPC is still slightly faster, entering the region at about
6 s, whereas the LQR reaches it at 8 s.
In the case of the lateral dynamics, we tune the LQR to explicitly satisfy the con-

straints on the states, achieving maximum values in ϕ and ϕ̇ similar to that of the

100

6.3. Summary

MPC controller. This in turns makes the LQR controller much slower than the MPC
in reaching the 10% region of the pl setpoint. MPC reaches this region at about 9 s,
whereas the LQR needs 15 s. The weighting matrices for all controllers can be found in
Appendix B.2. Summarizing, in this example when using unconstrained control we faced
a trade-off between speed (time to reach the 10% region) and satisfaction of constraints
(maximum values of states/inputs). MPC on the contrary, has an additional degree of
freedom (explicit constraints) and the speed was mainly determined by the whole setup
(dynamics, constraints, controller tuning).
To this end, we introduced artificial constraints to demonstrate the suitability of the

presented algorithm and generated code for embedded applications. A more realistic
controller implementation may use a saturating LQR for the forward dynamics, given
that under certain conditions saturating LQR and MPC provide the same control action
[2, Ch. 7]. For the lateral dynamics MPC is still preferred. The QP would be smaller
and much faster to solve, which may allow to use longer horizons or higher sampling
rates.

6.3. Summary

We demonstrated with two application examples that µAO-MPC is well suited for the
deployment of MPC controllers for fast embedded applications.
First a rather simple example on a low-cost embedded platform was discussed. We

made use of fixed-point arithmetic to speed up computations four fold. Although the
optimization problem can be considered in general small, it may not be possible to use
explicit MPC due to memory constraints. We showed in simulation that very rough
approximations computed by µAO-MPC seem to deliver good closed-loop performance
in the nominal case. Furthermore, the input and state constraints were satisfied. Good
closed-loop performance was also observed in the real case, although the state constraints
were violated by less than 10%. The main reason is the uncertainty in the model and
state estimation, as well as quantization effects, etc.
As a second example, we considered a more complex setup: a autonomous-driving

vehicle. In this case, we relied on a more computationally capable microcontroller.
Similarly as in the low-cost case, the simulation results delivered by µAO-MPC good.
Furthermore, we compare the results to the computational performance of CVXGEN. As

101

6. Application examples

shown, µAO-MPC required almost two orders of magnitude less memory than CVXGEN,
while at the same time the computational time of µAO-MPC was eight times lower to
reach the same level nominal close-loop performance. Again, the experiments confirmed
that µAO-MPC indeed delivers acceptable closed-loop performance.
We additionally compared µAO-MPC against an LQR. The experiment showed that

for systems with constraints, the approximate solutions of µAO-MPC outperformed the
unconstrained controller.

102

7. Conclusions

The implementation of model predictive control (MPC) on low-cost embedded platforms
to control systems with fast dynamics has been considered difficult in the past. An MPC
algorithm has high computational requirements relative to the computational capabilities
of embedded computers. Although there has been several important advancements in
optimization algorithms, and the cost of embedded computers is constantly decreasing,
the application of MPC on embedded systems, in particular on low-cost hardware, is
still challenging.
In this work we presented a software tool called µAO-MPC that eases the implemen-

tation of MPC schemes in embedded systems by means of automatic code generation.
Embedded computers have a series of characteristics and limitations that need to be
taken into account to make an efficient MPC implementation. Similarly, the MPC algo-
rithm has its own characteristics that can be exploited. We have focused on MPC setups
for linear systems that can be equivalently posed as a convex quadratically constrained
quadratic programs (QCQP).
At the core of µAO-MPC is a novel optimization algorithm for solving QPs. It is

based on an augmented Lagrangian method combined with Nesterov’s fast gradient
method (ALM+FGM). This algorithm can exploit two MPC specific properties, namely
the ALM+FGM can be easily warm started and it naturally deals with soft constraints.
Furthermore, the ALM+FGM takes into account many of the characteristics of embed-
ded control systems: deterministic in a temporal sense, has a low memory footprint, and
only requires multiplications and additions.
One core feature of µAO-MPC is the automatic code generation of an ALM+FGM

solver based on a general description of the MPC problem. We proposed a domain spe-
cific language that closely resembles the way how MPC problems are expressed math-
ematically. While this language can represent a broad range of MPC problems, we
restricted our discussion to QCQPs problems that are affine with respect to each on-line
parameter. We showed how this general formulation of MPC can be expressed as a

103

7. Conclusions

parametric condensed QCQP in a form that can be efficiently computed on-line. The
fact that a condensed formulation is automatically generated is a unique feature of µAO-
MPC . This type of formulation is preferred in MPC when the horizon length is short, and
in many embedded applications short horizon lengths are required. Furthermore, several
popular general purpose and tailored solvers work with QCQP or QP formulations in
condensed form, i.e. they cannot exploit sparsity on the problem matrices.
µAO-MPC takes a code generation approach that separates the steps of forming the

QP for a given set of parameters, and solving the formed QP. To solve the formed
QP, µAO-MPC by default implements a tailored ALM+FGM algorithm. In both steps
(forming and solving), portable library-free C-code is generated that shows deterministic
computation time, and has low requirements on ROM and RAM. Due to this strict sep-
aration of forming and solving a QP, the C-code generated by µAO-MPC can easily be
used with other QP solvers, either for simulation purposes or for the final implementa-
tion. We have successfully combined µAO-MPC with qpOASES, CVXGEN, MATLAB’s
quadprog and CVXOPT.
As shown, the ALM+FGM algorithm works extremely well for applications that take

advantage of warm start, where the Hessian is well conditioned, and where rough approx-
imate solutions deliver good closed-loop performance. We presented several simulation
and experimental applications that confirm this behavior. In particular, we used a low-
cost microcontroller for a simple single-input system with two states. One of the key
points of this example was the use of fixed-point arithmetics. On a more complex ex-
ample, with two inputs and five states, we also exemplified how rough approximations
deliver acceptable performance.

7.1. Outlook

The main contribution of this work was the implementation and experimental validation
of µAO-MPC . In this regard, there are several theoretical properties that should be
explored to complement and enhance this work. For example, although the rate of
convergence and sub-optimality certifications of the fast gradient are well known, we
have not developed them for the combined algorithm ALM+FGM.
Our current code generation approach is limited to Hessian matrices that are constant

(i.e. do not depend on on-line parameters). In the case of linear time-varying systems,

104

7.1. Outlook

or when the weighting matrices change with time, the Hessian is no longer constant.
Considering theses case will expand the capabilities of µAO-MPC , however, this will
also present new computational challenges.
Another extension to µAO-MPC would be the consideration of problems that are

equivalent to second-order cone programs. This will require the implementation of a
more complex optimization algorithm while still aiming at low-cost embedded systems.
A primal interior point method seems like a good candidate. Although high accurate
solutions may not be easily achieved with this type of algorithm, this is not a major
concern for many applications as we have shown. Furthermore, a primal method can be
easily warm started and the MPC structure can be as well exploited.

105

Bibliography

[1] I. Craig, C. Aldrich, R. Braatz, F. Cuzzola, E. Domlan, S. Engell, J. Hahn,
V. Havlena, A. Horch, B. Huang et al., “Control in the process industries,” The
Impact of Control Technology. IEEE Control Systems Society, New York, 2011.

[2] G. C. Goodwin and J. A. De Doná, Constrained Control and Estimation: An
Optimization Approach. Springer, 2005.

[3] J. Rawlings and D. Mayne, Model Predictive Control: Theory and Design. Nob
Hill Pub., 2009.

[4] L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Springer, 2011.

[5] L. Wang, Model Predictive Control System Design and Implementation Using
MATLAB®. Springer, 2009.

[6] R. Findeisen, F. Allgöwer, and L. T. Biegler, Assessment and Future Directions of
Nonlinear Model Predictive Control. Springer, 2007, vol. 358.

[7] J. Maciejowski, Predictive Control: With Constraints. Pearson education, 2002.

[8] E. F. Camacho and C. B. Alba, Model Predictive Control. Springer, 2013.

[9] S. Qin and T. Badgwell, “A survey of industrial model predictive control technol-
ogy,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764, 2003.

[10] T. Faulwasser, J. Matschek, P. Zometa, and R. Findeisen, “Predictive path-
following control: Concept and implementation for an industrial robot,” in Int.
Conf. Control Applications. IEEE, 2013, pp. 128–133.

107

Bibliography

[11] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, V. Stauch,
B. Lehmann, and M. Morari, “Use of model predictive control and weather fore-
casts for energy efficient building climate control,” Energy and Buildings, vol. 45,
pp. 15–27, 2012.

[12] R. R. Negenborn, P.-J. van Overloop, T. Keviczky, B. De Schutter et al., “Dis-
tributed model predictive control of irrigation canals,” NHM, vol. 4, no. 2, pp.
359–380, 2009.

[13] B. Grosman, E. Dassau, H. C. Zisser, L. Jovanovič, and F. J. Doyle, “Zone model
predictive control: a strategy to minimize hyper-and hypoglycemic events,” Jour-
nal of Diabetes Science and Technology, vol. 4, no. 4, pp. 961–975, 2010.

[14] G. Valencia-Palomo and J. Rossiter, “Efficient suboptimal parametric solutions
to predictive control for plc applications,” Control Engineering Practice, vol. 19,
no. 7, pp. 732–743, 2011.

[15] S. Richter, S. Mariethoz, and M. Morari, “High-speed online MPC based on a
fast gradient method applied to power converter control,” in American Control
Conference, 2010, pp. 4737–4743.

[16] P. D. Vouzis, M. V. Kothare, L. G. Bleris, and M. G. Arnold, “A system-on-a-
chip implementation for embedded real-time model predictive control,” Control
Systems Technology, IEEE Transactions on, vol. 17, no. 5, pp. 1006–1017, 2009.

[17] K.-V. Ling, B. F. Wu, and J. Maciejowski, “Embedded model predictive control
(MPC) using a FPGA,” in Proc. 17th IFAC World Congress, 2008, pp. 15 250–
15 255.

[18] D. Bao-Cang, Modern Predictive Control. CRC press, 2010.

[19] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model predictive
control: Stability and optimality,” Automatica, vol. 36, pp. 789–814, 2000.

[20] C. Rao, S. Wright, and J. Rawlings, “Application of interior-methods to model
predictive control,” Journal of Optimization Theory and Applications, vol. 99, pp.
723–757, 1998.

108

Bibliography

[21] S. Lucia, P. Zometa, M. Kögel, and R. Findeisen, “Efficient stochastic model pre-
dictive control based on polynomial chaos expansions for embedded applications,”
in Proc. Conf. Decision and Control, 2015, pp. 322–331.

[22] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones, “Efficient
interior point methods for multistage problems arising in receding horizon control,”
in Proc. Conf. Decision and Control, 2012, pp. 668 – 674.

[23] M. Kögel and R. Findeisen, “On efficient predictive control of linear systems sub-
ject to quadratic constraints using condensed, structure-exploiting interior point
methods,” in Proc. European Control Conf., 2013, pp. 27–34.

[24] E. Chu, N. Parikh, A. Domahidi, and S. Boyd, “Code generation for embedded
second-order cone programming,” in Proc. European Control Conf. IEEE, 2013,
pp. 1547–1552.

[25] P. Zometa, M. Kögel, and R. Findeisen, “muAO-MPC: A free code generation
tool for embedded real-time linear model predictive control,” in Proc. American
Control Conf., 2013, pp. 5340–5345.

[26] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit linear
quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20,
2002.

[27] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy to overcome
the limitations of explicit MPC,” International Journal of Robust and Nonlinear
Control, vol. 18, pp. 816–830, 2008.

[28] D. Bertsekas, Nonlinear Programming. Athena Scientific Belmont, MA, 1999, pp.
149–151.

[29] S. Wright and J. Nocedal, Numerical Optimization. Springer New York, 1999,
vol. 2.

[30] S. J. Wright, Primal-dual Interior-point Methods. Siam, 1997.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

109

Bibliography

[32] Y. Wang and S. Boyd, “Fast model predictive control using online optimization,”
IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 267–278,
2010.

[33] H. Ferreau, “qpOASES–an open-source implementation of the online active set
strategy for fast model predictive control,” in Proc. of the Workshop on Nonlinear
Model Based Control–Software and Applications, Loughborough, 2007, pp. 29–30.

[34] L. K. McGovern, “Computational Analysis of Real-time Convex Optimization for
Control Systems,” Ph.D. dissertation, Massachusetts Institute of Technology, 2000.

[35] H. J. Ferreau, “Model Predictive Control Algorithms for Applications with Mil-
lisecond Timescales,” Ph.D. dissertation, PhD thesis, KU Leuven, 2011.

[36] S. Richter, C. N. Jones, and M. Morari, “Computational complexity certification
for real-time MPC with input constraints based on the fast gradient method,”
Automatic Control, IEEE Transactions on, vol. 57, no. 6, pp. 1391–1403, 2012.

[37] V. Nedelcu and I. Necoara, “Iteration complexity of an inexact augmented La-
grangian method for constrained MPC,” in Decision and Control (CDC), 2012
IEEE 51st Annual Conference on. IEEE, 2012, pp. 650–655.

[38] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan, and
M. Morari, “Embedded online optimization for model predictive control at mega-
hertz rates.”

[39] B. W. Kernighan, D. M. Ritchie, and P. Ejeklint, The C Programming Language.
Prentice-Hall Englewood Cliffs, 1988, vol. 2.

[40] GNU-GCC, “The GNU Compiler Collection,” https://gcc.gnu.org/.

[41] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,”
in Computer Aided Control Systems Design, 2004 IEEE International Symposium
on. IEEE, 2004, pp. 284–289.

[42] R. Fourer, D. Gay, and B. Kernighan, AMPL. Boyd & Fraser, 1993, vol. 119.

[43] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex program-
ming, version 2.1.”

110

https://gcc.gnu.org/

Bibliography

[44] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded convex
optimization,” Optimization and Engineering, vol. 13, no. 1, pp. 1–27, 2012.

[45] J. Mattingley, Y. Wang, and S. Boyd, “Code generation for receding horizon con-
trol,” in Proc. of the IEEE International Symposium on Computer-Aided Control
System Design, Yokohama, Japan, 2010.

[46] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embedded sys-
tems,” in Proc. European Control Conf., 2013, pp. 3071–3076.

[47] C. Jones, A. Domahidi, M. Morari, S. Richter, F. Ullmann, and M. Zeilinger,
“Fast predictive control: real-time computation and certification,” in 4th IFAC
Nonlinear Predictive Control Conference, 2012, pp. 94–98.

[48] F. Ullmann, “FiOrdOs: A Matlab Toolbox for C-Code Generation for First Order
Methods,” Master’s thesis, ETH Zurich, 2011.

[49] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit—An open-source frame-
work for automatic control and dynamic optimization,” Optimal Control Applica-
tions and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[50] B. Houska, H. Ferreau, and M. Diehl, “An auto-generated real-time iteration al-
gorithm for nonlinear MPC in the microsecond range,” Automatica, 2011.

[51] E. C. Kerrigan and J. M. Maciejowski, “Feedback min-max model predictive con-
trol using a single linear program: Robust stability and the explicit solution,”
International Journal of Robust and Nonlinear Control, vol. 14, no. 4, pp. 395–
413, 2004.

[52] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” in
Robustness in Identification and Control. Springer, 1999, pp. 207–226.

[53] D. Van Hessem and O. Bosgra, “A conic reformulation of model predictive control
including bounded and stochastic disturbances under state and input constraints,”
in Decision and Control, 2002, Proc. of the 41st IEEE Conference on, vol. 4.
IEEE, 2002, pp. 4643–4648.

[54] W. S. Levine, The Control Handbook. CRC press, 1996.

111

Bibliography

[55] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic Sys-
tems. Addison-Wesley Longman Publishing Co., Inc., 1997.

[56] B. D. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods.
Courier Dover Publications, 2007.

[57] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems. Wiley-interscience
New York, 1972, vol. 1.

[58] E. C. Kerrigan, J. L. Jerez, S. Longo, and G. A. Constantinides, “Number repre-
sentation in predictive control,” in Proc. IFAC Conf. Nonlinear Model Predictive
Control, Noordwijkerhout, NL. Citeseer, 2012, pp. 60–67.

[59] G. C. Goodwin, J. I. Yuz, J. Aguero, and M. Cea, “Sampling and sampled-data
models,” in American Control Conference (ACC), 2010. IEEE, 2010, pp. 1–20.

[60] H. Kopetz, Real-time Systems: Design Principles for Distributed Embedded Appli-
cations. Springer, 2011.

[61] P. Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-
physical Systems. Springer Science & Business Media, 2010.

[62] R. Baheti and H. Gill, “Cyber-physical systems,” The Impact of Control Technol-
ogy, pp. 161–166, 2011.

[63] J. Yiu, The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors.
Newnes, 2013.

[64] P. Zometa, M. Kögel, T. Faulwasser, and R. Findeisen, “Implementation aspects
of model predictive control for embedded systems,” in Proc. American Control
Conf., 2012, pp. 1205–1210.

[65] P. A. Laplante, “Real-time systems design and analysis,” 1993.

[66] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-
real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61,
1973.

112

Bibliography

[67] A. Chatzigeorgiou and G. Stephanides, Evaluating Performance and Power of
Object-oriented vs. Procedural Programming in Embedded Processors. Springer,
2002.

[68] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic storage alloca-
tion: A survey and critical review,” in Memory Management. Springer, 1995, pp.
1–116.

[69] I. Puaut, “Real-time performance of dynamic memory allocation algorithms,” in
Real-Time Systems, 2002. Proc.. 14th Euromicro Conference on. IEEE, 2002,
pp. 41–49.

[70] M. MISRA et al., MISRA-C: 2004 Guidelines for The Use of The C Language in
Critical Systems.

[71] M. N. Zeilinger, C. N. Jones, D. M. Raimondo, and M. Morari, “Real-time MPC-
Stability through robust MPC design,” in Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proc. of the
48th IEEE Conference on. IEEE, 2009, pp. 3980–3986.

[72] M. Cannon, B. Kouvaritakis, and J. A. Rossiter, “Efficient active set optimization
in triple mode MPC,” Automatic Control, IEEE Transactions on, vol. 46, no. 8,
pp. 1307–1312, 2001.

[73] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-
order cone programming,” Linear algebra and its applications, vol. 284, no. 1, pp.
193–228, 1998.

[74] P. Zometa, H. Heinemann, S. Lucia, M. Kögel, and R. Findeisen, “Efficient stochas-
tic model predictive control for embedded systems based on second-order cone
programs,” in Proc. European Control Conf., 2016, pp. 166–171.

[75] B. Kouvaritakis, M. Cannon, and V. Tsachouridis, “Recent developments in
stochastic MPC and sustainable development,” Annual Reviews in Control, vol. 28,
no. 1, pp. 23–35, 2004.

[76] CVXOPT, “CVXOPT: Homepage,” http://cvxopt.org/.

113

http://cvxopt.org/

Bibliography

[77] OpenOpt.

[78] N. I. Gould and P. L. Toint, “A quadratic programming bibliography,” Numerical
Analysis Group Internal Report, vol. 1, 2000.

[79] U. Maeder and M. Morari, “Offset-free reference tracking with model predictive
control,” Automatica, vol. 46, no. 9, pp. 1469–1476, 2010.

[80] D. Limón, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking piecewise
constant references for constrained linear systems,” Automatica, vol. 44, no. 9, pp.
2382–2387, 2008.

[81] S. Olaru and S.-I. Niculescu, “Predictive control for linear systems with delayed
input subject to constraints,” in Proc. IFAC World Congress, 2008, pp. 11 208–
11 213.

[82] T. G. Hovgaard, K. Edlund, and J. Bagterp Jorgensen, “The potential of economic
MPC for power management,” in Proc. Conf. Decision and Control. IEEE, 2010,
pp. 7533–7538.

[83] M. Kögel, P. Zometa, and R. Findeisen, “On tailored model predictive control for
low cost embedded systems with memory and computational power constraints,”
in Technical report., 2012.

[84] A. Mesbah, S. Streif, R. Findeisen, and R. D. Braatz, “Stochastic nonlinear model
predictive control with probabilistic constraints,” in Proc. American Control Conf.
IEEE, 2014, pp. 2413–2419.

[85] P. O. Scokaert and J. B. Rawlings, “Feasibility issues in linear model predictive
control,” AIChE Journal, vol. 45, no. 8, pp. 1649–1659, 1999.

[86] E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact penalty func-
tions in model predictive control,” in Control 2000 Conference, Cambridge, 2000.

[87] N. Haverbeke, M. Diehl, and B. De Moor, “A structure exploiting interior-point
method for moving horizon estimation,” in Proc. Conf. Decision and Control,
Chinese Control Conf., 2009, pp. 1273–1278.

114

Bibliography

[88] S. Mehrotra, “On the implementation of a primal-dual interior point method,”
SIAM Journal on optimization, vol. 2, no. 4, pp. 575–601, 1992.

[89] D. Dueri, J. Zhang, and B. Açikmese, “Automated custom code generation for
embedded, real-time second order cone programming,” in IFAC World Congress,
2014, pp. 1605–1612.

[90] J. Mattingley, Y. Wang, and S. Boyd, “Receding horizon control: automatic gen-
eration of high-speed solvers,” IEEE Control Systems Magazine, vol. 31, no. 3, pp.
52–65, 2011.

[91] E. A. Yildirim and S. J. Wright, “Warm-start strategies in interior-point methods
for linear programming,” SIAM Journal on Optimization, vol. 12, no. 3, pp. 782–
810, 2002.

[92] A. Shahzad, E. C. Kerrigan, and G. A. Constantinides, “A warm-start interior-
point method for predictive control,” 2010.

[93] A. Alessio and A. Bemporad, “A survey on explicit model predictive control,” in
Nonlinear Model Predictive Control. Springer, 2009, pp. 345–369.

[94] M. Mönnigmann and M. Kastsian, “Fast explicit MPC with multiway trees,” in
Proc. of the 18th IFAC World Congress, 2011.

[95] M. Kögel and R. Findeisen, “Fast predictive control of linear, time-invariant sys-
tems using an algorithm based on the fast gradient method and augmented La-
grange multipliers,” in Control Applications (CCA), 2011 IEEE International Con-
ference on. IEEE, 2011, pp. 780–785.

[96] Y. Nesterov, “A method of solving a convex programming problem with conver-
gence rate O (1/k2),” in Soviet Mathematics Doklady, vol. 27, no. 2, 1983, pp.
372–376.

[97] ——, Introductory Lectures on Convex Optimization: A Basic Course. Kluwer
Academic Publishers, 2004.

[98] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods.
Athena Scientific, 1996.

115

Bibliography

[99] S. Richter, C. Jones, and M. Morari, “Real-time input-constrained MPC using fast
gradient methods,” in Proc. of the 48th IEEE Conference on Decision and Control
and the 28th Chinese Control Conference, 2009, pp. 7387–7393.

[100] H. Waschl, D. Alberer, and L. del Re, “Automatic tuning methods for MPC envi-
ronments,” Computer Aided Systems Theory–Eurocast 2011, vol. 6928, pp. 41–48,
2012.

[101] ——, “Numerically efficient self tuning strategies for MPC of integral gas engines,”
in Proc. of the 18th IFAC World Congress, 2011, pp. 2482–2487.

[102] P. Zometa, M. Kögel, and R. Findeisen, “muAO-MPC: Homepage,” http://
ifatwww.et.uni-magdeburg.de/syst/muAO-MPC/, 2013.

[103] S. Lucia, D. Navarro, O. Lucia, P. Zometa, and R. Findeisen, “Optimized FPGA
Implementation of Model Predictive Control for Embedded Cyber-physical Sys-
tems Using High Level Synthesis Tools,” IEEE Transactions on Industrial Infor-
matics (submitted), 2016.

[104] Chibios, “Chibios/RT Homepage,” www.chibios.org.

[105] gnu-arm, “GNU tools for ARM embedded processors,” https://launchpad.net/
gcc-arm-embedded.

[106] R. J. Simpson, R. Palacios, H. Hesse, and P. Goulart, “Predictive control for alle-
viation of gust loads on very flexible aircraft,” in 55th AIAA Structures, Structural
Dynamics, and Materials Conference, 2014, pp. 2014–0843.

[107] G. Takacs, P. Zometa, R. Findeisen, and B. Rohal’-Ilkiv, “Efficiency and perfor-
mance of embedded model predictive control for active vibration attenuation,” in
Proc. European Control Conf., 2016, pp. 1334–1340.

[108] ——, “Embedded model predictive vibration control on low-end 8-bit microcon-
trollers via automatic code generation,” in Int. Congress on Sound & Vibration,
2016, pp. 1–6.

[109] D. Jaggar et al., “ARM architecture and systems,” IEEE micro, vol. 17, no. 4, pp.
9–11, 1997.

116

http://ifatwww.et.uni-magdeburg.de/syst/muAO-MPC/
http://ifatwww.et.uni-magdeburg.de/syst/muAO-MPC/
www.chibios.org
https://launchpad.net/gcc-arm-embedded
https://launchpad.net/gcc-arm-embedded

Bibliography

[110] Takashi Chikamasa, “nxtOSEK/JSP ANSI C/C++ with OSEK/muITRON
RTOS for LEGO MINDSTORMS NXT,” http://lejos-osek.sourceforge.net/, 2007.

[111] G. Bishop and G. Welch, “An introduction to the Kalman filter,” Proc of SIG-
GRAPH, Course, vol. 8, pp. 27 599–3175, 2001.

117

http://lejos-osek.sourceforge.net/

A. Forming a condensed parametric
quadratic program

In the following, we will make reference to the considered MPC setup (2.15). For con-
venience, we will repeat here some of the relevant information.
Note that MPC problem is subject to the constraints: x0 = x, and xk+1 = Axk +Buk,

from which we know that x1 = Ax0 +Bu0, and x2 = Ax1 +Bu1 = A(Ax0 +Bu0)+Bu1 =
A2Bx0 + ABu0 +Bu1, and more generally

xj = Ajx0 + Aj−1Bu0 + ...+Buj−1 (A.1)

hold. Recall the sequences u = {u0, u1, ..., uN−1} and x(x,u) = {x0, x1, x2, ..., xN}.
Based on the latter, we define the sub-sequence x1:N(x0,u) = {x1, x2, ..., xN}. For
simplicity, we will in the following omit the dependency of x and x1:N on its parameters.
We consider first the special case of regulation to the origin with only input constraints.

In the case of regulation of the origin, the model predictive control (MPC) cost function
is given by

V (x,u) = 1
2

N−1∑
i=0

(‖xi‖2
Q + ‖ui‖2

R) + 1
2‖xN‖

2
P . (A.2)

It can be equivalently written as

V (x,u) = 1
2(‖x0‖2

Q + ‖x1:N‖2
Q + ‖u‖2

R), (A.3)

where

Q =

Q 0 · · · 0
0 Q · · · 0
...
0 0 · · · P

 , R =

R 0 · · · 0
0 R · · · 0
...
0 0 · · · R

 .

119

A. Forming a condensed parametric quadratic program

Furthermore, using (A.1) we can write x1:N(x0,u) = Ax0 + Bu where:

A =

A

A2

...
AN

 , B =

B 0 · · · 0
AB B · · · 0
...

AN−1B AN−2B · · · B

 .

Recall that the ‖y‖2
M = yTMy. We can then equivalently express (A.3) as

V (x0,u) = 1
2(xT

0Qx0 + (Ax0 + Bu)TQ(Ax0 + Bu) + uTRu).

After expanding and rearranging some terms it can be written as

V (x0,u) = 1
2(Bu)TQBu + uTRu + 2(Bu)TQAx0 + (Ax0)TQAx0 + xT

0Qx0)
= 1

2(uT(BTQB + R)u + uT(2BTQAx0) + (Ax0)TQAx0 + xT
0Qx0)

Finally, it can be concisely expressed as

V (x0,u) = 1
2uTHu + g(x0)Tu + c(x0) (A.4)

with H = BTQB + R, g(x0) = Gx0, G = BTQA, and c(x0) = 1
2((Ax0)TQAx0 +xT

0Qx0).
The input constraints set U = UN can be equivalently defined as

U = {u ∈ RNm | u ≤ u ≤ u}, u =

u
...
u

 , u =

u
...
u

 . (A.5)

Finally, with the cost (A.4), the constraints (A.5) and x0 = x, the parametric quadratic
program PI(x) has the form

minimize
u

1
2uTHu + g(x0)Tu

subject to u ≤ u ≤ u
(A.6)

Note that we do not include the term c(x0) from (A.4) because it does not influence
the solution.
Following a similar approach, the considered mixed constrained in (2.15) can be con-

120

cisely written as z(x0) ≤ Eu ≤ z(x0), where:

z(x0) =

e−Kxx0

...
e−KxA

N−1x0

f − FANx0

 , z(x0) =

e−Kxx0

...
e−KxA

N−1x0

f − FANx0

 ,

and

E =

Ku 0 · · · 0
KxB Ku · · · 0
...

KxA
N−2B KxA

N−3B · · · Ku

FAN−1B FAN−2B · · · FB

.

We can then extend (A.6) to the case with mixed constraints. The parametric
quadratic program PII(x) has the form

minimize
u

1
2uTHu + g(x0)Tu

subject to u ≤ u ≤ u

z(x) ≤ Eu ≤ z(x)

(A.7)

121

B. System Matrices

B.1. Simulation examples

The continuous-time robot arm system is given by

Ac =
[

0 1 0 0
0 −17.2 0 0
0 0 0 1
0 0 0 −16.1

]
, Bc =

[0 0
2.62 0

0 0
0 2.48

]
,

xT
c = [θ1 ω1 θ2 ω2] , uT

c = [u1 u2] ,

where θ, ω, u denote respectively the angular position [rad], angular speed [rad/s], and
input for each link [%]. The subindices 1, 2 denote the link. The weighting matrices are

Q = diag([1.14E4 2.24E1 1.14E4 2.94E1]),

R = diag([2.20E−1 2.37E−1]), P = Q.

The robot arm is subject to the following constraints: −100 ≤ u1 ≤ 100, −25 ≤ u2 ≤ 25,
−1 ≤ ωi ≤ 1, i = 1, 2.

The discrete-time aircraft system is given by

Ad =
 0.239 0 0.178 0 0
−0.372 1 0.270 0 0
−0.990 0 0.139 0 0
−48.9 64.1 2.40 1 0

0 0 0 0 0

 , Bd =
 −1.23
−1.44
−4.48
−1.80

1

 ,
xT = [x1 x2 x3 x4 x5] ,

where the x1 is the angle of attack in [rad], x2 is the pitch angle [rad], x3 is the derivative
of x2 in [rad/s], x4 is the altitute in [m], x5 was added to consider the slew rate constraint
in the input [rad/s]. The altitute rate is given by ẋ4 = −128.2x1 +128.2x2 in [m/s]. The

123

B. System Matrices

input u is the elevator angle in [rad]. The weighting matrices are

Q = diag([1.22E3 3.12E3 6.12E3 5.08E−1 3.46E2]),

R = [3.46E2] , P = Q.

The aircraft is subject to the following constraints: −0.262 ≤ u ≤ 0.262, −0.524 ≤ u̇ ≤
0.524, −0.349 ≤ x2 ≤ 0.349, and −30 ≤ ẋ4 ≤ 30.

B.2. Application examples
The following matrices and parameters were used by the MPC controller: penalty pa-
rameter µ = 8192, diagonal weighting matrices Q = diag(10−2, 1, 10−2, 10−2, 2 · 10−1),
R = diag(10−1, 10−1), P is the solution to the discrete algebraic Riccati equation, the
contraints matrix Kx = [0, 0, 0, 1, 0] and the corresponding bounds elb = −0.1, eub = 0.1
have been scaled by the factor cE = 6.5 · 10−1 to reduce the numerical condition of
the internal problem. The LQR have been tuned with the following weighting matrices
Qf = diag(10−2, 1), Rf = [10−3], Ql = diag(10−2, 101, 2 · 10−1), Rl = [10−1].

124

	Introduction
	Linear model predictive control for embedded systems
	Contribution
	Outline

	Model predictive control for embedded systems
	Embedded digital control systems
	Digital control of linear dynamic systems
	Cyber-physical systems: real-time embedded systems

	On-line optimization
	Basics of convex optimization
	Quadratic programs
	Optimization theory for quadratic programs

	Model predictive control for linear systems
	A basic MPC setup
	MPC as a QP
	General moving horizon control formulation

	Summary

	Tailored on-line optimization software tools for MPC
	Exploiting the properties of the MPC algorithm
	Known-ahead maximum computation time
	Partial use of the solution by the controller
	Similarities between consecutive problems
	Special structure of the data
	Soft constraints

	Tailored optimization software tools
	Interior point methods
	Active set methods
	Gradient methods
	Comments on explicit methods

	A novel optimization algorithm for embedded MPC
	Fast gradient method
	Augmented Lagrangian method
	The ALM+FGM algorithm for MPC
	ALM+FGM for embedded MPC

	Summary

	General description of multistage problems
	General formulation of multistage problems
	Motivational example
	Abstract formulation of multistage problems

	Reformulation as a condensed optimization problem
	Reformulation as a general QCQP
	Reformulation as a QCQP in standard form
	Special case: condensed QP

	High-level multistage specification language
	Code generation of condensed formulation

	Summary

	muAO-MPC: a free code generation tool for embedded MPC
	Core features
	Automatic generation of C code
	Forming and solving the condensed QP
	Solving the QP with the ALM+FGM algorithm
	Further controller performance improvements

	Examples: code generation for a microcontroller
	Setup description
	Considered Embedded Hardware
	Results
	Discussion

	Summary

	Application examples
	Low-end example: A direct current motor
	System description
	Generating a fast embedded MPC controller
	Results

	High-performance example: An autonomous vehicle
	System description
	MPC Implementation
	Discussion

	Summary

	Conclusions
	Outlook

	Forming a condensed parametric quadratic program
	System Matrices
	Simulation examples
	Application examples

