

D I SSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Efficient Storage and Analysis of Genome Data in Relational
Database Systems

Doktoringenieur (Dr.-Ing.)

M.Sc. Sebastian Dorok

09.10.1986 Haldensleben

Prof. Dr. Gunter Saake
Prof. Dr. Jens Teubner
Prof. Dr. Ralf Hofestädt

27.04.2017

Dorok, Sebastian:
Efficient storage and analysis of genome data in relational database systems
Dissertation, University of Magdeburg, 2017.

Abstract

Genome analysis allows researchers to reveal insights about the genetic makeup of living
organisms. In the near future, genome analysis will become a key means in the detection
and treatment of diseases that are based on variations of the genetic makeup. To this
end, powerful variant detection tools were developed or are still under development.

However, genome analysis faces a large data deluge. The amounts of data that are
produced in a typical genome analysis experiment easily exceed several 100 gigabytes.
At the same time, the number of genome analysis experiments increases as the costs
drop. Thus, the reliable and efficient management and analysis of large amounts of
genome data will likely become a bottleneck, if we do not improve current genome data
management and analysis solutions.

Currently, genome data management and analysis relies mainly on flat-file based storage
and command-line driven analysis tools. Such approaches offer only limited data man-
agement capabilities that can hardly cope with future requirements such as annotation
management or provenance tracking. On the other hand, we have advanced and sophis-
ticated relational database management systems that are well researched and already
provide advanced data management functionality. However, existing approaches that
use relational database technology in the context of genome analysis mainly leverage the
data integration capabilities for result data. A holistic integration of genome-specific
analysis functionality is still missing as relational database system are said to perform
bad on genome analysis tasks.

In this thesis, we examine the design space to integrate variant detection into a rela-
tional database system. To ensure optimal performance, we take care to integrate the
genome-specific analysis task using relational database operators only. Our evaluation
on three real-world data sets confirms that our careful design allows us to use a rela-
tional database systems as competitive alternative for specialized analysis tools with
regard to analysis runtime. In addition, we propose genome-specific compression and
query optimization techniques to improve the performance of a database-driven analy-
sis pipeline further. Using our techniques, we can outperform existing analysis tools
by up to a factor of five with regard to runtime and reduce the storage requirements
compared to a standard relational database system by up to 50%.

iv

Inhaltsangabe

Die Genomanalyse ermöglicht es Forschern den genetischen Code von Lebewesen zu
ermitteln. In Zukunft wird die Genomanalyse ein wichtiges Mittel zur Behandlung von
Krankheiten sein, die auf Variationen des genetischen Codes beruhen. Zu diesem Zweck
wurden und werden effiziente Tools zur Erkennung von Genomvariationen entwickelt.

Allerdings steigt die Menge an verfügbaren und zu analysierenden Genomdaten kontinu-
ierlich an. Die Datenmengen, die in einem typischen Genomanalyseexperiment erzeugt
werden, übersteigen leicht mehrere 100 Gigabyte. Gleichzeitig erhöht sich die Zahl der
Genomanalyseexperimente, da diese kostengünstiger werden. Daher wird in der Zu-
kunft neben der effizienten Analyse auch die zuverlässige und effektive Verwaltung von
Genomdaten immer wichtiger werden.

Derzeit werden Genomdaten in Dateien mit speziellen Formaten verwaltet und haupt-
sächlich mit Kommandozeilen-Tools verarbeitet. Solche Ansätze bieten nur einfache
Möglichkeiten zur Datenverwaltung, die kaum den zukünftigen Anforderungen wie der
Verwaltung von Annotationen oder der Rückverfolgbarkeit von Analyseergebnissen ge-
recht werden können.

Relationale Datenbanksysteme dagegen verfügen bereits heute über effiziente und effek-
tive Mittel zur Datenverwaltung. Allerdings werden sie in der Genomanalyse meistens
nur zur Verwaltung von Ergebnisdaten eingesetzt, da sie die Integration der Ergebnisse
mit anderen Datenquellen vereinfachen. Eine umfassende Integration genomspezifischer
Analysefunktionalität fehlt hingegen.

In dieser Arbeit wird untersucht, wie die Erkennung von Genomvariationen mit Hil-
fe eines relationalen Datenbanksystems durchgeführt werden kann. Um eine optimale
Verarbeitung der Genomdaten im Datenbanksystem zu gewährleisten, werden existie-
rende, hoch optimierte Datenbankoperatoren wiederverwendet. Damit ist es möglich die
Analyse in einem Datenbanksystem vergleichbar schnell durchzuführen wie mit spezia-
lisierten Analysewerkzeugen. Um die datenbankgestützte Analyse weiter zu verbessern,
werden außerdem genomspezifische Kompressions- und Datenverarbeitungstechniken
in ein relationales Datenbanksystem integriert. Mit diesen Techniken kann die Analy-
se im Vergleich zu bestehenden Analysewerkzeugen um bis zu Faktor fünf beschleunigt
werden. Gleichzeitig kann der Speicherverbrauch gegenüber dem Einsatz von herkömm-
lichen Kompressionsverfahren für Datenbanksysteme um bis zu 50% reduziert werden.

vi

Acknowledgements

I thank my advisors Gunter Saake and Horstfried Läpple, who have guided me since my
Master’s thesis. We had many fruitful discussions about the content and the direction
of this thesis leading to its current state. Furthermore, I thank Karsten Tittmann
from Bayer Healthcare AG for his trust in me and the topic that made this work
possible. I also thank Uwe Scholz and Matthias Lange from IPK Gatersleben for
inspiring discussions about my work and support with evaluation data.

Special thanks to the complete CoGaDB team around Sebastian Breß for delivering
a great piece of software that allowed me to conduct my research. As always, not
everything works as expected, but with the help of the team, I was able to implement
and evaluate my ideas successfully. Thank you.

Usually, you do not do a PhD alone. At some point in time, you need someone to
discuss your ideas. Fortunately, I found nice and encouraging fellows in the DBSE
working group in Magdeburg. Special thanks to David Broneske, Andreas Meister and
Marcus Pinnecke for feedback on this thesis and especially for the productive team
meetings and constant pressure to finish the work. Thanks guys.

I especially thank Sebastian Breß. He taught me what it means to be a scientist, that
it can be hard and frustrating, but also fun and satisfying. He kept my motivation up
more than once. Although he moved several times during the last three years, he was
always there to support me and my work. I thank him for his trust in my work and
capabilities to do the work. Thank you so much!

Last but not least, I thank my family and in particular my partner Vicki and my
little son Paul for their constant support and patience, especially during the Christmas
holidays in 2016. Thank you!

viii

Contents

List of Figures xiv

List of Tables xv

List of Code Listings xvii

List of Acronyms xix

1 Introduction 1
1.1 Goal of this thesis . 2
1.2 Outline and contributions . 4

2 Genome analysis and relational database technology 7
2.1 Genome analysis . 7
2.2 Variant detection based on NGS techniques 9

2.2.1 The variant detection process 9
2.2.2 Data-management-related challenges 15

2.3 A concept for DBMS-based variant detection 17
2.3.1 Why a DBMS? . 17
2.3.2 Integration concept . 18
2.3.3 Related work . 21

2.4 Wrap up . 27

3 Relational storage and analysis of read mapping data 29
3.1 A primer on file-based storage and processing of mapped reads 29

3.1.1 Flat-file formats . 30
3.1.2 Flat-file based SNV calling . 33
3.1.3 Focus of this thesis . 35

3.2 SNV calling using relational DBMSs 35
3.2.1 The read-centric database schema 36
3.2.2 Toward database-integrated SNV calling 37
3.2.3 Qualitative assessment . 41

3.3 A pileup approach for relational SNV calling 42
3.3.1 The base-centric database schema 42
3.3.2 Relational SNV calling . 46

x Contents

3.3.3 Relationship to read-centric database approaches 47
3.3.4 A word on SAM formatted data exports 48
3.3.5 Qualitative assessment . 49

3.4 Related work . 50
3.5 Wrap up . 52

4 Efficient SNV detection using relational database operators 53
4.1 A primer on main-memory DBMSs . 54

4.1.1 Disk-based vs. main-memory DBMSs 54
4.1.2 Column-oriented vs. row-oriented storage layout 56
4.1.3 Tuple-at-a-time vs. operator-at-a-time processing 57
4.1.4 Evaluation system . 59

4.2 An initial runtime evaluation . 59
4.2.1 Logical query plan . 59
4.2.2 Runtime evaluation . 62

4.3 Accelerating the join phase . 66
4.3.1 Optimization options . 67
4.3.2 Runtime evaluation . 70

4.4 Accelerating the aggregation phase . 72
4.4.1 Optimization options . 73
4.4.2 Runtime evaluation . 75

4.5 Applicability to disk-based DBMSs . 78
4.6 Wrap up . 79

5 Genome-specific storage and query optimizations for relationalDBMSs 81
5.1 A primer on data compression . 82

5.1.1 Heavyweight vs. lightweight compression 82
5.1.2 Lightweight data compression schemes 83

5.2 Initial storage consumption analysis . 85
5.2.1 Applicability of standard compression schemes 86
5.2.2 Storage evaluation . 88

5.3 Lightweight genome-specific database compression schemes 92
5.3.1 Reference-based compression for column stores 92
5.3.2 Delta+RLE encoding . 100
5.3.3 Lossy compression . 104
5.3.4 Storage evaluation . 104

5.4 Base pruning: Leveraging genome characteristics for query processing . 106
5.4.1 Approaches . 106
5.4.2 Applicability to specialized analysis tools 108

5.5 Putting it all together . 109
5.5.1 Data set characteristics . 109
5.5.2 Storage assessment . 110
5.5.3 SNV calling runtime assessment 113
5.5.4 Overall assessment . 115

Contents xi

5.6 Related work . 115
5.7 Wrap up . 116

6 Conclusion 119
6.1 Summary . 119
6.2 Discussion . 122
6.3 Future work . 123

Bibliography 125

List of Figures

2.1 A general genome analysis process . 8

2.2 Variant detection and analysis process 10

2.3 DNA shotgun sequencing . 10

2.4 Sequencing throughput and costs by sequencer 11

2.5 Read mapping . 12

2.6 SNV calling . 14

2.7 State-of-the-art in variant detection pipelines 16

2.8 Providing analyses on demand vs. storing analysis results 19

2.9 A concept for NGS analysis using DBMSs 21

2.10 Data warehouse toolkits for biological applications 24

2.11 Integrated NGS analysis using DBMSs 27

3.1 An exemplary read mapping . 30

3.2 Exemplary FASTA file . 31

3.3 Exemplary SAM file . 32

3.4 Base pileup: From mapped reads to SNVs 34

3.5 Read-centric database schema for NGS data 36

3.6 Sample data in a read-centric database 37

3.8 Base-centric database schema for NGS data 43

3.9 Explicit encoding of mapping information 44

3.10 Relationship between read-centric and base-centric database schema and
SNV calling. 47

xiv List of Figures

4.1 Overview on latency and capacity of the single components of a memory
hierarchy . 54

4.2 Column-oriented vs. row-oriented storage layout 56

4.3 Tuple-at-a-time vs. operator-at-a-time processing 58

4.4 A logical query plan to execute a SNV calling query 60

4.5 Initial runtime evaluation for DBS-driven SNV calling 65

4.6 A denormalized storage approach for genome data 68

4.7 Runtime evaluation for DBS-driven SNV calling using invisible joins . . 71

4.8 Runtime evaluation for DBS-driven SNV calling using invisible joins and
array-based aggregation . 76

5.1 Compression of chosen read-centric database columns. 84

5.2 An initial storage evaluation of DBS approaches. 89

5.3 Breakdown of storage consumption by database column. 91

5.4 Reference-based compression by example. 93

5.5 Reference-based compression based on the base-centric database schema. 94

5.6 The impact of mismatching bases on the worst case storage size of a
WAHBitmaps. 98

5.7 SNV calling runtimes on a human chromosome 1 using genome-specific
compression. 100

5.8 Delta-RLE encoding to compress position and mapping information in
the base-centric database schema . 101

5.9 Impact of genome-specific compression on single database columns. . . 105

5.10 General principle of base pruning . 106

5.11 Impact of base pruning on SNV calling runtime. 108

5.12 Comparison of the SNV calling runtime on three real-world data sets . 113

List of Tables

2.1 Overview on related work to store, integrate and analyze genome data . 26

4.1 Number of bases to join using DBSseq and DBSbase 66

4.2 Number of bases to aggregate using DBSseq or DBSbase 73

4.3 Comparison of sort-based and array-based aggregation runtime. 77

5.1 Overview on applied standard compression schemes 87

5.2 Genome data set characteristics . 110

5.3 Comparison of the storage consumption for three real-world data sets . 111

5.4 Influence of data characteristics on storage consumption 112

xvi List of Tables

List of Code Listings

3.1 Filter reads of genome human1 that have a high mapping quality. . . . 38

3.2 Filter reads of genome human1 that are unmapped. 38

3.3 Filter reads of genome human1 that overlap region 1,000 to 2,000 of
chromosome1 of the human reference genome. 39

3.4 Computing coverages according to [23]. 39

3.5 Computing coverage and calling consensus bases (genotypes) (adapted
from [108]). 40

3.6 Calling SNVs with the approach by Röhm and Blakeley [108]. 40

3.7 Calling SNVs adapted from the approach by Cijvat et al. [23]. 41

3.8 Calling genotypes using the base-centric database schema. 47

3.9 Converting reads from the base-centric database schema into the SAM
format. 48

4.1 Calling genotypes using a denormalized database schema. 69

5.1 Lookup of values stored in a reference-based compressed column 95

5.2 Lookup of values stored in a WAHBitmap 96

5.3 Lookup of values stored in a WAHBitmap via binary search 97

5.4 Cached lookup of values stored in a WAHBitmap 99

5.5 Look up of single tuples in a Delta+RLE compressed column 103

xviii List of Code Listings

List of Acronyms

API application programming interface

BITDICT bit-packed dictionary encoding

DBMS database management system
DICT dictionary encoding
DNA deoxyribonucleic acid

GPU graphics processing unit

NGS next-generation sequencing

RLE run-length encoding

SAM sequence alignment/ map
SNV single nucleotide variant
SQL structured query language

UDA user-defined aggregation function
UDF user-defined function

xx List of Acronyms

1. Introduction

In recent years, genome analysis experienced a big hype due to the possible positive
impact on human life. For example, the analysis of genetic variations is a promising
method to improve the detection, prediction and prevention of diseases [19]. The de-
creasing cost and time to sequence whole genomes amplify this trend. The initial human
genome project [62] required over 2.5 billion dollars and took over ten years to complete
a first version of the human genome. Since then, next-generation sequencing (NGS)
techniques led to a decrease of sequencing costs to several thousand dollars per genome
and the sequencing process finishes within days [82]. Consequently, data generation is
not the bottleneck anymore, but managing, analyzing and assessing large amounts of
genome data in general and NGS data in particular [88].

The analysis of NGS data can be separated into two phases: detecting genetic vari-
ations and investigating their consequences. Typically, researchers use specialized
analysis tools to detect genetic variations. Then, the found genetic variations must
be integrated with information from other data sources to investigate their conse-
quences [19]. Since relational database management systems (DBMSs) provide ex-
cellent data-integration capabilities, researchers use them to facilitate the analysis of
found genetic variations [70, 72, 115, 128]. Detecting genetic variations directly within
the database system is not possible, because off-the-shelf DBMSs do not provide the
required domain-specific functionalities [67].

The separation between detecting genetic variations and investigating their conse-
quences complicates provenance tracking of analysis results within the complete analysis
process. Involved analysis tools and the database system have to cooperate and prove-
nance information has to be collected and exchanged partly manually [112]. In contrast,
extending DBMSs with domain-specific functionality and enabling researchers to ana-
lyze genome data directly within the database system would allow for reliable genome
data management and analysis. Researchers would be equipped with comprehensive
data-management features, such as provenance tracking [40] or annotation manage-

2 1. Introduction

ment [10], within the complete analysis process. Furthermore, researchers would be
able to perform variant detection on demand and in a declarative fashion improving
comprehensibility of analysis results [108]. Within the discussion about limited repro-
ducibility in life-sciences [9], such data-management features become more and more
important.

1.1 Goal of this thesis
Goal. The goal of this thesis is to show that we can detect genetic variants efficiently in
a relational DBMS. This is a first step to make advanced data management capabilities
of relational DBMSs, such as provenance tracking [40] or annotation management [10],
available within the complete genome analysis process. To this end, it is necessary
to investigate approaches for storing, querying and analyzing genome data within a
database system and to evaluate their efficiency in comparison to state-of-the-art storage
and analysis approaches.

Challenge. The integration of genome analysis tasks into relational DBMSs is said
to be hardly possible, because the relational database model appears to not fit well for
modeling genome data and expressing genome analysis queries [67].

Of course, integrating genome-specific analysis functionality into DBMSs requires func-
tional extensions via stored procedures or user-defined functions (UDFs), otherwise an
integration would not be possible. Nevertheless, current approaches limit the bene-
fits of declarative query languages, because they integrate most of the analysis-related
functionality into one single stored procedure or UDF [108, 109]. In addition, such
approaches are hard to optimize and parallelize by the DBMS, because the DBMS does
not know about the specifics of the encapsulated functionality. Thus, it is very likely
that DBMSs do not compete with specialized analysis tools regarding analysis perfor-
mance due to the use of UDFs. Nevertheless, the reason for using UDFs is not always
the inability to perform analyses using conventional database operators, but to avoid
that intermediate results exceed available main-memory [108].

Considering modern computer architectures with increasing amounts of main-memory,
main-memory consumption is not the limiting factor anymore. Additionally, new com-
puter architectures led to a renaissance of column-oriented main-memory DBMSs.
These DBMSs offer tremendous performance improvements especially for analytical
workloads [44, 60] compared to traditional disk-based DBMSs, because they are de-
signed to leverage the full potential of increasing amounts of main memory and the
growing number of CPU cores [125]. For this reason, we focus on the use of column-
oriented main-memory DBMSs to achieve our goal.

Benefits. Extending database systems with genome-specific analysis functionality and
allowing for genome data analysis directly within the database will lead to following
benefits:

On the one hand, we expect to improve the comprehensibility of the genome analy-
sis process [35]. Since the outcome of variant detection highly depends on the chosen

1.1. Goal of this thesis 3

approaches and parametrizations [96, 99], it is important to document the chosen con-
figuration. Using the structured query language (SQL) to express analyses inherently
provides an analysis description for documentation purposes. Moreover, we can use
different approaches and parametrizations during analysis, because we compute analy-
sis results on demand and do not rely on precomputed analysis results. To be able to
compute analysis results on demand, we have to store the underlying raw data, which
directly improves reproducibility.

On the other hand, we expect to speed up the analysis of genome data, if it is stored
using a database system. First, we can perform analysis directly at the data site avoid-
ing costly data exports. Second, main-memory database technology should allow us to
provide competitive analysis performance compared to specialized analysis tools. More-
over, we expect to benefit from future improvements of DBMSs such as co-processor
acceleration, if we can perform genome analysis tasks using standard database operators
as a basis.

Research questions. Pursuing our goal, we answer the following four research ques-
tions:

1. Which steps of variant detection should we integrate into a DBMS?

Variant detection comprises several subtasks. It is not clear yet whether all of
these tasks can or should be integrated into a DBMS. Therefore, we first have
to describe the essential subtasks and investigate whether an integration is rea-
sonable considering the advantages and disadvantages of computing the analysis
result on demand or storing a static copy of the analysis result. We answer this
question in Chapter 2.

2. How can we express variant detection using relational DBMS operators as a basis?

Variant detection is not a typical database task. Still we want to use relational
DBMS operators as a basis to perform the actual analysis, which allows us to
benefit from the optimized processing stack of a DBMS. Moreover, we reduce
implementation and maintenance effort, ensure optimal processing also on future
hardware and facilitate declarative querying via SQL. We answer this question in
Chapter 3.

3. How can we process genome data sets as efficient as specialized analysis tools us-
ing relational DBMSs?

Genome data sets can have a size of up to hundreds of gigabytes. In order to
make database-integrated variant detection a competitive alternative to special-
ized analysis tools, we must be able to process these gigabytes of genome data
within the database system as efficient as specialized analysis tools. Therefore,
we have to apply advanced processing techniques to fully exploit all available
resources. We answer this question in Chapter 4.

4 1. Introduction

4. How can we store genome data sets using a relational DBMS as efficient as state-
of-the-art flat-file approaches without sacrificing analysis speed?

Even though main memory capacities increase, it is necessary to compress genome
data to keep more genome data sets in main memory and better utilize memory
bandwidth. We use the storage requirements of state-of-the-art flat-file formats
as baseline and focus our research on lightweight compression schemes to miti-
gate the negative impact of compression on query runtime due to computational
overhead. However, genome data mainly consists of unique strings making it
hard to compress it using standard lightweight compression schemes. Genome-
specific compression schemes promise better compression ratios, but it is not clear
yet whether and how we can integrate them into database systems. Moreover, we
have to investigate whether and how we can still process compressed genome data
as efficient as specialized analysis tools. We answer this question in Chapter 5.

1.2 Outline and contributions
In the following, we outline and highlight our contributions. The thesis is structured as
follows. In Chapter 2, we introduce necessary basics about genome analysis. Further-
more, we provide an overview of a typical variant detection and analysis process and
discuss related data management challenges. Moreover, we present related work that
uses DBMSs or database technology to perform genome analysis tasks in general and
variant detection in particular. We use this knowledge to contribute:

A concept for variant detection using DBMSs. The concept describes which
parts of the variant detection process should be integrated into a relational DBMS.
To this end, we discuss the single analysis steps in detail and base our decision which
step to integrate on the trade-off between analysis throughput and the outreach of
improved data management capabilities. We published parts of the material in the
following papers:

[35] Sebastian Dorok, Sebastian Breß, Horstfried Läpple, and Gunter Saake.
Toward efficient and reliable genome analysis using main-memory database
systems. In SSDBM, pages 34:1–34:4, 2014.

[33] Sebastian Dorok. The relational way to dam the flood of genome data.
In SIGMOD/PODS Ph.D. Symposium, pages 9–13, 2015.

In [35], we discussed data management challenges within genome analysis and pre-
sented an initial concept to address them using a database system. In [33], we
presented more details about the concept.

In Chapter 3, we refine our high-level concept from Chapter 2 and describe how we can
perform variant detection using relational database operators as a basis. We put our
primary focus on the detection of single nucleotide variants (SNVs). SNVs are variations
of the individual genome at single genome positions and may indicate a predisposition

1.2. Outline and contributions 5

for diseases [133] or have impact on drug efficacy [46]. Thus, their efficient and reliable
detection is important for medical and pharmaceutical purposes. We explain how we
store the required genome data and perform SNV detection using SQL. We contribute:

SNV detection as aggregation task. We model the detection of SNVs as aggre-
gation task over genome data. To this end, we introduce a user-defined aggregation
function (UDA) and a genome-specific database schema resembling a star schema.
Moreover, we show how we perform SNV detection via SQL. We published the ma-
terial in the following papers:

[36] Sebastian Dorok, Sebastian Breß, and Gunter Saake. Toward efficient
variant calling inside main-memory database systems. In BIOKDD-DEXA,
pages 41–45, 2014.

[39] Sebastian Dorok, Sebastian Breß, Jens Teubner, and Gunter Saake.
Flexible analysis of plant genomes in a database management system. In
EDBT, pages 509–512, 2015.

In [36], we introduced the general concept and a first assessment using MonetDB [60].
In [39], we presented a prototype using CoGaDB [14] and showed how to integrate
further analysis tasks that accompany SNV detection.

In Chapter 4, we explain how we integrate variant detection efficiently into a relational
DBMS. Our contribution is:

Efficient declarative SNV detection. Besides describing SNV detection logically
as an aggregation task, we also have to ensure to process genome data efficiently. Oth-
erwise, long waiting times would sacrifice the benefits of detecting SNVs on demand
via SQL. Therefore, we compare different join and aggregation implementations and
examine their advantages and disadvantages. Using advanced processing techniques
such as the invisible join [3], we are able to improve the runtime by up to a factor of
four allowing a relational DBMS to keep pace with specialized analysis tools regarding
analysis runtime. We published parts of the material in the following paper:

[34] Sebastian Dorok. Memory efficient processing of DNA sequences in
relational main-memory database systems. In GvDB, pages 39–43, 2016.

In Chapter 5, we introduce genome-specific extensions for relational database systems
to improve storage consumption and to speed up the analysis especially of compressed
genome data. Our contributions are:

Genome-specific compression in column stores. Genome data consists mainly
of unique strings that are hard to compress using lightweight compression schemes.
However, we rely on the use of lightweight compression schemes, since these allow for
efficient processing of compressed data. To this end, we propose to integrate genome-
specific compression schemes such as reference-based compression into a database

6 1. Introduction

system. We show that the database schema that allows us to perform SNV detection
via SQL also facilitates to integrate reference-based compression. In combination with
a modified run-length encoding, which allows us to compress sequences of incremented
numbers, we are able to reduce the storage increase and improve overall storage
consumption compared to a straightforward database-storage approach by up to a
factor of two.

Genome-specific query optimization. Efficient processing of genome data is a
prerequisite to provide on demand SNV detection. Additionally, we propose a filtering
technique that uses knowledge about the new UDA for SNV detection to further
speed up the analysis. Furthermore, we show how we can benefit from reference-
based compressed genome data to speed up the computation for this optimization
itself. Using our optimization, we are able to detect SNVs in a human genome data
set more than five times faster than using a specialized external tool. Compared to a
straightforward database approach, we achieve a speedup of up to a factor of eight.

We published both optimizations in the following papers:

[37] Sebastian Dorok, Sebastian Breß, Jens Teubner, et al. Efficient storage
and analysis of genome data in databases. In BTW, pages 423–442, 2017.

[38] Sebastian Dorok, Sebastian Breß, Jens Teubner, et al. Efficiently storing
and analyzing genome data in database systems. In Datenbank-Spektrum,
2017. doi:10.1007/s13222-017-0254-9.

In [37], we introduce the basic concepts of our genome-specific compression schemes
and query filtering technique. In [38], we provide further details about the inner
mechanics of our compression schemes. In particular, we discuss efficient access and
retrieval approaches for our compression schemes.

In Chapter 6, we conclude our work and provide an overview on future work.

2. Genome analysis and relational
database technology

Genome analysis is a broad field of research involving many different techniques to use,
perspectives to consider and questions to answers. In this chapter, we start with a
brief overview on genome analysis in Section 2.1 and provide basic concepts and terms.
Then, we discuss the detection of genetic variants based on next-generation sequencing
(NGS) data, which is an emerging topic within genome analysis demanding for efficient
and reliable storage and processing infrastructures. In Section 2.2, we provide details
about the variant detection process, which essentially consists of two steps: detecting
genetic variations and investigating their consequences. We also present related data-
management challenges. In Section 2.3, we present our concept for integrated variant
detection based on a DBMS and explain how it can address the data-management chal-
lenges within the variant detection process. These considerations lead us to an answer
to our first research question: Which steps of variant detection should we integrate into
a DBMS? Furthermore, we introduce related work on managing and analyzing genome
data using DBMSs.

2.1 Genome analysis
In this section, we give an overview on the broad field of genome analysis to classify
the topic of this thesis, variant detection, and to introduce basic terms and concepts.

Genome analysis is the study of organisms’ genetic information. Genetic information
encodes the instructions that are used in living organisms to control their growth,
reproduction and cell functioning. This code of life is stored in deoxyribonucleic acid
(DNA) molecules.

The term genome analysis refers not only to one single analysis process or definition,
but is a collective term for diverse analyses within the research field of genomics. For

8 2. Genome analysis and relational database technology

Downstream
analysis

Bioinformatics aspects

Catalog genomic
information

Catalog comparative
genomic information

Biological
principles

Human disease
relevance

...

Data
Extraction

Base pairs: Adenine - Thymine Cytosine - Guanine

Genome

Chromosome
= DNA molecule

Nucleotide

A T

C G

e.g. DNA Sequencing

Figure 2.1: A general genome analysis process: Bioinformatics aspects are crosscutting
concerns to enable, facilitate and improve genome analysis.

example, Pevsner introduces five different perspectives on genomics that all relate to
the analysis of genomes [105, p. 701]:

1. Catalog genomic information such as size, number of chromosomes, chemical
composition, number of genes or coding and noncoding regions. The genomic
information is the base for the further perspectives on genomics.

2. Catalog comparative genomic information of genomes, which allows for
deducing about the function of parts of yet unknown genomes by comparing
them with known genomes. In addition, relationships between species can be
established based on genome divergence.

3. Investigate biological principles to reveal what functions an organism has and
how the genome encodes these functionality. Part of this perspective is also how
information stored within DNA comes to life.

4. Investigate the human disease relevance of variations of the genome. This
also includes studies about how variations can occur and to detect and document
variations that are related to diseases.

5. Consider bioinformatics aspects such as efficient storage and processing of
genome-related data. Moreover, tools for visualizing and navigating genome(-
related) data are of interest.

The five perspectives introduced by Pevsner can be mapped to the general genome
analysis process that we depict in Figure 2.1. In the following, we define basic terms
and explain the general genome analysis steps.

The genome. It all starts with the physical genome that is the complete collection
of an organism’s deoxyribonucleic acid (DNA). DNA is a molecule that consists of two
strands made up of a sequence of nucleotides. These nucleotides are molecules each
consisting of a deoxyribose molecule, a phosphate group and one of four nucleobases,
either cytosine (C), guanine (G), adenine (A), or thymine (T). Chromosomes are DNA

2.2. Variant detection based on NGS techniques 9

molecules that carry the specific traits of living organisms. Chromosomes consist of
coding regions, i.e., genes, and non-coding regions, i.e., sequences of bases with no or yet
unknown function. The sequence of bases of genes represents the active genetic code.
Always three consecutive bases, called codon, can be translated into an amino acid.
Amino acids are the basic building blocks of proteins that enable growth, functioning
and reproduction of living organisms. Organisms can have chromosome sets, i.e., there
is more than one chromosome encoding the same gene. Each of these chromosomes in
a set can have a different DNA sequence. In case organisms such as humans have sets
of two chromosomes, they are called diploid organisms. Each chromosome in a set can
have a differing base sequence resulting in different encodings of the same gene. The
genotype describes the exact encoding of all chromosomes in a set.

Data extraction. To process and analyze the genetic code stored in the genome, we
have to extract it from DNA molecules. One technique to extract data from DNA is
DNA sequencing. DNA sequencing is the process of making the genetic information
encoded within DNA digitally readable. Literally spoken, a DNA sequencer reads the
sequence of nucleotides of a DNA strand and returns a sequence of the four characters
A, C, T and G indicating the respective base of the read sequence of nucleotides.
Other techniques are DNA microarrays that allow for detecting whether a specific base
sequence is present in a DNA molecule or not.

Downstream analysis. Finally, downstream analyses start that comprise tasks from
the first four perspectives introduced by Pevsner. For example, the genome of different
species can be compared to find mutual genetic ancestors. Other analyses aim to reveal
the functionality of yet unknown genes. Another emerging topic is the detection of
genetic variations, which is an essential preprocessing step for the analysis of disease
relevance of genome variations. Moreover, it is used to determine an organism’s or cell’s
genotype and allows for comparisons with other DNA sequences. The fifth perspective
introduced by Pevsner, bioinformatics aspects, is a crosscutting concern and provides
tools and methods to enable, facilitate or improve the actual analysis. For example,
efficient tools for variant detection were developed to reduce the analysis runtime.

2.2 Variant detection based on NGS techniques
Genome analysis comprises various research directions. A promising topic is to inves-
tigate the disease relevance of genetic variations based on NGS techniques to better
detect and treat diseases [19, 50, 110]. In this section, we describe the variant detection
process based on NGS data and present data-management-related challenges that we
want to address with the use of DBMS technology.

2.2.1 The variant detection process

The variant detection process comprises four steps that we depict in Figure 2.2. The
first three steps comprise the extraction of DNA and the actual detection of variants.
Finally, the consequences of found variations will be investigated in a downstream

10 2. Genome analysis and relational database technology

Variant calling

Variant detection Investigating consequences

DNA sequencing Read mapping
Downstream

analysis

DNA molecule Reads Reference sequence

Figure 2.2: Variant detection and analysis process: In this thesis, we focus in the
integration of variant detection steps read mapping and variant calling into DBMSs.

analysis step. In this thesis, we aim at integrating the process steps of variant detection
into a DBMS. In the following, we give details about DNA sequencing with special focus
on NGS techniques, read mapping and variant calling.

2.2.1.1 Next-generation DNA sequencing

The goal of DNA sequencing is to read the base sequence of a given DNA molecule, e.g.,
a chromosome. Current DNA sequencing methods cannot determine the base sequence
of a complete DNA molecule, but only smaller stretches of 100 to several thousand bases
depending on the used DNA sequencing technique. A human genome comprises more
than 3 billion base pairs. Consequently, it is not possible to sequence whole genomes
at once. Thus, a technique called shotgun sequencing is used. We depict the idea in
Figure 2.3. In a first step, the DNA molecule under investigation, e.g., a chromosome, is
broken up randomly into smaller fragments. Then, these single fragments are sequenced
and their base sequence is determined. The small base sequences are called reads. Since
the DNA fragments are created randomly, the reads must be organized to reconstruct
the actual DNA molecule’s base sequence.

DNA sequencing

DNA molecule ReadsDNA fragments

ACTG
ACTG

ACTG
ACTG

ACTG
ACTG

ACTG
ACTG

Variant callingRead mapping

Figure 2.3: DNA shotgun sequencing: Since DNA sequencers can only sequence small
DNA stretches, DNA molecules are broken up and the single fragments are sequenced.

Within the initial Human Genome Project [62], DNA sequencing based on Sanger
sequencing [113] was used. Nevertheless, Sanger sequencing requires too much time and
is too costly to sequence complete genomes on a large scale. For example, the human
genome project cost over 2.5 billion dollars and took over ten years1 to complete a first
version of the human genome.

In the mid 2000’s, faster and cheaper sequencing techniques were introduced, so called
next-generation sequencing techniques [94]. These techniques allow for sequencing DNA

1https://www.genome.gov/11006943/

https://www.genome.gov/11006943/

2.2. Variant detection based on NGS techniques 11

Sanger 3730xl
(1995)

454 GS FLX
(2008)

SOLiDv4
(2010)

HiSeq 2000
(2010)

102

104

106

Sequencer

thousand bases sequenced per hour
dollar per one billion sequenced bases

Figure 2.4: Sequencing throughput and costs by sequencer (derived from [82])

molecules in a high-throughput manner [82]. In Figure 2.4, we show a comparison of an
automated Sanger sequencing machine (Sanger 3730xl) with selected NGS systems. For
example, an Illumina HiSeq2000 sequencer is able to sequence 2.5 billion bases per hour,
which is 10,000 times more than the 252 thousand bases per hour of the automated
Sanger sequencing machine. The high throughput also allows to decrease the costs of
sequencing. Nowadays, systems are available that can sequence a complete genome at
the cost of $1,000 [130].

Between the different NGS techniques, we also observe differences regarding throughput
and costs. The reason for these differences are the different technologies used within the
systems. The used technology also has impact on the characteristics of the generated
reads. For example, some approaches are able to generate longer reads or make less
errors during the reading process. Other improvements of NGS techniques are paired-
end reads. A paired-end read consists of two DNA sequences representing the two
ends of the original DNA stretch to be sequenced. It is possible to fix the distance
between these two DNA sequences, which can be leveraged to decide about a proper
read mapping that we describe in the next section. A detailed discussion of different
NGS approaches and their advantages and disadvantages can be found in [95].

2.2.1.2 Read mapping

Read mapping is the process of reorganizing reads generated by DNA sequencers to
reconstruct the base sequence of the original DNA molecule. The termmapping refers to
the procedure of mapping reads to a reference sequence. Thus, read mapping requires a
reference sequence such as the human reference sequence that was created by the Human
Genome Project [62]. Without a reference, reads are processed to find overlaps which
can be assembled to bigger base sequences until the complete sequence is reconstructed.
This approach is called DNA assembly.

12 2. Genome analysis and relational database technology

equencing Variant cal

TTAGATAAGGATA*CTG
Deleted

base
Inserted
basesMismatching

base

Reads

Read 1(1)
Read 2
Read 3

Genome position

Reference sequence

Clipped
bases

Read mapping

Reads

AGCATGTTAGATAA*GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

00000000011111 1111122222222223333333333444444
12345678901234 5678901234567890123456789012345

aaaAGATAAGGATA
gcctaAGCTAA

Read 1(2) CAGCGGCAT

Pair of
reads

Figure 2.5: Result of a read mapping: Gray bases and positions match completely. At
other genome positions, the reads and the reference sequence differ. These differences
can be real or result from wrong read mapping or erroneous bases from DNA sequencing.

The challenge of read mapping is to find the correct position of a read, despite erroneous
bases within the read, genome variations that exist in the original sample genome and
are not present in the reference sequence, and multiple matching sites. To find mappings
of one sequence (read) within another reference sequence, local alignment algorithms
such as the Smith-Waterman [120] algorithm can be used. The standard algorithm
finds the optimal local alignment, but has a runtime complexity of O(nm), where n
indicates the read length and m the reference sequence length. Thus, searching for
alignments of millions or billions of reads is inefficient. More efficient approaches such
as the Basic Local Alignment Search Tool (BLAST) use heuristics to provide better
runtime performance [5]. Nevertheless, the tool is intended to search for single query
sequences in a set of reference sequences (database) to identify those reference sequences
that match best. To this end, it indexes the query sequence and searches within the
database. Since the use case for read mapping is to find a mapping of millions or
billions of small reads within a much larger reference sequence, read mapping using
BLAST is not a good choice with regard to reasonable runtime [129]. Consequently,
special read mapping approaches were developed that explicitly tackle the problem of
read mapping. Many of them index the large reference sequence to speed up the search
for the mapping of individual reads [78].

In Figure 2.5, we show an example of a read mapping of 3 reads. Read 1 is a paired-
end read. Read 1(1) has a single inserted base (between position 14 and 15) and a
single deleted base (at position 19) compared to the reference sequence. Read 1(2)
representing the other end of the read has a mismatching base at position 42. The
inserted base of Read 1(1) is also present in Read 2. In addition, Read 2 has three
clipped bases in the beginning. These were ignored by the read mapper as it found
enough matching bases in the rest of the read. Read 3 also has clipped bases in front.
Additionally, Read 3 has a mismatching base at position 11.

The result of read mapping is used to derive information about the genome. Usually,
a first step is to analyze whether genetic variations exist compared to the reference
sequence. This step is called variant calling.

2.2. Variant detection based on NGS techniques 13

2.2.1.3 Variant calling

In the variant calling step, we determine variances within genomes compared to a refer-
ence sequence. Variations can be detected for single individuals as well as populations.
Population analysis is used to detect variations that are common and appear in several
individuals. According to Haraksingh and Snyder, we distinguish three general types
of variations within a genome [51]:

• Structural variations
Structural variations refer to variations of the structure of DNA molecules such
as chromosomes. These variations are large in size and comprise copy number
variations or inversions:

– Copy number variations: A copy number variation consists of deletions or
insertions of parts of a DNA molecule.

– Inversions: An inversion is present if the sequence of bases within an DNA
molecule such as a chromosome is reversed.

• Small insertions and deletions
In contrast to structural variations, small insertions and deletions have a size of 1
to 50 base pairs. In case that the event is not a multiple of 3 and located within
a gene coding region, the variation leads to a frame shift having severe impact on
the expression of genes (cf. Section 2.1).

• Single nucleotide variants (SNVs) and Polymorphisms (SNPs)
SNVs are exchanges of bases at single genome positions in one genome compared
to another and can have a severe impact on organisms life. SNVs can indicate a
predisposition for diseases such as cancer [91, 116, 133] or may have impact on
drug efficacy by interfering with the metabolism [46]. A special class of SNVs are
SNPs. SNPs are exchanges of bases at single genome positions that occur quite
frequently within a population. Thus, a SNV can be a SNP but does not have
to be. Moreover, it is likely that SNPs are better researched, because they occur
more often.

We focus our research on the detection of SNVs within single genomes, because their
impact as well as their detection is well researched and the process is established [21,
41]. Moreover, the basic mechanisms behind SNV detection are also needed for SNP
detection. In the following, we explain common strategies to detect SNVs from NGS
read data.

Details on SNV calling

The task of SNV calling comprises to determine the genotype of a sample (cf. Sec-
tion 2.1) and to compare it with the respective base in a given reference sequence [96].
In the case that the genotype and the reference base differ, a SNV is found that could

14 2. Genome analysis and relational database technology

Read mapping

TTAGATAAGGATA*CTG

Reads

Read 1(1)
Read 2
Read 3

Genome position

Reference sequence

Variant Calling

Reads

AGCATGTTAGATAA*GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

00000000011111 1111122222222223333333333444444
12345678901234 5678901234567890123456789012345

aaaAGATAAGGATA
gcctaAGCTAA

Read 1(2) CAGCGGCAT
 TTAGGenotype

Figure 2.6: During SNV calling, we process all bases that map to the same genome
position to derive a genotype. The genotype is compared with the reference sequence.

be a mutation with severe impact. The challenge is to determine the genotype from
multiple NGS reads that cover a genome position. In Figure 2.6, we depict the general
concept of SNV calling. The bold bar highlights the current genome positions that we
want to analyze regarding SNVs. All bases that are mapped to this genome position
have to be processed to call a genotype. The term call is used to emphasize that the
detection of a genotype and finally a SNV depends on chosen heuristics and parameters.
Two general approaches exist to derive a genotype from NGS reads [96]:

Frequency approach

The frequency approach simply counts all bases at a genome position and uses simple
cut-off rules to decide on a genotype. In Figure 2.6, position 11 is of interest, because
the bases of two reads are equal to the reference and one base of one read is different.
We assume a diploid organism. Thus, we have pairs of chromosomes and the possible
genotypes indicated by the given bases could be AA, AC or CC. The first and the last
genotype are called homozygous, because both chromosomes of the pair have the same
base at the genome position. AC is called heterozygous, because the chromosomes
have different bases at the genome position. Using simple cut-off rules, we could decide
for one of the possible genotypes. Common cut-off rules are 20% and 80%. If a base
has a frequency of more than 80%, we call a homozygous genotype. If a base has a
frequency below 20%, we do not consider it at all. If the frequencies are between 20%
and 80%, we call a heterozygous genotype. Especially, homozygous genotypes can be
easily called as variant or not by simply comparing them with the reference base. In
case of heterozygous genotypes, the decision is not that easy and depends on the actual
genotype. In our example, we would call a heterozygous genotype.

A frequency approach is especially useful in case of high coverage regions, i.e., regions
that have many overlapping reads. Nielsen states that a coverage of 20 is sufficient [96].

Probabilistic approach

A probabilistic approach takes further information than base frequencies into account.
Each base value within a read is associated with an error value indicating the chance
that the base is wrong. Usually these error probabilities are in the range below 1%. An
error probability of 1% is already a reason to not trust this base and to not consider

2.2. Variant detection based on NGS techniques 15

it during SNV calling. This is one way to improve the results of frequency callers by
filtering for high quality bases before genotype detection.

A probabilistic approach would not remove this base completely, but weights the impact
of each base according to its error probability. The idea is to compute a posterior
probability p(G|B) for every possible genotype G at a specific genome site given a set
of bases B aligned to this site. For diploid organisms, we can assume genotype G ∈
AA,AC,AG,AT,CC,CG,CT,GG,GT, TT . The genotype with the highest posterior
probability is called to be the resulting genotype. Afterwards the comparison with the
reference sequence is done similar to the frequency approach. Moreover, the posterior
probability can be used as quality measure for the SNV call.

Nevertheless, we can not directly compute the depending probability p(G|B). However,
we can use Bayes’ theorem [8] to compute it:

p(G|B) =
p(B|G) ∗ p(G)

p(B)

p(B|G) is the genotype likelihood, the probability to call a set of bases B indicating
a genotype assuming a specific genotype G. To determine this probability, we can
use the error values of each base. The probability p(G) is the prior probability for
genotype G. There are different strategies how to initialize these probabilities. One
approach is to use equal probabilities for all genotypes. For example, having 10 possible
genotypes, every genotype has a prior probability of 1/10. More sophisticated strategies
estimate genotype and allele frequencies from multiple genome data sets [74] or incorpo-
rate knowledge about the probability of base exchanges in combination with the given
reference base to derive prior probabilities [79]. For example, genotypes containing the
reference base get higher probabilities than those that do not contain it.

2.2.2 Data-management-related challenges

In this section, we discuss challenges within the variant detection process due to NGS
techniques and the current state-of-the-art of managing and processing NGS data. We
focus on challenges related to data management and do not consider technical challenges
such as how to detect variants in noisy data sets.

Efficient and effective data management

Current variant detection processing using NGS data is flat-file based and commandline
driven. In Figure 2.7, we depict typical flat-file formats used within variant detection.
FASTQ files are used to store raw reads. The sequence alignment/ map (SAM) format
encodes read mappings. Variant Calling Format (VCF) files store the result of variant
detection.

Although flat files provide several advantages such as easy sharing of data and require
low effort to store the data, they complicate efficient and effective data management:

16 2. Genome analysis and relational database technology

Read
Mapping

FASTQ SAM VCF

Variant
Calling

*Illumina HiSeq2000

DNA
Sequencing

$ bwa mem ref.fa \
reads.fastq > out. sam
$ samtools view -hb \
out.sam > in.bam

$ samtools \
mpileup -vf \
ref.fasta in.bam \
-o out.vcf

Figure 2.7: The state-of-the-art variant detection pipelines are based on flat-file storage
and rely on commandline-driven processing.

High effort for efficient data access
Specialized analysis tools have to manage efficient access to data items within flat
files. Therefore, they have to incorporate indexing strategies and must be aware
of compressed data. This increases the effort to access large data sets efficiently.

Inefficient file-based processing
Usually, flat-file based analysis incorporates different tools that operate sequen-
tially on the data. In worst case, one tool writes its complete output to another
file that is consumed by another tool [32]. Streaming could mitigate the effort,
because results do not have to be written to disk but just handed over to the next
tool. Nevertheless, tools have to be able to work on streams.

Limited data integrity and consistency
File systems provide limited capabilities to check data integrity and consistency.
Checksums can be computed for complete files, but a more fine-grained control
is not possible, because the file system has only knowledge about files not data
stored within the files. For example, inconsistency between related data fields
cannot be tracked.

In order to address these challenges, advanced data management approaches are re-
quired that provide convenient and efficient access to the data and keep control over
data access as well as integrity at all time.

Analysis reliability and reproducibility

The broad use of genome analysis techniques within research and practice leads to an
increased demand for reliability and reproducibility of analysis results [9, 112]. This re-
quires to document used parameters, tools and filtering criteria of every analysis step.
For example, many different specialized analysis tools exist to perform the steps of
read mapping and variant calling. Established tools for read mapping are bowtie [71]
or bwa [76]. Both use Burrows-Wheeler indexes to speed up read mapping. Typ-
ical variant calling tools are samtools/ bcftools [77] and the Genome Analysis

2.3. A concept for DBMS-based variant detection 17

Toolkit (GATK) [92]. Besides these tools, many other tools exist that put special focus
on calling specific variations or use different approaches to determine mappings and
variations [99, 100]. For example, the basic SNV detection approaches introduced in
Section 2.2.1.3 already provide many options to influence the outcome of the analy-
sis. Consequently, studies have shown that the results from different variant detection
pipelines, i.e., combinations of specialized analysis tools, lead to results that have low
concordance [99]. Thus, a comprehensive documentation of the analysis process is re-
quired to track the analysis results and to make use of them.

Integrated storage and analysis on a large scale

NGS technologies allow for generating vast amounts of genome data fast and cheaply [82].
This requires efficient storage, access and processing techniques. Moreover, the data
must be integrated with other data sources to increase its value. For example, variant
calls must be combined with gene annotation data to find out which genes are affected
by a variation. At the same time, it would be helpful to verify the variant call by drilling
down to the actual raw sequencing data. Furthermore, the computation of alternative
analysis results based on a different parametrization or approach could help to reject
or accept hypothesis on demand. Currently, analysis steps are bulk-oriented and sep-
arated. Moreover, many approaches are available that consider the data integration
aspect, but only a few focus on analysis integration (cf. Section 2.3.3).

2.3 A concept for DBMS-based variant detection
In this section, we discuss how DBMSs could address the challenges within the variant
detection process presented in Section 2.2.2. Then, we introduce a general concept for
variant detection using a DBMS.

2.3.1 Why a DBMS?
DBMSs aim to introduce data independence between storage and application layer.
This allows them to provide a logical view on the data and optimize the physical data
representation for efficient access or reduced storage consumption. Since a DBMS is
placed between applications and the actual data, it can offer further services such as
integrity and consistency control, access management or declarative data access. In
the following, we explain how these features could address the single challenges from
Section 2.2.2.

Efficient and effective data management

The decoupling of storage and application layer enables the use of declarative
query languages such as SQL. Using a declarative data-access interface frees
analysis applications to manage efficient data access themselves. Instead, the
application declares what data it needs and the DBMS manages the efficient data
access. Moreover, the DBMS has control over the data at any time to ensure its
consistency and integrity.

18 2. Genome analysis and relational database technology

Analysis reliability and reproducibility

DBMSs provide data provenance features that allow for tracking information
about the origin of data items, the steps leading to an intermediate data item
and the parameters used to generate the analysis result. In case that all analy-
sis functionality is available within the DBMS, a comprehensive tracking would
be possible. In the case that we can express the analysis task using a declar-
ative query language such as SQL, we can inherently provide a description for
documentation purposes.

Integrated storage and analysis on a large scale

DBMSs are designed to provide access to large amounts of data. Moreover, data
integration features are available allowing to combine and access data from differ-
ent data sources. In combination with a declarative query language and efficient
data processing, on-demand analysis workflows could be supported.

There are two directions to introduce the DBMS idea into the variant detection process.
On the one hand, we could build it from scratch based on existing techniques and
approaches (option A). On the other hand, we could adapt the variant detection process
and integrate it into an existing DBMS (option B). In this thesis, we investigate option
B and aim to integrate variant detection into a relational DBMS.

Especially relational DBMSs are well researched and offer techniques and mechanisms
required to address the data-management-related challenges within variant detection.
Nevertheless, bioinformatics and scientists claim that relational DBMSs are not capable
to allow for efficient analysis of genome data and in particular NGS data. Moreover, it
is said that the relational database model and genome analysis do not fit well [67] likely
leading to suboptimal performance. However, the renaissance of column-oriented main-
memory storage for relational DBMSs that lead to tremendous speedups within analysis
applications [60] makes us confident to successfully challenge these prejudgments, es-
pecially regarding analysis performance. These physical optimizations in combination
with an appropriate database design should enable us to provide competitive perfor-
mance compared to specialized analysis tools. Nevertheless, we acknowledge that not
every analysis step is suited for integration into a database system. In the following,
present our concept to integrate variant detection into a DBMS.

2.3.2 Integration concept

To use a relational DBMS within the variant detection process, we have to answer
our first research question: Which steps of variant detection should we integrate into
a DBMS? Integration of an analysis task into a DBMS means to us that we are able
to perform the analysis task on demand using a declarative query language such as
SQL, instead of externally computing and storing static results. This should inherently
provide an analysis description for documentation purposes improving reproducibility
of the analysis process complemented by the data integrity and integration features of a

2.3. A concept for DBMS-based variant detection 19

Variant callingRead mapping
Downstream

analysis

Result store
Partial integration

Full integration

Outreach of data management capabilities

Analysis throughput

Figure 2.8: Trade-off between providing analyses on demand or storing analysis re-
sults. If we just store the results, we gain no improvement regarding data management
throughout the complete analysis process. In contrast, if we provide all analysis steps
on demand, we likely reduce the analysis throughput.

DBMS. Moreover, the DBMS can leverage the knowledge about data characteristics and
processing steps to improve the query execution and analysis runtime. Furthermore,
the computation of results on demand enables greater flexibility for the user, since the
user can decide about parameterizations or algorithms to use at query time. We can
consider three different scenarios to integrate an analysis process into or with a DBMS:

Result store We just store the results of an analysis process in a database and use
the DBMS to provide efficient access.

Full integration We map all analysis tasks to the processing engine of the DBMS and
just store the raw data.

Partial integration In case that not all tasks can be integrated into the DBMS or
storing the raw data is not reasonable, we only integrate parts of the analysis
tasks into the DBMS.

2.3.2.1 Trade-off

Deciding for one of the scenarios is a trade-off between analysis throughput and the
outreach of improved data management capabilities. If we integrate all analysis steps
into the DBMS, we benefit from advanced data management capabilities throughout the
complete analysis process, but we are also required to compute analysis results inside
the DBMS at runtime, which likely lasts longer than just storing the result. On the
other hand, if we just store the final results, e.g., the variant calls, we gain fast access
to the results, but we do not gain any improvement with regard to data management
throughout the complete analysis process.

In the context of variant detection, we have to consider two analysis steps: read mapping
and variant calling (cf. Section 2.2.1). In the following, we assess the three different

20 2. Genome analysis and relational database technology

scenarios in the context of the variant detection process. We depict the trade-off in
Figure 2.8.

Result store. In this scenario, we store externally generated variant calls in a database
and use the DBMS only to provide efficient access to these variant calls. These variant
calls can be integrated with further information, e.g., about gene coding regions, ontolo-
gies and molecular pathways, to facilitate downstream analyses such as gene annota-
tions. Furthermore, the DBMS provides efficient access via declarative query languages
over an integrated database schema. However, such an approach relies on external infor-
mation, since we generate variant calls outside the database. Consequently, reliability
and reproducibility of analysis results rely strongly on the availability of metadata and
the ability to exchange it between external tools and the DBMS.

Full integration. To improve the reliability and reproducibility of the overall analy-
sis process, we could think of integrating all variant detection related tasks into the
DBMS. Thus, we would benefit from the data integration capabilities of the DBMS
and would also use it to perform analyses internally. However, considering the task of
read mapping, we observe that the processing of a read mapping always requires to
process the complete underlying data set. Depending on the data set size, which easily
reaches several gigabytes, we will not be able to provide analysis results on demand in
reasonable time if we would always compute the read mapping based on raw sequencing
data. Moreover, raw sequencing data has little use for other analysis tasks than read
mapping. Thus, read mapping is a necessary preprocessing step.

Partial integration. Since a full integration of variant detection, which requires to
perform read mapping inside the DBMS, does not allow for on demand analysis, we
could think about storing mapped read data in a database and integrate the process
step of variant calling into the DBMS. Considering the concept behind variant calling,
we can use the DBMS to efficiently retrieve the data, e.g., a genome region of interest
or a specific sample genome, to perform the actual calling. Enabling researchers to call
variants on demand using a specific parametrization instead of importing the variant
calls facilitates the analysis process. It allows for what-if analyses as well as the combi-
nation of different results. Applying this scenario, we would still benefit from the data
management capabilities of DBMSs to provide efficient and effective data management
for integrated genome data. Moreover, we would perform an integral step of variant
detection inside the DBMS improving analysis reliability and reproducibility.

2.3.2.2 Design decision

Based on our assessment in the previous section, we choose the partial integration
scenario as best trade-off between reduced analysis throughput and gained data man-
agement improvements. In Figure 2.9, we depict the concept. We aim to integrate
variant calling as internal DBMS functionality complementing and leveraging existing
DBMS functionality such as access control, data compression or query optimization.
Read mapping is done externally and the mapped reads are stored within the database.
Thus, we can manage and analyze the mapped reads using the DBMS. In particular,

2.3. A concept for DBMS-based variant detection 21

DNA sequencing Read mapping

mapped reads

Variant calling

Optimizer
Storage
manager

Access
manager

Database management system

Database

Figure 2.9: Next-generation sequence analysis using DBMSs: We aim to store mapped
read data within the database and integrate variant calling as internal functionality.

we focus on SNV calling using relational database operators as a basis allowing us to
express the analysis via SQL. In the following section, we provide an overview on related
work for storing, integrating and analyzing genome data using DBMSs and show how
our work complements existing approaches or integrates with them.

2.3.3 Related work

DNA sequencing became widely applicable using the Sanger method at the end of
the 1970’s [113]. In the beginning, researchers had to familiarize themselves with the
technology, define data formats and methods for analysis. With the start of more
sophisticated sequencing projects such as the Human Genome Project [62] in 1990 more
sophisticated data management and analysis technologies were required to achieve the
goal to decode the complete human genome. Since the theory of relational database
systems was already introduced in 1970 [25] and matured within the next decades,
relational DBMSs were and are still a method of choice for managing genome data.

In this section, first, we provide an overview on approaches that mainly store and
integrate genome data, such as raw sequencing data or mapped read data, with other
data sources storing annotations such as gene positions or functions. We distinguish
application-driven approaches and data warehouse toolkits. In particular, the data
warehouse toolkits rely on relational DBMSs to facilitate the integration and analysis
of preprocessed data. These toolkits are highly related to the idea of a result store
discussed in Section 2.3.2. Then, we describe approaches that perform preprocessing,
such as read mapping, and the analysis of genome data, such as variant calling, directly
within a DBMS or use database technology to do so. We distinguish approaches for
sequence similarity search or read mapping and mapped read analysis including variant
calling. Finally, we show how our work complements and integrates with existing
approaches for storing, integrating and analyzing genome data using relational DBMSs.

22 2. Genome analysis and relational database technology

2.3.3.1 Approaches for data integration

DBMSs offer data integration functionality that is required in many application sce-
narios. In this section, first, we consider approaches designed for specific applications
within the context of genome analysis. Then, we present an overview on general data
warehouse approaches for managing and integrating genome(-related) data.

Application-driven approaches

The Nucleic Acids Research database issue provides an overview on existing databases
available within genome research and related fields [107]. It currently lists 1685 bio-
logical databases that are designed for specific analysis use cases. Some systems are
dedicated to the integration of data of a specific genome such as the human genome
(genome databases) or the storage of a specific type of data such as sequencing data.
Not all of these databases rely on a DBMS. Instead they are simple flat file repositories
allowing for online access to retrieve information. Here, we present a brief overview on
sequence databases and genome databases and discuss how database technology is used
within these use cases.

Management of sequencing data. To provide access to publicly available DNA se-
quences, systems to collect and manage sequence data from various sequencing experi-
ments were established. For example, the Genetic Sequence Data Bank (GenBank) [20]
was designed to store genome sequence data and associated annotation information. In
the early days, the data was maintained in a relational DBMS to benefit from advan-
tages such as schema modeling and data integrity checking. While the relational DBMS
provides a solid solution to store and maintain the data, several special-purpose tools
were built around the database system that allow for data exchange, online access and
interaction with the data. For example, the export of data was and is mainly imple-
mented using flat files allowing users to convert the data in any needed format, e.g.,
importing it into a local relational database system [29].

Current releases of GenBank indicate that no relational DBMS is used anymore to
maintain the sequencing data [24], but a specialized tool suite was built around the
existing flat files. This system setup is similar to other databases such as the European
Molecular Biology Laboratory’s Nucleotide Sequence Database [124].

These systems focus on the storage of DNA sequences of genomes, but not DNA se-
quences from NGS technologies, i.e., reads. To this end, the Sequence Read Archive
(SRA) was established [66]. It allows to submit different types of data such as raw
sequences and mapped reads using flat-file formats and manages these files.

Genome databases. Genome databases manage the data of specific genomes to
facilitate their analysis. For example, the Genome Data Base (GDB) [102] developed
in the 1980’s was used to facilitate the process of gene mapping that allows for insights
about which genes are involved in diseases that are transmitted from parents to children.
Furthermore, gene mapping can provide information about which chromosome contains
which gene and where this gene lies on that chromosome. The software was based on

2.3. A concept for DBMS-based variant detection 23

the relational DBMS Sybase. To allow for easy integration of new methods for gene
mapping, the GDB was designed to allow for easily adding new types of information
without redesigning the entire database. The database did not store sequence data
itself, but referred to data items stored in GenBank.

While GDB focused on the complete human genome, other databases exist that store
data about microbial genomes [89] or consider only single chromosomes [73]. For exam-
ple ACeDB [122] (A Caenorhabditis elegans Data Base) was developed to store and
maintain sequencing data and annotation information for worms. The main require-
ment was to create a database system that has a flexible data structure to adjust it if
new experience requires it. In contrast to GDB, ACeDB is an object database system
developed from scratch. The object model allows users and developers to flexibly create
individual objects and add or remove attributes. Relational DBMSs have a rather static
model making it difficult to achieve this goal. On top, ACeDB provides sophisticated
graphical views on the data that allow for navigation and manipulation of the data.
The unique combination of a visual interface and a flexible data storage backend might
be the reason why ACeDB is still listed as active genome database.

Nevertheless, technology behind relational DBMSs evolved and the systems matured.
For example, the Ensemble project [58] relies on a relational DBMS such as MySQL or
PostgreSQL, because flat-file storage requires deep knowledge about how to access data
efficiently [121]. Moreover, the limited scalability of ACeDB led to the choice for using
a relational DBMS. Ensemble provides a comprehensive overview on genomes as well
as an automatic annotation pipeline. The project stores various kinds of information
such as assembled DNA sequences and sequencing project related information, but also
computed features, e.g., alignment results, and predicted genes from the annotation
pipeline. The user has the possibility to access data via web, can download it as flat
files or use special software libraries that provide access to the database by encapsulating
SQL commands.

Data warehouse toolkits

Inspired by application-driven databases and fostered by the ongoing standardization
process within genome analysis, data warehouse toolkits were proposed. These ap-
proaches aim to provide a general infrastructure for managing, accessing and integrating
biological data. In Figure 2.10, we depict the general architecture of data warehouse
toolkits especially for biological use cases. The goal is to provide uniform access to
different biological data sources. The data sources comprise sequence databases as well
as databases about known variations [118] or genome information such as gene coding
regions. Since genetic variations affect gene products and interfere metabolism [46],
databases providing protein information can be integrated allowing researchers to ana-
lyze these effects. To integrate these different kinds of data, a uniform schema is used
and data-source-specific loaders extract, transform and load the data into the data
warehouse. Finally, the user can access the integrated database using plain SQL, appli-
cation programming interfaces (APIs) or specific retrieval tools that can also provide
data format conversion.

24 2. Genome analysis and relational database technology

...

DNA sequences

known variations

gene coding regions

protein interaction

User/ Application

Retrieval Layer

SQL

API

Tools

Data loaders

Database
Interface

File
Parser

Web-
service

Connector

DNA sequences
known variations

gene coding regions
protein interaction

...

Database management system

Database

Unifo
rm

 database

schema

Optimizer
Storage
manager

Access
manager

Figure 2.10: Data warehouse toolkits provide the necessary infrastructure such as data
loaders and access mechanisms to integrate biological data from different data sources.
The schema and tools are generic to support a wide range of projects or applications.

An example for a data warehouse toolkit is the Genome Information Management
System (GIMS) that uses an object database and integrates genome sequence data
with functional information [101]. Initially, the system was developed for analyzing
yeast genomes, but the developers took care to model the schema without too much
genome-specific characteristics allowing to apply it to other projects. Besides data
integration, the system design focuses on data analysis. To this end, specialized analysis
routines that directly incorporate the object schema were developed [27].

Other approaches, such as BioWarehouse [72], Atlas [115] or BioDWH [128], focus on
using relational database systems to facilitate the data integration task and to allow
for multi-database queries via SQL. While BioWarehouse focuses on expressing analysis
tasks using SQL, Atlas also provides a set of advanced retrieval applications that allow
for querying data and also provide data conversion functionality into common flat-
file formats. Additionally, Atlas provides an API for programming languages such
as C++ and Java. The API encapsulates SQL commands and allows for convenient
access from within programs. BioDWH provides similar functionality using object-
relational mappers such as the Hibernate2 framework. Instead of adapting the API to
different database systems, Hibernate encapsulates the characteristics to communicate
with different relational databases facilitating the exchange of database systems.

2.3.3.2 Approaches for DBMS-integrated genome analysis

So far, we considered approaches that store and integrate genome data and (partly)
use DBMSs for this purpose. These approaches have shown to provide new insights by

2http://www.hibernate.org/

http://www.hibernate.org/

2.3. A concept for DBMS-based variant detection 25

allowing researchers to query an integrated database. Another advantage of DBMS-
integrated analysis, is that the analysis is performed directly at the data site reducing
export and transfer overhead. The data integration approaches considered so far focus
on downstream analysis steps. In this section, we focus on approaches that integrate
primary analysis steps of NGS data into DBMSs, e.g., read mapping and variant calling.
We focus our overview on approaches using relational DBMSs or technology.

Read mapping and sequence similarity search. The task of read mapping is to
find the best matching position of a short DNA sequence, a read, within a large DNA
sequence, the reference (cf. Section 2.2.1.2). The problem is known as local align-
ment and an algorithm to compute the best matching position is the Smith-Waterman
Algorithm [120]. Nevertheless, the complexity of this algorithm is too large to scale
to large data sets. An optimized approach is the Basic Local Alignment Search Tool
(BLAST) [5] using small seeds that get extended to find optimal local alignments.
Besides exporting data from a relational DBMS to benefit from its query capabili-
ties and calling BLAST as external commandline tool [83], approaches were proposed
that directly integrate the BLAST functionality as table-valued UDFs into a relational
DBMS [57, 109, 123]. While BLAST provides sufficient performance for sequence sim-
ilarity use cases such as finding homologous sequences between species, the alignment
of millions and billions of NGS reads in reasonable time would be challenging [129].

To this end, more specific approaches were proposed that are highly tuned for the
mapping of short reads against a long reference sequence of the same species and im-
plemented within specialized commandline tools [78]. A straightforward approach to
integrate such functionality into a DBMS was proposed by Schapranow and Plattner in
the High-performance In-memory Genome (HIG) project [114]. The HIG platform uses
bwa [76] to perform the alignment task on (chunks of the) unmapped reads that re-
side in the database. In contrast, the Wisconsin’s High-throughput Alignment Method
(WHAM) provides read mapping functionality using indexing and optimization tech-
niques inspired by database systems [81].

Mapped read analysis and variant calling. After reads have been mapped, they
are analyzed. A typical first analysis is variant calling. We are only aware of one
approach by Fähnrich et al. using a DBMS that addresses this task. Fähnrich et
al. store mapped read data in a main-memory DBMS and perform SNV calling [43].
They report competitive runtime performance compared to state-of-the-art tools. To
achieve this, Fähnrich et al. propose a special database schema storing the sequences
of single chromosomes of a reference genome in separate tables. The actual processing
is a MapReduce-like approach. To the best of our knowledge, approaches using only
a relational processing stack have not incorporated variant calling so far. Cijvat et
al. introduce an approach that allows to compute coverages within mapped read data
sets [23]. Röhm and Blakeley use the commercial DBMS SQL Server 2008 that allows to
process genome data stored within flat-files using the file wrapper functionality of SQL
Server 2008. In addition, the authors show how to query unique reads and consensus
sequences [108].

26 2. Genome analysis and relational database technology

Name Focus Remarks

Application-driven data integration approaches
Genbank [20] DNA sequence storage flat-file based storage
AceDB [122] Data integration uses an object DBMS
Ensemble [58] Data integration uses a relational DBMS
SRA [66] Storage of NGS data flat files based storage

Data warehouse toolkits
GIMS [27] Data integration uses an object DBMS
Atlas [115] Data integration uses a relational DBMS
BioWarehouse [72] Data integration uses a relational DBMS
BioDWH [128] Data integration uses a relational DBMS

DBMS-integrated genome analysis
BLAST external [83] Sequence similarity search exports data and calls

BLAST externally
BLAST internal [109] Sequence similarity search calls BLAST via a UDF
WHAM [78] Read mapping inspired by DBMSs
HIG [114] Read mapping integrates the bwa align-

ment tool
Consensus calling [108] Mapped read analysis allows for querying flat-

file data via SQL
SNV calling [43] Mapped read analysis MapReduce-like data con-

version and processing

Table 2.1: Overview on related work to store, integrate and analyze genome data: Raw
sequencing data including read mappings are usually stored using flat file repositories.
Data integration is already supported using DBMSs. The integration of analysis tasks
already started, but SNV calling is not yet available as relational DBMS functionality.

2.3.3.3 Inference

In Table 2.1, we summarize our literature overview on data integration and analysis
approaches using DBMSs, in particular relational ones. The overview on application-
driven data integration approaches shows that relational database technology is used
for managing and integrating various kinds of information that are required for the
analysis of genomes. Nevertheless, storing raw sequencing data, especially data from
NGS experiments is mainly done using flat-file repositories. Within our concept, we
aim at storing read data directly within a relational DBMS to allow for its efficient
processing and storage using the DBMS.

The reviewed data warehouse toolkits show that database systems and especially re-
lational database systems are tools of choice to integrate different data sources for

2.4. Wrap up 27

...

DNA sequences

known variations

gene coding regions

protein interaction

User/ Application

Retrieval Layer

SQL

API

Tools

Variant calling

Mapped Reads
DNA sequences

known variations
gene coding regions
protein interaction

...

Database management system

Database

Unifo
rm

 database

schema

Optimizer
Storage
manager

Access
manager

Data loaders

Database
Interface

File
Parser

Web-
service

Connector

DNA sequencing Read mapping

Figure 2.11: Integrated NGS analysis using DBMSs: We want to develop methods
and techniques for storing mapped read data and performing variant detection within
DBMSs that can be integrated with existing data warehouse approaches.

biological use cases. Our proposed concept for DBMS-integrated variant detection in-
tegrates well with these data warehouse approaches. In Figure 2.11, we show a possible
integration scenario. Mapped reads are an additional data source that are integrated
with other data sources. On top, the variant calling functionality is part of the DBMS
and can be executed via different user interfaces.

Furthermore, our review shows that several approaches exist that integrate genome
analysis tasks such as similarity search, read mapping or the analysis of mapped reads
into a DBMS. Our initial concept from Section 2.3.2 aligns well with these approaches.
The HIG [114] and WHAM [78] approach show possible solutions to perform read
mapping as preparation tasks, for example during the import of data. Moreover, the
approach by Fähnrich et al. shows that SNV calling in a main-memory DBMS is
competitive to state-of-the-art analysis variant calling tools such as GATK [92] with
regard to runtime performance [43]. However, Fähnrich et al. use a MapReduce-like
processing paradigm. In our work, we focus on providing SNV calling functionality via
relational database operators to benefit from existing relational DBMS technology (cf.
Section 2.3.2).

2.4 Wrap up

In this section, we gave a high-level overview on the field of genome analysis that
comprises many research directions. A promising research field is to improve disease
detection and treatment by investigating genetic variations. A cost and time-effective
method to detect genetic variations is based on next-generation sequencing (NGS). We

28 2. Genome analysis and relational database technology

introduced the necessary analysis steps to derive genetic variations from NGS data and
explained related data-management challenges within the process.

A first challenge is the current data management method of NGS data itself, because
it mainly relies on flat-file repositories that cannot guarantee consistency and integrity.
With increasing amounts of NGS data, reliable data repositories get more and more
important. Further challenges are reliability and reproducibility of analysis results. The
data processing is mainly based on flat files and involves many different commandline
tools. Thus, it is hard to comprehend, which data contributed how to which analysis
result. Moreover, the results of variant detection must be integrated with other data
sources. Currently, the process is to generate results and integrate them later. In
the future, it could be also advantageous to perform variant detection on demand to
verify a hypothesis. Of course, this requires access to the respective data and analysis
functionality.

DBMSs are known to provide excellent data management capabilities that could be
used to address these challenges. Nevertheless, relational DBMSs lack support for
scientific and, in particular, genome analysis functionality. To this end, we proposed a
concept to integrate variant detection into a relational DBMS and answered our first
research question: Which steps of variant detection should we integrate into a DBMS?
We decide to store mapped read data in a DBMS, and integrate variant calling as
internal DBMS functionality. A review of related work has shown that this approach
can be integrated into existing data warehouse approaches for biological data to provide
an efficient, reliable and integrated analysis platform for the analysis of NGS data.

3. Relational storage and analysis of
read mapping data

In this chapter, we investigate approaches to store and analyze mapped reads using a
relational DBMS and answer our second research question: How can we express variant
detection using relational DBMS operators as a basis?

In Section 3.1, we give details about flat-file-based storage and analysis of mapped reads.
Then, in Section 3.2, we introduce a basic approach to store and analyze mapped reads
using a relational database system. The idea is to store reads as strings. Each character
within the string represents a single base. This approach resembles state-of-the-art flat-
file-based storage and analysis. However, existing string operators do not provide the
necessary functionality to perform genome analysis tasks, which forces users to define
their own UDFs. These UDFs tend to encapsulate much of the analysis logic making
them specialized programs run inside a database system. Such complex UDFs are less
transparent limiting the possibilities to optimize their execution automatically by the
DBMS. To this end, in Section 3.3, we present an extended database schema that avoids
the need for complex UDFs at all to perform SNV calling within a relational database
system. Finally, we present related work regarding the declarative analysis of mapped
reads.

3.1 A primer on file-based storage and processing of
mapped reads

In this section, we describe how state-of-the-art commandline tools process mapped
reads stored in flat-files to detect genetic variations. First, we introduce quasi-standard
flat file formats. Then, we briefly explain the general processing approach.

30 3. Relational storage and analysis of read mapping data

TTAGATAAGGATA*CTG
Deleted

base

Inserted
basesMismatching

base

Reads

Read 1(1)
Read 2
Read 3

Genome position

Reference sequence

Clipped
bases

Read mapping

Reads

AGCATGTTAGATAA*GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

00000000011111 1111122222222223333333333444444
12345678901234 5678901234567890123456789012345

aaaAGATAAGGATAaa
gcctaAGCTAA

Read 1(2) CAGCGGCAT

Pair of
reads

Figure 3.1: To encode the mapping of reads, it is not sufficient to just store the reads
as string of characters and the start position of the mapping, because the single bases
within a read may be inserted, deleted or clipped influencing the actual mapping posi-
tion of the single bases with regard to the reference sequence.

3.1.1 Flat-file formats

In Figure 3.1, we show our running example for this section depicting the mapping
of four reads against a reference sequence. Reads are sequences of several hundred
to thousand bases. A base is encoded using one of the characters A, C, G or T (cf.
Section 2.1). Thus, to store a read mapping, we have to store the read as string encoding
the bases and the start position of the mapping. In the case that all bases within a
read either match or mismatch (cf. Read 3 at position 11) their respective reference
base, this approach would be sufficient. Nevertheless, the single bases within a read
do not have to map properly to the reference sequence. For example, in Read 2, base
G is inserted at position 14 compared to the reference sequence. Other cases are the
deletion of bases (cf. Read 1(1) at position 19) or the clipping of bases indicating that
the read mapper ignored these bases during the read mapping (cf. Read 3 at position
4 to 8). Thus, these special cases have to be encoded, too. Specific data formats were
proposed to efficiently encode read mappings within flat files. In the following, we
explain the FASTA format used to store DNA sequences such as reference sequences
and the sequence alignment/ map (SAM) format used to encode the mapping of reads.

3.1.1.1 FASTA format

The FASTA format is named after the FASTA program package used for similarity
search within protein and DNA sequence databases [103, 104]. In Figure 3.2, we show
an example of FASTA encoded DNA sequences. Each sequence has a description line
(cf. line 1) giving information about the sequence that follows in the next lines (cf.
lines 2 - 5) until another description line (cf. line 6) introduces another DNA sequence
(cf. lines 7 - 9). There is no rule what information the description line must contain.
Usually, the name of the sequence or the species it belongs to should be reported.
Moreover, it is common to report the length of the sequence.

The reference sequence of our running example is part of the first sequence, seq_1, in
the FASTA file. To encode the base sequence, a special set of characters is used. Besides
(A)denine, (C)ytosine, (G)uanine and (T)hymine denoting one of the four bases a DNA
molecule is made of, the alphabet comprises 12 additional characters [97] denoting cases

3.1. A primer on file-based storage and processing of mapped reads 31

>seq_1 - example reference sequence - length 3001
AGCATGTTAGATAAGATAGCTGTGCTAGTAGGCAGTCAGCGCCATCTCACTTTCAGGACACCTTTTATTTGTTACTTCTC2
TTCACTGCAAAACTTCTTGAAACAGTACTTATTTTCTCTCCTCCATACACAATTGAAATGGCTCTCAACTCATGCCCAGA3
AGTCAGTGTTCAGTCTCTCACCTGGCAGATAGCAACTTACAAAGATGCCCCAACAATACCTCCTTGTGTCTAGACAGTCA4
TCATTATCCTTTACCTTTTTCTGTATTTATTTCTGCTCCTAAAAGGGATCNNNNNNNNNN5
>seq_2 - excerpt from chromosome 1 dna GRCh37:1:1:249250621:16
TGGGGTGAAGAGTTCAGTCACATGCGACCGGTGACTCCCTGTCCCCACCCCCATGACACTCCCCAGCCCTCCAAGGCCAC7
TGTGTTTCCCAGTTAGCTCAGAGCCTCAGTCGATCCCTGACCCAGCACCGGGCACTGATGAGACAGCGGCTGTTTGAGGA8
GCCACCTCCCAGCCACCTCGGGGCCAGGGCCAGGGTGTGCA9

Figure 3.2: A FASTA file is used to store protein and DNA sequences. The FASTA
format distinguishes description lines starting with > from those lines containing the
sequence.

where the actual base is not clear, e.g., “a(N)y”. The actual position of each base is
implicitly encoded as position inside the sequence string. The first base is at position
1, the second at position 2, and so forth. But this implicit encoding can be problematic
in the case, we store only parts of a complete reference sequence, e.g., the sequence of
a gene. The second sequence, seq_2, in the FASTA file is an excerpt of chromosome
1 of the human reference genome GRCh37 that has a complete length of 249,250,621
bases. Thus, it is not clear from the implicit encoding whether the first base in the
sequence is really the first base in the reference sequence. An additional information in
the description line might help but is not mandatory.

3.1.1.2 Sequence alignment/ map (SAM) format

A common file format for storing read mappings is the sequence alignment/ map (SAM)
format [77]. In Figure 3.3, we show a SAM file describing the mapping of the four reads
of our running example. The file consists of a header (lines 1 - 2) and an alignment
section (cf. lines 3 - 6). The header provides meta-information (@HD) such as the
used SAM-format version (VN) for compatibility reasons. Furthermore, a reference
sequence dictionary (@SQ) lists all used reference sequences by name (SN) and reports
their sequence length (LN). It is also possible to assign an optional uniform resource
identifier (URI) hinting to a reference sequence file, e.g., a FASTA file on a webserver,
or a website containing further details about the reference sequence.

The alignment section stores the actual mappings of each single read. To this end,
the SAM format specifies 11 mandatory fields describing the sequence, the mapping
and giving information about paired-end reads. These mandatory fields can be com-
plemented with a list of optional fields (not depicted in Figure 3.3). In the following,
we describe the fields in the context of NGS read mappings:

General sequence information. The QNAME attribute serves as identifier for a
read. Note, the QNAME is not unique. Reads that have the same QNAME belong
to the same paired-end read (cf. line 3 and 6 in Figure 3.3). The SEQ field contains
the base sequence of the read and the QUAL field stores a quality value indicating the
probability that the base is wrong according to the DNA sequencer. Usually, bases with

32 3. Relational storage and analysis of read mapping data

@HD VN:1.51
@SQ SN:seq_1 LN: 300
Read_1 99 seq_1 7 30 8M1I4M1D3M = 37 39 TTAGATAAGGATACTG <<<?????????))))3

4
5
6

Read_2 0 seq_1 9 30 3S6M1I4M2H * 0 0 AAAAGATAAGGATA <<<????????)))
Read_3 0 seq_1 9 30 5S6M * 0 0 GCCTAAGCTAA !!!!!??????
Read_1 147 seq_1 37 30 9M = 7 -39 CAGCGGCAT ?????????

2

QNAME FLAG RNAME POS MAPQ CIGAR RNEXT PNEXT TLEN SEQ QUAL

Figure 3.3: A SAM file encodes the mappings of reads with 11 mandatory fields.

an error probability below 1% are of interest for further analyses. In order to facilitate
the computation with and comparison of rather small error probabilities, the quality
values are phred-scaled [42]:

QPhred = −10 ∗ log10 P

In the following table, we show the result of the phred scaling for chosen quality values:

phred value ASCII code error probability
10 + 10% or 1 in 10
20 5 1% or 1 in 100
30 ? 0.1% or 1 in 1000
40 I 0.01% or 1 in 10,000
50 S 0.001% or 1 in 100,000
60] 0.0001% or 1 in 1,000,000

To make the phred-scaled quality scores human readable, the SAM format adds an offset
of 33 allowing for encoding phred-scaled quality values using visible ASCII characters.
The second column in the previous table shows the mapping of chosen quality values to
ASCII characters. For example, a question mark (?) represents a phred-scaled quality
value of 30 that is an error probability of 0.1%.

Mapping information. The actual mapping of a single read is encoded using the
FLAG, RNAME, POS, MAPQ and CIGAR field. The RNAME field contains the
reference sequence the read is mapped to. The given reference name can be looked up
in the reference sequence dictionary in the header to get more information about it.
POS states the start position of the read mapping. MAPQ gives the error probability
of the read mapping, which is also phred-scaled. The CIGAR field encodes the concrete
mapping of each base within a read as string. Thus, it accounts for inserted and deleted
bases. A CIGAR string consists of tuples of a number N and a character C. C indicates
the operation that has to be applied to N bases. Important CIGAR operations are
Insert, Delete, M atch and Soft clip. For example, the CIGAR string of the first read
in our example (cf. line 3) is 8M1I4M1D3M meaning that the first 8 bases match the
reference sequence. Then, the next (9th) base is inserted followed by four matching,
one deleted and three matching bases. A matching base does not mean that the base

3.1. A primer on file-based storage and processing of mapped reads 33

values are equal to the reference base. For example, the 8th base of the third read in our
example (cf. line 5) contains a mismatching base. The CIGAR string only states that
the first 5 bases are (soft) clipped, i.e., they are ignored (clipped) but not removed from
the sequence in SEQ (soft), and the last six bases match. Thus, it is not clear whether
a matching base is different from the reference or not. The FLAG field contains a
16-bit integer used for bitwise encoding of further information about the read mapping.
For example, the first bit indicates that the read is part of a paired-end read and the
third bit signals whether the read is unmapped. For more details on FLAG bits and
CIGAR operations, we refer the interested reader to the official Sequence alignment/
map Format Specification [111].

Paired-end read information. Finally, there are three fields storing information
about paired-end reads that consist of two separately mapped reads having the same
QNAME. Both reads within a pair are referenced to each other within a SAM file using
the RNAME, PNEXT and TLEN fields. RNAME indicates the reference sequence that
the other part of the paired-end read is mapped to. PNEXT gives the start position and
TLEN the number of bases covered by both ends of the read. TLEN is only available,
if both reads of a paired-end read are mapped to the same reference sequence.

Optional fields. Besides the 11 mandatory fields, a valid SAM row can contain a list
of optional fields that are appended at the end. Optional fields allow users and tools
to add further information about the read mapping or to store annotations. Optional
fields have the format TAG:TYPE:VALUE. A TAG is a two letter code indicating the
meaning of the VALUE. TYPE is a single letter, encoding the data type of VALUE.
Several standard tags1 exist. Some are used to speed up the lookup of information. For
example, R2 is used to store the sequence of the other read within a paired-end read.
Thus, the look up of this information does not require to search for the same QNAME
within the file.

3.1.2 Flat-file based SNV calling

In this section, we consider a typical processing approach to detect genetic variations
within mapped reads. In Section 2.2.1.3, we explained two general approaches to per-
form SNV calling. Both approaches require to have access to the single bases and their
related information such as quality scores at a specific genome position. Unfortunately,
the reference sequence encoding and the read mapping encoding rely on string represen-
tations of DNA sequences. Additionally, the SAM format uses implicit encodings of the
concrete mapping. Thus, part of the processing is to convert the data into a suitable
format, which allows for efficient access to the single bases of a genome position. In
Figure 3.4, we depict a common processing strategy for SNV calling that specialized
state-of-the-art analysis tools follow.

Basic processing approach. The sequence data from FASTA and SAM files are
combined and converted. The conversion includes to apply CIGAR operations to read

1http://samtools.github.io/hts-specs/SAMtags.pdf

http://samtools.github.io/hts-specs/SAMtags.pdf

34 3. Relational storage and analysis of read mapping data

@HD VN:1.51
@SQ SN:seq_1 LN: 300
Read_1 ... 7 30 8M1I4M1D3M ... TTAGATAAGGATACTG ????????????????3

4
5
6

Read_2 ... 9 30 3S6M1I4M2H ... AAAAGATAAGGATA ??????????????
Read_3 ... 9 30 5S6M ... GCCTAAGCTAA ??????
Read_1 ... 37 30 9M ... CAGCGGCAT ?????????

2

QNAME POS MAPQ CIGAR SEQ QUAL

SAM File

>seq_1 - example reference sequence - length 3001
AGCATGTTAGATAAGATAGCTGTGCTAGTAGGCAGTCAGCGCCATCTCACTTTCAGGACACCTTTTATTTGTTACTTCTC2
TTCACTGCAAAACTTCTTGAAACAGTACTTATTTTCTCTCCTCCATACACAATTGAAATGGCTCTCAACTCATGCCCAGA3
AGTCAGTGTTCAGTCTCTCACCTGGCAGATAGCAACTTACAAAGATGCCCCAACAATACCTCCTTGTGTCTAGACAGTCA4
TCATTATCCTTTACCTTTTTCTGTATTTATTTCTGCTCCTAAAAGGGATCTCTATGTAAA5
...

FASTA File

...
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
...

T
T
AAA
GGG
AAC
TTT
AAA
AAA
GG
AA
TT
AA

C
T
G

?
?
???
???
???
???
???
???
??
??
??
??

?
?
?

POS REF BASES QUAL

Base Pileup

T
T
A
G
A
T
A
A
G
A
T
A
G
C
T
G

Read data
and apply

CIGAR operations Determine genotype
and compare

with reference base

Figure 3.4: To detect SNVs, mapped reads and reference sequences have to be converted
into a processing-friendly data layout. Moreover, implicit mapping information encoded
within CIGAR strings must be made explicit.

sequences to determine the actual mapping position of each single base. Then, the reads
are split and the single bases are stored in a so called base pileup that provides direct
access to all bases mapped to a specific genome position including their quality scores.
This data structure facilitates the computation of genotypes and the comparison with
the reference sequence to derive SNVs.

Optimized flat-file processing. Specialized analysis tools that apply this processing
approach were developed to operate efficiently on disk-resident data and are optimized
for computer systems with small main memory. Working with disk-resident data implies
that data is read in chunks from disk and sequential access patterns are required to
reduce the disk latency. Having small main memory systems implies that the tools have
to reduce the size of intermediate results. Consequently, a straightforward processing
approach, i.e., reading data sequentially from disk and creating one large base pileup,
will not work due to memory consumption limitations. To overcome this issue, the
tools require SAM files to be sorted by reference sequence and mapping position (cf.
RNAME and POS fields in the SAM format). The sorting ensures that mapped reads
read from disk in chunks belong to the same genome region. Thus, the tools do not have
to maintain a complete base pileup, but only intermediate ones for genome regions that
are currently covered by the processed mapped reads. For example, the mapping of the
second read in the example SAM file in Figure 3.4 starts at position 9 implying that
it does not contribute any bases for genome positions less than 9. Since all reads are
sorted by mapping position, this conclusion is true for all subsequent reads in the file.
Thus, we can start to determine genotypes for genome position 7 and 8 and compare
it with the reference sequence in parallel and do not have to keep this part of the base
pileup in main memory.

The samtools suite. The samtools suite [77] contains the specialized analysis
tools samtools and bcftools for variant calling that follow the optimized process-
ing approach from above. samtools is responsible for creating the base pileup and
computing genotype likelihoods (cf. Section 2.2.1.3). Then, the genotype likelihoods

3.2. SNV calling using relational DBMSs 35

can be streamed to bcftools that performs the actual SNV calling as well as further
statistical analysis [74].

Filtering parameters. The tools provide several options to manipulate the SNV call-
ing result. Besides restricting the analysis to a specific genome region, it is possible
to set parameters that have a direct impact on the analysis result. For example, sam-
tools allows the user to filter reads that have a mapping quality (MAPQ) below a
given threshold. The same principle can be applied to single base values. Moreover,
samtools filters reads based on the given FLAG information such as reads that are
still unmapped, reads that failed previous quality control tests, reads that are marked
as duplicate or reads that are part of a read pair that has only one properly mapped
read. All these parameters can be adjusted by the user. Moreover, the user can choose
whether samtools adjusts read mapping qualities or replaces base call quality values
by Base Alignment Quality (BAQ) values that have shown to improve the SNV calling
quality in the presence of small insertions and deletions [75]. A full list of currently
available options in samtools can be found at the documentation website2.

3.1.3 Focus of this thesis

In this thesis, we are interested in the general capabilities of relational DBMSs to store
and process read mapping data. The use of a DBMS for storing mapped read data will
enhance the data management quality of the genome analysis process. For example,
using a relational DBMS, we can directly associate reference sequences and read map-
pings and avoid the loose coupling present in flat-file-based storage. Our main focus
is to provide competitive analysis runtime performance within the DBMS for the core
processing functionality behind SNV calling. This core processing functionality com-
prises the filtering of reads based on genome positions and data characteristics and the
processing of bases per genome position. We do not focus on data manipulation steps,
e.g., replacing quality values by BAQs, and other statistical methods as introduced by
the samtools suite to improve the outcome of SNV calling, because such approaches
only complement the core processing functionality. Moreover, according to DePristo et
al., adjustments to the data, such as the recalibration of base call quality values in the
presence of small insertions and deletions, are not part of the variant detection process,
but of the data preprocessing step [30]. Thus, we assume that such data manipulations
have already taken place when we query the data.

3.2 SNV calling using relational DBMSs

Existing approaches that enable users to analyze mapped reads and to call variants
using DBMSs do not support all steps required for SNV calling or rely on non-relational
processing strategies (cf. Section 2.3.3.2). In this section, we investigate approaches to
perform SNV calling using a relational database system.

2http://www.htslib.org/doc/samtools.html

http://www.htslib.org/doc/samtools.html

36 3. Relational storage and analysis of read mapping data

Reference_Genome Contig Read

RG_ID

RG_NAME

OID

VARCHAR

C_ID

C_NAME²

OID

VARCHAR

C_RG_ID

C_SEQ²

OID

VARCHAR

Sample_Genome

SG_ID

SG_NAME

OID

VARCHAR

R_ID

R_QNAME¹

OID

VARCHAR

R_FLAG¹

R_C_ID

INT

OID

R_POS¹

R_MAPQ¹

INT

INT

R_CIGAR¹

R_TLEN¹

VARCHAR

INT

R_SEQ¹

R_QUAL¹

VARCHAR

VARCHAR

R_SG_ID

R_MATE_ID

OID

OID

¹ SAM field ² FASTA row

Primary
Key

Foreign
Key

Figure 3.5: The read-centric database schema maps SAM fields and FASTA rows to
table attributes facilitating read-centric analyses. In addition, importing and exporting
data from and into file formats is straightforward.

First, we introduce a database schema, the read-centric database schema, generalized
from related work storing data similar to the SAM format. Then, we show how we can
analyze mapped reads using SQL based on this database schema. Since the database
schema stores mapping information implicit within strings, we cannot directly access
single bases per genome position using standard relational database operators. To this
end, we require genome-specific UDFs to convert the data. Moreover, existing concepts
are not designed to support SNV calling. Thus, we extend the existing concepts on a
conceptual level to allow for declarative SNV calling. Finally, we conduct an assessment
of the approaches based on the respective literature showing that the processing suffers
from large intermediate results and processing overhead introduced by complex UDFs.
Increasing main memory capacities mitigate the problems due to large intermediate
results. Nevertheless, the processing overhead remains leading us to the idea of a
database schema that allows for SNV calling within a relational DBMS without the
need for complex conversion UDFs.

3.2.1 The read-centric database schema

A general approach to store mapped read data is to map the SAM fields and FASTA
rows to database table attributes. All approaches that we identified in Section 2.3.3.2
for mapped read analysis using a DBMS follow this idea [23, 43, 108]. In Figure 3.5, we
depict a generalized database schema. It consists of the four tables Reference_Genome,
Contig, Sample_Genome and Read.

The attributes of table Read reflect the mandatory fields of a SAM file. We omit
the fields RNEXT and PNEXT describing information about reference sequence and
position of the other read within a paired-end read and replace it by a foreign key

3.2. SNV calling using relational DBMSs 37

@HD VN:1.51
@SQ SN:seq_1 LN: 300
Read_1 ... seq_1 7 30 8M1I4M1D3M ... TTAGATAAGGATACTG <<<?????????))))3

4
5

Read_2 ... seq_1 9 30 3S6M1I4M2H ... AAAAGATAAGGATA <<<????????)))

...

2

QNAME RNAME POS MAPQ CIGAR SEQ QUAL

SAM File

6
7

>seq_1 - example reference sequence - length 3001
AGCATGTTAGATAAGATAGCTGTGCTAGTAGGCAGTCAGCGCC...2

FASTA File

Contig
C_ID

0
...

C_SEQ

AGCATGTTAGATAAGATAGCTGTGCTAGTAGGCAGTCAGCGCC...
...

0
...

C_NAME

seq_1
...

C_RG_ID

Reference_Genome
RG_ID

0
...

RG_NAME

species_1
...

Read_3 ... seq_1 9 30 5S6M ... GCCTAAGCTAA !!!!!??????
Read_1 ... seq_1 37 30 9M ... CAGCGGCAT ?????????

Read
R_ID R_CIGAR

0
1
2
3

...

R_SEQ

8M1I4M1D3M
3S6M1I4M2H

5S6M
9M
...

TTAGATAAGGATACTG
AAAAGATAAGGATA

GCCTAAGCTAA
CAGCGGCAT

...

R_POS R_MAPQ

30
30
30
30
...

7
9
9

37
...

R_QNAME

Read_1
Read_2
Read_3
Read_1

...

... ... R_QUAL

<<<?????????))))
<<<????????)))

!!!!!??????
?????????

...

R_C_ID

0
0
0
0

...

R_SG_ID

0
0
0
0

...

R_MATE_ID

3
1
2
0

...

Sample_Genome
SG_ID

0
...

SG_NAME

individual_X
...

Figure 3.6: The mapping of genome data stored in FASTA and SAM files is straight-
forward. Every FASTA line and SAM field is an attribute in the database schema.

relationship to table Read itself. Moreover, every read is associated with a tuple from
table Sample_Genome containing meta information about the genome’s individual or
origin such as a describing name. Since we also store reference sequence data in the
database, we can directly associate each mapped read with a reference genome. Since
a genome consists of separate chromosomes that have their own DNA sequence, we
represent the single DNA sequences making up a genome as Contiguous sequence.
Such a Contig is a sequence stored in a FASTA file. We connect table Read and Contig
with a foreign-key relationship to indicate reference sequence the read is mapped to.
Each tuple in the Contig table belongs to a Reference_Genome. The schema resembles
a star schema, where table Read is the fact table and all other tables are dimension
tables. Thus, most information is centered around read data. For that reason, we call
this schema read-centric database schema. In the lower part of Figure 3.6, we show how
the data of our running example from Figure 3.1 is stored in a read-centric database.

3.2.2 Toward database-integrated SNV calling

We aim to integrate SNV calling into a relational database system to benefit from the
internal query optimization and advanced data management mechanisms. Therefore,
it is crucial to use existing database operators for analysis, because these are well
integrated into the database system stack.

In this section, we describe how we can call SNVs using SQL based on the read-centric
database schema. First, we consider how we can filter reads based on mapping char-
acteristics. Then, we explain how we can perform genome-position specific analysis,
i.e., processing single bases per genome position. Furthermore, we discuss necessary
extension for existing approaches to finally call SNVs.

38 3. Relational storage and analysis of read mapping data

1 SELECT R_QNAME, R_SEQ
2 FROM Read JOIN Sample_Genome
3 ON R_SG_ID = SG_ID
4 WHERE SG_NAME = "human1"
5 AND R_MAPQ > 29;

Listing 3.1 Filter reads of genome hu-
man1 that have a high mapping quality.

1 SELECT R_QNAME, R_SEQ
2 FROM Read JOIN Sample_Genome
3 ON R_SG_ID = SG_ID
4 WHERE SG_NAME = "human1"
5 AND (R_FLAG & 4) != 0;

Listing 3.2 Filter reads of genome human1
that are unmapped.

Read filtering. Since the read-centric database schema is centered around reads, it
allows for convenient analysis of read-related data such as genome position, mapping
quality or FLAG information via SQL. It is also possible to query reads that have a
deletion or insertion using the like operator. In Listing 3.1 and Listing 3.2, we show
two read-centric SQL queries. The first query filters reads of a sample genome called
human1 that have a mapping quality (R_MAPQ) greater 29. These can be considered
as high quality reads. The second query filters reads of the same sample genome that
are unmapped according to the read mapper. To this end, we perform a check whether
the third bit is set within the FLAG value using a bitwise AND operation and checking
whether the result is not zero [111].

These kinds of queries are interesting for filtering mapped reads and selecting those
for further analysis. In case genome annotation information would be available within
the database, we could also query for all reads that cover a specific gene for further
processing.

Nevertheless, analyses that consider single genome positions are harder to implement,
because the actual position information is implicitly encoded. Thus, genome-specific
analysis functionality is required. In Listing 3.3, we show an SQL query to filter all
reads of genome human1 that cover the region of 1,000 to 2,000 of chromosome 1 of the
human reference genome. To this end, we have to check which reads have at least one
end laying inside the interval (cf. lines 6 - 7) or overlap the complete interval (cf. line
8). To enable such a query, the genome-specific UDF CIGAR_LENGTH is required
that computes the length of a mapped read according to the CIGAR operations. If we
would simply determine the length of the sequence string (R_SEQ), we would ignore
inserted and deleted bases that impact the overall mapped read length.

Position-specific analysis. Now that we know, how we can query reads that overlap a
specific genome region, we might be interested in the read coverage within this region.
The coverage indicates the number of reads that overlap a specific genome position.
This is important to retrieve further information about the quality of analysis results
such as SNVs. Studies have shown that an average coverage of 30 is needed to detect
homozygous and heterozygous SNVs reliably [119]. However, coverage can vary over
the genome, especially if we filter low quality reads or exclude single bases.

In order to compute the coverage using the read-centric database schema, we have to
count how many reads overlap a single genome position. The problem is to determine

3.2. SNV calling using relational DBMSs 39

1 SELECT R_QNAME, R_SEQ
2 FROM Read JOIN Sample_Genome ON R_SG_ID = SG_ID
3 JOIN Contig ON R_CID = R_ID
4 JOIN Reference_Genome ON C_RG_ID = RG_ID
5 WHERE SG_NAME = "human1" AND RG_NAME = "human" AND C_NAME = "chromosome1"
6 AND (R_POS >= 1,000 AND R_POS <= 2,000)
7 OR (R_POS + CIGAR_LENGTH(R_CIGAR) BETWEEN 1,000 AND 2,000)
8 OR (R_POS < 1,000 AND R_POS + CIGAR_LENGTH(R_CIGAR) > 2,000);

Listing 3.3: Filter reads of genome human1 that overlap region 1,000 to 2,000 of
chromosome1 of the human reference genome.

1 SELECT s.value AS pos, COUNT(∗) AS coverage
2 FROM Read JOIN Sample_Genome ON R_SG_ID = SG_ID
3 JOIN Contig ON R_CID = C_ID
4 JOIN Reference_Genome ON C_RG_ID = RG_ID
5 /∗ returns a sequence of continuous numbers in the requested range ∗/
6 JOIN generate_series(1000,2000) AS s
7 ON s.value BETWEEN R_POS AND R_POS + CIGAR_LENGTH(R_CIGAR)
8 WHERE SG_NAME = "human1" AND RG_NAME = "human" AND C_NAME = "chromosome1"
9 GROUP BY pos;

Listing 3.4: Computing coverages according to [23].

the right grouping attribute. Simply using R_POS does not work as it only indicates
the position of the first base of the read. A solution could be to shrink the interval to a
single genome position and to count all reads that overlap the single genome position.
Obviously, this introduces much processing overhead, because we execute the query
1,001 times instead of once.

Cijvat et al. propose to join the reads with an artificial table representing the genome
region of interest [23]. In Listing 3.4, we depict the idea. The UDF generate_series
creates a sequence of continuous numbers in the range of 1,000 to 2,000 representing
the single positions of the genome region of interest (line 6). Then, the reads fulfilling
the filter predicates are joined with this sequence of numbers. The join predicate checks
whether the current position is covered by the mapped read (line 7) using the same UDF
to evaluate the CIGAR as in Listing 3.3. Grouping by pos (line 9) and counting the
reads that were joined with the same genome position results in the coverage (line 1).

Another approach is to use table-valued UDFs that split the reads of interest into
single bases allowing for easy aggregation. For example, Röhm and Blakeley show how
to integrate such functionality into SQL Server 2008 [108]. In Listing 3.5, we show the
SQL query adapted to fit our general database schema. Commercial database systems
such as SQL Server or Oracle provide a CROSS APPLY operator that is similar to
an INNER JOIN, but accepts table-valued UDFs. The CROSS APPLY operator can
apply the rows of the left side to the table-valued UDF and combines each left row with
all rows generated by the table-valued UDF on the right side. The UDF introduced by

40 3. Relational storage and analysis of read mapping data

1 SELECT pos, COUNT(base) AS coverage
2 FROM Read JOIN Sample_Genome
3 ON R_SG_ID = SG_ID
4 JOIN Contig ON R_CID = C_ID
5 JOIN Reference_Genome ON C_RG_ID = RG_ID
6 /∗ returns (pos, base, qual) tuples ∗/
7 CROSS APPLY PivotAlignment(R_POS,R_SEQ,R_QUAL,R_CIGAR)
8 WHERE SG_NAME = "human1" AND RG_NAME = "human" AND C_NAME = "chromosome1"
9 AND R_POS BETWEEN 1,000 AND 2,000
10 OR R_POS + CIGAR_LENGTH(R_CIGAR) BETWEEN 1,000 AND 2,000
11 OR (R_POS < 1,000 AND R_POS + CIGAR_LENGTH(R_CIGAR) > 2,000)
12 GROUP BY pos;

Listing 3.5: Computing coverage and calling consensus bases (genotypes) (adapted
from [108]).

1 SELECT pos, ref_base, COUNT(base) AS coverage,
2 CallBase(base, qual) AS genotype
3 FROM Read JOIN /∗ join clause (see Listing 3.5) ∗/
4 /∗ returns (pos, base, qual, ref_base) tuples ∗/
5 CROSS APPLY PivotAlignment(R_POS,R_SEQ,R_QUAL,R_CIGAR,C_SEQ)
6 WHERE /∗ Region and other filters (see Listing 3.5) ∗/
7 GROUP BY pos, ref_base
8 HAVING genoype <> ref_base
9 ORDER BY pos;

Listing 3.6: Calling SNVs with the approach by Röhm and Blakeley [108].

Röhm and Blakeley to use with CROSS APPLY is PivotAlignment. PivotAlignment
converts a given read (from the left side) into (pos, base, qual) tuples based on the given
read sequence (R_SEQ, R_QUAL), mapping position (R_POS) and CIGAR string
(R_CIGAR). This allows us to group reads by pos and COUNT bases per genome
position.

Röhm and Blakeley originally introduced this approach to call a consensus sequence.
To this end, they introduced a UDA CallBase that takes the single base and quality
values per genome position and derives a consensus base per genome position. Con-
catenating the consensus bases of all positions results in a consensus sequence. Our
use case is related. We are also interested in consensus bases per genome position
that are genotypes, but for the purpose of finding differences to a given reference se-
quence. What is missing in the approach by Röhm, is to incorporate reference sequence
data. To this end, we could extend the PivotAlignment function to also convert the
reference sequence. In Listing 3.6, we depict the idea. PivotAlignment additionally
consumes the reference sequence (C_SEQ) belonging to the read and returns tuples of
(pos, base, qual, ref_base) (line 5). Then, we can use a HAVING clause to compare
the computed genotype (line 2) with the reference base and filter those positions that

3.2. SNV calling using relational DBMSs 41

1 SELECT pos, ref_base, CallBase(base, qual) AS genotype
2 FROM
3 (SELECT s.value AS pos,
4 _RefBase(s.value, C_SEQ) AS ref_base,
5 _Base(s.value, R_SEQ, R_POS, R_CIGAR) AS base,
6 _Qual(s.value, R_QUAL, R_POS, R_CIGAR) AS qual
7 FROM Read JOIN /∗ join clause (see Listing 3.4) ∗/
8 /∗ returns a sequence of continuous numbers in the requested range ∗/
9 JOIN generate_series(1000,2000) AS s
10 ON s.value BETWEEN R_POS AND R_POS + CIGAR_LENGTH(R_CIGAR)
11 WHERE /∗ Filter predicates (see Listing 3.4) ∗/)
12 GROUP BY pos, ref_base
13 HAVING genoype <> ref_base
14 ORDER BY pos;

Listing 3.7: Calling SNVs adapted from the approach by Cijvat et al. [23].

do not differ (line 8). The final ORDER BY clause returns the found SNVs sorted by
position (line 9), since specialized analysis tools also provide sorted outputs.

We can extend the approach by Cijvat et al. in a similar way. In Listing 3.7, we depict
necessary extensions to call SNVs. The inner query extracts all genome-position related
information required for SNV calling: the reference base (line 4, UDF _RefBase) and
the information about each base and its quality per read (line 5 – 6, UDFs _Base and
_Qual). Then, in the outer query CallBase aggregates all bases of all reads that overlap
the genome region of interest (line 9). Finally, we use the same HAVING clause as in
Listing 3.6 to filter SNVs (line 13).

3.2.3 Qualitative assessment
Röhm and Blakeley state that their approach leads to large intermediate results due to
the PivotAlignment function. Instead of storing position information implicitly within
the read sequence, i.e., using strings, these are now made explicit and must be mate-
rialized. To reduce the overhead, Röhm and Blakeley introduce another UDF called
AssembleConsensus(), which encapsulates the complete query and makes the assump-
tion that reads are sorted by genome position. Thus, reads overlap during processing
and can be split and aggregated interleaved, which reduces the intermediate result
size. This approach is similar to state-of-the-art analysis tools such as samtools (cf.
Section 3.1.2).

Furthermore, the authors state that parallelizing their approach requires additional
logic. Since we operate on already sorted data, a suitable parallelization strategy is to
process contiguous genome regions in parallel. Thus, we have to make sure that we do
not miss overlapping reads during chunking. Apart from this additional logic that must
be integrated into the database system, we already hide a lot of analysis functionality
within the specialized UDF. Consequently, we end up with a specialized analysis tool
integrated into the DBMS. This limits the portability and comprehensibility of the
approach and sacrifices the advantages of a declarative query processing engine.

42 3. Relational storage and analysis of read mapping data

In the last decade, the amount of available main memory within computer systems
increased by one order of magnitude [55] allowing to keep much larger amounts of
data, e.g., mapped reads (complete databases) or intermediate results, in memory.
This removes the need for highly specialized UDFs that rely on sorted reads as sug-
gested by Röhm and Blakeley, but also requires the use of well designed DBMSs to
benefit most from increasing amounts of main memory and modern parallel computer
architectures [125]. For example, Cijvat et al. use the column-oriented main-memory
DBMS MonetDB for analyzing NGS data. Their work shows that data conversion is
the most time consuming task besides data import within their mapped read analysis
process [23]. Thus, they suggest to cache the conversion result to speedup subsequent
analyses, which becomes a valid option due to increasing main-memory capacities.

Overall, we conclude that the approach proposed by Cijvat et al. is more promising
to provide a competitive SNV calling solution based on relational database technology.
The highly complex UDF introduced by Röhm and Blakeley might lead to competitive
analysis runtime, but sacrifices the benefits of a DBMS with regard to data manage-
ment capabilities such as self-optimizing and flexible declarative query processing. The
runtime conversion proposed by Cijvat et al. is an alternative, but introduces process-
ing overhead due to the conversion. Thus, we raise the question how can we store read
mapping information explicitly removing the need for data conversion during runtime
at all. Then, we do not have to execute conversion UDFs and should be able to query
genome data mainly using relational database operators. Such an approach also frees
resources and should allow us to keep more mapped read data in memory, because we
do not have to cache converted data additionally.

3.3 A pileup approach for relational SNV calling
In the previous section, we extended existing approaches using a read-centric database
schema for mapped read analysis to support SNV calling. The qualitative assessment
revealed that the need for data conversion introduces inherent overhead and requires
caching strategies to reduce it. In this section, we introduce the base-centric database
schema that can be seen as relational implementation of a base pileup (cf. Section 3.1.2).
The aim of our design is to enable users to perform position-specific analysis steps such
as SNV calling without the need of UDFs for data conversion. To this end, we store
mapping information already explicit within the database allowing for convenient access
to single bases using standard database operators. Thus, we can perform SNV calling
requiring only a genome-specific user-defined aggregation function (UDA). Finally, we
discuss benefits and challenges of our proposed approach for relational SNV calling.

3.3.1 The base-centric database schema
The base-centric database schema centers all information around the single bases of
mapped reads. We depict the schema in Figure 3.8. The schema consists of six ta-
bles: Reference_Genome, Contig, Reference_Base, Sample_Genome, Read and Sam-
ple_Genome. Conceptually, we extend the read-centric schema (cf. Section 3.2.1) by
the two tables Sample_Base and Reference_Base.

3.3. A pileup approach for relational SNV calling 43

Reference_Genome Contig

RG_ID

RG_NAME

OID

VARCHAR

C_ID

C_NAME²

OID

VARCHAR

C_RG_ID OID

Sample_Genome

SG_ID

SG_NAME

OID

VARCHAR

Read

R_ID

R_QNAME¹

OID

VARCHAR

R_FLAG¹

R_C_ID

INT

OID

R_POS¹

R_MAPQ¹

INT

INT

R_TLEN¹

R_SG_ID

INT

OID

R_MATE_ID OID

Primary
Key

Foreign
Key

Reference_Base

RB_ID

RB_BASE_VALUE²

OID

CHAR

RB_POSITION

RB_C_ID

INT

OID

Sample_Base

SB_ID

SB_BASE_VALUE1,3

OID

CHAR

SB_BASE_QUALITY1

SB_INSERT_OFFSET3

INT

INT

SB_RB_ID3 OID

SB_READ_ID OID

R_FRONT_HARD_CLIP_LENGTH1,3 INT

R_REAR_HARD_CLIP_LENGTH1,3

R_FRONT_SOFT_CLIP_SEQ1,3

VARCHAR

VARCHAR

R_REAR_SOFT_CLIP_SEQ1,3

R_FRONT_SOFT_CLIP_QUAL1,3

VARCHAR

VARCHAR

R_REAR_SOFT_CLIP_QUAL1,3 VARCHAR

¹ SAM field

² FASTA row/ data

³ CIGAR information

Figure 3.8: The base-centric database schema stores mapping information formerly
encoded within CIGAR strings explicit facilitating base- and position-centric analyses.

The table Reference_Genome provides meta data about reference genome data sets.
A reference genome consists of several Contiguous regions. In contrast to the read-
centric database schema, we do not store the reference sequences in the Contig table as
strings, but store the single bases including their position information in the new table
Reference_Base. Moreover, we keep a foreign-key (RB_C_ID) for every reference base
referencing the contiguous region it belongs to.

Table Sample_Genome contains meta data about NGS data sets. Such data sets
consist of many reads that are stored in table Read. In contrast to the read-centric
database schema, we avoid to store read sequences as strings, but store every sin-
gle base in table Sample_Base. Moreover, we establish a direct connection between
each mapped sample base and the corresponding reference base using a foreign-key
relationship (SB_RB_ID). In contrast to the straightforward conversion of reference
sequences into single reference bases, we have to consider the implicit mapping infor-
mation encoded in the CIGAR string of each read when converting the base sequence
into single bases. To this end, we extend table Read and Sample_Base with further
attributes. We use these additional attributes to make the implicit information encoded
in a CIGAR string explicit. In Figure 3.9, we provide an example of the conversion of
the first two reads of our running example from Figure 3.1. We only show attributes
of tables Reference_Base, Sample_Base and Read that are used to store the map-

44 3. Relational storage and analysis of read mapping data

@HD VN:1.51
@SQ SN:seq_1 LN: 300
Read_1 ... 7 30 8M1I4M1D3M ... TTAGATAAGGATACTG <<<?????????))))3

4
5

Read_2 ... 9 30 3S6M1I4M2H ... AAAAGATAAGGATA <<<????????)))
...

2

QNAME POS MAPQ CIGAR SEQ QUAL

SAM File

>seq_1 - example reference sequence - length 3001
AGCATGTTAGATAAGATAGCTGTGCTAGTAGGCAGTCAGCGCC...2

FASTA File

Reference_Base
RB_BASE_
VALUE

RB_ID RB_
POSITION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
...

A
G
C
A
T
G
T
T
A
G
A
T
A
A
G
A
T
A
G
C
T
G
T
G
...

Read

R_ID

R_FRONT_
HARD_
CLIP_

LENGTH

0
1

...

R_REAR_
HARD_
CLIP_

LENGTH

R_FRONT_
SOFT_
CLIP_
SEQ

R_REAR_
SOFT_
CLIP_
SEQ

R_FRONT_
SOFT_
CLIP_
QUAL

R_REAR_
SOFT_
CLIP_
QUAL

0
0

...

0
2

...
AAA

... ...
???

... ...

R_POS R_MAPQ

30
30
...

7
9

...

R_QNAME

Read_1
Read_2

... Hard Clipped Bases

Making mapping
information explicit

Sample_Base
SB_BASE_
VALUE

SB_
RB_ID

6
7
8
9

10
11
12
13
13
14
15
16
17
18
19
20
21

8
9

10
11
12
13
13
14
15
16
17
...

T
T
A
G
A
T
A
A
G
G
A
T
A
X
C
T
G
A
G
A
T
A
A
G
G
A
T
A
...

SB_INSERT_
OFFSET

SB_
READ_ID

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
...

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1

...

Inserted Base

Deleted Base

Soft Clipped Bases

Figure 3.9: The mapping information is distributed over several attributes within the
base-centric database schema to enable direct access to data at single genome-positions.

ping information and the base sequences. The lines between table Reference_Base and
Sample_Base indicate the mapping of the reads to the reference sequence that is en-
coded by the foreign-key relationship between attributes RB_ID and SB_RB_ID. The
lines between tables Sample_Base and Read visualize the decomposition of the base
sequence.

In the following, we explain in detail how we establish the foreign-key relationship be-
tween reference and sample bases. Moreover, we explain how we convert single CIGAR
operations to encode the individual mapping of single sample bases.

Deriving foreign keys to encode base mappings. The challenge for deriving
the correct foreign keys between table Sample_Base and Reference_Base is that the
necessary data is distributed over several data files. Reference sequences (contigs) are
stored in FASTA files and read mappings in SAM files. The mapping between them is
expressed by the given start position of the read mapping and the reference sequence
(contig) (cf. Section 3.1.1.2). To derive the mapping between every single base of a read
and the respective base of a contig, we assume that we imported the respective contig
before. During the import, we ensure that the single bases of a contig are imported
in order of the given sequence. We assign an artificial primary key value (RB_ID)
to each base that is incremented by 1. If table Reference_Base is empty the first
reference base gets the primary key 0. In the case that we already imported another
contig, the primary key of the first base of the currently imported reference sequence
is #tuplesReference_Base − 1. Thus, we can ensure that the primary key values of the

3.3. A pileup approach for relational SNV calling 45

bases of the same reference sequence are continuous. In Figure 3.9, we show an example
for the reference sequence of our running example. To import a read that is mapped
to the contig, we have to determine the primary key id of the first base of the contig
chromosome1. We can do this using following aggregation query:

1 SELECT min(RB_ID) AS MIN_C_ID FROM Reference_Base
2 JOIN CONTIG on RB_C_ID = C_ID WHERE C_NAME = ’ chromosome1 ’;

Then, we can use the minimum primary key value within the contig (MIN_C_ID), the
start mapping position of a read (POS) and the offset of the specific base within a read
(BASE_OFFSET(POS, CIGAR)) to compute the SB_RB_ID:

SB_RB_ID = MIN_C_ID + POS +BASE_OFFSET (POS,CIGAR)− 1

Subtracting 1 is only necessary if the position information is one-based and not zero-
based, i.e., the first base in a reference sequence has position 1 and not 0. The
BASE_OFFSET depends on the position and the CIGAR operation applied to the
base. Usually, the BASE_OFFSET is equal to the zero-based position of the base
within a read. However, certain CIGAR operations modify the BASE_OFFSET, e.g.,
to encode the position of inserted bases correctly.

Deriving BASE_OFFSETs and representing CIGAR operations. In the fol-
lowing, we explain how we map the single CIGAR operations to our database schema
and derive BASE_OFFSETs:

Match (M) Amatching base is inserted into table Sample_Base with an SB_Insert_-
Offset of 0. The quality value is stored as normal phred-scaled quality score
and not as ASCII encoded quality score as specified by the SAM format (cf.
Section 3.1.1.2). The necessary BASE_OFFSET to compute the SB_RB_ID is
equal to the zero-based position of the base within the read minus the number of
bases that were inserted before the matching base.

Deletion (D) A deleted base is handled like a matching base having the artificial base
value X that is not part of the official alphabet encoding nucleotide bases [97].

Insertion (I) An inserted base is indicated by an SB_Insert_Offset greater 0. The
BASE_OFFSET is the same as of the last matching or deleted base, which leads
to the same SB_RB_ID value of the last matching or deleted base.

Hard clip (H) A hard clipped base was ignored during read mapping and removed
from the read sequence. Thus, we have no bases to store in table Sample_Base.
Since we translate CIGAR operations into database fields, we would loose the
information of the hard clip. Thus, we store the number of hard clipped bases as
read attribute. According to the SAM format specification [111], a hard clip can
only be present as first and/or last operation. Thus, we require two attributes to

46 3. Relational storage and analysis of read mapping data

encode hard clip information: one for a possible front and one for a possible rear
hard clip, i.e, R_FRONT_HARD_CLIP_LENGTH and R_REAR_HARD_-
CLIP_LENGTH respectively.

Soft clip (S) A soft clip is like a hard clip, except that the ignored bases and their
quality scores are still part of the overall base sequence and and quality string.
Since, we have no mapping information to store the single base within table Sam-
ple_Base, we also use read attributes to save this information. According to the
SAM format specification, soft clips “may only have hard clips between them and
the ends of the CIGAR string” [111]. Consequently, we need four string attributes:
two indicating the clipped bases and their quality scores in front of a CIGAR string
(R_FRONT_SOFT_CLIP_SEQ, R_FRONT_SOFT_CLIP_QUAL) and two
attributes for clipped bases and their quality scores at the end of a CIGAR string
(R_REAR_SOFT_CLIP_SEQ, R_REAR_SOFT_CLIP_QUAL).

The SAM format specification lists two further CIGAR operations: N and P. N indi-
cates that a certain number of reference bases is simply skipped. Nevertheless, according
to the manual [111], N is not defined for NGS read mapping. Thus, we do not define a
rule for it. P can be used to specify the alignment between reads in case of a differing
number of inserted bases at the same genome position. We can encode the correct
ordering using additionally inserted aN y bases.

These rules only apply for mapped reads (R_FLAG & 4 <> 0). In case of unmapped
reads, we can store the base sequence and the corresponding quality scores using the
attributes R_FRONT_SOFT_CLIP_SEQ and R_FRONT_SOFT_CLIP_QUAL.

3.3.2 Relational SNV calling
The base-centric database schema resembles a star schema. Table Sample_Base is the
fact table. All other tables are dimension tables. The base-centric database schema
allows us to call SNVs purely relational with the help of genome-specific UDAs. In
Listing 3.8, we show the SQL query to call SNVs. We join the fact table Sample_Base
with all necessary dimension tables (lines 3 – 7). This allows for filtering specific data
sets (lines 8 – 9). The storage of every single reference and sample base allows for precise
position filtering without additional genome-specific functionality (line 10). Moreover,
we can filter low quality sample bases (line 13). Additionally, we have to exclude
inserted sample bases (line 12) as these are assigned to a reference base of interest, but
only to encode their insertion position. They are not really mapped to a reference base
and, thus, modify the analysis result if not filtered.

The join result is aggregated using the genome-specific UDF CallBase (line 2). The ag-
gregation result is finally compared with the reference base and those rows are excluded
that show no differing genotype or have a coverage below a given threshold (line 18).
Note that we additionally return the contig name (C_NAME) (line 1) and, thus, sort
by the contig name (line 19) to provide support for multi contig queries (line 9), which
is important when querying complete genomes. This extended functionality can also
be applied to the read-centric SNV calling approaches (cf. Listing 3.6 and Listing 3.7).

3.3. A pileup approach for relational SNV calling 47

1 SELECT C_NAME, RB_POSITION, RB_BASE_VALUE, COUNT(SB_BASE_VALUE) AS
2 coverage, CallBase(SB_BASE_VALUE, SB_BASE_QUALITY) genotype
3 FROM Read JOIN Sample_Genome ON R_SG_ID = SG_ID
4 JOIN Contig ON R_CID = C_ID
5 JOIN Reference_Genome ON C_RG_ID = RG_ID
6 JOIN Reference_Base SB_RB_ID = RB_ID
7 JOIN Sample_Base ON SB_R_ID = R_ID
8 WHERE SG_NAME = "human1" AND RG_NAME = "human"
9 AND (C_NAME = "chromosome1" OR /∗ multiple contigs ∗/)
10 AND RB_POSITION BETWEEN 1,000 AND 2,000
11 AND R_MAPQ > 29 AND R_FLAG & 4 <> 0
12 AND SB_INSERT_OFFSET = 0
13 AND SB_BASE_CALL_QUALITY > 30
14 /∗ if the read is part of a paired−end read (1st bit set in FLAG)
15 than both ends should be mapped (2nd bit is set) ∗/
16 AND (R_FLAG & 1 = 0 OR (R_FLAG & 1 <> 0 AND R_FLAG & 2 = 0))
17 GROUP BY C_NAME, RB_POSITION, RB_BASE_VALUE
18 HAVING RB_BASE_VALUE <> genotype AND coverage > 5
19 ORDER BY C_NAME, RB_POSITION;

Listing 3.8: Calling genotypes using the base-centric database schema.

3.3.3 Relationship to read-centric database approaches

Obviously, base-centric and read-centric database schema share the same data hierarchy.
The base-centric schema adds one further level to the read-centric database schema
making mapping information explicit. Thus, the base-centric database schema can be
seen as a relational encoding of a base pileup allowing for convenient access to single
bases and genome positions without the need of UDFs.

The base-centric schema can also be interpreted as view on read-centric data. To
actually transform the data, a UDF would be required that converts data stored in
the read-centric database schema into the base-centric layout similar to converting raw

Read-centric data Base-centric data

UDF
SNV Calling
via SQL

Reads of interest

1 2

3

Figure 3.10: The base-centric database schema can be used as intermediate data rep-
resentation 2 to perform SNV calling 3 on a subset of read-centric data 1 .

48 3. Relational storage and analysis of read mapping data

1 SELECT R_ID,
2 R_FRONT_SOFT_CLIP_SEQ +
3 _SEQ(R_POS,SB_INSERT_OFFSET,SB_BASE_VALUE) +
4 R_REAR_SOFT_CLIP_SEQ,
5 R_FRONT_SOFT_CLIP_QUAL +
6 _QUAL(R_POS,SB_INSERT_OFFSET,SB_BASE_VALUE,
7 SB_BASE_QUALITY,SB_INSERT_OFFSET) +
8 R_FRONT_SOFT_CLIP_QUAL,
9 _CIGAR(R_POS,SB_INSERT_OFFSET,SB_BASE_VALUE,
10 R_... /∗ clipping fields ∗/)
11 FROM Read JOIN Sample_Base ON R_ID = SB_READ_ID
12 WHERE SB_READ_ID IS IN (
13 SELECT DISTINCT R_ID
14 FROM Sample_Genome ON R_SG_ID = SG_ID
15 JOIN Contig ON R_CID = C_ID
16 JOIN Reference_Genome ON C_RG_ID = RG_ID
17 JOIN Reference_Base SB_RB_ID = RB_ID
18 JOIN Sample_Base ON SB_R_ID = R_ID
19 WHERE SG_NAME = "human1" AND RG_NAME = "human"
20 AND C_NAME = "chromosome1"
21 AND RB_POSITION BETWEEN 1,000 AND 2,000
22)
23 GROUP BY R_ID;

Listing 3.9: Converting reads from the base-centric database schema into the SAM
format.

input data from files (cf. Figure 3.9). Thus, we can use the base-centric database
schema as intermediate data representation to implement a read-centric SNV calling
approach. We depict the idea in Figure 3.10. We select the reads of interest 1 ,
e.g., those reads that overlap a specific genome region, and convert them into a base-
centric data layout 2 . Then, we call SNVs on the base-centric data as described in
Section 3.3.2 3 . This approach is highly related to the approaches by Cijvat et al.
and Röhm and Blakeley that we conceptually extended to support SNV calling. Thus,
we use it to evaluate a read-centric SNV calling approach within this thesis.

3.3.4 A word on SAM formatted data exports

Since the base-centric database schema stores mapping information explicitly, it requires
additional effort to reconstruct SAM formatted reads. In Listing 3.9, we show a query
to export reads of human1 that cover the region from base 1000 to 2000 of chromosome1
in the human reference genome. The three UDAs _SEQ (line 3), _QUAL (line 6) and
_CIGAR (line 9) are responsible to reconstruct the respective SAM fields. Each UDA
requires the actual position and insert offset of the base or quality score to determine
the correct position in the resulting string. If we can guarantee that the order of tuples
is the same as during the import, then we do not require the position information,
because all information comes in the correct sequence. The inner query (line 13 – 21)
returns a distinct set of R_IDs that fulfill the region criteria.

3.3. A pileup approach for relational SNV calling 49

3.3.5 Qualitative assessment

In this section, we examine the benefits and challenges of our base-centric database
schema in comparison to the read-centric database schema.

Clearly, the ability to perform genome-position related analyses such as SNV calling
without using a conversion UDF is an advantage of our base-centric database schema,
because it removes conversion overhead. Moreover, we can rely on relational database
operators during processing and do not have to integrate genome-specific functionality
into the processing stack, except UDAs for calling genotypes or to reconstruct SAM
fields. This increases the applicability of our approach to different relational DBMSs
and facilitates query processing using a relational database engine. To sum it up, we
see the following two key benefits of storing read mapping information explicitly as in
the base-centric database schema:

• The query processing relies completely on relational database operators. Thus,
we can use existing database operators to perform SNV calling within a rela-
tional database system, which reduces implementation and maintenance effort
and facilitates declarative analyses.

• We avoid conversion overhead during runtime and do not have to use non-relational
conversion UDFs.

Nevertheless, we trade off these benefits for several challenges. A first drawback of
storing mapping information explicitly is that it takes additional effort to export data
in an implicit format such as the SAM format (cf. Section 3.3.4). A read-centric
database schema has clear advantages here. However, it should be the goal to analyze
the data completely inside the database, when it is stored there once. Thus, an export
as SAM formatted output should be an exception.

A critical disadvantage of the explicit encoding of read mappings is that we always have
to process the complete table Sample_Base. The size of table Sample_Base directly
depends on the data set size. For example, the human reference genome comprises ca.
3.2 billion bases. Thus, an NGS data set with a coverage of four contains up to 12.8
billion mapped bases. Each of the reference and sample bases is represented by a row in
table Reference_Base or Sample_Base respectively. Thus, in order to apply a genome
region filter, we first filter the dimension table, table Reference_Base, and then join the
result with the complete fact table, table Sample_Base, containing 12.8 billion mapped
bases, even for small genome regions to analyze. In contrast, in a read-centric approach,
we filter table Read and join it with table Contig. Following our example of 12.8 billion
bases and assuming an average read length of 100 bases, we only have to filter and
join 128 million reads, which is 100 times less the effort than using the base-centric
approach. Then, we convert the selected sample and reference data using a genome-
specific conversion UDF. The UDF can directly produce a ready-to-aggregate output,
joining the single bases internally or we can use a base-centric-like processing approach

50 3. Relational storage and analysis of read mapping data

(cf. Section 3.3.2 and Section 3.3.3) joining two smaller tables (depending on the filters
on table Read and Contig). Thus, the processing runtime using a base-centric database
schema appears to be not competitive on small genome regions of interest compared to
a read-centric analysis approach or state-of-the-art analysis tools.

Another challenge of the base-centric database schema is the increased storage demand,
which is a direct consequence of explicitly storing mapping information. For example,
we store the mapping position for every mapped base as a foreign key. Considering our
example from above, we have to store 12.8 billion foreign keys, one for each sample base.
In contrast, the read-centric database schema encodes the concrete mapping position
via the CIGAR string and the position of the base within the sequence string. Nev-
ertheless, also a read-centric database approach faces the problem of the large storage
consumption of the internal base pileup, but has the possibility to create base pileups on
chunks of the mapped reads assuming the reads are sorted by mapping position [108].

In sum, we see the following two key challenges when storing read mapping information
explicitly as in the base-centric database schema:

• The explicit encoding of read mappings introduces large overhead during query
processing likely leading to non competitive runtime performance.

• Furthermore, the explicit encoding of read mappings increases the data volume
drastically making it hard to compete with state-of-the-art storage approaches.

Conclusion. The base-centric database schema allows us to express SNV calling using
relational database operators and additionally avoids conversion overhead during pro-
cessing. Therefore, we require to store read mapping information explicitly. However,
processing and storing explicit read mapping information leads to overheads that sacri-
fice the advantages. Consequently, to enable relational SNV calling using a base-centric
database schema, we have to investigate efficient processing and storage techniques,
otherwise the practical use of the base-centric database schema is questionable.

3.4 Related work
In this section, we review further related work to our work. First, we consider ap-
proaches that use DBMSs for analysis of mapped reads. Then, we discuss approaches
that provide declarative access for NGS data sets.

Mapped read analysis using DBMSs

We already analyzed the approaches by Cijvat et al. and Röhm and Blakeley and
explained the relationship to our approach. Both approaches store data in a read-
centric database schema and need to make mapping information explicit during runtime
to perform position-related analyses such as SNV calling. We can use our base-centric
database schema to represent the result of the conversion and use our defined processing

3.4. Related work 51

scheme to call SNVs. In addition, we can use our database schema standalone to encode
read mapping information in a database-friendly way allowing for convenient access via
SQL and processing using standard relational database operators.

Another approach that directly provides SNV calling functionality within a database
systems is proposed by Fähnrich et al. [43]. This approach also works on read-centric
data and uses a map-reduce processing framework to convert reads into base pileups.
The work shows that the in-memory map-reduce approach scales well with the number
of cores that modern computer systems provide. We aim to also benefit from in-memory
processing, but want to use mostly relational database operators that are optimized and
well integrated into the overall system.

Declarative data access for NGS data

In recent years, several approaches were proposed to facilitate genome analysis, espe-
cially NGS analysis, by using declarative query languages. Motivated by the idea of
a layered genome analysis, Bafna et al. propose the Genome Query Language (GQL).
GQL is designed to provide declarative access to the evidence layer, i.e., the raw data
such as mapped reads, from the inference layer, e.g., a SNV caller consuming all mapped
reads in specific genome region [6]. Considering the idea of a layered genome analysis,
we integrate both layers in a relational database system. We can query the evidence
data, i.e., mapped reads, in a specific genome region, and then infer a genotype to call
SNVs.

GQL also supports interval processing, e.g., to search for regions that overlap a specific
interval, intersect different intervals to find overlaps or merging intervals [67]. To this
end, special operators are introduced such as the mapjoin operator that joins intervals
by searching for intersections. Furthermore, GQL can be used to uncover structural
genetic variation [67]. In contrast, our approach focuses on SNV calling in specific
intervals.

The GenAp approach integrates the idea of interval joins into SparkSQL [68] to benefit
from the high performance computing infrastructure. Thus, it should also be possible to
integrate the interval processing into a relational DBMS. Another interesting approach
that uses an SQL-like syntax, but in a non relational database system is GORpipe [49].
The purpose of GORpipe is to process position-specific data fast. Therefore, the au-
thors define a data format and propose a query language that combines unix pipes
with an SQL-like syntax to filter or join data. The approach allows for fast stream
processing of position-specific data. The authors build GORpipe as replacement for
their conventional relational DBMS that was not able to scale to increasing amounts of
data. Nevertheless, this example shows the potential usefulness of SQL in the context
of genome analysis.

Another declarative query language proposed for genome-related data is the Genometric
Query Language (GMQL) [90]. It also facilitates region-specific analysis of downstream
analysis results such as variant calls. Furthermore, it provides a flexible data format

52 3. Relational storage and analysis of read mapping data

to encode a wide variety of region-specific data. Using the underlying data model, the
position-specific data can be enriched with metadata [22]. The syntax is similar to SQL,
but the underlying execution environment is build from scratch and not integrated into
a relational DBMS.

3.5 Wrap up
In this chapter, we answered our second research question: How can we express variant
detection using relational DBMS operators as a basis? First, we provided conceptual
extensions for existing approaches to analyze mapped reads allowing us to support SNV
calling. However, these extended approaches rely partly on complex conversion UDFs.
Since we aim to perform variant calling mainly using relational database operators
to leverage the optimized processing engine of a DBMS, we derived the base-centric
database schema. The base-centric database schema is a relational representation of a
base pileup. We can use this schema either standalone to store mapped reads avoiding to
make mapping information explicit during query processing using complex UDFs. Fur-
thermore, we can use the base-centric database schema as intermediate representation
when calling SNVs using the read-centric database schema. Nevertheless, our approach
poses two challenges: First, the explicit encoding of mapping information leads to a
large increase of storage size. Second, representing every single base in an NGS data set
always requires to process the complete fact table independent of the queried genome
range. Moreover, the size of the fact table depends on the stored data set size. Thus, it
is not clear yet whether a base-centric approach can provide competitive runtime per-
formance compared to state-of-the art analysis approaches. In the following chapters,
we will investigate solutions to address these challenges. In Chapter 4, we examine
efficient processing strategies for base-centric data. Then, we consider genome-specific
compression schemes and processing of compressed genome data in Chapter 5.

4. Efficient SNV detection using
relational database operators

In this chapter, we examine strategies to process mapped read data efficiently using a
relational DBMS. To this end, we examine the implementation space of our proposed re-
lational SNV calling approach from Section 3.3.2. For our evaluation, we use a machine
with enough main memory to keep intermediate results in main memory. Moreover, we
use a main-memory DBMS that is designed to make benefit from increasing amounts
of main memory and accompanying parallel computer architectures. With this setup,
we do not have to rely on specialized main-memory saving UDFs that limit the ben-
efits of DBMSs (cf. Section 3.2.3). In contrast, we use standard relational database
operators to perform the analysis. Our investigation will lead us to an answer to our
third research question: How can we process genome data sets as efficient as specialized
analysis tools using relational DBMSs?

In Section 4.1, we give a brief overview on the design space of main-memory DBMSs
and introduce our evaluation database system. Then, we perform an initial runtime
and scalability analysis of the SNV detection query based on a hash join and sort-
based aggregation implementation. We report and discuss the results in Section 4.2.
Our analysis reveals that database approaches suffer from processing overhead due to
joins, especially when we analyze large genome regions. In contrast, on small genome
regions, we can achieve competitive runtime performance. To provide better scalability
to larger genome regions, we discuss alternative join processing strategies in Section 4.3.
The most promising approach is the invisible join technique [3]. Although restricted in
its applicability, we show how we can apply it to our SNV calling use case. Using the
invisible join technique, aggregation processing becomes the bottleneck in our processing
pipeline. In Section 4.4, we investigate a technique called array-based aggregation to
further speed up the SNV calling analysis.

54 4. Efficient SNV detection using relational database operators

(a) 1995 (Data taken from [54, Fig. 1.15]) (b) 2010 (Data taken from [55, Fig. 2.1])

Figure 4.1: Overview on latency and capacity of the single components of the memory
hierarchy of a typical server computer from 1995 and 2010. Increasing capacities of
main memory allow for using main memory as primary data storage. To unleash the
full potential of a main memory storage system, optimizing for efficient memory access
is vital to reduce the increased gap between access times of higher hierarchy elements.

4.1 A primer on main-memory DBMSs
We use a main-memory DBMS to evaluate our SNV calling concepts from Chapter 3,
since main-memory DBMSs are designed to leverage modern computer architectures
and promise significant speedups especially for analytical workloads [44, 60] compared
to disk-based DBMSs. In this section, we briefly describe important concepts of main-
memory DBMSs to give insights about the inner mechanics of our evaluation DBMS.

4.1.1 Disk-based vs. main-memory DBMSs

The CPU of a computer system can process data only if it is available in the registers
of the CPU. In earlier computer systems, registers were small in size and data had
to be fetched from the larger but slower main memory. To mitigate the lower access
performance, a fast hardware cache was built in between to reduce the number of main
memory accesses during data processing. Nevertheless, the main memory capacities of
a computer system were also too small to keep all data required by a program such as a
DBMS in main memory. Moreover, main memory is volatile. If the system is shutdown,
the data is lost. Thus, data was stored primarily on disk and had to be loaded into main
memory to process it. Within this memory hierarchy, the gap between access latencies
of the different levels increases from top to bottom reaching its peak when accessing
data on disk that was more than four orders of magnitude slower than to access data
in main memory and up to six orders of magnitude slower than accessing data in the
CPU registers. In Figure 4.1a, we show the relationship of latencies and capacities of
the single elements of the memory hierarchy for a typical server computer from 1995.

Within the last two decades the gap between access latencies of higher hierarchy el-
ements (registers vs. caches and main memory) increased by up to three orders of
magnitude requiring the use of much more sophisticated hardware caches with several

4.1. A primer on main-memory DBMSs 55

layers to fully utilize the potential power of a modern CPU (cf. Figure 4.1b). At the
same time, the capacity of the lower hierarchy elements (disk and main memory vs.
caches and registers) increased by two to three orders of magnitude allowing to keep
the complete database in main memory, which avoids costly disk accesses.

The idea of main memory DBMSs is not an invention of the last decade. For example,
Garcia-Molina and Salem already provide an overview on important concepts for main-
memory DBMSs in 1992 [45]. However, only the growth of main memory capacities in
recent years enabled the practical use of main-memory DBMSs. The obvious advantage
of a main-memory DBMS is that it does not have to access the disk anymore to get the
required data. Thus, there is no need for a sophisticated buffer manager. Studies have
shown that the buffer manager accounts for up to 30% of the executed instructions in a
typical database workload [52] indicating the potential performance gain by completely
removing the buffer manager. Furthermore, other design decisions of traditional DBMSs
should be carefully revised to increase the performance further [125]. For example,
hardware prices dropped over the last 20 years allowing users to buy many servers
instead of just one. Thus, a second server can be used as hot standby to reduce the risk
of data loss due to main memory only storage in case one machines fails [64]. This will
also reduce the need for costly backups of data on disks. Nevertheless, to fully exploit
the potential of main memory storage in terms of improved runtime performance, the
mechanisms and functioning of hardware caches have to be considered more carefully
than they were in disk-based database systems [86] due to the focus on hiding disk
latencies and avoiding disk accesses. Since cache efficiency is a primary design goal in
main-memory DBMSs to provide peak performance compared to disk-based DBMSs,
we briefly outline how hardware caches work.

How do hardware caches work? Hardware caches are used to close the large access
gap between main memory and CPU (registers). Modern CPUs use several layers of
hardware caches (cf. Figure 4.1b). An upper cache layer always contains a subset of
the data of the lower cache layer or main memory. Higher cache levels provide faster
access, but are much more expensive. Thus, they are kept small. If we access a data
item in main memory, first, we check whether the data item already resides in one of the
cache layers. In case we find the data item in the first level cache (L1 cache hit), we can
directly access it without accessing lower levels leading to optimal access performance.
In case of a cache miss, we check the lower cache levels. If the data item does not reside
in one of the cache layers, we have to take the highest access penalties and retrieve
the data item from main memory. To this end, the data item is loaded into all cache
levels, possibly evicting already loaded data, since the cache is full. Finally, the CPU
can access the data item. To increase the chance of cache hits, caches make use of the
principles of spatial and temporal locality.

Leveraging spatial locality. To reduce the effort of loading data to caches, not only
one data item is loaded into the cache, but several data items forming a data
block of a specific size. To this end, the complete cache is divided into cache lines
that are loaded and evicted as whole. A typical cache line size of a first level cache

56 4. Efficient SNV detection using relational database operators

Reference_Base

RB_BASE_
VALUE

RB_ID RB_
POSITION

0
1
2
3
4
5
6
7
8

...

1
2
3
4
5
6
7
8
9

...

A
G
C
A
T
G
T
T
A
...

Column-oriented storage layout

0 1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 9 ...

A G C A T G T T A ...

Row-oriented storage layout

0 1 A 1 2 G 2 3 C 3 4 A
4 5 T 5 6 G 6 7 T 7 8 T

8 9 A ...

Cache line size Cache line size Cache line size Cache line size Cache line sizeCache line size

Figure 4.2: Column-oriented vs. row-oriented storage layout: Storing complete tuples
consecutively provides highest cache efficiency when we often access all attributes of a
tuple. If we only focus on single columns, a column-oriented storage layout allows for
cache efficient data access rather than a row-oriented storage layout.

is 64 bytes. Thus, in case that we access data items that reside in consecutive
main memory locations, i.e., are spatially close, the chance is high that we already
cached the next data item as we have loaded a complete cache line.

Leveraging temporal locality. In case all cache lines are full and we need to load
another non-cached data block, we have to decide which already loaded cache line
has to be evicted. Typical strategies are first in, first out (FIFO) or least recently
used (LRU). Especially, LRU allows to leverage temporal locality in the case that
we access one data item several times. Thus, we can avoid to always evict and
load the data item, i.e., the corresponding data block.

Having the general principles of hardware caches in mind, the algorithm definition as
well as the choice of the data layout has great impact on whether we can leverage the
caches to provide peak performance or not.

4.1.2 Column-oriented vs. row-oriented storage layout

A first decision, we have to make in a relational database systems is whether to use
a column-oriented storage layout [26] or a row-oriented storage layout to represent a
relational table in main memory. In a row-oriented storage layout, we store the single at-
tribute values of a tuple consecutively in main memory. In contrast, a column-oriented
storage layout keeps all attribute values of all tuples in a table (a column) consecu-
tively in main memory. In Figure 4.2, we depict both storage layouts for the table
Reference_Base that we use to store reference sequences in the base-centric database
schema (cf. Section 3.3.1).

Cache effectiveness. Considering cache effectiveness, it depends on the concrete use
case whether a row store or a column store is more favorable. In case that we often
access all attributes of a single tuple right after each other, we would prefer a row
store, because when we load the first attribute to access it, it is very likely that we

4.1. A primer on main-memory DBMSs 57

already loaded the following attributes. Such a use case is typical in a transaction
processing system that manipulates or inserts complete records. In contrast, analytical
queries often filter and aggregate single columns. Thus, a column store increases the
cache efficiency, because we load multiple attribute values required for processing when
we access a single attribute within the column (cf. gray lines in Figure 4.2). This
difference in the application domain is not only restricted to main memory DBMSs,
but also plays a vital role for disk-resident DBMSs to reduce the amount of data that
has to be transferred from disk to main memory [3, 126].

Compression. Another advantage of column stores is the possibility to compress single
columns using a compression scheme that fits best to the data. For example, a column
that stores sorted numerical values is best compressed using run-length encoding that
represents runs of the same value storing the value itself once and an additional run
length [2]. Furthermore, using lightweight compression schemes makes it possible to
process the data in its compressed form avoiding processing overhead [2]. For example,
a scan on a run-length compressed column just has to compare the value of a run once
and can induce the resulting tuple identifiers that match instead of scanning all values
of all tuples. In contrast, using a row-oriented storage layout limits the applicability of
compression schemes, since we store values of different columns (and possibly different
value domains) consecutively in memory that are harder to compress, in particular
using lightweight compression schemes.

Tuple reconstruction. In a row store, all attribute values of a tuple are stored
consecutively in memory. Thus, reconstructing tuples is straightforward. In contrast, in
a column stores all values of a tuple are spread over multiple columns located at different
memory locations. Thus, it is likely that we cannot benefit from cache-efficient access.
Such tuple reconstructions are necessary for nearly all queries, since we either process
multiple columns of a table or have to return the query result consisting of multiple
attributes per tuple. Thus, the question is when to materialize the tuples. In a column
store it is usually a good choice to postpone the tuple reconstruction to the latest point,
so called late materialization [2]. Thus, we can process multiple columns independently,
which might avoid to materialize not needed tuples due to a filter reducing the tuple
reconstruction overhead at all. Moreover, aggregation operations likely reduce the result
set. Furthermore, we can operate as long as possible on compressed columns and
benefit from cache-efficient processing during the complete query processing (assuming
a column-oriented workload), since we do not reconstruct tuples in between.

4.1.3 Tuple-at-a-time vs. operator-at-a-time processing

Another decision that we have to make in a database system is whether to use an
operator-at-a-processing [87] or a tuple-at-a-time processing model [47]. In Figure 4.3,
we depict the general principle of a tuple-at-a-time processing engine. The single opera-
tors that make up a query such as a selection, join or aggregation operation are arranged
in a sequence. Each subsequent operator can request the next() tuple from the previous
operator. This processing model allows for pipeline processing, since multiple tuples

58 4. Efficient SNV detection using relational database operators

Database

Result

Operator 3

...

Operator 2

Operator 1

next()

next()

next() tuple

tuple

tuple

Database

Result

Operator 3

...

Operator 2

Operator 1

tuple

tuple

tuples

Tuple-at-a-time processing Operator-at-a-time processing

Figure 4.3: Tuple-at-a-time vs. operator-at-a-time processing: An operator-at-a-time
processing engine executes each operator that process the complete input exactly once.
In the tuple-at-a-time processing model, each operator is called per tuple introducing
large function call overhead.

can be processed at the same time at different stages of the pipeline. Hence, it is well
suited if data arrives with delay. Moreover, the size of intermediate results is small,
because every operator produces a single tuple, except pipeline breaking operators such
as sort or aggregation. Nevertheless, such operations are usually performed on small
intermediate results at the end of the query plan.

A different approach is operator-at-a-time processing of complete tables or columns.
In Figure 4.3, we depict the idea on the right side. Every operator consumes either
all tuples of the input table or the complete output of the previous operator. To this
end, every operator has to compute and materialize its complete result before the next
operator can start. This processing model allows for intra-operator parallelism using
loop unrolling or SIMD, since multiple tuples are processed within one operator.

Function call overhead. Furthermore, an operator-at-a-time processing engine re-
quires only a few function calls to process the data. Function calls always introduce
overhead due to stack manipulations, e.g., for copying function arguments on the stack
and restoring registers when returning. Since a tuple-at-a-time processing engine usu-
ally processes only a single tuple within one function call, the function call overhead per
processed tuple is large. In contrast, an operator of an operator-at-a-time processing
engine is called once to process the complete data set [13].

Memory consumption. On the other hand, an operator-at-a-time processing engine
can require large amounts of memory, because all intermediate results have to be ma-
terialized. Here, a tuple-at-a-time processing engine has advantages, since no results
have to be materialized during processing. Moreover, the pipelining of tuples within a
tuple-at-a-time processing engine allows to start processing data although not all data
already resides in memory. This, is especially important in disk-based DBMSs that
focus on hiding disk access latencies.

4.2. An initial runtime evaluation 59

4.1.4 Evaluation system

In Chapter 3, we formulated the task of SNV calling as an aggregation task within a
relational database, which requires efficient processing of large tables. Since we operate
mostly on single columns, we choose a column store to perform our evaluations within
this chapter. Furthermore, we decide for an operator-at-a-time processing engine to
reduce the function call overhead and provide most efficient execution of our analytical
workloads.

Since 2012, the database working group at the University of Magdeburg investigates
how co-processors, in particular graphics processing units (GPUs), can be exploited to
speedup database systems [15, 17, 18, 93]. These efforts resulted in the development
of CoGaDB (the Column-Oriented GPU-Accelerated DBMS) [14] allowing for robust
query processing in co-processor accelerated database systems [16]. CoGaDB provides
state-of-the-art implementations of relational database operators for CPU and GPU.
Since the integration of GPUs into DBMSs provides only significant speedups if data
already resides in main memory [53], CoGaDB is a main-memory DBMS by design.
In addition, CoGaDB provides extension interfaces for compression techniques. To
conduct our research on efficient SNV calling using relational, main-memory DBMS,
we choose CoGaDB as evaluation platform.

4.2 An initial runtime evaluation
In this section, we conduct an initial performance evaluation of database-driven SNV
detection. Our goal is to investigate the runtime behavior of our proposed SNV calling
query presented in Listing 3.8 using CoGaDB and to determine how an operator-at-at-
time query execution engine competes with specialized analysis tools. First, we explain
the logical query plan behind the SQL query that we use for all our experiments.
Then, we perform an initial runtime performance analysis using a hash join and sort-
based aggregation strategy. Furthermore, we investigate the impact of the conceptual
differences when storing mapped read data using either a read-centric or base-centric
database schema (cf. Section 3.3.5). We implement and evaluate both approaches. We
call the different storage setups DBSseq and DBSbase. DBSseq stores DNA sequences
such as reads and contigs in a read-centric database schema (cf. Section 3.2.1) and
converts data on-the-fly into a base-centric representation to finally execute the SNV
calling query. DBSbase stores the data directly in a base-centric database schema (cf.
Section 3.3.1).

4.2.1 Logical query plan

In order to perform our runtime performance analysis, we fixed the logical query plan
to avoid side effects in our evaluation due to optimizer decisions as these might have
impact on the runtime results. Furthermore, automatic query optimization is not in
the focus of our work. We are interested in how a relational operator-at-a-time query
engine and their operators behave assuming the following query workload.

60 4. Efficient SNV detection using relational database operators

⋈RG_ID =
C_RG_ID

𝚪RB_POSITION, RB_BASE_VALUE;
Count(SB_BASE_VALUE) 🠢 COVERAGE,
CallBase(SB_BASE_VALUE, SB_BASE_QUALITY) 🠢 GENOTYPE

𝞂RG_NAME = 'human'

Reference_Genome Contig

𝞂C_NAME = 'chromosome1'

Reference_Base

⋈ C_ID =
RB_C_ID

𝞂RB_POSITION >= 1000 AND
RB_POSITION <= 2000 Sample_Base

⋈RB_ID =
SB_RB_ID

𝞂SB_INSERT_OFFET == 0
AND SB_BASE_QUALITY >= 30

⋈RG_ID =
C_RG_ID

𝞂SG_NAME = 'human1'

Sample_
Genome

Read

𝞂R_MAPQ >= 30 AND (R_FLAG & 1 = 0
OR (R_FLAG & 1 <> 0 AND R_FLAG & 2 = 0))

⋈ R_ID =
SB_R_ID

𝞂COVERAGE >= 5 AND
RB_BASE_VALUE <> GENOTYPE

𝚷 RB_POSITION, RB_BASE_VALUE,
GENOTYPE, COVERAGE

Aggregation Phase

Join Phase

Avoid pushing
down selections

1

3

4

5

6

7

2

8 9

10

11

12

13

14

Figure 4.4: The optimized logical query plan for the SNV calling query from List-
ing 3.8. We avoid to push down all selections, because filters on dimension tables
(Reference_Base) appear to be more selective improving runtime for querying small
genome regions. We omit the steps with non-bold numbers during query execution in
our evaluation, since we do not consider the respective filters in our query scenario.

Assumptions. For all our experiments, we assume that only one reference genome
is loaded into the database and we are interested in querying the complete available
reference genome or only parts of it. Moreover, we assume that all available reads in the
database have to be processed. Thus, we do not filter reads according to their original
sample genome. This behavior resembles the procedure of specialized flat file tools
that analyze all data present in the input files. Our proposed query plan is optimized
for such scenarios. Moreover, we use an operator-at-a-time processing engine that has
highly parallelized operators. Thus, we execute all operators in sequence to not restrict
the available processing resources per operator. Furthermore, we assume a single user
scenario.

A logical query plan for SNV calling. Currently, CoGaDB applies only simple
optimization rules during the evaluation of query plans such as pushing down selections
and always hash the smaller input table during hash join processing. The former rule
requires the DBMS to apply filters to single tables before joining the tables, since a filter

4.2. An initial runtime evaluation 61

is usually more selective and less computationally expensive than a join reducing the
effort during join computation. The latter rule ensures that the hash table is as small
as possible to speedup the probing phase. Nevertheless, in our final logical query plan
that we used for our evaluations, we make two exceptions from the rule pushing down
selections. In Figure 4.4, we show the logical query plan behind our SNV calling query
from Listing 3.8. In the following, we explain it in detail and reason our decisions.

In order to perform SNV calling on a specific genome region, first, we filter (σ) the
tables Reference_Genome 1 and Contig 2 and join (./) the results 3 . Note that
the filter on table Reference_Genome is not considered in our evaluation, since we
assume to store only one reference genome in the database. For that reason, we omit
step 1 and 3 during the execution of the query in our evaluation. In the next step,
we join the result with table Reference_Base 4 and filter those reference bases that
are in the genome region of interest afterwards 5 . At this point, we make a first
exception from the rule pushing down selections. This decision reflects the worst case,
in which we always query complete contiguous sequences, e.g., a chromosome. The
overhead is constant, since the reference genome has always the same size. Pushing
down the selection will likely speed up the processing performance.

After we determined the required reference bases involved in our genome region of
interest (1 - 5), we join them with table Sample_Base 6 and apply filters for
non-inserted and high-quality sample bases afterwards 7 . At this point, we make the
second exception from the rule pushing down selections. This time we expect that the
filtering for a specific region on table Reference_Base and, thus, the join between table
Reference_Base and Sample_Base is usually more selective than the filter regarding
non-inserted (SB_INSERT_OFFSET == 0), high quality sample bases (SB_BASE_-
QUALITY >= threshold) leading to improved runtime, in particular on small genome
regions. For example, using a standard quality threshold of 13 as done by samtools
for the data set that we use in our evaluations within this chapter (cf. Section 4.2.2.1),
the combined selectivity factor of both predicates is roughly 99%. In contrast, filtering
for a specific genome region will likely be more selective.

Then, we join 11 the result so far with the join result 10 between the filtered tables
Sample_Genome 8 and Read 9 . Note that the filter on table Sample_Genome is
not considered in our evaluation, since we assume to process all available reads in the
database. For that reason, we omit step 8 and 10 during the execution of the query
in our evaluation. In the next step, we perform the aggregation (Γ) 12 and filter the
aggregated results for SNVs 13 . Finally, we output (Π) the found SNVs including their
position and respective reference base 14 .

Possible optimizations. In the previous description, we already mentioned that
depending on data and query characteristics, the logical query plan might change.
Further optimizations are possible that we shortly discuss in the following. For example,
if we increase the quality threshold, it could be better to push down the respective
selection 7 , since the selectivity increases. Moreover, if our assumption that we always

62 4. Efficient SNV detection using relational database operators

analyze all available reads in the database does not hold, it could be better to first
join tables Sample_Base and Read 11 before joining table Sample_Base and table
Reference_Base 6 . This decision is advantageous if we apply a filter to table Read,
i.e., we analyze only reads of a specific sample genome 8 , which can be more selective
than the genome region filter 5 . Overall, the query plan that we consider in our
evaluation reflects a worst case scenario and possible optimizer decisions will improve
the runtime in corner cases or under different assumptions.

4.2.2 Runtime evaluation

We can roughly divide the logical query plan presented in Figure 4.4 into two phases:
a join and an aggregation phase. DBSseq has an additional conversion phase. In the
following, we investigate the runtime performance of the overall query and the single
phases using our evaluation system CoGaDB. We evaluate the DBSseq and DBSbase

approach using a straightforward query execution engine and compare their runtime
with the runtime of samtools1.

4.2.2.1 Experimental setup

Our evaluation platform is a machine with two Intel Xeon E5-2609 v2 with four cores
@2.5 GHz and 256 GB main memory. We run CoGaDB on Ubuntu 14.04.3 (64 Bit) and
compile it using gcc 4.8.4 with optimization level -O3. To execute the single phases, we
use a hash join and a sort-based aggregation strategy. A hash join is a common join
processing technique in many relational DBMS. We decide for a sort-based aggregation,
because the final result has to be sorted by an attribute combination that is a subset of
the grouping attributes for the aggregation. Our sort-based aggregation implementation
guarantees the final global sorting. All processing steps within CoGaDB are parallelized
to provide peak performance and utilize the available multi-core system.

Data set. To not interfere with main memory constraints in these experiments, we
use the read mapping data of chromosome 1 of the human genome HG000962 provided
by the 1000 Genomes Project [1]. The reference sequence of chromosome 1 comprises
249,250,621 bases. The mapping data set comprises 11,247,898 mapped reads consisting
of 1,079,623,529 bases together. Thus, we have an average coverage of 4. DBSseq re-
quires roughly 3.2 GB of main memory for storing the uncompressed raw data. DBSbase

blows up the storage size to 30 GB. The original compressed flat files require 1.5 GB.
Before starting the experiments, we load the database into main memory.

Baseline. We use the SNV calling runtime of samtools 1.3 as baseline for our
evaluation. Although specialized analysis tools such as samtools operate on disk-
resident data, we argue that a comparison with our main-memory DBMS approaches
leads to meaningful results. The primary goal of our work is not to show how to

1SNV calling using samtools involves a second tool called bcftools. For simplicity, we just use
samtools to refer to both tools.

2data is available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/

4.2. An initial runtime evaluation 63

outperform specialized analysis tools, but to investigate strategies allowing DBMSs
to be competitive in processing mapped read data. This also includes the choice of
data layout and storage medium. To ensure a balanced comparison, we assume that
mapped reads are presorted by position and do not take sorting time into account for
the runtime assessment. The presorting allows specialized analysis tools to process data
in streams hiding the disk latency and works well with compressed data. Our approach
does not depend on sorted read data, but we assume that data is already available in
main-memory.

We use the same probabilistic error model function within our database approaches as
samtools. In Section 3.1.3, we explained that samtools applies further statistical
methods to improve the quality of analysis results. Since we are interested in the basic
processing capabilities, we deactivate this functionality within samtools. Moreover,
we manually parallelized samtools, because it does not provide such an option. To
this end, we execute as many instances of samtools as CPU cores are available on
distinct, contiguous and equally sized chunks of the reads. Due to the sorting of reads
by mapping position, each samtools instance can determine which reads it has to
process efficiently. Furthermore, each samtools instance accesses compressed read
mapping data stored on a ramdisk.

Query set. We perform the SNV detection using varying selectivity with respect to
the size of the queried genome range. We report the runtime of chosen selectivity
factors ranging from 0.001% (ca. 2500 reference bases) to 100% (complete chromosome
1). Processing the data set in a bulk (selectivity factor 100%) is a common request to
get an overview on all genetic variations present. In contrast, lower selectivity factors
correspond to the use case to investigate single genes. The average gene size is about
27,000 bases [131]. We report the average runtime of 30 queries.

The actual number of processed sample bases depends on the coverage of the data set.
The average coverage of our chosen data set is four. Nevertheless, certain regions of the
genome will have a higher actual coverage than others. While this circumstance does
not have much impact on the runtime considering selectivity factors of 10% (processing
100 million sample bases) and above, we have to take care of it for lower selectivity
factors. For that reason, considering selectivity factors below 10%, we perform the SNV
detection on 30 randomly chosen genome regions. For all other selectivity factors, we
query the same genome region starting at the first position of the reference sequence.

4.2.2.2 Results

We show the results in Figure 4.5. Since the runtimes between a query with highest
selectivity (0.001%) and a query with lowest selectivity (100%) differ more than a
magnitude, we report an overview on all runtime results in Figure 4.5a. To provide
insights on queries having high selectivity, we zoom in the results in Figure 4.5b.

In both figures, we show for every selectivity factor the runtime results in following
order: DBSbase, DBSseq and samtools. For DBSbase, we breakdown the overall runtime

64 4. Efficient SNV detection using relational database operators

in the two phases for joining and aggregating the data. For DBSseq, we additionally
report the time to convert the data.

Overall runtime. We observe that samtools is up to twice as fast as any of our
database approaches on larger genome regions (selectivity factor >= 10%). On smaller
genome regions DBSseq outperforms DBSbase and samtools. Considering the database
approaches only, we find that DBSbase is faster than DBSseq exactly saving the conver-
sion runtime of DBSseq when querying the complete data set. Considering a selectivity
factor of 10% or less, DBSbase is slower than DBSseq, although DBSseq converts data
during the query processing.

Runtime of single phases. We see that the conversion time in DBSseq is negligible
considering the overall runtime of all queries. The runtime for the aggregation phase
within DBSbase and DBSseq is similar independent of the selectivity factor. Considering
the join phases, we can observe this similarity only when we process the complete data
set (selectivity factor 100%). In all other cases, we see that the join phase using DBSseq

is significantly shorter than the join phase within DBSbase. Thus, although DBSseq

converts data at runtime, DBSseq is significantly faster than DBSbase on smaller genome
regions.

4.2.2.3 Discussion

The results reveal that our chosen relational processing strategy based on a hash join
and sort-based aggregation strategy introduces overhead compared to the specialized
analysis tool samtools when we process the complete data set (selectivity factor
100%). Considering the execution times of the single phases when we process the com-
plete data set, the join processing phase of DBSbase and DBSseq dominates the overall
execution time. Even DBSbase is nearly two times slower than samtools, although we
avoid the data conversion. Specialized analysis tools rely on reads that are sorted by
mapping position. This circumstance reduces the effort to find all sample bases that
are mapped to the same genome position required for aggregation (cf. Section 3.1.2).
Using our database processing strategies, we have to process all reads and their sample
bases to find those sample bases that are mapped to the same genome position. This
is a notable disadvantage explaining the runtime differences.

Nevertheless, on smaller genome regions (selectivity factor <= 10%), the overall runtime
of DBSseq is competitive to samtools and DBSseq even outperforms samtools. Based
on this observation, we would expect that DBSbase also outperforms samtools on small
genome ranges, because it avoids data conversion at all. Unfortunately, the runtime
of the join processing phase of DBSbase is much higher than the combined runtime of
join processing and data conversion of DBSseq together (selectivity factors <= 10%).
The reason for this difference in the runtime of the join processing phase is that within
DBSbase, we always have to probe all sample bases of the data set during the hash join,
which are ca. one billion tuples. Only the hash table size gets smaller if we select
a smaller genome region for processing. We show the detailed number of bases that
have to be processed for each approach in Table 4.1. Using DBSseq, we only have to

4.2. An initial runtime evaluation 65

0.001 0.01 0.1 1 10 100
0

20

40

60

80

100

120

140

160

2.7 2.8 2.9 3.3
9.6

68.5

0.6 0.6 0.9 3.5

17.2

139

4.7 5.6 7.1
11.0

22.7

113.5

Selectivity factor (%)

R
un

ti
m
e
(s
)

Overall runtimes: DBSbase DBSseq samtools
Single DBS phases: aggregate join convert

(a) Initial SNV calling runtimes on chosen selectivity factors.

0.001 0.01 0.1 1 10 100
0

2

4

6

8

10

12

14

16

2.7 2.8 2.9
3.3

9.6

0.6 0.6 0.9

3.5

4.7

5.6

7.1

11.0

Selectivity factor (%)

R
un

ti
m
e
(s
)

(b) Initial SNV calling runtimes zoomed in.

Figure 4.5: Calling SNVs on chromosome 1 of a low coverage human genome using
DBSbase, DBSseq and samtools. The conversion phase of DBSseq is negligible consid-
ering the overall runtime. In particular on small genome regions (selectivity factor <
1%), DBSseq offers superior runtime performance. DBSbase cannot meet the expectation
to be as fast as DBSseq without data conversion for small genome regions (selectivity
factor <= 10%), because additional join effort sacrifices the benefit of avoiding the data
conversion.

66 4. Efficient SNV detection using relational database operators

Selectivity factor # of bases to join
in % reference sample (DBSseq) sample (DBSbase)

0.001 2,493 13,317* 1,079,623,529
0.01 24,925 110,091* 1,079,623,529
0.1 249,251 1,078,055* 1,079,623,529
1 2,492,506 10,150,788* 1,079,623,529
10 24,925,062 110,454,734 1,079,623,529
100 249,250,621 1,079,623,529 1,079,623,529

Table 4.1: DBSseq and DBSbase have to join a different number of sample and reference
bases depending on the chosen selectivity factor. Since DBSseq converts read data on
the fly, the number of sample and reference bases to join increases with increasing
selectivity factor. DBSbase also processes less reference bases if the selectivity factor is
low, but always has to process all sample bases independent of the selectivity factor.
*Average of 30 different, randomly selected genome regions.

probe those sample bases that belong to the preselected reads saving much effort during
join processing (cf. Figure 3.10). This is in accordance to the runtime behavior when
processing the complete data set (selectivity factor 100%, cf. Figure 4.5a). Here, the
combined aggregation and join phase of DBSbase and DBSseq have a similar runtime,
because using either DBSbase or DBSseq, we have to probe all sample bases in the data
set. Thus, DBSbase seems to be only beneficial for bulk processing complete data sets.

Overall, it is evident that DBSseq provides best runtime performance on small genome
regions, i.e., genes, allowing for fast, on demand analysis. In contrast, DBSbase is the
fastest choice for the use case of processing complete data sets within a database, since
it avoids data conversion at runtime. Nevertheless, considering larger genome regions,
samtools outperforms the database approaches, because the database approaches
suffer from large join processing overhead. In the following section, we discuss strategies
to speed up the join phase within the database approaches. We expect an overall
runtime performance improvement for DBSbase over all queried genome ranges. Since
DBSseq already provides superior performance on small genome regions, a faster join
processing mainly aims at speeding up the analysis of large genome regions.

4.3 Accelerating the join phase
In this section, we discuss strategies to speed up the join processing phase within our
database approaches. Note that our proposed optimizations do not change the query
(cf. Listing 3.8) or its output. We focus our efforts on the implementation of the join
operators, especially on the join between the largest tables within the database, i.e.,
tables Reference_Base and Sample_Base (cf. 6 in Figure 4.4). While we can reduce
the join effort in DBSseq on small genome regions, DBSbase always has to process the
complete table Sample_Base, even on small genome regions. Thus, the challenge is to
reduce the effort for joining such large tables. In the following, we discuss optimization
options and evaluate the most promising one.

4.3. Accelerating the join phase 67

4.3.1 Optimization options

We see two possible optimization options to speed up the join processing between
tables Reference_Base and Sample_Base. First, we can apply different join processing
strategies. Second, we can use a tailor-made database schema that avoids the join
processing at all. In the following, we discuss advantages and disadvantages of these
approaches.

Optimized join processing

The hash join implementation that we used in the previous experiment probes the larger
table, i.e., table Sample_Base, in parallel. The hash table itself is build serially avoiding
costly synchronization, in particular when the input table, i.e., table Reference_Base,
has a small size.

Nevertheless, there is some room for optimizations. First, we could build the hash ta-
ble in parallel using a shared hash table that requires synchronization during the build
phase [11]. Another idea is to use a partitioning hash join that divides both input
tables into partitions of tuples that can be joined independently using hashing [117] or
radix partitioning [84]. These approaches can be tuned to improve memory access by
reducing the partition size, which allows us to keep the required hash table completely
in the caches reducing the number of cache misses during the probe phase. However,
our experiments with the radix-join implementation provided by Teubner et al. [127]
only led to a small runtime improvement, but revealed another challenge of partition-
ing hash joins: cache-inefficient subsequent result lookups. The problem is that the
resulting tuple identifiers computed during the hash join are not in order leading to
inefficient memory-access patterns. Manegold et al. proposed a strategy to improve
such subsequent result lookups [85], but obviously not without additional effort.

Another strategy could be sort-merge join that sorts (partitions of) the input tables and
joins them during the merge phase. Hardware-conscious approaches are available [4, 65]
and there is extensive research whether hash or sort-merge joins are superior regarding
runtime [7, 65]. However, we do not reduce the inherent effort of sorting or probing
(nearly) all tuples of table Sample_Base using any of these techniques, especially for
our DBSbase approach. With increasing dataset sizes leading to table sizes with several
billion rows, it is foreseeable that the join processing within DBSbase will not lead to
competitive runtime results even if we apply advanced join implementations, because
specialized analysis tools benefit from presorted data during processing. Moreover,
DBSseq will also not scale to larger genome regions.

Alternative database schema

Another strategy to speed up the join phase is to avoid the join at all. The idea is known
as denormalization and the usefulness for analytical workloads despite data redundan-
cies was shown recently [80]. In Figure 4.6, we depict the idea in our context. Instead
of using a foreign-key relationship to associate a sample base to its reference base, we

68 4. Efficient SNV detection using relational database operators

Reference_Base
RB_BASE_
VALUE

RB_ID RB_
POSITION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
...

A
G
C
A
T
G
T
T
A
G
A
T
A
A
G
A
T
A
G
C
T
G
T
G
...

Sample_Base
SB_BASE_
VALUE

SB_
RB_ID

6
7
8
9

10
11
12
13
13
14
15
16
17
18
19
20
21
8
9

10
11
12
13
13
14
15
16
17
...

T
T
A
G
A
T
A
A
G
G
A
T
A
X
C
T
G
A
G
A
T
A
A
G
G
A
T
A
...

SB_INSERT_
OFFSET

SB_
READ_ID

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
...

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
...

...R_POS R_MAPQ

Schema
Denormalization

Denormalized_Genome_Table
SB_BASE_
VALUE

7
8
9

10
11
12
13
13
14
15
16
17
18
19
20
21
22
9

10
11
12
13
13
14
15
16
17
18
...

T
T
A
G
A
T
A
A
G
G
A
T
A
X
C
T
G
A
G
A
T
A
A
G
G
A
T
A
...

SB_INSERT_
OFFSET

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
...

RB_BASE_
VALUE

RB_
POSITION

T
T
A
G
A
T
A
A
A
G
A
T
A
G
C
T
G
A
G
A
T
A
A
A
G
A
T
A
...

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
9
9
9
9
9
9
9
9
9
9
9
...

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
...

Read

R_ID

R_FRONT_
HARD_
CLIP_

LENGTH

0
1
...

R_REAR_
HARD_
CLIP_

LENGTH

R_FRONT_
SOFT_
CLIP_
SEQ

R_REAR_
SOFT_
CLIP_
SEQ

R_FRONT_
SOFT_
CLIP_
QUAL

R_REAR_
SOFT_
CLIP_
QUAL

0
0
...

0
2
...

AAA
... ...

???
... ...

R_POS R_MAPQ

30
30
...

7
9
...

R_QNAME

Read_1
Read_2

... R_QNAME

Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_1
Read_2
Read_2
Read_2
Read_2
Read_2
Read_2
Read_2
Read_2
Read_2
Read_2
Read_2

...

Figure 4.6: Instead of resolving associated information referenced via foreign keys using
a join, we simply store the join result. On the one hand, we gain a performance increase,
since we avoid to join the data at all. On the other hand, we introduce data redundancy
leading to increased compression and maintenance effort.

just store the reference base (RB_BASE_VALUE), its position (RB_POSITION), the
corresponding contig and reference genome (not shown). We can apply the same idea to
the read and sample genome tables. Thus, in order to call SNVs using SQL, we simply
have to scan the respective columns to filter data of interest. In Listing 4.1, we show
the resulting SQL query derived from the query in Listing 3.8. All we have to change
is to replace the five join clauses in the FROM clause with the new denormalized table.
Obviously, scanning multiple columns, especially in a column store, is less expensive
than joining the data.

Although this approach might be appealing from a performance perspective, the intro-
duced redundancy (cf. columns R_QNAME and R_POS) leads to large storage over-
head. Lightweight compression schemes such as dictionary compression (cf. columns
R_QNAME) and run-length encoding (cf. columns R_MAPQ) can be used to reduce
the overhead, especially in column-oriented database systems [2]. Nevertheless, we do
not expect that such a database schema is a practical solution for permanent storage
or representation of mapped read data due to the large redundancy of dimension infor-
mation such as read data. For example, if we want to extract data for a specific read,
we find the information at various places making it a non straightforward undertaking
to query the data. Moreover, it is not straightforward to store (parts of) reference
sequences that have no sample bases mapped to it. Consequently, we would apply such

4.3. Accelerating the join phase 69

1 SELECT C_NAME, RB_POSITION, RB_BASE_VALUE, COUNT(SB_BASE_VALUE) coverage,
2 CallBase(SB_BASE_VALUE, SB_BASE_QUALITY) genotype
3 FROM Denormalized_Genome_Table
4 /∗ instead of the 5 join clauses of Listing 3.8 ∗/
5 WHERE SG_NAME = "human1" AND RG_NAME = "human"
6 AND (C_NAME = "chromosome1" OR /∗ multiple contigs ∗/)
7 AND RB_POSITION BETWEEN 1,000 AND 2,000
8 AND R_MAPQ > 29 AND R_FLAG & 4 <> 0
9 /∗ if the read is part of a paired−end read (1st bit set in FLAG)
10 than both ends should be mapped (2nd bit is set) ∗/
11 AND (R_FLAG & 1 = 0 OR (R_FLAG & 1 <> 0 AND R_FLAG & 2 = 0))
12 GROUP BY C_NAME, RB_POSITION, RB_BASE_VALUE
13 HAVING RB_BASE_VALUE <> genotype
14 ORDER BY C_NAME, RB_POSITION;

Listing 4.1: Calling genotypes using a denormalized database schema.

a denormalized database schema as intermediate data representation for the output of
the conversion of DBSseq.

Denormalization without joining. If we use the denormalized database schema
only as intermediate data representation, the critical question is How can we compute
the join result needed for denormalization without actually joining the data? If we
would simply join it using a hash or sort-merge join, we would not have gained much
compared to the current approach using a dedicated join phase. The answer is that we
can leverage the foreign key relationship to perform efficient positional lookups of data.
Such lookups are cheap in a column store. In Section 3.3.1, we explained in detail
how we construct the foreign key relationship from the existing read mapping data.
The key to success is the use of artificial, continuous ids used as primary and foreign
keys. Since we can guarantee that the primary keys always start at zero and have a
continuous range with the maximum value of #tuples − 1 of the respective table, we
can use them as indexes for direct lookup in the columns of a table, e.g., to retrieve data
such as RB_BASE_VALUE and RB_POSITION of table Reference_Base. We can
apply this idea to all foreign-key relationships within the base-centric database schema
allowing to denormalize the schema without the need of joining the data.

Virtual denormalization using invisible joins. At a first glance, we can apply the
idea of denormalization only to DBSseq efficiently, because combining it with DBSbase

would require to transform the complete database, which would introduce even larger
storage overhead. However, the idea of using foreign keys for a positional lookup in a
column store was also leveraged by Abadi et al. for their join technique called invisible
join [3]. Using an invisible join, we determine all rows of the fact table, i.e., table
Sample_Base, and then use the foreign keys to lookup the related dimension data per
row. This is similar to the approach that we described above to transform mapped
read data into an intermediate denormalized database schema, but without the need
for materializing the denormalization.

70 4. Efficient SNV detection using relational database operators

Additionally, we can extend the approach to apply the positional lookup only to those
rows of the fact table that fulfill certain predicates reducing the invisible join effort
further. The challenge is that predicates, e.g., a region filter such as RB_POSITION
BETWEEN 1,000 AND 2,000, are often defined on dimension attributes and cannot be
applied directly to the rows of the fact table, e.g., table Sample_Base. To rewrite
such predicates, we have to determine the primary keys of the dimension table, e.g.,
table Reference_Base, that fulfill the predicate, store them in a hash table and iterate
through all rows of the fact table to determine the selected rows for performing the
positional lookup. Obviously, rewriting the predicate using a hash table leads to similar
effort than using a hash join. Fortunately, our most selective dimension predicate,
the genome region filter, is usually a between predicate. Abadi et al. found out that
such between predicates can often be rewritten as between predicates on the foreign key
column of the fact table [3]. In our use case, we are able to rewrite a predicate such
as RB_POSITION BETWEEN 1,000 AND 2,000 into SB_RB_ID BETWEEN 999 AND 1,999
that can be directly applied to the fact table Sample_Base. Thus, the task for probing
every row of table Sample_Base can be transformed into a between predicate filter which
should lead to a significant reduction of runtime when joining large tables. This should
be especially important for DBSbase that has to join the complete table Sample_Base
even when we process small genome ranges.

Overall, the idea of using the invisible join technique in combination with between
predicate rewriting to implement a virtual denormalization is very promising for our
use case. In the following section, we evaluate the impact of this technique on our
database approaches.

4.3.2 Runtime evaluation

In this section, we evaluate the runtime performance of our database approaches DBSbase

and DBSseq using the invisible join technique and compare it with samtools. We use
the same experimental setup as in Section 4.2.2. Our goal is to identify to which extent
the database approaches benefit from the use of the invisible join technique compared
to a hash join processing strategy. Moreover, we want to compare the overall runtime
performance.

4.3.2.1 Results

We show the results in Figure 4.7. Since the runtimes between a query with highest
selectivity (0.001%) and a query with lowest selectivity (100%) differ more than a
magnitude, we report an overview on all runtime results in Figure 4.5a. To provide
insights on queries having high selectivity, we zoom in the results in Figure 4.5b.

In both figures, we show for every selectivity factor the runtime results in following
order: DBSbase, DBSseq and samtools. For DBSbase, we breakdown the overall runtime
in the two phases for joining and aggregating the data. For DBSseq, we additionally
report the time to convert the data. The dashed bars indicate the overall runtimes of
the database approaches from the previous experiment in Section 4.2.2. If the dashed

4.3. Accelerating the join phase 71

0.001 0.01 0.1 1 10 100
0

20

40

60

80

100

120

140
52%

58%

62%

72%

2.7 2.8 2.9 3.3
9.6

68.5

0.4 0.4 0.5 1.2
7.2

66.5

1.3 1.3 1.4 1.9
6.5

43.5

Selectivity factor (%)

R
un

ti
m
e
(s
)

Overall runtimes: DBSbase DBSseq samtools
Single DBS phases: aggregate join convert

(a) SNV calling runtimes on chosen selectivity factors using invisible joins. The dashed bars
indicate the runtime results from Figure 4.5. The numbers above the dashed bars show the
overall runtime reduction compared to the results from Figure 4.5 in percent.

0.001 0.01 0.1 1 10 100
0

2

4

6

8

10

12

67%

45%41%38%

83%

80%

77%

72%

2.7 2.8 2.9
3.3

9.6

0.4 0.4 0.5
1.2

7.2

1.3 1.3 1.4
1.9

6.5

Selectivity factor (%)

R
un

ti
m
e
(s
)

(b) SNV calling runtimes using invisible joins zoomed in. The dashed bars the dashed bars
indicate the runtime results from Figure 4.5. The numbers above show the overall runtime
reduction compared to the results from Figure 4.5 in percent.

Figure 4.7: Calling SNVs using invisible joins on chromosome 1 of a low coverage human
genome using DBSbase, DBSseq and samtools. The invisible join technique in combina-
tion with between-predicate rewriting results in a significant performance improvement
allowing to provide competitive analysis runtime performance. In particular on large
genome regions (selectivity factor > 10%), the aggregation phase within DBSbase and
DBSseq dominates the overall runtime.

72 4. Efficient SNV detection using relational database operators

bar is visible, we were able to reduce the runtime using the invisible join approach. If
the dashed bar is not visible, the current bar hides it completely indicating that the
runtime is equal or increased due to the invisible join.

Overall runtime. Using the invisible join, our database approaches are faster than
samtools independent of the chosen selectivity factor. On larger genome regions
(selectivity factor > 1%), DBSbase is the fastest approach. On smaller genome regions,
DBSseq is the fastest approach.

Impact on single database approaches. The invisible join strategy improves the
runtime of both database approaches. Considering all genome ranges, DBSbase benefits
most from invisible join processing, which is indicated by the size of the dashed bars
representing the absolute runtime savings.

4.3.2.2 Discussion

The conceptual change to replace the classical join processing by efficient scanning and
lookup operations pays out. The fact that DBSbase benefits most from this optimization
is due to the fact that DBSbase has to process all tuples in table Sample_Base indepen-
dent of the requested genome range. Thus, an improvement of this processing step as
we achieve it by replacing the probing in a hash table with a simpler between-predicate
scan pays out most. However, using DBSbase we can still not reach the performance of
DBSseq on small genome regions (selectivity factor < 10%). The reason for this differ-
ence is the additional effort of DBSbase to filter the complete SB_RB_ID column with
one billion rows. In contrast, DBSseq preselects the reads to be processed resulting in
less sample bases to scan (cf. Table 4.1). Nevertheless, the effort for filtering and posi-
tional lookup is much lower than performing a hash join (cf. dashed bars and percent
numbers in Figure 4.7).

The results show that the use of the invisible join is required to provide competitive
analysis runtime on mapped read data sets when calling SNVs. Considering the run-
time of all phases, the aggregation phase is now the longest phase within the database
approaches on all genome regions. To further improve the overall runtime, we focus on
speeding up the aggregation phase in next section.

4.4 Accelerating the aggregation phase
In this section, we discuss possibilities to speed up the aggregation phase within our
database approaches. Note that our proposed optimizations do not change the query
(cf. Listing 3.8) or its output. We focus our efforts on the implementation of the
GROUP BY operator within the aggregation phase (cf. 12 in Figure 4.4), since the
final filters 13 are usually less expensive as they operate on a reduced data set. In
our previous experiments, we used a sort-based aggregation approach, because this
reduces the effort to generate sorted results as required by our SNV calling query from
Listing 3.8. Using a different aggregation strategy, we have to keep the possible sorting
overhead of the result in mind.

4.4. Accelerating the aggregation phase 73

Selectivity factor # of bases to aggregate
in % reference sample

0.001 2,493 10,217*

0.01 24,925 101,840*

0.1 249,251 1,025,273*

1 2,492,506 9,471,402*
10 24,925,062 101,940,994
100 249,250,621 1,022,483,513

Table 4.2: The number of sample bases to aggregate using DBSseq or DBSbase is equal
and depends on the chosen selectivity factor. Nevertheless, depending on the chosen
aggregation strategy, i.e., sort-based or hash-based aggregation, we either have to sort
more than one billion tuples or only 250 million tuples respectively to provide a sorted
analysis result.
*Average of 30 different, randomly selected genome regions.

4.4.1 Optimization options

In our previous experiments, we already use an optimized sort-based aggregation strat-
egy. According to our SNV calling query, we have to group by three different inter-
mediate result columns, i.e., GROUP BY C_NAME, RB_POSITION, RB_BASE_VALUE (cf.
Listing 3.8), increasing the effort for grouping, because we have to sort three columns
to get the final sort order. To reduce the effort, we can create packed codes from the
row values of the involved columns [63, 106] that reflect the final overall sort order.
Thus, we can compute the correct sort order for the grouping in a single sorting step.
Another strategy is to simply rewrite the GROUP BY clause to just use one attribute.
In our use case, we can rewrite the GROUP BY clause into GROUP BY RB_ID, be-
cause RB_ID functionally determines C_NAME via RB_C_ID, RB_POSITION and
RB_BASE_VALUE. Thus, we can restrict the sorting effort to one column without
the effort to create packed codes.

However, especially on large genome regions, our sorting-based aggregation strategy
introduces overhead, because we have to sort a large number of intermediate results be-
fore aggregation can take place (cf. Figure 4.7). On small genome ranges, the effort for
sorting is moderate. For example, if we process the complete data set (selectivity factor
100%), the intermediate results comprise over one billion tuples that must be sorted. In
Table 4.2, we show the number of sample bases that have to be aggregated and, thus,
have to be sorted when we query differently sized genome ranges. Additionally, with
increasing coverage of the data set, i.e., the number of sample bases that cover a single
genome position, the sorting effort will increase.

An alternative aggregation strategy that does not require sorting of intermediate results
is hash-based aggregation. The idea is to compute the group that a tuple belongs to
using a hash function over the grouping attributes. Of course, this introduces effort for
computing the hash value and looking up the aggregation bucket, but avoids sorting.

74 4. Efficient SNV detection using relational database operators

In order to provide sorted analysis results, we would only have to sort the resulting
groups. The number of resulting groups only depends on the selectivity factor of the
query. Thus, when querying the complete data set, we would only have to sort ca. 250
million resulting tuples instead of one billion.

Array-based aggregation. We can also apply the rewriting of the GROUP BY
clause as done for the sort-based aggregation to the hash-based aggregation approach.
Thus, we only have to hash the value of RB_ID to determine the hash bucket for
aggregation. RB_ID is a primary key in our database schema and has a value range
starting at zero. The maximum value is always #reference_base_tuples − 1. In the
evaluation data set within this chapter, the maximum value of SB_ID is 249,250,620.
Since we often query ranges, we have to process reference bases that have a continuous
range of RB_ID values. We already leverage this inherent characteristic for between-
predicate rewriting (cf. Section 4.3.1) and can also leverage it for improving the hashing
during hash-based aggregation. We can use the value of column RB_ID as index for an
aggregation array. The size of the array is determined by the number of distinct values
in the given RB_ID range. Using an array, we also avoid the need for maintaining
and accessing a hash table. This idea is related to the approach by Krikellas et al.
to use mapping directories for grouping attributes to determine an offset within an
aggregation array [69]. Fortunately, we even have no need for a mapping directory
avoiding a further indirection. In the best case, we can simply use the RB_ID value as
index to the array. In the following, we discuss two special cases:

Index range not starting at zero. In the case that we process a genome region lead-
ing to a range of RB_IDs that does not start at zero, we subtract the minimum
value of the range from the RB_ID to compute the actual array index.

Querying multiple contigs. Within a single contig, e.g., chromosome 1, we can guar-
antee that the range of RB_IDs is continuous. If we query multiple contigs, we
can not directly ensure that the RB_ID range is continuous. For example, we
import the contigs of a reference genome in order of appearance in the FASTA
file (cf. Section 3.3.1). Thus, consecutive contigs, e.g., chromosome 1 and 2, will
lead to a continuous value range of RB_ID values. Querying chromosome 1 and
3, we introduce a gap in the range of the size of chromosome 2. Thus, we have
two options, either we process the two contigs sequentially or we create an array
knowing that we do not access a large number of indexes in between.

The proposed array-based aggregation has a second advantage besides avoiding to sort
a large number of intermediate results: We also avoid to sort the final result. The
reason for this is that the RB_ID values directly reflect the required sort order. This is
a direct consequence of our rewriting of the GROUP BY clause. Thus, the aggregation
array inherently stores the aggregates in the final sort order. Nevertheless, the approach
has two disadvantages:

4.4. Accelerating the aggregation phase 75

Large memory consumption. We have to allocate an array of the size of the range
of the RB_ID values. Querying larger genome regions leads to an increase of the
array size. A strategy to avoid exceeding the available main memory is to split
the range.

Need for synchronization. Since we now process the tuples in the order provided by
the join phase, we cannot guarantee that different threads process distinct chunks
of data as it was ensured by a sort-based aggregation strategy. Therefore, we have
to synchronize threads that concurrently access the same array index. However,
on large genome ranges, we expect the chance of concurrent access to be low.

Overall, we expect that array-based aggregation will improve the analysis runtime es-
pecially on large genome regions, since the overhead of sorting is moderate on smaller
genome regions.

4.4.2 Runtime evaluation

In this section, we evaluate the runtime performance of our database approaches DBSbase

and DBSseq using the array-based aggregation technique and compare it with sam-
tools. We use the same experimental setup as in Section 4.2.2, except that we use
the invisible join and array-based aggregation technique. Our goal is to identify to
which extent the database approaches benefit from the use of the array-based aggrega-
tion technique compared to a sort-based aggregation strategy. Moreover, we want to
compare the overall runtime performance.

4.4.2.1 Results

We show the results in Figure 4.8. Again we report an overview on all runtime results
in Figure 4.5a, because the runtimes between a query with highest selectivity (0.001%)
and a query with lowest selectivity (100%) differ more than a magnitude. To provide
insights on queries having high selectivity, we zoom in the results in Figure 4.5b.

In both figures, we show for every selectivity factor the runtime results in following
order: DBSbase, DBSseq and samtools. For DBSbase, we breakdown the overall runtime
in the two phases for joining and aggregating the data. For DBSseq, we additionally
report the time to convert the data. The dashed bars indicate the overall runtimes of
the database approaches from the previous experiment in Section 4.3.2. If the bar is
visible, we were able to reduce the runtime using the array-based aggregation approach.

Overall runtime. Using the array-based aggregation, our database approaches become
only faster on large genome regions (selectivity factor > 1%). On smaller genome
regions, we cannot detect a significant runtime improvement compared to a sort-based
aggregation strategy.

Impact on single database approaches. There is no significant difference in runtime
performance improvements between both database approaches, since the aggregation

76 4. Efficient SNV detection using relational database operators

0.001 0.01 0.1 1 10 100
0

20

40

60

80

100

19%

27%

2.7 2.8 2.9 3.3

9.6

68.5

0.4 0.4 0.5 1.1
5.9

53.8

1.3 1.3 1.4 1.7
5.2

31.9

Selectivity factor (%)

R
un

ti
m
e
(s
)

Overall runtimes: DBSbase DBSseq samtools
Single DBS phases: aggregate join convert

(a) SNV calling runtimes on chosen selectivity factors using invisible joins and array-based
aggregation. The dashed bars indicate the runtime results from Figure 4.7. The numbers above
the dashed bars show the overall runtime reduction compared to the results from Figure 4.7
in percent.

0.001 0.01 0.1 1 10 100
0

2

4

6

8

10

12

18%

10%

6%5%5%

20%

6%
0%-2%-1%

2.7 2.8 2.9
3.3

9.6

0.4 0.4 0.5
1.1

5.9

1.3 1.3 1.4
1.7

5.2

Selectivity factor (%)

R
un

ti
m
e
(s
)

(b) SNV calling runtimes using invisible joins and array-based aggregation zoomed in. The
dashed bars indicate the runtime results from Figure 4.7. The numbers above the dashed bars
show the overall runtime reduction compared to the results from Figure 4.7 in percent.

Figure 4.8: Calling SNVs using invisible joins and array-based aggregation on chromo-
some 1 of a low coverage human genome using DBSbase, DBSseq and samtools. The
array-based aggregation can effectively reduce the runtime on large genome regions
(selectivity factor >= 10%). On small genome regions (selectivity factor < 10%), the
runtime savings are negligible.

4.4. Accelerating the aggregation phase 77

Selectivity Sort-based aggregation phase* Array-based aggregation phase
factor (%) Runtime (s) Share sorting (%) Runtime (s) Runtime savings (%)
0.001 0.305 1.3 0.305 0.0
0.01 0.302 2.0 0.310 -3.3
0.1 0.352 7.1 0.341 2.9
1 0.669 24.0 0.531 20.9
10 3.737 41.8 2.466 34.0
100 33.582 48.4 21.949 34.6

Table 4.3: Comparison of the runtime of a sort-based and array-based aggregation
phase per selectivity factor. Array-based aggregation avoids sorting of intermediate
results. Thus, array-based aggregation saves more runtime on larger genome regions,
since the sorting runtime increases due to the growing size of intermediate results. On
small genome regions, array-based aggregation sacrifices the potential runtime savings
due to locking overhead.
*Based on DBSbase results from the experiment in Section 4.3.2.

effort of both approaches is identical. In particular, on large genome regions (selectivity
factor > 1%), both approaches show a similar absolute speed up (cf. height of the
dashed bars). Nevertheless, on small genome regions (selectivity factor < 1%), we
observe that especially DBSbase appears to slow down due to the use of array-based
aggregation. However, we observed slight deviations of runtimes during the invisible
join phase compared to our experiments from Section 4.3.2. Since the dashed bars
report the overall runtime savings and the runtime share of the aggregation phase on
small genome regions is much smaller than the runtime share of the join phase using
DBSbase, these deviations lead to the observed slow down.

4.4.2.2 Discussion

As expected, our array-based aggregation strategy can improve the overall runtime of
our database approaches, because it avoids the sorting of intermediate results and final
results. Especially, on large genome regions, we see the largest performance improve-
ments compared to a sort-based aggregation strategy. On small genome regions, the
runtime of array-based aggregation is comparable to a sort-based aggregation strategy.

In Table 4.3, we analyze the runtime differences between the aggregation phase of
DBSbase using sort-based or array-based aggregation in detail per selectivity factor.
The data about sort-based aggregation is taken from the experiment in Section 4.3.2.
The second and fourth columns show the runtime of the sort-based and array-based
aggregation phase using DBSbase respectively. The third column indicates the runtime
share of the actual sorting within the sort-based aggregation phase. We can use this
runtime share as rough estimation of the potential runtime savings using an array-based
aggregation strategy, because we avoid the sorting at all. We can clearly see that the
potential performance improvement that we can achieve grows when we query larger
genome regions. On small genome regions, we have to sort small intermediate results,

78 4. Efficient SNV detection using relational database operators

which is very efficient. In contrast, the runtime share of the sorting grows up to 50%
querying the complete data set. This rough estimate corresponds well with the actually
achieved runtime savings using the array-based aggregation strategy (cf. last column).
However, we never achieve the maximum (estimated) runtime savings, because array-
based aggregation introduces locking overhead, which completely sacrifices the potential
runtime savings on small genome regions.

4.5 Applicability to disk-based DBMSs

For our evaluation, we use a main-memory DBMS. In this section, we discuss the
applicability of our results to a disk-based DBMS. For this, we assume that our primary
database resides on disk in a column-oriented data layout and a buffer manager manages
the disk access (cf. Section 4.1.1). In the following, we describe how we can integrate
the two different storage and processing strategies into a disk-based DBMS:

Applying DBSseq. Applying the idea of DBSseq, i.e., first convert the necessary data
and then analyze it, to a disk-based DBMS requires following three steps:

1. Retrieve relevant read and reference sequence data from disk

2. Convert and buffer read and reference sequence data

3. Apply the execution strategies described in this chapter

This strategy resembles the idea by Röhm et al. [108] that we described in Section 3.2.2.
Röhm et al. decided to encapsulate the complete functionality into a specialized UDF
to reduce main memory consumption. We assume to have enough main memory for
keeping the intermediate data representation in main memory. If we cannot guarantee
to have enough main memory, we would process the data in chunks.

Applying DBSbase. Since DBSbase already stores the data in a converted format, we
can directly execute the proposed execution plan without the need to buffer a converted
data representation. Since we process the data using the invisible join and array-based
aggregation techniques mainly in sequential order, we benefit from the block-based
access pattern of hard drives. The access pattern and the column-oriented storage layout
guarantee that the data read within a block is actually needed for further processing.

Overall, we expect that a disk-based DBMS will provide worse runtime results, in
particular on large data sets, since we face additional effort due to the indirections of
the buffer manager. Due to this indirection we have to check whether data is already in
the main memory or not. Techniques like pointer swizzling [48] could reduce this effort.
Another idea, related to DBSseq, is to mark an intermediate table to be in-memory and
to offer a special in-memory execution engine [98].

4.6. Wrap up 79

4.6 Wrap up
In this chapter, we answered our third research question: How can we process genome
data sets as efficient as specialized analysis tools using relational DBMSs? To this
end, we examined the implementation space of the logical query plan behind our SNV
detection query (cf. Figure 4.4). We learned that standard database operator im-
plementations such as hash join and sort-based aggregation introduce overhead and
bottlenecks that prevent a DBMS to be competitive with specialized analysis tools
such as samtools, in particular when we process large genome regions.

To overcome these limitations, we can leverage query and data characteristics that are
inherent to the SNV detection problem and to our base-centric database schema. Thus,
we can apply advanced processing schemes such as invisible join and a special kind of
hash-based aggregation that we call array-based aggregation. Both techniques allow us
to decrease analysis runtime. Compared to specialized analysis tools, we achieve at
least competitive analysis runtime performance. Thus, using a main-memory DBMS
and combining it with advanced relational processing strategies, we can mitigate the
processing overhead of database systems for this specific workload allowing researchers
to rethink their decision whether to use a DBMS for SNV analysis or specialized analysis
tools.

Overall our results show that the choice of the database schema depends on the size
of the analyzed genome region. If the standard use case is to analyze small genome
regions, e.g., single genes, we would suggest to use the read-centric database schema.
If bulk analysis of genomes is of interest, a base-centric database schema pays out due
to the avoidance of data conversion. For mixed use cases, our results indicate that a
base-centric database schema is the best choice to provide high average analysis speed.

Nevertheless, so far, we only considered a small data set within our experiments of this
chapter due to the increased data volume of the base-centric database schema. In the
following chapter, we will discuss compression of genome data stored in relational DBMS
to improve the storage consumption and increase the scalability of our approaches to
bigger data sets. Of course, compression introduces additional effort for data processing.
Thus, we will also investigate how we can process compressed genome data efficiently
within the database system.

80 4. Efficient SNV detection using relational database operators

5. Genome-specific storage and query
optimizations for relational DBMSs

In Chapter 3, we devised a concept to express SNV detection as relational database
query. Then, in Chapter 4, we investigated processing strategies for relational DBMSs
to execute the SNV detection query efficiently on a reduced data set to not interfere
with main memory limitations. Considering the growing amounts of genome data, it is
critical to store and process mapped read data efficiently. For that reason, in this chap-
ter, we examine compression schemes to reduce the storage consumption of mapped
read data within a relational database. In essence, we put special focus on lightweight
compression schemes that allow for compressing data while enabling the database sys-
tem to process data values in their compressed form reducing decompression overhead.
Furthermore, we will investigate how we can leverage data characteristics during query
processing to decrease the analysis runtime. Our investigations help us to answer our
fourth research question: How can we store genome data sets using a relational DBMS
as efficient as state-of-the-art flat-file approaches without sacrificing analysis speed?

In Section 5.1, we start with a brief primer on data compression with special focus on
lightweight compression schemes for database systems. Then, in Section 5.2, we perform
an initial storage consumption analysis using standard lightweight database compres-
sion schemes. These standard compression schemes do not allow us to compete with
compressed genome-specific flat-file formats that additionally use heavyweight compres-
sion schemes. To improve the storage consumption of a relational DBMS, we examine
how we can integrate genome-specific compression schemes in Section 5.3. After de-
vising lightweight genome-specific compression schemes, we introduce a technique that
we call base pruning that leverages data characteristics during the processing of the
SNV detection query. Finally, in Section 5.5, we examine the impact of our proposed
techniques on storing and querying three real-world data sets.

82 5. Genome-specific storage and query optimizations for relationalDBMSs

5.1 A primer on data compression
In this section, we provide a brief overview on data compression within main-memory
DBMSs. Using compression within a main-memory DBMS is a two-edged sword. On
the one hand, we can reduce the amount of memory needed to store data allowing
us to store more data. Furthermore, we can utilize the available memory bandwidth
better, because we require less bits to transfer the same amount of information. This
is especially helpful for memory-bound tasks, i.e., a scan that has less CPU effort and,
thus, can be sped up if we can transfer more data values for processing per memory
access. On the other hand, we have to keep decompression overhead low to not intro-
duce processing overhead and sacrifice the potential performance improvements due to
avoiding costly disk accesses. For that reason, we have to choose compression schemes
in a main-memory DBMS carefully.

5.1.1 Heavyweight vs. lightweight compression

The general idea behind data compression is to replace patterns1 within the original
data by smaller codes. Decompression means to retrieve the original data for a given
code. We can distinguish heavyweight and lightweight compression schemes that differ
in the computational effort required for compressing and decompressing data.

Heavyweight compression schemes are designed for universal use and typically achieve
high compression rates. Nevertheless, they are also accompanied with high computa-
tional effort. A typical heavyweight compression scheme is gzip [31] combining Lempel-
Ziv [135] and Huffman [59] encoding. Huffman encoding assigns codes of variable length
to patterns within the data. Patterns that occur more often are replaced by a smaller
code, while those patterns that occur less often get a longer code assigned. Lempel-Ziv
encoding creates a dictionary of patterns within the original data that get replaced by
a fixed-length code. In case that a known pattern occurs, it is replaced by the code. To
save more storage, information for decompression is not saved as long as we can com-
pute it during decompression, e.g., the dictionary used for Lempel-Ziv encoding. Thus,
we have to restore this information by decompressing the complete data set to access
the original data values. If we want to access a specific data value2, a heavyweight
compression approach introduces significant overhead, since we have to decompress the
complete data set. To reduce the overhead of decompression, blocking can be used as
done by the BGZF format [111]. The idea is to chunk the input data and to compress
each chunk, which requires less decompression overhead to look up a single data value
if the chunk containing the value can be determined in advance.

In contrast to heavyweight compression schemes, lightweight compression schemes usu-
ally trade off faster data access for overall storage reduction of the complete data set.
To this end, they are designed to leverage specific data characteristics for compres-
sion, e.g., a specific value domain or inherent relationships between data values. Due

1Assuming that the input data consists of characters, a pattern can be a sequence of characters in
the input data, e.g., a single character or substring, or a repetition of characters within the input data.

2In the context of relational DBMSs, a data value is a specific attribute value of a tuple.

5.1. A primer on data compression 83

to their reduced processing overhead, we often use lightweight compression schemes in
main-memory DBMSs, since fast data access is critical. Of course, lightweight com-
pression schemes will only achieve competitive compression ratios compared to heavy-
weight compression schemes, if the data shows the required data characteristics. Using
a column-oriented storage layout, we can improve the effectiveness of lightweight com-
pression schemes (cf. Section 4.1.2), since data values of the same domain are stored
consecutively in memory [2]. Moreover, a column-oriented storage layout facilitates the
processing of compressed data values [2] avoiding the need for decompression of data
values at all. We will discuss some lightweight compression schemes used within this
thesis in the following section.

5.1.2 Lightweight data compression schemes

In this section, we give a brief introduction to standard lightweight compression schemes
that are available within our evaluation DBMS CoGaDB and used throughout our
storage evaluation.

5.1.2.1 Run-length encoding - RLE

Run-length encoding (RLE) replaces runs of the same value with a (value, length) tuple
indicating the run value and the length of the run. It is especially well suited to compress
sorted data, since the chance of runs of the same value increases. In Figure 5.1, we give
an example based on our read-centric database schema (cf. Section 3.3.1). Column
R_SG_ID encodes which read belongs to which sample genome. Since we import all
reads of the sample genome data set in bulk, we automatically generate runs of the
same R_SG_ID value that can be compressed well. In order to look up a single value
by tuple id, we have to sum up all length values until the sum is greater or equal to the
searched tuple id. Then, we return the value of the respective run as tuple value. A
scan can be done directly on the run values. For each run that satisfies the predicate,
we return the tuple ids compressed by the respective run.

5.1.2.2 (Bitpacked) dictionary encoding - (BIT)DICT

The idea of dictionary encoding (DICT) is to replace variable length inputs such as
strings by fixed length codes. To this end, data values are looked up in a dictionary
and replaced by the respective surrogate code. In Figure 5.1, we show an example based
on the read-centric database column R_CIGAR (cf. Section 3.2.1). Each CIGAR string
is replaced by a surrogate value and stored together with the respective surrogate value
in a dictionary. In case that a value appears more than once, DICT leads to compression
of data if the used code is smaller than the replaced value. In our example, we do not
achieve any compression, since every CIGAR string appears once and has to be stored
in the dictionary.

In real world data sets, specific CIGAR strings appear quite often, e.g., 100M that
indicates that every of the 100 bases of a read was mapped to a reference base. If we
use 32-bit integers as word length for the surrogate keys, we achieve a slight compression,

84 5. Genome-specific storage and query optimizations for relationalDBMSs

Read
R_ID R_CIGAR

0
1
2
3

...

R_SEQ

8M1I4M1D3M
3S6M1I4M2H

5S6M
9M
...

TTAGATAAGGATACTG
AAAAGATAAGGATA

GCCTAAGCTAA
CAGCGGCAT

...

R_POS R_MAPQ

30
30
30
30
...

7
9
9

37
...

R_QNAME

Read_1
Read_2
Read_3
Read_1

...

... ... R_QUAL

<<<?????????))))
<<<????????)))

!!!!!??????
?????????

...

R_C_ID

0
0
0
0

...

R_SG_ID

0
0
0
0

...

R_MATE_ID

3
1
2
0

...

VOID RLE RLE RLEDICT

R_ID R_CIGAR R_SEQ

0
1
2
3
...

TTAGATAAGGATACTG
AAAAGATAAGGATA

GCCTAAGCTAA
CAGCGGCAT

...

R_POS R_MAPQ

7
9
9

37
...

R_QNAME

Read_1
Read_2
Read_3
Read_1

...

... ... R_QUAL

<<<?????????))))
<<<????????)))

!!!!!??????
?????????

...

R_C_ID

(0, 4)

...

R_SG_ID R_MATE_ID

3
1
2
0

...

(30, 4)

...

(0, 4)

...

8M1I4M1D3M
3S6M1I4M2H

5S6M
9M
...

0
1
2
3
...

Dictionary
Value Surrogate

Figure 5.1: Compression of chosen read-centric database columns. We can com-
press runs of the same value effectively using RLE (e.g., R_C_ID, R_MAPQ and
R_SG_ID). Primary key columns such as R_ID can be effectively compressed using
VOID compression. String columns such as R_CIGAR can be encoded using DICT to
provide fixed length codes facilitating processing. If we can replace strings with smaller
surrogate values and the string is stored more than once, we achieve compression.

since the string consists of four characters and a \0 terminator each encoded with one
byte. Thus, we save one byte per 100M CIGAR. We can increase the effectiveness
of DICT for domains with a smaller amount of distinct values than the chosen word
length of the surrogate values offers. For example, if we can estimate that we only
require 256 different CIGAR values, we could pack 4 surrogates into a 32-bit word
reducing the required amount of storage further. This is especially interesting if we
have value domains with less than 4, 8 or 16 values. Then, we can use a single byte
to represent multiple values. We call such a dictionary compression scheme bit-packed
dictionary encoding (BITDICT). Note that BITDICT can become problematic if the
number of distinct values increases beyond the number of possible values that can be
encoded. Then, we require a complete recoding, which is time consuming or we have
to chunk the data using a bigger dictionary for the new chunk of data.

To look up the original value, we have to search the dictionary for the surrogate key. To
improve the look up performance, we could also use a lookup array (if the surrogates
can be used as indexes). Of course this decreases the potential compression potential.

5.2. Initial storage consumption analysis 85

Furthermore, BITDICT has the drawback of increasing the access time, since we have
to additionally extract the surrogate value from the word. It is also possible to process
compressed (BIT)DICT data. To this end, we have to rewrite the predicate into the
surrogate value. An equality predicate for string 9M gets rewritten into a equality
predicate for surrogate value 3. Greater or lesser than operations are only possible if
the surrogate values reflect the sort order of the original values.

5.1.2.3 VOID compression

VOID compression is inspired by MonetDB’s VOID-headed BATs [60]. MonetDB uses
internal data structures called binary association table to encode columns. Each value in
a column consists of two values: the oid that is the tuple id and the actual value. Thus,
it is not necessary that the values in the column follow the tuple id order. Nevertheless,
in case they do, i.e., the first value belongs to tuple id 0, the second to 1 and so
forth, storing the oid explicitly is overhead, since the position in the column is the oid.
Thus, MonetDB converts the oid array into a void array, storing no oid at all as it can
be derived from the values position within the value array. In our experiments, we
found that primary key columns containing numeric, auto-incremented values have the
same data characteristic as void arrays in BATs. Thus, we implemented a compression
scheme called VOID compression to apply on our primary key columns. If we access a
specific tuple id in a VOID compressed column, we simply return the tuple id. And a
scan returns the tuple ids that satisfy the predicate. In Figure 5.1, we give an example
of the VOID compressed primary key column R_ID within our read-centric database
schema. The result of VOID compression is that we store no data at all to represent
column R_ID, since we can derive the values from the inherently given tuple id.

5.2 Initial storage consumption analysis

In this thesis, we identified two general approaches to store mapped reads (cf. Chap-
ter 3). We can either use the read- or the base-centric database schema. In the read-
centric database schema, we store mapped reads as strings. In the base-centric database
schema, we store the single bases of the reads individually. Thus, the base-centric
database schema allows us to perform SNV calling without the need of UDFs, since we
already store the required mapping information explicitly that is implicit stored using
strings within the read-centric database schema. In the qualitative assessment of the
base-centric database schema (cf. Section 3.3.5), we already identified that the explicit
storage of position and mapping information will increase the data volume. For that
reason, we performed our SNV calling experiments in Chapter 4 on a reduced data set
to not interfere with main memory constraints.

In this section, we assess the storage consumption of both database schemes in detail
using our database approaches DBSseq and DBSbase respectively. We use CoGaDB (cf.
Section 4.2.2.1 for details on the system setup) to evaluate the storage consumption of
DBSbase and DBSseq storing a complete human genome data set. The sample genome

86 5. Genome-specific storage and query optimizations for relationalDBMSs

data set3 comprises 144,534,109 mapped reads consisting of 13,917,235,121 bases. The
reference genome comprises 86 reference sequences (contigs) consisting of 3,137,454,505
bases. We apply standard lightweight compression schemes that are available within
CoGaDB, i.e., run-length encoding (RLE), void compression (VOID), bit-packed (BIT-
DICT) and standard dictionary compression (DICT), to compress the base- and read-
centric database.

In the following section, we assess the applicability of standard compression schemes
available in relational database systems (cf. Section 5.1.2) to both database schemata
and report the used compression scheme for every column. Then, in Section 5.2.2,
we report and discuss the results of our storage consumption experiment and derive a
concept to further decrease the storage consumption.

5.2.1 Applicability of standard compression schemes

In Table 5.1, we list per compression scheme which column of the base- or read-centric
database schema is compressed using the respective compression scheme. Since base-
centric and read-centric database schema share the same data hierarchy (cf. Sec-
tion 3.3.3), we apply the same compression schemes to the shared columns of both
schemata indicated by a cell spanning column two and three. In the last row, we list
all uncompressed columns.

Within our database approaches, we have two different kinds of data to compress. We
distinguish primary and foreign key data that is used to ensure referential integrity and
is not present in flat files. The other columns contain the actual payload (genome) data,
i.e., mapped read data and reference sequences. These columns are printed in bold in
Table 5.1.

Compression of primary and foreign key columns

Based on the data characteristics, we can apply standard compression schemes such
as VOID and RLE to nearly every key column (ending with ID) indicating that we
can reduce the overhead due to primary and foreign keys effectively. The reason for
this is that all primary key columns contain a continuous sequence of numbers starting
at zero, which is well suited for VOID compression. The foreign key columns often
contain runs of the same values. For example, column SB_READ_ID encodes which
base belongs to which read. Since we store all bases of the same read consecutively, we
have a sequence of the same SB_READ_ID value.

The only exceptions are columns MATE_ID and SB_RB_ID, since they do not show
a characteristic that we can leverage for compression. Column MATE_ID is a foreign
key to another read leading to random values. Column SB_RB_ID of the base-centric
database schema does not contain runs of the same value. Thus, RLE will not work.

3data is available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/

5.2. Initial storage consumption analysis 87

Compression Compressed database schema columns
scheme read-centric base-centric

VOID RG_ID, C_ID, SG_ID, R_ID
- RB_ID, SB_ID

RLE
C_RG_ID, R_SG_ID, R_C_ID, R_MAPQ

- RB_C_ID, SB_INSERT_OFFSET,
SB_READ_ID, *_HARD_CLIP_*

BITDICT R_FLAG

- RB_BASE_VALUE,
SB_BASE_VALUE

DICT R_CIGAR -

none

R_MATE_ID, R_QNAME, R_POS, R_TLEN,
C_NAME, SG_NAME, RG_NAME
R_SEQ, R_QUAL,
C_SEQ

SB_RB_ID, SB_BASE_CALL_QUAL.,
RB_POSITION, *_SOFT_CLIP_*

Table 5.1: Overview on applied compression schemes to columns of the base- and/or
read-centric database schema. Bold printed columns indicate actual payload data, i.e.,
mapped reads to store. The explicit encoding of mapping information using the base-
centric database schema allows us to apply bit-packed dictionary compression to base
value columns, which is not possible without further modifications using a read-centric
database schema.

Compression of genome data

Considering the actual genome data, we compress columns R_MAPQ, R_FLAG and
R_CIGAR. To compress column R_MAPQ, we leverage that the values of subsequent
reads might be equal allowing us to apply RLE. To compress R_FLAG, we use BIT-
DICT compression to encode the limited set of possible values more efficiently. To
compress R_CIGAR, we use DICT to replace common CIGAR strings such as 100M
by a smaller surrogate value.

All other column characteristics prevent the use of compression schemes. R_POS
indicates the start mapping position of a read that can be random. The same random-
ness is present within R_TLEN values indicating the distance between two paired-end
reads. Thus, we do not apply any compression. Another characteristic of genome
data is that it mostly consists of unique strings, e.g., reads are mostly unique to pre-
vent a possible bias within analysis results [30] leading to unique strings in columns
R_SEQ and R_QUAL. Also C_SEQ contains large unique strings. Furthermore,
names (RG_NAME, SG_NAME, C_NAME, R_QNAME) are also mostly unique.
Thus, using a dictionary encoding scheme likely increases the data volume, because
we have to assign a unique surrogate value to every unique value (cf. Section 5.1).
Consequently, we do not apply any compression scheme to these columns.

88 5. Genome-specific storage and query optimizations for relationalDBMSs

Considering the storage of DNA sequences and the small number of possible base value
characters, bit-packing of single base characters of a DNA sequence is an intuitive com-
pression. Assuming four different possible base values4, i.e., A, C, T and G, we would
require 2 bit to encode them instead of 8 bit per character. Nevertheless, reference base
sequences often contain Ns requiring a further bit, i.e., 3 bits per base value, to encode
the possible base values. In the read-centric database schema, DNA sequences are stored
as strings, which requires the introduction of a special string compression scheme to en-
able BITDICT of base values within DNA strings. In contrast, the base-centric schema
encodes mapping information per base explicitly. Thus, we do not store unique DNA se-
quence strings within a base-centric database, but the single characters, which allow us
to apply BITDICT without any further modifications assuming a column-oriented stor-
age layout and processing engine. Consequently, we can apply standard BITDICT to
columns SB_BASE_VALUE and RB_BASE_VALUE. Furthermore, we can compress
parts of the CIGAR information stored in columns SB_INSERT_OFFSET and hard
clip related columns (*_HARD_CLIP_*) within the base-centric database schema (cf.
Section 3.3.1) using RLE. Column SB_INSERT_OFFSET contains many zeros, since
insertions are rare compared to the matching bases. Also hard clips are rare and, thus,
the hard clip lengths are often zero.

Conclusion

Our overview on applied compression schemes for the single columns of the base-centric
and read-centric database schema reveals a trade-off between the ability to compress
base values using standard BITDICT to save storage compared to the read-centric
database schema and the need for additional foreign key columns to store mapping
information in the base-centric database schema explicitly. On the one hand, the ex-
plicit encoding of mapping information facilitates the compression of genome data us-
ing standard lightweight compression schemes. Thus, using the base-centric database
schema, we can compress base values using BITDICT, while we are not able to com-
press DNA sequences in the read-centric database schema without modifications of
existing compression schemes. On the other hand, the base-centric database schema
introduces additional foreign key columns such as SB_RB_ID and SB_READ_ID
to enable the explicit storage of mapping information. These columns will inherently
introduce storage overhead. While we can use RLE to compress SB_READ_ID, we
have no applicable compression scheme for SB_RB_ID. It is not clear yet, whether
we can mitigate the additional storage consumption due to the foreign key columns to
benefit from the potential storage savings. To this end, we perform an initial storage
consumption analysis in the next section.

5.2.2 Storage evaluation

With our initial storage evaluation, we pursue two goals. First, we want to compare the
storage consumption of our database approaches with genome-specific flat file formats

4The complete alphabet comprises 16 characters [97], but base values different than A, C, T or G
will likely have low quality limiting their use for further analyses such as SNV calling.

5.2. Initial storage consumption analysis 89

CRAM BAM SAM DBSseq DBSbase

0

50

100

150

200

10.3 14.6

40.8 38.1

153.0

Storage approach

D
at

a
si

ze
in

G
B

Figure 5.2: A DBSseq approach requires three to four times more storage than the
compressed flat file formats CRAM and BAM, which is due to missing compression
capabilities for DNA sequencing data. DBSbase allows to apply BITDICT to base values,
but increases the data volume by more than a magnitude due to explicitly storing
position and mapping information.

that rely on heavyweight compression to quantify the storage overhead accompanied
with our database approaches. We expect that heavyweight compressed flat files achieve
a higher storage reduction compared to our database approaches, since we can apply
lightweight compression schemes only to a limited number of database columns (cf.
Section 5.2.1), while the heavyweight compression schemes can compress the complete
data set due to their universal applicability. Second, we want to examine the differences
in storage consumption between the base-centric and the read-centric database schema
in detail to quantify the trade-off identified in Section 5.2.1 between the ability to
compress base values and the additionally required foreign keys.

To this end, we import the complete human genome data set (cf. Section 5.2) using
DBSseq and DBSbase applying the compression configuration shown in Table 5.1. We
compare the storage size of the database approaches with the storage requirements of
the flat file formats SAM, BAM [111] and CRAM [28] for mapped read data. SAM is
the uncompressed flat file format serving as baseline. BAM is the binary SAM version
that applies bit-packing to single base values. In addition, BAM applies heavyweight
compression using the blocked gzip file format (BGZF), which is a blocked compres-
sion scheme on top of the original gzip format [31]. CRAM additionally applies a
genome-specific compression scheme called reference-based compression to compress
DNA sequences of mapped read [56]. To compress the reference sequence data, we use
the gzip file format and include the size in the reported storage requirements. In case of
uncompressed SAM, we report the uncompressed storage size of the reference FASTA
file. We report the results in Figure 5.2.

90 5. Genome-specific storage and query optimizations for relationalDBMSs

5.2.2.1 Results

Using the storage size of the uncompressed SAM format as baseline, CRAM and BAM
reduce the storage size by 75% and 65% respectively. The difference of 10% or 4 GB is
due to the use of reference-based compression within CRAM assuming that this is the
only storage optimization compared to BAM. Since BAM internally applies bit packing
to sample base values, which leads to a theoretical storage reduction of 20% or 8.35
GB5, the reference-based compression reduces the storage size of the SAM formatted
data by 30%, which is 40% of the overall storage savings of CRAM. The other 60% of
the storage savings are due to the use of heavyweight compression.

Considering our database approaches, DBSseq saves only 2 GB of storage compared to
SAM, while DBSbase increases the storage consumption by a factor of 3.75. Compared
to CRAM, DBSseq requires four times more storage space and DBSbase requires 15 times
more storage space. Consequently, we cannot use one of our database approaches as
competitive alternative for compressing genome data. Moreover, we would dramatically
increase the storage size using DBSbase.

In Figure 5.3, we show in detail which columns require the most storage using DBSseq

or DBSbase. We assign all columns that have too small single shares to category other
columns. The breakdown for DBSseq in Figure 5.3a confirms that columns R_SEQ
and R_QUAL, the actual mapped read data, are responsible for more than 75%
of the overall storage. This explains the bad compression ratio compared to the
uncompressed SAM format. In contrast, using DBSbase, columns SB_RB_ID and
SB_READ_ID, both foreign key columns, require more than 75% of the overall stor-
age. Column SB_RB_ID encodes the mapping between single sample and reference
bases. Column SB_READ_ID encodes the read containment of every single base.
While we can compress column SB_READ_ID using RLE, the data characteristics of
column SB_RB_ID prevent us from applying a compression scheme (cf. Section 5.2.1).
Thus, the explicit storage of mapping information leads to the large storage consump-
tion increase if we use DBSbase. The storage savings due to compressing columns
RB_BASE_VALUE and SB_BASE_VALUE do not outweigh the large storage in-
crease due to column SB_RB_ID. Consequently, the base-centric database schema
appears not to be a good choice as primary database schema with regard to storage
consumption.

If we do not take the storage size of columns SB_READ_ID and SB_RB_ID into
account within our storage comparison between DBSbase and DBSseq, we find that the
storage consumption of DBSbase is similar to DBSseq. However, we already apply BIT-
DICT to compress base values within DBSbase. Thus, we would expect that we save
storage. Indeed, the impact of BITDICT on the storage size for read sequences can
be seen by comparing the absolute storage requirements for R_SEQ (cf. Figure 5.3a)
and SB_BASE_VALUE (cf. Figure 5.3b). The difference is roughly 10 GB. Neverthe-
less, these storage savings are exceeded by the storage requirements of the additional

5Assuming 3 bit per base and 32-bit words, we can store 10 bases per 4 byte, which is roughly 8.35
GB for 13,917,235,121 bases.

5.2. Initial storage consumption analysis 91

0 14 29 32 38

Storage size (GB)

0 38 76 84 100

Storage consumption share (%)
R_QUAL R_SEQ C_SEQ Other columns

(a) Breakdown of storage consumption of DBSseq by column.

0 14 19 32 153

Storage size (GB)

0 9 13 21 25 100

Size of DBSseq

Storage consumption share (%)
SB_BASE_CALL_QUALITY SB_BASE_VALUE RB_POSITION

RB_BASE_VALUE Other columns SB_READ_ID SB_RB_ID

(b) Breakdown of storage consumption of DBSbase by column.

Figure 5.3: Breakdown of storage consumption per database column. Using DBSseq,
columns R_SEQ and R_QUAL require more than 75% of the overall storage. Using
DBSbase, column SB_RB_ID and SB_READ_ID, foreign key columns, consume more
than 75% of the overall storage. Not considering the foreign columns, the storage
consumption of DBSseq and DBSbase is comparable.

column RB_POSITION. This column encodes the position within the reference se-
quence for every single reference base and requires additional 13 GB. Since column
RB_POSITION shows the same data characteristics as SB_RB_ID, we cannot apply
one of our standard compression schemes.

5.2.2.2 Discussion

The results show that storing genome data efficiently using a relational DBMS is hard
to achieve using our available lightweight compression schemes. Since we cannot apply
lightweight compression schemes to columns storing mapped reads within DBSseq (cf.
Section 5.2.1), the storage savings of DBSseq are only marginal compared to the storage
savings of BAM or CRAM. Using DBSbase, we are at least able to apply BITDICT to
compress base values. However, the additional storage requirements due to explicitly
storing position and mapping information outweigh the storage savings. Nevertheless,

92 5. Genome-specific storage and query optimizations for relationalDBMSs

if we consider the data characteristics of columns SB_RB_ID and RB_POSITION,
we are confident to compress these columns, since the data values are not random,
but contain runs of continuous sequences of numbers that are incremented by one
(cf. Figure 3.9 for an example). A modified and, thus, genome-specific RLE could be
applicable to leverage this data characteristic. If we can successfully reduce the storage
overhead of columns SB_RB_ID and RB_POSITION, a base-centric database schema
could reduce the overall storage consumption of a relational DBMS using standard
lightweight compression schemes. Thus, we do not have to fall back to a read-centric
database schema and can avoid to use UDFs for SNV calling (cf. Section 3.3) on
large data sets. In any case, if we reduce the storage consumption of data stored
using a base-centric database schema, we will directly reduce the memory footprint of
our DBSseq approach that uses the base-centric database schema as intermediate data
representation.

A further strategy to reduce the storage size of genome data stored via a base-centric
database schema is to integrate reference-based compression that allows for better
compression than bit packing. Reference-based compression exploits mapping infor-
mation [56]. The base-centric database schema makes mapping information explicitly
available within a relational DBMS already allowing us to perform SNV calling via SQL
(cf. Chapter 3 and Chapter 4). Thus, a base-centric database schema should also facili-
tate the lightweight integration of reference-based compression into a relational DBMS,
since the required mapping information is already explicitly encoded and accessible. In
contrast, a read-centric database schema stores DNA sequences and related mapping
information implicitly via strings, which requires specialized string compression schemes
to integrate reference-based compression. Such a string compression approach would
internally leverage the mapping information, but we would still require to convert the
genome data to enable analyses such as SNV calling via SQL (cf. Chapter 3). Of course,
we could use highly specialized UDFs that directly operate on the compressed data, but
this would only increase the complexity of the used UDFs and still prevents a DBMS
to operate efficiently on the compressed data. Consequently, we focus on reducing the
storage consumption of the base-centric database schema.

5.3 Lightweight genome-specific database compression
schemes

In this section, we explain how we integrate reference-based compression, a genome-
specific compression scheme, in a lightweight way into a relational DBMS based on our
base-centric database schema. Moreover, we introduce Delta+RLE encoding to effi-
ciently reduce the overhead due to explicitly storing position and mapping information.

5.3.1 Reference-based compression for column stores

Reference-based compression leverages the similarity between base sequences [56]. In
case of read mapping data, we map small reads against a larger reference sequence with

5.3. Lightweight genome-specific database compression schemes 93

TTAGATAAGGATA*CTG

Reads

Read 1(1)
Read 2
Read 3

Genome position

Reference sequence

Reads

AGCATGTTAGATAA*GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

00000000011111 1111122222222223333333333444444
12345678901234 5678901234567890123456789012345

aaaAGATAAGGATA
gcctaAGCTAA

Read 1(2) CAGCGGCAT

(7,8)G(15,4)*(19,3)

Reads

Read 1(1)
Read 2
Read 3

Reads
aaa(9,6)G(15,4)

gccta(9,2)C(12,3)
Read 1(2) (37,5)G(43,3)

Figure 5.4: The matching parts of reads (gray bases in the upper part) are encoded
as (position, length) tuples with respect to the reference sequence (bold printed in the
lower part). Differing bases are kept to restore the original read sequence.

the goal to achieve a high concordance. Thus, the read and the reference sequence have
a large part of their base sequence in common. The idea is now to encode (parts of) the
reads using a start position and a length value referencing the respective base sequence
in the reference sequence. We can directly reuse the read mapping information for this
purpose. In Figure 5.4, we show an example of the general idea behind reference-based
compression. We replace sequences of matching bases by a (position, length) tuple.
Differing bases are stored separately to enable the reconstruction of the original read.

5.3.1.1 Compression concept

To integrate reference-based compression into a DBMS, we have to leverage the mapping
information within mapped read data. In particular, we have to know which sample base
is mapped to which reference base. Within the base-centric database schema, we encode
this relationship explicitly via column SB_RB_ID. In Section 4.3.1, we already showed
that we can use the SB_RB_ID value as index to look up reference bases. We use this
characteristic to speed up positional lookups during the invisible join. We can also lever-
age this inherent characteristic to integrate reference-based compression into a DBMS
in a lightweight way. Thus, we can reduce the size of column SB_BASE_VALUE
while ensuring efficient data access. In Figure 5.5, we show the basic principle behind
reference-based compression in a column store using the base-centric database schema.
Instead of storing each sample base value in column SB_BASE_VALUE as single char-
acter requiring one byte of storage, we first check whether the base value is different
from the reference base value or not. We can do the required lookup of the reference
base value efficiently using the foreign key value of column SB_RB_ID as lookup index
for column RB_BASE_VALUE 1 . In a bitmap 2 , we mark bases that are different
with a 1 and bases that are equal to the reference bases with a 0. Furthermore, we
append a differing base to an exception_list 3 . Thus, we can use the prefix sum, i.e.,
the sum of ones and zeroes encoded in the bitmap before a specific index, as index to
look up an exception value in the exception_list.

94 5. Genome-specific storage and query optimizations for relationalDBMSs

Reference_Base
RB_BASE_
VALUE

RB_ID RB_
POSITION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
...

A
G
C
A
T
G
T
T
A
G
A
T
A
A
G
A
T
A
G
C
T
G
T
G
...

Sample_Base
SB_BASE_VALUESB_

RB_ID

6
7
8
9

10
11
12
13
13
14
15
16
17
18
19
20
21

8
9

10
11
12
13
13
14
15
16
17
...

T
T
A
G
A
T
A
A
G
G
A
T
A
X
C
T
G
A
G
A
T
A
A
G
G
A
T
A
...

SB_INSERT_
OFFSET

SB_
READ_ID

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
...

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1

...

Original data Bitmap
Exception

list

0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
...

G
X
G
...

Not
stored

1

2
Lookup

Compare
3

Store
exception

value

0
0
0
0
0
0
0
0
0
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
...

Prefix
sums

Figure 5.5: Reference-based compression uses the existing foreign key relationship to
compress sample bases 1 . Differing sample bases are marked 2 and stored in an
exception list 3 .

Data retrieval. We show the lookup of single base values in a reference-based com-
pressed column in Algorithm 5.1. For simplicity, we assume that we can access specific
indexes of the bitmap, exception_list and columns SB_RB_ID and RB_BASE_-
VALUE via the array access operator []. To retrieve a value of a given tuple id tid,
we check whether the bitmap is set at the given index tid (line 2). If the bit is set, i.e.,
1, we compute the prefixSum (line 3) and use it as index to look up the base value
in the exception list (line 4). In case that the bitmap value is 0 at the given tid, we
use the foreign key from column SB_RB_ID (line 6) to look up the base value from
column RB_BASE_VALUE (line 7).

Storage consumption. Using a simple bitmap, we have to store one bit for every base
within column SB_BASE_VALUE. Considering our human genome data set used in
our initial evaluation (cf. Section 5.2), we have to store 13,917,235,121 bits that are ca.
1.74 GB. Furthermore, we have to store the mismatching bases within the exception
list. Our evaluation data set contains 53,149,605 mismatching bases. Using an internal
BITDICT column with 3 bit per base value and a word size of 32 bit, we need ca. 22
MB to store the mismatching base values. Summing up the size of the bitmap and
the exception list, we already achieve a reduction of the storage size by a factor of
3 compared to BITDICT using 3 bits and 32-bit words for all bases, which requires
5.56 GB.

5.3.1.2 Reducing the storage consumption

To further reduce the storage consumption, we can use a compressing word-aligned
hybrid (WAH) bitmap [134] instead of a plain bitmap. In a WAHBitmap, we organize

5.3. Lightweight genome-specific database compression schemes 95

Algorithm 5.1 Lookup of values stored in a reference-based compressed column
Input: The tid to look up in the column.
Output: The value of the tid encoded by the column.
1: function getValue(tid)
2: if bitmap[tid] = 1 then
3: exception_idx← prefixSum(bitmap, tid)
4: return exception_list[exception_idx]
5: else
6: rb_tid← SB_RB_ID[tid]
7: return RB_BASE_V ALUE[rb_tid]
8: end if
9: end function

zeroes and ones in words of a specific wordsize, e.g., 32 bit. During insert, the incoming
bits are collected in a buffer. If the buffer is full, i.e., we inserted as many bits as our
word size, the buffer is converted into a literal word if it contains zeroes and ones or
into a fill word if it contains only zeroes or only ones. A literal word stores the actual
bits. In contrast, a fill word stores the number of consecutive words that contain only
zeroes or ones. Thus, we can compress long runs of zeroes or ones effectively. In case of
high base call quality and, thus, having only a small number of mismatching bases, our
bitmap contains many zeroes that can be effectively compressed. In order to distinguish
literal and fill words, we use the highest-order bit. To distinguish fill words that contain
zeroes or ones, we use the second-highest-order bit. Thus, a literal word can store one
bit less than the actual word size, e.g., 31 bits for a word size of 32 bit. Moreover,
the longest run of zeroes or ones that a fill word can represent is 2word_size−2, e.g.,
230 = 1, 073, 741, 824 for a 32-bit word representing 33,285,996,544 bases.

The worst case for a WAHBitmap regarding storage consumption is that all words are
literal words. This means that we have to store a 1 every 31 values assuming 32-bit
words. Then, we would waste one bit per word, since we use the highest-order-bit to
signal whether the word is a literal or fill word, and require more storage than a plain
bitmap. Fortunately, we can assume that the number of mismatching bases within
mapped reads that determine most of the ones within the bitmap occur less frequently
(cf. Section 3.1.1.2), e.g, 1 in 1,000 bases is wrong. The human data set that we used in
our initial evaluation (cf. Section 5.2), contains 53,149,605 mismatching bases, which
is roughly 0.4% of all bases or 4 in 1,000 bases. Thus, we assume that the worst case
for a WAHBitmap considering our use case is that every mismatching base is stored
in a single literal word and literal and fill words alternate, i.e., we cannot store the
maximum run length in a fill word. Then, the worst case size of a WAHBitmap in bits
depends on the number of mismatching bases (#mb) as follows:

#wahbitmap_size = #mb ∗ word_size︸ ︷︷ ︸
literal word size

+ (#mb+ 1) ∗ word_size︸ ︷︷ ︸
fill word size

+word_size︸ ︷︷ ︸
buffer size

96 5. Genome-specific storage and query optimizations for relationalDBMSs

Algorithm 5.2 Lookup of values stored in a WAHBitmap
Input: The tid to look up in the WAHBitmap.
Output: The value of the tid encoded by the bitmap: 0 or 1.
1: function getValue(tid)
2: word_idx← 0
3: word← words[word_idx]
4: max_tid← getNumberOfBases(word)
5: while max_tid ≤ tid do . Is tid encoded in this word?
6: word_idx← word_idx+ 1
7: word← words[word_idx]
8: max_tid← max_tid+ getNumberOfBases(word)
9: end while
10: return extractValue(word, tid)
11: end function

In our computation, we assume that the overall number of bases divided by the number
of fill words required in the worst case does not exceed the maximum run length that
a fill word can store. In the worst case, assuming a word size of 32 bit, we require
426 MB to store the bitmap for our evaluation data set. Every fill word would have to
encode 231 zeroes, which is far less than the possible 33,285,996,544 zeroes. Thus, using
a WAHBitmap is a storage saving alternative for our implementation of a reference-
based compression within a column store.

5.3.1.3 Speed up the data access

The two critical bitmap operations in our reference-based compression are the array
access and the prefix_sum() computation (cf. line 2 and 3 in Algorithm 5.1 respec-
tively). While the array access using a plain bitmap can be done via a single modulo
operation to determine the word containing the value of a given index, computing the
prefix sum requires to sum up all ones in the bitmap up to the given index. This intro-
duces notable effort for looking up exception values. A WAHBitmap reduces the effort
for computing the prefix sum, since we can skip multiple tuples at once due to the fill
words. In case that we find a fill word representing the value 0, we skip it without
further action. In the case that we find a fill word representing the value 1, we can add
the number of encoded tuples within the fill word to our prefix sum6.

Fast random data access. Nevertheless, using a WAHBitmap, we inherently apply
a run-length encoding to the bitmap. The random access performance of run-length
encoded data structures is bad, since we always have to sum up the length values to
find the corresponding word for a given index. Assuming that we store literal and fill
words in an array words and that we can use a function getNumberOfBases() to
return the encoded number of bases within a given literal or fill word, we can describe
the look up of the value of a specific tuple id tid as shown in Algorithm 5.2. We sum up

6We have to subtract a possible offset if the index of interest is encoded within the fill word.

5.3. Lightweight genome-specific database compression schemes 97

Algorithm 5.3 Lookup of values stored in a WAHBitmap via binary search
Input: The tid to look up in the WAHBitmap.
Output: The value of the tid encoded by the bitmap: 0 or 1.
1: function getValue(tid)
2: word_idx← binarySearch(tids, tid) . Binary search optimization
3: word← words[word_idx]
4: return extractValue(word, tid)
5: end function

the number of bases encoded by the words (lines 2 - 9), until the sum is greater than
tid (line 5). Then, we know that the word encodes the value of the given tid (line 10),
since max_id always corresponds to the first tuple id that is not encoded within the
word, because we use zero-based tuple ids, i.e., the first tuple has id 0.

Considering the algorithm, we observe that the while loop (line 5) takes longer with
increasing tuple id tid. Thus, the access runtime highly depends on the chosen index
to look up, which makes access times unpredictable. In contrast, using a plain bitmap,
we can use a single modulo computation to locate the correct word instead of the while
loop. Using our SNV calling query (cf. Listing 3.8), users can analyze random genome
regions. For that reason, the random access performance of the WAHBitmap is an issue
and might limit the applicability, since it can deteriorate the runtime performance. To
improve the random access performance, we extend the WAHBitmap to store the first
tuple id max_tid that is not encoded within a word in a separate array tids. This idea
was also suggested by Abadi et al. for run-length compressed columns [2]. Then, we
can perform a binary search on the tids array to determine the index of the word that
contains the value of the tid. The binary search method returns the index of the first
value that is greater than the given value tid. We show the binary search modification
in Algorithm 5.3. Instead of the while loop, we perform a binary search on array tids.

Of course, the use of an additional array tids increases the storage requirements. We
have to store one additional tuple id per literal and fill word. Moreover, we have
to recognize the data type size of the tuple ids used within the system. The overall
WAHBitmap size in bits for our worst case scenario is computed as follows:

#wahbitmap_size = #mb ∗ word_size︸ ︷︷ ︸
literal word size

+ (#mb+ 1) ∗ word_size︸ ︷︷ ︸
fill word size

+word_size︸ ︷︷ ︸
buffer size

+ (2 ∗#mb+ 1) ∗ tuple_id_size︸ ︷︷ ︸
ids array size

Considering our evaluation data set, we have to use 64-bit tuple ids, since we have to
store 13,917,235,121 tuples in table Sample_Base, which exceeds the possible maximum
tuple id of 4,294,967,295 using 32-bit tuple ids. Thus, we have to store additional 851
MB to keep the tids array, which results in an overall storage consumption for the
WAHBitmap of 1.3 GB. In sum, we increase the storage size of the reference-base

98 5. Genome-specific storage and query optimizations for relationalDBMSs

0 7 13.9
0

5

10

15

sample bases (bill.)

Si
ze

in
G
B

Plain bitmap WAHBitmap WAHBitmap supporting binary search

(a) 4 mismatches ...

0 7 13.9
0

10

20

sample bases (bill.)

(b) 8 mismatches ...

0 7 13.9
0

15

40

sample bases (bill.)

(c) 14 mismatches ...

Figure 5.6: in 1000 bases. With increasing number of mismatching bases, the WAH-
Bitmap has to store more words in worst case reducing the compression effect. The
binary search optimization within WAHBitmaps sacrifices most of the storage savings.

compressed column by a factor of 3, but we still require less storage than the plain
bitmap. However, the storage size for the WAHBitmap in our worst case scenario highly
depends on the number of mismatching bases. In Figure 5.6, we show the theoretical
storage sizes of the WAHBitmap assuming different mismatch rates. With increasing
number of mismatching bases, the compression effect of the WAHBitmap is reduced,
since we have to store more words. In combination with the binary search optimization,
we even increase the storage requirements compared to a plain bitmap, since we have
to store a 64-bit tuple id per word. Thus, we should use this feature with care and only
when the use case really requires it. We investigate the impact of the binary search
optimization on our SNV calling query setup from Chapter 4 at the end of this section
(cf. Figure 5.7) to determine whether the storage overhead pays out.

Fast sequential data access. The binary search solution solves the single random
access performance bottleneck, but within our analysis use case, we also often access
successive tuples. Considering our SNV calling query, we have to access multiple sample
bases that are mapped within a specific genome region. Since the sample bases of a read
are imported in sequence (cf. Section 3.3.1) and map to consecutive reference bases, it
is likely that we have to access successive tuples within column SB_BASE_VALUE. If
we always require a binary search for every access, the runtime increases. Fortunately,
our processing pipeline using the invisible join ensures that we perform sequential ac-
cesses on column SB_BASE_VALUE, because we create the join results via positional
lookups leveraging the foreign keys of table Sample_Base. Thus, we can assume that
subsequent accesses to our compressed column SB_BASE_VALUE are likely in sequen-
tial order. To speed up sequential access patterns, we integrate a caching mechanism
that stores the index of the last visited word and allows us to start the search for the
correct word from that index on. We show the idea in Algorithm 5.4. Assuming that
last_word_idx (line 2) stores the index of the last word that we visited and last_tid
(line 3) contains the tuple id that we looked up at last, we can look up the value for a

5.3. Lightweight genome-specific database compression schemes 99

Algorithm 5.4 Cached lookup of values stored in a WAHBitmap
Input: The tid to look up in the WAHBitmap.
Output: The value of the tid encoded by the bitmap: 0 or 1.
1: function getValue(tid)
2: last_word_idx← (last word_idx or 0) . Caching optimization
3: last_tid← (last tid or 0) . Caching optimization
4: word_idx← last_word_idx . Caching optimization
5: if tid < last_tid then . Caching optimization: Non-sequential access?
6: word_idx← binarySearch(tids, tid) . Binary search optimization
7: end if
8: max_tid← tids[word_idx] . Binary search optimization: tids array
9: while max_tid ≤ tid do . Caching optimization: Sequential scan on words
10: word_idx← word_idx+ 1
11: max_tid← tids[word_idx]
12: end while
13: last_word_idx← word_idx . Caching optimization
14: last_tid← tid . Caching optimization
15: word← words[word_idx]
16: return extractValue(word, tid)
17: end function

specific tuple id tid by reusing the previously computed word index (line 4) or moving
it forward until we found the containing word (line 9 - 12). Note, that we combine the
caching optimization with the binary search optimization, which saves us to cache the
last max_tid value (line 8). Moreover, we can perform a binary search (line 6) if the
next looked up tid is smaller than the previous one (non-sequential access, line 5).

Our caching optimization requires only to store two additional cache values, but allows
us to perform fast sequential access on reference-based-compressed data, since we do not
have to start always at index 0 to determine the word of a requested tuple id tid. Note,
that we can also use the idea of our caching technique to speed up the computation of
prefix sums to enable lookups in the exception list (cf. Algorithm 5.1 line 3). The idea
is to cache the last computed prefix sum and to reuse it if the access is sequential.

Runtime evaluation

In the following, we investigate the impact of the caching and binary search optimiza-
tion for tuple id access on the SNV calling runtime using DBSbase. We use the same
experimental setup as in Section 4.2.2. We show the results in Figure 5.7. We ex-
ecute the query using the invisible join and array-based aggregation techniques. In
contrast to the initial setup, we now enable all compression schemes. Moreover, we
compare the results on compressed data with the results on uncompressed data taken
from Section 4.4.2.

We observe that without any optimization, the runtime increases drastically making
SNV calling on compressed data no option. Using either the caching or binary search

100 5. Genome-specific storage and query optimizations for relationalDBMSs

0.001 0.01 0.1 1 10 100
0

20

40

60

80

100

Selectivity factor (%)

R
un

ti
m
e
(s
)

No optimization No optimization, estimate
With binary search With caching

Binary search and caching No compression

Figure 5.7: SNV calling runtimes on a human chromosome 1 using genome-specific
compression schemes with different access optimization strategies. Without any opti-
mization strategy, compression increases the overall runtime drastically. Using either
binary search or caching removes the access bottleneck. Nevertheless, compression
introduces overhead especially on larger genome regions.

optimization, we are able to reduce the analysis runtime on compressed data signifi-
cantly. We can reduce the runtime overhead to a factor of 1.5 compared to analyzing
uncompressed data. Moreover, we find that caching alone or in combination with bi-
nary search provides the shortest runtime considering all selectivity factors. While on
small genome regions, the effect is negligible, it becomes significant on larger genome
regions. The reason for this is that we always have to perform a binary search that has
an average complexity of O(log(n)), while sequential accesses have an access complexity
of O(1). Since our query often requires sequential accesses, we can benefit from the re-
duced complexity. Consequently, on large genome regions, the difference has to become
significant. If we have a random access scenario such as selecting single sample bases or
analyzing genome regions randomly, the binary search optimization may become more
beneficial to locate the (random) base or start of the region fast. Thus, throughout this
thesis, we will report storage consumptions always with enabled caching and binary
search optimization.

5.3.2 Delta+RLE encoding

In the previous section, we showed how to integrate reference-based compression into
a column store based on the base-centric database schema. However, this storage op-
timization will not outweigh the introduced overhead due to the explicit storage of
position (RB_POSITION) and mapping information (SB_RB_ID) that are responsi-
ble for 80% of the storage consumption within a base-centric database (cf. Figure 5.3b).

5.3. Lightweight genome-specific database compression schemes 101

Reference_Base
RB_BASE_
VALUE

RB_ID RB_
POSITION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
...

A
G
C
A
T
G
T
T
A
G
A
T
A
A
G
A
T
A
G
C
T
G
T
G
...

Sample_Base
SB_BASE_
VALUE

SB_
RB_ID

6
7
8
9

10
11
12
13
13
14
15
16
17
18
19
20
21

8
9

10
11
12
13
13
14
15
16
17
...

T
T
A
G
A
T
A
A
G
G
A
T
A
X
C
T
G
A
G
A
T
A
A
G
G
A
T
A
...

SB_INSERT_
OFFSET

SB_
READ_ID

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
...

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1

...

6
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

-13
1
1
1
1
1
0
1
1
1
1

...

DELTA

1

(6,1)
(1,7)

(0,1)
(1,8)

(-13,1)
(1,5)

(0,1)
(1,4)

...

RLE

2

\w exception

6
1
1
1
1
1
1
1

13
1
1
1
1
1
1
1
1
8
1
1
1
1
1

13
1
1
1
1

...

DELTA

3

(6,1)
(1,7)

(13,1)
(1,8)

(8,1)
(1,5)

(13,1)
(1,4)

...

RLE

4

(6,8)

(13,9)

(8,6)

(13,5)

...

DELTA+RLE

5

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

...

DELTA

1

(1,24)

...

RLE

2 5

Figure 5.8: Delta+RLE encoding represents runs of continuous values that are incre-
mented by one as run value and length value similar to RLE encoding 5 . This saves
storage and effectively compresses explicit position and mapping information.

Column RB_POSITION stores the position of every reference base within the reference
sequence, e.g., a chromosome. Since we import the single bases of a reference in order of
appearance within the sequence string (cf. Section 3.3.1), the column contains continu-
ous sequences of numbers incremented by one starting with one7 per reference sequence
(CONTIG). On the left side of Figure 5.8, we show an excerpt of table Reference_Base
storing the first 24 reference bases within of a reference sequence.

The data within column SB_RB_ID looks similar than in column RB_POSITION.
Column SB_RB_ID contains a foreign key indicating the reference base that every
single base of a read is mapped to (cf. Section 3.3.1). Since reference bases are imported
in order of appearance in the reference sequence string and we assign primary keys
(RB_ID) that are equivalent to tuple ids, the values in column RB_ID have the same
characteristic as the RB_POSITION values. Since the bases of a read are usually
mapped to successive reference bases (except inserted bases), column SB_RB_ID also
contains continuous sequences of numbers incremented by one starting at a specific
offset. On the right side of Figure 5.8, we show an excerpt of table Sample_Base
storing two different reads mapped to the same reference sequence.

5.3.2.1 Compression concept

To compress such values, we could think of storing the deltas between successive values
(DELTA encoding). The assumption is that the deltas have a smaller value domain
requiring less bits to store each value. Applying this idea to the values of the columns
RB_POSITION and SB_RB_ID, we end up with long sequences of ones, since the

7We assume one-based position information. It is also possible to use zero-based positions.

102 5. Genome-specific storage and query optimizations for relationalDBMSs

values are usually incremented by one (cf. 1 in Figure 5.8). This allows us to ad-
ditionally apply RLE to compress the sequences (runs) of ones 2 . Unfortunately, if
we want to access the value of a specific tuple id, we have to decompress and sum up
all delta values before and including the respective tuple id leading to increased access
times due to decompression overhead.

To improve the runtime, we could avoid DELTA encoding for values that have a delta
that is different than one. Such values are stored as plain numbers 3 and, in case
of column SB_RB_ID, they appear regularly. Then, we apply RLE 4 . In order to
access the value of a specific tuple id, we would have to decompress the run for the
specific tuple id, extract its offset and add this to the first plain value before the run.
Additionally, we can merge the plain value and a run of ones changing the semantics of
RLE from encoding runs of similar values to runs of values incremented by a specific
delta, e.g., one. We call this approach Delta+RLE encoding 5 . In case of column
RB_POSITION, a DELTA and RLE encoding directly leads to the desired Delta+RLE
encoding, since the first value within a run in RB_POSITION is always 1.

Applying predicates. We can directly operate on the Delta+RLE compressed data
similar to a RLE compressed column. An important operation that we should support
directly on compressed data is to evaluate between predicates, since column SB_RB_ID
is involved in the between-predicate rewriting to speed up the invisible join technique
(cf. Section 4.3.1). We can leverage the Delta+RLE compressed column to evaluate
a between predicate such as SB_RB_ID BETWEEN min AND max by excluding runs that
will not contain values in the requested range. To this end, we check whether the value
and length of a run having index idx fulfills following condition:

values[idx] <= max AND (values[idx] + length[idx] + 1) >= min

If this condition does not hold, either the run value is greater than max indicating that
the run lies right to the range or the end value of the run is smaller than min indicating
that the run lies left to the range. Consequently, we can exclude the run. Otherwise,
we know that at least some tuple ids encoded in the run fulfill the predicate and we
have to retrieve them.

Data retrieval. To retrieve a data value by tuple id tid, we use the algorithm given
in Algorithm 5.5. We have to locate the run that encodes the given tuple id. To this
end, we have to sum up all length values stored in array length until the sum exceeds
the index that we want to look up (line 5 - 8). If we found the run, we have to retrieve
the value by adding the position_in_run of the respective tid as offset. To determine
the position_in_run, we have to subtract the sum of the length values of the previous
run from the tid (line 12). For example, if we want to retrieve the value of the 10th
tuple of table Sample_Base having index 9 (cf. bold printed SB_RB_ID value of table
Sample_Base in Figure 5.8), we find the value of this tuple in the second run (13, 9),
because the run length of the first run is 8 that is less or equal to the requested index 9.
To compute the position within the run, we have to subtract the sum of run lengths of

5.3. Lightweight genome-specific database compression schemes 103

Algorithm 5.5 Look up of single tuples in a Delta+RLE compressed column
Input: The tid to look up in the Delta+RLE column.
Output: The value of the tid.
1: function getValue(tid)
2: run_idx← 0
3: position_in_run← 0
4: run_length← length[run_idx]
5: while run_length ≤ tid do . Determine the run containing the value of tid
6: run_idx← run_idx+ 1
7: run_length← run_length+ length[run_idx]
8: end while
9: if (run_idx = 0) then . Determine position of tid in the run
10: position_in_run← tid
11: else
12: position_in_run← tid− (run_length− length[run_idx])
13: end if
14: return values[run_idx] + position_in_run
15: end function

previous runs, which is 8, since we have only one run before. The result is 1 indicating
that the requested tuple is the second value in the run. Since we know that values in a
run are continuous and incremented by one, we can use the position in the run as offset
to compute the actual value, which is 13 + 1 = 14.

Storage consumption. Our example of Delta+RLE in Figure 5.8 reveals that the
worst case for Delta+RLE encoding to compress mapped reads depends on the number
of reads (#reads) to store and the number of inserted bases (#ins). In worst case, we
create one run for every read. Furthermore, every inserted base within a read disturbs
the continuity of the SB_RB_ID values and requires to create a new run. We can
estimate the worst case size in bits of a Delta+RLE column as follows:

#deltarle_size = (#reads+ #ins)︸ ︷︷ ︸
of runs

∗ (tuple_id_size+ length_value_size)︸ ︷︷ ︸
run size in bits

The tuple_id_size indicates the number of bits used for storing tuple ids in the
database system, e.g., 32-bit or 64-bit tuple ids. The length_value_size indicates
the number of bits used to represent run lengths, e.g., a 32-bit integer allows to encode
a maximum run length of 4,294,967,295. The less inserted bases, the better is the com-
pression ratio. Moreover, longer reads improve the storage requirements per sample
base, since this increases the run length.

5.3.2.2 Improving access times

Since Delta+RLE encoding is based on run-length encoding, it also provides bad ran-
dom and sequential access performance for the same reasons as the WAHBitmap (cf.

104 5. Genome-specific storage and query optimizations for relationalDBMSs

Section 5.3.1.3). We can apply the same optimizations, i.e., binary search to accelerate
random access and caching to speed up sequential data access, as discussed for the
WAHBitmap. Since the access pattern during our SNV calling query does not differ
from column SB_BASE_VALUE, we assume similar effects of both techniques on the
runtime. Nevertheless, the additional storage requirements for the binary search op-
timization differ. We would reuse the array to store length values in a Delta+RLE
compressed column for storing tuple ids. To this end, we might have to increase the
word size of length values. For example, if we use 32-bit length values, but require 64-bit
tuple ids, we have to switch the word size of length values to 64-bit. Overall, this is an
increase by a factor of 1.3 and, thus, much less than an increase of a factor of 3 within
the WAHBitmap. Thus, the decision whether to use the binary search optimization is
less critical than for the WAHBitmap. Throughout this thesis, we will report storage
consumptions always with enabled caching and binary search optimization.

5.3.3 Lossy compression

Usually, we do not want to loose any kind of information that we store in database
systems. Nevertheless, in certain domains lossy compression is applicable, if the loss of
information does not lead to further errors, the errors are small enough to neglect them
or the data is error-prone anyway. Within genome data, base call quality values are a
good target for lossy compression [56]. Base call quality values are log-transformed [42]
and encoded in the SAM format as ASCII characters (cf. Section 3.1.1.2). A base
having a quality value of 30 has a probability of 1 in 1000 to be incorrect. Encoding
base call quality values as char with 8 bits allows for encoding 128 different values.
Nevertheless, base call qualities of 40 and above are reasonable good [61]. To reduce
storage size, bit-packing can be applied. Certainly, encoding 40 values still requires
6 bits. To reduce the storage size further, lossy compression schemes where proposed.
One idea is to bin quality values. A widely used binning scheme is proposed by Illumina,
a sequencing machine vendor, using 8 bins requiring 3 bit to encode [61]. Then, the
bins resemble a kind of quality classes instead of real values. We can integrate this
approach as column compression scheme on top of the base-centric database schema.

5.3.4 Storage evaluation

In this section, we investigate the concrete impact of our proposed compression schemes
on the storage consumption of DBSbase for storing the complete human genome data
set used in our initial storage evaluation (cf. Section 5.2). In Figure 5.9, we show the
storage savings per compression scheme in comparison to DBSseq and DBSbase applying
only standard compression schemes.

5.3.4.1 Results

Using only standard lightweight compression, DBSbase is no option to store larger data
sets, since it increases the data volume dramatically due to explicitly storing position
and mapping information. Using Delta+RLE, we can mitigate this disadvantage effec-
tively allowing us to consider the base-centric database schema as alternative primary

5.3. Lightweight genome-specific database compression schemes 105

0 19 27 32 38 153

+Lossy
+Ref.-based

+Delta+RLE
Standard

Size of DBSseq

Storage size (GB)

SB_BASE_CALL_QUALITY SB_BASE_VALUE RB_POSITION
RB_BASE_VALUE Other columns SB_READ_ID SB_RB_ID

Figure 5.9: Impact of genome-specific compression on the storage consumption of single
columns in DBSbase. Delta+RLE is needed to benefit from storage savings due to
reference-based and lossy compression.

database layout for mapped read data. Applying reference-based and lossy compres-
sion, allows us to reduce the storage consumption further requiring only half the storage
than DBSseq.

5.3.4.2 Discussion

The single compression schemes, discussed in this chapter, contribute differently to the
storage reduction. Overall, Delta+RLE compression is an important strategy to reduce
the overhead of the base-centric database schema and to provide reasonable storage
consumption. In combination with BITDICT compression of base values, we already
have an easy-to-integrate compression approach for genome data that requires less
storage than DBSseq. The reference-based compression and lossy compression scheme
effectively reduce the actual payload data further. Since we integrated both compression
schemes as column compression schemes, they integrate well with our processing engine.
Thus, we can reduce the storage consumption effectively, while keeping the negative
impact on analysis runtime due to the need for processing compressed data reasonable
low (cf. Figure 5.7).

Since our compression schemes are designed for the base-centric database schema, we
cannot reduce the storage consumption of DBSseq. However, the results show the pos-
sible storage reduction of DBSseq using specialized string compression schemes. Nev-
ertheless, the use of string-based compression schemes would require to use specialized
analysis UDFs that are able to process the compressed strings. Otherwise, we would
have to decompress the strings before we can apply our base-centric processing ap-
proach.

106 5. Genome-specific storage and query optimizations for relationalDBMSs

TTAGATAAGGATA*CTG

Reads

Read 1(1)
Read 2
Read 3

Genome position

Reference sequence

Variant calling required

Reads

AGCATGTTAGATAA*GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

00000000011111 1111122222222223333333333444444
12345678901234 5678901234567890123456789012345

aaaAGATAAGGATA
gcctaAGCTAA

Read 1(2) CAGCGGCAT
Genotype

No differing sample bases,

no SNVs possible!

Figure 5.10: Base pruning filters out genome positions where no mismatching base has
been mapped, which reduces the number of genome positions that have to be processed
during SNV calling.

5.4 Base pruning: Leveraging genome characteristics
for query processing

In this section, we introduce a technique called base pruning to effectively reduce the
processing effort during SNV calling. Considering the general functionality of SNV
callers, we find that only those genome positions will show a differing genotype where at
least one mismatching base has been mapped to a reference base. Otherwise, the result
of a SNV caller has to be equal to the reference base resulting in a matching genotype.
Consequently, if we can detect which genome positions have no mismatching bases in
advance, we can exclude these genome positions from further processing reducing the
effort for SNV calling, because we do not have to join and aggregate the data. We
depict the idea in Figure 5.10. Only genome position 11 and 42 show at least one
differing mapped sample base (black boxes). All other positions are either insertions,
deletions or show only matching sample bases. Since we encapsulate the domain-specific
knowledge about computing genotypes in a UDA (cf. Listing 3.8), a traditional database
optimizer cannot apply this optimization without modification. Thus, we have to make
this optimization strategy explicitly available.

5.4.1 Approaches

To apply the idea of base pruning, we integrate a base pruning filtering step that
returns those sample bases that map to a genome position that has at least one differing
sample base mapped to it. To integrate such a filtering step, we have to be able to
compare sample bases and reference bases. Using the base-centric database schema, we
explicitly encode the mapping between sample and reference bases. We can leverage
this relationship to perform the comparison efficiently. In the following section, we
describe two possible strategies to determine the genome positions and sample bases
that must be analyzed.

Straightforward approach. A straightforward approach uses two scans on table
Sample_Base to determine those sample bases that must be analyzed. In a first scan,
we compare each sample base (in a given range) with the corresponding reference base.

5.4. Base pruning: Leveraging genome characteristics for query processing 107

We collect all genome positions that have at least one differing sample base. Then, in
a second scan, we check each sample base whether it is mapped to one of the genome
positions that has at least one differing sample base mapped to it. Consequently, we
require two sequential table scans, which can be implemented efficiently. Neverthe-
less, during the first scan, we permanently look up reference base values from column
RB_BASE_VALUE of table Reference_Base. Within a single read, sample bases are
usually mapped to consecutive positions allowing for cache-efficient access to column
RB_BASE_VALUE. Unfortunately, every new read that we process, might result in
a random lookup within table RB_BASE_VALUE, since consecutive reads do not
have to map to consecutive genome regions. Sorting reads by mapping position before
importing or converting them will improve the access, but is not a requirement.

Indexed approach. However, we can speed up the base pruning filtering step by
leveraging the reference-based compression of column SB_BASE_VALUE. The com-
pression already encodes which sample base is different from its reference base. Thus,
we can use this information stored in a bitmap to efficiently determine those sample
bases that mismatch. From these sample bases, we can retrieve the genome positions
that have at least one differing base mapped to it. Using a WAHBitmap, we can avoid a
complete column scan, since we can effectively skip those sample bases that are encoded
in a fill word representing a 0. Moreover, we avoid the comparison with reference base
values from column RB_BASE_VALUE, since the comparison is already done during
compression and encoded in the bitmap.

Runtime evaluation

In this section, we evaluate the impact of base pruning on the SNV calling runtime
using DBSbase and DBSseq considering differently sized genome regions using the same
experimental setup as in Section 4.2.2. We perform the query using the invisible join
and array-based aggregation techniques. In addition to the initial setup, we enable
all compression schemes. DBSbase operates directly on compressed data and DBSseq

compresses data at runtime. To evaluate the impact of reference-based compression
during base pruning on the overall runtime, we also execute the workload without
reference-based compression. We show the results in Figure 5.11.

The results show that base pruning has most impact on large genome regions (selectivity
factor >= 10%). On smaller genome regions, we cannot detect a significant difference
in the runtime. As expected DBSseq outperforms DBSbase on small genome regions.
This is expected and in concordance to our observations from Chapter 4. Further-
more, leveraging the reference-based compressed data as index during the base pruning
computation is also most beneficial on large genome regions. In these cases, we would
have to perform two complete table scans on the same column. Leveraging reference-
based compression, we can avoid one complete column scan. Overall the impact of base
pruning on DBSseq is less than its impact on DBSbase, because we cannot benefit from
base pruning during the conversion of data, while we benefit during all processing steps
using DBSbase. Moreover, DBSseq has increased effort during conversion to apply the

108 5. Genome-specific storage and query optimizations for relationalDBMSs

0.001 0.01 0.1 1 10 100
0

10

20

30

40

50

60

70

Selectivity factor (%)

R
un

ti
m
e
(s
)

DBSbase pruning
DBSbase pruning, no ref.-based compr.
DBSbase no pruning
DBSseq pruning
DBSseq pruning, no ref.-based compr.
DBSseq no pruning

Figure 5.11: SNV calling runtime using DBSbase and DBSseq with and without base
pruning. Base pruning reduces the analysis runtime especially on large genome regions.
On small genome regions, the additional effort for the base pruning computation sacri-
fices the potential runtime decrease. Additionally leveraging reference-based compres-
sion for the base pruning computation speeds up the analysis of large genome regions
further, since we avoid one complete table scan and the comparison with the single
reference bases for equality.

reference-based compression. We conclude that base pruning is a necessary optimiza-
tion to provide fast execution times on large genome regions. Although, base pruning
requires additional effort, the impact on small genome regions is negligible.

5.4.2 Applicability to specialized analysis tools

We also considered base pruning in the context of specialized analysis tools and inte-
grated it into samtools [77]. Our final evaluation will show that base pruning also
improves the runtime of specialized analysis tools (cf. Section 5.5), but is limited due to
conceptual differences in the storage and processing of genome data. In the following,
we explain these limitations in detail.

Applicability to aggregation phase only

Specialized analysis tools operate on heavyweight compressed genome data residing on
disk. To guarantee reasonable performance, the tools require mapped reads to be sorted
by mapping position (cf. Section 3.1.2). Thus, the tools can stream compressed data in
blocks from disk and are sure that the data that they decompress belongs to the current
genome region to be processed. The tools are highly specialized and directly convert
the uncompressed data into a ready-to-aggregate output called base pileup. Comparing

5.5. Putting it all together 109

the process with DBSseq, we converted and already computed the join result. Thus, it
becomes clear that we cannot reduce the effort during the join, i.e., the decompression
and conversion, within the specialized analysis tool. We can only check per genome
position which of the base pileups contains at least one differing base and must be
processed further.

Reference-based compression cannot be exploited

A direct consequence of operating on heavyweight compressed data is that we cannot
leverage the reference-based compression to speed up the base pruning computation.
As soon as we start to decompress the data, we already lost the advantage to exploit
and process compressed data.

5.5 Putting it all together
So far, we concentrated our runtime analyses on a smaller data set comprising only hu-
man chromosome 1 data to reduce side effects due to limited main memory. Moreover,
we wanted to examine the impact of specific database operators (Chapter 4) and pro-
cessing optimizations such as base pruning in detail. Now that we devised a powerful
processing pipeline and effective compression schemes, we consider three real world data
sets having different data characteristics. We use the same system setup as described
in Section 4.2.2.1. Our goal is two-fold: First, we want to confirm our results regarding
storage consumption and runtime performance from the small evaluation data set. To
this end, we apply our database approaches to larger data sets. Moreover, we want to
investigate the impact of different genome data characteristics on analysis runtime and
storage consumption. To this end, we will start with a description of the characteristics
of the data sets that we use throughout this final evaluation. Then, we discuss the
results of our experiments.

5.5.1 Data set characteristics

We use three real world data sets for our experiments. DataSet 1 and 2 contain
human genome data that we obtained from the 1000 genomes project8, which provides
representative real world data sets [1]. The third data set contains barley genome data
that we obtained from the plant research institute IPK Gatersleben.

All three data sets differ in following four characteristics: number of reference bases,
coverage, read length and mismatch rate. In Table 5.2, we summarize the different data
characteristics.

Number of reference bases. All three data sets contain a different number of ref-
erence bases that indicates the size of the reference genome. Thus, the number of
reference bases is an upper bound for the possible genome positions that have to be

8data is available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/

110 5. Genome-specific storage and query optimizations for relationalDBMSs

Organism Homo sapiens Hordeum vulgare
human barley

DataSet 1 2 3
Mapped Bases 13.9B 11.8B 3.9B
Reference Bases 3.1B 249M 1.9B
∅ Coverage 4 47 2
∅ Read Length 100 250 100
Mismatch Rate % 0.38 0.8 1.4

Table 5.2: Genome data sets have different key characteristics that impact storage
consumption and processing performance of the respective data set.

analyzed. DataSet 2 contains a very small number of reference bases compared to the
other data sets.

Coverage. Every genome is read multiple times during DNA sequencing to cope with
reading errors (cf. Section 2.2.1.1). The coverage indicates how many times a single
genome position was read during DNA sequencing. Since the sequencing process cannot
be controlled in that detail, the coverage is usually an average over all genome positions.
Thus, the product of coverage and the number of reference bases corresponds with the
overall number of sample bases within a data set. The higher the coverage is, the more
bases must be processed per genome position during SNV calling. To evaluate the
impact of coverage and differing number of reference bases, while fixing the number of
sample bases, DataSet 2 contains only the mapped reads of human chromosome 1.

Read length. Different DNA sequencing techniques generate reads of different size.
Storing longer reads should be beneficial for RLE and our Delta+RLE compression
that are used to compress columns SB_READ_ID and SB_RB_ID. The length of the
runs within both columns directly corresponds to the read length. Thus, we expect to
achieve better compression when storing longer reads. Moreover, we have to store less
read data per sample base for the same amount of sample bases.

Mismatch rate. The mismatch rate describes how many sample bases are different
from their corresponding reference base. Reference-based compression and base pruning
are directly influenced by the mismatch rate. The more mismatches occur, the more
exception values have to be stored. Moreover, the chance increases that a specific
genome position must be analyzed.

5.5.2 Storage assessment

In the first experiment, we compare the storage consumption of our database approaches
DBSseq and DBSbase with the state-of-the-art flat-file formats BAM and CRAM. In this
experiment, we include necessary storage overhead due to the binary search optimiza-
tion to speed up random accesses on compressed data (cf. Section 5.3.1.3). Moreover,
we do not use lossy compression.

5.5. Putting it all together 111

Approach Storage size in GB (Relative to DBSseq) Main compression
DataSet 1 DataSet 2 DataSet 3 type

DBSseq (baseline) 38.0 (100%) 27.2 (100%) 12.9 (100%) lightweightDBSbase 27.2 (072%) 17.8 (065%) 9.5 (074%)
BAM 14.6 (038%) 6.9 (025%) 3.9 (030%)

heavyweightCRAM 10.3 (027%) 4.9 (018%) 3.2 (025%)
Zipped DBSbase 11.7 (031%) 6.1 (022%) 3.3 (026%)

Table 5.3: Storage consumption of three real-world data sets using DBSseq, DBSbase,
BAM and CRAM. Due to our genome-specific compression schemes available in
DBSbase, we can outperform DBSseq on all data sets. BAM and CRAM additionally
apply heavyweight compression making them superior to our database approaches if we
avoid to use heavyweight compression.

With this experiment, we want to investigate whether we can cope with the large
storage increase of the base-centric database on all different data sets. Moreover, we
are interested how the data characteristics such as read length and mismatch rate
influence the concrete storage savings. In Table 5.3, we report the absolute storage
sizes for every approach and in brackets the relative storage size compared to DBSseq.

5.5.2.1 Overall storage consumption

Independent of the data set, DBSbase always requires less storage than DBSseq, since our
Delat+RLE compression scheme successfully mitigates the overhead due to the explicit
storage of position and mapping information within DBSbase. Additionally applying
the genome-specific compression scheme reference-based compression finally allows us
to decrease the storage size by 26% to 35% compared to DBSseq.

Nevertheless, since we avoid to use heavyweight compression schemes in DBSbase, DBSbase

still requires 2 to 2.5 times more storage than BAM. In contrast, BAM applies heavy-
weight compression that pays out according to our measurements. To show the effi-
ciency of our lightweight compression schemes and used data structures within DBSbase,
we compressed the disk-resident database files of DBSbase used to persist the complete
database using gzip. The storage size of these compressed files is competitive com-
pared to BAM and CRAM (cf. last row of Table 5.3). Thus, we also conclude that
our reference-based compression implementation including all its access optimizations
is competitive to the CRAM approach.

5.5.2.2 Impact of data characteristics

The concrete storage savings of DBSbase compared to DBSseq vary between the three
data sets. Therefore, we investigate the influence of data set characteristics in more
detail. The differences depend on the read length and mismatch rate of the respective
data set. In Table 5.4, we show the storage requirements per row for the three columns
SB_RB_ID, SB_Read_ID and SB_BASE_Value considering the three data sets. The
storage size of the other columns is independent from data set characteristics.

112 5. Genome-specific storage and query optimizations for relationalDBMSs

DataSet 1 2 3
Mapped Bases 13.9B 11.8B 3.9B
∅ Read Length 100 250 100
Mismatch Rate % 0.3 0.8 1.4

B
it
s
pe

r
ro
w SB_RB_ID 1.4 0.6 1.4

SB_READ_ID 1.4 0.6 1.4
SB_BASE_VALUE 0.6 0.8 1.3

Sum of bits 3.4 2.0 4.1

Table 5.4: The influence of data characteristics on the storage consumption us-
ing DBSbase. With increasing read length the overhead of the foreign key columns
SB_RB_ID and SB_READ_ID decreases per row. Less base mismatches reduce the
number exception values to store, which increases the compression ratio of the WAH-
Bitmap used to implement reference-based compression.

Impact of read length

We compress column SB_READ_ID with RLE and column SB_RB_ID with our
Delta+RLE compression scheme. RLE leverages the redundancy of data values that are
stored in runs and Delta+RLE leverages the redundancy of deltas between consecutive
data values. Thus, their effectiveness depends on the length of the runs. In both
columns, we require 1.4 bits on average per stored sample base considering DataSet 1
and 3. In contrast, we only need 0.6 bits on average per stored sample base considering
DataSet 2. The key difference is the read length between the data sets. Since DataSet 2
has an average read length of 250 bases, the runs are longer in both columns. DataSet 1
and 3 have an average read length of 100 bases, which limits the length of the runs
significantly. The results of all three data sets also show that the impact of inserted
bases on the effectiveness of Delta+RLE encoding (cf. Section 5.3.2.1) is negligible,
because the number of bits required on average per stored sample base is equal between
columns SB_RB_ID and SB_READ_ID, although column SB_RB_ID requires to
store an additional run per inserted base (cf. Section 5.3.2.1). Thus, the number of
reads to store dominates the number of runs within our three data sets.

Impact of mismatch rate

We already discussed that the mismatch rate has direct impact on reference-based
compression (cf. Figure 5.6). Considering the three data sets, we observe the predicted
storage overhead of a WAHBitmap due to the increasing mismatch rate. In case of
DataSet 3, we measure 1.3 bits on average per stored sample base. Since the size of
the exception list is negligible (cf. Section 5.3.1.1), we see that a plain bitmap would
perform better, since it only requires 1 bit per stored sample base. DataSet 1 and 2
have smaller mismatch rates improving the storage requirements compared to a plain
bitmap.

5.5. Putting it all together 113

DataSet 1 DataSet 2 DataSet 3
0

5

10

15

20

25

16.4

12.6

7.97.1 6.4 5.8

10.7

7.3

3.2
2.1 2.8

1.3

13.6

3.0 3.4

11.0

2.1
2.9

R
un

ti
m

e
(m

in
)

w/o BasePruning: DBSseq DBSbase samtools
w/ BasePruning: DBSseq DBSbase samtools

Figure 5.12: SNV calling on three real-world data sets using DBSbase, DBSseq and
samtools with and without base pruning. Since DBSseq requires to convert data
during the analysis, DBSbase is always faster. Using base pruning, DBSbase can even
outperform samtools, since samtools has to decompress and convert data before
making use of base pruning.

Summing up the number of bits over all three columns, gives the number of bits required
to store a single base using DBSbase ignoring base call quality values9. Assuming that
we need 8 bit per base value in DBSseq, we save most storage on DataSet 2, followed by
DataSet 1 and 3, which corresponds to the overall storage savings reported in Table 5.3.

5.5.3 SNV calling runtime assessment

In the second experiment, we evaluate the SNV calling runtime of DBSbase, DBSseq and
samtools 1.3 [77]. As discussed in Section 5.4.2, we also integrate base pruning into
samtools. In Figure 5.12, we show the runtime results on the three different data
sets. We indicate the runtime of approaches using base pruning with hatched bars.
Within this evaluation, we are interested in the impact of the data characteristic on
the analysis runtime. Moreover, we examine the speed up achieved by base pruning. In
this experiment, we report the runtime to process the complete genome data sets.

5.5.3.1 Overall SNV calling runtime

Considering the bulk analysis runtime without base pruning, DBSbase always outper-
forms DBSseq. As expected the benefit of DBSbase to avoid data conversions at all pays
out. Since we process the complete data set, DBSseq cannot benefit from its capability
to reduce the join processing effort on small genome regions (cf. Section 4.3.2.2.). The

9The number of bits per sample base in column SB_INSERT_OFFSET is less than 0.1 bits and,
thus, negligible considering the overall storage consumption

114 5. Genome-specific storage and query optimizations for relationalDBMSs

results also show that our database approaches compete with specialized analysis tools
on different data sets with regard to analysis runtime. However, samtools and our
database approaches appear to be sensitive to different data set characteristics.

5.5.3.2 Impact of data characteristics

In this section, we investigate the impact of data characteristics on the runtime of the
single approaches in detail. Here, we focus on the runtimes without base pruning (non
hatched bars).

Impact of reference genome size and coverage

DBSbase is significantly faster than samtools on DataSet 1, but slower on DataSet 2,
although the number of sample bases that have to be processed does not change that
much to explain the large speed up of 80% of samtools. SNV calling using samtools
involves a second tool called bcftools that performs the actual SNV calling, i.e.,
assessing the computed probabilities and deciding whether a SNV is present or not
(cf. Section 3.1.2). A detailed analysis of the interaction between samtools and
bcftools revealed that samtools streams intermediate results per genome position
in the form of strings to bcftools, which leads to the observed overhead. Since
the reference genome size and, thus, the number of genome positions that have to be
processed differs by 90% between DataSet 1 and 2, the overhead due to this mode of
operation is the explanation for the large speed up of samtools on DataSet 2. DBSbase

does not benefit that much from the reduced number of genome positions that have
to be analyzed in DataSet 2. Of course, we reduce some overhead for managing the
aggregation array, but the number of sample bases that have to be processed is the
dominating factor for the processing runtime of DBSbase as well as DBSseq. We observe
the trade-off between both data characteristics, i.e., the number of genome positions
that have to be analyzed and the number of sample bases that have to be processed
(coverage), considering the runtime of DBSbase and samtools on DataSet 3. Both
approaches are equally fast (without base pruning). DBSbase benefits from less sample
bases that have to be analyzed due to the low average coverage of two, while samtools
suffers from the the large number of genome positions that have to be analyzed.

Impact of mismatch rate and the effectiveness of base pruning

The fact that our database approaches are dominated by the number of sample bases
that have to be processed is confirmed by considering the analysis runtime of DBSbase

with base pruning. Base pruning allows us to limit the analysis to those genome posi-
tions that have at least one mismatching base mapped to it. Consequently, we reduce
the amount of sample bases that have to be processed, which results in large speed ups
making DBSbase as fast as samtools (cf. DataSet 2) and even faster (cf. DataSet 1
and 3). The performance improvements of samtools due to base pruning are less
than those of DBSbase. Since samtools operates on heavyweight compressed data,
we first have to decompress and convert the mapped reads before we can make use of

5.6. Related work 115

the information about which genome positions does not have to be analyzed (cf. Sec-
tion 5.4.2). Moreover, we did not found a possibility to stop samtools from streaming
intermediate results that are not required due to the use of base pruning. Thus, sam-
tools only benefits from base pruning by avoiding the computation of not needed error
probabilities during aggregation.

5.5.4 Overall assessment
Our experiments show that the results that we collected on our small evaluation data
set to devise and improve our approaches can be confirmed on large real-world data
sets. Overall, we are able to compete with specialized analysis tools regarding SNV
calling runtime. Although our database approaches suffer from processing large num-
bers of sample bases, we effectively mitigate this disadvantage using our base pruning
technique. In combination with DBSbase, we can even outperform samtools by up
to a factor of five. Moreover, we can reduce the storage overhead of the base-centric
database schema effectively. Nevertheless, we still require more storage than specialized
flat file formats such as BAM or CRAM that additionally apply heavyweight compres-
sion schemes. Thus, incorporating such compression schemes for single columns or to
archive cold data might be of interest in future work. Our results already show that
simply zipping the database files of DBSbase leads to comparable storage sizes than
specialized flat file formats.

Overall, we observe that our proposed compression schemes for relational DBMSs, i.e.,
Delta+RLE and reference-based compression, and our base pruning technique benefit
from increasing read lengths and more accurate genome data having smaller mismatch
rates. DNA sequencing techniques will generate longer and more accurate reads with
every new generation [82]. Thus, our techniques will benefit from these improvements
and provide a robust foundation for genome analysis based on relational database sys-
tems.

5.6 Related work
In this chapter, we leverage the similarity of sample and reference genome to provide
lightweight database compression schemes and to speed up the SNV calling using base
pruning. In this section, we briefly review further reference-based analysis techniques
that are related to our approaches.

CAGe is a variant calling approach that leverages the similarity between reference
genome and sample genome to reduce the analysis runtime of variant detection [12].
To this end, CAGe uses the information about sequence similarity to classify genome
regions regarding their analysis complexity. If a region has less mismatches it is of
low complexity and less sophisticated, but faster variant calling approaches are used
to analyze them. In contrast, if a region has many mismatches more sophisticated
approaches are applied. We could use our base-pruning approach to further reduce
the runtime to analyze low complexity regions, which can improve the overall analysis
runtime.

116 5. Genome-specific storage and query optimizations for relationalDBMSs

RCSI proposed by Wandelt et al. [132] is another approach that leverages the similar-
ity between reference and sample genome to provide similarity search on referentially
compressed genomes. To this end, in a first step, the reference sequence is searched
to find matching segments allowing for errors. In a refinement step, the compressed
sample genomes are searched based on the findings from the first search. The results
are combined to generate the final result. Our base-centric database schema in com-
bination with reference-based compression can be the basis to integrate this technique
into a relational database system.

5.7 Wrap up
In this chapter, we answered our fourth research question: How can we store genome
data sets using a relational DBMS as efficient as state-of-the-art flat-file approaches
without sacrificing analysis performance?. To this end, we started with an initial stor-
age consumption evaluation. The evaluation revealed that relational DBMSs suffer
from missing genome-specific compression schemes. Mapped read data consists mostly
of unique strings that are hard to compress using lightweight compression schemes,
since these are designed to leverage specific data characteristics (cf. Section 5.1.1) that
are not present in unique DNA sequence strings. Our base-centric database schema
mitigates this limitation, since it stores the single bases of DNA sequences explicitly
allowing for standard BITDICT compression of genome data. However, the storage
overhead due to explicitly storing position and mapping information exceeds the storage
savings by far. To overcome this limitation, we integrated reference-based compression
based on the base-centric database schema into a relational DBMS, which allows for
more efficient compression of DNA sequences than using BITDICT. Furthermore, we
proposed Delta+RLE encoding that effectively reduces the large storage increase of
the base-centric database schema due to explicitly storing position and mapping infor-
mation. Using our compression techniques, we can consider the base-centric database
schema as alternative primary storage layout that allows for lightweight integration of
genome-specific compression and, thus, for efficient storage of genome data sets within
relational DBMSs. Using a traditional read-centric database schema, we would have to
apply string compression schemes that likely prohibit the efficient and direct processing
of mapped read data in a relational DBMS.

Besides investigating genome-specific compression to improve the storage consumption,
we also investigated efficient access techniques for compressed data. Moreover, we pro-
posed a technique called base pruning that allows us to effectively reduce the number of
genome positions that have to be processed by leveraging the explicit mapping informa-
tion in the base-centric database schema. Our technique is enabled by the holistic view
on mapped read data that is not limited to compressed blocks as used by specialized flat
file formats. We can even leverage the lightweight reference-based compression scheme
to speed up the base pruning computation. Applying the base pruning technique to
samtools, a specialized analysis tools, revealed the different design principles behind
a DBMS and specialized analysis tools. The specialized analysis tools are designed for

5.7. Wrap up 117

their specific purpose relying on sophisticated, tightly coupled processing mechanisms
making it hard to extend them. Thus, they can hardly benefit from our base pruning
optimization.

The final evaluation on three large real-world data sets confirmed that our proposed
techniques lead to competitive analysis runtime compared to samtools. In best case,
we can outperform samtools by up to a factor of five, because samtools is designed
to always process all genome positions and cannot restrict the processing effort to
those genome positions that really must be analyzed as our database approaches can
do. What remains are further investigations to incorporate heavyweight compression
into our database approaches, which would allow us to use the database as archive for
genome data, too. Currently, we are able to reduce the storage requirements compared
to standard lightweight compression schemes available in relational DBMSs by up to
50% still requiring 2 to 2.5 times more storage than BAM.

118 5. Genome-specific storage and query optimizations for relationalDBMSs

6. Conclusion

In this thesis, we investigated approaches to analyze genome data sets from next-
generation sequencing (NGS) experiments directly within a relational DBMS. To this
end, we mapped the task of variant detection to a relational processing engine, inves-
tigated efficient processing strategies and developed genome-specific compression and
query processing techniques for relational database systems. Overall, we are able to
compete and even outperform specialized analysis tools regarding runtime performance.
Our work enables scientists to use relational DBMSs not only to manage results from
genome analysis experiments, but to actually perform the analysis directly within the
database system. This is a first step to make advanced data management capabilities
of relational DBMSs available within the complete genome analysis process. In the
following section, we summarize the results of our thesis. Finally, we give an overview
on future work.

6.1 Summary
The motivation for our work is the current separation of the analysis process of NGS
data into two main analysis steps: detecting genetic variations and investigating their
consequences. While the detection of genetic variations is done via specialized analysis
tools, the investigation of their consequences is often done using relational DBMSs [70,
72, 115, 128] that provide excellent data integration capabilities for this purpose. The
separation complicates reliable data management and analysis, since all involved analy-
sis tools, i.e, specialized analysis tools and DBMSs, have to exchange related informa-
tion, e.g., about the provenance of data sets or intermediate results, with partly manual
effort [112]. An integration of genome analysis tasks into a relational DBMS is one way
to remedy the situation requiring a relational DBMS to provide genome-specific analy-
sis functionality as well as efficient processing and storage capabilities for genome data
that do not exist yet. To achieve this goal, we raised four research questions. In the
following, we summarize our answers and highlight our contributions.

120 6. Conclusion

1. Which steps of variant detection should we integrate into a DBMS?

Premise. Read mapping and variant calling are the essential steps of variant detection
based on NGS data (cf. Section 2.2.1). Integrating an analysis step into a DBMS should
allow us to compute the results on demand in reasonable time within the database
system instead of computing them externally and only storing them.

Answer. We should store mapped read data in a DBMS and integrate variant calling as
genome-specific analysis task. Read mapping always requires to process the complete
data set to generate correct results (cf. Section 2.2.1.2). Thus, it is not realistic to
compute read mappings on demand, since the runtime depends on the size of the data
set. In contrast, variant calling generates results on a subset of the mapped reads, i.e.,
reads that map to a specific genome region (cf. Section 2.2.1.3). Thus, we are able to
compute analysis results on demand in reasonable time.

Contribution. In Section 2.3, we characterized the essential analysis steps of variant
detection and devised a concept for variant detection using DBMSs.

2. How can we express variant detection using relational DBMS operators
as a basis?

Premise. In this thesis, we focus on the detection of SNVs that are variations at single
genome positions, because their impact and their detection is well researched and the
process is established (cf. Section 2.2.1.3).

Answer. Since SNV calling requires to process single bases at specific genome positions,
we have to use a base-centric database schema that stores mapping information explic-
itly (cf. Section 3.3.1) and allows for direct access to the required information. Thus,
we can perform SNV detection using standard relational operators such as joins and se-
lections (cf. Listing 3.8). In contrast, traditional read-centric approaches store mapped
read data similar to established flat-file formats that represent reads as strings and en-
code read mapping information implicitly. Such approaches require to make read map-
ping information explicit at runtime, which requires specialized UDFs and introduces
conversion overhead. Thus, storing mapped reads in a base-centric database schema
should allow for faster analyses. In addition, we can use the base-centric database
schema as intermediate data representation of mapped reads stored in a read-centric
database schema, which allows us to process read-centric data only using relational
database operators after they got converted.

Contribution. In Chapter 3, we conceptually extended existing approaches for ana-
lyzing mapped reads to support variant calling. From these theoretical considerations,
we derived the base-centric database schema to store read mapping information explic-
itly in the database allowing for SNV detection as aggregation task and, thus, for
purely relational SNV calling.

6.1. Summary 121

3. How can we process genome data sets as efficient as specialized analysis
tools using relational DBMSs?

Premise. We focus our research on main-memory DBMSs that have shown to provide
tremendous performance improvements especially for analytical workloads [44, 60].

Answer. We have to use advanced join and aggregation processing such as invisi-
ble join [3] and array-based aggregation to enable efficient SNV calling using relational
DBMSs. Otherwise, we cannot compete with specialized analysis tools, since traditional
relational processing strategies such as hash join and sort-based aggregation introduce
inherent processing overhead due to the pruning of hash tables (cf. Section 4.3.1) or
sorting of intermediate results (cf. Section 4.4). Specialized analysis tools rely on
a presorting of mapped reads by mapping position and leverage the sorting during
processing (cf. Section 3.1.2). Integrating such an approach into a DBMS using sophis-
ticated genome-specific UDFs could lead to competitive results, but circumvents the
relational processing engine completely, hence, hardly justifying a technology shift and
limiting the benefits of using a DBMS.

Using invisible join and array-based aggregation, we leverage inherent data character-
istics of the mapped reads stored in a base-centric database schema to speed up the
query processing (cf. Section 4.3.1 and Section 4.4.1). Using the proposed processing
optimizations, we can reduce the overall processing effort by up to 70% compared to a
standard implementation using a hash join and sort-based aggregation. Thus, we are
able to compete with specialized analysis tools with regard to analysis runtime.

Contribution. In Chapter 4, we investigated the implementation space of our rela-
tional SNV calling query and analyzed possibilities to leverage inherent data charac-
teristics to apply advanced join and aggregation processing approaches providing the
foundation for efficient declarative SNV detection.

4. How can we store genome data sets using a relational DBMS as efficient as
state-of-the-art flat-file approaches without sacrificing analysis performance?

Premise. In particular, in main-memory database system, we should avoid to use
heavyweight compression schemes that introduce decompression overhead (cf. Sec-
tion 5.1.1) and would sacrifice possible performance gains. Therefore, we focus our
research on the use of lightweight compression schemes only.

Answer. We have to use a base-centric database schema that stores mapping infor-
mation explicitly to store and process genome data, i.e., mapped reads, as efficient as
possible using a relational DBMS. The explicit access to position and mapping infor-
mation within the base-centric database schema allows us to integrate reference-based
compression, a genome-specific compression scheme, in a lightweight fashion into a
DBMS (cf. Section 5.3.1). Nevertheless, the base-centric database schema requires to
store position and mapping information of every single base explicitly, which obviously
leads to a large storage increase compared to a read-centric database schema. However,
we can mitigate this overhead using our lightweight Delta+RLE encoding. Delta+RLE

122 6. Conclusion

encoding compresses runs of consecutive numbers that are incremented by a specific
offset, which is an inherent characteristic of explicit position and mapping information
(cf. Section 5.3.2). Overall, we are able to reduce the storage requirements of a DBMS
using a base-centric database schema compared to a read-centric database schema by
up to 25%. Applying lossy compression, the storage reduction is up to 50%. Moreover,
we can leverage reference-based compressed data to speed up the calling of SNVs. The
compression scheme indirectly indicates which genome positions will not show a SNV
(cf. Section 5.4). Thus, we can leave out such genome positions during analysis leading
to a speed up of up to a factor of five compared to specialized analysis tools.

However, using only lightweight compression schemes prevents us from storing genome
data sets as efficient as state-of-the-art flat-file formats. These flat-file formats rely
on heavyweight compression schemes that provide better compression ratios, but also
introduce computational overhead due to decompression that we aim to minimize.

Contribution. In Chapter 5, we investigated genome-specific compression in col-
umn stores and explained how we can integrate reference-based compression into a re-
lational DBMS leveraging the explicit mapping information provided by the base-centric
database schema. Moreover, we proposed a compression scheme called Delta+RLE
that is designed to effectively reduce the inherent storage overhead of the base-centric
database schema due to the explicit storage of mapping information. At the same time,
we extended our lightweight compression schemes with mechanisms to speed up random
and sequential accesses and showed the impact of these extensions on runtime perfor-
mance and storage consumption. Moreover, we considered genome-specific query
optimization and proposed a technique called base pruning that effectively reduces
the number of genome positions that we have to analyze. This optimization can leverage
reference-based compressed data as index to speed up the processing further.

6.2 Discussion
The current attempts to improve reproducibility in life sciences demand enhancements
of existing research methodologies [9, 112]. Introducing advanced data management ca-
pabilities plays a vital role within these enhancements enabling researchers to reliably
and efficiently manage scientific data as well as to comprehensively track analysis pro-
cesses. To implement the required data management capabilities, we can either extend
existing analysis pipelines with missing data management functionality (option A) or
integrate analysis functionality into existing DBMSs that are already designed to offer
advanced data management capabilities (option B).

In this thesis, we researched option B in the context of variant detection based on
genome data from NGS experiments. Our solutions allow us to integrate SNV calling,
a part of variant detection, into a relational DBMS. Thus, we can avoid to use specialized
analysis tools to operate on the raw data externally. Moreover, we can express analyses
in a declarative way using SQL, which inherently provides a description of the performed
analyses.

6.3. Future work 123

To provide SNV calling via SQL, we took care to use relational database operators as
basis to perform the analysis. Thus, we can apply our approach to detect SNVs to
any relational database system as long as it can be extended with UDAs. However,
to provide competitive analysis speed and storage consumption compared to state-
of-the-art solutions that are not based on a DBMS, it is crucial to leverage domain-
specific data and query characteristics and to extend the DBMS with advanced operator
implementations and lightweight genome-specific compression schemes.

Although we conducted our research using a main-memory DBMS, we can apply our
solutions also to disk-based DBMSs. We expect that the disk access increases analysis
runtime. However, the sequential data access patterns that are enforced by our process-
ing approach, in particular on sample genome data, should also payout in a disk-based
DBMS, since the buffer manager also benefits from sequential data accesses to disk.
In combination with a column-oriented data layout and our lightweight compression
schemes the available disk bandwidth should be leveraged effectively.

Our relational SNV calling approach enables the DBMS to freely decide about the best
execution strategy of an analysis query at runtime. In our experimental setup, we fixed
the query execution plan, but we also discussed options for optimizations due to data
and query characteristics (cf. Section 4.2.1). Another optimization degree of DBMSs
is the decision where to execute (parts of) a query. For example, a GPU-accelerated
DBMS can perform (parts of) the query on a GPU to speed up the analysis workload,
which allows for co-processor acceleration of genome analysis tasks without manual
adjustments or adaptations of specialized analysis tools.

6.3 Future work
In this section, we introduce future research directions based on our results presented
in this thesis.

Integrating further genome-specific functionality

In this thesis, we focused on the integration of the core functionality behind SNV
calling. In future work, it would be interesting to complement this core functionality
with additional genome-specific analysis functionality:

Enhanced SNV calling. In this thesis, we left out several optimizations to improve
the result quality of SNV calling such as base call quality recalibration [75] or local
realignments of single reads [30] in the presence of small insertion and deletions. Inte-
grating such concepts could lead to improved analysis results. Moreover, our approach
offers the freedom to use different genotype aggregation functions during the query
processing. Thus, it could be beneficial to combine the results of different approaches
to further improve the result quality.

Advanced variant calling. Another research direction is to integrate approaches to
detect other kinds of variations such as structural variations or small insertions and
deletions (cf. Section 2.2.1.3) that we have not considered in this thesis.

124 6. Conclusion

Integrate read mapping functionality. In this thesis, we did not integrate read
mapping functionality into a DBMS, since the task is too complex and time consuming
to be finished in reasonable time on demand. Read mapping is a necessary preprocessing
step of unmapped raw reads that has to be done in advance. Nevertheless, it could
be possible to compute alternative read mappings on demand using an existing read
mapping as index. Such extensions are related to the idea of realignments of reads
before or during variant calling.

Storage and runtime optimizations

In this thesis, we focused on the use of lightweight compression schemes and assumed
that the logical data representation described by our database schemata resembles the
physical one. In future work, following research directions are possible:

Combine base-centric and read-centric database approaches. We have shown
that a read-centric database approach outperforms a base-centric approach on small
genome regions (cf. Section 4.2.2), since we can easily reduce the number of reads to
analyze according to the genome region of interest. A base-centric database approach
requires to process all sample bases stored in the database independent of the given
genome region, but does not require to convert data on-the-fly, which leads to superior
runtime on large genome regions. Combining both characteristics is a logical idea,
which can be achieved by storing reads of a read-centric database schema in a base-
centric storage layout. Thus, we can reduce the effort of conversion and use the logical
read-centric representation for efficient filtering. At the same time, we reduce the
storage footprint of a read-centric database, since we can apply our proposed lightweight
compression schemes.

Integrate heavyweight compression and disk-based storage. Keeping all data
permanently in main memory will not be a solution in the mid term, since hard disks are
still a cheap and robust storage backend. Moreover, our results show that lightweight
compression cannot compete with heavyweight compression schemes (cf. Section 5.5.2).
Thus, it appears to be necessary to integrate heavyweight compression and disk-based
storage to provide a scalable genome analysis platform based on a relational DBMS.
Genome-specific indexing should allow us to spot the required data on disk and a
column-oriented storage layout in combination with heavyweight compression reduces
the effort to transfer data from disk to main memory. However, to ensure a seamless
integration with disk-based DBMSs further research is required. For example, it is not
clear yet, how we can leverage genome data characteristics to speed up the access to
and decompression of heavyweight compressed data residing on disk.

Bibliography

[1] 1000 Genomes Project Consortium. An integrated map of genetic variation from
1,092 human genomes. Nature, 491(7422):56–65, 2012.

[2] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression
and execution in column-oriented database systems. In SIGMOD, pages 671–682,
2006.

[3] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-
stores: how different are they really? In SIGMOD, pages 967–980, 2008.

[4] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Massively par-
allel sort-merge joins in main memory multi-core database systems. PVLDB,
5(10):1064–1075, 2012.

[5] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene. W. Myers, and David J.
Lipman. Basic local alignment search tool. J. Mol. Biol., 215(3):403–410, October
1990.

[6] Vineet Bafna, Alin Deutsch, Andrew Heiberg, et al. Abstractions for genomics.
Commun. ACM, 56(1):83–93, January 2013.

[7] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. Multi-core,
main-memory joins: Sort vs. hash revisited. PVLDB, 7(1):85–96, 2013.

[8] Thomas Bayes. An essay towards solving a problem in the doctrine of chances.
Philos. Trans. Roy. Soc. London, 53:370–418, 1763.

[9] C. Glenn Begley and John P. A. Ioannidis. Reproducibility in science: improving
the standard for basic and preclinical research. Circ. Res., 116(1):116–126, 2015.

[10] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijay-
vargiya. An annotation management system for relational databases. In VLDB,
pages 900–911, 2004.

[11] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and evaluation of main
memory hash join algorithms for multi-core cpus. In SIGMOD, pages 37–48, 2011.

126 Bibliography

[12] Adam Bloniarz, Ameet Talwalkar, Jonathan Terhorst, et al. Changepoint analysis
for efficient variant calling. In RECOMB, pages 20–34, 2014.

[13] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-
pipelining query execution. In CIDR, pages 225–237, 2005.

[14] Sebastian Breß. The design and implementation of CoGaDB: A column-oriented
GPU-accelerated DBMS. Datenbank-Spektrum, 14(3):199–209, 2014.

[15] Sebastian Breß, Felix Beier, Hannes Rauhe, et al. Efficient co-processor utilization
in database query processing. Information Systems, 38(8):1084–1096, 2013.

[16] Sebastian Breß, Henning Funke, and Jens Teubner. Robust query processing in
co-processor-accelerated databases. In SIGMOD, pages 1891–1906, 2016.

[17] Sebastian Breß, Ingolf Geist, Eike Schallehn, Maik Mory, and Gunter Saake.
A framework for cost based optimization of hybrid CPU/GPU query plans in
database systems. Control and Cybernetics, 41(4):715–742, 2012.

[18] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter
Saake. GPU-accelerated database systems: Survey and open challenges. Trans.
Large-Scale Data- and Knowledge-Centered Systems, 15:1–35, 2014.

[19] Y. Bromberg. Building a genome analysis pipeline to predict disease risk and
prevent disease. J. Mol. Biol., 425(21):3993–4005, 2013.

[20] Christian Burks, Michael J.Cinkosky, William M.Fischer, et al. GenBank. Nucleic
Acids Res., 20:2065–2069, 1991.

[21] Michele Cargill, David Altshuler, James Ireland, et al. Characterization of
single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet.,
22(3):231–238, 1999.

[22] Stefano Ceri, Abdulrahman Kaitoua, Marco Masseroli, Pietro Pinoli, and
Francesco Venco. Data management for next generation genomic computing.
In EDBT, pages 485–490, 2016.

[23] Robin Cijvat, Stefan Manegold, Martin Kersten, et al. Genome sequence analysis
with MonetDB. Datenbank-Spektrum, 15(3):185–191, 2015.

[24] Karen Clark, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and Eric W.
Sayers. GenBank. Nucleic Acids Res., 44(D1):D67–D72, 2016.

[25] Edgar F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[26] George P. Copeland and Setrag N. Khoshafian. A decomposition storage model.
In SIGMOD, pages 268–279, 1985.

Bibliography 127

[27] Mike Cornell, Norman W. Paton, Shengli Wu, et al. GIMS – A data warehouse
for storage and analysis of genome sequence and functional data. In BIBE, pages
15–22, 2001.

[28] CRAM Format Specification Working Group. CRAM Format Specification, 2015.

[29] Pietro D’Addabbo, Luca Lenzi, Federica Facchin, et al. GeneRecords: A rela-
tional database for GenBank flat file parsing and data manipulation in personal
computers. Bioinformatics, 20(16):2883–2885, 2004.

[30] Mark DePristo, Eric Banks, Ryan Poplin, et al. A framework for variation dis-
covery and genotyping using next-generation DNA sequencing data. Nat. Genet.,
43(5):491–498, 2011.

[31] P. Deutsch. GZIP File Format Specification Version 4.3. United States, 1996.

[32] Yanlei Diao, Abhishek Roy, and Toby Bloom. Building highly-optimized, low-
latency pipelines for genomic data analysis. In CIDR, 2015.

[33] Sebastian Dorok. The relational way to dam the flood of genome data. In SIG-
MOD/PODS Ph.D. Symposium, pages 9–13, 2015.

[34] Sebastian Dorok. Memory efficient processing of DNA sequences in relational
main-memory database systems. In GvDB, pages 39–43, 2016.

[35] Sebastian Dorok, Sebastian Breß, Horstfried Läpple, and Gunter Saake. Toward
efficient and reliable genome analysis using main-memory database systems. In
SSDBM, pages 34:1–34:4, 2014.

[36] Sebastian Dorok, Sebastian Breß, and Gunter Saake. Toward efficient variant
calling inside main-memory database systems. In BIOKDD-DEXA, pages 41–45,
2014.

[37] Sebastian Dorok, Sebastian Breß, Jens Teubner, et al. Efficient storage and analy-
sis of genome data in databases. In BTW, pages 423–442, 2017.

[38] Sebastian Dorok, Sebastian Breß, Jens Teubner, et al. Efficiently storing and
analyzing genome data in database systems. In Datenbank-Spektrum, 2017.
doi:10.1007/s13222-017-0254-9.

[39] Sebastian Dorok, Sebastian Breß, Jens Teubner, and Gunter Saake. Flexible
analysis of plant genomes in a database management system. In EDBT, pages
509–512, 2015.

[40] Mohamed Y. Eltabakh, Mourad Ouzzani, and Walid G. Aref. bdbms - A database
management system for biological data. In CIDR, pages 196–206, 2007.

128 Bibliography

[41] Adam C. English, William J. Salerno, Oliver A. Hampton, et al. Assessing struc-
tural variation in a personal genome - Towards a human reference diploid genome.
BMC Genom., 16(1):286, 2015.

[42] Brent Ewing and Phil Green. Base-calling of automated sequencer traces using
phred. II. Error probabilities. Genome Res., 8(3):186–194, 1998.

[43] Cindy Fähnrich, Matthieu-P. Schapranow, and Hasso Plattner. Facing the
genome data deluge: Efficiently identifying genetic variants with in-memory
database technology. In SAC, pages 18–25, 2015.

[44] Franz Färber, Sang K. Cha, Jürgen Primsch, et al. SAP HANA database: data
management for modern business applications. SIGMOD Rec., 40(4):45–51, 2012.

[45] Hector Garcia-Molina and Kenneth Salem. Main memory database systems: An
overview. IEEE Trans. Knowl. Data Eng., 4(6):509–516, 1992.

[46] Kathleen M. Giacomini, Claire M. Brett, Russ B. Altman, et al. The pharmaco-
genetics research network: From SNP discovery to clinical drug response. Clin.
Pharmacol. Ther., 81(3):328–345, 2007.

[47] Goetz Graefe. Volcano - An extensible and parallel query evaluation system.
IEEE Trans. Knowl. Data Eng., 6(1):120–135, 1994.

[48] Goetz Graefe, Haris Volos, Hideaki Kimura, et al. In-memory performance for
big data. PVLDB, 8(1):37–48, 2014.

[49] Hákon Guðbjartsson, Guðmundur Fr. Georgsson, Sigurjón A. Guðjónsson, et al.
Gorpipe: A query tool for working with sequence data based on a genomic ordered
relational (gor) architecture. Bioinformatics, 32(20):3081–3088, April 2016.

[50] Margaret A. Hamburg and Francis S. Collins. The path to personalized medicine.
N. Engl. J. Med., 363(4):301–304, 2010.

[51] Rajini R. Haraksingh and Michael P. Snyder. Impacts of variation in the human
genome on gene regulation. J. Mol. Biol., 425(21):3970 – 3977, 2013.

[52] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker. OLTP through the looking glass, and what we found there. In SIGMOD,
pages 981–992, 2008.

[53] Bingsheng He, Mian Lu, Ke Yang, et al. Relational query coprocessing on graphics
processors. ACM Trans. Database Syst., 34(4):21:1–21:39, 2009.

[54] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann, 2 edition, 1996.

[55] John L. Hennessy and David A. Patterson. Computer Architecture - A Quanti-
tative Approach. Morgan Kaufmann, 5 edition, 2012.

Bibliography 129

[56] Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney. Ef-
ficient storage of high throughput DNA sequencing data using reference-based
compression. Genome Res., 21(5):734–740, 2011.

[57] Ruey-Lung Hsiao, D. Stott Parker, and Hung-chih Yang. Support for bioindexing
in BLASTgres. In DILS, pages 284–287, 2005.

[58] Tim Hubbard, Daniel Barker, Ewan Birney, et al. The Ensembl genome database
project. Nucleic Acids Res., 30(1):38–41, 2002.

[59] David A. Huffman. A method for construction of minimum-redundancy codes.
Proceedings IRE, 40(9):1098–1101, 1952.

[60] Stratos Idreos, Fabian Groffen, Niels Nes, et al. MonetDB: Two decades of re-
search in column-oriented database architectures. IEEE Data Engineering Bul-
letin, 35(1):40–45, 2012.

[61] Illumina. Reducing whole-genome data storage footprint. Technical report, Illu-
mina Inc., 2012.

[62] International Human Genome Sequencing Consortium. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 2001.

[63] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart. Row-wise
parallel predicate evaluation. PVLDB, 1(1):622–634, 2008.

[64] Robert Kallman, Hideaki Kimura, Jonathan Natkins, et al. H-store: a high-
performance, distributed main memory transaction processing system. PVLDB,
1(2):1496–1499, 2008.

[65] Changkyu Kim, Tim Kaldewey, Victor W. Lee, et al. Sort vs. hash revisited:
Fast join implementation on modern multi-core CPUs. PVLDB, 2(2):1378–1389,
2009.

[66] Yuichi Kodama, Martin Shumway, and Rasko Leinonen. The sequence read
archive: Explosive growth of sequencing data. Nucleic Acids Res., 40(D1):D54–
D56, 2012.

[67] Christos Kozanitis, Andrew Heiberg, George Varghese, and Vineet Bafna. Using
genome query language to uncover genetic variation. Bioinformatics, 30(1):1–8,
2014.

[68] Christos Kozanitis and David A. Patterson. GenAp: A distributed SQL interface
for genomic data. BMC Bioinform., 17:63, 2016.

[69] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. Generating code for
holistic query evaluation. In ICDE, pages 613–624. IEEE, 2010.

130 Bibliography

[70] Christian Kuenne, Ivo Grosse, Inge Matthies, et al. Using data warehouse tech-
nology in crop plant bioinformatics. J. Integr. Bioinform., 4(1), 2007.

[71] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ultrafast
and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol., 10(3):R25, 2009.

[72] Thomas J. Lee, Yannick Pouliot, Valerie Wagner, et al. BioWarehouse: A bioin-
formatics database warehouse toolkit. BMC Bioinform., 7(1):170, 2006.

[73] Ulf Leser, Hugues Roest Crollius, Hans Lehrach, and Ralf Sudbrak. IXDB, an X
chromosome integrated database. Nucleic Acids Res., 27(1):123–127, 1999.

[74] Heng Li. A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics, 27(21):2987–2993, 2011.

[75] Heng Li. Improving SNP discovery by base alignment quality. Bioinformatics,
27(8):1157–1158, 2011.

[76] Heng Li and Richard Durbin. Fast and accurate short read alignment with bur-
rows–wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[77] Heng Li, Bob Handsaker, Alec Wysoker, et al. The Sequence Alignment/Map
format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[78] Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-
generation sequencing. Brief. Bioinform., 11(5):473–483, 2010.

[79] Ruiqiang Li, Yingrui Li, Xiaodong Fang, et al. SNP detection for massively
parallel whole-genome resequencing. Genome Res., 19(6):1124–1132, 2009.

[80] Yinan Li and Jignesh M. Patel. WideTable: An accelerator for analytical data
processing. PVLDB, 7(10):907–918, 2014.

[81] Yinan Li, Allison Terrell, and Jignesh M. Patel. WHAM: A high-throughput
sequence alignment method. In SIGMOD, pages 445–456, 2011.

[82] Lin Liu, Yinhu Li, Siliang Li, et al. Comparison of next-generation sequencing
systems. J. Biomed. Biotechnol., 2012:1–11, 2012.

[83] Aaron J. Mackey andWilliam R. Pearson. Using relational databases for improved
sequence similarity searching and large-scale genomic analyses. In Current Pro-
tocols in Bioinformatics, chapter 9, pages 9.4.1 – 9.4.25. John Wiley & Sons, Inc.,
2004.

[84] Stefan Manegold, Peter Boncz, and Martin Kersten. Optimizing main-memory
join on modern hardware. IEEE Trans. Knowl. Data Eng., 14(4):709–730, 2002.

Bibliography 131

[85] Stefan Manegold, Peter Boncz, Niels Nes, and Martin Kersten. Cache-conscious
radix-decluster projections. In VLDB, pages 684–695, 2004.

[86] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing database
architecture for the new bottleneck: memory access. The VLDB Journal,
9(3):231–246, 2000.

[87] Stefan Manegold, Martin L. Kersten, and Peter Boncz. Database Architecture
Evolution: Mammals flourished long before Dinosaurs became extinct. PVLDB,
2(2):1648–1653, 2009.

[88] Elaine Mardis. The $1,000 genome, the $100,000 analysis? Genome Med.,
2(11):84, 2010.

[89] Victor M. Markowitz, Frank Korzeniewski, Krishna Palaniappan, et al. The
integrated microbial genomes (IMG) system: A case study in biological data
management. In VLDB, VLDB ’05, pages 1067–1078. VLDB Endowment, 2005.

[90] Marco Masseroli, Pietro Pinoli, Francesco Venco, et al. Genometric query lan-
guage: A novel approach to large-scale genomic data management. Bioinformat-
ics, 31(12):1881–1888, 2015.

[91] Nasim Mavaddat, Susan Peock, Debra Frost, et al. Cancer risks for BRCA1
and BRCA2 mutation carriers: Results from prospective analysis of EMBRACE.
Journal of the National Cancer Institute, 105(11):812–822, 2013.

[92] Aaron McKenna, Matthew Hanna, Eric Banks, et al. The Genome Analysis
Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing
data. Genome Res., 20(9):1297–1303, 2010.

[93] Andreas Meister, Sebastian Breß, and Gunter Saake. Toward GPU-accelerated
database optimization. Datenbank-Spektrum, 15(2):131–140, 2015.

[94] Michael L. Metzker. Emerging technologies in DNA sequencing. Genome Res.,
15(12):1767–1776, 2005.

[95] Michael L. Metzker. Sequencing technologies - the next generation. Nat. Rev.
Genet., 11(1):31–46, 2009.

[96] Rasmus Nielsen, Joshua S. Paul, Anders Albrechtsen, and Yun S. Song. Geno-
type and SNP calling from next-generation sequencing data. Nat. Rev. Genet.,
12(6):443–51, 2011.

[97] Nomenclature Committee of the International Union of Biochemistry (NC-IUB).
Nomenclature for incompletely specified bases in nucleic acid sequences. Biochem.
J., 229(2):281–286, 1985.

[98] Oracle. Oracle Database In-Memory with Oracle Database 12c Release 2, 2016.

132 Bibliography

[99] Jason O’Rawe, Tao Jiang, Guangqing Sun, et al. Low concordance of multiple
variant-calling pipelines: practical implications for exome and genome sequencing.
Genome Med., 5(3):28, 2013.

[100] Stephan Pabinger, Andreas Dander, Maria Fischer, et al. A survey of tools for
variant analysis of next-generation genome sequencing data. Brief. Bioinform.,
15(2):256–278, 2013.

[101] Norman W. Paton, Shakeel A. Khan, Andrew Hayes, et al. Conceptual modelling
of genomic information. Bioinformatics, 16(6):548–557, 2000.

[102] Peter L. Pearson. The genome data base (GDB) - a human gene mapping repos-
itory. Nucleic Acids Research, 19(suppl):2237–2239, 1991.

[103] William R. Pearson. The FASTA program package, 2015. Manual.

[104] William R. Pearson and David J. Lipman. Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci. USA, 85(8):2444–2448, 1988.

[105] Jonathan Pevsner. Bioinformatics and functional genomics. Wiley, 3 edition,
2015.

[106] Vijayshankar Raman, Garret Swart, Lin Qiao, et al. Constant-time query pro-
cessing. In ICDE, pages 60–69, 2008.

[107] Daniel J. Rigden, Xosé M. Fernández-Suárez, and Michael Y. Galperin. The
2016 database issue of nucleic acids research and an updated molecular biology
database collection. Nucleic Acids Res., 44(D1):D1–D6, 2016.

[108] Uwe Röhm and José A. Blakeley. Data Management for High-Throughput Ge-
nomics. In CIDR, 2009.

[109] Uwe Röhm and Thanh-Mai Diep. How to BLAST your database - A study of
stored procedures for BLAST searches. In DASFAA, pages 807–816, 2006.

[110] Wolfgang Sadée and Zunyan Dai. Pharmacogenetics/ -genomics and personalized
medicine. Hum. Mol. Genet., 14(suppl 2):R207–R214, 2005.

[111] SAM/BAM Format Specification Working Group. Sequence Alignment/Map For-
mat Specification, 2016. Manual.

[112] Geir K. Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig. Ten simple
rules for reproducible computational research. PLoS Comput. Biol., 9(10), 2013.

[113] Frederick Sanger, S Nicklen, and A R Coulson. DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74(12):5463–5467, 1977.

Bibliography 133

[114] Matthieu-P. Schapranow and Hasso Plattner. HIG - an in-memory database
platform enabling real-time ana- lyses of genome data. In BigData, pages 691–
696, 2013.

[115] Sohrab P. Shah, Yong Huang, Tao Xu, et al. Atlas - a data warehouse for inte-
grative bioinformatics. BMC Bioinform., 6:34, 2005.

[116] Barkur S. Shastry. SNP alleles in human disease and evolution. J. Hum. Genet.,
47(11):561–566, 2002.

[117] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. Cache conscious algo-
rithms for relational query processing. In VLDB, pages 510–521, 1994.

[118] Stephen T. Sherry, Minghong Ward, M Kholodov, et al. dbSNP: The NCBI
database of genetic variation. Nucleic Acids Res., 29(1):308–311, 2001.

[119] David Sims, Ian Sudbery, Nicholas E. Ilott, Andreas Heger, and Chris P. Ponting.
Sequencing depth and coverage: Key considerations in genomic analyses. Nat.
Rev. Genet., 15(2):121–132, 2014.

[120] Temple F. Smith and Michael S. Waterman. Identification of common molecular
subsequences. J. Mol. Biol., 147(1):195–197, 1981.

[121] Arne Stabenau, Graham McVicker, Craig Melsopp, et al. The Ensembl core
software libraries. Genome Res., 14(5):929–933, 2004.

[122] Lincoln D. Stein and Jean Thierry-Mieg. AceDB: A genome database management
system. Computational Methods In Genome Research, pages 45–55, 1994.

[123] Susie M. Stephens, Jake Y. Chen, Marcel G. Davidson, Shiby Thomas, and
Barry M. Trute. Oracle database 10g: A platform for BLAST search and reg-
ular expression pattern matching in life sciences. Nucleic Acids Res., 33(suppl
1):D675–D679, 2005.

[124] Guenter Stoesser, Peter Sterk, Mary Ann Tuli, Peter J. Stoehr, and Graham N.
Cameron. The embl nucleotide sequence database. Nucleic Acids Res., 25(1):7–13,
1997.

[125] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, et al. The end of an
architectural era (It’s time for a complete rewrite). In PVLDB, pages 1150–1160,
2007.

[126] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, et al. C-store: A column-
oriented DBMS. In VLDB, pages 553–564, 2005.

[127] Jens Teubner, Gustavo Alonso, Cagri Balkesen, and M. Tamer Ozsu. Main-
memory hash joins on multi-core cpus: Tuning to the underlying hardware. In
ICDE, pages 362–373, 2013.

134 Bibliography

[128] Thoralf Töpel, Benjamin Kormeier, Andreas Klassen, and Ralf Hofestädt.
BioDWH: A data warehouse kit for life science data integration. J. Integr. Bioin-
form., 5(2), 2008.

[129] Cole Trapnell and Steven L. Salzberg. How to map billions of short reads onto
genomes. Nature biotechnology, 27(5):455–457, 2009.

[130] Erwin L. van Dijk, Hélène Auger, Yan Jaszczyszyn, and Claude Thermes. Ten
years of next-generation sequencing technology. Trends Genet., 30(9):418–426,
2014.

[131] J. Craig Venter, Mark D. Adams, Eugene W. Myers, et al. The sequence of the
human genome. Science, 291(5507):1304–1351, 2001.

[132] Sebastian Wandelt, Johannes Starlinger, Marc Bux, and Ulf Leser. RCSI: Scalable
Similarity Search in Thousand(s) of Genomes. PVLDB, 6(13):1534–1545, 2013.

[133] Zhen Wang and John Moult. SNPs, protein structure, and disease. Hum. Mutat.,
17(4):263–270, 2001.

[134] Kesheng Wu, Ekow Otoo, and Arie Shoshani. Optimizing bitmap indices with
efficient compression. ACM Trans. Database Syst., 31(1):1–38, 2006.

[135] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Trans. Inf. Theor., 23(3):337–343, 1977.

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:
- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
 Weise zu interpretieren,
- fremde Ergebnisse oder Veröffentlichungen plagiiert,
- fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und
Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die
Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als
Ganzes auch noch nicht veröffentlicht.

Magdeburg, den

27.04.2017

Sebastian Dorok

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Code Listings
	List of Acronyms
	Introduction
	Goal of this thesis
	Outline and contributions

	Genome analysis and relational database technology
	Genome analysis
	Variant detection based on NGS techniques
	The variant detection process
	Data-management-related challenges

	A concept for DBMS-based variant detection
	Why a DBMS?
	Integration concept
	Related work

	Wrap up

	Relational storage and analysis of read mapping data
	A primer on file-based storage and processing of mapped reads
	Flat-file formats
	Flat-file based SNV calling
	Focus of this thesis

	SNV calling using relational DBMSs
	The read-centric database schema
	Toward database-integrated SNV calling
	Qualitative assessment

	A pileup approach for relational SNV calling
	The base-centric database schema
	Relational SNV calling
	Relationship to read-centric database approaches
	A word on SAM formatted data exports
	Qualitative assessment

	Related work
	Wrap up

	Efficient SNV detection using relational database operators
	A primer on main-memory DBMSs
	Disk-based vs. main-memory DBMSs
	Column-oriented vs. row-oriented storage layout
	Tuple-at-a-time vs. operator-at-a-time processing
	Evaluation system

	An initial runtime evaluation
	Logical query plan
	Runtime evaluation

	Accelerating the join phase
	Optimization options
	Runtime evaluation

	Accelerating the aggregation phase
	Optimization options
	Runtime evaluation

	Applicability to disk-based DBMSs
	Wrap up

	Genome-specificstorageandqueryoptimizationsforrelationalDBMSs
	A primer on data compression
	Heavyweight vs. lightweight compression
	Lightweight data compression schemes

	Initial storage consumption analysis
	Applicability of standard compression schemes
	Storage evaluation

	Lightweight genome-specific database compression schemes
	Reference-based compression for column stores
	Delta+RLE encoding
	Lossy compression
	Storage evaluation

	Base pruning: Leveraging genome characteristics for query processing
	Approaches
	Applicability to specialized analysis tools

	Putting it all together
	Data set characteristics
	Storage assessment
	SNV calling runtime assessment
	Overall assessment

	Related work
	Wrap up

	Conclusion
	Summary
	Discussion
	Future work

	Bibliography

