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Abstract
Responses of natural populations to climate change are driven by how multiple climatic and biotic factors affect survival and reproduction, 
and ultimately shape population dynamics. Yet, despite substantial progress in synthesizing the sensitivity of populations to climatic 
variation, comparative studies still overlook such complex interactions among drivers that generate variation in population-level metrics. 
Here, we use a common framework to synthesize how the joint effects of climate and biotic drivers on different vital rates impact 
population change, using unique long-term data from 41 species, ranging from trees to primates. We show that simultaneous effects of 
multiple climatic drivers exacerbate population responses to climate change, especially for fast-lived species. However, accounting for 
density feedbacks under climate variation buffers the effects of climate change on population dynamics. In all species considered in our 
analyses, such interactions between climate and density had starkly different effects depending on the age, size, or life-cycle stage of 
individuals, regardless of the life history of species. Our work provides the first general framework to assess how covarying effects of 
climate and density across a wide range of population models can impact populations of plants and animals under climate change.

Keywords: density dependence, comparative demography, structured population models, ecological forecasting, biodiversity 
conservation

Significance Statement

There is a growing consensus that complex interactions among vital rates and numerous abiotic and biotic drivers complicate simple 
predictions of climate-change impacts on plant and animal populations. Here, we use a unique dataset of some of the longest-studied 
populations of 41 plant, bird, and mammal species to compare the effects of such complex mechanisms on population persistence. 
Despite the unique context of each study population, our results show remarkable generalizable patterns of population responses to 
climate variation. To advance future research, we provide fully reproducible models and an open-access data repository, enabling 
broad-scale integration of demographic responses to climate change.

Introduction
Among the multiple challenges for biodiversity conservation, the in
creasing severity of climate change, interacting with other global- 
change drivers, is of particular concern (1). Inferring general patterns 
of how populations of plants and animals respond to such complex 
interactions, beyond single case studies, is a priority for theoretical 
and applied research and management (2). All populations in nat
ural communities are structured by variation in genetic and pheno
typic traits, and often also developmental stages, which determine 
how different rates of survival and reproduction are spread through
out the life cycle (3). In structured populations, climatic effects on 
population abundances are then filtered by how different biotic 
and abiotic drivers (including climate) affect trait-, age-, or stage- 
specific survival and reproduction (4–13)). For instance, population 
persistence may be particularly affected when several climatic fac
tors simultaneously reduce survival and reproduction of several life- 
cycle stages, accelerating population decline (5). In particular, com
pound effects of hotter and drier climatic conditions on individuals 
are projected to increase under climate change and can have strong 
negative impacts on natural populations and communities (14, 15), 
especially in combination with land-use change (16). However, pop
ulations may also be buffered from adverse climatic effect, when vi
tal rates with higher impact on population growth, i.e. adult survival, 
exhibit the least temporal variability and thus stabilize population 
fitness (17–21). Furthermore, a decrease in one vital rate under cli
mate stress (e.g. recruitment) can be compensated with increases 
in other vital rates, such as survival of the remaining recruits or 
adults, under negative density feedbacks (6, 7, 22). This occurs be
cause, when individuals compete for resources, negative climatic ef
fects on hetero- or conspecific abundance will also ease competition 
(6, 23), which can allow the populations to recover faster from or 
show higher resilience to adverse climatic effects (24). The role of 
density dependence may be particularly important in assessing 
climate-change effects on population dynamics (23). Therefore, to 
broadly understand the impacts of climate change in complex nat
ural systems, we need to understand how intrinsic and interspecific 
mechanisms interact to mediate such impacts on natural popula
tions (25, 26).

Despite substantial progress to synthesize the sensitivity of 
populations to climatic variation, comparative studies have large
ly overlooked complex mechanisms of interacting drivers and vi
tal rates that generate variation in population-level metrics. For 
instance, previous studies have linked global indices of tempera
ture and rainfall to abundances or population growth rates to 
show that terrestrial populations of plants and animals with 
shorter generation times are relatively more sensitive to climatic 
variation (27, 28). Despite producing important insights, such ana
lyses have not investigated vital-rate responses to multiple cli
matic factors and did not consider biotic drivers such as density 
dependence. A recent study compared the relative effect on plant 
population growth rates of perturbing abiotic vs. biotic drivers, 
but did not assess how simultaneous effects of different drivers 
on different vital rates affect populations (29). This contrasts 
with the growing consensus that complex interactions among vi
tal rates and biotic and climatic drivers complicate projections of 
persistence under climate change (25, 30–34).

We synthesize, for the first time, how interacting climatic and bi
otic drivers change population dynamics across taxa by affecting dif
ferent vital rates such as reproduction and juvenile and adult 
survival. Given the evidence for the importance of the effects of mul
tiple abiotic drivers and their interactions with density feedbacks on 
population dynamics (5–12), we hypothesized that, generally, the 
simultaneous effects of several climatic drivers in vital-rate models 
amplify population responses to climate change, but that climate- 
change impacts on populations are buffered when intra- or interspe
cific density dependence is incorporated in vital-rate models.

We reviewed the ecological literature and identified studies 
that quantitatively linked at least two climatic drivers or one cli
matic and one biotic driver to at least two vital rates. Following 
(31), we defined climatic drivers as direct measures of tempera
ture or precipitation, i.e. not drivers that affected climate indirect
ly, such as the Southern Annular Mode (i.e. Catharacta lönnbergi 
from (35); see Supplementary Material for a complete list of selec
tion criteria). Among the biotic drivers, we distinguished intraspe
cific interactions (e.g. density dependence and social interactions) 
and interspecific interactions (e.g. competition, food availability, 
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predation, and diseases). We then built structured population mod
els and used them to compute sensitivities of population growth 
rates (36) to a given climatic driver, either accounting for simultan
eous effects of all other drivers on vital rates or keeping other driv
ers fixed, thus reducing the complexity of environmental effects. 
We also compared the effects of perturbing different single vital 
rates to understand whether population-level sensitivities are driv
en by changes in specific vital rates across species. When testing 
our hypothesis, we controlled for potential confounding factors, 
most importantly the life-history strategy of populations, which 
has been shown to strongly mediate population responses to envir
onmental change (27, 37). We created a database making all data 
and code freely available online to allow researchers to link age- 
or stage-specific vital rates to population responses under environ
mental change for further analyses such as forecasts.

Results
We extracted data from 23 studies, including 41 species (15 birds, 
eight mammals, and 18 plant species). Among these species, 18 ma
trix population models, eight integral projection models, five inte
grated population models, and 10 individual-based models were 
used, and vital rates were typically modeled using generalized linear 
models. Among biotic drivers, intraspecific density dependence was 
most commonly included as a driver in vital-rate models (i.e. in 13 
studies: four birds, six mammals, and three plants), while interspe
cific interactions were considered in only four cases. For an overview 
of life-history strategies, covariates, and demographic status of the 
species included in this comparative study, see Table S7. For each 
species, we calculated the scaled absolute sensitivities (|S|), i.e. 
changes in the population growth rate, λ, to observed climatic vari
ation (standardized differences between maximum and minimum 
climatic values) (29). In most studies, we calculated λ for either a sin
gle (meta)population or a representative average population across 
the habitat range, as in the case of eight bird species (38) and 11 
Mediterranean tree species (39)—that is, vital-rate models did not 
distinguish populations explicitly. However, three studies (see 
Supplementary Material) modeled vital-rate responses to climatic 
and biotic drivers that differed among populations. Here, we aver
aged sensitivities across populations to calculate species-specific 
average sensitivities to climate comparable across species (29). 
Additional analyses showed that such averaging did not affect re
sults (Table S4). We also repeated analyses excluding these three 
studies altogether; this did not affect our results either (Table S5).

We modeled the variation in |S| using a modified meta- 
regression approach (40), where we pooled the results from all 
studies into one generalized linear hierarchical model. Our model 
included average age at maturity, a proxy for the fast-slow con
tinuum of life-history strategies (41). As expected, slower-paced 
species had lower absolute sensitivities of λ (|S|) to climatic drivers 
compared to faster-paced species (Fig. 1, Table 1; βMaturity = −1.13  
± 0.19). These patterns agree with theoretical expectations (i.e. 
demographic buffering hypothesis (18, 42)) and previous empirical 
studies (27, 28, 37, 43) and suggest that fast-paced life histories 
across taxa are more labile to, or track, climatic fluctuations, 
whereas slow-paced life histories buffer population dynamics 
from multiple climatic effects (18, 27, 37).

Population responses to multiple climatic drivers 
and density dependence
Across life histories, sensitivities |S| to changes in a focal climatic 
driver were consistently higher when covarying climatic drivers 

were also perturbed than when holding other climatic drivers con
stant (βNoCovariation = −0.25 ± 0.11; Table 1, Fig. 1). Thus, synergistic 
effects of different climatic drivers can have a stronger impact on 
population dynamics than considering the effects of such drivers 
in isolation, as is typically done in sensitivity analyses. At the 
same time, |S| were lower for populations where intraspecific dens
ity dependence explicitly affected vital rates along with climatic 
drivers, as opposed to populations that did not consider how cli
matic drivers interact with density dependence (βDensityYes =  
−1.00 ± 0.56; Table 1, Figs. 1 and S1). These differences in including 
vs. excluding density dependence in population models were stron
gest when we accounted for the full complexity of environmental 
effects in sensitivity analyses (Fig. S1). That is, |S| increased by hold
ing density dependence constant when perturbing a climatic driver 
as opposed to adjusting for observed changes in intraspecific dens
ity when the focal perturbed climatic driver was at its minimum 
and maximum (βNoCovariation:Density = 0.40 ± 0.19). This suggests 
that covariation between climate and density may be critical in 
moderating climate-change impacts on populations across a wide 
range of taxa (5–12, 44, 45). Additional analyses further isolating 
the effects of density feedbacks vs. different biotic and abiotic driv
ers in vital-rate models confirmed that covariation with density 
lowered |S| when climatic drivers were perturbed (Fig. S2).

Demographic pathways of climate effects 
on populations
We perturbed climatic drivers in each vital-rate model separately 
for 26 species to understand how different vital rates mediate the 
sensitivity of λ (|S|) to these drivers. For the remaining species, we 
could not perturb single vital rates due to the complexity of the 
models. A generalized linear regression model revealed that fast- 
paced life histories, i.e. ones with a lower age at maturity (43), 
were relatively more sensitive to climate perturbations in repro
duction and survival of nonreproductive individuals than slow- 
paced life histories (Table 2, Fig. S5). This is to be expected, as 
reproduction contributes relatively more to population dynamics 
of fast-paced species (37). Our results provide further evidence 
that fast-paced life histories buffer critical vital rates from climatic 
perturbations less than slow-paced ones (18–20, 37), because they 
have a higher energy budget that they can invest into growth, re
production, or dispersal after perturbations (46). However, a closer 
look at sensitivities of λ to vital-rate-specific effects of climatic driv
ers revealed a complex picture (Fig. 2). Across life histories, λ can be 
equally affected by perturbations in several vital rates, and some 
vital rates showed strong responses to one environmental variable 
but weak responses to other variables (Figs. 2 and S9–S38).

Overall, our results showed that growth-rate sensitivities, |S|, 
varied substantially among species/studies (Tables 1 and 2). 
While the fixed and random effects in our generalized linear 
mixed models (GLMMs) jointly explained >80% of the variance 
in |S|, the proportion of variance attributed to random effects 
was always relatively higher (Tables S1–S5, Fig. S3). The effect of 
species explained >50% of the random variation in the model. 
We also note that while 20 studies included only one species, three 
modeled several species, and we could not completely separate 
species and study effect—attempting to do so resulted in overpar
ameterized random effects. Although we accounted for potential 
variables that may have confounded our results, i.e. number of 
vital rates modeled and average number of parameters per vital 
rate, one reason for such high variance among species or studies 
may be the varying complexity among studies in model design 
or the specific climatic variable considered—complexity that we 
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could not account for as independent covariates in our analysis. 
On the other hand, high variability in responses to environmental 
drivers among species has also been observed in recent studies 
(28, 31, 47, 48). Thus, while we can discern generalizable pat
terns in population responses to climatic perturbations, only 
the inclusion of a wider range of future studies can disentangle 
the complex sources of context-dependent variation in popula
tion dynamics.

Discussion
Natural populations of plants and animals are increasingly af
fected by climate-change worldwide (49, 50). By identifying under 
what context populations are more susceptible to negative effects 
of climatic drivers, we can prioritize conservation efforts and de
velop targeted strategies to mitigate adverse effects. Our com
parative analyses shed light on some common demographic 
pathways through which populations of plants, mammals, and 
birds respond to complex interactions of climatic and biotic driv
ers. We show that simultaneous effects of multiple climatic driv
ers increase population sensitivity to climate change, while 
interactions between density dependence and climate can effect
ively lower such sensitivity. Our results thus have important im
plications for assessing how resilient populations are to climate 
change. They suggest that, in cases in which we know that mul
tiple climate drivers influence vital rates, measuring the effect 

Fig. 1. Scaled sensitivities of population growth rates to climate, |S|, are lower when accounting for changes in population density under climate change. 
Sensitivities are shown for species where density effects were not modeled explicitly (A) or were added (B) as covariates in vita-rate models. Different 
colors indicate sensitivity analyses under full environmental complexity (covariation with other drivers considered when perturbing a focal climate 
driver in vital-rate models) or reduced complexity (keeping other drivers as their average values when perturbing a focal driver). The lines represent 
predicted |S| over a range of ages of sexual maturity. The shaded areas indicate 95% model prediction intervals (see Table 1 for model coefficients). To aid 
visualization, the points show the observed sensitivity values of each species and perturbation scenario averaged over all perturbed climatic drivers and 
all resampled |S| under parameter uncertainty with error bars showing the SE. Figures S9–S11 show the full distributions of resampled values per species. 
We labeled some example species across different life histories and taxa. Note that the points for a given species on the x axis are slightly separated so 
that error bars do not overlap. Silhouettes were downloaded from PhyloPic, licence CC0 1.0, and CC BY-NC-SA 3.0 for Dracocephalum austriacum (credit: 
Alexander Schmidt-Lebuhn) and CC BY 4.0 for Prunella collaris (credit: Matej Frantisek Calfa).

Table 1. Output of model assessing how age at sexual maturity, 
covariation with other drivers, presence of density feedbacks in 
vital-rate models, and other covariates affected scaled 
sensitivities of population growth rates to changes in climate, |S|.

Fixed effects Coefficient SE P-value

Intercept −3.085 0.945 0.001
Covariationno −0.250 0.112 0.026
Densityyes −1.004 0.556 0.070
Age at sexual maturity −0.991 0.200 <0.001
Number of vital rates −0.221 0.501 0.660
Parameters per vital rate 0.760 0.497 0.127
Covariationno:densityyes 0.470 0.192 0.014

Random effects Variance SD Prop. variance

Species/group (intercept) 1.738 1.318 0.633
Species/group covariationno 0.241 0.473 0.088
Group (intercept) <0.001 <0.001 <0.01
Group covariationno <0.001 <0.001 <0.01
Residual 0.767 0.757 0.279

Marginal R2 (variance explained by fixed effects): 0.300. Conditional R2 (variance 
explained by fixed and random effects): 0.829. The fixed effects and random 
effects of the GLMM with gamma log link are shown here. The coefficient, SE, 
and P-value are reported for each fixed effect, whereas variance and SD are 
reported for each random effect, as well as proportion of variance, which 
indicates the proportion of the total random-effect variance explained by 
different grouping variables. Nested random effects were incorporated due to 
multiple observations within species and groups (nsamples = 17,240, nspecies = 41, 
ngroups = 3). nsamples reflects all resampled |S| for each perturbation scenario and 
species to account for parameter uncertainty. Bold P-values indicate statistical 
significance (α = 0.05).
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of only one of these climatic drivers on population dynamics likely 
overestimates its effects, while omitting how climate interacts 
with density feedbacks can substantially underestimate indirect 
effects of climate on populations.

Recent studies have emphasized that future climate risks to 
natural populations and humans will be exacerbated by com
pound effects of climate drivers (1, 51). While previous re
search has focused on understanding such compound effects 
on single species or populations (e.g. reviewed in 28, 32, 52), 
our results provide the first comparative evidence across 
different contexts that synergistic effects of different climatic 
drivers can have a strong impact on population dynamics. 
Compound climatic effects, such as low rainfall and high tem
perature, often constitute climatic extremes, e.g. hot droughts 
(51) and are becoming increasingly common (1). Such extremes 
can have strong, nonadditive effects on physiological processes 
of plants (53) and animals (54), negatively affecting population 
dynamics (5, 30, 55). In meerkats (Suricata suricatta), for in
stance, extreme heat in a relatively dry rainy season can lead 
to substantial loss of body mass and increased risks of deadly 
disease outbreaks (56). We note, however, that our study as
sessed changes in the magnitude but not in the direction of 
population responses to perturbations in climate. Therefore, 
compound effects, such as unusually warm and rainy repro
ductive seasons, may also lead to strong increases in popula
tion growth (56), particularly for fast life histories (42, 57).

Climatic factors do not affect populations in isolation; other 
abiotic and biotic factors also play a role, and their impacts 
vary among populations and individuals within those popula
tions (32, 58). Our results suggest that across taxa, adverse cli
mate effects can be buffered by decreasing the number of 
individuals in a population and thus easing the effects of intra
specific density, when present in populations (5, 7). In turn, for 
populations that increase in abundance under climate change, 
a resulting stronger effect of negative density dependence may 
increase population fluctuations under adverse environmental 
conditions (34). Other studies have also demonstrated the im
portance of density feedbacks in regulating population re
sponses under land-use change (59) or disease outbreaks (60, 
61), while populations of some social species that show non
linear responses to population densities may be particularly sus
ceptible to climate change if adverse climatic effects reduce 
optimal densities (5). Similarly, climate change also affects pop
ulations through changes in interspecific interactions such as 
predation, competition, or facilitation (12, 62, 63). However, 
interspecific interactions are still very rarely explicitly modeled 
when projecting population dynamics (31), including in the stud
ies used in our meta-analysis.

Despite this growing evidence on the importance of assessing 
interactions of abiotic and biotic effects when quantifying popula
tion persistence under climate change (4, 5, 13, 29, 31), such as
sessments are challenging. Unlike climatic variables that are 
often included as continuous covariates in vital-rate models and 
are easily perturbed, interactions with individuals of the same 
population or even different species took on many complex forms 
in the population models we used in this study. Some studies only 
included indirect or static measures of biotic effects. For example, 
the tree species in our analysis had a colonization factor in their 
models, which was indirectly related to density but was decoupled 
from climate variables in vital rates (39). Similarly, the models of 
Certhia familiaris, Linaria cannabina, Lophophanes cristatus, Prunella 
collaris, Prunella modularis, Pyrrhula pyrrhula, Sitta europaea, and 
Turdus torquatus did not contain density as a continuous driver 
in their vital-rate models (which was required for our sensitivity 
analyses), but density served as a fixed species-specific parameter 
affecting fecundity (38). Thus, we could only assess the effects of 
covariation between climate and density dependence in 13 of the 
41 modeled species. Although they represented all three taxo
nomic groups and covered a wide range of life histories, resulting 
in an unbiased sample, understanding whether density feedbacks 
are a general mechanism that moderates population fluctuations 
under climate change for a wider range of taxa requires broaden
ing comparative analyses that can account for complex density 
effects.

Density feedbacks are not equally important in all populations 
(64), and their effects have been tested and considered to not sub
stantially affect population dynamics in the case of Marmota fla
viventer and Lavandula stoechas (see Supplementary Material). 
However, the potential effects of density feedbacks have not 
been tested in many recent population model (31), likely due to 
a combination of lack of data and model complexity. In addition, 
most frameworks to predict biodiversity loss under global change 
do not explicitly model dynamic interactions between density and 
global-change drivers (65). We thus emphasize that including 
density feedbacks in the climate-demography models, for in
stance using population density or population size as a covariate 
in models (12, 34), may be key to understand how resilient natural 
populations are to climate change. If such feedback is not in
cluded due to data limitations or modeling constraints, our results 

Table 2. Output of model assessing how age at sexual maturity, 
vital-rate type, presence of density feedbacks in vital-rate models, 
and other covariates affected scaled sensitivities of population 
growth rates to changes in climate, |S|, calculated by perturbing 
individual vital rates.

Fixed effects Coefficient SE P-value

Intercept −3.324 1.143 0.003
Vital ratenonreproductive survival −0.620 0.385 0.107
Vital ratereproductive survival 0.030 0.363 0.936
Age at sexual maturity −2.157 0.529 <0.001
Number of vital rates −0.738 0.564 0.191
Parameters per vital rate 0.850 0.541 0.117
Age at sex. mat.:vital 

ratenonreproductive survival

1.412 0.596 0.012

Age at sex. mat.:vital  
ratereproductive survival

1.097 0.491 0.025

Random effects Variance SD Prop. 
variance

Species/group (intercept) 2.057 1.434 0.272
Species/group vital 

ratenonreproductive survival

2.336 1.528 0.283

Species/group vital  
ratereproductive survival

2.078 1.442 0.264

Group (intercept) <0.001 <0.001 <0.01
Group vital ratenonreproductive survival <0.001 <0.001 <0.01
Group vital ratereproductive survival <0.001 <0.001 <0.01
Residual 0.957 0.998 0.180

Marginal R2 (variance explained by fixed effects): 0.271. Conditional R2 (variance 
explained by fixed and random effects): 0.878. The fixed effects and random 
effects of the GLMM with gamma log link are shown here. The coefficient, SE, 
and P-value are reported for each fixed effect, whereas variance and SD are 
reported for each random effect, as well as proportion of variance, which 
indicates the proportion of the total random-effect variance explained by 
different grouping variables. Nested random effects were incorporated due to 
multiple observations within species and groups (nsamples = 13,040, nspecies = 26, 
ngroups = 3). nsamples reflects all resampled |S| for each perturbation scenario and 
species to account for parameter uncertainty. Bold P-values indicate statistical 
significance (α = 0.05). Note that while perturbing one vital rate at a time, we 
accounted for covariation with other factors in the focal rate but set the 
covariates in the other vital-rate models to their mean values.
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suggest that it is important to at least discuss the potential impli
cations of such omissions (66).

Ultimately, the effects of climate change on population dynam
ics are filtered by the strength and direction of driver effects on 
different vital rates and how much the latter contribute to popu
lation dynamics (4–13, 19, 23, 30, 33–35, 37). For any life history, 
even slow-paced ones where adult survival is the key vital rate 
driving population dynamics (37), changes in population growth 
were the results of complex effects of various drivers across differ
ent vital rates, showing high context dependence (13). Rainfall 
scarcity or extreme temperatures may differently affect individu
als depending on the habitat, season, and life-cycle stage consid
ered (5, 30), or depending on how other species in a given 
community are responding to climate change (62). The complex
ity of the life cycle may also indicate how much a population is 
buffered from adverse environmental effects (52). Some species 
have dormant life-cycle stages that can protect populations 
from environmental fluctuations (62). Dispersal, which was mod
eled in some studies considered here (see Supplementary 
Material), can stabilize decreasing populations and allow individ
uals to track new suitable habitats and may itself be strongly 

mediated by climate (67). Therefore, from trees to primates, iden
tifying how different abiotic and biotic factors impact populations 
across their full life cycle is a key to be able to target conservation 
efforts towards certain factors during certain times of the life 
cycle.

Our work has advanced comparative demographic analyses in 
two important ways. First, we standardized sensitivity analyses 
across a wide variety of population models, ranging from classic 
matrix population models to integrated population and integral 
projection models and individual-based models. By including 
the experts for each study system, we ensured that our methods 
did not produce inadvertent errors. Second, we provide a freely ac
cessible and dynamic (i.e. constantly updated) database of popu
lation models that was compiled for this study. This offers an ideal 
basis to expand the number of studies and analyses in the future 
—for instance, forecasting how changes of local climatic drivers 
may affect populations and whether such effects can be approxi
mated by global climate indices (68). We also recognize several 
limitations of our work. One limitation is that we could not ac
count for taxonomic and geographical biases, as we relied on 
available high-quality structured models that integrate multiple 

Fig. 2. For any species, scaled sensitivities of population growth rates (|S|) vary substantially when perturbing single vital rates. Perturbations are shown 
for the species where we could perturb single vital rates. The plots are ordered by ascending age at sexual maturity and the colors indicate the taxa 
mammals, birds, and plants. The points represent |S| for each species, driver, vital rate, and parameter sample in vital-rate models. The boxplots display 
the distribution of |S|, including the median (central line), the interquartile range (box), and the range of the data (whiskers), with outliers shown as black 
points (nsamples per species and vital rate = 100, nsample for Halobaena caerulea per vital rate = 50; see Supplementary Material). If some sensitivities of some vital rates are 
missing, it is because these species did not have a climatic variable (but could have a biotic variable) in this specific vital rate.
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environmental factors (see Supplementary Material for study- 
specific details). Such tailored models are available for specific ter
restrial plants, mammals, and birds but are still lacking for many 
invertebrate species (69, 70), where relatively little is known on the 
demographic pathways through which climate-change impacts 
abundance (71). We also have a geographic bias in our data, as 
most study systems are from the Northern Hemisphere. 
Additionally, we only considered studies published in English. 
These types of biases can limit our ability to generalize patterns 
and employ conservation efforts based to comparative analyses 
(72, 73).

When searching the literature for appropriate studies, we also 
discovered that reproducibility of ecological studies remains a 
problem. Of the 76 studies that met our search criteria, we could 
only replicate population models of 24%. For the remaining stud
ies, data and code to replicate analyses were not freely available 
and could often not be reproduced even when in contact with au
thors. Thus, we emphasize that making not just data but also code 
available is an important step towards reproducible comparative 
analyses in ecology (74).

Our comparative analyses provide evidence that interactions 
among biotic and abiotic drivers, and the complex effects of 
such multiple drivers on different vital rates, hinder simplistic 
predictions of population persistence under climate change. We 
emphasize the need to recognize and incorporate interactions be
tween climate and density dependence into full life-cycle models 
in order to understand and potentially mitigate the threat that 
climate-change poses on natural populations.

Materials and methods
Literature search
Our main objective was to collect code and data from studies 
which (i) modeled vital rates (e.g. survival, growth, and reproduc
tion) in natural populations as a function of at least two climatic 
variables or one climatic and one biotic variable and (ii) con
structed structured population models from which population 
growth rates could be obtained. We focused on studies where 
data were obtained in natural, unmanipulated populations (i.e. 
discarding experimental studies); and where the environmental 
variables were continuous so that we could calculate means and 
SEs (Eq. 1). We therefore excluded studies that constructed mod
els for good/bad, dry/wet environments, etc. To obtain suitable 
studies, we performed a targeted review of the literature. We first 
considered a recent review, which revealed a lack of understand
ing regarding comprehensive demographic responses to climate 
change for terrestrial mammals, including 87 species (31). From 
the publications in this review, we selected those that met our cri
teria. To supplement data from this list of studies, we conducted a 
Web of Science search using the search terms from (31) and also 
checked the Padrino database (75) as well as (76) (details in 
Supplementary Material). To be included in our database, vital- 
rate models had to be reproducible, i.e. the regression models 
were fully reported, including their formula, coefficients, and 
SEs. We were able to obtain data from 23 studies that met all these 
criteria.

As the first step of the analysis, we prepared a standardized 
protocol to build and perturb different structured population 
models to maximize the ease of comparison across studies 
(https://doi.org/10.5281/zenodo.16992231). For help with conduct
ing these analyses for the selected models, we contacted the au
thors of relevant studies. We extracted regression coefficients 

from tables to rebuild vital-rate models when possible; alterna
tively, the latter were provided by the authors of a given study. 
We then reconstructed population models from these vital rates, 
and the authors from the original papers reviewed these models 
to ensure that they were correct. In some cases, authors already 
provided the R code to rebuild the population model (for more 
information, see Supplementary Material). The environmental co
variate data were also obtained from the authors of the papers. All 
studies built structured population models based on >7 years of 
demographic data collection and/or using data across the distri
bution range of species, and the range of environmental covariate 
values was sufficient to robustly build and perturb structured 
population models (see Supplementary Material on study-specific 
details).

Next, we compared among the species how perturbations in 
climatic variables affect long-term population fitness, λ, i.e. the 
sensitivity of λ to climatic drivers. For studies that provided ma
trix population models or integral projection models, we calcu
lated λ as the annual asymptotic population growth rate using 
the R package popbio (77) version 2.7. For studies that developed 
individual-based or integrated models, we calculated λ as the 
mean of annual growth rates over at least 50 years from at least 
100 simulations (see Supplementary Material for study-specific 
details; Figs. S38–S52). The approach of how λ was calculated 
did not affect our results (Table S3, Fig. S6). To obtain sensitiv
ities of λ to climatic drivers, we calculated λ under minimum 
and maximum values of a climatic driver while (i) accounting 
for the actual observed values of other drivers when the focal 
driver was at its minimum or maximum (sensitivities with “co
variation”) or (ii) holding the other drivers constant at their aver
age values (sensitivities “without covariation”). When studies 
modeled random year effects consistently across vital rates, 
we set the years to ones where a climatic driver was at its min
imum or maximum in analyses. We then calculated the scaled 
sensitivities according to Morris et al. (29) for each population 
and driver (Eq. 1):

|S| =
λmax − λmin

(dmax − dmin)/SDd

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌. (1) 

The driver values dmax and dmin produced the population growth 
rates when the driver was set to its maximum value (λmax) and 
its minimum value (λmin). The denominator of the scaled sensi
tivity |S| is the difference in the driver levels in SD units. The 
scaled sensitivity makes it possible to compare |S| across different 
studies and driver types (29). We calculated |S| for each climatic 
driver in vital-rate models (see “Sensitivity analyses” in 
Supplementary Material). We tested the robustness of the sensi
tivity metric by comparing |S| to the most common type of metric 
for summarizing outcomes in ecological meta-analyses: log re
sponse ratios (see “Alternative sensitivity parameterizations” 
in Supplementary Material, Figs. S7 and S8, Table S6).

We accounted for uncertainties around all |S| estimates by re
sampling parameters from vital-rate models and recalculating λ 
and |S| each time. More specifically, if a study reported the SEs of 
the regression coefficients, we simulated the parameter distribu
tions and sampled parameters from it, whereas in the case of 
Bayesian regressions, we sampled parameters from the Markov 
Chain Monte Carlo (MCMC) posteriors. We produced 100 |S| esti
mates for most species but had to use fewer samples in some 
cases due to computational limits (see species-specific details in 
Supplementary Material). In three cases, we averaged |S| over dif
ferent populations to get species-specific results. However, this 
averaging did not affect our overall conclusions (Table S4).
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Further, we perturbed the climatic drivers in each vital rate 
separately whenever possible (Figs. S12–S38 for the specific vital 
rates in each species’ model), in the same manner as above, 
to get vital-rate-specific |S|. In this case, all environmental driver 
values covaried with the focal driver in the perturbed vital rate 
but were held at their average values in other vital rates. Lastly, 
for populations (n = 13) where intraspecific density dependence 
was explicitly considered as a driver in vital-rate models, we per
formed additional perturbations: We accounted for the actual ob
served values of other climatic or biotic drivers when perturbing a 
focal climatic driver (sensitivities with covariation), but held dens
ities constant (i.e. did not account for covariation with density). 
We did this to test how much |S| depended on density dependence 
moderating the effects of climatic changes.

Statistical analyses
We used a GLMM, assuming a Gamma-distributed response under 
a log link function, to understand the underlying mechanisms in
fluencing population-level sensitivities |S| to climate change. We 
chose the Gamma distribution because the scaled sensitivities 
were positive values larger than zero. The resulting model fit 
well to observed data (Fig. 1), and model fit was substantially bet
ter than using a log-normal distribution, based on Akaike infor
mation criterion (AIC) and residual plots (78). We included 
log(age at sexual maturity) as a continuous covariate for the effect 
of life-history speed on |S|. To test whether covariation among cli
matic drivers and lambda changed |S|, we incorporated as predict
or variables covariation with other drivers when λ was calculated 
under minimum/maximum values of a focal climatic driver (cat
egorical; accounted for or not), intraspecific density effects (cat
egorical; incorporated or not in vital-rate models), and the 
interaction between the two. We focused on intraspecific density 
effects to analyze the role of biotic interactions in population dy
namics because this was the most common type of biotic variable 
included in vital rate models across species (Table S7). We also 
controlled for a potential effect of model complexity on |S|, by in
cluding the log(number of vital rates) and log(mean parameters 
per vital rate) in each population model. Taxonomic groups and 
species were integrated as nested random effects on the model 
intercept to account for nonindependent species-specific pertur
bations of different climatic drivers in vital-rate models. To ac
count for differences among taxonomic groups and species in 
how much driver covariation affects |S|, the same nested random 
effects were also applied on the slope of the covariation variable. 
We also assessed whether |S| differed depending on which type of 
climatic driver was perturbed in vital-rate models (temperature 
vs. rainfall) by fitting another GLMM akin to the main analysis 
but including climatic driver as a covariate (Table S2, Fig. S4).

To better understand which vital rates were driving |S|, we re
peated the GLMMs using |S| calculated by perturbing climatic driv
ers in single vital rates. To facilitate comparisons among species, 
we grouped the vital rates of each species into three main types: 
survival of nonreproductive individuals (including juveniles), 
survival of reproductive individuals, and reproduction (including 
reproductive success and recruitment). We excluded trait change 
(including growth and maturation) as a vital rate, as it was 
only modeled in four species: M. flaviventer, Rhabdomys pumilio, 
Suricata suricatta, and Protea repens. The resulting GLMM had a 
similar structure as the one for the global |S|, with two differences. 
First, as we calculated vital-rate-specific |S| without simplifying 
driver covariation in specific vital rates, covariation was not in
cluded in the model. Second, as we held variables constant in 

nonperturbed vital rates, we simplified the model structure fur
ther by excluding whether species included or excluded density 
feedbacks in vital-rate and population models. We included 
main vital-rate type as a covariate and tested whether the climatic 
effects of different vital rates on |S| differed among life histories, 
via the effects of log(age at maturity), and used an interaction 
term of vital rate and age at sexual maturity.

We calculated marginal and conditional R2 for all GLMMs to 
quantify the variance in the data explained by the fixed effects 
and random and fixed effects, respectively (79). We made all the 
data and code available online, along with the templates, ensuring 
that future analyses follow the same structure (https://doi.org/10. 
5281/zenodo.16992231).

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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