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Kurzfassung

Wärmebehandelte martensitische Stähle werden für Bauteile in Kraftwerken unter Temperaturen von
bis zu 903K eingesetzt. Diese hohen Temperaturen begünstigen das Kriechen der Bauteile unter
konstanten mechanischen Lasten. Zusätzlich unterliegen die Bauteile zyklischen Belastungen bedingt
durch häufiges Hoch- und Herunterfahren der Kraftwerke zum Ausgleich von Versorgungslücken im
Stromnetz. Martensitische Stähle zeichnen sich durch gute mechanische und thermische Eigenschaf-
ten aus, sodass sie sich für den Einsatz unter diesen anspruchsvollen Bedingungen eignen. Nachteilig
wirkt sich hingegen aus, dass diese Legierungen sowohl unter konstanten als auch zyklischen Lasten
entfestigen.
Zur Abbildung des mechanischen Verhaltens von martensitischen Stählen wird in der vorliegenden
Arbeit ein Phasenverbundmodell beispielhaft anhand des martensitischen Stahls X20CrMoV12-1
vorgestellt. Dabei wird der Werkstoff als Mischung zweier Phasen dargestellt, wobei angenommen
wird, dass der gleiche Verzerrungszustand in beiden Phasen vorliegt. Während die sogenannte
„weiche“ Phase das Innere der Subkörner sowie Bereiche mit einer niedrigen Versetzungsdichte
beschreibt, bezieht sich die „harte“ Phase auf die Korngrenzen und Regionen mit einer hohen Verset-
zungsdichte. Die Modellierung der Entfestigung beruht auf der Annahme, dass der Volumenanteil
der harten Phase im Laufe der Deformation abnimmt. In seiner ursprünglichen Form orientiert sich
das Phasenverbundmodell an mikrostrukturellen Vorgängen. Damit das Modell aber anhand von
makroskopischen Versuchen kalibriert werden kann, werden eine Rückspannung basierend auf
dem ARMSTRONG-FREDERICK-Modell und eine dimensionslose Entfestigungsvariable eingeführt,
sodass man letztendlich ein gekoppeltes System dreier Entwicklungsgleichungen für die inelastische
Verzerrung, die Rückspannung und die Entfestigungsvariable erhält. Wird dieses System für vorge-
schriebene Belastungen gelöst, kann die geschwindigkeitsabhängige inelastische Verformung des
Materials unter Berücksichtigung von Ver- und Entfestigungsvorgängen beschrieben werden.
Um Daten für die Kalibrierung des einachsigen Modells zu erhalten, werden zahlreiche Warmzug-
und Kriechversuche durchgeführt. Die Warmzugversuche werden bei vorgeschriebener Dehnrate
und unter konstanter Temperatur durchgeführt, wobei Temperaturen und Dehnraten in den Bereichen
673K–923K und 5×10−5 s−1–1×10−3 s−1 berücksichtigt werden. Zusätzlich werden einige Kriech-
versuche bei einer Temperatur von 873K durchgeführt. Nach der Bestimmung der Parameter für das
elastische Materialverhalten wird das inelastische Materialverhalten kalibriert. Anschließend wird das
Verhalten der Ver- und Entfestigungsanteile identifiziert. Die Verifikation des kalibrierten Modells an-
hand zusätzlicher Kriechversuche zeigt, dass sich das Modell zur Simulation des Werkstoffverhaltens
innerhalb eines großen Temperatur- (673K–923K) und Spannungsbereichs (100MPa–700MPa)
eignet, wofür insgesamt nur 14 temperatur-unabhängige Parameter benötigt werden.
Des Weiteren wird das Phasenverbundmodell auf mehrachsige Spannungs- und Verzerrungszustände
erweitert, was in Analogie zum einachsigen Modell ein gekoppeltes System dreier Entwicklungsglei-
chungen bezüglich des Tensors der inelastischen Verzerrungen, des Rückspannungstensors und der
skalaren Entfestigungsvariable zur Folge hat. Die thermodynamische Konsistenz des Modells wird
anhand der CLAUSIUS-PLANCK-Ungleichung nachgewiesen. Um die Simulation komplexer Bauteile
zu ermöglichen, wird das mehrachsige Modell in das Finite-Elemente-Programm ABAQUS imple-
mentiert. Zur Integration der Entwicklungsgleichungen wird dabei auf das implizite EULER-Verfahren
zurückgegriffen. Die numerische Umsetzung des Modells wird anhand zahlreicher Beispiele unter
Berücksichtigung ein- und mehrachsiger Spannungszustände überprüft.
Den Abschluss dieser Arbeit bildet die Simulation der Auswirkungen eines Kaltstarts gefolgt von einem
Warmstart auf einen Rotor in einem Kraftwerk. Dazu wird eine entkoppelte thermisch-mechanische
Berechnung durchgeführt. Im Zuge der thermischen Analyse wird basierend auf den Dampftempera-
turen sowie den Wärmeübergangskoeffizienten das Temperaturfeld im Rotor ermittelt. Dieses dient
als Grundlage für die nachfolgende strukturmechanische Berechnung, in der die Spannungs- und
Verzerrungszustände im Rotor mittels des entwickelten Phasenverbundmodells bestimmt werden.
Diese Ergebnisse können zukünftig zur Berechnung der Schädigung verwendet werden, sodass die
Lebensdauer der in Kraftwerken eingesetzten Bauteile präzise vorhergesagt werden kann.
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Abstract

Tempered martensitic steels are commonly used for power plant components at elevated temperatures
up to 903K. In addition to the creep deformation induced by mechanical loads at the high temperatures,
the components are subjected to cyclic loads because of the frequent start and stop operations of
power plants. Due to their mechanical and thermal properties, tempered martensitic steels are ideal
candidates to withstand these conditions. Nevertheless, it is well known that tempered martensitic
steels suffer from softening effects under constant and cyclic loads.
The thesis at hand presents a framework for modeling the mechanical behavior of this type of steels
at high temperatures. Here, the applicability of the proposed methods is demonstrated using the alloy
X20CrMoV12-1, which is a typical representative of tempered martensitic steels. A phase mixture
model is used to simulate the mechanical behavior of these alloys at elevated temperatures. The
phase mixture model describes the alloy under consideration by means of an iso-strain approach
including a hard and a soft phase. The hard phase is related to the subgrain boundaries and areas
with a high dislocation density, while the soft phase represents the interior of the subgrains and regions
with a low dislocation density. Softening effects are taken into account based on the assumption
that the volume fraction of the hard phase decreases during deformation. In order to make the
calibration of the model based on macroscopic material tests possible, a backstress of ARMSTRONG-
FREDERICK-type and a dimensionless softening variable are introduced. This procedure results in
a coupled system of three evolution equations with respect to the inelastic strain, the backstress,
and the softening variable. Based on these evolution equations, the phase mixture model provides
a unified description of the rate-dependent inelastic deformation including hardening and softening
effects.
As a basis for the calibration of the model, the results of numerous high temperature tensile and
creep tests are presented. During the high temperature tensile tests, a constant temperature and
strain rate are prescribed in the intervals 673K≤T ≤923K and 5.0×10−5 s−1≤ ε̇≤1.0×10−3 s−1,
respectively. In addition, several creep tests are conducted at a constant temperature of 873K under
different load levels. The test results serve as basis for the calibration of the one-dimensional phase
mixture model. In the first step of the complex calibration procedure, the elastic parameters are
determined, which is succeeded by the calibration of the inelastic behavior, the hardening regime,
and the softening range. The subsequent verification of the calibrated model using the results of
additional creep tests taken from literature reveals that the model provides accurate approximations
of the experimental data for wide ranges of both temperature and stress, i.e. 673K≤T ≤923K
and 100MPa≤σ≤700MPa, respectively. The calibrated phase mixture model requires only 14
temperature-independent parameters for simulations with respect to the indicated validity ranges.
Furthermore, the phase mixture model is extended to multiaxial stress and deformation states, which
results again in a coupled system of three evolution equations with respect to the inelastic strain tensor,
the backstress tensor, and the scalar softening variable. In addition, the thermodynamic consistency
of the model is demonstrated based on the CLAUSIUS-PLANCK inequality. The three-dimensional
phase mixture model is implemented into the finite element code ABAQUS, while the backward EULER

method is used for the implicit time integration of the evolution equations. The implementation of
the model into the finite element method is verified by various examples, covering both uniaxial and
multiaxial stress and deformation states.
As a final step of the proposed framework, the mechanical behavior of an idealized steam turbine
rotor is simulated. Therefore, a decoupled thermo-mechanical finite element analysis is employed to
simulate a cold start and a subsequent hot start of a power plant. Within the preceding heat transfer
analysis, the instationary steam temperature and the heat transfer coefficients are prescribed, and
the resulting temperature distribution in the rotor is computed. Based on the obtained temperature
fields, the stress and strain tensors are determined in a subsequent structural analysis. For future
applications, these results could lay the foundation for the estimation of creep and fatigue damage,
thus allowing for a precise prediction of the lifetime of power plant components in use.
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Notation

Preliminaries

• Small capitals are used for names, e.g. CAUCHY.

• Applying index notation, Latin indices take the values 1, 2, and 3, if not otherwise stated.
Note that the EINSTEIN summation convention is applied.

• For direct tensor notation, the following conventions are valid:

a,A scalar, tensor of zeroth rank (italic)
a vector, tensor of first rank (minuscule, italic, bold)
A dyad, tensor of second rank (capital, italic, bold)
A tetrad, tensor of fourth rank (capital, italic, bold, calligraphic)

• We make use of the following products applying the direct tensor notation with respect to
orthonormal bases:

– the dyadic product between the vectors a=aiei and b= bjej :
a⊗ b = aibjei ⊗ ej,

– the dyadic product between the tensors of second rankA=Aklek⊗el andB=Bmnem⊗
en:
A⊗B = AklBmnek ⊗ el ⊗ em ⊗ en,

– the scalar product between the vectors a=aiei and b= bjej :
a · b = aibi,

– the scalar products between the tensor of second rank A=Aklek ⊗ el and the vec-
tor a=aiei:
a ·A = Aklalel, A ·a = Aklakel,

– the double scalar product between the tensors of second rank A=Aklek ⊗ el and
B=Bmnem ⊗ en:
A :B = AklBlk,

– the double scalar products between the tensor of second rank A=Aklek ⊗ el and the
tensor of fourth rank C=Copqreo ⊗ ep ⊗ eq ⊗ er:
C :A = CopqrArqeo ⊗ ep, A :C = ApoCopqreq ⊗ er,

– the vector product between the vectors a=aiei and b= bjej :
a× b = aibjεijkek,

where εijk is the LEVI-CIVITA symbol with respect to three dimensions.

• For matrix notation, the following conventions are deployed:

a vector (minuscule, upright, bold, sans-serif)
A matrix (capital, upright, bold, sans-serif)
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Notation

Latin Symbols

A area
A JACOBIan matrix
A1 auxiliary matrix
A2 auxiliary matrix
aβ material parameter
aΓ material parameter
b body force
b vector of body forces (tensor)
b vector of body forces (matrix)
B strain-displacement matrix
B material body
∂B surface of material body
bβ material parameter
bΓ material parameter
C right CAUCHY-GREEN strain
C right CAUCHY-GREEN strain tensor
C elastic stiffness tensor
C elastic stiffness matrix
C̃ tangent operator
C̃ tangent operator matrix
c1 auxiliary variable
c2 auxiliary variable
c3 auxiliary variable
c4 auxiliary variable
c5 auxiliary variable
cΓ material parameter
C1 material parameter
C2 material parameter
C3 material parameter
C4 material parameter
CΓ material parameter
d diameter
D domain
d1 thread diameter
e basis vector
E YOUNG’s modulus
EG GREEN strain
EG GREEN strain tensor
f frequency
f surface force vector
f vector of forces
F deformation gradient (1D)
F deformation gradient (3D)
fE temperature response function

for YOUNG’s modulus
fH constitutive function for the

inelastic strain rates

fη constitutive function for the volume
fraction of the hard phase

fσ stress response function for the
inelastic strain rates

f I
σ stress response function for the

inelastic strain rates w.r.t. low
stresses

f II
σ stress response function for the

inelastic strain rates w.r.t. high
stresses

fT temperature response function for
the inelastic strain rates

g objective function
G shear modulus
gµ approximate objective function
h inequality constraint function
h vector of inequality constraint

functions
H logarithmic HENCKY strain
H quadratic matrix
H logarithmic HENCKY strain tensor
I unit tensor of second rank
I unit tensor of fourth rank
J invariant of a tensor
J JACOBIan matrix
k equality constraint function
k vector of equality constraint

functions
K bulk modulus
K stiffness matrix
L (gauge) length
L auxiliary LAGRANGE function
Lc reduced specimen length
Lt specimen length
m mass
n normal vector
N normal force
N matrix of shape functions
N set of natural numbers
N i shape function w.r.t. ith node
NC number of cycles
NE number of elements
NN number of nodes
NP number of integration points in ξ1

direction
NQ number of integration points in ξ2

direction
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NR number of integration points in ξ3

direction
p pressure
p vector of linear momentum
p vector of unknowns
P PIOLA-KIRCHHOFF stress
P 1st PIOLA-KIRCHHOFF stress tensor
q scalar internal variable
q vector of angular momentum
Q activation energy
Q tensorial internal variable
Q auxiliary matrix
r radius
r residual vector
R universal gas constant
R set of real numbers
R rotation tensor
Rp0.2 offset yield strength
Rq real vector space of dimension q
Rβ residual tensor w.r.t. the backstress
Rσ residual tensor w.r.t. the stress
rσ residual vector w.r.t. the stress
rβ residual vector w.r.t. the backstress
rΓ residuum w.r.t. the softening

variable
rσzz residuum w.r.t. the longitudinal

stress
ra outer radius
ri inner radius
s slack variable
s vector of slack variables
S 2nd PIOLA-KIRCHHOFF stress

tensor

t time
t stress vector w.r.t. the force vector

and the area element in the current
configuration

tI stress vector w.r.t. the force vector
in the current configuration and the
area element in the reference
configuration

tII stress vector w.r.t. the force vector
and the area element in the
reference configuration

T temperature
T auxiliary matrix
TL liquidus temperature
u displacement
u displacement vector (tensor)
u displacement vector (matrix)
U right stretch tensor
U auxiliary matrix
v velocity vector
v vector of parameters
V volume
V auxiliary matrix
∂V boundary of a body
∂Vt boundary with traction BCs
∂Vu boundary with displacement BCs
w weight factor
W work
W auxiliary matrix
x coordinate
x position vector (tensor)
x position vector (matrix)

Greek Symbols

αth coefficient of thermal expansion
β backstress
ββ backstress tensor
β backstress vector
γ isotropic hardening variable
Γ softening variable
ε engineering strain
εε engineering strain tensor
ε engineering strain vector
εV volumetric strain
ζ softening modulus
η volume fraction
κth heat transfer coefficient

λth thermal conductivity
λh vector of LAGRANGE multipliers w.r.t.

the inequality constraints
λk vector of LAGRANGE multipliers w.r.t.

the equality constraints
µ barrier parameter
ν POISSON’s ratio
ξ natural coordinate
ξ vector of natural coordinates
ξ1p, coordinates of integration point
ξ2q, (p, q, r)
ξ3r

Ξ set of vectors
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Notation

Π functional
ρ mass density
σ CAUCHY stress
σ̃ effective stress
σσ CAUCHY stress tensor
σ̃σ effective stress tensor
σ CAUCHY stress vector

σ̃ effective stress vector
σm mean stress
Υ HELMHOLTZ free energy
Φ motion (1D)
Φ motion (3D)
Ψ potential
Ω domain of a body

Indices and Accents

�calc calculated value
�dyn dynamic
�el elastic
�exp experimental value
�i w.r.t. the ith iteration step
�in inelastic
�int internal
�T transposed value
�−1 inverse value
�? solution at minimum
�a w.r.t. the “Test a”
�act active part
�b w.r.t. the “Test b”
�e elemental quantity
�end w.r.t. the last time step
�h hard phase
�init initial state

�k index for phase: k∈{s, h}
�max maximum
�min minimum
�n w.r.t. the nth time step
�n nodal quantity
�ref reference value
�s soft phase
�st steady state
�vM VON MISES variable
�? saturation value
�0 reference configuration
�̆ prescribed variable
�̄ normalized variable
�′ deviator
�̂ amplitude
�̇ 1st derivative w.r.t. the time
�̈ 2nd derivative w.r.t. the time

Operators

A� assembly operator
cosh(�) hyperbolic cosine function
d� infinitesimal value
du� GÂTEAUX derivative w.r.t. u
det(�) determinant
exp(�) exponential function
lim� limit
ln(�) natural logarithm
min(�) minimisation
sgn(�) sign function

sinh(�) hyperbolic sine function
tr(�) trace
∆� incremental value
δ� variation
∇� nabla operator
|� | EUCLIDean norm
� ·� scalar product
� :� double scalar product
�×� vector product

Abbreviations

BC boundary condition
CTO consistent tangent operator
DAE differential-algebraic equation
EBSD electron backscatter diffraction
FEM finite element method
HT high temperature
IC initial condition

LVDT linear variable differential
transformer

ODE ordinary differential equation
SEM scanning electron microscope
TEM transmission electron microscopy
TMF thermo-mechanical fatigue
UMAT User Material
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1 Introduction

The worldwide energy demand continues to increase as the global population grows and the
developing world economies expand [1, 2]. In the year 2010, the global energy generating
capacity accounted for 5061 GW [3]. Thereby, conventional sources of energy, such as liquid
fuels, natural gas, coal, and nuclear technology, contributed the major part, i.e. ≈74%. The
remaining percentage of ≈26% is attributed to wind, geothermal, and solar energy, as well
as other renewable sources [3]. In addition, estimations of the global energy generating
capacity for the year 2040 are provided in [3]. An increased total capacity of 8254 GW
is estimated, corresponding to a relative increase in global energy generating capacity of
≈63% in comparison to the year 2010. Furthermore, BREEZE forecasts that the conventional
sources of energy will provide ≈65% of the total capacity, whereas renewable sources
of energy will contribute the remaining part of ≈35% [3]. Two conclusions can be drawn
based on these numbers: Renewable sources of energy gain importance with an increasing
contribution to the global energy generation. However, this increase is relatively slow such
that the major part of the global energy generation will still be contributed by conventional
sources of energy over the next years.
Most conventional sources of energy, such as liquid fuels, natural gas, and coal, are subjected
to an increasing resource scarcity since these nonrenewable resources take millions of years
to form and reserves are depleted much faster than new resources can be produced [1]. As
one example, global natural gas supplies are estimated to suffice for another 63.5 years
according to [3]. On top of this, specific regions are under much greater pressure, e.g.
the reserves in North America are predicted to last only another 12.5 years at the current
rates of consumption. Due to the resource scarcity, efficient power generation is of utmost
importance. In addition, environmental aspects should be taken into account. If energy is
produced in an efficient way, the emission of air pollutants is reduced, and less nuclear waste
must be depolluted [4]. Finally, the production costs of electricity are lowered.
A major part of the global electricity demand is produced in modern power plants with
steam turbines. In order to increase the efficiency of these turbines, elevated temperatures
are favorable [3, 5], and consequently power plant components have to withstand high
temperature loads. On top of this, the contribution of renewable sources of energy to the
global energy supply leads to an additional demand on conventional power plants. Many
renewable sources including wind and solar energy are intermittent and often unpredictable
due to ambient conditions, in contrast to the steady and predictable output of a conventional
power plant [3]. In case of a reduced production of energy by renewable sources, conventional
power plants have to close this gap. Therefore, power plants are frequently started and shut
down, what results in cyclic loads on the power plant components [6–10].
For these reasons, the investigation of the mechanical behavior of the deployed materials
for power plant components is still of utmost importance. Tempered martensitic steels with
high chromium content are excellent candidates for these high temperature applications. The
thesis at hand aims to establish a framework for the numerical analysis of the mechanical
behavior of such alloys at elevated temperatures. As a typical representative of this class of
materials, the alloy X20CrMoV12-1 is investigated in the thesis at hand.
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Figure 1.1: Power plant components and a typical temperature profile with day-night cycles.

1.1 Tempered Martensitic Steels

1.1.1 Applications

Tempered martensitic steels with high chromium content (9%–12%) are well-etablished
for applications in fossil-fuel and nuclear power plants at elevated temperatures. Often
turbines, tubes, housings, and also other components are made of these materials [13–17],
a typical example is given in Fig. 1.1. Starting in the 1950s, the alloy X20CrMoV12-1 (steel
number 1.4922 [18]) has widely been used for forged components of turbine shafts for
high-pressure applications. Further applications are tubes and pressure vessels subjected to
high temperatures [19].
The in-service conditions in power plants lead to challenging demands on the utilized
materials. In order to increase the efficiency of power plants, the steam temperature should
be as high as possible. Currently, temperatures around 873 K are common in both fossil-fuel
and modern nuclear power plants, with a tendency to exploit even higher temperatures in
future applications (around 903 K and more) [3, 5, 8, 20]. Furthermore, cyclic loads are
induced due to frequent start-ups and shut-downs of power plants. In recent years, renewable
energy sources such as the solar and wind energies are gaining constantly more popularity.
However, the energy production of renewables is strongly dependent on the day-night cycle
and weather conditions. If wind generators and solar power plants do not produce enough
energy due to ambient conditions (e.g. not enough wind, many clouds or during night),
conventional power plants have to close this gap [21]. These start and stop operations
induce cyclic loads with long holding times (typically several hours up to 1 month) [6–10], as
depicted schematically in Fig. 1.1.
In order to estimate the impact of thermal loads on a specific material, the applied temper-
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atures should always be provided with respect to the liquidus temperature of the material
under consideration. It is surprising that in the wide body of literature no information about
the liquidus temperature TL of the alloy X20CrMoV12-1 is available. Therefore, it is estimated
based on the thermodynamic approach presented in [22], where empirical expressions for
the liquidus temperature of an alloy are derived based on its chemical composition and
verified succesfully by means of experimental results. The typical chemical composition of
the alloy X20CrMoV12-1 is taken from [23] (p. 38, Fig. 3.1) and given at this point for the
sake of completeness:

Carbon (C): 0.17−0.23%
Chromium (Cr): 10.00−12.50%
Molybdenum (Mo): 0.80−1.20%
Vanadium (V): 0.25−0.35%
Manganese (Mn): ≤ 1.00%
Niobium (Ni): 0.30−0.80%

In the remainder of this thesis, the liquidus temperature is estimated considering an average
composition of 0.20% C, 11.25% Cr, 1.00% Mo, 0.30% V, 0.50% Mn, and 0.50% Ni. Accord-
ingly, a liquidus temperature of TL≈1764 K is computed. Thus, an applied temperature of
T =873 K corresponds to a relative temperature of T/TL≈0.49. The temperature related
to the liquidus temperature is also referred to as “homologous temperature” [24], and it
is commonly used to classify creep loads. According to [24], one can distinguish three
different creep ranges: low temperature creep corresponding to a homologous temperature
of T/TL≈0.1, high temperature creep (T/TL≈0.5), and creep at very high temperatures, i.e.
T/TL≈0.9. As can be seen, power plant components are subjected to intermediate creep
loads. However, one should bear in mind that the frequent temperature changes induce
cyclic loads, thus increasing the actual load on power plant components.
In addition to the thermal loads, the rotating turbine parts have to withstand mechanical
loads, i.e. the steam pressure p and centrifugal forces due to the rotational frequency f .
Usually, steam pressures of p=20 MPa–30 MPa are applied [25, 26], and a frequency of
f =50 Hz is used for power generation.

1.1.2 Microstructure

This thesis intends to analyze the macromechanical behavior of tempered martensitic steels.
Nevertheless, the properties of a material on the macroscale are strongly dependent on
microstructural processes, which is why they are described in the following. Here, a special
emphasis is obviously put on martensitic steels with high chromium content. The presentation
of the content of this section is based on standard monographs from the field of material
sciences, where also further information can be found [27, 28].
On the microscale, metallic materials show a regular structure, the so-called lattice. Under
the microscope, one can distinguish individual grains, i.e. areas with similar lattice orientation,
and their boundaries. Grain boundaries are designated as two-dimensional lattice defects,
separating adjacent grains. Depending on the magnitude of the disorientation of adjacent
grains, one differentiates between high-angle and low-angle grain boundaries. Usually,
the boundary between adjacent grains with a disorientation angle lower than ≈15◦ is
termed “low-angle grain boundary”, while boundaries between adjacent grains with a higher
disorientation angle are referred to as “high-angle grain boundaries” [29]. Inside a grain, the
lattice orientation might vary slightly, such that one can distinguish subgrains separated by
low-angle grain boundaries from other subgrains [13].
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High chromium martensitic steels are composed of several phases, e.g. ferrite, martensite,
austenite, and precipitates. These steels are usually heat-treated in order to improve
their mechanical properties. The heat treatment comprises two steps: austenitization and
annealing. Before the heat treatment, ferrite represents the primary phase. Steels with
a chromium content of 12% are usually heated up to 1323 K, such that austenite forms,
and precipitates dissolve. During the cool-down, austenite transforms into hard martensite.
Afterwards, annealing is started, and the specimen is heated up to 1003 K–1033 K in order to
reduce internal stresses and increase the ductility of the material [13].
If the carbon content of an alloy is smaller than 0.2%, martensite forms a lath structure
and represents the primary phase. Such alloys are not capable of forming an austenitic
phase. Between and also inside the martensite laths, dislocations, i.e. one-dimensional
lattice defects, concentrate, such that subgrain boundaries are formed. In martensitic steels,
the formation of subgrain boundaries starts due to an initial heat treatment. In contrast,
high-angle grain boundaries separate lath packs of different orientations. Furthermore, there
are carbides, which segregate primarily during annealing on the boundaries of martensite
laths [13]. Carbides and other microstructural elements of high chromium martensitic steels
are shown in the micrographs compiled in Fig. 1.2.

1.1.3 Mechanical Behavior

Considering the high thermo-mechanical loads mentioned in Sect. 1.1.1, the choice of
material is crucial in order to achieve long lifetimes of components. For this reason, Table 1.1
provides an overview with respect to the mechanical and thermal properties of different
steels according to [30]. Values for the offset yield strength Rp0.2 (at room temperature),
the averaged coefficient of thermal expansion αth (for 293 K≤T ≤873 K), and the thermal
conductivity λth (at room temperature) are given. One should consider these values as
exemplary since a limited number of representative alloys per group has been taken into
account in [30]. Nevertheless, it becomes obvious that high chromium martensitic steels
have a relatively high tensile strength as well as a low coefficient of thermal expansion and
an increased thermal conductivity. This is confirmed in [6, 15, 17, 31–34], where the good
corrosion resistance and creep strength of high chromium martensitic steels are underlined,
too.
These properties distinguish tempered martensitic steels from other classes of steels and
make them ideal candidates for operations under high temperatures. However, it is well
known that 9%–12% chromium martensitic steels suffer from softening under creep and

Table 1.1: Mechanical and thermal properties of steel alloys, after [30].

material Rp0.2 [MPa] αth
[
µm (m K)−1] λth

[
W (m K)−1]

high temperature
construction steels

225 . . . 290 14.0 . . . 14.5 35 . . . 55

high chromium
martensitic steels

450 . . . 490 12.3 24

high temperature
austenitic steels

160 . . . 190 18.5 16

nickel-based alloys 600 15.2 13
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Figure 1.2: Microstructure of martensitic steels (A carbides, B dislocations, C boundary).

fatigue loads [7–10, 13, 14, 35–38]. With respect to creep, the term “softening” refers to an
increase of the strain rate with increasing time and deformation [39]. This behavior becomes
obvious in the bottom left diagram of Fig. 1.3, presenting the results of creep tests at 873 K
under constant compressive stress levels σ (definitions of stress and strain measures are
given in Chapt. 2). The absolute inelastic HENCKY strain rate |Ḣ in| is depicted depending on
the absolute inelastic HENCKY strain |H in|. All five curves exhibit the primary and tertiary
creep stage, cf. [40, 41]. In the primary stage, hardening processes are dominant, and the
strain rate decreases until the minimum strain rate is reached. A secondary creep stage
with constant strain rate cannot be observed, which is a typical feature of high chromium
martensitic steels [42]. During the tertiary creep stage, the strain rate increases since
softening processes take place on the microstructural level. Among others, STRAUB has
shown that softening is due to the coarsening of subgrains and carbides [13]. The coarsening
of precipitates, such as carbides, under creep conditions is confirmed in [35–37].
The behavior of 9%–12% chromium martensitic steels under fatigue loads has also been
examined in detail during the last years. In [10], the alloy X20CrMoV12-1 and two other
martensitic steels are examined with respect to fatigue. As one example, the top diagrams
of Fig. 1.3 present the input and the results of strain-controlled fatigue tests at 873 K. The
total strain is prescribed as a triangular function of the time with a frequency of f =5 Hz, cf.
the top left diagram in Fig. 1.3. In the top right diagram, the stress amplitude σ̂ is depicted
depending on the number of cycles NC for different prescribed amplitudes of total strain ε̂.
Particularly for large strain amplitudes, the stress amplitude decreases during the fatigue
test. Reference [10] confirms this cyclic softening effect for all three considered alloys. In
[43], results from cyclic tests demonstrate that also the examined 9% chromium martensitic
steel exhibits this cyclic softening effect. Additionally, FOURNIER and co-workers have
examined the cyclic behavior of other martensitic steels [7–9, 14, 38]. In [7, 8], the softening
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Figure 1.3: Material tests on X20CrMoV12-1 at 873 K. Engineering strain ε vs time t for one
cycle during fatigue tests with prescribed strain amplitudes ε̂ (top left), CAUCHY

stress amplitude σ̂ vs number of cycles NC as result of fatigue tests [10] (top
right), absolute inelastic HENCKY strain rate |Ḣ in| vs absolute inelastic HENCKY

strain |H in| for creep tests under constant compressive stress σ [13] (bottom
left), stress σ vs HENCKY strain H for HT tensile tests at constant strain rates ε̇
(bottom right).

processes on the microstructure are observed via transmission electron microscopy (TEM)
and electron backscatter diffraction (EBSD). It is found that the softening behavior is due to
the disappearance of most of the microstructural subgrain boundaries and the decrease of
the dislocation density. Furthermore, the microstructural coarsening is heterogeneous for
low applied strains since only a few very large subgrains have been detected. However, the
coarsening becomes homogeneous with increasing applied strain. In contrast, no significant
precipitate coarsening is qualitatively noticed on TEM observations, cf. [38]. This is attributed
to the relatively short duration of the fatigue or creep-fatigue tests such that precipitate
coarsening is only observable during creep tests, which usually take more time.
In [31, 44], it has recently been demonstrated that softening occurs also during high tem-
perature (HT) tensile tests. Here, stress-strain curves confirm the existence of a softening
stage during deformation at low strain rates (ε̇≤2.5×10−4 s−1). This stage is characterized
by constantly decreasing load and CAUCHY stress. A similar behavior can be observed at
the bottom right diagram of Fig. 1.3, which summarizes the results of the strain-controlled
HT tensile tests at 873 K, cf. also Fig. 3.4 on p. 42. Three different strain rates ε̇ are
prescribed, and the corresponding stress-strain curves are presented with respect to the
CAUCHY stress σ and the HENCKY strain H. After the instant elastic response of the material,
hardening processes prevail, and the slope of the curves decreases up to the maximum
stress value. This hardening stage is succeeded by the softening stage over a relatively wide
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strain range, i.e. the stress decreases constantly with increasing deformation. Microstructural
observations in [31] reveal that the softening mechanisms are based on the annihilation of
subgrain boundaries and mobile dislocations. Because of the relatively short test duration
(compared to creep tests), nucleation, growth, and coarsening of precipitates are not taken
into account. Furthermore, HT tensile tests are also presented in [32, 33]. Both publications
confirm a long and stable softening stage for tensile tests at high temperatures and low strain
rates.

1.2 Modeling Approaches

Several models have been proposed during the last years in order to simulate the mechanical
behavior of tempered martensitic steels with high chromium content at elevated temperatures.
Generally speaking, one can distinguish macromechanical and micromechanical models.
Macromechanical models provide a macroscopic description and are usually calibrated by
means of mechanical tests, e.g. HT tensile, creep, or fatigue tests. Two different classes of
macromechanical approaches are established in literature: unified and nonunified models.
CHABOCHE introduced the notion of unified models [45], which take only one time-dependent
inelastic strain into account, while nonunified models use separate variables for instantaneous
plastic strains and time-dependent inelastic deformation. Two typical examples of nonunified
models for tempered martensitic steels are the models presented in the treaties of WANG

et al. [46] and VELAY et al. [47]. In [47], a nonunified elasto-viscoplastic model based
on several internal variables is introduced to model the cyclic behavior of the tempered
martensitic steel 55NiCrMoV7. The cyclic softening is reproduced through an isotropic
component. Another approach for cyclic viscoplasticity is presented in [46] in order to model
the thermo-mechanical behavior of a high chromium steel. The total rate-dependent inelastic
strain is decomposed into the creep strain and the viscoplastic strain. In addition, isotropic
and kinematic hardening as well as a damage variable are taken into account. Kinematic
hardening is considered based on the CHABOCHE model [48] with three backstresses. Note
that one of the first approaches to model nonlinear kinematic hardening goes back to the
backstress concept introduced by ARMSTRONG and FREDERICK [49]. CHABOCHE showed
that the superposition of several ARMSTRONG-FREDERICK-type backstresses results in a
better description of the cyclic behavior [48].
Another contribution to the class of nonunified approaches is the two-layer viscoplasticity
model. It is applied by FARRAGHER et al. [50, 51] to predict the thermo-mechanical cyclic
behavior of a P91 pipe. The two-layer viscoplasticity model comprises an elasto-plastic
network in parallel with an elastic-viscous network. Farragher et al. develop a temperature-
dependent version of this model along with a combined nonlinear kinematic and isotropic
hardening cyclic plasticity model for the time-independent behavior and Norton’s power law
to capture secondary creep. This results in 10 temperature-dependent parameters, which
are determined based on macroscopic material tests.
Note that nonunified models suffer from three main drawbacks [45]. Firstly, the notion of
“instantaneous” strains is not precisely defined. Secondly, the implementation of different flow
rules for instantaneous plastic strains and time-dependent inelastic strains leads to numerical
difficulties. Thirdly, interactions between instantaneous plasticity and time-dependent creep
are not taken into account. As a remedy, unified models are often applied to model rate-
dependent inelasticity in combination with nonlinear kinematic hardening of CHABOCHE

type, e.g. [52–58]. KOO and KWON use a CHABOCHE viscoplasticity model with kinematic
hardening and isotropic softening for a 9Cr-1Mo steel [52]. Three backstresses are employed
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to model the kinematic hardening, and the material parameters are identified based on
uniaxial macroscopic material tests in combination with computer simulations. The model
results in 12 temperature-dependent parameters for a relatively narrow temperature range
of 773 K–873 K. Here, one should bear in mind that additional parameters are required to
determine the temperature dependence of the individual parameters such that the actual
number of required material parameters is at least twice as much. Furthermore, WANG et al.
present a unified viscoplastic constitutive model to simulate the behavior of the forged steel
X12CrMoWVNbN10-1-1 under complex thermo-mechanical service-type loadings [53]. A
modified ARMSTRONG-FREDERICK ansatz for kinematic hardening is taken into account, and
an isotropic damage variable is incorporated in the model to describe the fatigue and creep
damage. In [54, 55, 59], the viscoplastic behavior of P91 and P92 steels under fatigue loads
is simulated considering isotropic hardening and softening as well as kinematic hardening
with the CHABOCHE model. Altogether, 10 temperature-dependent material parameters are
required, and the model is restricted to the temperature range 673 K–873 K. The same
temperature range is taken into account in [56, 58]. In [56], HT fatigue of P91 steel is
simulated considering isotropic and kinematic hardening as well, such that 12 temperature-
dependent parameters are required. Similarly, a unified CHABOCHE model with isotropic
and kinematic hardening is used in [58] for the fatigue and creep behavior of a rotor steel,
resulting in 11 temperature-dependent parameters. In [57], the fatigue and creep behavior
of 9%–12% chromium steels at a constant temperature of 898 K is simulated with a unified
viscoplastic CHABOCHE-type model. As before, nonlinear isotropic and kinematic hardening
are considered, resulting here in 27 material parameters. As can be seen, the CHABOCHE

model is widely applied despite the large number of material parameters, that are typically
required. This is a consequence of the introduction of several backstresses in order to
model the nonlinear kinematic hardening effects. Furthermore, if several backstresses are
implemented, it is difficult to provide physical interpretations for all quantities.
In contrast to the macromechanical approaches, micromechanical models are based on
parameters which can be directly and explicitly related to microstructural parameters, like
dislocation densities or grain sizes [47]. One example of a micromechanical model is
presented in [60]. Here, the authors present a micromechanical model with dislocation
densities as internal variables for the description of the cyclic behavior. GIROUX makes
use of a dislocation-mechanics approach, which incorporates dislocation densities and the
subgrain width as key variables to predict the macroscopic softening behavior as well as
the microstructural evolution during cycling for the P92 steel [44]. The material parameters
are determined based on microscopic observations, macroscopic material tests, and data
from literature. Additionally, SAUZAY and co-workers introduce a micromechanical model
for the mechanism of cyclic softening in a martensitic steel with 9% chromium based on a
dislocation-mechanics model for the annihilation of subgrain boundaries [61, 62]. FOURNIER

et al. use this approach to model the behavior of martensitic steels with a chromium content
of 9%–12% at 823 K [14]. A self-consistent homogenization scheme is incorporated for
the transition from the microscale to the macroscale. However, this model results in more
than 20 material parameters, which are determined in a complex calibration procedure.
Another example of a micromechanical approach is the complex cyclic viscoplasticity model
developed by BARRETT et al. The model accounts for several microstructural strengthening
and softening mechanisms by using the dislocation density as a key variable [63, 64], and it
is calibrated by means of macroscopic tests as well as results from microscopic observations
with respect to a high chromium steel.
In addition, phase mixture models are established in material science, e.g. [13, 19, 65].
Originally, these models are also closely related to the microscale, i.e. the hardening

8



1.3 Outline

and softening behavior is simulated based on an iso-strain composite with soft and hard
constituents [13, 19]. One assumes that the alloy is made of soft subgrains surrounded by
hard boundaries [66], while the volume fraction of the hard constituent is closely related to
the microstructure (e.g. mean subgrain size) and assumed to decrease towards a saturation
value to model softening due to the coarsening of subgrains [42]. These micromechanical
models are usually calibrated based on microstructural observations [13, 19, 65].
However, observations with microscopes, e.g. TEM or scanning electron microscope (SEM),
often require a lot of effort, financial resources, and time. On the contrary, macroscopic
material tests like HT tensile tests are less time-consuming and relatively easy to conduct. For
these reasons, a micromechanical phase mixture model is transformed into a macroscopic
mixture model in [42, 67]. To simplify the identification of parameters, a backstress of
ARMSTRONG-FREDERICK-type and a softening variable are introduced as internal variables.
In [42], the model is calibrated based on creep tests for a relatively narrow range of stresses
and temperatures (150 MPa≤σ≤200 MPa, 773 K≤T ≤873 K). To verify the calibrated
model, a creep test with stress changes and HT tensile tests are simulated. This reveals
the good performance of the model, particularly concerning the description of the softening
behavior, even though a minimum number of response functions and material parameters is
used. The calibrated model requires 11 material parameters of which only 2 are temperature-
dependent.
Altogether, the phase mixture model offers two main advantages compared to other ap-
proaches. Firstly, the number of material parameters is relatively small because only one
backstress and a softening variable are introduced as internal variables. Secondly, the
model is calibrated based only on simple macroscopic tests, i.e. time-consuming microscopic
observations are not required for the identification of the parameters. For these reasons,
this thesis makes use of a modified phase mixture model for the unified description of the
mechanical behavior of tempered martensitic steels.

1.3 Outline

This thesis aims to develop a framework for modeling the mechanical behavior of tempered
martensitic steels at elevated temperatures. Exemplarily, the specific alloy X20CrMoV12-1
was chosen to demonstrate the applicability of the proposed method. The framework
comprises the execution of experiments, the set-up of a model, the calibration of the model,
the implementation into the finite element method (FEM), and the simulation of the mechanical
behavior of power plant components under practical boundary conditions (BCs).
The thesis at hand is divided into seven chapters including the current introductory chapter.
Chapter 2 begins by laying the theoretical foundations for the conducted research. The
governing equations of continuum mechanics (kinematics, kinetics, balance laws, and
constitutive equations) are introduced with special emphasis on constitutive models for rate-
dependent inelasticity. Based on these equations from continuum mechanics, the principle of
virtual work is derived for the subsequent numerical solution via the FEM. Furthermore, the
spatial discretization into finite elements is described, and the implementation of nonlinear
constitutive models is discussed.
The third chapter deals with the experiments conducted on specimens made of the alloy
X20CrMoV12-1. In a first test series, HT tensile tests are conducted, in which the tempera-
tures and strain rates are varied systematically within the ranges T = {673 K, 723 K, . . . ,
923 K} and ε̇= {5.0×10−5 s−1, 1.0×10−4 s−1, 1.0×10−3 s−1}. In the second test series, the
same HT tensile test is performed several times, while the test is terminated at different strain
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levels in order to examine the onset of necking. Finally, three creep tests at 873 K have been
conducted.
Chapter 4 presents the one-dimensional phase mixture model, which is applicable to rate-
dependent inelasticity. Two internal variables are introduced: a softening variable to describe
the nonlinear softening and an ARMSTRONG-FREDERICK-type backstress for nonlinear
kinematic hardening. The model is purely mechanical since the temperature is considered
a state variable, influencing the material parameters only. In the remainder of this chapter,
the complex calibration procedure is described based on the experimental data from the
preceding chapter and literature. The calibrated model is verified with additional creep tests
under constant and variable stress.
In Chapt. 5, the phase mixture model is introduced with respect to three-dimensional stress
and strain states. For isothermal processes, the thermodynamic consistency of the model
is demonstrated, i.e. it is shown that the model fulfills the CLAUSIUS-DUHEM inequality. In
addition, the chapter focuses on the numerical implementation of the three-dimensional
model into the finite element code ABAQUS via the subroutine User Material (UMAT). The
implicit stress update algorithm is based on the backward EULER method in conjunction
with the NEWTON-RAPHSON method. Furthermore, the numerical implementation is verified
by comparison with the results obtained using MATLAB’s RUNGE-KUTTA solver ode45 for
the HT tensile tests. As additional benchmarks, creep and shear tests as well as cyclic
strain-controlled tests are simulated. Finally, a pressurized cylinder is simulated deploying
an axisymmetric model, and a service-like uniaxial thermo-mechanical fatigue (TMF) test is
analyzed.
Chapter 6 focuses on the numerical analysis of a power plant component in order to demon-
strate the capability of the model. The mechanical behavior of a steam turbine rotor with
an inlet groove is simulated during a cold start and a subsequent hot start. In a first step, a
transient thermal analysis is conducted in order to compute the inhomogeneous temperature
field. The subsequent structural analysis provides the stress and strain fields, which are
discussed in detail.
The final chapter draws upon the entire thesis and briefly summarizes the main results.
Furthermore, it includes a discussion of the implication of the findings to future research in
this area and identifies areas for further research.
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2 Theoretical Background

2.1 Continuum Mechanics

In the present section, the fundamental principles of continuum mechanics are briefly intro-
duced. This serves as the foundation for the concepts presented in the following chapters.
Since a comprehensive discussion of continuum mechanics is out of the scope of the thesis
at hand, only the most important aspects, which are relevant for the derivation of the pro-
posed models, are provided. This introduction to continuum mechanics is primarily based
on [68–70], where further information and details can be found.

2.1.1 Kinematics

The overall aim of continuum mechanics is the description of the spatial and temporal
movement of deformable bodies through a three-dimensional space, the EUCLIDean space,
where EUCLIDean geometry can be performed, e.g. describing points and straight lines or
measuring distances and angles [68–70]. A material body B is defined as a continuous set
of material points, while the boundary points define its surface ∂B. For the spatial description
of the movement of bodies, we use a Cartesian coordinate system {xiei}. Furthermore, it is
common to distinguish between the current and the reference configuration. The reference
configuration refers to the specific initial time t= t0, while the current configuration is a
description with respect to the actual time t>t0. Based on these two configurations, we can
introduce the motion Φ [69, 70]:

x = Φ(x0, t) with x0 = Φ(x0, t0). (2.1)

The vector x defines the position of a material point, and the index �0 describes quantities
with respect to the reference configuration. In addition, one defines the displacement
vector u:

u = x− x0. (2.2)

Figure 2.1 depicts the material body in both configurations. Considering the description of
motions in continuum mechanics, one distinguishes the material or LAGRANGian description
from the spatial or EULERian description [69, 70]. In a LAGRANGian framework, all variables
refer to the reference configuration, whereas the EULERian description makes use of the
current configuration. In Eq. (2.1), the LAGRANGian description of the motion is given. Based
on the inverse Φ−1, we can derive the EULERian description of the motion [70]:

x0 = Φ−1(x, t). (2.3)

The EULERian description is mainly applied in fluid mechanics, whereas in solid mechanics,
the LAGRANGian description is preferred. For this reason, we focus on the latter in this
work. As an alternative, the motion can be interpreted as a time-dependent change of
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Figure 2.1: The material body in both configurations.

coordinates [69]. For this purpose, we introduce the material coordinate system {x0ie0i}
with respect to the reference configuration and the spatial coordinate system {xiei} with
respect to the current configuration.
In order to describe the deformation of a body, the transformation of infinitesimal line elements
from the reference to the current configuration is examined. The deformation gradient F
maps an infinitesimal line element dx0 from the reference configuration into the current
configuration [69]:

dx = F · dx0. (2.4)

F is a two-point tensor since the right side of Eq. (2.4) refers to the reference configuration,
while its left side belongs to the current configuration. The tensor F is invertible and has a
positive determinant det(F )>0 [69, 70]. If one introduces the material nabla operator∇0

and takes Eq. (2.2) into account, F can also be defined as follows [69, 70]:

F = (∇0 x)T = (∇0 u)T + I with∇0 = e0i

∂

∂x0i

. (2.5)

The variable I represents the unit tensor of second rank. The polar decomposition of the
deformation gradient is given as:

F = R ·U (2.6)

with the material right stretch tensor U , which is symmetric and positive definite, and the
proper orthogonal rotation tensor R. In order to describe deformations, the tensors F
and U could be used. However, both tensors are not invariant with respect to rigid body
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motions [68–70]. On top of that, F is not symmetric, which complicates the mathematical
operations. For these reasons, the right CAUCHY-GREEN tensor C is introduced:

C = U 2 = F T·F = (∇u)T ·∇u+∇u+ (∇u)T + I. (2.7)

The material tensor C is invariant with respect to rigid body motions such that this tensor
serves as basis for the definition of different strain tensors. Frequently, the GREEN strain
tensor EG is used:

EG =
1

2
(C − I) =

1

2

[
(∇u)T ·∇u+∇u+ (∇u)T

]
. (2.8)

The term (∇u)T ·∇u in Eq. (2.8) is nonlinear such that the GREEN strain tensor is nonlinear
with respect to the displacement gradient (geometrical nonlinearity). If we restrict the
derivation to small deformations, the GREEN strain tensor reduces to the linear strain tensor εε,
which is also referred to as engineering strain tensor [69, 70]:

εε =
1

2

[
∇u+ (∇u)T

]
. (2.9)

As an alternative, the material logarithmic strain tensor H (also called “HENCKY strain
tensor”) can be used:

H = lnU =
1

2
lnC. (2.10)

Since one-dimensional material tests are deployed to calibrate the phase mixture model,
introduced in Chapt. 4 based on one-dimensional considerations and extended to three-
dimensional applications in Chapt. 5, the following discussions are limited to the one-
dimensional setting. Figure 2.2 shows a rod in the reference and in the current configuration.
Its left end is clamped, whereas a longitudinal tensile force N is applied to the right end. The
coordinate x0 and the length L0 indicate the reference configuration, while the coordinate x
and the length L describe the current configuration. In analogy to Eq. (2.1), we introduce the
motion Φ of the rod:

x = Φ(x0, t) with x0 = Φ(x0, t0). (2.11)

The one-dimensional displacement u is defined as follows (compare to Eq. (2.2)):

u = x− x0. (2.12)

Furthermore, we can compute the deformation gradient F in one dimension (compare to
Eq. (2.5)):

F =
∂x

∂x0

=
∂u

∂x0

+ 1. (2.13)

In addition, one introduces the one-dimensional CAUCHY-GREEN strain C (compare to
Eq. (2.7)):

C = F 2 =

(
∂u

∂x0

+ 1

)2

. (2.14)
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Figure 2.2: A rod in the current and the reference configuration, based on [71].

The GREEN strain EG, the engineering strain ε, and the HENCKY strain H are calculated as
follows (compare to Eqs. (2.8)–(2.10)):

EG =
1

2

(
∂u

∂x0

)2

+
∂u

∂x0

, (2.15)

ε =
∂u

∂x0

, (2.16)

H = ln

(
∂u

∂x0

+ 1

)
. (2.17)

If the rod is homogeneous, i.e. the material properties and the geometry of the rod do not
depend on x0, the equations above can be simplified:

EG =
1

2

(
∆L

L0

)2

+
∆L

L0

, (2.18)

ε =
∆L

L0

, (2.19)

H = ln

(
∆L

L0

+ 1

)
, (2.20)

where ∆L=L − L0 stands for the increase in length, cf. Fig. 2.2. In the remainder of the
thesis at hand, the operator ∆� denotes incremental quantities. The definitions of the one-
dimensional strain measures given above are used during the processing of the experimental
data, cf. Chapt. 3. Furthermore, the one-dimensional phase mixture model is discussed in
Chapt. 4.
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2.1.2 Kinetics

In mechanical derivations, the cut principle is widely used [69]. The material body is separated
from its environment, while the ambient influences are represented by forces and moments.
We assume that both quantities can be divided into surface/contact parts (acting on the
boundary) and body parts (acting on the volume). In the following, we focus on the surface
forces. If we consider the surface force vector ∆f with respect to an area element ∆A, we
obtain the stress vector t [68]:

t = lim
∆A→0

∆f

∆A
. (2.21)

In the following, we assume that the load ∆f fulfills certain smoothness requirements.
Moreover, CAUCHY has found that the stress vector t depends linearly on the normal
vector n of the area element ∆A [68–70]:

t = n ·σσ, (2.22)

where σσ denotes the CAUCHY stress tensor. For nonpolar media, the CAUCHY stress tensor
is symmetric due to BOLTZMANN’s axiom [69]. In order to determine σσ from experimental
data, the current force and area need to be known. However, it requires often much less
effort to measure the area in the reference configuration. For this reason, we introduce the
stress vector tI with respect to the area element in the reference configuration ∆A0 [68]:

tI = lim
∆A0→0

∆f

∆A0

. (2.23)

The corresponding stress tensor is the first PIOLA-KIRCHHOFF stress tensor P , which
relates the stress vector tI and the normal vector n0 of the area element in the reference
configuration:

tI = n0 ·P . (2.24)

This stress tensor is often referred to as “nominal” or “engineering stress” tensor. Like the
deformation gradient, it is a two-point tensor, and it can be computed based on the CAUCHY

stress tensor and the deformation gradient [68]:

P = det(F )F−1 ·σσ. (2.25)

Since the deformation gradient is not symmetric, the first PIOLA-KIRCHHOFF stress tensor
inherits this property. As a remedy, one introduces a pseudo surface force vector ∆f 0 with
respect to the reference configuration:

∆f 0 = F−1 ·∆f . (2.26)

If we relate this pseudo surface force vector to the area element in the reference configuration,
we obtain another stress vector tII:

tII = lim
∆A0→0

∆f 0

∆A0

. (2.27)
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Here, the second PIOLA-KIRCHHOFF stress tensor S relates the stress vector tII and the
normal vector n0 [68, 69]:

tII = n0 ·S. (2.28)

Based on the CAUCHY stress tensor and the deformation gradient, one can calculate the
symmetric tensor S as follows:

S = det(F )F−1 ·σσ ·F−T. (2.29)

Similar to the previous section about three-dimensional and one-dimensional deformation
states, we introduce one-dimensional stress measures in the following. These measures
are used during the processing of the experimental data, cf. Chapt. 3, and for the one-
dimensional phase mixture model in Chapt. 4. For the sake of brevity, the following sections
concerning the mechanical balance laws and the constitutive modeling are only provided in
a three-dimensional formulation. Further information concerning continuum mechanics in
one dimension can be found in [71, 72].
The CAUCHY stress σ relates the infinitesimal tensile force dN and the cross-section ele-
ment dA in the current configuration (compare to Eq. (2.22)):

dN = σdA. (2.30)

For a homogeneous rod,

N = σA (2.31)

holds. The PIOLA-KIRCHHOFF stress P relates the current tensile force dN to the initial
cross-section dA0 (compare to Eq. (2.24)):

dN = PdA0. (2.32)

Considering a homogeneous rod, Eq. (2.32) can be simplified even further. Here, the
PIOLA-KIRCHHOFF stress relates the force N and the cross-section A0 in the reference
configuration:

N = PA0. (2.33)

In the following, Eq. (2.25) is evaluated for a homogeneous rod. If we assume incom-
pressible material behavior, the determinant of the deformation gradient equals 1 since
this determinant is equal to the current volume dV related to the reference volume dV0, i.e.
det(F ) = dV/dV0 =1. If we substitute this result into Eq. (2.25) and use the definition provided
in Eq. (2.13), the PIOLA-KIRCHHOFF stress in a homogeneous rod can be written as:

P =
L0

L
σ. (2.34)

Vice versa, it holds for the CAUCHY stress:

σ =
L

L0

P =

(
1 +

∆L

L0

)
P. (2.35)
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2.1.3 Mechanical Balance Laws

After the kinematic and kinetic quantities have been introduced in the previous sections, they
are used to formulate the balance laws with respect to mass, linear momentum, and angular
momentum. These considerations are restricted to the local form of the balance laws, i.e.
balance laws with respect to an infinitesimal material volume element.

2.1.3.1 Mass

The mass dm of an infinitesimal volume element dV in the current configuration is determined
based on the mass density ρ:

dm = ρdV. (2.36)

We assume mass conservation, i.e. mass is not removed or added to a body, such that the
following relation holds [68, 71]:

dm = ρdV = ρ0dV0. (2.37)

2.1.3.2 Linear Momentum

The vector of linear momentum p is defined for an infinitesimal part of a body as [68, 71]:

dp = vdm = vρdV, (2.38)

where v denotes the velocity vector. EULER’s first law of motion [69] states that the rate of
change of the linear momentum equals the resultant force:

dṗ = tdA+ ρbdV. (2.39)

The dot represents the first derivative with respect to time, i.e. �̇= ∂�/∂t, and the vector b
comprises all body forces, e.g. gravity or magnetic forces. As before, we assume that all
forces can be described either as surface or body forces. Introducing the CAUCHY stress
tensor, cf. Eq. (2.22), into Eq. (2.39) and applying the GAUSS-OSTROGRADSKY theorem to
transform the surface integral into a volume integral results in CAUCHY’s first law of motion [68,
73]:

∇·σσ + ρb = ρv̇. (2.40)

2.1.3.3 Angular Momentum

The vector of angular momentum q is defined for an infinitesimal part of a body in analogy to
the vector of linear momentum p as [68, 71]:

dq = x× vdm = x× vρdV. (2.41)

In the following, we exploit EULER’s second law of motion [69], which states that the rate of
change of the angular momentum equals the resultant moment:

dq̇ = x× tdA+ ρx× bdV. (2.42)
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After some transformations and consideration of Eq. (2.40), Eq. (2.42) proves the symmetry
of the CAUCHY stress tensor for nonpolar media [68, 69, 71]:

σσ = σσT. (2.43)

2.1.4 Constitutive Equations

The equations presented in the preceding sections do not account for the specific material
properties of a body. Thus, additional equations are required. The so-called constitutive
equations bridge this gap and describe the relation between stresses and strains (or the
corresponding time derivatives) within the framework of a mechanical model. The following
considerations are restricted to isotropic materials, i.e. the material properties do not depend
on specific directions.

2.1.4.1 Elasticity

Elasticity models simulate rate-independent material behavior without hysteresis. In this case,
it is assumed that the current state of stress depends on the current state of deformation
only [69, 74]:

σσ = F
(
εεel
)
. (2.44)

The superscript �el denotes elastic variables. Equation (2.44) illustrates that the stress
response is independent from the deformation path and time. For linear isotropic elasticity,
HOOKE’s law is applied [73]:

σσ = Ktr
(
εεel
)
I + 2Gεεel, (2.45)

where only two parameters, i.e. the bulk modulus K and the shear modulus G, determine
the elastic behavior completely. For isotropic materials, these parameters are related to the
YOUNG’s modulus E and the POISSON’s ratio ν by:

G =
E

2 (1 + ν)
, K =

E

3 (1− 2ν)
. (2.46)

Let us introduce the decomposition of the stress tensor into its spheric and deviatoric part:

σσ = σmI + σσ′ with σm =
1

3
tr(σσ), tr(σσ′) = 0. (2.47)

The variable σm represents the mean stress, and the prime �′ denotes traceless tensors, i.e.
the deviatoric parts. Introducing this decomposition into Eq. (2.45) yields:

εεel =
σm

3K
I +

σσ′

2G
. (2.48)

If one considers Eq. (2.47) and applies the trace operator to both sides of Eq. (2.45),
one obtains a constitutive relation only between the spheric parts of the stress and strain
tensors [71]:

σm = KεV (2.49)
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with the volumetric strain εV =tr
(
εεel
)
. Taking only the deviatoric parts of Eq. (2.48) into

account yields:

σσ′ = 2Gεεel′. (2.50)

2.1.4.2 Inelasticity

In this section, rate-dependent material behavior including hysteresis effects is described.
This is one building block required to model the mechanical behavior of tempered martensitic
steels, which is at the heart of this thesis. In contrast to elastic deformations, inelastic
deformations are irreversible because energy dissipates during deformation. Furthermore,
the load history influences the current deformation [68], and the stress and deformation
states are time-dependent due to viscous effects.
As already pointed out in Sect. 1.2, we can distinguish between unified and nonunified models
for the description of rate-dependent inelasticity. Nonunified models use separate variables for
instantaneous plastic strains and the time-dependent inelastic deformation. The definition of
plastic strains requires the demarcation of an elastic domain by means of a yield surface [75].
Stress states outside the yield surface lead to the evolution of the plastic deformation [74].
In the thesis at hand, the term “plastic strains” is only used for instantaneous inelastic
strains, which are caused by a deformation state exceeding the yield surface. In contrast, the
term “inelastic strains” denotes all irreversible deformation processes, without the necessity
to define a yield surface. Due to the properties of tempered martensitic steels and the
aforementioned drawbacks of the nonunified models, cf. Chapt. 1, a uniform constitutive
model is applied in this thesis, taking only one time-dependent inelastic strain tensor εεin into
account. For this reason, the definition of a yield surface is not required. Additional examples
of unified models without a yield surface are presented in [76–78]. The absence of the yield
surface can also be motivated from a physical point of view because inelastic deformations
of tempered martensitic steels are based on thermally activated processes. That is to say,
they already occur at stresses far below a potential yield stress [71].
For the description of rate-dependent inelasticity, we use the concept of internal variables,
cf. [79], for example. Hereby, it is assumed that the stress tensor σσ depends on the strain
tensor εε as well as on tensorial internal variables Qi ∀ i ∈ {1, 2, . . . ,m} and scalar internal
variables qj ∀ j ∈ {1, 2, . . . , n} [74]:

σσ = F(εε,Qi, qj). (2.51)

The internal variables represent a material state that depends on the process history. To
determine the current values of the internal variables, a system of ordinary differential
equations (ODEs) needs to be solved [74]:

Q̇i(t) =Gi(εε(t), T (t),Qi(t), qj(t)) ∀ i ∈ {1, 2, . . . ,m}, (2.52)
q̇j(t) =Hj(εε(t), T (t),Qi(t), qj(t)) ∀ j ∈ {1, 2, . . . , n}. (2.53)

These ODEs are also referred to as “evolution equations”. Additionally, the influence of the
temperature has been taken into account in Eqs. (2.52) and (2.53). In order to formulate
a constitutive model with respect to elasticity in conjunction with inelasticity, the additive
decomposition of the strain tensor εε into its elastic and inelastic parts is introduced:

εε = εεel + εεin. (2.54)

19



2 Theoretical Background

Furthermore, one must formulate an evolution equation with respect to the inelastic strain
tensor:

ε̇εin(t) = E(εε(t), T (t),Qi(t), qj(t)). (2.55)

In the remainder of this section, we provide the set of equations, being required to formulate
a constitutive model based on elastic material behavior in conjunction with rate-dependent
inelasticity:

• the additive decomposition of the strain tensor εε into its elastic and inelastic parts, cf.
Eq. (2.54):

εε = εεel + εεin,

• HOOKE’s law for linear isotropic elasticity, cf. Eq. (2.45):

σσ = Ktr
(
εεel
)
I + 2Gεεel,

• an evolution equation with respect to the inelastic strain tensor, cf. Eq. (2.55):

ε̇εin(t) = E(εε(t), T (t),Qi(t), qj(t)),

• evolution equations for the internal variables, cf. Eqs. (2.52) and (2.53):

Q̇i(t) =Gi(εε(t), T (t),Qi(t), qj(t)) ∀ i ∈ {1, 2, . . . ,m},
q̇j(t) =Hj(εε(t), T (t),Qi(t), qj(t)) ∀ j ∈ {1, 2, . . . , n}.

In a next step, we focus on the evolution equation for the inelastic strain, cf. Eq. (2.55). One
can reformulate this equation by introducing the potential Ψ [80]:

ε̇εin =
∂ Ψ(σσ)

∂σσ
. (2.56)

One should keep in mind that the stress is still a function of the strain and the internal
variables, cf. Eq. (2.51), although these arguments have not been written explicitly for the
sake of brevity. In the case of isotropic inelasticity, the potential is an isotropic function such
that it depends only on three invariants J1(σσ), J2(σσ), and J3(σσ) of the stress tensor [69, 71]:

Ψ(σσ) = Ψ(J1(σσ), J2(σσ), J3(σσ)). (2.57)

The thesis at hand makes use of the following three invariants of the stress tensor:

J1(σσ) = tr(σσ), (2.58)

J2(σσ) =
1

2

{
[tr(σσ)]2 − tr

(
σσ2
)}
, (2.59)

J3(σσ) = det(σσ). (2.60)

In the framework of the classical theory of inelasticity, it is assumed that the inelastic
deformation does not produce a significant change in volume, i.e. tr

(
ε̇εin
)

=0⇒
(
ε̇εin
)′

= ε̇εin.
In this case, one can show that the potential Ψ does not depend on the first invariant of the
stress tensor anymore [71]. Furthermore, it is sufficient to rewrite Eq. (2.56) in terms of the
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deviatoric part of the stress tensor only:

ε̇εin =
∂ Ψ(J2(σσ′), J3(σσ′))

∂σσ′
. (2.61)

Equation (2.61) accounts for the dependence of the potential Ψ on the third invariant J3(σσ′)
of the stress deviator. This allows for the description of several nonclassical or second-order
effects of the material behavior [71]. For the sake of simplicity, the dependence on the third
invariant is often neglected, which results in a VON MISES-type potential. Here, the potential
is only a function of the second invariant J2(σσ′) of the stress deviator:

ε̇εin =
∂ Ψ(J2(σσ′))

∂σσ′
. (2.62)

Evaluating the derivatives in Eq. (2.62) yields a modified evolution equation for the inelastic
strains [71, 81]:

ε̇εin =
3

2
ε̇in

vM

σσ′

σvM

(2.63)

with the VON MISES stress σvM and the inelastic VON MISES strain rate ε̇in
vM:

σvM =

√
3

2
σσ′ : σσ′, (2.64)

ε̇in
vM =

√
2

3
ε̇εin : ε̇εin. (2.65)

One should keep in mind that the stress deviator σσ′ and the VON MISES stress σvM are
functions of the strain and the internal variables, cf. Eq. (2.51). In addition, a function is
required to account for the dependence of the inelastic VON MISES strain rate on the stress
and temperature. Frequently, a separation ansatz is used for the inelastic VON MISES strain
rate, and therefore it is approximated as a product of two functions with respect to the stress
and temperature states, respectively [71]:

ε̇in
vM = fσ(σvM) fT (T ). (2.66)

During the last years, several stress and temperature response functions have been intro-
duced in literature. The interested reader is referred to the comprehensive review articles by
CHABOCHE [82], PENNY and MARRIOTT [83], ODQVIST and HULT [81], and ILSCHNER [84].
Selected response functions are discussed in Sect. 4.2.3.

The internal variables mentioned before are often used to model isotropic and/or kinematic
hardening. In the case of isotropic hardening, scalar variables are used as internal variables.
As one example, let us introduce the hardening variable γ, i.e. q1≡γ, n≡1. In contrast,
kinematic hardening is modeled by means of tensorial variables. To this end, the stress
deviator σσ′ is additively decomposed into an active part σσact and the backstress tensor ββ [71]:

σσ′ = σσact + ββ ⇒ σσact = σσ′ − ββ. (2.67)

The backstress tensor is a tensorial internal variable: Q1≡ββ, m≡1. Moreover, we assume
that the potential Ψ is only depending on the active stress, and therefore the inelastic strain
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rate can be computed by means of the active stresses only, cf. Eq. (2.62) [71]:

Ψ = Ψ

(
J2

(
σσact

γ

))
= Ψ

(
J2

(
σσ′ − ββ
γ

))
. (2.68)

In the next step, evolution equations are formulated with respect to the hardening variable γ
and the backstress tensor ββ, cf. Eqs. (2.52) and (2.53). A very simple ansatz for isotropic
hardening is the linear strain hardening [69]:

γ̇ = B1ε̇
in
vM. (2.69)

In the following, we introduce the material parameters Bl>0 ∀ l ∈ {1, 2, . . . , 7}, which have
to be determined by fitting the equations to experimental data. The simple linear ansatz
in Eq. (2.69) results in an infinite increase of the hardening, which is not realistic. For this
reason, more sophisticated approaches should be employed, for example [69, 71]:

γ̇ = B2(γ? − γ) ε̇in
vM. (2.70)

Considering steady state applications, the hardening variable converges towards a saturation
value, which is indicated by γ?. A very simple evolution equation for the backstress is provided
by PRAGER’s linear kinematic hardening model [82]:

β̇β = B3ε̇ε
in. (2.71)

Similar to Eq. (2.69), the collinearity of the backstress with the inelastic strain is rarely
observed in reality. As a remedy, the well-known model of ARMSTRONG and FREDERICK for
nonlinear kinematic hardening can be employed [49]:

β̇β = B4ε̇ε
in −B5ε̇

in
vMββ. (2.72)

The second term in Eq. (2.72) is a dynamic recovery term and improves the simulation
results significantly [82]. CHABOCHE suggested to superpose several backstresses for further
improvement of the simulation results [45]:

ββ =
r∑

i=1

ββi (2.73)

with a separate evolution equation for each backstress:

β̇βi = B6i ε̇ε
in −B7i ε̇

in
vMββi. (2.74)

2.1.5 Initial Boundary Value Problem

This section summarizes the governing equations, which form the basis for the numerical
solution via the FEM. Within the mechanical initial boundary value problem, the dependence
of the material parameters on the temperature is taken into account. The mechanical initial
boundary value problem is described by the following set of equations, comprising the
balance laws and the constitutive equations:
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• the conservation of mass, cf. Eq. (2.37):

dm = ρdV = ρ0dV0,

• the balance of linear momentum, cf. Eq. (2.40):

∇·σσ + ρb = ρv̇,

• the balance of angular momentum, cf. Eq. (2.43):

σσ = σσT,

• the kinematic equations, cf. Eq. (2.9):

εε =
1

2

[
∇u+ (∇u)T

]
,

• the additive split of strains, cf. Eq. (2.54):

εε = εεel + εεin,

• HOOKE’s law for linear isotropic elasticity, cf. Eq. (2.45):

σσ = Ktr
(
εεel
)
I + 2Gεεel,

• an evolution equation with respect to the inelastic strain tensor, cf. Eq. (2.55):

ε̇εin(t) = E(εε(t), T (t),Qi(t), qj(t)),

• evolution equations for the internal variables, cf. Eqs. (2.52) and (2.53):

Q̇i(t) =Gi(εε(t), T (t),Qi(t), qj(t)) ∀ i ∈ {1, 2, . . . ,m},
q̇j(t) =Hj(εε(t), T (t),Qi(t), qj(t)) ∀ j ∈ {1, 2, . . . , n}.

In order to formulate the entire initial boundary value problem, additional boundary and initial
conditions (ICs) must be defined. Primarily, two types of BCs are used in continuum mechan-
ics: displacement BCs (DIRICHLET type) and traction BCs (NEUMANN type). Displacement
BCs are defined in the following way [68, 69]:

u(x0, t) = ŭ(x0, t) ∀ x0 ∈ ∂Vu ∧ t ∈ [tinit, tend]. (2.75)

The accent �̆ marks prescribed variables, while the subscripts �init and �end indicate
variables with respect to the first and the last time step, respectively. Equation (2.75) is valid
for the material points belonging to the boundary ∂Vu. With respect to the boundary material
points, which do not belong to the boundary ∂Vu, traction BCs are prescribed [68, 69]:

t(x0, t) = t̆(x0, t) = n ·σσ(x0, t) ∀ x0 ∈ ∂Vt ∧ t ∈ [tinit, tend]. (2.76)

For the entire set of points at the boundary, either displacement or traction boundary con-
ditions need to be defined (∂V =∂Vt ∪ ∂Vu). Initial conditions are usually formulated with
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respect to the displacements or velocities [68, 69]:

u(x0, tinit) = ŭ(x0) ∀ x0 ∈ V, (2.77)
v(x0, tinit) = v̆(x0) ∀ x0 ∈ V. (2.78)

The entire set of equations provided in the present section describes the general initial
boundary value problem for rate-dependent inelastic deformations of a body considering
additional internal variables.

2.1.6 Rule of Mixtures

In Sect. 4.1, the phase mixture model is presented. Thus, this section briefly provides the
theoretical background to define the interactions of the constituents in a mixture. Continuum
mechanical models of mixtures have been extensively treated in the last decades, cf. [85–91].
In this work, we consider a mixture, which is comprised of two different nonreacting solid
constituents. Usually, a continuum mechanical framework is set up for every constituent indi-
vidually, i.e. the kinematic equations, balance laws, and constitutive equations are formulated
with respect to each constituent. In a following step, the constituents are assembled to a
mixture by defining their interactions.
Primarily, two principal approaches are used to define the relation between two constituents:
the iso-strain concept and the iso-stress approach. VOIGT was the first to present an iso-
strain model in [92]. Computing the effective properties of a binary solid mixture, he assumed
a homogeneous strain field:

εεa = εεb = εε. (2.79)

The indices a and b refer to the two different constituents. In contrast, REUSS suggested a
homogeneous stress field, i.e. the iso-stress concept [93]:

σσa = σσb = σσ. (2.80)

Equations (2.79) and (2.80) are only simple approximations of reality and both have their
drawbacks. The iso-strain concept is statically inadmissible since the tractions at the phase
boundaries are not in equilibrium anymore, whereas the iso-stress model is kinematically
inadmissible because the phases are not perfectly bounded [94]. However, HILL has proven
that both models provide an upper and lower bound for the observed material behavior [95],
i.e. the iso-strain concept overestimates the material stiffness, while the iso-stress approach
underestimates this property.
In the current work, a phase mixture model is applied to describe the mechanical behavior of
a binary mixture. Hardening and softening mechanisms are taken into account based on the
stress redistribution between the two constituents [13, 42]. For this reason, the iso-strain
concept is applied such that the mixture strain is defined by Eq. (2.79). In the next step, the
overall stress σσ needs to be defined. In many publications, the stress is computed based on
the volume fractions η of the constituents, e.g. [96–101]:

σσ = ηa σσa + ηb σσb with ηa + ηb = 1. (2.81)

The one-dimensional form of Eq. (2.81) can be derived by applying the iso-strain approach
to a unidirectional lamina under one-dimensional loading [102]. However, one should
bear in mind that the extension to three-dimensional stress states in Eq. (2.81) is only an
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approximation to reality. Nevertheless, this simple approach is often successfully applied in
mixture models [96–101] such that the current thesis also makes use of it.

2.2 Finite Element Method

This section presents the governing equations for the numerical implementation of a nonlinear
material model in the FEM. In a first step, the principle of virtual work (PVW) is derived.
Thereafter, the implementation of nonlinear material models into the FEM is presented.
Finally, the spatial discretization into finite elements is described, and the entire system of
equations is provided as a system of differential-algebraic equations (DAEs).

2.2.1 Principle of Virtual Work

The principle of virtual work serves as the basis for the FEM. The following derivation of the
PVW is given in the style of standard monographs from the field of numerical mechanics, e.g.
[103, 104]. Point of departure for the derivation of the PVW is the multiplication of the local
balance of linear momentum, cf. Eq. (2.40), and the traction BCs (2.76) with an admissible
test function, in our case the virtual displacements δu. The arbitrarily chosen test function
has to fulfill the kinematic equations, cf. Eq. (2.9), and the essential BCs in Eq. (2.75):

δεε =
1

2

[
∇δu+ (∇δu)T

]
, (2.82)

δu(x0, t) = 0 ∀ x0 ∈ ∂Vu ∧ t ∈ [tinit, tend]. (2.83)

The resulting equations are integrated over the volume V and the boundary ∂V of the domain.
These two terms are then summed:
∫

V

δu · (ρü− ρb−∇·σσ) dV +

∫

∂V

δu ·
(
n ·σσ − t̆

)
d∂V = 0. (2.84)

Here, the two dots denote the second derivative with respect to time, i.e. �̈= ∂2�/∂t2. In the
following, we employ the product rule of differentiation for the nabla operator and exploit the
symmetry of the CAUCHY stress tensor:

δu · (∇·σσ) =∇· (δu ·σσ)− δεε :σσ. (2.85)

The expression given in Eq. (2.85) is inserted into Eq. (2.84). Furthermore, the integral over
the boundary is restricted to the boundary ∂Vt since Eq. (2.83) holds for all points on the
boundary ∂Vu:
∫

V

δu · üρdV +

∫

V

δεε :σσdV =

∫

V

δu · bρdV +

∫

∂Vt

δu · t̆d∂Vt. (2.86)

Equation (2.86) represents the PVW. In order to derive a more compact formulation, we
introduce the virtual kinetic energy δW dyn, the internal virtual work δW int, and the external
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virtual work δW ext:

δW dyn =

∫

V

δu · üρdV, (2.87)

δW int =

∫

V

δεε :σσdV, (2.88)

δW ext =

∫

V

δu · bρdV +

∫

∂Vt

δu · t̆d∂Vt. (2.89)

The abbreviations defined above are inserted into Eq. (2.86):

δW dyn + δW int = δW ext. (2.90)

As can be seen, the PVW states that the sum of the virtual kinetic energy and the virtual
work done by the internal forces is equal to the virtual work of the external forces. Up to
now, all parts of the initial boundary value problem (see Sect. 2.1.5) except the constitutive
equations have been considered. For this reason, the combination of the PVW with the
constitutive model is demonstrated in the following. This derivation is based on [105, 106]. In
the following, only static problems are considered, i.e. δW dyn =0.

First of all, we reformulate Eq. (2.86) for static problems by introduction of the functional
Π(u, δu):

Π(u, δu) = 0 (2.91)

with

Π(u, δu) =

∫

V

δεε :σσdV −
∫

V

δu · bρdV −
∫

∂Vt

δu · t̆d∂Vt. (2.92)

Since nonlinear constitutive equations are taken into account, the entire initial boundary
value problem is nonlinear such that the BCs can only be realized incrementally, i.e. the
initial boundary value problem is resolved by the computation of a sequence of equilibrium
configurations. We assume that the equilibrium configuration un is already known such that

Π(un, δu) =

∫

V

δεε :σσndV −
∫

V

δu · bnρdV −
∫

∂Vt

δu · t̆nd∂Vt = 0 (2.93)

holds. To determine the new equilibrium configuration un+1, the following problem must be
solved with respect to the field un+1:

Π(un+1, δu) = 0. (2.94)

Within the FEM, the nonlinear equation given in Eq. (2.94) is solved by means of the NEWTON-
RAPHSON method [103]. During the iteration, intermediate displacement fields occur. These
fields do not fulfill the equilibrium conditions and are denoted by right superscripts, such
as �i. If the iteration process is finished, the last intermediate displacement field defines the
new equilibrium configuration, i.e. un+1 =ui. For the iteration, the functional Π is expanded
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in a TAYLOR series, which is truncated after the first two terms:

Π
(
ui+1, δu

)
= Π

(
ui, δu

)
+ duΠ

(
ui, δu

)
·∆u = 0 (2.95)

where ∆u=ui+1 − ui denotes the displacement increment. The GÂTEAUX derivative of
Π(ui, δu) with respect to u in the direction of ∆u is defined as [106]:

duΠ
(
ui, δu

)
·∆u =

d

dλ
Π
(
ui + λ∆u, δu

)∣∣
λ= 0

. (2.96)

To find the new intermediate displacement ui+1, the following equation is solved via the
NEWTON-RAPHSON method, see also Eq. (2.95):

duΠ
(
ui, δu

)
·∆u = −Π

(
ui, δu

)
. (2.97)

By evaluating the GÂTEAUX derivative in Eq. (2.95), we obtain the linearized PVW [105, 106]:
∫

V

δεε : C̃i : ∆εεdV =

∫

V

δu · bn+1ρdV +

∫

∂Vt

δu · t̆n+1d∂Vt −
∫

V

δεε : σσidV (2.98)

with the strain increment ∆εε and the tangent operator C̃i:

∆εε =
1

2

[
∇∆u+ (∇∆u)T

]
, (2.99)

C̃i =
dσσ

dεε

∣∣∣∣
u=ui

. (2.100)

In order to solve Eq. (2.98) for ∆εε or ∆u respectively, the current state of stress σσi and the
tangent operator C̃i need to be computed. This procedure depends on the chosen material
model. Details on the stress update algorithm and the computation of the tangent operator
with respect to the phase mixture model are provided in Sect. 5.3.3.

2.2.2 Spatial Discretization

The preceding section focuses on the discretization of the PVW with respect to time. In
contrast, this section briefly presents the spatial discretization within the FEM, which is finally
introduced into the linearized PVW in Eq. (2.98). The content of this section is based on
standard textbooks on FEM, e.g. [103, 107–109], where also further information can be
found.
Within the FEM, the material body is partitioned into elements, which must not intersect:

Ω =
NE⋃

i=1

Ωei ∀ Ωei ∩Ωej = ∅ if i 6=j, (2.101)

where Ω denotes the computational domain, Ωe is the elemental domain, and NE stands for
the total number of elements. In the following, the subscript �e is used to denote quantities
on the element level. The PVW must be fulfilled in every domain, cf. Eq. (2.90):

δW dyn
e + δW int

e = δW ext
e , (2.102)
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and consequently the overall virtual works are computed by summing all elemental contribu-
tions:

δW� =
NE∑

i=1

δW�
ei

∀ � ∈ {dyn, int, ext} . (2.103)

In this work, we mainly consider hexahedral finite elements with linear or quadratic shape
functions. The reference elements including their nodal distributions and shape functions are
depicted in Fig. 2.3. For the sake of generality, the derivation of finite elements is based on
the concept of master elements which are defined in a local reference space. Therefore, the
natural coordinates ξi are introduced:

ξ =
[
ξ1 ξ2 ξ3

]T
with − 1 ≤ ξi ≤ 1. (2.104)

Applying the isoparametric element concept, the geometry and the displacement field of a
finite element are interpolated using the same set of shape functions. Thus, the approximation
of both quantities is given as:

xe(ξ) =
[
x1(ξ) x2(ξ) x3(ξ)

]T
= N(ξ) xn, (2.105)

ue(ξ) =
[
u1(ξ) u2(ξ) u3(ξ)

]T
= N(ξ) un, (2.106)

where xe denotes the element position vector, and ue is the displacement vector. The
vectors xn and un are comprised of all nodal coordinates and displacements for one element:

xn =
[
x1

n x2
n . . . xNNn

]T
, xin =

[
xi1 xi2 xi3

]T ∀ i ∈ {1, 2, . . . , NN}, (2.107)

un =
[
u1

n u2
n . . . uNNn

]T
, uin =

[
ui1 ui2 ui3

]T ∀ i ∈ {1, 2, . . . , NN}, (2.108)

where �i is the node index, and NN denotes the number of nodes per element. The
matrix N(ξ) includes all shape functions:

N(ξ) =
[
N1(ξ) N2(ξ) . . . NNN(ξ)

]
, (2.109)

where Ni stands for the matrix of the shape functions with respect to the ith node:

Ni(ξ) = N i(ξ)




1 0 0
0 1 0
0 0 1


 ∀ i ∈ {1, 2, . . . , NN}. (2.110)

To transform the differential line elements dx in physical coordinates to the line elements dξ
in natural coordinates, the JACOBIan matrix J(ξ) and its inverse J−1(ξ) are required. The
mappings between the reference domain and the global one and vice versa are given as:

∂

∂ξ
= J(ξ)

∂

∂x
⇔ ∂

∂x
= J−1(ξ)

∂

∂ξ
(2.111)
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Figure 2.3: Geometry, nodes, and shape functions for 8- and 20-node hexahedral elements.

with

J(ξ) =




∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ3

∂x3

∂ξ3



, J−1(ξ) =




∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x1

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x2

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3

∂x3



, (2.112)

∂

∂ξ
=

[
∂

∂ξ1

∂

∂ξ2

∂

∂ξ3

]T

,
∂

∂x
=

[
∂

∂x1

∂

∂x2

∂

∂x3

]T

. (2.113)

Furthermore, the determinant of the JACOBIan matrix det(J(ξ)) relates an infinitesimal
volume element dV in physical coordinates to the natural coordinates:

dV = dx1 dx2 dx3 = det(J(ξ)) dξ1 dξ2 dξ3. (2.114)

In the next step, the spatial discretization is also introduced into the kinematic equations, cf.
Eq. (2.9):

ε(ξ) ≈ B(ξ) un. (2.115)

The strain vector ε(ξ) in VOIGT notation is defined as:

ε(ξ) =
[
ε11(ξ) ε22(ξ) ε33(ξ) 2ε12(ξ) 2ε13(ξ) 2ε23(ξ)

]T
. (2.116)
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The strain-displacement matrix B(ξ) is compiled analogously to the matrix of shape functions:

B(ξ) =
[
B1(ξ) B2(ξ) . . . BNN(ξ)

]
. (2.117)

Enforcing the isoparamentric element concept, the nodal strain-displacement matrix for
node i can be written as:

Bi(ξ) =




∂ξj
∂x1

∂N i

∂ξj
(ξ) 0 0

0
∂ξj
∂x2

∂N i

∂ξj
(ξ) 0

0 0
∂ξj
∂x3

∂N i

∂ξj
(ξ)

∂ξj
∂x2

∂N i

∂ξj
(ξ)

∂ξj
∂x1

∂N i

∂ξj
(ξ) 0

∂ξj
∂x3

∂N i

∂ξj
(ξ) 0

∂ξj
∂x1

∂N i

∂ξj
(ξ)

0
∂ξj
∂x3

∂N i

∂ξj
(ξ)

∂ξj
∂x2

∂N i

∂ξj
(ξ)




, (2.118)

where N i denotes the shape functions which are also used to approximate the geometry of
an element.

2.2.3 System of Differential-Algebraic Equations

This section introduces the spatial discretization into the linearized PVW in Eq. (2.98) and
discusses the interpretation of the resulting system of equations as a system of DAEs.
For the sake of simplicity, the following considerations are restricted to the elemental domain,
while quantities on the element level are denoted with the subscript �e, and indices with
respect to the time or iteration steps are omitted. Equation (2.98) is rewritten in matrix
notation:
∫

Ve

δeTC̃∆edVe =

∫

Ve

δuT
e bρdVe +

∫

∂Vte

δuT
e t̆d∂Vte −

∫

Ve

δεTσdVe. (2.119)

The tangent operator matrix C̃, the stress vector σ, the vector of body forces b, and the
vector of surface forces t̆ are derived based on the components of the corresponding tensors
of first, second, and fourth rank C̃= C̃ijmnei ⊗ ej ⊗ em ⊗ en, σσ=σijei ⊗ ej, b= biei, and
t̆= t̆iei:

C̃ =




C̃1111 C̃1122 C̃1133 C̃1123 C̃1131 C̃1112

C̃1122 C̃2222 C̃2233 C̃2223 C̃2231 C̃2212

C̃1133 C̃2233 C̃3333 C̃3323 C̃3331 C̃3312

C̃1123 C̃2223 C̃3323 C̃2323 C̃2331 C̃2312

C̃1131 C̃2231 C̃3331 C̃2331 C̃3131 C̃3112

C̃1112 C̃2212 C̃3312 C̃2312 C̃3112 C̃1212



, (2.120)

σ =
[
σ11 σ22 σ33 σ12 σ13 σ23

]T
, (2.121)
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b =
[
b1 b2 b3

]T
, (2.122)

t̆ =
[
t̆1 t̆2 t̆3

]T
. (2.123)

The representations given above are obtained based on the VOIGT notation [68], taking the
symmetries of the tensors into account. Finally, the spatial discretization is introduced into
the PVW by inserting Eqs. (2.106) and (2.115) into Eq. (2.119):
∫

Ve

δuT
n BTC̃B∆undVe =

∫

Ve

δuT
n NTbρdVe +

∫

∂Vte

δuT
n NTt̆d∂Vte −

∫

Ve

δuT
n BTσdVe. (2.124)

For the sake of brevity, the element stiffness matrix Ke, the vector of external forces fext
e , and

the vector of internal forces f int
e are introduced:

Ke =

∫

Ve

BTC̃BdVe, (2.125)

fext
e =

∫

Ve

NTbρdVe +

∫

∂Vte

NTt̆d∂Vte , (2.126)

f int
e =

∫

Ve

BTσdVe, (2.127)

such that Eq. (2.124) can be recast into a compact form:

δuT
n

(
Ke∆un + f int

e − fext
e

)
= 0. (2.128)

Due to the fundamental lemma of calculus of variations, Eq. (2.128) can be rewritten:

Ke∆un = fext
e − f int

e . (2.129)

In order to compute the integrals in Eqs. (2.125)–(2.127), Eq. (2.114) is taken into account,
and GAUSS quadrature is applied [103, 107–109]. Thus, a volume integral can be transformed
into a triple sum over all integration points:

∫

Ve

�dVe =

+1∫

−1

+1∫

−1

+1∫

−1

� det(J(ξ)) dξ1 dξ2 dξ3

≈
NP∑

p= 1

NQ∑

q= 1

NR∑

r= 1

wpwqwr � det(J(ξ1p, ξ2q, ξ3r)), (2.130)

where NP , NQ, NR denote the numbers of integration points with respect to the ξ1, ξ2, ξ3

directions. The variables p, q, and r are the corresponding indices, ξ1p, ξ2q, and ξ3r denote the
coordinates of the integration point (p, q, r), and wp, wq, and wr represent the corresponding
weights. The coordinates and weights of each integration point can be found in the literature
for the two elements under consideration, i.e. C3D8 and C3D20 [103, 107–109].

Equation (2.129) represents a system of nonlinear algebraic equations with respect to
the displacement increments ∆un. However, this equation refers to one element only. In
order to formulate equations with respect to the entire structure, we introduce the assembly
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operator A�, which is used to formally represent the assembly process for all elemental
quantities to the global system. Thus, one obtains the global stiffness matrix K, the global
vectors of internal and external forces f int and fext as well as the global vector of the
displacement increments ∆u:

K =

NE

A
i=1

Kei , (2.131)

f int =

NE

A
i=1

f int
ei
, (2.132)

fext =

NE

A
i=1

fext
ei
, (2.133)

∆u =

NE

A
i=1

∆uni
. (2.134)

Further details concerning the assembly process can be found in the literature [103, 107–
109]. With the quantities introduced above, the global system of equations can be formulated
based on Eq. (2.129):

K∆u = fext − f int. (2.135)

Equation (2.135) describes a set of nonlinear algebraic equations, which has been obtained
by introducing a spatial discretization into the PVW. It is solved with respect to the incre-
mental nodal displacements ∆u by applying the NEWTON-RAPHSON method, cf. Eq. (2.97).
According to [110], this iteration takes place on a “global” level. However, the current stress
vector σ and the tangent operator C̃ are required to compute the stiffness matrix K and the
vector of internal forces f int

e . Due to the use of a nonlinear constitutive model, one must
solve a system of first-order ODEs, i.e. Eqs. (2.45) and (2.52)–(2.55), in order to update
the stresses and to compute the tangent operator. Usually, implicit RUNGE-KUTTA methods
are applied in conjunction with the NEWTON-RAPHSON method to integrate the differential
equations numerically, cf. e.g. [105, 106, 111, 112]. For the numerical time integration,
variables are evaluated at the quadrature points of the numerical integration in space, cf.
Eq. (2.130). For this reason, the numerical solution of the system of ODEs is related to a
“local” or “elemental” level [110]. The local solution procedure influences the solution of the
global system of equations since, amongst others, the global system is evaluated at the time
points provided by the RUNGE-KUTTA methods.

Frequently, the element and global levels are considered independently. In contrast, it
is suggested in [110] to interpret the global system of equations (2.135) together with a
system of ODEs, i.e. Eqs. (2.45) and (2.52)–(2.55), as a system of DAEs. The solution
of this system of DAEs requires the application of the NEWTON-RAPHSON method twice,
i.e. on the local and the global level. For this reason, the notion of the “Multilevel-NEWTON

algorithm” was established in [110, 113]. In a first step, the local system of equations, i.e.
Eqs. (2.45) and (2.52)–(2.55), is solved in order to obtain the internal variables depending
on the displacements. Afterwards, the global system of equations (2.135) is solved in order
to obtain the increments in nodal displacements.

In the current thesis, a UMAT is used to implement the proposed constitutive model into
ABAQUS, and therefore it is sufficient to implement the numerical integration on the local
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level only. The solution on the global level is carried out by the numerical solver provided by
ABAQUS. Details on the numerical integration of the constitutive model on the local level are
given in Sect. 5.3.

2.3 Mathematical Optimization

In order to formulate a mechanical material model, response functions are required to express
the dependence of primary variables like the stress or the strain on secondary variables,
such as the temperature. These functions include material parameters, which are often
found by fitting a curve to experimental data. As a first guess, a manual adaptation could
be executed. However, the fitted material parameters should be optimized numerically in a
second step in order to minimize the deviations from the experimental data and to improve
the overall accuracy of the model. The procedure which is explained in the remainder of
this section is also applied for the calibration of the phase mixture model in Sect. 4.2. To
this end, it makes sense to briefly introduce the reader to the fundamental principles of
mathematical optimization in this section. The implementation is closely related to the works
presented in [114, 115]. For more details, the interested reader is referred to the mentioned
monographs.
The general problem of mathematical optimization is stated as follows:

min {g(v) | h(v) ≤ 0, k(v) = 0} (2.136)

with the functions g :D 7→ R, h :D 7→ Rm, k :D 7→ Rn, and the domain D ⊆ Rq. The scalar
objective function g(v) is minimized with respect to the vector of parameters v, considering
the inequality and equality constraints defined by the vectorial functions h(v) and k(v),
respectively:

h(v) =
[
h1(v) h2(v) . . . hm(v)

]T
, (2.137)

k(v) =
[
k1(v) k2(v) . . . kn(v)

]T
. (2.138)

Here, m ∈ N denotes the number of inequality constraint functions, and n ∈ N represents
the number of equality constraint functions. If no additional constraints have to be taken into
account, the unconstrained optimization problem is formulated in the following way:

min {g(v) | v ∈ D}. (2.139)

If g(v), h(v), and k(v) are linear functions, the whole optimization problem is called linear.
However, most engineering applications result in nonlinear optimization problems. The opti-
mization problem is differentiable if also the functions g(v), h(v), and k(v) are differentiable.
To simplify the formulation of the constrained optimization problem, we introduce the set of
vectors v that satisfy the equality and inequality constraints:

Ξ ≡ {v | h(v) ≤ 0, k(v) = 0} . (2.140)

Considering the definition provided in Eq. (2.140), Eq. (2.136) can be reformulated in analogy
to Eq. (2.139):

min {g(v) | v ∈ Ξ}. (2.141)
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2 Theoretical Background

In order to solve the optimization problem, we need to introduce necessary conditions for a
vector v? to be a minimum of the objective function g(v). In [115, 116], these conditions are
called “first-order optimality conditions” since they are concerned with the gradients of the
objective and constraint functions. First of all, an auxiliary LAGRANGE function L is defined:

L
(
v,λh,λk) = g(v) +

(
λh)T

h(v) +
(
λk)T

k(v), (2.142)

where λh and λk denote the LAGRANGE multiplier vectors with respect to the inequality and
the equality constraints, respectively:

λh =
[
λh

1 λh
2 . . . λh

m

]T
, (2.143)

λk =
[
λk

1 λk
2 . . . λk

n

]T
. (2.144)

Finally, the KARUSH-KUHN-TUCKER conditions can be formulated [115, 116]. If the vector v?

is a local solution of Eq. (2.136) and the objective function as well as the constraint functions
are continuously differentiable, there are LAGRANGE multiplier vectors λh? and λk? such that
the following conditions are satisfied:

∇L
(
v?,λh?,λk?) = 0, (2.145)

h(v?) ≤ 0, (2.146)
k(v?) = 0, (2.147)

λh?
i ≥ 0 ∀ i ∈ {1, 2, . . . ,m}, (2.148)

λh?
i hi(v?) = 0 ∀ i ∈ {1, 2, . . . ,m}, (2.149)

λk?
i ki(v

?) = 0 ∀ i ∈ {1, 2, . . . , n}. (2.150)

Basically, the KARUSH-KUHN-TUCKER conditions are analogous to the condition that the
gradient must be equal to zero at a minimum, modified to take constraints into account.
The conditions serve as basis for the numerical solution of the optimization problem with
the computing environment MATLAB. The function fmincon from MATLAB’s Optimization
Toolbox is used, cf. [116], to solve the system of equations. As default option, the interior
point algorithm [117] is chosen to solve constrained optimization problems numerically. In
the sequel, only basics concerning this algorithm are given. Further mathematical details
can be found in [117].

Instead of the actual minimization problem given in Eq. (2.136), the interior point algorithm
solves a sequence of approximate minimization problems, which are formulated as follows
with respect to the approximate objective function gµ(v, s):

min

{
gµ(v, s) = g(v)− µ

m∑

i=1

ln(si) | h(v) + s = 0, k(v) = 0

}
(2.151)

with the slack variables

s =
[
s1 s2 . . . sm

]T ∀ si > 0 (2.152)

and the barrier parameter µ>0. As µ decreases to zero, the minimum of gµ should approach
the minimum of g. Thus, the original inequality minimization problem has become an equality
minimization problem such that the solution procedure requires less effort [116]. In order
to solve the approximate minimization problem, the algorithm chooses between two steps:
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2.3 Mathematical Optimization

a direct step and a conjugate gradient step. First of all, the algorithm tries to solve the
problem with the direct step, i.e. the KARUSH-KUHN-TUCKER conditions are solved via a
linear approximation. If this step fails, the algorithm continues with the conjugate gradient
step. Here, a quadratic approximation to the approximate problem is minimized in a trust
region, subjected to linearized constraints. In general, the algorithm is very stable since it
is capable of solving a wide range of problems, even if the problems are ill-conditioned or
nonconvex [117].
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3 Experiments

In the present chapter, the different experimental investigations conducted on a multitude of
specimens made of the alloy X20CrMoV12-1 are described. In addition, the results, which
are the basis for the calibration of the phase mixture model in Chapt. 4 are discussed. To this
end, the chapter is divided into two parts. The first part focuses on the high temperature (HT)
tensile tests, while the second part presents the results of the creep tests. Each of the
two parts is composed of three sections. In the first section, the experimental set-up is
briefly described. The subsequent section presents the results of the experiments, which are
discussed in the third section. The content of this chapter is partly based on [118], where the
results of the HT tensile tests have been published. All tests have been conducted by the
author at the creep laboratory of Politecnico di Milano (Italy)1.

3.1 High Temperature Tensile Tests

3.1.1 Experimental Set-Up

In order to analyze the mechanical behavior of the alloy X20CrMoV12-1, several HT tensile
tests are conducted at constant temperatures with shouldered round specimens produced by
a turning machine. The geometrical data, the exact dimensions, the chemical composition,
and information regarding the heat treatment of the investigated specimens are compiled in
Fig. 3.1. The tests are conducted on the electromechanical testing frame CERMAC CSR50
with a tubular resistance furnace, cf. the left photo in Fig. 3.2. In order to measure the
elongation of the specimens, two linear variable differential transformers (LVDTs) are used
in conjunction with an extensometer mounted to the collars of the specimen, as depicted in
Figs. 3.1 and 3.2. The arithmetic average of the resulting two displacement signals serves as
basis to calculate the strains. Furthermore, three S-type thermocouples, i.e. 90% platinum
and 10% rhodium–platinum, have been used to measure the surface temperature of the
specimen at three locations: near the beginning, at the middle, and near the end of the gauge
length L0. The locations of the thermocouples are indicated in Fig. 3.1 as red points. An
uncertainty of ≈1.63 K due to the thermocouples is taken into account by the temperature
control.
In a first test series, temperatures and strain rates are varied systematically. Six different tem-
perature levels T = {673 K, 723 K, . . . , 923 K} and three different engineering strain rates
ε̇≈ {5.0×10−5 s−1, 1.0×10−4 s−1, 1.0×10−3 s−1} are taken into account. One HT tensile test
is conducted with respect to each combination of temperature and strain rate. Note that a
maximum temperature of 923 K is chosen in order to account for the high temperatures in
power plants, cf. Chapt. 1. The minimum temperature is set to 673 K due to the limitations of
the testing frame, i.e. the high tensile forces at temperatures <673 K exceed the capacity
of the testing frame. Furthermore, we only consider strain rates ε̇≥5.0×10−5 s−1 for a

1At this point, I’d like to thank Elisabetta Gariboldi from Politecnico di Milano for the fruitful discussions and
the access to her laboratory to conduct the experiments. Special thanks go to Oksana Baer for her helpful
advice and the supervision in the laboratory.
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geometry of tensile specimens

extensometer

thermocouples

chemical composition [23]:

Carbon: 0.17−0.23%
Chromium: 10.00−12.50%
Molybdenum: 0.80−1.20%
Vanadium: 0.25−0.35%
Manganese: ≤ 1.00%

Niobium: 0.30−0.80%

heat treatment [119]:

1. austenitizing: 1 h, 1323K

2. air cooling

3. annealing: 1 h, 1033K

4. air cooling

dimensions [120]:

d0 = {7.5mm, 8mm}
d1 = 16mm

r = 4mm

L0 = 40mm

Lc = 60mm

Lt = 104mm

Figure 3.1: Geometry, dimensions, chemical composition, and heat treatment of the speci-
mens.

time-saving and efficient test procedure, such that each test takes less than 3 h. All tests
are conducted until the rupture of the specimen. In a second test series, a tensile test is
performed several times at a temperature of 923 K under a strain rate of 5.0×10−5 s−1, while
the test is terminated at different strain levels in order to examine the onset of necking. The
term “necking” describes nonuniform changes in the cross-section over the gauge length. For
the analysis of the stress-strain curves, it is crucial to distinguish necking as a macroscopic
phenomenon from softening due to microstructural changes. For this reason, the shape
of the deformed specimens from the second test series is examined with a profilometer.
Here, the three-dimensional surface measurement device FORM TALYSURF 120 PC (Taylor
Hobson) with a smallest scale division of 32 nm is used to gauge the specimens’ surface.

3.1.2 Results

3.1.2.1 Processing of Experimental Data

The experimental set-up provides an averaged increase in gauge length of the speci-
men ∆L(tn) and the corresponding tensile force N(tn) for each time step tn. With the
initial gauge length L0 and the initial diameter d0, the engineering stress P (tn) and the
engineering strain ε(tn) are computed according to Eqs. (2.33) and (2.19):

P (tn) =
N(tn)

A0

with A0 =
πd2

0

4
, (3.1)

ε(tn) =
∆L(tn)

L0

. (3.2)
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Figure 3.2: Testing frame and prepared specimen with extensometer and thermocouples
(left), engineering strain rate ε̇ vs engineering strain ε for two tensile tests at
873 K.

The corresponding engineering strain rate is computed by approximating the temporal
derivative by means of a backward difference formula:

ε̇(tn) =
ε(tn)− ε(tn−1)

tn − tn−1

. (3.3)

During the tests, the strain rate cannot be prescribed directly due to the limitations of the
testing frame, and therefore the displacement rate is prescribed. This results in a slight
increase of the strain rate with respect to the elongation of the specimens, as shown on
the right-hand side of Fig. 3.2. The engineering strain rate ε̇ is depicted vs the engineering
strain ε for two tensile tests at 873 K. Here, the slight scatter in data is attributed to the
computation of the strain rates as finite differences, cf. Eq. (3.3). The diagrams on the
right-hand side of Fig. 3.2 show that the slightly increasing strain rates can be approximated
by the constant values ε̇≈5×10−5 s−1 and ε̇≈1×10−4 s−1, respectively.
However, the engineering measures P and ε do not take changes in the geometry of the
specimen into account since they correspond to the undeformed specimen in the reference
state. For this reason, stress and strain measures related to the current dimensions of the
specimen, i.e. the CAUCHY stress σ and the HENCKY strain H, are used in addition to the
engineering measures. They can be computed based on Eqs. (2.31) and (2.20):

σ(tn) =
N(tn)

A(tn)
, (3.4)

H(tn) = ln

(
1 +

∆L(tn)

L0

)
. (3.5)
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Due to the limitations of the experimental set-up, one cannot measure the current cross-
section A of the specimen directly. For this reason, the stress σ is calculated based on the
engineering stress P by Eq. (2.35). One should emphasize that Eq. (2.35) is only valid if the
cross-section deforms uniformly over the gauge length such that Eq. (2.35) should not be
applied after the onset of necking. Furthermore, the inelastic part of the logarithmic strain
H in is of importance. It is determined by subtracting the elastic part:

H in(tn) = H(tn)−Hel(tn) with Hel(tn) =
σ(tn)

E
. (3.6)

3.1.2.2 Test Series 1

Within the first test series, HT tensile tests are conducted at different temperatures and strain
rates to systematically examine the mechanical behavior of the alloy X20CrMoV12-1 at high
temperatures. Six different temperature levels T = {673 K, 723 K, . . . , 923 K} and three
different engineering strain rates ε̇≈ {5.0×10−5 s−1, 1.0×10−4 s−1, 1.0×10−3 s−1} are taken
into account. In the remainder of this chapter, these three strain rates are referred to as
“minimum”, “medium”, and “maximum” strain rate.
The first three diagrams depicted in Fig. 3.3 show the engineering stress depending on
the engineering strain for the three strain rates. Each diagram corresponds to a constant
strain rate, while the results of the tensile tests at different temperatures are depicted. This
representation is useful to analyze the influence of the temperature on the tensile behavior.
In addition, material parameters, i.e. the YOUNG’s modulus E, the strain to rupture εmax, and
the maximum tensile stress Pmax are displayed with respect to the temperature. While the
strain to rupture and the maximum stress can be easily read from the individual stress-strain
curves, the YOUNG’s modulus is determined by a linear regression of the experimental data
in the elastic range, i.e. for small strains ε≤0.2%. Due to the scatter of the data and in order
to obtain reliable results, the strain interval for the determination of the YOUNG’s modulus
has to be readjusted for every test individually. Furthermore, the experimental values for the
YOUNG’s modulus are compared to the results from [10].
Additionally, the dependence of the CAUCHY stress on the inelastic HENCKY strain is analyzed
in Fig. 3.4. Each diagram contains the stress-strain curves at constant temperature with
respect to all three strain rates. This figure is used to examine the strain rate dependence of
the material. With respect to the temperature 873 K, additional data is available in [10].
Figure 3.5 presents data that has been extracted from the stress-strain curves in Fig. 3.4. On
the left-hand side, the maximum CAUCHY stress is displayed depending on the temperature
at different strain rates, while the softening modulus ζ=

∣∣ ∆σ
∆Hin

∣∣ is shown with respect to
the temperature on the right-hand side. The softening modulus refers to the approximately
constant slope of the stress-strain curves, as schematically depicted in Fig. 3.4 at the bottom
right. After the maximum tensile stress has been reached, i.e. for strains exceeding the
strain H in(σmax) corresponding to the maximum stress, most stress-strain curves for higher
temperatures, i.e. T ≥773 K, exhibit a relatively wide strain range with constantly decreasing
stress. In order to quantify the softening behavior, the softening modulus is determined
based on a linear approximation of this strain range, and the results are depicted on the
right-hand side of Fig. 3.5.
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Figure 3.3: Test Series 1. Engineering stress P vs strain ε for minimum, medium, and
maximum strain rate; YOUNG’s modulusE vs temperature T ; strain to rupture εmax

vs temperature T ; maximum engineering stress Pmax vs temperature T (from top
left to bottom right).

3.1.2.3 Test Series 2

In the following, the results of the second test series are presented. To examine the onset of
necking, a tensile test at the highest temperature, i.e. 923 K, under the minimum strain rate of
5.0×10−5 s−1 is performed several times. As has been discussed in Sect. 3.1.2.2, particularly
stress-strain curves with respect to higher temperatures show an extended softening stage,
i.e. a strain range with constantly decreasing stress. Furthermore, it is presumed that the
softening effect becomes stronger with decreasing strain rate. Thus, in order to observe
a long softening stage, the lowest strain rate and the highest temperature are chosen as
parameters for the tensile test. The test is terminated at different strain levels, and the
results are summarized in Fig. 3.6, which shows the engineering stress depending on the
engineering strain. Photographs of the deformed specimens are included in the figure. The

41



3 Experiments

0 2 4 8 10

×10−2

0

100

200

600

700

H in [−]

σ
[M

P
a]

1.0×10−3 s−1

1.0×10−4 s−1

5.0×10−5 s−1

T =673K

0 2 4 10 12 14

×10−2

0

100

200

500

600

700

H in [−]

σ
[M

P
a]

1.0×10−3 s−1

1.0×10−4 s−1

5.0×10−5 s−1

T =723K

0 5 15 20

×10−2

0

100

500

600

H in [−]

σ
[M

P
a]

1.0×10−3 s−1

1.0×10−4 s−1

5.0×10−5 s−1

T =773K

0 5 10 25 30

×10−2

0

100

400

500

H in [−]

σ
[M

P
a]

1.0×10−3 s−1

1.0×10−4 s−1

5.0×10−5 s−1

T =823K

0 5 10 25 30

×10−2

0

100

300

400

H in [−]

σ
[M

P
a]

1.0×10−3 s−1

2.4×10−4 s−1, [10]
1.0×10−4 s−1

5.0×10−5 s−1

T =873K

ζ=
∣∣∣ ∆σ
∆Hin

∣∣∣

0 10 30 40

×10−2

0

50

150

200

H in [−]

σ
[M

P
a]

5.0×10−5 s−1

T =923K

Figure 3.4: Test Series 1. CAUCHY stress σ vs inelastic HENCKY strain H in for different
temperatures.

673 723 823 873 923

200

600

700

T [K]

σ
m
a
x
[M

P
a]

1.0×10−3 s−1

1.0×10−4 s−1

5.0×10−5 s−1

773 873 923
0

100

300

T [K]

ζ
[M

P
a]

1.0×10−3 s−1

1.0×10−4 s−1

5.0×10−5 s−1

Figure 3.5: Test Series 1. Maximum CAUCHY stress σ (left) and softening modulus ζ (right)
vs temperature T .

42



3.1 High Temperature Tensile Tests

0 5 10 15 20 30 35 40

×10−2

0

50

150

200

ε [−]

P
[M

P
a]

Specimen 1
Specimen 2
Specimen 3
Specimen 4

Specimen 1Specimen 1 Specimen 2Specimen 2

Specimen 3Specimen 3 Specimen 4Specimen 4

T =923K
ε̇ ≈5.0×10−5 s−1

Figure 3.6: Test Series 2. Engineering stress P vs engineering strain ε.

test with Specimen 1 is terminated at an approximate strain level of ε≈10%, while the test
with Specimen 2 is continued until the strain level of ε≈15% is reached. Finally, the test with
Specimen 3 is terminated at ε≈20%, and the test with Specimen 4 has been terminated at
the largest elongation of ε≈43%. The corresponding photographs clearly show the changes
in the cross-section with increasing deformation. Note that all photographs have different
scale factors.

Only the photograph of Specimen 4 shows considerable nonuniform change in the cross-
section, i.e. necking. For this reason, further investigations are required to determine
precisely whether necking has already started during the Tests 1, 2, and 3. In addition to the
visual examination of the specimens’ shape, the hypothesis of volume conservation during
inelastic deformation can be applied to roughly determine the onset of necking, as presented
in [31]. If the inelastic deformation is isotropic, such that the circular cross-sections remain
circular after the deformation, the deformations are homogeneous, and the elastic strains are
negligible, the trace of the HENCKY strain tensor is equal to zero, thus resulting in a linear
relation between the longitudinal strain H11 and the two transverse strains H22 =H33:

tr(H) = 0 ⇒ H11 + 2H22 = 0. (3.7)

Table 3.1 summarizes the results of the application of this hypothesis. The first column
corresponds to the specimen number, whereas the second column contains the experimental
longitudinal strains Hexp

11 at the end of the corresponding test. The third column provides the
experimental values of the radial strain Hexp

22 , calculated based on the diameter measure-
ments on homogeneously deformed cross-sections far from the potential necking region.
The fourth column contains the radial strains Hcalc

22 , computed based on Eq. (3.7) based on
the results for Hexp

11 . Finally, a relative deviation ∆H22 = |Hexp
22 −Hcalc

22 |/|Hexp
22 | with respect to the
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calculated and the experimental transverse strains is determined.
As a third way to determine the onset of necking, the shape of a specimen in virgin state
as well as the shapes of Specimens 2 and 3 are examined with a tactile profilometer. The
surface of the specimens is scanned mechanically across the gauge length, omitting the
collars as depicted in Fig. 3.1. Figure 3.7 summarizes the results. The abscissa shows
a normalized x̄= x/xmax coordinate referring to the longitudinal direction of the specimen.
The vertical movement of the scanner is depicted on the ordinate as z coordinate, thus
reflecting the change in diameter. The two upper diagrams show the results of the surface
measurement of a virgin specimen. At the left-hand side, an overview over the whole
measured length is given, while the diagram on the right-hand side shows a close-up view
of the corresponding adjacent diagram. The four diagrams below refer to the deformed
specimens 2 and 3, which have been subjected to strains up to 16% and 20%, respectively.
For the sake of brevity, the results of only one profilometry per specimen are presented.
Originally, two measurements per specimen have been conducted, i.e. the specimen has
been rotated about 180◦ around its longitudinal axis such that each measurement refers to
another circumferential position. Figures A1.1 and A1.2 in the appendix present the results
for the two profilometry measurements for the Specimens 2 and 3. It becomes obvious that
the measurements at different angles lead to similar results with insignificant deviations such
that it suffices to discuss only one measurement per specimen.

3.1.3 Discussion

3.1.3.1 Test Series 1

The results presented in Fig. 3.3 are used to analyze the influence of the temperature on the
deformation behavior. The stress-strain curves start with a fast increase in the elastic range.
Afterwards, the slope decreases since microstructural hardening processes dominate the
material behavior. The curves attain their maxima at relatively low strains, around ≈1%–2%.
Behind the maximum, i.e. for higher strains, softening, which is also related to processes on
the microstructure, dominates the material behavior. Especially at high temperatures, the
softening stage is extended and pronounced. Approaching the strain to rupture, i.e. in the
last third of the curves, their slope decreases even faster, which can be attributed to necking.
For the interpretation of the stress-strain curves, it is crucial to distinguish the softening stage
from the stage, where necking dominates the material behavior. Therefore, the second series
of HT tensile tests has been performed, and the onset of necking is examined and discussed
in Sect. 3.1.3.2. The obtained stress-strain curves are in good agreement with [31], where
HT tensile tests of a 9% chromium steel under similar strain rates and temperatures are
presented.
As can be seen in Fig. 3.3, the YOUNG’s modulus decreases with the temperature. Many

Table 3.1: Determination of the onset of necking by the hypothesis of constant volume

Test Hexp
11 [%] Hexp

22 [%] Hcalc
22 [%] ∆H22 [%]

1 9.50 −4.38 −4.75 8.45

2 16.03 −6.37 −8.02 25.90

3 20.14 −8.05 −10.07 25.09

4 43.58 −8.42 −21.79 158.79
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Figure 3.7: Test Series 2. Profilometry of different specimens

mechanical models neglect the influence of the strain rate on the YOUNG’s modulus, although
our results demonstrate a slight strain rate dependence of this stiffness measure. To be
precise, a decrease in the strain rate also results in a decrease in the YOUNG’s modulus.
At a temperature of 673 K, the strain rate seems to exert a high influence on the YOUNG’s
modulus. However, this large deviation in the results is most likely due to a higher scatter
in the data because of the strain rate control and the very high tensile forces applied by
the testing frame at low temperatures. For example during a tensile test under a strain rate
of ε̇=5.0×10−5 s−1 at a low temperature of 673 K, tensile forces three times as high as the
tensile forces during a test under the same strain rate at a temperature of 923 K occur. In
contrast to the YOUNG’s modulus, the strain to rupture εmax, which is a measure used to
quantify the ductility of a material, increases with the temperature, whereas the maximum
stress Pmax shows the same behavior as the YOUNG’s modulus: it becomes smaller while the
temperature increases. Furthermore, the influence of the strain rate on the strain to rupture
and the maximum stress grows with higher temperatures.
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Figure 3.4 provides additional information concerning the strain rate dependence of the
tensile behavior. With increasing strain rate, the overall stress level generally increases,
which is also true for the maximum stress. One can observe this effect for temperatures
723 K≤T ≤923 K, and it is emphasized with increasing temperature. After the stress maxima
of each curve has been reached, the slope of the curves remains constant over a wide
strain range. For the temperatures 673 K≤T ≤773 K, the stress level is nearly constant
behind the maximum, while one observes a slight, but constant decrease in the stress for the
temperatures 823 K≤T ≤923 K.
In the following, the maximum CAUCHY stress and the slight decrease in stress at higher
temperatures are investigated in detail based on the results depicted in Fig. 3.5. The left
diagram in Fig. 3.5 confirms the previous findings concerning the maximum stress: the higher
the temperature, the lower the maximum stress, and the higher the strain rate, the higher
the maximum stress. The softening modulus on the right-hand side in Fig. 3.5 shows a
similar dependence on the strain rate. For temperatures T ≤773 K and small strain rates,
the softening modulus approaches zero, thus indicating a constant stress level, such as it is
shown in the middle left diagram in Fig. 3.4, for example. The modulus grows with increasing
temperatures. Interestingly, the softening modulus seems to reach a saturation level at the
higher strain rates. At the lowest strain rate, the modulus is constant for T ≥823 K.
The softening stage, i.e. the constant decrease in stress, is closely related to the mi-
crostructural changes as discussed in Sect. 1.1. Here, one should bear in mind that most
microstructural processes require time to evolve. With respect to the presented HT tensile
tests, the maximum test duration accounts to roughly 3 h at the lowest strain rate. Due to
this relatively short time period compared to creep tests, softening can be predominantly
attributed to the coarsening of subgrains and to the decrease of the dislocation density since
the coarsening of the precipitates requires more time to develop [38]. The correlation to the
microstructural processes could also explain the strain rate dependence of the softening
behavior.
Discussing Figs. 3.4 and 3.5, it is important to keep in mind that the stress has been
approximated by Eq. (2.35), which is valid only for homogeneous deformations, i.e. before
the onset of necking. For this reason, it is crucial to determine the strain level related to the
onset of necking. This important issue is comprehensively discussed in Sect. 3.1.3.2.

3.1.3.2 Test Series 2

The phase mixture model, which is introduced in the following chapter, describes the elastic
and inelastic deformations of tempered martensitic steels including hardening and softening
processes. In addition, it is presumed that the main variables, i.e. the stress, strains,
hardening and softening variables, reach a steady saturation state after a certain time and
deformation. The phenomenon of necking is not taken into account by the model, and
therefore it is essential to determine the cut-off strain level, where no deformation due to
necking is present. For this purpose, the CONSIDÈRE criterion [121] is widely applied in
engineering mechanics. This criterion states that necking starts at the point of the maximum
stress in the stress-strain curves [122]. Therefore, the strain corresponding to the maximum
stress is referred to as “CONSIDÈRE strain” in the remainder of this thesis. Figure 3.4 reveals
that the CONSIDÈRE strain is significantly lower than ≈5% for the alloy under consideration,
depending on the applied temperature and strain rate. In order to examine the onset of
necking in circular bars, NEEDLEMAN has conducted finite element analyses [123], using
a rate-dependent plasticity model with isotropic hardening. He could show that the onset
of necking takes place at strain levels larger than the CONSIDÈRE strain. An experimental
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validation of these findings is provided in [31], presenting the results of a series of HT tensile
tests with a P92 steel at a temperature of T =823 K under a strain rate of ε̇=2.5×10−4 s−1.
The HT tensile tests are terminated at different strain levels in order to determine the onset
of the macroscopic necking. Primarily by visual inspection of the shape of the specimen, it is
found that the macroscopic necking starts at strain levels ε≥15% with respect to the alloy
under consideration and the test parameters [31].
According to the findings discussed in the previous paragraph, it is deemed necessary
to conduct a second series of HT tensile tests. These experimental measurements are
employed to assess the onset of macroscopic necking. Figure 3.6 gives an overview of the
results of the second measurement campaign. The photographs indicate that macroscopic
necking has definitely occurred in the fourth test. From visual inspection alone it can,
however, not be clarified whether necking has taken place during the Tests 1–3 such that
further investigations are required.
As an alternative approach, the hypothesis of constant volume during inelastic deformation
has been presented in Sect. 3.1.2.3. Table 3.1 reveals a relatively good agreement between
the experimental and the calculated values of the radial strain H22 for Specimen 1. In
contrast, there are significantly higher deviations between the experimental and the calculated
measures for Specimens 2–4. These results suggest that necking has already started during
Test 2, thus also occurring during Tests 3 and 4.
To verify these findings, the results of the profilometry in Fig. 3.7 are analyzed. The diagrams
at the top, i.e. the results with respect to the virgin state, show the typical surface structure
due to the production process of the specimens. The comparison of the diagrams at the
middle and the bottom right reveals that the diameter of the Specimen 2 is almost constant
near the middle of the specimen (0.3<x̄<0.7), whereas the diameter of the Specimen 3
is highly reduced at x̄≈0.35. Thus, necking has not yet occurred during Test 2, but has
already started before the end of Test 3. After all, this leads to the conclusion that necking
starts at an approximate strain level of 15%<ε<20%, taking the test parameters (T =923 K,
ε̇=5.0×10−5 s−1) into account. As has been shown, this result is in good agreement with
the findings in [31]. At this point, one should bear in mind that softening and necking
are two fundamentally different processes. Since softening is attributed to changes in
the microstructure, it is a time-dependent slow process. In contrast, necking is based on
an instability, which leads to abrupt strain localization in the vicinity of imperfections, e.g.
material inhomogeneities, surface defects due to the manufacturing, or an inhomogeneous
temperature distribution during the tests [124]. Therefore, one should keep in mind that the
presented methods provide only a rough estimation of the onset of necking, which can vary
strongly due to the properties of the specimens and the test procedure. Nevertheless, it is
noticeable that the softening stage starts at strain levels ε<5%, which is significantly lower
than the strains with respect to the onset of necking, i.e. ε>15%.

3.2 Creep Tests

3.2.1 Experimental Set-Up

In addition to the HT tensile tests, three creep tests at a constant temperature of T =873 K
are conducted. This temperature is chosen bearing in mind the maximum temperature in
power plants, cf. Chapt. 1. Photos of the experimental set-up are provided in Fig. 3.8. A
constant tensile force N is applied by attaching physical weights to the test specimens such
that the engineering stress P is constant, while the CAUCHY stress σ varies with time due
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AMSLER creep machineAMSLER creep machine levers with weightslevers with weights furnacefurnace

Figure 3.8: Experimental set-up for the creep tests, conducted at the laboratory at Politecnico
di Milano, Italy.

to the changes in the cross-section. The tests are conducted on an AMSLER lever-arm
creep machine with a nominal lever ratio of 1:25. Similar to the measurement equipment
during the HT tensile tests, an extensometer is placed at the collars of the specimens,
and the displacement of the collars is recorded by two LVDTs. Once more, three S-type
thermocouples are used for monitoring the temperatures along the gauge length.

3.2.2 Results

Figure 3.9 presents the results of the three creep tests. The first creep test is conducted until
rupture, while the other two tests are terminated before rupture. At the top left of Fig. 3.9,
the prescribed engineering stress P is displayed with respect to a normalized time t̄= t/tend,
while tend refers to the duration of every individual creep test. The maximum stress level is
set to Pmax≈150 MPa, while the minimum stress level is Pmin≈100 MPa. During the first
test, the stress level varies between these two extrema, whereas the creep tests 2 and
3 are conducted at the constant maximum and minimum stress levels, respectively. The
conduction of a cyclic creep test, i.e. the first test, is based on [13], where also results of
a creep tests under varying loads are presented. While the standard creep tests 2 and 3
are useful to calibrate the model, cf. Sect. 4.2.2, the cyclic creep test 1 is used to verify the
calibrated model, cf. Sect. 4.3. In the top right diagram of Fig. 3.9, the inelastic HENCKY

strain is depicted with respect to the time. The diagram at the bottom of Fig. 3.9 shows
the inelastic HENCKY strain rate on a logarithmic scale depending on the inelastic HENCKY

strain.
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Figure 3.9: Results of the creep tests 1, 2, and 3 at a temperature of T =873 K. Engineering
stress P vs normalized time t̄ (top left), inelastic HENCKY strain H in vs time t (top
right), inelastic HENCKY strain rate Ḣ in vs inelastic HENCKY strain H in (bottom).

3.2.3 Discussion

We start by discussing the results of the creep tests 2 and 3 since these are standard tests
with respect to constant engineering stress levels. The results of both tests show the primary
and the tertiary creep stage, as already explained in Chapt. 1. The primary creep stage
is characterized by the decreasing strain rate because of the hardening processes on the
microstructural level. This behavior can be easily observed in the bottom diagram of Fig. 3.9.
After reaching the minimum strain rates, the strain rate increases again in the tertiary creep
stage. A secondary creep stage with a constant strain rate is not observed. Due to the higher
load during the second creep test compared to the third test, the strain rate is naturally higher
throughout the entire test. Here, one should note that the third test has been stopped after
only ≈42 h due to a problem in the temperature control. Thus, the tertiary creep stage has
not developed yet, cf. the top right diagram in Fig. 3.9.
During the first creep test, the engineering stress is prescribed as a piecewise constant
function of time, cf. the top left diagram in Fig. 3.9. It is worth noticing that the results of the
first creep test are similar to the results of the second creep test, i.e. the test corresponding to
the maximum stress level. From the top right diagram, it becomes apparent that the inelastic
strain increases primarily during the creep stages at the maximum stress level. During the
creep stages at the minimum stress level, the inelastic strain does not change significantly
resulting in the horizontal segments in the top right diagram in Fig. 3.9. Furthermore,
the inelastic strain rate is more than one order of magnitude lower than the strain rates
corresponding to the maximum stress level, as can be seen in the bottom diagram of Fig. 3.9.
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In this chapter, the phase mixture model is introduced considering uniaxial stress and
deformation states. It is divided into three sections, whereas Sect. 4.1 presents the governing
equations of the one-dimensional phase mixture model. The calibration procedure for the
phase mixture model – applied to the alloy X20CrMoV12-1 – is discussed in Sect. 4.2. It is
based on the experimental measurements provided in Chapt. 3 and on additional data taken
from the body of literature. In a last step, the calibrated model is validated against other
experimental results that are also available in the literature.

4.1 Governing Equations

In this section, the governing equations for the one-dimensional phase mixture model are
introduced. This material model is the basis for simulating the mechanical behavior of
the high temperature steel X20CrMoV12-1. The phase mixture model under consideration
assumes that the material constitutes a mixture being composed of two distinct constituents.
Here, we assume that the individual constituents exhibit an identical elastic behavior, while
their inelastic behavior differs significantly. Note that the identical elastic behavior of the
constituents is a significant, but realistic assumption, which substantially simplifies the
governing equations [125]. To indicate the difference in the inelastic response of the two
phases, one is referred to as “inelastic-soft”, while the other is labelled “inelastic-hard”.
However, for the sake of brevity, we only use the terms “soft” and “hard” to distinguish the
two phases; usually we will indicate this by employing the index k which can take the values
s and h (�k∀ k ∈ {s, h}). The derivation of the governing equations is based on [16, 42, 71],
where further information can be found. As already pointed out in Sect. 1.2, the hard phase
is related to the subgrain or grain boundaries, i.e. regions with a high dislocation density
and a large number of carbides, while the soft phase represents the subgrain interior, i.e.
regions with a low dislocation density and a small number of carbides. The division of the
real microstructure into the two phases is depicted in Fig. 4.1.
For our phase mixture model, the equality of the total strain H in both phases is postulated.
Hence, this model belongs to the group of the iso-strain concepts [16, 42, 71, 92, 118, 126],
which have been introduced in Sect. 2.1.6:

H = Hh = Hs. (4.1)

For the overall stress σ, a rule of mixture is applied, cf. also Eq. (2.81):

σ = ηsσs + ηhσh. (4.2)

The dimensionless variable ηk is the volume fraction of the specific constituent. Due to the
mass conservation constraint, the following relation holds:

ηs + ηh = 1 ∀ 0 < ηk < 1. (4.3)
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Figure 4.1: Representation of the microstructure by means of the binary phase mixture
model.

In analogy to Eq. (2.54), the additive split of the strains into the elastic and the inelastic part
is used:

H = Hel
k +H in

k . (4.4)

As mentioned before, the elastic behavior is identical for both phases:

σk = EHel
k . (4.5)

The parameter E=Ek denotes the YOUNG’s modulus, which is identical for both phases. In
order to capture the temperature-dependent behavior of the YOUNG’s modulus, a temperature
response function fE(T ) is introduced:

E = fE(T ). (4.6)

In addition, constitutive equations for the inelastic material behavior of both phases need to
be developed. Since a unified constitutive model is used, the overall inelastic strains H in

k

contain both instantaneous plastic strains and time-dependent creep strains [45]. Evolution
equations for the inelastic strain rates are formulated as follows:

Ḣ in
k = fHk

(σk, T ). (4.7)

The phase mixture model based on an iso-strain approach is illustrated by means of a
rheological material model in Fig. 4.2 for time-independent volume fractions ηk, i.e. they are
constant over time. In the following, the model is extended by taking a time-varying volume
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Figure 4.2: Graphical representation of the phase mixture model with constant volume frac-
tions of the phases.

fraction into account, such that an evolution equation for the volume fraction of one phase
has to be found:

η̇h = fη

(
σh, Ḣ

in
h , T

)
. (4.8)

Once Eq. (4.8) has been solved with respect to the volume fraction of the hard phase, the
volume fraction of the soft phase is computed by means of Eq. (4.3). In order to reduce the
number of equations, Eqs. (4.1) and (4.4) are inserted into Eq. (4.5) such that one obtains:

σk = E
(
H −H in

k

)
. (4.9)

In a similar procedure, Eqs. (4.9) and (4.3) are inserted into Eq. (4.2):

σ = E
(
H −H in

)
, (4.10)

H in ≡ (1− ηh)H in
s + ηhH

in
h , (4.11)

where H in denotes the inelastic strain of the mixture. Equations (4.3)–(4.11) and additional
BCs and ICs determine the phase mixture model, which is physically motivated by the
microstructural processes taking place at the subgrain level. The presented model can
be used to simulate the material response under uniaxial loads. However, the model in
the present form is closely related to the microstructure, and the material parameters are
usually identified with data concerning the microstructural evolution, cf. for example [13, 19].
Nevertheless, in the thesis at hand, the results of macroscopic tests – presented in Chapt. 3
– should be used, and therefore Eqs. (4.3)–(4.11) have to be transformed in order to obtain
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a model based on internal variables. In this way, the response functions and the material
parameters can be identified based on the data from macroscopic tests only, cf. [42].

As a first step, the evolution equations in Eq. (4.7) are specified. In [42, 71], the following
expressions for the inelastic strain rates Ḣ in

k are suggested:

Ḣ in
s = sgn(σs) fσ(|σs|) fT (T ), (4.12)

Ḣ in
h =

σh − σ
|σh? − σ|

|Ḣ in|. (4.13)

Here, fσ(|σs|) and fT (T ) denote the stress and temperature response functions, while σh? is
the saturation stress. Note that the phase mixture model does not include necking effects or
damage such that it predicts a stationary state for the macroscopic variables. All variables
with respect to the saturation state are marked with the index �?. After a spontaneous
loading in the elastic range, the stresses are equal (σ=σh =σs) since the elastic properties
are identical. Due to this behavior, the initial inelastic strain rate Ḣ in

h is zero in the elastic
range. If the load is increased beyond the elastic range, the stress in the hard phase
approaches the saturation stress σh → σh?, and the inelastic strain rate in the hard phase is
approximately equal to the absolute value of the inelastic strain rate of the mixture Ḣ in

h ≈|Ḣ in|.
Then, the stresses in both phases approach the corresponding saturation values [42].

For the transformation of the phase mixture model and an efficient way to identify the material
parameters, the new internal variables β and Γ are introduced:

β =
ηh0

1− ηh0

(σh − σ) ∀ 0 < ηh0 < 1, 0 ≤ β ≤ β?, (4.14)

Γ =
ηh

1− ηh

1− ηh0

ηh0

∀ Γ? ≤ Γ ≤ 1 (4.15)

with their corresponding saturation values:

β? =
ηh0

1− ηh0

|σh? − σ|, (4.16)

Γ? =
ηh?

1− ηh?

1− ηh0

ηh0

∀ 0 < ηh? < 1. (4.17)

In [42], it is shown that the variable β can be interpreted as a backstress similar to the
backstress introduced by ARMSTRONG and FREDERICK [49]. The internal variable Γ is
related to the volume fraction ηh of the hard phase, which is assumed to decrease during the
deformation in order to describe the softening processes. For this reason, Γ is referred to as
“softening variable”. The variable ηh0 represents the volume fraction of the hard phase in the
initial state, i.e. ηh0 =ηh(t=0) and is determined by fitting the model to the experimental data.
Keeping in mind the definition of ηh0 , Γ (t=0)=1 holds in the initial state. With increasing
deformation, the volume fraction of the hard phase decreases until the saturation value ηh? is
reached, i.e. ηh(t→∞)→ ηh?.

To implement the backstress and the softening variable into the governing equations of the
phase mixture model, the definitions (4.14)–(4.17) and the Eqs. (4.2), (4.12), and (4.13) are
used to evaluate the stresses and the inelastic strain rates of both phases depending on the
introduced internal variables:

σh = σ +
1− ηh0

ηh0

β, (4.18)
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σs = σ − Γβ, (4.19)

Ḣ in
h =

β

β?
|Ḣ in|, (4.20)

Ḣ in
s = sgn(σ − Γβ) fσ(|σ − Γβ|) fT (T ). (4.21)

Afterwards, Eq. (4.10) is differentiated once with respect to time and transformed such that
one obtains:

Ḣ in = Ḣ − ∂

∂t

( σ
E

)
. (4.22)

In addition, Eq. (4.9), which refers to the individual phases, is processed analogously:

Ḣ =
∂

∂t

(σk
E

)
+ Ḣ in

k . (4.23)

Equation (4.23) is first evaluated for the soft phase and inserted into Eq. (4.22). Further-
more, the stress σs and the inelastic strain rate Ḣ in

s are replaced by Eqs. (4.19) and (4.21),
respectively. After simple transformations, this results in the following evolution equation with
respect to the inelastic strain H in, compare to Eq. (2.55):

Ḣ in = sgn(σ − Γβ) fσ(|σ − Γβ|) fT (T )− ∂

∂t

(
Γβ

E

)
. (4.24)

The last term in Eq. (4.24) influences the inelastic strain rate only at the very beginning of
the inelastic deformation [42], and consequently it is omitted to simplify the resulting system
of equations:

Ḣ in = sgn(σ − Γβ) fσ(|σ − Γβ|) fT (T ). (4.25)

In a next step, the procedure is repeated for the hard phase: Equation (4.23) is evaluated for
the hard phase and inserted into Eq. (4.22). The stress σh and the inelastic strain rate Ḣ in

h

are replaced by Eqs. (4.18) and (4.20). As a result, one obtains an evolution equation for the
backstress β:

β̇ =
1

E

dE

dT
Ṫβ + E

ηh0

1− ηh0

(
Ḣ in − β

β?
|Ḣ in|

)
. (4.26)

Now, only an evolution equation for the softening variable Γ is still required. As pointed out
before, Γ is closely connected to the volume fraction of the hard phase ηh, and therefore the
evolution equation for Γ is used to replace Eq. (4.8). In agreement with [42], the following
evolution equation is used:

Γ̇ = CΓ (Γ? − Γ ) |Ḣ in|, (4.27)

where CΓ is a material parameter. Note that the evolution equation (4.27) is only applicable
to proportional loading. In the case of nonproportional loading, refined approaches must
be applied, e.g. [127]. As can be seen, one obtains a system of three evolution equations
with respect to the inelastic strain, the backstress, and the softening variable, cf. Eqs. (4.25)–
(4.27).
In order to explain the meaning of the parameters and the functions in the model, the govern-
ing equations are evaluated for a creep test. Therefore, we assume that the temperature and
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Figure 4.3: Backstress β (left) and softening variable Γ (right) vs inelastic strain H in in a
creep test at stationary stress and temperature.

the stress are stationary, i.e. Ṫ =0 and σ̇=0. Furthermore, only tensile stresses σ>0 are
taken into account. With these assumptions, Eqs. (4.25)–(4.27) can be simplified as follows:

Ḣ in = fσ(σ − Γβ) fT (T ), (4.28)

β̇ = E
ηh0

1− ηh0

(
1− β

β?

)
Ḣ in, (4.29)

Γ̇ = CΓ (Γ? − Γ ) Ḣ in. (4.30)

In the case of stationary stress and temperature values, both the YOUNG’s modulus and the
saturation values β? and Γ? do not change with time either. For these reasons, Eqs. (4.29)
and (4.30) can be solved analytically using the method of separation of variables. Taking the
following ICs β

(
H in =0

)
=0 and Γ

(
H in =0

)
=1 into account, we arrive at:

β
(
H in
)

= β?

[
1− exp

(
−E
β?

ηh0

1− ηh0

H in

)]
, (4.31)

Γ
(
H in
)

= Γ? − (Γ? − 1) exp
(
−CΓH in

)
. (4.32)

Finally, Eqs. (4.31) and (4.32) are inserted into Eq. (4.28):

Ḣ in = fσ
[
σ − Γ

(
H in
)
β
(
H in
)]
fT (T ) = f

(
H in, σ, T

)
. (4.33)

Equation (4.33) can be solved analytically or numerically depending on the chosen func-
tions fσ and fT such that one obtains the inelastic strain as a function of time. For the
simulation of a creep test under prescribed stationary stress σ>0 and temperature T ,
Fig. 4.3 depicts the backstress and the softening variable with respect to the inelastic strain,
based on Eqs. (4.31) and (4.32). The diagram on the left-hand side demonstrates that the
backstress β increases towards its saturation value β? with increasing strain. In contrast, the
softening variable Γ decreases towards its saturation value Γ? with increasing strain, as can
be seen on the diagram on the right-hand side. Here, two curves are shown with respect to
two exemplary values of the parameter CΓ ∈{1.0, 5.0}. This parameter controls the decrease
of Γ , i.e. the intensity of the softening effect: for higher values of CΓ , the saturation state is
reached at lower inelastic strains H in. For infinite strains, i.e. H in →∞, the mixture is in a
saturation state, thus β=β?, Γ =Γ?, and Ḣ in =fσ(σ − Γ?β?) fT (T ).
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4.2 Calibration

In the previous section, the phase mixture model has been introduced. This section focuses
on the calibration of the model by means of the experimental results (cf. Chapt. 3) and
additional data published in the literature. Note that the remainder of this section is based on
[128]. The response functions fE(T ), fσ(|σ|), fT (T ) as well as the parameters β?, ηh0 , Γ?,
CΓ are determined based on the following set of macroscopic material tests:

• HT tensile tests under constant engineering strain rates ε̇≈{5×10−5 s−1, 1×10−4 s−1,
1×10−3 s−1} at the temperature levels T = {673 K, 723 K, . . . , 923 K}, cf. Sect. 3.1,

• creep tests at constant PIOLA-KIRCHHOFF stress P = {100 MPa, 150 MPa} at a tem-
perature of T =873 K, cf. Sect. 3.2,

• creep tests at a temperature of 873 K and constant CAUCHY stress levels σ={150 MPa,
175 MPa, 185 MPa, 196 MPa} from [13],

• data from creep tests, i.e. the minimum creep rates and the corresponding stress
levels, at the temperature levels T = {773 K, 823 K, 873 K} from [13].

The measurement campaign has been executed using a large number of specimens made
of the alloy X20CrMoV12-1. In order to enlarge the database for the calibration, additional
results of creep tests with the same alloy from [13] are taken into account.

4.2.1 Elasticity

The experimental results for the YOUNG’s modulus have already been presented in Fig. 3.3.
Figure 4.4 explains the processing of the experimental data in order to find the temperature
response function fE(T ) for the YOUNG’s modulus, cf. Eq. (4.6). In the first step, cf. the top
left diagram in Fig. 4.4, the YOUNG’s modulus is determined by a linear regression of the
experimental data in the elastic range, i.e. for small strains ε≤0.2%. Due to the scatter of
the data and in order to obtain reliable results, the strain interval for the determination of
the YOUNG’s modulus must be readjusted manually for every test. As a result of this first
step, one obtains the YOUNG’s modulus depending on the temperature and the strain rate,
cf. the top right diagram in Fig. 4.4. The strain rate dependence of the YOUNG’s modulus
has already been discussed in Sect. 3.1.3.1. Nevertheless in the phase mixture model, it is
assumed that the YOUNG’s modulus does not depend on the strain rate. For this reason, the
YOUNG’s modulus is averaged with respect to the strain rate for each specific temperature in
Step 2, cf. the bottom left diagram in Fig. 4.4. Note that the decrease of the YOUNG’s modulus
at the temperature 673 K in comparison to the value at 723 K is considered as nonphysical.
This effect is attributed to the very high tensile forces at 673 K, which approach the maximum
force of the testing frame, resulting in a high experimental scatter at this temperature, see
also the discussion in Sect. 3.1.3.1. For this reason, the value for the YOUNG’s modulus at
673 K is not taken into account during the approximation in the next step.
In the last step (bottom right diagram of Fig. 4.4), the temperature dependence of the
YOUNG’s modulus is approximated by a cubic polynomial. This ansatz was successfully
applied for cast irons in [129]:

fE (T ) = C1 + C2T
3 (4.34)

with the fitting parameters:

C1 = 2.23×105 MPa, C2 = −1.64×10−4 MPa K−3. (4.35)
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Figure 4.4: Calibration of the temperature response function for the YOUNG’s modulus E.

In order to extend the database to lower temperatures, additional experimental values for the
YOUNG’s modulus are taken into account [10, 130], cf. the bottom right diagram of Fig. 4.4.

4.2.2 Initial and Steady State

In the following sections, the calibration procedure with respect to the inelastic material
behavior and hardening as well as softening is described. This calibration is based on the
discrimination between an initial and a steady state, which are introduced in this section.
A similar identification procedure by means of an initial and a steady state can be found
in [131]. In the following, the subscripts �init and �st denote variables with respect to the
initial and the steady state, respectively. Figure 4.5 illustrates the identification of the stresses
and strain rates in both states for a HT tensile test and a creep test. For the tensile tests,
the initial stress σinit is defined as the stress at the beginning of the inelastic deformation,
i.e. σinit =σ

(
H in =0

)
. In analogy, the initial strain rate Ḣ in

init is the strain rate at the beginning
of the inelastic deformation, thus Ḣ in

init = Ḣ in
(
H in =0

)
. The steady state in the HT tensile

tests refers to the maximum stress σmax, i.e. σst =σmax. This is due to the fact that the
stress is approximately equal to the maximum stress level over a wide strain range in many
measured stress-strain curves, cf. Fig. 3.4. The steady inelastic strain rate is the inelastic
strain rate with respect to the lowest inelastic strain corresponding to the maximum stress
level: Ḣ in

st = Ḣ in
(
H in =H in

st

)
, cf. the top diagram in Fig. 4.5.

During the creep tests, cf. Sect. 3.2, the PIOLA-KIRCHHOFF stress P is prescribed as a
constant value. At the beginning of the deformation, the differences between the PIOLA-
KIRCHHOFF stress and the CAUCHY stress are negligible such that the initial stress equals the
PIOLA-KIRCHHOFF stress, i.e. σinit =P . Due to the testing conditions, the initial inelastic strain
rate Ḣ in

init = Ḣ in
(
H in =0

)
cannot be read from the creep curve directly, cf. the bottom diagram
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Ḣ in
st = Ḣ
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Figure 4.5: Extraction of initial and steady stresses and strain rates from experimental data.

in Fig. 4.5. Instead, in the beginning of the deformation, the creep curve is approximated
with the tangent ln (Ḣin/Ḣref)=a+ bH in. Here, the index �ref denotes reference values. The
initial inelastic strain rate is determined as the intersection of the tangent and the ordinate.
The steady inelastic strain rate Ḣ in

st equals the minimum strain rate Ḣ in
min, whereas the steady

stress σst =P exp
(
H in

st

)
is approximated based on the PIOLA-KIRCHHOFF stress by inserting

Eq. (2.20) into Eq. (2.35), thus taking the changes in the cross-section into account.
In order to determine the strain rates and the stresses in the initial and the steady state, the
procedure described in this section is applied to all material tests used for the calibration,
cf. the list at the beginning of Sect. 4.2. These data sets form the basis for the subsequent
calibration of the inelastic material behavior.

4.2.3 Inelasticity

The main goal of this section is to find adequate stress and temperature response func-
tions fσ(|σ|) and fT (T ) for the inelastic strain rate Ḣ in, cf. Eq. (4.25). In the initial state, the
influence of the hardening and softening processes is negligible because these microstruc-
tural processes require some time to develop. Therefore, Eq. (4.25) is simplified in the initial
state considering Γ =1 and β=0:

Ḣ in
init = fσinit(σ) fT (T ). (4.36)

Since only tensile tests are used for the calibration of the model, |σ| =σ holds. In a first step,
the temperature response function fT (T ) is determined. In the current thesis, we make use
of the well-known ARRHENIUS function, which is often applied to model creep deformations
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4 One-Dimensional Phase Mixture Model

in martensitic steels [71, 83, 84, 132]:

fT (T ) = exp

(
− Q

RT

)
, (4.37)

where R≈8.31696 J (mol K)−1 is the universal gas constant [133]. The variable Q is usually
referred to as “activation energy” [84] and it is determined by fitting the experimental data with
Eq. (4.37). For this purpose, two tensile tests (in the following referred to as “Tests a and b”)
are chosen such that the stresses in the initial state are approximately equal (σinita≈σinitb),
whereas the temperatures differ (Ta 6=Tb). Now, Eq. (4.36) is evaluated for both tests:

Ḣ in
inita = fσ(σinita) fT (Ta), (4.38)

Ḣ in
initb

= fσ(σinitb) fT (Tb). (4.39)

Afterwards, Eq. (4.38) is divided by Eq. (4.39) – keep in mind that fσ(σinita) ≈fσ(σinitb) –
and the temperature response function is substituted by Eq. (4.37) only. Using this approach,
a reference value for Q is obtained:

Qref = R
Ta − Tb

TaTb

ln

(
Ḣ in

inita

Ḣ in
initb

)
≈ 350.3×103 J mol−1. (4.40)

Equation (4.40) provides a starting point for the determination of Q. In a next step, the
normalized inelastic strain rates are defined with respect to the initial and the steady state:

Ḣ in
i (σi) =

Ḣ in
i (σi, T )

fT (T )
= fσi(σi) ∀ i ∈ {st, init} . (4.41)

We make use of a bar �̄ to denote the normalized values. Note that in the remainder
of this chapter the index �i represents variables with respect to the initial or the steady
state. Although hardening and softening processes take place in the steady state such that
Eq. (4.36) is not valid anymore, the steady inelastic strain rates are also normalized using
Eq. (4.41), thus providing an initial value for the calibration. Due to this normalization, the
temperature dependence of the strain rates is eliminated such that the normalized inelastic
strain rates only depend on the stress levels. Based on the starting value for Q given in
Eq. (4.40), Q is varied manually in such a way that the dependence of the normalized inelastic
strain rates on the stress becomes obvious. This procedure is explained by means of Fig. 4.6,
which shows the normalized inelastic strain rates in the steady state with respect to the
stress on a double logarithmic scale. The stress values are extracted from the experimental
data with the procedure described in Sect. 4.2.2. In contrast, the normalized strain rates are
obtained based on the inelastic strain rates extracted from the experimental data, which are
divided by the temperature response function, cf. Eq. (4.41). Note that the large dimensions
of the values on the ordinate are due to this normalization. The diagram on the left-hand side
in Fig. 4.6 shows the normalized strain rates based on the normalization with the reference
activation energy Qref , cf. Eq. (4.40). This normalization results in a large scatter of the
normalized strain rates with respect to constant stress values. Since this scatter does not
capture a realistic material behavior, the parameter Q is varied in order to reduce the scatter
of the strain rates. The result of this variation is depicted in the diagram on the right-hand
side of Fig. 4.6, in which the normalization of the strain rates is based on a parameter of
Q≈540.6×103 J mol−1. Compared to the left diagram, the scatter is significantly reduced, and
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Figure 4.6: Inelastic normalized strain rate vs stress in initial and steady state. Normalization
with respect to the reference value Qref (left) and with respect to an optimized
value Q (right).

consequently the following calibration is based on the normalized strain rates with respect to
this value for the parameter Q. For the sake of completeness, Fig. 4.7 depicts the normalized
inelastic strain rates depending on the stresses with respect to the initial and the steady state
as well.
In a next step, the stress response functions fσi(σi) are identified based on the dependence
of the normalized inelastic strain rates on the stresses, cf. Fig. 4.7. For the stress response
functions, many suggestions have been made [82, 84]. Most often, a power law function is
used:

fσ(σ) = a
(σ
b

)m
. (4.42)

The parameter m is the power law exponent, which usually takes values between 3 and 7 [84].
However, many materials exhibit the so-called “power law breakdown”. This phenomenon
describes the change of the exponent m with the stress [82], i.e. m rises as the stress
increases [134–136]. In order to examine this phenomenon in detail, the diagram on the
left-hand side of Fig. 4.8 depicts the normalized inelastic strain rate depending on the stress
in the steady state. A power law function – cf. Eq. (4.42) – is used to approximate the
experimental data in the low stress range, i.e. σst<500 MPa. The diagram on the left-hand
side clearly shows that one power law function is not able to fit the experimental data for
high stresses σst>500 MPa, which indicates that the alloy under consideration exhibits the
power law breakdown. In contrast, the diagram on the right-hand side shows the results of
the approximation with a piecewise power law. It becomes obvious that a piecewise function
is able to account for the increase in the exponent m. Nevertheless, the transition from the
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Ḣ
in in
it
[s
−
1
]

tensile tests
creep tests
creep tests [13]

initial stateinitial state

100 300 500 700
1024

1026

1028

1030

1034

1036

1038

1040

σst [MPa]

Ḣ
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Figure 4.7: Inelastic normalized strain rate vs stress in the initial (left) and the steady state
(right).
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function f I(σst) used for low stresses to the second function f II(σst) in the high stress regime
is not smooth, i.e. the derivatives of the two stress response functions are not continuous.
As a remedy to this phenomenon, the following stress response functions are suggested:

fσij (σ) =

√[
f I
ij

(σ)
]2

+
[
f II
ij

(σ)
]2

∀ j ∈ {1, 2, . . . , 9} , i ∈ {st, init} , (4.43)

where the index j is introduced since 9 different functions are examined in the thesis at hand.
The function f I

ij
(σ) is valid for low stresses σ<500 MPa, while the function f II

ij
(σ) describes

the inelastic normalized strain rates with respect to higher stresses σ≥500 MPa. Adding the
squares of both functions and computing the square root results in a smooth transition from
the first function f I

ij
(σ) to the second function f II

ij
(σ). The current thesis takes 9 different

stress response functions fσ according to Eq. (4.43) into account, which are based on these
4 basis functions, cf. Table 4.1:

f1(σ) = a1

(
σ

b1

)m
, (4.44)

f2(σ) = a2 exp

(
σ

b2

)
, (4.45)

f3(σ) = a3 sinh

(
σ

b3

)
, (4.46)

f4(σ) = a4

[
sinh

(
σ

b4

)]n
. (4.47)

The parameters al, bl, m, and n ∀ l ∈ {1, 2, . . . , 4} are determined by approximating the
experimental data. As already mentioned, power law functions, as the one given in Eq. (4.44),
are employed for a wide variety of materials. However for higher stress levels, exponential
functions provide a more accurate approximation of the experimental data [83, 137]. There-
fore, Eq. (4.45) is taken into account when constructing a suitable stress response function.
The main disadvantage of this ansatz is that a nonzero strain rate is computed even if no
loads are applied, i.e. σ=0. For this reason, the exponential function should not be used
in the low stress regime. Instead, the hyperbolic function in Eq. (4.46) is recommended for
small stresses in [83, 84]. Nevertheless, according to this function, the strain rate approaches
zero in a linear function for small loads σ → 0. This behavior contradicts the experimental
findings [84], such that a combination of the power law function and the hyperbolic function
is proposed as an alternative in [134], cf. Eq. (4.47). This function reduces to a power law
function for small stresses and approaches the exponential form with increasing stress.
Each function type has its specific advantages and drawbacks, and therefore a system-
atic investigation of all basis functions and chosen combinations thereof is needed. The
functions fσij ∀ j ∈ {1, 2, 3, 4} compiled in Table 4.1 deploy only one function type from
Eqs. (4.44)–(4.47) with only one set of parameters in order to describe the whole stress
interval. In addition, the functions fσij ∀ j ∈ {5, 6, 7, 8} use the same functions with a dif-
ferent set of parameters for the low stress interval (f I

ij
) and for the high stress interval (f II

ij
).

Furthermore, the following function is taken into account:

fσi9 (σ) =ai sinh

(
σ

bi

)[
1 +

(
σ

ci

)mi
]
. (4.48)

This function approaches the hyperbolic sine function fσi9 (σ) ≈ai sinh(σ/bi) for small stresses
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Table 4.1: Stress response functions for the inelastic strain rate and material parameters.

j f I
ij

(σ) f II
ij

(σ) initial (i≡ init) steady (i≡ st)

1 ai

(
σ

bi

)mi

0
ai = 4.75×1016 s−1

bi = 40.1 MPa
mi = 15.3

ai = 6.59×108 s−1

bi = 12.5 MPa
mi = 14.3

2 ai exp

(
σ

bi

)
0

ai = 1.89×1022 s−1

bi = 18.9 MPa
ai = 2.97×1021 s−1

bi = 20.5 MPa

3 ai sinh

(
σ

bi

)
0

ai = 3.79×1022 s−1

bi = 18.9 MPa
ai = 5.94×1021 s−1

bi = 20.5 MPa

4 ai

[
sinh

(
σ

bi

)]mi

0
ai = 5.09×1021 s−1

bi = 17.3 MPa
mi = 1.0

ai = 6.76×1024 s−1

bi = 179.1 MPa
mi = 7.9

5 ai

(
σ

bi

)mi

ci

(
σ

di

)ni

ai = 2.35×1012 s−1

bi = 6.3 MPa
ci = 1.00×1020 s−1

di = 450.6 MPa
mi = 9.9
ni = 139.9

ai = 1.00×1020 s−1

bi = 58.2 MPa
ci = 1.00×1020 s−1

di = 383.2 MPa
mi = 11.4
ni = 69.4

6 ai exp

(
σ

bi

)
ci exp

(
σ

di

) ai = 2.36×1023 s−1

bi = 24.3 MPa
ci = 1.00×100 s−1

di = 7.0 MPa

ai = 8.45×1021 s−1

bi = 22.4 MPa
ci = 5.56×106 s−1

di = 9.7 MPa

7 ai sinh

(
σ

bi

)
ci sinh

(
σ

di

) ai = 4.71×1023 s−1

bi = 24.3 MPa
ci = 1.65×10−7 s−1

di = 5.9 MPa

ai = 3.52×1022 s−1

bi = 23.7 MPa
ci = 8.97×108 s−1

di = 10.3 MPa

8 ai

[
sinh

(
σ

bi

)]mi

ci

[
sinh

(
σ

di

)]ni

ai = 1.36×1023 s−1

bi = 21.2 MPa
ci = 3.75×102 s−1

di = 329.9 MPa
mi = 1.0
ni = 73.0

ai = 1.27×1023 s−1

bi = 85.0 MPa
ci = 3.92×1023 s−1

di = 458.1 MPa
mi = 3.8
ni = 42.7

9 ai sinh

(
σ

bi

)[
1 +

(
σ

ci

)mi
]

0

ai = 1.54×1024 s−1

bi = 25.8 MPa
ci = 483.6 MPa
mi = 35.7

ai = 1.30×1022 s−1

bi = 22.4 MPa
ci = 593.1 MPa
mi = 38.0
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σ<ci. Obviously, one could construct several other combinations of the four functions in
Eqs. (4.44)–(4.47) by means of Eq. (4.43). Nevertheless, for the sake of brevity, the conside-
rations in the thesis at hand are restricted to the 9 functions in Table 4.1. In a first attempt, all
functions in Table 4.1 are fitted manually to the experimental data. This procedure provides
the initial solution for the succeeding optimization of the parameters with MATLAB’s function
fmincon. The basic optimization procedure is discussed in Sect. 2.3, and the objective
function for this problem is derived from Eq. (4.41) and is given as follows:

gij
(
vij
)

=
NP∑

n=1

{
ln
[
fσij
(
σin , vij

)]
− ln

(
Ḣ in
in

)}2

∀ j ∈ {1, 2, . . . , 9} , i ∈ {st, init} , (4.49)

whereNP is the number of the experimental data points and n the corresponding index for the
data points. The vector of parameters v is strongly dependent on the chosen stress response
function fσij and contains all fitting parameters. For example, the vector of parameters for
the function fσinit8 has 6 entries, cf. also Table 4.1:

vinit8 =
[
ainit binit cinit dinit minit ninit

]T
. (4.50)

Furthermore, the inequality and equality constraint vectors hij and kij must be defined, cf.
Sect. 2.3. All parameters should be positive, cf. Eq. (4.51), while no equality constraints are
defined, cf. Eq. (4.52). Thus, it holds:

hij
(
vij
)

= − vij , (4.51)

kij
(
vij
)

= 0. (4.52)

Equations (4.49), (4.51), and (4.52) define the entire input for the optimization using MATLAB.
Table 4.1 summarizes the stress response functions and the parameters found during the
optimization procedure, and Fig. 4.9 depicts the normalized inelastic strain rates depending
on the stresses with respect to the initial (left-hand side) and the steady state (right-hand
side). The figure contains the results of all stress response functions under consideration.
Furthermore, Figs. 4.10 and A2.1–A2.8 present the results of the optimization with respect
to the normalized inelastic strain rates and the individual stress response functions, while the
Figs. 4.11 and A2.9–A2.16 show the results for the inelastic strain rates depending on the
stress for each stress response function. Here, one should keep in mind that the inelastic
strain rates are easily obtained based on the normalized strain rates, which are multiplied
with the temperature response function fT (T ), cf. Eqs. (4.37) and (4.41). For the sake of a
better readability, the majority of the figures is shifted to Appendix A2.
Figures 4.9, A2.1–A2.4, and A2.9–A2.12 demonstrate that the use of only one function, i.e.
the function f I

ij
(σ), based on Eqs. (4.44)–(4.47) is not sufficient to resolve the power law

breakdown. Note that the decreasing slope of the power law function fσi1(σ), cf. Figs. 4.9 and
A2.1, is due to the fact that experimental results with respect to a very wide stress range (i.e.
100 MPa≤σ≤700 MPa) are taken into account. In case if only low stresses σ<500 MPa
are used for the identification of the parameters, a power law function is able to approximate
the experimental data with high accuracy, cf. Fig. 4.8. The exponential function fσi2(σ),
the hyperbolic sine function fσi3(σ), and the function fσi4(σ) based on Eq. (4.47) result in
straight lines in the logarithmic diagrams, cf. Figs. 4.9 and A2.2–A2.4, such that the power
law breakdown is not accounted for.
The function fσi5(σ) captures the power law breakdown, but yields nonphysical results for
stresses σ<550 MPa, cf. Fig. A2.5. Additionally, several kinks are visible in the approximation
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Figure 4.9: Approximation of the normalized inelastic strain rates with the response func-
tions fσij(σ).
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Figure 4.10: Approximation of the normalized inelastic strain rates with the response func-
tions fσi9(σ).
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Figure 4.11: Approximation of the inelastic strain rates with the response functions fσi9(σ).

of the inelastic strain rates for lower temperatures T ≤773 K, cf. Fig. A2.13. In contrast,
the functions fσij(σ) ∀ j ∈ {6, 7, 8, 9} provide accurate approximations of the normalized
strain rates in the initial and the steady state. Significant differences in the quality of the
approximation cannot be observed, cf. Figs. 4.9–4.11, A2.6–A2.8, and A2.14–A2.16. Since
the sixth function results in nonzero strain rates if no loads are applied, i.e. fσi6(σ=0) 6=0,
this function is not considered in the following. In contrast to the functions fσi7(σ) and fσi8(σ),
which require two separate functions, one for the low and another for the high stress regime,
cf. Eq. (4.43), the function fσi9(σ) is based on one function to describe the entire stress
range. Thus, due to its simplicity and the accuracy of the approximation, only this function
type is taken into account for the calibration procedure. For the sake of brevity, the index �9

is omitted in the remainder of the thesis at hand:

fσi(σ) ≡ fσi9 = ai sinh

(
σ

bi

)[
1 +

(
σ

ci

)mi
]

∀ i ∈ {st, init} . (4.53)

4.2.4 Hardening

This section focuses on the calibration of the model with respect to the hardening behavior,
which is ruled by the backstress β. As a starting point, we consider a state, where the
softening processes do not take place and the stress does not change with respect to time:

Γ = 1, (4.54)
σ̇ = 0. (4.55)
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Due to these restrictions, only tensile tests with a constant stress level over a relatively
wide strain range are taken into account for the calibration in the remainder of this section,
i.e. the tensile tests at the lower strain rates ε̇= {5×10−5 s−1, 1×10−4 s−1} and at the
temperatures T = {723 K, 773 K, 823 K}, cf. Fig. 3.4. The identification of the material
parameters starts with the saturation backstress β?, cf. Eq. (4.26). To this end, Eqs. (4.25)
and (4.26) are simplified by inserting Eqs. (4.54) and (4.55). Additionally, it is assumed that
the temperature does not vary with time, i.e. Ṫ =0 (stationary temperature):

Ḣ in = sgn(σ − β) fσinit(|σ − β|) fT (T ), (4.56)

β̇ = E
ηh0

1− ηh0

(
Ḣ in − β

β?
|Ḣ in|

)
. (4.57)

Only tensile tests are used for the calibration, such that σ>0 holds. Furthermore, we
introduce the physically motivated constraint that the absolute value of the backstress is
always smaller than the absolute stress value, i.e. |β|< |σ|. With these considerations,
Eqs. (4.56) and (4.57) are further modified:

Ḣ in = fσinit(σ − β) fT (T ), (4.58)

β̇ = E
ηh0

1− ηh0

(
1− β

β?

)
Ḣ in. (4.59)

Because of the restrictions given in Eqs. (4.54) and (4.55), the backstress does not change
with respect to time, i.e. β̇=0, such that Eq. (4.59) results in:

β = β?. (4.60)

In the absence of the softening effects, cf. Eq. (4.54), the normalized inelastic strain rate
in the steady state can be determined either with the response function with respect to the
initial state or with the corresponding function for the steady state:

Ḣ in
st = fσinit(σ − β) = fσst(σ). (4.61)

Transforming Eq. (4.61) under consideration of Eq. (4.60) yields an expression for the
saturation backstress:

β?(σ) = σ − f−1
σinit

[fσst(σ)]. (4.62)

Due to the complexity of the stress response function in the initial state, cf. Eq. (4.53),
its inverse f−1

σinit
is determined numerically. Equation (4.62) can be used to compute the

saturation backstress. However, it must be ensured that the model accurately captures the
physical behavior; that is to say, the following condition needs to be fulfilled:

∂β?
∂σ
≥ 0. (4.63)

In the next step, Eq. (4.61) is differentiated with respect to the steady state stress, and
additionally Eq. (4.60) is taken into account. The resulting expressions are thereafter inserted
into Eq. (4.63) yielding:

∂fσst(σ)

∂σ
≤ ∂fσinit(σ − β?)

∂ (σ − β?)
. (4.64)
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Thus, if an ansatz function for β?(σ) has already been found, Eq. (4.63) can be used to
check its validity. Equation (4.64) is useful to check whether the found stress response
functions fσinit(σ) and fσst(σ) are able to provide physical results for β?(σ) – even before the
saturation backstress is determined based on Eq. (4.62).

In the following, the saturation backstress is computed using Eq. (4.62) based on the
calibrated stress response functions fσst(σ) and fσinit(σ), cf. Eq. (4.53). In the top diagram
of Fig 4.12, the obtained function β?(σ) is evaluated over a wide stress range. It becomes
obvious that the function according to Eq. (4.62) is not monotonically increasing as required
by Eq. (4.63). For this reason, it is checked whether Eq. (4.64) holds. Therefore, the bottom
diagram of Fig. 4.12 depicts the derivatives of the stress response functions in the initial
and the steady state depending on the stress. As the previous considerations suggest,
Eq. (4.64) is not fulfilled over the entire stress range. Here, one should bear in mind that
the fulfillment of Eq. (4.64) is highly sensitive with respect to the parameters in the stress
response functions. A slight change in the calibration of the stress response functions can
lead to strongly varying functions β?(σ), according to Eq. (4.62). Nevertheless, Eq. (4.62)
still provides an initial guess, and the saturation backstress is approximated by means of a
modified logistic function, cf. [138]:

β?(σ) =
2aβ

1 + exp (−bβ |σ|)
− aβ, (4.65)

where aβ =80 MPa is the maximum value, and the parameter bβ =2.7×10−2 MPa−1 controls
the steepness of the curve. As can be seen in Fig. 4.12, the approximation function is
nearly linear for low stresses σ<50 MPa and approaches the saturation level β?=aβ for
high stresses σ>200 MPa. Note that the saturation backstress does not depend on the
temperature since the same ARRHENIUS functions are used in the steady and the initial state,
cf. Eq. (4.41).

In the next step, the reference value ηh0 for the volume fraction of the hard phase is deter-
mined. For the identification, the experimental data of the tensile tests including the elastic
range and the hardening regime are taken into account. Aforementioned simplifications
still hold such that the differential equations (4.58) and (4.59) are solved numerically with
MATLAB’s solver ode45, which is based on an explicit RUNGE-KUTTA method [116]. If the
stress σ is prescribed as input, Eqs. (4.58) and (4.59) can be solved directly with respect to
the strain and the backstress. However, since the total strain rate Ḣ is prescribed during the
tensile tests, the following differential equation with respect to the stress is solved additionally:

σ̇ = E
(
Ḣ − Ḣ in

)
. (4.66)

Equation (4.66) represents the time derivative of Eq. (4.10), assuming stationary temper-
atures. The experimental results for the strain rate Ḣ(tn) with respect to the time step tn
provide the input for the solution. In order to identify the material parameter ηh0 , it is var-
ied systematically within the interval 0<ηh0<1. Afterwards, the system of the differential
equations (4.58), (4.59), and (4.66) is solved numerically with respect to each tensile test.
For each simulation of a tensile test corresponding to a constant parameter ηh0 , the error
measure ∆σ with respect to the stresses is calculated:

∆σ =
NP∑

n=1

[
σcalc(tn)− σexp(tn)

]2
. (4.67)
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Figure 4.12: Saturation backstress β? vs stress σ in the steady state (top) and derivatives of
the stress response functions vs stress (bottom).

The stress σcalc results from the numerical solution of Eqs. (4.58), (4.59), and (4.66), and
σexp denotes the experimental stress values. During the systematic variation of ηh0 , the
minimum error measure is found and the corresponding parameter ηh0 is determined for
each tensile test. In order to obtain one parameter ηh0 , which is valid for all tensile tests, the
computed values are averaged (arithmetic mean value). As a result of this procedure, the
following value is obtained:

ηh0 ≈ 0.17. (4.68)

In order to assess the quality of the calibration procedure for the hardening behavior, Fig. 4.13
depicts the stress depending on the strain for all HT tensile tests. Only the elastic range and
the hardening regime are examined such that the figure is restricted to low strains H≤3%.
Figure 4.13 reveals that the phase mixture model is capable of capturing the linear increase
of the stress in the elastic range and the leveling of the curve in the hardening range until
the maximum stress value is reached. Note that this figure represents only an intermediate
result since softening processes are not accounted for yet. The calibration of the softening
behavior is discussed in detail in the following section.

4.2.5 Softening

Up to now, the parameters CΓ and Γ? from Eq. (4.27) are still unknown. Both are related
to the variable Γ , which describes the softening behavior, i.e. the range of the stress-strain
curves with a constantly decreasing stress level, cf. Fig. 3.6 for example. Since the stress is
varying with time, simplifications such as in Eqs. (4.54) and (4.55) are not possible. Taking
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Figure 4.13: Stress σ vs strainH in the elastic range and the hardening regime. Experimental
results (solid lines) compared to the phase mixture model (dashed lines).

the hardening and the softening behavior into account, the following differential equation
must be solved in conjunction with Eqs. (4.59) and (4.66):

Γ̇ = CΓ (Γ? − Γ ) Ḣ in. (4.69)

The inelastic strain rates are determined based on Eq. (4.28):

Ḣ in = fσinit(σ − Γβ) fT (T ). (4.70)

Equations (4.59), (4.66), (4.69), and (4.70) are restricted to stationary temperatures as well
as positive strain rates and stresses because only tensile tests are taken into account in
the remainder of this section. Since the softening stage is relatively easy to detect in the
stress-strain curves of the HT tensile tests and necking takes place at high strains after the
onset of softening, cf. the discussions in Chapt. 3, only the HT tensile tests presented in
Sect. 3.1 are used for the calibration of the softening behavior. The overall strain rate Ḣ(tn)
defined with respect to the time step tn from the experimental data serves as input for
the system of the differential equations (4.59), (4.66), (4.69), and (4.70), which is solved
numerically with MATLAB’s solver ode45. In order to determine the parameters CΓ and
Γ?, we proceed in analogy to the calibration of ηh0 , described in Sect. 4.2.4. For the first
guess, we assume that CΓ and Γ? are constant with respect to the stress. The calibration
procedure reveals that a constant value of CΓ =5.0 approximates the experimental data with
the highest accuracy. In contrast, the saturation softening variable Γ? is strongly dependent
on the stress level, as observed in Fig. 4.14. This figure depicts the saturation softening
variable depending on a steady state stress value, which is extracted as a representative
value for each HT tensile test. Although the scatter of the data is high, one can observe
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Figure 4.14: Saturation softening variable Γ? vs the stress σ.

an increase of the saturation softening variable Γ? with an increasing stress level. Note
that a value of Γ?=1 indicates that the volume fractions of the hard phase in the initial and
the saturation state are equal, i.e. ηh0=ηh?, cf. Eq. (4.17). Since the volume fraction of
the hard phase does not change, softening does not occur such that the stress remains
constant at the maximum value with increasing deformation. HT tensile tests with a high
stress maximum (σmax>400 MPa) exhibit this behavior, cf. Fig. 3.4. As already discussed
in Chapt. 3, softening is based on microstructural processes, which are thermally activated
and require time to develop. Therefore, particularly HT tensile tests at high temperatures
and low strain rates (i.e. tests with a low maximum stress) exhibit softening, whereas HT
tensile tests at lower temperatures and high strain rates with a high maximum stress do
not show significant softening. During HT tensile tests with lower maximum stress levels
(σmax<400 MPa), the stress decreases constantly after the maximum stress is reached such
that these tests show an extended softening stage. This refers to a saturation softening
variable of Γ? → 0 or a volume fraction of the hard phase in the saturation state of ηh? → 0.
In order to account for this behavior, the dependence of the saturation softening variable on
the stress is described by the logistic function [138]:

Γ?(σ) =
aΓ

1 + exp [−bΓ (|σ| − cΓ )]
(4.71)

with the material parameters:

aΓ = 1.0, (4.72)

bΓ = 1.30×10−2 MPa−1, (4.73)
cΓ = 520.0 MPa. (4.74)
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As shown in Fig. 4.14, the parameter aΓ is equal to the maximum value of the logistic function.
The parameter bΓ is proportional to the slope of the sigmoid curve at its midpoint, which is
defined by means of the parameter cΓ .

4.2.6 Summary

In the current chapter, the phase mixture model was calibrated using HT tensile tests and
creep tests, such that all unknown parameters and functions are determined. The calibrated
model can be used to simulate both strain rate and stress controlled processes at varying
temperatures. In its current form, the model is restricted to one-dimensional stress and
strain states, accounting for both compression and tension. If a process is controlled by the
stress σ, the following system of differential equations needs to be solved with respect to the
inelastic strain H in, the backstress β, and the softening variable Γ , cf. Eqs. (4.25)–(4.27):

Ḣ in = sgn(σ − Γβ) fσinit(|σ − Γβ|) fT (T ), (4.75)

β̇ =
1

E(T )

dE(T )

dT
Ṫβ + E(T )

ηh0

1− ηh0

(
Ḣ in − β

β?(σ)
|Ḣ in|

)
, (4.76)

Γ̇ =CΓ [Γ?(σ)− Γ ] |Ḣ in|. (4.77)

These three equations constitute a system of ODEs, which is able to capture all physical
phenomena of interest. In addition, the following ICs are valid with respect to a virgin material:

H in(t=0)=0, β (t=0)=0, Γ (t=0)=1. (4.78)

For a process controlled by the strain rate Ḣ, an evolution equation for the stress σ is
formulated by differentiating Eq. (4.10) once with respect to time:

σ̇ = E(T )
(
Ḣ − Ḣ in

)
+

1

E(T )

dE(T )

dT
Ṫσ, (4.79)

Equation (4.79) must be solved in conjunction with Eqs. (4.76) and (4.77) in order to obtain
the stress, the backstress, and the softening variable, while the inelastic strain rate can be
computed by means of Eq. (4.75). Furthermore, the following ICs hold for a virgin material
subjected to a process controlled by the strain rate:

σ (t=0)=0, β (t=0)=0, Γ (t=0)=1. (4.80)

During the calibration procedure, the following functions were determined:

• the temperature response function for the YOUNG’s modulus, cf. Eq. (4.34):

E(T ) = fE(T ) = C1 + C2T
3,

• the temperature response function for the inelastic strain rate, cf. Eq. (4.37):

fT (T ) = exp

(
− Q

RT

)
,

• the stress response function for the inelastic strain rates in the initial and the steady
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state, cf. Eq. (4.53):

fσi(σ) = ai sinh

(
σ

bi

)[
1 +

(
σ

ci

)mi
]

∀ i ∈ {st, init} .

• the stress response function for the saturation backstress, cf. Eq. (4.65):

β?(σ) =
2aβ

1 + exp (−bβ |σ|)
− aβ,

• and the stress response function for the saturation softening variable, cf. Eq. (4.71):

Γ?(σ) =
aΓ

1 + exp [−bΓ (|σ| − cΓ )]
.

Although the stress response function for the inelastic strain rates in the steady state fσst(σ)
is not explicitly needed for the simulation, it is listed to provide a complete overview. All
constants and material parameters, which are needed for the introduced phase mixture
model, are compiled in Table 4.2. Here, their meaning and the value identified in the
calibration process are listed. As a summary, all HT tensile tests are simulated with the
phase mixture model by solving Eqs. (4.79)–(4.77) numerically with MATLAB’s solver ode45,
and the results of the approximation are compared to the experimental data. Figure 4.15
depicts the stress depending on the strain with respect to all strain rates and temperatures.
Since the phase mixture model does not take necking into account, the simulation is stopped
before the high decrease in stress takes place, which indicates necking. Figure 4.15
reveals that the phase mixture model is able to account for the hardening behavior, cf.
the discussion in Sect. 4.2.4 and Fig. 4.13, as well as for the softening behavior, i.e. the
slight and constant decrease in the stress value for strains exceeding the strain value
corresponding to the maximum stress. In particular, the stress-strain curves with respect
to higher temperatures T ≥823 K exhibit this constant decrease in the stress level, while
the phase mixture model predicts a constant saturation stress for the stress-strain curves
corresponding to the lower temperatures T ≤773 K, since the stress-strain curves at the
lower temperatures do not exhibit a significant softening effect, as discussed before.
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Table 4.2: Constants and identified parameters in the binary phase mixture model.

variable value unit meaning equation

C1 2.23×105 MPa parameters in the temperature response
function for the YOUNG’s modulus

(4.34)
C2 −1.64×10−4 MPa K−3

Q 540.6×103 J mol−1
activation energy in the temperature
response function for the inelastic strain
rate

(4.37)

R 8.317 J (mol K)−1
universal gas constant in the
temperature response function for the
inelastic strain rate

(4.37)

ainit 1.54×1024 s−1

parameters in the stress response func-
tion for the inelastic strain rates in the ini-
tial state

(4.53)
binit 25.8 MPa

cinit 483.6 MPa

minit 35.7 −

ast 1.30×1022 s−1

parameters in the stress response func-
tion for the inelastic strain rates in the
steady state

(4.53)
bst 22.4 MPa

cst 593.1 MPa

mst 38.0 −

ηh0 0.17 − reference value for the volume fraction of
the hard phase

(4.76)

aβ 80.0 MPa
maximum value for the saturation
backstress

(4.65)

bβ 2.70×10−2 MPa−1 parameter in the evolution function for
the saturation backstress

(4.65)

CΓ 5.0 − parameter in the evolution equation for
the softening variable

(4.77)

aΓ 1.0 −
parameters in the stress response func-
tion for the saturation softening variable

(4.71)bΓ 1.30×10−2 MPa−1

cΓ 520.0 MPa
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Figure 4.15: Stress σ vs strain H in the elastic, hardening, and softening regime. Expe-
rimental results (solid lines) compared to the phase mixture model (dashed
lines).
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4.3 Verification

In the previous section, the phase mixture model is calibrated based on HT tensile tests and
creep tests. Since numerous tests at different temperatures 673 K≤T ≤923 K and under
several strain rates 10−5 s−1≤ Ḣ≤10−3 s−1 are taken into account, the calibrated model
covers a wide stress range, i.e. 100 MPa≤σ≤700 MPa. In order to verify the calibration and
to examine the range of applicability of the model, additional creep tests, where pressure
loads as well as tensile loads are applied, are simulated using the developed model.
Figure 4.16 presents the results of several creep tests under constant compressive CAUCHY

stress. The experimental results are extracted from [13], and all creep tests are simulated
by solving Eqs. (4.25), (4.76), and (4.77) with MATLAB’s solver ode45. The diagram at the
top left-hand side depicts the absolute inelastic strain rate |Ḣ in| depending on the absolute
inelastic strain |H in| at the temperature T =823 K for three different stress levels, while the
diagrams at the top right-hand side and the bottom left-hand side show the results with
respect to higher temperatures T =873 K and T =915 K. Moreover, additional results with
respect to different temperatures at the stress level σ=−230 MPa are presented in the
diagram at the bottom right-hand side.
Considering that these tests are not used for the calibration, the quality of approximation is
judged to be good or at least sufficient, depending on the examined stress and temperature
levels. The higher the absolute stress level and the higher the temperature, the more accurate
the simulation. The deviations are higher for the tests at a low absolute stress level |σ| and a
relatively low temperature, e.g. σ=−230 MPa and T =823 K, or for tests at very low absolute
stress levels, for example σ=−140 MPa and T =915 K. The majority of these tests exhibits
small strain rates, i.e. |Ḣ in|<10−7 s−1, and the deviations can be attributed to the selection
of the tests used for the calibration, i.e. the model is calibrated mainly based on tests at
higher strain rates, particularly for lower temperatures (673 K or 773 K), cf. the left diagram in
Fig. 4.11.
Furthermore, Figure 4.17 presents the results of two cyclic creep tests. The upper diagram
refers to the cyclic creep test presented in Sect. 3.2 and shows the inelastic strain rate Ḣ in

depending on the inelastic strain H in. During this test, the PIOLA-KIRCHHOFF stress is kept
constant either at the minimum (Pmin≈100 MPa) or the maximum value (Pmax≈150 MPa), cf.
the top left diagram in Fig. 3.9. In addition, the lower diagram depicts the absolute inelastic
strain rate with respect to the absolute inelastic strain for a cyclic compressive creep test. The
CAUCHY stress is kept constant either at the minimum (σmin =−196 MPa) or the maximum
value (σmax =−150 MPa). In [13], the experimental results are provided. Since the stress is
only given depending on the inelastic strain and the exact dependence with respect to the
time is unknown in [13], Eqs. (4.76) and (4.77) must be modified for this simulation. The time
derivative is transformed as follows:

�̇ =
∂�
∂H in

∂H in

∂t
= Ḣ in ∂�

∂H in
.

Above transformation is applied to β̇ and Γ̇ in Eqs. (4.76) and (4.77). Both equations are
divided by Ḣ in and a stationary temperature field is assumed such that one obtains:

∂β

∂H in
= E

ηh0

1− ηh0

[
1− β

β?
sgn
(
Ḣ in
)]
, (4.81)

∂Γ

∂H in
= CΓ (Γ? − Γ ) sgn

(
Ḣ in
)
. (4.82)
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|Ḣ
in
|[
s−

1
]

σ= −310MPa
σ= −280MPa
σ= −230MPa

T =823K

0 0.1 0.3 0.4
10−8

10−7

10−4

|H in| [−]

|Ḣ
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Figure 4.16: Inelastic strain rate Ḣ in vs inelastic strain H in for creep tests under compressive
loads. Experimental results after [13] (solid lines) compared to the phase mixture
model (dashed lines).

The inelastic strain rate Ḣ in is calculated based on Eq. (4.25), while the inelastic strain and
the stress serve as input for the numerical integration. This procedure allows to simulate the
cyclic creep test without knowing the time-varying load explicitly.
Examining the top diagram in Fig. 4.17, it becomes obvious that the model underestimates
the strains of the test results. Furthermore, the minimum strain rate is predicted with respect
to a lower strain level compared to the experimental data. The high deviations are due
to the very low strain rates Ḣ in≤10−7 s−1, as already discussed before. The simulation is
more accurate for high strain rates Ḣ in>10−7 s−1, as the lower diagram reveals. The phase
mixture model is able to account for the slightly increasing strain rate, i.e. the softening effect
during creep, and the jumps in the inelastic strain rate due to the cyclic load.
To sum up, the simulation of the additional creep tests demonstrates that the calibrated phase
mixture model provides robust solutions with respect to uniaxial loads, which can be both
monotonous and cyclic. It is applicable to strain rates Ḣ in>10−7 s−1 and to large temperature
and stress intervals, i.e. 673 K≤T ≤923 K and 100 MPa≤σ≤700 MPa, respectively. For the
simulation, a total set of 14 parameters is required (C1, C2, Q, ainit, binit, cinit, minit, ηh0 , aβ, bβ,
CΓ , aΓ , bΓ , cΓ , cf. Table 4.2). Note that these parameters are all temperature-independent.
Several other models for tempered martensitic steels have been presented in Sect. 1.2.
However, the majority of these models is based on at least 10 temperature-dependent
material parameters. Here, one should bear in mind that additional parameters are required
to define the dependence on the temperature. In the simplest scenario, all parameters are
linearly dependent on the temperature such that the actual number of parameters is 20. If
higher order polynomial functions are taken into account to approximate the temperature
response functions, the number of parameters is likely to be even higher. This highlights one
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Figure 4.17: Inelastic strain rate Ḣ in vs inelastic strain H in for two cyclic creep tests. Cyclic
creep test from Sect. 3.2 (top) and cyclic creep test from [13] (bottom).

major advantage of the proposed phase mixture model: only 14 constant parameters are
required to cover wide ranges with respect to the stress, temperature, and strain rate.
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5 Three-Dimensional Phase Mixture
Model

This chapter introduces the phase mixture model with respect to multiaxial stress and
deformation states. To this end, it is divided into three sections. Section 5.1 summarizes
the governing equations in an analogous manner to Sect. 4.1, where the one-dimensional
model has been presented. In Sect. 5.2, it is checked whether the three-dimensional phase
mixture model is thermodynamically consistent. The last section, Sect. 5.3, focuses on the
implementation of the three-dimensional model into the FEM using an implicit time integration
scheme. Regarding the verification of the implementation, the results of several finite element
analyses are presented and discussed in detail.

5.1 Governing Equations

In this section, the one-dimensional governing equations presented in Sect. 4.1 are gen-
eralized to three-dimensional stress and deformation states. Note that the derivations in
the remainder of this chapter are restricted to small strains, displacements, and rotations,
similar to the majority of the proposed models for tempered martensitic steels, cf. the dis-
cussion in Sect. 1.2. These restrictions are due to two main reasons: Firstly, the solution of
problems involving finite strains, displacements, and rotations demands significantly higher
computational effort and time compared to problems which are restricted to small strains,
displacements, and rotations, especially in cases where the mechanical behavior of complex
components under transient loads is simulated [103, 109]. Secondly, power plant compo-
nents in use must not deform to a high extent, i.e. large strains occurring in a component
would result in the replacement of this component. Nevertheless, the reader should note
that a number of viscoplasticity models for finite strains considering nonlinear hardening and
softening is available in the literature [139–141].
The derivation of the governing equations in this section is based on several papers and
monographs [16, 42, 71], where further information can be found. Because of the restriction
to small strains, displacements, and rotations, we postulate the equality of the linear strain
tensor εε in the soft and the hard phase (iso-strain assumption) [42], cf. Eq. (4.1):

εε = εεh = εεs. (5.1)

In three dimensions, the rule of mixture for the overall stress σσ reads as follows [42], compare
to Eq. (2.81):

σσ = ηsσσs + ηhσσh. (5.2)

Furthermore, Eq. (4.3) is valid for the volume fractions ηk. For the sake of completeness, it is
recalled at this point:

ηs + ηh = 1 ∀ 0 < ηk < 1.
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Based on Eq. (2.54), the additive split of the strains into the elastic and the inelastic part is
deployed:

εε = εεel
k + εεin

k . (5.3)

The linear elastic behavior of the phases is described by the three-dimensional HOOKE’s law,
cf. Eq. (2.45):

σσk = KεVk
I + 2Gεεel

k with εVk
= tr(εεk) , (5.4)

or reformulated with respect to the strains, cf. Eq. (2.48):

εεel
k =

σmk

3K
I +

σσ′k
2G

with σmk
=

1

3
tr(σσk) . (5.5)

As before, we assume that both phases exhibit the same elastic behavior such that the
material parameters E, G, K, and ν are identical for both phases. One should bear in mind
that the temperature dependence of all elastic parameters is taken into account by the phase
mixture model, cf. Eq. (4.6). Applying the trace operator to Eqs. (5.1), (5.3), and (5.5) yields:

εV = εVh
= εVs , (5.6)

εV = εel
Vk

+ εin
Vk
, (5.7)

εel
Vk

=
σmk

K
. (5.8)

As already discussed in Sect. 2.1.4.2, we assume that the inelastic deformation does not
produce a significant change in volume, i.e. εin

Vk
=0. If we take this assumption into account

and insert Eqs. (5.7) and (5.8) into Eq. (5.6), we obtain:

σm = σmh
= σms = KεV. (5.9)

Since the bulk modulus K is the same in both phases, above considerations result in an
equal mean stress in the entire mixture. That is to say that Eqs. (5.1) and (5.2) can be written
in terms of the deviatoric parts of the strain and stress tensors:

εε′ = εε′h = εε′s, (5.10)
σσ′ = ηsσσ

′
s + ηhσσ

′
h. (5.11)

In order to derive a constitutive law for the mixture, the deviatoric stresses σσ′k for the phases
are determined by rearranging Eq. (5.5). The resulting terms are inserted into Eq. (5.11),
and after some transformations one obtains the constitutive law for the mixture, cf. Eq. (4.10):

εε =
σm

3K
I +

σσ′

2G
+ εεin, (5.12)

where εεin describes the inelastic strain state in the mixture:

εεin = (1− ηh) εεin
s + ηhεε

in
h . (5.13)

In a next step, the evolution equations for the inelastic strains εεin
k are provided. The following
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equations are suggested in [42, 71], compare to Eqs. (4.12) and (4.13):

ε̇εin
s =

3

2
ε̇in

vMs

σσ′s
σvMs

, (5.14)

ε̇εin
h =

3

2
ε̇in

vM

σσ′h − σσ′
σvM?

, (5.15)

where ε̇in
vMs

denotes the VON MISES inelastic strain rate in the soft phase, and ε̇in
vM stands for

the VON MISES inelastic strain rate in the mixture. In addition, the VON MISES stress in the
soft phase σvMs and the VON MISES saturation stress σvM? are defined:

ε̇in
vMs

=

√
2

3
ε̇εin

s : ε̇εin
s , ε̇in

vM =

√
2

3
ε̇εin : ε̇εin, (5.16)

σvMs =

√
3

2
σσ′s : σσ

′
s, σvM? =

√
3

2

(
σσ′h?
− σσ′

)
:
(
σσ′h?
− σσ′

)
. (5.17)

Note that the index �vM is used in the remainder of the thesis at hand to mark equivalent
variables of VON MISES-type. Moreover, the variable σσ′h?

denotes the saturation stress
deviator with respect to the hard phase. For the VON MISES inelastic strain in the soft phase,
the following evolution equation is applied, cf. Eq. (4.12):

ε̇in
vMs

= fσinit(σvMs) fT (T ) (5.18)

with the stress response function in the initial state fσinit(σvMs), cf. Eq. (4.53). Additionally, an
evolution equation for the volume fraction of one phase must be formulated, cf. Eq. (4.8):

η̇h = fη
(
σσh, ε̇ε

in
h , T

)
. (5.19)

It is sufficient to find an evolution equation for the volume fraction of only one phase – e.g.
with respect to the hard phase as in Eq. (5.19) – since the volume fractions cannot evolve
independently. First, the volume fraction of the hard phase is computed on the basis of
Eq. (5.19), and thereafter Eq. (4.3) is employed to compute the corresponding volume fraction
for the soft phase. In an analogous procedure as discussed for the one-dimensional model,
the backstress tensor ββ and the VON MISES backstress βvM are introduced [42]:

ββ =
ηh0

1− ηh0

(σσ′h − σσ′) ∀ 0 < ηh0 < 1, (5.20)

βvM =

√
3

2
ββ : ββ ∀ 0 ≤ βvM ≤ βvM? (5.21)

with their corresponding saturation values:

ββ? =
ηh0

1− ηh0

(
σσ′h?
− σσ′

)
, (5.22)

βvM? =

√
3

2
ββ? : ββ?. (5.23)

The softening variable Γ and its saturation value Γ? are identical in the one-dimensional and
the three-dimensional model such that Eqs. (4.15) and (4.17) hold as well. For the sake of
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clarity, we repeat both equations at this point:

Γ =
ηh

1− ηh

1− ηh0

ηh0

∀ Γ? ≤ Γ ≤ 1,

Γ? =
ηh?

1− ηh?

1− ηh0

ηh0

∀ 0 < ηh? < 1.

The computation of the stresses and inelastic strain rates for each phase depends on the
introduced internal variables, i.e. the backstress tensor ββ and the softening variable Γ .
Employing the definitions (5.20)–(5.23) and the Eqs. (4.15), (4.17), (5.11), (5.14), (5.15), and
(5.18), we can derive expressions for the deviatoric stress tensors and the inelastic strain
rates:

σσ′h = σσ′ +
1− ηh0

ηh0

ββ, (5.24)

σσ′s = σ̃σ′, (5.25)

ε̇εin
h =

3

2
ε̇in

vM

ββ

βvM?

, (5.26)

ε̇εin
s =

3

2
fσinit(σ̃vM) fT (T )

σ̃σ′

σ̃vM

, (5.27)

where we have introduced the effective stress tensor σ̃σ′ and the corresponding VON MISES

stress σ̃vM:

σ̃σ′ = σσ′ − Γββ, σ̃vM =

√
3

2
σ̃σ′ : σ̃σ′. (5.28)

Eqs. (5.24)–(5.27) are analogous to Eqs. (4.18)–(4.21), which have been derived for the
one-dimensional model. In order to derive the evolution equations for the inelastic strain,
the backstress, and the softening variable, an analogous procedure as the one presented
in Sect. 4.1 is applied. Thus, Eq. (5.12) is differentiated once with respect to time and
rearranged such that one obtains:

ε̇εin = ε̇ε− ∂

∂t

(
σm

3K
I +

σσ′

2G

)
. (5.29)

A similar equation is derived for the individual phases by substituting Eq. (5.5) into Eq. (5.3)
and differentiating the result with respect to the time:

ε̇ε =
∂

∂t

(
σm

3K
I +

σσ′k
2G

)
+ ε̇εin

k . (5.30)

Equation (5.30) is evaluated for the soft phase and inserted into Eq. (5.29). Furthermore,
the stress deviator σσ′s and the inelastic strain rate tensor ε̇εin

s are replaced using Eqs. (5.25)
and (5.27), respectively. After simple transformations, this results in the following differential
equation with respect to the inelastic strain εεin, compare to Eq. (4.24) for one-dimensional
applications:

ε̇εin =
3

2
fσinit(σ̃vM) fT (T )

σ̃σ′

σ̃vM

− ∂

∂t

(
Γββ

2G

)
. (5.31)
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In analogy to Eq. (4.25), the last term in Eq. (5.31) is omitted because this term influences
the inelastic strain rate only at the very beginning of the inelastic deformation [42]:

ε̇εin =
3

2
fσinit(σ̃vM) fT (T )

σ̃σ′

σ̃vM

. (5.32)

Afterwards, the procedure is repeated for the hard phase: Eq. (5.30) is evaluated with respect
to the hard phase and inserted into Eq. (5.29). The stress deviator σσ′h and the inelastic strain
rate tensor ε̇εin

h are replaced by Eqs. (5.24) and (5.26). Due to this methodology, one obtains
an evolution equation for the backstress ββ, cf. Eq. (4.26):

β̇β =
1

G(T )

dG(T )

dT
Ṫββ + 2G(T )

ηh0

1− ηh0

[
ε̇εin − 3

2

ε̇in
vM

βvM?(σvM)
ββ

]
. (5.33)

The evolution equation (4.27) for the softening variable Γ is adapted to three-dimensional
stress and strain states by introducing the VON MISES stress and inelastic strain rate [42]:

Γ̇ = CΓ [Γ?(σvM)− Γ ] ε̇in
vM. (5.34)

Finally, all evolution equations have been derived for the three-dimensional phase mixture
model. For a prescribed stress state σσ, the system of the ODEs (5.32)–(5.34) must be solved
in conjunction with the ICs. For simulating the response of a virgin material, the following ICs
hold:

εεin(t=0) =0, ββ(t=0) =0, Γ (t=0) =1. (5.35)

If a process is controlled by the total strain rate ε̇ε, the following differential equation with
respect to the stress σσ is solved in conjunction with Eqs. (5.33) and (5.34), while the inelastic
strain rate is computed using Eq. (5.32):

σ̇σ =K(T ) ε̇VI + 2G(T )
(
ε̇ε− ε̇εin

)
+

(
dK(T )

dT
+

2

3

dG(T )

dT

)
Ṫ

σm

K(T )
I

+
1

G(T )

dG(T )

dT
Ṫσσ′. (5.36)

Equation (5.36) is obtained by differentiating Eq. (5.12) once with respect to the time and
rearranging the resulting expression with respect to the time derivative of the stress tensor.
For processes controlled by the total strain rate, the following ICs can be applied for a virgin
material:

σσ(t=0)=0, ββ(t=0)=0, Γ (t=0)=1. (5.37)

Since the model has already been calibrated in its one-dimensional formulation in Sect. 4.2,
the determined parameters and functions are also applied to the three-dimensional model.
The material parameters are listed in Table 4.2. For the sake of completeness, let us recall
the determined functions and – if necessary – reformulate with respect to three-dimensional
stress states:

• the temperature response function for the YOUNG’s modulus, cf. Eq. (4.34):

E(T ) = fE(T ) = C1 + C2T
3,
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• the temperature response function for the inelastic strain rate, cf. Eq. (4.37):

fT (T ) = exp

(
− Q

RT

)
,

• the stress response function for the inelastic strain rates in the initial and the steady
state, cf. Eq. (4.53):

fσi(σ̃vM) = ai sinh

(
σ̃vM

bi

)[
1 +

(
σ̃vM

ci

)mi
]

∀ i ∈ {st, init} . (5.38)

• the stress response function for the saturation backstress, cf. Eq. (4.65):

βvM?(σvM) =
2aβ

1 + exp (−bβσvM)
− aβ, (5.39)

• and the stress response function for the saturation softening variable, cf. Eq. (4.71):

Γ?(σvM) =
aΓ

1 + exp [−bΓ (σvM − cΓ )]
. (5.40)

Because three-dimensional stress and deformation states are the concern of the current
chapter, two independent elastic parameters are required to determine the isotropic linear
elastic behavior [68, 142]. Since the experimental set-up described in Chapt. 3 does
not provide the data to determine additional elastic parameters (except for the YOUNG’s
modulus E), we make use of experimental data for the shear modulus G published in [13]
with respect to the alloy X20CrMoV12-1. In [13], specific measured values of the shear
modulus in the temperature range 298 K≤T ≤973 K are given. Based on these values, the
temperature dependence of the shear modulus is approximated with a cubic polynomial, in
analogy to the temperature response function of the YOUNG’s modulus, cf. Eq. (4.34):

G(T ) = C3 + C4T
3, (5.41)

where C3 and C4 are material parameters:

C3 = 82.6×103 MPa, C4 = −2.87×10−5 MPa K−3. (5.42)

Figure 5.1 depicts the experimental values for the shear modulus depending on the temper-
ature in conjunction with the temperature response function according to Eq. (5.41). Note
that the bulk modulus K and the POISSON’s ratio ν can be computed based on Eq. (2.46).
Finally, all governing equations have been presented, and the required material parameters
and functions have been provided. Considering the two additional material parameters
in Eq. (5.42), a total of 16 temperature-independent material parameters is required by
the three-dimensional phase mixture model, compare also to the discussion at the end of
Sect. 4.3.
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Figure 5.1: Calibration of the temperature response function for the shear modulus G.

5.2 Thermodynamic Consistency

In continuum mechanics, the second law of thermodynamics postulates a nonnegative
entropy production [69, 74]. The local form of the second law of thermodynamics is the
CLAUSIUS-DUHEM inequality, which must be fulfilled by a constitutive model. For isothermal
processes, the CLAUSIUS-DUHEM inequality reduces to the CLAUSIUS-PLANCK inequality [69,
142]:

σσ : ε̇ε ≥ Υ̇ , (5.43)

where Υ denotes the HELMHOLTZ free energy. In this section, it is checked whether the three-
dimensional phase mixture model is in agreement with the CLAUSIUS-PLANCK inequality.
Therefore, the free energy of the mixture is determined based on the free energies of each
phase and their corresponding volume fractions [86, 87, 143]:

Υ = ηsΥs + ηhΥh. (5.44)

Since the time derivative of the free energy is required in Eq. (5.43), Eq. (5.44) is differentiated
with respect to time, while the volume fraction of the soft phase ηs is replaced using Eq. (4.3):

Υ̇ = η̇h (Υh − Υs) + (1− ηh) Υ̇s + ηhΥ̇h. (5.45)

The free energy of each phase and the corresponding derivatives with respect to time are
determined based on the elastic parts [142]:

Υk =
1

2
σσk : εε

el
k , (5.46)

Υ̇k = σσk : ε̇ε
el
k . (5.47)

Inserting Eqs. (5.46) and (5.47) into Eq. (5.45) results in:

Υ̇ =
1

2
η̇h

(
σσh : εε

el
h − σσs : εε

el
s

)
+ (1− ηh)σσs : ε̇ε

el
s + ηhσσh : ε̇ε

el
h . (5.48)

In a next step, the left-hand side of Eq. (5.43) is evaluated taking Eqs. (5.1) and (5.2) into
account:

σσ : ε̇ε = (1− ηh)σσs : ε̇εs + ηhσσh : ε̇εh. (5.49)
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Now, Eqs. (5.48) and (5.49) are inserted into Eq. (5.43), and the additive split of the strains,
cf. Eq. (5.3), is employed:

(1− ηh)σσs : ε̇ε
in
s + ηhσσh : ε̇ε

in
h ≥

1

2
η̇h

(
σσh : εε

el
h − σσs : εε

el
s

)
. (5.50)

The right-hand side of Eq. (5.50) is simplified based on the elastic law according to Eqs. (5.5)
and (5.9). In addition, the deviatoric stresses are introduced on the left-hand side since
tr
(
ε̇εin
k

)
=0 holds, as discussed in Sect. 5.1:

(1− ηh)σσ′s : ε̇ε
in
s + ηhσσ

′
h : ε̇ε

in
h ≥

1

6G
η̇h

(
σ2

vMh
− σ2

vMs

)
. (5.51)

In the following, the left-hand side of Eq. (5.51) is examined in detail, and the deviatoric
stresses are replaced by Eqs. (5.24) and (5.25). Introducing the effective stress tensor σ̃σ′

according to Eq. (5.28) results in:

(1− ηh)σσ′s : ε̇ε
in
s + ηhσσ

′
h : ε̇ε

in
h = σ̃σ′ :

[
(1− ηh) ε̇εin

s + ηhε̇ε
in
h

]
+ Γββ : ε̇εin

h . (5.52)

In order to simplify Eq. (5.52), the inelastic strain rate ε̇εin of the mixture is determined based
on the time derivative of Eq. (5.13):

ε̇εin = (1− ηh) ε̇εin
s + ηhε̇ε

in
h + η̇h

(
εεin

h − εεin
s

)
. (5.53)

The difference in the inelastic strains in the last term of Eq. (5.53) is replaced using Eqs. (5.1),
(5.3), and (5.5):

εεin
h − εεin

s = εεel
s − εεel

h =
1

2G
(σσ′s − σσ′h) . (5.54)

Then, the deviatoric stresses in Eq. (5.54) are substituted again by Eqs. (5.24) and (5.25),
and the definition of the softening variable is taken into account, cf. Eq. (4.15):

εεin
h − εεin

s = − 1

2G

1− ηh0

ηh0

1

1− ηh

ββ. (5.55)

Equation (5.55) is inserted into Eq. (5.53) to evaluate the inelastic strain rate of the mixture:

ε̇εin = (1− ηh) ε̇εin
s + ηhε̇ε

in
h −

1

2G
η̇h

1− ηh0

ηh0

1

1− ηh

ββ. (5.56)

Finally, Eq. (5.56) is used to substitute the expression in the square brackets in Eq. (5.52):

(1− ηh)σσ′s : ε̇ε
in
s + ηhσσ

′
h : ε̇ε

in
h = σ̃σ′ : ε̇εin +

1

2G
η̇h

1− ηh0

ηh0

1

1− ηh

σ̃σ′ : ββ + Γββ : ε̇εin
h . (5.57)

In a next step, the right-hand side of Eq. (5.51) is recast. The difference in the VON MISES

stresses of both phases is evaluated based on Eq. (5.17). Note that the VON MISES stress
with respect to the hard phase is calculated in analogy to Eq. (5.17). Furthermore, the
deviatoric stresses are replaced once more by Eqs. (5.24) and (5.25):

σ2
vMh
− σ2

vMs
=

3

2

(
1− ηh0

ηh0

+ Γ

)
ββ :

[
2σσ′ +

(
1− ηh0

ηh0

− Γ
)
ββ

]
. (5.58)
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Equations (5.57) and (5.58) are inserted into Eq. (5.51), all terms containing η̇h are summed,
and Eq. (5.21) is taken into account to introduce the VON MISES backstress βvM into the
equations:

σ̃σ′ : ε̇εin + Γββ : ε̇εin
h −

3

8G
η̇h

(
1− ηh0

ηh0

1

1− ηh

)2

β2
vM ≥ 0. (5.59)

Based on the definition of the softening variable in Eq. (4.15), the expression η̇h is replaced
by the time derivative of the softening variable:

η̇h = (1− ηh)2 ηh0

1− ηh0

Γ̇ . (5.60)

One inserts Eq. (5.60) into Eq. (5.59) to obtain the final inequality:

σ̃σ′ : ε̇εin + Γββ : ε̇εin
h −

3

8G
Γ̇

1− ηh0

ηh0

β2
vM ≥ 0. (5.61)

To guarantee the consistency with the second law of thermodynamics, this inequality must be
fulfilled by the constitutive model. To begin with, the term σ̃σ′ : ε̇εin is examined. The inelastic
strain rate can be replaced by Eq. (5.32). Considering the structure of the functions fσinit(σ̃vM)
and fT (T ), cf. Eqs. (4.34) and (5.38), as well as the positive parameters in Table 4.2, it
becomes obvious that fσinit(σ̃vM) ≥0 and fT (T ) ≥0 hold such that the entire term σ̃σ′ : ε̇εin is
nonnegative:

σ̃σ′ : ε̇εin ≥ 0. (5.62)

In a next step, we consider the second summand in Eq. (5.61), the inelastic strain rate of
the hard phase is replaced by Eq. (5.26), and the VON MISES backstress βvM is introduced
according to Eq. (5.21):

Γββ : ε̇εin
h =

9

4
ε̇in

vMΓ
β2

vM

βvM?(σvM)
. (5.63)

Due to its definition in Eq. (4.15), the softening variable Γ is always positive. In addition,
βvM?(σvM) ≥0 holds, cf. Eq. (5.39). Note that the VON MISES stresses and strains are always
nonnegative due to their definitions, cf. e.g. Eqs. (5.16) and (5.17). For these reasons, also
the second summand in Eq. (5.61) is nonnegative:

Γββ : ε̇εin
h ≥ 0. (5.64)

Since it has already been shown that the first two summands in Eq. (5.61) are nonnegative,
cf. Eqs. (5.62) and (5.64), only the change in the softening variable with time Γ̇ must be
examined in the following. Because Eq. (5.61) must be fulfilled, Γ̇ has to be nonnegative:

Γ̇ ≤ 0. (5.65)

The change in the softening variable is determined by the postulated evolution equation, cf.
Eq. (5.34). For the sake of clarity, we recall this equation:

Γ̇ = CΓ [Γ?(σvM)− Γ ] ε̇in
vM.
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The parameter CΓ is positive, cf. Table 4.2, and Γ?(σvM) ≤Γ holds due to the definitions
of the softening variable and the corresponding saturation value in Eqs. (4.15) and (4.17)
such that the condition (5.65) as well as Eq. (5.61) are fulfilled. To conclude, the CLAUSIUS-
PLANCK inequality is valid, i.e. the phase mixture model is thermodynamically consistent
with respect to the present calibration. Thereby, one should keep in mind that stationary
temperatures are presumed. The phase mixture model is primarily a mechanical model,
which accounts for changes in the material parameters due to instationary temperature
fields. However, since the temperature changes relatively slowly during the start-ups or
shut-downs of power plants, the simplification Ṫ ≈0 is justified. Considering applications with
fast temperature changes, one should set up a thermo-mechanical model, which must fulfill
the CLAUSIUS-DUHEM inequality [69].

5.3 Finite Element Analyses

This section presents the implementation of the three-dimensional phase mixture model into
the finite element code ABAQUS employing a user material subroutine (UMAT) [144]. Note
that the content of this section is based on [145], where selected results are shown. The
theoretical background of the FEM has already been discussed in detail in Sect. 2.2. At
the end of Sect. 2.2.1, it is shown that the stress as well as the internal variables must be
updated and the tangent operator should be determined in order to implement a nonlinear
material model into the FEM, which can be achieved by means of a UMAT.
The current section is divided into four parts. Section 5.3.1 presents the numerical integration
of the evolution equations, discussed in Sect. 5.1, by means of the backward EULER method.
In order to solve the resulting nonlinear system of equations, the NEWTON-RAPHSON method
is applied, as already discussed in Sect. 2.2.1. Due to the application of the NEWTON-
RAPHSON method, the derivatives of several residual quantities with respect to the stress and
the internal variables must be determined, which is derived in Sect. 5.3.2. Based on these
results, the final stress update algorithm and the computation of the tangent operator are
described in Sect. 5.3.3. Finally, various finite element analyses are presented in Sect. 5.3.4
in order to verify the implementation of the phase mixture model.

5.3.1 Backward EULER Method

As shown in Sect. 5.1, the phase mixture model requires the solution of three evolution
equations with respect to the stress σσ, the backstress ββ, and the softening variable Γ , cf.
Eqs. (5.32)–(5.34). These evolution equations must be integrated with respect to time. For
this purpose, two classes of numerical methods are available: explicit and implicit methods.
Explicit methods determine an unknown equilibrium state at the time step tn+1 only by using
quantities with respect to the previous time step tn [103]. Consequently, explicit methods
are straightforward to implement. However, it is well known that explicit methods are only
conditionally stable, and therefore their stability depends on the selected time step size [146],
i.e. a critical time step size can be mathematically derived for each explicit time integration
method based on the COURANT-FRIEDRICHS-LEWY condition [147]. As an alternative,
implicit methods can be employed. Here, the computation of the quantities with respect
to the new equilibrium state tn+1 is not only based on the previous time steps, but also
includes the current and future time steps, such that a nonlinear system of equations must
be solved at every time step [103]. The stability of implicit methods is independent from
the increment size (unconditional stability), and consequently we make use of an implicit
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method for the numerical integration, i.e. the backward EULER method. Due to its simplicity,
this implicit method is commonly employed for the implementation of nonlinear material
models, cf. e.g. [58, 105, 106, 111]. Suppose that we would like to find a solution for
the ODE Ẏ =F(Y , t) with respect to the tensorial variable Y . A time increment ∆t is
prescribed, and the variable Y n at the time step tn is known. Then, the solution at the time
step tn+1 = tn + ∆t is approximated by the backward EULER method as follows [103]:

Y n+1 = Y n + ∆tF(Y n+1, tn+1) . (5.66)

In the following, we will apply the approximation according to Eq. (5.66) to the governing
equations of the phase mixture model. With respect to an equilibrium state at the time step tn,
all quantities, i.e. the stress, the backstress, the softening variable, and the strains, are
known. Based on the prescribed temperature, strain, and time increments ∆Tn+1, ∆εεn+1,
and ∆tn+1, respectively, all other quantities with respect to the unknown equilibrium state at
the time step tn+1 have to be determined. With the backward EULER method, the strains, the
temperature, the stress, and the internal variables can be updated as follows [104]:

εεn+1 = εεn + ∆εεn+1, (5.67)

εεin
n+1 = εεin

n + ∆εεin
n+1, (5.68)

Tn+1 =Tn + ∆Tn+1, (5.69)
σσn+1 =σσn + ∆σσn+1, (5.70)
ββn+1 =ββn + ∆ββn+1, (5.71)
Γn+1 =Γn + ∆Γn+1. (5.72)

For the sake of brevity, the index �n+1 is omitted in the remainder of this chapter. Thus, if
not stated otherwise, all quantities are evaluated with respect to the time step tn+1. We apply
the concept described in Eq. (5.66) to the evolution equations, cf. Eqs. (5.32)–(5.34):

∆εεin =
3

2
∆tfσinit(σ̃vM) fT (T )

σ̃σ′

σ̃vM

, (5.73)

∆ββ =
1

G

dG

dT
∆Tββ + 2G

ηh0

1− ηh0

[
∆εεin − 3

2

∆εin
vM

βvM?(σvM)
ββ

]
, (5.74)

∆Γ = CΓ [Γ?(σvM)− Γ ] ∆εin
vM. (5.75)

In addition, the additive split of the strain tensor into the elastic and the inelastic part holds,
cf. Eq. (2.54). Inserting Eqs. (5.67) and (5.68) into Eq. (2.54) results in:

εεel = εεn + ∆εε−
(
εεin
n + ∆εεin

)
. (5.76)

Afterwards, Eq. (5.76) is inserted into HOOKE’s law, cf. Eq. (2.45), taking the relation
tr
(
εεin
n

)
=tr

(
∆εεin

)
=0 (cf. the discussion in Sect. 2.1.4.2) into account:

σσ = Ktr(εεn + ∆εε) I + 2G
(
εεn + ∆εε− εεin

n −∆εεin
)
. (5.77)

In a next step, Eq. (5.77) is reformulated by introducing the elastic stiffness tensor C of fourth
rank [104, 142]:

σσ = C : (εεn + ∆εε− εεin
n −∆εεin

)
. (5.78)

91



5 Three-Dimensional Phase Mixture Model

For linear elastic and isotropic materials, the elastic stiffness tensor is defined as:

C =
1

3
(3K − 2G) I ⊗ I + 2GI , I = ei ⊗ ej ⊗ ej ⊗ ei, (5.79)

where I denotes the unit tensor of fourth rank. Equations (5.71)–(5.75) and (5.78) constitute
a nonlinear system of algebraic equations. This system must be solved for prescribed
deformation states with respect to the three unknowns, i.e. the stress σσ, the backstress ββ,
and the softening variable Γ . Therefore, the NEWTON-RAPHSON method is used [103], and
Eqs. (5.71), (5.72), and (5.78) are reformulated:

Ri
σ =0, (5.80)

Ri
β =0, (5.81)

riΓ = 0, (5.82)

where the residual quantities Ri
σ, Ri

β, and riΓ are defined as:

Ri
σ = − εε+ εεin

n + C−1
: σσi + ∆εεini

, (5.83)

Ri
β = − ββn + ββi −∆ββi, (5.84)

riΓ = − Γn + Γ i −∆Γ i. (5.85)

As used in Sect. 2.2, the index �i represents the iteration step. Note that Eqs. (5.73)–(5.75)
still hold to compute the increments with respect to the inelastic strain, the backstress, and
the softening variable.

5.3.2 Derivatives for the Linearization

The nonlinear system of equations (5.80)–(5.82) is solved by means of the NEWTON-
RAPHSON method. For this purpose, the equations must be linearized, and consequently
the derivatives of the residual quantities Ri

σ, Ri
β, and riΓ with respect to the stress σσ, the

backstress ββ, and the softening variable Γ have to be determined, which is the main goal of
the current section.

5.3.2.1 Derivatives of the Stress Response Functions

To begin with, the required derivatives of the stress response functions for the inelastic
strain fσinit(σ̃vM), the saturation backstress βvM?(σvM), and the saturation softening vari-
able Γ?(σvM) with respect to their arguments can be given as closed-form expressions based
on the definitions of the functions in Eqs. (5.38)–(5.40):

∂fσinit(σ̃vM)

∂σ̃vM

=
ainit

binit

cosh

(
σ̃vM

binit

)[
1 +

(
σ̃vM

cinit

)minit
]

+
ainitminit

σ̃vM

sinh

(
σ̃vM

binit

)(
σ̃vM

cinit

)minit

, (5.86)

∂βvM?(σvM)

∂σvM

=
2aβbβ exp(−bβσvM)

[1 + exp(−bβσvM)]2
, (5.87)

∂Γ?(σvM)

∂σvM

=
aΓ bΓ exp[−bΓ (σvM − cΓ )]

{1 + exp[−bΓ (σvM − cΓ )]}2 . (5.88)
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5.3.2.2 Derivatives of the VON MISES Variables

Furthermore, the derivative of the VON MISES stress σvM with respect to the stress tensor σσ
is determined based on the standard rules of tensor calculus, cf. [69, 148]:

∂σvM

∂σσ
=
∂
√

3
2
σσ′ : σσ′

∂σσ′
:
∂σσ′

∂σσ
=

3

4

1

σvM

(
∂σσ′

∂σσ′
: σσ′ + σσ′ :

∂σσ′

∂σσ′

)
:

(
I − 1

3
I ⊗ I

)

=
3

2

1

σvM

σσ′. (5.89)

In analogy, the derivatives of other VON MISES quantities are determined here, since they
are required to compute the derivatives of the residual variables in the following sections:

∂σvM

∂σσ′
=

3

2

1

σvM

σσ′, (5.90)

∂σ̃vM

∂σσ
=
∂σ̃vM

∂σ̃σ
=
∂σ̃vM

∂σ̃σ′
=

3

2

1

σ̃vM

σ̃σ′, (5.91)

∂εin
vM

∂εεin
=

2

3

1

εin
vM

εεin with εin
vM =

√
2

3
εεin : εεin. (5.92)

Note that the VON MISES stress σvM and the effective VON MISES stress σ̃vM are introduced
in Eqs. (5.28) and (2.64), respectively. The inelastic VON MISES strain εin

vM is defined in
analogy to Eq. (5.16).

5.3.2.3 Derivatives of the Strain Increments

This section focuses on the derivatives of the inelastic strain increment ∆εεin and the corre-
sponding VON MISES quantity ∆εin

vM with respect to the stress σσ, the backstress ββ, and the
softening variable Γ , which are required to calculate the derivatives of the residual quantities.
Based on Eq. (5.73), the derivative of the inelastic strain increment with respect to the stress
is computed:

∂∆εεin

∂σσ
=

3

2

∆tfT (T )

σ̃vM

[
∂fσinit(σ̃vM)

∂σσ
⊗σ̃σ′ + fσinit(σ̃vM)

σ̃vM

(
σ̃vM

∂σ̃σ′

∂σσ
− ∂σ̃vM

∂σσ
⊗σ̃σ′

)]
. (5.93)

Considering Eq. (5.91) and the relations

∂fσinit(σ̃vM)

∂σσ
=
∂fσinit(σ̃vM)

∂σ̃vM

∂σ̃vM

∂σσ
=

3

2

1

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′, (5.94)

∂σ̃σ′

∂σσ
=I − 1

3
I ⊗ I, (5.95)

Eq. (5.93) is simplified as follows:

∂∆εεin

∂σσ
=

3

2

∆tfT (T )

σ̃vM

[
3

2

(
1

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃2
vM

)
σ̃σ′ ⊗ σ̃σ′

+fσinit(σ̃vM)

(
I − 1

3
I ⊗ I

)]
. (5.96)
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In the next step, the derivative of the incremental inelastic VON MISES strain ∆εin
vM is evaluated

using Eqs. (5.92) and (5.96):

∂∆εin
vM

∂σσ
=
∂∆εin

vM

∂∆εεin
:
∂∆εεin

∂σσ
=

3

2

(∆t)2 f 2
T (T ) fσinit(σ̃vM)

σ̃vM∆εin
vM

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′. (5.97)

In order to find a compact expression for the incremental inelastic VON MISES strain ∆εin
vM,

we insert Eq. (5.73) into the definition of the incremental inelastic VON MISES strain, cf.
Eq. (5.16), and take Eq. (5.28) into account:

∆εin
vM =

√
2

3
∆εεin : ∆εεin =

√
2

3

(∆t)2 f 2
T (T ) f 2

σinit
(σ̃vM)

σ̃2
vM

σ̃σ′ : σ̃σ′ = ∆tfT (T ) fσinit(σ̃vM). (5.98)

Afterwards, Eq. (5.98) is inserted into Eq. (5.97) such that one obtains a final expression for
the derivative of the incremental inelastic VON MISES strain with respect to the stress tensor:

∂∆εin
vM

∂σσ
=

3

2

∆tfT (T )

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′. (5.99)

Since the derivatives of the incremental inelastic strains with respect to the stress tensor have
been determined in Eqs. (5.96) and (5.99), the corresponding derivatives with respect to the
backstress are evaluated in the following. First, the derivative of the incremental inelastic
strain tensor ∆εεin is calculated based on Eq. (5.73):

∂∆εεin

∂ββ
=

3

2

∆tfT (T )

σ̃vM

[
∂fσinit(σ̃vM)

∂ββ
⊗ σ̃σ′ + fσinit(σ̃vM)

σ̃vM

(
σ̃vM

∂σ̃σ′

∂ββ
− ∂σ̃vM

∂ββ
⊗ σ̃σ′

)]
. (5.100)

In the next step, Eq. (5.91) as well as the relations

∂σ̃vM

∂ββ
=
∂σ̃vM

∂σ̃σ
:
∂σ̃σ

∂ββ
= −3

2

Γ

σ̃vM

σ̃σ′, (5.101)

∂fσinit(σ̃vM)

∂ββ
=
∂fσinit(σ̃vM)

∂σ̃vM

∂σ̃vM

∂ββ
= −3

2

Γ

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′ (5.102)

are taken into account to transform Eq. (5.100):

∂∆εεin

∂ββ
=− 3

2

∆tfT (T )

σ̃vM

Γ

[
3

2

1

σ̃vM

(
∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃vM

)
σ̃σ′ ⊗ σ̃σ′

+ fσinit(σ̃vM)I
]
. (5.103)

Additionally, the derivative of the incremental inelastic VON MISES strain with respect to the
backstress is determined analogously to Eq. (5.97). Here, Eqs. (5.92), (5.98), and (5.103)
are taken into consideration:

∂∆εin
vM

∂ββ
=
∂∆εin

vM

∂∆εεin
:
∂∆εεin

∂ββ
= −3

2

∆tfT (T )

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

Γ σ̃σ′. (5.104)

So far, the derivatives of the incremental inelastic strains with respect to the backstress have
been computed, cf. Eqs. (5.103) and (5.104). Thus, we proceed to evaluate the derivative of
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the inelastic strain increment with respect to the softening variable considering Eq. (5.73):

∂∆εεin

∂Γ
=

3

2

∆tfT (T )

σ̃vM

[
∂fσinit(σ̃vM)

∂Γ
σ̃σ′+

fσinit(σ̃vM)

σ̃vM

(
σ̃vM

∂σ̃σ′

∂Γ
− ∂σ̃vM

∂Γ
σ̃σ′
)]
. (5.105)

We take Eq. (5.91) into account and consider the relations

∂σ̃vM

∂Γ
=
∂σ̃vM

∂σ̃σ
:
∂σ̃σ

∂Γ
= −3

2

1

σ̃vM

σ̃σ′ : ββ, (5.106)

∂fσinit(σ̃vM)

∂Γ
=
∂fσinit(σ̃vM)

∂σ̃vM

∂σ̃vM

∂Γ
= −3

2

1

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′ : ββ (5.107)

to transform Eq. (5.105) as follows:

∂∆εεin

∂Γ
= − 3

2

∆tfT (T )

σ̃vM

[
3

2

(
1

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃2
vM

)
(σ̃σ′ : ββ) σ̃σ′

+ fσinit(σ̃vM)ββ

]
. (5.108)

In addition, the derivative of the incremental inelastic VON MISES strain with respect to
the softening variable is determined in analogy to Eq. (5.97) and under consideration of
Eqs. (5.92), (5.98), and (5.108):

∂∆εin
vM

∂Γ
=
∂∆εin

vM

∂∆εεin
:
∂∆εεin

∂Γ
= −3

2

∆tfT (T )

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′ : ββ. (5.109)

5.3.2.4 Derivatives of the Residual Variables

Based on the results presented in Sects. 5.3.2.1–5.3.2.3, the derivatives of the residual
quantities Ri

σ, Ri
β, and riΓ with respect to the stress σσ, the backstress ββ, and the softening

variable Γ are evaluated in this section. The derivative of the residual stress tensor Ri
σ with

respect to the stress tensor σσ is computed based on Eqs. (5.83) and (5.96):

∂Ri
σ

∂σσ
=C−1

+
∂∆εεin

∂σσ

=C−1
+

3

2

∆tfT (T )

σ̃vM

[
3

2

1

σ̃vM

(
∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃vM

)
σ̃σ′ ⊗ σ̃σ′

+fσinit(σ̃vM)

(
I − 1

3
I ⊗ I

)]
. (5.110)

In the next step, we determine the derivative of the residual stress tensor with respect to the
backstress based on Eqs. (5.83) and (5.103):

∂Ri
σ

∂ββ
=
∂∆εεin

∂ββ

= − 3

2

∆tfT (T )

σ̃vM

Γ

[
3

2

1

σ̃vM

(
∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃vM

)
σ̃σ′ ⊗ σ̃σ′

+ fσinit(σ̃vM)I
]
. (5.111)
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Furthermore, the derivative of the residual stress tensor with respect to the softening variable
is computed based on Eqs. (5.83) and (5.108):

∂Ri
σ

∂Γ
=
∂∆εεin

∂Γ

= − 3

2

∆tfT (T )

σ̃vM

[
3

2

1

σ̃vM

(
∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃vM

)
(σ̃σ′ : ββ) σ̃σ′

+ fσinit(σ̃vM)ββ

]
. (5.112)

Since the derivatives of the residual stress tensor with respect to the stress, the backstress,
and the softening variable have been determined in Eqs. (5.110)–(5.112), we proceed with
the derivatives of the residual backstress tensorRi

β. With Eqs. (5.74) and (5.84), one obtains
the derivative of this tensor with respect to the stress:

∂Ri
β

∂σσ
= − ∂∆ββin

∂σσ

=G
ηh0

1− ηh0

{
−2

∂∆εεin

∂σσ
+

3

β2
vM?

(σvM)

[
βvM?(σvM)

∂∆εin
vM

∂σσ

−∆εin
vM

∂βvM?(σvM)

∂σσ

]
⊗ ββ

}
. (5.113)

Afterwards, the derivatives of the incremental inelastic strains with respect to the stress in
Eq. (5.113) are replaced by Eqs. (5.96) and (5.99):

∂Ri
β

∂σσn+1

=− 9

2

ηh0

1− ηh0

G
∆tfT (T )

σ̃vM

[
1

σ̃vM

(
∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃vM

)
σ̃σ′ ⊗ σ̃σ′

+
2

3
fσinit(σ̃vM)

(
I − 1

3
I ⊗ I

)
− 1

βvM?(σvM)

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′ ⊗ ββ

+
σ̃vM

σvM

fσinit(σ̃vM)

β2
vM?

(σvM)

∂βvM?(σvM)

∂σvM

σσ′ ⊗ ββ
]
. (5.114)

In the following, the derivative of the residual backstress tensor with respect to the backstress
is calculated based on Eqs. (5.74) and (5.84):

∂Ri
β

∂ββ
=I − ∂∆ββ

∂ββ

=

(
1− 1

G

dG

dT
∆T

)
I − 2G

ηh0

1− ηh0

[
∂∆εεin

∂ββ

−3

2

1

βvM?(σvM)

∂∆εin
vM

∂ββ
⊗ ββ − 3

2

∆εin
vM

βvM?(σvM)
I
]
. (5.115)

Now, one replaces the derivatives with respect to the backstress in Eq. (5.115) by Eqs. (5.103)
and (5.104) to obtain a final expression for the derivative of the residual backstress tensor
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with respect to the backstress:

∂Ri
β

∂ββ
=

[
1− 1

G

dG

dT
∆T + 3G

ηh0

1− ηh0

∆tfT (T )
fσinit(σ̃vM)

βvM?(σvM)

]
I

+ 3G
ηh0

1− ηh0

∆tfT (T )

σ̃vM

Γ

[
3

2

1

σ̃vM

(
∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃vM

)
σ̃σ′ ⊗ σ̃σ′

+fσinit(σ̃vM)I − 3

2

1

βvM?(σvM)

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′ ⊗ ββ
]
. (5.116)

Finally, the derivative of the residual backstress tensor with respect to the softening variable
is computed using Eqs. (5.74) and (5.84):

∂Ri
β

∂Γ
= −∂∆ββ

∂Γ
= −2G

ηh0

1− ηh0

[
∂∆εεin

∂Γ
− 3

2

1

βvM?(σvM)

∂∆εin
vM

∂Γ
ββ

]
. (5.117)

The derivatives with respect to the softening variable in Eq. (5.117) are replaced by Eqs. (5.108)
and (5.109):

∂Ri
β

∂Γ
= 3G

ηh0

1− ηh0

∆tfT (T )

σ̃vM

{
3

2

1

σ̃vM

[
∂fσinit(σ̃vM)

∂σ̃vM

− fσinit(σ̃vM)

σ̃vM

]
(σ̃σ′ : ββ) σ̃σ′

+

[
fσinit(σ̃vM)− 3

2

σ̃σ′ : ββ

βvM?(σvM)

∂fσinit(σ̃vM)

∂σ̃vM

]
ββ

}
. (5.118)

So far, the derivatives of the residual backstress tensor with respect to the stress, the
backstress, and the softening variable have been determined, cf. Eqs. (5.114), (5.116), and
(5.118). For this reason, we proceed to compute the derivative of the residual softening
variable with respect to the stress by means of Eqs. (5.75) and (5.85):

∂riΓ
∂σσ

=− ∂∆Γ

∂σσ
= −CΓ∆εin

vM

∂Γ?(σvM)

∂σσ
+ CΓ [Γ − Γ?(σvM)]

∂∆εin
vM

∂σσ
. (5.119)

Equations (5.89) and (5.99) are taken into account to transform Eq. (5.119):

∂riΓ
∂σσ

= −3

2
CΓ

∆tfT (T )

σ̃vM

{
fσinit(σ̃vM)

∂Γ?(σvM)

∂σvM

σσ′ + [Γ − Γ?(σvM)]
∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′
}
. (5.120)

In the next step, the derivative of the residual softening variable with respect to the backstress
is calculated under consideration of Eqs. (5.75) and (5.85):

∂riΓ
∂ββ

=− ∂∆Γ

∂ββ
= CΓ [Γ − Γ?(σvM)]

∂∆εin
vM

∂ββ
. (5.121)

The derivative in Eq. (5.121) is replaced by Eq. (5.104). Further manipulations result in
the final expression for the derivative of the residual softening variable with respect to the
backstress:

∂riΓ
∂ββ

=
3

2

∆tfT (T )

σ̃vM

CΓ [Γ?(σvM)− Γ ]Γ
∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′. (5.122)
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To conclude this section, the derivative of the residual softening variable with respect to the
softening variable itself is calculated using Eqs. (5.75) and (5.85):

∂riΓ
∂Γ

= 1− ∂∆Γ

∂Γ
= 1 + CΓ [Γ − Γ?(σvM)]

∂∆εin
vM

∂Γ
. (5.123)

We replace the derivative in Eq. (5.123) by Eq. (5.109) and manipulate the resulting expres-
sion to obtain:

∂riΓ
∂Γ

= 1 + CΓ∆tfT (T )

[
fσinit(σ̃vM) +

3

2

Γ?(σvM)− Γ
σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

σ̃σ′ : ββ

]
. (5.124)

5.3.3 Numerical Implementation

5.3.3.1 Stress Update Algorithm

This section presents the implemented algorithm to determine the stresses and the internal
variables with respect to the unknown equilibrium state at the time step tn+1. Although the
internal variables are updated as well, this algorithm is commonly referred to as “stress
update algorithm” [104], which is why we will also employ this term. For the implementation
of the phase mixture model into the FEM, we switch to matrix notation, while making use
of the VOIGT notation, as already introduced in Sect. 2.2. In addition to the strain and
stress vectors ε and σ, introduced in Eqs. (2.116) and (2.121), respectively, the vector of the
effective stresses σ̃ and the backstress vector β are defined based on the corresponding
symmetric tensors of second rank σ̃σ= σ̃ijei ⊗ ej and ββ=βijei ⊗ ej :

σ̃ =
[
σ̃11 σ̃22 σ̃33 σ̃12 σ̃13 σ̃23

]T
, (5.125)

β =
[
β11 β22 β33 β12 β13 β23

]T
. (5.126)

Note that the vectors of the deviatoric stresses, the inelastic or elastic strain, and the
incremental entities are formulated analogously. Furthermore, the residual vectors riσ and riβ
are defined similar to Eqs. (5.83) and (5.84):

riσ = −ε+ εin
n + C−1σ+ ∆εin, (5.127)

riβ = −βn + β−∆β, (5.128)

where the elastic stiffness matrix C has been introduced:

C =
1

3




3K + 4G 3K − 2G 3K − 2G 0 0 0
3K − 2G 3K + 4G 3K − 2G 0 0 0
3K − 2G 3K − 2G 3K + 4G 0 0 0

0 0 0 3G 0 0
0 0 0 0 3G 0
0 0 0 0 0 3G



. (5.129)
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The corresponding inverse matrix is computed as follows:

C−1 =
1

18KG




6K + 2G 2G− 3K 2G− 3K 0 0 0
2G− 3K 6K + 2G 2G− 3K 0 0 0
2G− 3K 2G− 3K 6K + 2G 0 0 0

0 0 0 18K 0 0
0 0 0 0 18K 0
0 0 0 0 0 18K



. (5.130)

In analogy to Eqs. (5.80)–(5.82), the following system of equations holds:

riσ = 0, (5.131)

riβ = 0, (5.132)

riΓ = 0. (5.133)

To solve this nonlinear system of equations, the NEWTON-RAPHSON method is applied, such
that Eqs. (5.131)–(5.133) are linearized by introducing the JACOBIan matrix Ai:

Ai∆pi+1 = −ri, (5.134)

where pi+1 denotes the vector of unknowns and ri is the overall residual vector:

pi+1 =
[
σi+1 βi+1 Γ i+1

]T
, (5.135)

ri =
[
riσ riβ riΓ

]T
. (5.136)

Here, one should bear in mind that the indices �i and �i+1 denote steps in the NEWTON-
RAPHSON iteration to find the new equilibrium state at the time step tn+1, cf. Sect. 2.2.1. The
solution of Eq. (5.134) provides the increments of the unknowns ∆pi+1, which are used to
update the stress, the backstress, and the softening variable, cf. Eq. (5.135):

pi+1 = pi + ∆pi+1. (5.137)

For the linearization of the system of equations, the JACOBIan matrix Ai is defined based on
the derivatives of the residuals:

Ai =




∂riσ
∂σ

∂riσ
∂β

∂riσ
∂Γ

∂riβ
∂σ

∂riβ
∂β

∂riβ
∂Γ

∂riΓ
∂σ

∂riΓ
∂β

∂riΓ
∂Γ




. (5.138)

The derivatives of the residuals are formulated using tensor notation in Sect. 5.3.2.4. In order
to simplify the expressions used to compute the derivatives, the auxiliary variables cl ∀ l∈
{1, 2, . . . , 5} and matrices A1 and A2 are introduced:

c1 =
3

2

∆tfT (T )

σ̃vM

, c2 =
fσinit(σ̃vM)

σ̃2
vM

, c3 =
1

σ̃vM

∂fσinit(σ̃vM)

∂σ̃vM

,
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c4 = σ̃σ′ : ββ = σ̃′ij βji, c5 =
ηh0

1− ηh0

,

A1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, A2 =




1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



.

Considering the variables introduced above, the derivatives of the residuals rσ, rβ, and rΓ
are expressed in matrix notation, cf. Eqs. (5.110)–(5.112), (5.114), (5.116), (5.118), (5.120),
(5.122), and (5.124):

∂riσ
∂σ

= C−1 + c1

[
−3

2
(c2 − c3) σ̃′σ̃′T + c2σ̃

2
vM

(
A1 −

1

3
A2

)]
, (5.139)

∂riσ
∂β

= c1Γ

[
3

2
(c2 − c3) σ̃′σ̃′T − c2σ̃

2
vMA1

]
, (5.140)

∂riσ
∂Γ

= c1

[
3

2
(c2 − c3) c4σ̃

′ − c2σ̃
2
vMβ

]
, (5.141)

∂riβ
∂σ

= 3Gc1c5

[
(c2 − c3) σ̃′σ̃′T − 2

3
c2σ̃

2
vM

(
A1 −

1

3
A2

)
+

c3σ̃vM

βvM?(σvM)
σ̃′βT

− σ̃
3
vM

σvM

c2

β2
vM?

(σvM)

∂βvM?(σvM)

∂σvM

σ′βT

]
, (5.142)

∂riβ
∂β

=

[
1− 1

G

dG

dT
∆T + 2Gc1c2c5

σ̃3
vM

βvM?(σvM)

]
A1

− 2Gc1c5Γ

[
3

2
(c2 − c3) σ̃′

(
σ̃′
)T − c2σ̃

2
vMA1 +

3

2

c3σ̃vM

βvM?(σvM)
σ̃′βT

]
, (5.143)

∂riβ
∂Γ

= − 3Gc1c5

{
(c2 − c3) c4σ̃

′ +

[
c3c4

βvM?(σvM)
− 2

3
c2σ̃vM

]
σ̃vMβ

}
, (5.144)

∂riΓ
∂σ

= c1CΓ σ̃vM

{
c3 [Γ − Γ?(σvM)]

(
σ̃′
)T−c2σ̃vM

∂Γ?(σvM)

∂σvM

(σ′)
T

}
, (5.145)

∂riΓ
∂β

= c1c3CΓ [Γ?(σvM)− Γ ]Γ
(
σ̃′
)T
, (5.146)

∂riΓ
∂Γ

= 1 + c1CΓ σ̃vM

{
2

3
c2σ̃vM + c3c4 [Γ?(σvM)− Γ ]

}
. (5.147)

With Eqs. (5.139)–(5.147), the JACOBIan matrix Ai in Eq. (5.138) is completely defined. The
system of equations (5.131)–(5.133) is solved by means of the NEWTON-RAPHSON method,
cf. [103], using the following iteration loop:

1. set initial values (i=0):

σ0
n+1 = σn, β0

n+1 = βn, Γ 0
n+1 = Γn (5.148)

2. iterate i∈{0, 1, . . . , imax}

a) compute the residual vector rin+1 using Eqs. (5.136), (5.127), (5.128), and (5.85)
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b) calculate the JACOBIan matrix Ai
n+1 and its inverse

(
Ai
n+1

)−1 by means of
Eq. (5.138)

c) determine the incremental change in the residual vector based on Eq. (5.134):

∆pi+1
n+1 = −

(
Ai
n+1

)−1 rin+1 (5.149)

d) update all variables, cf. Eq. (5.137):

�i+1
n+1 = �i

n+1 + ∆ �i+1
n+1 ∀� ∈ {p,σ,β, Γ}

3. check for convergence:
∣∣rin+1

∣∣ ?
<10−6

• criterion fulfilled exit loop
• criterion not fulfilled i 7→ i+ 1, go to Step 2

Note that the time step �n+1 has been written explicitly for the sake of clarity. A tolerance of
10−6 is chosen for Step 3 based on [149], where a range of 10−2 . . . 10−6 is recommended.
After exiting the iteration loop, the stress σn+1, the backstress βn+1, and the softening
variable Γn+1 with respect to the time step tn+1 are known.

5.3.3.2 Inversion of the JACOBIan Matrix

Step 2b of the iteration loop requires the calculation of the inverse JACOBIan matrix (Ai)
−1.

This matrix is determined analytically based on the inversion rules for partitioned matrices
[150]. Let us introduce the general quadratic matrix H, which is partitioned as follows:

H =

[
T(m×m) U(m×n)

V(n×m) W(n×n)

](m+n)×(m+n)

(5.150)

The superscripts �(m×n) denote the numbers of rows and columns, respectively. According
to [150], the inverse matrix is computed in the following way:

H−1 =

[
T−1 + T−1UQ−1VT−1 −T−1UQ−1

−Q−1VT−1 Q−1

]
, (5.151)

where the auxiliary matrix Q has been introduced. Furthermore, the matrices T and Q must
be invertible such that the corresponding determinants must not equal zero:

Q = W− VT−1U, det(T) 6= 0, det(Q) 6= 0. (5.152)

Considering Eqs. (5.139)–(5.147), we observe that the matrix Ai has 13 rows and columns,
and it is partitioned based on Eq. (5.150) with m≡6 and n≡7. The matrices T, U, V, and W
are defined as follows:

T =

[
∂riσ
∂σ

]
, U =

[
∂riσ
∂β

∂riσ
∂Γ

]
, V =




∂riβ
∂σ

∂riΓ
∂σ


, W =




∂riβ
∂β

∂riβ
∂Γ

∂riΓ
∂β

∂riΓ
∂Γ


. (5.153)
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For computing the inverse matrix (Ai)
−1 by means of Eq. (5.151), the inverse matrices T−1

and Q−1 need to be determined. For this purpose, separate subroutines are included in the
UMAT in order to compute the inverse of quadratic matrices with 6 rows and columns as well
as 7 rows and columns. In these subroutines, the matrix is partitioned once more according
to Eq. (5.150), and Eq. (5.151) is applied to compute the inverse. To this end, the inverse of
quadratic matrices with 3 rows and columns as well as 4 rows and columns are computed
analytically by two separate subroutines based on the standard rules of matrix algebra [150].

5.3.3.3 Consistent Tangent Operator

The notion of the “consistent tangent operator” (CTO) has been introduced by SIMO and
TAYLOR [151]. They state that the CTO should be used in order to guarantee the convergence
properties of the NEWTON-RAPHSON method, which is demonstrated by numerical examples
for rate-independent plasticity. Later, BRAUDEL et al. have investigated the CTO in a more
general way [152]. Meanwhile, the CTO is commonly applied to implement nonlinear material
models into the FEM, cf. [105, 111, 153, 154] for example. The CTO is based on the
consistent linearization of the PVW, as introduced in Sect. 2.2.1, while accounting for the
employed stress update algorithm [106]. Finally, the CTO is determined as the GÂTEAUX

derivative of the stress with respect to the strains, cf. Eq. (2.100). For the implementation into
ABAQUS, we introduce the matrix of the CTO C̃, which is calculated based on Eq. (2.100):

C̃ =
∂σ

∂ε
. (5.154)

In the thesis at hand, the CTO is determined based on the inverse matrix (Ai)
−1 in the

converged state of the NEWTON-RAPHSON iteration [103]. For the phase mixture model, this
matrix can be represented by means of the submatrices A(m×n)

ij :

(
Ai
)−1

=




A(6×6)
11 A(6×6)

12 A(6×1)
13

A(6×6)
21 A(6×6)

22 A(6×1)
23

A(1×6)
31 A(1×6)

32 A(1×1)
33



. (5.155)

According to [103], the CTO is obtained by extraction of the first six rows and columns in the
converged state:

C̃ = A11. (5.156)

5.3.4 Verification of the UMAT

The stress update algorithm as well as the consistent tangent operator, introduced in
Sects. 5.3.3.1 and 5.3.3.3, respectively, are implemented into the commercial finite ele-
ment code ABAQUS using a UMAT. The current section presents the results of several
benchmark problems, which are solved in order to verify the implementation of the phase
mixture model. In a first step, the model is applied to uniaxial stress states, and the HT tensile
tests presented in Sect. 3.1 are simulated. Figure 5.2 summarizes the obtained stress-strain
curves under constant prescribed strain rates considering different temperatures. The dashed
lines refer to the one-dimensional phase mixture model, i.e. the system of equations (4.76),
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Figure 5.2: Simulation of HT tensile tests with 1D MATLAB model and 3D ABAQUS model.
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(4.77), and (4.79) is solved using MATLAB’s solver ode45. For the ABAQUS simulation based
on the three-dimensional phase mixture model (the corresponding results are indicated by the
solid lines), an 8-node hexahedral continuum element with linear shape functions (C3D8) is
taken into account, as depicted in the sketch in Fig. 5.2. The model is comprised of only one
element since this is sufficient to represent the homogeneous stress and strain states caused
by uniaxial tension. The applied BCs for the FEM are also visualized in Fig. 5.2. In order to
simulate the tests controlled by the total strain rate, the measured displacement u3(tn) in x3

direction serves as input with respect to each time step. In addition, the displacements in
the normal direction of the three faces defined by x1 =0, x2 =0, and x3 =0 are fixed. Note
that the results are extracted at the upper node, depicted in dark blue. As can be seen from
the figure, the results of the one-dimensional phase mixture model and the implementation
of the three-dimensional phase mixture model are in very good agreement with respect to
all strain rates and the entire temperature range 673 K≤T ≤923 K. This indicates a correct
implementation of the three-dimensional model into ABAQUS.
Since the simulation of the HT tensile tests has been successful, we proceed with a creep
test. In Sect. 4.1, the simulation of creep tests deploying the one-dimensional phase mixture
model has been discussed, cf. also Fig. 4.3. This solution serves as benchmark for the
subsequent simulation of an exemplary creep test at a constant temperature of T =873 K.
Because standard creep tests result in uniaxial homogeneous stress and strain states, the
finite element model from the simulation of the HT tensile tests is adopted with different
BCs, compare Figs. 5.2 (middle) and 5.3 (top left). As depicted in the top left diagram of
Fig. 5.3, a distributed load of 200 MPa in x3 direction is prescribed. The load is held constant
over 80 h, cf. the top left diagram, such that very large inelastic strains (εin

33≈70%) occur,
which is shown in the top right diagram of Fig. 5.3. Here, one should keep in mind that the
three-dimensional phase mixture model is restricted to small strains, as discussed at the
beginning of Sect. 5.1. However, the simulation of the creep test serves only as a case study,
and the loads are applied over a long time in order to observe a strong softening effect, cf. the
bottom right diagram of Fig. 5.3. Due to the ICs, cf. Eq. (5.35), the softening variable Γ starts
at Γ

(
εin

33 =0
)

=1 and decreases towards a saturation value, as also predicted in Fig. 4.3 on
the right-hand side. In contrast, the backstress β33 increases towards its saturation value, cf.
the bottom left diagram of Fig. 5.3 as well as the diagram on the left-hand side of Fig. 4.3. To
conclude, the implemented model yields plausible results with respect to a creep test, which
is in agreement with the discussion of Fig. 4.3 in Sect. 4.1.
In a next step, a simple shear test at a constant temperature of T =873 K is discussed.
Figure 5.4 is comprised of a sketch of the finite element model and the diagrams with the
corresponding results. As can be seen in the top left diagram in Fig. 5.4, the same finite
element model as for the previous benchmarks is employed with different DIRICHLET BCs.
Here, the displacement is prescribed as linear function of the time, resulting in a constant
displacement rate u̇2 =6.94×10−6 mm s−1, such that an overall shear strain of ε23 =2.5%
is reached after a test duration of t=1 h, cf. the top right diagram in Fig. 5.4, where the
total, the elastic, and the inelastic shear strains are depicted depending on the time. Since
results for shear tests with respect to the alloy X20CrMoV12-1 could not be found in literature,
the results of the finite element analysis are checked for plausibility. As expected, the finite
element model yields uniform results for the stresses, the strains, the backstress, and the
softening variable within the entire element. In the top left diagram in Fig. 5.4, the shear
stress σ23 is depicted with respect to the time. One can observe a behavior similar to the
HT tensile tests, cf. Fig. 5.2, i.e. the linear increase of the stress in the elastic range, the
leveling of the stress due to hardening and a decrease with constant slope for t≥0.3 h,
which is attributed to the softening processes. The top right diagram presents the strains
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Figure 5.3: Simulation of a creep test under constant tensile load σ33 =200 MPa at 873 K.

depending on time. Due to the input, the overall strain ε23 increases with constant slope. As
one would expect, the elastic strain εel

23 shows the same qualitative behavior as the stress,
whereas the curve of the inelastic strain εin

23 increases in parallel with the total strain. The
backstress β23, which is depicted in the bottom left diagram with respect to the time, starts
from zero and increases until the saturation value β23≈46 MPa is reached. In addition,
the softening variable Γ is depicted with respect to the time in the bottom right diagram.
Similar to Fig. 5.3, the softening variable Γ decreases such that the occurrence of softening
is evident. Nevertheless due to the shorter test duration compared to the creep test, the
softening effect is not as strong as in the bottom right diagram of Fig. 5.3. Considering these
observations, the simulation results for the simple shear tests are deemed plausible.

In addition, the performance of the phase mixture model under cyclic loads is examined.
For this purpose, the same finite element model as shown in Fig. 5.2 is utilized, while we
prescribe a time-dependent displacement u3(t), in order to obtain the following strain path
with respect to one cycle:

ε33(t) =





|ε̇| t if 0 ≤ t < 0.25tend

2ε̂− |ε̇| t if 0.25tend ≤ t < 0.75tend

−4ε̂ + |ε̇| t if 0.75tend ≤ t≤ tend

. (5.157)

The time tend denotes the duration of one cycle. The triangular strain path described by
Eq. (5.157) results in the following function for the strain rate ε̇33(t):

ε̇33(t) =




|ε̇| if 0 ≤ t < 0.25tend

− |ε̇| if 0.25tend ≤ t < 0.75tend

|ε̇| if 0.75tend ≤ t≤ tend

. (5.158)
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Figure 5.4: Simulation of a simple shear test with prescribed displacement rate u̇2 =6.94×
10−6 mm s−1 at 873 K.

In order to study the influence of the strain and the temperature, two different strain
rates |ε̇| ={5.0×10−5 s−1, 1.0×10−3 s−1}, two strain amplitudes ε̂= 1

4
ε̇tend ={1.0×10−2,

5.0×10−2}, and two temperatures T = {673 K, 923 K} are taken into account. Note that
the strain rates and the temperatures mark the minimum and the maximum values under
consideration for the HT tensile tests discussed in Sect. 3.1, which is the reason to make
use of these representative values for this parameter study. Figures 5.5 and 5.6 present the
results of the simulation of two cycles with respect to the higher strain rate |ε̇| =1.0×10−3 s−1

and the lower strain rate |ε̇| =5.0×10−5 s−1, respectively. One can observe hysteresis effects,
which are typical for rate-dependent materials, cf. [74]. The diagrams on the left-hand side of
Fig. 5.5 depict the results for the small strain amplitude of ε̂=1%, while the diagrams on the
right-hand side illustrate the behavior for the higher strain amplitude of ε̂=5%. Whereas the
left diagrams are dominated by hardening processes such that the stress starts to level, an
almost constant stress value is observed in the right diagrams for large strains |ε33|>2%. It
is remarkable that the maximum stress level does not change throughout both cycles with
respect to the temperature 673 K, cf. the top diagrams in Fig. 5.5, while the maximum stress
level in the second cycle is slightly lower than the maximum stress level in the first cycle
for the temperature 923 K in the bottom left diagram. Note that this phenomenon is even
more pronounced at the top right diagram due to the large strain amplitude of ε̂=5%. This
decrease in the stress amplitude for strain controlled cyclic tests has often been observed for
tempered martensitic steels, cf. Sect. 1.1.1, and it is attributed to softening [10].
Comparing Fig. 5.5 to Fig. 5.6, the influence of the strain rate is demonstrated. As already
discussed in Sect. 3.1, a decrease in the strain rate results in a decrease of the maximum
stress level, which is more distinctive at higher temperatures. Furthermore, the maximum
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Figure 5.5: Simulation of two strain cycles with one finite element at absolute strain
rate |ε̇| =1.0×10−3 s−1. Hystereses for first (black) and second (red) cycle.
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107



5 Three-Dimensional Phase Mixture Model

stress decreases during both cycles to a higher extent at a temperature of 923 K compared
to a temperature of 673 K, cf. the bottom diagrams in Figs. 5.5 and 5.6. Finally, one can
conclude that the phase mixture model is able to account for the cyclic softening effect.
The influence of softening on the overall material behavior gets stronger with increasing
temperature and decreasing strain rate, what is also confirmed by the experimental findings
in Sect. 3.1.

Since the previous benchmarks have been passed successfully, we move on to more complex
stress and deformation states. Figures 5.7 and 5.8 summarize the simulation results for a sta-
tionary creep test of a thick hollow cylinder under the constant internal pressure p=80 MPa.
Stationary creep is modeled with the phase mixture model by neglecting hardening (ββ=0)
and softening (Γ =1). The bottom right picture of Fig. 5.7 illustrates the applied BCs. Note
that the displacements uz are set to zero at the horizontal edges, such that the conditions of
a plane strain state are fulfilled, i.e. ε̇zz =0. If one takes the simplifications ββ=0 and Γ =1
into account, the following restriction for the deviatoric stress σ′zz is obtained by means of
Eq. (5.32):

σ′zz = 0 ⇒ rσzz = σzz −
1

2
(σrr + σϕϕ) = 0 (5.159)

The fulfillment of Eq. (5.159) is a benchmark for the multiaxial implementation of the phase
mixture model. For this reason, Fig. 5.7 presents the contour plots for the residuum rσzz
taking different meshes into account. An axisymmetric 8-node quadrilateral element with
quadratic shape functions (CAX8) is used, and the results of three different regular meshes
with 1, 5, and 20 elements are compared. The results are evaluated after 50 h with respect to
the constant temperature T =873 K. The top left plot in Fig. 5.7 clearly shows that Eq. (5.159)
is not fulfilled for the coarsest mesh consisting of only one element. However, during the
h-refinement process, the residuum approaches zero and the quality of the approximation
is significantly improved, cf. the top right and the bottom left pictures in Fig. 5.7. For the
finest mesh with 20 elements, the maximum residuum accounts for ≈4×10−2 MPa. These
negligible deviations are observed near the edges of the elements, what is to be expected
due to boundary effects.

In addition, Fig. 5.8 provides the simulation results for different components of the stress
tensor with respect to the finest mesh containing 20 elements. Contour plots of the VON

MISES stress (top left), the radial stress (top right), the hoop stress (bottom left), and the
longitudinal stress (bottom right) are shown. The results agree qualitatively with [81]. As one
would expect, the VON MISES stress σvM (top left) attains its maximum at the inner radius
and reduces with increasing radius. For the radial stress, σrr (r=ri) =−p=−80 MPa and
σrr (r=ra) ≈0 MPa hold due to the BCs, cf. the top right diagram. The hoop stress σϕϕ
(bottom left) and the axial stress σzz (bottom right) are minimum at the inner radius and
increase with the radial coordinate.

So far, all benchmarks have been passed successfully such that the model is applied to
simulate a service-type TMF test. This procedure is often applied in literature, cf. [34,
155–158]. The simulation is based on strain and temperature profiles, which represent typical
sequences of warm and hot starts of power plants [34]. These profiles are depicted in the
top left diagram of Fig. 5.9 for several cycles with respect to the time. Since homogeneous
stress and strain states are simulated, we apply the same finite element model as used for
the HT tensile tests, cf. the sketch in the bottom right diagram of Fig. 5.9, while a spatially
homogeneous temperature field is prescribed over the entire elemental domain. The top right
diagram of Fig. 5.9 presents the stress and the backstress response of the phase mixture
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mechanical fatigue (TMF) test with one finite element. Strain and temperature
input according to [34].

model, whereas the results for the inelastic strain and the softening variable are shown in
the bottom diagrams on the left- and right-hand side, respectively. In [34], normalized stress
responses for the simulation and the TMF tests are reported, and it is found that the results
in Fig. 5.9 and the findings reported in [34] agree qualitatively. Furthermore, the bottom right
diagram of Fig. 5.9 clearly shows a decrease in the softening variable Γ during the cycles,
i.e. the material exhibits softening.
In the current section, the results of numerous finite element analyses have been discussed
in detail. Thereby, we have accounted for both uniaxial and multiaxial stress states. The
results of all benchmark problems under consideration indicate a correct implementation
of the three-dimensional phase mixture model into the FEM, such that the simulation of a
service-type TMF test concludes the current chapter. Nevertheless, the results of a TMF test
are hardly comparable to simulations of the mechanical behavior of power plant components
under realistic loading conditions, as described in Sect. 1.1.1, since the geometry of real
components is not accounted for and the loads are idealized. For these reasons, the next
chapter is dedicated to the simulation of the behavior of industrially relevant power plant
components under service-type loading conditions.
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6 Analysis of a Steam Turbine Rotor

As a last step, the proposed constitutive model is used to simulate the mechanical behavior
of a steam turbine rotor. Similar analyses have been presented in [58, 159]. In [58], a
unified model for viscoplasticity is used to simulate the cyclic thermo-mechanical behavior
of an industrial gas turbine rotor by means of an axisymmetric finite element model. The
thermo-mechanical analysis of the rotor is conducted in two steps. First, a heat transfer
analysis is used to determine the temperature distribution in the rotor. Therefore, the gas
temperatures are applied as thermal BCs, and the temperature distribution is obtained
based on the corresponding heat transfer coefficients. Afterwards, a structural analysis
is conducted with the temperature distribution as input. In [159], the results of a similar
decoupled thermo-mechanical analysis are given, using a three-dimensional finite element
model.
However, both publications provide insufficient or normalized information with respect to the
precise geometry of the rotors or the cyclic loading. For this reason, we set up a different
model and analyze an idealized steam turbine rotor with an inlet groove. The model is
also used in [16], where a sequence comprising a hot start, a holding stage, as well as a
cool-down is simulated. However, it is of crucial importance to take cold starts into account as
well because the loads caused by the temperature gradients are expected to be significantly
higher than the thermal loads during a hot start. In the thesis at hand, the calibration
of the phase mixture model has been extended to lower temperatures, which offers the
possibility to additionally consider cold starts. Therefore, a cold start and a subsequent hot
start are simulated. As in [58, 159], a decoupled thermo-mechanical analysis is conducted
since the required computational effort is significantly reduced compared to a fully coupled
thermo-mechanical analysis. Thus, the preceding thermal analysis (described in Sect. 6.1)
yields the temperature distribution, which serves as an input for the subsequent structural
analysis, cf. Sect. 6.2. Note that mutual interactions between the mechanical variables and
the temperature field are not accounted for due to the decoupling of the analyses.

6.1 Heat Transfer Analysis

This section discusses the BCs and the results of the heat transfer analysis using ABAQUS.
The geometry of the rotor and the finite element mesh are shown in Fig. 6.1 in the upper
pictures. We deploy the heat transfer element DCAX8, which is an axisymmetric quadrilateral
finite element with 8 nodes and quadratic shape functions. Note that the notch induces stress
and strain gradients, which should be accounted for while generating the mesh. Therefore,
the mesh is refined near the notch root, and several partitions have been used in order to
obtain a structured regular mesh. The steam temperature is prescribed depending on the
longitudinal coordinate z, as illustrated in the bottom left diagram in Fig. 6.1. As can be
seen, the steam temperature varies linearly with respect to the longitudinal coordinate and
is constant near the notch, i.e. T (L1≤z≤L2) =T2. The temperatures at the left and the
right edge of the rotor are equal, i.e. T (z=0) =T (z=L3) =T1. Furthermore, changes in
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Figure 6.1: Geometry, mesh, and loads for the heat transfer analysis of a steam turbine rotor
with an inlet groove based on [16].

the steam parameters are taken into account by different heat transfer coefficients κth
1 and

κth
2 , which are dependent on the steam temperatures.

The changes in the steam temperatures T1 and T2 with respect to time are shown in the
bottom right diagram of Fig. 6.1. Due to the complex thermo-mechanical loads in power
plants, specific information in literature on the temperature fields during the start-ups and the
shut-downs is rare and varies strongly. According to [25], start-ups are commonly subdivided
into three categories named cold, warm, and hot starts. For a cold start, the time period
after the previous shut-down exceeds approximately three days or the maximum pre-start
temperature of the components does not exceed 393 K–433 K. In [26], similar values are
given with respect to the steam temperatures. Before a hot start, the outage should not take
longer than 8 h–10 h, and all intermediate start-ups are referred to as warm start-ups [25].
Therefore, pre-start steam temperatures T1(t=0 h) =433 K and T2(t=0 h) =523 K are
chosen. After heating up to a maximum temperature of 873 K, the steam temperature is held
constant over 23 h. Afterwards, it is decreased to 623 K–673 K, and the rotor is restarted
after a holding time of 12 h. Once more, the temperature is held constant over 23 h before
the final cool-down.
Figure 6.2 presents the results of the transient thermal analysis. The temperatures are
evaluated at two specific points: point A is located at the notch root, while point B is
positioned on the axis of rotation. Both temperatures are depicted with respect to the time,
whereas the results of the cold start are depicted at the left-hand side. The corresponding
results of the hot start are shown at the right-hand side. In addition, the points with maximum
absolute temperature differences |TA − TB| during the warm-up and the cool-down are
indicated by vertical lines, and the corresponding temperature distributions are visualized by
means of contour plots. The largest temperature gradients are observed during the start-ups,
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Figure 6.2: Temperature distributions within the rotor and the temperatures TA and TB in
points A and B vs time. Cold start (left) and hot start (right).

which is in agreement to the findings in [58]. Here, the cold start induces a significantly higher
temperature difference (≈227 K) than the hot start (≈166 K), which was to be expected.
Since the rotor is heated by the steam, the temperature in point A at the surface is higher
than the temperature in point B during the heating-up. However, during the cool-down, the
temperature in point A decreases faster than the temperature in point B such that the internal
temperatures are higher than the temperatures at the surface. During the cool-down, the
maximum absolute temperature difference is relatively low (≈72 K). Considering the holding
stages, the temperature difference is even lower (≈27 K).

6.2 Structural Analysis

In a next step, the obtained temperature fields serve as an input for the subsequent structural
analysis, whereby we employ the continuum element CAX8, which is also an axisymmetric
quadrilateral finite element with 8 nodes and quadratic shape functions. The upper pictures
in Fig. 6.3 illustrate once more the geometry of the rotor and the finite element mesh. Note
that we can reuse the mesh from the heat transfer analysis, cf. Fig. 6.1, since the employed
elements DCAX8 and CAX8 are 8-node quadrilateral finite elements with quadratic shape
functions, i.e. the description of the geometry and the field of unknowns is identical in both
cases. Furthermore, the mechanical boundary conditions are illustrated in the bottom left
diagram in Fig. 6.3. Due to the rotational symmetry and in order to avoid rigid body motions,
the displacements normal to the edges r=0 and z=0 are set to zero. On the upper edge
(marked in red), the steam pressure p(t) is applied. In addition, the rotation along the z axis
is prescribed based on the frequency f(t). The steam pressure as well as the frequency are
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Figure 6.3: Geometry, mesh, and loads for the structural analysis of a steam turbine rotor
with an inlet groove based on [16].

time-dependent, which is depicted in the bottom right diagram in Fig. 6.3
Figure 6.4 summarizes the results for the mechanical strains and stresses in point A with
respect to the unit orthogonal vectors n, et, and eϕ, which are depicted in the bottom right
diagram in Fig. 6.4 and represent the principal directions of both the mechanical strain tensor
and the stress tensor [16]. The strains are normalized with respect to the absolute minimum
tangential strain |εttmin

| and the corresponding results are shown at the top of Fig. 6.4. At the
bottom of the same figure, the stresses (normalized with respect to the absolute minimum
tangential stress |σttmin

|) are depicted with respect to time. In analogy to the previous figure,
the results of the cold and the hot start are located at the left-hand and the right-hand side,
respectively.
One should note that the normal stress can be evaluated based on the steam pressure,
i.e. σnn=−p. During the warm-up, i.e. with respect to the points t≈6 h and t≈44.5 h, the
rotor is compressed, and the tangential and circumferential stresses and strains reach the
corresponding minima. It is apparent that the highest absolute tangential and circumferential
stresses and strains occur during the cold start. Furthermore, we can observe a steady
increase in the tangential strain, which is attributed to creep during the holding stages.
Simultaneously, the tangential and circumferential stresses decrease steadily, thus revealing
stress relaxation. During the cool-down, tangential and circumferential stresses and strains
are positive, such that the rotor is subjected to tension. Generally speaking, the stresses
and the strains during the holding stages and the cool-down are only slightly affected by the
different start-up procedures.
Since the tangential stress and the corresponding strain exhibit the highest absolute values
throughout both cycles, cf. Fig. 6.4, these components are analyzed in detail. Figure 6.5
illustrates the normalized tangential strain and the corresponding stress in point A depending
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Figure 6.4: Normalized mechanical strains (top) and stresses (bottom) in point A vs time.
Cold start (left) and hot start (right).

on the time in the upper diagrams, whereas the two diagrams at the bottom show the results
for the normalized tangential stress depending on the normalized tangential strain. Specific
points are marked in red and numbered in order to illustrate the different stages during
the temperature cycle, cf. Fig. 6.2. The path from point 1 to point 2 during the cold start
(and 6–7 during the hot start) corresponds to the warm-up with increasing temperature
difference TA−TB. Here, the tangential strain and stress decrease such that the rotor is
compressed. The following line segment (2–3 or 7–8, respectively) describes the warm-up
with a decreasing temperature difference. Thus, the absolute strain and stress values are
reduced due to the lower temperature differences. Thereafter, the holding stage, where the
creep and relaxation processes are triggered, follows, i.e. the strain increases steadily, while
the stress decreases simultaneously between the points 3–4 or 8–9, respectively. Finally,
the points 4–5 and 9–10 mark the first stage of the cool-down. The temperature difference
decreases up to TA−TB≈−72 K and tensile stresses and strains occur. The last range (5–6
and 10–11) refers to the cool-down and the holding stage with low absolute temperature
differences |TA−TB|.
In the following, we focus on the normal and circumferential stresses and strains. The upper
diagrams of Fig. 6.6 provide information on the dependence of the normalized circumferential
and normal strains on the normalized tangential strain in point A. It becomes obvious that the
ratios of the principal strains are not constant during the cycles such that the loading in point A
is clearly nonproportional [160]. However, one should note that the principal directions n,
et, and eϕ are fixed. The diagrams at the bottom of Fig. 6.6 present the hysteresis loops
for the tangential and the circumferential components. This reveals that the circumferential
components have a significant influence compared to the tangential components and cannot
be neglected when evaluating the mechanical work dissipated during the cycles [16].
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Figure 6.5: Normalized tangential strain and stress in point A vs time (top). Normalized
tangential stress vs normalized tangential strain in point A (bottom).
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Figure 6.6: Normalized circumferential and normal strains vs tangential strain (top). Normal-
ized tangential and circumferential stresses vs corresponding strains (bottom).

116



6.2 Structural Analysis

The findings in this section are in good agreement with the results for a hot start published
in [16]. In order to extend the applicability of the phase mixture model, also data from tests
at lower temperatures such as 673 K has been considered during the calibration in Sect. 4.2,
thus allowing for the simulation of cold starts as well. The presented results highlight
the differences between the two starting procedures and the influence of the temperature
gradients on the stresses and strains. Furthermore, the computed stress and strain tensors
could be used in a subsequent analysis to evaluate the creep and fatigue damage and to
predict the lifetime of power plant components [16]. In the current thesis, a rotor with relatively
simple geometry subjected to idealized thermo-mechanical loads is investigated, due to the
lack of precise data with respect to the geometry and the loads of real parts in the available
literature. Therefore, future studies should focus on the application of the phase mixture
model for the analysis of power plant components under service-type loads, which requires
the publication of further experimental data concerning the thermo-mechanical loads on
the components, such as the resulting temperature distribution on the surface of the steam
turbine rotors.
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7 Summary and Outlook

The thesis at hand presents a framework for modeling the mechanical behavior of tempered
martensitic steels at elevated temperatures. In order to demonstrate the applicability of the
proposed methods, we focused on the alloy X20CrMoV12-1 as a typical representative of
tempered martensitic steels. Due to their exceptional mechanical and thermal properties,
these steels are well-established for applications in power plants at elevated temperatures up
to T ≈903 K. In addition to the thermal loads, the components are subjected to creep-fatigue
loads because of frequent start and stop operations of power plants. Furthermore, tempered
martensitic steels suffer from softening effects under constant and cyclic loads, which should
be accounted for by a constitutive model.
To model the mechanical behavior of tempered martensitic steels, several models have been
proposed during the last years, cf. the discussion in Sect. 1.2. Micromechanical models
are based on parameters which can be directly and explicitly related to microstructural
quantities. These models demand for expensive and time-consuming observations with
microscopes in order to generate the data required for the calibration. To avoid the conduction
of these observations, one can employ macromechanical models, which describe the material
behavior with respect to the macroscale and are calibrated based on macroscopic material
tests. Nevertheless, most macromechanical models introduce a large number of parameters,
which complicates the calibration procedure. Furthermore, it is often difficult to provide
physical interpretations for all variables. As an alternative to the proposed models, the
current thesis focuses on a phase mixture model to simulate the mechanical behavior of
tempered martensitic steels.
Originally, the phase mixture model is closely related to the microscale, and thus the rate-
dependent inelastic behavior of an alloy, including the softening and the hardening processes,
is described using an iso-strain approach with a soft and a hard phase. The hard phase
represents the subgrain boundaries and areas of high dislocation density, while the soft
phase accounts for the interior of the subgrains and regions with a low dislocation density. It
is assumed that the total strains in both phases are equal. Additionally, the model postulates
that the individual constituents exhibit an identical elastic behavior, while their inelastic
behavior differs significantly. To allow for the calibration based on macroscopic material tests
and to simplify the identification of the parameters, a backstress of ARMSTRONG-FREDERICK-
type and a softening variable are introduced as internal variables. Note that the backstress
represents the hardening behavior, while the softening variable is related to the volume
fraction of the hard constituent, which is assumed to decrease during deformation. After all,
one obtains a macromechanical phase mixture model with a microscopic foundation.
The current thesis describes the phase mixture model, the calibration procedure, and the
implementation into the FEM in seven chapters. In the first chapter, the operating conditions
in power plants, the mechanical properties and the microstructure of tempered martensitic
steels were introduced. Furthermore, several models for tempered martensitic steels were
discussed, and an outline of the thesis was given.
Chapter 2 focused on the theoretical foundations for the conducted research. In the first
section, the governing equations of continuum mechanics, i.e. kinematics, kinetics, the
balance laws, and the constitutive equations, were presented, while emphasis was placed
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7 Summary and Outlook

on the description of the inelastic material behavior. Section 2.2 introduced the finite element
method, starting with the principle of virtual work. Afterwards, the spatial discretization into
finite elements and the resulting system of DAEs were described.
The next chapter, cf. Chapt. 3, discussed different experimental investigations conducted on
a multitude of specimens made of the alloy X20CrMoV12-1. In the current literature, only the
results of some creep and cyclic tests with respect to the steel X20CrMoV12-1 are available,
cf. [10, 13]. In order to extend this database for the calibration of the phase mixture model,
numerous HT tensile and creep tests were conduced, which allows for a systematic analysis
of the mechanical behavior of the alloy under consideration. The HT tensile tests were
controlled by the strain rate under constant temperature levels, whereas temperatures and
strain rates in the ranges 673 K≤T ≤923 K and 5.0×10−5 s−1≤ ε̇≤1.0×10−3 s−1, respec-
tively, were taken into account. The test results highlighted the strong influence of the strain
rate on the overall mechanical behavior. Furthermore, the stress-strain curves exhibited a
slight, but constant decrease in the stress for the temperatures 823 K≤T ≤923 K, which was
attributed to the softening of the material. Since the phase mixture model aims to account
for the softening processes, but does not consider macroscopic necking, it is essential to
clearly distinguish the softening phenomenon from necking. For this purpose, a second
series of HT tensile tests was conducted, i.e. a tensile test was performed several times at
a temperature of 923 K under a strain rate of 5.0×10−5 s−1, while the test was terminated
at different strain levels in order to examine the onset of necking. Using different methods
of investigation (visual examination of the specimens’ shape, the hypothesis of volume
conservation during inelastic deformation, tactile measurement of the specimens’ shape with
a profilometer), one could conclude that necking started at a strain level of ε>15%. Thus, it
was found that softening processes determine the material behavior over a wide strain range
of 2%<ε<15% even before the onset of necking. In addition to the HT tensile tests, three
creep tests at a constant temperature of T =873 K with respect to the engineering stress
levels P = {100 MPa, 150 MPa} were conducted. The creep curves exhibited an extended
primary and tertiary creep stage, while a secondary creep stage with a constant strain rate
was not observed, which is typical for tempered martensitic steels.
Afterwards, the one-dimensional phase mixture model was presented in Chapt. 4. The
governing equations were derived starting with the micromechanical formulation of the model.
In a next step, the backstress and the softening variable were introduced into the governing
equations, and a coupled system of three evolution equations with respect to the inelastic
strain, the backstress, and the softening variable was obtained. Thereafter, a new complex
calibration procedure for the model was presented in Sect. 4.2, which was based on the
experimental results discussed in Chapt. 3 and additional results of creep tests from literature.
First, the elastic material parameters were determined using the stress-strain curves of the HT
tensile tests. The subsequent calibration of the inelastic material behavior, the softening and
the hardening range was based on the definition of an initial and a steady state with respect
to the HT tensile tests and the creep tests. Using MATLAB, the material parameters were
determined partly manually and partly automatically by means of mathematical optimization.
To verify the calibrated model, the HT tensile tests as well as additional creep tests were
simulated, which demonstrated that the phase mixture model was able to account for the
elastic material behavior as well as the hardening regime and the softening range. The model
provided accurate approximations of the experimental data for wide ranges of the temperature
and the stress, i.e. 673 K≤T ≤923 K and 100 MPa≤σ≤700 MPa, respectively. Thus, the
range of applicability of the phase mixture model was significantly extended compared
to [42], where the model is calibrated based on creep tests for relatively narrow ranges
of stress and temperature (150 MPa≤σ≤200 MPa, 773 K≤T ≤873 K). Furthermore, the
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verification of the calibrated model revealed that the model should only be applied to strain
rates Ḣ >10−7 s−1, which was due to the fact that the calibration was mainly based on
material tests with respect to higher strain rates. After all, the one-dimensional phase mixture
model in the current calibration requires only 14 material parameters for simulations with
respect to the wide ranges of stress and temperature, as indicated above. This highlights
an important advantage of the presented phase mixture model, i.e. the low number of
parameters used for simulations with respect to wide ranges of stress and temperature.
Note that the majority of the proposed models for tempered martensitic steels includes 20
parameters and more, as already discussed in Sect. 4.3.
In Chapt. 5, the phase mixture model was extended to multiaxial stress and deformation
states. The derivation of the governing equations in Sect. 5.1 was executed analogously to
the one-dimensional model, cf. Chapt. 4, while introducing the corresponding stress and
strain tensors as well as equivalent VON MISES quantities and the backstress tensor. Similar
to the one-dimensional model, the derivations resulted in a coupled system of three evolution
equations with respect to the inelastic strain tensor, the backstress tensor, and the scalar
softening variable. Since the thermodynamic consistency of the three-dimensional model is
only stated in [42] without giving a proof, the current thesis demonstrates the thermodynamic
consistency of the three-dimensional phase mixture model based on the CLAUSIUS-PLANCK

inequality, cf. Sect. 5.2. The derivation was restricted to stationary temperatures, which was
deemed adequate due to the relatively slow temperature changes during the start-ups and
shut-downs of power plants. In a next step, the three-dimensional phase mixture model was
implemented into the finite element code ABAQUS using a UMAT subroutine, cf. Sect. 5.3.
So far, the implementation of the phase mixture model into the FEM has not been discussed
in literature. Therefore, the thesis at hand describes the implementation of the model in detail,
using the backward EULER method for the implicit time integration of the evolution equations.
The application of the backward EULER method resulted in a nonlinear system of equations,
which was solved by means of the NEWTON-RAPHSON method. Furthermore, the consistent
tangent operator was computed based on the inverse JACOBIan matrix of the NEWTON-
RAPHSON method with respect to the converged state. In order to verify the implementation
of the phase mixture model into the FEM, the results of various finite element analyses were
presented. Since the HT tensile tests, a creep test, a simple shear test, cyclic tests, and
a creep test of a thick hollow cylinder were simulated, both uniaxial and multiaxial stress
and deformation states were taken into account. All benchmarks were passed successfully,
which is why the phase mixture model was applied to simulate a service-type TMF test. The
simulation was based on strain and temperature profiles, which represent typical sequences
of warm and hot starts of power plants. It was found that the simulation results agreed
qualitatively with the corresponding normalized results from literature.
As a final step of the proposed framework, the application of the phase mixture model for
the simulation of an idealized steam turbine rotor was discussed in Chapt. 6. Although
finite element analyses have already been presented in literature, cf. [16, 58, 159], the
influence of the different start-up procedures has not been taken into account yet. For
this reason, a cold start as well as a subsequent hot start were simulated by means of a
thermo-mechanical analysis. Within the preceding heat transfer analysis, the instationary
steam temperature and the heat transfer coefficients were prescribed, and the resulting
temperature distribution in the rotor was computed. It was found that the largest temperature
differences occurred during the cold start. In a next step, the obtained temperature fields
served as input for the subsequent structural analysis. As expected, the results showed that
the highest absolute stresses and strains occurred during the cold start. Furthermore, creep
and stress relaxation were observed during the holding stages of the two cycles. After all,
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the results highlighted the differences in the temperature, stress, and strain fields depending
on the start-up procedure under consideration, i.e. a cold or a hot start. It became obvious
that it is crucial to take cold starts into account simulating the mechanical behavior of power
plant components. The computed stress and strain tensors could be used in a subsequent
analysis to evaluate the creep and fatigue damage and to predict the lifetime of power plant
components.
There are many ways to refine the proposed framework for tempered martensitic steels. In
its current formulation, the phase mixture model accounts for temperature changes with
respect to the time and for the influence of the temperature on the material parameters.
However, spatial temperature gradients are not taken into account, which is one aspect
that could be included in future applications. In addition, the proof of the thermodynamic
consistency of the model is restricted to stationary temperatures. Thus, one should develop
a fully coupled thermo-mechanical model, which is thermodynamically consistent, i.e. the
CLAUSIUS-PLANCK inequality should be fulfilled unconditionally. Further research might also
investigate the modeling of the softening processes in detail. Note that the evolution equation
for the softening variable, cf. Eq. (4.27), is postulated and restricted to proportional loading.
One should deduce an evolution equation closely connected to the microstructural softening
processes, similar to the approach presented in [127], which is based on the dislocation
density and is also applicable to nonproportional loads. In its current form, the phase mixture
model accounts for softening processes due to the coarsening of subgrains by including
only two phases – the soft phase, which represents the interior of the subgrains, and the
hard phase with respect to the subgrain boundaries. Nevertheless, it has been shown in [13]
that the macroscopic softening under creep conditions is also caused by the coarsening of
carbides on the microstructural level. In order to account for this phenomenon, the phase
mixture model can be refined by extending the model to three or more constituents.
Additionally, one could replace the employed iso-strain concept, cf. Eq. (5.1), by more
sophisticated approaches. For example, the interaction of the phases in the mixture could
be modeled using the continuum theory of mixtures, cf. [85]. Moreover, models have been
presented, which are neither based on the iso-strain (VOIGT) model nor on the iso-stress
(REUSS) concept. Instead, these models provide results that lie between the VOIGT-REUSS

bounds, e.g. the multiphase creep model presented in [125].
Although cyclic tests have been taken into account in the current work, we mainly focused on
tests under monotonic loads, e.g. the HT tensile tests or the creep tests. But power plant
components are also subjected to cyclic loads, as discussed in Sect. 1.1.1, and therefore a
thorough examination of the simulation of fatigue tests is recommended. In cases where the
presented phase mixture model does not provide accurate predictions of the fatigue behavior,
one should consider a refinement of the model itself or a new calibration of the existing model
based on monotonic as well as cyclic tests. Furthermore, additional creep tests and HT
tensile tests with respect to lower strain rates should be conducted in order to extend the
range of applicability of the phase mixture model, which is – up to now – restricted to higher
strain rates Ḣ >10−7 s−1. Finally, it is suggested to automatize the calibration procedure. In
its current form, the calibration is conducted partly manually, such that the recalibration of
the model including additional (fatigue) tests would be a cumbersome process. One should
try to set up a general optimization function, which allows for the automatic determination of
the material parameters.
The calibrated one-dimensional model is extended to multiaxial stress and deformation
states in a straightforward way, i.e. by replacing scalar variables such as the stress, the
strain, the strain rate, or the backstress by tensors and the introduction of equivalent VON

MISES quantities with respect to the corresponding tensors. Based on this procedure, the
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three-dimensional phase mixture model makes use of the material parameters determined
by means of the one-dimensional model. In order to verify this calibrated three-dimensional
model, additional experimental results are required, i.e. different material tests considering
multiaxial and nonproportional loads should be conducted.
Furthermore, the phase mixture model should be used to analyze the mechanical behavior
of complex power plant components under service-type loads. Since also cyclic loads
should be taken into account, a fine resolution of the temporal scale is required, which
results in high computational effort, considering also complicated geometries and BCs. For
this reason, one should examine the numerical performance and efficiency of the current
numerical implementation. If the computational costs are too high, the (currently applied)
full NEWTON-RAPHSON method could be replaced by less expensive approaches, e.g. the
discretized or modified NEWTON-RAPHSON methods, cf. [103]. However, it is well known that
the rate of convergence often deteriorates, which should be checked carefully when applying
other iterative methods.
Only in cases where other iteration approaches do not yield satisfying results in combination
with implicit integration methods, one could consider the use of explicit integration methods
instead of a backward EULER method. As already discussed in Sect. 5.3.1, the discrete
constitutive equations are considerably easier to derive for explicit integration methods
compared to implicit methods, and the solution of a nonlinear system of equations is not
necessary. However, it is well known that explicit methods are only conditionally stable.
Nevertheless, automatic time stepping could be implemented considering a critical time step
size, which is determined based on the COURANT-FRIEDRICHS-LEWY condition [147]. As
one example, an explicit integration method is combined with automatic time stepping and
error control in [161]. Future research could examine whether computational costs can be
reduced by implementing the phase mixture model using explicit integration methods with
automatic time stepping.
The possible improvements of the implementation of the phase mixture model mentioned
above are proposed having the overall goal of this thesis in mind, i.e. enabling the in-service
assessment of power plant components, such that one can deduce measures to improve
the design and extend the lifetime of the components. In order to simulate the mechanical
behavior of power plant components under service-type loads, one should try to obtain
additional data concerning the exact geometry of the components as well as the thermal and
mechanical loads during the operational cycles. Using an axisymmetric finite element model,
cf. Chapt. 6 and [58], is an acceptable simplification, but it would be beneficial to employ
a three-dimensional model to account for the influence of the rotor blades, as depicted in
Fig. 1.1. The refined phase mixture model could be used to determine the stress and strain
fields during the different cycles in an efficient way. Based on these results, one could
evaluate the creep and fatigue damage, thus laying the foundations for a precise assessment
of the lifetime of the individual components.

123





Bibliography

[1] Guo, K. W. “Current Issues of Fossil Fuels and Their Future Prospects”. In: Fossil Fuels:
Sources, Environmental Concerns and Waste Management Practices. Ed. by Kumar, R. Nova
Science Publishers, Inc., 2013.

[2] Pedraza, J. M. Nuclear Power: Current and Future Role in the World Electricity Generation.
Nova Science Publishers, Inc., 2012.

[3] Breeze, P. A. Power Generation Technologies. Newnes, 2014.

[4] Dincer, I. and Zamfirescu, C. Advanced Power Generation Systems. Elsevier, 2014.

[5] Masuyama, F. “Advances in Physical Metallurgy and Processing of Steels. History of Power
Plants and Progress in Heat Resistant Steels”. In: The Iron and Steel Institute of Japan
International 41(6), 2001, pp. 612–625. DOI: 10.2355/isijinternational.41.612.

[6] Fournier, B., Sauzay, M., Mottot, M., Brillet, H., Monnet, I., and Pineau, A. “Experimentally
Based Modelling of Cyclically Induced Softening in a Martensitic Steel at High Temperature”.
In: ECCC Creep Conference. Ed. by Shibli, I., Holdsworth, S., and Merckling, G. DES tech
publications, 2005, pp. 649–661.

[7] Fournier, B., Sauzay, M., Renault, A., Barcelo, F., and Pineau, A. “Microstructural evolutions
and cyclic softening of 9%Cr martensitic steels”. In: Journal of Nuclear Materials 386-388,
2009, pp. 71–74. DOI: 10.1016/j.jnucmat.2008.12.061.

[8] Fournier, B., Dalle, F., Sauzay, M., Longour, J., Salvi, M., Caës, C., Tournié, I., Giroux, P.-F.,
and Kim, S.-H. “Comparison of various 9–12%Cr steels under fatigue and creep-fatigue
loadings at high temperature”. In: Materials Science and Engineering: A 528(22–23), 2011,
pp. 6934–6945. DOI: 10.1016/j.msea.2011.05.046.

[9] Fournier, B., Salvi, M., Dalle, F., Carlan, Y. de, Caës, C., Sauzay, M., and Pineau, A. “Lifetime
prediction of 9–12% Cr martensitic steels subjected to creep–fatigue at high temperature”.
In: International Journal of Fatigue 32(6), 2010, pp. 971–978. DOI: 10.1016/j.ijfatigue.
2009.10.017.

[10] Röttger, D. R. “Untersuchungen zum Wechselverformungs- und Zeitstandverhalten der Stähle
X20CrMoV121 und X10CrMoVNb91”. PhD thesis. Essen: Universität GH Essen, 1997.

[11] siemens.com/gasturbines. Siemens SGT-8000H series. 2016. URL: http://www.energy.
siemens.com/hq/pool/hq/power-generation/gas-turbines/SGT6-8000H/downloads/
SGT6-8000H-Poster-final-141016.pdf (visited on 07/20/2016).

[12] stern.de. Turbine - Technik VIEW Fotocommunity. 2016. URL: http://view.stern.de/
de/picture/2914112/schwarz-weiss-kraftwerk-krieg-technikmuseum-turbine-
peenemuende-turbine-1920.jpg (visited on 07/20/2016).

[13] Straub, S. “Verformungsverhalten und Mikrostruktur warmfester martensitischer 12%-Chrom-
stähle”. PhD thesis. Erlangen-Nürnberg: Friedrich-Alexander-Universität, 1995.

[14] Fournier, B., Sauzay, M., and Pineau, A. “Micromechanical model of the high temperature
cyclic behavior of 9–12%Cr martensitic steels”. In: International Journal of Plasticity 27(11),
2011, pp. 1803–1816. DOI: 10.1016/j.ijplas.2011.05.007.

125

https://doi.org/10.2355/isijinternational.41.612
https://doi.org/10.1016/j.jnucmat.2008.12.061
https://doi.org/10.1016/j.msea.2011.05.046
https://doi.org/10.1016/j.ijfatigue.2009.10.017
https://doi.org/10.1016/j.ijfatigue.2009.10.017
http://www.energy.siemens.com/hq/pool/hq/power-generation/gas-turbines/SGT6-8000H/downloads/SGT6-8000H-Poster-final-141016.pdf
http://www.energy.siemens.com/hq/pool/hq/power-generation/gas-turbines/SGT6-8000H/downloads/SGT6-8000H-Poster-final-141016.pdf
http://www.energy.siemens.com/hq/pool/hq/power-generation/gas-turbines/SGT6-8000H/downloads/SGT6-8000H-Poster-final-141016.pdf
http://view.stern.de/de/picture/2914112/schwarz-weiss-kraftwerk-krieg-technikmuseum-turbine-peenemuende-turbine-1920.jpg
http://view.stern.de/de/picture/2914112/schwarz-weiss-kraftwerk-krieg-technikmuseum-turbine-peenemuende-turbine-1920.jpg
http://view.stern.de/de/picture/2914112/schwarz-weiss-kraftwerk-krieg-technikmuseum-turbine-peenemuende-turbine-1920.jpg
https://doi.org/10.1016/j.ijplas.2011.05.007


Bibliography

[15] Pétry, C. and Lindet, G. “Modelling creep behaviour and failure of 9Cr–0.5Mo–1.8W–VNb
steel”. In: International Journal of Pressure Vessels and Piping 86(8), 2009, pp. 486–494.
DOI: 10.1016/j.ijpvp.2009.03.006.

[16] Naumenko, K., Kutschke, A., Kostenko, Y., and Rudolf, T. “Multi-axial thermo-mechanical anal-
ysis of power plant components from 9–12%Cr steels at high temperature”. In: Engineering
Fracture Mechanics 78(8), 2011, pp. 1657–1668. DOI: 10.1016/j.engfracmech.2010.12.
002.

[17] Götz, G. “Langzeitentwicklung der Mikrostruktur neuer 9-12% Chromstähle für den Einsatz in
Kraftwerken”. PhD thesis. Erlangen-Nürnberg: Friedrich-Alexander-Universität, 2004. URN:
urn:nbn:de:bvb:29-opus-678.

[18] DIN EN 10027-2:2015. Designation systems for steels. Part 2: Numerical system. July 2015.

[19] Polcik, P. “Modellierung des Verformungsverhaltens der warmfesten 9-12% Chromstähle im
Temperaturbereich von 550-650◦C”. PhD thesis. Erlangen-Nürnberg: Friedrich-Alexander-
Universität, 1998.

[20] Hosseini, E., Kalyanasundaram, V., Li, X., and Holdsworth, S. R. “Effect of prior deformation
on the subsequent creep and anelastic recovery behaviour of an advanced martensitic steel”.
In: Materials Science and Engineering: A 717, 2018, pp. 68–77. DOI: 10.1016/j.msea.2018.
01.049.

[21] Pickard, A. and Meinecke, G. The Future Role of Fossil Power Generation. Siemens AG
Energy, 2011. URL: http://www.energy.siemens.com/ru/pool/hq/energy-topics/
technical-papers/The%20Future%20Role%20of%20Fossil%20Power%20Generation.
pdf (visited on 03/05/2018).

[22] Miettinen, J. and Howe, A. A. “Estimation of liquidus temperatures for steels using thermody-
namic approach”. In: Ironmaking & Steelmaking 27(3), 2000, pp. 212–227. DOI: 10.1179/
030192300677516.

[23] Stahlschlüssel. Verlag Stahlschlüssel Wegst GmbH. Marbach, 2004.

[24] Frost, H. J. and Ashby, M. F. Deformation-Mechanism Maps: The Plasticity and Creep of
Metals and Ceramics. Pergamon Press, 1982.

[25] Leîzerovich, A. S. Steam Turbines for Modern Fossil Fuel Power Plants. Fairmont Press,
2008.

[26] Strauß, K. Kraftwerkstechnik zur Nutzung fossiler, nuklearer und regenerativer Energiequellen.
Springer Berlin Heidelberg, 2009. DOI: 10.1007/978-3-642-01431-4.

[27] Czichos, H., Skrotzki, B., and Simon, F.-G. Das Ingenieurwissen: Werkstoffe. Springer Berlin
Heidelberg, 2014. DOI: 10.1007/978-3-642-41126-7.

[28] Weißbach, W., Dahms, M., and Jaroschek, C. Werkstoffkunde. Springer Fachmedien Wies-
baden, 2015. DOI: 10.1007/978-3-658-03919-6.

[29] Priester, L. Grain Boundaries. From Theory to Engineering. Sprigner Science+Business
Media Dordrecht, 2013. DOI: 10.1007/978-94-007-4969-6.

[30] Berns, H. and Theisen, W. Eisenwerkstoffe - Stahl und Gusseisen. Springer Berlin Heidelberg,
2008. DOI: 10.1007/978-3-540-79957-3.

[31] Giroux, P. F., Dalle, F., Sauzay, M., Malaplate, J., Fournier, B., and Gourgues-Lorenzon,
A. F. “Mechanical and microstructural stability of P92 steel under uniaxial tension at high
temperature”. In: Materials Science and Engineering: A 527(16-17), 2010, pp. 3984–3993.
DOI: 10.1016/j.msea.2010.03.001.

126

https://doi.org/10.1016/j.ijpvp.2009.03.006
https://doi.org/10.1016/j.engfracmech.2010.12.002
https://doi.org/10.1016/j.engfracmech.2010.12.002
http://www.nbn-resolving.org/urn:nbn:de:bvb:29-opus-678
https://doi.org/10.1016/j.msea.2018.01.049
https://doi.org/10.1016/j.msea.2018.01.049
http://www.energy.siemens.com/ru/pool/hq/energy-topics/technical-papers/The%20Future%20Role%20of%20Fossil%20Power%20Generation.pdf
http://www.energy.siemens.com/ru/pool/hq/energy-topics/technical-papers/The%20Future%20Role%20of%20Fossil%20Power%20Generation.pdf
http://www.energy.siemens.com/ru/pool/hq/energy-topics/technical-papers/The%20Future%20Role%20of%20Fossil%20Power%20Generation.pdf
https://doi.org/10.1179/030192300677516
https://doi.org/10.1179/030192300677516
https://doi.org/10.1007/978-3-642-01431-4
https://doi.org/10.1007/978-3-642-41126-7
https://doi.org/10.1007/978-3-658-03919-6
https://doi.org/10.1007/978-94-007-4969-6
https://doi.org/10.1007/978-3-540-79957-3
https://doi.org/10.1016/j.msea.2010.03.001


[32] Wang, L., Li, M., and Almer, J. “In situ characterization of Grade 92 steel during tensile
deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering”.
In: Journal of Nuclear Materials 440(1-3), 2013, pp. 81–90. DOI: 10.1016/j.jnucmat.2013.
04.063.

[33] Alsagabi, S., Shrestha, T., and Charit, I. “High temperature tensile deformation behavior
of Grade 92 steel”. In: Journal of Nuclear Materials 453(1-3), 2014, pp. 151–157. DOI:
10.1016/j.jnucmat.2014.06.033.

[34] Kostenko, Y., Almstedt, H., Naumenko, K., Linn, S., and Scholz, A. “Robust methods for
creep fatigue analysis of power plant components under cyclic transient thermal loading”. In:
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of
Mechanical Engineers. 2013, V05BT25A040. DOI: 10.1115/GT2013-95680.

[35] Chilukuru, H., Durst, K., Wadekar, S., Schwienheer, M., Scholz, A., Berger, C., Mayer, K. H.,
and Blum, W. “Coarsening of precipitates and degradation of creep resistance in tempered
martensite steels”. In: Materials Science and Engineering: A 510-511, 2009, pp. 81–87. DOI:
10.1016/j.msea.2008.04.088.

[36] Agamennone, R., Blum, W., Gupta, C., and Chakravartty, J. K. “Evolution of microstructure
and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels”.
In: Acta Materialia 54(11), 2006, pp. 3003–3014. DOI: 10.1016/j.actamat.2006.02.038.

[37] Orlová, A., Buršík, J., Kuchřoavá, K., and Sklenička, V. “Microstructural development during
high temperature creep of 9% Cr steel”. In: Materials Science and Engineering: A 245, 1998,
pp. 39–48. DOI: 10.1016/S0921-5093(97)00708-9.

[38] Fournier, B., Sauzay, M., Barcelo, F., Rauch, E., Renault, A., Cozzika, T., Dupuy, L., and
Pineau, A. “Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part II. Mi-
crostructural Evolutions”. In: Metallurgical and Materials Transactions A 40(2), 2009, pp. 330–
341. DOI: 10.1007/s11661-008-9687-y.

[39] Blum, W. “Mechanisms of creep deformation in steel”. In: Creep-Resistant Steels. Ed. by
Abe, F., Kern, T.-U., and Viswanathan, R. Woodhead Publishing Limited, 2008, pp. 365–402.

[40] Nabarro, F. R. N. and Villiers, H. L. de. The Physics of Creep: Creep and Creep-Resistant
Alloys. Taylor & Francis, 1995.

[41] F. Abe, T.-U. Kern, R. Viswanathan, ed. Creep-Resistant Steels. Woodhead Publishing Limited,
2004.

[42] Naumenko, K., Altenbach, H., and Kutschke, A. “A Combined Model for Hardening, Softening,
and Damage Processes in Advanced Heat Resistant Steels at Elevated Temperature”. In:
International Journal of Damage Mechanics 20(4), 2011, pp. 578–597. DOI: 10.1177/
1056789510386851.

[43] Verma, P., Srinivasa, N. S. C., and Singha, V. “Low cycle fatigue behavior of modified 9Cr-
1Mo steel at 300°C”. In: Materials Science and Engineering: A 715, 2018, pp. 17–24. DOI:
10.1016/j.msea.2017.12.105.

[44] Giroux, P.-F. “Experimental study and simulation of cyclic softening of tempered martensite
ferritic steels”. PhD thesis. École Nationale Supérieure des Mines de Paris, 2011.

[45] Chaboche, J.-L. and Rousselier, G. “On the Plastic and Viscoplastic Constitutive Equations:
Part II: Application of Internal Variable Concepts to the 316 Stainless Steel”. In: Journal of
Pressure Vessel Technology 105(2), 1983, p. 159. DOI: 10.1115/1.3264258.

[46] Wang, J., Steinmann, P., Rudolph, J., and Willuweit, A. “Simulation of creep and cyclic
viscoplastic strains in high-Cr steel components based on a modified Becker–Hackenberg
model”. In: International Journal of Pressure Vessels and Piping 128, 2015, pp. 36–47. DOI:
10.1016/j.ijpvp.2015.02.003.

127

https://doi.org/10.1016/j.jnucmat.2013.04.063
https://doi.org/10.1016/j.jnucmat.2013.04.063
https://doi.org/10.1016/j.jnucmat.2014.06.033
https://doi.org/10.1115/GT2013-95680
https://doi.org/10.1016/j.msea.2008.04.088
https://doi.org/10.1016/j.actamat.2006.02.038
https://doi.org/10.1016/S0921-5093(97)00708-9
https://doi.org/10.1007/s11661-008-9687-y
https://doi.org/10.1177/1056789510386851
https://doi.org/10.1177/1056789510386851
https://doi.org/10.1016/j.msea.2017.12.105
https://doi.org/10.1115/1.3264258
https://doi.org/10.1016/j.ijpvp.2015.02.003


Bibliography

[47] Velay, V., Bernhart, G., and Penazzi, L. “Cyclic behavior modeling of a tempered martensitic
hot work tool steel”. In: International Journal of Plasticity 22(3), 2006, pp. 459–496. DOI:
10.1016/j.ijplas.2005.03.007.

[48] Chaboche, J.-L. “Constitutive equations for cyclic plasticity and cyclic viscoplasticity”. In:
International Journal of Plasticity 5(3), 1989, pp. 247–302. DOI: 10.1016/0749-6419(89)
90015-6.

[49] Armstrong, P. J. and Frederick, C. O. A Mathematical Representation of the Multiaxial
Bauschinger Effect. Tech. rep. Berkeley Nuclear Laboratories, 1966.

[50] Farragher, T. P., Scully, S., O’Dowd, N. P., and Leen, S. B. “Thermomechanical Analysis of a
Pressurized Pipe Under Plant Conditions”. In: Journal of Pressure Vessel Technology 135,
2013, pp. 011204–1–011204–9. DOI: 10.1115/1.4007287.

[51] Farragher, T. P., Scully, S., O’Dowd, N. P., Hyde, C. J., and Leen, S. B. “High Temperature, Low
Cycle Fatigue Characterization of P91 Weld and Heat Affected Zone Material”. In: Journal
of Pressure Vessel Technology 136(2), 2014, pp. 021403–1–021403–10. DOI: 10.1115/1.
4025943.

[52] Koo, G.-H. and Kwon, J.-H. “Identification of inelastic material parameters for modified 9Cr-
1Mo steel applicable to the plastic and viscoplastic constitutive equations”. In: International
Journal of Pressure Vessels and Piping 88, 2011, pp. 26–33. DOI: 10.1016/j.ijpvp.2010.
11.004.

[53] Wang, P., Cui, L., Lyschik, M., Scholz, A., Berger, C., and Oechsner, M. “A local extrapolation
based calculation reduction method for the application of constitutive material models for
creep fatigue assessment”. In: International Journal of Fatigue 44, 2012, pp. 253–259. DOI:
10.1016/j.ijfatigue.2012.04.018.

[54] Saad, A. A., Sun, W., Hyde, T. H., and Tanner, D. “Cyclic softening behaviour of a P91 steel
under low cycle fatigue at high temperature”. In: Procedia Engineering 10, 2011, pp. 1103–
1108. DOI: 10.1016/j.proeng.2011.04.182.

[55] Saad, A. A. “Cyclic plasticity and creep of power plant materials”. PhD thesis. Nottingham:
University of Nottingham, 2012. URL: http://eprints.nottingham.ac.uk/id/eprint/
12538.

[56] Barrett, R. A., O’Donoghue, P. E., and Leen, S. B. “An improved unified viscoplastic constitutive
model for strain-rate sensitivity in high temperature fatigue”. In: International Journal of Fatigue
48, 2013, pp. 192–204. DOI: 10.1016/j.ijfatigue.2012.11.001.

[57] Zhang, S.-L. and Xuan, F.-Z. “Interaction of cyclic softening and stress relaxation of 9–12%
Cr steel under strain-controlled fatigue-creep condition: Experimental and modeling”. In:
International Journal of Plasticity, 2017, pp. 1–20. DOI: 10.1016/j.ijplas.2017.06.007.

[58] Benaarbia, A., Rae, Y., and Sun, W. “Unified viscoplasticity modelling and its application to
fatigue-creep behaviour of gas turbine rotor”. In: International Journal of Mechanical Sciences
136, 2018, pp. 36–49. DOI: 10.1016/j.ijmecsci.2017.12.008.

[59] Saad, A. A., Hyde, C. J., Sun, W., and Hyde, T. H. “Thermal-mechanical fatigue simulation of
a P91 steel in a temperature range of 400–600°C”. In: Materials at High Temperatures 28(3),
2011, pp. 212–218. DOI: 10.3184/096034011X13072954674044.

[60] Estrin, Y., Braasch, H., and Brechet, Y. “A Dislocation Density Based Constitutive Model
for Cyclic Deformation”. In: Journal of Engineering Materials and Technology 118(4), 1996,
pp. 441–447. DOI: 10.1115/1.2805940.

[61] Sauzay, M., Brillet, H., Monneta, I., Mottot, M., Barcelo, F., Fournier, B., and Pineau, A.
“Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel”. In:
Materials Science and Engineering: A 400–401, 2005, pp. 241–244. DOI: 10.1016/j.msea.
2005.02.092.

128

https://doi.org/10.1016/j.ijplas.2005.03.007
https://doi.org/10.1016/0749-6419(89)90015-6
https://doi.org/10.1016/0749-6419(89)90015-6
https://doi.org/10.1115/1.4007287
https://doi.org/10.1115/1.4025943
https://doi.org/10.1115/1.4025943
https://doi.org/10.1016/j.ijpvp.2010.11.004
https://doi.org/10.1016/j.ijpvp.2010.11.004
https://doi.org/10.1016/j.ijfatigue.2012.04.018
https://doi.org/10.1016/j.proeng.2011.04.182
http://eprints.nottingham.ac.uk/id/eprint/12538
http://eprints.nottingham.ac.uk/id/eprint/12538
https://doi.org/10.1016/j.ijfatigue.2012.11.001
https://doi.org/10.1016/j.ijplas.2017.06.007
https://doi.org/10.1016/j.ijmecsci.2017.12.008
https://doi.org/10.3184/096034011X13072954674044
https://doi.org/10.1115/1.2805940
https://doi.org/10.1016/j.msea.2005.02.092
https://doi.org/10.1016/j.msea.2005.02.092


[62] Sauzay, M., Fournier, B., Mottot, M., Pineau, A., and Monnet, I. “Cyclic softening of martensitic
steels at high temperature: Experiments and physically based modelling”. In: Materials
Science and Engineering: A 483–484, 2008, pp. 410–414. DOI: 10.1016/j.msea.2006.12.
183.

[63] Barrett, R. A., O’Donoghue, P. E., and Leen, S. B. “A dislocation-based model for high
temperature cyclic viscoplasticity of 9-12Cr steels”. In: Computational Materials Science 92,
2014, pp. 286–297. DOI: 10.1016/j.commatsci.2014.05.034.

[64] Barrett, R. A., O’Donoghue, P. E., and Leen, S. B. “A physically-based constitutive model
for high temperature microstructural degradation under cyclic deformation”. In: International
Journal of Fatigue 100, 2017, pp. 388–406. DOI: 10.1016/j.ijfatigue.2017.03.018.

[65] Barkar, T. and Ågren, J. “Creep simulation of 9–12% Cr steels using the composite model
with thermodynamically calculated input”. In: Materials Science and Engineering: A 395(1–2),
2005, pp. 110–115. DOI: 10.1016/j.msea.2004.12.004.

[66] Blum, W. “Mechanisms of creep deformation in steel”. In: Creep-Resistant Steels. Ed. by
Abe, F., Kern, T.-U., and Viswanathan, R. Woodhead Publishing Limited, 2008, pp. 365–402.

[67] Naumenko, K. and Gariboldi, E. “A phase mixture model for anisotropic creep of forged
Al–Cu–Mg–Si alloy”. In: Materials Science and Engineering: A 618, 2014, pp. 368–376. DOI:
10.1016/j.msea.2014.09.012.

[68] Altenbach, H. Kontinuumsmechanik. Einführung in die materialunabhängigen und materialab-
hängigen Gleichungen. 3rd ed. Springer Vieweg, 2015. DOI: 10.1007/978-3-662-47070-1.

[69] Bertram, A. Elasticity and Plasticity of Large Deformations. 3rd ed. Springer Berlin Heidelberg,
2008. DOI: 10.1007/978-3-540-69400-7.

[70] Stein, E. and Barthold, F.-J. “Elastizitätstheorie”. In: Der Ingenieurbau, Grundwissen: Werk-
stoffe, Elastizitätstheorie. Ed. by Mehlhorn, G. Ernst & Sohn, 1996, pp. 165–428.

[71] Naumenko, K. and Altenbach, H. Modeling High Temperature Materials Behavior for Struc-
tural Analysis. Part I: Continuum Mechanics Foundations and Constitutive Models. Vol. 28.
Advanced Structured Materials. Springer International Publishing, 2016. DOI: 10.1007/978-
3-319-31629-1.

[72] Bowen, R. M. Introduction to Continuum Mechanics for Engineers. Plenum Press, 2007.

[73] Lai, W. M., Rubin, D., and Krempl, E. Introduction to Continuum Mechanics. Butterworth-
Heinemann, 2010.

[74] Haupt, P. Continuum Mechanics and Theory of Materials. Springer Berlin Heidelberg, 2002.
DOI: 10.1007/978-3-662-04775-0.

[75] Kaliszky, S. Plastizitätslehre: Theorie und technische Anwendungen. Düsseldorf: VDI Verlag
GmbH, 1984.

[76] Bodner, S. R. and Partom, Y. “Constitutive Equations for Elastic-Viscoplastic Strain-Hardening
Materials”. In: Journal of Applied Mechanics 42(2), 1975, pp. 385–389. DOI: 10.1115/1.
3423586.

[77] Miller, A. “An Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation: Part
I - Equations Development and Analytical Procedures”. In: Journal of Engineering Materials
and Technology 98(2), 1976, pp. 97–105. DOI: 10.1115/1.3443367.

[78] Miller, A. “An Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation:
Part II - Application to Type 304 Stainless Steel”. In: Journal of Engineering Materials and
Technology 98(2), 1976, pp. 106–113. DOI: 10.1115/1.3443346.

[79] Coleman, B. D. and Gurtin, M. E. “Thermodynamics with Internal State Variables”. In: The
Journal of Chemical Physics 47(2), 1967, pp. 597–613. DOI: 10.1063/1.1711937.

129

https://doi.org/10.1016/j.msea.2006.12.183
https://doi.org/10.1016/j.msea.2006.12.183
https://doi.org/10.1016/j.commatsci.2014.05.034
https://doi.org/10.1016/j.ijfatigue.2017.03.018
https://doi.org/10.1016/j.msea.2004.12.004
https://doi.org/10.1016/j.msea.2014.09.012
https://doi.org/10.1007/978-3-662-47070-1
https://doi.org/10.1007/978-3-540-69400-7
https://doi.org/10.1007/978-3-319-31629-1
https://doi.org/10.1007/978-3-319-31629-1
https://doi.org/10.1007/978-3-662-04775-0
https://doi.org/10.1115/1.3423586
https://doi.org/10.1115/1.3423586
https://doi.org/10.1115/1.3443367
https://doi.org/10.1115/1.3443346
https://doi.org/10.1063/1.1711937


Bibliography

[80] Odqvist, F. K. G. Mathematical Theory of Creep and Creep Rupture. Oxford University Press,
1974.

[81] Odqvist, F. K. G. and Hult, J. Kriechfestigkeit metallischer Werkstoffe. Springer, 1962.

[82] Chaboche, J.-L. “A review of some plasticity and viscoplasticity constitutive theories”. In:
International Journal of Plasticity 24(10), 2008, pp. 1642–1693. DOI: 10.1016/j.ijplas.
2008.03.009.

[83] Penny, R. K. and Marriott, D. L. Design for Creep. Chapman & Hall, 1995.

[84] Ilschner, B. Hochtemperatur-Plastizität: Warmfestigkeit und Warmverformbarkeit metallischer
und nichtmetallischer Werkstoffe. Vol. 23. Reine und angewandte Metallkunde in Einzel-
darstellungen. Springer Berlin Heidelberg New York, 1973.

[85] Atkin, R. J. and Craine, R. E. “Continuum theories of mixtures: basic theory and historical
development”. In: The Quarterly Journal of Mechanics and Applied Mathematics 29(2), 1976,
pp. 209–244. DOI: 10.1093/qjmam/29.2.209.

[86] Atkin, R. J. and Craine, R. E. “Continuum Theories of Mixtures: Applications”. In: IMA Journal
of Applied Mathematics 17(2), 1976, pp. 153–207. DOI: 10.1093/imamat/17.2.153.

[87] Rajagopal, K. R. and Tao, L. Mechanics of Mixtures. Vol. 35. Series on Advances in Mathe-
matics for Applied Sciences. World Scientific, 1995.

[88] Altenbach, H., Naumenko, K., and Zhilin, P. A. “A micro-polar theory for binary media with
application to phase-transitional flow of fiber suspensions”. In: Continuum Mechanics and
Thermodynamics 15(6), 2003, pp. 539–570. DOI: 10.1007/s00161-003-0133-5.

[89] Massoudi, M. “A note on the meaning of mixture viscosity using the classical continuum
theories of mixtures”. In: International Journal of Engineering Science 46(7), 2008, pp. 677–
689. DOI: 10.1016/j.ijengsci.2008.01.008.

[90] Passarella, F., Tibullo, V., and Zampoli, V. “On microstretch thermoviscoelastic composite
materials”. In: European Journal of Mechanics - A/Solids 37, 2013, pp. 294–303. DOI: 10.
1016/j.euromechsol.2012.07.002.

[91] Surana, K. S., Powell, M., and Reddy, J. N. “A simple mixture theory for ν Newtonian and
generalized Newtonian constituents”. In: Continuum Mechanics and Thermodynamics 26(1),
2014, pp. 33–65. DOI: 10.1007/s00161-012-0274-5.

[92] Voigt, W. “Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper”.
In: Annalen der Physik 274(12), 1889, pp. 573–587. DOI: 10.1002/andp.18892741206.

[93] Reuss, A. “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedin-
gung für Einkristalle”. In: Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 1929,
pp. 49–58. DOI: 10.1002/zamm.19290090104.

[94] Zohdi, T. I. and Wriggers, P. An Introduction to Computational Micromechanics. Springer
Berlin Heidelberg, 2005. DOI: 10.1007/978-3-540-32360-0.

[95] Hill, R. “The Elastic Behaviour of a Crystalline Aggregate”. In: Proceedings of the Physical
Society. Section A 65(5), 1952, pp. 349–354. DOI: 10.1088/0370-1298/65/5/307.

[96] Durand, L. “Models of tensile behaviour of two-phase alloys from their components”. In:
Materials Science and Technology 3(2), 2013, pp. 105–109. DOI: 10.1179/mst.1987.3.2.
105.

[97] Poech, M. H. and Fischmeister, H. F. “Deformation of two-phase materials: A model based
on strain compatibility”. In: Acta Metallurgica et Materialia 40(3), 1992, pp. 487–494. DOI:
10.1016/0956-7151(92)90397-W.

[98] Koo, J. Y., Young, M. J., and Thomas, G. “On the law of mixtures in dual-phase steels”. In:
Metallurgical Transactions A 11(5), 1980, pp. 852–854. DOI: 10.1007/BF02661217.

130

https://doi.org/10.1016/j.ijplas.2008.03.009
https://doi.org/10.1016/j.ijplas.2008.03.009
https://doi.org/10.1093/qjmam/29.2.209
https://doi.org/10.1093/imamat/17.2.153
https://doi.org/10.1007/s00161-003-0133-5
https://doi.org/10.1016/j.ijengsci.2008.01.008
https://doi.org/10.1016/j.euromechsol.2012.07.002
https://doi.org/10.1016/j.euromechsol.2012.07.002
https://doi.org/10.1007/s00161-012-0274-5
https://doi.org/10.1002/andp.18892741206
https://doi.org/10.1002/zamm.19290090104
https://doi.org/10.1007/978-3-540-32360-0
https://doi.org/10.1088/0370-1298/65/5/307
https://doi.org/10.1179/mst.1987.3.2.105
https://doi.org/10.1179/mst.1987.3.2.105
https://doi.org/10.1016/0956-7151(92)90397-W
https://doi.org/10.1007/BF02661217


[99] Cho, K. and Gurland, J. “The law of mixtures applied to the plastic deformation of two- phase
alloys of coarse microstructures”. In: Metallurgical Transactions A 19(8), 1988, pp. 2027–2040.
DOI: 10.1007/BF02645206.

[100] Bao, G., Hutchinson, J. W., and McMeeking, R. M. “The flow stress of dual-phase, non-
hardening solids”. In: Mechanics of Materials 12(2), 1991, pp. 85–94. DOI: 10.1016/0167-
6636(91)90056-6.

[101] Li, Z., Schmauder, S., and Dong, M. “A simple mechanical model to predict fracture and yield
strengths of particulate two-phase materials”. In: Computational Materials Science 15(1),
1999, pp. 11–21. DOI: 10.1016/S0927-0256(99)00014-2.

[102] Altenbach, H., Altenbach, J., and Kissing, W. Mechanics of Composite Structural Elements.
Springer Berlin Heidelberg, 2004. DOI: 10.1007/978-3-662-08589-9.

[103] Wriggers, P. Nonlinear Finite Element Methods. Springer Berlin Heidelberg, 2008. DOI:
10.1007/978-3-540-71001-1.

[104] Belytschko, T., Liu, W., and Moran, B. Nonlinear Finite Elements for Continua and Structures.
John Wiley & Sons, 2000.

[105] Hartmann, S. and Haupt, P. “Stress computation and consistent tangent operator using
non-linear kinematic hardening models”. In: International Journal for Numerical Methods in
Engineering 36(22), 1993, pp. 3801–3814. DOI: 10.1002/nme.1620362204.

[106] Hartmann, S., Lührs, G., and Haupt, P. “An efficient stress algorithm with applications in
viscoplasticity and plasticity”. In: International Journal for Numerical Methods in Engineering
40(6), 1997, pp. 991–1013. DOI: 10.1002/(SICI)1097-0207(19970330)40:6<991::AID-
NME98>3.0.CO;2-H.

[107] Oñate, E. Structural Analysis with the Finite Element Method: Linear Statics. Volume 1. Basis
and Solids. Springer Netherlands, 2009. DOI: 10.1007/978-1-4020-8733-2.

[108] Zienkiewicz, O. C. and Taylor, R. L. The Finite Element Method for Solid and Structural
Mechanics. Elsevier Butterworth-Heinemann, 2005.

[109] Bathe, K.-J. Finite Element Procedures. K.-J. Bathe, 2014.

[110] Ellsiepen, P. and Hartmann, S. “Remarks on the interpretation of current non-linear finite
element analyses as differential–algebraic equations”. In: International Journal for Numerical
Methods in Engineering 51(6), 2001, pp. 679–707. DOI: 10.1002/nme.179.

[111] Kobayashi, M., Mukai, M., Takahashi, H., Ohno, N., Kawakami, T., and Ishikawa, T. “Implicit in-
tegration and consistent tangent modulus of a time-dependent non-unified constitutive model”.
In: International Journal for Numerical Methods in Engineering 58(10), 2003, pp. 1523–1543.
DOI: 10.1002/nme.825.

[112] Rothe, S., Erbts, P., Düster, A., and Hartmann, S. “Monolithic and partitioned coupling
schemes for thermo-viscoplasticity”. In: Computer Methods in Applied Mechanics and Engi-
neering 293, 2015, pp. 375–410. ISSN: 00457825. DOI: 10.1016/j.cma.2015.05.002.

[113] Hartmann, S. “A remark on the application of the Newton-Raphson method in non-linear finite
element analysis”. In: Computational Mechanics 36(2), 2005, pp. 100–116. DOI: 10.1007/
s00466-004-0630-9.

[114] Burkard, R. E. and Zimmermann, U. T. Einführung in die Mathematische Optimierung.
Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-28673-5.

[115] Nocedal, J. and Wright, S. J. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer New York, 2006. DOI: 10.1007/978-0-387-40065-5.

[116] MATLAB R2015a Documentation. The MathWorks, Inc. 2015.

131

https://doi.org/10.1007/BF02645206
https://doi.org/10.1016/0167-6636(91)90056-6
https://doi.org/10.1016/0167-6636(91)90056-6
https://doi.org/10.1016/S0927-0256(99)00014-2
https://doi.org/10.1007/978-3-662-08589-9
https://doi.org/10.1007/978-3-540-71001-1
https://doi.org/10.1002/nme.1620362204
https://doi.org/10.1002/(SICI)1097-0207(19970330)40:6<991::AID-NME98>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-0207(19970330)40:6<991::AID-NME98>3.0.CO;2-H
https://doi.org/10.1007/978-1-4020-8733-2
https://doi.org/10.1002/nme.179
https://doi.org/10.1002/nme.825
https://doi.org/10.1016/j.cma.2015.05.002
https://doi.org/10.1007/s00466-004-0630-9
https://doi.org/10.1007/s00466-004-0630-9
https://doi.org/10.1007/978-3-642-28673-5
https://doi.org/10.1007/978-0-387-40065-5


Bibliography

[117] Byrd, R. H., Hribar, M. E., and Nocedal, J. “An Interior Point Algorithm for Large-Scale
Nonlinear Programming”. In: SIAM Journal on Optimization 9(4), 1999, pp. 877–900. DOI:
10.1137/S1052623497325107.

[118] Eisenträger, J., Naumenko, K., Altenbach, H., and Gariboldi, E. “Analysis of Temperature
and Strain Rate Dependencies of Softening Regime for Tempered Martensitic Steel”. In: The
Journal of Strain Analysis for Engineering Design 52, 2017, pp. 226–238. DOI: 10.1177/
0309324717699746.

[119] DIN 17175:1979-05. Seamless steel tubes for elevated temperatures. May 1979.

[120] DIN EN ISO 6892-2:2011-05. Metallic materials – Tensile testing – Part 2: Method of test at
elevated temperature. May 2011.

[121] Considère, A. G. “Mémoire sur l’emploi du fer et de l’acier dans les constructions”. In: Annales
des Ponts et Chausses 9, 1885, pp. 574–775.

[122] Havner, K. S. “On the onset of necking in the tensile test”. In: International Journal of Plasticity
20(4-5), 2004, pp. 965–978. DOI: 10.1016/j.ijplas.2003.05.004.

[123] Needleman, A. “A numerical study of necking in circular cylindrical bar”. In: Journal of
the Mechanics and Physics of Solids 20(2), 1972, pp. 111–127. DOI: 10 . 1016 / 0022 -
5096(72)90035-X.

[124] Needleman, A. “Plastic Strain Localization in Metals”. In: The Integration of Material, Process
and Product Design, 1999, pp. 59–70.

[125] Raj, S. V., Iskovitz, I. S., and Freed, A. D. “Modeling the Role of Dislocation Substructure
during Class M and Exponential Creep”. In: Unified Constitutive Laws of Plastic Deformation.
Ed. by Krausz, A. S. and Krausz, K. Academic Press, Inc., 1996, pp. 343–439.

[126] Vogler, S. and Blum, W. “Micromechanical modelling of creep in terms of the composite
model”. In: Creep and Fracture of Engineering Materials and Structures. Ed. by Wilshire, B.
and Evans, R. London: Institute of Metals, 1990, pp. 65–79.

[127] Silbermann, C. B., Shutov, A. V., and Ihlemann, J. “Modeling the evolution of dislocation
populations under non-proportional loading”. In: International Journal of Plasticity 55, 2014,
pp. 58–79. DOI: 10.1016/j.ijplas.2013.09.007.

[128] Eisenträger, J., Naumenko, K., and Altenbach, H. “Calibration of a phase mixture model
for hardening and softening regimes in tempered martensitic steel over wide stress and
temperature ranges”. In: The Journal of Strain Analysis for Engineering Design, 2018. DOI:
10.1177/0309324718755956.

[129] Ievdokymov, M. “Identification Technique of Mechanism-Based Constitutive Model for Cast
Iron under Thermo-Mechanical Loads”. PhD thesis. Magdeburg: Otto-von-Guericke-Universität,
2015. URN: urn:nbn:de:gbv:ma9:1-6160.

[130] Melody van Rooyen and Thorsten Hermann Becker. “High-temperature tensile property
measurements using digital image correlation over a non-uniform temperature field”. In:
The Journal of Strain Analysis for Engineering Design, 2018, pp. 1–13. DOI: 10.1177/
0309324717752029.

[131] Längler, F., Naumenko, K., Altenbach, H., and Ievdokymov, M. “A constitutive model for
inelastic behavior of casting materials under thermo-mechanical loading”. In: The Jour-
nal of Strain Analysis for Engineering Design 49(6), 2014, pp. 421–428. DOI: 10.1177/
0309324714522034.

[132] Xiao, Y.-H. and Guo, C. “Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo-
2VNbN martensitic steel”. In: Materials Science and Engineering: A 528(15), 2011, pp. 5081–
5087. DOI: 10.1016/j.msea.2011.03.050.

132

https://doi.org/10.1137/S1052623497325107
https://doi.org/10.1177/0309324717699746
https://doi.org/10.1177/0309324717699746
https://doi.org/10.1016/j.ijplas.2003.05.004
https://doi.org/10.1016/0022-5096(72)90035-X
https://doi.org/10.1016/0022-5096(72)90035-X
https://doi.org/10.1016/j.ijplas.2013.09.007
https://doi.org/10.1177/0309324718755956
http://www.nbn-resolving.org/urn:nbn:de:gbv:ma9:1-6160
https://doi.org/10.1177/0309324717752029
https://doi.org/10.1177/0309324717752029
https://doi.org/10.1177/0309324714522034
https://doi.org/10.1177/0309324714522034
https://doi.org/10.1016/j.msea.2011.03.050


[133] Kestin, J. A Course In Thermodynamics. Taylor & Francis, 1979.

[134] Garofalo, F. “An Empirical Relation Defining the Stress Dependence of Minimum Creep Rate
in Metals”. In: Transactions of the Metallurgical Society of AIME 227, 1963, pp. 351–356.

[135] Blum, W. and Reppich, B. “On the stress dependence of the stationary deformation rate”. In:
Acta Metallurgica 17(8), 1969, pp. 959–966. DOI: 10.1016/0001-6160(69)90040-6.

[136] Kassner, M. and Perez-Prado, M.-T. Fundamentals of Creep in Metals and Alloys. Elsevier,
2007. DOI: 10.1016/B978-008043637-1/50013-2.

[137] Dorn, J. “Some fundamental experiments on high temperature creep”. In: Journal of the
Mechanics and Physics of Solids 3(2), 1955, pp. 85–116. DOI: 10.1016/0022-5096(55)
90054-5.

[138] Reed, L. J. and Berkson, J. “The application of the logistic function to experimental data”. In:
The Journal of Physical Chemistry 33(5), 1929, pp. 760–779.

[139] Shutov, A. V. and Kreißig, R. “Finite strain viscoplasticity with nonlinear kinematic hardening:
Phenomenological modeling and time integration”. In: Computer Methods in Applied Mechan-
ics and Engineering 197(21-24), 2008, pp. 2015–2029. DOI: 10.1016/j.cma.2007.12.017.

[140] Zhu, Y., Kang, G., Kan, Q., and Bruhns, O. T. “Logarithmic stress rate based constitutive
model for cyclic loading in finite plasticity”. In: International Journal of Plasticity 54, 2014,
pp. 34–55. DOI: 10.1016/j.ijplas.2013.08.004.

[141] Zhu, Y. “Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals:
Theory and application”. In: International Journal of Plasticity 79, 2016, pp. 111–152. DOI:
10.1016/j.ijplas.2015.12.005.

[142] Bertram, A. and Glüge, R. Solid Mechanics. Springer International Publishing, 2015. DOI:
10.1007/978-3-319-19566-7.
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Appendix

A1 Results of Profilometry
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Figure A1.1: Profilometry of Specimen 2.
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A2 Stress Response Functions for Inelastic Strain Rates
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Figure A2.1: Approximation of the normalized inelastic strain rates with the response func-
tions fσi1 (σ).
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Figure A2.2: Approximation of the normalized inelastic strain rates with the response func-
tions fσi2 (σ).
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Ḣ
in in
it
[s
−
1
]

tensile tests
creep tests
creep tests [13]
fσinit3

(σ)

initial stateinitial state

0 100 200 500 600 700
1024

1026

1028

1030

1034

1036

1038

1040

σst [MPa]

Ḣ
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Figure A2.3: Approximation of the normalized inelastic strain rates with the response func-
tions fσi3 (σ).
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Figure A2.4: Approximation of the normalized inelastic strain rates with the response func-
tions fσi4 (σ).
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Figure A2.5: Approximation of the normalized inelastic strain rates with the response func-
tions fσi5 (σ).
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Figure A2.6: Approximation of the normalized inelastic strain rates with the response func-
tions fσi6 (σ).
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Figure A2.7: Approximation of the normalized inelastic strain rates with the response func-
tions fσi7 (σ).
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Figure A2.8: Approximation of the normalized inelastic strain rates with the response func-
tions fσi8 (σ).
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Figure A2.9: Approximation of the inelastic strain rates with the response functions fσi1 (σ).
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Figure A2.10: Approximation of the inelastic strain rates with the response functions fσi2 (σ).
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Figure A2.11: Approximation of the inelastic strain rates with the response functions fσi3 (σ).
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Figure A2.12: Approximation of the inelastic strain rates with the response functions fσi4 (σ).
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Figure A2.13: Approximation of the inelastic strain rates with the response functions fσi5 (σ).

A-9



Appendix

σinit [MPa]

Ḣ
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Figure A2.14: Approximation of the inelastic strain rates with the response functions fσi6 (σ).
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Figure A2.15: Approximation of the inelastic strain rates with the response functions fσi7 (σ).
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Figure A2.16: Approximation of the inelastic strain rates with the response functions fσi8 (σ).
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