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Abstract

Obesity-induced insulin resistance and type 2 diabetes mellitus (T2DM) represent com-
plex systemic disorders marked by chronic inflammation, oxidative stress, mitochondrial
dysfunction, and endoplasmic reticulum (ER) stress. These pathophysiological processes
disrupt insulin signaling and β-cell function, leading to impaired glucose homeostasis
across multiple organs. Conventional therapies often target isolated pathways, overlooking
the intricate molecular crosstalk and organelle-level disturbances driving disease pro-
gression. Citrus-derived polyphenols—including hesperidin, naringenin, nobiletin, and
tangeretin—have emerged as promising agents capable of orchestrating a multi-targeted
“metabolic reprogramming.” These compounds modulate key signaling pathways, includ-
ing AMPK, PI3K/Akt, NF-κB, and Nrf2, thereby enhancing insulin sensitivity, reducing
pro-inflammatory cytokine expression, and restoring redox balance. Furthermore, they
improve mitochondrial biogenesis, stabilize membrane potential, and alleviate ER stress
by modulating the unfolded protein response (UPR), thus supporting cellular energy
homeostasis and protein folding capacity. Evidence from preclinical studies and select
clinical trials suggests that citrus polyphenols can significantly improve glycemic control,
reduce oxidative and inflammatory markers, and preserve β-cell function. Their pleiotropic
actions across molecular and organ-level targets position them as integrative metabolic
modulators. This review presents a systems-level synthesis of how citrus polyphenols
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rewire metabolic signaling networks and organelle resilience, offering a holistic therapeutic
strategy to mitigate the root causes of obesity-induced insulin resistance.

Keywords: citrus polyphenols; metabolic reprogramming; insulin resistance; mitochondrial
dysfunction; endoplasmic reticulum stress; AMPK signaling; inflammatory cytokines; type
2 diabetes mellitus (T2DM)

1. Introduction
It begins quietly, an expanding waistline, a subtle shift in blood sugar levels, a creeping

fatigue. But behind these seemingly mundane signs brews a global biological crisis: the
unstoppable rise in obesity-linked type 2 diabetes mellitus (T2DM). This twin epidemic,
now termed “diabesity,” has grown into a full-blown metabolic pandemic [1,2]. As of 2023,
more than 650 million adults are classified as obese, and over 500 million people live with
diabetes, with projections pointing toward 700 million cases by 2045 [3–6]. Numbers, yes,
but behind them lies a silent molecular war.

At the heart of this storm is a cascade of metabolic miscommunications. As adipose
tissue expands, it not only stores excess energy but also morphs into a pro-inflammatory
endocrine organ. Hypertrophied adipocytes release a torrent of cytokines such as TNF-α,
IL-6, and MCP-1—recruiting macrophages and igniting a chronic inflammatory loop [7–10].
The result? The activation of NF-κB, JNK, and SOCS3, key molecular saboteurs that degrade
insulin signaling, disrupt glucose uptake, and sow the seeds of insulin resistance across
the liver, muscle, and pancreas [10–13]. But inflammation is only the beginning. With each
calorie surplus, cells are flooded with free fatty acids, triggering lipotoxicity, ceramide
accumulation, and a collapse in mitochondrial efficiency [14,15]. Overloaded mitochondria
generate reactive oxygen species (ROS), feeding a cycle of oxidative damage that mutates
proteins, disrupts redox balance, and disables insulin receptors [16,17]. Meanwhile, the
endoplasmic reticulum (ER) tasked with protein folding buckles under metabolic pressure.
UPR sensors, such as PERK, IRE1, and ATF6, are activated, prompting β-cells to undergo
apoptosis and further exacerbating metabolic dysfunction in the body [18,19].

Despite our arsenal of pharmacological tools such as metformin, insulin, and GLP-1
agonists, there remains no cure for diabesity, only containment. These agents address
symptoms but leave the root networks of dysfunction largely untouched [20]. This limita-
tion has propelled research toward integrative, multi-targeted interventions derived from
nature’s pharmacopeia.

Among these, citrus polyphenols have emerged as compelling candidates. In this
review we introduce a unique framework—systemic metabolic reprogramming—which
emphasizes how citrus polyphenols simultaneously recalibrate mitochondrial–ER crosstalk,
immune–metabolic interactions, and organ-level adaptation [21]. These compounds work
through AMPK, NF-κB, and Nrf2., and restore insulin sensitivity in the liver, adipose
tissue, and skeletal muscle [21–25]. They modulate SIRT1–PGC1α pathways, stabilize mito-
chondrial membrane potential, and reduce ER stress through unfolded protein response
signaling [21]. In doing so, they mitigate hyperglycemia, improve lipid metabolism, and
prevent β-cell failure in preclinical models [25].

Previous reviews have largely focused on the antioxidant or single-pathway ac-
tions of citrus polyphenols. However, the concept of citrus flavonoids as systemic
metabolic reprogrammers—simultaneously recalibrating mitochondrial–ER crosstalk,
immune–metabolic signaling, and multi-organ adaptation—has not yet been synthe-
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sized. This review uniquely frames citrus polyphenols as network-level modulators
within diabesity.

This review unpacks how citrus polyphenols intervene at key metabolic junctions,
recalibrating molecular circuits, rejuvenating organelle function, and restoring systemic
homeostasis. As our understanding deepens, these nature-derived compounds may offer
more than dietary support; they may serve as network-based therapeutics in the fight
against diabesity.

2. Pathophysiology of Obesity-Induced Diabetes
2.1. Lipotoxicity and Free Fatty Acid-Mediated Insulin Resistance

As the storm of chronic inflammation rages through expanding adipose tissue, another
silent disruptor spreads through the bloodstream, free fatty acids (FFAs). In the obese state,
basal lipolysis is persistently elevated, turning fat depots into active endocrine disruptors.
These circulating FFAs are eagerly taken up by insulin-sensitive tissues, including the
liver and skeletal muscle, where they undergo incomplete oxidation or are converted into
lipotoxic intermediates such as diacylglycerols (DAGs) and ceramides [26,27].

These molecules act not merely as metabolic byproducts, but as intracellular saboteurs.
By activating serine/threonine kinases such as c-Jun N-terminal kinase (JNK) and protein
kinase C (PKC), they interfere with insulin signaling at its core, through the inhibitory
serine phosphorylation of insulin receptor substrates (IRS1/2). The downstream result is
twofold: in skeletal muscle, glucose uptake is impaired; in the liver, glucose production
remains inappropriately elevated [28–31]. These defects form the biochemical bedrock of
systemic insulin resistance. Yet, this mechanism is not universally expressed. A paradox
remains: not all individuals with obesity develop T2DM. Beneath this variability lies a
complex interplay of mitochondrial oxidative capacity, lipid partitioning, and intracellular
buffering efficiency. Some individuals appear to be equipped with metabolic machinery
capable of neutralizing lipotoxicity [32–35]. This variability suggests the urgent need
for stratified approaches, where mitochondrial phenotype, not body mass index, guides
therapeutic strategy.

In the liver, lipotoxicity takes on another form: hepatic insulin resistance. This defect
impairs the suppression of gluconeogenic enzymes under insulin stimulation, resulting in
fasting and postprandial hyperglycemia. Lipid-laden hepatocytes, struggling under the
weight of FFA influx, experience impaired AKT activation and PKC-mediated insulin recep-
tor dysfunction [36–38]. Meanwhile, Kupffer cells, the liver’s resident macrophages, release
inflammatory cytokines that compound the damage and amplify insulin resistance [39].
Still, one critical question lingers: is hepatic steatosis the cause or merely a companion of
insulin resistance? Although these conditions often coexist, emerging evidence suggests
that hepatic inflammation and lipotoxicity, not simple steatosis, are the more potent drivers
of metabolic impairment [40–42]. As such, targeting inflammatory and lipid-signaling
pathways within the liver may offer greater therapeutic promise than attempts to merely
de-fat the organ.

2.2. Oxidative Stress, Mitochondrial Dysfunction, and ER Disruption

As lipotoxic intermediates sabotage insulin signaling from the surface, a deeper
disturbance brews within the cell—oxidative stress. In obesity, the ectopic deposition of
lipids in liver and skeletal muscle overburdens cellular respiration, particularly within the
mitochondria. The result is an overproduction of reactive oxygen species (ROS), driven not
only by mitochondrial electron transport chain leakage but also by upregulated NADPH
oxidase (NOX) activity [43–45] [Table 1].
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Table 1. Citrus polyphenols and metabolic reprogramming in animal and cell studies. The table lists
the compound studied, experimental model, intervention characteristics, and major outcomes on
insulin signaling, oxidative stress, lipid metabolism, or mitochondrial/ER function.

Compound Model/System Intervention Details
(Dose and Duration) Primary Outcomes/Mechanisms Source

Neohesperidin HFD-fed mice 50–100 mg/kg/day, 8–12 weeks ↑ AMPK–PGC-1α → ↑ mitochondrial
biogenesis, ↓ steatosis [46]

Nobiletin HFD-fed mice 100 mg/kg/day, 8 weeks ↑ FA oxidation, ↑ energy expenditure;
AMPK-independent [47]

Nobiletin Hepatocytes 10–50 µM, 24–48 h Restores Bmal1 → ↑ lipid/OXPHOS metabolism [48]

Nobiletin Insulin-resistant mice 50 mg/kg/day, 6 weeks ↓ VLDL secretion; improved lipid/
glucose metabolism [47]

Nobiletin HepG2 cells 25 µM, 24 h ↑ PGC1α, CPT1, UCP2 → ↑ β-oxidation [47]

Nobiletin ob/ob mice 100 mg/kg/day, 6 weeks ↑ GLUT4, ↑ Akt phosphorylation → improved
insulin sensitivity [49]

Naringenin MCD or HFD mice 50–100 mg/kg/day, 8–12 weeks ↑ AMPK → ↑ autophagy,
↑ mitochondrial biogenesis [50]

Naringenin Hepatocytes/mice 10–50 µM in vitro; 100 mg/kg/day
in vivo ↑ AMPK, ↑ ATF3 → ↓ metabolic inflammation [51]

Naringin HFD-fed mice 100 mg/kg/day, 10 weeks ↑ AMPK → ↓ SREBP-1c/FAS, ↑ redox balance [52]

Naringin Fructose-fed rats 40 mg/kg/day, 8 weeks ↑ Nrf2/HO-1 → antioxidant response; ↓
ChREBP/SREBP-1c [53]

Naringin HFD mice 100 mg/kg/day, 12 weeks ↑ TFEB → lipophagy → ↓ hepatic lipid droplets [54]

Hesperidin LO2 hepatocytes (HG) 25–100 µM, 24–48 h ↑ ATP, restores ∆Ψm via AKT/GSK3β [55]

Hesperidin Hyperlipidemic rats 100 mg/kg/day, 6 weeks ↑ SOD, ↑ catalase; preserved
mitochondrial enzymes [56]

Hesperidin Neurons (hyperglycemia) 25 µM, 24–48 h Improves ATP/redox;
↓ mitochondrial dysfunction [57]

Hesperetin Aging mice 50 mg/kg/day, 8 weeks ↑ Cisd2 expression → maintenance of
metabolic health [58]

Limonene Mice model 100 mg/kg/day, 6 weeks ↑ mitochondrial respiration, ↓ ROS [59,
60]

Eriocitrin HFD rats 25–50 mg/kg/day, 8 weeks ↑ mitochondrial biogenesis, ↓ steatosis [61]

Sudachitin C57BL/6J, db/db mice 50 mg/kg/day, 8 weeks ↑ β-oxidation, ↑ mitochondrial biogenesis [62]

Tangeretin Diabetic rats 100 mg/kg/day, 6 weeks ↑ GLUT4, ↑ antioxidant enzymes [63]

Naringenin NAFLD mice 100 mg/kg/day, 10 weeks ↓ NLRP3/NF-κB, ↓ IL-1β → metabolic
reprogramming [64]

Naringenin NAFLD mice
(metabolomics) 100 mg/kg/day, 12 weeks Modulates gut microbiota → improved

host metabolism [65]

Naringenin Muscle cells 25–50 µM, 24 h ↑ p-AMPK → ↑ glucose uptake,
↑ mitochondrial content [66]

Naringin Hepatocytes, HFD mice 25 µM in vitro; 100 mg/kg/day,
8 weeks

AMPK–IRS1–MAPK pathway → improved
insulin signaling [67]

Naringenin MASLD mice 100 mg/kg/day, 12 weeks ↑ PPAR, ↑ lipid oxidation, gut microbiota shift [68]

Naringenin Mice (aerobic fitness) 100 mg/kg/day, 4 weeks ↑ oxidative fibers, ↑ aerobic metabolism [69]

Naringin KK-A(y) mice 100 mg/kg/day, 8 weeks ↑ AMPK → ↓ glucose/lipids, ↑ insulin sensitivity [70]

Neohesperidin DIO mice, HepG2 cells 50–100 mg/kg/day, 12 weeks;
25 µM in vitro ↑ FGF21, ↑ AMPK → improved lipid regulation [71]

Hesperidin MASLD mice 100 mg/kg/day, 8 weeks ↓ insulin resistance, ↓ oxidative stress [72]

Nobiletin HepG2 cells 25 µM, 24 h ↑ AMPK, ↓ lipogenesis [73]

These ROS act as rogue messengers, damaging proteins, lipids, and DNA, and activat-
ing redox-sensitive inflammatory pathways, such as NF-κB and JNK, which further disrupt
insulin receptor signaling [74,75]. Moreover, elevated oxidative stress impairs mitochon-
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drial ATP production, undermines metabolic flexibility, and sets the stage for mitochondrial
dysfunction—a central node in the pathogenesis of insulin resistance [76,77]. Yet, ROS are
not universally destructive. At physiological levels, they function as essential signaling
molecules, fine-tuning insulin sensitivity and energy flux. It is only when their production
surpasses the buffering capacity of antioxidant systems that they become pathological. This
duality makes ROS modulation a therapeutic tightrope—too much suppression may blunt
necessary signaling, while too little invites metabolic collapse [77,78].

But the damage does not end at the mitochondria. Just beyond lies another vulnerable
organelle, the endoplasmic reticulum (ER), which is tasked with protein folding, calcium
storage, and lipid biosynthesis. In obesity, ER homeostasis is frequently disrupted, as excess
nutrients and oxidative signals trigger the unfolded protein response (UPR). Key sensors,
such as PERK, IRE1, and ATF6, become chronically activated, leading to maladaptive
signaling, impaired insulin receptor trafficking, and even β-cell apoptosis [78–80].

Compounding the crisis, ER stress and mitochondrial dysfunction do not act in isola-
tion. Instead, they engage in bidirectional cross-talk, where ROS produced by mitochondrial
overload exacerbate ER stress, and ER stress in turn destabilizes mitochondrial dynam-
ics and calcium homeostasis [81,82]. This self-reinforcing loop amplifies cellular distress,
propelling the insulin-resistant phenotype forward.

Thus, in the obese insulin-resistant state, the combined dysfunction of mitochondria
and ER forms a molecular sinkhole, collapsing the delicate architecture of intracellular
communication and energy balance. Targeting this axis, mitochondrial redox tuning, and
restoration of ER homeostasis may be essential for effective metabolic reprogramming.

2.3. β-Cell Compensation and Failure

As insulin resistance deepens in peripheral tissues, the metabolic burden shifts to
the pancreas. For a time, the β-cells rise to the occasion. In early obesity, these endocrine
sentinels respond to rising glycemic demand with compensatory hypersecretion of insulin,
working overtime to preserve normoglycemia [83,84].

But this heroism comes at a cost. With chronic exposure to hyperglycemia and elevated
FFAs, a biochemical storm known as glucolipotoxicity, β-cells begin to falter. Initially, their
function deteriorates: insulin granule synthesis declines, secretory machinery loses fidelity,
and glucose-stimulated insulin secretion becomes blunted [85,86].

Over time, this dysfunction becomes irreversible. A convergence of molecular insults,
oxidative stress, ER stress, amyloid deposition, and islet-localized inflammation drives
β-cells toward apoptosis and loss of mass [87]. Mitochondrial inefficiency further impairs
insulin granule exocytosis, while pro-inflammatory cytokines such as IL-1β and IFN-γ
infiltrate islets and exacerbate cell death [88]. Eventually, the tipping point is reached: the
remaining β-cell pool is no longer sufficient to compensate. Glucose levels rise unchecked,
and what began as a compensatory adaptation gives way to overt T2DM [89]. Yet the fate of
the β-cell may not be entirely sealed. Some dysfunction appears reversible, at least in early
stages, raising hope for therapeutic intervention. GLP-1 receptor agonists, for example,
have been shown to enhance β-cell function, promote insulin gene expression, and even
reduce apoptosis. However, restoring β-cell mass, not just improving function, remains a
challenging task [90,91].

To this end, regenerative strategies such as β-cell neogenesis, trans-differentiation, and
reprogramming of other pancreatic cells are under active exploration. While preclinical
data offer tantalizing glimpses of success, translation into durable human therapies is still
in its infancy [92]. Thus, the story of the β-cell in diabesity is one of early heroism, gradual
unraveling, and an uncertain future. Preserving its function and perhaps, one day, restoring
its mass may hold the key to altering the trajectory of metabolic disease.
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2.4. Adipose Tissue Dysfunction and Immune Activation

As systemic insulin resistance develops, one of its earliest instigators lies buried
in the expansion of fat depots. In the setting of chronic overnutrition, adipocytes en-
large through hypertrophy, outpacing their oxygen supply and creating localized hy-
poxia. This cellular stress activates hypoxia-inducible factors (HIFs) and initiates an
inflammatory cascade [93,94].

Stressed adipocytes begin secreting danger signals, including chemokines such as
monocyte chemoattractant protein-1 (MCP-1), which draw immune cells into the adi-
pose microenvironment. There, monocytes differentiate into classically activated (M1)
macrophages, forming crown-like structures around dying adipocytes and releasing a
storm of pro-inflammatory cytokines: TNF-α, IL-6, and IL-1β [93]. These cytokines interfere
with insulin receptor signaling by inhibiting the serine phosphorylation of IRS1, ultimately
contributing to systemic insulin resistance [95]. At the same time, levels of adiponectin
decline—an insulin-sensitizing adipokine with potent anti-inflammatory and vascular-
protective properties. This drop further tips the balance toward a pro-inflammatory adipose
phenotype, perpetuating metabolic dysfunction [96] [Figure 1].

Figure 1. Schematic representation of the mechanisms linking obesity to β-cell failure and T2DM.
Chronic caloric excess induces adipocyte hypertrophy and local hypoxia, activating HIF-1α and
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promoting the release of FFAs, TNF-α, IL-6, and MCP-1, while reducing adiponectin. This triggers
M1 macrophage polarization and inflammation in adipose tissue. Circulating FFAs and lipid inter-
mediates reach the liver, activating PKC/JNK pathways and impairing IRS1–PI3K–Akt signaling,
resulting in increased gluconeogenesis. Concurrently, impaired β-oxidation and mitochondrial dys-
function lead to ROS accumulation, ER stress, and apoptosis. In the pancreas, inflammatory and
ER stress signals impair insulin synthesis and activate mitochondrial apoptotic pathways, reducing
β-cell mass and insulin secretion—contributing to hyperglycemia and T2DM. (Image created with
biorender.com).

But this immune–metabolic dialog is far from uniform. Depot-specific differences—
between visceral, subcutaneous, and brown adipose tissue—shape the inflammatory land-
scape, as do the plastic and dynamic phenotypes of resident immune cells. In some depots,
regulatory T cells, eosinophils, and alternatively activated (M2) macrophages attempt to
counterbalance inflammation, though their roles remain incompletely understood [93]. As
this immunological remodeling unfolds, translational researchers face a challenge: current
animal models and cell lines oversimplify the dynamic complexity of human adipose tissue.
The precise orchestration of immune-adipocyte interactions during obesity progression
and weight loss remains a frontier of investigation, requiring refined model systems and
longitudinal tissue profiling [97–99].

Thus, the immune–adipocyte axis stands as a central pillar of metabolic inflammation,
a battlefield where energy sensing, immune signaling, and hormonal control collide.

3. Citrus Polyphenols in Metabolic Reprogramming
3.1. Sour Yet Sweet Salvation: How Citrus Polyphenols Rewire Diabetic Metabolism

Until now, the story has unfolded as a progressive unraveling of metabolic order,
characterized by lipotoxicity, oxidative stress, mitochondrial dysfunction, inflammatory
infiltration, and β-cell failure [15,100,101]. But nature, too, offers its counterstrike. Quietly
nestled among citrus fruits, a class of polyphenolic compounds has shown a surprising
capacity to engage the metabolic network, not as blunt tools, but as precise modulators
capable of reprogramming disordered pathways [21].

In addition to functional outcomes, the structural features of citrus polyphenols are
critical in explaining their biological activity. Figure 2 presents the chemical structures of
the major flavonoids discussed in this review, including hesperidin, naringenin, nobiletin,
tangeretin, eriocitrin, quercetin, and neohesperidin. These compounds share a flavanone
or flavone backbone, with variation in hydroxylation, glycosylation, and methoxylation
patterns. Such structural differences underlie their capacity to modulate redox balance and
metabolic pathways.

Hesperidin, a glycosylated flavanone, possesses hydroxyl groups at the 5- and
7-positions of the A-ring and initiates its metabolic rescue by activating AMPK the cell’s
energy sensor. This activation restores PI3K/Akt signaling, enabling the translocation
of GLUT4 in skeletal muscle and adipose tissue, thereby reviving insulin responsive-
ness [21,102–104]. Simultaneously, hesperidin attenuates ROS accumulation and boosts
endogenous antioxidants like SOD, GPx, and catalase, relieving oxidative stress and restor-
ing mitochondrial integrity key to breaking the self-perpetuating cycle of insulin resis-
tance [103]. Quercetin, abundant in citrus and other plants, reinforces this network-level
modulation. It not only improves glycemic control via PI3K/Akt and IRS1 restoration,
but also blocks NF-κB-mediated inflammation, decreasing expression of TNF-α and IL-
6—two upstream drivers of adipose and hepatic insulin resistance [104,105]. Quercetin
and eriocitrin, with multiple catechol groups, provide potent metal-chelating and antiox-
idant properties. These structural insights highlight common factors—redox modula-
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tion, lipid solubility, and receptor interactions—that enable citrus flavonoids to reverse
metabolic dysfunction [106,107].

Figure 2. Multi-organ effects of citrus fruit polyphenols in obesity-induced diabetes. In the liver,
polyphenols activate AMPK and PI3K/AKT signaling, suppress SREBP1c and HMGCR, reduce
lipogenesis, and inhibit gluconeogenic enzymes (G6Pase, FOXO1), thereby lowering hepatic glucose
output. In adipocytes, they enhance PI3K–AKT–GLUT4 translocation to improve glucose uptake
and downregulate PPARγ, FAS, and SREBP1c to reduce adipogenesis and lipid accumulation. In
pancreatic β-cells, polyphenols upregulate antioxidant enzymes (SOD, GSH-Px), reduce ROS, inhibit
caspase-3, and promote Ca2+ influx, enhancing insulin secretion and survival. In the intestine, they
inhibit α-amylase and α-glucosidase, slowing carbohydrate digestion and reducing postprandial
glycemia via SGLT1/GLUT2 downregulation. (Image created with biorender.com).

Then comes naringenin, the aglycone of naringin, which enters the liver and shifts
metabolic flux toward fatty acid oxidation. It activates PPARα, downregulates SREBP-
1c, and inhibits JNK signaling, thereby reducing lipogenesis, inflammation, and insulin
resistance in hepatocytes [21,108,109]. In skeletal muscle, it reinforces AMPK signaling,
improving glucose uptake and restoring oxidative capacity [66,110].

Tangeretin, sourced from citrus peels, contributes by modulating adipokine profiles—
notably restoring adiponectin levels, which enhances insulin sensitivity through both
AMPK activation and Pparγ modulation [111,112]. It also suppresses oxidative stress mark-
ers in insulin-sensitive tissues, reinforcing mitochondrial health and preserving metabolic
signaling fidelity [113]. Kaempferol, while less abundant, wields a unique role in sup-
pressing hepatic gluconeogenesis. By activating AMPK, it downregulates PEPCK and
G6Pase, two key enzymes responsible for excess hepatic glucose output in insulin-resistant
states [114–117]. Through this mechanism, it reprograms hepatic energy flow and corrects
fasting hyperglycemia [116,117]. Rutin, structurally similar to quercetin, amplifies this en-
semble response by restoring mitochondrial biogenesis, enhancing SIRT1–PGC1α signaling,
and mitigating oxidative stress, particularly in the pancreas and liver [116].

Together, these compounds do not simply oppose insulin resistance—they rewire the
system. Through synergistic targeting of AMPK, PI3K/Akt, NF-κB, PPARs, SIRT1, and
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UPR components, citrus polyphenols restore cellular energy sensing, reduce inflammatory
signaling, and regenerate insulin sensitivity across the liver, muscle, adipose, and pancreas
tissues. Their strength lies not in singular action, but in their ability to act in concert, modu-
lating interlinked metabolic pathways at the core of diabesity. Thus, citrus polyphenols
represent more than nutraceuticals. They are biochemical architects, reshaping the very
systems that obesity and hypernutrition seek to dismantle.

3.2. Citrus Polyphenols and Inflammatory Reprogramming in Diabesity

In the evolving landscape of diabesity, inflammation emerges not as a byproduct
but as a driving force—a molecular amplifier that sustains insulin resistance and disrupts
metabolic homeostasis. The epicenter of this inflammatory storm lies within adipose tissue,
where immune–metabolic crosstalk distorts insulin signaling at every level.

TNF-α, first identified as a pivotal factor in obese adipose tissue by Hotamisligil
et al. [118], sets this cascade in motion [119,120]. As previously described in Section 3.1,
citrus polyphenols suppress NF-κB nuclear translocation and normalize IRS1–Akt sig-
naling [121–123]. Simultaneously, NF-κB, a master inflammatory transcription factor,
translocates to the nucleus, driving the expression of cytokines such as IL-6, MCP-1, and
iNOS, which reinforce metabolic dysfunction and immune infiltration [7,124,125]. Amid
this inflammatory gridlock, citrus polyphenols have emerged not merely as suppressors
of inflammation but as metabolic circuit breakers, capable of disconnecting inflammatory
feedback loops and restoring intracellular communication [21].

Naringin, hesperidin, and quercetin have all been shown to suppress NF-κB nuclear
translocation, thereby silencing pro-inflammatory transcriptional programs at their source.
In murine and cellular models, these polyphenols reduce the expression of COX-2, iNOS,
and inflammatory cytokines, thereby reshaping the cytokine environment from a pro-
inflammatory to a homeostatic one [126,127]. Further upstream, they interfere with the
AGE-RAGE signaling pathway, a critical amplifier of chronic inflammation and oxida-
tive stress in metabolic tissues. Naringin and hesperidin downregulate RAGE expres-
sion and reduce AGE accumulation, blunting ROS generation and downstream cytokine
bursts [128–130]. Importantly, these molecular insights are not confined to the bench.
Clinical data reveal that citrus bioflavonoid complexes significantly lower plasma levels
of IL-6 and TNF-α, as well as biomarkers of DNA oxidative damage, such as 8-OHdG,
suggesting a systemic reprogramming of inflammatory tone in human subjects [131]. This
anti-inflammatory reprogramming does not merely reduce cytokines; it restores the in-
tegrity of insulin signaling. With NF-κB silenced and JNK/IKKβ activity reduced, IRS1
phosphorylation normalizes, Akt activation is restored, and glucose uptake resumes. This
is metabolic recalibration—not via single-point intervention, but through network-level
remodeling of the immune–metabolic interface.

Thus, citrus polyphenols act as molecular disruptors of inflammatory inertia, targeting
not only the messengers of inflammation but the architecture that sustains it. Their ability to
realign immune and metabolic signaling pathways elevates them from anti-inflammatory
agents to true agents of metabolic reprogramming.

3.3. Role of Citrus in Mitochondrial Health and Endoplasmic Reticulum Stress: Restoring
Protein Homeostasis

In the battle against metabolic disease, restoring energy balance and cellular homeosta-
sis is no longer just a downstream goal; it is a frontline strategy. As insulin signaling falters
and inflammation mounts, the cell’s two central organelles for metabolic coordination—the
mitochondria and the endoplasmic reticulum (ER) emerge as critical nodes of dysfunc-
tion [21]. Their deterioration underlies the systemic collapse in energy sensing, protein
folding, and glucose regulation seen in obesity-induced T2DM.
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At the heart of this collapse lies mitochondrial dysfunction, driven by nutrient over-
load, lipotoxicity, and oxidative stress. In metabolically active tissues—especially liver,
adipose, and muscle—excess free fatty acids impair mitochondrial respiration, increase
reactive oxygen species (ROS), and destabilize membrane potential, culminating in reduced
ATP synthesis and suppression of insulin-stimulated glucose uptake [132,133].

Here, citrus polyphenols—particularly naringenin, hesperidin, and tangeretin—
intervene as metabolic stabilizers. Their actions go beyond antioxidant defense. By
activating the Nrf2–ARE pathway, they enhance endogenous antioxidant enzyme ex-
pression (SOD, catalase, GPx) and limit mitochondrial ROS accumulation [134,135]. More
importantly, these polyphenols stimulate PGC-1α, NRF1, and TFAM, transcriptional reg-
ulators of mitochondrial biogenesis and energy renewal, reprogramming the cell toward
oxidative resilience [134].

Naringenin, in particular, has been shown to preserve mitochondrial membrane
potential, boost ATP output, and regulate PINK1/Parkin-mediated mitophagy, thereby
eliminating dysfunctional mitochondria and sustaining metabolic flux in hepatocytes and
myocytes under lipotoxic conditions [136–138]. Meanwhile, hesperidin enhances mitochon-
drial efficiency and prevents apoptotic signaling by reducing cytochrome c release and
caspase activation, thereby preserving cell viability in the face of metabolic overload [139].

Yet mitochondria are not isolated actors. Their function is tightly intertwined
with that of the endoplasmic reticulum (ER)—an organelle responsible for protein fold-
ing, lipid biosynthesis, and calcium signaling [140]. Under chronic nutrient stress, the
ER accumulates misfolded proteins, triggering unfolded protein response (UPR) path-
ways. If unresolved, this stress spills over into apoptosis, fueling insulin resistance and
β-cell failure [99,141–143].

Once again, citrus flavonoids offer a path to restoration. Compounds like naringenin
and hesperidin selectively attenuate the PERK–eIF2α, IRE1–XBP1, and ATF6 arms of the
UPR, preventing the maladaptive amplification of ER stress. In high-fat-diet models,
naringenin reduces CHOP expression, a pro-apoptotic UPR marker, and restores adaptive
ER signaling, thereby rescuing β-cell and hepatocyte function [141,144,145].

These polyphenols also enhance GRP78/BiP expression, boosting chaperone capacity
and facilitating correct protein folding under stress conditions [140,146]. Additionally, by
modulating ER-mitochondrial crosstalk, citrus compounds support coordinated calcium
transfer, optimize oxidative metabolism, and prevent apoptosis—a level of control that
aligns precisely with systemic metabolic reprogramming [147–149].

Thus, citrus polyphenols do not merely suppress damage; they restore the intracellular
architecture upon which metabolic homeostasis depends. By recalibrating mitochondrial
bioenergetics, enhancing mitophagy, stabilizing ER folding capacity, and reinforcing cross-
organelle signaling, they initiate a cellular response that rewires the failing metabolic
circuitry of diabesity from within.

3.4. Free Radicals, Oxidative Stress, and Citrus Polyphenols: A Natural Line of Defense

As the metabolic storm deepens, a new biochemical disruptor takes center stage:
oxidative stress. While reactive oxygen species (ROS) serve as transient messengers under
physiological conditions, chronic metabolic overload transforms them into agents of cellular
sabotage, eroding the signaling pathways that maintain metabolic equilibrium.

In obesity-induced diabetes, the overproduction of ROS—particularly superoxide
(O2

−), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH)—disrupts insulin receptor
integrity, impairs glucose uptake, and accelerates β-cell dysfunction [45,150,151]. These
free radicals are not isolated threats; they are embedded within a vicious cycle where
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lipotoxicity, inflammation, and mitochondrial inefficiency reinforce oxidative damage,
amplifying insulin resistance across tissues [152] [Figure 3].

Figure 3. Citrus polyphenols regulate mitochondrial and endoplasmic reticulum (er) homeostasis
under metabolic stress. This diagram illustrates the coordinated protective effects of citrus fruit
polyphenols on mitochondrial and ER function. In mitochondria, polyphenols activate the AMPK–
SIRT1–PGC-1α pathway, enhancing mitochondrial biogenesis via NRF1/2 and TFAM, and reducing
ROS through upregulation of MnSOD and GPx. They stabilize the mitochondrial membrane potential,
support ATP production, and improve complex I/IV activity while reducing proton leak and oxidative
stress. In the ER, citrus polyphenols alleviate ER stress by modulating UPR path ways (PERK, IRE1α,
ATF6), reducing expression of stress markers (CHOP, p-PERK), enhancing SERCA-mediated Ca2+

influx, and promoting ER–mitochondria Ca2+ transfer. They also inhibit apoptosis by increasing Bcl-2
and suppressing Bax and caspase activation. Together, these actions maintain cellular homeostasis
and prevent metabolic dysfunction. (Image created with biorender.com).

The collapse of redox homeostasis is especially destructive in insulin-sensitive cells like
hepatocytes, myocytes, and adipocytes, where antioxidant defense systems are often over-
whelmed [67,153]. The antioxidant enzymatic triad—superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx)—is essential for neutralizing ROS. However, in
metabolic disease, these systems are either underexpressed or dysfunctional, allowing
oxidative stress to accumulate unchecked [150,151].

At this critical juncture, citrus polyphenols emerge as a dual-action metabolic defense—
scavengers of free radicals and regulators of redox-responsive gene expression. Unlike
synthetic antioxidants that act in isolation, these natural compounds integrate into the
metabolic network, restoring antioxidant capacity from within [154,155]. For example,
supplementation with Citrus unshiu peel extract has been shown to significantly increase
hepatic levels of SOD, CAT, GPx, and glutathione (GSH) in high-fat-diet-fed mice, leading
to reductions in lipid peroxidation and improvement in insulin sensitivity [156]. This
restoration of redox balance helps normalize insulin signaling cascades and suppress stress-
induced kinase activation, such as JNK and IKKβ, which are known inhibitors of insulin
receptor substrates [154,157].
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The effect is not compound-specific but rather synergistic. Flavonoids such as narin-
genin, hesperidin, and quercetin, abundant in citrus species like Citrus paradisi, Citrus
sinensis, and Citrus maxima, not only scavenge ROS directly but also activate the Nrf2–
ARE pathway—a master regulator of endogenous antioxidant gene expression [53,155,158].
Activation of Nrf2 leads to increased transcription of SOD, GPx, and CAT, reinforcing
intracellular defenses at the transcriptional level [158].

Notably, extracts of red pummelo (Citrus maxima) demonstrated 20–40% higher free
radical scavenging capacity than vitamin C or synthetic antioxidants like BHA, underlining
the superior efficacy of these phytochemical complexes in redox modulation [159]. Thus,
oxidative stress is not merely a consequence of metabolic dysfunction; it is a pathogenic
amplifier of insulin resistance and systemic energy imbalance. By disrupting this oxidative-
inflammation loop, citrus polyphenols do more than clean up molecular debris; they restore
the redox environment required for metabolic precision. In doing so, they enable cells to
re-establish insulin responsiveness, protect β-cell integrity, and suppress the molecular
triggers of inflammation. This metabolic recalibration through antioxidant programming
firmly positions citrus-derived polyphenols as frontline defenders in the systems-level war
against diabesity (Figure 4).

3.5. Translating Mechanisms to Humans: Clinical Evidence of Citrus Polyphenol-Driven
Metabolic Reprogramming

Having followed citrus polyphenols through cellular landscapes—where they extin-
guish oxidative stress, rewire mitochondrial signaling, restore protein-folding homeostasis,
and silence inflammatory circuits—we arrive at the final test: do these molecular shifts
translate to human physiology?

Clinical trials provide preliminary but encouraging signals that citrus polyphenols
may recalibrate metabolic function. However, most studies remain limited by small sample
sizes, short durations, and population heterogeneity. Therefore, current evidence should be
regarded as exploratory, highlighting the need for multicenter RCTs and large longitudinal
studies to establish efficacy [58,159] [Table 2].

In a double-blind, randomized clinical trial, 500 mg/day of hesperidin administered
over three weeks significantly reduced TNF-α and VCAM-1, thereby restoring endothelial
function—a proxy for systemic inflammatory tone and insulin sensitivity [22]. Importantly,
these effects are not isolated to the vasculature but echo upstream changes in NF-κB
signaling and insulin receptor substrate activity, consistent with earlier mechanistic studies.

While current clinical studies remain limited in scale and duration, ongoing large-scale
randomized controlled trials are investigating citrus flavonoid supplementation in popu-
lations with metabolic syndrome and NAFLD. These trials are expected to provide more
definitive evidence on efficacy, dose–response relationships, and long-term safety. Such
future research will be essential for translating the promising mechanistic and preclinical
findings into clinical practice.

Naringin, too, has moved from bench to bedside. Oral supplementation in pa-
tients with metabolic syndrome resulted in reductions in total cholesterol, LDL-C, and
triglycerides, while increasing HDL-C, an indirect yet essential component of insulin
signaling restoration [160,161]. These lipid profile improvements align with its known
PPARγ activation and inhibition of JNK signaling, bridging preclinical mechanisms with
clinical outcome [25,162].
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Figure 4. Citrus fruit polyphenols mitigate oxidative stress in the liver. This schematic depicts how
citrus polyphenols exert antioxidant and anti-inflammatory effects to protect hepatic tissue from
oxidative damage. On the left, citrus polyphenols directly scavenge reactive oxygen species (ROS),
DPPH+ (2,2-diphenyl-1-picrylhydrazyl), and NO radicals via hydrogen atom donation, preventing
lipid peroxidation and radical propagation. Simultaneously, they activate the Keap1–Nrf2 pathway,
promoting Nrf2 release and nuclear translocation. Nrf2 then binds to antioxidant response elements
(ARE), upregulating endogenous antioxidants such as SOD, CAT, GPx, and HO-1. This enhances
hepatic ROS detoxification and reduces oxidative stress markers like malondialdehyde (MDA) and
8-hydroxy-2′-deoxyguanosine (8-OHdG). On the right, citrus polyphenols inhibit xanthine oxidase as
well as COX-1/COX-2 and LOX enzymes, decreasing prostaglandin and leukotriene synthesis and
limiting inflammatory cell infiltration. Together, these mechanisms mitigate oxidative DNA damage
and inflammation, preventing chronic liver injury. (Image created with biorender.com).

In a dietary intervention study, individuals with T2DM who followed a Mediterranean
diet enriched with citrus fruits experienced a reduction in HbA1c from 7.1% to 6.8% over
12 weeks, indicating an improvement in long-term glycemic control through enhanced
insulin sensitivity and restored glucose uptake mechanisms [163].

Perhaps most compelling is the clinical validation of bergamot polyphenolic fraction
(BPF)—a mixture rich in neoeriocitrin, naringin, and neohesperidin. In hyperlipidemic and
prediabetic subjects, BPF not only lowered LDL-C and improved glucose metabolism, but
achieved these results with efficacy comparable to statin therapy, yet without pharmacolog-
ical side effects [164,165].
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These studies converge on a single, powerful theme: citrus polyphenols act at the
systems level, engaging molecular targets already mapped in preclinical models—AMPK,
NF-κB, PI3K/Akt, PPARs—to bring about clinically meaningful metabolic restoration.
Their ability to reduce inflammatory biomarkers, improve insulin action, recalibrate lipid
metabolism, and preserve vascular function confirms their role not just as dietary supple-
ments, but as translational agents in the therapeutic modulation of diabesity. And so, from
the molecular to the metabolic, from mitochondria to macrosystems, citrus polyphenols
close the loop: a natural, multifaceted, clinically validated reprogramming of the diseased
metabolic network.

Table 2. Clinical studies of the effect of citrus polyphenols on metabolic reprogramming. This table
summarizes randomized clinical trials, dietary interventions, or meta-analyses evaluating hesperidin,
naringin, neoeriocitrin, and other citrus-derived polyphenols. Reported outcomes include changes in
lipid profile, glycemic markers, inflammatory cytokines, liver fat, and endothelial function. Study
size, intervention dose, and duration are also included.

Compound(s) Study Design
and Population

Intervention Details
(Dose and Duration) Reported Outcomes Mechanism of Action Source

Neoeriocitrin,
Naringin,
Neohesperidin

RCT, overweight adults
with MASLD (n = 80)

Bergamot extract
(500–1000 mg/day,
12 weeks)

↓ Liver fat content
(−18%), ↓ body weight
(−5% vs. placebo)

Enhances bile flow;
antioxidant activity
reduces oxidative stress

[166]

Hesperidin,
Naringin,
Neohesperidin

RCT, metabolic
syndrome (n = 95)

Mixed citrus extracts
(500 mg/day, 8 weeks)

↑ Endothelial function
(FMD ↑12%), improved
vascular tone

Antioxidant effects
improve vascular
inflammation and nitric
oxide availability

[167]

Hesperidin →
Hesperetin; SCFAs

Clinical trial, healthy
volunteers (n = 40)

Citrus fruit extract (500
mg/day, 4 weeks)

Gut microbiota
modulation: ↑
Bifidobacterium, ↑ SCFA
production; ↓ systemic
inflammation

Hesperidin metabolized
to hesperetin →
SCFA-mediated
endothelial protection
and anti-inflammatory
response

[168]

Flavones,
Flavanones,
Oleuropein

RCT, high-CV-risk adults
(n = 120)

Citrus + olive polyphenol
mix (500 mg/day,
12 weeks)

↓ Cardiovascular risk
biomarkers; ↓ hs-CRP
(−20%); improved
metabolic-
inflammatory profile

Antioxidant activity;
NF-κB inhibition [169]

Hesperidin,
Naringin,
Oleuropein

RCT, adults with
dyslipidemia (n = 72)

Citrus + olive leaf extracts
(500 mg/day, 10 weeks)

↓ LDL oxidation (−12%),
↓ TNF-α (−18%),
↓ IL-6 (−15%)

Free radical scavenging;
cytokine modulation [170]

Hesperidin RCT, obese adults (n = 64)
Orange juice (Citrus
sinensis, ~500 mL/day,
12 weeks)

↓ BMI (−1.2 kg/m2), ↓
waist circumference (−3.4
cm), ↓ IL-1β, IL-6, TNF-α

Inhibits
pro-inflammatory
cytokine release;
antioxidant endothelial
protection

[171]

Hesperidin RCT, NAFLD patients
(n = 82)

Hesperidin 1 g/day +
lifestyle changes
(12 weeks)

↓ Liver fat (−22%), ↓ ALT
(−30%), ↓ TG (−18%),
↓ weight (−4 kg)

NF-κB inhibition; ↓
TNF-α, ↓ hs-CRP [172]

Hesperidin
(meta-analysis)

Meta-analysis of RCTs
(n = 525 metabolic
subjects)

Hesperidin
(500–1000 mg/day,
4–12 weeks)

↓ TG, ↓ TC, ↓ LDL
(especially in BMI >30); ↓
TNF-α, ↓ IL-6 at
higher doses

Anti-inflammatory;
lipid-lowering [173]

Orange juice
(flavonoids)

4-week RCT, MASLD
patients (n = 62)

Orange juice
(500 mL/day)

↓ Liver steatosis (by
FibroScan), ↓ GGT
(−10%)

Antioxidant effect;
modest
anti-inflammatory

[174]

Flavonoid-
enriched
orange juice

RCT, metabolic syndrome
patients (n = 48)

Enriched OJ (500 mL/day,
6 weeks)

↑ Antioxidant status
(TAC ↑15%), improved
glycemic trend

↓ CRP, ↓ endothelial
inflammation [175]

Hesperidin
RCT, vascular function
study (n = 24 metabolic
syndrome patients)

Hesperidin 500 mg/day,
3 weeks

↑ FMD (+12%), ↓ IL-6
(−15%), ↓ TNF-α (−12%)

↑ NO bioavailability; ↓
inflammatory cytokines [22]

Eriomin®

(Eriocitrin)

Crossover RCT,
prediabetes patients
(n = 103)

Eriomin®

200–500 mg/day,
12 weeks

↓ FBG (−5.5 mg/dL), ↓
HOMA-IR (−18%), ↑
GLP-1 (+15%), ↑
adiponectin (+20%)

↓ IL-6, TNF-α, hs-CRP [176]

Polyphenols
incl. Naringenin

Meta-analysis in NAFLD
patients (12 RCTs,
n ≈ 950)

Various flavonoids
(6–12 weeks)

↓ BMI, ↓ ALT (−12%), ↓
AST (−10%), ↓ TG
(−18%), ↓ TNF-α (−14%)

Anti-inflammatory;
metabolic
reprogramming

[177]
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4. Role of Lipoproteins in Diabetes and the Impact of Citrus Polyphenols
Lipoproteins play a central role in the pathophysiology of insulin resistance and type

2 diabetes [178]. In diabetic states, apoB-containing lipoproteins such as very-low-density
lipoprotein (VLDL) and low-density lipoprotein (LDL) are elevated, driving lipid overload
in the liver and peripheral tissues. These particles are highly enriched in triglyceride-
derived lipid hydroperoxides, which amplify oxidative stress and vascular inflamma-
tion [179]. In contrast, levels of high-density lipoprotein (HDL) are reduced, and HDL
function is often impaired. Dysfunctional HDL loses its antioxidant and anti-inflammatory
properties, limiting its capacity to neutralize lipid peroxides and further exacerbating the
pro-inflammatory state [180].

Citrus polyphenols have been reported to beneficially modulate lipoprotein metabolism.
Hesperidin supplementation in humans reduces plasma LDL and triglycerides while mod-
estly increasing HDL levels [23]. Bergamot polyphenolic fraction (rich in neoeriocitrin,
naringin, and neohesperidin) lowers apoB-containing lipoproteins and improves HDL
function [181]. Animal studies demonstrate that naringin and nobiletin suppress hepatic
VLDL secretion and enhance reverse cholesterol transport. These actions collectively reduce
circulating lipid hydroperoxides and restore lipoprotein redox balance [182].

By targeting both lipoprotein levels and lipoprotein functionality, citrus polyphenols
address an under-recognized contributor to metabolic dysfunction in diabetes [183]. Their
ability to restore HDL’s antioxidant capacity and attenuate VLDL-derived oxidative stress
provides a mechanistic link between polyphenol chemistry, lipid metabolism, and vascular
protection. This integration expands the translational relevance of citrus polyphenols
beyond glucose homeostasis to the broader spectrum of cardiometabolic risk.

5. Conclusions and Future Direction
In the orchestra of cellular life, metabolic reprogramming is the conductor’s baton,

guiding the tempo of nutrient sensing, mitochondrial energy flow, insulin action, and in-
flammatory resolution. But in obesity-induced diabetes, the rhythm descends into disarray.
The once-synchronized network of metabolic signals becomes a cacophony of oxidative
stress, unfolded proteins, inflammatory feedback, and lipotoxic derailment.

Yet, amid this dysfunction, a new score emerges, one not composed in laboratories but
grown in groves of citrus, where nature has refined its symphony of healing.

Throughout this review, we followed citrus-derived polyphenols as they stepped
into this metabolic dissonance, not as singular antioxidants or hypoglycemic agents, but
as systemic modulators orchestrating a return to cellular harmony. From naringenin’s
mitochondrial recalibration to hesperidin’s anti-inflammatory tuning, these flavonoids
reactivated dormant pathways, rewired dysfunctional circuits, and restored homeostatic
balance at every biological level—liver, adipose, muscle, pancreas, and beyond.

This review integrates evidence across molecular, organelle, and clinical dimensions to
present citrus polyphenols as systemic reprogramming agents. This framework underscores
their role not merely as antioxidants but as network-based therapeutic candidates.

Their strength lies not in pharmacological force, but in biological fluency. Citrus
polyphenols do not attack the system—they speak its language, modulating master nodes
like AMPK, PPARγ, Nrf2, and NF-κB, enabling tissues to heal from within. This systems-
level approach is what places them at the forefront of a new therapeutic paradigm: one
where nutritional networks, not isolated molecules, reshape disease trajectories.

Clinical studies now echo these findings. From reductions in HbA1c and inflammatory
markers to improvements in lipid profiles and insulin sensitivity, the early human evidence
is promising. These are not miracle cures—but metabolic nudges that push the body back
toward its innate balance, especially when paired with lifestyle realignment.
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As we close this chapter, we leave not with finality but with purpose. The story of
citrus polyphenols in metabolic reprogramming is still unfolding. While this review focused
on their core impact on insulin resistance, oxidative stress, mitochondrial-ER integrity, and
inflammatory remodeling, much remains to be explored.

For now, we end where we began: with complexity, with nature, and with a hopeful
question. If food is information, and polyphenols are its syntax, then perhaps within the
citrus grove lies not just nutrition, but a code for reprogramming metabolism itself. And
we have only just started decoding it.
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Abbreviations
AMPK AMP-activated protein kinase
ALT Alanine aminotransferase
AST Aspartate aminotransferase
ATF3 Activating transcription factor 3
BMI Body mass index
CPT1 Carnitine palmitoyltransferase 1
CRP/hs-CRP C-reactive protein/high-sensitivity C-reactive protein
ER Endoplasmic reticulum
FA Fatty acid
FAS Fatty acid synthase
FMD Flow-mediated dilation
FOXO1 Forkhead box protein O1
GGT Gamma-glutamyl transferase
GLP-1 Glucagon-like peptide-1
GLUT4 Glucose transporter type 4
HbA1c Glycated hemoglobin A1c
HDL High-density lipoprotein
HFD High-fat diet
HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase
HOMA-IR Homeostatic model assessment of insulin resistance
IL-1β, IL-6 Interleukin-1 beta, Interleukin-6
IRS1 Insulin receptor substrate 1
JNK c-Jun N-terminal kinase
LDL Low-density lipoprotein
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MAPK Mitogen-activated protein kinase
MASLD Metabolic dysfunction–associated steatotic liver disease
MCD Methionine-choline deficient diet
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3 inflammasome
NO Nitric oxide
Nrf2 Nuclear factor erythroid 2–related factor 2
OXPHOS Oxidative phosphorylation
PERK PKR-like ER kinase
IRE1 Inositol-requiring enzyme 1
ATF6 Activating transcription factor 6
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PI3K/AKT Phosphoinositide 3-kinase/protein kinase B pathway
PPARγ Peroxisome proliferator-activated receptor gamma
ROS Reactive oxygen species
SCFA Short-chain fatty acid
SOD Superoxide dismutase
SREBP1c Sterol regulatory element-binding protein 1c
TFEB Transcription factor EB
TG/TC Triglycerides/Total cholesterol
TNF-α Tumor necrosis factor-alpha
T2DM Type 2 diabetes mellitus
UPR Unfolded protein response
UCP2 Uncoupling protein 2
VLDL Very-low-density lipoprotein
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