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Abstract
Estimands are highly used in survival analysis, e.g., to compare the effects of different treatments in a clinical
study. Beyond the popular hazard ratio, which relies on the rather restrictive proportional hazards assumption,
there are various estimands that do not rely on this assumption as, for example, the Mann-Whitney effect and
the restricted mean survival time. Several inference procedures for estimands in simple one- and two-sample
survival problems have already been developed in the literature. However, since the underlying designs of real
data are often more complex, there is a lack of adequate testing procedures in more complex survival models.
Moreover, ties easily occur in real data if time is measured in whole days, months, or years. While many existing
methods require continuous survival distributions, we prove all methods without any continuity assumption on
the survival and censoring times by empirical process theory. Thus, we explicitly allow for ties in the data.
Furthermore, in many practical applications, not only one hypothesis is of interest, e.g., if not only the existence
of an effect of any treatment is of interest but also which treatment groups have a different effect. In this case,
multiple tests need to be performed to infer several hypotheses simultaneously.
To close all above-mentioned gaps, we construct tests for a version of the Mann-Whitney effect and restricted
mean survival times in the paired survival setup, multiple tests for restricted mean survival times in general
factorial designs, and multiple tests for restricted mean time losts of competing risks in general factorial designs.
For the multiple tests, we incorporate the multivariate limit distribution of the test statistics to gain more
power in contrast to a simple Bonferroni-correction. Additionally, we apply different resampling procedures,
as permutation and bootstrap approaches, for all tests to improve the small sample performance of the tests.
Moreover, for proving the validity of the resampling tests, we design a flexible conditional delta-method for
resampling empirical processes.





Zusammenfassung
Estimands werden in der Überlebenszeitanalyse häufig verwendet, z.B. um die Auswirkungen verschiedener Be-
handlungen in einer klinischen Studie zu vergleichen. Neben dem weit verbreiteten Hazard Ratio, das auf der
eher restriktiven Proportional-Hazard-Annahme beruht, gibt es verschiedene Estimands, die nicht auf dieser
Annahme beruhen, wie z.B. der Mann-Whitney-Effekt und die ’restricted mean survival time’. In der Literatur
wurden bereits mehrere Inferenzverfahren für Estimands bei einfachen Ein- oder Zwei-Stichproben-Problemen
entwickelt. Da die den realen Daten zugrunde liegenden Designs jedoch häufig komplexer sind, fehlt es an
geeigneten Testverfahren für komplexere Überlebenszeitmodelle. Außerdem treten bei realen Daten Bindungen
auf, wenn die Zeit in ganzen Tagen, Monaten oder Jahren gemessen wird. Während viele bereits existierende
Methoden stetige Überlebenszeitverteilungen voraussetzen, beweisen wir alle Methoden ohne Stetigkeitsan-
nahme für die Überlebens- und Zensierungszeiten durch empirische Prozesstheorie. Somit erlauben wir Bindun-
gen in den Daten explizit. Außerdem ist in vielen praktischen Anwendungen nicht nur eine Hypothese von In-
teresse, z.B. wenn nicht nur die Existenz eines Effekts einer Behandlung von Interesse ist, sondern auch, welche
Behandlungsgruppen einen unterschiedlichen Effekt haben. In diesem Fall müssen multiple Tests durchgeführt
werden, um mehrere Hypothesen simultan testen zu können.
Um alle oben erwähnten Lücken zu schließen, konstruieren wir Tests für eine Version des Mann-Whitney-Effekts
und ’restricted mean survival times’ für gepaarte Überlebenszeiten, multiple Tests für ’restricted mean survival
times’ in allgemeinen faktoriellen Designs und multiple Tests für ’restricted mean time losts’ von konkurrierenden
Risiken in allgemeinen faktoriellen Designs. Bei den multiplen Tests beziehen wir die multivariate Grenz-
verteilung der Teststatistiken ein, um im Gegensatz zu einer einfachen Bonferroni-Korrektur eine höhere Güte
zu erzielen. Darüber hinaus wenden wir für alle Tests verschiedene Resampling-Verfahren an, wie Permutation
und Bootstrap-Ansätze, um die Performance der Tests bei kleinen Stichprobenumfängen zu verbessern. Um die
Gültigkeit der Resampling-Tests zu beweisen, entwickeln wir außerdem eine flexible bedingte Delta-Methode
für Resampling bei empirischen Prozessen.
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1 Introduction
1.1 Motivation
In survival analysis, the time of a specific event is the object of interest that should be analyzed. Classical
applications can be found in medicine, where the time until death or progress of a disease is measured in clinical
studies. However, survival analysis can also be applied in several other fields, where the time until an event of
interest is measured as, e.g., for the analysis of material fatigue. Also if the times until the event of interest do
not point to the duration of survival, the times are usually called survival times. When collecting survival data,
it can happen that the event of interest can not be observed for all individuals, for example due to drop-outs
of patients from a clinical study. As it still is an information that the event did not happen up to a so-called
(right-)censoring time, censored data points should not be ignored but can be used in survival analysis to obtain
asymptotically unbiased results.
However, real data is usually more complex and, thus, there is a need of more complex survival models to
handle this data. Let us consider, for example, the GABRIELA study [37, 38], where the occurrence of asthma,
hay fever and neurodermatitis was measured for 2234 children. First of all, we note that more than one event
time is recorded per individual as more than one disease is considered. If two survival times are considered for
one individual, we observe so-called paired survival times. Moreover, despite the time of the occurrence of
the diseases, also other factors as the sex and whether the children grew up on a farm were recorded to analyze
possible influence factors on the occurrence of the diseases. This is an example for a factorial design, where
factors are observed for the individuals. Possible questions of interest could be whether the factors, that are
sex and/or growing up on a farm in the example, have a significant effect on the survival time and whether
there are interaction effects between the factors. A second example is about the survival times of 8966 leukemia
patients with a bone and marrow transplantation [36]. Among others, the factors whether the gender of donor
and recipient match and whether a T-cell depletion took place were observed. Furthermore, the cause of death,
which contains relapse, graft-versus-host disease, and other causes, was recorded for all non-censored patients.
If multiple event types as, e.g., different causes of death, are considered, we obtain so-called competing risks
data.

1.2 Goals of the Thesis
Various methods from survival analysis for comparing different groups rely on the proportional hazards as-
sumption, e.g., the famous Cox proportional hazards model [17] and the logrank test [57]. However, verifying
this assumption can be challenging, and its fulfillment is not always guaranteed. Hence, alternatives that do
not require the proportional hazards assumption are of great interest. Furthermore, easy-to-interpret effect
estimands, which summarize treatment and interaction effects in factorial designs, are desired. While the
often-used average hazard ratio [13, 46] relies on the proportional hazards assumption, there are also alter-
natives as the concordance and Mann-Whitney effect [31, 32, 48], the median survival time [12, 15, 22], the
restricted mean survival time [68, 43, 24] and the restricted mean time lost [2, 55, 77, 78, 79] that do not rely
on this assumption. In this thesis, we focus on a version of the Mann-Whitney effect for paired survival data
in Section 3.1, the restricted mean survival time for paired survival data in Section 3.2, the restricted mean
survival time in factorial survival designs in Section 4 and the restricted mean time lost for factorial competing
risks data in Section 5.
The main goal of this thesis is the construction of hypothesis tests for estimands in complex survival models to
provide adequate statistical tools for, e.g., comparing estimands across several groups.
It should be noted that many real data examples contain ties in the data as times are measured in whole
days, months or years. Exemplarily, both above mentioned examples, i.e., the GABRIELA study as well as the
example about the leukemia patients, contain tied data. Hence, we aim to develop methodology that explicitly
allows for ties in the data. This implies that no continuity assumptions on the cumulative distribution
functions of the survival and censoring times should be required for the validity of the methods. Technically,
this can be realized by using empirical process theory [74] for the proofs.
Furthermore, it was shown in several works that the performance of an asymptotically valid test can be improved
dramatically for small samples if resampling methods as, e.g., permutation and bootstrap procedures, are
applied, see for example [24, 31, 32, 43, 63]. Thus, we aim to investigate and develop resampling tests to
improve the small sample performance.
Additionally, often more than one hypothesis is of interest. For example, thinking of a factorial design with
two factors A and B, hypotheses of interest could be whether (a) factor A has no effect, (b) factor B has no
effect and (c) whether there is no interaction effect between A and B. If those three hypotheses are tested
with a global null hypothesis, a rejection do not provide the information which of the three hypotheses (a)–(c)
is rejected. To infer multiple hypotheses simultaneously, powerful multiple testing procedures are desired.
General methodology for multiple testing procedures is developed in Section 2.3 and applied in Sections 4 and 5.
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2 Methodological Preliminaries
In this section, we state the methodological preliminaries needed in the following. Firstly, the notation used in
this thesis is introduced in Section 2.1. As one of the aims is to construct resampling-based tests, we develop
a conditional delta-method in Section 2.2 that has a wide range of applications and will be needed to show
consistency of the resampling test statistics in the following sections. Moreover, methodology for simultaneous
inference in a general setup, which will be used for the construction of multiple tests in Sections 4 and 5, is
developed in Section 2.3.

2.1 Notation
While most of the notation used in this thesis can be found in the list of symbols, we want to clarify the
remaining notation in this section.
Throughout this thesis, we use the convention 0{0 :“ 0. Furthermore, integrals of the form

ş

A
fptq dt are

understood as Lebesgue integrals. Additionally, integrals of the form
ş

A
f dF “

ş

A
fptq dF ptq are interpreted

as Lebesgue-Stieltjes integral [72] for a Lebesgue-measurable set A whenever F is of bounded variation and
right-continuous and f is Borel-measurable and bounded; or F is monotone and right-continuous and f is
Borel-measurable and non-negative. However, if F is a càdlàg function of unbounded variation but f is of
bounded variation and right-continuous, the integral

ş

ra,bs
f dF is defined via integration by parts as

fpbqF pbq ´ f´paqF´paq ´

ż

ra,bs

F´ df,

where here and throughout F´ denotes the left-continuous version of a càdlàg function. For stochastic processes
f, F , the integral is defined pathwisely. Throughout, we use the notation

şb

a
fptq dt to denote integration over

the interval A “ ra, bs. Whenever it makes a difference, we explicitly indicate which endpoints are included by
writing

ş

ra,bs
,
ş

ra,bq
,
ş

pa,bs
, or

ş

pa,bq
.

Moreover, we give a precise definition of conditional weak convergence in outer probability for potentially non-
measurable maps. The intuition in the following definition is that Mn will stand for additional randomness,
e.g., induced by random permutation or bootstrapping, whereas Xn will represent the original data.

Definition 2.1 (Conditional Weak Convergence in Outer Probability). Let Xn : Ω1 Ñ χ1n,Mn : Ω2 Ñ χ2n be
sequences of maps, where pΩ1 ˆ Ω2,A1 b A2, Q1 bQ2q denotes a product probability space and χ1n, χ2n denote
arbitrary sets for n P N. Furthermore, assume that yn : χ1n ˆ χ2n Ñ E is a function taking values in a metric
space E for all n P N and Y : Ω1 ˆ Ω2 Ñ E is a Borel measurable random variable. We say that ynpXn,Mnq

converges weakly conditionally on Xn in outer probability to Y, write ynpXn,Mnq ù Y conditionally on Xn

in outer probability as n Ñ 8 or ynpXn,Mnq
d˚

ÝÝÑ Y (conditionally on Xn) as n Ñ 8, if

sup
hPBL1pEq

ˇ

ˇ

ˇ
E2

”

h pynpXn,Mnqq
2˚
ı

´ E2 rhpYqs

ˇ

ˇ

ˇ

Q1
ÝÝÑ 0 and (2.1)

E2
“

h pynpXn,Mnqq
˚
‰

´ E2
“

h pynpXn,Mnqq˚

‰ Q1
ÝÝÑ 0 as n Ñ 8 for all h P BL1pEq. (2.2)

Here, E2 denotes the conditional expectation with respect to Ω2, BL1pEq denotes the set of all real functions on
E with a Lipschitz norm bounded by 1 and the super- and subscript asterisks denote the minimal measurable
majorants and maximal measurable minorants, respectively, with respect to Ω1 ˆ Ω2 jointly for ˚ and with
respect to Ω2 for 2˚, see [74] for details.

2.2 Conditional Delta-Method for Resampling Empirical Processes in Multiple
Sample Problems

The functional delta-method has a wide range of applications in statistics. Applications to functionals of
empirical processes yield various limit results for classical statistics. To improve the finite sample properties
of statistical inference procedures that are based on the limit results, resampling procedures such as random
permutation and bootstrap methods are a popular solution. In order to analyze the behavior of the functionals
of the resampling empirical processes, corresponding conditional functional delta-methods are desirable. While
conditional functional delta-methods for some special cases already exist, there is a lack of generalizations for
resampling procedures for empirical processes, such as the permutation and pooled bootstrap method. This gap
is addressed in this section. Thereby, a general multiple sample problem is considered. The flexible application
of the developed conditional delta-method is shown in various relevant examples.
Many applications of statistics involve comparisons of multiple samples. Section 3.8 of the monograph by [74]
is devoted to a related empirical process treatment. In addition to an analysis of differences of two independent
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empirical processes, they also explained how to analyze a random permutation and a pooled bootstrap version
of the empirical processes. Most statistical applications involve a functional that is applied to these empirical
processes. The statistical properties of a functional of one empirical process can be derived with the help of
the functional delta-method; cf. Section 3.10 in [74]. However, the application of random permutation or the
pooled bootstrap to a multiple sample problem requires a conditional variant of a delta-method with a varying
reference point.
Several extensions of the functional delta-method in different directions have already been investigated in the
literature. For example, [35, 71] studied the inference of functionals that are only directionally differentiable
and, recently, [61] proposed a generalization of Hadamard differentiability for applications of the functional
delta-method to the empirical copula processes. Under measurability assumptions, [5] developed a modified
functional delta-method for quasi-Hadamard differentiable functionals. Additionally, there exist conditional
delta-methods for the bootstrap (in one sample) in Section 3.10.3 of [74] and also extensions on (uniformly)
quasi-Hadamard differentiable functionals for the bootstrap under measurability assumptions [6, 7]. However,
as far as we know, a two- or multiple sample equivalent of such delta-methods for resampling empirical processes
is not available in the literature. In detail, most of the existing methods require some of the following:

(1) measurability assumptions,

(2) that the resampling counterpart converges weakly to the same limit as the empirical process, and

(3) a fixed centering element of the empirical process, particularly independent of the sample sizes.

However, these requirements are usually not satisfied for resampling methods for empirical processes in multiple
sample problems, such as random permutation and pooled bootstrapping.
Hence, we will develop a conditional delta-method in outer probability without assuming (1)–(3) for applica-
tions to the randomly permuted and pooled bootstrapped empirical processes in multiple independent sample
problems. To this end, we require the uniform Hadamard differentiability of the functionals applied to the
empirical processes. In several examples, we show its applicability and usefulness. This includes conditional
central limit theorems for the permutation and pooled bootstrap counterparts of the Wilcoxon statistic, the
Nelson-Aalen estimator and the Kaplan-Meier estimator.
The remainder of this section is organized as follows. In Section 2.2.1 the model of our multiple sample
problem is presented and the notation of this section is introduced. Moreover, existing convergence results of
the resampling empirical processes are restated and a limit theorem for the permutation empirical process of
multiple samples as an extension of Theorem 3.8.1 in [74] is developed in Section 2.2.2. A functional delta-method
for the empirical processes of the multiple sample problem is obtained in Section 2.2.3. Furthermore, uniform
Hadamard differentiability is defined and some properties are investigated in Section 2.2.4. Section 2.2.5 contains
the main results of this section that cover a flexible conditional delta-method. Particularly, this delta-method
is applicable for deriving the limit of functionals of permutation and pooled bootstrap empirical processes.
Exemplary functionals, applications, and limitations of our main result are given in Section A. This includes
the Wilcoxon functional, the product integral, and the inverse map.

2.2.1 Model and Notation

Let
Xi1, . . . ,Xini

„ Pi, i P t1, ..., ku

be k ě 2 independent samples of independent identically distributed (i.i.d.) random elements on a measurable
space pχ,Aq with distributions P1, ..., Pk on pχ,Aq and let Pi,ni

:“ 1
ni

řni

j“1 δXij
be the i-th empirical measure,

i P t1, . . . , ku, where δXij
denotes the Dirac measure centered on Xij .

The introduction of the resampling techniques for the empirical process requires the pooled data. To this end,
denote the pooled sample by

pZN1, . . . ,ZNN q :“ pX11, . . . ,X1n1 , . . . ,Xk1, . . . ,Xknk
q,

where N :“
řk
i“1 ni is the total sample size. Let R “ pR1, . . . , RN q be a vector that is uniformly distributed on

the set of all permutations of t1, 2, . . . , Nu and independent of the data ZN1, . . . ,ZNN . Also, let Ni :“
ři
ℓ“1 nℓ

be the total sample size of the first i samples, with N0 :“ 0. Then, the multiple sample permutation empirical
measures are defined as

Pπi,ni
:“ 1

ni

Ni
ÿ

j“Ni´1`1
δZNRj

, i P t1, . . . , ku.
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Next, HN :“ 1
N

řN
j“1 δZNj

“
řk
i“1

ni

N Pi,ni denotes the pooled empirical measure. The multiple sample bootstrap
empirical measures are defined as

P̂i,ni :“ 1
ni

Ni
ÿ

j“Ni´1`1
δẐNj

, i P t1, . . . , ku,

where ẐN1, ..., ẐNN „ HN is given the data ZN1, . . . ,ZNN an i.i.d. sample drawn from the pooled empirical
measure.
Throughout, we assume that ni

N Ñ κi P p0, 1q, as mini“1,...,k ni Ñ 8. Denote κ :“ pκ1, . . . , κkq and H :“
řk
i“1 κiPi. Furthermore, let F denote a class of measurable functions f : χ Ñ R that is Pi-Donsker for all

i P t1, ..., ku, i.e., ?
nipPi,ni ´ Piq ù Gi in the space ℓ8pFq of all bounded real-valued functions on F as

ni Ñ 8, where here and throughout this section Gi is a tight Pi-Brownian bridge for all i P t1, ..., ku and ù

denotes weak convergence in the sense of Section 1.3 in [74]. In the following, let G1, . . . ,Gk be independent.
An immediate consequence of the above is

?
NpHN ´Hnq “

k
ÿ

i“1

?
ni

?
N

?
nipPi,ni ´ Piq ù Gκ in ℓ8pFq (2.3)

as mini“1,...,k ni Ñ 8, where Hn :“
řk
i“1

ni

N Pi and Gκ :“
řk
i“1

?
κiGi. It should be noted that the centering

element Hn in the previous display generally depends on the sample sizes.

2.2.2 Weak Convergence Results of Resampling Empirical Processes

Now, we turn to the asymptotic behavior of the resampling empirical processes. We will see that the limits of
the permutation and pooled bootstrap empirical process generally do not coincide with the limit of the empirical
processes or the pooled empirical process.
Theorem 3.8.6 in [74] provides that ?

n1pP̂1,n1 ´HN q ù GH in ℓ8pFq conditionally on X11,X12, . . . ,X21,X22, . . .
in outer probability in the two-sample case k “ 2 under ||Pi||F :“ supfPF |Pif | ă 8, i P t1, 2u, with Pif :“
ş

f dPi. Here and throughout this section, convergence results are always meant as mini“1,...,k ni Ñ 8 if not
stated otherwise. In the following theorem, the joint convergence of the pooled bootstrap empirical processes
is studied.

Theorem 2.1. Let F satisfy ||Pi||F ă 8 for all i P t1, ..., ku. Then, we have
?
NpP̂1,n1 ´ HN , . . . , P̂k,nk

´ HN q ù pκ
´1{2
1 GH,1, . . . , κ´1{2

k GH,kq in pℓ8pFqqk

conditionally on the data

X11,X12, . . . ,X21,X22, . . . , . . . ,Xk1,Xk2, . . . (2.4)

in outer probability, where GH,1, ...,GH,k denote independent tight H-Brownian bridges on ℓ8pFq.

For the permutation empirical measure, Theorem 3.8.1 in [74] yields under ||Pi||F :“ supfPF |Pif | ă 8, i P t1, 2u,
that ?

n1pPπ1,n1
´ HN q ù

?
1 ´ κ1GH in ℓ8pFq conditionally on (2.4) in outer probability, where GH denotes

a tight H-Brownian bridge on ℓ8pFq. In Lemma S.6 in the supplement of [23], the almost sure version of this
theorem is generalized for multiple samples. Here, we state the corresponding extension in probability which is
sufficient for most statistical applications.

Theorem 2.2. Let F satisfy ||Pi||F ă 8 for all i P t1, ..., ku. Then, we have
?
NpPπ1,n1

´ HN , . . . ,Pπk,nk
´ HN q ù GπH in ℓ8pFq

conditionally on (2.4) in outer probability, where GπH denotes a tight zero-mean Gaussian process on pℓ8pFqqk

with covariance function Σπ
H : Fkˆk Ñ Rkˆk. The component functions of Σπ

H at pf, gq “ ppf1, . . . , fkq, pg1, . . . , gkqq

are given by
pΣπ

Hpf, gqqij :“
`

κ´1
i 1ti “ ju ´ 1

˘

H ppfi ´Hfiqpgj ´Hgjqq

for all i, j P t1, . . . , ku.
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2.2.3 Functional Delta-Method in the Multiple Sample Problem

In statistical applications, usually a functional is applied to the empirical processes. Delta-methods can be used
to analyze the asymptotic behavior of the functionals of empirical processes. A delta-method for the empirical
processes of the multiple sample problem can be easily proved by applying Theorem 3.10.4 of [74], but we wished
to make it more explicit, tailored to the problem at hand.

Theorem 2.3. Let E be a metrizable topological vector space and ϕ : pℓ8pFqqk Ñ E such that
?
NpϕpP `N´1{2hnq ´ ϕpPqq Ñ ϕ1

Pphq

as mini“1,...,k ni Ñ 8 holds for every converging sequence hn Ñ h P pℓ8pFqqk with n :“ pn1, . . . , nkq, P :“
pP1, . . . , Pkq, P `N´1{2hn P pℓ8pFqqk for all n and for an arbitrary map ϕ1

P : pℓ8pFqqk Ñ E. Then, we have
?
NpϕpP1,n1 , . . . ,Pk,nk

q ´ ϕpPqq ù ϕ1
Ppκ

´1{2
1 G1, . . . , κ

´1{2
k Gkq.

If ϕ1
P is linear and continuous, the sequence

?
NpϕpP1,n1 , . . . ,Pk,nk

q ´ ϕpPqq ´ ϕ1
Pp

?
NpP1,n1 ´ P1, . . . ,Pk,nk

´ Pkqq

converges to zero in outer probability.

The condition on ϕ in the previous theorem is satisfied if ϕ is Hadamard differentiable at P. To define Hadamard
differentiability of a functional ϕ : Dϕ Ă D Ñ E, let D and E be metrizable topological vector spaces.

Definition 2.2 (Hadamard differentiability). The functional ϕ is called Hadamard differentiable at θ P Dϕ
tangentially to a subspace D0 Ă D if

t´1
n pϕpθ ` tnhnq ´ ϕpθqq Ñ ϕ1

θphq

holds for all tn Ñ 0 and every converging sequence hn Ñ h P D0 with θ ` tnhn P Dϕ for all n and for a
continuous, linear map ϕ1

θ : D0 Ñ E.

In order to obtain a delta-method for the permutation and pooled bootstrap empirical processes, we need to
introduce the uniform Hadamard differentiability in the following paragraph.

2.2.4 Uniform Hadamard differentiability

We aim to develop functional delta-methods that are suitable for applications to pPπ1,n1
, . . . ,Pπk,nk

q and to
pP̂1,n1 , . . . , P̂k,nk

q, conditionally on (2.4). To this end, we will consider again a functional ϕ : Dϕ Ă D Ñ E,
where D and E are metrizable topological vector spaces.

Definition 2.3 (Uniform Hadamard differentiability). The functional ϕ is called uniformly Hadamard differ-
entiable at θ P Dϕ tangentially to a subspace D0 Ă D if

t´1
n pϕpθn ` tnhnq ´ ϕpθnqq Ñ ϕ1

θphq

holds for all tn Ñ 0 and every converging sequence hn Ñ h P D0 and θn Ñ θ with θn, θn ` tnhn P Dϕ for all n
and for a continuous, linear map ϕ1

θ : D0 Ñ E.

If the subspace D0 is not specified, we assume D0 “ D in the following. For example, D can be chosen as product
space pℓ8pFqqk equipped with the max-sup-norm for applications to the empirical measures.
In the following, we investigate different properties of uniform Hadamard differentiable functionals. The follow-
ing remarks address the classical Hadamard derivative as a special case, the more restrictive Fréchet differen-
tiability, and the aggregation of multiple functionals.

Remark 2.1. Let ϕ : Dϕ Ă D Ñ E be Hadamard differentiable at θ P Dϕ tangentially to a subspace D0 Ă D
with Hadamard derivative ϕ1

θ : D0 Ñ E. If ϕ is uniformly Hadamard differentiable at θ P Dϕ tangentially to D0,
then the (uniform) Hadamard derivative is ϕ1

θ, which can easily be seen by setting θn “ θ in the definition.

Remark 2.2 (Uniform Fréchet differentiability and other sufficient criteria for uniform Hadamard differentia-
bility). Let pD, ||.||Dq and pE, ||.||Eq be normed spaces. We call a functional ϕ uniformly Fréchet differentiable at
θ P Dϕ with continuous and linear derivative ϕ1

θ if

}ϕpθ ` hq ´ ϕpθ ` kq ´ ϕ1
θph´ kq}E “ op}h´ k}Dq, as }h}D, }k}D Ñ 0.
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To see that the uniform Fréchet differentiability implies the uniform Hadamard differentiability of ϕ, insert
h “ θn` tnhn´θ, k “ θn´θ. According to a variant of Problem 3.10.1 in [74], uniform Fréchet differentiability
at θ is implied by the Fréchet differentiability on a neighborhood of θ and the uniform norm-continuity of
ϑ ÞÑ ϕ1

ϑ at θ if there exists a convex neighborhood of θ as a subset of Dϕ. Other criteria for the uniform
Hadamard differentiability of ϕ at θ are the convexity of Dϕ, the Hadamard differentiability on a neighborhood
of θ, limηÑθ ϕ

1
ηphq “ ϕ1

θphq for every h P lin Dϕ, and limηÑθ ϕ
1
ηphq “ ϕ1

θphq uniformly in h P K for every totally
bounded subset K Ă Dϕ, where η P Dϕ; cf. (3.10.6) in [74]. Here, lin Dϕ denotes the linear span of Dϕ.

Remark 2.3. If ϕ1 : Dϕ Ñ E1, . . . , ϕk : Dϕ Ñ Ek are uniformly Hadamard differentiable at θ P Dϕ Ă D
tangentially to D0 Ă D with Hadamard derivatives ϕ1

1,θ : D0 Ñ E1, . . . , ϕ
1
k,θ : D0 Ñ Ek, it follows directly

from the definition of uniform Hadamard differentiability that ϕ :“ pϕ1, . . . , ϕkq : Dϕ Ñ E1 ˆ ¨ ¨ ¨ ˆ Ek is
uniformly Hadamard differentiable at θ tangentially to D0 with Hadamard derivative ϕ1

θ “ pϕ1
1,θ, . . . , ϕ

1
k,θq :

D0 Ñ E1 ˆ ¨ ¨ ¨ ˆ Ek. Here, the product space E1 ˆ ¨ ¨ ¨ ˆ Ek is equipped with the product topology.

Finally, the following theorem provides a chain rule for uniformly Hadamard differentiable functionals. It should
be noted that [7] proved a chain rule for uniformly quasi-Hadamard differentiable functionals; see Lemma A.1
therein. That chain rule implies the chain rule statement below. For the sake of completeness, however, we
shall present a version of the chain rule which is relevant for the remainder of this section.

Theorem 2.4 (Chain rule). Let L,D,E be metrizable topological vector spaces. If ψ : Lψ Ă L Ñ Dϕ Ă D is
uniformly Hadamard differentiable at θ P Lψ tangentially to L0 Ă L with Hadamard derivative ψ1

θ : L0 Ñ D
and ϕ : Dϕ Ñ E is uniformly Hadamard differentiable at ψpθq tangentially to ψ1pL0q with Hadamard derivative
ϕ1
ψpθq

: ψ1pL0q Ñ E, then ϕ ˝ ψ : Lψ Ñ E is uniformly Hadamard differentiable at θ tangentially to L0 with
derivative ϕ1

ψpθq
˝ ψ1

θ.

2.2.5 Main Results

In this section, we aim to prove a conditional delta-method, e.g., for applications to the permutation and pooled
bootstrap empirical processes. For proving the main theorem, we first need the following auxiliary lemma to
obtain joint unconditional convergence of two maps. The result is similar to the results in Sections 2 and 3 in
[14] but allows arbitrary maps in general metric spaces.

Lemma 2.1. Let D,E be metric spaces, Xn : Ω1 Ñ χ1n,Mn : Ω2 Ñ χ2n be sequences of functions, where
pΩ1 ˆ Ω2,A1 b A2, Q1 bQ2q denotes a product probability space, and hn : χ1n Ñ D be such that hnpXnq ù H
as n Ñ 8 for some separable Borel measurable random element H : Ω1 Ñ D. Moreover, let yn : χ1n ˆχ2n Ñ E
with ynpXn,Mnq ù Y conditionally on Xn in outer probability as n Ñ 8 for some separable Borel measurable
random element Y : Ω2 Ñ E. Then, it follows that phnpXnq,ynpXn,Mnqq ù pH,Yq unconditionally as
n Ñ 8 for independent H,Y.

The following theorem is an extension of Theorem 3.10.11 in [74], where Pn, pPn may be arbitrary maps instead of
random elements, different limits G and pG are allowed for the empirical process and its resampling counterpart,
and the centering element, say Pn, may depend on n. This theorem is in particular applicable for pPn “
pPnpXn,Mnq being the permutation empirical measure, i.e., Pπn :“ pPπ1,n1

, . . . ,Pπk,nk
q, or the pooled bootstrap

empirical measure, i.e., P̂n :“ pP̂1,n1 , . . . , P̂k,nk
q. Here, Xn denotes the data and Mn denotes the randomness

of the resampling procedures. However, we do not restrict to the cases of permutation and pooled bootstrap
empirical processes in the following theorem but allow more general processes pPn.

Theorem 2.5 (Conditional Delta-Method). Let pD, ||.||Dq, pE, ||.||Eq be normed spaces, Xn : Ω1 Ñ χ1n,Mn :
Ω2 Ñ χ2n be sequences of functions, where pΩ1 ˆ Ω2,A1 b A2, Q1 b Q2q denotes a product probability space.
Furthermore, let ϕ : Dϕ Ă D Ñ E be uniformly Hadamard differentiable at P P Dϕ tangentially to a subspace
D0 Ă D. Moreover, let rn be a sequence of constants tending to infinity, Pn be a sequence in Dϕ with Pn Ñ P
and Pn “ PnpXnq : Ω1 Ñ Dϕ a map with rnpPn ´ Pnq ù G as n Ñ 8 for some separable Borel measurable
random element G : Ω1 Ñ D0. Additionally, let pPn “ pPnpXn,Mnq : Ω1 ˆ Ω2 Ñ Dϕ be maps with

rnppPn ´ Pnq ù pG (2.5)

conditionally on Xn in outer probability as n Ñ 8 for some separable Borel measurable random element pG :
Ω2 Ñ D0. Then, we have rn

´

ϕppPnq ´ ϕpPnq

¯

ù ϕ1
P ppGq conditionally on Xn in outer probability as n Ñ 8.

The following assertions will be stated in terms of the permutation and pooled bootstrap empirical measures.

Corollary 2.1 (Conditional Delta-Method for the Permutation Empirical Process). Let F satisfy ||Pi||F ă 8

for all i P t1, ..., ku and pE, ||.||Eq be a normed space, ϕ : pℓ8pFqqk Ñ E be uniformly Hadamard differentiable at
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pH, . . . ,Hq P pℓ8pFqqk tangentially to a subspace D0 Ă pℓ8pFqqm with GπH taking values in D0 almost surely,
where again H “

řk
i“1 κiPi. Then, we have

?
N

`

ϕpPπ1,n1
, . . . ,Pπk,nk

q ´ ϕpHN , . . . ,HN q
˘

ù ϕ1
pH,...,HqpGπHq

conditionally on (2.4) in outer probability.

This is an application of Theorem 2.5 together with (2.3) and the conditional convergence of the permutation
empirical process, see Theorem 2.2. The very same holds for the pooled bootstrap.

Corollary 2.2 (Conditional Delta-Method for the Pooled Bootstrap Empirical Process). Let F satisfy ||Pi||F ă

8 for all i P t1, ..., ku and pE, ||.||Eq be a normed space, ϕ : pℓ8pFqqk Ñ E be uniformly Hadamard differentiable
at pH, . . . ,Hq P pℓ8pFqqk tangentially to a subspace D0 Ă pℓ8pFqqm with pλ

´1{2
1 GH,1, . . . , λ´1{2

m GH,mq taking
values in D0 almost surely. Then, we have

?
N

´

ϕpP̂1,n1 , . . . , P̂k,nk
q ´ ϕpHN , . . . ,HN q

¯

ù ϕ1
pH,...,Hqpκ

´1{2
1 GH,1, . . . , κ´1{2

k GH,kq

conditionally on (2.4) in outer probability.

Note that the functional of the permutation and pooled bootstrap empirical processes in Corollaries 2.1 and 2.2
cannot mimic the same limit distribution as the functional of the original empirical process in Theorem 2.3; this
is similar as for the randomization empirical process in [27]. Hence, the corollaries are not directly applicable for
inference methodologies on ϕpPq due to altered (co-)variance structures. However, a studentization can yield
the consistency of the permutation and pooled bootstrap techniques with asymptotically pivotal distributions
in many cases; cf. [27] for a similar approach.

2.2.6 Proofs of Section 2.2

Proof of Theorem 2.1 As in the proof of Theorem 2.9.4 in [74], it suffices to show conditional weak conver-
gence almost surely of the marginals and

lim sup
nÑ8

E˚r||
?
NpP̂i,ni

´ HN q||Fδ
s
δŒ0

ÝÝÝÑ 0 (2.6)

for all i P t1, ..., ku, where Fδ :“ tf ´ g | f, g P F , Hpf ´ gq2 ă δ2u.
As for Theorem 3.8.6 of [74], the Lindeberg-Feller theorem yields the conditional weak convergence almost
surely of the marginals of

?
NpP̂i,ni ´ HN q for all i P t1, ..., ku. Then, the conditional independence provides

the conditional weak convergence almost surely of the marginals of
?
NpP̂1,n1 ´ HN , . . . , P̂k,nk

´ HN q.
For (2.6), we can proceed as in the proof of Theorem 3.8.1 in [74]. In contrast to the equicontinuity condition
considered there, we look at the outer expectation in terms of the joint probability space in (2.6). Therefore,
note that Lemmas 2.3.1, 2.3.11, 3.6.5 and, thus, also Lemma 3.7.6 in [74] all hold for outer expectations in terms
of the joint probability space.

Proof of Theorem 2.2 Again, it suffices to show conditional weak convergence almost surely of the marginals
and

lim sup
nÑ8

E˚r||
?
NpPπi,ni

´ HN q||Fδ
s
δŒ0

ÝÝÝÑ 0 (2.7)

for all i P t1, ..., ku.
For the conditional weak convergence almost surely of the marginals, we proceed similar to the proof of (S.18)
in the supplement of [23] with a Cramér-Wold argument, where P “ H and P “ HN . Let gi “ cifi with
ci P r´1, 1s and fi P F for all i P t1, . . . , ku. Then,

1
ni

maxtgrpXijq
2 : j P t1, . . . , niuu Ñ 0

holds almost surely for all r, i P t1, . . . , ku, which can be shown with the three steps (i)–(iii) in the beginning of
the proof of Lemma S.6 in the supplement of [23] by using gr instead of the envelope function F̃ . In detail, the
three steps are the following:

(i) dividing gr into gr,1,M :“ gr1t|gr| ď Mu and gr,2,M :“ gr1t|gr| ą Mu for M P N,

(ii) using the inequalities pa` bq2 ď 2a2 ` 2b2 and

max
j“1,...,ni

gr,2,M pXijq
2 ď

ni
ÿ

j“1
gr,2,M pXijq

2,
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(iii) letting first n Ñ 8 and finally M Ñ 8.

In the last step (iii) we need Pig
2
r ă 8 for an application of the dominated convergence theorem as M Ñ 8,

which holds due to the assumption that F is Pi-Donsker. Moreover, we have HNgr Ñ Hgr almost surely for
all r P t1, . . . , ku by the strong law of large numbers since F is Pi-Donsker for all i P t1, . . . , ku, and, thus,
H-Donsker. Condition (S.19) in the supplement of [23] follows almost surely by the same arguments as given
there. For proving condition (S.20) almost surely, it remains to show that HN pgigrq Ñ Hpgigrq almost surely for
all i, r P t1, . . . , ku by the last display in the proof of Lemma S.6 in the supplement of [23]. Since F is Pi-Donsker
for every i P t1, . . . , ku, Hpgigrq exists and, thus, the almost sure convergence follows by the strong law of large
numbers. Hence, the conditional weak convergence almost surely follows from (S.18) in the supplement of [23]
given (2.4) almost surely.
Now, we turn to condition (2.7). First, we need a version of Hoeffding’s inequality for outer expectations; cf.
Proposition A.1.10 in [74] for a similar statement for expectations. For i P t1, ..., ku, let pM1, ...,MN q denote
a multinomially distributed random variable with ni trials and probabilities pN´1, ..., N´1q independent of the
data (2.4) and of the random variable R. Moreover, define

πpjq :“ mintargmaxj1Pt1,...,Nuztπp1q,...,πpj´1quMj1 u

for all j P t1, ..., Nu and π1 a random permutation of t1, ..., niu independent of pM1, ...,MN q, (2.4) and R. Note
that π is a permutation of t1, ..., Nu with Mπpjq “ 0 for all j ą ni. Thus, one can show

Ni
ÿ

j1“Ni´1`1
δẐNj1

d
“

N
ÿ

j“1
MjδZNRj

“

N
ÿ

j“1
MπpjqδZNRπpjq

“

ni
ÿ

j“1
MπpjqδZNRπpjq

“

ni
ÿ

j“1
Mπpπ1pjqqδZNR

πpπ1pjqq

d
“

ni
ÿ

j“1
Mπpπ1pjqqδZNRNi´1`j

,

where ẐNj , j P tNi´1`1, ..., Niu, has the same distribution as i.i.d. observations drawn from the pooled empirical
measure. Furthermore, note that

EMEπ1

“

Mπpπ1pjqq

‰

“ EM

«

1
ni

ni
ÿ

j1“1
Mπpj1q

ff

“
1
ni

EM

«

N
ÿ

j1“1
Mj1

ff

“ 1

for all j P t1, ..., niu with EM ,Eπ1 denoting the expectation regarding pM1, ...,MN q, π1, respectively. Hence, we
obtain

E˚r||
?
NpPπi,ni

´ HN q||Fδ
s “ E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
N

¨

˝

1
ni

Ni
ÿ

j“Ni´1`1
δZNRj

´ HN

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

Fδ

fi

fl

“ E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
N

˜

1
ni

ni
ÿ

j“1
EMEπ1

“

Mπpπ1pjqq

‰

δZNRNi´1`j
´ HN

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

Fδ

fi

fl

ď EEMEπ1

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
N

˜

1
ni

ni
ÿ

j“1
Mπpπ1pjqqδZNRNi´1`j

´ HN

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

Fδ

fi

fl

“ E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
N

¨

˝

1
ni

Ni
ÿ

j1“Ni´1`1
δẐNj1

´ HN

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

Fδ

fi

fl

“ E˚r||
?
NpP̂i,ni

´ HN q||Fδ
s

with E denoting the joint expectation. Now, (2.6) implies (2.7).

Proof of Theorem 2.4 Let t Ñ 0, ht Ñ h P L0, θt Ñ θ with θt, θt ` tht P Lψ. Write

pϕ ˝ ψqpθt ` thtq ´ pϕ ˝ ψqpθtq “ ϕpψpθtq ` tktq ´ ϕpψpθtqq,

where kt “ pψpθt ` thtq ´ ψpθtqq{t. Now, the uniform Hadamard differentiability of ψ yields that kt Ñ ψ1
θphq.

Next, the uniform Hadamard differentiabiliy implies the theorem.

9



Proof of Lemma 2.1 We aim to apply Corollary 1.4.5 in [74]. Hence, it remains to show

E˚fphnpXnqqgpynpXn,Mnqq Ñ EfpHqEgpYq

for all bounded, nonnegative Lipschitz functions f : D Ñ R, g : E Ñ R. We have

|E˚fphnpXnqqgpynpXn,Mnqq ´ EfpHqEgpYq|

ď
ˇ

ˇE1E2 pfphnpXnqqgpynpXn,Mnqqq
˚

´ E1 pfphnpXnqq˚E2gpynpXn,Mnqq˚q
ˇ

ˇ

` |E1 pfphnpXnqq˚E2gpynpXn,Mnqq˚q ´ E1fpHqE2gpYq| ,

where E1,E2 denote the expectations regarding pΩ1,A1, Q1q and pΩ2,A2, Q2q, respectively. By Lemma 1.2.2 (v)
in [74] and the nonnegativity of f and g, it holds that

pfphnpXnqqgpynpXn,Mnqqq
˚

ď fphnpXnqq˚gpynpXn,Mnqq˚

almost surely and, hence, it follows that

E2 pfphnpXnqqgpynpXn,Mnqqq
˚

ď fphnpXnqq˚E2gpynpXn,Mnqq˚

almost surely. Thus, we get

|E˚fphnpXnqqgpynpXn,Mnqq ´ EfpHqEgpYq|

ď E1
`

pfphnpXnqq˚E2gpynpXn,Mnqq˚q ´ E2 pfphnpXnqqgpynpXn,Mnqqq
˚
˘

` |E1 pfphnpXnqq˚ pE2gpynpXn,Mnqq˚ ´ E2gpYqqq|

` |E1 ppfphnpXnqq˚ ´ fpHqq E2gpYqq|

ď E1 ppfphnpXnqq˚E2gpynpXn,Mnqq˚q ´ fphnpXnqq˚E2gpynpXn,Mnqq˚q (2.8)
` ||f ||8E1

`

E2gpynpXn,Mnqq˚ ´ E2gpynpXn,Mnqq2˚ `
ˇ

ˇE2gpynpXn,Mnqq2˚ ´ E2gpYq
ˇ

ˇ

˘

(2.9)
` ||g||8 |E1 pfphnpXnqq˚ ´ fpHqq| . (2.10)

By gpynpXn,Mnqq˚ ď gpynpXn,Mnqq2˚ ď gpynpXn,Mnqq˚, (2.1) and (2.2) imply

E2gpynpXn,Mnqq˚ ´ E2gpynpXn,Mnqq2˚ `
ˇ

ˇE2gpynpXn,Mnqq2˚ ´ E2gpYq
ˇ

ˇ Ñ 0

in outer probability. Hence, the dominated convergence theorem provides that (2.9) converges to zero. Due to
hnpXnq ù H, (2.10) converges to zero. Hence, (2.8) remains to consider. First note that (2.8) can be written
as

E1 ppfphnpXnqq˚E2gpynpXn,Mnqq˚q ´ fphnpXnqq˚E2gpynpXn,Mnqq˚q

“ E1 pfphnpXnqq˚ pE2gpynpXn,Mnqq˚ ´ E2gpynpXn,Mnqq˚qq

` E1 ppfphnpXnqq˚ ´ fphnpXnqq˚q E2gpynpXn,Mnqq˚q

ď ||f ||8E1 pE2gpynpXn,Mnqq˚ ´ E2gpynpXn,Mnqq˚q

` ||g||8E1 pfphnpXnqq˚ ´ fphnpXnqq˚q .

By (2.2) and the dominated convergence theorem, the first summand converges to zero. The second summand
converges to zero since hnpXnq is asymptotically measurable. Consequently, E˚fphnpXnqqgpynpXn,Mnqq Ñ

EfpHqEgpYq follows.

Proof of Theorem 2.5 We proceed analogously as in the proof of Theorem 3.10.11 in [74] by applying their
Theorem 3.10.5 (rather than Theorem 3.10.4). First note that we may assume without loss of generality that
the derivative ϕ1

P : D Ñ E is not only defined and continuous but also linear on the whole space D by their
Problem 3.10.18. For all h P BL1pEq, we have h ˝ ϕ1

P P BLmaxt1,||ϕ1
P

||upDq where ||ϕ1
P || is the operator norm of

ϕ1
P . By (2.5), it follows that

sup
hPBL1pEq

ˇ

ˇ

ˇ

ˇ

E2h
´

ϕ1
P

´

rnppPn ´ Pnq

¯¯2˚

´ Ehpϕ1
P ppGqq

ˇ

ˇ

ˇ

ˇ

Ñ 0

in outer probability. Let ε ą 0 be arbitrary. Since |hpAq2˚ ´ hpBq2˚| ď |hpAq ´ hpBq|˚ ď ||A ´ B||˚E holds for
all h P BL1pEq, A,B P E, it follows that

sup
hPBL1pEq

ˇ

ˇ

ˇ

ˇ

E2h
´

rn

´

ϕppPnq ´ ϕpPnq

¯¯2˚

´ E2h
´

ϕ1
P

´

rnppPn ´ Pnq

¯¯2˚
ˇ

ˇ

ˇ

ˇ

ď ε` 2Q2

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
rn

´

ϕppPnq ´ ϕpPnq

¯

´ ϕ1
P

´

rnppPn ´ Pnq

¯ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

E
ą ε

˙

.
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Theorem 3.10.5 in [74] implies that
ˇ

ˇ

ˇ

ˇrn pϕpPnq ´ ϕpPnqq ´ ϕ1
P prnpPn ´ Pnqq

ˇ

ˇ

ˇ

ˇ

˚

E “ oQ1 p1q.

By Lemma 2.1 and the continuous mapping theorem, we have

rnppPn ´ Pnq “ rnppPn ´ Pnq ` rnpPn ´ Pnq ù pG ` G

unconditionally for independent pG,G. Hence, Theorem 3.10.5 in [74] implies that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
rn

´

ϕppPnq ´ ϕpPnq

¯

´ ϕ1
P

´

rnppPn ´ Pnq

¯
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

E
“ oQ1bQ2 p1q

and, by the triangle inequality, that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
rn

´

ϕppPnq ´ ϕpPnq

¯

´ ϕ1
P

´

rnppPn ´ Pnq

¯
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

E
“ oQ1bQ2 p1q.

Markov’s inequality yields that

Q1

ˆ

Q2

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
rn

´

ϕppPnq ´ ϕpPnq

¯

´ ϕ1
P

´

rnppPn ´ Pnq

¯ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

E
ą ε

˙

ą δ

˙

ď E1Q2

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
rn

´

ϕppPnq ´ ϕpPnq

¯

´ ϕ1
P

´

rnppPn ´ Pnq

¯
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

E
ą ε

˙

{δ

“ pQ1 bQ2q

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
rn

´

ϕppPnq ´ ϕpPnq

¯

´ ϕ1
P

´

rnppPn ´ Pnq

¯
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚

E
ą ε

˙

{δ

Ñ 0

for all δ ą 0. Thus, it follows

sup
hPBL1pEq

ˇ

ˇ

ˇ

ˇ

E2h
´

rn

´

ϕppPnq ´ ϕpPnq

¯¯2˚

´ E2h
´

ϕ1
P

´

rnppPn ´ Pnq

¯¯2˚
ˇ

ˇ

ˇ

ˇ

Ñ 0

in outer probability. Analogously, we can conclude

sup
hPBL1pEq

ˇ

ˇ

ˇ

ˇ

E2h
´

rn

´

ϕppPnq ´ ϕpPnq

¯¯˚

´ E2h
´

ϕ1
P

´

rnppPn ´ Pnq

¯¯˚
ˇ

ˇ

ˇ

ˇ

Ñ 0 (2.11)

in outer probability.
For the asymptotic measurability in outer probability, write

E2h
´

rn

´

ϕppPnq ´ ϕpPnq

¯¯˚

´ E2h
´

rn

´

ϕppPnq ´ ϕpPnq

¯¯

˚

ď

ˇ

ˇ

ˇ

ˇ

E2h
´

rn

´

ϕppPnq ´ ϕpPnq

¯¯˚

´ E2h
´

ϕ1
P

´

rnppPn ´ Pnq

¯¯˚
ˇ

ˇ

ˇ

ˇ

` E2h
´

ϕ1
P

´

rnppPn ´ Pnq

¯¯˚

´ E2h
´

ϕ1
P

´

rnppPn ´ Pnq

¯¯

˚

`

ˇ

ˇ

ˇ

ˇ

E2

´

´h
´

rn

´

ϕppPnq ´ ϕpPnq

¯¯¯˚

´ E2

´

´h
´

ϕ1
P

´

rnppPn ´ Pnq

¯¯¯˚
ˇ

ˇ

ˇ

ˇ

.

Then, the asymptotic measurability (2.2) in outer probability follows from (2.5) and (2.11).

2.3 General Methodology for Simultaneous Inference
Statistical hypothesis tests offer a technique to make decisions about a null hypothesis. Tests are required
to control the type-I error rate, that is the probability that the null hypothesis is rejected although the null
hypothesis is true. However, often more than one hypothesis is of interest in practice and, hence, more than one
test is needed to infer the hypotheses simultaneously. By just controlling the type-I error rate for each test, the
probability that at least one true null hypothesis is rejected increases generally. Hence, we aim to control the
family-wise error rate (FWER), which is the probability to reject at least one true null hypothesis, in the strong
sense for multiple testing problems in the following thesis. Here, in the strong sense means that the FWER is
controlled for any set of true and false null hypotheses.
Therefore, we derive the general methodology that is used in Sections 4 and 5 to infer multiple hypotheses
simultaneously in this section. Firstly, we present the multiple testing setup and state a general theorem
in Section 2.3.1 which provides a multiple testing procedure that controls the FWER in the strong sense
asymptotically. Moreover, we show that the critical values for the tests can be determined by consistent
resampling schemes in Section 2.3.2.
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Figure 1: Exemplary illustration of the max-type testing procedure (dotted lines) for two test statistics with
different distributions compared to the Bonferroni-correction (solid lines).

2.3.1 General Multiple Testing Setup

In this section, we are considering a general multiple testing problem with L P N local null hypotheses H0,ℓ and
global null hypothesis H0 :“

ŞL
ℓ“1 H0,ℓ. Suppose that sequences of maps Wℓ,n : Ω Ñ R, ℓ P t1, . . . , Lu, on a

probability space pΩ,A, P q are present, which we will call test statistics in the following. Despite the common
definition of test statistics, we do not assume measurability of Wℓ,n, ℓ P t1, . . . , Lu, in the following. In the
applications of this thesis, the measurability of the test statistics will usually be given. However, nonmeasurable
test statistics might be of interest, for example, a Kolmogorov-Smirnov statistic of empirical processes over an
uncountable function class, see Section 3.8 in [74]. We assume that large values of the ℓth test statistic Wℓ,n

indicate a rejection of the ℓth null hypothesis H0,ℓ for every ℓ P t1, . . . , Lu. In the following, we will discuss how
large can be quantified, i.e., how the critical values for the local test decisions can be constructed.
A naive approach for compatible local and global test decisions would be to calculate a (max-type) critical
value for the maximum statistic maxℓPt1,...,Lu Wℓ,n. The ℓth null hypothesis H0,ℓ is rejected whenever the
corresponding local test statistic Wℓ,n exceeds the critical value. Suppose that

pWℓ,nqℓPT
d

ÝÑ pWℓqℓPT as n Ñ 8 under
č

ℓPT
H0,ℓ for all index sets T Ă t1, . . . , Lu, (2.12)

where Wℓ, ℓ P t1, ..., Lu, denote random variables. In the special case that the distributions of W1, . . . ,WL

are equal, every local hypothesis has asymptotically the same probability to be wrongly rejected. However, if
the distributions are not equal, the local hypotheses may have different asymptotic probabilities to be wrongly
detected by considering the maximum statistic and, thus, are not treated in the same way, cf. Figure 1. For a
fair comparison, we therefore adopt the idea of balanced simultaneous confidence sets as in [4].
In detail, we aim to find individual critical values q1,n, ..., qL,n for the local hypotheses such that

lim sup
nÑ8

P˚ pDℓ P T : Wℓ,n ą qℓ,nq ď α under
č

ℓPT
H0,ℓ for all index sets T Ă t1, . . . , Lu (2.13)

for a global level α P p0, 1q and

lim sup
nÑ8

P˚ pWℓ,n ą qℓ,nq “: β under H0,ℓ for all ℓ P t1, . . . , Lu, (2.14)

where β P p0, 1q does not depend on ℓ. Here and throughout, P˚ denotes the outer probability to avoid
measurability issues. Hence, we do not restrict to the case that Wℓ,n and qℓ,n are measurable. The first condition
(2.13) ensures the asymptotic FWER control in the strong sense. The second condition (2.14) guarantees that
all local hypotheses are treated in the same way and is referred to as asymptotically balanced multiple tests, cf.
[4]. If the joint distribution of pWℓqℓPt1,...,Lu is known with joint cumulative distribution function F : RL Ñ r0, 1s

and continuous marginal cumulative distribution functions Fℓ : R Ñ r0, 1s, ℓ P t1, ..., Lu, the critical values can
be determined as qℓ,n “ F´1

ℓ´ p1 ´ βq and β P p0, 1q is chosen such that 1 ´ FpF´1
1´ p1 ´ βq, ...,F´1

L´p1 ´ βqq ď α

holds. Here and throughout, F´1
´ ppq :“ suptx P R | F´pxq ď pu denotes the largest p-quantile and F´ denotes

the left-continuous version of a monotone function F : R Ñ r0, 1s for p P R. Note that even for left-continuous

12
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Figure 2: Exemplary illustration of the balanced multiple testing procedure (dotted lines) for two test statistics
with different distributions compared to the Bonferroni-correction (solid lines). Integrating over the rejection
regions for the first (right part) and second (upper part) hypothesis yields the same value β.

monotone functions F : R Ñ r0, 1s, we have F´1
´ ppq ‰ F´1ppq in general for p P R, which is why we explicitly

write F´1
´ ppq even for left-continuous functions. Furthermore, it should be noted that β can always be chosen

as the Bonferroni-corrected local level α{L, cf. [33]. However, larger values for β may increase the power of the
multiple testing procedure. An exemplary illustration of the balanced multiple testing procedure compared to
the Bonferroni-correction can be found in Figure 2.
In many applications, the joint distribution of pWℓqℓPt1,...,Lu depends on unknown parameters or is approx-
imated by a Monte-Carlo method due to the complexity of the distribution and quantile functions, see for
example Sections 4 and 5. Hence, the joint cumulative distribution function F is usually approximated by
(random) sequences pFnqnPN of cumulative distribution functions in practice. Moreover, resampling procedures
are often used to approximate the limit distribution to improve the small sample performance. In this case,
even the marginal cumulative distribution functions Fℓ, ℓ P t1, ..., Lu, are approximated by (random) sequences
pFℓ,nqnPN, ℓ P t1, ..., Lu, of cumulative distribution functions. The following lemma ensures that the critical
values q1,n, ..., qL,n can be approximated through random critical values based on Fn and Fℓ,n, ℓ P t1, ..., Lu, as
long as the sequences converge in outer probability to the true distribution functions.

Theorem 2.6. Let L P N and α P p0, 1q. Moreover, let Fn denote a map on pΩ,A, P q taking values in the
space of all cumulative distribution functions on RL and Fℓ,n, ℓ P t1, ..., Lu, denote maps on pΩ,A, P q taking
values in the space of all cumulative distribution functions on R for all n P N. Additionally, let F : RL Ñ r0, 1s

denote a cumulative distribution function of a random vector pW1, . . . ,WLq with continuous marginal distribution
functions F1, ...,FL : R Ñ r0, 1s. Furthermore, set FWERpζq :“ 1 ´ F

`

F´1
1´ p1 ´ ζq, . . . ,F´1

L´p1 ´ ζq
˘

for all
ζ P R and assume that FWER is strictly increasing on ra, bs with 0 ď a ă α{L ď α ă b ď 1. Let

Fnptq
P

ÝÑ Fptq as n Ñ 8 for all t P RL (2.15)

and

Fℓ,nptq
P

ÝÑ Fℓptq as n Ñ 8 for all t P R, ℓ P t1, ..., Lu (2.16)

hold. Furthermore, suppose we have a sequence of maps βn on pΩ,A, P q taking values in r0, 1s and satisfying
βn P

“

FWER´1
n`pαq ´ εn,FWER´1

n` pα ` εnq
‰

for all n P N with

FWERn`pζq :“ 1 ´ Fn

´

F´1
1,np1 ´ ζq, . . . , F´1

L,np1 ´ ζq

¯

for all ζ P R

and some null sequence pεnqnPN Ă r0,8q. If additionally (2.12) holds, it follows

lim
nÑ8

P˚ pDℓ P T : Wℓ,n ą qℓ,nq ď α under
č

ℓPT
H0,ℓ for all index sets T Ă t1, . . . , Lu, (2.17)

lim
nÑ8

P˚ pDℓ P t1, . . . , Lu : Wℓ,n ą qℓ,nq “ α under the global null hypothesis H0 and (2.18)

lim
nÑ8

P˚ pWℓ,n ą qℓ,nq “ FWER´1
pαq under H0,ℓ for all ℓ P t1, . . . , Lu, (2.19)

where qℓ,n :“ F´1
ℓ,n´

p1 ´ βnq.
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Note that (2.13) and (2.14) are direct consequences from (2.17) and (2.19).
The decision rules for the global and local hypotheses are then constructed as follows:

• For each ℓ P t1, ..., Lu, we reject H0,ℓ if and only if Wℓ,n ą qℓ,n or, equivalently, Wℓ,n{qℓ,n ą 1. Here, we
set 0{0 :“ 0.

• We reject the global null hypothesis H0 whenever at least one of the hypotheses H0,1, ...,H0,L is rejected.
Hence, we reject the global null hypothesis H0 if and only if maxℓPt1,...,Lu Wℓ,n{qℓ,n ą 1.

Here, each test statistic Wℓ,n, ℓ P t1, ..., Lu, is treated in the same way and has asymptotically the same impact
since we use the same local level of significance βn for each local hypothesis. The resulting tests can be formulated
accordingly as φℓ :“ 1tWℓ,n ą qℓ,nu for H0,ℓ for all ℓ P t1, ..., Lu and as φ :“ 1tmaxℓPt1,...,Lu Wℓ,n{qℓ,n ą 1u for
H0. Then, (2.17)–(2.19) can be formulated equivalently as

lim
nÑ8

E˚

ˆ

max
ℓPT

φℓ

˙

ď α under
č

ℓPT
H0,ℓ for all index sets T Ă t1, . . . , Lu, (2.20)

lim
nÑ8

E˚

ˆ

max
ℓPt1,...,Lu

φℓ

˙

“ α under the global null hypothesis H0 and (2.21)

lim
nÑ8

E˚ pφℓq “ β under H0,ℓ for all ℓ P t1, . . . , Lu. (2.22)

In the following remark, we give a condition under which (2.16) easily follows from (2.15).

Remark 2.4. If F1,n, . . . , FL,n in Theorem 2.6 are the marginal cumulative distribution functions of Fn, (2.16)
is a direct consequence of (2.15).

The following lemma ensures that the function FWER is strictly increasing in our applications in Sections 4
and 5.

Lemma 2.2. Let k P N and Wℓ :“ ZJAℓZ, ℓ P t1, ..., Lu, for a random vector Z taking values in Rk with a
positive Lebesgue density on all of Rk and A1, ...,AL P Rkˆk being symmetric positive semi-definite matrices
with rankpAℓq ą 0, ℓ P t1, ..., Lu. Moreover, let F : RL Ñ r0, 1s denote the cumulative distribution function of
pW1, ...,WLq and Fℓ : R Ñ r0, 1s, ℓ P t1, ..., Lu, denote the continuous marginal distribution functions. Then,

r0, 1s Q ζ ÞÑ FWERpζq :“ 1 ´ F
`

F´1
1´ p1 ´ ζq, . . . ,F´1

L´p1 ´ ζq
˘

is strictly increasing.

It is well known that the closed testing procedure may improve the power of multiple tests. Hence, we propose
a stepwise extension of the multiple testing procedure in the following remark.

Remark 2.5 (Stepwise Extension). Our methodologies can be combined with the closed testing procedure
as in [10] to gain more power. Therefore, for each ℓ P t1, ..., Lu, the hypothesis H0,ℓ is rejected at level
α if and only if for each J Ă t1, ..., Lu with J Q ℓ the intersection hypothesis H0,J :“

Ş

jPJ
H0,j is re-

jected at level α. For testing an intersection hypothesis H0,J , we can use the procedure as described above.
To be specific, H0,J is rejected at level α whenever maxjPJ Wj,n{F´1

j,n´

`

1 ´ βJ
n

˘

ą 1 holds, where βJ
n P

”

FWERJ ,´1
n` pαq ´ εn,FWERJ ,´1

n` pα ` εnq

ı

for all n P N with some null sequence pεnqnPN Ă r0,8q,

FWERJ
n`pζq :“ 1 ´ FJ

n

`

pF´1
j,n p1 ´ ζqqjPJ

˘

for all ζ P R

and FJ
n denoting the marginal cumulative distribution function of Fn with respect to the components with indices

J .

Moreover, multiple tests for estimands yield simultaneous confidence regions. This is explained in more detail
in the following remark.

Remark 2.6 (Simultaneous Confidence Regions). Let us consider the local hypotheses H0,ℓ : hℓpP q “ cℓ, ℓ P

t1, ..., Lu, about estimands hℓpP q P Ξℓ and cℓ P Ξℓ for all ℓ P t1, ..., Lu, where Ξ1, ...,ΞL denote arbitrary sets
(e.g., Rr1 , ...,RrL). Moreover, we write Wℓ,npcℓq for the ℓth local test statistic to express the dependence of Wℓ,n

on cℓ. Then, we can use the constructed multiple testing procedure to define simultaneous confidence regions
for hℓpP q with asymptotic global confidence level 1 ´ α. Under the notation and conditions of Theorem 2.6, we
define the ℓth confidence region as

CRℓ,n :“ tξ P Ξℓ | Wℓ,npξq ď qℓ,nu

for all ℓ P t1, ..., Lu. Then, it can be easily checked that limnÑ8 P˚pDℓ P t1, . . . , Lu : hℓpP q R CRℓ,nq “ α holds.
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2.3.2 Consistent Resampling Schemes

When considering a consistent resampling scheme, the cumulative distribution function F can be approximated
through the empirical distribution function of the resampled test statistics by a Monte Carlo method. In this
section, we show that the consistency implies (2.15) and construct adjusted p-values that lead to the same test
decisions as in Section 2.3.1.
A resampling scheme is called consistent if the resampled test statistics converge weakly conditionally on the data
in outer probability to pW1, . . . ,WLq, i.e., to the same limit distribution as the original test statistics under
the global null hypothesis. We aim to formulate a lemma that (2.15) in Theorem 2.6 follows for consistent
resampling schemes, where Fn denotes the empirical distribution function of Bn independently resampled test
statistics. Here, Xn represents the randomness of the data while Mn can be interpreted as the randomness of
the resampling method.

Lemma 2.3. Let Xn : Ω0 Ñ χ1n,Mn : Ω Ñ χ2n denote sequences of maps, where pΩ0 ˆ ΩN,Ai b AbN, P0 b

PbNq denotes a product probability space and χ1n, χ2n are arbitrary sets for n P N. Furthermore, assume that
Wn : χ1n ˆ χ2n Ñ RL is a function for L P N and all n P N. Suppose that Fn is the empirical distribution
function of

Wpbq
n : Ω0 ˆ ΩN Ñ RL, Wpbq

n pω0, ω1, ...q :“ WnpXnpω0q,Mnpωbqq, b P t1, ..., Bnu,

for Bn, n P N satisfying Wp1q
n

d˚

ÝÝÑ W „ F conditionally on Xn in outer probability as n Ñ 8, where F : RL Ñ

r0, 1s denotes a cumulative distribution function with continuous marginal cumulative distribution functions.
Then, (2.15) is satisfied if Bn Ñ 8 as n Ñ 8.

The lemma ensures that the empirical distribution function of independently resampled test statistics Wpbq
n “

pW
pbq

1,n, . . . ,W
pbq

L,nq, b P t1, ..., Bnu, that is

Fn : RL Ñ r0, 1s, Fnpwq “
1
Bn

Bn
ÿ

b“1
1

!

Wpbq
n ď w

)

,

fulfills the condition to approximate the function F in Theorem 2.6 for a consistent resampling scheme, where
Wpbq

n ď w means that all components of Wpbq
n are less than or equal to the corresponding values in the vector

w. For these choices, we have

FWERn`pζq “
1
Bn

Bn
ÿ

b“1
1

!

Dℓ P t1, ..., Lu : W pbq

ℓ,n ą F´1
ℓ,n p1 ´ ζq

)

for all ζ P R. Regarding Remark 2.4, the marginal distribution functions can be approximated by the marginals
of the empirical distribution function, that are

Fℓ,n : R Ñ r0, 1s, Fℓ,npwq “
1
Bn

Bn
ÿ

b“1
1

!

W
pbq

ℓ,n ď w
)

, ℓ P t1, . . . , Lu.

Then, we can define the local level βn as the largest value such that the estimated family-wise type I error rate
is bounded by the level of significance α, i.e.,

βn :“ max
"

ζ P

"

1
Bn

,
2
Bn

, ..., 1
*

| FWERn`pζ ´B´1
n q ď α

*

“

#

FWER´1
n`pα ` 1{Bnq ´ 1{Bn if αBn P N

FWER´1
n`pαq ´ 1{Bn if αBn R N.

Note that we only have to consider ζ P

!

1
Bn
, 2
Bn
, ..., 1

)

since the quantiles can only take Bn different values,

respectively. Additionally, we only have to search for βn within the interval
”

1
Bn

X

Bnα
L

\

` 1
Bn
, 1
ı

. The lower
bound can be interpreted as Bonferroni bound and results from the following inequalities:

FWERn`

ˆ

1
Bn

Z

Bnα

L

^˙

ď

L
ÿ

ℓ“1

1
Bn

Bn
ÿ

b“1
1

"

W
pbq

ℓ,n ą F´1
ℓ,n

ˆ

1 ´
1
Bn

Z

Bnα

L

^˙*

ď L
1
Bn

Z

Bnα

L

^

ď α.

With the above choices for Fn, Fℓ,n and βn, Theorem 2.6 implies that qℓ,n :“ F´1
ℓ,n´

p1 ´βnq, ℓ P t1, ..., Lu, fulfills
(2.17)–(2.19) under the conditions of Theorem 2.6 and Lemma 2.3.
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Adjusted p-values The method described in Theorem 2.6 for constructing multiple tests based on a con-
sistent resampling scheme is accompanied by an adjustment of p-values. To see this, we determine the local
p-values by

βℓ,n :“ 1 ´ Fℓ,n´pWℓ,nq

for all ℓ P t1, ..., Lu. Comparing the local p-values to βn yields multiple test decisions that are consistent to the
method in Theorem 2.6. Translating this comparison to a comparison with the level of significance α is intuitive
due to the definition of βn. Hence, by plugging the local p-value in FWERn`, the adjusted p-value for the ℓth
hypothesis can be defined by

pℓ :“ FWERn` pβℓ,nq

for all ℓ P t1, ..., Lu and the global p-value by p :“ mintp1, ..., pLu. The following proposition ensures that the
test decisions based on these p-values are unchanged.

Proposition 2.1. With the notation of Section 2.3.2,

(1) for each ℓ P t1, ..., Lu, it holds pℓ ď α whenever Wℓ,n ą qℓ,n,

(2) it holds p ď α whenever max
ℓPt1,...,Lu

Wℓ,n{qℓ,n ą 1.

2.3.3 Proofs of Section 2.3

We start by proving Lemma 2.3, as we will use one of the techniques in the proof of Theorem 2.6.

Proof of Lemma 2.3 Let t P RL be arbitrary. Approximate f : RL Ñ t0, 1u,w ÞÑ 1tw ď tu through
sequences of Lipschitz functions pgmqmPN, phmqmPN with 1 ě gm ě f ě hm ě 0 and E rgmpWq ´ hmpWqs ď m´1

for all m P N, where x ď t means that all components of x are less than or equal to the corresponding values
in the vector t. Let E˚

2 denote the outer expectation with respect to the product space ΩN, cf. Section 1.2 in
[74]. Then, it holds

ˇ

ˇ

ˇ
E2

”

fpWp1q
n q˚

ı

´ E rfpWqs

ˇ

ˇ

ˇ

ď E2

”

fpWp1q
n q˚

ı

´ E˚
2

”

fpWp1q
n q

ı

`

ˇ

ˇ

ˇ
E˚

2

”

fpWp1q
n q

ı

´ E rfpWqs

ˇ

ˇ

ˇ

ď E2

”

gmpWp1q
n q˚

ı

´ E˚
2

”

hmpWp1q
n q

ı

` max
!

E˚
2

”

gmpWp1q
n q

ı

´ E rgmpWqs ,E rhmpWqs ´ E˚
2

”

hmpWp1q
n q

ı)

` E rgmpWqs ´ E rhmpWqs

ď E2

”

gmpWp1q
n q˚ ´ gmpWp1q

n q˚

ı

` E˚
2

”

gmpWp1q
n q

ı

´ E˚
2

”

hmpWp1q
n q

ı

` max
!

E˚
2

”

gmpWp1q
n q

ı

´ E rgmpWqs ,E rhmpWqs ´ E˚
2

”

hmpWp1q
n q

ı)

`m´1

P0
ÝÑ 0 ` E rgmpWqs ´ E rhmpWqs ` 0 `m´1 ď 2m´1,

where here and throughout A˚ and A˚ denote the minimal measurable majorant and maximal measurable
minorant, respectively, for a map A with respect to all probability spaces jointly. By choosing m sufficiently
large, it follows

E2

”

fpWp1q
n q˚

ı

P0
ÝÑ E rfpWqs “ Fptq
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as n Ñ 8. Analogously, one can show E2

”

fpWp1q
n q˚

ı

P0
ÝÑ Fptq as n Ñ 8. Since Bn Ñ 8 as n Ñ 8, we have

E2

„

´

|Fnptq ´ Fptq|
2
¯˚

ȷ

ď E2

”

`

F 2
nptq

˘˚
ı

` 2E2
“

p´Fnptqq
˚
‰

Fptq ` F2ptq

ď
1
B2
n

Bn
ÿ

b1,b2“1
E2

„

´

fpWpb1q
n qfpWpb2q

n q

¯˚
ȷ

`
2
Bn

Bn
ÿ

b“1
E2

„

´

´fpWpbq
n q

¯˚
ȷ

Fptq ` F2ptq

ď
1
Bn

`
1
B2
n

Bn
ÿ

b1,b2“1,b1‰b2

E2

”

fpWpb1q
n q˚

ı

E2

”

fpWpb2q
n q˚

ı

´ 2E2

”

fpWp1q
n q˚

ı

Fptq ` F2ptq

ď
1
Bn

`
Bn ´ 1
Bn

E2

”

fpWp1q
n q˚

ı2
´ 2E2

”

fpWp1q
n q˚

ı

Fptq ` F2ptq

P0
ÝÑ F2ptq ´ 2FptqFptq ` F2ptq “ 0

as n Ñ 8. Thus, E˚

”

|Fnptq ´ Fptq|
2
ı

Ñ 0 as n Ñ 8 for all t P RL by the dominated convergence theorem
(dominated by 1), where E˚ denotes the outer expectation with respect to all probability measures jointly.
Hence, (2.15) in Theorem 2.6 follows.

Proof of Theorem 2.6 For proving Theorem 2.6, we firstly need two lemmas. The first one is a multivariate
version of Polya’s theorem.

Lemma 2.4. Let L P N, A :“
ŚL

ℓ“1raℓ, bℓs Ă pR Y t´8,8uqL, F : pR Y t´8,8uqL Ñ r0, 1s be a cumulative
distribution function that is continuous on A and pFnqnPN denote a sequence of maps on pΩ,A, P q taking values
in the space of all cumulative distribution functions satisfying

Fnptq
P

ÝÑ Fptq as n Ñ 8 for all t P A. (2.23)

Then, we have sup
tPA

|Fnptq ´ Fptq|
P

ÝÑ 0 as n Ñ 8.

Proof of Lemma 2.4. We aim to apply Proposition 2.1 in [9]. Therefore, let ft : RL Ñ R, ftpx1, ..., xLq “

1tx1 ď t1, ..., xL ď tLu for all t “ pt1, ..., tLq1 P A, F :“ tft | t P Au and ε ą 0 be arbitrary. Furthermore, let
F1, ...,FL : R Ñ r0, 1s denote the marginal cumulative distribution functions of F , m P N with ε{L ě 1{m and
define

aℓ “: tℓ,0 ă tℓ,1 ă ... ă tℓ,m :“ bℓ

such that Fℓptℓ,iq ´ Fℓptℓ,i´1q ď ε{L for all i P t1, ...,mu, ℓ P t1, ..., Lu. Set ti1,...,iL :“ pt1,i1 , ..., tL,iL q1 for all
i1, ..., iL P t0, ...,mu. Then, it holds that

ż

RL

fti1,...,iL
´ fti1´1,...,iL´1 dF “ Fpti1,...,iL q ´ Fpti1´1,...,iL´1q ď

L
ÿ

ℓ“1
pFℓptℓ,iℓ q ´ Fℓptℓ,iℓ´1qq ď ε

for all i1, ..., iL P t1, ...,mu. Thus, the bracketing number is bounded by pm ` 1qL ă 8. As in the proof of
Proposition 2.1 in [9], it holds

sup
tPA

|Fnptq ´ Fptq| ď 3 maxt|Fnptq ´ Fptq|u ` 2ε,

where the maximum is taken over 2pm` 1qL different values t P A. Hence, we get

P˚

ˆ

sup
tPA

|Fnptq ´ Fptq| ą 3ε
˙

ď P˚ pmaxt|Fnptq ´ Fptq|u ą εq ,

where P˚ denotes the outer probability. The latter tends to 0 by (2.23) since the maximum is taken over a
finite number of values t P A.

The following lemma ensures that the quantiles of a converging sequence of cumulative distribution functions
converge.
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Lemma 2.5. Let F : R Ñ r0, 1s be a distribution function that is continuous and strictly increasing on ra, bs Ă R
and pFnqnPN denote a sequence of maps on pΩ,A, P q taking values in the space of all cumulative distribution
functions satisfying

Fnptq
P

ÝÑ Fptq for all t P ra, bs (2.24)

as n Ñ 8. Furthermore, let Fpaq ă p ď q ă Fpbq. Then, we have

sup
rPrp,qs

|F´1
n prq ´ F´1prq|

P
ÝÑ 0

as n Ñ 8.

Proof of Lemma 2.5. First of all, Lemma 2.4 implies sup
tPra,bs

|Fnptq ´ Fptq|
P

ÝÑ 0 as n Ñ 8. Then, by Theo-

rem 1.9.2 (ii) in [74], every subsequence has a further subsequence such that

sup
tPra,bs

|Fnptq ´ Fptq| Ñ 0 as n Ñ 8 outer almost surely (2.25)

holds along the latter subsequence. In the following, we are considering the sequence only along this subsequence
and proceed similarly as in [74]. Let pδnqnPN be a positive sequence with δn Ñ 0 as n Ñ 8. By (2.25), there
exists an N P N such that

Fpbq ´ Fnpbq ď Fpbq ´ q and Fnpa` δnq ´ Fpa` δnq ă pp´ Fpaqq{2

holds for all n ě N outer almost surely. Due to the continuity of F , we can choose N sufficiently large such
that Fpa` δnq ď Fpaq ` pp´ Fpaqq{2 holds for all n ě N . Hence, it follows that Fnpbq ě q and Fnpa` δnq ă p
for all n ě N outer almost surely. Since

F´1
n prq ď x ô r ď Fnpxq

holds for all r P rp, qs, x P R due to the definition of the inverse map, we have F´1
n prq ď b and F´1

n prq ą

F´1
n prq ´ δn ą a for all r P rp, qs and n ě N outer almost surely.

Moreover, it holds
FnpF´1

n prq ´ δnq ď r ď FnpF´1
n prqq

for all r P rp, qs, n P N by the definition of the inverse map. Hence, it follows

FpF´1
n prqq ´ FnpF´1

n prqq ď FpF´1
n prqq ´ r ď FpF´1

n prqq ´ FnpF´1
n prq ´ δnq (2.26)

for all r P rp, qs, n P N. The left side of (2.26) is converging to 0 uniformly in r as n Ñ 8 outer almost surely by
(2.25). Since F is continuous on the compact set ra, bs, it is also uniformly continuous. The right side of (2.26)
can be rewritten as

FpF´1
n prqq ´ FnpF´1

n prq ´ δnq “FpF´1
n prqq ´ FpF´1

n prq ´ δnq

` FpF´1
n prq ´ δnq ´ FnpF´1

n prq ´ δnq,

where the first part vanishes asymptotically uniformly in r due to the uniform continuity of F and the second
part outer almost surely due to (2.25). Thus, (2.26) implies

sup
rPrp,qs

ˇ

ˇFpF´1
n prqq ´ r

ˇ

ˇ Ñ 0 as n Ñ 8 outer almost surely.

By the strict monotony of F on ra, bs, F´1 is continuous on rpFpaq`pq{2,Fpbqs and, thus, uniformly continuous
on rpFpaq ` pq{2,Fpbqs. Let ε ą 0 be arbitrary and δ P p0, pp´ Fpaqq{2s such that

|F´1pxq ´ F´1pyq| ă ε

holds for all x, y P rpFpaq ` pq{2,Fpbqs with |x´ y| ă δ. There exists an M P N such that

sup
rPrp,qs

|FpF´1
n prqq ´ r| ă δ

holds for all n ě M outer almost surely. This further implies that FpF´1
n prqq ą r ´ δ ě pFpaq ` pq{2 for all

r P rp, qs, n ě M outer almost surely. Since Fn´1
prq ď b for all r P rp, qs, n ě N , we also have FpF´1

n prqq ď Fpbq
for all r P rp, qs, n ě N . Hence, it follows that

sup
rPrp,qs

|F´1
n prq ´ F´1prq| “ sup

rPrp,qs

|F´1pFpF´1
n prqqq ´ F´1prq| ă ε

for all n ě maxtN,Mu outer almost surely. Applying Theorem 1.9.2 (ii) in [74] again completes the proof.
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Now, we aim to show that βn converges in outer probability. Since εn Ñ 8 as n Ñ 8, it remains to show

sup
rPrα,cs

ˇ

ˇFWER´1
n`prq ´ FWER´1

prq
ˇ

ˇ

P
ÝÑ 0 as n Ñ 8 (2.27)

for some c ą α. Therefore, we apply Lemma 2.5. Note that FWERn` and FWER can be seen as distribution
functions and FWER is continuous and strictly increasing on ra, bs by assumption. By Lemma 2.4, we have

sup
t1,...,tRPR

|Fnpt1, ..., tRq ´ Fpt1, ..., tRq|
P

ÝÑ 0 as n Ñ 8.

Moreover, Lemma 2.4 implies the uniform convergence of the marginal distribution functions, that is

sup
tPR

|Fℓ,nptq ´ Fℓptq|
P

ÝÑ 0 (2.28)

as n Ñ 8 for all ℓ P t1, ..., Ru. For FWERn´ :“ pFWERn`q´ being the left-continuous version of FWERn`,
we have

|FWERn´pζq ´ FWERpζq| “

ˇ

ˇ

ˇ
Fn

´

F´1
1,n´p1 ´ ζq, . . . , F´1

L,n´p1 ´ ζq

¯

´ F
`

F´1
1´ p1 ´ ζq, . . . ,F´1

L´p1 ´ ζq
˘

ˇ

ˇ

ˇ

ď sup
t1,...,tRPR

|Fnpt1, ..., tRq ´ Fpt1, ..., tRq|

`

ˇ

ˇ

ˇ
F
´

F´1
1,n´p1 ´ ζq, . . . , F´1

L,n´p1 ´ ζq

¯

´ F
`

F´1
1´ p1 ´ ζq, . . . ,F´1

L´p1 ´ ζq
˘

ˇ

ˇ

ˇ

for all ζ P r0, 1s. Here, the first summand converges to zero in outer probability. For the second summand, note
that

Fℓ
`

F´1
ℓ´ p1 ´ ζq

˘

“ 1 ´ ζ, (2.29)
F´pwq ď 1 ´ ζ ô w ď F´1

´ p1 ´ ζq, and (2.30)

|Fpx1, ..., xLq ´ Fpy1, ..., yLq| ď

L
ÿ

ℓ“1
|Fℓpxℓq ´ Fℓpyℓq| (2.31)

hold for all ζ P r0, 1s, w, x1, ..., xL, y1, ..., yL P R and all cumulative distribution functions F : R Ñ r0, 1s. Let
ε ą 0 and ℓ P t1, ..., Lu be arbitrary. Then, it holds

Fℓ
`

F´1
´ p1 ´ ζq

˘

“ P
`

Wℓ ď F´1
´ p1 ´ ζq

˘

“ P pF´pWℓq ď 1 ´ ζq

#

ď P pFℓpWℓq ď 1 ´ ζ ` εq “ 1 ´ ζ ` ε

ě P pFℓpWℓq ď 1 ´ ζ ´ εq “ 1 ´ ζ ´ ε

by (2.29) and (2.30) for all cumulative distribution functions F : R Ñ R with suptPR |F ptq ´ Fℓptq| ď ε and all
ζ P r0, 1s. Thus, it follows |Fℓ

`

F´1
´ p1 ´ ζq

˘

´ Fℓ
`

F´1
ℓ´ p1 ´ ζq

˘

| ď ε by (2.29) for all cumulative distribution
functions F : R Ñ R with suptPR |F ptq ´ Fℓptq| and all ζ P r0, 1s. Hence, (2.28) implies

P˚
´

|Fℓ
´

F´1
ℓ,n´

p1 ´ ζq

¯

´ Fℓ
`

F´1
ℓ´ p1 ´ ζq

˘

| ą ε
¯

ď P˚

ˆ

sup
tPR

|Fℓ,n´ptq ´ Fℓptq| ą ε

˙

Ñ 0

as n Ñ 8 for all ζ P r0, 1s. Thus, by (2.31), the second summand converges to zero in outer probability as well.
Hence, it follows

|FWERn´pζq ´ FWERpζq|
P

ÝÑ 0 as n Ñ 8 for all ζ P r0, 1s.

Lemma 2.4 implies supζPra,bs |FWERn´pζq ´ FWERpζq|
P

ÝÑ 0 as n Ñ 8 and, thus,

|FWERn`pζq ´ FWERpζq| ď maxtFWERn´pζ ` n´1q ´ FWERpζ ` n´1q ` FWERpζ ` n´1q ´ FWERpζq,

FWERpζq ´ FWERn´pζqu

P
ÝÑ 0

as n Ñ 8 for all ζ P ra, bq. Applying Lemma 2.5 yields (2.27) and, thus, βn
P

ÝÑ FWER´1
pαq as n Ñ 8.

In order to proof the statements (2.17)–(2.19), let T Ă t1, ..., Lu be arbitrary and
Ş

ℓPT
H0,ℓ be true. Note that

(2.30) implies

Wℓ,n ą qℓ,n ô Fℓ,n´pWℓ,nq ą 1 ´ βn for all ℓ P t1, ..., Lu. (2.32)
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By βn
P

ÝÑ FWER´1
pαq as n Ñ 8, it follows

`

pWℓ,nqℓPT , βn
˘ d

ÝÑ
`

pWℓqℓPT ,FWER´1
pαq

˘

as n Ñ 8 by (2.12) and Slutsky’s lemma. Moreover, the continuous mapping theorem implies
`

pFℓpWℓ,nqqℓPT , βn
˘ d

ÝÑ
`

pFℓpWℓqqℓPT ,FWER´1
pαq

˘

as n Ñ 8 due to the continuity of F1, ...,FL. By (2.28), we have |Fℓ,n´pWℓ,nq ´ FℓpWℓ,nq| ď suptPR |Fℓ,nptq ´

Fℓptq|
P

ÝÑ 0 for all ℓ P T and, thus, Slutsky’s lemma implies
`

pFℓ,n´pWℓ,nqqℓPT , βn
˘ d

ÝÑ
`

pFℓpWℓqqℓPT ,FWER´1
pαq

˘

as n Ñ 8.
By approximating the function

f : R|T | ˆ R Q pptℓqℓPT , bq ÞÑ max
ℓPT

1ttℓ ą 1 ´ bu P t0, 1u

by sequences of Lipschitz functions pgmqmPN, phmqmPN with 1 ě gm ě f ě hm ě 0 and

E
“

gm
`

pFℓpWℓqqℓPT ,FWER´1
pαq

˘

´ hm
`

FℓpWℓqqℓPT ,FWER´1
pαq

˘‰

ď m´1

for all m P N, one can follow similarly as in the proof of Lemma 2.3 that

P˚ pDℓ P T : Fℓ,n´pWℓ,nq ą 1 ´ βnq “ E˚ rf ppFℓ,n´pWℓ,nqqℓPT , βnqs

Ñ E
“

f
`

pFℓpWℓqqℓPT ,FWER´1
pαq

˘‰

“ P pDℓ P T : FℓpWℓq ą 1 ´ FWER´1
pαqq

ď 1 ´ P p@ℓ P t1, . . . , Lu : Wℓ ď F´1
ℓ´ p1 ´ FWER´1

pαqqq

“ FWERpFWER´1
pαqq “ α

holds as n Ñ 8 under
Ş

ℓPT
H0,ℓ, yielding (2.17) by (2.32). The inequality is an equality if T “ t1, ..., Lu, yielding

(2.18) by (2.32). Moreover, we observe that

P˚ pFℓ,n´pWℓ,nq ą 1 ´ βnq Ñ P pWℓ ą F´1
ℓ´ p1 ´ FWER´1

pαqqq “ 1 ´ FℓpF´1
ℓ´ p1 ´ FWER´1

pαqqq “ FWER´1
pαq

follows as n Ñ 8 for T “ tℓu for some ℓ P t1, ..., Lu, yielding (2.19) by (2.32).

Remark 2.7. It results from the proof that βn
P

ÝÑ FWER´1
pαq as n Ñ 8.

Furthermore, by applying Lemma 2.5, one can show qℓ,n
P

ÝÑ F´1
ℓ p1´FWER´1

pαqq as n Ñ 8 for all ℓ P t1, ..., Lu

if Fℓ is strictly increasing on
”

ra,rb
ı

with Fℓpraq ă 1 ´ α ď 1 ´ α{L ă Fℓprbq for all ℓ P t1, ..., Lu.

Proof of Lemma 2.2 Let 0 ď x ă y ď 1. We aim to show FWERpyq ´ FWERpxq ą 0. We have

FWERpyq ´ FWERpxq

“ F
`

F´1
1´ p1 ´ xq, ...,F´1

L´p1 ´ xq
˘

´ F
`

F´1
1´ p1 ´ yq, ...,F´1

L´p1 ´ yq
˘

“ P
`

Dℓ P t1, ..., Lu : Wℓ P pF´1
ℓ´ p1 ´ yq,F´1

ℓ´ p1 ´ xqs,@ℓ P t1, ..., Lu : Wℓ ď F´1
ℓ´ p1 ´ xq

˘

.

Let b :“ minℓPt1,...,Lu

F´1
ℓ´

p1´xq

||Aℓ||
, where here and throughout ||Aℓ|| ą 0 denotes the spectral norm of Aℓ,

ℓ˚ P arg minℓPt1,...,Lu

F´1
ℓ´

p1´xq

||Aℓ||
, and a :“

F´1
ℓ˚´

p1´yq

||Aℓ˚ ||
. Moreover, let Aℓ˚ “ Udiagpλ1, ..., λkqUJ denote the eigen-

decomposition of Aℓ˚ with an orthogonal matrix U “ ru1, ...,uks, where λ1 ě ... ě λk ě 0 and λ1 “ ||Aℓ˚ ||.
Then, we have for all z P Rk that

||z||2 ď b and puJ
1 zq2 ą a ñ zJAℓ˚z P pF´1

ℓ˚´
p1 ´ yq,F´1

ℓ˚´
p1 ´ xqs, zJAℓz ď F´1

ℓ´ p1 ´ xq, ℓ P t1, ..., Lu.

In order to show this, note that zJAℓz ď ||Aℓ|| ¨ ||z||2 ď b||Aℓ|| ď F´1
ℓ´ p1 ´ xq holds for ||z||2 ď b for all

ℓ “ 1, ..., L. Moreover, for puJ
1 zq2 ą a, it holds

zJAℓ˚z “

k
ÿ

i“1
λipuJ

i zq2 ě ||Aℓ˚ ||puJ
1 zq2 ą a||Aℓ˚ || “ F´1

ℓ˚´
p1 ´ yq.
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Thus, we get

FWERpyq ´ FWERpxq ě P
`

||Z||2 ď b, puJ
1 Zq2 ą a

˘

“ P
`

||UJZ||2 ď b, puJ
1 Zq2 ą a

˘

.

Now, it remains to show that P
`

||UJZ||2 ď b, puJ
1 Zq2 ą a

˘

ą 0. Integration by substitution yields

P
`

||UJZ||2 ď b, puJ
1 Zq2 ą a

˘

“

ż

tzPRk|||UJz||2ďb,puJ
1 zq2ąau

fpzq dz

“

ż

ty“py1,...,ykqJPRk|||y||2ďb,y2
1ąau

fpUyq dy,

where f : Rk Ñ p0,8q denotes the Lebesgue density of Z. Since the density is strictly positive, we only need
to show that the Lebesgue measure of ty “ py1, ..., ykqJ P Rk | ||y||2 ď b, y2

1 ą au is strictly positive. Due

to the continuity of Fℓ˚ , we have a “
F´1

ℓ˚´
p1´yq

||Aℓ˚ ||
ă

F´1
ℓ˚´

p1´xq

||Aℓ˚ ||
“ b. Let b̃ fulfill a ă b̃ ă b. Then, we have

||y||2 ď b, y2
1 ą a for all y “ py1, ..., ykqJ P Rk with

?
a ă |y1| ď

?
b̃, |y2|, ..., |yk| ď

b

b´b̃
k´1 . Hence, the Lebesgue

measure of ty “ py1, ..., ykqJ P Rk | ||y||2 ď b, y2
1 ą au is at least the Lebesgue measure of

$

&

%

y “ py1, ..., ykqJ P Rk |
?
a ă |y1| ď

a

b̃, |y2|, ..., |yk| ď

d

b´ b̃

k ´ 1

,

.

-

,

which equals 2k
´?

b̃´
?
a
¯

ˆ

b

b´b̃
k´1

˙k´1
ą 0.

Proof of Proposition 2.1 For (1), let ℓ P t1, ..., Lu be fixed. Firstly, we aim to show

pℓ ď α ñ Wℓ,n ą qℓ,n.

Therefore, assume that pℓ ď α holds. Since pℓ ď α implies that βℓ,n satisfies FWERn`pβℓ,nq ď α, it follows

1 ´ Fℓ,n´pWℓ,nq “ βℓ,n ď βn ´B´1
n ă βn

by the definition of βn. Thus, we have Wℓ,n ą F´1
ℓ,n´

p1 ´ βnq “ qℓ,n by (2.30).
Secondly, we aim to prove

Wℓ,n ą qℓ,n ñ pℓ ď α.

The inequality Wℓ,n ą qℓ,n “ F´1
ℓ,n´

p1 ´ βnq implies

βℓ,n “ 1 ´ Fℓ,n´pWℓ,nq ď 1 ´ Fℓ,npF´1
ℓ,n´

p1 ´ βnqq ă βn.

Due to βℓ,n, βn P t0, 1
Bn
, 2
Bn
, ..., 1u, it follows βℓ,n ď βn ´B´1

n . Thus, the definition of βn yields that βℓ,n fulfills

pℓ “ FWERn`pβℓ,nq ď α.

For (2), we note that p “ mintp1, ..., pLu ď α if and only if there exists an ℓ P t1, ..., Lu such that pℓ ď α. Due to
(1), this holds whenever there exists an ℓ P t1, ..., Lu such that Wℓ,n ą qℓ,n or, equivalently, max

ℓPt1,...,Lu
Wℓ,n{qℓ,n ą

1.

21



3 Inference for Paired Survival Times
Throughout this section, we consider i.i.d. pairs of survival times pT1j , T2jq, j P t1, . . . , nu, i.e., T1j , T2j are
non-negative random variables, with survival functions Si : r0,8q Q t ÞÑ P pTi1 ą tq P r0, 1s, i P t1, 2u. Let
pT1j , T2jq, j P t1, . . . , nu model the times to the progression of a disease: first, after the initiation of one
treatment, T1j is measured; then, a second treatment phase begins, and T2j is recorded. Here, we do not
assume that the survival functions are continuous and, thus, we allow for ties in the data. In general, T1j and
T2j are allowed to be correlated. Furthermore, we assume that the event times are subject to right-censoring,
i.e., we only observe pX1j , X2j , δ1j , δ2jq, j P t1, . . . , nu, where X1j :“ mintT1j , C1ju, X2j :“ mintT2j , C2ju
are the censored event times and δ1j :“ 1tX1j ď C1ju, δ2j :“ 1tX2j ď C2ju are the corresponding non-
censoring indicators. Moreover, we assume that right-censoring is independent, i.e., pT1j , T2jq and pC1j , C2jq
are stochastically independent, and the censoring times pC1j , C2jq, j P t1, ..., nu, are i.i.d. At times, we omit the
index j when it is not necessary to distinguish the pairs.
Our aim is to propose methods that are based on relative and absolute estimands for quantifying the efficacy
of an experimental treatment compared to a standard treatment: a variant of the probability as in von Hoff’s
method [75, 76] and functions of restricted mean survival times, respectively.

3.1 Variant of von Hoff’s Method
Von Hoff’s method [75, 76] is based on the probability that the ratio of T2 and T1 exceeds a preliminarily chosen
threshold δ. The most common choice is δ “ 1.3 [76]. Instead of P pT2{T1 ą δq or P pT2{T1 ě δq, we propose to
focus on the estimand

P pT2{T1 ą δq `
1
2P pT2{T1 “ δq.

The second term, P pT2{T1 “ δq, which has the weight 1{2, is important to take into account that the distribution
of T2{T1 is allowed to have an atom at δ. Even in the case of continuous survival functions, this is possible, as
can be seen from the perfectly correlated case T2 “ δT1.
Due to the limited time horizon of studies, one typically cannot identify this probability. Instead, we consider
the estimand

θ :“P pmintT2, τ2u{ mintT1, τ1u ą δq `
1
2P pmintT2, τ2u{ mintT1, τ1u “ δq

“P pmintT2, τ2u ą δ ¨ mintT1, τ1uq `
1
2P pmintT2, τ2u “ δ ¨ mintT1, τ1uq

which is closely related to the estimand in [30]. Here, τ1 and τ2 denote the maximum follow-up times. The
experimental treatment is then considered effective if that probability exceeds a certain probability θ0 P p0, 1q,
the choice of which might depend on the particular medical application. Thus, we aim to test the hypothesis

Hθ
0 : θ ď θ0 vs. Hθ

1 : θ ą θ0. (3.1)

Since von Hoff’s method [75, 76] ignores the censoring indicator, it yields a negatively biased estimator [49].
Thus, we propose an approach that takes the proper handling of right-censoring into account. This will lead to
an approximately unbiased estimator of θ and, as a consequence, it is expected to improve the reliability and
the power of the method.
Based on the competing risks-based approach in [30], θ can be estimated with the help of the Aalen-Johansen
estimator [1]. To see the connection to the method developed in [30], define the pair of survival times pT̃1, T̃2q “

pδ ¨ mintT1, τ1u,mintT2, τ2uq. The underlying competing risks data set can be written as

pZj , εjq “ pmintδT1j , T2j , τ, δC1j , C2ju, ε̌j1tmintδT1j , T2j , τu ď mintδC1j , C2juuq, j P t1, ..., nu,

where τ :“ mintδτ1, τ2u and ε̌j P t1, 2, 3u denotes the event indicator; see Section 3.3 for details. Now, θ can be
represented with the help of the cumulative incidence functions for type 2 and type 3 events, i.e., F2 and F3,
as θ “ F2pτq ` 1

2F3pτq. Here, an event of type 1 is present if T̃1j ą T̃2j has been observed, an event of type 2
is present if T̃1j ă T̃2j has been observed, and a type-3 event is present if T̃1j “ T̃2j is observed. In other cases,
the data point is censored from a competing risks point of view.
We define the number of individuals at risk just before time t ě 0 by Y ptq :“

řn
j“1 1tZj ě tu and the number

of individuals with an event of type m before or at time t ě 0 by Nmptq :“
řn
j“1 1tZj ď t, εj “ mu for all

m P t1, 2, 3u. Moreover, we set

pAmptq :“
ż

r0,ts

1
Y

dNm, pA :“
3
ÿ

m“1

pAm and pSptq :“ P
xPr0,ts

!

1 ´ d pApxq

)
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for all t ě 0,m P t1, 2, 3u, where here and throughout P denotes the product integral as in [39]. These estimators
are the cause-specific and all-cause Nelson–Aalen estimators and the Kaplan–Meier estimator, respectively.
Thus, we obtain the Aalen–Johansen estimator [1] at t for Fmptq as pFmptq :“

ş

r0,ts
pS´ d pAm,m P t1, 2, 3u for all

t ě 0 and, hence,

pθ “ pF2pτq `
1
2
pF3pτq

for θ. Note that one could allow either τ1 “ 8 or τ2 “ 8 as long as the respective other terminal time is finite.
An adaptation of Theorems 1 and 2 in [30] justifies the asymptotic normality of the estimation approach under
the following assumption.

Assumption 3.1. We assume P pδT1 ě τ, T2 ě τq ą 0 and P pδC1 ě τ, C2 ě τq ą 0.

Theorem 3.1. Under Assumption 3.1, we have
?
nppθ ´ θq

d
ÝÑ N p0, σ2

θq as n Ñ 8, where σ2
θ is defined in

Section 3.3.

For technical reasons, we need σ2
θ ą 0. Therefore, we suppose the following.

Assumption 3.2. We assume σ2
θ ą 0. Under Assumption 3.1, this is, e.g., the case if at least one of the

following holds, which is shown in Lemma 3.2:

(1) P pT2 ă mintδT1, τuq ą 0 and P pτ ď mintδT1, δτ1u ď mintT2, τ2uq ą 0,

(2) P pδT1 ă mintT2, τuq ą 0 and P pmintδT1, δτ1u ě mintT2, τ2u ě τq ą 0,

(3) P pδT1 “ T2 ă τq ą 0 and P pmintδT1, δτ1u ą mintT2, τ2u ą uq ‰ P pu ă mintδT1, δτ1u ă mintT2, τ2uq for
all u P r0, τq.

This preliminary work and Slutsky’s theorem imply the following result.

Theorem 3.2. Under Assumptions 3.1 and 3.2, we have
?
nppθ ´ θq{pσθ

d
ÝÑ N p0, 1q as n Ñ 8. The definition

of pσ2
θ is given in (3.4) below.

With this theorem, we can construct an asymptotic level-α test for (3.1), that is,

φθ :“ 1

!?
nppθ ´ θ0q{pσθ ą z1´α

)

,

where here and throughout z1´α denotes the p1 ´ αq-quantile of the standard normal distribution.
Instead of the standard normal quantile, it is typically beneficial to use a resampling-based quantile. In par-
ticular, we propose a randomization approach, i.e., the observable event indicator εj is randomly re-labeled
as 1 or 2 with probability 1{2, respectively, whenever an event of type 1 or 2 occurred; cf. [30] for a similar
approach. This is equivalent to randomly permuting the paired (censored) event times pX1j , δ1jq and pX2j , δ2jq
within each pair j P t1, ..., nu. This results in the randomized data set pZj , rεjq, j P t1, ..., nu, and corresponding
randomized estimators r

pθ, rpσ2
θ based on our randomized sample pZj , rεjq, j P t1, ..., nu.

Analogously to the proof of Theorem 2 in the supplement of [30], we obtain that
?
np
r

pθ ´ 1{2q
d˚

ÝÝÑ N p0, rσ2
θq

conditionally on the data pZj , εjq, j P t1, ..., nu, in outer probability as n Ñ 8, where rσ2
θ is given in Section 3.3.

Again, we need to assume a positive variance of the limit.

Assumption 3.3. We assume rσ2
θ ą 0. Under Assumption 3.1, this is, e.g., the case if P pT2 ă mintδT1, τuq ą 0

or P pδT1 ă mintT2, τuq ą 0 holds, which is shown in Lemma 3.3.

Then, we obtain the following result.

Theorem 3.3. Under Assumptions 3.1 and 3.3, we have
?
np
r

pθ´ 1{2q{rpσθ
d˚

ÝÝÑ N p0, 1q conditionally on the data
pZj , εjq, j P t1, ..., nu, in outer probability as n Ñ 8.

Theorem 3.3 provides that the randomization test

rφθ :“ 1

!?
nppθ ´ θ0q{pσθ ą rz1´α

)

is an asymptotic level α test, where rz1´α denotes the p1 ´αq-quantile of the conditional distribution of
?
np
r

pθ´

1{2q{rpσθ given the data pZj , εjq, j P t1, ..., nu. In practice, the quantile rz1´α can be approximated by a Monte
Carlo method, cf. Section 2.3.2.
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Figure 3: An exemplary illustration of the RMST µ.

3.2 Restricted Mean Survival Times
An alternative approach for comparing paired survival times is the comparison of the restricted mean survival
times (RMSTs) of the two event times. The RMST is defined as the area under the survival curve up to a
prespecified time point τ ą 0 as illustrated in Figure 3 and it has an intuitive interpretation as the expected
minimum of the survival time and the specified time point. Thus, the RMST reduces the whole survival curve
to a meaningful estimand. In detail, the RMSTs are

µi :“
ż τ

0
Siptq dt P r0, τ s, i P t1, 2u.

For comparing two RMSTs, we can consider the hypotheses

Hdiff
0 : µ1 ´ µ2 ě ξ vs. Hdiff

1 : µ1 ´ µ2 ă ξ

for the difference of the RMSTs with ξ P r´τ, τ s, or

Hrat
0 : µ1

µ2
ě 1 ` ζ vs. Hrat

1 : µ1

µ2
ă 1 ` ζ

for the ratio of RMSTs with ζ P p´1,8q. A natural estimator for µi is given by

pµi :“
ż τ

0
pSiptq dt

for i P t1, 2u, where pSi denotes the Kaplan-Meier estimator of Si. Hence, we get the estimator pµ1 ´ pµ2 for
µ1 ´ µ2 and pµ1{pµ2 for µ1{µ2.
For technical reasons, we need the following assumptions.

Assumption 3.4. Throughout this section, we assume

(1) P pC1 ě τq, P pC2 ě τq ą 0, and

(2) P pT1 ě τq, P pT2 ě τq ą 0.

Under the stated assumptions, the estimators can be shown to be asymptotically normal, that is
?
npppµ1 ´ pµ2q ´ pµ1 ´ µ2qq

d
ÝÑ N p0, σ2

diffq

and
?
nplogppµ1{pµ2q ´ logpµ1{µ2qq

d
ÝÑ N p0, σ2

ratq

as n Ñ 8 for some σ2
diff , σ

2
rat ě 0; see Section 3.3 for details.

Theorem 3.4. Under Assumptions 3.4 and σ2
diff , σ

2
rat ą 0, we have

?
npppµ1 ´ pµ2q ´ pµ1 ´ µ2qq{pσdiff

d
ÝÑ N p0, 1q

and
?
nplogppµ1{pµ2q ´ logpµ1{µ2qq{pσrat

d
ÝÑ N p0, 1q

as n Ñ 8. The definitions of the variance estimators pσ2
diff and pσ2

rat are given in Section 3.3.
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This theorem yields that the tests

φdiff :“ 1
␣?

npppµ1 ´ pµ2q ´ ξq{pσdiff ă zα
(

and φrat :“ 1
␣?

nplogppµ1{pµ2q ´ logp1 ` ζqq{pσrat ă zα
(

are asymptotic level α tests for Hdiff
0 and Hrat

0 , respectively.
The randomization approach described in Section 3.1 can be adopted to construct a randomization test. To
this end, let pXπ

1j , δ
π
1jq and pXπ

2j , δ
π
2jq denote the permuted (censored) event times of the paired (censored) event

times pX1j , δ1jq and pX2j , δ2jq within each pair j P t1, ..., nu. Furthermore, we denote all estimators based on the
permuted (censored) event times pXπ

1j , δ
π
1jq, pX

π
2j , δ

π
2jq, j P t1, ..., nu, with a π in the superscript in the following.

E.g., pµπi denotes the RMST estimator based on the permuted (censored) event times pXπ
ij , δ

π
ijq, j P t1, ..., nu, for

i P t1, 2u. The following theorem yields the consistency of this randomization approach.

Theorem 3.5. Under Assumption 3.4 and σπdiff , σ
π
rat ą 0, we have, as n Ñ 8,

?
nppµπ1 ´ pµπ2 q{pσπdiff

d˚

ÝÝÑ N p0, 1q

and
?
n logppµπ1 {pµπ2 q{pσπrat

d˚

ÝÝÑ N p0, 1q

conditionally on the data pX1j , X2j , δ1j , δ2jq, j P t1, ..., nu in outer probability, where σπdiff , σ
π
rat are defined in

Section 3.3.

Hence, the validity of the randomization tests

φπ,diff :“ 1
␣?

npppµ1 ´ pµ2q ´ ξq{pσdiff ă zπ,diff
α

(

and φπ,rat :“ 1
␣?

nplogppµ1{pµ2q ´ logp1 ` ζqq{pσrat ă zπ,rat
α

(

is provided, where zπ,diff
α and zπ,rat

α denote the α-quantiles of the conditional distributions of
?
nppµπ1 ´ pµπ2 q{pσπdiff

and
?
n logppµπ1 {pµπ2 q{pσπrat, respectively, given the data pX1j , X2j , δ1j , δ2jq, j P t1, ..., nu. By Section 2.3.2, the

quantiles can also be approximated by a Monte Carlo method.

3.3 Proofs of Section 3
Remark 3.1. Instead of assuming that pC1, C2q is stochastically independent of pT1, T2q, we also may assume
that the first survival time T1 is always uncensored and C2 is independent of pT1, T2q. This case is a special case
of the independent censoring case since we can set C1 “ τ1 ` 1.

Proof of Theorem 3.1 As in [30], let

ε̌ :“

$

’

&

’

%

1 if mintδT1, δτ1u ą mintT2, τ2u

2 if mintδT1, δτ1u ă mintT2, τ2u

3 if mintδT1, δτ1u “ mintT2, τ2u

denote the (uncensored) event indicator, Ť :“ mintδT1, T2, τu and Č :“ mintδC1, C2u. Thus, we can write the
censored competing risks data set as

pZj , εjq “ pmintŤj , Čju, ε̌j1tŤj ď Čjuq, j P t1, ..., nu.

Furthermore, let Fmptq :“ P pŤ ď t, ε̌ “ mq, Sptq :“ P pŤ ą tq, Amptq :“
ş

r0,ts
1

S´puq
dFmpuq, Aptq :“ A1ptq `

A2ptq `A3ptq and Gptq :“ P pČ ą tq for all t ě 0,m P t1, 2, 3u. Note that

F2pτq “ P pδmintT1, τ1u ă mintT2, τ2uq

and F3pτq “ P pδmintT1, τ1u “ mintT2, τ2uq.

Firstly, we emphasize that the Aalen–Johansen estimator pAm consistently estimates the cause-specific cumu-
lative hazard function Am, i.e., no relevant information is lost by the above-described competing risks data.
Regarding Theorem 4.2 in [26], we need to show the following statement.

Lemma 3.1. It holds Amptq “
ş

r0,ts
1

P pZ1ě.q dP pZ1 ď ., ε1 “ mq for all m P t1, 2, 3u, t ě 0 with G´ptq ą 0.
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Proof of Lemma 3.1. Let m P t1, 2, 3u, t ě 0 be arbitrary with G´ptq ą 0. Due to the definition of Z1, we have

P pZ1 ě uq “ P pŤ1 ě u, Č1 ě uq “ P pŤ1 ě uqP pČ1 ě uq “ S´ptqG´ptq

for all u P r0, ts. Moreover,

P pZ1 ď u, ε1 “ mq “ P pŤ1 ď u, ε̌1 “ m, Č1 ě Ť1q “

ż

r0,us

G´ dFm

for all u P r0, ts. Hence, it follows
ż

r0,ts

1
P pZ1 ě .q

dP pZ1 ď ., ε1 “ mq “

ż

r0,ts

G´

S´G´

dFm “

ż

r0,ts

1
S´

dFm “ Amptq.

To analyze the asymptotic behavior of pθ, we do not use the results of [30] for two reasons: First, we sup-
pose weaker assumptions on the survival and censoring distributions and, second, the variance formulas given
in [30] and in the earlier version of the linked GitHub repository (https://github.com/dennis-dobler/
relative_treatment_effect_paired_survival/tree/30fa79a) are both wrongly stated, as the following ex-
amples show.
In the GitHub repository, there is just a bracket missing, such that the second and third stated summand of the
final result should be multiplied with 1{4 as well. Then, the formula is correct under ∆F1pτq “ ∆F2pτq “ 0,
which follows from the assumptions in [30]. Here and throughout, ∆F puq :“ F puq´F´puq denotes the increment
of F at u. However, since we aim to allow mass in τ for all event types, we state a different variance formula later.
Our formula coincides to the formula in the GitHub repository with added bracket under ∆F1pτq “ ∆F2pτq “ 0.

Example 3.1. Let

F1ptq :“ 0, F2ptq :“
#

0 if t ă 1
1{2 if t ě 1

, and F3ptq :“
#

0 if t ă 2
1{2 if t ě 2

for all t ě 0 with τ “ 2 and C1, C2 ě 2 almost surely. Then, one can show pθ “ 1
n

řn
i“1

`

1tε̌i “ 2u ` 1
21tε̌i “ 3u

˘

and, thus, by the central limit theorem,
?
nppθ ´ θq

d
ÝÑ N p0, 1{16q. However, the formula in the supplement of

[30] yields

σ2
θ “ S´p1qS´p1qσ2

2p1q∆A2p1q∆A2p1q ` S´p1qS´p2qσ2
2p1q∆A2p1q∆A3p2q

` S´p2qS´p2q

˜

∆σ2
2p1q

1 ´ ∆A2p1q

ˆ

1
2∆A3p2q

˙2
´ 2 ∆σ2

2p1q

1 ´ ∆A2p1q

ˆ

1
2∆A3p2q

˙

∆A3p2q `
1
4σ

2
3p2q∆A3p2q∆A3p2q

¸

“
1
4 ¨

1
2 ¨

1
2 `

1
2 ¨

1
4 ¨

1
2 ¨

1
2 `

1
2 ¨

1
2 ¨

˜

1{4
1 ´ 1{2 ¨

ˆ

1
2

˙2
´ 2 1{4

1 ´ 1{2 ¨
1
2 ` 0

¸

“ 0

if the integrals
şτ

0 are meant as
ş

r0,τs
. The formula of the GitHub repository yields

σ2
θ “

pF2p1q ´ F2,´p2q ´ F1p1q ` F1,´p2q ` Sp1qq2

p1 ´ ∆A2p1qq2 ∆σ2
2p1q “

p1{2 ´ 1{2 ` 1{2q2

p1 ´ 1{2q2 ¨
1
4 “

1
4 .

Note that this is not correct due to the missing factor 1{4.

Also if the integrals
şτ

0 are meant as
ş

r0,τq
, the formula in the supplement of [30] is not correct, as the following

example shows.

Example 3.2. Let

F1ptq :“
#

0 if t ă 1
1{2 if t ě 1

, F2ptq :“ 0, and F3ptq :“
#

0 if t ă 2
1{2 if t ě 2

for all t ě 0 with τ “ 2 and C1, C2 ě 2 almost surely. Then, one can show pθ “ 1
2

1
n

řn
i“1 1tε̌i “ 3u and, thus,

by the central limit theorem,
?
nppθ ´ θq

d
ÝÑ N p0, 1{16q. However, the formula in the supplement of [30] yields

σ2
θ “ 0 if the integrals

şτ

0 are meant as
ş

r0,τq
.
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Now, to prove Theorem 3.1, note that θ and pθ can be written as

ψ̃

ˆ

ϕ̃ p´pA1 `A2 `A3qq´ , A2 `
1
2A3

˙

pτq “

ż

r0,τs

S´ d
ˆ

A2 `
1
2A3

˙

“ F2pτq `
1
2F3pτq “ θ

and
ψ̃

ˆ

ϕ̃
´

´p pA1 ` pA2 ` pA3q

¯

´
, pA2 `

1
2
pA3

˙

pτq “

ż

r0,τs

pS´ d
ˆ

pA2 `
1
2
pA3

˙

“ pF2pτq `
1
2
pF3pτq “ pθ

with ψ̃ : D̃r0, τ s ˆBVM r0, τ s Ñ Dr0, τ s, ϕ̃ : BV3M r0, τ s Ñ Dr0, τq as in Section A for some M ă 8. Hence, we
define

Ψ : pBVM r0, τ sq3 Ñ R, ΨpΛ1,Λ2,Λ3q :“ ψ̃

ˆ

ϕ̃ p´pΛ1 ` Λ2 ` Λ3qq´ ,Λ2 `
1
2Λ3

˙

pτq.

To apply the delta-method, we show the Hadamard differentiability of Ψ at pA1, A2, A3q by the chain rule.
Note that Assumption 3.1 is equivalent to S´pτq ą 0 and P pZ1 ě τq ą 0. Analogously to Lemma 3.10.18 and
Lemma 3.10.32 in [74], we obtain the Hadamard-derivatives

ψ̃1

pϕ̃p´pA1`A2`A3qq´,A2` 1
2A3q

pα, βq “

ż

r0,.s
ϕ̃p´pA1 `A2 `A3qq´ dβ `

ż

r0,.s
α d

ˆ

A2 `
1
2A3

˙

and ϕ̃1
´pA1`A2`A3q pβq “ ϕ̃p´pA1 `A2 `A3qqp.q

ż

r0,.s

1
1 ´ ∆pA1 `A2 `A3q

dβ

for all α P D̃r0, τ s, β P Dr0, τ s under Assumption 3.1. Here, we consider ϕ̃ : BVM r0, τq Ñ Dr0, τq as function
mapping to Dr0, τq instead of Dr0, τ s to guarantee that the weaker assumption S´pτq ą 0 instead of Spτq ą 0
suffices, cf. Section A.2. Moreover, pBVM r0, τ sq3 Q pΛ1,Λ2,Λ3q ÞÑ Λ1 ` Λ2 ` Λ3, pBVM r0, τ sq3 Q pΛ1,Λ2,Λ3q ÞÑ

Λ2 ` 1
2 Λ3, Dr0, τq Q Λ ÞÑ Λ´ P D̃r0, τ s and Dr0, τ s Q Λ ÞÑ Λpτq P R are linear and, thus, their Hadamard-

derivatives equals the functionals, respectively. Hence, the chain rule implies that Ψ is Hadamard differentiable
at pA1, A2, A3q with Hadamard-derivative

Ψ1
pA1,A2,A3qpα1, α2, α3q “ψ̃1

pϕ̃p´pA1`A2`A3qq´,A2` 1
2A3q

ˆ

ϕ̃1
´pA1`A2`A3q p´pα1 ` α2 ` α3qq´ , α2 `

1
2α3

˙

pτq

“

ż

r0,τs

ϕ̃ p´pA1, A2, A3qq´ d
ˆ

α2 `
1
2α3

˙

´

ż

r0,τq

ş

pu,τs
ϕ̃ p´pA1, A2, A3qq´ d

`

A2 ` 1
2A3

˘

1 ´ ∆pA1 `A2 `A3qpuq
dpα1 ` α2 ` α3qpuq

“

ż

r0,τs

S´ d
ˆ

α2 `
1
2α3

˙

´

ż

r0,τs

ş

pu,τs
S´ d

`

A2 ` 1
2A3

˘

1 ´ ∆Apuq
dpα1 ` α2 ` α3qpuq

for all α1, α2, α3 P Dr0, τ s by the chain rule, where we set 0{0 :“ 0.
Furthermore, Theorem 4.1 in [26] provides that

?
n
´

pA1 ´A1, pA2 ´A2, pA3 ´A3

¯

d
ÝÑ pU1, U2, U3q (3.2)

holds as n Ñ 8 on D3r0, τ s, where U1, U2, U3 are zero-mean Gaussian-martingales with

CovpUmptq, Umpsqq “

ż

r0,mintt,sus

1 ´ ∆Am
y

dAm “: σ2
mpmintt, suq,

CovpUmptq, Uℓpsqq “ ´

ż

r0,mintt,sus

∆Aℓ
y

dAm “: σmℓpmintt, suq

with yptq :“ S´ptqG´ptq for all t, s P r0, τ s,m, ℓ P t1, 2, 3u,m ‰ ℓ. By Section B, the limit variable is separable.
Thus, the delta-method (Theorem 3.10.4 in [74]) implies

?
nppθ´ θq

d
ÝÑ Ψ1

pA1,A2,A3q
pU1, U2, U3q as n Ñ 8, where

Ψ1
pA1,A2,A3q

pU1, U2, U3q follows a centered normal distribution. The variance of Ψ1
pA1,A2,A3q

pU1, U2, U3q can be
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calculated as

σ2
θ :“ Var

˜

ż

r0,τs

S´ d
ˆ

U2 `
1
2U3

˙

´

ż

r0,τs

ş

pu,τs
S´ d

`

A2 ` 1
2A3

˘

1 ´ ∆Apuq
dpU1 ` U2 ` U3qpuq

¸

“

ż

r0,τs

S2
´ d

ˆ

σ2
2 ` σ23 `

1
4σ

2
3

˙

´ 2
ż

r0,τs

S´puq

1 ´ ∆Apuq

ż

pu,τs

S´ d
ˆ

A2 `
1
2A3

˙

d
ˆ

σ12 ` σ2
2 `

3
2σ23 `

1
2σ13 `

1
2σ

2
3

˙

puq

`

ż

r0,τs

´

ş

pu,τs
S´ d

`

A2 ` 1
2A3

˘

¯2

p1 ´ ∆Apuqq2 dσ2
‚puq

“

ż

r0,τs

S2
´ d

ˆ

σ2
2 ` σ23 `

1
4σ

2
3

˙

´ 2
ż

r0,τs

ż

r0,vq

S´puqS´pvq

1 ´ ∆Apuq
d
ˆ

σ12 ` σ2
2 `

3
2σ23 `

1
2σ13 `

1
2σ

2
3

˙

puqd
ˆ

A2 `
1
2A3

˙

pvq

`

ż

r0,τs

ż

r0,τs

S´puqS´pvq

ż

r0,mintu,vuq

1
p1 ´ ∆Apwqq2 dσ2

‚pwqd
ˆ

A2 `
1
2A3

˙

puqd
ˆ

A2 `
1
2A3

˙

pvq

with σ2
‚ :“ σ2

1 ` σ2
2 ` σ2

3 ` 2σ12 ` 2σ13 ` 2σ23.

Proof of Theorem 3.2

Lemma 3.2. Under at least one of (1)–(3) in Assumption 3.2, we have σ2
θ ą 0.

Proof of Lemma 3.2. By the proof of Theorem 3.1, it holds that

σ2
θ “ Var

¨

˚

˝

3
ÿ

m“1

ż

r0,τs

hm dUm

˛

‹

‚

with

h1puq :“

ş

pu,τs
S´ d

`

A2 ` 1
2A3

˘

1 ´ ∆Apuq
,

h2puq :“ S´puq ´

ş

pu,τs
S´ d

`

A2 ` 1
2A3

˘

1 ´ ∆Apuq

and h3puq :“ S´puq

2 ´

ş

pu,τs
S´ d

`

A2 ` 1
2A3

˘

1 ´ ∆Apuq

for all u P r0, τ s, where 0{0 :“ 0. We can calculate this variance further as

σ2
θ “

3
ÿ

m“1
E

¨

˚

˝

¨

˚

˝

ż

r0,τs

hm dUm

˛

‹

‚

2˛

‹

‚

`

3
ÿ

m“1

ÿ

m̃‰m

E

¨

˚

˝

ż

r0,τs

hm dUm
ż

r0,τs

hm̃ dUm̃

˛

‹

‚

“

3
ÿ

m“1

ż

r0,τs

h2
m

1 ´ ∆Am
y

dAm ´

3
ÿ

m“1

ÿ

m̃‰m

ż

r0,τs

hmhm̃
∆Am
y

dAm̃

“

3
ÿ

m“1

ż

r0,τs

h2
m

y
dAm ´

3
ÿ

m“1

3
ÿ

m̃“1

ż

r0,τs

hmhm̃
∆Am
y

dAm̃

“

3
ÿ

m“1

ż

r0,τs

h2
m

y
dAcm `

ÿ

xPD

ř3
m“1 h

2
mpxq∆Ampxq ´

´

ř3
m“1 hmpxq∆Ampxq

¯2

ypxq
(3.3)

where D “ tx P r0, τ s : ∆Apxq ą 0u is the set of discontinuity time points and

Acmpxq :“ Ampxq ´
ÿ

yďx,yPD
∆Ampyq,m P t1, 2, 3u,
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denotes the continuous part of Am at x P r0, τ s. The Cauchy-Schwarz inequality yields
˜

3
ÿ

m“1
hmpxq∆Ampxq

¸2

ď

˜

3
ÿ

m“1
h2
mpxq∆Ampxq

¸˜

3
ÿ

m“1
∆Ampxq

¸

and, thus,

3
ÿ

m“1
h2
mpxq∆Ampxq ´

˜

3
ÿ

m“1
hmpxq∆Ampxq

¸2

ě

3
ÿ

m“1
h2
mpxq∆Ampxq p1 ´ ∆Apxqq ě 0

for all x P D, where 1 ´ ∆Apuq ě S´pτq “ P pδT1 ě τ, T2 ě τq ą 0 due to Assumption 3.2.
Under (1), we have F1,´pτq “ P pT2 ă mintδT1, τuq ą 0 and

h1puq ě
S´pτq∆pA2 ` 1

2A3qpτq

1 ´ ∆Apuq
ě

1
2 ∆pF2 ` F3qpτq

1 ´ ∆Apuq
“

1
2P pmintδT1, δτ1u ď mintT2, τ2u, δT1 ě τ, T2 ě τq

1 ´ ∆Apuq
ą 0

for all u P r0, τq. Hence, at least one of the summands in (3.3) with m “ 1 is strictly positive.
Similarly, under (2), we have F2,´pτq “ P pδT1 ă mintT2, τuq ą 0 and

h2puq “
Spuq ´ F2pτq ` F2puq ´ 1

2 pF3pτq ´ F3puqq

1 ´ ∆Apuq

“
F1pτq ´ F1puq ` 1

2 pF3pτq ´ F3puqq

1 ´ ∆Apuq

ě

1
2 ∆pF1 ` F3qpτq

1 ´ ∆Apuq

“

1
2P pmintδT1, δτ1u ě mintT2, τ2u, δT1 ě τ, T2 ě τq

1 ´ ∆Apuq
ą 0

for all u P r0, τq. Then, at least one of the summands in (3.3) with m “ 2 is strictly positive.
For (3), we have F3,´pτq “ P pδT1 “ T2 ă τq ą 0 and

|h3puq| “

ˇ

ˇ

1
2Spuq ´ F2pτq ` F2puq ´ 1

2 pF3pτq ´ F3puqq
ˇ

ˇ

1 ´ ∆Apuq

“

1
2 |F1pτq ´ F1puq ´ F2pτq ` F2puq|

1 ´ ∆Apuq

“
|P pmintδT1, δτ1u ą mintT2, τ2u,mintδT1, T2u ą uq ´ P pmintδT1, δτ1u ă mintT2, τ2u,mintδT1, T2u ą uq|

2 ´ 2∆Apuq

ą 0

for all u P r0, τq. Thus, at least one of the summands in (3.3) with m “ 3 is strictly positive.

Analogously to [30], we can use the Greenwood-type variance estimators pσ2
m, pσmℓ, pσ

2
‚ for σ2

m, σmℓ, σ
2
‚ , cf. [3],

(4.4.17) and (4.4.18), and pA “ pA1 ` pA2 ` pA3 for A to obtain the variance estimator

pσ2
θ “

ż

r0,τs

pS2
´ d

ˆ

pσ2
2 ` pσ23 `

1
4pσ

2
3

˙

´ 2
ż

r0,τs

ż

r0,vq

pS´puqpS´pvq

1 ´ ∆ pApuq
d
ˆ

pσ12 ` pσ2
2 `

3
2pσ23 `

1
2pσ13 `

1
2pσ

2
3

˙

puqd
ˆ

pA2 `
1
2
pA3

˙

pvq

`

ż

r0,τs

ż

r0,τs

pS´puqpS´pvq

ż

r0,mintu,vuq

1
p1 ´ ∆ pApwqq2

dpσ2
‚pwqd

ˆ

pA2 `
1
2
pA3

˙

puqd
ˆ

pA2 `
1
2
pA3

˙

pvq.

(3.4)

The variance estimator pσ2
θ is a continuous functional of p pA1, pA2, pA3q and pσ2

m, pσmℓ, pσ
2
‚ ,m, ℓ P t1, 2, 3u,m ‰ ℓ.

By the uniform consistency of p pA1, pA2, pA3q, cf. (3.2), and pσ2
m, pσmℓ, pσ

2
‚ ,m, ℓ P t1, 2, 3u,m ‰ ℓ, the continuous

mapping theorem yields the consistency of the variance estimator. The theorem follows then by applying
Slutsky’s lemma.
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Proof of Theorem 3.3 Analogously to the proof of Theorem 2 in the supplement of [30], we obtain by
Theorem 2 in [27] that

?
np
r

pθ´ 1{2q converges weakly conditionally on the data pZj , εjq, j P t1, . . . , nu, in outer
probability as n Ñ 8 to a centered normal variable with variance

rσ2
θ :“

ż

r0,τs

S2
´ d

ˆ

rσ2
2 ` rσ23 `

1
4rσ

2
3

˙

´

ż

r0,τs

ż

r0,vq

S´puqS´pvq

1 ´ ∆Apuq
d
ˆ

rσ12 ` rσ2
2 `

3
2rσ23 `

1
2rσ13 `

1
2rσ

2
3

˙

puqdApvq

`
1
4

ż

r0,τs

ż

r0,τs

S´puqS´pvq

ż

r0,mintu,vuq

1
p1 ´ ∆Apwqq2 drσ2

‚pwqdApuqdApvq,

where

rσ2
1ptq :“ rσ2

2ptq :“ 1
2

ż

r0,ts

1 ´ ∆A1`A2
2

y
dpA1 `A2q, rσ2

3ptq :“ σ2
3ptq,

rσ12ptq :“ ´
1
4

ż

r0,ts

∆pA1 `A2q

y
dpA1 `A2q, rσ13ptq :“ rσ23ptq :“ ´

1
2

ż

r0,ts

∆A3

y
dpA1 `A2q

for all t P r0, τ s.

Lemma 3.3. If Assumption 3.1 and maxtP pT2 ă mintδT1, τuq, P pδT1 ă mintT2, τuqu ą 0 hold, we have
rσ2
θ ą 0.

Proof of Lemma 3.3. By proceeding similarly as in the proof of Lemma 3.2, we obtain

rσ2
θ “

1
2

¨

˚

˝

2
ÿ

m“1

ż

r0,τs

rh2
m

y
dpAc1 `Ac2q `

ÿ

xPD

ř2
m“1

rh2
mpxq∆pA1 `A2qpxq ´

´

ř2
m“1

rhmpxq∆pA1 `A2qpxq

¯2

ypxq

˛

‹

‚

,

where

rh1puq :“

ş

pu,τs
S´ dA

2 ´ 2∆Apuq
and rh2puq :“ S´puq ´ rh1puq

for all u P r0, τ s with 0{0 :“ 0. As in the proof of Lemma 3.2, one can show

rh1puq ě
S´pτq∆Apτq

2 ´ 2∆Apuq
“

∆pF1 ` F2 ` F3qpτq

2 ´ 2∆Apuq
“
P pδT1 ě τ, T2 ě τq

2 ´ 2∆Apuq
ą 0

for all u P r0, τq by Assumption 3.1. Furthermore, it holds

F1,´pτq ` F2,´pτq “ P pT2 ă mintδT1, τu _ δT1 ă mintT2, τuq

ě maxtP pT2 ă mintδT1, τuq, P pδT1 ă mintT2, τuqu ą 0.

Hence, at least one of the summands with m “ 1 is strictly positive.

The consistency of the variance estimator rpσ2
θ for rσ2

θ follows analogously as in the proof of Theorem 3.2. Therefore
note that S,G and A3 as well as their estimators remain the same for the randomized data pZj , ε̃jq, j P t1, . . . , nu.
Moreover, A1`A2

2 , A1`A2
2 , A3 can be calculated as the cause-specific cumulative hazard functions of the random-

ized data pZj , ε̃jq, j P t1, . . . , nu. Consequently, the cause-specific Nelson-Aalen estimators based on the random-
ized data converge uniformly in outer probability to A1`A2

2 , A1`A2
2 , A3, respectively, on r0, τ s by Theorem 4.1

in [26] and the separability of the limit by Section B. This implies the consistency of the variance estimator.
Applying Slutsky’s lemma completes the proof.

Proof of Theorem 3.4 Let Gi : r0,8q Q t ÞÑ P pCi ą tq P r0, 1s denote the survival function of the censoring
times Ci at time t ě 0 in the following for i P t1, 2u.
By Appendix D.1 of [27], the influence function of the Kaplan-Meier estimator pSi at the Dirac measure in
pX1j , X2j , δ1j , δ2jq is given by

t ÞÑ Siptq

«

δij1tXij ď tu

Gi´pXijqSipXijq
´

ż

r0,mintt,Xij us

1
Gi´puqSipuq

dAipuq

ff
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for i P t1, 2u, j P t1, ..., nu. Hence, one can calculate the influence function of the estimator pµi for the RMST µi
at the Dirac measure in pX1j , X2j , δ1j , δ2jq as

IFipXij , δijq :“
ż τ

0
Siptq

«

δij1tXij ď tu

Gi´pXijqSipXijq
´

ż

r0,mintt,Xij us

1
Gi´puqSipuq

dAipuq

ff

dt

for i P t1, 2u, j P t1, ..., nu. Furthermore, we set

IFipx, δq :“
ż τ

0
Siptq

«

δ1tx ď tu

Gi´pxqSipxq
´

ż

r0,mintt,xus

1
Gi´puqSipuq

dAipuq

ff

dt

for all i P t1, 2u, x P r0, τ s, δ P t0, 1u. Note that supxPr0,τs,δPt0,1u |IF1px, δq| and supxPr0,τs,δPt0,1u |IF2px, δq| are
bounded due to Assumption 3.4. The influence function of pµ1 ´ pµ2 at the Dirac measure in pX1j , X2j , δ1j , δ2jq
is then given by

IFdiff
j :“ IF1pX1j , δ1jq ´ IF2pX2j , δ2jq

for j P t1, ..., nu. Furthermore, the chain rule (Theorem 3.10.3 in [74]) implies that Φ1
θ0

p¨q{Φpθ0q is the Hadamard
derivative of θ ÞÑ logpΦpθqq at θ0 for a Hadamard-differentiable map Φ : DΦ Ñ R with θ0 P DΦ. Hence, the
influence function of logppµ1q ´ logppµ2q at the Dirac measure in pX1j , X2j , δ1j , δ2jq is given by

IFrat
j :“ IF1pX1j , δ1jq

µ1
´

IF2pX2j , δ2jq

µ2

for j P t1, ..., nu. By [27], it holds

?
npppµ1 ´ pµ2q ´ pµ1 ´ µ2qq “

1
?
n

n
ÿ

j“1
IFdiff
j ` opp1q

and
?
npplogppµ1q ´ logppµ2qq ´ plogpµ1q ´ logpµ2qqq “

1
?
n

n
ÿ

j“1
IFrat
j ` opp1q

as n Ñ 8. The advantage of this representation is that the summands are independent and identically dis-
tributed. Therefore, the asymptotic normality follows by an application of the central limit theorem.
Now, it remains to show that we have consistent estimators pσ2

diff , pσ
2
rat for the limit variances σ2

diff :“ VarpIFdiff
1 q

and σ2
rat :“ VarpIFrat

1 q, respectively. Since supxPr0,τs,δPt0,1u |IF1px, δq| and supxPr0,τs,δPt0,1u |IF2px, δq| are bounded,
the variances exist. We define

xIFipx, δq :“
ż τ

0
pSiptq

«

δ ¨ 1tx ď tu

pGi´pxqpSipxq
´

ż

r0,mintt,xus

1
pGi´puqpSipuq

d pAipuq

ff

dt

for i P t1, 2u, x P r0, τ s, δ P t0, 1u, where pSi, pGi denote the Kaplan-Meier estimators of Si, Gi, respectively,
and pAi denotes the Nelson-Aalen estimator of Ai. Then, we set xIF

diff
j :“ xIF1pX1j , δ1jq ´ xIF2pX2j , δ2jq and

xIF
rat
j :“ xIF1pX1j , δ1jq{pµ1 ´ xIF2pX2j , δ2jq{pµ2 for all j P t1, ..., nu. Consequently, pσ2

diff , pσ
2
rat can be estimated as

the empirical variances

pσ2
diff :“ 1

n

n
ÿ

j“1

˜

xIF
diff
j ´

1
n

n
ÿ

ℓ“1

xIF
diff
ℓ

¸2

and pσ2
rat :“ 1

n

n
ÿ

j“1

˜

xIF
rat
j ´

1
n

n
ÿ

ℓ“1

xIF
rat
ℓ

¸2

.

It is well known that pSi, pGi, pAi are uniformly consistent for Si, Gi, Ai on r0, τ s, respectively, for i P t1, 2u, see,
e.g., the supplement of [24] for details. Due to the continuity of the functionals, the continuous mapping theorem
implies

sup
xPr0,τs,δPt0,1u

ˇ

ˇ

ˇ

xIFipx, δq ´ IFipx, δq

ˇ

ˇ

ˇ

P
ÝÑ 0

as n Ñ 8 for i P t1, 2u. Thus, easy calculations and an application of Slutsky’s lemma yield
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pσ2
diff ´

1
n

n
ÿ

j“1

˜

IFdiff
j ´

1
n

n
ÿ

ℓ“1
IFdiff
ℓ

¸2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0 and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pσ2
rat ´

1
n

n
ÿ

j“1

˜

IFrat
j ´

1
n

n
ÿ

ℓ“1
IFrat
ℓ

¸2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0

as n Ñ 8. Since IFdiff
j , j P t1, ..., nu, are i.i.d., it follows pσ2

diff
P

ÝÑ σ2
diff and, analogously, pσ2

rat
P

ÝÑ σ2
rat as n Ñ 8.
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Proof of Theorem 3.5 We aim to apply Theorem 2 in [27] and, hence, verifying the conditions in the
following. Therefore, let

F :“ tpy1, y2, d1, d2q ÞÑ di ¨ 1tyi ď tu, py1, y2, d1, d2q ÞÑ 1tyi ą tu | t P r0, τ s, i P t1, 2uu

and rF :“
"

py1, y2, d1, d2q ÞÑ
1
2 pfpy1, y2, d1, d2q ` fpy2, y1, d2, d1qq | f P F

*

.

Analogously to the proof of Theorem 2 in [30], F and rF are VC-classes. Consequently, the sets are P- and
rP-Donsker and Glivenko-Cantelli classes with P :“ P pX11,X21,δ11,δ21q and rP :“ P pXπ

11,X
π
21,δ

π
11,δ

π
21q. Furthermore, P

and rP have bounded supremum norms with respect to both sets F and rF . Moreover, the Kaplan-Meier estimator
is a Hadamard-differentiable functional as shown in Example 3.10.33 in [74]. Hence, the estimators for the RMST
difference and ratio are also Hadamard-differentiable functionals, respectively, by the chain rule in Lemma 3.10.3
in [74]. Thus, Theorem 2 in [30] provides that

?
nppµπ1 ´pµπ2 q and

?
n logppµπ1 {pµπ2 q are converging weakly to centered

normal distributions in outer probability conditionally on the data pX1j , X2j , δ1j , δ2jq, j P t1, ..., nu, as n Ñ 8.
For deriving the variances of the limit distributions, let Sπ :“ 1

2 pS1 ` S2q, Gπ :“ 1
2 pG1 ` G2q, Fπ :“ 1 ´ Sπ

and Aπp.q :“
ş

r0,.s
1

Sπ
´

ptq dFπptq be the pooled survival, distribution and cumulative hazard functions. Note
that permuting the data randomly leads to those survival, distribution and cumulative hazard functions for the
permuted data. Furthermore, define

Q.IFpx, δq :“
ż τ

0
Sπptq

«

δ ¨ 1tx ď tu

Gπ´pxqSπpxq
´

ż

r0,mintt,xus

1
Gπ´puqSπpuq

dAπpuq

ff

dt

for all x P r0, τ s, δ P t0, 1u. Note that supxPr0,τs,δPt0,1u |Q.IFpx, δq| is bounded under Assumption 3.4. One can
show that the variances of the normal distributions are σπdiff :“ Var

´

Q.IFdiff
1

¯

and σπrat :“ Var
`

Q.IFrat
1

˘

, where
Q.IFdiff

1 :“ Q.IFpX11, δ11q ´ Q.IFpX21, δ21q and

Q.IFrat
1 :“ Q.IFpX11, δ11q{µ´ Q.IFpX21, δ21q{µ “ pQ.IFpX11, δ11q ´ Q.IFpX21, δ21qq{µ

similar as in the proof of Theorem 3.4 by the chain rule (Theorem 3.10.3 in [74]) with µ :“
şτ

0 S
πptq dt “

µ1`µ2
2 .

Hence, it remains to show that the permutation counterparts of the variance estimators are consistent. Since
pSπi ,

pGπi ,
pAπi , i P t1, 2u, are continuous functionals of the empirical process of pXπ

1j , X
π
2j , δ

π
1j , δ

π
2jq and F is a rP-

Glivenko-Cantelli class, it follows that pSπi ,
pGπi ,

pAπi are unconditionally uniformly consistent for Sπ, Gπ and Aπ

on r0, τ s, respectively, for i P t1, 2u. Thus, we get

sup
xPr0,τs,δPt0,1u

|IFπi px, δq ´ Q.IFpx, δq|
P

ÝÑ 0

as n Ñ 8 for i P t1, 2u. Then, the consistency of the variance estimators follow analogously as in the proof of
Theorem 3.4.
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4 RMST-Based Inference in General Factorial Survival Designs
As we already developed tests based on restricted mean survival time comparisons in Section 3.2 for paired
survival data, we now turn to complex factorial survival designs.
The asymptotic behavior and statistical inference of RMSTs in the two-sample case have already been examined
in the literature. Due to an inflation of the type I error of the asymptotic RMST-based test for small samples
as shown in [43] for the two-sample case, an unstudentized permutation approach was proposed by [43] under
exchangeability. In [24], this approach was extended by developing a studentized permutation test to allow for
different censoring distributions in the two groups. A similar approach has been further analyzed in the context
of cure models, in both non- and semi-parametric models [29].
Such studentized permutation tests could be of interest for more complex factorial designs or more general linear
hypotheses in practice, e.g., when more than two different treatments are to be compared in a clinical study.
Thus, we aim to extend the studentized permutation test in [24] for general factorial designs and general linear
hypotheses by employing a Wald-type test statistic. Furthermore, other resampling methods as the groupwise
and the wild bootstrap are considered for this general setup.
On the other hand, when a global test detects a significant result by comparing the RMSTs of more than
two groups, it is of interest which particular RMSTs differ significantly. Unfortunately, global tests do not
yield this information. Therefore, multiple linear hypothesis testing procedures are desired. They offer the
information which of the local hypotheses are rejected in addition to the global one. Moreover, their power is
not necessarily lower than the power of a global testing procedure [47]. For gaining more power, we aim to
take the exact asymptotic dependency structure between the different test statistics into account. In order to
improve the small sample performance, we propose a groupwise and wild bootstrap procedure for approximating
the limiting null distribution and we show their validity.
The remainder of this section is organized as follows. In Section 4.1, the factorial survival setup is presented.
The global contrast testing problem is introduced in Section 4.2. Furthermore, a suitable test statistic is defined
and studied in Section 4.2.1. The studentized permutation approach [24] is extended for more general factorial
designs in Section 4.2.2. Furthermore, a groupwise and wild bootstrap procedure is investigated in Section 4.2.3
and 4.2.4, respectively. In Section 4.3, multiple contrast tests for the RMST are constructed and the consistency
of the groupwise and wild bootstrap in this setup is shown. The small sample performance of the proposed
RMST-based tests is analyzed in extensive simulation studies in Section 4.4. In Section 4.5, we illustrate the
proposed methodologies by analyzing a real data example about the occurrence of hay fever.

4.1 Factorial Survival Setup
We consider the following factorial design as in [22], i.e., as k-sample setup, k P N, k ě 2. We suppose that the
survival and censoring times

Tij „ Si, Cij „ Gi, j P t1, ..., niu, i P t1, ..., ku,

respectively, are mutually independent. Here, Si : r0,8q Q t ÞÑ P pTi1 ą tq P r0, 1s and Gi : r0,8q Q t ÞÑ P pCi1 ą

tq P r0, 1s denote the survival functions of the survival and censoring times, respectively, and ni P N represent the
numbers of individuals in group i for all i P t1, ..., ku. Of note, we do not assume the continuity of the survival
functions. Consequently, ties in the data are explicitly allowed. However, we assume that the Si do not have
jumps of size 1, i.e., the survival times are not deterministic. Moreover, we define the right-censored observable
event times Xij :“ mintTij , Ciju and the censoring status δij :“ 1tXij “ Tiju for all j P t1, ..., niu, i P t1, ..., ku.
The restricted mean survival time (RMST) of group i is defined as

µi :“
ż τ

0
Siptq dt “ ErmintTi1, τus

for all i P t1, ..., ku. Here, τ ą 0 should be a pre-specified constant. By replacing Si through the Kaplan-Meier
estimator pSi, a natural estimator for the RMST of group i is

pµi :“
ż τ

0
pSiptq dt

for all i P t1, ..., ku. Let µ :“ pµ1, ..., µkq1 be the vector of the RMSTs and pµ :“ ppµ1, ..., pµkq1 be the vector of
their estimators.
Furthermore, we assume the following.
Assumption 4.1. We assume that the group sizes do not vanish asymptotically, i.e.,

ni
n

Ñ κi P p0, 1q (4.1)

as n Ñ 8 for all i P t1, ..., ku, where n :“
řk
i“1 ni represents the total sample size. Additionally, we assume

that τ ą 0 fulfills P pXi1 ě τq “ P pTi1 ě τqP pCi1 ě τq ą 0 and P pTi1 ă τq ą 0 for all i P t1, ..., ku.
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4.2 Global Tests
Let r P N, c P Rr be a fixed vector and H P Rrˆk be a contrast matrix, i.e., H1k “ 0r. Moreover, we assume
that rankpHq ą 0. Then, we consider the null and alternative hypothesis

H0 : Hµ “ c vs. H1 : Hµ ‰ c. (4.2)

The formulation of this testing framework is very general. In particular, it includes the null hypothesis of
equal RMSTs in all groups by choosing, for example, c “ 0k and the Grand-mean-type contrast matrix [25]
H :“ Pk :“ Ik ´ Jk{k. Here, Jk :“ 1k11

k P Rkˆk represents the matrix of ones. Moreover, by splitting up indices,
different kinds of factorial structures can be covered. For example, in a two-way design with factors A (a levels)
and B (b levels), we set k :“ ab and split up the group index i in two subindices pi1, i2q P t1, ..., au ˆ t1, ..., bu.
Then, hypotheses about no main or interaction effect can be formulated by choosing c as the zero vector and
one of the following contrast matrices:

• HA :“ Pa b p11
b{bq (no main effect of factor A),

• HB :“ p11
a{aq b Pb (no main effect of factor B),

• HAB :“ Pa b Pb (no interaction effect).

Here, b represents the Kronecker product. Higher-way designs or hierarchically nested layouts can be incorpo-
rated similarly as in [63].

4.2.1 The Wald-Type Test Statistic and its Asymptotic Behavior

In this section, a suitable test statistic for the testing problem (4.2) is constructed and its asymptotic behaviour
is studied. First of all, let us introduce some notation. In the following, Yipxq :“

ni
ř

j“1
1tXij ě xu represents the

number of individuals at risk just before time x ě 0 and Nipxq :“
řni

j“1 δij1tXij ď xu denotes the number of
observed individuals with an event before or at time x ě 0 in group i with i P t1, ..., ku. Furthermore, pAipxq :“
ş

r0,xs
1
Yi

dNi denotes the Nelson-Aalen estimator of the cumulative hazard function Aipxq :“
ş

r0,xs
1
Si´

dFi “
ş

r0,xs
1
yi

dνi at time x with νipxq :“
ş

r0,xs
Gi´ dFi, yipxq :“ Si´pxqGi´pxq and Fipxq :“ 1 ´ Sipxq for all

x ě 0, i P t1, ..., ku.
Then, we define the Wald-type test statistic for the testing problem (4.2) as

WnpH, cq :“ npHpµ ´ cq1pHpΣH1q`pHpµ ´ cq,

where pΣ :“ diagppσ2
1 , ..., pσ

2
kq with

pσ2
i :“ n

ż

r0,τq

ˆ
ż τ

x

pSiptq dt
˙2 1

p1 ´ ∆ pAipxqqYipxq
d pAipxq (4.3)

being an estimator regarding the asymptotic variance of
?
nppµi ´ µiq for all i P t1, ..., ku [24]. The following

theorem provides the asymptotic distribution of the Wald-type test statistic.

Theorem 4.1. Under Assumption 4.1 and the null hypothesis in (4.2), we have, as n Ñ 8,

WnpH, cq
d

ÝÑ χ2
rankpHq.

Thus, we obtain an asymptotically valid level-α-test

φn :“ 1tWnpH, cq ą χ2
rankpHq,1´αu, (4.4)

where χ2
rankpHq,1´α denotes the p1 ´ αq-quantile of the χ2

rankpHq
distribution for α P p0, 1q.

4.2.2 Studentized Permutation Test

For two-sample comparisons, it was pointed out in [43] that RMST-based tests derived from asymptotic methods
have an increased type I error. Hence, we aim to improve the type I error control by extending the studentized
permutation approach of [24] to the present general factorial design setting. When considering the already
treated two-sample case, the approach has the advantage that it also works asymptotically without the assump-
tion of exchangeable data. In this section, we will transfer these good properties to general factorial designs to
construct a resampling-based test that serves as an alternative for (4.4).

34



For this purpose, let pX, δq :“ pXij , δijqjPt1,...,niu,iPt1,...,ku denote the observed data and

pXπ, δπq :“ pXπ
ij , δ

π
ijqjPt1,...,niu,iPt1,...,ku

be the permuted version. That is, the groups of the original data are randomly shuffled in the sense that the
data pairs pXij , δijq are permuted. In the following, we denote the permutation counterparts of the statistics
pµ and pΣ defined in the previous sections with a superscript π: pµπ and pΣπ. Then, we define the permutation
counterpart of the Wald-type test statistic as

Wπ
n pHq :“ npHpµπq1pHpΣπH1q`Hpµπ.

Note that the permutation counterpart of the Wald-type test statistic does not depend on c.

Theorem 4.2. Under Assumption 4.1,we have

Wπ
n pHq

d˚

ÝÝÑ χ2
rankpHq (4.5)

as n Ñ 8.

From this result, we can construct a permutation test

φπn :“ 1tWnpH, cq ą qπ1´αu,

where qπ1´α denotes the p1 ´ αq-quantile of the conditional distribution of Wπ
n pHq given pX, δq. Lemma 1 in

[45] ensures that φπn is asymptotically valid. Furthermore, Section 2.3.2 provides that the quantile may also be
approximated by a Monte Carlo method.

4.2.3 Groupwise Bootstrap Test

Another possible solution for approximating the limiting distribution is the groupwise bootstrap. An advantage
over the studentized permutation approach is that the groupwise bootstrap can mimic the different variance
structures in the groups. This ensures that the groupwise bootstrap is also applicable for the multiple testing
problem, see Section 4.3.
For the groupwise bootstrap, the bootstrap observations are drawn randomly with replacement from the ob-
servations of the corresponding group, i.e., pX˚

ij , δ
˚
ijq, j P t1, ..., niu, are drawn randomly from the ith sample

pXij , δijq, j P t1, ..., niu, for all i P t1, ..., ku. Then, we denote the groupwise bootstrap counterparts of the
statistics pµ and pΣ defined in Section 4.2.1 with a superscript ˚: pµ˚ and pΣ˚. The groupwise bootstrap test
statistic is defined by

W˚
n pHq :“ n pHppµ˚ ´ pµqq

1
pHpΣ˚H1q` pHppµ˚ ´ pµqq .

The following theorem provides the consistency of the groupwise bootstrap.

Theorem 4.3. Under Assumption 4.1, we have

W˚
n pHq

d˚

ÝÝÑ χ2
rankpHq

as n Ñ 8.

Hence, we obtain a groupwise bootstrap test

φ˚
n :“ 1tWnpH, cq ą q˚

1´αu,

where q˚
1´α denotes the p1 ´αq-quantile of the conditional distribution of W˚

n pHq given pX, δq. By Lemma 1 in
[45], φ˚

n is an asymptotically valid level-α test. By Section 2.3.2, the quantile may also be approximated by a
Monte Carlo method.
Note that we do not need the property that H is a contrast matrix in the proofs of Theorems 4.1 and 4.3.
Hence, the groupwise bootstrap test is also valid for general matrices H P Rrˆk with rankpHq ą 0.

4.2.4 Wild Bootstrap Test

In this section, we use the wild bootstrap approach similar as described in [80] for approximating the distribution
of the Wald-type test statistic. For developing the approach in [80], the ideas of [52] and [62] were adopted.
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In [62], it was proposed to replace
?
nppSiptq ´ Siptqq by

?
n
ni
ÿ

j“1
Gij pSiptq

ż

r0,ts

1
Yipxq

dNijpxq

for t ě 0, where Gij , j P t1, ..., niu, i P t1, ..., ku, are independent standard Gaussian random variables and
Nijpxq :“ δij1tXij ď xu for all x ě 0. We modify this procedure analogously to Greenwood’s formula [40] and
replace

?
nppSiptq ´ Siptqq by

?
n
ni
ÿ

j“1
Gij pSiptq

ż

r0,ts

1
a

pYipxq ´ ∆NipxqqYipxq
dNijpxq

for all t ą 0; also see [26]. For continuous survival functions Si, this is asymptotically equivalent to the proposal
of [62]. However, the modification becomes important for the extension to discontinuous distribution functions
Si. Moreover, we aim to weaken the assumption that Gij , j P t1, ..., niu, i P t1, ..., ku, are standard Gaussian
distributed. In fact, the multipliers only have to fulfill the following conditions:

(i) Gij , j P t1, ..., niu, i P t1, ..., ku, are i.i.d. and independent of the data pX, δq,

(ii) E rGijs “ 0,

(iii) E
“

G2
ij

‰

“ 1,

(iv) E
“

G4
ij

‰

ď C for some constant C ă 8

for all j P t1, ..., niu, i P t1, ..., ku. Hence, we replace
?
nppµi ´ µiq by

?
npµGi :“

?
n
ni
ÿ

j“1
Gij

ż τ

0
pSiptq

ż

r0,ts

1
a

pYipxq ´ ∆NipxqqYipxq
dNijpxq dt

for all i P t1, ..., ku. Furthermore, let

WG
n pHq :“ npHpµGq1pHpΣGH1q`HpµG

be the wild bootstrap counterpart of the Wald-type test statistic, where pµG :“ ppµG1 , ..., pµ
G
k q1 and pΣG :“

diagppσG2
1 , ..., pσG2

k q with

pσG2
i :“ n

ni
ÿ

j“1
G2
ij

ż

r0,τq

ˆ
ż τ

x

pSiptq dt
˙2 1

pYipxq ´ ∆NipxqqYipxq
dNijpxq.

Then, the following theorem ensures the wild bootstrap consistency.

Theorem 4.4. Under Assumption 4.1, we have

WG
n pHq

d
ÝÑ χ2

rankpHq

almost surely as n Ñ 8 given the data pX, δq. Mathematically, this means

sup
zPR

ˇ

ˇP
`

WG
n pHq ď z | pX, δq

˘

´ P pZ ď zq
ˇ

ˇ

a.s.
ÝÝÑ 0

as n Ñ 8, where Z „ χ2
rankpHq

.

We define a wild bootstrap test by

φG :“ 1tWnpH, cq ą qG1´αu,

where qG1´α denotes the p1 ´ αq-quantile of the conditional distribution of WG
n pHq given pX, δq. Again, the

asymptotic validity of this test is provided by Lemma 1 in [45] and the quantile may be approximated by a
Monte Carlo method by Section 2.3.2.

36



4.3 Multiple Tests
Let us now interpret the contrast matrix H as a partitionized matrix H “ rH1

1, ...,H1
Ls1 with Hℓ P Rrℓˆk for

all ℓ P t1, ..., Lu such that
řL
ℓ“1 rℓ “ r and, analogously, c “ pc1

1, ..., c1
Lq1 with cℓ P Rrℓ for all ℓ P t1, ..., Lu.

Moreover, we assume rankpHℓq ą 0 for all ℓ P t1, ..., Lu. In this section, we aim to construct a testing procedure
for the multiple testing problem with null and alternative hypotheses

H0,ℓ : Hℓµ “ cℓ vs. H1,ℓ : Hℓµ ‰ cℓ, for ℓ P t1, ..., Lu. (4.6)

In doing so, we aim to incorporate the asymptotically exact dependence structure between the test statistics of
the L local tests to gain more power than, for example, by using a Bonferroni-correction.

Example 4.1. A global null hypothesis which is of interest in many applications is the equality of the RMSTs,
i.e., H0 : µ1 “ ... “ µk versus the alternative H1 : µi1 ‰ µi2 for some i1, i2 P t1, ..., ku. However, there are
different possible choices of the contrast matrix H which lead to this global null hypothesis [47]. A popular
choice is the Grand-mean-type contrast matrix as introduced in Section 4.1, where the RMSTs of the different
groups are compared with the overall mean of the RMSTs µ :“ 1

k

řk
i“1 µi for the different contrasts, respectively.

Many-to-one comparisons can be considered by choosing the Dunnett-type contrast matrix [34]

H “ r´1k´1, Ik´1s “

»

—

—

—

–

´1 1 0 ¨ ¨ ¨ 0
´1 0 1 ¨ ¨ ¨ 0
...

...
. . .

...
´1 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

fl

P Rpk´1qˆk (4.7)

and c “ 0k´1, where the RMSTs µ2, ..., µk are compared to the RMST µ1 of the first group regarding the different
contrasts. In order to compare all pairs of RMSTs µi1 , µi2 , i1, i2 P t1, ..., ku with i1 ‰ i2, the Tukey-type contrast
matrix [73]

H “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´1 1 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
´1 0 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
...

...
...

...
. . .

...
...

´1 0 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 1
0 ´1 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
0 ´1 0 1 ¨ ¨ ¨ ¨ ¨ ¨ 0
...

...
...

...
. . .

...
...

0 0 0 0 ¨ ¨ ¨ ´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rkpk´1q{2ˆk (4.8)

and c “ 0kpk´1q{2 can be used. An overview of different contrast tests can be found in [11].
Furthermore, the choice of the considered partition of the matrix H “ rH1

1, ...,H1
Rs1 and, therefore, the resulting

local hypotheses depend on the question of interest. This general formulation of the multiple testing problem
covers the post-hoc testing problem and includes, for example, the local null hypotheses H0,ℓ : µℓ “ µ, for
ℓ P t1, . . . , ku, by choosing Hℓ “ e1

ℓ ´ 1
k11

k for all ℓ P t1, ..., ku, where eℓ P Rk denotes the ℓth unit vector. Analo-
gously, we can perform many-to-one comparisons and all-pair comparisons of the mean functions simultaneously
by considering the r rows of the Dunnett-type and Tukey-type contrast matrix, respectively, as blocks H1, ...,Hr.
Furthermore, the formulation of this testing problem allows to perform multiple tests with more than one contrast
matrix simultanously. In a two-way design, we may choose H1 “ HA,H2 “ HB and H3 “ HAB as introduced
in Section 4.1, for example. This allows for simultaneous testing of the factors A and B and their interaction.

For all local hypotheses in (4.6), we can calculate the Wald-type test statistics WnpHℓ, cℓq, ℓ P t1, ..., Lu. Since
we aim to use the asymptotically exact dependence structure of the test statistics, we have to investigate the
joint asymptotic behavior.
Therefore, let Z „ Nkp0k,Σq with Σ :“ diagpσ2

1 , ..., σ
2
kq in the following, where

σ2
i :“ 1

κi

ż

r0,τq

ˆ
ż τ

x

Siptq dt
˙2 1

p1 ´ ∆Aipxqqyipxq
dAipxq, i P t1, ..., ku.

In Section S.5 of the supplement of [24], it is shown that σ2
i is the almost sure limit of (4.3) for all i P t1, ..., ku.

Theorem 4.5. Let T denote the indices of true null hypotheses in (5.2). Under Assumption 4.1, we have, as
n Ñ 8,

pWnpHℓ, cℓqqℓPT “

´

n pHℓppµ ´ µqq
1
pHℓ

pΣH1
ℓq

`Hℓppµ ´ µq

¯

ℓPT
d

ÝÑ
`

pHℓZq1pHℓΣH1
ℓq

`HℓZ
˘

ℓPT .
(4.9)
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4.3.1 Asymptotic Multiple Tests

Note that Σ is generally unknown such that we do not know the exact asymptotic joint limiting distribution
of pWnpH1, c1q, ...,WnpHL, cLqq. However, we can estimate the joint limit distribution of the test statistics by
estimating Σ through pΣ. This results in the local asymptotic tests

φℓ “ 1

!

WnpHℓ, cℓq ą χ2
rankpHℓq,1´βn

)

, ℓ P t1, . . . , Lu, (4.10)

where βn denotes the local level for each test and can be derived from the conditional multivariate distribution
´

pHℓ
pΣ1{2Yq1pHℓ

pΣH1
ℓq

`Hℓ
pΣ1{2Y

¯

ℓPt1,...,Lu

given pΣ as explained in Section 2.3 for Y „ Nkp0k, Ikq independent of pΣ. In detail, the local level can be
approximated by a Monte Carlo method as βn “ max tβ P t0, 1{Bn, . . . , pBn ´ 1q{Bnu | FWERnpβq ď αu with
approximated family-wise error rate

FWERnpβq “
1
Bn

Bn
ÿ

b“1
max

ℓPt1,...,Lu
1

!

pHℓ
pΣ1{2Ypbqq1pHℓ

pΣH1
ℓq

`pHℓ
pΣ1{2Ypbqq ą χ2

rankpHℓ
pΣH1

ℓ
q,1´β

)

for β P r0, 1q and Yp1q, . . . ,YpBnq „ NkM p0k, Ikq i.i.d. and independent of pΣ. Here, pBnqnPN is a sequence of
natural numbers with Bn Ñ 8 as n Ñ 8. Theorem 2.6 and Lemma 2.3 ensure the family-wise error control of
the multiple tests.
Theorem 4.6. Under Assumption 4.1, the asymptotic multiple tests (4.10) fulfill (2.20)–(2.22), i.e., they control
the family-wise error rate asymptotically in the strong sense and are asymptotically balanced.

4.3.2 Multiple Resampling Tests

In order to improve the small sample performance of the tests, we aim to use consistent resampling procedures
as in Section 4.2. Unfortunately, we cannot use the studentized permutation approach for approximating the
joint limiting distribution. That is because

pWπ
n pHℓqqℓPt1,...,Lu

d˚

ÝÝÑ
`

pHℓZπq1pHℓΣ
πH1

ℓq
`HℓZπ

˘

ℓPt1,...,Lu
(4.11)

as n Ñ 8 holds similarly as in the proof of Theorem 4.2, where Zπ „ Nkp0k,Σπq. Since the limiting distributions
in (4.11) and (4.9) are generally not equal in distribution, the studentized permutation approach is not consistent
for the multiple testing problem.
However, we can approximate the critical values via the groupwise bootstrap as introduced above. The difference
here is that the covariance structures of the groups are not altered since the bootstrap observations are drawn
within each group. The asymptotic validity is guaranteed by the following theorem.
Theorem 4.7. Under Assumption 4.1, we have, as n Ñ 8,

pW˚
n pHℓqqℓPt1,...,Lu

d˚

ÝÝÑ
`

pHℓZq1pHℓΣH1
ℓq

`HℓZ
˘

ℓPt1,...,Lu
.

Thus, we define the multiple groupwise bootstrap tests as

φ˚
ℓ :“ 1

!

WnpHℓ, cℓq ą q˚

ℓ,1´β˚
n

)

, ℓ P t1, ..., Lu, (4.12)

where q˚

ℓ,1´β˚
n
, β˚
n denote the critical values and local level as in Section 2.3.2 for Bn Monte Carlo replicates of

pW˚
n pHℓqqℓPt1,...,Lu.

An analogous result can be found regarding the wild bootstrap.
Theorem 4.8. Under Assumption 4.1, we have, as n Ñ 8,

pWG
n pHℓqqℓPt1,...,Lu

d
ÝÑ

`

pHℓZq1pHℓΣH1
ℓq

`HℓZ
˘

ℓPt1,...,Lu

almost surely given the data pX, δq.
The multiple wild bootstrap tests are given by

φGℓ :“ 1

!

WnpHℓ, cℓq ą qGℓ,1´βG
n

)

, ℓ P t1, ..., Lu, (4.13)

where qGℓ,1´βG
n
, βGn denote the critical values and local level as in Section 2.3.2 for Bn Monte Carlo replicates of

pWG
n pHℓqqℓPt1,...,Lu.

Hence, Theorem 2.6 and Lemma 2.3 provide that we obtain multiple tests for the bootstrap methods that
control the family-wise error rate in the strong sense.
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Theorem 4.9. Under Assumption 4.1, the multiple groupwise bootstrap tests (4.12) as well as the mutiple wild
bootstrap tests (4.13) fulfill (2.20)–(2.22), respectively, i.e., they control the family-wise error rate asymptotically
in the strong sense and are asymptotically balanced.

Furthermore, by the methodologies in Section 2.3, we can construct more powerful multiple tests by using the
closed testing procedure, cf. Remark 2.5, simultaneous confidence regions for Hℓµ, ℓ P t1, ..., Lu, cf. Remark 2.6,
that are

CRℓ,n :“ tξ P Rrℓ | WnpHℓ, ξq ď qℓ,nu , ℓ P t1, ..., Lu,

with qℓ,n being one of χ2
rankpHℓq,1´βn

, q˚

ℓ,1´β˚
n
, qGℓ,1´βG

n
, and adjusted p-values. In the case that Hℓ P R1ˆk, i.e.,

rℓ “ 1, we can simplify the confidence regions to confidence intervals CRn,ℓ :“ rLn,ℓpα{2q, Un,ℓpα{2qs by solving
the equation WnpHℓ, ξq ď qℓ,n for ξ P R. This yields

Ln,ℓpα{2q :“ Hℓpµ ´

b

Hℓ
pΣH1

ℓ
?
n

?
qℓ,n and Un,ℓpα{2q :“ Hℓpµ `

b

Hℓ
pΣH1

ℓ
?
n

?
qℓ,n.

4.3.3 Counterexamples for Simultaneous Non-Inferiority and Equivalence Tests

In [58], we constructed simultaneous non-inferiority and equivalence tests. However, these procedures are only
valid for L “ 1 hypothesis and not for multiple hypotheses, as we will outline in the following two examples.
Therefore, let us consider the case rℓ “ 1 for all ℓ P t1, ..., Lu. In this special case, we write cℓ instead of cℓ in
non-bold type for all ℓ P t1, ..., Lu. We defined simultaneous non-inferiority and equivalence tests by using the
two one-sided test procedure [70]: let ϵ1, ..., ϵL ą 0 be prespecified equivalence bounds; the hypotheses of interest
are

Hi
0,ℓ : Hℓµ ´ cℓ ě ϵℓ vs. Hi

1,ℓ : Hℓµ ´ cℓ ă ϵℓ, for ℓ P t1, ..., Lu (4.14)

for the non-inferiority testing problem and

He
0,ℓ : |Hℓµ ´ cℓ| ě ϵℓ vs. He

1,ℓ : |Hℓµ ´ cℓ| ă ϵℓ, for ℓ P t1, ..., Lu (4.15)

for the equivalence testing problem.
Let qℓ,np2αq, ℓ P t1, ..., Lu, denote the used critical values at global level 2α in order to obtain critical values
at level α for the one-sided testing problem. For each ℓ P t1, ..., Lu, we reject Hi

0,ℓ in (4.14) if and only if
Un,ℓpαq ´ cℓ ă ϵℓ. Furthermore, for each ℓ P t1, ..., Lu, we reject He

0,ℓ in (4.15) if and only if

Un,ℓpαq ´ cℓ ă ϵℓ and Ln,ℓpαq ´ cℓ ą ´ϵℓ.

However, these methods do not guarantee a family-wise error rate control of α for L ą 1, not even in the weak
sense, as the following two examples show.

Example 4.2 (Counterexample for the multiple non-inferiority tests). Let L “ 2, k “ 1, H1 “ 1,H2 “ ´1, ϵ1 “

ϵ2 “ 0, c1 “ µ1, c2 “ ´µ1, i.e., Hi
0,1 and Hi

0,2 are true. Furthermore, we denote pσ2 :“ pΣ ą 0. Note that
?
nppµ1 ´ µ1q{pσ

d
ÝÑ Z „ N p0, 1q as n Ñ 8 by Lemmas 4.1 and 4.2. Moreover, qℓ,np2αq

P
ÝÑ z2

1´α by Remark 2.7
with β “ 2α, where z2

1´α denotes the p1´αq-quantile of a N p0, 1q-distribution. Then, the family-wise error rate
is given by

P ptUn,1pαq ´ c1 ă 0u Y tUn,2pαq ´ c2 ă 0uq

“ P

ˆ"

pµ1 `
pσ

?
n

b

qℓ,np2αq ´ µ1 ă 0
*

Y

"

´pµ1 `
pσ

?
n

b

qℓ,np2αq ` µ1 ă 0
*˙

“ P

ˆ"

?
nppµ1 ´ µ1q{pσ ă ´

b

qℓ,np2αq

*

Y

"

?
nppµ1 ´ µ1q{pσ ą

b

qℓ,np2αq

*˙

Ñ P ptZ ă ´z1´αu Y tZ ą z1´αuq “ 2α ą α

as n Ñ 8.

Example 4.3 (Counterexample for the multiple equivalence tests). Let L “ 2, k “ 1, H1 “ H2 “ 1, ϵ1 “ ϵ2 “ 1,
c1 “ µ1 ´ 1, c2 “ µ1 ` 1, i.e., He

0,1 and He
0,2 are true. Furthermore, we denote again pσ2 :“ pΣ ą 0. Then, the
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family-wise error rate is given by

P ptpUn,1pαq ´ c1 ă ϵ1 ^ Ln,1pαq ´ c1 ą ´ϵ1qu Y tpUn,2pαq ´ c2 ă ϵ2 ^ Ln,2pαq ´ c2 ą ´ϵ2quq

“ P

ˆ"ˆ

pµ1 `
pσ

?
n

b

qℓ,np2αq ´ µ1 ` 1 ă 1 ^ pµ1 ´
pσ

?
n

b

qℓ,np2αq ´ µ1 ` 1 ą ´1
˙*

Y

"ˆ

pµ1 `
pσ

?
n

b

qℓ,np2αq ´ µ1 ´ 1 ă 1 ^ pµ1 ´
pσ

?
n

b

qℓ,np2αq ´ µ1 ´ 1 ą ´1
˙*˙

“ P

ˆ"

´2
?
n

pσ
`

b

qℓ,np2αq ă
?
nppµ1 ´ µ1q{pσ ă ´

b

qℓ,np2αq

*

Y

"

b

qℓ,np2αq ă
?
nppµ1 ´ µ1q{pσ ă 2

?
n

pσ
´

b

qℓ,np2αq

*˙

Ñ P ptZ ă ´z1´αu Y tZ ą z1´αuq “ 2α ą α

as n Ñ 8 for Z „ N p0, 1q.

4.4 Simulation Study
In order to analyze the small sample performance of our proposed methods, we conducted an extensive simulation
study by using the computing environment R, version 4.2.1 [66].

4.4.1 Simulation Setup

The simulation setup is based on [24]. We simulated a factorial design with k “ 4 groups and utilized the three
different contrast matrices introduced in Example 4.1: the Dunnett-type, Tukey-type and Grand-mean-type
contrast matrix. Here, the local hypotheses were constructed by the rows of the contrast matrix, i.e., the blocks
H1, ...,HR correspond to the rows of H.
The survival times of the first three groups were always drawn from the same distribution. However, the
survival distribution of the fourth group may differ. As in [24], the data were generated from the following
survival distributions:

• Exponential distributions and early departures (exp early): T11, T21, T31 „ Expp0.2q and T41 with piece-
wise constant hazard function t ÞÑ λδ,1 ¨ 1tt ď 2u ` 0.2 ¨ 1tt ą 2u,

• exponential distributions and late departures (exp late): T11, T21, T31 „ Expp0.2q and T41 with piece-wise
constant hazard function t ÞÑ 0.2 ¨ 1tt ď 2u ` λδ,2 ¨ 1tt ą 2u,

• exponential distributions and proportional hazard alternative (exp prop): T11, T21, T31 „ Expp0.2q and
T41 „ Exppλδ,3q,

• lognormal distributions with scale alternatives (logn): T11, T21, T31 „ logNp2, 0.25q and T41 „ logNpλδ,4, 0.25q,

• exponential distributions and piece-wise exponential distributions (pwExp): T11, T21, T31 „ Expp0.2q and
T41 with piece-wise constant hazard function t ÞÑ 0.5 ¨ 1tt ď λδ,5u ` 0.05 ¨ 1tt ą λδ,5u,

• Weibull distributions and late departures (Weib late): T11, T21, T31 „ Weibp3, 8q and T41 „ Weibp3 ¨

λδ,6, 8{λδ,6q,

• Weibull distributions and proportional hazard alternative (Weib prop): T11, T21, T31 „ Weibp3, 8q and
T41 „ Weibp3, λδ,7q,

• Weibull distributions with crossing curves and scale alternatives (Weib scale): T11, T21, T31 „ Weibp3, 8q

and T41 „ Weibp1.5, λδ,8q,

• Weibull distributions with crossing curves and shape alternatives (Weib shape): T11, T21, T31 „ Weibp3, 8q

and T41 „ Weibpλδ,9, 14q.

Here, the parameters λδ,1, ..., λδ,9 were determined such that the RMST difference equals δ “ µ1 ´ µ4. This
difference was set to δ “ 0 for simulating under the null and to δ “ 1.5 for simulating under the alternative
hypothesis.
Note that, under the null hypothesis, the scenarios exp early, exp late and exp prop as well as Weib late and
Weib prop are respectively equal. Consequently, we only included the results for these scenarios once in the
figures and tables, respectively. This is done by calculating the mean over the results.
For the censoring times, we chose the following three scenarios:
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Figure 4: Survival functions of the censoring times.

• equally Weibull distributed censoring times (equal): C11, C21, C31, C41 „ Weibp3, 10q,

• unequally Weibull distributed censoring times with high censoring rates (unequal, high): C11 „ Weibp0.5, 15q, C21 „

Weibp0.5, 10q, C31 „ Weibp1, 8q and C41 „ Weibp1, 10q,

• unequally Weibull distributed censoring times with low censoring rates (unequal, low): C11 „ Weibp1, 20q, C21 „

Weibp3, 10q, C31 „ Weibp1, 15q and C41 „ Weibp3, 20q.

The survival functions of these censoring times are illustrated in Figure 4. The resulting censoring rates of the
different groups are presented in Table 4 in the appendix. The censoring rates ranged from 20% up to 60% in
groups 1-3 and from 1% up to 57% in group 4.
We considered balanced and unbalanced designs with sample sizes n “ pn1, n2, n3, n4q “ K ¨ p15, 15, 15, 15q and
n “ K ¨ p10, 20, 10, 20q, where K P t1, 2, 4u for small, medium and large samples.
Furthermore, Nsim “ 5000 simulation runs with B “ 1999 resampling iterations were generated. The level of
significance was set to α “ 0.05 and the upper integration bound to τ “ 10.
The following methods were compared:

• asymptotic_global: The global Wald-type test as in Section 4.2.1,

• permutation: The global studentized permutation test as in Section 4.2.2,

• asymptotic: Multiple asymptotic Wald-type tests as in Section 4.3.1,

• wild, Rademacher ; wild, Gaussian: Multiple wild bootstrap tests as in Section 4.3.2 with Rademacher
and Gaussian multipliers, respectively,

• groupwise: The multiple groupwise bootstrap test as in Section 4.3.2,

• asymptotic_bonf : Global Wald-type tests as in Section 4.2.1 adjusted with the Bonferroni-correction,

• permutation_bonf : Global studentized permutation tests as in Section 4.2.2 adjusted with the Bonferroni-
correction.

Clearly, the first two methods (asymptotic_global, permutation) can only be compared to multiple testing
procedures for the global testing problem. However, by using a Bonferroni-correction (asymptotic_bonf, per-
mutation_bonf ), we can also obtain test decisions for the local hypotheses.

4.4.2 Simulation Results under the Null Hypothesis

Figures 5 to 7 under H0 illustrate the global rejection rates, which coincide with the family-wise error rates
for the multiple tests, over all settings for the different contrast matrices. Here, the dotted line represents the
α-level of 0.05 and the dashed lines represent the borders of the binomial confidence interval r0.044, 0.0562s.
In all figures, it can be seen that only the permutation approach and the groupwise bootstrap seem to perform
well over all simulation settings. Here, the permutation approach yields slightly better values than the groupwise
bootstrap. Tables S1 to S36 on GitHub (https://github.com/MerleMunko/supplement_thesis) show the
global rejection rates of the different settings. Under the null hypothesis, all values in the binomial confidence
interval are printed in bold type. The permutation method is exact under exchangeability and, thus, most of
the values of the permutation method with equal survival distributions across the groups under the null (exp
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early, exp late, exp prop, logn, Weib late, Weib prop) and equal censoring distributions fall within that interval.
Furthermore, when exchangeability is violated, the permutation method still seems to perform quite accurately
in terms of type I error control for all sample sizes. The groupwise bootstrap approach also results in very
accurate family-wise error rates, especially for medium and large sample sizes. Moreover, we note that the three
asymptotic approaches (asymptotic_global, asymptotic, asymptotic_bonf ) and the wild bootstrap approaches
are too liberal, as they exhibit too high rejection rates in nearly all settings. In Figures 15 to 17 in the appendix,
it is observable that these methods exceed the desired level of significance particularly for settings with small
sample sizes. By further analyzing the tables in the appendix, we observe that high censoring rates amplify the
liberality of the tests. Note that the highest rejection rates occur for small sample size settings, where at least
49% of the data is censored.
It should be noted that the power of our multiple tests can be improved by using a stepwise procedure as
described in Section 2.3. The power of the Bonferroni corrected methods can also be improved by a stepwise
procedure, e.g., the Holm-correction [42]. However, stepwise procedures cannot be used for the construction of
confidence regions and, hence, we did not focus on these in the simulation study.
We have proven that all approaches are asymptotically valid under the null hypothesis. Figures 15 to 17 in
the appendix confirm this empirically: all methods seem to tend to the desired level of significance of 0.05 for
increasing sample sizes. However, the convergence rates of the asymptotic and the wild bootstrap approaches
appear to be very slow. This observation prompts an inquiry into analyzing how larger sample sizes might
influence the type I error control for the naive methods, that are the three asymptotic approaches. Therefore,
further simulations under the null hypothesis were conducted in Section C.2 in the appendix. Specifically, we
increased the scaling factor for sample sizes, that is K P t6, 8, 10u, resulting in sample sizes ranging from 60 to
200 per group.

4.4.3 Simulation Results under the Alternative Hypothesis

In the power assessment, we observed small differences between the different methods. The global asymptotic
approach leads to the highest power in most settings, followed by the wild bootstrap with Gaussian and with
Rademacher multipliers. However, in view of the bad type I error control of these methods, we cannot recom-
mend their use.
Let us now review the multiple testing problem. Because of the bad type I error control of the wild bootstrap
approaches and for the sake of clarity, we did not consider this method in the following. Moreover, the global
approaches (asymptotic global and permutation) do not yield local decisions. Thus, we only compared the
asymptotic, the groupwise bootstrap and the Bonferroni-corrected approaches for the multiple testing prob-
lem. Furthermore, only the settings under the alternative hypothesis are considered. Tables S37 to S54 on
GitHub (https://github.com/MerleMunko/supplement_thesis) provide the rejection rates of the false local
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Figure 5: Rejection rates under H0 over all settings for the Dunnett-type contrast matrix. The dashed lines
represent the borders of the binomial confidence interval r0.044, 0.0562s.
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Figure 6: Rejection rates under H0 over all settings for the Tukey-type contrast matrix. The dashed lines
represent the borders of the binomial confidence interval r0.044, 0.0562s.

hypotheses across all settings for the different sample sizes; they are further illustrated in Figures 18 to 20 in the
appendix. Therein, it is apparent that the asymptotic approaches have a higher power for each false hypothesis
than the groupwise bootstrap and the studentized permutation approach with the Bonferroni-correction. How-
ever, this difference is rather small, especially for large sample sizes. Additionally, by comparing the empirical
power of the groupwise bootstrap test and of the studentized permutation test with Bonferroni-correction, the
groupwise bootstrap test tends to be slightly more powerful for medium and large sample sizes. For small sample
sizes, this trend reverses for the Dunnett-type and Tukey-type contrast matrix. However, it is important to
note that the differences between the two methods regarding the empirical power are quite small and mainly
not even visible in Figures 18 to 20.
Nevertheless, it is well-known that the Bonferroni-correction might lead to a loss of power [47]. In order to
illustrate this, we conducted an additional simulation study under non-exchangeability; see Section C.3 in the
appendix for details. Here, we saw that the groupwise bootstrap approach is able to outperform the permuta-
tion approach with Bonferroni-corrections in specific scenarios under non-exchangeability. This effect becomes
particularly observable for the Tukey-type contrast matrix, where six hypotheses are tested simultaneously.
We conducted further investigations in order to assess the impact of censoring and sample sizes on the power.
As expected, the power increases for larger sample sizes for each method. Additionally, settings with lower
censoring rates tend to be more powerful. When comparing the power between the three false hypotheses
H0,3,H0,5 and H0,6 of the Tukey-type contrast matrix, it becomes apparent that the fifth hypothesis H0,5 can
be rejected more often, see, e.g., Figure 19. The reason behind this can be attributed to the unequal sample
sizes in the unbalanced design: Groups 1 and 3 contain only K ¨10 observations, respectively, while groups 2 and
4 contain K ¨ 20 observations each, for K P t1, 2, 4u. Consequently, when comparing the RMSTs of groups 2 and
4, we have a larger dataset compared to other pairwise comparisons leading to more power. This exemplifies
how an unbalanced design can boost the power of specific local hypotheses. However, depending on the contrast
matrix, this is often done at the cost of a reduced power for testing other local hypotheses.
It should be noted that the empirical power is very low in some scenarios. This is particularly the case when
considering the groupwise bootstrap and the studentized permutation approach with Bonferroni-correction and
small sample sizes. Moreover, an increasing number of hypotheses decreases the power for the local hypotheses
in general. Consequently, multiple tests based on the Tukey-type contrast matrix have even less power than
multiple tests based on the Dunnett-type contrast matrix. Furthermore, small differences to the null hypothesis
are difficult to detect. This can be observed for the Grand-mean-type contrast matrix, see Figure 20 in the
appendix, where the three null hypotheses H0,1 : µ1 “ µ,H0,2 : µ2 “ µ, and H0,3 : µ3 “ µ have very low
rejection rates under the alternative hypothesis due to a small difference of µi ´µ “ δ{4 “ 3{8 for i P t1, 2, 3u.
In conclusion, we recommend to use the studentized permutation method for the global testing problem. For
the multiple testing problem, the groupwise bootstrap test and the studentized permutation method with
Bonferroni-correction perform similarly and quite well in terms of the type I error control and the empirical
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Figure 7: Rejection rates under H0 over all settings for the Grand-mean-type contrast matrix. The dashed lines
represent the borders of the binomial confidence interval r0.044, 0.0562s.

power across all simulation scenarios. However, we recommend to use the groupwise bootstrap test for testing
a large number of hypotheses since the Bonferroni-correction is known to have a lower power in this case [47].

4.5 Data Example about the Occurrence of Hay Fever
In order to illustrate our novel methods on real data, we consider a data set with data about the occurrence
of hay fever of boys and girls with and without contact to farming environments [37, 38]. These data derive
from an observational study and may be structured in a factorial 2-by-2 design: factor A represents whether
the child was growing up on a farm; factor B represents the sex. The event of interest is the age at which hay
fever occurred. Ties are present in the data as each measured age was rounded (down) to full years.
The children were included in the survey via primary schools in 2006. Hence, their age has been mainly between
six and ten years at the beginning of the study. The medical diagnoses of hay fever together with the age at
initial diagnosis before study entry were recorded retrospectively. The age at which the diagnosis was made is
easy to remember so that no significant recall bias or inaccuracies were assumed here. Follow-up surveys took
place in 2010 with retrospective recording of initial diagnoses since the last survey and from then on annually
until 2016. For simultaneous testing on a main effect of the two factors as well as on an interaction effect, we
define H :“ rH1

A,H1
B ,H1

ABs1 by using the notation of Section 4.2. Furthermore, we set α “ 0.05 as the level of
significance and chose τ “ 15 years.
The data set consists of 2234 participants. In detail, 654 boys and 649 girls not growing up on a farm and
450 boys and 481 girls growing up on farms were observed. Note that we did not adjust for any confounding
variables in order to simplify this application of our method to real data. This comes with the limitation that
the results may not fully reflect the causal effects of sex or growing up on a farm on the incidence of hay fever.
The censoring rates in the different groups ranged from 74% up to 93%. The Kaplan-Meier and Nelson-Aalen
curves of all groups are illustrated in Figure 8. Here, it can be seen that the estimated cumulative hazard
functions are crossing each other and, thus, the proportional hazards assumption is not justified. If we would
perform a Cox proportional hazards model nevertheless, the resulting (unadjusted) p-values of the existence of
an impact on the occurrence of hay fever are pA ă 10´8 for a main effect of factor A, pB “ 0.112 for a main
effect of factor B and pAB “ 0.235 for an interaction effect. By using a Bonferroni- or Holm-correction of the
p-values, we could only establish that factor A (growing up on a farm) has a main effect on the occurrence of
hay fever at global level 0.05.
However, since the proportional hazards assumption seems violated, we aimed to compare the RMSTs in the
different groups. The estimated RMSTs respectively are 14.22 and 14.66 for boys and girls growing up on
farms and 13.59 and 13.79 for boys and girls not growing up on a farm. This indicates that boys tend to be
more prone to hay fever than girls until the age of 15. Furthermore, growing up on a farm seems to reduce
the risk of getting hay fever until the age of 15. Performing the global asymptotic Wald-type test and its
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Figure 8: Kaplan-Meier and Nelson-Aalen curves of the different groups

Test asymptotic wild wild groupwise asymptotic permutation
Rademacher Gaussian bonf bonf

Farm ă 0.001 ă 0.001 ă 0.001 ă 0.001 ă 0.001 ă 0.001
Sex 0.005 0.006 0.006 0.007 0.006 0.006
Interaction 0.605 0.599 0.603 0.597 0.811 0.800

Table 1: Adjusted p-values for the data example

global studentized permutation version with B “ 19999 resampling iterations leads to p-values of p ă 0.003
and, thus, the existence of at least one main or the interaction effect on the occurrence of hay fever is highly
significant. However, these tests cannot provide the information whether there is a significant difference of
hay fever occurrence between the groups regarding the sex and/or growing up on a farm and/or an interaction
effect. Therefore, we applied multiple testing procedures. The resulting adjusted p-values of our proposed
methods with B “ 19999 resampling iterations are shown in Table 1. The p-values of the global asymptotic
and permutation approach were adjusted by a Bonferroni-correction for enabling local test decisions. Here, we
found that all methods rejected the local hypotheses of no main effect of the two factors simultaneously at the
α “ 0.05 level. However, the interaction effect of the two factors was not significant.
The data from this example do not fit perfectly to the simulation design in Section 4.4 since, here, a 2-by-2 design
with different hypothesis matrices and larger sample sizes and censoring rates is considered. Thus, additional
simulation results inspired by this data example can be found in Section C.4.

4.6 Proofs of Section 4
Proof of Theorem 4.1 By Lemma S.1 in the supplement of [24], it holds

?
nppµ ´ µq

d
ÝÑ Nkp0k,Σq (4.16)

as n Ñ 8. Moreover, we have

pσ2
i
a.s.

ÝÝÑ σ2
i (4.17)

as n Ñ 8 for all i P t1, ..., ku by Section S.5 in the supplement of [24] under Assumption 4.1. Due to
P pTi1ăτq ą 0, it holds σ2

i ą 0 for all i P t1, ..., ku. Hence, it follows rankpHΣH1q “ rankpHΣ1{2q “ rankpHq

and, analogously, P prankpHpΣH1q ‰ rankpHqq Ñ 0 for n Ñ 8. Consequently, the Moore-Penrose inverse
pHpΣH1q` converges in probability to pHΣH1q`. By Slutsky’s lemma and Theorem 9.2.2 in [67], it follows

WnpH, cq
d

ÝÑ χ2
rankpHq

as n Ñ 8 under the null hypothesis in (4.2).
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Proof of Theorem 4.2 First of all, we introduce some notation. Let νptq :“
řk
i“1 κiνiptq, yptq :“

řk
i“1 κiyiptq,

Aptq :“
ş

r0,ts 1{y dν and Sptq :“ P
sPr0,ts

p1 ´ dApsqq for all t ě 0. Moreover, let pS denote the Kaplan-Meier esti-

mator of the pooled survival function S, see [24] for details, and pµ :“
şτ

0
pSptq dt denote the estimator regarding

the RMST of the pooled sample.
As in the proof of Lemma S.2 in the supplement of [24], it holds

?
nppµπ ´ pµ1kq

d˚

ÝÝÑ Nkp0k,Σπq

as n Ñ 8, where

pΣπqii1 :“
ˆ

1
κi
1ti “ i1u ´ 1

˙

σπ2

for all i, i1 P t1, ..., ku and

σπ2 :“
ż

r0,τq

ˆ
ż τ

x

Sptq dt
˙2 1

p1 ´ ∆Apxqqypxq
dApxq.

Moreover, in the proof of Lemma S.3 of the supplement of [24], it was shown that

pσπ2
i

P
ÝÑ κi

´1σπ2

as n Ñ 8 for all i P t1, ..., ku under P pXi1 ě τq ą 0. Hence, it follows

pΣπ P
ÝÑ diag

`

κ1
´1σπ2, ..., κk

´1σπ2˘ “ Σπ ` σπ2Jk

as n Ñ 8. Since HJk “ 0rˆk, it holds HpΣπ P
ÝÑ HΣπ as n Ñ 8. Moreover, P pTi1ăτq ą 0 implies σπ2 ą 0

and, thus, P ppσπ2
i ą 0q Ñ 1 as n Ñ 8. Consequently, we have pHpΣπH1q` P

ÝÑ pHΣπH1q` as n Ñ 8. Hence, it
follows by Slutsky’s lemma and Theorem 9.2.2 in [67]

Wπ
n pHq “ npHpµπq1pHpΣπH1q`Hpµπ

“ nrHppµπ ´ pµ1kqs1pHpΣπH1q`Hppµπ ´ pµ1kq
d˚

ÝÝÑ χ2
rankpHq

as n Ñ 8.

Proof of Theorem 4.3 For proving Theorem 4.3, let pS˚
i ,

pA˚
i , pσ

˚2
i , Y ˚

i and N˚
i denote the groupwise bootstrap

counterparts of pSi, pAi, pσ
2
i , Yi and Ni, respectively, for all i P t1, ..., ku.

Lemma 4.1. Under Assumption 4.1, we have
?
nppµ˚ ´ pµq

d˚

ÝÝÑ Z “ pZ1, ..., Zkq1 „ Nkp0k,Σq (4.18)

as n Ñ 8.

Proof of Lemma 4.1. By Section A.2, it holds
?
nippS

˚
i ´ pSiq

d˚

ÝÝÑ Ui „ GP p0,Γiq

on Dr0, τq as n Ñ 8, where

Γi : r0, τq2 Q pt, sq ÞÑ SiptqSipsq

ż

r0,mintt,sus

1
p1 ´ ∆Aipxqqyipxq

dAipxq P R

for all i P t1, ..., ku and GP p0,Γiq denotes a centered Gaussian process with covariance function Γi. Since the
samples are independent, it follows

?
nppS˚

i ´ pSiqiPt1,...,ku
d˚

ÝÝÑ G˚ “

ˆ

1
?
κi

Ui
˙

iPt1,...,ku

„ GPk

ˆ

0k,diag
ˆ

1
κ1

Γ1, ...,
1
κk

Γk
˙˙

on Dr0, τqk as n Ñ 8 by (4.1), where GPk p0k,Dq denotes a k-dimensional centered Gaussian process with
covariance function D : r0, τq2 Ñ Rkˆk. Hence, the continuous mapping theorem provides

?
nppµ˚ ´ pµq

d˚

ÝÝÑ

ż τ

0
G˚ptq dt “ Z

as n Ñ 8. The limiting variable Z is normally distributed as linear transformation of a Gaussian process and
its moments can be calculated by using Fubini’s theorem. Thus, we get E rZs “ 0k and Cov pZq “ Σ.
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Lemma 4.2. Under Assumption 4.1, we have, as n Ñ 8,

pΣ˚ P
ÝÑ Σ. (4.19)

Proof of Lemma 4.2. Let i P t1, ..., ku be arbitrary. Similarly as in the supplement of [31], we consider the
P pXi1,δi1q-Donsker classes

F1 :“ tpx, dq ÞÑ 1tx ď t, d “ 1u | t P r0, τ su and F2 :“ tpx, dq ÞÑ 1tx ě tu | t P r0, τ su

with finite envelope function F ” 1. By Theorem 3.7.1 in [74] and Slutsky’s lemma, we obtain

sup
tPr0,τs

ˇ

ˇ

ˇ

ˇ

1
ni
Y ˚
i ptq ´

1
ni
Yiptq

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0 and sup

tPr0,τs

ˇ

ˇ

ˇ

ˇ

1
ni
N˚
i ptq ´

1
ni
Niptq

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0

as n Ñ 8. Section S.6 in the supplement of [24] provides

sup
tPr0,τs

ˇ

ˇ

ˇ

ˇ

1
ni
Yiptq ´ yiptq

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0 and sup

tPr0,τs

ˇ

ˇ

ˇ

ˇ

1
ni
Niptq ´ νiptq

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0

as n Ñ 8. It follows

sup
tPr0,τs

ˇ

ˇ

ˇ

pS˚
i ptq ´ Siptq

ˇ

ˇ

ˇ

P
ÝÑ 0 and sup

tPr0,τs

ˇ

ˇ

ˇ

pA˚
i ptq ´Aiptq

ˇ

ˇ

ˇ

P
ÝÑ 0

as n Ñ 8 under P pXi1 ě τq ą 0. Hence, we have pσ˚2
i

P
ÝÑ σ2

i as n Ñ 8. Since i P t1, ..., ku was arbitrary, (4.19)
follows.

Now, the statement of Theorem 4.3 follows with similar arguments as in the proofs of Theorem 4.1 and 4.2 by
Lemma 4.1 and 4.2. In doing so, we apply Slutsky’s lemma and Theorem 9.2.2 in [67] again.

Proof of Theorem 4.4

Lemma 4.3. Under Assumption 4.1, we have
?
npµG

d
ÝÑ Z “ pZ1, ..., Zkq1 „ Nkp0k,Σq

almost surely as n Ñ 8 given the data pX, δq.

Proof of Lemma 4.3. Let i P t1, ..., ku be arbitrary. We aim to apply the Lindeberg-Feller theorem with

Zj,ni :“
?
niGij

ż

r0,τq

ż τ

x

pSiptq dt 1
a

pYipxq ´ ∆NipxqqYipxq
dNijpxq

for all j P t1, ..., niu. Then, Z1,ni , ..., Zni,ni are independent conditionally on pX, δq. Moreover, we have

E rZj,ni
| X, δs “

?
niE rGij | X, δs

ż

r0,τq

ż τ

x

pSiptq dt 1
a

pYipxq ´ ∆NipxqqYipxq
dNijpxq “ 0

almost surely. It should be noted that all following statements about conditional expectations hold just almost
surely but we will not always add this throughout, for the sake of clarity. Furthermore, it holds

s2
n :“

ni
ÿ

j“1
Var pZj,ni

| X, δq “ ni

ni
ÿ

j“1
Var pGij | X, δq

˜

ż

r0,τq

ż τ

x

pSiptq dt 1
a

pYipxq ´ ∆NipxqqYipxq
dNijpxq

¸2

“ ni

ż

r0,τq

ˆ
ż τ

x

pSiptq dt
˙2 1

pYipxq ´ ∆NipxqqYipxq
dNipxq

“
ni
n
pσ2
i
a.s.

ÝÝÑ κiσ
2
i
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as n Ñ 8 under P pXi1 ě τq ą 0 by Section S.5 in the supplement of [24]. For showing Lindeberg’s condition,
let ε ą 0 be arbitrary. Then, we have

1
s2
n

ni
ÿ

j“1
E
“

Z2
j,ni

1
␣

Z2
j,ni

ą ε2s2
n

(

| X, δ
‰

“
n

nipσ2
i

ni
ÿ

j“1
niE

»

—

–

G2
ij1

$

’

&

’

%

niG
2
ij

ż

r0,τq

´

şτ

x
pSiptq dt

¯2

pYipxq ´ ∆NipxqqYipxq
dNijpxq ą ε2ni

n
pσ2
i

,

/

.

/

-

| X, δ

fi

ffi

fl

¨

ż

r0,τq

´

şτ

x
pSiptq dt

¯2

pYipxq ´ ∆NipxqqYipxq
dNijpxq

ď
n

pσ2
i

ni
ÿ

j“1
E

»

—

–

G2
ij1

$

’

&

’

%

G2
ij sup
xPr0,τq

$

’

&

’

%

´

şτ

x
pSiptq dt

¯2

pYipxq ´ ∆NipxqqYipxq

,

/

.

/

-

ą ε2 1
n
pσ2
i

,

/

.

/

-

| X, δ

fi

ffi

fl

¨

ż

r0,τq

´

şτ

x
pSiptq dt

¯2

pYipxq ´ ∆NipxqqYipxq
dNijpxq

“ E

»

—

–

G2
i11

$

’

&

’

%

G2
i1 sup
xPr0,τq

$

’

&

’

%

´

şτ

x
pSiptq dt

¯2

pn´1
i Yipxq ´ n´1

i ∆Nipxqqn´1
i Yipxq

,

/

.

/

-

ą ε2n
2
i

n
pσ2
i

,

/

.

/

-

| X, δ

fi

ffi

fl

a.s.
ÝÝÑ 0

as n Ñ 8 by the dominated convergence theorem with integrable majorant G2
i1, where the last equality follows

from the definition of pσ2
i . Here, we use that

sup
xPr0,τq

ˇ

ˇn´1
i Yipxq ´ yipxq

ˇ

ˇ

a.s.
ÝÝÑ 0, sup

xPr0,τq

ˇ

ˇn´1
i Nipxq ´ νipxq

ˇ

ˇ

a.s.
ÝÝÑ 0 and pσ2

i
a.s.

ÝÝÑ σ2
i (4.20)

as n Ñ 8 holds under P pXi1 ě τq ą 0 by Section S.5 and S.6 in the supplement of [24] such that

P

¨

˚

˝

1

$

’

&

’

%

G2
i1 sup
xPr0,τq

$

’

&

’

%

´

şτ

x
pSiptq dt

¯2

pn´1
i Yipxq ´ n´1

i ∆Nipxqqn´1
i Yipxq

,

/

.

/

-

ą ε2n
2
i

n
pσ2
i

,

/

.

/

-

ą ε | pX, δq

˛

‹

‚

ď P

˜

G2
i1 sup
xPr0,τq

"

τ2

pn´1
i Yipxq ´ n´1

i ∆Nipxqqn´1
i Yipxq

*

ą ε2n
2
i

n
pσ2
i | pX, δq

¸

a.s.
ÝÝÑ 0

as n Ñ 8 for all ε ą 0 follows. Thus, the Lindeberg-Feller theorem implies

?
nipµ

G
i “

ni
ÿ

j“1
Zj,ni

d
ÝÑ N p0, κiσ2

i q

almost surely as n Ñ 8 given the data pX, δq. Hence, the statement of the lemma follows by Slutsky’s
lemma.

Lemma 4.4. Under Assumption 4.1, we have

P
`
ˇ

ˇ

pσG2
i ´ σ2

i

ˇ

ˇ ą ε | pX, δq
˘ a.s.

ÝÝÑ 0

as n Ñ 8 for all i P t1, ..., ku.

Proof of Lemma 4.4. Let i P t1, ..., ku be arbitrary. Then, it holds

E
“

pσG2
i | X, δ

‰

“

ni
ÿ

j“1
nE

“

G2
ij | X, δ

‰

ż

r0,τq

ˆ
ż τ

x

pSiptq dt
˙2 1

pYipxq ´ ∆NipxqqYipxq
dNijpxq

“ pσ2
i
a.s.

ÝÝÑ σ2
i
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as n Ñ 8 and, analogously,

E
“

ppσG2
i q2 | X, δ

‰

ď ppσ2
i q2 ` pC ´ 1q

ni
ÿ

j“1
n2

˜

ż

r0,τq

ˆ
ż τ

x

pSiptq dt
˙2 1

pYipxq ´ ∆NipxqqYipxq
dNijpxq

¸2

“ pσ4
i ` pC ´ 1qn2

ż

r0,τq

ˆ
ż τ

x

pSiptq dt
˙4 1

pYipxq ´ ∆Nipxqq2Y 2
i pxq

dNipxq

ď pσ4
i ` pC ´ 1q

n2

n3
i

ż

r0,τq

τ4

pn´1
i Yipxq ´ n´1

i ∆Nipxqq2n´1
i Yipxq

d pAipxq

a.s.
ÝÝÑ σ4

i

as n Ñ 8 by (4.20). Thus, it follows

P
`ˇ

ˇ

pσG2
i ´ σ2

i

ˇ

ˇ ą ε | pX, δq
˘ a.s.

ÝÝÑ 0

as n Ñ 8 for all ε ą 0 by Chebyshev’s inequality. Hence, the statement of the lemma follows.

Lemma 4.3 and 4.4 provide that there exists a measurable set Ω1 Ă Ω with P pΩ1q “ 1 such that

sup
z1,...,zkPR

ˇ

ˇP
`?
npµG1 ď z1, ...,

?
npµGk ď zk | pX, δq

˘

pωq ´ P pZ1 ď z1, ..., Zk ď zkq
ˇ

ˇ Ñ 0

and

P
`
ˇ

ˇ

pσG2
i ´ σ2

i

ˇ

ˇ ą ε | pX, δq
˘

pωq Ñ 0

as n Ñ 8 for all i P t1, ..., ku, ω P Ω1. Then, by running through the same steps as in the proof of Theorem 4.1,
we get

sup
zPR

ˇ

ˇP
`

WG
n pHq ď z | pX, δq

˘

pωq ´ P pZ ď zq
ˇ

ˇ Ñ 0

as n Ñ 8 for all ω P Ω1, where Z „ χ2
rankpHq

.

Proofs of Theorem 4.5, 4.7 and 4.8 The theorems about the joint convergences follow now easily from
the previous results. Therefore, we apply Slutsky’s lemma. For Theorem 4.5, we combine (4.16) and (4.17),
for Theorem 4.7 Lemma 4.1 and 4.2 and for Theorem 4.8 Lemma 4.3 and 4.4. Then, we use the continuous
mapping theorem with maps

Rk ˆ Rkˆk Q pm,Sq ÞÑ
`

pHℓmq1pHℓSH1
ℓq

`Hℓm
˘

ℓPT P RT

and
Rk ˆ Rkˆk Q pm,Sq ÞÑ

`

pHℓmq1pHℓSH1
ℓq

`Hℓm
˘

ℓPt1,...,Lu
P RL.

The maps are continuous on RkˆtΣu due to σ2
i ą 0 for all i P t1, ..., ku. The three theorems follow, respectively.

Proof of Theorem 4.6 In order to prove Theorem 4.6, we aim to apply Theorem 2.6 and Lemma 2.3.
Therefore, let Xn :“ pX, δq denote the data, Mpbq

n :“ Ypbq and

Wpbq
n :“

´

pHℓ
pΣ1{2Ypbqq1pHℓ

pΣH1
ℓq

`pHℓ
pΣ1{2Ypbqq

¯

ℓPt1,...,Lu

for all b P t1, ..., Bnu. Moreover, let Fn be as in Lemma 2.3, i.e., denoting the empirical distribution function of
Wp1q

n , ...,WpBnq
n . Then,

Wp1q
n

d˚

ÝÝÑ
`

pHℓZq1pHℓΣH1
ℓq

`pHℓZq
˘

ℓPt1,...,Lu

holds as n Ñ 8 for Z „ Nkp0k,Σq due to the consistency of pΣ, cf. the proof of Theorem 4.1. The marginal
limit distributions are χ2

rankpHℓq
, ℓ P t1, ..., Lu, which have continuous distribution functions Fℓ : R Ñ r0, 1s that

are strictly increasing on r0,8q due to rankpHℓq ą 0. Hence, Lemma 2.3 implies (2.15). Furthermore, let Fℓ,n
denote the cumulative distribution function of χ2

rankpHℓ
pΣH1

ℓ
q

for all ℓ P t1, ..., Lu, n P N, which fulfills (2.16) since

P
´

rank
´

Hℓ
pΣH1

ℓ

¯

‰ rank pHℓq

¯

Ñ 0

as n Ñ 8 follows from the consistency of the covariance estimator. Then, Theorem 2.6 yields the statement of
the theorem.

49



Proof of Theorem 4.9 Again, we aim to apply Theorem 2.6 and Lemma 2.3. Therefore, let Xn :“ pX, δq

denote the data, Mpbq
n denote the randomness of the bootstrap procedures and Wpbq

n denote the bth Monte Carlo
replicate of the bootstrap Wald-type test statistic for all b P t1, ..., Bnu. Moreover, let Fn be as in Lemma 2.3,
i.e., denoting the empirical distribution function of Wp1q

n , ...,WpBnq
n , and Fn,ℓ, ℓ P t1, ..., Lu, be their marginal

cumulative distribution functions. Then,

Wp1q
n

d˚

ÝÝÑ
`

pHℓZq1pHℓΣH1
ℓq

`pHℓZq
˘

ℓPt1,...,Lu

holds as n Ñ 8 for Z „ Nkp0k,Σq by Theorems 4.7 and 4.8. The marginal limit distributions are χ2
rankpHℓq

, ℓ P

t1, ..., Lu, which have continuous distribution functions Fℓ : R Ñ r0, 1s that are strictly increasing on r0,8q due
to rankpHℓq ą 0. Hence, Lemma 2.3 implies (2.15). Moreover, Remark 2.4 implies (2.16). Thus, Theorem 2.6
yields the statements of the theorem.
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5 RMTL-Based Inference in Competing Risks Setups
As we have seen in the previous section, the restricted mean survival time (RMST) is an alternative effect
measure to the popular hazard ratio, especially in situations where the proportional hazards assumption is
violated [68]. It is defined as the area under the survival curve up to a prespecified end point τ and, thus, it
offers a straightforward interpretation as the expected duration of time alive before τ . By integrating across the
distribution function rather than the survival curve, we derive the restricted mean time lost (RMTL), which
can be interpreted as expected time lost before τ . Naturally, it equals τ minus the RMST. In the context of
competing-risks frameworks, where multiple events like death from various causes occur, the RMTL for a specific
event can be defined simply as the area under the corresponding sub-distribution function. Then, the restricted
mean survival time equals τ minus the RMTLs of all possible events. However, analyzing RMTLs instead of the
restricted mean survival time in competing-risks frameworks offers the possibility to differ between the different
risks. An exemplary illustration of the relation between the RMTL and RMST can be found in Figure 9.
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Figure 9: An exemplary illustration of the RMTL of the first event η1 (left) and RMST µ (right).

In competing-risks settings, the RMTL has been studied in several papers [2, 55, 77, 78, 79]. However, the
considered settings are limited to one- and two-sample cases and mostly allow for only two different event
types such that there is a lack of suitable RMTL-based tests for more complex factorial designs, more general
hypotheses and more event types to, e.g., compare the RMTLs of various event types across several groups.
Additionally, all proposed methods seem to require existing sub-distribution hazards, i.e., in particular contin-
uous sub-distribution functions. This assumption is often not justified in practice, e.g., when the event times
are measured in whole days or weeks. Consequently, we aim to develop flexible Wald-type tests that are ap-
plicable (i) for general RMTL contrasts in factorial designs and (ii) without a continuity assumption on the
event times. Moreover, for the RMST in the classical survival setup, resampling procedures have proven to be
useful in ensuring an accurate type I error control for finite samples [24, 43, 58]. Hence, to improve the small
sample performance of the constructed Wald-type test, a studentized permutation approach is applied and its
asymptotic validity is shown in Proposition 5.4.
In many applications, the comparison of the RMTLs across several groups may be of interest. Here, the global
null hypothesis might be that all RMTLs are equal across the groups, cf. Example 5.3. If a test rejects
this global null hypothesis, it could also be of interest which specific RMTL differences cause the significant
result. In order to answer such questions, multiple tests for pairwise RMTL comparisons need to be performed
simultaneously. Recently, a maximum joint test for testing the equalities of two RMTLs in the two-sample
case jointly was studied in [77]. However, the two-sample case and the two considered hypotheses, i.e., equal
RMTLs of event type 1 and 2, respectively, are rather restrictive. Hence, there is still a lack of multiple testing
procedures based on RMTLs for general multiple contrast hypotheses addressing (i) and (ii). Thus, we aim to
develop powerful multiple tests for RMTL contrasts by taking the asymptotically exact dependence structure
of the local Wald-type test statistics into account.
The remainder of this section is organized as follows. The general factorial competing risks setup is presented in
Section 5.1 including the formal definition of the RMTL. The global testing problem is introduced in Section 5.2.
The Wald-type test statistic is investigated in Section 5.2.1. In Section 5.2.2, the studentized permutation
approach is introduced and its asymptotic validity is proven in Proposition 5.4. Multiple tests for several
RMTL contrast hypotheses are developed in Section 5.3. In Section 5.4, the finite sample performance of our
proposed methods is analyzed in extensive simulations. Additionally, we illustrate our methods by analyzing
data of leukemia patients who underwent bone marrow transplantation in Section 5.5. All technical proofs of
this section are given in Section 5.6. Moreover, an implementation of the proposed methods is freely available
in the R package GFDrmtl [21], see Section E for a description.
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5.1 Factorial Competing Risks Setup
In the following, we interpret a factorial competing risks design as a k-sample setup with M competing events;
k,M P N, k ě 2. We assume that there are independent event and right-censoring times Tij „ Si, Cij „ Gi, j P

t1, . . . , niu, i P t1, . . . , ku, respectively, and random variables Dij , j P t1, . . . , niu, i P t1, . . . , ku indicating the
event types and taking values in t1, . . . ,Mu. Here,

Si : r0,8q Ñ r0, 1s, Siptq :“ P pTi1 ą tq and Gi : r0,8q Ñ r0, 1s, Giptq :“ P pCi1 ą tq

denote the survival functions of the event and censoring times, respectively, and ni ě 2 denotes the sample
size of group i for all i P t1, . . . , ku. We do not suppose the continuity of the survival functions and, thus, we
explicitly allow for ties in the data. Additionally, we assume that pTij , Cij , Dijq, j P t1, . . . , niu, i P t1, . . . , ku

are mutually independent and that the censoring time Cij is independent of the event time and event type
pTij , Dijq for all j P t1, . . . , niu, i P t1, . . . , ku. Due to right-censoring, we can only observe the right-censored
event times Xij :“ mintTij , Ciju and the event indicator δij :“ Dij1tXij “ Tiju, j P t1, . . . , niu, i P t1, . . . , ku,
where here and throughout 1 denotes the indicator function. Furthermore, let

Fim : r0,8q Ñ r0, 1s, Fimptq :“ P pTi1 ď t,Di1 “ mq

and Aim : r0,8q Ñ r0,8s, Aimptq :“
ż

r0,ts

1
Si´

dFim

denote the cumulative incidence function and the cause-specific cumulative hazard functions, respectively, for
all i P t1, . . . , ku,m P t1, . . . ,Mu. The sum of all cause-specific hazard functions of group i is denoted by
Ai :“

řM
m“1 Aim, i P t1, . . . , ku, in the following.

In order to introduce suitable estimators for these quantities, we firstly define the number of individuals at risk
just before time t ě 0 by Yiptq :“

řni

j“1 1tXij ě tu and the number of individuals with an event of type m
before or at time t ě 0 by Nimptq :“

řni

j“1 1tXij ď t, δij “ mu for all i P t1, . . . , ku,m P t1, . . . ,Mu. Then, we
set

pAimptq :“
ż

r0,ts

1
Yi

dNim, pAi :“
M
ÿ

m“1

pAim, and pSiptq :“ P
xPr0,ts

!

1 ´ d pAipxq

)

for all t ě 0, i P t1, . . . , ku,m P t1, . . . ,Mu. These estimators are the cause-specific and all-cause Nelson–Aalen
estimators and the Kaplan–Meier estimator, respectively. Thus, we obtain the Aalen–Johansen estimator at t
for Fimptq as pFimptq :“

ş

r0,ts
pSi´ d pAim, i P t1, . . . , ku,m P t1, . . . ,Mu for all t ě 0.

The restricted mean time lost (RMTL) due to the event type m in group i is defined as the area under the
corresponding cumulative incidence function up to a prespecified time point τ ą 0, that is,

ηim :“
ż τ

0
Fimptq dt, i P t1, . . . , ku,m P t1, . . . ,Mu.

Of note, in the case of only one event type, i.e., M “ 1, the RMTL equals τ minus the more popular RMST.
By replacing Fim with the corresponding Aalen–Johansen estimator, we obtain a natural estimator for the
RMTL, that is,

pηim :“
ż τ

0
pFimptq dt, i P t1, . . . , ku,m P t1, . . . ,Mu.

5.2 Global Tests
Let

η :“ pη11, . . . , η1M , η21, . . . , ηkM q1

denote the vector of the RMTLs and its estimator by

pη :“ ppη11, . . . , pη1M , pη21, . . . , pηkM q1.

Moreover, let r P N, c P Rr and H P RrˆkMzt0rˆkMu satisfying Hp1k b emq “ 0r,m P t1, . . . ,Mu, where
here and throughout em “ p0, ..., 0, 1, 0, ..., 0qJ P RM denotes the mth standard unit vector and b denotes the
Kronecker product. This ensures that H has the contrast property in terms of the different groups and not in
terms of the different event types. Here, we consider the testing problem

H0 : Hη “ c vs. H1 : Hη ‰ c. (5.1)

This testing problem is very general and covers various types of hypotheses and factorial designs as illustrated
in the following examples.
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Example 5.1 (Two-sample case). The simplest but perhaps most relevant case in practice is the two-sample
case, i.e., k “ 2. The null hypothesis of equal RMTLs of all event types, i.e., H0 : η1m “ η2m,m P t1, . . . ,Mu,
can be realized by choosing c :“ 0r and H :“ r´1, 1s b IM . If not the RMTLs of all M event types but only the
first ĂM ă M event types are of interest, we may choose H :“ r´1, 1s b rI

ĂM
,0

ĂMˆpM´ĂMq
s instead. This yields

the null hypothesis H0 : η1m “ η2m,m P t1, . . . ,ĂMu.

Example 5.2 (One-way design). In many applications, the hypothesis of equal RMTLs across the groups is of
interest, that is,

H0 : η1m “ . . . “ ηkm, m P t1, . . . ,Mu.

This hypothesis can be formulated with c :“ 0r and various hypothesis matrices H. For example, H may
be chosen as the Kronecker product of the Dunnett-type [34] contrast matrix (4.7) and the identity matrix
IM P RMˆM . Another possibility is the Kronecker product of the Tukey-type [73] contrast matrix (4.8) and the
identity matrix IM .

Example 5.3 (Factorial 2-by-2 design). In a factorial 2-by-2 design with factors A and B, k “ 4 groups arise
from the combinations (A,B) P tp1, 1q, p1, 2q, p2, 1q, p2, 2qu. The following null hypotheses and corresponding
hypothesis matrices combined with c “ 0M are relevant:

• no main effect of factor A; HA “ rIM , IM ,´IM ,´IM s;

• no main effect of factor B; HB “ rIM ,´IM , IM ,´IM s;

• no interaction effect between A and B; HAB “ rIM ,´IM ,´IM , IM s.

More general factorial designs can be incorporated easily by splitting up the indices similarly as in Example 5.3,
see [63] for details.

5.2.1 The Wald-Type Test Statistic and its Asymptotic Behavior

In this section, we construct and study a suitable test statistic for the testing problem (5.1). For technical
reasons, we need the following assumptions.

Assumption 5.1. In the following, we assume Si´pτq ą 0, Gi´pτq ą 0 and ni{n Ñ κi P p0, 1q as n Ñ 8 for
all i P t1, . . . , ku, where here and throughout n :“

řk
i“1 ni denotes the total sample size.

By applying empirical process theory and the delta method, we obtain the asymptotic normality of the vector
of RMTL estimators pη:

Theorem 5.1. Under Assumption 5.1, we have
?
nppη ´ ηq

d
ÝÑ Z „ NkM p0kM ,Σq

as n Ñ 8. The covariance matrix Σ is defined in (5.7) in Section 5.6.

Note that there is no notation clash regarding Σ in Section 4 since it coincides with Σ in the previous theorem
in the special case of only one event type M “ 1.
In the following, we also need that the limit distribution is not degenerated. In Lemma 5.2 in the appendix, we
show that the following natural assumption together with Assumption 5.1 is sufficient to guarantee the positive
definiteness of Σ:

Assumption 5.2. We assume that Fim´pτq ą 0 for all i P t1, . . . , ku,m P t1, . . . ,Mu.

As shown in (5.6), the entries of Σ depend on the unknown functions Fim, Ai and σimĂm for all i P t1, . . . , ku,m, rm P

t1, . . . ,Mu, where σimĂm denotes the asymptotic covariance function of the cause-specific cumulative hazard
functions pAim, pAiĂm. Thus, the plug-in estimator

pΣ :“
k
à

i“1

ˆ

n

ni
pΣi

˙

for Σ can be obtained by replacing Fim, Ai and σimĂm in (5.6) by pFim, pAi and pσimĂm, respectively, for all
i P t1, . . . , ku,m, rm P t1, . . . ,Mu, with

pσimmptq :“ ni

ż

r0,ts

1 ´ ∆ pAim
Yi

d pAim and pσimĂmptq :“ ´ni

ż

r0,ts

∆ pAim
Yi

d pAiĂm
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for all t ě 0,m ‰ rm. Here,
À

denotes the direct sum. Then, the Wald-type test statistic can be defined by

WnpH, cq :“ npHpη ´ cq1
´

HpΣH1
¯`

pHpη ´ cq.

Since the Wald-type test statistic is a quadratic form of the vector pHpη´cq, we would reject the null hypothesis
in (5.1) for large values of WnpH, cq. The following theorem provides the asymptotic distribution of the Wald-
type test statistic.

Theorem 5.2. Under Assumptions 5.1 and 5.2 and the null hypothesis in (5.1), we have, as n Ñ 8,

WnpH, cq
d

ÝÑ χ2
rankpHq.

Thus, an asymptotic level-α test for (5.1) is φ “ 1tWnpH, cq ą χ2
rankpHq,1´αu. Due to the direct connection

between tests and confidence regions, we also obtain a confidence region with confidence level 1 ´ α for Hη
from Theorem 5.2, that is, tξ P Rr | WnpH, ξq ď χ2

rankpHq,1´αu.

5.2.2 Studentized Permutation Test

We showed in the previous section that the proposed test for the RMTLs is asymptotically valid but this generally
does not guarantee a good small sample performance of the test in terms of type I error control. As we will
see in Section 5.4.2, the asymptotic test has in fact an increased type I error in simulations. For the RMST,
permutation methods solved this problem [24, 43, 58]. Permutation tests are known to control the type I error
exactly under exchangeable data [41, 51], which means Fim “ Fjm, Gi “ Gj , i, j P t1, . . . , ku,m P t1, . . . ,Mu,
in our case. However, the null hypothesis in (5.1) may hold even if the data are not exchangeable. Thus,
we develop a studentized permutation approach that not only preserves the finite exact control of the type I
error under exchangeability but is also asymptotically valid under non-exchangeable data as the studentized
permutation tests in [24, 58].
To this end, let

pX, δq “ pXj , δjqj“1,...,n :“ pXij , δijqjPt1,...,niu,iPt1,...,ku

denote the pooled sample and pXπ
ij , δ

π
ijqjPt1,...,niu,iPt1,...,ku the permuted data. In detail, the data points are

permuted as pairs pXj , δjq by drawing the vector pR1, ..., Rnq uniformly on the set of all permutations of
p1, ..., nq independently of the data and defining

pXπ
ij , δ

π
ijqjPt1,...,niu,iPt1,...,ku :“ pXπ

j , δ
π
j qjPt1,...,nu :“ pXRj

, δRj
qjPt1,...,nu.

This can also be interpreted as shuffling the groups of the original data randomly. Furthermore, we denote the
statistics pη, pΣ re-calculated based on the permuted data with a π in the superscript, i.e., pηπ, pΣπ. Finally, we
define the permutation counterpart of the Wald-type test statistic by

Wπ
n pHq :“ npHpηπq1

´

HpΣπH1
¯`

pHpηπq.

It asymptotically mimics the null distribution of WnpH, cq, as shown in the following theorem.

Theorem 5.3. Under Assumptions 5.1 and 5.2, we have under both hypotheses H0 and H1, as n Ñ 8,

Wπ
n pHq

d˚

ÝÝÑ χ2
rankpHq.

By using this result, we can construct a permutation test for (5.1). In practice, usually a Monte Carlo method is
applied to approximate the resulting critical value, which is the p1 ´ αq-quantile of the conditional distribution
of Wπ

n pHq given the data pX, δq. Therefore, the quantile is approximated by the empirical p1´αq-quantile qπ1´α

of Bn conditional independent random variables distributed as Wπ
n pHq given pX, δq. Here and throughout,

pBnqnPN denotes a sequence of natural numbers with Bn Ñ 8 as n Ñ 8. Hence, we receive the permutation
test φπ “ 1

␣

WnpH, cq ą qπ1´α

(

. This permutation test is asymptotically valid:

Theorem 5.4. Under Assumptions 5.1, 5.2 and the null hypothesis in (5.1), we have

lim
nÑ8

E pφπq “ lim
nÑ8

P
`

WnpH, cq ą qπ1´α

˘

“ α.

The corresponding confidence region with level 1 ´ α for Hη is
␣

ξ P Rr | WnpH, ξq ď qπ1´α

(

, i.e.,

lim
nÑ8

P
`

Hη P
␣

ξ P Rr | WnpH, ξq ď qπ1´α

(˘

“ lim
nÑ8

P
`

WnpH,Hηq ď qπ1´α

˘

“ 1 ´ α.
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Example 5.4. Let H “ pre1 ´re2qJ b eJ
1 , where re1,re2 P Rk denote the first and second unit vector in Rk. Then

a permutation-based asymptotic p1 ´ αq-confidence interval for η11 ´ η21 “ Hη is
„

pη11 ´ pη21 ´

´´

pΣ111{n1 ` pΣ211{n2

¯

qπ1´α

¯1{2
, pη11 ´ pη21 `

´´

pΣ111{n1 ` pΣ211{n2

¯

qπ1´α

¯1{2
ȷ

,

where pΣi11 denotes the top-left entry of pΣi, i P t1, . . . , ku. Analogously, an asymptotic p1´αq-confidence interval
for η11 ´ η21 based on the asymptotic test in Section 5.2.1 is

„

pη11 ´ pη21 ´

´´

pΣ111{n1 ` pΣ211{n2

¯

χ2
1,1´α

¯1{2
, pη11 ´ pη21 `

´´

pΣ111{n1 ` pΣ211{n2

¯

χ2
1,1´α

¯1{2
ȷ

.

5.3 Multiple Tests
In many applications, not only the global test decisions for (5.1) are of interest but a more in-depth analysis of
local hypotheses. By that, conclusions on which specific hypotheses cause a rejection of the global hypothesis
can be drawn.
Formally, we split up the hypothesis matrix H “ rH1

1, . . . ,H1
Ls1 into L matrices with rankpHℓq ą 0, ℓ P

t1, . . . , Lu, and the vector c “ pc1
1, . . . , c1

Lq1 into L vectors of lengths corresponding to the number of rows
of the matrices H1, . . . ,HL, respectively. This covers but is not restricted to the case that H1, . . . ,HL can be
chosen to be the r rows of H. Then, the multiple testing problem is

H0,ℓ : Hℓη “ cℓ vs. H1,ℓ : Hℓη ‰ cℓ, ℓ P t1, . . . , Lu. (5.2)

As we will see in the following examples, this formulation covers the most interesting cases for multiple hy-
potheses about the RMTLs in practice.

Example 5.5 (Two-sample case, continued). If it is also of interest which event type differences in Example 5.1
cause the significant result, multiple tests need to be performed for ĂM ą 1. In our notation, this can be
realized by choosing the matrices Hm P R1ˆkM ,m P t1, . . . ,ĂMu as the rows of the hypothesis matrix H given in
Example 5.1, i.e., Hm :“ r´e1

m, e1
ms,m P t1, . . . ,ĂMu. Hence, we receive the multiple hypotheses H0,m : η1m “

η2m,m P t1, . . . ,ĂMu. For ĂM “ 2, we receive the hypotheses of [77] as special case.

Example 5.6 (One-way design, continued). Now, the choice of the hypothesis matrix leading to the hypothesis
of equal RMTLs across the groups in Example 5.2 becomes important and depends on the question of interest.
E.g., if all RMTLs should be compared to the RMTLs of the first group (many-to-one), the Dunnett-type contrast
matrix is the hypothesis matrix to go with. However, the Tukey-type contrast matrix should be used if the RMTLs
of all pairs of groups should be compared.
The second choice is how to split up the hypothesis matrix H. This, again, depends on the question of interest.
If it is only of interest which groups have different RMTLs but it does not matter for which event types the
RMTLs exhibit differences, it is enough to consider hℓ b IM , ℓ P t1, . . . , Lu, as the hypothesis matrices, where
hℓ denotes the ℓth row of the Dunnett- and Tukey-type contrast matrix, respectively. However, if also the event
types that cause a rejection of equal RMTLs should be detected, each row of the (global) hypothesis matrix H
corresponds to a hypothesis matrix of the multiple tests, i.e., Hℓ P R1ˆkM , ℓ P t1, . . . , Lu.

Example 5.7 (Factorial 2-by-2 design, continued). In Example 5.3, main effects A and B, and an interaction
effect could be tested simultaneously with the help of H1 “ HA,H2 “ HB and H3 “ HAB, respectively. However,
the resulting tests cannot determine which event type(s) caused a significant difference between the groups. For
this, all M rows of each of the three hypotheses matrix must be considered as separate hypothesis matrices which
results in 3M multiple hypotheses.

The local test statistics WnpHℓ, cℓq, ℓ P t1, . . . , Lu, can be used to derive (local) test decisions for H0,ℓ, ℓ P

t1, . . . , Lu, respectively. As we already developed global tests in Section 5.2, a simple application of the
Bonferroni-correction can solve the multiple testing problem. However, the Bonferroni-correction is known
to lead to conservative decisions and low power. Hence, we aim to incorporate the asymptotic exact dependence
structure of the local test statistics as described in Section 2.3 for constructing powerful multiple tests. The
multivariate limit distribution of the local test statistics is given by the following theorem.

Theorem 5.5. Let T denote the indices of true null hypotheses in (5.2) and let Z be as in Theorem 5.1. Under
Assumptions 5.1 and 5.2, we have, as n Ñ 8,

pWnpHℓ, cℓqqℓPT
d

ÝÑ
`

pHℓZq1pHℓΣH1
ℓq

`pHℓZq
˘

ℓPT .
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5.3.1 Asymptotic Multiple Tests

Motivated by Theorem 5.5, asymptotic multiple tests are given by

φℓ “ 1

!

WnpHℓ, cℓq ą χ2
rankpHℓq,1´βn

)

, ℓ P t1, . . . , Lu, (5.3)

where βn denotes the local level for each test and can be derived from the multivariate limit distribution in
Theorem 5.5. In practice, this local level can be approximated by a Monte Carlo method as

βn “ max tβ P t0, 1{Bn, . . . , pBn ´ 1q{Bnu | FWERnpβq ď αu

with approximated family-wise error rate

FWERnpβq “
1
Bn

Bn
ÿ

b“1
max

ℓPt1,...,Lu
1

!

pHℓ
pΣ1{2Ypbqq1pHℓ

pΣH1
ℓq

`pHℓ
pΣ1{2Ypbqq ą χ2

rankpHℓ
pΣH1

ℓ
q,1´β

)

for β P r0, 1q and Yp1q, . . . ,YpBnq „ NkM p0kM , IkM q i.i.d. and independent of pΣ. Here, pBnqnPN is a sequence
of natural numbers with Bn Ñ 8 as n Ñ 8.

Theorem 5.6. Under Assumptions 5.1 and 5.2, the multiple asymptotic tests (5.3) fulfill (2.20)–(2.22), i.e.,
they control the family-wise error rate asymptotically in the strong sense and are asymptotically balanced.

By Remark 2.6 and Theorem 5.6, simultaneous confidence regions for Hℓη, ℓ P t1, . . . , Lu, with asymptotic
global confidence level 1 ´ α of the following form are immediate:

L
ą

ℓ“1

!

ξ | WnpHℓ, ξq ď χ2
rankpHℓq,1´βn

)

Ă Rr.

For row vectors Hℓ P R1ˆk, the confidence region simplifies to a confidence interval, that is
»

–Hℓpη ´

˜

Hℓ
pΣH1

ℓ

n
χ2

rankpHℓq,1´βn

¸1{2

,Hℓpη `

˜

Hℓ
pΣH1

ℓ

n
χ2

rankpHℓq,1´βn

¸1{2
fi

fl .

Moreover, we can derive more powerful multiple tests by using the closed testing procedure, cf. Remark 2.5,
and adjusted p-values by the methodologies in Section 2.3.

5.4 Simulation Study
5.4.1 Simulation Setup

For the simulation study, we used the computing environment R, version 4.2.1 [66]. The simulation setup is
based on the simulation in Section 4.4.1 and adapted for competing risks data. We considered k “ 4 groups
with equal event time distributions for the first three groups while the distribution of the fourth group may
differ, using the same survival and censoring distributions as in Section 4.4.1 with the same censoring rates
stated there. An illustration of the survival curves of the event times can be found in [24] and of the censoring
times in Section 4.4.1.
Beyond these continuous settings, we also added corresponding discrete settings. This is done since the proposed
methods also work under the existence of ties as proven in Section 5.6. Therefore, we generated the event times
as in the continuous case but round them up to obtain integer values. Of course, the rounding typically results
in altered values of the RMSTs

şτ

0 Siptqdt, i P t1, . . . , ku and RMTLs. However, it is still possible to obtain a
specific RMST difference δ as in Section 4.4.1 by adjusting the parameters λδ,1, . . . , λδ,9 adequately.
As in the data example in Section 5.5 below, we are considering M “ 3 event types. The causes Dij P t1, 2, 3u

were drawn independently of the survival and censoring times with probabilities p1 “ 33%, p2 “ 25%, and p3 “

42%, respectively, across all j P t1, . . . , niu, i P t1, . . . , ku. This results in a direct connection between the survival
function and the cumulative incidence functions, that is, Fim “ pmp1 ´Siq for all i P t1, . . . , ku,m P t1, . . . ,Mu.
Hence, the RMTLs η1m, η2m, η3m, η4m of the event type m coincide whenever the RMSTs

şτ

0 Siptqdt, i P t1, . . . , ku

coincide. Furthermore, a RMST difference of δ “
şτ

0 S1ptqdt ´
şτ

0 S4ptqdt results in an RMTL difference of
η4m ´ η1m “ pmδ,m P t1, . . . ,Mu.
Motivated by the data example in Section 5.5, the hypothesis matrix in Example 5.7 is considered for testing
on the two main effects and an interaction effect simultaneously in a 2-by-2 design (2x2). This results in the
local null hypotheses

HA
0,m : η1m ` η2m “ η3m ` η4m, HB

0,m : η1m ` η3m “ η2m ` η4m,

and HAB
0,m : η1m ` η4m “ η2m ` η3m, m P t1, . . . ,Mu.

(5.4)
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Moreover, Dunnett- and Tukey-type contrast matrices are used for many-to-one and all-pairs comparisons of
the RMTLs, respectively, as in Example 5.6. The block matrices Hℓ, ℓ P t1, . . . , Lu, for the local hypotheses
are always chosen to be the rows of the global hypothesis matrices. The global hypothesis matrices all lead to
the same global null hypothesis, that is, all RMTLs are equal across the groups for each respective event type.
However, the local hypotheses differ between the different matrices.
The RMST difference is chosen as δ “ 0 when simulating under the null and as δ “ 1.5 when simulating under
the alternative hypothesis. Since the survival settings exp early, exp late and exp prop defined in the appendix
result in the same survival functions under the null hypothesis, the results for these scenarios are only included
once in the figures and tables, respectively. The same holds for the settings Weib late and Weib prop.
Balanced and unbalanced designs with sample sizes n “ pn1, n2, n3, n4q “ K ¨ p60, 60, 60, 60q and n “ K ¨

p128, 44, 52, 16q are considered, where the factor K P t1, 5, 25u results in small, medium, and large samples,
respectively.
In total, Nsim “ 2000 simulation runs with B “ 1000 resampling iterations were conducted. The level of
significance is set to α “ 0.05 and the terminal time point to τ “ 10.
We included the following methods in our simulation study: multiple asymptotic Wald-type tests as in Sec-
tion 5.3.1 (asymptotic), global asymptotic Wald-type tests as in Section 5.2.1 adjusted with the Bonferroni-
correction (asymptotic_bonf ), and global studentized permutation tests as in Section 5.2.2 adjusted with the
Bonferroni-correction (permutation_bonf ). In our first simulations, we also compared a pooled bootstrap, wild
bootstrap, and groupwise bootstrap method similar to that in Section 4. Additionally, we considered a ran-
dom p-value permutation approach similar as the prepivoting method in [16]. However, the results of all four
methods were not as convincing in terms of type I error control and/or power. Moreover, the runtime of the
random p-value permutation approach was quite high since, for each permutation sample, the calculations need
to be done for several groupwise bootstrap samples. Consequently, we focused on the three above-mentioned
methods.

5.4.2 Simulation Results

The boxplots in Figures 10, 11, and 12 summarize the rejection levels under all null hypotheses. It is observ-
able that the multiple asymptotic Wald-type tests of Section 5.3.1 as well as the Bonferroni-corrected global
asymptotic Wald-type tests of Section 5.2.1 can not control the type I error in unbalanced designs with smaller
sample sizes as they perform too liberal in all scenarios. When considering Dunnett- and Tukey-type contrast
matrices, the empirical family wise error rates are exceeding even 50% in some scenarios. The Bonferroni-
corrected permutation tests also have a slight liberal behaviour in some of these scenarios but not nearly as
dramatic. The highest empirical family wise error rates for the Bonferroni-corrected permutation tests are only
up to 10%. Those are reached under the non-exchangeable survival distribution settings Weib scale and Weib
shape for unbalanced small sample sizes. A possible reason for the liberal behaviour of the tests for unbalanced
small sample sizes could be that it is more likely to observe no event of a specific type in at least one of the
samples. In this case, the permutation approach may still use the information of the events of the same type
that occur in other groups through the randomization across groups. However, the asymptotic approach can
not benefit from observations in other samples and, thus, probably underestimates the variance systematically.
Even for unbalanced designs and medium sample sizes of 80–640 observations, the liberality of the asymptotic
approaches is still notable. In balanced designs, this issue is only slightly present, even for small sample sizes
with 60 observations per group. For large sample sizes, all methods seem to perform quite well under the
global null hypothesis in terms of family wise error rate control, which underlines the asymptotic validity of the
proposed tests.
Figures 30, 31 and 32 in the appendix visualize the empirical rejection rates of the global null hypothesis
under the alternative hypothesis, i.e., the empirical (global) powers. It is observable that all methods have a
comparable power in all scenarios with balanced designs or large sample sizes. Moreover, the power naturally
increases for larger sample sizes. In unbalanced designs with small to medium sample sizes, the multiple and
Bonferroni-corrected asymptotic tests have usually a higher power than the Bonferroni-corrected permutation
tests. Here, the multiple asymptotic tests that take the multivariate distribution of the test statistics into account
(Section 5.3.1) are slightly more powerful than the asymptotic tests with Bonferroni-correction. However, both
asymptotic testing procedures performed too liberal in unbalanced designs with small to medium sample sizes
and, thus, we do not recommend their application in these scenarios. Furthermore, it is observable that only
under a few scenarios, all methods can detect the alternative in unbalanced designs with small sample sizes as
the most rejection rates are similar as under the null hypothesis. A possible explanation for this may be the
small sample size of 16 in group four, which was sampled with different RMTLs under the alternative.

Recommendations and limitations In view of the present simulation results, we recommend the use of
the Bonferroni-corrected permutation tests, especially if the sample sizes are small, due to the best family-wise
error rate control. On the other hand, for large sample sizes, all methods yield rather similar results regarding
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Figure 10: Empirical family wise error rates for the 2-by-2 design across all scenarios under the global null
hypothesis. The dotted line represents the desired global level of 0.05 and the dashed lines represent the
borders of the binomial interval [0.0405, 0.06].

family-wise error rate control and power, but asymptotic tests might be preferred due to lower computational
demands. In this case, it should be noted that the multiple asymptotic tests are slightly more powerful than
the Bonferroni-corrected asymptotic tests in general. Whether a sample size is considered small or large also
depends on the specific study design, including the number of competing risks, groups, and hypotheses. For
instance, in a balanced design with three competing risks, the simulation results indicate that a sample size of
60 individuals per group is sufficient for minor differences between methods. However, for unbalanced designs,
notable differences persist for a sample size of 80 individuals in the smallest group but vanish when the smallest
group contains 400 individuals. When faced with extremely unbalanced datasets with small sample sizes,
additional challenges as, e.g., nearly no power under the alternative, may arise.
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Figure 11: Empirical family wise error rates for the Dunnett-type contrast hypotheses across all scenarios under
the global null hypothesis. The dotted line represents the desired global level of 0.05 and the dashed lines
represent the borders of the binomial interval [0.0405, 0.06].
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Figure 12: Empirical family wise error rates for the Tukey-type contrast hypotheses across all scenarios under
the global null hypothesis. The dotted line represents the desired global level of 0.05 and the dashed lines
represent the borders of the binomial interval [0.0405, 0.06].
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5.5 Data Example about Blood and Marrow Transplantation
In order to illustrate the proposed methods, we analyze the data set ebmt2 in the R package mstate [18, 19, 65]
from the European Society for Blood and Marrow Transplantation. The data consists of 8966 leukemia patients
who underwent a bone marrow transplantation. An initial statistical analysis [36] focused on reduced rank
models for proportional cause-specific hazard models. First of all, the data set contains time, which is the time
in months from transplantation to death or the last follow-up, and status, which indicates the survival status;
for simplicity, we aggregate the status levels into the following M “ 3 causes of the death, next to censoring:
relapse (1), graft-versus-host disease (2), and all other causes (3). We included the following factor variables
in our analysis within a factorial 2-by-2 design; see Example 5.3: (A) match: yes/no, according to whether the
donor’s and the recipient’s genders matched; (B) tcd: yes/no, depending on whether a T-cell depletion took
place. Because it was unknown for 2856 patients whether a T-cell depletion took place or not, we assumed the
missingness to have been completely at random, and the incomplete records were removed from our further
analysis. Hence, n “ 6110 patients remained. Thereof, 1296 (3313) patients with donor-recipient gender match
did (not) receive a T-cell depletion. For those without a match, the numbers were 424 and 1077, respectively.
An illustration of the resulting Aalen-Johansen estimators of the cumulative incidence functions can be found
in Figure 13.
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Figure 13: Aalen-Johansen estimators of the cumulative incidence functions regarding the data example for the
different causes and groups

Here, the question of interest is whether the donor-recipient gender match and/or the T-cell depletion have a
main or interaction effect on any event type-specific RMTL. If there is a significant effect, we are also interested
in which specific main/interaction effects are present and which of the event types are affected. Hence, the nine
hypothesis matrices for the multiple testing problem are, for the event type m P t1, 2, 3u and the effect (ℓ “ 1
for main A, ℓ “ 2 for main B, and ℓ “ 3 for interaction), hℓ b e1

m,m P t1, 2, 3u, where h1 “ r1, 1,´1,´1s,
h2 “ r1,´1, 1,´1s, and h3 “ r1,´1,´1, 1s. The vector of no RMTL differences, i.e., c “ 09, is tested under the
global null hypothesis. This results in the hypotheses (5.4) as in the simulation study. We used the terminal
time point ten years, i.e., τ “ 120 months. The estimated RMTLs up to τ “ 120 for the different groups and
causes can be found in Table 2.
The resulting method-specific and adjusted p-values based on B “ 19999 resampling iterations are presented
in Table 3. Comparing the adjusted p-values with the global level of significance allows for testing all nine
local hypotheses simultaneously. Due to the large sample sizes, all methods should yield reliable results in
terms of type I error control regarding the simulation results of Section 5.4. For α “ 0.05, all methods indicate
that HB

0,1,HB
0,3, and HA

0,2 can be rejected simultaneously. Thus, there is a significant main effect of the T-cell

Group Cause 1: relapse Cause 2: graft-versus-host disease Cause 3: other causes
gender match and no tcd 12.526 9.595 14.446
gender match and tcd 14.159 9.151 22.885
gender mismatch and no tcd 11.883 13.125 16.291
gender mismatch and tcd 18.518 15.982 20.296

Table 2: RMTL estimation for the data example
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Method HA
0,1 HA

0,2 HA
0,3 HB

0,1 HB
0,2 HB

0,3 HAB
0,1 HAB

0,2 HAB
0,3

asymptotic 0.663 ă 0.001 1.000 0.008 0.950 ă 0.001 0.295 0.773 0.614
asymptotic_bonf 1.000 ă 0.001 1.000 0.008 1.000 ă 0.001 0.396 1.000 1.000
permutation_bonf 1.000 ă 0.001 1.000 0.009 1.000 ă 0.001 0.407 1.000 1.000

Table 3: Adjusted p-values for the data example

depletion on the RMTL for relapse and other causes and a significant main effect of the donor-recipient gender
match on the RMTL regarding the graft-versus-host disease.
As a word of caution, no clinical conclusions should be drawn from this analysis since the data were simplified.
For example, aspects that would be relevant for causal interpretations were not taken into consideration. Instead,
the present real data analysis was meant to illustrate the potential of our new statistical techniques. Moreover,
since this data example is a classical application of competing risks analysis in a medical context, we want to
emphasize that our methodology is also applicable and may also be relevant in non-medical domains as, e.g.,
reliability engineering [56].

5.6 Proofs of Section 5
Proof of Theorem 5.1 Firstly, let i P t1, ..., ku be arbitrary but fixed. By Theorem 4.1 in [26], we have

n
1{2
i

´

pAi1 ´Ai1, ..., pAiM ´AiM

¯

d
ÝÑ pUi1, ..., UiM q (5.5)

as n Ñ 8 on pDr0, τ sqM equipped with the sup-norm, where Ui1, ..., UiM are centered Gaussian-martingales
with

CovpUim1 ptq, Uim1 psqq “

ż

r0,mintt,sus

1 ´ ∆Aim1

yi
dAim1 “: σim1m1 pmintt, suq,

CovpUim1 ptq, Uim2 psqq “ ´

ż

r0,mintt,sus

∆Aim1

yi
dAim2 “: σim1m2 pmintt, suq

and yiptq :“ P pXi1 ě tq for all t, s P r0, τ s;m1,m2 P t1, . . . ,Mu;m1 ‰ m2. By Section B, the limit pUi1, ..., UiM q

is separable.
Then, we consider the functional

Φ : pBVKr0, τ sqM Ñ RM , ΦpΛ1, ...,ΛM q :“

¨

˝

ż τ

0
rψ

¨

˝
rϕ

˜

´

M
ÿ

Ăm“1
Λ
Ăm

¸

´

,Λm

˛

‚ dt

˛

‚

mPt1,...,Mu

“

¨

˝

ż τ

0

ż

r0,ts R
xPr0,uq

#

1 ´ d
˜

M
ÿ

Ăm“1
Λ
Ăm

¸

pxq

+

dΛmpuq dt

˛

‚

mPt1,...,Mu

for some K ă 8 with rψ : rDr0, τ s ˆ BVKr0, τ s Ñ Dr0, τ s, rϕ : BVMKr0, τ s Ñ Dr0, τq as in Section A. Here and
throughout, we define the jump ∆Λp0q of a function Λ P BVKr0, τ s at 0 as Λp0q. Note that ΦpAi1, ..., AiM q “

pηi1, ..., ηiM q and Φp pAi1, ..., pAiM q “ ppηi1, ..., pηiM q holds. We aim to apply the delta-method. Therefore, we
firstly show that Φ is Hadamard-differentiable at pAi1, ..., AiM q with Hadamard-derivative Φ1

pAi1,...,AiM q
at

pα1, ..., αM q P pDr0, τ sqM given by
¨

˝

ż τ

0

¨

˝

ż

r0,ts R
xPr0,uq

p1 ´ dAipxqq dαmpuq ´

ż

r0,ts R
xPr0,uq

p1 ´ dAipxqq

ż

r0,uq

d
řM

Ăm“1 αĂm

1 ´ ∆Ai
dAimpuq

˛

‚ dt

˛

‚

mPt1,...,Mu

.

Here, the integrals with respect to αm are defined via integration by parts because αm need not have finite
variation. The same holds for other integrals of this kind below. In order to prove the Hadamard-differentiability,
we aim to apply the chain rule (Lemma 3.10.3 in [74]). This yields

Φ1
pAi1,...,AiM qpα1, ..., αM q “

¨

˝

ż τ

0
rψ1

prϕp´Aiq´,Aimq

¨

˝
rϕ1

´Ai

˜

´

M
ÿ

Ăm“1
α
Ăm

¸

´

, αm

˛

‚ptq dt

˛

‚

mPt1,...,Mu
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for α1, ..., αM P Dr0, τ s. Note here that Dr0, τq Q Λ ÞÑ Λ´ P rDr0, τ s and the final integral functional is linear,
so it equals its Hadamard-derivative, respectively. As in Section 3.3, one can show that

rψ1

prϕp´Aiq´,Aimq
pα, βq “

ż

r0,.s
Si´ dβ `

ż

r0,.s
α dAim, m P t1, . . . ,Mu,

and rϕ1
´Ai

pβq “ Sip.q

ż

r0,.s

1
1 ´ ∆Ai

dβ

holds for all α P rDr0, τ s, β P Dr0, τ s analogously to Lemma 3.10.18 and Lemma 3.10.32 in [74]. Thus, it follows
that

Φ1
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0
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for α1, ..., αM P Dr0, τ s, where here and throughout, we write
ř

Ăm‰m instead of
řM

Ăm“1,Ăm‰m for the sake of
brevity. Thus, an application of the delta-method (Theorem 3.10.4 in [74]) yields

ni
1{2ppηim ´ ηimqmPt1,...,Mu

d
ÝÑ Φ1

pAi1,...,AiM qpUi1, ..., UiM q

“
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¸
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as n Ñ 8, where the limit is a centered M -dimensional random vector which follows a multivariate normal
distribution. Its covariance matrix Σi :“ rΣim1m2 sm1,m2Pt1,...,Mu has the following entries: Σim1m2 given by

ż

r0,τq

#

pτ ´ uq

˜
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+
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␣
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( ␣
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ÿ
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(5.6)
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for all m1,m2 P t1, . . . ,Mu. Since i P t1, ..., ku was arbitrary and the groups are independent, the statement of
the theorem follows with

Σ :“
k
à

i“1

`

κ´1
i Σi

˘

(5.7)

by Assumption 5.1.

Proof of Theorem 5.2 First of all, we investigate the covariance matrix estimator pΣ.

Lemma 5.1. Under Assumption 5.1, we have pΣ
P

ÝÑ Σ as n Ñ 8.

Proof of Lemma 5.1. By (5.5), Slutsky’s lemma, and the continuous mapping theorem, we have

sup
tPr0,τs

ˇ

ˇ

ˇ

pAimptq ´Aimptq
ˇ

ˇ

ˇ

P
ÝÑ 0, i P t1, . . . , ku,m P t1, . . . ,Mu,

as n Ñ 8. Moreover, it holds

sup
tPr0,τs

|pσim1m2 ptq ´ σim1m2 ptq|
P

ÝÑ 0, i P t1, . . . , ku,m1,m2 P t1, . . . ,Mu,

as n Ñ 8 by [26]. Note that ∆Aipuq ď 1 ´ Si´pτq ă 1, i P t1, . . . , ku, holds for all u P r0, τq. Hence, the
covariance estimator pΣi is a continuous functional of pAim1 and pσim1m2 , m1,m2 P t1, . . . ,Mu for all i P t1, . . . , ku

and, thus, the consistency pΣ
P

ÝÑ Σ as n Ñ 8 follows by Assumption 5.1.

Furthermore, we need that Σ is positive definite. The following lemma ensures this under Assumption 5.2.

Lemma 5.2. Under Assumptions 5.1 and 5.2, Σ is positive definite.

Proof of Lemma 5.2. Since Σ is positive definite whenever Σi is positive definite for all i P t1, . . . , ku, we fix
i P t1, ..., ku. Now, let a “ pa1, ..., aM q1 P RMzt0Mu be arbitrary. We aim to show a1Σia ą 0. By the proof of
Theorem 5.1, it holds that

a1Σia “ Var

˜

M
ÿ

m“1
am

˜

ż

r0,τq

fim dUim `

ż

r0,τq

gim d
ÿ

Ăm‰m

UiĂm

¸¸

“ Var

˜

M
ÿ

m“1

ż

r0,τq

him dUim

¸

with

fimpuq :“
pτ ´ uq

`

1 ´
ř

Ăm‰m FiĂmpuq
˘

´
şτ

u
Fimptq dt

1 ´ ∆Aipuq
,

gimpuq :“
pτ ´ uqFimpuq ´

şτ

u
Fimptq dt

1 ´ ∆Aipuq

and himpuq :“ amfimpuq `
ÿ

Ăm‰m

a
ĂmgiĂmpuq

for all u P r0, τq. We can calculate this variance further as

a1Σia “

M
ÿ

m“1
E

¨

˝

˜

ż

r0,τq

him dUim

¸2
˛

‚`

M
ÿ

m“1

ÿ

Ăm‰m

E
˜

ż

r0,τq

him dUim
ż

r0,τq

hiĂm dUiĂm

¸

“

M
ÿ

m“1

ż

r0,τq

h2
im

1 ´ ∆Aim
yi

dAim ´

M
ÿ

m“1

ÿ

Ăm‰m

ż

r0,τq

himhiĂm
∆Aim
yi

dAiĂm

“

M
ÿ

m“1

ż

r0,τq

h2
im

yi
dAim ´

M
ÿ

m“1

M
ÿ

Ăm“1

ż

r0,τq

himhiĂm
∆Aim
yi

dAiĂm

“

M
ÿ

m“1

ż

r0,τq

h2
im

yi
dAcim `

ÿ

xPDi

řM
m“1 h

2
impxq∆Aimpxq ´

´

řM
m“1 himpxq∆Aimpxq

¯2

yipxq
(5.8)

where Di “ tx P r0, τq : ∆Aipxq ą 0u is the set of discontinuity time points and

Acimpxq :“ Aimpxq ´
ÿ

yďx,yPDi

∆Aimpyq,m P t1, . . . ,Mu,
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denotes the continuous part of Aim at x P r0, τq. The Cauchy-Schwarz inequality yields
˜

M
ÿ

m“1
himpxq∆Aimpxq

¸2

ď

˜

M
ÿ

m“1
h2
impxq∆Aimpxq

¸˜

M
ÿ

m“1
∆Aimpxq

¸

and, thus,

M
ÿ

m“1
h2
impxq∆Aimpxq ´

˜

M
ÿ

m“1
himpxq∆Aimpxq

¸2

ě

M
ÿ

m“1
h2
impxq∆Aimpxq p1 ´ ∆Aipxqq ě 0

for all x P Di. Let m˚ P t1, ...,Mu be the index with |am˚ | “ maxt|a1|, ..., |aM |u ą 0. Then, it holds

|him˚ puq| “

ˇ

ˇ

ˇ

ˇ

ˇ

am˚fim˚ puq `
ÿ

Ăm‰m˚

a
ĂmgiĂmpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ě |am˚ |fim˚ puq ´

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

Ăm‰m˚

a
ĂmgiĂmpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ě |am˚ |

˜

fim˚ puq `
ÿ

Ăm‰m˚

giĂmpuq

¸

“ |am˚ |

şτ

u
Siptq dt

1 ´ ∆Aipuq
ě |am˚ |pτ ´ uq

Si´pτq

1 ´ ∆Aipuq
ą 0

for all u P r0, τq since |fim˚ puq| “ fim˚ puq, |giĂmpuq| “ ´giĂmpuq and 1 ´ ∆Aipuq ě Si´pτq ą 0 for all u P

r0, τq, rm P t1, . . . ,Mu. Note that Aim˚´pτq ą 0 due to Assumption 5.2. Hence, it follows that at least one of
the summands in (5.8) is strictly positive and, thus, a1Σia ą 0.

For Σ positive definite, it holds that rank pHΣH1q “ rank pHq. Furthermore, the consistency of the covariance
matrix estimator provides

P
´

rank
´

HpΣH1
¯

‰ rank pHq

¯

Ñ 0

as n Ñ 8. Hence, it follows that
´

HpΣH1

¯`
P

ÝÑ pHΣH1q
` as n Ñ 8. Theorem 5.1, Slutsky’s lemma and

Theorem 9.2.2 in [67] yield

WnpH, cq “ npHpη ´ cq1
´

HpΣH1
¯`

pHpη ´ cq

“
`

H
`?
nppη ´ ηq

˘˘1
´

HpΣH1
¯`

H
`?
nppη ´ ηq

˘ d
ÝÑ χ2

rankpHq

as n Ñ 8 under the null hypothesis H0 in (5.1).

Proof of Theorem 5.3 In the following, we denote all permutation counterparts of the counting processes
and estimators with a π in the superscript, e.g., Y πi , Nπ

im,
pAπim, i P t1, . . . , ku,m P t1, . . . ,Mu, and all counter-

parts for the pooled sample with a subscript ‚ instead of i, e.g., Y‚ :“
řk
i“1 Yi, N‚m :“

řk
i“1 Nim,

pA‚mptq :“
ş

r0,ts Y
´1

‚ dN‚m,m P t1, . . . ,Mu, as well as pA‚ :“
řM
m“1

pA‚m, pS‚ptq :“ Pxďt

!

1 ´ d
´

řM
m“1

pA‚m

¯

pxq

)

, pF‚mptq :“
ş

r0,ts
pS‚´ptq d pA‚m, pη‚m :“

şτ

0
pF‚mptq dt, and pη‚ :“ 1k b ppη‚1, ..., pη‚M q1 for all t ě 0. Furthermore, set

y‚ :“
řk
i“1 κiyi, ν‚mptq :“

řk
i“1 κiP pXi1 ď t, δi1 “ mq, F‚m :“

řk
i“1 κiFim, A‚mptq :“

ş

r0,ts y
´1
‚ dν‚m, A‚ :“

řM
m“1 A‚m,

S‚ptq :“ P
xPr0,ts

t1 ´ dA‚pxqu , σ‚mĂmptq :“
ż

r0,ts
p1tm “ rmu ´ ∆A‚mqy´1

‚ dA‚Ăm

for all t ě 0,m, rm P t1, . . . ,Mu.

Lemma 5.3. Under Assumption 5.1, we have

n1{2 ppηπ ´ pη‚q
d˚

ÝÝÑ Zπ „ NkM p0kM ,Σπq

as n Ñ 8. The definition of the covariance matrix Σπ is given at the end of the proof.

Proof of Lemma 5.3. Let us consider the class

F :“ tpx, dq ÞÑ 1tx ě tu, px, dq ÞÑ 1tx ď t, d “ mu | t P r0, τ s,m P t1, ...,Muu
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with finite envelope function F ” 1. It can be shown that F is P pXi1,Di1q-Donsker for all i “ 1, . . . , k, e.g., by
applying Theorem 2.6.8 in [74]. By Theorem 2.2, it follows that

n1{2 `n´1
i pY πi , N

π
i1, . . . , N

π
iM q ´ n´1pY‚, N‚1, . . . , N‚M q

˘

iPt1,...,ku

d˚

ÝÝÑ pGi, Gi1, . . . , GiM qiPt1,...,ku (5.9)

on pDr0, τ sqkpM`1q as n Ñ 8, where pGi, Gi1, . . . , GiM qiPt1,...,ku denotes a tight centered Gaussian process with
covariance structure

E
`

GiptqGjpsq
˘

“
`

κ´1
i 1ti “ ju ´ 1

˘

py‚pmaxtt, suq ´ y‚ptqy‚psqq ,

E
`

GiptqGjm1 psq
˘

“
`

κ´1
i 1ti “ ju ´ 1

˘

ppν‚m1 psq ´ ν‚m1´ptqq1ts ě tu ´ y‚ptqν‚m1 psqq ,

E pGim1 ptqGjm2 psqq “
`

κ´1
i 1ti “ ju ´ 1

˘

pν‚m1 pmintt, suq1tm1 “ m2u ´ ν‚m1 ptqν‚m2 psqq

at pt, sq P r0, τ s2 for all i, j P t1, . . . , ku,m1,m2 P t1, . . . ,Mu. By the conditional delta-method (Theorem 2.5)
and the uniform Hadamard-differentiability of the Wilcoxon functional (Example A.1), we get

n1{2
´

pAπim ´ pA‚m

¯

iPt1,...,ku,mPt1,...,Mu

d˚

ÝÝÑ

˜

ż

r0,.s
y´1

‚ dGim ´

ż

r0,.s
Giy

´2
‚ dν‚m

¸

iPt1,...,ku,mPt1,...,Mu

“: pUπimqiPt1,...,ku,mPt1,...,Mu

on pDr0, τ sqkM as n Ñ 8. The limit variable pUπimqiPt1,...,ku,mPt1,...,Mu is a separable centered Gaussian process
and the covariance structure can be calculated similarly as in [26] as

E
`

Uπim1
ptqUπjm2

psq
˘

“
`

κ´1
i 1ti “ ju ´ 1

˘

ż

r0,mintt,sus

p1tm1 “ m2u ´ ∆A‚m1 qy´1
‚ dA‚m2

“: σπijm1m2
pmintt, suq

for all i, j P t1, . . . , ku,m1,m2 P t1, . . . ,Mu and t, s P r0, τ s. Furthermore, we aim to apply the conditional
delta-method with the function

Φ : DkΦ Q pΛimqiPt1,...,ku,mPt1,...,Mu ÞÑ pΦpΛ11, . . . ,Λ1M q, . . . ,ΦpΛk1, . . . ,ΛkM qq P RkM ,

where Φ is defined as in the proof of Theorem 5.2 and

DΦ :“
#

pΛmqmPt1,...,Mu P pBVKr0, τ sqM | ´

M
ÿ

m“1
Λm P BV ą´1

MK r0, τ s, rϕ

˜

´

M
ÿ

m“1
Λm

¸

P BVKr0, τq

+

.

Consequently, it remains to show the uniform Hadamard-differentiability of Φ : DΦ Ñ RM at pA‚1, . . . , A‚M q.
Therefore, we remind that Φ is a composition of linear functionals and rψ, rϕ in Section A. Hence, the chain rule
(Theorem 2.4) together with the examples in Section A implies that it remains to show that ´

řM
m“1 A‚m :

r0, τq Ñ R is a càdlàg function of bounded variation with jumps contained in p´1,8q and bounded away from
´1, which follows by Assumption 5.1. Thus, we receive

n1{2 ppηπ ´ pη‚q
d˚

ÝÝÑ
`

Φ1
A‚1,...,A‚M

pUπ11, ..., U
π
1M q, . . . ,Φ1

A‚1,...,A‚M
pUπk1, ..., U

π
kM q

˘

“: Zπ

as n Ñ 8. The limit variable Zπ is a centered normal variable with covariance matrix Σπ, where the entries
Σπ
im1,jm2

are given by

ż

r0,τq

#

pτ ´ uq

˜

1 ´
ř

Ăm‰m1

F‚Ămpuq

¸

´
şτ
u F‚m1 ptq dt

+#

pτ ´ uq

˜

1 ´
ř

Ăm‰m2

F‚Ămpuq

¸

´
şτ
u F‚m2 ptq dt

+

p1 ´ ∆A‚puqq2 dσπ
ijm1m2 puq

`

ż

r0,τq

#

pτ ´ uq

˜

1 ´
ř

Ăm‰m1

F‚Ămpuq

¸

´
şτ
u F‚m1 ptq dt

+

␣

pτ ´ uqF‚m2 puq ´
şτ
u F‚m2 ptq dt

(

p1 ´ ∆A‚puqq2 d
ÿ

Ăm‰m2

σπ
ijm1Ăm

puq

`

ż

r0,τq

#

pτ ´ uq

˜

1 ´
ř

Ăm‰m2

F‚Ămpuq

¸

´
şτ
u F‚m2 ptq dt

+

␣

pτ ´ uqF‚m1 puq ´
şτ
u F‚m1 ptq dt

(

p1 ´ ∆A‚puqq2 d
ÿ

Ăm‰m1

σπ
ijm2Ăm

puq

`

ż

r0,τq

␣

pτ ´ uqF‚m1 puq ´
şτ
u F‚m1 ptq dt

( ␣

pτ ´ uqF‚m2 puq ´
şτ
u F‚m2 ptq dt

(

p1 ´ ∆A‚puqq2 d
ÿ

Ăm‰m1

ÿ

m̆‰m2

σπ
ijĂmm̆puq

for all i, j P t1, . . . , ku,m1,m2 P t1, . . . ,Mu.

66



Now, we turn to the permutation counterpart of the covariance matrix estimator.

Lemma 5.4. Under Assumption 5.1, we have

pΣπ P
ÝÑ rΣπ :“

k
à

i“1
κ´1
i prΣπm1m2

qm1,m2Pt1,...,Mu

as n Ñ 8, where rΣπm1m2
is defined as in (5.10) for all m1,m2 P t1, . . . ,Mu.

Proof of Lemma 5.4. Due to the definition of pΣπ, it remains to show pΣπim1,im2

P
ÝÑ rΣπm1m2

, i P t1, . . . , ku,m1,m2 P

t1, . . . ,Mu. Therefore, let i P t1, . . . , ku be arbitrary but fixed. Then, (5.9) implies

n1{2 `n´1
i pY πi , N

π
i1, . . . , N

π
iM q ´ n´1pY‚, N‚1, . . . , N‚M q

˘ d
ÝÑ pGi, Gi1, . . . , GiM q

on pDr0, τ sqM`1 as n Ñ 8 unconditionally by Lemma 2.1. Hence, Slutsky’s lemma provides

sup
tPr0,τs

ˇ

ˇn´1
i Y πi ptq ´ n´1Y‚ptq

ˇ

ˇ

P
ÝÑ 0 and sup

tPr0,τs

ˇ

ˇn´1
i Nπ

imptq ´ n´1N‚mptq
ˇ

ˇ

P
ÝÑ 0,m P t1, . . . ,Mu,

as n Ñ 8. By the definitions of Y‚, N‚1, . . . , N‚M , we further get

sup
tPr0,τs

ˇ

ˇn´1Y‚ptq ´ y‚ptq
ˇ

ˇ “ sup
tPr0,τs

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

´ni
n
n´1
i Yiptq ´ κiyiptq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0 and

sup
tPr0,τs

ˇ

ˇn´1N‚mptq ´ F‚mptq
ˇ

ˇ “ sup
tPr0,τs

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

´ni
n
n´1
i Nimptq ´ κiFimptq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0,m P t1, . . . ,Mu,

as n Ñ 8 since F in the proof of Lemma 5.3 is P pXi1,Di1q-Donsker. Thus, it follows

sup
tPr0,τs

ˇ

ˇn´1
i Y πi ptq ´ y‚ptq

ˇ

ˇ

P
ÝÑ 0 and sup

tPr0,τs

ˇ

ˇn´1
i Nπ

imptq ´ F‚mptq
ˇ

ˇ

P
ÝÑ 0,m P t1, . . . ,Mu,

as n Ñ 8. Since pAπimp¨q “
ş

r0,¨s nipY
π
i q´1 dpn´1

i Nπ
imq, pFπim and pσπimĂm are depending continuously on

n´1
i pY πi , N

π
i1, . . . , N

π
iM q,

we can conclude

sup
tPr0,τs

ˇ

ˇ

ˇ

pAπimptq ´A‚mptq
ˇ

ˇ

ˇ

P
ÝÑ 0, sup

tPr0,τs

ˇ

ˇ

ˇ

pFπimptq ´ F‚mptq
ˇ

ˇ

ˇ

P
ÝÑ 0 and sup

tPr0,τs

|pσπimĂmptq ´ σ‚mĂmptq|
P

ÝÑ 0

as n Ñ 8 for all m, rm P t1, . . . ,Mu. Hence, we get

pΣπ
im1,im2

P
ÝÑ rΣπ

m1m2 :“

ż

r0,τq

#

pτ ´ uq

˜

1 ´
ř

Ăm‰m1

F‚Ămpuq

¸

´
şτ
u F‚m1 ptq dt

+#

pτ ´ uq

˜

1 ´
ř

Ăm‰m2

F‚Ămpuq

¸

´
şτ
u F‚m2 ptq dt

+

p1 ´ ∆A‚puqq2 dσ‚m1m2 puq

`

ż

r0,τq

#

pτ ´ uq

˜

1 ´
ř

Ăm‰m1

F‚Ămpuq

¸

´
şτ
u F‚m1 ptq dt

+

␣

pτ ´ uqF‚m2 puq ´
şτ
u F‚m2 ptq dt

(

p1 ´ ∆A‚puqq2 d
ÿ

Ăm‰m2

σ‚m1Ămpuq

`

ż

r0,τq

#

pτ ´ uq

˜

1 ´
ř

Ăm‰m2

F‚Ămpuq

¸

´
şτ
u F‚m2 ptq dt

+

␣

pτ ´ uqF‚m1 puq ´
şτ
u F‚m1 ptq dt

(

p1 ´ ∆A‚puqq2 d
ÿ

Ăm‰m1

σ‚m2Ămpuq

`

ż

r0,τq

␣

pτ ´ uqF‚m1 puq ´
şτ
u F‚m1 ptq dt

( ␣

pτ ´ uqF‚m2 puq ´
şτ
u F‚m2 ptq dt

(

p1 ´ ∆A‚puqq2 d
ÿ

Ăm‰m1

ÿ

m̆‰m2

σ‚Ămm̆puq

(5.10)

as n Ñ 8.

As in the proof of Theorem 5.2, we need the positive definiteness of rΣπ, which is given by the following lemma.

Lemma 5.5. Under Assumptions 5.1 and 5.2, rΣπ is positive definite.
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Proof of Lemma 5.5. The proof is similar to the proof of Lemma 5.2. Firstly note that rΣπ is positive definite
if prΣπm1m2

qm1,m2Pt1,...,Mu is positive definite. Let a “ pa1, . . . , aM q1 P RMzt0Mu be arbitrary. With

fmpuq :“
pτ ´ uqp1 ´

ř

Ăm‰m F‚Ămpuqq ´
şτ

u
F‚mptq dt

1 ´ ∆A‚puq
,

gmpuq :“
pτ ´ uqF‚mpuq ´

şτ

u
F‚mptq dt

1 ´ ∆A‚puq

and hmpuq :“ amfmpuq `
ÿ

Ăm‰m

a
ĂmgĂmpuq

for all u P r0, τq, we get

a1prΣπm1m2
qm1,m2Pt1,...,Mua “

M
ÿ

m“1

ż

r0,τq

h2
m

y‚

dAc‚m (5.11)

`
ÿ

xPD

řM
m“1 h

2
mpxq∆A‚mpxq ´

´

řM
m“1 hmpxq∆A‚mpxq

¯2

y‚pxq
(5.12)

analogously to the proof of Lemma 5.2, where D :“ tx P r0, τq : ∆A‚pxq ą 0u and

Ac‚mpxq :“ A‚mpxq ´
ÿ

yďx,yPD
∆A‚mpyq,m P t1, . . . ,Mu,

for all x P r0, τq. The Cauchy-Schwarz inequality implies

M
ÿ

m“1
h2
mpxq∆A‚mpxq ´

˜

M
ÿ

m“1
hmpxq∆A‚mpxq

¸2

ě

M
ÿ

m“1
h2
mpxq∆A‚mpxq p1 ´ ∆A‚pxqq ě 0

for all x P D. For m˚ P t1, ...,Mu with |am˚ | “ maxt|a1|, . . . , |aM |u ą 0, it holds

|hm˚ puq| “

ˇ

ˇ

ˇ

ˇ

ˇ

am˚fm˚ puq `
ÿ

Ăm‰m˚

a
ĂmgĂmpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ě |am˚ |fm˚ puq ´

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

Ăm‰m˚

a
ĂmgĂmpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ě |am˚ |

˜

fim˚ puq `
ÿ

Ăm‰m˚

giĂmpuq

¸

“ |am˚ |

řk
i“1 κi

şτ

u
Siptq dt

1 ´ ∆A‚puq

ě |am˚ |
pτ ´ uq

řk
i“1 κiSipτq

1 ´ ∆A‚puq
ą 0

for all u P r0, τq since |fm˚ puq| “ fm˚ puq, |g
Ămpuq| “ ´g

Ămpuq and

∆A‚puq “

řk
i“1 κiyipuq∆Aipuq
řk
i“1 κiyipuq

ă 1

for all u P r0, τq; rm P t1, . . . ,Mu. Note that A‚m˚´pτq ą 0 due to Assumption 5.2. Thus, at least one of the
summands (5.11) and (5.12) is strictly positive.

Note that σπijm1m2
“ pκ´1

i 1ti “ ju ´ 1qσ‚m1m2 for all i, j P t1, . . . , ku,m1,m2 P t1, . . . ,Mu. Hence, it holds
rΣπ “ Σπ ` p1k11

kq b prΣπm1m2
qm1,m2Pt1,...,Mu and, thus, HpΣπH1 P

ÝÑ HrΣπH1 “ HΣπH1 as n Ñ 8 due to the
contrast property of the hypothesis matrix H. The positive definiteness of rΣπ ensures

rank
`

HΣπH1
˘

“ rank
´

HrΣπH1
¯

“ rank pHq .

As in the proof of Theorem 5.2, we get pHpΣπH1q` P
ÝÑ pHΣπH1q` as n Ñ 8. Combining this with Lemma 5.3,

Slutsky’s lemma and Theorem 9.2.2 in [67] yields

Wπ
n pHq “ npHpηπq1

´

HpΣπH1
¯`

pHpηπq

“

´

Hpn1{2ppηπ ´ pη‚qq

¯1 ´

HpΣπH1
¯` ´

Hpn1{2ppηπ ´ pη‚qq

¯

d˚

ÝÝÑ pHZπq1pHΣπH1q`pHZπq „ χ2
rankpHq

as n Ñ 8.
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Proof of Theorem 5.4 We aim to apply Theorem 2.6 and Lemma 2.3. Therefore, let Xn :“ pX, δq denote
the data, Mpbq

n denote the randomness of the permutation method and Wpbq
n denote the bth Monte Carlo

replicate of the permutation counterparts of the Wald-type test statistic for all b P t1, ..., Bnu. Moreover, let
L “ 1 and Fn,1 “ Fn be as in Lemma 2.3, i.e., denoting the empirical distribution function of Wp1q

n , ...,WpBnq
n .

Then, Wp1q
n

d˚

ÝÝÑ χ2
rankpHq

holds as n Ñ 8 by Theorem 5.3. The limit distribution χ2
rankpHq

has a continuous
distribution function F1 : R Ñ r0, 1s that is strictly increasing on r0,8q due to rankpHq ą 0 and the function
FWER in Theorem 2.6 equals the identity on r0, 1s. Hence, Lemma 2.3 implies (2.15) and (2.16). Thus,
Theorem 2.6 yields the statement of the theorem.

Proof of Theorem 5.5 By Slutsky’s lemma, we combine Theorem 5.1 and Lemma 5.1 for Theorem 5.5.
Since the map

RkM ˆ RkMˆkM Q pm,Sq ÞÑ
`

pHℓmq1pHℓSH1
ℓq

`Hℓm
˘

ℓPT P RT

is continuous on RkM ˆ tΣu due to Lemma 5.2, the statement follows by the continuous mapping theorem.

Proof of Theorem 5.6 In order to prove Theorem 5.6, we aim to apply Theorem 2.6 and Lemma 2.3.
Therefore, let Xn :“ pX, δq denote the data, Mpbq

n :“ Ypbq denote the randomness of the Monte Carlo method
and Wpbq

n :“ pHℓ
pΣ1{2Ypbqq1pHℓ

pΣH1
ℓq

`pHℓ
pΣ1{2Ypbqq denote the bth Monte Carlo replicate for all b P t1, ..., Bnu.

Moreover, let Fn be as in Lemma 2.3, i.e., denoting the empirical distribution function of Wp1q
n , ...,WpBnq

n and
Fn,ℓ denote the cumulative distribution functions of the χ2

rankpHℓ
pΣH1

ℓ
q
-distribution for all ℓ P t1, ..., Lu. Then,

Wp1q
n

d˚

ÝÝÑ ppHℓZq1pHℓΣH1
ℓq

`pHℓZqqℓPt1,...,Lu
holds as n Ñ 8 by Lemma 5.1. The marginal limit distributions

χ2
rankpHℓq

have continuous distribution functions Fℓ : R Ñ r0, 1s that are strictly increasing on r0,8q due
to rankpHℓq ą 0 for all ℓ P t1, ..., Lu. Hence, Lemma 2.3 implies (2.15). Moreover, (2.16) follows from the
consistency of the covariance matrix estimator since

P
´

rank
´

Hℓ
pΣH1

ℓ

¯

‰ rank pHℓq

¯

Ñ 0

holds as n Ñ 8. As a result, Theorem 2.6 yields the statement of the theorem.
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6 Discussion and Outlook
In this thesis, we constructed tests for survival estimands in complex survival designs. In order to do so, we
started with some methodological preliminaries in Section 2. There, we closed the gap of a suitable delta-
method for resampling procedures in multiple sample problems as, e.g., the permutation and pooled bootstrap.
In addition, we introduced a strategy to obtain multiple tests that are asymptotically balanced and control the
family-wise error rate in the strong sense. In Section 3, we considered paired survival times and constructed
suitable tests for a version of the Mann-Whitney effect and the restricted mean survival time (RMST). Multiple
tests for RMSTs in general factorial survival designs are developed in Section 4. As a natural extension of the
RMST in competing risks setups, we constructed multiple tests based on the restricted mean time lost (RMTL)
in general factorial designs in Section 5.
All theoretical results were proven in detail. Furthermore, extensive simulation studies were conducted to
analyze the finite sample behavior of the proposed methods of Section 4 and 5. Additionally, we successfully
applied the methodology to different data examples to illustrate their usage.

Outlook When considering the methodology of Section 2.5, the weak convergence of uniform Hadamard dif-
ferentiable functionals of resampling empirical processes can be derived in outer probability which is sufficient for
most statistical applications. In view of the extensions of the classical delta-method for, e.g., quasi-Hadamard
differentiable functionals [5, 6, 7] and directionally differentiable functionals [35], future research might include
whether conditional delta-methods for more general functionals can be achieved that are applicable for resam-
pling procedures in multiple sample problems. Moreover, the weak convergence could also be investigated in
the outer almost sure case; cf. the supplement of [7] for an extension of the conditional delta-method outer
almost surely under measurability assumptions.
Section 5 involved the construction of tests which cover RMTL comparisons for the same event types across
different groups. However, one may also be interested in comparing two or more RMTLs within each group. A
potentially suitable resampling procedure for this problem could be motivated from the randomization approach
in [30]. As an adaption of this, the event indicators δij are re-drawn as rδij from t1, . . . ,Mu with equal probability
1{M if δij ‰ 0, which leads to the randomized data pXij , rδijq, j P t1, . . . , niu, i P t1, . . . , ku. By the theory of [27],
the asymptotic validity of this randomization approach can be shown if the hypothesis matrix can be partitioned
into a block matrices with one row block and k column blocks for k contrast matrices. Moreover, finitely exact
tests could be achieved by this randomization approach under the event type exchangeability of the data, i.e.,
Fi1 ” . . . ” FiM , i P t1, ..., ku. Nonetheless, more analysis on this matter is a point of future research. Beyond
the permutation approach described in the paper and the randomization approach of [30], further resampling
approaches could be considered. For instance, an alternative permutation approach for factorial designs might
be to only permute within the factor whose effect should be tested.
As a further outlook, tests regarding other effect estimands as, e.g., the median survival time [12, 15, 22], in
complex survival designs could be developed. An estimand similar to the usual RMST studied in Sections 3.2
and 4 is the weighted version of the RMST. That is, µw :“

şτ

0 wptqSptq dt with estimator pµw :“
şτ

0 wptqpSptq dt
for some weight function w P L1pr0, τ sq and survival function S similar as in [80]. Additionally, the case of data
dependent weight functions was already investigated in [80] for the two-sample case. For competing risks setups
as in Section 5, for example cumulative incidence quantiles [8, 50, 64, 69], extensions of the probabilistic index
(or relative treatment effect) [31, 32] in the presence of competing risks, and the area between curves statistic
[53, 54] are interesting alternatives.
In addition, our survival models cover paired survival data and factorial designs so far, i.e., only factorial
covariates can be incorporated. In future research, models for more complex covariates as, e.g., continuous, high-
dimensional, and time-varying covariates, could be considered. While competing risks setups are an extension
of classical survival models, they can be further extended as multi-state models [44]. Multi-state models allow
for intermediate states or transitions back to the initial state once an event has occurred and, hence, are even
more flexible than competing risks models. Here, (multiple) tests for estimands in multi-state models could
be investigated as well. In this context, mean sojourn times could be considered as a natural extension of the
RMST and RMTL.
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A Applications of the Conditional Delta-Method on Exemplary Func-
tionals

In this section, we will verify the uniform Hadamard differentiability of exemplary functionals as the Wilcoxon
functional and the product integral functional. The verifications of the uniform Hadamard differentiability of
these functionals roughly follow the lines of Lemma 3.10.18 and Lemma 3.10.32 in [74].

A.1 Wilcoxon functional
Let ra, bs Ă R :“ R Y t´8,8u and

ψ : BVM ra, bs ˆBVM ra, bs Ñ Dra, bs, ψpA,Bq :“
ż

pa,.s

A dB

denote the Wilcoxon functional. We aim to show the uniform Hadamard differentiability at pA,Bq P Dψ
tangentially to Dra, bs ˆDra, bs with Hadamard derivative

ψ1
pA,Bq : Dra, bs ˆDra, bs Ñ Dra, bs, ψ1

pA,Bqpα, βq “

ż

pa,.s

A dβ `

ż

pa,.s

α dB;

cf. Lemma 3.10.18 in [74]. Here and below, the integral w.r.t. β is defined via integration by parts if β has
unbounded variation. Let t Ñ 0, At, A,Bt, B P BVM ra, bs, αt, α, βt, β P Dra, bs such that ||At ´ A||8 Ñ

0, ||Bt ´ B||8 Ñ 0, ||αt ´ α||8 Ñ 0, ||βt ´ β||8 Ñ 0 and At ` tαt, Bt ` tβt P BVM ra, bs. As in the proof of
Lemma 3.10.18 in [74], we consider

ψpAt ` tαt, Bt ` tβtq ´ ψpAt, Btq

t
´ ψ1

pA,Bqpαt, βtq “

ż

pa,.s

pAt ´Aq dβt `

ż

pa,.s

αt dpBt ` tβt ´Bq.

The second term converges to zero by proceeding as in the proof of Lemma 3.10.18 in [74]. For the first term,
we apply integration by parts to obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ż

pa,.s

pAt ´Aq dβt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

pAt ´Aqp.qβtp.q ´ pAt ´Aqpaqβtpaq ´

ż

pa,.s

βt´puq dpAt ´Aqpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2||At ´A||8||βt||8 `

ˇ

ˇ

ˇ

ˇ

ˇ

ż

pa,.s

βt´puq dpAt ´Aqpuq

ˇ

ˇ

ˇ

ˇ

ˇ

,

where here and throughout βt´puq :“ limsÕu βtpsq denotes the left-continuous version of βt at u. The first term
converges to zero by ||At ´ A||8 Ñ 0 and the second term converges to zero as in the proof of Lemma 3.10.18
in [74]. Hence, we showed that

ψpAt ` tαt, Bt ` tβtq ´ ψpAt, Btq

t
´ ψ1

pA,Bqpαt, βtq Ñ 0

and, by the continuity of ψ1
pA,Bq

, the uniform Hadamard differentiability of the Wilcoxon functional follows.

Example A.1 (Wilcoxon statistic). Let a “ ´8, b “ 8. We consider the case of two independent samples
X1, . . . , Xn „ F and Y1, . . . , Ym „ G taking values in R with empirical distribution functions Fn,Gm, respec-
tively. The Wilcoxon statistic ψpFn,Gkqp8q “

ş8

´8
Fn dGm is an estimator of ψpF,Gqp8q “ P pX1 ď Y1q. In

the following, we assume n{pn ` mq Ñ κ1 ą 0,m{pn ` mq Ñ κ2 ą 0. Furthermore, let us consider the PX1-
and PY1-Donsker class F :“ tx ÞÑ 1tx ď tu | t P Ru, cf. Example 2.1.3 in [74], with ||PX1 ||F , ||P

Y1 ||F ď 1. As
in Example 3.10.19, we get

c

nm

n`m

ˆ
ż

R
Fn dGm ´

ż

R
F dG

˙

ù
?
κ2

ż

R
F dGG `

?
κ1

ż

R
GF dG,

where GF ,GG denote independent tight F - and G-Brownian bridges.
Furthermore, we get

c

nm

n`m
pHn`m ´Hn`mq ù

?
κ2κ1GF `

?
κ1κ2GG in Dr´8,8s

and Hn`m Ñ H :“ κ1F ` κ2G for the pooled empirical distribution function Hn`m :“ n
n`mFn ` m

n`mGm and
Hn`m :“ n

n`mF ` m
n`mG.
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For deriving the asymptotic behavior of the permutation and pooled bootstrap counterpart of the Wilcoxon
statistic, we denote the empirical distribution functions of the permutation and pooled bootstrap samples as
Fπn,Gπm, F̂n, Ĝm, respectively. Then, Theorem 2.2 and (??) yield

?
n`mpFπn ´ Hn`m,Gπm ´ Hn`mq ù pGπH,1,GπH,2q

?
n`mpF̂n ´ Hn`m, Ĝm ´ Hn`mq ù pκ

´1{2
1 GH,1, κ´1{2

2 GH,2q

in pDr´8,8sq2 conditionally in outer probability, where GπH denotes a tight zero-mean Gaussian process with

E
“

GπH,ipsqGπH,jptq
‰

“ pκ´1
i 1ti “ ju ´ 1qpHpmints, tuq ´HpsqHptqq

and GH,1,GH,2 denote independent tight H-Brownian bridges. Since H,Hn`m,Hn`m,Fπn,Gπn, F̂n, Ĝn are (em-
pirical) distribution functions, the total variations are bounded by M “ 1. By Theorem 2.5 and the uniform
Hadamard differentiability of the Wilcoxon functional, we get

?
n`mpψpFπn,Gπmq ´ ψpHn`m,Hn`mqq ù ψ1

pH,HqpGπH,1,GπH,2q,
?
n`mpψpF̂n, Ĝmq ´ ψpHn`m,Hn`mqq ù ψ1

pH,Hqpκ
´1{2
1 GH,1, κ´1{2

2 GH,2q

in pDr´8,8sq2 conditionally in outer probability. Thus, it follows that
c

nm

n`m

ˆ
ż

R
Fπn dGπm ´

ż

R
Hn`m dHn`mq

˙

ù
?
κ1κ2

ˆ
ż

R
H dGπH,2 `

ż

R
GπH,1 dH

˙

,

c

nm

n`m

ˆ
ż

R
F̂n dĜm ´

ż

R
Hn`m dHn`m

˙

ù
?
κ1

ż

R
H dGH,2 `

?
κ2

ż

R
GH,1 dH

conditionally in outer probability by Slutsky’s lemma.

As we turn to survival analysis in Sections 3–5, we investigate the asymptotic behavior of the Nelson-Aalen
estimator and its resampling versions here.

Example A.2 (Nelson-Aalen estimator). Let us consider a survival setup with multiple samples, i.e., each
data point Xij “ pZij ,∆ijq consists of a (censored) failure time Zij “ mintXij , Ciju and a censoring status
∆ij “ 1tXij ď Ciju, see Example 3.10.20 in [74] for details. Furthermore, let

Hi,ni
ptq :“ 1

ni

ni
ÿ

j“1
1tZij ě tu and Huci,ni

ptq :“ 1
ni

ni
ÿ

j“1
∆ij1tZij ď tu

denote the survival function of the observation times and the empirical subdistribution functions of the uncen-
sored failure times, respectively, and Hiptq :“ P pZij ě tq, Huc

i ptq :“ P pZij ď t,∆ij “ 1q. The Nelson-Aalen
estimator

Λi,ni
p.q :“

ż

r0,.s

1
Hi,ni

dHuci,ni

estimates the cumulative hazard function

Λip.q :“
ż

r0,.s

1
Hi

dHuc
i .

To derive the asymptotic behavior of the Nelson-Aalen estimators, let us consider the Pi :“ P pZi1,∆i1q-Donsker
class

F :“
!

f
p1q

t : px, dq ÞÑ 1tx ě tu, f
p2q

t : px, dq ÞÑ 1tx ď t, d “ 1u | t P r0, τ s

)

for some τ ą 0. Then, we have
?
NpHi,ni

´Hi,Huci,ni
´Huc

i qiPt1,...,ku ù pκ
´1{2
i Gi, κ´1{2

i Guci qiPt1,...,ku in pD̃r0, τ s ˆDr0, τ sqk

as in Example 3.10.20 in [74]. Here, pGi,Guci q, i P t1, . . . , ku, denote independent tight, zero-mean Gaussian
processes with covariance structure

E
“

GipsqGiptq
‰

“ Hipmaxts, tuq ´HipsqHiptq,

E
“

Guci psqGiptq
‰

“ pHuc
i psq ´Huc

i´ptqq1tt ď su ´Huc
i psqHiptq,

E rGuci psqGuci ptqs “ Huc
i pmints, tuq ´Huc

i psqHuc
i ptq,
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and throughout D̃r0, τ s denotes the subset of all functions r0, τ s Ñ R that are everywhere left-continuous and
have right limits everywhere, equipped with the sup-norm.
For the pooled empirical subdistribution functions HN :“

řk
i“1

ni

N Hi,ni
,HucN :“

řk
i“1

ni

N Huci,ni
, it follows that

?
N

˜

HN ´

k
ÿ

i“1

ni
N
Hi,HucN ´

k
ÿ

i“1

ni
N
Huc
i

¸

ù

˜

k
ÿ

i“1
κ

1{2
i Gi,

k
ÿ

i“1
κ

1{2
i Guci

¸

in D̃r0, τ s ˆDr0, τ s.

Furthermore, we have that
řk
i“1

ni

NHi Ñ H :“
řk
i“1 κiHi and

řk
i“1

ni

NH
uc
i Ñ Huc :“

řk
i“1 κiH

uc
i in the

sup-norm.
Let us assume Hipτq ą 0 for all i P t1, . . . , ku in the following. Then, the (classical) functional delta-method
(Theorem 3.10.4 in [74]) implies

?
NpΛi,ni ´ ΛiqiPt1,...,ku ù

´

κ
´1{2
i ZipCiq

¯

iPt1,...,ku
in pDr0, τ sqk,

where Zi, i P t1, . . . , ku, are independent standard Brownian motions and

Cip.q “

ż

r0,.s

1 ´ ∆Λi
Hi

dΛi.

as in Example 3.10.20 in [74].
Now, we are considering the permutation and pooled bootstrap counterparts of the Nelson-Aalen estimators.
Therefore, we denote all processes and statistics introduced above with a π in the superscript, if they are based
on the permuted data ZNR1 , . . . ,ZNRN

instead of the original data, and with a hat ˆ, if they are based on
the bootstrapped data ẐN1, . . . , ẐNN . Theorem 2.2 and (??) imply the conditional weak convergence of the
permutation and pooled bootstrap empirical processes

?
NpHπi,ni

´ HN ,Huc,πi,ni
´ HucN qiPt1,...,ku ù pGπi ,G

uc,π
i qiPt1,...,ku in pD̃r0, τ s ˆDr0, τ sqk,

?
NpĤi,ni ´ HN , Ĥuci,ni

´ HucN qiPt1,...,ku ù pκ
´1{2
i Ĝi, κ´1{2

i Ĝuci qiPt1,...,ku in pD̃r0, τ s ˆDr0, τ sqk,

conditionally in outer probability due to ||Pi||F ď 1. Here, pGπi ,G
uc,π
i qiPt1,...,ku is a tight, zero-mean Gaussian

process with

E
”

Gπi psqGπj ptq
ı

“ pκ´1
i 1ti “ ju ´ 1qpHpmaxts, tuq ´HpsqHptqq,

E
”

Guc,πi psqGπj ptq
ı

“ pκ´1
i 1ti “ ju ´ 1q

`

pHucpsq ´Huc
´ ptqq1tt ď su ´HucpsqHptq

˘

,

E
“

Guc,πi psqGuc,πj ptq
‰

“ pκ´1
i 1ti “ ju ´ 1qpHucpmints, tuq ´HucpsqHucptqq,

and pĜi, Ĝuci q, i P t1, . . . , ku, are independent tight, zero-mean Gaussian processes with

E
”

ĜipsqĜiptq
ı

“ Hpmaxts, tuq ´HpsqHptq,

E
”

Ĝuci psqĜiptq
ı

“ pHucpsq ´Huc
´ ptqq1tt ď su ´HucpsqHptq,

E
”

Ĝuci psqĜuci ptq
ı

“ Hucpmints, tuq ´HucpsqHucptq.

The Nelson-Aalen functional is a composition of the functionals

ψ̃ : B̃VM r0, τ s ˆBVM r0, τ s Ñ Dr0, τ s, ψ̃pA,Bq :“
ż

r0,.s
A dB

and pA,Bq ÞÑ p1{A,Bq, where here and throughout B̃VM r0, τ s Ă D̃r0, τ s denotes the subset of functions with
total variation bounded by M ă 8. Furthermore, we set ∆Bp0q :“ Bp0q for B P Dr0, τ s in the following to
guarantee a well-defined jump in 0. Similarly to the above calculations for the Wilcoxon functional, it can be
shown that ψ̃ is uniformly Hadamard differentiable at pA,Bq P Dψ̃ with Hadamard derivative

ψ̃1
pA,Bq : D̃r0, τ s ˆDr0, τ s Ñ Dr0, τ s, ψ̃1

pA,Bqpα, βq “

ż

r0,.s
A dβ `

ż

r0,.s
α dB.

Furthermore, it is easy to show that pA,Bq ÞÑ p1{A,Bq is uniformly Hadamard differentiable at pA,Bq P

D̃r0, τ s ˆ Dr0, τ s such that |A| ě ε for some ε ą 0 with Hadamard derivative pα, βq ÞÑ p´α{A2, βq. Hence, the
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Nelson-Aalen functional pA,Bq ÞÑ ψ̃p1{A,Bq is uniformly Hadamard differentiable at pA,Bq with Hadamard
derivative pα, βq ÞÑ ψ̃1

p1{A,Bq
p´α{A2, βq by the chain rule (Theorem 2.4), where |A| ě ε and p1{A,Bq P Dψ̃.

Since Hi, H
uc
i , H,Huc are positive monotone functions, we have

Hi, H ą mintH1pτq, . . . ,Hkpτqu “: 2ε ą 0

and the total variation of 1{Hi, H
uc
i , 1{H,Huc is bounded by M :“ ε´1. Moreover, the considered empirical

processes are contained in tA | A ě ε, 1{A P B̃VM r0, τ su ˆ BVM r0, τ s with probability tending to 1 by mono-
tonicity and Glivenko-Cantelli arguments. Hence, the uniform Hadamard differentiability of the Nelson-Aalen
functional and the conditional delta-method (Theorem 2.5) yield

?
NpΛπi,ni

´ ΛN qiPt1,...,ku ù pZπi qiPt1,...,ku in pDr0, τ sqk,
?
NpΛ̂i,ni ´ ΛN qiPt1,...,ku ù

´

κ
´1{2
i ZipCq

¯

iPt1,...,ku
in pDr0, τ sqk

conditionally in outer probability similarly to the calculations in Example 3.10.20 in [74], where ΛN p.q :“
ş

r0,.s
1

HN
dHucN denotes the pooled Nelson-Aalen estimator,

Cp.q :“
ż

r0,.s

1 ´ ∆Λ
H

dΛ,

Λp.q :“
ş

r0,.s
1
H

dHuc and pZπi qiPt1,...,ku
is a zero-mean Gaussian process with

E
“

Zπi psqZπj ptq
‰

“ pκ´1
i 1ti “ ju ´ 1qCpmints, tuq.

A.2 Product integral
Consider ϕ, the product integral functional, i.e.,

ϕ : BV ą´1
M ra, bs Ñ Dra, bs, A ÞÑ P

uPpa,¨s

p1 ` dApuqq.

Here, BV ą´1
M ra, bs Ă Dra, bs is the subset of functions ra, bs Ñ R with total variation bounded by M and

whose jumps are contained in p´1,8q and bounded away from ´1 for each function. To analyze the uniform
Hadamard differentiability of ϕ, let tn Ñ 0, An, A P BV ą´1

M ra, bs such that }An ´A}8 Ñ 0, and αn, α P Dra, bs
such that }αn ´ α}8 Ñ 0 and An ` tnαn P BV ą´1

M ra, bs. Let ε ą 0 and α̃ P BV ra, bs such that }α ´ α̃}8 ă ε,
}αn ´ α}8 ă ε, and }An ´A}8 ă ε for sufficiently large n. This function α̃ can be defined piece-wise constant
and with finitely many jumps because it approximates the càdlàg function α. Also, because the sequence pαnqn

approximates α uniformly, it is clear that such a function α̃ exists.
It is well-known that

ϕ1
A : Dra, bs Ñ Dra, bs, α ÞÑ

ż

pa,¨s

ϕpAq´puq
ϕpAqp¨q

ϕpAqpuq
dαpuq “

ż

pa,¨s

1
1 ` ∆Apuq

dαpuqϕpAqp¨q

defines the Hadamard derivative of ϕ at A in the classical sense; cf. [39]. Note that the Hadamard derivative
above may also be written as

ϕ1
Apαq “ ϕpAqp¨q

¨

˝αp¨q ´ αpaq ´
ÿ

uPDAXpa,¨s

∆Apuq∆αpuq

1 ` ∆Apuq

˛

‚

where DA Ă pa, bs is the set of discontinuities of A. Due to the finite variation of A and its boundedness of its
jumps away from ´1, this representation reveals that ϕ̃1 :“ ppA,αq ÞÑ ϕ1

Apαqq defines a continuous functional
from BV ą´1

M ra, bs ˆ Dra, bs Ñ Dra, bs with respect to the maximum-supremum norm. To see this, let us focus
on the sum-term and notice that

ÿ

uPDAn Xpa,¨s

∆Anpuq∆αnpuq

1 ` ∆Anpuq
´

ÿ

uPDAXpa,¨s

∆Apuq∆αpuq

1 ` ∆Apuq

“
ÿ

uPpDAn YDAqXpa,¨s

∆Anpuq∆Apuq∆pαnpuq ´ αpuqq ` ∆Anpuq∆αnpuq ´ ∆Apuq∆αpuq

p1 ` ∆Anpuqqp1 ` ∆Apuqq
.

Choose δ ą 0 sufficiently small, i.e., δ ă minpε{2, infup1 ` ∆Apuqqq such that a finite, positive constant K ě

supup1`∆Apuq´δq´1 exists. Now, choose n0 sufficiently large such that supu |∆Anpuq´∆Apuq| ď 2}An´A}8 ď
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2ε ă δ for all n ě n0. Let us only consider such n henceforth. This implies that K ě supup1`∆Anpuqq´1. Since
the jumps of A and An are bounded away from ´1, the supremum norm of the previous display is bounded
above by K2 (due to the denominator) times the sum of

2}αn ´ α}8}An}BV }A}BV for the term ∆Anpuq∆Apuq∆pαnpuq ´ αpuqq,
2}αn ´ α}8}An}BV for a term ∆Anpuq∆pαnpuq ´ αpuqq,

2}α ´ α̃}8p}An}BV ` }A}BV q for a term ∆pAnpuq ´Apuqq∆pαpuq ´ α̃puqq,

2}An ´A}8}α̃}BV for a term ∆pAnpuq ´Apuqq∆α̃puq,

where ||.||BV denotes the total variation. Hence, an upper bound is given by K2p8 maxpM2, 1q ` 2}α̃}BV qε
which is arbitrarily small because ε ą 0 was arbitrary.
To verify the uniform Hadamard differentiability, we need to show that the following term converges to zero:

t´1
n pϕpAn ` tnαnq ´ ϕpAnqq ´ ϕ1

Apαq “: I ` II

where

I “ t´1
n pϕpAn ` tnαnq ´ ϕpAnqq ´ ϕ1

An
pαnq,

II “ ϕ1
An

pαnq ´ ϕ1
Apαq

The second term can be written as ϕ̃1pAn, αnq ´ ϕ̃1pA,αq which goes to zero as argued above. Hence, we focus
on the first term which, by Duhamel’s equation, equals:

t´1
n

ż

pa,¨s

ϕpAn ` tnαnq´puq
ϕpAnqp¨q

ϕpAnqpuq
dpAn ` tnαn ´Anqpuq ´ ϕ1

An
pαnq

“

ż

pa,¨s

pϕpAn ` tnαnq´puq ´ ϕpAnq´puqq
ϕpAnqp¨q

ϕpAnqpuq
dpαn ´ α̃ ` α̃qpuq

The part with αn ´ α̃ is arbitrarily small, which follows from integration-by-parts, combined with the fact that
the involved product integrals have a finite variation; cf. the proof of Theorem 7 in [39] for similar arguments.
The upper bound for the variation norm of the involved product integrals can be chosen independently of n.
The remaining part with α̃ converges to zero in supremum norm due to the uniform continuity of the product
integral functional (Theorem 7 in 39) combined with An ` tnαn Ñ A,An Ñ A. Indeed, combine }α̃}BV ă 8

with }ϕpAn ` tnαnqp¨q ´ ϕpAnqp¨q}8 Ñ 0 and supaďuďtďb |ϕpAnqptq{ϕpAnqpuq| ă K̃ for some finite constant K̃
independent of n; cf. the inequality in (20) of [39].

Example A.3 (Kaplan-Meier estimator). Let us consider the setup of Example A.2. The Kaplan-Meier esti-
mator

pSi,ni p¨q :“ P
uPr0,¨s

p1 ´ dpΛi,ni puqq

estimates the survival function

Sip¨q :“ P pXij ą ¨q “ P
uPr0,¨s

p1 ´ dΛipuqq.

The (classical) functional delta-method (Theorem 3.10.4 in [74]) implies
?
NppSi,ni

´ SiqiPt1,...,ku ù

´

κ
´1{2
i Ui

¯

iPt1,...,ku
in pDr0, τ sqk,

where Ui, i P t1, . . . , ku, are independent zero-mean Gaussian processes with covariance structure

E rUipsqUiptqs “ SipsqSiptq

ż

r0,mints,tus

1
p1 ´ ∆ΛiqHi

dΛi,

which can be shown as in Example 3.10.33 in [74].
The Kaplan-Meier functional is a composition of the functionals

ϕ̃ : BV ą´1
M r0, τ s Ñ Dr0, τ s, A ÞÑ P

uPr0,¨s
p1 ` dApuqq,

A ÞÑ ´A, and the Nelson-Aalen functional. Again, we set ∆Ap0q :“ Ap0q for A P Dr0, τ s to guarantee a well-
defined jump in 0. Similarly as above, ϕ̃ is uniformly Hadamard differentiable at each A P Dϕ̃ with Hadamard
derivative

ϕ̃1
A : Dr0, τ s Ñ Dr0, τ s, α ÞÑ

ż

r0,¨s
ϕ̃pAq´puq

ϕ̃pAqp¨q

ϕ̃pAqpuq
dαpuq.
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Moreover, A ÞÑ ´A is uniformly Hadamard differentiable at each A P Dr0, τ s with Hadamard derivative α ÞÑ ´α
due to its linearity. Thus, the Kaplan-Meier functional A ÞÑ ϕ̃p´Aq is uniformly Hadamard differentiable at
each A such that ´A P Dϕ̃ with Hadamard derivative α ÞÑ ´ϕ̃1

Apαq by Theorem 2.4. To apply the conditional
delta-method in Theorem 2.5, we need to ensure that ´Λi,´Λ are elements in Dϕ̃. This can be guaranteed by
assuming Sipτq “ P pXij ą τq ą 0 in the following. Moreover, the Nelson-Aalen estimator and its permutation
and pooled bootstrap counterpart are contained in tA | ´A P Dϕ̃u with probability tending to 1 by monotonicity
and Glivenko-Cantelli arguments. By the uniform Hadamard differentiability of the Kaplan-Meier functional,
Theorem 2.5 yields

?
NppSπi,ni

´ pSN qiPt1,...,ku ù pUπi qiPt1,...,ku in pDr0, τ sqk, (A.1)
?
Np p̂Si,ni

´ pSN qiPt1,...,ku ù

´

κ
´1{2
i Ûi

¯

iPt1,...,ku
in pDr0, τ sqk (A.2)

conditionally in outer probability similarly to the calculations in Example 3.10.33 in [74], where pSN :“ ϕ̃p´pΛN q

denotes the pooled Kaplan-Meier estimator. Here, pUπi qiPt1,...,ku
is a zero-mean Gaussian process with

E
“

Uπi psqUπj ptq
‰

“ pκ´1
i 1ti “ ju ´ 1qSpsqSptq

ż

r0,mints,tus

1
p1 ´ ∆ΛqH

dΛ

for S :“ ϕ̃p´Λq and Ûi, i P t1, . . . , ku, are independent zero-mean Gaussian processes with

E
”

ÛipsqÛiptq
ı

“ SpsqSptq

ż

r0,mints,tus

1
p1 ´ ∆ΛqH

dΛ.

From this example, we can deduce Theorem 4 and Theorem 5 in the supplement of [31] under Sipτq ą 0, i P t1, 2u.
The uniform Hadamard differentiability of the Wilcoxon functional completes the proofs of the consistency for
the permutation and pooled bootstrap counterpart of the Mann–Whitney statistic (Theorem 2 and Theorem 3
in [31]).
Furthermore, other works on resampling in survival analysis are based on Theorem 4 and Theorem 5 in the
supplement of [31]. This includes the resampling tests for the restricted mean survival times (RMSTs) of [24]
and [58]. For the RMSTs, the application of the continuous mapping theorem with continuous function

pDr0, τqqk Q pA1, . . . , Akq ÞÑ

ˆ
ż τ

0
A1ptq dt, . . . ,

ż τ

0
Akptq dt

˙

only requires (A.1) and (A.2) in pDr0, τqqk instead of pDr0, τ sqk. By replacing all intervals r0, τ s in Example A.3
by r0, τq, it is easy to see that the assumption Si´pτq ą 0, i P t1, . . . , ku, (instead of Sipτq ą 0, i P t1, . . . , ku) is
sufficient to ensure (A.1) and (A.2) in pDr0, τqqk. Hence, the weaker assumption Si´pτq ą 0, i P t1, . . . , ku, is
enough for getting the consistency for the permutation and pooled bootstrap counterparts of the RMSTs as in
[24] and [58].

A.3 Inverse map: counterexample and additional requirements
Let p P R and A P Dra, bs nondecreasing with A´pyq ď p ď Apyq for some y P pa, bs. Then, the inverse map Φp
at A satisfies

A´pΦppAqq ď p ď ApΦppAqq,

where the exact value of ΦppAq is irrelevant if there is more than one solution. Let DΦp denote the set of all
nondecreasing functions A with A´pyq ď p ď Apyq for some y P pa, bs. As shown in Lemma 3.10.21 of [74],
Φp : DΦp

Ñ pa, bs is Hadamard differentiable at a function A P DΦp
that is differentiable at ΦppAq “: ξp P pa, bq

such that Apξpq “ p with positive derivative A1pξpq ą 0, tangentially to the set of functions α P Dra, bs that
are continuous at ξp, with Hadamard derivative Φ1

p,Apαq “ ´αpΦppAqq{A1pΦppAqq at α. However, the uniform
Hadamard differentiability of the inverse map does not hold under these assumptions.
Example A.4. Let A : r0, 2s Ñ R, Apxq “ x,

An : r0, 2s Ñ R, Anpxq :“

$

’

&

’

%

x´ 1{
?
n if x ď 1 ´ 1{

?
n,

2x´ 1 if 1 ` 1{
?
n ą x ą 1 ´ 1{

?
n,

x` 1{
?
n if x ě 1 ` 1{

?
n,

α ” αn ” 1 and p “ 1. An exemplary illustration for the functions can be found in Figure 14. For tn “ 1{
?
n,

we have ΦppAn ` tnαnq “ 1 ´ tn{2 since

pAn ` tnαnqp1 ´ tn{2q “ Anp1 ´ 1{p2
?
nqq ` 1{

?
n “ 1 ´ 1{

?
n` 1{

?
n “ 1

and ΦppAnq “ 1. Hence, pΦppAn ` tnαnq ´ ΦppAnqq{tn “ ´1{2. However, Φ1
p,Apαq “ ´αpΦppAqq{A1pΦppAqq “

´1 ‰ ´1{2 and, thus, Φp : DΦp
Ñ p0, 2s is not uniformly Hadamard differentiable at A tangentially to α ” 1.
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Figure 14: Illustration of the functions A,A1, A5, and A25.

A restriction of the definition space DΦp can lead to uniform Hadamard differentiability. In view of Example A.4,
such a restriction needs to exclude the rather simple sequence pAnqn. That is why such a restriction is not really
of interest for applications.
However, in Lemma S.5 in [23], a version of uniform Hadamard differentiability of the inverse map is shown
under stricter conditions, where the rate of convergence of the converging sequence An Ñ A and its increments
around ξp also needs to be controlled. Note that for Example A.4, the condition (A.3) does not hold.

Lemma A.1 (Lemma S.5 of [23]). Let An, A P DΦp such that A is continuously differentiable at ξp P R with
positive derivative A1pξpq ą 0. Suppose that

?
n||An ´A||8 ď M for some M ą 0 and

?
n sup

|x|ďK{
?
n

|Anpξp ` xq ´Anpξpq ´Apξp ` xq `Apξpq| Ñ 0 (A.3)

for every K ą 0. Then,
?
n
´

ΦppAn ` n´1{2αnq ´ ΦppAnq

¯

Ñ Φ1
p,Apαq,

where An ` n´1{2αn P DΦp
and αn Ñ α such that α is bounded and continuous at ξp.

As shown in Section S3.3.1 in the supplement of [23], the required conditions are fulfilled for applications on
empirical distribution functions. Hence, a central limit theorem for permutation quantiles follows as shown in
Lemma S.1 in the supplement of [23]. Analogously, a central limit theorem for pooled bootstrap quantiles could
be followed, where γ̂pc, dq “ κ

´1{2
c 1tc “ du replaces γπpc, dq “ κ´1

c 1tc “ du ´ 1 in the covariance formula given
in Lemma S.1.
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B Correction of the Limit Distribution for Aalen-Johansen Estima-
tors

In this section, we correct Theorem 5.1 in [26], by mending the limit distribution of the Aalen-Johansen estimator
under discontinuous survival distributions.
We consider the same competing risks setup as in [26], i.e., we assume that there are k P N competing risks and
n P N i.i.d. random event times T1, ..., Tn, which are independently right-censored and distributed as a random
variable T „ S. Here, S denotes the survival function, i.e., Sptq “ P pT ą tq for all t ě 0; S need not be
continuous. Then, we denote the probability that an individual is under observation at time t´, that is, just
before time t, by H̄ptq “ P pminpT,Cq ě tq “ S´ptqG´ptq for all t ě 0. Here, C „ G with survival function
Gptq “ P pC ą tq denotes a generic censoring time which is assumed to be independent of T . Furthermore, let
pAj denote the cause-specific Nelson-Aalen estimator for the cumulative hazard function Aj of type j events,
pS the Kaplan-Meier estimator for the Survival function S, and pFjp.q “

ş

r0,.s
pS´puqd pAjpuq the Aalen-Johansen

estimator for the cumulative incidence function Fjp.q “
ş

r0,.s S´puqdAjpuq for all j P t1, ..., ku, see [26] for
details. In addition to the assumptions in [26], it is actually required that H̄pKq ą 0 for K ě 0 to ensure finite
variances σ2

j pKq, j P t1, . . . , ku, in Theorem 4.1 therein.
Theorem 5.1 in [26] states for k “ 2 competing risks that

?
np pF1 ´ F1q

d
ÝÑ UF1

as n Ñ 8 on the càdlàg space Dr0,Ks equipped with the sup-norm, where UF1 is a zero-mean Gaussian process
with covariance function

σ2
F1

: ps, tq ÞÑ

ż

r0,mints,tus

p1 ´ F2´puq ´ F1psqqp1 ´ F2´puq ´ F1ptqq

H̄puq

dA1puq

1 ´ ∆Apuq

`

ż

r0,mints,tus

pF1´puq ´ F1psqqpF1´puq ´ F1ptqq

H̄puq

dA2puq

1 ´ ∆Apuq

`
ÿ

uPD,uďs,t

S2
´puq

H̄puq

∆A1puq∆A2puq

p1 ´ ∆Apuqq2 ,

where A “
řk
j“1 Aj and D “ tt P r0,Ks : ∆Aptq ą 0u is the set of discontinuity time points. However, we found

that the right-continuous versions F1, F2, S must appear in the covariance function above in all occurrences of
F1´, F2´, S´.
In order to prove this, we go one step back: By Theorem 4.1 in [26],

?
n
´

pA1 ´A1, ..., pAk ´Ak

¯

d
ÝÑ pU1, ..., Ukq

holds as n Ñ 8 on the product space Dkr0,Ks equipped with the max-sup norm, where U1, ..., Uk are zero-mean
Gaussian-martingales with

CovpUjptq, Ujpsqq “

ż

r0,mintt,sus

1 ´ ∆Ajpuq

H̄puq
dAjpuq “: σ2

j pmintt, suq,

CovpUjptq, Uℓpsqq “ ´

ż

r0,mintt,sus

∆Aℓpuq

H̄puq
dAjpuq “: σjℓpmintt, suq

for all t, s P r0,Ks, j, ℓ P t1, ..., ku, j ‰ ℓ. We further note that the limit pU1, ..., Ukq is separable since Guc1 , ..., Guck
and G in Appendix A of [26] are tight, which follows by the main empirical central limit theorems in [74], as in
Example 3.10.20.
Now it holds that

?
np pF1ptq ´ F1ptqq

“
?
n

˜

ż

r0,ts
pS´puqd pA1puq ´

ż

r0,ts
S´puqdA1puq

¸

“

ż

r0,ts
pS´puqd

?
np pA1 ´A1qpuq `

ż

r0,ts

?
nppS ´ Sq´puqdA1puq

“
?
np pA1 ´A1qptqpSptq´

ż

r0,ts

?
np pA1 ´A1qpuqdpSpuq`

ż

r0,ts

?
nppS ´ Sq´puqdA1puq
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for all t P r0,Ks by integration by parts, that is
ż

r0,ts
f´pvq dgpvq “ pgfqptq ´ pgfq´p0q ´

ż

r0,ts
gpvq dfpvq

for f P BV1r0,Ks, g P Dr0,Ks, where BV1r0,Ks denote the set of all càdlàg functions Dr0,Ks of total variation
bounded by 1. As in Example 3.10.33 in [74], the functional delta method yields

´?
np pA1 ´A1q,

?
nppS ´ Sq

¯

d
ÝÑ

˜

U1,´Sp.q

ż

r0,.s

S´pvq

Spvq
dpU1 ` U2qpvq

¸

as n Ñ 8 on D2r0,Ks, where the integral is defined by integration by parts since U1 ` U2 is not of bounded
variation. Hence, we get

´?
np pA1 ´A1q,

?
nppS ´ Sq, pS

¯

d
ÝÑ

˜

U1,´Sp.q

ż

r0,.s

S´pvq

Spvq
dpU1 ` U2qpvq, S

¸

(B.1)

as n Ñ 8 on D2r0,Ks ˆBV1r0,Ks by Slutsky’s lemma. Note that the map

ψ : D2r0,Ks ˆBV1r0,Ks Ñ Dr0,Ks,

pÃ, B̃, C̃q ÞÑ Ãp.qC̃p.q ´

ż

r0,.s
ÃdC̃ ´

ż

r0,.s
B̃´puqdA1puq

is continuous on D2r0,Ks ˆ tSu. Thus, an application of the continuous mapping theorem and changing the
order of integration result in

?
np pF1 ´ F1q

d
ÝÑ U1p.qSp.q ´

ż

r0,.s
U1dS ´

ż

r0,.s
S´puq

ż

r0,uq

S´pvq

Spvq
dpU1 ` U2qpvqdA1puq

“

ż

r0,.s
S´puqdU1puq ´

ż

r0,.s

S´pvq

Spvq

ż

pv,.s

S´puqdA1puqdpU1 ` U2qpvq

“

ż

r0,.s
S´puqdU1puq ´

ż

r0,.s

S´pvq

Spvq
pF1p.q ´ F1pvqqdpU1 ` U2qpvq

“

ż

r0,.s

S´puq

Spuq
pSpuq ´ F1p.q ` F1puqq dU1puq `

ż

r0,.s

F1puq ´ F1p.q

1 ´ ∆Apuq
dU2puq

“

ż

r0,.s

1 ´ F2puq ´ F1p.q

1 ´ ∆Apuq
dU1puq `

ż

r0,.s

F1puq ´ F1p.q

1 ´ ∆Apuq
dU2puq

as n Ñ 8 on Dr0,Ks.

Theorem B.1 (Corrected Theorem 5.1 in [26]). As n Ñ 8, we have on the càdlàg space Dr0,Ks

?
np pF1 ´ F1q

d
ÝÑ UF1 “

ż

r0,.s

1 ´ F2puq ´ F1p.q

1 ´ ∆Apuq
dU1puq `

ż

r0,.s

F1puq ´ F1p.q

1 ´ ∆Apuq
dU2puq,

where UF1 is a zero-mean Gaussian process with covariance function

σ2
F1

: ps, tq ÞÑ

ż

r0,mints,tus

p1 ´ F2puq ´ F1psqqp1 ´ F2puq ´ F1ptqq

H̄puq

dA1puq

1 ´ ∆Apuq

`

ż

r0,mints,tus

pF1puq ´ F1psqqpF1puq ´ F1ptqq

H̄puq

dA2puq

1 ´ ∆Apuq

`
ÿ

uPD,uďs,t

S2puq

H̄puq

∆A1puq∆A2puq

p1 ´ ∆Apuqq2 .

The covariance function can be calculated analogously to Appendix E of [26]. Here, the last sum may be
simplified to

ř

uPD,uďs,t
S´puq

G´puq
∆A1puq∆A2puq.
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C Details on the Simulation Results and Additional Simulations for
Section 4

In this section, the results of additional simulation studies are provided. First, more detailed results of the
simulation study in Section 4.4 can be found. Furthermore, the simulation setup from Section 4.4.1 is repeated
for the asymptotic approaches by using larger sample sizes. Next, we show a setup where the groupwise bootstrap
outperforms the permutation approach with Bonferroni-correction in terms of empirical power. Finally, a
simulation study inspired by the data example in Section 4.5 is investigated.

C.1 Additional Tables and Figures

δ distribution censoring distribution group 1 group 2 group 3 group 4
0.0 exp early, late, prop equal 0.20 0.21 0.21 0.21
0.0 exp early, late, prop unequal, high 0.38 0.44 0.38 0.33
0.0 exp early, late, prop unequal, low 0.20 0.21 0.25 0.06
0.0 logn equal 0.41 0.41 0.41 0.41
0.0 logn unequal, high 0.51 0.58 0.60 0.53
0.0 logn unequal, low 0.33 0.41 0.41 0.11
0.0 pwExp equal 0.21 0.20 0.21 0.33
0.0 pwExp unequal, high 0.38 0.44 0.39 0.37
0.0 pwExp unequal, low 0.20 0.20 0.25 0.22
0.0 Weib late, Weib prop equal 0.34 0.34 0.34 0.34
0.0 Weib late, Weib prop unequal, high 0.49 0.56 0.57 0.49
0.0 Weib late, Weib prop unequal, low 0.29 0.34 0.37 0.06
0.0 Weib scale equal 0.34 0.34 0.34 0.45
0.0 Weib scale unequal, high 0.49 0.56 0.57 0.52
0.0 Weib scale unequal, low 0.29 0.34 0.37 0.15
0.0 Weib shape equal 0.34 0.34 0.34 0.53
0.0 Weib shape unequal, high 0.49 0.56 0.57 0.57
0.0 Weib shape unequal, low 0.29 0.34 0.37 0.31
1.5 exp early equal 0.21 0.21 0.21 0.12
1.5 exp early unequal, high 0.38 0.44 0.38 0.22
1.5 exp early unequal, low 0.20 0.21 0.25 0.03
1.5 exp late equal 0.21 0.21 0.21 0.05
1.5 exp late unequal, high 0.38 0.44 0.38 0.23
1.5 exp late unequal, low 0.20 0.21 0.25 0.01
1.5 exp prop equal 0.20 0.21 0.21 0.08
1.5 exp prop unequal, high 0.38 0.44 0.39 0.23
1.5 exp prop unequal, low 0.20 0.21 0.25 0.02
1.5 logn equal 0.41 0.41 0.41 0.24
1.5 logn unequal, high 0.51 0.58 0.60 0.43
1.5 logn unequal, low 0.33 0.41 0.41 0.05
1.5 pwExp equal 0.21 0.21 0.21 0.17
1.5 pwExp unequal, high 0.38 0.44 0.38 0.25
1.5 pwExp unequal, low 0.20 0.21 0.25 0.11
1.5 Weib late equal 0.34 0.34 0.34 0.17
1.5 Weib late unequal, high 0.49 0.56 0.57 0.41
1.5 Weib late unequal, low 0.29 0.34 0.37 0.02
1.5 Weib prop equal 0.34 0.34 0.34 0.19
1.5 Weib prop unequal, high 0.49 0.56 0.57 0.41
1.5 Weib prop unequal, low 0.29 0.34 0.37 0.03
1.5 Weib scale equal 0.34 0.34 0.34 0.26
1.5 Weib scale unequal, high 0.49 0.56 0.57 0.41
1.5 Weib scale unequal, low 0.29 0.34 0.37 0.06
1.5 Weib shape equal 0.34 0.34 0.34 0.44
1.5 Weib shape unequal, high 0.49 0.56 0.57 0.48
1.5 Weib shape unequal, low 0.29 0.34 0.37 0.34

Table 4: Censoring rates for the different settings.
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Figure 15: Rejection rates over all settings under the null hypothesis for the Dunnett-type contrast matrix. The
dashed lines represent the borders of the binomial confidence interval r0.044, 0.0562s.
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Figure 16: Rejection rates over all settings under the null hypothesis for the Tukey-type contrast matrix. The
dashed lines represent the borders of the binomial confidence interval r0.044, 0.0562s.
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Figure 17: Rejection rates over all settings under the null hypothesis for the Grand-mean-type contrast matrix.
The dashed lines represent the borders of the binomial confidence interval r0.044, 0.0562s.
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Figure 18: Rejection rates of the false local hypothesis over all settings under the alternative hypothesis for the
Dunnett-type contrast matrix.
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Figure 19: Rejection rates of all false local hypotheses over all settings under the alternative hypothesis for the
Tukey-type contrast matrix.
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Figure 20: Rejection rates of the false local hypothesis over all settings under the alternative hypothesis for the
Grand-mean-type contrast matrix.
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C.2 Simulations for Analyzing the Asymptotic Behaviour
We have seen in Section 4.4.2 that the three asymptotic approaches (asymptotic_global, asymptotic, asymp-
totic_bonf ) do not lead to a good type I error control. Thus, one may be interested in the sample sizes needed
to obtain a good control of the type I error for these naive methods. Therefore, in this section we consider the
simulation setup from Section 4.4.1 again with an increased factor for the scaling of the sample sizes, that is
K P t6, 8, 10u, resulting in sample sizes from 60 up to 200 in the groups. Furthermore, only the three asymptotic
approaches (asymptotic_global, asymptotic, asymptotic_bonf ) are considered under the null hypothesis. The
performance of these methods regarding the power was already quite good for small and medium sample sizes,
see Section 4.4.3 for details. This is why we did not analyze the power for larger sample sizes. Note that the
censoring rates for the different scenarios are as shown in Table C.1.
In Figures 21 to 23, the rejection rates across all settings are illustrated for the three different contrast matrices.
It can be seen that the empirical type I error rates are quite close to the desired level of significance of 0.05 for
large sample sizes in all scenarios. Moreover, the rejection rates seem to tend more and more to 0.05 as the
sample sizes increase. However, the difference between the rejection rates for different values of K P t6, 8, 10u

is rather small, indicating that the convergence is relatively slow.
It can be observed that quite large sample sizes are needed to obtain a good type I error control for the multiple
asymptotic and the global asymptotic test without Bonferroni-correction. Even for K “ 10, i.e. sample sizes
between 100 and 200 in each group, these tests are still slightly liberal. The empirical type I error rates for the
multiple asymptotic and the global asymptotic test without Bonferroni-correction reach up to 0.0702.
By using a Bonferroni-correction, the asymptotic test does not need very large sample sizes to control the level
of significance. Here, K “ 6, i.e. sample sizes between 60 and 120 in each group, or even K “ 4 seems to be
enough as can be seen in Figures 15 to 17.
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Figure 21: Rejection rates over all settings under the null hypothesis for the Dunnett-type contrast matrix. The
dashed lines represent the borders of the binomial confidence interval r0.044, 0.0562s.
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Figure 22: Rejection rates over all settings under the null hypothesis for the Tukey-type contrast matrix. The
dashed lines represent the borders of the binomial confidence interval r0.044, 0.0562s.
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Figure 23: Rejection rates over all settings under the null hypothesis for the Grand-mean-type contrast matrix.
The dashed lines represent the borders of the binomial confidence interval r0.044, 0.0562s.
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C.3 Additional Simulations under Non-Exchangeability
In Section 4.4, the empirical power of the groupwise approach and the permutation approach with Bonferroni-
correction seems comparable over all simulation setups. However, the Bonferroni-correction is known to have
low power for a large number of hypotheses. Thus, we aim to motivate that the groupwise bootstrap approach
may perform better than the permutation approach with Bonferroni-correction in specific setups in this section.
Therefore, we consider again k “ 4 groups with sample sizes n “ p40, 80, 40, 80q, hypotheses matrices as in
Section 4.4 and α “ 0.05. Furthermore, we generated Nsim “ 5000 simulation runs with B “ 1999 resampling
iterations. In contrast to the simulation study in Section 4.4, the survival times are drawn from different
distributions for all groups as follows:

• Different piece-wise exponential distributions (pwExp diff ): T11 „ Expp0.2q,
T21 with hazard function t ÞÑ 0.3 ¨ 1tt ď λ10u ` 0.1 ¨ 1tt ą λ10u,
T31 with hazard function t ÞÑ 1.5 ¨ 1tt ď λ11u ` 0.01 ¨ 1tt ą λ11u and
T41 with hazard function t ÞÑ 0.5 ¨ 1tt ď λδ,5u ` 0.05 ¨ 1tt ą λδ,5u,

• Different Weibull distributions (Weib diff ): T11 „ Weibp3, 8q, T21 „ Weibp1.5, λ0,8q, T31 „ Weibpλ0,9, 14q

and T41 „ Weibpλδ,9, 14q.

Here, the parameters λ10 and λ11 are determined such that the RMST equals µ1. Hence, note that only µ4 differs
under the alternative hypothesis but the distributions of the survival times differ across the groups under the
null and alternative hypothesis. In Figure 24, the different survival functions are illustrated. For the censoring
times, the same distributions as in Section 4.4 are considered, i.e. equal; unequal, high and unequal, low. The
resulting censoring rates can be found in Table 5 and reach from 11 up to 62%.
In Figure 25, the rejection rates over all settings under the null hypothesis are presented. Here, it is observable
that the groupwise bootstrap and the permutation approach with Bonferroni-correction perform well in terms
of type I error control for the multiple testing problem. The permutation approach with Bonferroni-correction
tends to be too conservative for the Tukey-type contrast matrix. Furthermore, the asymptotic approaches
and the wild bootstrap are too liberal and, thus, they do not seem to control the family-wise type I error.
However, the empirical power of the groupwise bootstrap is slightly higher than of the permutation approach
with Bonferroni-correction in most of the scenarios which can be seen in Table 6 to 8. Only for hypothesis
H0,3 for the Grand-mean-type contrast matrix, the permutation approach with Bonferroni-correction has a
higher power than the groupwise bootstrap in some scenarios. The empirical powers of the false hypotheses
are also illustrated in Figure 26 to 28, where it is observable that the groupwise bootstrap tends to have a
higher empirical power than the permutation approach with Bonferroni-correction, particularly in Figure 27.
The asymptotic approaches even have higher empirical powers in several scenarios but, however, they can not
control the family-wise error adequately which can be seen in Figure 25.

δ distribution censoring distribution group 1 group 2 group 3 group 4
0.0 pwExp diff equal 0.21 0.27 0.40 0.33
0.0 pwExp diff unequal, high 0.38 0.44 0.42 0.37
0.0 pwExp diff unequal, low 0.20 0.27 0.39 0.22
0.0 Weib diff equal 0.34 0.45 0.53 0.53
0.0 Weib diff unequal, high 0.49 0.57 0.62 0.57
0.0 Weib diff unequal, low 0.29 0.45 0.48 0.31
1.5 pwExp diff equal 0.21 0.27 0.40 0.16
1.5 pwExp diff unequal, high 0.38 0.44 0.42 0.25
1.5 pwExp diff unequal, low 0.20 0.27 0.39 0.11
1.5 Weib diff equal 0.34 0.45 0.53 0.44
1.5 Weib diff unequal, high 0.49 0.57 0.62 0.48
1.5 Weib diff unequal, low 0.29 0.45 0.48 0.34

Table 5: Censoring rates for the additional simulation
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Figure 24: The survival functions of the two settings under the null hypothesis as well as under the alternative
µ4 “ µ1 ´ 1.5. Note that the survival functions of group 3 and 4 coincide under the null hypothesis for the
setting Weib diff.

hypothesis distribution censoring distribution asymptotic groupwise asymptotic bonf permutation bonf
H0,3 pwExp diff equal 0.495 0.461 0.474 0.437

pwExp diff unequal, high 0.376 0.324 0.357 0.299
pwExp diff unequal, low 0.474 0.435 0.451 0.412
Weib diff equal 0.507 0.479 0.495 0.455
Weib diff unequal, high 0.405 0.368 0.393 0.345
Weib diff unequal, low 0.512 0.477 0.497 0.458

Table 6: Rejection rates of the false hypothesis for the Dunnett-type contrast matrix with δ “ 1.5
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Figure 25: Rejection rates over all settings under the null hypothesis. The dashed lines represent the borders
of the binomial confidence interval [0.044, 0.0562].
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hypothesis distribution censoring distribution asymptotic groupwise asymptotic bonf permutation bonf
H0,3 pwExp diff equal 0.414 0.370 0.378 0.331

pwExp diff unequal, high 0.298 0.231 0.270 0.201
pwExp diff unequal, low 0.392 0.345 0.356 0.306
Weib diff equal 0.430 0.397 0.399 0.350
Weib diff unequal, high 0.331 0.288 0.308 0.245
Weib diff unequal, low 0.436 0.408 0.409 0.358

H0,5 pwExp diff equal 0.532 0.513 0.503 0.481
pwExp diff unequal, high 0.382 0.350 0.352 0.325
pwExp diff unequal, low 0.530 0.513 0.500 0.478
Weib diff equal 0.444 0.423 0.412 0.391
Weib diff unequal, high 0.348 0.319 0.318 0.288
Weib diff unequal, low 0.460 0.440 0.428 0.407

H0,6 pwExp diff equal 0.215 0.174 0.190 0.156
pwExp diff unequal, high 0.198 0.159 0.177 0.127
pwExp diff unequal, low 0.208 0.169 0.185 0.149
Weib diff equal 0.290 0.256 0.262 0.226
Weib diff unequal, high 0.231 0.188 0.211 0.171
Weib diff unequal, low 0.277 0.235 0.252 0.209

Table 7: Rejection rates of the false hypotheses for the Tukey-type contrast matrix with δ “ 1.5

hypothesis distribution censoring distribution asymptotic groupwise asymptotic bonf permutation bonf
H0,1 pwExp diff equal 0.047 0.032 0.044 0.026

pwExp diff unequal, high 0.037 0.024 0.036 0.017
pwExp diff unequal, low 0.041 0.031 0.039 0.025
Weib diff equal 0.087 0.073 0.081 0.060
Weib diff unequal, high 0.070 0.050 0.065 0.042
Weib diff unequal, low 0.078 0.062 0.075 0.053

H0,2 pwExp diff equal 0.071 0.065 0.067 0.059
pwExp diff unequal, high 0.048 0.038 0.045 0.038
pwExp diff unequal, low 0.071 0.063 0.067 0.058
Weib diff equal 0.094 0.085 0.090 0.079
Weib diff unequal, high 0.072 0.060 0.070 0.058
Weib diff unequal, low 0.094 0.086 0.090 0.082

H0,3 pwExp diff equal 0.035 0.024 0.033 0.021
pwExp diff unequal, high 0.038 0.025 0.036 0.018
pwExp diff unequal, low 0.038 0.025 0.035 0.022
Weib diff equal 0.071 0.046 0.068 0.051
Weib diff unequal, high 0.062 0.032 0.059 0.039
Weib diff unequal, low 0.069 0.039 0.064 0.048

H0,4 pwExp diff equal 0.678 0.653 0.667 0.642
pwExp diff unequal, high 0.590 0.556 0.580 0.540
pwExp diff unequal, low 0.674 0.650 0.662 0.636
Weib diff equal 0.585 0.558 0.570 0.543
Weib diff unequal, high 0.492 0.460 0.479 0.442
Weib diff unequal, low 0.590 0.560 0.579 0.553

Table 8: Rejection rates of the false hypotheses for the Grand-mean-type contrast matrix with δ “ 1.5
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Figure 26: Rejection rates of the false local hypothesis over all settings under the alternative hypothesis for the
Dunnett-type contrast matrix.
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Figure 27: Rejection rates of all false local hypotheses over all settings under the alternative hypothesis for the
Tukey-type contrast matrix.
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Figure 28: Rejection rates of the false local hypothesis over all settings under the alternative hypothesis for the
Grand-mean-type contrast matrix.

96



C.4 Simulation inspired by the Data Example
Since the Simulation study in Section 4.4 does not fit perfectly to the data example about the occurrence of hay
fever in Section 4.5, we also considered a small simulation setup inspired by the data example. Therefore, we
considered k “ 4 groups with sample sizes n “ p450, 481, 654, 649q, the hypotheses matrices as in Section 4.5,
i.e. H :“ rH1

A,H1
B ,H1

ABs1, and α “ 0.05. Moreover, Nsim “ 5000 simulation runs with B “ 19999 resampling
iterations were generated. The survival times of group i were simulated from a distribution with the Kaplan-
Meier estimator of the pooled sample under the null and of the ith sample under the alternative hypothesis as
distribution function. Analogously, the Kaplan-Meier estimators for the censoring times of the different samples
are used for the data generation of the censoring times. Proceeding as described leads to a censoring rate of
82% in all groups under the null hypothesis and censoring rates from 72% up to 89% under the alternative
hypothesis.
In Table 9, the resulting rejection rates are shown. It is observable that all methods seem to control the global
level of significance of 5% quite accurately under the given scenario. Furthermore, all methods have a quite
high empirical power under the alternative hypothesis. The power of the global approaches is around 90% while
all methods for the multiple testing problem have a power of 100%. In Figure 29, it is shown how the rejection
rates of the multiple testing procedures result from the local decisions. Here, it can be seen that the methods
detect both of the main effects simultaneously in around 70% of the simulation runs, only the main effect of
factor A in 20% and all main and interaction effects in 6% under the alternative hypothesis. Furthermore, the
methods seem to yield very similar local test decisions.

asymptotic permutation asymptotic wild wild groupwise asymptotic permutation
global Rademacher Gaussian bonf bonf

H0 0.0568 0.0566 0.0506 0.0514 0.0522 0.0516 0.0506 0.0498
H1 0.8984 0.8984 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 9: Rejection rates for the simulation inspired by the data example under the null (H0) and alternative
(H1) hypothesis.
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Figure 29: Rejection rates for the simulation inspired by the data example under the null (0) and under
the alternative (1) hypothesis. The heights of the bars represent the rates of the rejections caused by the
corresponding hypotheses. Two- and Three-colored bars indicate that the corresponding two or three hypotheses
are rejected simultaneously. The overall height represents the rate of global rejections.
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D Additional Figures of the Simulation Results in Section 5.4
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Figure 30: Empirical powers for the 2-by-2 design across all scenarios under the alternative hypothesis.
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Figure 31: Empirical powers for the Dunnett-type contrast hypotheses across all scenarios under the alternative
hypothesis.

99



as
ym

pt
ot

ic

as
ym

pt
ot

ic
_b

on
f

pe
rm

ut
at

io
n_

bo
nf

0.0

0.2

0.4

0.6

0.8

1.0

balanced large samples
re

je
ct

io
n 

ra
te

as
ym

pt
ot

ic

as
ym

pt
ot

ic
_b

on
f

pe
rm

ut
at

io
n_

bo
nf

0.0

0.2

0.4

0.6

0.8

1.0

balanced medium samples

re
je

ct
io

n 
ra

te

as
ym

pt
ot

ic

as
ym

pt
ot

ic
_b

on
f

pe
rm

ut
at

io
n_

bo
nf

0.0

0.2

0.4

0.6

0.8

1.0

balanced small samples

re
je

ct
io

n 
ra

te

as
ym

pt
ot

ic

as
ym

pt
ot

ic
_b

on
f

pe
rm

ut
at

io
n_

bo
nf

0.0

0.2

0.4

0.6

0.8

1.0

unbalanced large samples

re
je

ct
io

n 
ra

te

as
ym

pt
ot

ic

as
ym

pt
ot

ic
_b

on
f

pe
rm

ut
at

io
n_

bo
nf

0.0

0.2

0.4

0.6

0.8

1.0

unbalanced medium samples

re
je

ct
io

n 
ra

te

as
ym

pt
ot

ic

as
ym

pt
ot

ic
_b

on
f

pe
rm

ut
at

io
n_

bo
nf

0.0

0.2

0.4

0.6

0.8

1.0

unbalanced small samples

re
je

ct
io

n 
ra

te

Figure 32: Empirical powers for the Tukey-type contrast hypotheses across all scenarios under the alternative
hypothesis.
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E R Packages: GFDrmst and GFDrmtl

As part of this work, two R packages were published on CRAN, that are GFDrmst [20] and GFDrmtl [21]. These
packages contain the implementations of the methodology described in Sections 4 and 5, respectively. In this
section, we describe the included functions and their usage in detail.

E.1 GFDrmst

The R package GFDrmst exports the following four functions:

• RMST.test to perform the multiple RMST-based tests as described in Section 4. The output of this
function is a list of class GFDrmst.

• summary.GFDrmst to summarize an object of class GFDrmst.

• plot.GFDrmst to plot simultaneous confidence intervals for an object of class GFDrmst.

• GFDrmstGUI to perform the multiple RMST-based tests as described in Section 4 on an interactive user
interface.

In the following, we explain their arguments and usage.

RMST.test This function contains the implementation of the asymptotic multiple tests of Section 4.3.1, the
multiple groupwise bootstrap tests of Section 4.3.2, and the adjusted permutation tests of Section 4.2.2. Further-
more, confidence intervals for RMST contrasts can be calculated as in Remark 2.6 and the stepwise extension
of Remark 2.5, which can improve the power of the multiple tests, is available.
The function RMST.test has the following arguments.

• time
A vector containing the observed event times Xij .

• status
A vector containing the corresponding censoring status indicator δij “ 1tXij “ Tiju.

• group
A vector containing the corresponding group labels i P t1, ..., ku.

• formula
A model formula object. The left hand side contains the time variable and the right hand side contains
the factor variables of interest.

• event
The name of censoring status indicator.

• data
A data.frame or list containing the variables in formula and the censoring status indicator.

• hyp_mat
A list containing all the hypothesis matrices H1, ...,HL for the multiple tests or one of the options "Tukey",
"Dunnett", "center", "crossed factorial" for the matrices described in Example 4.1 or a matrix H
if only one hypothesis is of interest. The option "crossed factorial" is only available if formula is
specified. For the permutation test, all matrices need to be contrast matrices.

• hyp_vec
A list containing all the hypothesis vectors c1, ..., cL for the multiple tests or a vector c if only one
hypothesis is of interest. By default, all hypothesis vectors are set to zero vectors of suitable length.

• tau
A numeric value τ ą 0 specifying the end of the relevant time window for the analysis.

• method
One of the methods "groupwise", "permutation" and "asymptotic" that should be used for calculating
the critical values, cf. Sections 4.3.2, 4.2.2, and 4.3.1, respectively. Default option is "groupwise".

• stepwise
A logical vector indicating whether the stepwise extension of Remark 2.5 should be performed. If TRUE, no
confidence intervals can be computed but it may be that more tests can reject. Default option is FALSE.
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• alpha
A numeric value specifying the global level of significance α. Default option is 0.05.

• Nres
The number B of random variables to approximate the limiting distribution. The default option is 4999.

• seed
A single value, interpreted as an integer, for providing reproducibility of the results or NULL if reproducibil-
ity is not wanted. Default option is 1.

The output of this function is a list of class GFDrmst containing the following components:

• method
A character containing the method which has been used.

• test_stat
A numeric vector containing the calculated Wald-type test statistics WnpH1, c1q, ...,WnpHL, cLq for the
local hypotheses.

• p.value
A numeric vector containing the adjusted p-values p1, ..., pL as in Section 2.3.2 for the local hypotheses.

• res
A list containing the results of the multiple tests including the hypothesis matrices, estimators of the
linear combinations of RMSTs, potentially confidence intervals for the linear combinations (if all matrices
are row vectors and stepwise = FALSE), Wald-type test statistics, critical values and the test decisions.

• alpha
A numeric value containing the global level of significance α.

Note that either time, status, group or formula, event, data needs to be specified. The following example
illustrates the usage of both versions.

1 > # load the package and the data
2 > library ( GFDrmst )
3 > data (colonCS , package = " condSURV ")
4 >
5 > # multiple asymptotic tests
6 > out <- RMST.test( formula = " Stime ~ rx",
7 + event = " event ",
8 + data = colonCS ,
9 + hyp_ mat = " Tukey ",

10 + tau = 3000 ,
11 + method = " asymptotic ")
12 > ## or , equivalently ,
13 > out <- RMST.test( time = colonCS $Stime ,
14 + status = colonCS $event ,
15 + group = colonCS $rx ,
16 + hyp_ mat = " Tukey ",
17 + tau = 3000 ,
18 + method = " asymptotic ")

The output looks like this:
19 > out
20 $ method
21 [1] " Multiple asymptotic RMST Wald -type tests "
22

23 $ test _ stat
24 W_n(H_1, c_1) W_n(H_2, c_2) W_n(H_3, c_3)
25 0.004007639 9.142532300 8.536680422
26

27 $p. value
28 [1] 0.997792822 0.007029102 0.009736379
29

30 $res
31 hyp_ matrix estimator lwr_ conf upr_ conf test _ stat critical value adj_ pvalue decision
32 [1 ,] numeric ,3 5.663569 -204.0409 215.3681 0.004007639 5.494443 0.9977928 "not significant "
33 [2 ,] numeric ,3 267.2749 60.07632 474.4735 9.142532 5.494443 0.007029102 "H1"
34 [3 ,] numeric ,3 261.6113 51.72996 471.4927 8.53668 5.494443 0.009736379 "H1"
35

36 $ alpha
37 [1] 0.05
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38

39 attr (," class ")
40 [1] " GFDrmst "

summary.GFDrmst This is the summary method for class "GFDrmst". It takes the arguments

• object
An object of class "GFDrmst".

• digits
An integer indicating the number of decimal places to be used. Default option is 8.

All further arguments passed to this function are ignored. The function prints the information about the used
method, significance level, hypothesis matrices, Wald-type test statistics, adjusted p-values and the overall
results of the tests. It does not have a return value, but is called for side effects.
In our example, the summary looks like this:

41 > summary (out , digits = 3)
42 # - - - - - - - - - - Multiple asymptotic RMST Wald -type tests - - - - - - - - - - #
43

44 - Significance level : 0.05
45

46 # --- Hypothesis matrices -----------------------------------------------------------#
47 [[1]]
48 [ ,1] [ ,2] [ ,3]
49 [1 ,] -1 1 0
50

51 [[2]]
52 [ ,1] [ ,2] [ ,3]
53 [1 ,] -1 0 1
54

55 [[3]]
56 [ ,1] [ ,2] [ ,3]
57 [1 ,] 0 -1 1
58

59

60 # --- Wald -type test statistics ----------------------------------------------------#
61 W_n(H_1, c_1) W_n(H_2, c_2) W_n(H_3, c_3)
62 0.004007639 9.142532300 8.536680422
63

64 # --- Overall p- values -------------------------------------------------------------#
65 [1] 0.998 0.007 0.010
66

67 # --- Overall results --------------------------------------------------------------#
68 hyp_ matrix estimator lwr_ conf upr_ conf test _ stat critical value adj_ pvalue decision
69 [1 ,] numeric ,3 5.664 -204.041 215.368 0.004 5.494 0.998 "not significant "
70 [2 ,] numeric ,3 267.275 60.076 474.473 9.143 5.494 0.007 "H1"
71 [3 ,] numeric ,3 261.611 51.73 471.493 8.537 5.494 0.01 "H1"
72 # ----------------------------------------------------------------------------------#

plot.GFDrmst With the function plot.GFDrmst, simultaneous confidence intervals of an object of class "GFDrmst"
can be plotted. The function only takes the argument x, which is an object of class "GFDrmst". All further
arguments passed to this function are ignored. The displayed vectors on the y-axis are the coefficients Hℓ of
the linear combinations. The function has no return value, but is called for side effects.
The corresponding R code and plot for our example is the following.

73 > plot (out)
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GFDrmstGUI This function provides a shiny app for performing the multiple RMST-based tests. To explain its
usage, we provide several screenshots in the following.

Example usage of the shiny app GFDrmstGUI.

1. First of all, the shiny app needs to be
started with the command GFDrmstGUI()
in R or via https://munko.shinyapps.io/
gfdrmst/. Depending on the csv file,
(un)check "Header" if the csv (does not) con-
tain headers and choose the correct separa-
tor. Next, the csv file containing the data
can be loaded by clicking on "Browse...".

2. Choose and open the csv file containing
the data.
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Example usage of the shiny app GFDrmstGUI (continued).

3. Now, further options become visible. Se-
lect the testing method that should be used
and make sure that the correct censoring sta-
tus variable (here: event) and the correct la-
bel of a censored variable (here: 0) are se-
lected. If "Stepwise extension" is unchecked,
the option for plotting simultaneous confi-
dence intervals becomes possible. The "For-
mula" field allows user-specific formulas to
model the event types by the different fac-
tors (e.g. here: "Stime „ rx" for one factor
or "Stime „ rx * sex" for two factors).

4. For the contrast matrix, options for the
Tukey-type, Dunnett-type and for the cen-
tering matrix are available. Moreover, it
is possible to define user-specific matrices,
which we show in the following. Therefore,
choose the option "Other". To add a user-
specific matrix, click on "Add matrix".

5. Fill in the desired hypothesis matrices Hℓ.
If you want to perform a permutation test,
make sure that all matrices are contrast ma-
trices. Further, fill in the hypothesis vectors
cℓ. Further matrices can be added by clicking
on "Add matrix". Accidentally added ma-
trices can be deleted by clicking on "Delete
matrix".

6. Specify the endpoint τ (here: 3000), the
global level of significance α (here: 0.05)
and the number of resampling repetitions B
(here: 4999). When everything is in place,
click on "Calculate" to start the calculations.
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Example usage of the shiny app GFDrmstGUI (continued).

7. Wait until the calculations are done. This
might take a while.

8. When the calculations are done, the re-
sults appear immediately. In the upper field,
the group assignment to the considered fac-
tors (here: rx) is clarified. Then, the results
of the chosen testing method are shown. In
this example, we observe that the second hy-
pothesis can be rejected, while the first can
not be rejected (see the last column of "Over-
all results").

E.2 GFDrmtl

The R package GFDrmtl works rather similar to the R package GFDrmst. It exports only two functions:
The function GFDrmtlGUI provides a shiny app for performing the multiple RMTL-based tests as described in
Section 5 on an interactive user interface. Its usage closely mirrors the usage of the function GFDrmstGUI as
described in Section E.1. Due to this similarity, we have chosen to omit a detailed description here to avoid
redundancy.
The second function is called RMTL.test and can be used to perform the multiple RMTL-based tests as described
in Section 5. The output of this function is a list of class GFDrmst. A detailed description can be found below.

RMTL.test This function contains the implementation of the asymptotic multiple tests of Section 5.3.1 and
the adjusted permutation tests of Section 5.2.2. Furthermore, confidence intervals for RMTL contrasts can be
calculated as in Remark 2.6 and the stepwise extension of Remark 2.5, which can improve the power of the
multiple tests, is available.
The arguments of the function RMTL.test are more or less the same than of the function RMST.test, except for

• status
A vector containing the corresponding censoring status indicator δij “ Dij1tXij “ Tiju with values 0 =
censored and 1, ...,M for the M different competing events.

• hyp_mat
A list containing all the hypothesis matrices H1, ...,HL for the multiple tests or one of the options "Tukey",
"Dunnett", "center", cf. Example 5.2, or "2by2", "2by2 cause-wisely" for tests on main and inter-
action effects in a 2-by-2 design without or with cause-wise results, cf. Example 5.7, or a matrix H if only
one hypothesis is of interest. For the permutation test, all matrices need to fulfill the contrast property
in Section 5.2.

• M
An integer specifying the number of competing risks. By default, the maximum of the values in status
or event is chosen.
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• method
One of the methods "permutation" or "asymptotic" that should be used for calculating the critical
values, cf. Sections 5.2.2 and 5.3.1, respectively. Default option is "permutation".

The output of this function is a list of class GFDrmst. For a detailed description of the components see Section E.1.
As in Section E.1, either time, status, group or formula, event, data needs to be specified. The following
example illustrates the usage of both versions. Note that since we use the same class GFDrmst as in the package
GFDrmst, we can still use the already defined functions summary.GFDrmst and plot.GFDrmst to summarize and
plot the results of the output of RMTL.test, respectively.

1 > library ( GFDrmtl )
2 > library ( mstate )
3 > data (" ebmt2 ")
4 >
5 > # multiple asymptotic tests
6 > out <- RMTL.test( time = ebmt2 $time ,
7 + status = ebmt2 $ status ,
8 + group = ebmt2 $match ,
9 + hyp_ mat = " Dunnett ",

10 + tau = 120 ,
11 + method = " asymptotic ")
12 > summary (out)
13 # - - - - - - - - - - Multiple asymptotic RMTL Wald -type tests - - - - - - - - - - #
14

15 - Significance level : 0.05
16

17 # --- Hypothesis matrices -----------------------------------------------------------#
18 [[1]]
19 [ ,1] [ ,2] [ ,3] [ ,4] [ ,5] [ ,6] [ ,7] [ ,8] [ ,9] [ ,10] [ ,11] [ ,12]
20 [1 ,] -1 0 0 0 0 0 1 0 0 0 0 0
21

22 [[2]]
23 [ ,1] [ ,2] [ ,3] [ ,4] [ ,5] [ ,6] [ ,7] [ ,8] [ ,9] [ ,10] [ ,11] [ ,12]
24 [1 ,] 0 -1 0 0 0 0 0 1 0 0 0 0
25

26 [[3]]
27 [ ,1] [ ,2] [ ,3] [ ,4] [ ,5] [ ,6] [ ,7] [ ,8] [ ,9] [ ,10] [ ,11] [ ,12]
28 [1 ,] 0 0 -1 0 0 0 0 0 1 0 0 0
29

30 [[4]]
31 [ ,1] [ ,2] [ ,3] [ ,4] [ ,5] [ ,6] [ ,7] [ ,8] [ ,9] [ ,10] [ ,11] [ ,12]
32 [1 ,] 0 0 0 -1 0 0 0 0 0 1 0 0
33

34 [[5]]
35 [ ,1] [ ,2] [ ,3] [ ,4] [ ,5] [ ,6] [ ,7] [ ,8] [ ,9] [ ,10] [ ,11] [ ,12]
36 [1 ,] 0 0 0 0 -1 0 0 0 0 0 1 0
37

38 [[6]]
39 [ ,1] [ ,2] [ ,3] [ ,4] [ ,5] [ ,6] [ ,7] [ ,8] [ ,9] [ ,10] [ ,11] [ ,12]
40 [1 ,] 0 0 0 0 0 -1 0 0 0 0 0 1
41

42

43 # --- Wald -type test statistics ----------------------------------------------------#
44 W_n(H_1, c_1) W_n(H_2, c_2) W_n(H_3, c_3) W_n(H_4, c_4) W_n(H_5, c_5) W_n(H_6, c_6)
45 0.05327241 16.65959825 0.02229563 0.09266721 0.72453873 5.25291896
46

47 # --- Overall p- values -------------------------------------------------------------#
48 [1] 0.99996141 0.00026849 0.99999708 0.99980490 0.94952365 0.12387207
49

50 # --- Overall results --------------------------------------------------------------#
51 hyp_ matrix estimator lwr_ conf upr_ conf test _ stat critical value adj_ pvalue
52 [1 ,] numeric ,12 -0.2039252 -2.527734 2.119884 0.05327241 6.917694 0.9999614
53 [2 ,] numeric ,12 3.624833 1.289029 5.960638 16.6596 6.917694 0.00026849
54 [3 ,] numeric ,12 -0.05441319 -1.012875 0.904049 0.02229563 6.917694 0.9999971
55 [4 ,] numeric ,12 0.1122358 -0.8574905 1.081962 0.09266721 6.917694 0.9998049
56 [5 ,] numeric ,12 -0.3092148 -1.26467 0.6462401 0.7245387 6.917694 0.9495237
57 [6 ,] numeric ,12 2.047158 -0.3021053 4.396421 5.252919 6.917694 0.1238721
58 decision
59 [1 ,] "not significant "
60 [2 ,] "H1"
61 [3 ,] "not significant "
62 [4 ,] "not significant "
63 [5 ,] "not significant "
64 [6 ,] "not significant "
65 # ----------------------------------------------------------------------------------#
66 >
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67 > ## or , equivalently ,
68 > out <- RMTL.test( formula = "time ~ match ",
69 + event = " status ",
70 + data = ebmt2 ,
71 + hyp_ mat = " Dunnett ",
72 + tau = 120 ,
73 + method = " asymptotic ")
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List of Symbols

0r r-dimensional vector of zeros

0rˆk r ˆ k dimensional matrix of zeros

1k k-dimensional vector of ones

1 indicator function

A` Moore–Penrose inverse of a matrix A
a.s.

ÝÝÑ almost sure convergence

BL1pEq set of all real functions on E with a Lipschitz norm bounded by 1

BVM ra, bs subset of càdlàg functions ra, bs Ñ R with total variation bounded by M

B̃VM ra, bs subset of all functions in D̃ra, bs with total variation bounded by M and F P Dra, bs

BV ą´1
M ra, bs subset of functions in BVM ra, bs whose jumps are contained in p´1,8q and bounded away from ´1

χ2
r χ2-distribution with r degrees of freedom

χ2
r,1´α p1 ´ αq-quantile of the χ2

r-distribution

Cov covariance
d

ÝÑ, ù weak convergence in the sense of [74]
d˚

ÝÝÑ conditional weak convergence in outer probability in the sense of Definition 2.1

Dra, bs set of all càdlàg functions ra, bs Ă R Ñ R, equipped with the sup-norm

D̃ra, bs set of all functions ra, bs Ñ R that are everywhere left-continuous and have right limits everywhere

E expectation

E˚ outer expectation

E1,E2 expectations regarding pΩ1,A1, Q1q, pΩ2,A2, Q2q, respectively

F´ left-continuous version of a monotone or a càdlàg function F

F´1 inverse of a monotone increasing and right-continuous function F , that is inftx | . ď F pxqu

∆F increment of a monotone function F , that is F ´ F´

Ik k ˆ k dimensional unit matrix

i.i.d. independent identically distributed

ℓ8pFq set of all bounded real-valued functions on F

N pµ, σ2q normal distribution with mean µ and variance σ2 ě 0

Nkpµ,Σq k-dimensional normal distribution with mean µ and covariance matrix Σ
À

direct sum
Ś

Cartesian product

b Kronecker product

P probability

P˚ outer probability
P

ÝÑ convergence in outer probability

P product integral as in [39]

Var variance
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