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Zusammenfassung der Dissertation 

Die Untersuchung von Tourenplanungsproblemen ist von großem Interesse für Unterneh-

men der Logistikbranche, da diese an einer optimalen Auslastung ihrer Fahrzeuge und an der 

Realisierung möglichst kurzer Fahrtstrecken bzw. geringer Fahrtkosten interessiert sind. Aus 

diesem Grunde sind Probleme wie das „Capacitated Vehicle Routing Problem“ (CVRP) und das 
„Pickup and Delivery Problem“ (PDP) in der Vergangenheit in der Literatur detailliert unter-

sucht worden (Toth & Vigo, 2014). Die klassische Modellierung dieser Tourenplanungsproble-

me berücksichtigt dabei jedoch keine Nebenbedingungen hinsichtlich der Anordnung der gela-

denen Güter in den Laderäumen der Fahrzeuge. Solche Nebenbedingungen sind insbesondere 

im Zusammenhang mit dem Transport von Stückgütern (z.B. Kisten, Paletten, Gebinden, Mate-

rialrollen oder Fässern) praxisrelevant. Stückgüter werden heute zumeist in Containern oder in 

den Laderäumen von Lastkraftwagen transportiert. Dabei muss sichergestellt werden, dass für 

jeden Punkt einer Tour ein zulässiger Ladeplan existiert, der angibt, wie die einzelnen Packstü-

cke in dem umhüllenden Container bzw. Laderaum positioniert werden sollen. Aus diesem 

Grund wurde in den letzten zehn Jahren ein Schwerpunkt der Forschung auf integrierte Touren-

planungs- und Packprobleme gelegt, bei denen die zu transportierenden Güter als zweidimensi-

onale bzw. dreidimensionale Packstücke modelliert werden (Iori & Martello, 2013; Pollaris et 

al., 2015). Bei einer 3D-Modellierung können weitere Nebenbedingungen, die z.B. die Stabilität 

der Ladung oder die Zerbrechlichkeit einzelner Packstücke berücksichtigen, in die Problemfor-

mulierung einbezogen werden (Gendreau et al., 2006). Eine 2D-Modellierung ist hingegen in 

Fällen ausreichend, in denen eine Überstapelung von Packstücken aufgrund ihres hohen Ge-

wichts oder ihrer Zerbrechlichkeit nicht möglich ist (Dominguez et al., 2016). Zusätzlich wer-

den in vielen praktischen Anwendungsfällen LIFO-Bedingungen (Last In First Out) für Be- und 

Entladung berücksichtigt, d.h. zu entladende Packstücke müssen vom Fahrzeugheck aus frei 

zugänglich sein bzw. zu beladende Packstücke müssen an frei zugänglichen Positionen im La-

deraum platziert werden (Bortfeldt et al., 2015). Gründe für die Berücksichtigung der LIFO-Be-

dingungen können z.B. enge Zeitpläne, fehlende Manpower, fehlende Ausrüstung oder der 

Transport von besonders schweren bzw. gefährlichen Gütern sein. 

Im klassischen PDP besteht jeder Auftrag aus einem Ladegut mit gegebenem Gewicht wel-

ches von einem gewissen Beladeort zu einem gewissen Entladeort transportiert werden muss. 

Eine gegebene Anzahl von homogenen Fahrzeugen ist an einem einzigen Depot stationiert, d.h. 

alle Touren starten und enden dort. Das Depot sowie die Be- und Entladeorte bilden einen voll-

ständigen Graphen mit gegebenen Distanzen. Die Touren müssen so gebildet werden, dass (i) 

jeder Be- und Entladeort genau einmal besucht wird, (ii) der Be- und Entladeort zu einem Auf-

trag in derselben Tour liegen und dies in der korrekten Reihenfolge, (iii) das Ladegewicht der 

Fahrzeuge zu keinem Zeitpunkt überschritten wird, (iv) eine gewisse Tourlänge bzw. Tourdauer 

nicht überschritten wird und (v) die Anzahl an Touren die gegebene Fahrzeuganzahl nicht über-

steigt. Beim PDP wird zumeist die Minimierung der Tourenanzahl als primäres Zielkriterium 
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und die Minimierung der gesamten Fahrtkosten als sekundäres Zielkriterium verwendet (Li & 

Lim, 2003). Das PDP ist in der Vergangenheit ausführlich untersucht worden (Berbeglia et al., 

2007; Parragh et al., 2008). Darüber hinaus berücksichtigen einige Autoren zusätzliche Neben-

bedingungen wie Zeitfenster und Servicezeiten, inhomogene Fahrzeugflotten, Inkompatibilitä-

ten bei den Ladeaufträgen und spezielle Arbeitszeitregeln für Fahrer (Xu et al., 2003). Im Zu-

sammenhang mit Personentransporten wird das PDP als „Dial a Ride Problem“ (DARP) be-

zeichnet, dabei werden zusätzliche Nebenbedingungen für die Einhaltung der Servicequalität 

(z.B. maximal zulässige Reisedauer) in die Problemformulierung aufgenommen. Da das PDP 

ein NP-hartes Problem ist, kommen zur Lösung im Wesentlichen Metaheuristiken wie Simula-

ted Annealing und Large Neighborhood Search (Bent & van Hentenryck, 2006), Adaptive Large 

Neighborhood Search (Ropke & Pisinger, 2006) und Guided Ejection Search (Nagata & 

Kobayashi, 2010) zum Einsatz. Exakte Lösungsansätze wurden von Ropke et al. (2007), Ropke 

& Cordeau (2009) sowie Baldacci et al. (2011) vorgestellt, dennoch stellen Metaheuristiken für 

größere PDP-Instanzen bis heute das Mittel der Wahl dar. Romero et al. (2007) erreichen in 

einem praktischen Anwendungsfall eine Kosteneinsparung von 10% durch den Einsatz eines 

genetischen Algorithmus. 

Gendreau et al. (2006) formulierten erstmals das „Capacitated Vehicle Routing Problem 
with Three-Dimensional Loading Constraints“ (3L-CVRP), welches das klassische CVRP mit 

einem Containerladeproblem für dreidimensionale, quaderförmige Packstücke kombiniert und 

stellten einen aus zwei Tabu-Search-Algorithmen bestehenden Lösungsansatz vor. Bis heute 

wurden zahlreiche weitere Lösungsansätze für das 3L-CVRP veröffentlicht, u.a. von Fuellerer et 

al. (2010), Bortfeldt (2012), Ruan et al. (2013), Wei et al. (2014) und Zhang et al. (2015). Im 

Rahmen dieser Arbeit wird das PDP, welches eine Verallgemeinerung des CVRP darstellt, auf 

ähnliche Art und Weise mit dem Containerladeproblem kombiniert. Dabei wird bei der Model-

lierung des „Pickup and Delivery Problem with Three-Dimensional Loading Constraints“ (3L-

PDP) darauf geachtet, dass sämtlicher Umladeaufwand, d.h. sämtliche Veränderungen von 

Packstückpositionen in den Laderäumen nach Verlassen des entsprechenden Beladeortes und 

vor Eintreffen am entsprechenden Entladeort, ausgeschlossen wird. Dafür ist die Einführung 

einer neuartigen Nebenbedingung, die im Folgenden „Umladeverbot“ genannt wird, notwendig. 

Beim 3L-PDP bestehen die zu transportierenden Güter aus quaderförmigen Packstücken 

mit gegebener Länge, Breite und Höhe. Die Fahrzeuge besitzen einen quaderförmigen Lade-

raum, dessen Abmessungen ebenfalls gegeben sind. Für jeden Be- und Entladeort einer Tour 

muss ein zulässiger Packplan zur Verfügung gestellt werden, der Positionsangaben für alle an 

diesem Ort im Laderaum befindlichen Packstücke enthält. Dabei dürfen keine Packstücke aus 

dem Laderaum herausragen bzw. sich keine zwei Packstücke gegenseitig überlappen. Zusätzlich 

müssen die Packpläne die Bedingungen erfüllen, dass (i) jedes Packstück mit seinen Seitenflä-

chen parallel zu den Seitenflächen des Laderaums platziert wird, (ii) die Höhenachse jedes 

Packstücks parallel zur Höhenachse des Laderaums liegt, (iii) ein gewisser Mindest-Prozentsatz 

der Grundfläche jedes Packstücks auf anderen Packstücken oder dem Boden des Laderaums 
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aufliegt, (iv) auf zerbrechlichen Packstücken keine nicht zerbrechlichen Packstücke aufliegen, 

(v) die LIFO-Bedingungen an Beladeorten bzw. Entladeorten sowie (vi) das Umladeverbot ein-

gehalten werden. Im Falle einer zweidimensionalen Modellierung (2L-PDP) sind entsprechend 

nur die Nebenbedingungen (i), (v) und (vi) zu beachten. Das 3L-PDP wurde bisher nur von 

Bartók & Imre (2011) untersucht, allerdings verzichten die Autoren auf eine Berücksichtigung 

der LIFO-Bedingungen und des Umladeverbots. Aufgrund der praktischen Relevanz dieser 

Nebenbedingungen ist ihre Berücksichtigung jedoch zwingend erforderlich. Im Rahmen der 

Analyse der numerischen Resultate des 3L-PDP zeigt sich, dass diese Nebenbedingungen gro-

ßen Einfluss auf die Lösungsqualität haben. Zum 2L-PDP existiert eine Veröffentlichung von 

Malapert et al. (2008). Die Autoren schlagen hierbei einen Constraint Programming-Ansatz zur 

Erstellung der Packpläne vor, veröffentlichen jedoch keine numerischen Resultate. 

In Männel & Bortfeldt (2016) werden verschiedene Varianten des 3L-PDP vorgestellt, die 

sich dahingehend unterscheiden, ob die LIFO-Bedingungen und das Umladeverbot berücksich-

tigt werden oder nicht. Zusätzlich werden zwei grundlegende Konzepte vorgestellt, wie die Be-

rücksichtigung von LIFO-Bedingungen und Umladeverbot erfolgen kann, nämlich (i) durch 

eine Beschränkung auf Touren eines gewissen Layouts („Independent Partial Routes“-Ansatz, 

kurz IPR) oder (ii) durch eine neuartige Packprozedur, die Packpläne für mehrere Punkte einer 

Tour gleichzeitig erstellen kann („Interrelated Packing“-Ansatz, kurz IP). In Männel & Bortfeldt 

(2016) wird der IPR-Ansatz im Detail untersucht, während der IP-Ansatz dem Beitrag von 

Männel & Bortfeldt (2018) vorbehalten bleibt. 

Da das 2L-PDP wie das 3L-PDP aus der Kombination zweier NP-schwerer Probleme be-

steht, die in der Praxis zumeist mit Metaheuristiken gelöst werden, wird zu ihrer Lösung ein 

Hybridansatz gewählt, bei dem eine „äußere“ Prozedur zur Tourenplanung mit einer „inneren“ 
Prozedur für die Packprüfung kombiniert wird. Dieser Hybridansatz kann auch zur Lösung wei-

terer Tourenplanungsprobleme mit mehrdimensionalen Ladebeschränkungen eingesetzt werden 

(Bortfeldt et al., 2015). In Männel & Bortfeldt (2016) wird eine Ausgestaltung des Hybrid-

Algorithmus zur Lösung des 3L-PDP vorgestellt, die ein Large Neighborhood Search-Verfahren 

(LNS) zur Tourenplanung benutzt und einen Tree Search Algorithmus (TRS) zur Erstellung der 

Packpläne verwendet. Beide Teilprozeduren sind bewährte Verfahren. Die Tourenplanungspro-

zedur basiert im Wesentlichen auf dem Lösungsansatz von Ropke & Pisinger (2006) für das 

klassische PDP. Die LNS-Prozedur benutzt vier Remove-Operatoren und drei Insert-Operatoren 

(Heuristiken), die abwechselnd mit festen Auswahlwahrscheinlichkeiten eingesetzt werden. 

Dabei entfernt der Remove-Operator einen gewissen Teil der Aufträge aus ihren Touren, wäh-

rend der Insert-Operator diese Aufträge wieder in andere Touren bzw. an anderen Positionen 

innerhalb derselben Tour einfügt, um so eine Reduzierung der Fahrtstrecke zu erreichen. Als 

Akzeptanzkriterium wird das Kriterium des Simulated Annealing mit einem geometrischen 

Kühlschema verwendet. Die Anzahl der zu entfernenden Aufträge wird bei jeder Iteration 

stochastisch gewählt, um einerseits eine gute Diversifikation zu erreichen und andererseits die 

Suche in der „Nähe“ der aktuell besten Lösung intensivieren zu können. Für den Fall, dass die 



4 

 

Startlösung unzulässig ist, weil nicht alle Aufträge mit der zur Verfügung stehenden Anzahl an 

Fahrzeugen bedient werden können, werden temporär unzulässige Lösungen zugelassen. Bis die 

Zulässigkeit hergestellt ist, wird ein passender Strafterm in die Zielfunktion aufgenommen. Die 

TRS-Packprozedur wurde bereits in Bortfeldt (2012) zur Lösung des 3L-CVRP eingesetzt und 

hat sich als sehr leistungsfähiges Packverfahren im 3D-Fall erwiesen. Dabei handelt es sich um 

eine unvollständige Baumsuche, die nach dem Prinzip der Tiefensuche implementiert ist und 

durch eine rekursive Prozedur ausgeführt wird. Jeder Knoten im Suchbaum wird dabei im We-

sentlichen durch drei Elemente charakterisiert: (i) einen unvollständigen Packplan, der bereits 

Platzierungen für einige Packstücke enthält, (ii) die Menge noch nicht platzierter Packstücke 

und (iii) die Kandidatenliste möglicher weiterer Platzierungen. Wenn für ein noch nicht platzier-

tes Packstück keine mögliche Platzierung mehr vorhanden ist, wird die Suche im aktuellen Kno-

ten des Baums abgebrochen und zum übergeordneten Knoten zurückgekehrt, da dann in den 

meisten Fällen keine vollständige Lösung mehr erreicht werden kann. Der Suchalgorithmus 

wird beendet, wenn ein vollständiger Packplan erzeugt wurde oder wenn eine gewisse Ober-

grenze an Aufrufen der rekursiven Prozedur ohne Erfolg überschritten wurde. Zusätzlich wer-

den spezielle Maßnahmen zur Verbesserung der Performance des Algorithmus getroffen, z.B. 

wird ein Cache verwendet, in dem alle bereits geprüften Packstückfolgen abgelegt werden. In 

Männel & Bortfeldt (2016) wird im Tourenplanungsmodul eine Einschränkung auf sogenannte 

IPR-Touren vorgenommen. IPR-Touren müssen dabei die Bedingung erfüllen, dass (i) Entlade-

orte in der Tour in umgekehrter Reihenfolge zu ihren korrespondierenden Beladeorten liegen 

und (ii) ein Beladeort nur angefahren werden darf, wenn das Fahrzeug zu diesem Zeitpunkt leer 

ist oder der vorhergehende Ort in der Tour ebenfalls ein Beladeort ist. Es konnte gezeigt wer-

den, dass durch die Beschränkung auf IPR-Touren die LIFO-Bedingung an Entladeorten und 

das Umladeverbot automatisch erfüllt sind, währenddessen die LIFO-Bedingung an Beladeorten 

von der TRS-Prozedur sichergestellt wird. Des Weiteren wurde gezeigt, dass eine Packprüfung 

nur an sogenannten letzten Beladeorten (d.h. Beladeorten, auf die ein Entladeort folgt) durchge-

führt werden muss und dass die Packprüfungen für die letzten Beladeorte einer IPR-Tour unab-

hängig voneinander mit der TRS-Packprozedur erfolgen können. Für alle weiteren Be- und Ent-

ladeorte einer Tour können die benötigten Packpläne aus den Packplänen der letzten Beladeorte 

abgeleitet werden. Für den Test des Hybrid-Algorithmus wurden 54 3L-PDP-Testinstanzen mit 

bis zu 100 Aufträgen und bis zu 300 Packstücken erstellt. Die Testergebnisse sind plausibel und 

zeigen den erwarteten Trade-off zwischen Fahrtstrecke und Umladeaufwand. Es wurde festge-

stellt, dass die Fahrtstrecke im Mittel über alle Testinstanzen um ca. 12% geringer ausfällt, 

wenn die LIFO-Bedingungen und das Umladeverbot nicht berücksichtigt werden. In diesem 

Fall muss die Einsparung an Fahrtstrecke aber mit einem Umladeaufwand, d.h. der Notwendig-

keit, gewisse Packstücke während der Touren im Laderaum umzupositionieren, „bezahlt“ wer-

den. 

Die IPR-Bedingung sorgt beim 3L-PDP für eine starke Beschränkung bei der Bildung der 

Touren und behindert somit das Auffinden von besonders guten Lösungen. In Männel & Bort-
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feldt (2018) liegt das Hauptaugenmerk daher auf dem „Interrelated Packing“-Ansatz, bei dem 

die IPR-Bedingung des vorangegangenen Lösungsansatzes entfällt. Im Fall des IP-Ansatzes 

müssen damit die Einhaltung der LIFO-Bedingungen und des Umladeverbots von der Packpro-

zedur sichergestellt werden. Es hat sich gezeigt, dass dazu ein neuartiger Typ von Packprozedur 

nötig ist, der für mehrere letzte Beladeorte einer Tour gleichzeitig Packpläne erstellen kann um 

auf diese Weise das Umladeverbot sicherzustellen. Die TRS-Packprozedur wird zu diesem 

Zweck so erweitert, dass bei einer Packprüfung für einen gewissen letzten Beladeort einer Tour 

alle Platzierungen von Packstücken, die sich bereits an vorhergehenden letzten Beladeorten im 

Fahrzeug befanden, aus den Packplänen dieser Orte übernommen werden. Falls für den aktuell 

betrachteten letzten Beladeort nach einer gewissen Anzahl von Versuchen kein zulässiger Pack-

plan gefunden werden konnte, geht der Backtracking-Mechanismus der rekursiven Prozedur 

dann zu einem vorhergehenden letzten Beladeort der Tour zurück und ändert Positionen für dort 

bereits eingeladene Packstücke. Anschließend müssen alle nachfolgenden letzten Beladeorte 

erneut geprüft werden. Die Packprüfung endet erfolgreich, wenn für alle letzten Beladeorte der 

Tour ein zulässiger Packplan gefunden wurde und somit das Umladeverbot sichergestellt ist. 

Bei den numerischen Tests des IP-Ansatzes konnte eine deutliche Verbesserung der Lösungs-

qualität gegenüber dem einfacheren IPR-Lösungsansatz festgestellt werden, während der Re-

chenaufwand durch die erheblich komplexere Packprozedur ebenfalls deutlich anstieg. 

In Männel (2017)1 wird der gewählte hybride Lösungsansatz für das 3L-PDP auf das 2L-

PDP übertragen. Es wird dieselbe LNS-Tourenplanungsprozedur wie für das 3L-PDP benutzt. 

Da die TRS-Packprozedur im zweidimensionalen Fall jedoch deutlich einfacheren Heuristiken 

kaum überlegen ist, wird für das 2L-PDP eine einfachere Packprozedur verwendet, die sechs 

konstruktive Packheuristiken benutzt. Diese Heuristiken wurden bereits erfolgreich für das 2L-

CVRP verwendet (Zachariadis et al. 2009; Leung et al. 2011), darunter sind weithin bekannte 

Packverfahren wie „Bottom-Left Fill“ (Chazelle, 1983) oder „Touching Perimeter“ (Lodi et al. 
1999). Beim 2L-PDP besteht wie beim 3L-PDP die Problematik, dass die LIFO-Bedingungen 

für Be- und Entladeorte und das Umladeverbot sichergestellt werden müssen. Dies geschieht 

zunächst mit dem bereits vorgestellten IPR-Ansatz aus Männel & Bortfeldt (2016), der für das 

2L-PDP unverändert übernommen werden kann. Dabei erfolgen voneinander unabhängige 

Packprüfungen für jeden letzten Beladeort einer Tour. Die Packprüfungen werden so ausge-

führt, dass die sechs konstruktiven Packheuristiken mit fünf Packstückreihenfolgen kombiniert 

werden, wodurch für jeden letzten Beladeort maximal 30 Versuche unternommen werden, einen 

zulässigen Packplan zu erstellen. Um dem Hauptnachteil des IPR-Ansatzes, nämlich der starken 

Beschränkung bei der Tourenbildung zu begegnen, wird ein weiterer Lösungsansatz für das 2L-

PDP präsentiert. Bei dem sogenannten „Simultaneous Packing“-Ansatz (kurz SP), werden in der 

Tourenplanungsprozedur ausschließlich sogenannte LIFO-Touren berücksichtigt, d.h. Touren 

bei denen die Entladeorte in jeweils umgekehrter Reihenfolge zu ihren korrespondierenden Be-

ladeorten liegen. Die Bedingung für LIFO-Touren stellt damit eine wesentliche Abschwächung 

––––––––––––––––––––––––––––––––––––––––––––––––––––– 
1 Zur Begutachtung bei Annals of Operations Research eingereicht 
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der IPR-Bedingung dar. Es konnte gezeigt werden, dass eine LIFO-Tour im Sinne des 2L-PDP 

zulässig ist, wenn (i) für jeden letzten Beladeort der LIFO-Tour ein zulässiger Packplan gefun-

den werden kann und (ii) für alle letzten Beladeorte der Tour der entsprechende Packplan mit 

ein und derselben Packheuristik sowie ein und derselben Packstückreihenfolge erzeugt werden 

kann. Grund hierfür ist, dass die konstruktiven Packheuristiken keine stochastischen Elemente 

enthalten und nicht „vorausschauend“ arbeiten. Das bedeutet, dass die Positionierung eines 

Packstückes im Laderaum nur von den Eigenschaften des Packstückes selbst und von denen 

früher eingeladener Packstücke abhängt, jedoch nicht von denen später eingeladener Packstü-

cke. Somit ist das Umladeverbot unter den gegebenen Voraussetzungen immer erfüllt. Die Be-

dingung (ii) kann dabei noch so abgeschwächt werden, dass die gleiche Packheuristik und die 

gleiche Packstückreihenfolge nur für solche letzten Beladeorte verwendet werden müssen, bei 

denen der Fahrzeugladeraum zwischen diesen Beladeorten nicht mindestens einmal komplett 

geleert wird, d.h. bei denen sich mindestens ein gleiches Packstück im Laderaum befindet. Die 

Packprozedur beim „Simultaneous Packing“-Ansatz arbeitet folglich so, dass sie die Packprü-

fungen für alle letzten Beladeorte einer Tour, die besagte Bedingung erfüllen, simultan (gleich-

zeitig) ausführt. Die Packprozedur wird erst beendet, wenn es gelungen ist, mit einer einzigen 

Kombination von Packheuristik und Packstückreihenfolge zulässige Packpläne für alle relevan-

ten letzten Beladeorte zu erzeugen oder wenn alle 30 Kombinationen aus Packheuristik und 

Packstückreihenfolge erfolglos probiert worden sind. Für die numerischen Tests des Hybrid-

Algorithmus wurden 60 2L-PDP-Testinstanzen auf der Basis bekannter 2L-CVRP-Instanzen 

(Gendreau et al. 2008) erzeugt. Bei den Testergebnissen zeigt der SP-Ansatz wie erwartet eine 

deutlich bessere Lösungsqualität als der einfachere IPR-Lösungsansatz. Analog zum 3L-PDP 

zeigt sich, dass das Ausschließen allen Umladeaufwands durch Einhaltung der LIFO-Bedin-

gungen und des Umladeverbots einen deutlichen Einfluss auf die Lösungsqualität hat. In der 

Zukunft sollte versucht werden, die Packprozedur des SP-Ansatzes so weiterzuentwickeln, dass 

mit ihr zusätzlich auch die LIFO-Bedingung an Entladeorten geprüft werden kann. Damit könn-

te die verbliebene Einschränkung bei der Tourenplanung (Beschränkung auf LIFO-Touren) 

eliminiert werden, um so eine noch bessere Lösungsqualität zu erreichen. 
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a b s t r a c t 

In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and 

three-dimensional loading problem, called PDP with three-dimensional loading constraints (3L-PDP). We 

are given a set of requests and a homogeneous fleet of vehicles. A set of routes of minimum total length 

has to be determined such that each request is transported from a loading site to the corresponding 

unloading site. In the 3L-PDP, each request is given as a set of 3D rectangular items (boxes) and the 

vehicle capacity is replaced by a 3D loading space. We investigate which constraints will ensure that no 

re loading effort will occur, i.e. that no box is moved after loading and before unloading. A spectrum of 

3L-PDP variants is introduced with different characteristics in terms of reloading effort. We propose a 

hybrid algorithm for solving the 3L-PDP consisting of a routing and a packing procedure. The routing 

procedure modifies a well-known large neighborhood search for the 1D-PDP. A tree search heuristic is 

responsible for packing boxes. Computational experiments were carried out using 54 newly proposed 

3L-PDP benchmark instances. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Routing vehicles and loading them with goods represent two 

major challenges in transportation logistics. Routing and loading 

problems have to be tackled as integrated problems if compa- 

nies are interested in optimizing both the routing of vehicles and 

the corresponding loading of goods. Gendreau, Iori, Laporte, and 

Martello (2006) first formulated and solved an integrated routing 

and loading problem, namely the capacitated vehicle routing prob- 

lem (CVRP) with three-dimensional (3D) loading constraints (3L- 

CVRP). Contrasting to the classical CVRP, customer demands are 

represented as sets of parallel-epipeds (called boxes) and the scalar 

capacity of a vehicle is replaced by a 3D rectangular loading space. 

This essential modification allows for a more detailed modeling 

of mixed cargo transportation by vehicles. Several packing con- 

straints, e.g. concerning stacking of goods, can only be considered 

if customer demands are viewed as sets of 3D items. To ensure 

that calculated routes can actually be implemented, a 3D model- 

ing of cargo and loading spaces is in many situations indispensable 

(see Bortfeldt & Homberger, 2013 ). Thus it seems to be desirable to 

∗ Corresponding author. Tel.: + 49 391 6711842. 

E-mail addresses: dirk.maennel@gmx.de (D. Männel), andreas.bortfeldt@ 

fernuni-hagen.de , andreas.bortfeldt@ovgu.de (A. Bortfeldt). 

model and solve further types of vehicle routing problems (VRPs) 

as integrated routing and 3D loading problems (3L-VRP). 

This task is tackled here for the classical Pickup and De- 

livery Problem (PDP). In the classical PDP, we are given a set 

of transportation requests that have to be served by a fleet of 

homogeneous vehicles with a uniform 1D capacity. Each request 

is characterized by a 1D demand that has to be transported from 

a specific loading site (pickup point) to a specific unloading site 

(delivery point). Since we have a single pickup point and single 

delivery point per request, the classical PDP belongs to the one-to- 

one VRPs with pickup and delivery. A set of routes, each starting 

and ending at the single depot, has to be constructed in such a way 

that (i) each request is served at only one route and its pickup 

point is visited before its delivery point; (ii) the capacity of a 

used vehicle is never exceeded by the set of loaded goods; (iii) the 

length of each route does not exceed a given limit; (iv) the number 

of routes does not exceed the given number of vehicles, and (v) the 

transportation cost, given by the total travel distance, is minimized. 

To extend the classical PDP to an integrated routing and 3D 

loading problem, called hereafter PDP with three-dimensional 

loading constraints (3L-PDP), the demands are taken as sets of 3D 

rectangular items and the vehicles are equipped by a 3D rectan- 

gular loading space. As usual for the 3L-CVRP, we want to have 

a problem formulation that rules out any re loading effort. That is, 

the boxes should not be moved after loading and before unloading. 

In the 3L-CVRP this is guaranteed by the so-called Last-In-First-Out 

http://dx.doi.org/10.1016/j.ejor.2016.04.016 
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Table 1 

Sample of heuristics for the classical PDP. 

Reference Type of heuristic 

Nanry and Barnes (20 0 0) Reactive tabu search 

Li and Lim (2001) Tabu embedded simulated annealing 

Lim, Lim, and Rodrigues (2002) Squeeky wheel optimization 

Pankratz (2005) Grouping genetic algorithm 

Lu and Dessouky (2006) Construction heuristic 

Bent and van Hentenryck (2006) Hybrid algorithm: simulated annealing, 

large neighborhood search 

Ropke and Pisinger (2006) Adaptive large neighborhood search 

Derigs and Döhmer (2008) Indirect local search with greedy 

decoding 

Nagata and Kobayashi (2010) Guided ejection search 

(LIFO) condition. It turns out that this constraint is not sufficient to 

eliminate any reloading effort for the 3L-PDP. Therefore, additional 

constraints are introduced for this purpose. This leads to a spec- 

trum of 3L-PDP variants that are afterwards defined more formally. 

A hybrid algorithm for solving the 3L-PDP is proposed that is 

composed of the modified large neighborhood search (LNS) algo- 

rithm by Ropke and Pisinger (2006) for the 1D-PDP and the tree 

search (TRS) algorithm for packing boxes by Bortfeldt (2012) . The 

hybrid algorithm is tested by means of 54 newly introduced 3L- 

PDP benchmark instances with up to 100 requests. 

The rest of the paper is organized as follows: Section 2 reviews 

the relevant literature. In Section 3 crucial features of the 3L-PDP 

are discussed and some variants of the 3L-PDP are formulated. 

Section 4 describes the hybrid algorithm, while in Section 5 nu- 

merical results of experiments are presented and analyzed. Con- 

clusions are drawn and an outlook at further research is given in 

Section 6 . 

2. Related work 

In our literature review, we will focus on recent work on the 

classical PDP with paired pickup and delivery points and on VRPs 

with loading constraints. In particular, we will consider recent pa- 

pers on PDP with loading constraints. Moreover, we look for prac- 

tical applications of 3L-PDP dealt with in this paper. We refer the 

reader to Toth and Vigo (2014) for a comprehensive survey on ve- 

hicle routing. 

2.1. Solution methods for the classical PDP 

In pickup and delivery problems, goods or passengers are trans- 

ported between customers or institutions. Following the classifi- 

cation schema by Parragh, Doerner, and Hartl (2008) the classi- 

cal PDP is characterized by paired pickup and delivery points, i.e. 

each pickup point is generally associated with a special delivery 

point and vice versa. Moreover, the PDP deals with the transporta- 

tion of goods; hence, no special constraints and objectives are in- 

volved concerning the (in)convenience of passengers as in dial-a- 

ride problems. A further distinction can be made with regard to 

the number of available vehicles and we will consider only the 

multi vehicle case, while the single vehicle case, representing an 

immediate extension of the Traveling Salesman Problem (TSP), is 

not considered here. 

Mathematical models of the classical PDP or PDP with time 

windows (PDPTW) can be found, e.g. in Parragh et al. (2008) and 

in Toth and Vigo (2014) . Most of the published solution meth- 

ods are surveyed by Berbeglia, Cordeau, Gribkovskaia, and Laporte 

(2007) and Parragh et al. (2008) . The PDP is NP-hard, as it general- 

izes the TSP. Therefore, mainly classical heuristics and metaheuris- 

tics were proposed for solving the PDP. A representative sample 

of recent heuristics is listed in Table 1 . For further details of the 

algorithms, the reader is referred to the references; some com- 

ments can be found in Parragh et al. (2008) and in Toth and Vigo 

(2014) . For an introduction in metaheuristic approaches we refer 

to Gendreau and Potvin (2010) . 

All solution methods listed in Table 1 are developed for the 

PDPTW, i.e. time windows are always considered. However, service 

times are only taken into account by Li and Lim (2001), Nanri and 

Barnes (20 0 0) and Ropke and Pisinger (2006) . Almost all meth- 

ods minimize the routing cost (total travel distance) and several 

methods do also minimize the number of routes. The multi de- 

pot case is only handled by Ropke and Pisinger (2006) . Almost all 

methods of Table 1 assume that the vehicle fleet is homogeneous. 

The case of heterogeneous vehicles is dealt with by Xu, Chen, Ra- 

jagopal, and Arunapuram (2003) and Ropke and Pisinger (2006) . 

Most of the solution methods listed in Table 1 are evaluated by 

means of the benchmark instances proposed by Li and Lim (2001) . 

Outstanding results especially for larger instances were achieved 

through the neighborhood search methods by Bent and van Hen- 

tenryck (2006) and Ropke and Pisinger (2006) , while the method 

of Li and Lim (2001) proved to be very successful for smaller 

instances. 

A branch and cut algorithm for the PDPTW was proposed by 

Ropke, Cordeau, and Laporte (2007) , while Ropke and Cordeau 

(2009) described a branch and cut and price algorithm. Baldacci, 

Bartolini, and Mingozzi (2011) recently presented an exact algo- 

rithm based on a set-partitioning-like integer formulation. These 

exact PDPTW algorithms are capable of solving PDPTW instances 

with up to 500 requests; nevertheless, the numerical results re- 

veal that heuristic approaches remain indispensable for large PDP 

instances. 

2.2. Vehicle routing problems with loading constraints 

Iori and Martello (2010, 2013 ) and Pollaris, Braekers, Caris, 

Janssens, and Limbourg (2015) survey the state of the art in the 

field of integrated vehicle routing and loading problems. Generally, 

the literature is still limited and this applies in particular to VRPs 

with 3D loading constraints (3L-VRP). 

The 3L-CVRP was introduced by Gendreau et al. (2006) with 

five additional packing constraints frequently occurring in freight 

transportation. These include a last-in-first-out (LIFO) loading con- 

straint, a weight constraint, an orientation constraint, a support 

constraint, and a stacking constraint (see Section 3 for details). 

Gendreau et al. suggest a two-stage tabu search algorithm for 

solving the 3L-CVRP. The “outer” tabu search serves for planning 

the routes, while the “inner” tabu search solves a 3D strip pack- 

ing problem in order to load a vehicle according to a given cus- 

tomer sequence. Tarantilis, Zachariadis, and Kiranoudis (2009) pro- 

pose a hybrid procedure combining the strategies tabu search and 

guided local search. They use a collection of plain packing heuris- 

tics. Fuellerer, Doerner, Hartl, and Iori (2010) develop an ant colony 

algorithm for routing that is integrated with fast but effective pack- 

ing heuristics. Wang, Guo, Chen, Zhu, and Lim (2010) design a two- 

phase tabu search algorithm for routing that cooperates with two 

constructive packing heuristics (see also Zhu, Qin, Lim, & Wang, 

2012 ). Wisniewski, Ritt, and Buriol (2011) propose a tabu search 

for routing and a randomized bottom left-based packing algorithm. 

Bortfeldt (2012) suggests a hybrid algorithm for the 3L-CVRP with 

a tabu search procedure for routing and a tree search algorithm 

for loading vehicles. Ruan, Zhang, Miao, and Shen (2013) present a 

honey bee mating algorithm for routing that is combined with six 

loading heuristics. Lacomme, Toussaint, and Duhamel (2013) pro- 

pose an effective hybrid procedure for the 3L-CVRP that, how- 

ever, does not consider all 3D packing constraints introduced 

by Gendreau et al. (2006) . Tao and Wang (2015) developed a 

tabu search procedure and hybridized it with an effective packing 



842 D. Männel, A. Bortfeldt / European Journal of Operational Research 254 (2016) 840–858 

algorithm. Very recently, Wei, Zhang, and Lim (2014) proposed an 

adaptive variable neighborhood search algorithm and Zhang, Wei, 

and Lim (2015) suggest an evolutionary local search method. 

Moura and Oliveira (2009) introduce the VRP with time win- 

dows and 3D loading constraints (3L-VRPTW) with two objectives 

and present two heuristic procedures for this problem. The num- 

ber of vehicles is minimized with higher priority, whereas the to- 

tal travel distance is minimized with lower priority. The authors 

do not consider the weight and the stacking constraint of the 3L- 

CVRP, while the other packing constraints (see above) are adopted. 

Another hybrid algorithm for solving the 3L-VRPTW was suggested 

by Bortfeldt and Homberger (2013) . It consists of an evolution- 

ary strategy and two tabu search procedures. Zachariadis, Taran- 

tilis, and Kiranoudis (2012) consider a 3L-VRP with time windows 

where boxes are stacked on pallets, which in turn are loaded in ve- 

hicles. Two hybrid algorithms for the 3L-VRP with backhauls were 

proposed by Bortfeldt, Hahn, Männel, and Mönch (2015) . Both al- 

gorithms include a neighborhood search algorithm for routing and 

a tree search algorithm for packing boxes. 

Vehicle routing problems with two-dimensional loading con- 

straints (2L-VRP) are similarly defined as corresponding 3L-VRP 

but items cannot be stacked on top of each other. In the capac- 

itated vehicle routing problem with 2D loading constraints (2L- 

CVRP) items and loading spaces of vehicles are rectangles (see Iori, 

Salazar Gonzalez, & Vigo, 2007 ). The 2D-CVRP is completed by sev- 

eral packing constraints as LIFO, orientation and weight constraint 

(see above) that are useful in the 2D-case. An exact approach for 

solving the 2D-CVRP was proposed by Iori et al. (2007) . Meta- 

heuristic methods were suggested, e.g., by Duhamel, Lacomme, 

Quilliot, and Toussaint (2011), Fuellerer, Doerner, Hartl, and Iori 

(2009), Gendreau, Iori, Laporte, and Martello (2007) and Wei, 

Zhang, Zhang, and Lim (2015) . Other 2L-VRPs were also investi- 

gated, for example the 2L-VRP with time windows (see Khebbache- 

Hadji, Prins, Yalaoui, & Reghioui, 2013 ) and the 2L-VRP with het- 

erogeneous fleet (see Leung, Zhang, Zhang, Hua, & Lim, 2013 ). 

2.3. Pickup and delivery problems with loading constraints 

In recent years, the PDP has been extended by loading con- 

straints in several ways in order to reflect different scenarios oc- 

curring in practice. In other cases an extension of PDP to 3L-PDP 

seems obvious. 

Some papers study variants of the 1D-PDP that are extended 

by loading constraints. Cordeau, Iori, Laporte, and Salazar González 

(2010) investigate the Traveling Salesman Problem with Pickup and 

Delivery (TSPPD) with LIFO loading (TSPPDL). Clearly, the TSPPD is 

a PDP with a single vehicle. In the TSPPDL goods are picked up 

only at the rear of the vehicle and the LIFO constraint requires that 

a delivery is only possible if corresponding goods are currently at 

the rear. Petersen and Madsen (2009) deal with the Double Travel- 

ing Salesman Problem with Multiple Stacks (DTSPMS). All pickups 

and afterwards all deliveries are carried out in two different routes 

and each stack must observe the LIFO constraint. Coté, Gendreau, 

and Potvin (2012) examine the single Pickup and Delivery Problem 

with Multiple Stacks (1-PDPMS). Again, the loading and unloading 

in each stack must observe a LIFO constraint. 

Zachariadis, Tarantilis, and Kiranoudis (2013) deal with the 

pickup and delivery routing problem with time windows and pal- 

let loading (PDRP-TWP) that is closely related to 3L-PDP. In the 

PDRP-TWP vehicles have to service plain delivery requests (start- 

ing from a central depot) as well as pickup and delivery requests. 

Products, packaged in boxes, are to be loaded onto pallets which 

are in turn to be loaded in vehicles. Zachariadis et al. report on an 

application occurring in the daily inventory management of com- 

puter and electronic chain stores. Deliveries from a central depot 

are often completed by direct transports between pairs of retailers. 

These transports may happen when goods run out of stock at some 

retailers while others have excess inventories. The authors stress 

the necessity to use an integrated routing and loading model in 

order to guarantee the practicability of routes. 

Likewise, Ropke and Pisinger (2006) solve a pickup and deliv- 

ery problem for a Danish food manufacturer where goods and ba- 

sic materials are to be transported between facilities of a company. 

Analogous applications may happen when machine parts, semi- 

finished products, goods, consumable supplies etc. are transferred 

between pairs of sites of a company or organization within a re- 

stricted urban area and at least in some cases it could be advanta- 

geous to apply the 3L-PDP model. 

Xu et al. (2003) deal with a practical PDP faced by U.S. logistics 

firms. The problem has numerous side constraints, e.g. regarding 

the compatibility of shipped goods and driver regulations. The au- 

thors solved large instances with up to 500 requests distributed in 

large areas. Shipped goods are for example machinery and pack- 

aged food. Again, an extension of the model to 3L-PDP is obvious. 

Romero, Sheremetov, and Soriano (2007) study a practical PDP 

that is encountered in helicopter offshore crew transportation of 

an oil and gas company. Hundreds of employees of the company 

have to be transported each day across platforms before and after 

their shift. Since also luggage and other kinds of cargo are to be 

shipped, a part of the problem could be tackled as 3L-PDP. 

Another area of PDP applications can be found in the design of 

tramp shipping routes (see Brønmo, Christiansen, Fagerholt, & Ny- 

green, 2007 ). If cargoes in boxes are to be transported from loading 

to unloading ports the 3L-PDP model could be applied. 

Last not least great courier and parcel service providers offer 

their customers door to door shipment of bulky goods, parcels of 

even large dimensions, pieces of furniture etc. If these transports 

are to be carried out within a urban area or smaller region they 

can be organized following a PDP or 3L-PDP model (cf. Berbeglia 

et al., 2007 ). 

Up to now the 2L-PDP was only covered by Malapert, Guéret, 

Jussien, Langevin, and Rousseau (2008) . They develop a constraint 

programming approach for the loading aspects of the problem 

but do not report any numerical results. The PDP with 3D loading 

constraints was only tackled by Bartók and Imreh (2011) . They 

describe a local search heuristic for solving a PDP variant that, 

however, does neglect the LIFO constraint. Since there are several 

potential applications, it seems timely to tackle the 3L-PDP in a 

more extensive fashion. 

3. The 3L-PDP and some of its variants 

Before giving a more formal definition of the 3L-PDP, we will 

discuss and illustrate crucial points of this problem. 

3.1. Crucial features of the 3L-PDP 

As in the classical PDP, a number of requests have to be 

transported from a pickup point to a delivery point by means 

of homogeneous vehicles. However, in the 3L-PDP, the demands 

consist of sets of boxes and they are sent in 3D loading spaces of 

the vehicles. 

We assume that all vehicles are rear-loaded, i.e. the goods are 

loaded and unloaded at the rear exclusively by movements in 

length direction of the vehicle (cf. Fig. 3 ). Lifting boxes or moving 

them in width direction is not permitted in the loading or unload- 

ing operation. 

At the same time, we want to avoid any re loading effort, that is 

any temporary or permanent repositioning and rotating of boxes 

after loading and before unloading. There are different practical 

reasons to forbid reloading of goods during a pickup and de- 

livery tour. Absence of manpower, tight working time, lack of 
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Fig. 1. A 3L-PDP instance with a feasible solution (view from above). 

equipment and shortage of space at customer sites are some of 

them. Moreover, the goods might be extra heavy, fragile or even 

hazardous. 

Thus, the question arises, which conditions a pickup and deliv- 

ery tour and the corresponding packing of boxes must observe to 

rule out any reloading effort. 

The first condition is the request sequence (RS) constraint at 

delivery points that is well-known as last-in-first-out (LIFO) con- 

straint from the 3L-CVRP. At a delivery point the RS constraint re- 

quires that between a box A to be unloaded and the rear of the 

vehicle no box B is situated that needs to be unloaded later. Like- 

wise, a box B to be unloaded later must not lie above box A. Oth- 

erwise box B has to be reloaded before box A can be unloaded by 

a pure movement in length direction. 

As also pickup points occur in a pickup and delivery tour, we 

must have also a RS constraint to exclude reloading of goods at 

pickup points. At a pickup point the RS constraint requires that 

between the position of a box A just loaded and the rear of the 

vehicle or above box A no box B is situated that was loaded at an 

earlier pickup point. Again, otherwise a reloading of box B would 

be inevitable. 

It is an essential feature of 3L-PDP that the RS constraints for 

delivery and pickup points are not sufficient to rule out any reload- 

ing effort. To understand this fact, we consider a simple 3L-PDP 

instance and a corresponding solution with one route and appro- 

priate packing plans (see Fig. 1 ). 

It is evident that the route and the appropriate packing plans 

represent a feasible solution for the 3L-PDP instance given in 

Fig. 1 . In particular, the RS constraint in both variants is observed. 

Nevertheless, we have to state some reloading effort since box I 12 
of request 1 is rotated at the pickup point of request 3. Moreover, 

the given route could not be implemented if this reloading oper- 

ation would not be done. Obviously, it is impossible to find two 

packing plans for the pickup points P2 and P3 such that the boxes 

of request 1 are located at the same positions in both plans. That 

is, the boxes of request 1 have to be reloaded at P3 as otherwise 

the boxes of requests 1 and 3 could not be stowed together. 

It is a specific attribute of the 3L-PDP that in a route boxes of 

a request A can be generally transported and packed for a part of 

the route together with boxes of a request B and for another part 

of the route together with boxes of a request C (and not with the 

boxes of B ) etc. In the above example the boxes of request 1 are 

transported first together with the boxes of request 2 and after- 

wards together with the boxes of request 3. 

If packing plans are generated for the different partial routes in 

which the boxes of request A are “on board”, these boxes will gen- 

erally occupy different places. To exclude a change of placements 

without fail, i.e. to rule out a reloading effort, we have to introduce 

a new constraint, the reloading ban: The placement of any box (in- 

cluding the position of a reference corner and the spatial orienta- 

tion of the box) must not be changed after the box was loaded and 

before the box is unloaded. 



844 D. Männel, A. Bortfeldt / European Journal of Operational Research 254 (2016) 840–858 

Fig. 2. Examples of routing patterns and routes that do not correspond to routing patterns. 

Table 2 

Five 3L-PDP variants (y: yes, n: no, a: automatically). 

# RS RS Reloading Independent Reloading Travel 

pickup delivery ban partial routes effort distance 

1 y n n n High Very low 

2 y y n n Medium Low 

3 y n y n Medium Low 

4 y y y n Zero Medium 

5 y a a y Zero High 

We conclude that reloading effort for the 3L-PDP can only be 

avoided unerringly if the RS constraints for delivery and pickup 

points and the reloading ban (as defined) are required at the same 

time. 

However, to meet the reloading ban, we have to find routes 

for a 3L-PDP instance where each route is completed by a series 

of interrelated packing plans. In the above example, two interre- 

lated plans are necessary: the first one must contain placements 

of boxes of requests 1 and 2, the second one must include place- 

ments of the boxes of requests 1 and 3. To meet the reloading ban, 

the placement of boxes of request 1 must be the same in the first 

and the second plan (making the plans interrelated). The specifica- 

tion of a packing procedure that is able to determine interrelated 

packing plans for greater routes in short running times presents a 

fairly difficult task. Therefore, we first look for a simplified 3L-PDP 

variant that allows us to avoid specifying a packing algorithm for 

interrelated packing plans. 

Instead, we are going to eliminate any reloading effort within a 

route by means of routing patterns that ensure that the boxes of 

any request must not be stored together with the boxes of different 

requests in different partial routes. 

The idea of a routing pattern for the 3L-PDP is quite simple. It 

consists of a series of sub-patterns. Each sub-pattern is a sequence 

of m ( m ≥ 1) pickup points followed by the corresponding deliv- 

ery points in inverse order. In Fig. 2 two routing patterns and two 

routes that do not correspond to a routing pattern are shown. 

If a route follows a routing pattern, the loading space will be- 

come empty again each time after a sub-pattern is finished. Hence, 

the packing plans that are needed for subsequent sub-patterns (or 

partial routes) are independent of each other. The boxes of a re- 

quest have to be stowed together only with boxes of requests of 

the same sub-pattern. Thus, only one packing plan per request is 

needed and there is no need to reload the boxes of any request. 

If all routes of a solution of a 3L-PDP instance follow a rout- 

ing pattern in the above sense, we will say that the independent 

partial routes (IPR) constraint holds. 

We are now ready to present a spectrum of five 3L-PDP vari- 

ants (see Table 2 ). We always require the RS constraint at pickup 

points. The 3L-PDP variants are defined by means of the RS con- 

straint for delivery points, the reloading ban and the independent 

partial routes constraint. For each variant and each constraint the 

entry is “y”, if the constraint is required and “n” if not. In case the 

IPR condition and the RS constraint at pickup points is required, 

RS constraint at delivery points and reloading ban are automati- 

cally satisfied (see Section 4.3 ); this is marked by entry “a”. 

Provided none of the three defining constraints must be met, 

a high reloading effort is to be expected and the total travel dis- 

tance will be very low. In case only the RS constraint at delivery 

points holds the reloading effort will be medium while the total 

travel distance will be low. The same applies if only the reloading 

ban is required while the RS constraint is not to be observed. For 

the other variants the reloading effort is zero and the total travel 

distance is relatively large. Provided the reloading effort is ruled 

out by the independent partial routes condition the total travel 

distance is higher as this constraint restricts the solution space 

stronger than the reloading ban. 

We will deal with problem variants 1, 2 and 5 in this paper 

while variants 3 and 4 are left for a future paper. The 3L-PDP vari- 

ants and corresponding algorithms have to be compared in terms 

of total travel distance as well as reloading effort. 

Further routing and packing constraints are taken into account. 

As in the 1D-PDP, we limit the number of routes by a given num- 

ber of vehicles v max (assuming that each vehicle performs only one 

route). Also the route length is limited explicitly since the capacity 

of vehicles does not force a limited route length in a pickup and 

delivery mode. As usual for 3L-VRP, we extend the problem for- 

mulation by some packing constraints introduced by Gendreau et 

al. (2006) , namely a weight constraint, an orientation constraint, 

a support constraint and a fragility constraint. This procedure is 

beneficial since it facilitates numerical comparisons with other 3L- 

VRPs. All six aforementioned constraints are included in all prob- 

lem variants listed in Table 2. 

3.2. Problem definition 

Now we describe the 3L-PDP more formally. We are given n re- 

quests each consisting of a pickup point i , a delivery point n + i and 

a set I i of goods that are to be transported from i to n + i ( i 1,…, n ). 

There are v max identical vehicles, originally located at the single 

depot (denoted by 0), with a rectangular loading space with length 

L , width W and height H . Let V = {0,1,…, n , n + 1,…,2 n } be the set of 

all nodes, i.e. pickup and delivery points including the depot. Let E 

be a set of undirected edges ( i , j ) that connect all node pairs (0 ≤ i , 

j ≤ 2 n , i � = j ) and let G = ( V , E ) be the resulting graph. Let travel 

costs c ij ( c ij ≥ 0) be assigned to each edge ( i , j ) and let the travel 

costs be symmetric, i.e. c ij = c ji (0 ≤ i , j ≤ 2 n , i � = j ). Set I i includes 

m i rectangular pieces (boxes) I ik and box I ik has the length l ik , the 

width w ik and the height h ik ( i = 1,…, n , k = 1,…, m i ). 

The loading space of each vehicle is embedded in the first oc- 

tant of a Cartesian coordinate system in such a way that the length, 

width and height of the loading space lie parallel to the x , y , and 

z axes. The placement of box I ik in a loading space is given by the 

coordinates x ik , y ik , and z ik of the corner of the box closest to the 
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Fig. 3. A loading space with placed boxes. 

origin of the coordinates system; in addition, an orientation index 

o ik indicates which of the possible spatial orientations is selected 

( i = 1,..., n , k = 1,..., m i ). A spatial orientation of a box is given by a 

one-to-one mapping of the three box dimensions and the three co- 

ordinate directions. 

A packing plan P for a loading space comprises one or more 

placements and is regarded as feasible if the following three condi- 

tions hold: (FP1) each placed box lies completely within the load- 

ing space; (FP2) any two boxes that are placed in the same truck 

loading space do not overlap; (FP3) each placed box lies parallel to 

the surface areas of the loading space. Fig. 3 shows a loading space 

with placed boxes. Each vehicle is loaded and unloaded at the rear 

and empty at the beginning of a route. 

A feasible route R is a sequence of 2 p + 2 nodes ( p ≥ 1) that 

starts and ends at the depot. R should include the pickup and de- 

livery points of p different (among the n given) requests and each 

pickup point must precede the delivery point of the same request. 

A solution of the 3L-PDP is a set of v sequences ( R l , P l ,1 ,…, P l ,2 pl ), 

where R l is a route and P l,q is a packing plan ( l = 1,…, v , q = 1,…,2 p l , 

p l denotes the number of requests of route l ). 

P l,q represents the packing pattern of route l after having visited 

its ( q + 1)th node, i.e. after some boxes were loaded or unloaded at 

the ( q + 1)th node of route l . 

To be feasible, a solution must observe the following three 

conditions: (F1) all routes R l and packing plans P l,q are feasible 

( l = 1,…, v , q = 1,…,2 p l ); (F2) the pickup point and the delivery point 

of each request occurs once in one route R l ( l = 1,…, v ); (F3) the 

packing plan P l,q for a route R l and its ( q + 1)th node contains ex- 

actly placements for those boxes which are to be loaded but not 

(yet) to be unloaded at the first q + 1 nodes of the route. 

In addition, the following routing and packing constraints are to 

be satisfied optionally: 

(C1) RS constraint for pickup points : A packed box b of a certain 

request is said to be in unloading position if there is no 

packed box b ′ of another request between b and the rear of 

the vehicle or above box b (cf. Fig. 3 ). If the ( q + 1)th node of 

route l is a pickup point, then all boxes to be loaded there 

must be in unloading position in the packing plan P l,q , i.e. 

after loading ( l = 1,…, v , q = 1,…,2 p l ). 

(C2) RS constraint for delivery points : If the ( q + 1)th node is a de- 

livery point, then all boxes to be unloaded there must be 

in unloading position in the packing plan P l,q -1 , i.e. before 

unloading ( l = 1,…, v , q = 1,…,2 p l ). Both RS constraints ensure 

that all boxes of a given request can be loaded or unloaded 

exclusively by movements parallel to the longitudinal axis of 

the loading space of a vehicle and without moving boxes of 

other requests. 

(C3) Reloading ban : Each box I ik of request i must not be moved 

after loading and before unloading ( i = 1,…, n , k = 1,..., m i ). If 

the box I ik is loaded at the ( q + 1)th node and unloaded at 

the ( q ′ + 1)th node of route l , its placement ( x ik , y ik, , z ik , o ik ) 

must be the same in the packing plans P l,q , P l,q + 1 ,…, P l,q ′ -1 
( i = 1,…, n , k = 1,..., m i , l = 1,…, v , 1 ≤ q < q ′ ≤ 2 p l ). 

(C4) Independent partial routes constraint : Each route R l ( l = 1,…, v ) 

follows a routing pattern, i.e. it consists of one or more sub- 

patterns. A sub-pattern consists of a series of one or more 

pickup points followed by the corresponding delivery points 

in inverse order. 

(C5) Weight constraint : Each box I ik has a positive weight d ik 
( i = 1,..., n , k = 1,..., m i ) and the total weight of all boxes in a 

packing plan P l,q must not exceed a maximum load weight 

D ( l = 1,..., v , q = 1,…,2 p l ). 

(C6) Orientation constraint : The height dimension of all boxes is 

fixed, while horizontal 90 ° turns of boxes are allowed. Thus 

only two of six values are allowed for the orientation index 

o ik of a placement ( i = 1,..., n , k = 1,..., m i ). 

(C7) Support constraint : If a box is not placed on the floor, a cer- 

tain percentage a of its base area has to be supported by 

other boxes. 

(C8) Stacking constraint : A fragility attribute f ik ( i = 1,..., n , 

k = 1,..., m i ) is assigned to each box. If a box is fragile 

( f ik = 1), only other fragile boxes may be placed on its top 

surface, whereas both fragile and non-fragile boxes may be 

stacked on a non-fragile box ( f ik = 0). 

(C9) Route length constraint : The total distance of a route must 

not exceed a specified maximum d max . This constraint can 

also be understood as a route duration constraint if the ve- 

hicle velocity is set to a constant. 

(C10) Route number constraint : The number of routes v must not 

exceed the number of vehicles v max . 

Finally, the 3L-PDP consists of determining a feasible solution 

that meets some of the constraints (C1)–(C10) and minimizes the 

total travel distance of all routes. More precisely, we consider the 

variants of 3L-PDP as specified above and require constraints (C1)–

(C4) in accordance to Table 2 . The constraints (C5)–(C10) are stip- 

ulated for each of the five variants of the 3L-PDP. 

4. A hybrid algorithm for the 3L-PDP 

In the sequel, we describe a hybrid algorithm for the 3L-PDP 

consisting of two separate procedures for routing and packing. The 

routing procedure is derived from the adaptive LNS (ALNS) heuris- 

tic for solving the PDPTW by Ropke and Pisinger (2006) . Boxes are 

loaded into vehicles by the tree search 3D packing algorithm by 

Bortfeldt (2012) . In the following description, emphasis is laid on 

the integration of routing and packing and the economical realiza- 

tion of packing checks. 

4.1. Routing procedure 

The routing procedure is roughly outlined in Fig. 4 . First, an ini- 

tial solution is constructed. Afterwards, an iterative neighborhood 

search is carried out until a time limit is exceeded. Within each 

iteration, a number ξ of requests to be removed and reinserted 
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Fig. 4. LNS-based routing algorithm for the 3L-PDP. 

Table 3 

Removal and insertion heuristics of the LNS heuristic for 3L-PDP. 

Heuristic Description 

Random removal Rh R Removes iteratively requests that are selected at random. 

Shaw removal Rh S Removes iteratively requests that are related in terms of location and weight. 

Worst removal Rh W Removes iteratively a request whose removal leads to the largest cost (total travel distance) reduction. 

Tour removal Rh T Removes all requests from a randomly chosen route. If less than ξ requests are removed in this way, further requests will be removed with 

Shaw removal. 

Greedy insertion Ih G Inserts iteratively requests into the solution such that the increase of the cost function is minimal. 

Regret-2 insertion Ih R2 Inserts iteratively requests into the solution such that the gap in the cost function between inserting the request into its best and its second 

best route is maximal. 

Regret-3 insertion Ih R3 Inserts iteratively requests into the solution such that the sum of two gaps in the cost function is maximal. The first gap results from inserting 

the request into its best and its second best route, while the second gap results from inserting the request into its best and its third best 

route. 

in the solution is selected randomly. Several removal and insertion 

heuristics are available. Among them, one removal and one inser- 

tion heuristic are selected randomly per iteration. The next solu- 

tion is generated by the selected heuristics Rh and Ih according to 

s next : = Ih ( Rh ( s curr , ξ )). If s next is accepted in a dedicated test, it 
becomes the new current solution s curr and the best solution s best 
is updated if necessary. Otherwise, the initial solution of the next 

iteration s curr remains unchanged. 

The acceptance test follows the well-known simulated anneal- 

ing rule and according to this, the search is embedded in an an- 

nealing process with a geometric cooling schedule. Differently to 

the original adaptive LNS, the selection probabilities for the re- 

moval and insertion heuristics are fix; i.e. a pure LNS is performed. 

Moreover, no noise term is applied to the objective function. 

Since the number of vehicles is limited, it may happen that the 

initial solution or a later generated solution is incomplete, i.e. some 

requests are missing. To cope with this situation, the concept of 

a virtual request bank is used as in the original ALNS heuristic. 

The objective function is defined as the sum f ( s ) = ttd ( s ) + M . nmc ( s ), 

where s is a given solution, ttd stands for its total travel distance, 

nmc is the number of missing requests and M is a sufficiently large 

constant. By this definition, solutions with less missing requests 

are always preferred. 

The removal and insertion heuristics are basically adopted from 

the original ALNS heuristic and briefly summarized in Table 3 . 

Within the Shaw removal, the relatedness of requests is expressed 

by means of two factors, namely the locations of their pickup 

and delivery points and the weights of their item sets (see Shaw, 

1998 ). Hence, the relatedness of the two requests i and j is cal- 

culated by the blended index r ( i , j ) = w r 1 ( c 
′ 
ij + c ′ i + n,j + n ) + w r 2 | v 

′ 
i –

v ′ j |, 1 ≤ i < j ≤ n , where c ′ ij , c 
′ 
i + n,j + n and v 

′ 
i lie in the interval 

[0,1]; c ′ ij ( c 
′ 
i + n,j + n ) denotes the normalized distance between the 

pickup points i and j (the delivery points i + n and j + n ); v ′ i de- 

notes the normalized weight of request i . The weights w rp ( p = 1, 

2) allow for a different weighting of the distances and weights 

difference. 

The Tour removal has been added in order to drive the search 

into regions where feasible solutions with less tours can be found. 

Although the minimization of the number of tours is not an ex- 

plicit goal, this procedure can be helpful to identify high-quality 

solutions in terms of total travel distance. 

The insertion heuristics are based on insertion moves and the 

concept of insertion cost. An insertion move is specified by four 

parameters: i denotes the inserted request (1 ≤ i ≤ n ), k indicates 

the route in which i is inserted (1 ≤ k ≤ v ), β and ε are the po- 
sitions where the pickup and delivery point of request i are in- 

serted into route k (2 ≤ β ≤ 2 p ( k ) + 2, 3 ≤ ε ≤ 2 p ( k ) + 3, β < ε); p ( k ) 
is the number of requests that currently belong to route k . The 

insertion cost �f ( i , k , β , ε) of an insertion move stands for the in- 

crease of the objective function value if the move is implemented. 

Only those insertion moves are admitted that do not violate the 

weight constraint (C5) and the route length constraint (C9). For a 

given request and a route k , having currently p ( k ) requests, at most 

(2 p ( k ) + 1)(2 p ( k ) + 2)/2 feasible combinations for the index pair ( β , 

ε) are available. Fig. 5 shows two variants of inserting a request 

into a route. 

For the insertion variant ( β , ε) = (3,7) (on the right) the in- 

sertion cost �f ( i , k , β , ε) results by adding the distances P 1 → P 3, 

P 3 → P 2, D 2 → D 3 and D 3 → 0 and subtracting then P 1 → P 2 und 

D 2 → 0. 

The insertion cost of a request i into a route k is specified as 

� f ( i, k ) = min β,ε � f ( i, k, β, ε ) , i. e. �f ( i , k ) is given by the cheap- 

est insertion move of request i into route k . The insertion heuris- 

tics perform several iterations. The Greedy insertion Ih G selects in 

each iteration the (request, route)-pair ( i 0 , k 0 ) for insertion which 

minimizes the insertion cost ( � f ( i 0 , k 0 ) = min i,k � f ( i, k ) ). 

The Regret-2 insertion Ih R 2 heuristic selects per iteration the 

request i 0 that maximizes the regret value ρ2 (i ) = � f ( i, k 2 (i ) ) −

� f ( i, k 1 ( i ) ) ; k 1 and k 2 ( k 1 � = k 2 ) are those routes in which request 

i can be inserted with smallest and second smallest insertion 

cost ( � f ( i, k 1 ( i ) ) ≤ � f ( i, k 2 ( i ) ) ≤ � f ( i, k ) ∀ k, k � = k 1 , k � = k 2 ), 

respectively. Finally, we mention that the regret value for the 
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Fig. 5. Insertion of a request into a route (bold lines: added edges, dotted lines: removed edges). 

Regret-3 insertion Ih R 3 is calculated according ρ3 (i ) = 

� f ( i, k 2 (i ) ) − � f ( i, k 1 ( i ) ) + � f ( i, k 3 ( i ) ) − � f ( i, k 1 ( i ) ) . 

The initial solution is constructed by means of the Regret-2 in- 

sertion heuristic starting with an empty solution. 

4.2. Integration of routing and packing 

To provide feasible packing plans for routes of solutions 3D 

packing checks are performed that are integrated in two parts of 

the routing procedure. 

Let a new solution ( s next ) be generated from an old one ( s curr ) 

by means of a removal heuristic Rh and an insertion heuristic Ih 

according to s next : = Ih ( Rh ( s curr , ξ )) and consider a route of s curr . If 
Rh and Ih are applied to the route two cases can occur. In general, 

some requests (i.e. pairs of a pickup and a delivery point) of the 

route are removed and some new requests are reinserted. It might 

also occur that only old requests are removed from the route with- 

out inserting new ones. In the former case, it will suffice to inte- 

grate packing checks in the insertion heuristic that is applied after 

the removal heuristic. In the latter case, it will be mostly possi- 

ble to store the boxes of the remaining requests at all remaining 

sites of a route in a feasible way, too. Therefore, packing checks are 

integrated in insertion heuristics exclusively (and not in removal 

heuristics) and these checks are called insertion packing checks. 

However, sometimes the boxes of a given set can be stored in 

the loading space of a route in a feasible way, while this is no 

longer the case after some of the boxes were removed. Such a sit- 

uation may occur, e.g. if a box that is needed to provide sufficient 

support for another fragile box was removed. To cope with these 

cases, packing checks will also be applied to all routes of a solution 

s next within the acceptance test of s next (see Fig. 4 ) and these checks 

are called acceptance packing checks. Especially all routes that did 

result earlier by a pure removing of requests are checked. If there 

is at least one site for which no feasible packing plan can be pro- 

vided, the solution s next will be discarded and the search contin- 

ues with the last accepted solution. This measure prevents that 

an accepted solution ever includes an infeasible route in terms of 

packing. 

Subsequently, the integration of insertion packing checks is 

shown by means of the Greedy insertion heuristic. 

In Fig. 6 the Greedy insertion heuristic is shown in detail. It 

is based on the procedure select_best_insertions that performs the 

packing checks and is shown in Fig. 7 . The Greedy insertion heuris- 

tic takes an incomplete solution, a set of missing requests and the 

best solution so far as input values. In each loop cycle the best 

(minimum cost) insertion is determined, related to the requests 

still missing and implemented before the set of missing requests 

is updated. The procedure select_best_insertions is used to deliver 

the best insertion for a given request. 

In each cycle the number of still missing requests nmr wi for 

which no feasible insertion was found at all is counted. If in 

any cycle nmr wi is greater than the number of missing requests 

nmr ( s best ) in the best solution found so far, then a further compu- 

tation is probably useless and the heuristic will end. Otherwise, a 

solution is provided in the end that has no more missing requests 

than the best solution so far or is even a feasible and complete 

solution. 

The procedure select_best_insertions is organized in two parts. 

In the first part ( for -loop) all potential insertions of a given request 

rq into any route of a given solution s are provided. Each insertion 

must be feasible in terms of route length (C9), route number (C10) 

and weight (C5). The minimum cost insertions of all routes are col- 

lected in a list I cand . 

In the second part ( while -loop), the insertions of I cand are ex- 

amined by ascending costs. In each cycle the currently minimum 

cost insertion ins best undergoes a 3D packing check, i.e. the inser- 

tion ins best is applied to its route and the route is then checked in 

terms of the constraints (C1) and (C6)–(C8). If the outcome is pos- 

itive, insertion ins best is included into the set of best insertions I best 
(and removed in I cand ). 

Otherwise the next cheapest insertion for the route of ins best (if 

any) will replace ins best in list I cand . The procedure ends if I best has 

enough ( n ins ) insertions or if I cand is empty. Any two insertions in 

I best belong to different routes. 

Two features of the procedure select_best_insertions should 

be stressed. First, one-dimensional checks are made before 3D 
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Fig. 6. Greedy insertion heuristic. 

Fig. 7. Procedure select_best_insertions with packing check. 

packing checks are carried out. Second, all possible insertions are 

first evaluated and sorted by cost before the “expensive” packing 

checks are made. By this technique, called “evaluating first, pack- 

ing second”, the packing effort is kept low since the packing checks 

can be aborted each time after few (3D-)feasible insertions have 

been detected. 

The procedure select_best_insertions is also used for the Regret- 

2 and Regret-3 insertion heuristics. In every cycle these heuristics 

retrieve the best two (three) insertions from select_best_insertions 

for all requests currently not contained in the (incomplete) solu- 

tion to calculate the requests regret values. For each request, these 

two (three) insertions must belong to different routes. In each cy- 

cle the request with maximal regret value is inserted into the solu- 

tion, i.e. these requests’ best insertion is implemented. For details 

about the Regret-2 and Regret-3 insertion heuristic see Bortfeldt et 

al. (2015) . 

Our implementation of the LNS routing procedure can also be 

applied to the (1D-)PDP. In this situation, the 3D packing test is 

omitted and only the route length (C9), route number (C10), and 

weight constraint (C5) are checked. 

4.3. The concept of packing checks 

The insertion packing checks and the acceptance packing checks 

are now explained in detail. Basically, for each route of a solution 

and each site visited in this route a feasible packing plan has to be 

provided. The plan must stow all boxes that are already loaded and 

not yet unloaded after the visit of this site. Now we ask whether 

existing feasible packing plans for selected sites of a route guaran- 

tee the existence of feasible packing plans for other sites. It turns 

out that this is the case at least if additional requirements hold 

that are based on the required constraints of the 3L-PDP variants 

dealt with in this paper, i.e. the variants 1, 2 and 5 (see Table 2 ). By 

using these additional requirements we want to reduce the effort 

spent for packing checks. We first deal with the 3L-PDP variants 2 

and 5 and afterwards with variant 1. 

We define a sequence of open pickup points (SOPP) as a se- 

quence of pickup points within a route of a 3L-PDP solution with 

following characteristics: (i) the last point of the sequence is fol- 

lowed by a delivery point in the route; (ii) the sequence contains 

exactly all pickup points of the route whose delivery points lie be- 

hind the last sequence point. Examples of SOPPs can be found in 

Fig. 8 below. 

Let m 2 ( m 2 ≥ 1) be the number of consecutive pickup points 

lying at the end of the SOPP. Let m 1 ( m 1 ≥ 0) be the number of 

pickup points that are separated from the last m 2 pickup points by 

at least one delivery point. Then the sequence can be denoted as 

P i , i = 1,…, m 1 , m 1 + 1,…, m 1 + m 2 (i.e. P m 1 + m 2 is the last point). 

We say that a packing plan for pickup point P m 1 + m 2 of a SOPP 

satisfies the cumulative request sequence constraint for pickup 
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Fig. 8. Packing checks in 3L-PDP variants 2 and 5. 

points (CRS-p) if the following conditions hold: (i) there are no 

boxes of a request j (loaded at pickup point P j ) between a box of 

request i and the rear of the vehicle; (ii) there are no boxes of re- 

quest j above a box of request i ( i , j = 1,…, m 1 + m 2 , j < i ). 

Proposition 1. Let a feasible plan for pickup point P m 1 + m 2 of a SOPP 

exist that meets the constraints (C6)–(C8) and observes the CRS-p 

constraint. Then feasible packing plans observing constraints (C1) and 

(C6)–(C8) do also exist for pickup points P i ( i = m 1 + 1,…, m 1 + m 2 −1). 

Proof. Clearly, a packing plan for a pickup point that observes the 

CRS-p constraint also meets the RS constraint for pickup points 

(C1). If the boxes of the last request m 1 + m 2 are removed, a packing 

plan for pickup point P m 1 + m 2 −1 results that also meets the CRS-p 

constraint, hence the (C1) constraint. The plan for P m 1 + m 2 −1 also 

satisfies support constraint (C7), as no boxes were removed that 

could serve for supporting boxes of requests 1 to m 1 + m 2 −1 (con- 

dition (ii) in CRS-p constraint definition). Constraints (C6) and (C8) 

as well as feasibility conditions (FP1) to (FP3) are trivially met in 

the plan for P m 1 + m 2 −1 because they hold in the plan for P m 1 + m 2 . 

For the pickup points P i ( i = m 1 + m 2 −2,…, m 1 + 1), packing plans 

can be derived in a similar manner. �

Now we introduce a further constraint with regard to routing 

called inverse delivery points sequence (IDPS) constraint. A route 

meets the IDPS constraint if the following condition holds: given 

any two requests i and j that are transported together at least be- 

tween two consecutive points of a route; if the pickup point P i lies 

before P j , then the delivery point D i lies behind D j ( i , j = 1,…, n , i < j ). 

Proposition 2. Let a route be given that observes the IDPS constraint 

and a SOPP within the route. Let a feasible packing plan for the (last) 

pickup point P m 1 + m 2 exist that meets the constraints (C6) to (C8) and 

satisfies the CRS-p constraint . Then feasible packing plans observing 

the constraints (C2) and (C6) to (C8) do also exist for the consecutive 

delivery points following pickup point P m 1 + m 2 . 

Proof. The points following P m 1 + m 2 must be the delivery points 

D m 1 + m 2 , D m 1 + m 2 −1 ,…, D m 1 + m 2- m 3 (0 ≤m 3 ≤m 1 + m 2 ) in this or- 

der since another set and another order of delivery points would 

contradict the IDPS constraint. The boxes of request m 1 + m 2 are al- 

ready in unloading position if the vehicle arrives in D m 1 + m 2 . Af- 

ter these boxes were unloaded the boxes of request m 1 + m 2 −1 are 

in unloading position due to the CRS-p constraint, i.e. constraint 

(C2) is met in the plan for D m 1 + m 2 . Constraints (C6)–(C8) and fea- 

sibility conditions (FP1) to (FP3) are verified for the plan for de- 

livery point D m 1 + m 2 as in proof of Proposition 1 . Feasible pack- 

ing plans for further consecutive delivery points can be derived 

similarly. �

The above considerations show that for 3L-PDP variants 2 and 

5 it is sufficient to construct feasible packing plans for the last 

pickup points of all SOPPs of a given route. Feasible packing plans 

that observe the RS constraints (C1) and (C2) and constraints (C6)–

(C8) can in this case be derived for all other pickup points and all 

delivery points of this route. 

However, this claim holds only if two conditions are fulfilled. 

On the one hand, the constructed packing plans for the last pickup 

points of SOPPs must observe the CRS-p constraint being stronger 

than the (C1) constraint. On the other hand, the IDPS constraint for 

routes must be required. This constraint is included in the inde- 

pendent partial routes constraint (see Section 3.1 ); hence it holds 

automatically in problem variant 5. In problem variant 2 the IDPS 

constraint is substituted for the RS constraint for delivery points 

(C2). This is possible as the RS constraint for pickup points (C1) 

and the IDPS constraint result in packing plans for delivery points 

that meet constraint (C2) as shown in Proposition 2 (this way also 

the entry “a” in line 5 and column “RS delivery” in Table 2 is 

justified). 

While a packing procedure has to deliver packing plans for all 

last points of SOPPs in a given route that must observe the CRS-p 

constraint, the IDPS and IPR constraint are routing constraints that 

can be checked within procedure select_best_insertions together 

with other routing constraints. 

Acceptance packing checks for problem variants 2 and 5 are car- 

ried out exactly as described before. An insertion packing check is 

performed each time another request is inserted into a route (see 

Section 3.2 ). Packing plans are then to be provided only for those 

last pickup points of SOPPs that lie between the inserted pickup 

point and the inserted corresponding delivery point since for the 

other parts of the route feasible packing plans are provided with 

the unmodified route of the former solution. 

The procedure of packing checks for a route in 3L-PDP variants 

2 and 5 is illustrated by two examples in Fig. 8 . In the first example 

(variant 2), boxes of some requests, e.g. request 1, are loaded in 

multiple packing plans with possibly different placements. In the 

second example (variant 5) each request is stowed only one time 

due to the IPR constraint. Hence, there is no reloading effort at 
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all. Note that the route observes the IDPS constraint in the first 

example and the IPR constraint in the second one. 

In the 3L-PDP variant 1, the RS constraint for pickup points (C1) 

has to be observed. Hence, packing checks for all last pickup points 

of SOPPs are carried out as in problem variants 2 and 5. How- 

ever, the RS constraint for delivery points (C2) and a fortiori the 

stronger IDPS constraint is no longer required. Therefore, packing 

plans for delivery points cannot be derived generally from packing 

plans for previous pickup points and their existence is no longer 

guaranteed. Instead, feasible packing plans for all delivery points 

of a given route must be provided separately. This is done in the 

following way: 

(1) If a vehicle arrives at a delivery point, all boxes of the cor- 

responding request, say A , are to be unloaded. Since the RS 

constraint (C2) is not required, some boxes of requests B , C , 

etc. may stand in the way of the A -boxes. These are called 

blocking boxes. We assume that blocking boxes have to be 

temporarily unloaded. 

(2) It can occur that there are no blocking boxes at all, i.e. all A - 

boxes are in unloading position. In this case the packing plan 

for the current delivery point results from the plan for the 

former site simply by removing the A -boxes. The resulting 

plan is feasible and observes the constraints (C6)–(C8) if the 

former plan has these characteristics (see Proposition 2 ). 

(3) Otherwise a new feasible packing plan must be built for the 

current delivery point. The plan must contain placements for 

the loaded and not yet unloaded boxes (i.e. no longer place- 

ments of A -boxes). 

(4) In particular, the boxes that were temporarily unloaded must 

be considered for the new packing plan. We define two poli- 

cies for doing this. In the first policy (resulting in subvariant 

1A ), the original loading order of all requests is maintained. 

In the second policy ( subvariant 1B ), the original loading or- 

der is modified as the order of requests for which temporar- 

ily unloaded boxes do exist is now chosen inverse to the 

order of corresponding delivery points. Clearly, the second 

loading order should result in less reloading effort at the fol- 

lowing delivery points. 

(5) For the specified loading order, the packing heuristic gen- 

erates a packing plan (if possible) in such a way that con- 

straints (C6)–(C8) and the CRS-p constraint for the given 

loading order is fulfilled. 

(6) For the boxes that have to be temporarily unloaded, a 

reloading effort is to be calculated in any case. For other 

boxes, the placements in the packing plan for the cur- 

rent delivery point are compared with the placements 

in the packing plan of the previous site. Only for boxes 

with changed placements a reloading effort is calculated 

(including reloading effort for their blocking boxes if 

necessary). 

(7) Similar differences concerning the scope of checks exist 

between acceptance packing checks and insertion packing 

checks as in problem variants 2 and 5 (see above). 

(8) The structure of input data of a packing check for a pickup 

point and for a delivery point is the same. In any case, the 

loading order of the relevant requests is needed as well as 

the box set per request. 

Packing checks for problem variant 1 are illustrated by an ex- 

ample in Fig. 9 that considers only delivery points. Note that at 

delivery point D3 boxes of request 2 cannot be blocking boxes be- 

cause of constraint (C1). 

4.4. Packing procedure 

For a given loading sequence of requests and the correspond- 

ing sets of boxes, the packing procedure tries to determine a com- 

plete solution, i.e. a packing plan stowing all given boxes. The gen- 

erated packing plan is feasible and observes the constraints (C6)–

(C8) as well as the CRS-p constraint (including the (C1) constraint). 

A depth first search is carried out by means of the recursive pro- 

cedure add_placement shown in Fig. 10 . A stowage plan currentSo- 

lution is transferred and then extended in different variants by one 

further box placement for each procedure call. 

As the search is started, the solution currentSolution is set 

empty, the set freeBoxes is filled by all boxes (incl. data concern- 

ing loading sequence) and the list potentialPlacements is filled by 

all feasible box placements in the lower left front corner of the 

loading space L ×W ×H (cf. Fig. 3 ) . 

The procedure add_placement checks first whether the current 

packing check can be aborted. This is done, i.e. all running in- 

stances of procedure add_placement are aborted, if currentSolution 

is a complete solution or if the number of calls of add_placement 

exceeds a given limit maxApCalls. The current instance of the pro- 

cedure is aborted if there is at least one free box without a po- 

tential placement, i.e. if a complete solution can no longer be 

achieved. 

Candidates for the next placement are selected from the list 

potentialPlacements and provided in the list currentPlacements . All 

these placements are then tried alternatively. For each place- 

ment, the current solution, the set of free boxes, and the list 

of potential placements are updated accordingly before procedure 

add_placement is called again. To update the list potentialPlace- 

ments, all potential placements that can no longer be imple- 

mented are removed. Additional potential reference points for new 

Fig. 9. Packing checks for delivery points in 3L-PDP variant 1. 
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Fig. 10. Packing procedure add_placement. 

potential placements are determined as extreme points (see 

Crainic, Perboli, & Tadei, 2008 ). 

The selection of placements currently to be tried among all po- 

tential placements is governed by two rules. On the one hand, it 

is ensured that a vehicle is loaded from front to rear, from bot- 

tom to top with lower priority, and from left to right with low- 

est priority. Hence, placements with smaller x -coordinates of the 

reference corner are preferred, etc. On the other hand, the selec- 

tion is made taking into account the CRS-p constraint. Placements 

of boxes are preferred that belong to earlier loaded requests and, 

therefore, have to be stowed nearer to the cabin. The placement 

selection is controlled by the integer parameters maxBoxRankDiff

and maxRefPoints where higher parameter values lead to a larger 

set of currently tried placements (see Bortfeldt, 2012 ). 

All loading sequences of requests that have ever been checked 

are collected in a cache to further accelerate the search. Whenever 

a sequence is tested, it is first searched in the cache. To speed up 

this search, for each request a separate table is established keeping 

the positions of all stored sequences including this request. Thus, 

a request sequence is searched by examining only the cache po- 

sitions of its first request. The packing algorithm is only called 

if the sequence was not found in the cache and the sequence is 

then inserted in the cache together with the result of the packing 

test. Multiple checks of same request sequences are avoided by this 

procedure. 

5. Computational experiments 

The computational experiments are organized in two parts. In 

the first part we examine the 1D variant of the hybrid algorithm 

(denoted by 1D-LNS) using the well-known PDP instances by Li 

and Lim (2001) with up to 100 requests. In the second part we 

test mainly the 3D variant of the algorithm by means of 54 new 

3L-PDP instances with up to 100 requests and up to 300 boxes. 

The packing procedure is coded in the C ++ programming lan- 

guage using Visual Studio 2012 Express, while the LNS scheme is 

implemented using the Java programming language under Eclipse 

3.5.2. Preliminary experiments (in which total run times were var- 

ied) demonstrated that the impact of the different developing en- 

vironments is negligible. All the experiments have been conducted 

on a PC with Intel Core i5-2500 K (4.0 gigahertz, 16 gigabyte RAM). 

Afterwards, the new benchmark instances are introduced and 

the parameter setting is specified before the computational results 

are presented and analyzed. 

5.1. Benchmark instances for 3L-PDP 

To provide a sufficiently large set of 3L-PDP benchmark in- 

stances with different characteristics we generate the instances as 

follows: 

Table 4 

Overview of the 54 new 3L-PDP benchmark instances. 

Number 2 Boxes per request 3 Boxes per request Total 

of on average on average 

requests Random Mixed Pure Random Mixed Pure 

cluster cluster cluster cluster 

50 5 5 5 5 5 5 30 

75 3 3 3 3 3 3 18 

100 1 1 1 1 1 1 6 

Table 5 

Parameter setting for the LNS routing procedure. 

Parameter Description Value 

r min Lower bound for no. of removed customers 0 .04 ·n 

r max Upper bound for no. of removed customers 0 .4 ·n 

w Start temperature control parameter 0 .005 

c Rate of geometrical cooling 0 .9999 

p ( Rh R ), p ( Rh S ) Probability of random/Shaw removal 0 .3, 0.4 

p ( Rh W ), p ( Rh T ) Probability of worst/tour removal 0 .1, 0.2 

p ( Ih G ), p ( Ih R2 ), p ( Ih R3 ) Probability of greedy/regret-2/regret-3 

insert 

0 .1, 0.6, 0.3 

w r1 , w r2 Weights of relatedness formula for Shaw 

removal 

9,2 

Table 6 

Parameter setting for packing procedure. 

Parameter Description Value 

maxApCalls Max. no. of calls to procedure add_placement 30 0 0 

maxBoxRankDiff Max. tolerated rank difference of boxes 2 

maxRefPoints Max. number of admitted reference points 3 

Table 7 

Computing time in minutes for experiments with (3L-)PDP instances. 

Number of 1D-test 2 Boxes per 3 Boxes per 

requests (no packing) request on avg. request on avg. 

50 1 2 5 

75 2 4 10 

100 4 8 20 

• 30 instances with 50 requests, 18 instances with 75 and 6 in- 

stances with 100 requests are provided. The average number of 

boxes per request is two for half and three for the other half of 

the instances. 
• Regarding the distribution of pickup and delivery points of the 

requests, we distinguish the three variants “Random”, “Mixed 

cluster” and “Pure cluster”. In variant “Random” the sites are 

uniformly distributed in a rectangular section of the plane, 

while they are clustered in the other variants. In variant “Mixed 
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Table 8 

Best solutions for Li-Lim-100 instances (50 requests). 

Instance Ropke and Best known 

1D-LNS Pisinger (2006) solution 

nv ttd nv ttd nv ttd 

LC101 10 828 .94 10 828 .94 10 828 .94 

LC102 10 828 .94 10 828 .94 10 828 .94 

LC103 9 1035 .35 9 1035 .35 9 1035 .35 

LC104 9 860 .01 9 860 .01 9 860 .01 

LC105 10 828 .94 10 828 .94 10 828 .94 

LC106 10 828 .94 10 828 .94 10 828 .94 

LC107 10 828 .94 10 828 .94 10 828 .94 

LC108 10 826 .44 10 826 .44 10 826 .44 

LC109 9 10 0 0 .60 9 10 0 0 .60 9 10 0 0 .60 

LC201 3 591 .56 3 591 .56 3 591 .56 

LC202 3 591 .56 3 591 .56 3 591 .56 

LC203 3 591 .17 3 591 .17 3 585 .56 

LC204 3 590 .60 3 590 .60 3 590 .60 

LC205 3 588 .88 3 588 .88 3 588 .88 

LC206 3 588 .49 3 588 .49 3 588 .49 

LC207 3 588 .29 3 588 .29 3 588 .29 

LC208 3 588 .32 3 588 .32 3 588 .32 

LR101 19 1650 .80 19 1650 .80 19 1650 .80 

LR102 17 1487 .57 17 1487 .57 17 1487 .57 

LR103 13 1292 .68 13 1292 .68 13 1292 .68 

LR104 9 1013 .39 9 1013 .39 9 1013 .39 

LR105 14 1377 .11 14 1377 .11 14 1377 .11 

LR106 12 1252 .62 12 1252 .62 12 1252 .62 

LR107 10 1111 .31 10 1111 .31 10 1111 .31 

LR108 9 968 .97 9 968 .97 9 968 .97 

LR109 11 1208 .97 11 1208 .96 11 1208 .96 

LR110 10 1159 .35 10 1159 .35 10 1159 .35 

LR111 10 1108 .90 10 1108 .90 10 1108 .90 

LR112 9 1003 .77 9 1003 .77 9 1003 .77 

LR201 4 1253 .23 4 1253 .23 4 1253 .23 

LR202 3 1197 .67 3 1197 .67 3 1197 .67 

LR203 3 949 .40 3 949 .40 3 949 .40 

LR204 2 849 .05 2 849 .05 2 849 .05 

LR205 3 1054 .02 3 1054 .02 3 1054 .02 

LR206 3 931 .63 3 931 .63 3 931 .63 

LR207 2 903 .06 2 903 .06 2 903 .06 

LR208 2 734 .85 2 734 .85 2 734 .85 

LR209 3 930 .59 3 930 .59 3 930 .59 

LR210 3 964 .22 3 964 .22 3 964 .22 

LR211 2 911 .52 2 911 .52 2 911 .52 

LRC101 14 1708 .80 14 1708 .80 14 1708 .80 

LRC102 12 1558 .07 12 1558 .07 12 1558 .07 

LRC103 11 1258 .74 11 1258 .74 11 1258 .74 

LRC104 10 1128 .40 10 1128 .40 10 1128 .40 

LRC105 13 1637 .62 13 1637 .62 13 1637 .62 

LRC106 11 1424 .73 11 1424 .73 11 1424 .73 

LRC107 11 1230 .15 11 1230 .14 11 1230 .14 

LC101 10 828 .94 10 828 .94 10 828 .94 

LC102 10 828 .94 10 828 .94 10 828 .94 

LC103 9 1035 .35 9 1035 .35 9 1035 .35 

LC104 9 860 .01 9 860 .01 9 860 .01 

LC105 10 828 .94 10 828 .94 10 828 .94 

LC106 10 828 .94 10 828 .94 10 828 .94 

LC107 10 828 .94 10 828 .94 10 828 .94 

LC108 10 826 .44 10 826 .44 10 826 .44 

LC109 9 10 0 0 .60 9 10 0 0 .60 9 10 0 0 .60 

Average 1036 .78 1036 .68 1036 .78 

cluster” individual clusters may contain pickup as well as deliv- 

ery points, while only sites of one sort can occur in an individ- 

ual cluster of variant “Pure clusters”. For each instance size, the 

same number of instances belongs to each distribution variant. 
• Loading spaces and boxes are generated similarly to Gendreau 

et al. (2006) . The dimensions of the uniform loading spaces of 

the vehicles are chosen as L = 60, W = 25 and H = 30 length 

units. The lengths l ik , widths w ik and heights h ik of the boxes 

are drawn randomly from the intervals [0.2 ·L , 0.6 ·L ], [0.2 ·W , 

0.6 ·W ] and [0.2 ·H , 0.6 · H ], respectively ( i = 1,..., n , k = 1,..., m i ). A 

box is characterized as fragile with the probability 0.25. The 

Table 9 

Best solution for Li-Lim-200 instances (100 requests). 

Instance Ropke and Best known 

1D-LNS Pisinger (2006) solution 

nvt ttd nv ttd nv ttd 

LC1_2_1 20 2704 .57 20 2704 .57 20 2704 .57 

LC1_2_2 19 2764 .56 19 2764 .56 19 2764 .56 

LC1_2_3 17 3127 .78 ∗ 17 3128 .61 17 3128 .61 

LC1_2_4 17 2693 .41 17 2693 .41 17 2693 .41 

LC1_2_5 20 2702 .05 20 2702 .05 20 2702 .05 

LC1_2_6 20 2701 .04 20 2701 .04 20 2701 .04 

LC1_2_7 20 2701 .04 20 2701 .04 20 2701 .04 

LC1_2_8 20 2689 .83 20 2689 .83 20 2689 .83 

LC1_2_9 18 2724 .24 18 2724 .24 18 2724 .24 

LC1_2_10 17 2942 .13 ∗ 17 2943 .49 17 2943 .49 

LC2_2_1 6 1931 .44 6 1931 .44 6 1931 .44 

LC2_2_2 6 1881 .40 6 1881 .40 6 1881 .40 

LC2_2_3 6 1844 .33 6 1844 .33 6 1844 .33 

LC2_2_4 6 1767 .82 6 1767 .12 6 1767 .12 

LC2_2_5 6 1891 .21 6 1891 .21 6 1891 .21 

LC2_2_6 6 1857 .78 6 1857 .78 6 1857 .78 

LC2_2_7 6 1850 .13 6 1850 .13 6 1850 .13 

LC2_2_8 6 1824 .34 6 1824 .34 6 1824 .34 

LC2_2_9 6 1854 .21 6 1854 .21 6 1854 .21 

LC2_2_10 6 1817 .45 6 1817 .45 6 1817 .45 

LR1_2_1 20 4819 .12 20 4819 .12 20 4819 .12 

LR1_2_2 17 4621 .21 17 4621 .21 17 4621 .21 

LR1_2_3 15 3612 .64 15 3612 .64 15 3612 .64 

LR1_2_4 10 3031 .20 ∗ 10 3037 .38 10 3037 .38 

LR1_2_5 16 4760 .18 16 4760 .18 16 4760 .18 

LR1_2_6 14 4175 .16 14 4178 .24 14 4175 .16 

LR1_2_7 12 3543 .56 ∗ 12 3550 .61 12 3550 .61 

LR1_2_8 9 2791 .67 9 2784 .53 9 2784 .53 

LR1_2_9 14 4343 .86 ∗ 14 4354 .66 14 4354 .66 

LR1_2_10 11 3695 .84 ∗ 11 3714 .16 11 3714 .16 

LR2_2_1 5 4073 .10 5 4073 .10 5 4073 .10 

LR2_2_2 4 3796 .81 4 3796 .00 4 3796 .00 

LR2_2_3 4 3098 .36 4 3098 .36 4 3098 .36 

LR2_2_4 3 2500 .04 3 2486 .14 3 2486 .14 

LR2_2_5 4 3438 .39 4 3438 .39 4 3438 .39 

LR2_2_6 4 3201 .54 4 3201 .54 4 3201 .54 

LR2_2_7 3 3152 .52 3 3135 .05 3 3135 .05 

LR2_2_8 2 2582 .35 2 2555 .40 2 2555 .40 

LR2_2_9 3 4054 .50 3 3930 .49 3 3930 .49 

LR2_2_10 3 3286 .95 ∗ 3 3344 .08 3 3323 .37 

LRC1_2_1 19 3606 .06 19 3606 .06 19 3606 .06 

LRC1_2_2 15 3681 .07 15 3674 .80 15 3671 .02 

LRC1_2_3 13 3154 .92 ∗ 13 3178 .17 13 3161 .75 

LRC1_2_4 10 2631 .82 10 2631 .82 10 2631 .82 

LRC1_2_5 16 3715 .81 16 3715 .81 16 3715 .81 

LRC1_2_6 17 3368 .66 17 3368 .66 16 3572 .16 

LRC1_2_7 14 3738 .47 14 3668 .39 14 3668 .39 

LRC1_2_8 13 3167 .23 13 3174 .55 13 3146 .70 

LRC1_2_9 13 3303 .18 13 3226 .72 13 3157 .34 

LRC1_2_10 12 2951 .90 12 2951 .29 12 2951 .29 

LRC2_2_1 6 3632 .37 6 3605 .40 6 3595 .18 

LRC2_2_2 5 3182 .62 ∗ 5 3327 .18 5 3327 .18 

LRC2_2_3 4 2914 .82 ∗ 4 2938 .28 4 2938 .28 

LRC2_2_4 3 3038 .16 3 2887 .97 3 2887 .97 

LRC2_2_5 5 2777 .23 5 2776 .93 5 2776 .93 

LRC2_2_6 5 2707 .96 5 2707 .96 5 2707 .96 

LRC2_2_7 4 3067 .91 4 3056 .09 4 3044 .40 

LRC2_2_8 4 2401 .17 4 2399 .95 4 2399 .95 

LRC2_2_9 4 2208 .72 4 2208 .49 4 2208 .49 

LRC2_2_10 3 2600 .41 3 2550 .56 3 2550 .56 

Average 3005 .62 30 0 0 .85 2998 .08 

percentage a for the minimal supporting area was specified as 

0.75. 
• The weight capacity of the loading spaces was set to 45,0 0 0 

weight units (being also the value of volume). The proportion of 

weight and volume is chosen three to one for the boxes of one 

third of the requests of an instance while for the boxes of the 

residual requests identical values are chosen for weights and 



D. Männel, A. Bortfeldt / European Journal of Operational Research 254 (2016) 840–858 853 

Table 10 

Results (travel distances) for different variants of 3L-PDP. 

Instance 1D-test Variant 1A Variant 1B Variant 2 Variant 5 

ttd ttd Gap (percent) ttd Gap (percent) ttd Gap (percent) ttd Gap (percent) 

50_RAND_2_1 1362 .26 1455 .90 6 .87 1465 .44 7 .57 1630 .49 19 .69 1732 .67 27 .19 

50_RAND_2_2 1181 .42 1320 .96 11 .81 1325 .90 12 .23 1519 .02 28 .58 1583 .34 34 .02 

50_RAND_2_3 1234 .98 1329 .43 7 .65 1343 .59 8 .79 1568 .65 27 .02 1650 .54 33 .65 

50_RAND_2_4 1246 .39 1368 .32 9 .78 1374 .41 10 .27 1536 .86 23 .31 1602 .59 28 .58 

50_RAND_2_5 1276 .39 1338 .52 4 .87 1346 .96 5 .53 1540 .24 20 .67 1595 .81 25 .03 

50_CLUS_2_1 888 .14 993 .52 11 .87 986 .23 11 .04 1052 .67 18 .53 1123 .83 26 .54 

50_CLUS_2_2 852 .82 929 .07 8 .94 926 .97 8 .69 1035 .76 21 .45 1111 .18 30 .29 

50_CLUS_2_3 921 .30 992 .28 7 .70 1005 .00 9 .08 1099 .69 19 .36 1150 .02 24 .83 

50_CLUS_2_4 1031 .28 1111 .93 7 .82 1122 .61 8 .86 1222 .88 18 .58 1275 .35 23 .67 

50_CLUS_2_5 1132 .02 1238 .50 9 .41 1231 .13 8 .76 1308 .56 15 .60 1381 .87 22 .07 

50_CPCD_2_1 1102 .82 1273 .17 15 .45 1277 .44 15 .83 1307 .80 18 .59 1378 .21 24 .97 

50_CPCD_2_2 1039 .63 1165 .22 12 .08 1182 .16 13 .71 1245 .08 19 .76 1257 .93 21 .00 

50_CPCD_2_3 996 .64 1118 .85 12 .26 1127 .60 13 .14 1193 .27 19 .73 1235 .76 23 .99 

50_CPCD_2_4 1128 .00 1264 .06 12 .06 1266 .33 12 .26 1305 .44 15 .73 1334 .87 18 .34 

50_CPCD_2_5 1237 .93 1378 .02 11 .32 1394 .96 12 .68 1426 .37 15 .22 1457 .98 17 .78 

50_RAND_3_1 1359 .03 1468 .96 8 .09 1468 .08 8 .02 1615 .05 18 .84 1729 .64 27 .27 

50_RAND_3_2 1184 .75 1347 .39 13 .73 1321 .31 11 .53 1469 .79 24 .06 1574 .71 32 .91 

50_RAND_3_3 1251 .30 1339 .55 7 .05 1381 .46 10 .40 1563 .98 24 .99 1657 .33 32 .45 

50_RAND_3_4 1266 .16 1340 .17 5 .85 1351 .32 6 .73 1543 .46 21 .90 1569 .01 23 .92 

50_RAND_3_5 1281 .81 1350 .06 5 .32 1367 .22 6 .66 1542 .28 20 .32 1589 .65 24 .02 

50_CLUS_3_1 889 .57 975 .26 9 .63 977 .07 9 .84 1007 .59 13 .27 1052 .79 18 .35 

50_CLUS_3_2 854 .41 912 .67 6 .82 927 .89 8 .60 1027 .42 20 .25 1104 .59 29 .28 

50_CLUS_3_3 926 .75 992 .13 7 .05 1014 .05 9 .42 1083 .43 16 .91 1126 .70 21 .58 

50_CLUS_3_4 1026 .55 1106 .48 7 .79 1110 .01 8 .13 1192 .62 16 .18 1251 .52 21 .92 

50_CLUS_3_5 1137 .96 1235 .78 8 .60 1242 .11 9 .15 1281 .10 12 .58 1324 .79 16 .42 

50_CPCD_3_1 1097 .01 1279 .04 16 .59 1311 .43 19 .55 1331 .47 21 .37 1352 .20 23 .26 

50_CPCD_3_2 1048 .17 1212 .34 15 .66 1216 .30 16 .04 1233 .94 17 .72 1248 .24 19 .09 

50_CPCD_3_3 998 .97 1163 .52 16 .47 1146 .02 14 .72 1217 .32 21 .86 1243 .72 24 .50 

50_CPCD_3_4 1135 .69 1277 .65 12 .50 1277 .68 12 .50 1316 .08 15 .88 1319 .36 16 .17 

50_CPCD_3_5 1237 .80 1406 .17 13 .60 1400 .27 13 .13 1434 .46 15 .89 1456 .91 17 .70 

75_RAND_2_1 1701 .32 1869 .07 9 .86 1837 .70 8 .02 2038 .57 19 .82 2133 .26 25 .39 

75_RAND_2_2 1562 .31 1759 .52 12 .62 1770 .07 13 .30 2044 .91 30 .89 2135 .29 36 .68 

75_RAND_2_3 1653 .16 1838 .57 11 .22 1853 .53 12 .12 2100 .18 27 .04 2184 .47 32 .14 

75_CLUS_2_1 1180 .71 1309 .51 10 .91 1312 .78 11 .19 1392 .76 17 .96 1468 .07 24 .34 

75_CLUS_2_2 1136 .71 1269 .25 11 .66 1273 .33 12 .02 1374 .76 20 .94 1422 .51 25 .14 

75_CLUS_2_3 1163 .14 1325 .77 13 .98 1333 .76 14 .67 1435 .62 23 .43 1500 .43 29 .00 

75_CPCD_2_1 1803 .87 2033 .94 12 .75 2048 .82 13 .58 2187 .43 21 .26 2245 .93 24 .51 

75_CPCD_2_2 1792 .68 2050 .49 14 .38 2045 .19 14 .09 2198 .82 22 .66 2223 .93 24 .06 

75_CPCD_2_3 1879 .48 2103 .61 11 .92 2128 .39 13 .24 2236 .83 19 .01 2290 .03 21 .84 

75_RAND_3_1 1698 .67 1881 .72 10 .78 1892 .65 11 .42 2048 .80 20 .61 2155 .38 26 .89 

75_RAND_3_2 1562 .97 1721 .06 10 .11 1728 .66 10 .60 1969 .33 26 .00 2078 .85 33 .01 

75_RAND_3_3 1654 .16 1772 .72 7 .17 1808 .46 9 .33 2050 .93 23 .99 2129 .98 28 .77 

75_CLUS_3_1 1178 .62 1326 .51 12 .55 1334 .40 13 .22 1420 .35 20 .51 1455 .27 23 .47 

75_CLUS_3_2 1138 .91 1258 .87 10 .53 1299 .42 14 .09 1402 .37 23 .13 1433 .76 25 .89 

75_CLUS_3_3 1173 .96 1338 .52 14 .02 1305 .07 11 .17 1424 .94 21 .38 1478 .68 25 .96 

75_CPCD_3_1 1815 .60 2103 .01 15 .83 2100 .26 15 .68 2190 .94 20 .67 2233 .76 23 .03 

75_CPCD_3_2 1810 .81 2088 .58 15 .34 2089 .01 15 .36 2207 .67 21 .92 2217 .93 22 .48 

75_CPCD_3_3 1883 .97 2154 .68 14 .37 2190 .03 16 .25 2247 .28 19 .28 2264 .96 20 .22 

100_RAND_2_1 3086 .28 3518 .97 14 .02 3530 .30 14 .39 4028 .80 30 .54 4087 .70 32 .45 

100_CLUS_2_1 3176 .76 3681 .39 15 .89 3695 .87 16 .34 3998 .53 25 .87 4195 .66 32 .07 

100_CPCD_2_1 3541 .89 4200 .16 18 .59 4161 .98 17 .51 4315 .08 21 .83 4342 .17 22 .59 

100_RAND_3_1 3110 .14 3534 .29 13 .64 3532 .25 13 .57 4006 .17 28 .81 4079 .84 31 .18 

100_CLUS_3_1 3206 .88 3714 .74 15 .84 3768 .41 17 .51 4022 .36 25 .43 4169 .56 30 .02 

100_CPCD_3_1 3579 .25 4244 .14 18 .58 4281 .03 19 .61 4310 .86 20 .44 4245 .06 18 .60 

Average gap 11 .50 12 .06 21 .06 25 .38 

volumes. Hereby the weight constraint (C5) does not become 

redundant. 
• The maximal number of admitted vehicles v max per instance is 

determined such that the algorithm can relatively easily find a 

feasible solution for problem variant 5. Since we expect shorter 

travel distances for the other problem variants, it should be 

possible to find feasible solutions for the other problem vari- 

ants which respect the determined value of v max , too. 

The 54 new 3L-PDP instances are overviewed in Table 4 ; the 

figures in columns 2 −8 are instance numbers. The instances are 

offered at the website http://www.mansci.ovgu.de/Forschung /Ma- 

terialien.html. 

5.2. Parameter setting 

The parameter setting for the experiments is specified in 

Tables 5 and 6 . The same parameterization of the routing proce- 

dures is used for all problem variants. All parameter values were 

determined based on limited computational experiments using a 

trial and error strategy. 

In Table 7 the maximum run time per instance and single run 

is shown. The computing time depends on the number of requests 

and the average box number per request. Lower time limits are 

specified if the new PDP instances are tested by 1D-LNS, i.e. as 1D- 

PDP instances. 

http://www.mansci.ovgu.de/Forschung
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Table 11 

Results (reloading efforts) for different variants of 3L-PDP. 

Instance Cargo Variant 1A Variant 1B Variant 2 

Weight Reloading effort Reloading effort Reloading effort 

Absolute in percent Absolute in percent Absolute in percent 

50_RAND_2_1 610,544 505,726 82 .83 459,168 75 .21 66,021 10 .81 

50_RAND_2_2 578,322 612,823 105 .97 553,046 95 .63 97,379 16 .84 

50_RAND_2_3 530,415 655,020 123 .49 599,036 112 .94 142,204 26 .81 

50_RAND_2_4 652,932 590,308 90 .41 487,152 74 .61 35,340 5 .41 

50_RAND_2_5 698,040 508,646 72 .87 465,401 66 .67 93,769 13 .43 

50_CLUS_2_1 610,544 488,239 79 .97 501,062 82 .07 82,880 13 .57 

50_CLUS_2_2 578,322 553,771 95 .75 514,097 88 .89 248,195 42 .92 

50_CLUS_2_3 530,415 575,112 108 .43 497,441 93 .78 120,055 22 .63 

50_CLUS_2_4 652,932 586,638 89 .85 573,017 87 .76 97,995 15 .01 

50_CLUS_2_5 698,040 472,835 67 .74 370,133 53 .02 109,537 15 .69 

50_CPCD_2_1 610,544 482,635 79 .05 453,920 74 .35 45,237 7 .41 

50_CPCD_2_2 578,322 521,266 90 .13 477,350 82 .54 43,122 7 .46 

50_CPCD_2_3 530,415 449,272 84 .70 505,457 95 .29 39,877 7 .52 

50_CPCD_2_4 652,932 331,524 50 .77 347,931 53 .29 40,816 6 .25 

50_CPCD_2_5 698,040 451,510 64 .68 407,285 58 .35 28,235 4 .04 

50_RAND_3_1 611,295 460,657 75 .36 466,731 76 .35 80,832 13 .22 

50_RAND_3_2 579,037 578,259 99 .87 457,797 79 .06 107,977 18 .65 

50_RAND_3_3 531,236 636,004 119 .72 599,437 112 .84 101,077 19 .03 

50_RAND_3_4 654,049 577,658 88 .32 507,945 77 .66 47,585 7 .28 

50_RAND_3_5 699,080 495,528 70 .88 498,884 71 .36 54,599 7 .81 

50_CLUS_3_1 611,295 504,901 82 .60 473,175 77 .41 114,401 18 .71 

50_CLUS_3_2 579,037 468,392 80 .89 449,459 77 .62 93,617 16 .17 

50_CLUS_3_3 531,236 600,787 113 .09 509,027 95 .82 101,148 19 .04 

50_CLUS_3_4 654,049 591,051 90 .37 509,588 77 .91 74,302 11 .36 

50_CLUS_3_5 699,080 464,924 66 .51 422,781 60 .48 75,528 10 .80 

50_CPCD_3_1 611,295 424,166 69 .39 435,437 71 .23 35,762 5 .85 

50_CPCD_3_2 579,037 494,572 85 .41 475,147 82 .06 45,572 7 .87 

50_CPCD_3_3 531,236 443,460 83 .48 436,738 82 .21 50,518 9 .51 

50_CPCD_3_4 654,049 405,999 62 .07 339,285 51 .87 60,050 9 .18 

50_CPCD_3_5 699,080 471,397 67 .43 372,119 53 .23 31,736 4 .54 

75_RAND_2_1 772,435 858,913 111 .20 744,474 96 .38 127,389 16 .49 

75_RAND_2_2 780,361 906,935 116 .22 795,663 101 .96 124,954 16 .01 

75_RAND_2_3 808,203 910,351 112 .64 810,807 100 .32 116,672 14 .44 

75_CLUS_2_1 772,435 912,196 118 .09 734,429 95 .08 96,284 12 .46 

75_CLUS_2_2 780,361 781,937 100 .20 678,881 87 .00 118,423 15 .18 

75_CLUS_2_3 808,203 903,054 111 .74 839,403 103 .86 152,376 18 .85 

75_CPCD_2_1 772,435 766,092 99 .18 721,262 93 .38 106,943 13 .84 

75_CPCD_2_2 780,361 742,619 95 .16 704,138 90 .23 88,685 11 .36 

75_CPCD_2_3 808,203 712,251 88 .13 701,047 86 .74 33,692 4 .17 

75_RAND_3_1 774,140 885,903 114 .44 719,354 92 .92 96,865 12 .51 

75_RAND_3_2 782,381 928,207 118 .64 786,472 100 .52 128,936 16 .48 

75_RAND_3_3 810,106 913,731 112 .79 787,292 97 .18 85,975 10 .61 

75_CLUS_3_1 774,140 828,317 107 .00 710,133 91 .73 143,045 18 .48 

75_CLUS_3_2 782,381 813,616 103 .99 710,365 90 .80 181,135 23 .15 

75_CLUS_3_3 810,106 970,844 119 .84 872,397 107 .69 97,142 11 .99 

75_CPCD_3_1 774,140 855,853 110 .56 709,599 91 .66 104,236 13 .46 

75_CPCD_3_2 782,381 725,508 92 .73 673,624 86 .10 155,560 19 .88 

75_CPCD_3_3 810,106 751,590 92 .78 667,262 82 .37 47,472 5 .86 

100_RAND_2_1 1,072,407 1,202,262 112 .11 1,071,590 99 .92 121,210 11 .30 

100_CLUS_2_1 1,072,407 1,228,476 114 .55 1,034,802 96 .49 183,258 17 .09 

100_CPCD_2_1 1,072,407 1,040,541 97 .03 1,053,133 98 .20 183,908 17 .15 

100_RAND_3_1 1,074,809 1,401,150 130 .36 1,161,062 108 .02 98,048 9 .12 

100_CLUS_3_1 1,074,809 1,245,867 115 .92 1,085,592 101 .00 126,403 11 .76 

100_CPCD_3_1 1,074,809 1,093,020 101 .69 991,355 92 .24 84,524 7 .86 

Average 95 .17 85 .80 13 .41 

For the 1D-LNS test by means of the instances by Li and Lim 

(2001) with 50 (respectively 100) requests, we allow a computing 

time of two (respectively five) minutes. 

5.3. Computational results for the one-dimensional PDP(TW) 

The PDP instances by Li and Lim (2001) are actually PDPTW in- 

stances, i.e. the requests have time windows. To perform a compar- 

ison with other algorithms using the Li and Lim instances, we had 

to extend our hybrid algorithm to make it capable of taking time 

windows into account. Furthermore, most of the existing PDPTW 

solution procedures do minimize primarily the number of used ve- 

hicles (or routes) and the total travel distance is only the second 

objective criterion. We did adapt our hybrid algorithm also in this 

regard by a two-phase approach. In the first phase the number of 

routes is minimized while the travel distance is minimized in the 

second one without sacrificing the reached number of vehicles. 

We tested 1D-LNS using the Li and Lim instances with 50 and 

100 requests (100 and 200 customers, respectively) and compared 

the results of 1D-LNS with those of Ropke and Pisinger (2006) and 

the best known solutions. These were taken from the website 

Sintef (2015) and from Koning (2011) . 

Tables 8 and 9 present the best solutions achieved by 1D-LNS 

and by Ropke and Pisinger (2006) as well as the best known solu- 

tions as indicated in the above sources ( nv is the number of used 

vehicles, ttd is the total travel distance). Best values are in bold; 
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Table 12 

Tradeoff between total travel distance and reloading effort. 

3L-PDP Total travel distance Reloading effort 

variant average (percent) average (percent) 

1A 111 .50 95 .17 

1B 112 .06 85 .80 

2 121 .06 13 .14 

5 125 .38 0 .00 

new best solutions are marked by an asterisk ( ∗). For 55 of 56 

Li-Lim-100 instances 1D-LNS finds the best known solution and 

reaches exactly the same results as ALNS by Ropke and Pisinger 

(2006) for all 56 instances. For the Li-Lim-200 instances 1D-LNS 

performs slightly worse than ALNS. Both algorithms achieve the 

minimal known number of vehicles for 59 of 60 instances. The av- 

erage gap of the total travel distance amounts to 0.25 percent for 

1D-LNS and to 0.09 percent for ALNS. Please note that in Table 9 

the average value is calculated over 59 instances; LRC_1_2_6 is 

omitted due to the different number of vehicles in the best 

solutions. 

For a single instance, the gap is determined as ( ttd-best − ttd- 

best-known )/ ttd-best-known (in percent) where ttd-best is the best 

reached travel distance (over ten runs) and ttd-best-known is the 

best known travel distance for the given instance. Moreover, 1D- 

LNS achieves new best solutions for ten instances. Here we have 

to make the restrictive remark that we only claim to achieve 

Table 13 

Computing times to find the best solution for different variants of 3L-PDP. 

Instance Variant 1A Variant 1B Variant 2 Variant 5 

Seconds Percent Seconds Percent Seconds Percent Seconds Percent 

50_RAND_2_1 107 .17 89 .31 91 .60 76 .33 71 .64 59 .70 58 .39 48 .66 

50_RAND_2_2 87 .36 72 .80 102 .27 85 .23 92 .42 77 .02 81 .87 68 .23 

50_RAND_2_3 101 .05 84 .21 100 .60 83 .83 62 .78 52 .32 64 .71 53 .93 

50_RAND_2_4 95 .84 79 .87 106 .10 88 .42 66 .86 55 .72 54 .53 45 .44 

50_RAND_2_5 81 .23 67 .69 110 .79 92 .33 52 .84 44 .03 31 .68 26 .40 

50_CLUS_2_1 94 .86 79 .05 91 .60 76 .33 71 .32 59 .43 41 .33 34 .44 

50_CLUS_2_2 110 .40 92 .00 94 .37 78 .64 95 .83 79 .86 96 .57 80 .48 

50_CLUS_2_3 88 .95 74 .13 102 .35 85 .29 79 .60 66 .33 70 .88 59 .07 

50_CLUS_2_4 91 .09 75 .91 113 .16 94 .30 72 .94 60 .78 73 .71 61 .43 

50_CLUS_2_5 83 .58 69 .65 102 .00 85 .00 58 .55 48 .79 66 .38 55 .32 

50_CPCD_2_1 100 .36 83 .63 111 .38 92 .82 91 .76 76 .47 88 .20 73 .50 

50_CPCD_2_2 102 .80 85 .67 95 .55 79 .63 101 .48 84 .57 101 .20 84 .33 

50_CPCD_2_3 113 .46 94 .55 97 .20 81 .00 89 .91 74 .93 86 .61 72 .18 

50_CPCD_2_4 94 .99 79 .16 93 .93 78 .28 103 .31 86 .09 88 .51 73 .76 

50_CPCD_2_5 71 .25 59 .38 89 .83 74 .86 103 .10 85 .92 86 .82 72 .35 

50_RAND_3_1 239 .55 79 .85 263 .57 87 .86 190 .23 63 .41 186 .90 62 .30 

50_RAND_3_2 228 .76 76 .25 247 .94 82 .65 257 .26 85 .75 265 .20 88 .40 

50_RAND_3_3 247 .53 82 .51 276 .61 92 .20 244 .00 81 .33 203 .02 67 .67 

50_RAND_3_4 230 .28 76 .76 268 .44 89 .48 245 .11 81 .70 200 .30 66 .77 

50_RAND_3_5 215 .01 71 .67 240 .22 80 .07 189 .05 63 .02 195 .87 65 .29 

50_CLUS_3_1 261 .56 87 .19 229 .32 76 .44 200 .31 66 .77 205 .10 68 .37 

50_CLUS_3_2 261 .52 87 .17 254 .47 84 .82 231 .87 77 .29 190 .09 63 .36 

50_CLUS_3_3 229 .92 76 .64 257 .62 85 .87 231 .30 77 .10 237 .31 79 .10 

50_CLUS_3_4 268 .27 89 .42 256 .52 85 .51 197 .22 65 .74 243 .49 81 .16 

50_CLUS_3_5 216 .10 72 .03 221 .72 73 .91 183 .57 61 .19 204 .54 68 .18 

50_CPCD_3_1 287 .19 95 .73 281 .54 93 .85 248 .07 82 .69 200 .12 66 .71 

50_CPCD_3_2 263 .59 87 .86 261 .27 87 .09 245 .65 81 .88 206 .89 68 .96 

50_CPCD_3_3 265 .75 88 .58 259 .45 86 .48 250 .86 83 .62 265 .12 88 .37 

50_CPCD_3_4 247 .67 82 .56 268 .70 89 .57 184 .25 61 .42 255 .28 85 .09 

50_CPCD_3_5 257 .15 85 .72 267 .74 89 .25 229 .38 76 .46 258 .38 86 .13 

75_RAND_2_1 210 .26 87 .61 186 .73 77 .80 189 .02 78 .76 159 .63 66 .51 

75_RAND_2_2 201 .76 84 .07 205 .09 85 .45 205 .11 85 .46 148 .71 61 .96 

75_RAND_2_3 190 .70 79 .46 203 .51 84 .80 182 .27 75 .95 171 .46 71 .44 

75_CLUS_2_1 201 .62 84 .01 177 .04 73 .77 178 .44 74 .35 157 .94 65 .81 

75_CLUS_2_2 196 .87 82 .03 207 .99 86 .66 190 .69 79 .45 150 .77 62 .82 

75_CLUS_2_3 181 .51 75 .63 197 .47 82 .28 181 .04 75 .43 201 .00 83 .75 

75_CPCD_2_1 224 .35 93 .48 186 .97 77 .90 208 .02 86 .68 194 .12 80 .88 

75_CPCD_2_2 166 .59 69 .41 174 .99 72 .91 200 .35 83 .48 221 .48 92 .28 

75_CPCD_2_3 202 .99 84 .58 183 .48 76 .45 204 .10 85 .04 172 .84 72 .02 

75_RAND_3_1 493 .66 82 .28 468 .80 78 .13 491 .12 81 .85 438 .72 73 .12 

75_RAND_3_2 523 .75 87 .29 495 .64 82 .61 456 .54 76 .09 455 .96 75 .99 

75_RAND_3_3 467 .60 77 .93 458 .48 76 .41 468 .25 78 .04 491 .88 81 .98 

75_CLUS_3_1 550 .75 91 .79 540 .45 90 .08 531 .09 88 .52 521 .55 86 .93 

75_CLUS_3_2 481 .92 80 .32 552 .59 92 .10 561 .17 93 .53 434 .24 72 .37 

75_CLUS_3_3 475 .03 79 .17 453 .02 75 .50 496 .14 82 .69 530 .26 88 .38 

75_CPCD_3_1 510 .26 85 .04 547 .66 91 .28 491 .39 81 .90 508 .21 84 .70 

75_CPCD_3_2 540 .20 90 .03 505 .86 84 .31 492 .51 82 .09 498 .55 83 .09 

75_CPCD_3_3 511 .63 85 .27 559 .80 93 .30 488 .83 81 .47 482 .27 80 .38 

100_RAND_2_1 393 .55 81 .99 340 .08 70 .85 408 .82 85 .17 410 .75 85 .57 

100_CLUS_2_1 398 .93 83 .11 420 .58 87 .62 442 .69 92 .23 406 .45 84 .68 

100_CPCD_2_1 407 .49 84 .89 408 .01 85 .00 363 .87 75 .81 402 .10 83 .77 

100_RAND_3_1 1028 .53 85 .71 1049 .58 87 .47 998 .42 83 .20 884 .72 73 .73 

100_CLUS_3_1 861 .88 71 .82 991 .09 82 .59 916 .64 76 .39 936 .48 78 .04 

100_CPCD_3_1 1073 .93 89 .49 1130 .31 94 .19 1025 .17 85 .43 1055 .99 88 .00 

Average 81 .91 83 .83 75 .75 72 .10 
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Table 14 

Maximal loaded volumes for different variants of 3L-PDP. 

Instance Variant 1A Variant 1B Variant 2 Variant 5 

Volume Percent Volume Percent Volume Percent Volume Percent 

50_RAND_2_1 28,847 64 .10 28,718 63 .82 28,040 62 .31 23,641 52 .53 

50_RAND_2_2 27,836 61 .86 29,092 64 .65 26,561 59 .02 26,039 57 .86 

50_RAND_2_3 27,914 62 .03 27,099 60 .22 26,405 58 .68 24,215 53 .81 

50_RAND_2_4 27,993 62 .21 26,471 58 .82 24,781 55 .07 24,963 55 .47 

50_RAND_2_5 29,284 65 .07 29,022 64 .49 27,368 60 .82 26,970 59 .93 

50_CLUS_2_1 29,523 65 .61 28,784 63 .96 28,208 62 .68 28,807 64 .01 

50_CLUS_2_2 28,009 62 .24 27,312 60 .69 26,602 59 .12 24,562 54 .58 

50_CLUS_2_3 27,642 61 .43 28,297 62 .88 27,534 61 .19 25,204 56 .01 

50_CLUS_2_4 27,909 62 .02 28,071 62 .38 26,514 58 .92 24,727 54 .95 

50_CLUS_2_5 30,359 67 .47 28,844 64 .10 29,714 66 .03 26,622 59 .16 

50_CPCD_2_1 29,619 65 .82 30,377 67 .50 29,916 66 .48 27,557 61 .24 

50_CPCD_2_2 29,897 66 .44 29,669 65 .93 29,348 65 .22 29,182 64 .85 

50_CPCD_2_3 29,136 64 .75 29,211 64 .91 27,837 61 .86 28,377 63 .06 

50_CPCD_2_4 28,894 64 .21 28,103 62 .45 27,449 61 .00 24,984 55 .52 

50_CPCD_2_5 30,546 67 .88 31,818 70 .71 30,406 67 .57 30,363 67 .47 

50_RAND_3_1 28,824 64 .05 26,740 59 .42 25,971 57 .71 28,857 64 .13 

50_RAND_3_2 26,682 59 .29 28,484 63 .30 27,371 60 .82 26,065 57 .92 

50_RAND_3_3 29,712 66 .03 27,022 60 .05 27,154 60 .34 27,073 60 .16 

50_RAND_3_4 25,861 57 .47 25,066 55 .70 25,833 57 .41 25,801 57 .33 

50_RAND_3_5 26,536 58 .97 27,418 60 .93 27,590 61 .31 27,750 61 .67 

50_CLUS_3_1 28,120 62 .49 28,899 64 .22 27,561 61 .25 28,226 62 .72 

50_CLUS_3_2 28,435 63 .19 28,505 63 .34 25,889 57 .53 25,450 56 .56 

50_CLUS_3_3 27,006 60 .01 27,798 61 .77 24,391 54 .20 24,379 54 .18 

50_CLUS_3_4 24,989 55 .53 26,459 58 .80 24,891 55 .31 24,882 55 .29 

50_CLUS_3_5 31,230 69 .40 31,268 69 .48 32,116 71 .37 29,504 65 .56 

50_CPCD_3_1 29,705 66 .01 29,090 64 .64 28,875 64 .17 28,858 64 .13 

50_CPCD_3_2 29,215 64 .92 28,621 63 .60 29,348 65 .22 29,225 64 .94 

50_CPCD_3_3 27,826 61 .83 29,134 64 .74 28,336 62 .97 27,813 61 .81 

50_CPCD_3_4 28,206 62 .68 28,167 62 .59 29,009 64 .46 27,285 60 .63 

50_CPCD_3_5 30,025 66 .72 30,645 68 .10 29,885 66 .41 30,062 66 .81 

75_RAND_2_1 27,802 61 .78 28,468 63 .26 28,373 63 .05 26,987 59 .97 

75_RAND_2_2 28,655 63 .68 29,201 64 .89 28,510 63 .36 27,962 62 .14 

75_RAND_2_3 29,885 66 .41 28,616 63 .59 26,875 59 .72 27,749 61 .66 

75_CLUS_2_1 29,810 66 .24 28,451 63 .22 29,056 64 .57 27,768 61 .71 

75_CLUS_2_2 30,501 67 .78 31,098 69 .11 30,494 67 .76 30,366 67 .48 

75_CLUS_2_3 29,119 64 .71 28,473 63 .27 27,822 61 .83 27,214 60 .48 

75_CPCD_2_1 30,478 67 .73 30,314 67 .36 27,860 61 .91 27,813 61 .81 

75_CPCD_2_2 29,922 66 .49 29,280 65 .07 29,093 64 .65 27,893 61 .98 

75_CPCD_2_3 29,905 66 .46 29,843 66 .32 30,440 67 .64 29,844 66 .32 

75_RAND_3_1 28,451 63 .22 27,095 60 .21 26,547 58 .99 25,637 56 .97 

75_RAND_3_2 27,907 62 .01 27,843 61 .87 25,142 55 .87 27,800 61 .78 

75_RAND_3_3 26,623 59 .16 28,105 62 .46 27,769 61 .71 27,742 61 .65 

75_CLUS_3_1 27,775 61 .72 27,125 60 .28 27,806 61 .79 27,882 61 .96 

75_CLUS_3_2 27,959 62 .13 27,946 62 .10 28,113 62 .47 25,096 55 .77 

75_CLUS_3_3 27,311 60 .69 27,408 60 .91 27,188 60 .42 25,228 56 .06 

75_CPCD_3_1 28,533 63 .41 28,481 63 .29 27,818 61 .82 28,537 63 .41 

75_CPCD_3_2 28,731 63 .85 28,046 62 .32 28,676 63 .72 28,115 62 .48 

75_CPCD_3_3 28,779 63 .95 30,682 68 .18 28,508 63 .35 27,763 61 .70 

100_RAND_2_1 29,108 64 .68 28,516 63 .37 29,149 64 .78 27,690 61 .53 

100_CLUS_2_1 30,501 67 .78 31,020 68 .93 29,120 64 .71 27,842 61 .87 

100_CPCD_2_1 30,387 67 .53 29,773 66 .16 29,156 64 .79 30,317 67 .37 

100_RAND_3_1 27,881 61 .96 28,541 63 .42 27,822 61 .83 29,131 64 .74 

100_CLUS_3_1 29,157 64 .79 28,604 63 .56 27,881 61 .96 28,569 63 .49 

100_CPCD_3_1 30,420 67 .60 27,941 62 .09 27,889 61 .98 27,811 61 .80 

Average 63 .84 63 .58 62 .06 60 .75 

(old or new) best solutions with regard to the above mentioned 

references. 

Our LNS implementation reaches nearly the solution quality of 

the best available methods for the PDPTW. A high solution quality 

was achieved although the LNS has been rather simplified com- 

pared to the original procedure by Ropke and Pisinger (2006) . As 

limitation has to be noted that the results shown by Ropke and 

Pisinger (2006) are achieved with comparable computing times of 

average of 49 seconds (Li-Lim-100) and 305 seconds (Li-Lim-200) 

but with a significantly weaker hardware (Intel Pentium IV with 

1.5 gigahertz). In contrast, an Intel Core i5-2500 K with 4.0 giga- 

hertz was used for 1D-LNS, the computing times were 120 and 300 

seconds for the Li-Lim instances with 50 and 100 requests. 

5.4. Computational results for the 3L-PDP 

The detailed results for the 3L-PDP instances regarding total 

travel distance ( ttd ) are presented in Table 10 . In the leftmost 

column the instance names are listed. The next column shows the 

total travel distances for the 1D test for which only the weight 

constraint (C5), and the routing constraints (C9) and (C10) are con- 

sidered. In the following eight columns the total travel distances 

and the gaps are indicated for the 3L-PDP variants 1A, 1B, 2 and 5 

(see Table 2 ). All presented total travel distances are mean values 

over five runs. The corresponding gaps are calculated as ( ttd - 

ttd-1D ) / ttd-1D ∗ 100 (percent). In the last line of Table 10 the gap 

values of the 3L-PDP variants are averaged over the 54 instances. 
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Summarizing the results, we can state that the travel distances 

increase significantly if the 3L-PDP instances are solved instead 

of the corresponding 1D-PDP instances. For the problem variants 

1A and 1B, the total travel distances grow on average by 11.50 

percent and by 12.06 percent, respectively, compared to the 1D 

case. For the problem variants 2 and 5, the mean increase is 

even higher and amounts to 21.06 percent and 25.38 percent, 

respectively. 

In Table 11 the reloading effort for the 3L-PDP variants 1A, 

1B and 2 is indicated. Since the reloading effort is zero for 

problem variant 5, this variant does not occur in Table 11 (see 

Table 2 ). 

The reloading effort needed for a 3L-PDP instance is given as 

the weight of all boxes that are reloaded. If a box is reloaded, say, 

three times the weight of the box is counted three times. Thus 

it may occur that the reloading effort exceeds the total weight of 

boxes. 

Table 11 is organized as follows. The first column includes the 

instance names and the second column shows the total weight 

of all requests per instance (cargo weight). In the following six 

columns the reloading effort s f or the relevant 3L-PDP variants are 

given as absolute values (in weight units) and as percentages of the 

cargo weight. The results per instance are, again, averaged over five 

runs. In the last line of Table 11 the percentaged reloading efforts 

are averaged over the 54 instances. 

The reloading effort of problem variant 2, caused by the miss- 

ing reloading ban, is only moderate and amounts to 13.41 percent 

of the cargo weight on average. For problem variants 1A and 1B the 

mean reloading effort is much higher (95.17 percent and 85.80 per- 

cent, respectively), since not only the reloading ban is missing but 

the RS constraint (C2) for delivery points is not required, either. 

The difference of 9.37 percentage points between the subvariants 

of problem variant 1 is also plausible, since in subvariant 1B the 

reloading effort is reduced by a better loading order of the affected 

requests. 

Table 12 summarizes the results regarding total travel distance 

and reloading effort. For each 3L-PDP variant, the total travel 

distance is here given as percentage of the travel distance in 

the 1D-case while the reloading effort s are again indicated as 

percentages of the cargo weight. All presented values are aver- 

aged over the five runs per instance and over the 54 3L-PDP 

instances. 

The results clearly show that a 3D modeling of pickup and de- 

livery problems leads to a significant increase of the travel dis- 

tances in the 3D case and is, therefore, generally more realistic. The 

indicated figures for the 3L-PDP variants correspond very well with 

the expected differences between those variants regarding travel 

distances and reloading effort as shown in Table 2 . The main result 

is the clear tradeoff between travel distances and reloading effort 

indicating that a saving of travel distance has to be “paid” with an 

additional portion of reloading effort. 

In Table 13 the average computing times to find the best solu- 

tion are shown. The times are given as absolute values in seconds 

and as percentages of the maximum allowed computing time per 

instance (see Table 7 ). All values are averaged over five runs. The 

results in Table 13 show that there is still potential for improve- 

ment, i.e. the algorithms should be able to find better solutions 

within higher computing times. 

In Table 14 the maximal volume of contained boxes is shown 

which the vehicles are reaching within their tours. The maximal 

loaded volumes are averaged over the routes and are given as ab- 

solute values and as percentages of the vehicles loading space vol- 

ume (45,0 0 0). Again all values are averaged over five runs. For all 

problem variants an average maximum space utilization greater 0.6 

is reached, hence a quite good utilization of the available loading 

space. 

6. Conclusions and future work 

In this paper, the vehicle routing problem with pickup and de- 

livery (PDP) has been extended to an integrated vehicle routing 

and loading problem with 3D rectangular items to be transported 

in homogeneous vehicles with a rectangular 3D loading space (3L- 

PDP). In the problem formulation, we focused on the question un- 

der which conditions any reloading effort, i.e. any movement of 

boxes after loading and before unloading, can be avoided. It turned 

out that the request sequence constraints for pickup and delivery 

points are not sufficient. Instead, we require either a new pack- 

ing constraint, termed reloading ban, or a new routing constraint, 

called independent partial routes condition, to exclude any reload- 

ing effort. Eventually, a spectrum of five 3L-PDP variants was in- 

troduced that allow for different portions of reloading effort and 

reciprocal savings of travel distance. 

A hybrid algorithm was then proposed to tackle three of the 

five 3L-PDP variants. It is composed of the large neighborhood 

search algorithm by Ropke and Pisinger (2006) for the 1D-PDP and 

the tree search algorithm for packing boxes by Bortfeldt (2012) . We 

tested the algorithm with the 1D-PDPTW instances with 50 and 

100 requests by Li and Lim (2001) and found that it reaches nearly 

the same solution quality of the best PDP(TW) solution methods 

available. For testing the hybrid 3L-PDP algorithm 54 3L-PDP in- 

stances with up to 100 requests and up to 300 boxes were intro- 

duced. The results for the three 3L-PDP variants are plausible in 

that there is a clear tradeoff between travel distance and reloading 

effort. 

In our future research, we will deal with the residual 3L-PDP 

variants defined here and including the reloading ban, a packing 

constraint to preclude any reloading effort. In these problem vari- 

ants, we can expect even better travel distances given the same 

assumptions in terms of reloading effort. 
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a b s t r a c t 

In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and 

three-dimensional loading problem, called PDP with three-dimensional loading constraints (3L-PDP). We 

are given a set of requests and a homogeneous fleet of vehicles. A set of routes of minimum total length 

has to be determined such that each request is transported from a loading site to the corresponding 

unloading site. In the 3L-PDP, each request is given as set of rectangular boxes and the vehicle capacity 

is replaced by a 3D loading space. 

This paper is the second one in a series of articles on 3L-PDP. As in the first paper we are dealing with 

constraints which guarantee that no re loading effort will occur. Here the focus is laid on the reloading 

ban, a packing constraint that ensures identical placements of same boxes in different packing plans. The 

reloading ban allows for better solutions in terms of travel distance than a routing constraint that was 

used in the first paper to preclude any reloading effort. To implement this packing constraint a new type 

of packing procedure is needed that is capable to generate a series of interrelated packing plans per route. 

This packing procedure, designed as tree search algorithm, and the corresponding concept of packing 

checks is the main contribution of the paper at hand. The packing procedure and a large neighborhood 

search procedure for routing form a hybrid algorithm for the 3L-PDP. Computational experiments were 

performed using 54 3L-PDP benchmark instances. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

This paper is the second one in a series of papers on the pickup 

and delivery problem with 3D loading constraints (3L-PDP). It con- 

tinues the paper by Männel and Bortfeldt (2016) , henceforth called 

first paper. We extend the classical PDP to an integrated routing 

and 3D loading problem. The PDP is defined in Parragh, Doerner, 

and Hartl (2008) ; a very recent survey on routing problems with 

loading constraints can be found in Pollaris et al. (2015) . Apart 

from that we refer the reader to the literature review given in the 

first paper. 

The 3L-PDP can roughly be described as follows. We are given 

a set of requests and a homogeneous fleet of vehicles. A set of 

routes, each starting and ending at the single depot, has to be de- 

termined such that each request is transported from a loading site 

to the corresponding unloading site and the total travel distance 

is minimized. In the 3L-PDP, each request is given as a set of 3D 

rectangular items (boxes) and the vehicle capacity is replaced by 

∗ Corresponding author. 

E-mail addresses: dirk.maennel@gmx.de (D. Männel), andreas.bortfeldt@ovgu.de 

(A. Bortfeldt). 

a 3D loading space. Each route has to be completed by a series of 

packing plans, where a packing plan represents an arrangement of 

boxes after having visited a pickup or delivery node. Besides basic 

geometrical constraints (e.g. no overlapping boxes) specific packing 

constraints as usual in VRP with 3D loading constraints (e.g. sup- 

port condition) are to be satisfied. 

Our main concern in the problem formulation of 3L-PDP is to 

guarantee that in 3L-PDP solutions any re loading effort can be ex- 

cluded. That is, the boxes should not be moved after they were 

loaded and before they are unloaded. In the first paper necessary 

and sufficient conditions to avoid any reloading effort have been 

discussed. The results can be summarized as follows: 

– It is assumed that boxes are loaded and unloaded at the rear of 

vehicles. Furthermore, boxes have to be loaded and unloaded by 

pure movements in length direction as usual in routing prob- 

lems with 3D loading constraints (see Gendreau et al., 2006 ). 

– First, we must require the request sequence (RS) constraint at 

delivery and pickup points of a route. At a delivery point, the 

RS constraint says that between a box A to be unloaded and the 

rear there is no box B to be unloaded later. Moreover, a box B to 

be unloaded later must not lie above box A. At a pickup point, 

the RS constraint requires that between a box A just loaded and 

http://dx.doi.org/10.1016/j.ejor.2017.05.034 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 
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Table 1 

Five 3L-PDP variants (y: yes, n: no, a: automatically). 

# RS 

loading 

RS 

unloading 

Reloading 

ban 

Independent 

partial routes 

Reloading 

effort 

Travel 

distance 

1 y n n n High Very low 

2 y y n n Medium Low 

3 y n y n Medium Low 

4 y y y n Zero Medium 

5 y a a y Zero High 

the rear or above box A there is no box B that was loaded at an 

earlier pickup point. If the RS constraint would not be satisfied 

at a delivery or pickup point, boxes could not be unloaded or 

loaded by a pure movement in length direction and without 

moving other boxes. For a delivery point, placements of other 

boxes would have to be changed temporarily in order to unload 

boxes with this destination by pure length shifts. For a pickup 

point, placements of other boxes must be changed temporarily 

to reach the final positions for the loaded boxes by pure length 

movements. 

– However, the RS constraint is not sufficient to avoid any reload- 

ing effort. In a route for 3L-PDP, generally boxes of a request A 

are transported for a part of the route together with boxes of 

a request B and for another part together with boxes of a re- 

quest C (and no longer with boxes of B) etc. Packing plans have 

to be provided for all parts of the route in which different sets 

of boxes are transported. If different packing plans are provided 

for the boxes of a request A, because the boxes are first to be 

packed with the boxes of request B and then with the boxes of 

request C, the placements of the boxes of A may change. This 

would not necessarily violate required packing constraints. Thus 

there would exist feasible 3L-PDP solutions including boxes that 

are to be re loaded after loading and before unloading; an elab- 

orated example is shown in the first paper. 

– To rule out any reloading effort, we have to specify an extra 

constraint. There are two options to do so, i.e. we can intro- 

duce an additional routing constraint and, alternatively, we can 

define a packing constraint that rules out any reloading effort. 

– The mentioned routing constraint, called independent partial 

routes (IPR) constraint, rules out any reloading effort by re- 

stricting the shape of the routes, i.e. in an implicit fashion. This 

is done by so-called 3L-PDP routing patterns, which ensure that 

the boxes of any request are not stored together with boxes of 

different requests in different parts of a route. 

– The additional packing constraint, termed reloading ban, re- 

quires that the placement of any box, including the position 

of a reference corner (or of the geometrical midpoint) and the 

spatial orientation of the box, must not undergo a (permanent) 

change after the box has been loaded and before the box is un- 

loaded. The reloading ban is tailored to the general shape of 

3L-PDP routes: it forbids explicitly a change of placements of 

boxes of a request A if they are loaded together with boxes of 

a request C after they have been loaded together with boxes of 

a request B. 

In the first paper we have introduced a spectrum of five 3L-PDP 

variants (see Table 1 ). The RS constraint at pickup points (denoted 

by (C1)) is always required. The variants are specified by means of 

the RS constraint for delivery points (C2), the reloading ban (C3) 

and the IPR constraint (C4). For each variant and constraint the 

entry is “y” if the constraint is to be met and “n” if not. If the IPR 

condition and the RS constraint at pickup points are required, RS 

constraint at delivery points and reloading ban are automatically 

satisfied; this is marked by entry “a”. 

We consider variants 4 and 5 as the main 3L-PDP variants. In 

both variants any reloading effort is excluded by different means, 

namely by a routing constraint (variant 5) or a packing constraint 

(variant 4). The main 3L-PDP variants correspond to practical sce- 

narios where a reloading of goods is not a viable option. This can 

be the case for different reasons, e.g. lack of manpower and equip- 

ment or narrow space at customer sites. 

However, we also deal with three variants (1–3) where reload- 

ing effort is not excluded a priori. In this way we want to study 

the “costs” of avoidance of reloading effort in terms of travel dis- 

tance. Generally, we expect a trade-off between travel distance and 

reloading effort. Thus, in the last two columns of Table 1 the ex- 

pected reloading effort and expected (total) travel distance are in- 

dicated. 

Moreover, the problem variants 1–3 might also have some prac- 

tical relevance. If pickup and delivery transports are to be orga- 

nized in rural areas with great distances between customers it 

could be advantageous to accept some reloading effort and to save 

a large travel distance in return (see Xu, Chen, Rajagopal, & Aruna- 

puram, 2003 ). 

The different 3L-PDP variants are illustrated by some (two- 

dimensional) single route examples in Fig. 1 . The node number 

0 denotes the depot while Pi and Di ( i = 1, … , 4) stand for the 

pickup and delivery nodes. For all nodes the state of the load- 

ing space is shown after the loading/unloading operation at the 

corresponding node has taken place (view from above). In all ex- 

amples the driver’s cabin is on left and the loading door on the 

right side of the loading space. In the example for variant 1 for 

unloading the box I11 at node D1 it is necessary to unload the 

box I21 first; furthermore the box I21 is reloaded at another posi- 

tion to allow the loading of the boxes I31 and I32 at the following 

node P3. So neither the RS unloading constraint (C2) nor Reload- 

ing ban constraint (C3) is satisfied here. In the example for vari- 

ant 2 the RS unloading constraint (C2) is satisfied at all delivery 

nodes but Reloading ban constraint (C3) is not satisfied because 

the placement of box I12 is changed permanently at P3 to allow 

the loading of box I31. In the example for variant 3 for unloading 

the box I11 at node D1 again it is necessary to unload the box I21 

first (like in the first example), but now the box I21 is reloaded 

at the same position, so Reloading ban constraint (C3) is satis- 

fied and only RS unloading constraint (C2) is unsatisfied here. In 

the example for variant 4 both RS unloading constraint (C2) and 

Reloading ban constraint (C3) are satisfied, especially the boxes I11 

and I12 hold the same placements at nodes P2 and P3 (interre- 

lated packing plans). In the last example for variant 5 the spe- 

cial structure of a route which complies the IPR constraint (C4) 

is shown. First some pickup points are visited and then all cor- 

responding delivery points follow in inverse order. If one deliv- 

ery node has been visited a further pickup is only allowed when 

all boxes are unloaded before. In the example this situation oc- 

curs when the vehicle leaves node D3 and goes to pickup node 

P4. 

A precise formulation of the 3L-PDP (including all above vari- 

ants) with constraints (C1)–(C10) can be found in the first paper. 

For convenience a short description of constraints (C5)–(C10), not 

mentioned before, is given in Table 2 . 

In the first paper the focus was laid on problem variants 1, 2 

and 5. In the second paper we deal with variants 3 and 4. In variant 

5 any reloading effort is excluded by strongly restricting the admit- 

ted routes and this will have a negative impact on travel distances. 

In the 3L-PDP variant 4 there is no restriction of vehicle routes. In- 

stead the reloading ban (C3) is in charge to preclude any reloading 

effort and better travel distances can be expected. To implement 

this packing constraint a new type of packing procedure is needed 

that is capable to generate a series of interrelated packing plans 

per route (see above example). The design of this packing proce- 

dure and the corresponding concept of packing checks is the main 

contribution of the paper at hand. In the 3L-PDP variant 3 the RS 
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Fig. 1. Examples for 3L-PDP variants. 

Table 2 

Further constraints of 3L-PDP. 

Constraint Name/short description 

(C5) Weight constraint: stipulates a weight limit of the boxes loaded 

in a vehicle. 

(C6) Orientation constraint: fixes the height of the boxes; horizontal 

90 ° turns are allowed. 

(C7) Support constraint: stipulates supported percentage of base area 

of boxes. 

(C8) Stacking constraint: requires that fragile boxes may only bear 

other fragile boxes. 

(C9) Route length constraint: specifies a maximum allowed route 

length. 

(C10) Route number constraint: specifies a maximum number of 

routes. 

constraint for delivery points (C2) is not required and this will lead 

to a certain reloading effort but to even better travel distances than 

in variant 4. 

The rest of the paper is organized as follows: in Section 2 , we 

propose a hybrid algorithm for solving the 3L-PDP with reloading 

ban. In Section 3 numerical results are presented and in Section 4 

the avoidance of reloading effort is considered from a more 

general perspective. Conclusions are drawn in Section 5 . 

2. A hybrid algorithm for the 3L-PDP with reloading ban 

Our hybrid algorithm for the 3L-PDP with reloading ban is com- 

posed of a procedure for routing and one for packing. The routing 

procedure is derived from the adaptive large neighborhood search 

(LNS) heuristic for solving the PDP with time windows by Ropke 

and Pisinger (2006) . In fact we use the same routing procedure 

as in the first paper. The tree search (TRS) algorithm by Bortfeldt 

(2012) was essentially further developed (for this paper) to specify 

a packing procedure that is able to observe the reloading ban. 

Within each iteration of the LNS procedure for routing, a set 

of requests is removed from the current solution ( s curr ) and then 

reinserted to get the next solution ( s next ). Afterwards, it is tested 

whether s next is accepted as new current solution. Otherwise, 

the previous current solution s curr is kept for the next iteration. 

Packing checks are primarily carried out in insertion heuristics 

by which new solutions are generated but are also performed 

within acceptance checks. In the following sections, the concept 

of packing checks is established and the packing procedure is 

described in detail. 

2.1. Packing checks 

A 3L-PDP solution has to provide feasible packing plans for each 

route and each visited site per route. The plan for a site must in- 

clude placements of all boxes already loaded and not yet unloaded 

after visiting this site. In order to reduce the effort spent for pack- 

ing checks, we apply a similar methodology as in the first paper 

to the 3L-PDP variants 3 and 4 with reloading ban. We proceed in 

four steps: 

(1) Additional constraints are formulated that are in general 

stronger than the RS constraints (C1) and (C2). These are the 

cumulative request sequence constraints for pickup points 

(CRS-p) and for delivery points (CRS-d j ) ( j = 1, 2). 

(2) It is shown that feasible packing plans for all sites of a 

route can be derived from feasible packing plans for selected 

pickup points of this route if the latter plans meet the addi- 

tional (as well as original) constraints. This is done by means 

of the Propositions 1 and 2 . Thus, the search becomes less 

costly as independent packing plans are to be provided only 

for few sites of a route. 
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Fig. 2. Packing checks for 3L-PDP variants 3 and 4. 

(3) Then it will be discussed under which circumstances and 

for which problem variants the search space is reduced by 

the additional constraints. For this purpose Proposition 3 is 

proven. 

(4) Finally, some differences between 3L-PDP variants 3 and 4 

regarding reloading effort are explained. 

We define a sequence of open pickup points (SOPP) as a se- 

quence of pickup points within a route of a 3L-PDP solution with 

following characteristics: (i) the last point of the sequence is fol- 

lowed by a delivery point in the route; (ii) the sequence contains 

exactly all pickup points of the route whose delivery points lie be- 

hind the last sequence point (see Fig. 2 for examples). 

Let m 2 ( m 2 ≥ 1) be the number of consecutive pickup points ly- 

ing at the end of the sequence. Let m 1 ( m 1 ≥ 0) be the number of 

pickup points that are separated from the last m 2 pickup points by 

at least one delivery point. Then the SOPP can be denoted as P i , 

i = 1, … , m 1 , m 1 + 1, … , m 1 + m 2 (i.e. P m 1 + m 2 is the last point). 

We say that a packing plan for pickup point P m 1 + m 2 of a SOPP 

satisfies the cumulative request sequence constraint for pickup 

points (CRS-p) if the following conditions hold: (i) there are no 

boxes of a request j (loaded at pickup point P j ) between a box of 

request i and the rear of the vehicle; (ii) there are no boxes of 

request j above a box of request i ( i , j = 1, … , m 1 + m 2 , j < i ). As 

shown in the first paper the following proposition holds. 

Proposition 1. Let a feasible plan for pickup point P m 1 + m 2 of a 

SOPP exist that meets the constraints (C6)–(C8) and observes the 

CRS-p constraint. Then feasible packing plans observing constraints 

(C1) and (C6)–(C8) do also exist for pickup points P i ( i = m 1 + 1, …

, m 1 + m 2 − 1). 

In the first paper, a routing constraint was introduced in order 

to be able to derive feasible packing plans for the delivery points 

of a route. In the paper at hand the same purpose is achieved by 

the following additional packing constraints. 

Let D i be the corresponding delivery points of the pickup points 

P i , i = 1, … , m 1 + m 2 , of a SOPP. We say that a packing plan 

for pickup point P m 1 + m 2 satisfies the cumulative request sequence 

constraint for delivery points (CRS-d1) if the following conditions 

hold: (i) if D i lies before D j , the boxes of request j must not lie be- 

tween a box of request i and the rear of the vehicle ( i , j = 1, … , 

m 1 + m 2 ); (ii) under the same assumption, boxes of request j must 

not lie above a box of request i ( i , j = 1, … , m 1 + m 2 ). The con- 

straint (CRS-d2) is defined similarly, but only the second condition 

(ii) is required. 

Proposition 2. Let a SOPP and a packing plan for the last pickup 

point P m 1 + m 2 be given. 

(i) If the packing plan is feasible, meets the constraints (C1), 

(C6)–(C8) and satisfies the CRS-d1 constraint, then feasi- 

ble packing plans, observing the constraints (C2) and (C6)–

(C8), do exist for the consecutive m 3 delivery points behind 

P m 1 + m 2 ( m 3 ≥ 1). 

(ii) If constraint CRS-d2 is substituted for CRS-d1, then feasible 

packing plans, observing constraints (C6)–(C8), do exist for 

the consecutive m 3 delivery points behind P m 1 + m 2 ( m 3 ≥ 1). 

Proof. (i) Due to constraint CRS-d1, the boxes for the first deliv- 

ery point behind P m 1 + m 2 , say D i 1 , are in unloading position in the 

packing plan for P m 1 + m 2 . If the boxes for D i 1 are removed, a pack- 

ing plan for D i 1 results. Since the plan for P m 1 + m 2 observes sup- 

port constraint (C7) and the removed boxes do not support boxes 

of other requests, the plan for D i 1 also meets (C7). Constraints (C6) 

and (C8) as well as feasibility conditions (FP1)–(FP3) hold, as they 

were met in plan P m 1 + m 2 . The boxes for the next delivery point 

D i 2 are in unloading position due to constraint CRS-d1, i.e. the 

plan for D i 1 also meets constraint (C2). For the following delivery 

points, packing plans can be derived in a similar manner. (ii) Feasi- 

ble packing plans, observing constraints (C6)–(C8), for consecutive 

delivery points behind P m 1 + m 2 can be derived as before. In particu- 

lar, support constraint (C7) holds for these plans due to CRS-d2. �

The constraints CRS-d j ( j = 1, 2) are formulated for all delivery 

points that correspond to pickup points P i , i = 1, … , m 1 + m 2 , of a 

given SOPP. However, Proposition 2 only claims that feasible pack- 

ing plans can be derived for the consecutive delivery points behind 

P m 1 + m 2 . Nevertheless, feasible packing plans can be derived for all 

delivery points of a route if Proposition 2 is applied to all SOPPs 

of a route. The same holds for the pickup points of a route with 

regard to Proposition 1 . 

In 3L-PDP variants 3 and 4, the reloading ban (C3) is required. 

It forbids that different placements of same boxes occur in packing 

plans for different sites of a route. We can state that if the reload- 

ing ban holds for all packing plans for the last points of SOPPs, 

then it holds for the derived packing plans for all other pickup and 
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delivery points, too. Therefore, the above results show that for 3L- 

PDP variants 3 and 4 it is sufficient to construct feasible packing 

plans for the last pickup points of all sequences of open pickup 

points in a given route that meet the reloading ban. Feasible pack- 

ing plans that observe the RS constraints (C1) and (C2) (in case of 

variant 4) and constraints (C6)–(C8) as well as the reloading ban 

can then be derived for all other pickup points and all delivery 

points of this route. Of course, this claim holds only if – for vari- 

ant 3 – the constraints CRS-p and CRS-d2 are met in the plans for 

the last pickup points of SOPPs; for variant 4, the constraints CRS-p 

and CRS-d1 must be observed in these plans. 

The procedure of packing checks for a route in 3L-PDP variants 

3 and 4 is illustrated by an example in Fig. 2 . 

As said above we want to discuss the question whether the 

additional constraints CRS- p and CRS-d j ( j = 1, 2) will reduce the 

search space, i.e. the set of all feasible solutions. For this purpose 

the following proposition is shown. 

Proposition 3. Let a SOPP with m 1 + m 2 points be given and let 

the reloading ban (C3) be required. 

(i) Let feasible packing plans exist for all pickup points P i of the 

SOPP ( i = 1, … , m 1 + m 2 ). The plans should meet constraint 

(C1). Then the packing plan for point P m 1 + m 2 observes con- 

straint CRS- p . 

(ii) Let feasible packing plans exist for all delivery points D i 

that correspond to pickup points P i of the SOPP ( i = 1, … , 

m 1 + m 2 ). The plans should meet constraint (C2). Then the 

packing plan for point P m 1 + m 2 observes constraint CRS-d1. 

If the plans for the delivery points obey the condition that 

any box to be unloaded does not lie under a box to be un- 

loaded later then the packing plan for P m 1 + m 2 observes at 

least constraint CRS-d2. 

Proof. (i) Suppose constraint CRS-p1 is violated in the packing 

plan of last pickup point P m 1 + m 2 . Then two requests and corre- 

sponding pickup points i and j (1 ≤ j < i ≤ m 1 + m 2 ) must exist so 

that there is a box of request j that lies between a box of request i 

and the rear or above that box. Due to the reloading ban the box of 

request i would not be in unloading position within packing plan 

for pickup point i , contradictory to constraint (C1). 

(ii) For all delivery points D i ( i = 1, … , m 1 + m 2 ) the boxes to 

be unloaded are in unloading position due to (C2). The reloading 

ban guarantees that the placements of these boxes are the same in 

the packing plan for pickup point P m 1 + m 2 . Thus, constraint CRS-d1 

– being just the sum of the (C2) requirements for multiple deliv- 

ery points – is observed in the plan for P m 1 + m 2 . The last assertion 

results in an analog manner. �

For problem variants 3 and 4 the reloading ban (C3) is required. 

Hence, it can be concluded that the additional constraints in fact 

do not reduce the search space. The same applies for problem vari- 

ant 5 (dealt with in the first paper as well as problem variants 1 

and 2) since in this variant the IPR constraint (C4) is required that 

implies the reloading ban. It can be easily seen that the reloading 

ban (C3) is an indispensable assumption in Proposition 3 . Hence, 

for problem variants 1 and 2 the additional constraints cause in 

general a reduction of the search space since constraint (C3) is not 

assumed. 

In 3L-PDP variant 4, there is no reloading effort at all, while 

in variant 3 some reloading effort can occur at delivery sites. If 

a vehicle arrives at a delivery site, all boxes of the correspond- 

ing request, say A , are to be unloaded. Since RS constraint (C2) is 

not required, some boxes of requests B , C , etc. may stand in the 

way of the A -boxes. These are called blocking boxes. We assume 

that blocking boxes have to be temporarily unloaded (and blocking 

boxes of blocking boxes, etc.). Because of constraint CRS-d2, block- 

ing boxes cannot occur above boxes to be unloaded. For this rea- 

son, temporarily unloaded boxes can afterwards be loaded again so 

that they take their original placements. 

There is no significant difference between packing checks per- 

formed in insertion heuristics and those performed in accep- 

tance checks, i.e. in any case for a given route the necessary 

feasible packing plans for last pickup points of SOPPs are to be 

provided. 

2.2. Packing procedure 

The packing procedure should be able to implement the reload- 

ing ban (C3). Packing plans that are generated for the last pickup 

points of SOPPs in a route need to be interrelated if the SOPPs have 

a common pickup point. That is, if the same boxes are stowed in 

more than one of these packing plans, their placements must co- 

incide. To ensure this, the packing plans for a route with multiple 

SOPPs are generated at once, i.e. by means of one and the same 

depth first search. 

For the depth first search, a route is organized in multiple 

pickup and delivery sequences (PDS). A PDS contains the last m 2 

( m 2 ≥ 1) consecutive pickup points of a SOPP and the following 

m 3 ( m 3 ≥ 1) consecutive delivery points. A route consists of sev- 

eral PDSs and a packing plan is needed for each of these PDS, i.e. 

for its last pickup point. Fig. 3 shows the PDS related to the SOPPs 

in Fig. 2 . 

The depth first search is carried out by means of the recursive 

procedure extend_packing_plan (see Algorithm 1 ) and the subordi- 

nated procedure initialize_packing_state (see Algorithm 2 ). 

The PDSs are indexed by ipds and the set freeBoxes includes 

the boxes of a PDS that are still available; ipds is set to zero and 

freeBoxes is set empty before the first call of the recursive proce- 

dure. The set potentialPlacements comprises potential placements 

of boxes in freeBoxes . Implemented placements for the current PDS 

are collected in the set PDSPlan , while the complete solution with 

the placements of all PDSs is held in the set totalPlan . 

In procedure extend_packing_plan it is checked first whether 

the set freeBoxes is empty, i.e. whether the packing plan for the 

current PDS is complete. In this case (and if ipds > 0) this plan 

is incorporated in the complete solution totalPlan . The placements 

of boxes to be unloaded at delivery sites of the current PDS are 

marked in totalPlan . 

Afterwards index ipds is incremented and procedure initial- 

ize_packing_state is called for the new PDS. The complete solution 

totalPlan is only initialized empty for ipds = 1. The set freeBoxes is 

reinitialized and then includes the boxes that belong to the PDS. 

Potential placements for the whole set of boxes of current PDS in 

the lower left front corner of the loading space L × W × H (at the 

driver’s cabin) are generated. 

Then all placements, already put in totalPlan and not marked 

as unloaded, are reinserted in the new PDS solution PDSPlan . Each 

time another “old” placement is reinserted, the set potentialPlace- 

ments is updated taking into account all already inserted place- 

ments. After the for -loop is executed the current solution PDSPlan 

is filled with all placements of former PDSs that remain place- 

ments of the present PDS. As these placements are copied it is 

ensured that placements of same boxes in different PDS coincide. 

At the same time the set potentialPlacements at the end comprises 

only such placements which are compatible with all these “old”

placements. 

The current instance of procedure extend_packing_plan is 

aborted if there is at least one free box without a potential place- 

ment, i.e. if a complete solution can no longer be achieved on this 

search path. Candidates for the next placement for PDS ipds are 

selected from list potentialPlacements and are provided in the list 

currentPlacements . All these placements are then tried alternatively. 

For each placement, the current PDS solution, the set of free boxes 



124 D. Männel, A. Bortfeldt / European Journal of Operational Research 264 (2018) 119–137 

Fig. 3. Examples of PDS. 

Algorithm 1 Packing procedure 1, extend_packing_plan. 

extend_packing_plan ( inout : ipds, freeBoxes, potentialPlacements, PDSPlan, totalPlan) 

if number of procedure calls > maxApCalls then abort packing check endif 

if freeBoxes = ∅ then 

if ipds > 0 then 

totalPlan: = totalPlan ∪ PDSPlan 

mark all placements in totalPlan as unloaded whose boxes belong 

to requests with delivery sites in PDS(ipds) 

endif 

ipds: = ipds + 1 // next PDS 

if totalPlan complete then abort packing check endif 

initialize_packing_state(ipds, freeBoxes, potentialPlacements, PDSPlan, totalPlan) 

Endif 

if there is at least one box in freeBoxes(ipds) without placement in potentialPlacements then return endif 

provide list currentPlacements with potential placements that are currently to be tried 

for i: = 1 to |currentPlacements| do 

PDSPlan’: = PDSPlan ∪ {currentPlacements(i)} // add placement to PDS-plan 

freeBoxes’: = freeBoxes \ {currentPlacements(i).box} // update free boxes 

potentialPlacements’: = update(potentialPlacements) // update potential placements 

extend_packing_plan (ipds, PDSPlan’, freeBoxes’, potentialPlacements’, totalPlan) // recursive call 

endfor 

end . 

Algorithm 2 Packing procedure 2, initialize_packing_state. 

initialize_packing_state ( in : ipds, out : freeBoxes, potentialPlacements, PDSPlan, inout : totalPlan) 

if ipds = 1 then totalPlan = ∅ endif 

freeBoxes: = {boxes to be loaded in PDS ipds} 

initialize set potentialPlacements for box set freeBoxes and empty loading space 

PDSPlan: = ∅ 

for all placements Pl in totalPlan in given loading order not marked as unloaded do 

PDSPlan: = PDSPlan ∪ {Pl} 

potentialPlacements: = update(potentialPlacements) 

endfor 

end . 

and the set of potential placements are updated accordingly, before 

procedure extend_packing_plan is called again. To update the list 

potentialPlacements, all potential placements are removed that can 

no longer be implemented. Additional potential reference points 

for new placements are determined as extreme points (see Crainic, 

Perboli, & Tadei, 2008 ). 

The selection of placements currently to be tried among all po- 

tential placements is governed by two rules. On the one hand, it is 

ensured that a vehicle is loaded from the front to the back, from 

bottom to top with lower priority, and from left to right with low- 

est priority. Hence, placements with smaller x -coordinates of the 

reference corner are preferred, etc. On the other hand, placements 

of boxes are preferred that belong to earlier loaded requests and, 

therefore, have to be stowed nearer to the cabin. The placement 

selection is controlled by the integer parameters maxBoxRankDiff

and maxRefPoints where higher parameter values lead to a larger 

set of currently tried placements (see Bortfeldt, 2012 ). 

Potential placements are generated and updated in such a way 

that the packing plan for a PDS (i.e. for the last pickup point of the 

corresponding SOPP) is feasible and observes constraints (C6)–(C8), 

CRS-p and CRS-d1 (variant 4) or CRS-d2 (variant 3). 

The packing check for a route is terminated when the number 

of recursive calls of procedure extend_packing_plan exceeds the 

specified limit maxApCalls or totalPlan is complete, i.e. a solution 

containing placements for all boxes to be loaded and unloaded in 

a given route is reached. 

A cache of tested request sequences (routes) is used to acceler- 

ate the search as described in the first paper. 

In the following example, given for the 2L-PDP, we illustrate 

how the packing procedure is checking a route and generating in- 

terrelated packing plans. In Fig. 4 the route and the items to be 

loaded and unloaded, the SOPPs and related PDSs are shown. Two 

interrelated packing plans are needed for the last pickup points of 

the SOPPs, namely P2 and P3. The first packing plan must include 

the items of requests 1 and 2, the second plan has to contain the 
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Fig. 4. Illustration of packing procedure (input). 

items of requests 1 and 3. Moreover, the placements of items of re- 

quest 1 must coincide in both plans to observe the reloading ban 

(C3). 

In Fig. 5 it is shown how the search runs until feasible pack- 

ing plans for P2 and P3 are reached by means of eight consecutive 

search states. The states are commented as follows: 

State 1 (P2) : 

– after ipds is set to 1 the set freeBoxes is initialized as {I11, I12, 

I13, I21, I22} and potential placements for the empty loading 

space are generated; 

– after placements were selected for the 3 boxes of P1 and 

for box I21 it turns out in the 5th recursive call of ex- 

tend_packing_plan that there is no (feasible) placement for box 

I22; 

– this negative test result is illustrated (here as in following 

states) by an in feasible placement for I22 and the phrase “not 

ok”. 

State 2 (P2) : 

– after selecting a next placement for box I21 there is again no 

feasible placement for box I22. 

State 3 (P2, P3) : 

– after selecting further placements for boxes I13 and I21 now a 

feasible placement for box I22 is found; thus, a feasible pack- 

ing plan for P2 is reached (indicated by phrase “ok”) and set 

freeBoxes becomes empty; 

– the five placements in PDSplan are added to totalPlan and the 

boxes I21 and I22 are labelled as unloaded; 

– now ipds is set to 2 and freeBoxes is reinitialized as {I31, I32, 

I33}; PDSplan is filled by the placements of boxes I11, I12 and 

I13 that were calculated earlier and potentialPlacements is ini- 

tialized accordingly; in Fig. 5 the initial state of PDSplan is 

shown for ipds = 2 (P3). 
Fig. 5. Illustration of packing procedure (search states, top view). 
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State 4 (P3) : 

– after selecting a placement for box I31 there is no feasible 

placement for box I32 in the following recursive call. 

State 5 (P3) : 

– after selecting an alternative placement for box I31 now a fea- 

sible placement for box I32 is found; however, there is no fea- 

sible placement for box I33; 

– we suppose that further placements for boxes I31 and I32 do 

not exist; hence the search jumps back to the state where al- 

ternatives regarding the chosen placement of box I13 are tried; 

at the same time we have again ipds = 1, freeBoxes = {I13, I21, 

I22} etc. 

State 6 (P2, P3) : 

– after an alternative placement for box I13 has been chosen the 

boxes I21 and I22 can also be placed; thus another feasible 

packing plan for pickup point P2 is reached; 

– the further proceeding is as in state 3. 

State 7 (P3) : 

– after selecting a placement for box I31 there is no feasible 

placement for box I32. 

State 8 (P3) : 

– after selecting an alternative placement for box I31 the boxes 

I32 and I33 can be feasibly placed, too; 

– hence a feasible packing plan is reached for pickup point P3; 

the packing solution totalPlan for the given route is complete 

and the search is aborted; 

– the placements of the boxes I11, I12 and I13 coincide in both 

packing plans for P2 and P3, i.e. the reloading ban (C3) is ob- 

served. 

Fig. 5 also illustrates how (potential) placements are generated. 

Free boxes are to be placed at such locations where they cannot 

be moved in negative x-, y- and z-direction. Note that in a given 

search state potential placements for more than one box and/or 

location might be provided (not shown in Fig. 5 for the sake of 

convenience). 

3. Computational experiments 

In the computational experiments we test the hybrid algorithm 

for both “new” 3L-PDP variants 3 and 4 and the “old” variants 1A, 

1B, 2 and 5. The subvariants 1A and 1B differ from each other 

regarding the reloading policy for temporarily unloaded boxes. In 

the first policy (subvariant 1A), the original loading order of all 

requests is maintained. In the second policy (subvariant 1B), the 

original loading order is modified as the order of requests for 

which temporarily unloaded boxes do exist is now chosen inverse 

to the order of corresponding delivery points. Moreover, we will 

hybridize the algorithm variants 3 and 5 as well as 4 and 5 in or- 

der to reduce the necessary packing effort and to generate high 

quality solutions quicker (see below). 

The experiments are carried out using the 54 3L-PDP instances 

with up to 100 requests and up to 300 boxes introduced in the first 

paper. In total 30 instances with 50 requests, 18 instances with 75 

and 6 instances with 100 requests are provided. The average num- 

ber of boxes per request is two for half and three for the other half 

of the instances. Regarding the distribution of pickup and delivery 

points of the requests three variants are distinguished: 

• RAND (“Random”): the sites are uniformly distributed in a rect- 

angular section of the plane, 

Table 3 

Computing time limits in minutes for experiments. 

Number of 2 boxes per 3 boxes per 

requests request on avg. request on avg. 

50 5 10 

75 10 20 

100 20 40 

• CLUS (“Mixed Cluster”): the sites are clustered, each cluster 

may contain pickup as well as delivery points, 
• CPCD (“Pure Cluster”): the sites are clustered, only sites of one 

sort can occur in each cluster. 

The dimensions of the uniform loading spaces of the vehicles 

are chosen as L = 60, W = 25 and H = 30 length units. The lengths, 

widths and heights of the boxes are chosen randomly from inter- 

vals that range from 20% to 60% percent of the length, width and 

height, respectively, of the loading spaces. A box is characterized as 

fragile with the probability 0.25. The percentage a for the minimal 

supporting area was specified as 0.75. 

The packing procedure is coded in the C ++ programming lan- 

guage using Visual Studio 2012 Express, while the LNS scheme is 

implemented using the Java programming language (version 6u35, 

32 bit) under Eclipse 3.5.2. Preliminary experiments (in which total 

run times were varied) demonstrated that the impact of the dif- 

ferent developing environments is negligible. All the experiments 

have been conducted on a PC with Intel Core i5-2500 K (4.0 giga- 

hertz, 16 gigabytes) running Windows 10 Professional. The java vir- 

tual machine uses a maximum heap size of 2 gigabytes memory. 

The parameter setting is taken over from the first paper, how- 

ever, the parameter maxApCalls (see Section 2.2 ) is set to 30 0 0 if 

the checked route matches the IPR constraint (C4); otherwise the 

parameter is set to 200. If (C4) is met by a route, the effort for 

packing checks is much lower than in the opposite case and the 

checks can be carried out more intensively, i.e. with a higher value 

of maxApCalls . If (C4) is not met, this high value would require too 

much packing effort and so the value maxApCalls = 200 is taken. 

In Table 3 the maximum run time per instance and single run is 

shown. The computing time depends on the number of requests 

and the average box number per request. 

3.1. Results for 3L-PDP variants 4 and 4 ∗

The results for the 3L-PDP instances regarding total travel dis- 

tance ( ttd ) with no reloading effort are presented in Table 4 . In 

the first two columns the instance type and the number of in- 

stances are listed. The next column shows the total travel distances 

for 3L-PDP (or algorithm) variant 5 where all constraints includ- 

ing the request sequence constraint for both pickup and delivery 

points (C1) and (C2) and the independent partial routes constraint 

(C4) are considered. In the following four columns total travel dis- 

tances and gaps are indicated for the 3L-PDP variants 4 and 4 ∗ (see 

Table 1 ). In variant 4, the IPR constraint (C4) is not considered and 

the reloading effort is ruled out by the weaker the reloading ban 

constraint (C3). In the additional algorithm variant 4 ∗, the variant 

4 is hybridized with variant 5: in the first 40% of the computing 

time the algorithm has to construct routes which respect the IPR 

constraint (C4), i.e. it behaves as variant 5. Because the effort for 

packing checks strongly depends on the form of the routes, the al- 

gorithm can make much more iterations in the same time if it is 

restricted to IPR-routes because they are much easier to check than 

Non-IPR-routes. 

All presented total travel distances are mean values over five 

runs. To keep the tables compact the results are averaged further- 

more over all instances of the same type, e.g. “75_RAND_3” stands 
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Table 4 

Results (travel distances) for 3L-PDP variants without reloading. 

Instance type Number of Variant 5 Variant 4 Variant 4 ∗

instances ttd ttd Gap (%) ttd Gap (%) 

50_RAND_2 5 1630.19 1539.35 −5.54 1530.48 −6.10 

50_CLUS_2 5 1205.73 1150.11 −4.68 1147.24 −4.91 

50_CPCD_2 5 1328.63 1317.81 −0.83 1304.78 −1.84 

50_RAND_3 5 1617.09 1525.99 −5.60 1523.82 −5.73 

50_CLUS_3 5 1169.13 1125.32 −3.84 1122.74 −4.06 

50_CPCD_3 5 1312.73 1319.99 0.56 1313.82 0.05 

75_RAND_2 3 2139.53 2083.22 −2.63 2052.05 −4.09 

75_CLUS_2 3 1461.22 1423.36 −2.59 1405.99 −3.77 

75_CPCD_2 3 2237.07 2211.52 −1.15 2195.18 −1.87 

75_RAND_3 3 2106.97 2073.10 −1.61 2036.24 −3.37 

75_CLUS_3 3 1450.20 1443.27 −0.49 1423.34 −1.86 

75_CPCD_3 3 2209.82 2249.65 1.82 2220.03 0.47 

100_RAND_2 1 4054.89 3991.39 −1.57 3947.88 −2.64 

100_CLUS_2 1 4178.58 4130.58 −1.15 4036.36 −3.40 

100_CPCD_2 1 4259.89 4272.27 0.29 4278.91 0.45 

100_RAND_3 1 3995.01 4044.72 1.24 4004.29 0.23 

100_CLUS_3 1 4100.42 414 9.4 9 1.20 4102.87 0.06 

100_CPCD_3 1 4201.28 4320.01 2.83 4203.64 0.06 

Sum 54 Average gap −2.16 −2.99 

Table 5 

Average gap for small, midsize and large instances. 

Number of Variant 4 Variant 4 ∗

requests average gap in % average gap in % 

50 −3.32 −3.77 

75 −1.11 −2.41 

100 0.47 −0.87 

Table 6 

Average gap for “random”, “mixed cluster” and “pure cluster” instances. 

Type Variant 4 Variant 4 ∗

average gap in % average gap in % 

Random −3.82 −4.66 

Mixed cluster −2.88 −3.62 

Pure cluster 0.21 −0.70 

for instances of distribution type “Random” with 75 requests and 

3 boxes per request on average. The corresponding gaps are calcu- 

lated as ( ttd – ttd V5 ) / ttd V5 
∗ 100 (%) ( ttd V5 stands for ttd in variant 

5). In the last line of Table 4 the gap values of the 3L-PDP variants 

are averaged over the 54 instances. 

Detailed results for each single instance with regard to travel 

distances and other aspects are presented in Tables 15 −20 of 

Appendix A . Algorithm variant 4 achieves a mean reduction of total 

travel distance by 2.16% compared to variant 5, while 4 ∗ reaches a 

reduction of 2.99%. The hybridized algorithm variants 4 ∗, in which 

the search is temporarily restricted to IPR-routes, turns out to be 

rather successful and performs 0.83%-points better than variant 4. 

Tables 5 and 6 indicate the influence of instance size and type 

(regarding distribution of sites) on the solution quality for the algo- 

rithm variants 4 and 4 ∗. For small instances with up to 50 requests 

variant 4 achieves significant better results than variant 5, while 

for large instances with 100 requests variant 5 performs slightly 

better than variant 4. However, variant 4 ∗, which temporarily re- 

stricts the search space, shows its strength just for large and dif- 

ficult instances and performs better than variant 5. On the other 

hand, the difference between variant 4 ∗ and 4 is almost negligible 

for small instances. 

With regard to the instance types “Random”, “Mixed cluster”

and “Pure cluster” it can be observed that variant 4 yields largest 

improvements compared with variant 5 for instance type “Ran- 

dom” and provides smallest improvements for type “Pure cluster”. 

Table 7 

Results of the test of different IPR-usage values in variant 4 ∗ . 

IPR-usage Average gap Average share of IPR-routes 

(in %) to variant 4 in the best solution (in %) 

0 0.0 0 0 3.26 

30 −0.585 4.85 

40 −0.716 5.56 

50 −0.693 8.44 

60 −0.689 9.65 

Again, a significant improvement of results is achieved by the hy- 

bridized variant 4 ∗ and it is reached especially for the “problem- 

atic” instance type “Pure cluster”. 

The value of 40% IPR-usage in variant 4 ∗ was determined in ad- 

vance when different values of this parameter where tested against 

each other over three runs per instance. The results of this prelim- 

inary test are shown in Table 7 . The value of 40% IPR-usage per- 

forms better the values of 30%, 50% and 60%, nevertheless the dif- 

ferences are small, especially between the three values of 40%, 50% 

and 60%. In the last column the average percentage of IPR-routes in 

the best solutions are shown. As expected the plain variant 4 (IPR- 

usage = 0) realizes the lowest share of IPR-routes (3.26%), while 

the highest share of 9.65% is realized with IPR-usage = 60%. 

3.2. Analysis of trade-off between travel distance and reloading effort 

In the following we deal with the tradeoff between travel dis- 

tance and reloading quantity. In variants 4, 4 ∗ and 5 there is no 

reloading effort as the Reloading ban (C3) is in force (see Table 

1 ). Among the variants with Reloading ban variant 4 ∗ provides the 

best results in terms of total travel distance. Thus, variant 4 ∗ will 

be compared now with 3L-PDP algorithm variants 1A, 1B, 2, 3 and 

3 ∗ regarding total travel distance and reloading effort. Again the 

additional algorithm variant 3 ∗ is the result of a hybridization of 

variant 3 and 5: in the first 40% of the computing time the al- 

gorithm has to construct routes which respect the IPR constraint 

(C4), i.e. it behaves as variant 5. Table 8 is organized as Table 4 and 

shows the total travel distances and gaps (as percentages) based on 

variant 4 ∗. 

The reloading effort needed for a 3L-PDP instance is primarily 

given as reloading quantity, i.e. as the weight of all boxes that are 

reloaded. If a box is reloaded, say, two times, the weight of the 

box is counted two times. Thus it may occur that the reloading 

quantity exceeds the total weight of the boxes. Table 9 is organized 

as follows. The first two columns include the instance type and 

the number of instances while the third column shows the total 

weight of all requests per instance (cargo weight). In the follow- 

ing ten columns the reloading quantities for the relevant 3L-PDP 

variants are given as absolute values (in weight units) and as per- 

centages of the cargo weight. The results are again averaged over 

five runs per instance and over all instances of same type. In the 

last line the percentaged reloading quantities are averaged over the 

54 instances. Since the reloading effort is zero for problem variant 

4 ∗, this variant does not occur in Table 9 . 

The reloading quantities of variant 2 (missing Reloading ban) 

and 3/3 ∗ (missing RS constraint for delivery points) are moder- 

ate and amount to 13.13% and 25.97%/24.13% of the cargo weight 

on average. For problem variants 1A and 1B, where both con- 

straints are missing, the mean reloading quantity is much higher 

(97.27% and 84.24%, respectively). However, the variants 2 and 3/3 ∗

bring only a small decrease of the total travel distance (0.82% and 

0.65%/1.36%) while the variants 1A and 1B reduce the total travel 

distance much stronger (9.29% and 9.06%). Again the hybridized 

variant 3 ∗ beats the original variant 3 (0.71 %-point less ttd and 

1.84 %-point less reloading quantity). Table 10 summarizes the 
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Table 8 

Results (travel distances) for 3L-PDP variants with reloading. 

Instance Number of Variant 4 ∗ Variant 3 Variant 3 ∗ Variant 2 Variant 1A Variant 1B 

type instances ttd ttd Gap (%) ttd Gap (%) ttd Gap (%) ttd Gap (%) ttd Gap (%) 

50_RAND_2 5 1530.48 1498.33 −2.08 1507.08 −1.52 1556.05 1.70 1349.69 −11.82 1354.05 −11.52 

50_CLUS_2 5 1147.24 1131.22 −1.37 1125.91 −1.84 1133.72 −1.16 1041.13 −9.33 1043.36 −9.13 

50_CPCD_2 5 1304.78 1311.57 0.53 1287.68 −1.30 1285.73 −1.44 1222.76 −6.32 1227.09 −5.98 

50_RAND_3 5 1523.82 1492.86 −2.03 1494.67 −1.93 1542.00 1.19 1343.85 −11.82 1352.04 −11.30 

50_CLUS_3 5 1122.74 1114.46 −0.75 1108.66 −1.27 1113.96 −0.70 1032.61 −8.11 1035.71 −7.80 

50_CPCD_3 5 1313.82 1302.55 −0.85 1297.66 −1.22 1287.91 −1.95 1236.04 −5.98 1234.50 −6.07 

75_RAND_2 3 2052.05 2030.96 −1.03 2009.15 −2.08 2057.41 0.27 1781.93 −13.17 1789.72 −12.79 

75_CLUS_2 3 1405.99 1406.01 −0.01 1384.46 −1.54 1396.88 −0.65 1281.86 −8.83 1290.89 −8.19 

75_CPCD_2 3 2195.18 2180.95 −0.65 2160.47 −1.58 2169.99 −1.15 2012.82 −8.31 2027.72 −7.64 

75_RAND_3 3 2036.24 2018.90 −0.86 2011.06 −1.24 2001.99 −1.68 1777.74 −12.72 1776.47 −12.77 

75_CLUS_3 3 1423.34 1447.78 1.70 1425.42 0.14 1393.35 −2.09 1280.43 −10.05 1280.27 −10.05 

75_CPCD_3 3 2220.03 2195.87 −1.08 2190.69 −1.31 2159.45 −2.72 2056.00 −7.37 2056.40 −7.35 

100_RAND_2 1 3947.88 3907.97 −1.01 3869.08 −2.00 3988.25 1.02 3476.54 −11.94 3470.88 −12.08 

100_CLUS_2 1 4036.36 4168.36 3.27 4015.00 −0.53 3994.20 −1.04 3614.50 −10.45 3672.62 −9.01 

100_CPCD_2 1 4278.91 4276.60 −0.05 4316.77 0.88 4190.00 −2.08 4092.40 −4.36 4114.89 −3.83 

100_RAND_3 1 4004.29 3899.90 −2.61 3861.05 −3.58 3938.97 −1.63 3455.99 −13.69 3428.00 −14.39 

100_CLUS_3 1 4102.87 4170.34 1.64 4081.65 −0.52 3951.76 −3.68 3659.60 −10.80 3632.85 −11.46 

100_CPCD_3 1 4203.64 4302.57 2.35 4215.58 0.28 4163.11 −0.96 4109.32 −2.24 4067.89 −3.23 

Sum 54 Average gap −0.65 −1.36 −0.82 −9.29 −9.06 

Table 9 

Reloading quantities for 3L-PDP variants with reloading. 

Instance Number of Cargo Variant 3 Variant 3 ∗ Variant 2 Variant 1A Variant 1B 

type instances weight Reloading quantity Reloading quantity Reloading quantity Reloading quantity Reloading quantity 

Absolute In % Absolute In % Absolute In % Absolute In % Absolute In % 

50_RAND_2 5 614051 139349 23.20 118517 19.55 82736 13.67 567811 94.05 523557 86.58 

50_CLUS_2 5 614051 136304 22.69 130123 21.62 124195 21.06 542193 89.88 463839 76.63 

50_CPCD_2 5 614051 157793 25.92 138684 22.88 42247 7.14 463367 76.54 393270 64.85 

50_RAND_3 5 614939 167622 27.61 153770 25.51 85148 14.39 555439 91.95 512386 84.65 

50_CLUS_3 5 614939 142066 23.81 141701 23.89 76647 12.56 538931 88.52 4 86 807 80.02 

50_CPCD_3 5 614939 156576 25.76 154133 25.52 43735 7.33 493698 81.61 401100 65.77 

75_RAND_2 3 7870 0 0 212497 26.99 192199 24.36 118068 15.04 849065 107.89 765390 97.24 

75_CLUS_2 3 7870 0 0 194717 24.71 174115 22.11 131709 16.76 919464 116.79 729781 92.67 

75_CPCD_2 3 7870 0 0 176909 22.50 183829 23.38 68569 8.73 750783 95.39 660077 83.83 

75_RAND_3 3 788876 230248 29.14 211637 26.78 113555 14.42 898871 113.95 795780 100.87 

75_CLUS_3 3 788876 194528 24.64 205283 25.97 109747 13.99 918785 116.38 801924 101.58 

75_CPCD_3 3 788876 257841 32.69 233459 29.64 77676 9.91 803098 101.89 662256 84.03 

100_RAND_2 1 1072407 332020 30.96 277317 25.86 122109 11.39 1275821 118.97 1169467 109.05 

100_CLUS_2 1 1072407 266633 24.86 277927 25.92 216976 20.23 1285608 119.88 1099816 102.56 

100_CPCD_2 1 1072407 285790 26.65 187515 17.49 199586 18.61 1199016 111.81 899469 83.87 

100_RAND_3 1 1074809 364044 33.87 405311 37.71 102135 9.50 1313254 122.18 1074617 99.98 

100_CLUS_3 1 1074809 334929 31.16 290559 27.03 189203 17.60 1301508 121.09 1073135 99.84 

100_CPCD_3 1 1074809 298355 27.76 190291 17.70 156586 14.57 955683 88.92 866282 80.60 

Sum 54 Average 25.97 24.13 13.13 97.27 84.24 

Table 10 

Tradeoff between total travel distance and reloading quantity. 

3L-PDP Total travel Reloading quantity 

variant distance in % average in % 

5 10 0.0 0 0.00 

4 97.84 0.00 

4 ∗ 97.01 0.00 

3 96.38 25.97 

3 ∗ 95.68 24.13 

2 96.21 13.13 

1A 87.99 97.27 

1B 88.21 84.24 

results regarding total travel distance and reloading effort. For each 

3L-PDP variant the total travel distance is now given as percent- 

age of the travel distance of variant 5 while the reloading quan- 

tities are again indicated as percentages of the cargo weight. All 

presented values are averaged over the five runs per instance and 

over the 54 3L-PDP instances. The indicated figures for the 3L- 

PDP variants correspond very well with the expected differences 

between those variants regarding travel distances and reloading ef- 

fort as shown in Table 1 . 

3.3. Analysis of categories of reloading effort 

In the following we analyze the reloading effort in greater de- 

tail. In generally there exist three reasons to reload a certain box 

at a certain point: 

• a box must be temporarily removed from the vehicle because 

it’s blocking an unloading operation at a delivery point of 

box(es) belonging to the request of this delivery point (“block- 

ing box”), 
• a box occupies in the packing plan of this point another po- 

sition in loading space than in the last packing plan before 

(“repositioned box”), 
• a box occupies in the packing plan of this point the same po- 

sition in loading space with changed orientation compared to 

the last packing plan before (“rotated box”). 

In Table 11 it is shown how the total reloading effort split s up 

in three categories for the variants 1A, 1B and 2. For each instance 
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Table 11 

Categories of reloading effort for 3L-PDP variants 1A, 1B and 2. 

Instance Number of Variant 2 Variant 1A Variant 1B 

type instances Reloading quantity in % Reloading quantity in % Reloading quantity in % 

Total Repos Rotate Total Block Repos Rotate Total Block Repos Rotate 

50_RAND_2 5 13.67 11.99 1.68 94.05 61.81 30.75 1.49 86.58 54.07 30.73 1.78 

50_CLUS_2 5 21.06 18.98 2.08 89.88 61.20 27.70 0.98 76.63 46.18 28.51 1.94 

50_CPCD_2 5 7.14 5.86 1.27 76.54 50.66 24.93 0.95 64.85 39.79 23.88 1.18 

50_RAND_3 5 14.39 13.23 1.17 91.95 67.11 23.98 0.86 84.65 59.08 24.56 1.01 

50_CLUS_3 5 12.56 11.92 0.65 88.52 62.68 24.35 1.48 80.02 53.32 24.68 2.02 

50_CPCD_3 5 7.33 6.51 0.82 81.61 58.92 21.68 1.01 65.77 44.15 20.36 1.25 

75_RAND_2 3 15.04 14.29 0.75 107.89 75.29 30.64 1.96 97.24 61.92 33.33 2.00 

75_CLUS_2 3 16.76 14.48 2.28 116.79 77.79 36.81 2.20 92.67 59.88 30.64 2.15 

75_CPCD_2 3 8.73 7.33 1.40 95.39 63.63 28.68 3.08 83.83 47.21 33.04 3.58 

75_RAND_3 3 14.42 12.64 1.78 113.95 83.60 29.47 0.88 100.87 68.97 30.31 1.59 

75_CLUS_3 3 13.99 13.29 0.70 116.38 84.81 30.09 1.47 101.58 68.46 31.61 1.50 

75_CPCD_3 3 9.91 9.16 0.75 101.89 72.63 27.76 1.49 84.03 55.08 27.76 1.19 

100_RAND_2 1 11.39 10.20 1.18 118.97 79.52 37.93 1.52 109.05 65.93 40.03 3.09 

100_CLUS_2 1 20.23 18.22 2.01 119.88 83.64 33.86 2.38 102.56 63.87 36.21 2.48 

100_CPCD_2 1 18.61 16.29 2.32 111.81 68.25 41.20 2.36 83.87 46.67 35.19 2.02 

100_RAND_3 1 9.50 7.88 1.63 122.18 95.48 24.99 1.72 99.98 69.74 27.91 2.34 

100_CLUS_3 1 17.60 16.02 1.58 121.09 89.37 30.30 1.42 99.84 65.94 32.25 1.66 

100_CPCD_3 1 14.57 12.75 1.82 88.92 63.05 24.51 1.35 80.60 51.65 26.18 2.77 

Average 13.13 11.80 1.33 97.27 67.86 27.97 1.44 84.24 54.28 28.18 1.78 

Table 12 

Maximal loaded volumes for different 3L-PDP variants. 

Instance Number of Variant 5 Variant 4 ∗ Variant 3 ∗ Variant 2 Variant 1A Variant 1B 

type instances Volume % Volume % Volume % Volume % Volume % Volume % 

50_RAND_2 5 25808 57.35 24396 54.21 25563 56.81 26469 58.82 28739 63.87 28257 62.79 

50_CLUS_2 5 27458 61.02 27380 60.84 27328 60.73 27170 60.38 28080 62.40 29110 64.69 

50_CPCD_2 5 28848 64.11 28992 64.43 28474 63.28 29175 64.83 30184 67.08 30081 66.85 

50_RAND_3 5 26677 59.28 25922 57.60 26030 57.85 27092 60.20 27894 61.99 27958 62.13 

50_CLUS_3 5 26211 58.25 26200 58.22 26590 59.09 27362 60.80 28396 63.10 28086 62.41 

50_CPCD_3 5 28899 64.22 29204 64.90 28587 63.53 29132 64.74 29128 64.73 29311 65.14 

75_RAND_2 3 27760 61.69 27170 60.38 27307 60.68 28410 63.13 29005 64.46 29011 64.47 

75_CLUS_2 3 28916 64.26 28216 62.70 28242 62.76 28714 63.81 30290 67.31 29621 65.83 

75_CPCD_2 3 29261 65.02 28534 63.41 28803 64.01 29333 65.18 29630 65.84 29851 66.34 

75_RAND_3 3 27337 60.75 26368 58.59 25068 55.71 27264 60.59 28534 63.41 27846 61.88 

75_CLUS_3 3 26555 59.01 26755 59.46 26287 58.42 27505 61.12 28016 62.26 28123 62.49 

75_CPCD_3 3 28196 62.66 27706 61.57 28041 62.31 28393 63.10 29229 64.95 29835 66.30 

100_RAND_2 1 27759 61.69 27996 62.21 27160 60.36 28997 64.44 29828 66.28 28472 63.27 

100_CLUS_2 1 31157 69.24 27745 61.66 27712 61.58 29865 66.37 29864 66.36 31206 69.35 

100_CPCD_2 1 31101 69.11 30356 67.46 29602 65.78 30307 67.35 29741 66.09 30309 67.35 

100_RAND_3 1 29233 64.96 26428 58.73 25816 57.37 27798 61.77 29635 65.86 28920 64.27 

100_CLUS_3 1 28683 63.74 27729 61.62 27704 61.56 29229 64.95 28589 63.53 28722 63.83 

100_CPCD_3 1 29084 64.63 27713 61.58 28987 64.42 28581 63.51 29187 64.86 28554 63.45 

Average 61.75 60.60 60.54 62.37 64.32 64.32 

type and each variant the total reloading quantity (as in Table 9 

before) and the reloading effort s in the categories “blocking box”, 

“repositioned box” and “rotated box” are shown (all values are per- 

centages of the cargo weight). If a box gets unloaded at a delivery 

point because it is blocking an unloading operation and afterwards 

it is reloaded at another position or in another direction this box is 

only counted in category “blocking”. Generally the reloading effort 

in category “rotated box” is small and amounts to approximately 

only 5–10% of the reloading effort in category “repositioned box”. 

For variants 1A and 1B the reloading effort in category “blocking 

box” is nearly twice as much as the reloading effort in the other 

categories, while in variant 2 no reloading effort of type “blocking 

box” exists because constraints (C1) and (C2) are in force. Further- 

more in variants 3 and 3 ∗ with active reloading ban constraint (C3) 

all reloading effort belongs to category “blocking box”. That is why 

these variants are not included in Table 11 . In this paper we re- 

frain from presenting reloading costs, but with the listed reloading 

effort values it would be easily possible to weight the three cat- 

egories with different coefficients and calculate a total reloading 

cost value. 

3.4. Analysis of capacity utilization 

In Table 12 the maximal volume of contained boxes is shown 

which the vehicles are reaching within their tours. The maximal 

loaded volumes are averaged over the routes and over five runs 

per instance and are given as absolute values and as percentages 

of the loading space volume (45,0 0 0) for each instance type. For 

all problem variants (variant 3 and 4 are omitted here for sake 

of simplicity) an average maximum space utilization greater 60% 

is reached. Very similar utilizations are reported for advanced 3L- 

CVRP methods, e.g. Bortfeldt (2012) , for the benchmark instances 

proposed by Gendreau et al. (2006) . Since the boxes and loading 

spaces in our 3L-PDP instances are constructed exactly in the same 

fashion our utilization rates seem to be quite good, although the 

results of 3L-CVRP and 3L-PDP are not completely comparable be- 

cause of the different problem structure. Generally we expect that 

the relaxation of constraints (C2) (RS constraint at delivery points) 

and (C3) (Reloading ban) leads to better space utilizations. The re- 

sults of variants 1A, 1B and 2 confirm this assumption. The max- 

imum loaded volume for variant 2 (62.37%) and for variants 1A 
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Table 13 

Total iteration numbers and computing times to find the best solution for different 3L-PDP variants. 

Instance CPU Variant 5 Variant 4 ∗ Variant 3 ∗ Variant 2 Variant 1A Variant 1B 

type seconds Total Runtime to Total Runtime to Total Runtime to Total Runtime to Total Runtime to Total Runtime to 

iterations best in % iterations best in % iterations best in % iterations best in % iterations best in % iterations best in % 

50_RAND_2 300 179863 49.04 49378 73.77 47696 69.19 99106 39.05 14762 69.82 11374 61.27 

50_CLUS_2 300 215667 33.98 59301 69.99 57354 82.83 100539 49.41 13638 69.14 9997 76.19 

50_CPCD_2 300 90092 59.72 8463 76.44 8714 74.92 31266 69.44 3223 70.56 2478 76.68 

50_RAND_3 600 129033 51.02 12035 76.83 10425 79.86 90373 50.97 6627 75.86 4499 80.53 

50_CLUS_3 600 214049 49.94 9924 83.28 10387 80.22 120305 50.68 3947 84.77 2424 80.29 

50_CPCD_3 600 12607 85.85 1610 74.56 1465 82.81 4518 80.56 793 80.66 690 79.64 

75_RAND_2 600 132369 47.22 21826 72.52 24684 83.10 59991 50.99 4728 79.46 3252 81.52 

75_CLUS_2 600 138430 54.84 19993 85.35 19425 85.88 4 4 476 65.61 3696 81.85 2726 80.03 

75_CPCD_2 600 63513 68.07 8702 81.91 8738 84.08 24366 83.26 3012 82.67 2553 76.67 

75_RAND_3 1200 44377 73.91 4071 78.25 4080 82.07 32464 68.85 1652 84.80 1707 79.08 

75_CLUS_3 1200 69441 73.63 3479 76.22 3016 79.25 13009 77.86 1387 89.15 1178 88.74 

75_CPCD_3 1200 14643 86.42 2630 68.43 2498 82.31 6833 84.36 1034 82.53 1014 79.01 

100_RAND_2 1200 81845 60.78 9222 86.11 9639 85.23 37656 74.47 3271 77.07 3018 86.51 

100_CLUS_2 1200 94320 71.72 14982 83.06 14242 78.51 49142 62.38 2804 79.36 2112 73.07 

100_CPCD_2 1200 6599 84.08 2205 81.17 2154 68.84 4138 80.63 1369 77.42 1133 69.73 

100_RAND_3 2400 28326 89.91 3382 83.47 3262 76.17 11727 89.93 1459 85.00 1392 88.66 

100_CLUS_3 2400 32224 86.26 3247 77.53 3136 89.88 10669 86.85 1234 70.12 1012 76.92 

100_CPCD_3 2400 3430 89.43 1450 72.91 1379 79.19 2636 82.81 753 84.58 719 88.66 

Average 108,178 61.89 17,040 76.79 16,691 79.95 53,517 64.27 5044 78.31 3777 77.99 

and 1B (64.32%) is larger than for the other variants. For the vari- 

ants 3 ∗ and 4 ∗ (which use the new packing algorithm to cope with 

the reloading ban) the maximum loaded volume is slightly smaller 

than for variant 5, so there is probably still potential for improve- 

ment of the new packing algorithm. 

3.5. Analysis of computational effort 

In Table 13 the average total numbers of iterations executed and 

the average computing times to find the best solution are shown. 

The times are given as percentages of the allowed computing time 

per instance type shown in the second column. All values are av- 

eraged over five runs and over all instances of the same type. The 

results show that the “old” variant 5 only needs 61.89% of the 

computing time on average to find the best solutions while the 

“new” variants 4 ∗ and 3 ∗ need 76.79% and 79.95%, respectively, 

to find the best solutions. Furthermore in variant 5 around six 

times more iterations can be executed than in variant 4 ∗ and 3 ∗ in 

the same available computing time (108,178 vs. 17,040 and 16,691). 

This shows that the “new” variants are more expensive in terms of 

CPU usage because of the more complex packing algorithm. On the 

other hand, there may be still potential for further improvements 

with the “new” variants if more CPU time would be allowed. The 

total number of iterations executed for variants 1A and 1B is quite 

low compared to variants 2 and 5. In variants 1A and 1B there are 

much more possibilities to construct routes because of the miss- 

ing constraints (C2)–(C4). Thus the algorithm makes more pack- 

ing checks of different routes in these variants while in variants 

2 and 5 the algorithm often repeats packing checks of the same 

routes. Since the packing cache speeds up the repetitions of pack- 

ing checks significantly, in variants 2 and 5 much more iterations 

can be executed in the same time. 

4. On the avoidance of reloading effort for different vehicle 

routing problems 

In the following, we want to deal with the question of avoid- 

ing reloading effort from a more general perspective. We take dif- 

ferent basic vehicle routing problems (VRP), as considered in Toth 

and Vigo (2014) , combined with 3D loading constraints and ask for 

packing constraints which prevent any reloading effort. Moreover, 

we want to determine specific demands on packing algorithms, re- 

lated to the avoidance of reloading effort, f or different types of 

VRP. We consider VRP with a single depot. As before we assume 

that vehicles are rear-loaded and only horizontal shifts of boxes in 

length direction of a vehicle are allowed for loading and unloading 

operations. 

In Table 14 the results for different basic VRP types with 3D 

loading constraints are summarized. We differentiate the capaci- 

tated VRP (3L-CVRP), the distance constraint VRP (3L-DCVRP) and 

the VRP with time windows (3L-VRPTW). Furthermore, the VRP 

with clustered backhauls (3L-VRPCB), as most simple VRP with 

backhauls, is considered. In the 3L-VRPCB each customer is either 

a linehaul or a backhaul customer and in each route all linehaul 

customers must be delivered with goods from the depot before 

goods can be picked up at backhaul customers. For the 3L-PDP two 

variants are taken into account. In the first variant the indepen- 

dent partial routes (IPR) constraint is required and cares for the 

Table 14 

Avoidance of reloading effort for different VRPs. 

3L-VRP Packing constraints for avoidance of reloading effort Demands on packing algorithm 

Request Request Reloading No. of packing plans Interrelated 

sequence sequence ban per route packing 

at delivery points at pickup points plans 

3L-CVRP ✔ 1 

3L-DCVRP ✔ 1 

3L-VRPTW ✔ 1 

3L-VRPCB ✔ ✔ 2 

3L-PDP 

– with IPR constraint ✔ > 1 

– without IPR constraint ✔ ✔ ✔ > 1 ✔ 
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avoidance of reloading effort (see first paper). In the second vari- 

ant the IPR constraint is not demanded. 

For the 3L-CVRP a request sequence constraint at delivery 

points, alias LIFO (last-in first-out) policy, is sufficient to rule out 

any reloading effort (see, e.g., Gendreau et al., 2006 and constraint 

(C2) in the first paper). Obviously, the same applies to the 3L- 

DCVRP and 3L-VRPTW. For all three problems only one packing 

plan per route has to be provided. The plan must include a fea- 

sible arrangement of all boxes that belong to the customers visited 

on this route. It shows the state of the vehicle loading space when 

the vehicle departures from the depot. The LIFO constraint ensures 

that feasible packing arrangements result for all visited sites on 

that route by successive unloading of boxes. 

In the 3L-VRPCB a request sequence constraint at delivery 

points (LIFO) and at pickup points (FILO, first-in last-out policy) 

is needed (see Bortfeldt et al., 2015 , and constraint (C1) in the first 

paper). Two packing plans have to be provided per route in gen- 

eral. The first plan shows the loading state of the vehicle when de- 

parting from depot and must include all boxes of the visited line- 

haul customers. The second plan shows the loading state of the ve- 

hicle when arriving again at the depot and must contain all boxes 

picked up at the backhaul customers. Again, from these two plans 

feasible box arrangements can be derived for all visited sites in the 

route. 

For the 3L-PDP with additional IPR constraint (C4), dealt with 

in the first paper, only the request sequence constraint at pickup 

points is necessary to prevent any reloading effort. The request se- 

quence constraint at delivery points is then satisfied automatically. 

By the way, the reverse statement is also true: if IPR constraint is 

observed then the request sequence constraint for pickup points is 

satisfied automatically if the request sequence constraint for deliv- 

ery points is respected. Generally, multiple packing plans are to be 

provided with a route. Each of these packing plans must contain 

the boxes of some consecutive pickup points that are included in 

a sub-pattern of a route and are followed by the related delivery 

points in reverse order. Feasible packing arrangements can then be 

derived for all pickup and delivery points of this sub-pattern. 

In the 3L-PDP without IPR constraint we must demand the re- 

quest sequence constraint in both variants and the reloading ban 

(C3) to prevent any reloading effort. A packing plan is needed for 

each sequence open pickup points (SOPP, see definition in Section 

2.1 ) of a route. The new phenomenon is here that a pickup point 

can occur in multiple SOPPs (see Fig. 2 ). In order to observe the 

reloading ban, the placements of the boxes of a pickup point 

that belongs to two SOPPs must coincide in related packing plans. 

Hence, the packing plans for a route can in general no longer be 

generated independently of each other. This is a new requirement 

in 3L-VRP that has not been encountered yet. Up to now it was 

sufficient to employ a packing algorithm for the 3L-CVRP (able to 

observe the LIFO constraint) and to apply this algorithm several 

times per route if necessary. For example, in the 3L-VRPCB such an 

algorithm has to be used two times per route for a packing check. 

Thus the 3L-PDP without IPR constraint stands for a new level of 

difficulty of packing checks. 

All in all, more intricate 3L-VRPs require more complex restric- 

tions to avoid reloading effort and more difficult packing algo- 

rithms to perform the needed packing checks. 

In practical scenarios often further packing constraints have to 

be satisfied besides those considered here. Weight distribution and 

horizontal stability constraints can be mentioned as prominent ex- 

amples (see Bortfeldt & Wäscher, 2013 ). Weight distribution con- 

straints assure that, regarding the 3L-PDP, the weight of the cargo 

is spread evenly over the floor of the loading space. Horizontal sta- 

bility constraints require that the boxes cannot shift significantly in 

the loading space when the vehicle is traveling. Horizontal stability 

is often measured by the percentage of boxes that are sufficiently 

laterally supported by other boxes or the side walls of the loading 

space ( Bischoff & Ratcliff, 1995 ). 

With regard to the 3L-PDP it is important to note that weight 

distribution and horizontal stability measures should be applied at 

all customer sites of a route, whenever the loading space is loaded 

or unloaded. If necessary the packing plan has to be adapted, i.e. 

a reloading of goods should take place. For example, to maintain 

a sufficiently even weight distribution it might be necessary to 

shift the load in length direction. Obviously, this type of reload- 

ing would have a positive effect as it helps to observe given con- 

straints. And this makes the difference to the reloading of goods 

considered in the paper at hand and excluded by the reloading ban 

constraint. The reloading considered here simply occurs when the 

connection between packing plans for different sites of a route re- 

mains disregarded. 

It remains a topic of future research to take into account fur- 

ther constraints (as the above mentioned) and to avoid unneces- 

sary reloading as well as to allow for necessary reloading of goods. 

5. Conclusions 

In the paper at hand and in the previous paper by Männel and 

Bortfeldt (2016) , the vehicle routing problem with pickup and de- 

livery (PDP) has been extended to an integrated vehicle routing 

and loading problem (3L-PDP). In the problem formulation we con- 

centrated on the question under which conditions any reloading 

effort, i.e. any movement of boxes after loading and before unload- 

ing, can be avoided. It turned out that the request sequence con- 

straints (C1) and (C2) for pickup and delivery points are not suf- 

ficient. Instead, we must require either a new routing constraint, 

called independent partial routes condition (C4), or a new packing 

constraint, termed reloading ban (C3), to exclude any reloading ef- 

fort. Eventually, a spectrum of five 3L-PDP variants was introduced 

that allow for different portions of reloading effort and reciprocal 

savings of travel distance. 

In this paper, we focused on the reloading ban, a packing con- 

straint that ensures identical placements of same boxes in differ- 

ent packing plans. A hybrid algorithm for solving the 3L-PDP with 

reloading ban consisting of a routing and a packing procedure has 

been proposed. As in the first paper the routing procedure per- 

forms a large neighborhood search. A tree search heuristic is re- 

sponsible for packing boxes that stems from the packing procedure 

published by Bortfeldt (2012) . However, to cope with the reloading 

ban, i.e. to generate interrelated packing plans for a given route, 

the packing procedure was substantially enhanced. 

In detail, the hybrid algorithm was developed here for prob- 

lem variants 4 and 3 (see Table 1 ). Moreover, the corresponding 

algorithm variants were hybridized with algorithm variant 5 (from 

the first paper) for the 3L-PDP with independent partial routes 

condition resulting in algorithm variants 4 ∗ and 3 ∗. All new and 

old variants of the hybrid algorithm were tested by means of 54 

3L-PDP instances with up to 100 requests and up to 300 boxes. 

The new variants 4 and 4 ∗ for the 3L-PDP without any permitted 

reloading effort reached noticeable smaller travel distances com- 

pared with the rival variant 5. The improvement in terms of travel 

distance amounts to 2.2% for algorithm variant 4 and to 3.0% for 

variant 4 ∗. The comparison of the variants of the hybrid algorithm 

shows a clear tradeoff between travel distance and reloading ef- 

fort and confirms the theoretical expectations. All algorithm vari- 

ants reached maximal volume utilizations per tour above 60% on 

average and this can be evaluated as a rather good result. Finally, 

the reloading effort has been differentiated where necessary in the 

categories “blocking”, “repositioning” and “rotating”. While block- 

ing of boxes is the major source of reloading a considerable share 

of reloading might also be caused by violations of the reloading 

ban. 
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Future research on 3L-PDP should consider, as discussed in 

Section 4 , further constraints which are indispensable require- 

ments in practice. 

Table 15 

Travel distances for 3L-PDP variants without reloading (complete results). 

Instance Variant 5 Variant 4 Variant 4 ∗

ttd ttd Gap (%) ttd Gap (%) 

50_RAND_2_1 1736.90 1635.72 −5.83 1632.39 −6.02 

50_RAND_2_2 1585.41 1506.50 −4.98 1498.12 −5.51 

50_RAND_2_3 1654.94 1526.49 −7.76 1522.29 −8.02 

50_RAND_2_4 1579.04 1540.53 −2.44 1507.85 −4.51 

50_RAND_2_5 1594.68 1487.54 −6.72 1491.74 −6.46 

50_CLUS_2_1 1121.67 1071.01 −4.52 1066.95 −4.88 

50_CLUS_2_2 1108.00 1036.82 −6.42 1042.52 −5.91 

50_CLUS_2_3 1150.45 1092.75 −5.02 1081.49 −5.99 

50_CLUS_2_4 1276.50 1229.84 −3.66 1231.86 −3.50 

50_CLUS_2_5 1372.05 1320.13 −3.78 1313.36 −4.28 

50_CPCD_2_1 1366.02 1347.40 −1.36 1348.35 −1.29 

50_CPCD_2_2 1257.05 1270.08 1.04 1238.81 −1.45 

50_CPCD_2_3 1233.61 1201.01 −2.64 1190.61 −3.49 

50_CPCD_2_4 1330.88 1318.11 −0.96 1302.37 −2.14 

50_CPCD_2_5 1455.59 1452.44 −0.22 1443.77 –0.81 

50_RAND_3_1 1719.96 1591.50 −7.47 1595.12 –7.26 

50_RAND_3_2 1562.69 1463.68 −6.34 1477.23 –5.47 

50_RAND_3_3 1649.81 1553.59 −5.83 1542.63 –6.50 

50_RAND_3_4 1564.77 1507.59 −3.65 1493.06 −4.58 

50_RAND_3_5 1588.24 1513.57 −4.70 1511.07 −4.86 

50_CLUS_3_1 1049.84 1026.93 −2.18 1025.09 −2.36 

50_CLUS_3_2 1097.03 1009.62 −7.97 1009.61 −7.97 

50_CLUS_3_3 1124.03 1075.38 −4.33 1067.27 −5.05 

50_CLUS_3_4 1250.32 1213.93 −2.91 1213.40 −2.95 

50_CLUS_3_5 1324.44 1300.73 −1.79 1298.32 −1.97 

50_CPCD_3_1 1336.16 1353.83 1.32 1344.86 0.65 

50_CPCD_3_2 1243.28 1273.55 2.43 1244.26 0.08 

50_CPCD_3_3 1239.31 1220.64 −1.51 1221.48 −1.44 

50_CPCD_3_4 1310.50 1317.87 0.56 1310.83 0.03 

50_CPCD_3_5 1434.41 1434.08 −0.02 1447.64 0.92 

75_RAND_2_1 2127.32 2097.80 −1.39 2064.44 −2.96 

75_RAND_2_2 2118.42 2052.71 −3.10 2014.83 −4.89 

75_RAND_2_3 2172.86 2099.16 −3.39 2076.89 −4.42 

75_CLUS_2_1 1465.26 1429.87 −2.42 1402.13 −4.31 

75_CLUS_2_2 1423.63 1385.28 −2.69 1384.34 −2.76 

75_CLUS_2_3 1494.76 1454.94 −2.66 1431.49 −4.23 

75_CPCD_2_1 2220.77 2185.09 −1.61 2184.97 −1.61 

75_CPCD_2_2 2215.28 2184.20 −1.40 2181.01 −1.55 

75_CPCD_2_3 2275.16 2265.27 −0.43 2219.57 −2.44 

75_RAND_3_1 2137.18 2135.84 −0.06 2076.73 −2.83 

75_RAND_3_2 2066.38 2031.04 −1.71 1978.53 −4.25 

75_RAND_3_3 2117.35 2052.43 −3.07 2053.47 −3.02 

75_CLUS_3_1 1452.80 1448.22 −0.32 1427.99 −1.71 

75_CLUS_3_2 1426.90 1400.21 −1.87 1391.35 −2.49 

75_CLUS_3_3 1470.90 1481.37 0.71 1450.67 −1.38 

75_CPCD_3_1 2217.96 2243.73 1.16 2242.87 1.12 

75_CPCD_3_2 2181.64 2265.49 3.84 2224.54 1.97 

75_CPCD_3_3 2229.88 2239.72 0.44 2192.67 −1.67 

100_RAND_2_1 4054.89 3991.39 −1.57 3947.88 −2.64 

100_CLUS_2_1 4178.58 4130.58 −1.15 4036.36 −3.40 

100_CPCD_2_1 4259.89 4272.27 0.29 4278.91 0.45 

100_RAND_3_1 3995.01 4044.72 1.24 4004.29 0.23 

100_CLUS_3_1 4100.42 414 9.4 9 1.20 4102.87 0.06 

100_CPCD_3_1 4201.28 4320.01 2.83 4203.64 0.06 

Average gap −2.16 −2.99 

Appendix A 

Tables 15 –20 . 
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Table 16 

Travel distances for 3L-PDP variants with reloading (complete results). 

Instance Variant 4 ∗ Variant 3 Variant 3 ∗ Variant 3 ∗ Variant 1A Variant 1B 

ttd ttd Gap (%) ttd Gap (%) ttd Gap (%) ttd Gap (%) ttd Gap (%) 

50_RAND_2_1 1632.39 1580.50 –3.18 1593.55 –2.38 1628.98 –0.21 1451.72 –11.07 1443.78 –11.55 

50_RAND_2_2 1498.12 1473.70 –1.63 1478.31 –1.32 1509.92 0.79 1296.90 –13.43 1311.25 –12.47 

50_RAND_2_3 1522.29 1494.39 –1.83 1513.11 –0.60 1565.60 2.84 1327.22 –12.81 1327.24 –12.81 

50_RAND_2_4 1507.85 1482.04 –1.71 1488.77 –1.27 1536.88 1.92 1338.72 –11.22 1351.54 –10.37 

50_RAND_2_5 1491.74 1461.04 –2.06 1461.63 –2.02 1538.87 3.16 1333.91 –10.58 1336.47 –10.41 

50_CLUS_2_1 1066.95 1058.89 –0.76 1056.09 –1.02 1033.56 –3.13 973.56 –8.75 970.99 –8.99 

50_CLUS_2_2 1042.52 1021.88 –1.98 1017.66 –2.38 1031.54 –1.05 922.95 –11.47 924.61 –11.31 

50_CLUS_2_3 1081.49 1076.99 –0.42 1068.08 –1.24 1097.76 1.50 982.26 –9.18 993.78 –8.11 

50_CLUS_2_4 1231.86 1203.49 –2.30 1196.04 –2.91 1207.84 –1.95 1102.98 –10.46 1105.22 –10.28 

50_CLUS_2_5 1313.36 1294.85 –1.41 1291.68 –1.65 1297.92 –1.18 1223.90 –6.81 1222.21 –6.94 

50_CPCD_2_1 1348.35 1354.34 0.44 1332.60 –1.17 1299.20 –3.64 1245.40 –7.64 1234.03 –8.48 

50_CPCD_2_2 1238.81 1258.25 1.57 1223.39 –1.24 1223.62 –1.23 1150.80 –7.10 1150.01 –7.17 

50_CPCD_2_3 1190.61 1192.47 0.16 1175.53 –1.27 1181.09 –0.80 1108.01 –6.94 1121.75 –5.78 

50_CPCD_2_4 1302.37 1302.11 –0.02 1287.82 –1.12 1298.78 –0.28 1242.12 –4.63 1246.26 –4.31 

50_CPCD_2_5 1443.77 1450.71 0.48 1419.08 –1.71 1425.95 –1.23 1367.47 –5.29 1383.38 –4.18 

50_RAND_3_1 1595.12 1564.84 –1.90 1586.98 –0.51 1609.61 0.91 1437.77 –9.86 1457.05 –8.66 

50_RAND_3_2 1477.23 1447.36 –2.02 1436.80 –2.74 1465.56 –0.79 1286.62 –12.90 1293.19 –12.46 

50_RAND_3_3 1542.63 1523.62 –1.23 1507.37 –2.29 1559.11 1.07 1317.93 –14.57 1338.00 –13.26 

50_RAND_3_4 1493.06 1474.05 –1.27 1489.26 –0.25 1539.78 3.13 1336.28 –10.50 1330.80 –10.87 

50_RAND_3_5 1511.07 1454.43 –3.75 1452.97 –3.85 1535.92 1.64 1340.68 –11.28 1341.14 –11.25 

50_CLUS_3_1 1025.09 1022.42 –0.26 1014.84 –1.00 1006.31 –1.83 960.04 –6.35 957.98 –6.55 

50_CLUS_3_2 1009.61 996.39 –1.31 995.10 –1.44 1024.23 1.45 901.92 –10.67 914.94 –9.38 

50_CLUS_3_3 1067.27 1058.69 –0.80 1048.66 –1.74 1073.48 0.58 975.84 –8.57 982.76 –7.92 

50_CLUS_3_4 1213.40 1197.67 –1.30 1195.03 –1.51 1185.00 –2.34 1102.77 –9.12 1095.18 –9.74 

50_CLUS_3_5 1298.32 1297.11 –0.09 1289.67 –0.67 1280.80 –1.35 1222.49 –5.84 1227.70 –5.44 

50_CPCD_3_1 1344.86 1327.71 –1.28 1331.64 –0.98 1317.75 –2.02 1269.26 –5.62 1258.34 –6.43 

50_CPCD_3_2 1244.26 1239.97 –0.35 1238.47 –0.47 1226.44 –1.43 1160.73 –6.71 1175.74 –5.51 

50_CPCD_3_3 1221.48 1206.45 –1.23 1198.29 –1.90 1199.48 –1.80 1127.45 –7.70 1114.17 –8.79 

50_CPCD_3_4 1310.83 1310.19 –0.05 1296.66 –1.08 1288.48 –1.70 1242.54 –5.21 1258.95 –3.96 

50_CPCD_3_5 1447.64 1428.40 –1.33 1423.24 –1.69 1407.42 –2.78 1380.22 –4.66 1365.29 –5.69 

75_RAND_2_1 2064.44 2073.08 0.42 2024.95 –1.91 2046.09 –0.89 1820.99 –11.79 1827.68 –11.47 

75_RAND_2_2 2014.83 1992.09 –1.13 1984.15 –1.52 2034.26 0.96 1733.08 –13.98 1745.30 –13.38 

75_RAND_2_3 2076.89 2027.72 –2.37 2018.35 –2.82 2091.87 0.72 1791.71 –13.73 1796.17 –13.52 

75_CLUS_2_1 1402.13 1411.63 0.68 1386.25 –1.13 1392.63 –0.68 1301.54 –7.17 1294.09 –7.71 

75_CLUS_2_2 1384.34 1359.54 –1.79 1353.69 –2.21 1369.47 –1.07 1242.68 –10.23 1266.05 –8.54 

75_CLUS_2_3 1431.49 1446.86 1.07 1413.43 –1.26 1428.53 –0.21 1301.37 –9.09 1312.54 –8.31 

75_CPCD_2_1 2184.97 2162.85 –1.01 2140.11 –2.05 2137.11 –2.19 1980.47 –9.36 1979.54 –9.40 

75_CPCD_2_2 2181.01 2177.48 –0.16 2150.61 –1.39 2163.29 –0.81 1996.02 –8.48 2012.59 –7.72 

75_CPCD_2_3 2219.57 2202.53 –0.77 2190.70 –1.30 2209.57 –0.45 2061.97 –7.10 2091.03 –5.79 

75_RAND_3_1 2076.73 2093.40 0.80 2053.37 –1.12 2029.52 –2.27 1870.63 –9.92 1859.06 –10.48 

75_RAND_3_2 1978.53 1961.37 –0.87 1954.68 –1.21 1949.88 –1.45 1699.55 –14.10 1712.45 –13.45 

75_RAND_3_3 2053.47 2001.95 –2.51 2025.13 –1.38 2026.56 –1.31 1763.04 –14.14 1757.92 –14.39 

75_CLUS_3_1 1427.99 1468.09 2.81 1431.95 0.28 1390.36 –2.64 1315.63 –7.87 1302.01 –8.82 

75_CLUS_3_2 1391.35 1397.03 0.41 1385.54 –0.42 1379.31 –0.87 1226.99 –11.81 1251.55 –10.05 

75_CLUS_3_3 1450.67 1478.21 1.90 1458.77 0.56 1410.38 –2.78 1298.66 –10.48 1287.25 –11.27 

75_CPCD_3_1 2242.87 2179.47 –2.83 2190.66 –2.33 2152.01 –4.05 2032.12 –9.40 2037.96 –9.14 

75_CPCD_3_2 2224.54 2209.73 –0.67 2171.75 –2.37 2152.32 –3.25 2040.13 –8.29 2029.52 –8.77 

75_CPCD_3_3 2192.67 2198.40 0.26 2209.67 0.78 2174.01 –0.85 2095.74 –4.42 2101.73 –4.15 

100_RAND_2_1 3947.88 3907.97 –1.01 3869.08 –2.00 3988.25 1.02 3476.54 –11.94 3470.88 –12.08 

100_CLUS_2_1 4036.36 4168.36 3.27 4015.00 –0.53 3994.20 –1.04 3614.50 –10.45 3672.62 –9.01 

100_CPCD_2_1 4278.91 4276.60 –0.05 4316.77 0.88 4190.00 –2.08 4092.40 –4.36 4114.89 –3.83 

100_RAND_3_1 4004.29 3899.90 –2.61 3861.05 –3.58 3938.97 –1.63 3455.99 –13.69 3428.00 –14.39 

100_CLUS_3_1 4102.87 4170.34 1.64 4081.65 –0.52 3951.76 –3.68 3659.60 –10.80 3632.85 –11.46 

100_CPCD_3_1 4203.64 4302.57 2.35 4215.58 0.28 4163.11 –0.96 4109.32 –2.24 4067.89 –3.23 

Average gap –0.65 –1.36 –0.82 –9.29 –9.06 
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Table 17 

Reloading quantities for 3L-PDP variants with reloading (complete results). 

Instance Cargo Variant 3 Variant 3 ∗ Variant 2 Variant 1A Variant 1B 

weight Reloading quantity Reloading quantity Reloading quantity Reloading quantity Reloading quantity 

Absolute In % Absolute In % Absolute In % Absolute In % Absolute In % 

50_RAND_2_1 610544 133685 21.90 122379 20.04 85412 13.99 500179 81.92 470990 77.14 

50_RAND_2_2 578322 123924 21.43 95667 16.54 97065 16.78 622609 107.66 576804 99.74 

50_RAND_2_3 530415 180784 34.08 133350 25.14 81630 15.39 646899 121.96 574922 108.39 

50_RAND_2_4 652932 160642 24.60 148859 22.80 76558 11.73 556353 85.21 513315 78.62 

50_RAND_2_5 698040 97711 14.00 92329 13.23 73014 10.46 513017 73.49 481755 69.02 

50_CLUS_2_1 610544 112096 18.36 139152 22.79 78077 12.79 506119 82.90 408620 66.93 

50_CLUS_2_2 578322 139556 24.13 119392 20.64 239085 41.34 564390 97.59 497730 86.06 

50_CLUS_2_3 530415 173395 32.69 156094 29.43 143525 27.06 613740 115.71 507452 95.67 

50_CLUS_2_4 652932 153970 23.58 143029 21.91 116558 17.85 618327 94.70 482252 73.86 

50_CLUS_2_5 698040 102501 14.68 92950 13.32 43730 6.26 408389 58.51 423140 60.62 

50_CPCD_2_1 610544 177268 29.03 128684 21.08 17316 2.84 478348 78.35 372562 61.02 

50_CPCD_2_2 578322 199029 34.41 180104 31.14 70191 12.14 524608 90.71 480088 83.01 

50_CPCD_2_3 530415 125010 23.57 126768 23.90 55186 10.40 467953 88.22 389934 73.51 

50_CPCD_2_4 652932 139720 21.40 135239 20.71 49700 7.61 429194 65.73 305194 46.74 

50_CPCD_2_5 698040 147936 21.19 122624 17.57 18843 2.70 416731 59.70 418570 59.96 

50_RAND_3_1 611295 110497 18.08 125101 20.46 137928 22.56 446495 73.04 4 4 4027 72.64 

50_RAND_3_2 579037 144910 25.03 165743 28.62 137595 23.76 610555 105.44 526875 90.99 

50_RAND_3_3 531236 211480 39.81 190871 35.93 87735 16.52 652890 122.90 595919 112.18 

50_RAND_3_4 654049 204656 31.29 145960 22.32 19406 2.97 577585 88.31 520292 79.55 

50_RAND_3_5 699080 166566 23.83 141173 20.19 43075 6.16 489669 70.04 474815 67.92 

50_CLUS_3_1 611295 121869 19.94 137068 22.42 102956 16.84 539522 88.26 454680 74.38 

50_CLUS_3_2 579037 177949 30.73 203260 35.10 75624 13.06 496139 85.68 456317 78.81 

50_CLUS_3_3 531236 188946 35.57 188059 35.40 65475 12.33 565916 106.53 524334 98.70 

50_CLUS_3_4 654049 112613 17.22 79288 12.12 69706 10.66 585684 89.55 544368 83.23 

50_CLUS_3_5 699080 108955 15.59 100832 14.42 69475 9.94 507394 72.58 454337 64.99 

50_CPCD_3_1 611295 153613 25.13 154136 25.21 54556 8.92 505532 82.70 409733 67.03 

50_CPCD_3_2 579037 198067 34.21 216721 37.43 35240 6.09 632220 109.18 481042 83.08 

50_CPCD_3_3 531236 142718 26.87 140646 26.48 64596 12.16 477960 89.97 346648 65.25 

50_CPCD_3_4 654049 135683 20.75 141923 21.70 28559 4.37 425120 65.00 365988 55.96 

50_CPCD_3_5 699080 152797 21.86 117240 16.77 35722 5.11 427656 61.17 402089 57.52 

75_RAND_2_1 772435 210751 27.28 178496 23.11 118318 15.32 821395 106.34 780404 101.03 

75_RAND_2_2 780361 203558 26.09 164115 21.03 140567 18.01 858513 110.01 714640 91.58 

75_RAND_2_3 808203 223183 27.61 233986 28.95 95318 11.79 867287 107.31 801126 99.12 

75_CLUS_2_1 772435 175378 22.70 158096 20.47 146760 19.00 960092 124.29 744532 96.39 

75_CLUS_2_2 780361 192213 24.63 181559 23.27 127157 16.29 811136 103.94 645325 82.70 

75_CLUS_2_3 808203 216559 26.80 182690 22.60 121210 15.00 987165 122.14 799485 98.92 

75_CPCD_2_1 772435 198279 25.67 193313 25.03 68253 8.84 767161 99.32 631867 81.80 

75_CPCD_2_2 780361 158445 20.30 177454 22.74 77988 9.99 701347 89.87 647925 83.03 

75_CPCD_2_3 808203 174004 21.53 180719 22.36 59467 7.36 783842 96.99 700438 86.67 

75_RAND_3_1 774140 176473 22.80 164639 21.27 112401 14.52 878017 113.42 753141 97.29 

75_RAND_3_2 782381 259844 33.21 234453 29.97 128953 16.48 903349 115.46 824284 105.36 

75_RAND_3_3 810106 254426 31.41 235819 29.11 99310 12.26 915247 112.98 809916 99.98 

75_CLUS_3_1 774140 169253 21.86 174188 22.50 127175 16.43 909365 117.47 768385 99.26 

75_CLUS_3_2 782381 209017 26.72 203689 26.03 136007 17.38 840036 107.37 766205 97.93 

75_CLUS_3_3 810106 205313 25.34 237972 29.38 66059 8.15 1,006,955 124.30 871181 107.54 

75_CPCD_3_1 774140 24 84 91 32.10 227597 29.40 87368 11.29 839908 108.50 690581 89.21 

75_CPCD_3_2 782381 267363 34.17 265708 33.96 103766 13.26 788126 100.73 657075 83.98 

75_CPCD_3_3 810106 257667 31.81 207073 25.56 41894 5.17 781260 96.44 639111 78.89 

100_RAND_2_1 1,072,407 332020 30.96 277317 25.86 122109 11.39 1,275,821 118.97 1,169,467 109.05 

100_CLUS_2_1 1,072,407 266633 24.86 277927 25.92 216976 20.23 1,285,608 119.88 1,099,816 102.56 

100_CPCD_2_1 1,072,407 285790 26.65 187515 17.49 199586 18.61 1,199,016 111.81 899469 83.87 

100_RAND_3_1 1,074,809 364044 33.87 405311 37.71 102135 9.50 1,313,254 122.18 1,074,617 99.98 

100_CLUS_3_1 1,074,809 334929 31.16 290559 27.03 189203 17.60 1,301,508 121.09 1,073,135 99.84 

100_CPCD_3_1 1,074,809 298355 27.76 190291 17.70 156586 14.57 955683 88.92 866282 80.60 

Average 25.97 24.13 13.13 97.27 84.24 
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Table 18 

Categories of reloading effort for 3L-PDP variants 1A, 1B and 2 (complete results). 

Instance Variant 2 Variant 1A Variant 1B 

Reloading quantity in % Reloading quantity in % Reloading quantity in % 

Total Repos Rotate Total Block Repos Rotate Total Block Repos Rotate 

50_RAND_2_1 13.99 12.52 1.47 81.92 56.61 23.81 1.51 77.14 48.78 25.13 3.23 

50_RAND_2_2 16.78 16.55 0.24 107.66 67.27 38.56 1.83 99.74 59.93 38.35 1.46 

50_RAND_2_3 15.39 13.50 1.89 121.96 76.67 44.60 0.70 108.39 69.30 38.28 0.81 

50_RAND_2_4 11.73 9.17 2.56 85.21 61.42 22.25 1.53 78.62 48.67 28.49 1.46 

50_RAND_2_5 10.46 8.19 2.27 73.49 47.06 24.54 1.90 69.02 43.67 23.41 1.94 

50_CLUS_2_1 12.79 12.79 0.00 82.90 50.20 30.93 1.77 66.93 42.55 22.95 1.43 

50_CLUS_2_2 41.34 40.40 0.94 97.59 71.65 24.61 1.33 86.06 54.49 30.44 1.13 

50_CLUS_2_3 27.06 22.75 4.31 115.71 76.67 38.60 0.44 95.67 51.30 40.39 3.98 

50_CLUS_2_4 17.85 14.22 3.63 94.70 69.98 24.04 0.68 73.86 45.98 26.70 1.18 

50_CLUS_2_5 6.26 4.73 1.53 58.51 37.49 20.33 0.68 60.62 36.59 22.08 1.95 

50_CPCD_2_1 2.84 2.47 0.36 78.35 51.19 26.24 0.92 61.02 41.79 18.44 0.79 

50_CPCD_2_2 12.14 11.36 0.78 90.71 60.81 28.23 1.68 83.01 52.34 29.45 1.22 

50_CPCD_2_3 10.40 8.25 2.15 88.22 56.39 31.03 0.80 73.51 42.33 29.56 1.63 

50_CPCD_2_4 7.61 4.77 2.84 65.73 47.32 17.46 0.95 46.74 25.62 19.80 1.33 

50_CPCD_2_5 2.70 2.46 0.24 59.70 37.58 21.71 0.41 59.96 36.88 22.17 0.92 

50_RAND_3_1 22.56 19.09 3.47 73.04 49.05 22.10 1.89 72.64 44.17 26.09 2.38 

50_RAND_3_2 23.76 22.86 0.90 105.44 76.21 28.67 0.56 90.99 66.64 23.75 0.59 

50_RAND_3_3 16.52 15.95 0.56 122.90 100.59 21.13 1.18 112.18 74.96 35.58 1.64 

50_RAND_3_4 2.97 2.97 0.00 88.31 62.97 24.80 0.55 79.55 58.28 21.07 0.20 

50_RAND_3_5 6.16 5.26 0.90 70.04 46.70 23.22 0.12 67.92 51.35 16.31 0.26 

50_CLUS_3_1 16.84 16.60 0.24 88.26 58.70 27.84 1.72 74.38 49.70 22.56 2.12 

50_CLUS_3_2 13.06 11.27 1.79 85.68 67.76 17.00 0.92 78.81 58.52 19.29 1.00 

50_CLUS_3_3 12.33 12.33 0.00 106.53 78.68 26.13 1.73 98.70 65.52 30.67 2.51 

50_CLUS_3_4 10.66 10.01 0.65 89.55 59.03 28.81 1.70 83.23 50.94 31.81 0.49 

50_CLUS_3_5 9.94 9.38 0.56 72.58 49.24 22.00 1.35 64.99 41.92 19.07 4.00 

50_CPCD_3_1 8.92 7.72 1.20 82.70 60.81 19.66 2.22 67.03 46.97 18.09 1.97 

50_CPCD_3_2 6.09 5.96 0.13 109.18 78.23 30.19 0.77 83.08 55.95 26.05 1.08 

50_CPCD_3_3 12.16 11.12 1.04 89.97 65.48 23.75 0.74 65.25 42.64 21.64 0.98 

50_CPCD_3_4 4.37 3.51 0.86 65.00 46.74 17.89 0.37 55.96 36.18 18.38 1.40 

50_CPCD_3_5 5.11 4.25 0.86 61.17 43.33 16.91 0.93 57.52 39.02 17.66 0.84 

75_RAND_2_1 15.32 14.64 0.68 106.34 78.21 26.38 1.75 101.03 63.99 34.52 2.51 

75_RAND_2_2 18.01 17.26 0.75 110.01 75.06 32.72 2.23 91.58 59.61 30.32 1.65 

75_RAND_2_3 11.79 10.97 0.83 107.31 72.60 32.82 1.89 99.12 62.15 35.15 1.83 

75_CLUS_2_1 19.00 15.87 3.13 124.29 79.66 41.21 3.43 96.39 58.04 35.83 2.51 

75_CLUS_2_2 16.29 15.55 0.75 103.94 70.91 30.99 2.05 82.70 57.45 23.25 2.00 

75_CLUS_2_3 15.00 12.03 2.97 122.14 82.79 38.24 1.12 98.92 64.14 32.84 1.94 

75_CPCD_2_1 8.84 7.05 1.79 99.32 66.95 30.16 2.20 81.80 48.41 29.29 4.10 

75_CPCD_2_2 9.99 9.24 0.76 89.87 59.62 26.24 4.02 83.03 46.22 32.63 4.18 

75_CPCD_2_3 7.36 5.69 1.67 96.99 64.32 29.64 3.03 86.67 47.02 37.20 2.45 

75_RAND_3_1 14.52 13.88 0.64 113.42 76.35 36.27 0.81 97.29 60.81 34.86 1.62 

75_RAND_3_2 16.48 12.48 4.00 115.46 91.61 22.20 1.66 105.36 78.67 24.23 2.46 

75_RAND_3_3 12.26 11.55 0.71 112.98 82.85 29.94 0.19 99.98 67.45 31.83 0.70 

75_CLUS_3_1 16.43 15.22 1.21 117.47 81.38 34.56 1.53 99.26 67.11 31.14 1.00 

75_CLUS_3_2 17.38 16.51 0.88 107.37 86.52 19.30 1.55 97.93 62.11 33.73 2.09 

75_CLUS_3_3 8.15 8.15 0.00 124.30 86.54 36.42 1.33 107.54 76.16 29.97 1.41 

75_CPCD_3_1 11.29 11.02 0.27 108.50 77.55 28.99 1.95 89.21 57.42 31.05 0.74 

75_CPCD_3_2 13.26 12.02 1.25 100.73 73.40 26.50 0.83 83.98 59.54 23.14 1.30 

75_CPCD_3_3 5.17 4.44 0.73 96.44 66.95 27.80 1.69 78.89 48.27 29.10 1.52 

100_RAND_2_1 11.39 10.20 1.18 118.97 79.52 37.93 1.52 109.05 65.93 40.03 3.09 

100_CLUS_2_1 20.23 18.22 2.01 119.88 83.64 33.86 2.38 102.56 63.87 36.21 2.48 

100_CPCD_2_1 18.61 16.29 2.32 111.81 68.25 41.20 2.36 83.87 46.67 35.19 2.02 

100_RAND_3_1 9.50 7.88 1.63 122.18 95.48 24.99 1.72 99.98 69.74 27.91 2.34 

100_CLUS_3_1 17.60 16.02 1.58 121.09 89.37 30.30 1.42 99.84 65.94 32.25 1.66 

100_CPCD_3_1 14.57 12.75 1.82 88.92 63.05 24.51 1.35 80.60 51.65 26.18 2.77 

Average 13.13 11.80 1.33 97.27 67.86 27.97 1.44 84.24 54.28 28.18 1.78 
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Table 19 

Maximal loaded volumes for different 3L-PDP variants (complete results). 

Instance Variant 5 Variant 4 ∗ Variant 3 ∗ Variant 2 Variant 1A Variant 1B 

Volume % Volume % Volume % Volume % Volume % Volume % 

50_RAND_2_1 26657 59.24 25143 55.87 26537 58.97 27440 60.98 30979 68.84 28860 64.13 

50_RAND_2_2 25996 57.77 26047 57.88 25244 56.10 27117 60.26 27118 60.26 29190 64.87 

50_RAND_2_3 24245 53.88 24272 53.94 25118 55.82 27058 60.13 28961 64.36 27810 61.80 

50_RAND_2_4 24929 55.40 21783 48.41 24808 55.13 23216 51.59 26649 59.22 26562 59.03 

50_RAND_2_5 27212 60.47 24735 54.97 26107 58.02 27513 61.14 29990 66.64 28864 64.14 

50_CLUS_2_1 31101 69.11 31855 70.79 30362 67.47 27527 61.17 27494 61.10 31142 69.20 

50_CLUS_2_2 25830 57.40 25274 56.16 24916 55.37 26054 57.90 27319 60.71 27714 61.59 

50_CLUS_2_3 25204 56.01 25204 56.01 27156 60.35 26874 59.72 28229 62.73 28952 64.34 

50_CLUS_2_4 26350 58.56 25761 57.25 24824 55.16 25677 57.06 27458 61.02 27996 62.21 

50_CLUS_2_5 28805 64.01 28805 64.01 29381 65.29 29718 66.04 29898 66.44 29747 66.11 

50_CPCD_2_1 29543 65.65 28965 64.37 29637 65.86 29941 66.54 31724 70.50 30457 67.68 

50_CPCD_2_2 29182 64.85 29182 64.85 29155 64.79 29294 65.10 29826 66.28 30485 67.74 

50_CPCD_2_3 27536 61.19 27705 61.57 27759 61.69 27818 61.82 29876 66.39 29758 66.13 

50_CPCD_2_4 27247 60.55 28820 64.04 25733 57.18 28879 64.18 28977 64.39 28892 64.20 

50_CPCD_2_5 30730 68.29 30286 67.30 30088 66.86 29944 66.54 30516 67.81 30812 68.47 

50_RAND_3_1 28707 63.79 26603 59.12 27357 60.79 27308 60.68 28137 62.53 28681 63.74 

50_RAND_3_2 25991 57.76 25307 56.24 25886 57.52 27979 62.18 30287 67.30 29718 66.04 

50_RAND_3_3 25621 56.94 26299 58.44 25602 56.89 27236 60.52 29162 64.80 29038 64.53 

50_RAND_3_4 24914 55.36 24834 55.19 24936 55.41 25021 55.60 25036 55.64 25025 55.61 

50_RAND_3_5 28150 62.56 26564 59.03 26371 58.60 27916 62.04 26847 59.66 27329 60.73 

50_CLUS_3_1 28234 62.74 26779 59.51 28033 62.30 28250 62.78 28744 63.88 28779 63.95 

50_CLUS_3_2 24172 53.71 25220 56.05 25311 56.25 27102 60.23 28549 63.44 27350 60.78 

50_CLUS_3_3 24338 54.09 24212 53.80 24224 53.83 24435 54.30 28334 62.96 27083 60.18 

50_CLUS_3_4 24806 55.12 24806 55.12 25638 56.97 24907 55.35 25755 57.23 26494 58.88 

50_CLUS_3_5 29504 65.56 29983 66.63 29744 66.10 32116 71.37 30600 68.00 30724 68.28 

50_CPCD_3_1 30281 67.29 28850 64.11 29471 65.49 30298 67.33 29739 66.09 29760 66.13 

50_CPCD_3_2 29225 64.94 28629 63.62 28611 63.58 28731 63.85 28568 63.49 28087 62.42 

50_CPCD_3_3 27817 61.82 27775 61.72 27570 61.27 27819 61.82 27885 61.97 28419 63.15 

50_CPCD_3_4 27306 60.68 30656 68.12 27387 60.86 28970 64.38 28963 64.36 29123 64.72 

50_CPCD_3_5 29866 66.37 30110 66.91 29897 66.44 29841 66.31 30482 67.74 31168 69.26 

75_RAND_2_1 27740 61.64 27747 61.66 28414 63.14 28299 62.89 29816 66.26 29114 64.70 

75_RAND_2_2 28035 62.30 26620 59.16 25825 57.39 28021 62.27 28432 63.18 27961 62.14 

75_RAND_2_3 27506 61.13 27143 60.32 27683 61.52 28909 64.24 28767 63.93 29957 66.57 

75_CLUS_2_1 27832 61.85 28361 63.02 27739 61.64 27185 60.41 29826 66.28 30479 67.73 

75_CLUS_2_2 30952 68.78 29739 66.09 28528 63.40 31016 68.93 30480 67.73 29832 66.29 

75_CLUS_2_3 27964 62.14 26548 59.00 28459 63.24 27940 62.09 30566 67.92 28553 63.45 

75_CPCD_2_1 27761 61.69 28870 64.15 28334 62.96 29098 64.66 30358 67.46 30421 67.60 

75_CPCD_2_2 30151 67.00 28003 62.23 29405 65.34 29609 65.80 29838 66.31 28624 63.61 

75_CPCD_2_3 29870 66.38 28730 63.84 28669 63.71 29292 65.09 28695 63.77 30507 67.79 

75_RAND_3_1 25700 57.11 25602 56.89 23763 52.81 26309 58.46 28456 63.24 27840 61.87 

75_RAND_3_2 27759 61.69 25739 57.20 25062 55.69 27829 61.84 29197 64.88 28545 63.43 

75_RAND_3_3 28552 63.45 27761 61.69 26381 58.62 27655 61.46 27948 62.11 27154 60.34 

75_CLUS_3_1 27882 61.96 27882 61.96 26488 58.86 27811 61.80 27813 61.81 27790 61.75 

75_CLUS_3_2 27211 60.47 27154 60.34 26047 57.88 28176 62.61 28132 62.52 28729 63.84 

75_CLUS_3_3 24573 54.61 25230 56.07 26327 58.50 26528 58.95 28104 62.45 27850 61.89 

75_CPCD_3_1 27843 61.87 27170 60.38 28430 63.18 27748 61.66 27897 61.99 30408 67.57 

75_CPCD_3_2 28240 62.76 28032 62.29 27836 61.86 28115 62.48 30456 67.68 29180 64.84 

75_CPCD_3_3 28504 63.34 27917 62.04 27856 61.90 29317 65.15 29333 65.19 29919 66.49 

100_RAND_2_1 27759 61.69 27996 62.21 27160 60.36 28997 64.44 29828 66.28 28472 63.27 

100_CLUS_2_1 31157 69.24 27745 61.66 27712 61.58 29865 66.37 29864 66.36 31206 69.35 

100_CPCD_2_1 31101 69.11 30356 67.46 29602 65.78 30307 67.35 29741 66.09 30309 67.35 

100_RAND_3_1 29233 64.96 26428 58.73 25816 57.37 27798 61.77 29635 65.86 28920 64.27 

100_CLUS_3_1 28683 63.74 27729 61.62 27704 61.56 29229 64.95 28589 63.53 28722 63.83 

100_CPCD_3_1 29084 64.63 27713 61.58 28987 64.42 28581 63.51 29187 64.86 28554 63.45 

Average 61.75 60.60 60.54 62.37 64.32 64.32 
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Table 20 

Total iteration numbers and computing times to find the best solution (complete results). 

Instance CPU Variant 5 Variant 4 ∗ Variant 3 ∗ Variant 2 Variant 1A Variant 1B 

seconds Total Runtime to Total Runtime to Total Runtime to Total Runtime to Total Runtime to Total Runtime to 

iterations best in % iterations best in % iterations best in % iterations best in % iterations best in % iterations best in % 

50_RAND_2_1 300 202391 44.75 52109 75.65 53446 68.25 123489 31.77 15554 53.23 14225 56.41 

50_RAND_2_2 300 126885 73.05 24110 70.60 28957 75.90 64462 48.26 8119 78.61 5024 71.14 

50_RAND_2_3 300 151494 44.81 43847 71.12 35691 70.79 78827 38.25 6666 76.96 6031 65.65 

50_RAND_2_4 300 151792 46.45 28498 87.66 27930 69.77 85268 36.81 11596 68.26 6421 66.24 

50_RAND_2_5 300 266752 36.15 98324 63.82 92455 61.27 143485 40.17 31876 72.02 25170 46.90 

50_CLUS_2_1 300 250170 22.13 84277 62.89 89275 72.73 123943 20.30 9136 75.24 10449 81.29 

50_CLUS_2_2 300 123490 27.96 12600 77.37 11138 95.50 48471 48.45 4882 71.57 3523 74.28 

50_CLUS_2_3 300 207934 33.51 59885 80.81 46344 79.08 71768 55.26 4983 70.58 3500 75.67 

50_CLUS_2_4 300 197856 45.04 34758 72.25 30585 80.63 90610 53.22 9724 75.74 4656 74.40 

50_CLUS_2_5 300 298884 41.24 104983 56.65 109427 86.22 167905 69.80 39465 52.57 27857 75.29 

50_CPCD_2_1 300 61742 57.03 6131 70.50 6142 73.87 28720 62.44 2773 68.29 2369 78.53 

50_CPCD_2_2 300 105669 59.22 7536 68.71 7174 77.84 30180 62.42 2583 70.55 1830 74.42 

50_CPCD_2_3 300 52951 50.24 4947 81.76 4597 80.45 18384 83.53 2825 73.30 2093 83.21 

50_CPCD_2_4 300 90880 72.48 6484 79.17 5881 70.91 24082 81.92 1995 66.31 1587 76.11 

50_CPCD_2_5 300 139220 59.65 17216 82.07 19777 71.54 54964 56.90 5939 74.33 4510 71.15 

50_RAND_3_1 600 159771 40.97 13600 85.53 10091 81.91 133464 41.25 8048 79.55 7013 77.30 

50_RAND_3_2 600 23056 66.45 2797 84.44 2650 89.89 16463 57.62 2203 69.89 881 81.79 

50_RAND_3_3 600 68423 39.91 4004 77.04 4246 82.97 45665 63.82 2693 79.31 1195 86.26 

50_RAND_3_4 600 153389 51.81 13223 70.15 11453 76.97 120345 45.17 6169 84.98 3739 86.58 

50_RAND_3_5 600 240527 55.98 26550 66.96 23683 67.57 135927 47.01 14020 65.57 9667 70.74 

50_CLUS_3_1 600 284412 43.66 12799 78.76 13476 74.84 155701 48.24 4201 93.61 2497 77.34 

50_CLUS_3_2 600 109358 61.55 5776 95.72 5226 85.41 94300 38.68 3605 87.01 2028 71.60 

50_CLUS_3_3 600 149572 62.92 5933 78.80 5531 78.52 74043 64.12 1995 71.33 1253 88.86 

50_CLUS_3_4 600 222735 41.73 10459 75.76 12813 73.40 114954 55.34 4159 82.40 2448 79.38 

50_CLUS_3_5 600 304166 39.87 14655 87.35 14891 88.94 162529 47.02 5774 89.49 3896 84.26 

50_CPCD_3_1 600 3152 75.62 903 78.60 881 80.87 1682 78.50 433 84.91 469 68.18 

50_CPCD_3_2 600 16177 92.32 1566 83.90 1392 81.95 3570 83.64 670 82.25 530 82.71 

50_CPCD_3_3 600 3170 88.26 1049 67.66 1044 85.99 2768 82.30 590 81.50 485 80.42 

50_CPCD_3_4 600 23513 81.84 2658 72.14 2212 84.32 7241 81.94 1085 78.86 806 82.40 

50_CPCD_3_5 600 17023 91.22 1874 70.52 1794 80.95 7328 76.43 1185 75.80 1158 84.47 

75_RAND_2_1 600 126043 50.61 19399 70.19 21540 85.59 74259 42.34 4569 78.96 2847 84.95 

75_RAND_2_2 600 168726 38.76 33108 73.86 35404 78.89 58942 59.62 5193 73.93 3664 78.36 

75_RAND_2_3 600 102339 52.30 12970 73.52 17108 84.82 46773 51.00 4421 85.48 3246 81.24 

75_CLUS_2_1 600 14 806 8 46.16 25110 79.34 24030 84.63 42455 59.72 4318 68.90 3137 79.00 

75_CLUS_2_2 600 147484 63.69 23055 96.38 22889 86.42 56445 65.65 4031 85.56 2830 80.95 

75_CLUS_2_3 600 119737 54.67 11814 80.32 11356 86.58 34528 71.45 2739 91.10 2210 80.13 

75_CPCD_2_1 600 47698 67.64 5059 76.33 5135 87.55 18329 85.88 2535 83.63 2300 79.64 

75_CPCD_2_2 600 91039 69.01 11891 86.88 12574 77.22 34917 72.71 3933 78.55 3046 76.08 

75_CPCD_2_3 600 51801 67.58 9155 82.54 8504 87.48 19852 91.18 2567 85.83 2312 74.30 

75_RAND_3_1 1200 56230 68.12 4686 74.48 4547 84.53 50860 68.22 1770 87.28 2065 86.67 

75_RAND_3_2 1200 4 974 9 71.03 4120 82.27 4574 78.57 27311 68.83 1421 84.30 1346 69.11 

75_RAND_3_3 1200 27153 82.58 3407 78.00 3118 83.11 19221 69.48 1766 82.81 1709 81.44 

75_CLUS_3_1 1200 92624 69.25 4024 77.53 3664 70.65 21573 84.34 1432 91.35 1218 84.83 

75_CLUS_3_2 1200 31360 78.80 2896 78.91 2456 92.96 7372 81.52 1332 92.19 1120 92.42 

75_CLUS_3_3 1200 84338 72.83 3516 72.22 2928 74.13 10081 67.74 1398 83.90 1196 88.98 

75_CPCD_3_1 1200 6595 85.01 1969 66.04 1904 82.92 4438 84.89 957 82.57 953 89.37 

75_CPCD_3_2 1200 10766 91.74 1961 62.66 1798 84.88 4247 78.21 891 81.30 871 76.63 

75_CPCD_3_3 1200 26569 82.51 3959 76.59 3791 79.14 11814 89.98 1253 83.71 1217 71.03 

100_RAND_2_1 1200 81845 60.78 9222 86.11 9639 85.23 37656 74.47 3271 77.07 3018 86.51 

100_CLUS_2_1 1200 94320 71.72 14982 83.06 14242 78.51 49142 62.38 2804 79.36 2112 73.07 

100_CPCD_2_1 1200 6599 84.08 2205 81.17 2154 68.84 4138 80.63 1369 77.42 1133 69.73 

100_RAND_3_1 2400 28326 89.91 3382 83.47 3262 76.17 11727 89.93 1459 85.00 1392 88.66 

100_CLUS_3_1 2400 32224 86.26 3247 77.53 3136 89.88 10669 86.85 1234 70.12 1012 76.92 

100_CPCD_3_1 2400 3430 89.43 1450 72.91 1379 79.19 2636 82.81 753 84.58 719 88.66 

Average 61.89 76.79 79.95 64.27 78.31 77.99 
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Abstract 

We extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and two-dimensional 

loading problem, called PDP with two-dimensional loading constraints (2L-PDP).  A set of routes of minimum 

total length has to be determined such that each request is transported from a loading site to the corresponding 

unloading site. Each request consists of a given set of 2D rectangular items with a certain weight. The vehicles 

have a weight capacity and a rectangular two-dimensional loading area. All loading and unloading operations 

must be done exclusively by movements parallel to the longitudinal axis of the loading area of a vehicle and 

without moving items of other requests. Furthermore, each item must not be moved after loading and before 

unloading. 

The problem is of interest for the transport of rectangular-shaped items that cannot be stacked one on top of 

the other because of their weight, fragility or large dimensions. The 2L-PDP also generalizes the well-known 

Capacitated Vehicle Routing Problem with Two-dimensional Loading Constraints (2L-CVRP), in which the 

demand of each customer is to be transported from the depot to the customer’s unloading site. 

This paper proposes two hybrid algorithms for solving the 2L-PDP and each one consists of a routing and a 

packing procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood 

search for the one-dimensional PDP and the packing procedure uses six different constructive heuristics for 

packing the items. Computational experiments were carried out using 60 newly proposed 2L-PDP benchmark 

instances with up to 150 requests.  

 

Key words: Transportation, vehicle routing, packing, pickup and delivery. 

1 Introduction 

Vehicle routing problems widely arise in transportation logistics if companies are interested in op-

timizing their routes. Therefore problems like the classical capacitated vehicle routing problem 

(CVRP) and the classical pickup and delivery problem (PDP) have been investigated in the literature 

for many years. However the classical modeling does not consider constraints occurring in real world 

settings regarding the feasibility of the loading. To ensure that calculated routes can actually be im-

plemented, a two-dimensional (2D) or three-dimensional (3D) modeling of cargo and loading spaces is 

indispensable in many situations. Therefore in the last ten years a good deal of research has been done 

on integrated routing problems with 2D or 3D loading constraints. Several packing constraints, e.g. 

concerning stacking of goods, can only be considered if customer demands are viewed as sets of 3D 

items. At the same time, often any reloading effort should be avoided that is any temporary or perma-

nent repositioning or rotation of items after loading and before unloading. There are different practical 
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reasons to forbid reloading of goods during a pickup and delivery route. Absence of manpower, tight 

working time, lack of equipment and shortage of space at customer sites are some of them. Moreover, 

the goods might be fragile, extra heavy or even hazardous. A 2D modeling instead of a 3D modeling is 

sufficient if the goods to be transported can be considered as rectangular items that cannot be stacked 

due to their weight, dimensions or fragility. Such issues arise in industries where large-sized items 

have to be transported, e.g. furniture, mechanical components and household appliances.  

In the following, we consider the pickup and delivery problem with two-dimensional loading con-

straints (2L-PDP). As in the classical PDP, a number of requests have to be transported from a pickup 

point to a delivery point by means of homogeneous vehicles. However, in the 2L-PDP the demands 

consist of sets of 2D items to be placed on 2D loading areas of the vehicles. All vehicles are assumed 

as rear-loaded, i.e. the goods are loaded and unloaded at the rear exclusively by movements in length 

direction of the vehicle, while moving them in width direction is not permitted in the loading or un-

loading operation. Moreover, we assume that any reloading of items after loading and before unload-

ing is not allowed. 

Two hybrid algorithms for solving the 2L-PDP are proposed that consist of a routing and a packing 

procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood 

search for the one-dimensional PDP and the packing procedure uses six different constructive  

heuristics for packing the items. Computational experiments are carried out using 60 newly proposed 

2L-PDP benchmark instances with up to 150 requests. 

The rest of the paper is organized as follows: In Section 2, the relevant literature is reviewed, and 

the problem is formulated in Section 3. Two solution approaches are described in Section 4.  

Computational experiments are reported in Section 5. Conclusions are drawn and an outlook to further 

research is given in Section 6. 

2 Related work 

Up to now the 2L-PDP was only considered by Malapert et al. (2008). They proposed a constraint 

programming approach for the loading aspects of the problem but did not report any numerical results. 

Therefore, we will focus on recent papers on the classical PDP with paired pickup and delivery points 

and on VRPs with 2D and 3D loading constraints. We refer the reader to Toth and Vigo (2014) for a 

comprehensive survey on vehicle routing. Although this paper only covers two-dimensional loading 

constraints, we want to consider papers on vehicle routing problems with 3D loading constraints in the 

literature review, too. Recent surveys of integrated vehicle routing problems with 2D and 3D loading 

constraints were published by Iori and Martello (2010, 2013) and Pollaris et al. (2015). 

Following the classification schema by Parragh et al. (2008), the classical PDP is characterized by 

paired pickup and delivery points, i.e. each request is associated with a special pickup and a special 

delivery point. Moreover, the PDP deals with the transportation of goods and persons. In case of pas-

senger transportation, there are often special constraints and objectives concerning the inconvenience 



3 

 

of passengers. This problem category is known as dial-a-ride problems. A further distinction can be 

made with regard to the number of available vehicles. We will consider only the multi-vehicle case, 

while the single-vehicle case, representing an immediate extension of the Traveling Salesman Problem 

(TSP), is not considered here. Furthermore, several papers deal with PDPs with multiple depots or  

a heterogeneous fleet where a certain request can only be served with a subset of the available vehicles 

(see below). 

The problem formulation for the classical PDP and the PDP with time windows (PDPTW) can be 

found, e.g. in Parragh et al. (2008) and in Toth and Vigo (2014). Most of the published solution  

methods are surveyed by Berbeglia et al. (2007) and Parragh et al. (2008). As the PDP generalizes the 

TSP it is NP-hard. Thus most papers have proposed heuristics and especially metaheuristics for solv-

ing the PDP. For an introduction in metaheuristic approaches, we refer the reader to Gendreau and  

Potvin (2010).  

The classical PDP with time windows and multiple vehicles was first solved by Nanry and Barnes 

(2000) with a reactive tabu search approach. Mostly the minimization of the number of needed vehi-

cles is used as first optimization criterion while the minimization of the total travel distance is the sec-

ond criterion. A tabu embedded simulated annealing approach has been developed by Li and Lim 

(2001). These authors also have introduced the widely used Li-and-Lim set of benchmark instances for 

the PDPTW. Pankratz (2005) proposed a grouping genetic algorithm for the PDP while Lu and Des-

souky (2006) have developed an ingenious construction heuristic. Ropke and Pisinger (2006) present-

ed an adaptive large neighborhood search algorithm for the PDPTW which covers also multiple depots 

and heterogeneous fleets. A two-stage hybrid algorithm was presented by Bent and van Hentenryck 

(2006). The first phase uses simulated annealing to decrease the number of vehicles needed. The sec-

ond phase consists of a large neighborhood search algorithm in order to reduce total travel cost.  

Nagata and Kobayashi (2010) introduced a very effective guided ejection search algorithm to reduce 

the number of vehicles needed. The minimization of the total travel distance was not considered in 

their approach. Outstanding results, especially for larger instances, were achieved through the neigh-

borhood search methods by Bent and van Hentenryck (2006), by Ropke and Pisinger (2006) and by 

Nagata and Kobayashi (2010). 

In the capacitated vehicle routing problem with 2D loading constraints (2L-CVRP) the requests 

consist of 2D rectangular items to be transported. The vehicles have a rectangular loading area where 

the items must be placed without overlapping. Furthermore, some additional constraints like LIFO 

constraint (Last In, First Out) and orientation constraint (see Section 3) are to be taken into account. 

Several metaheuristic methods for solving the 2L-CVRP were published, e.g. by Gendreau et al. 

(2008), Fuellerer et al. (2009), Zachariadis et al. (2009), Duhamel et al. (2011) and Wei et al. (2015). 

Iori et al. (2007) proposed an exact solution approach for the 2L-CVRP. Extensions of the 2L-CVRP 

were also considered in the literature, e.g. the 2L-VRP with time windows (Khebbache-Hadji et al., 

2013), the 2L-VRP with heterogeneous fleet (Leung et al., 2013), the 2L-VRP with backhauls 
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(Dominguez et al., 2016) and the 2L-VRP with simultaneous pickup and delivery (Zachariadis et al., 

2016). 

In vehicle routing problems with three dimensional loading constraints, the items are stackable 3D 

rectangular boxes which must be placed inside the 3D loading space of a vehicle. Additional con-

straints are to observe in the 3D case, e.g. the stacking constraint (non-fragile boxes must not be 

placed above fragile boxes) and the support constraint (at least a given percentage of the base area of a 

box must be supported by other boxes if the box is not placed on the floor of a loading space). The  

3L-CVRP was introduced and first solved by Gendreau et al. (2006). Further papers on 3L-CVRP 

were published, for example, by Tarantilis et al. (2009), Fuellerer et al. (2010), Wang et al. (2010), 

Wisniewski et al. (2011), Bortfeldt (2012), Zhu et al. (2012), Ruan et al. (2013), Wei et al. (2014), 

Zhang et al. (2015) and Tao and Wang (2015). Moura and Oliveira (2009) have first introduced and 

solved the VRP with time windows and 3D loading constraints (3L-VRPTW). A hybrid algorithm for 

solving the 3L-VRPTW was published by Bortfeldt and Homberger (2013). Zachariadis et al. (2012) 

consider a 3L-VRP with time windows where boxes are stacked on pallets, which in turn are loaded in 

vehicles. The 3L-VRP with backhauls was introduced by Bortfeldt et al. (2015). The problem was 

solved with an algorithm including a neighbourhood search algorithm for routing and a tree search 

algorithm for packing boxes. The 3L-VRP with pickup and delivery was solved with a similar algo-

rithm by Männel and Bortfeldt (2016, 2017). The 3L-VRP with pickup and deliveries was already 

considered by Bartók and Imreh (2011) in a simpler fashion. These authors neglected the LIFO con-

straint and did not provide any numerical results. 

3 Problem definition 

Now the 2L-PDP is described more formally. There are given n requests each consisting of a 

pickup point i, a delivery point n+i and a set Ii of goods that are to be transported from i to n+i (i = 

1,…,n). There are vmax identical vehicles, originally located at the single depot (denoted by 0), with a 

rectangular loading area with length L and width W and maximum weight capacity D. Let V = 

{0,1,…,n,n+1,…,2n} be the set of all nodes, i.e. pickup and delivery points including the depot. Let E 

be a set of undirected edges (i,j) that connect all node pairs (0 ≤ i, j ≤ 2n, i ≠ j) and let G = (V, E) be 

the resulting graph. Let travel costs cij (cij ≥ 0) be assigned to each edge (i,j) and let the travel costs be 

symmetric, i.e. cij = cji (0 ≤ i, j ≤ 2n, i ≠ j). The sets Ii include mi rectangular items Iik and item Iik has 

the length lik and the width wik (i = 1,…,n, k = 1,…,mi). m is the sum  ∑mi (i = 1,…,n) and denotes the 

total number of items. 

The loading area of each vehicle is embedded in the first quadrant of a Cartesian coordinate sys-

tem in such a way that the length and width of the loading area lie parallel to the x and y axis, respec-

tively. The placement of item Iik in a loading area is given by the coordinates xik and yik of the corner of 

the item closest to the origin of the coordinate system; in addition, a binary variable oik indicates which 

of the possible orientations of item Iik is selected (i = 1,...,n, k = 1,...,mi). oik=0 means that the item is 
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placed with its length parallel to the x-axis, while oik=1 indicates that the item is rotated by 90° and its 

length is parallel to the y-axis. 

A packing plan P for a loading area comprises one or more placements and is regarded as feasible 

if the following conditions hold: 

(FP1) each placed item lies completely within the loading area, 

(FP2) any two items that are placed on the same truck loading area do not overlap, 

(FP3) each placed items lies with its edges parallel to the edges of the loading area. 

Figure 1 shows a loading area with placed items. Each vehicle is loaded and unloaded at the rear and 

empty at the beginning of a route. 

A feasible route R is a sequence of 2p+2 nodes (p ≥ 1) that starts and ends at the depot. R should 

include the pickup and delivery points of p different (among the n given) requests and each pickup 

point must precede the delivery point of the same request. A solution of the 2L-PDP is a set of v  

sequences (Rl, Pl,1,…,Pl,2pl
), where Rl is a route and Pl,q is a packing plan (l = 1,…,v, q = 1,…,2pl, pl 

denotes the number of requests of route l). Pl,q represents the packing plan of route l after having visit-

ed its (q+1)th node, i.e. after some items were loaded or unloaded at the (q+1)th node of route l. 
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     Figure 1: A loading area with placed items. 

 

To be feasible, a solution must fulfill the following six conditions:  

(F1) each route Rl starts and ends at the depot and contains at least one pickup and one delivery point 

(l = 1,…,v),  

(F2) each pickup point and each delivery point must occur exactly once in exactly one route,  

(F3) the pickup point and the delivery point of each request lie in the same route,  

(F4) each the pickup point occurs in its route before the corresponding delivery point,  
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(F5) all packing plans Pl,q are feasible (l = 1,…,v, q = 1,…,2pl), i.e. fulfill conditions (FP1) – (FP3), 

(F6) the packing plan Pl,q for a route Rl and its (q+1)th node contains exactly the placements for those 

items which are to be loaded but not (yet) to be unloaded at the first q+1 nodes of the route. 

In addition, the following routing and packing constraints are to be satisfied: 

(C1) LIFO constraint for pickup points: A packed item i of a certain request is said to be in unloading 

position if there is no packed item i’ of another request placed between i and the rear of the vehi-

cle. If the (q+1)th node of route l is a pickup point, then all items to be loaded there must be in 

unloading position in the packing plan Pl,q, i.e. after loading (l = 1,…,v, q = 1,…,2pl).  

(C2) LIFO constraint for delivery points: If the (q+1)th node is a delivery point, then all items to be 

unloaded there must be in unloading position in the packing plan Pl,q-1, i.e. before unloading (l = 

1,…,v, q = 1,…,2pl). Both LIFO constraints ensure that all items of a given request can be loaded 

or unloaded exclusively by movements parallel to the longitudinal axis of the loading area of a 

vehicle and without moving items of other requests.  

(C3) Reloading ban: Each item Iik of request i must not be moved after loading and before unloading  

(i = 1,…,n, k = 1,...,mi). If the item Iik is loaded at the (q+1)th node and unloaded at the (q’+1)th 

node of route l, its placement (xik, yik,, oik) must be the same in the packing plans Pl,q, Pl,q+1,…, 

Pl,q’-1 (i = 1,…,n, k = 1,...,mi, l =1,…,v, 1 ≤ q < q’ ≤ 2pl). 

(C4) Weight constraint: Each item Iik has a positive weight dik (i = 1,...,n, k = 1,...,mi) and the total 

weight of all items in a packing plan Pl,q must not exceed a maximum weight capacity D (l = 

1,...,v, q = 1,…,2pl). 

(C5) Route length constraint: The total distance of a route must not exceed a specified maximum dmax. 

This constraint can also be understood as a route duration constraint if the vehicle velocity is set 

to a constant.   

(C6) Route number constraint: The number of routes v must not exceed the number of vehicles vmax.  

Finally, the 2L-PDP consists of determining a feasible solution that meets the constraints (C1) – 

(C6) and minimizes the total travel distance of all routes. 

The LIFO constraint for delivery points (C2) is well-known from the 2L-CVRP. At a delivery 

point, the LIFO constraint requires that between an item A to be unloaded and the rear of the vehicle 

no item B is situated that needs to be unloaded later. Otherwise item B has to be reloaded before item 

A can be unloaded by a pure movement in length direction. In Figure 1, the item I31 is in unloading 

position while the items I11 and I21 are not in unloading position because of the blocking item I31. Both 

items I41 and I42 are in unloading position because they belong to the same request. 

As also pickup points occur in a pickup and delivery route, a LIFO constraint to exclude reloading 

of goods at pickup points (C1) has to be included. At a pickup point the constraint (C1) requires that 

between the position of an item A just loaded and the rear of the vehicle no item B is situated that was 

loaded at an earlier pickup point. Again, otherwise a reloading of item B would be inevitable. 

It is an essential feature of 2L-PDP that the LIFO constraints for delivery and pickup points are not 
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sufficient to rule out any reloading effort. Furthermore, the reloading ban constraint (C3) has to be 

required to rule out any reloading effort. Figure 2 shows a simple example of a route and with three 

requests and one item per request. There exist feasible packings plans for both nodes P2 (items of re-

quest 1 and 2 loaded) and P3 (items of request 1 and 3 loaded). The packing plans fulfill both LIFO 

constraints (C1) and (C2), but the reloading ban (C3) is violated because box I11 is rotated in the sec-

ond packing plan. In the example it is obviously impossible to implement the shown route without 

reloading box I11. Hence the LIFO constraints (C1) and (C2) alone are not sufficient to rule out any 

reloading effort and the reloading ban constraint (C3) turns out to be necessary. 

 

Pickup and delivery route:   0  P1  P2  D2  P3  D3  D1  0

I11

Legend:   0: Depot, Pi: pickup point of request i, Dj: delivery point of request j

Transported Items:

Request 1 Request 2 Request 3

I21

I31
I 1

1

I 2
1

I11
I 3

1

Driver‘s
Cabin

Driver‘s
Cabin

Possible packing plans for P2:                             for P3:

 

Figure 2: Packing plans with reloading for a pickup-delivery-route. 

 

Moreover in this paper a second variant of the 2L-PDP is considered where the so-called orienta-

tion constraint (C7) is added: each placed item must lie on the loading area with its length edge paral-

lel to the x-axis of the coordinate system (no rotation allowed). The original variant without the con-

straint (C7) is called in the following “Rotate” variant while the second variant is called “NoRotate” 

variant. In the NoRotate variant all orientation variables oik must be equal to zero in a feasible solution. 

4 Two solution approaches 

In this section, two solution approaches for solving the 2L-PDP are proposed. Each solution  

approach is a hybrid algorithm and consists of two nested procedures. The outer procedure is the  

routing procedure, and the packing procedure is the inner procedure. The routing procedure is basical-

ly the same for both approaches and is designed as large neighborhood search. The two approaches 

differ in the manner how packing checks are made and how the reloading ban constraint (C3) is taken 

into account. 

In the first approach, the reloading ban is ensured by the routing procedure as the solution space is 
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restricted by an additional routing constraint, the so-called independent partial route (IPR) condition. 

With this approach, called “Independent Partial Routes” (or IPR), it is possible to use conventional 

packing heuristic for packing checks. In this paper, six well-known constructive packing heuristics for 

the two dimensional container loading problem are integrated in a packing procedure in order to check 

whether a certain set of items can be packed on the loading area or not. These packing heuristics are 

widely used in the literature on the 2L-CVRP (see Gendreau et al., 2008, and Zachariades et al., 2009). 

 In the second approach (“Simultaneous Packing”) the reloading ban constraint is observed by a 

new type of packing procedure which is able to construct a series of interrelated packing plans (see 

below). So the IPR condition is not needed in the second approach and this leads to a large extension 

of the explored solution space. Therefore, a noticeable improvement of the solution quality is expected 

with the Simultaneous Packing approach. However, with the larger solution space to be explored, a 

rising CPU-time consumption is expected, too. The main properties of both solution approaches are 

outlined in Table 1. 

 

Table 1: Main properties of the two solution approaches. 

Property 
Approach 1 

Independent Partial Routes 

Approach 2 

Simultaneous Packing 

Reloading ban constraint (C3) observed by Routing procedure Packing procedure 

Expected total travel distance Higher Lower 

Expected CPU-power consumption Lower Higher 

 

This section is organized as follows. In subsection one, the routing procedure is outlined. The sec-

ond subsection presents the IPR solution approach where the 2L-PDP is solved using a straightforward 

packing procedure for the two-dimensional container loading problem. The implementation of the 

packing procedure itself is explained in subsection three. Finally, the subsection four presents the 

novell simultaneous packing procedure and its integration into the routing procedure. 

4.1 Routing procedure 

The routing procedure is derived from the (adaptive) large neighborhood search (LNS) heuristic 

for solving the PDP with time windows by Ropke and Pisinger (2006). In this paper a similar imple-

mentation of the routing procedure is used like in Männel and Bortfeldt (2016) before, thus the routing 

procedure is described in this paper only in a short fashion. 

The LNS heuristics uses the „fix and optimize“-principle to construct new solutions and the neigh-

borhood structure is defined implicitly by several removal and insert operators (heuristics). To get a 

new solution, first a removal operator destroys a part of the current solution, which means that some 

requests will be removed from their routes. Subsequently, an insert operator reinserts the removed 

requests at certain positions of certain routes to get a new feasible solution. The routing procedure is 

shown in Algorithm 1. After constructing the initial solution an iterative neighborhood search is car-
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ried out until a given time limit is exceeded. The number ξ of requests to be removed and reinserted in 

the solution is selected randomly within each iteration. Among the four available removal and the 

three available insert heuristics, one removal and one insert heuristic are selected randomly per itera-

tion. The next solution is generated by the selected heuristics according to snext := Ih(Rh(scurr, ξ)). If snext 

passes the acceptance test, it becomes the new current solution scurr, and the best solution sbest is updat-

ed if snext realizes a better objective function value. Otherwise, the initial solution of the next iteration 

scurr remains unchanged. For the acceptance tests, the well-known simulated annealing rule with a 

geometric cooling scheme is used. The selection probabilities for the removal and insertion heuristics 

are fix. In the following Table 2, the available heuristics are shown. 

 

2l_pdp_lns (in: problem data, parameters, out: best solution sbest) 

construct initial solution scurr and set sbest := scurr 

while  stopping criterion is not met  do  

  select number of requests to be removed ξ 

  select removal heuristic Rh and insertion heuristic Ih 

  determine next solution: snext := Ih(Rh(scurr, ξ)) 

  check acceptance of snext 

  if  snext is accepted  then  

   scurr := snext 

   if  f(scurr) < f(sbest)  then  sbest := scurr  

 return  sbest 

Algorithm 1: LNS-based routing algorithm for the 2L-PDP. 

Table 2: Removal and insertion heuristics of the LNS heuristic for 2L-PDP. 

Heuristic Description 

Random removal RhR Removes iteratively requests that are selected at random. 

Shaw removal RhS Removes iteratively requests that are related in terms of location and weight. 

Worst removal RhW Removes iteratively a request whose removal leads to the largest cost (total travel distance)  

reduction. 

Tour removal RhT Removes all requests from a randomly chosen route. If less than ξ requests are removed  

in this way, further requests will be removed with Shaw removal. 

Greedy insertion IhG Inserts iteratively requests into the solution such that the increase of the cost function is minimal.  

Regret-2 insertion IhR2 Inserts iteratively requests into the solution such that the gap in the cost function between  

inserting the request into its best and its second best route is maximal. 

Regret-3 insertion IhR3 Inserts iteratively requests into the solution such that the sum of two gaps in the cost function is 

maximal. The first gap results from inserting the request into its best and its second best route, 

while the second gap results from inserting the request into its best and its third best route. 

4.2 IPR solution approach 

In the IPR solutions approach, we want to use a conventional packing procedure for the two di-

mensional container loading problem to solve to the 2L-PDP. For an arbitrarily chosen route, the pack-
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ing procedure has to deliver feasible packing plans for each node in the route. Each packing plan must 

contain exactly the items loaded on the vehicle when it is leaving the corresponding node and, fur-

thermore, fulfill the conditions (FP1) – (FP3) and the packing related constraints (C1) – (C3) and (C7) 

(if necessary). In the IPR solution approach, we want to keep the packing effort low by adding a fur-

ther routing constraint. This IPR constraint allows us to not to do packing checks for all nodes of a 

route but to restrict the packing checks to a few selected nodes within the route only. The packing plan 

for the other nodes can be derived from the packing plans for the selected nodes. 

 

Definition 1: For a given node x in a 2L-PDP route, the corresponding request sequence rs(x) is 

defined as follows. rs(x) contains exactly the requests which are loaded and not yet unloaded when the 

vehicle is leaves the node x. The order of the requests in rs(x) is given by the order of the correspond-

ing pickup nodes within the route. 

 

Example 1: Considering the route Ͳ → �ͳ → �ʹ → �ͳ → �͵ → �Ͷ → �͵ → �ʹ → �Ͷ → Ͳ, the 

corresponding request sequences of the nodes P4 and D3 are (2, 3, 4) and (2, 4), respectively.  

 

Definition 2:  

(i) We consider a sequence (i1,...,is,is+1,...,i2s) of 2s nodes (s > 0). This sequence is called “IPR block”, 

if its first s elements are pickup points and its last s elements are the corresponding delivery 

points and if, furthermore, the delivery points lie in inverse order of their corresponding pickup 

points. More formally, it should hold the following three conditions: 

 ip ≠ iq   for each p, q ∈ (1,...,s) with p ≠ q 

 1 ≤ ip ≤ n  for each p ∈ (1,...,s) 

 i2s-p+1 = ip + n  for each p ∈ (1,...,s) 

(ii) A 2L-PDP route is called “IPR route” if it consists of one or more IPR blocks (plus the depot at 

the beginning and the end of the route). 

(iii) We say that a solution of the 2L-PDP fulfills the IPR constraint if all contained routes are IPR 

routes. 

 

Obviously a 2L-PDP route is an IPR route if and only if the two following conditions hold: 

(1) if the vehicle visits a delivery point, then all delivery points for all items on the loading area will 

be visited before another pickup take place and 

(2) all delivery points lie in inverse order of their corresponding pickup points, i.e. if i and j are two 

arbitrarily chosen requests from the route and Pi lies before Pj, then Di must lie behind Dj in the 

route. 
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Example 2: The route Ͳ → �ͳ → �ʹ → �ʹ → �͵ → �͵ → �ͳ → Ͳ is not an IPR route because 

the vehicle does not become empty after visiting delivery point D2 and before visiting pickup point 

P3. The route Ͳ → �͵ → �Ͷ → �ͷ → �Ͷ → �ͷ → �͵ → Ͳ is not an IPR route because the delivery 

points D4 and D5 do not lie in inverse order of their corresponding pickup points. The route Ͳ → �ͳ → �ʹ → �ʹ → �ͳ → �͵ → �Ͷ → �ͷ → �ͷ → �Ͷ → �͵ → �͸ → �͸ → Ͳ is an IPR route 

consisting of three IPR blocks. The pickup points P2, P5 and P6 are called “last pickup” points be-

cause they are the last in the row of consecutive pickup points and are followed by a delivery point. 

Obviously, each IPR block contains exactly one last pickup point. 

 

Definition 3: We consider an arbitrarily chosen pickup node from a 2L-PDP route with the corre-

sponding request sequence rs = (i1,...,is) (s > 0, 1 ≤ ip ≤ n for each p ∈ (1,...,s)). We say that a packing 

plan for the request sequence rs fulfills the cumulative LIFO constraint (CLC) if for each p and q with 

1 ≤ p < q ≤ s no item of request ip lies between an item of iq and the rear of the vehicle, i.e. if no load-

ing operation of an later loaded item of iq is blocked by an earlier loaded item of ip. 

 

Proposition 1: Let be given an IPR route consisting of one or more IPR blocks and let exist pack-

ing plans observing conditions (FP1) – (FP3), (C7) (if necessary) and (CLC) for the request sequence 

of each last pickup point of each IPR block. Then feasible packing plans in terms of 2L-PDP exist for 

all nodes in the route which fulfill: 

(i) for pickup points the conditions (FP1) – (FP3), the orientation constraint (C7) (if necessary) and 

the LIFO constraint for pickup points (C1), 

(ii) for delivery points the conditions (FP1) – (FP3), the orientation constraint (C7) (if necessary) and 

the LIFO constraint for delivery points (C2) and 

(iii) observe (collectively) the reloading ban constraint (C3). 

Proof:  

(i) In the following, the given packing plans for the last pickup points will be called “master plans”. 

Each master plan contains placements for all requests belonging to its corresponding IPR block. 

Thus for each pickup node in the route, a packing plan can be derived by simply removing place-

ments for items not yet loaded from the corresponding master plan. Obviously, the derived plans 

will contain the correct items and fulfill the conditions (FP1) – (FP3) together with constraint (C7) 

(if necessary). Because the cumulative LIFO constraint (CLC) is stronger than the LIFO con-

straint for pickup points (C1) all derived plans fulfill also the constraint (C1) too. 

(ii) As in the proof of (i) for each delivery node, a packing plan can derived by simply removing 

placements for items already unloaded from the corresponding master plan. Obviously, these de-

rived plans again will contain the correct items and fulfill the conditions (FP1) – (FP3) together 

with constraint (C7) (if necessary). Finally we want to prove the LIFO constraint for delivery 
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points (C2) indirectly and assume that (C2) would not hold. In this case would exist requests A 

and B belonging to the same IPR block such that delivery point DA would lie before DB in the 

route and an the unloading operation of an item a of request A would be blocked by an item b of 

request B. Because of the structure of the IPR blocks, the pickup point PA would lie behind the 

pickup point PB, i.e. both items a and b would be also contained in the packing plan of PA. Since 

all packing plans for nodes of the same IPR block are derived from one master plan, the items a 

and b would hold the same positions in all plans. Hence the item b would block the loading opera-

tion of item a at pickup point PA, which would lead to a violation of constraint (C1). 

(iii) If an IPR route is given, each item must only be stowed in packing plans of one IPR block. As 

shown in (i) and (ii), all packing plans for the other pickup and delivery points of an IPR block 

will be derived from the packing plan for the last pickup point by simply removing items. Hence, 

the positions of all items that occur in multiple packing plans remain unchanged. □ 

 

The outcome of Proposition 1 is, that in case of IPR routes, the cumulative LIFO constraint 

(CLC) is sufficient that constraints (C1) – (C3) hold. Furthermore, we show in the following Proposi-

tion 2 that constraints (C1) and (C3) are sufficient for the (CLC) constraint to hold, i.e. in case of IPR 

routes (CLC) and (C1) – (C3) are equivalent. So the inclusion of the (CLC) constraint neither restricts 

the search space additionally, nor leads to a loss of solution quality in case of the IPR solution ap-

proach. 

 

 

Proposition 2: Let be given a 2L-PDP route and let packing plans exist for all pickup points in the 

route. Let all these plans fulfill the LIFO constraint for delivery points (C1) and the reloading ban 

constraint (C3). Then all these packing plans also fulfill the cumulative LIFO constraint (CLC). 

Proof: We assume that the (CLC) constraint would not hold. Then would exist requests A, B and C 

(with pickup point PA lying before PB and PB before PC) and items a (of A) and b (of B) such that item 

a would lie between item b and the rear of the vehicle in the packing plan for pickup point PC. Because 

of the reloading ban constraint (C3), these items would hold the same placements in the packing plan 

for the earlier pickup point PB too, i.e. in this packing plan item a would also lie between item b and 

the rear of the vehicle. Thus the LIFO constraint for pickup points (C1) would be violated at pickup 

point PB. □ 

 

Finally, in this section, it is to discuss how the packing procedure will be integrated into the rout-

ing procedure. In general, the LNS heuristic removes some requests (i.e. pairs of a pickup and a deliv-

ery point) of the route and reinserts some new requests. In case of the 2L-PDP, it is impossible that a 

route loses their “packability” by removing requests from the route. Thus, packing checks are integrat-

ed in insertion heuristics exclusively (and not in removal heuristics). The integration of the packing 
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procedure into the insertions heuristics takes place according to two principles. First, one-dimensional 

checks are made before 2D packing checks are carried out. Second, all possible insertions are first 

evaluated and sorted by cost before the "expensive" packing checks are made. By this technique, 

called "evaluating first, packing second", the packing effort is kept low since the packing checks can 

be aborted each time after a few (2D-)feasible insertions have been detected. The packing checks are 

made “on demand”, i.e. the packing check for a certain insert possibility is not made until all other 

insertion possibilities for the same request and the same route with lower insertion costs have been 

checked in terms of packing. Whenever for a certain pair of request and route a packable insertion 

possibility is found, then all other insertions possibilities for this pair of request and route with higher 

insertion costs can be neglected from further packing checks. In this context, “packable insertion pos-

sibility” means that the route which would result from the implementation of the insert possibility is 

feasible in terms of packing. For more details about the integration of the packing checks into the in-

sertion heuristics, the reader is referred to Männel and Bortfeldt (2016). 

4.3 Packing procedure for IPR solution approach 

In the last section, it was shown that in case of restriction to IPR routes a conventional packing 

procedure is sufficient to ensure the existence of feasible packing plans for the 2L-PDP. The packing 

procedure must be applied only to the corresponding request sequences of the last pickup points of the 

routes. It has to deliver packing plans which fulfill the conditions (FP1) – (FP3), the constraint (C7) (if 

necessary) and the cumulative LIFO constraint (CLC). As described before, then it is ensured that 

packing plans for all nodes satisfying the constraints (C1) – (C3) can be derived. 

In this section, the packing procedure packing_check_rs is introduced and it is described how the 

procedure performs the packing check for a certain request sequence rs = (i1,…,is). The procedure is 

similar to Zachariades et al. 2009. The packing procedure uses six constructive heuristics H1 – H6 and 

five orderings Ord1 – Ord5 for the items shown in Table 3 and 4, respectively. To observe the cumula-

tive LIFO constraint (CLC), the items are ordered corresponding to the position of their request in the 

request sequence as primary criterion. The packing procedure is shown in Algorithm 2. 

 

    Table 3: Heuristics used in the packing procedure. 

Heuristic Description Main idea for choosing the item and the allocation point 

H1 Bottom-Left Fill (Chazelle 1983) Minimize the allocation points x-coordinate first and y-coordinate second 

H2 Left-Bottom Fill (Chazelle 1983) Minimize the allocation points y-coordinate first and x-coordinate second 

H3 Touching Perimeter (Lodi et al. 1999) 
Maximize the sum of the items common edges with other items and the 

loading area edges 

H4 Touching Perimeter No Walls (Lodi et al. 1999) Maximize the sum of the items common edges with other items 

H5 Min Area heuristic (Zachariadis et al. 2009) Minimize the size of the allocation points corresponding rectangular surface 

H6 
LBFH (Lowest Reference Line Best Fit heuristic) 

(Leung et al. 2011) 

Uses predictive strategy with changing the placing order of items, the best 

fitting item for the lowest rectangular space will be chosen 
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    Table 4: Characteristics of the orderings used in the packing procedure. 

Ordering First criterion Second criterion Third criterion 

Ord1 position of request in rs area l*w (descending) longer side max(l,w) (descending) 

Ord2 position of request in rs width w (descending)  length l (descending) 

Ord3 position of request in rs length l (descending) width w (descending) 

Ord4 position of request in rs ratio of longer to shorter side max(l,w) / min(l,w) (descending) area l*w (descending) 

Ord5 position of request in rs ratio of longer to shorter side max(l,w) / min(l,w) (ascending) area l*w (descending) 

 

packing_check_rs (in: request sequence rs, out: boolean result) 

if  cache.contains(rs)  then      // if rs was already checked => take result from cache 

return  cache.get-result(rs) 

for  u := 1 to 5  do  

 is := build-item-sequence(rs, Ordu)   // build item sequence for rs using ordering Ordu 

for  v := 1 to 6  do  

   if  heuristic Hv can pack item sequence is  then 

       cache.set-result(rs, true)   // save positive result for rs in cache and return 

     return true    

 cache.set-result(rs, false)    // all (u, v)-pairs were tried without success  

  return false       // save negative result for rs in cache and return 

Algorithm 2: Packing procedure packing_check_rs. 

The procedure packing_check_rs takes a request sequence as input and returns a boolean value 

(true or false) indicating whether a feasible packing plan was found or not. First, the procedure checks 

if the request sequence is contained in the packing cache, which means that it was already checked. In 

this case the result is taken from the cache and the procedure terminates. Otherwise two nested loops 

are executed, the outer loop iterates over the orderings and the inner loop iterates over the heuristics. 

In each iteration of the outer loop, first the item sequence for the current ordering is built and then up 

to six heuristics are applied. The procedure terminates with result “true” if one heuristic can pack the 

item sequence is, otherwise the procedure returns “false” after all 30 combinations of heuristics and 

orderings were tried without success. In both cases, the result is saved in the packing cache before 

leaving the procedure. The usage of the packing cache provides a large speedup of the algorithm be-

cause the retrieval of the check result from the cache is 100 to 1000 times faster than the repetition of 

the packing check with the six heuristics and five orderings. 

In the following, the packing heuristic H1 (Bottom-Left Fill) is explained in detail. Central compo-

nent of this heuristic is posList, a set of so-called allocation points (positions where the lower left cor-

ner of new items can be placed). Initially, posList contains only the position (0, 0). The items will be 

placed “item by item”, respecting the item sequence which was created by the ordering in advance. 

Each time after an item was placed, the set posList will be updated, no more usable allocation points 

will be removed and new allocation points will be added. The new allocation points are so-called ex-

treme points (see Crainic et al. 2008) generated by projection of the upper left corner of the placed 
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item into –y direction and of the lower right corner into –x direction. The allocation points emerge 

where the projections “hit” the sides of already placed items or the loading area. Thereby, each projec-

tion can create more than one new allocation points. In Figure 3 is shown a loading area with some 

placed items. The allocation points are marked as bold circles.  

In the Bottom-Left Fill heuristic the position for placing an item is selected from posList as fol-

lows. All allocations points in posList are checked if the considered item can be placed feasible at this 

allocation point, i.e. without overlapping or violating the cumulative LIFO loading constraint. 

Amongst all feasible allocation points, the one with the lowest x-coordinate is selected, ties are broken 

by the lowest y-coordinate. Thus, the Bottom-Left Fill heuristic tends to generate packing plans con-

sisting of strips parallel to the y-axis. If for one item no feasible placement can be found, then the heu-

ristic terminates without success, otherwise the heuristic terminates successfully when all items are 

placed. In case of the original 2L-PDP problem variant (Rotate), each allocation point is considered 

twice, one time for placing the item in original orientation and a second time for a placing it in rotated 

orientation, while in the second problem variant (NoRotate) only the original orientation is considered. 

 

         

x

y
 

          Figure 3: Allocation points marked as bold circles. 

 

The Left-Bottom Fill heuristic H2 works like the heuristic H1 with the only difference, that 

amongst all feasible placements the allocation point with the lowest y-coordinate will be selected, ties 

are broken by the lowest x-coordinate. Thus, the Left-Bottom Fill heuristic tends to build packing 

plans made up by strips parallel to the x-axis. This approach can be useful if an extra long item must 

be loaded late.  

In case of the Touching Perimeter heuristic H3 for each feasible allocation point in posList, the to-

tal touching perimeter value of the inserted item is calculated. The touching perimeter is evaluated as 

the sum of the common edges of the inserted item with the edges of the already inserted items and the 

edges of the loading area. The item is placed at that allocation point which reaches the maximal touch-

ing perimeter value. The Touching Perimeter heuristic tends to initially place the items at the edges of 

the loading area and later fill the inner parts of it. 
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The Touching Perimeter No Walls heuristic H4 uses the same principle like H3, but the touching 

perimeter is calculated only considering common edges of the item to place with already placed items, 

common edges with the loading area are not taken into account. Thus, this heuristic tends to fill the 

inner part of the loading area earlier and cover its edges later. 

In case of the Min Area heuristic H5, the size of its corresponding rectangular surface area is calcu-

lated for each feasible allocation point. The loading position selected is the one yielding the minimum 

surface area. Figure 4 shows an example of a loading area with two arranged items (dotted) and three 

possible allocation points. The corresponding rectangular surface areas are shown as squared. The 

main goal of the heuristic is achieving a high degree of utilization of the vehicle’s loading areas. 

 

x

y

x

y

x

y

Allocation point 1 Allocation point 2 Allocation point 3

   Figure 4: Example of corresponding loading areas. 

 

The last heuristic H6 is the LBFH heuristic (Lowest Reference Line Best Fit heuristic). The LBFH 

heuristic determines in each iteration first the lowest non-occupied rectangular space (with minimum 

x-coordinate). Then all not yet placed items of the currently processed request are tested whether they 

fit into the considered space. Fitting items furthermore score “fitness points” if they fill out the com-

plete width of the considered space or if their upper edge reaches the same x-value like the adjacent 

items placed on the left or right of the considered space. Finally, the item with the best fitness value 

gets placed. Ties are broken by the items position in the sequence is. The main goal of the LBFH heu-

ristic is to make the best use of the available space and reduce waste. To do so the heuristic uses a pre-

dictive strategy and changes the placing order of items belonging to the same request. For more de-

tails, the reader is referred to Leung et al. (2011). 

The order of the six heuristics H1 to H6 is chosen so that the most simple heuristics (with smallest 

computational effort) Bottom-Left Fill and Left-Bottom Fill are tried first in the packing procedure 

packing_check_rs. If they fail to construct a feasible packing plan, they are followed by the more 

complex heuristics Touching Perimeter, Touching Perimeter No Wall, Min Area and LBFH. 

4.4 Simultaneous Packing approach 

In section 4.2, we introduced the IPR solution approach which heavily restricts the solution space 

by incorporating two additional requirements, namely (1) and (2), to the routes to satisfy the packing 
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related constraints (C1) – (C3) and (C7) (if necessary). Now we want to introduce the Simultaneous 

Packing approach which drops the additional requirement (1) and allows the algorithm to explore a 

much larger solution space. 

 

Definition 4: 

(i) A 2L-PDP route is called “LIFO route” if the condition holds that each two delivery points in the 

route lie in inverse order of their corresponding pickup points. More formally, if i and j are two 

arbitrarily chosen requests from the route and Pi lies before Pj, then Di must lie behind Dj in the 

route. 

(ii) A partial route of a LIFO route is called “LIFO route block” (LRB) if the vehicle is empty when 

arriving at the first node and empty when leaving the last node of the partial route and if, further-

more, the vehicle does not become empty within the partial route. 

(iii) We say that a solution of the 2L-PDP fulfills the LIFO route condition if all of its contained routes 

are LIFO routes. 

 

Example 3: The route Ͳ → �ͳ → �ʹ → �ʹ → �͵ → �Ͷ → �Ͷ → �ͷ → �ͷ → �͵ → �ͳ → �͸ →�͹ → �͹ → �͸ → Ͳ is a LIFO route consisting of two LIFO route blocks. The first LRB starts at P1 

and ends at D1, while the second LRB starts at P6 and ends at D6. The first LRB contains three last 

pickup points P2, P4 and P5 with the corresponding request sequences (1, 2), (1, 3, 4) and (1, 3, 5). 

The second LRB contains only one last pickup point P7 with the request sequence (6, 7). 

 

In the Simultaneous Packing approach, we want to continue applying the idea of restricting the 

packing checks to the last pickup points within the route. The packing plans for the other nodes should 

be derived from the packing plans for the last pickup points. Thus it is to investigate under which addi-

tional circumstances the existence of packing plans for the last pickups in a route can ensure that fea-

sible packing plans for all nodes of the route exist. 

 

Proposition 3: Let be given a LIFO route consisting of one or more LIFO route blocks and let ex-

ist packing plans observing conditions (FP1) – (FP3), (C7) (if necessary) and (CLC) for the request 

sequences of all last pickup points of the route. Furthermore, let these packing plans fulfill the reload-

ing ban constraint (C3), i.e. each item should hold the same placement in all plans containing this 

item. Then feasible packing plans in terms of 2L-PDP exist for all nodes in the route which fulfill: 

(i) for pickup points the conditions (FP1) – (FP3), the orientation constraint (C7) (if necessary) and 

the LIFO constraint (C1), 

(ii) for delivery points the conditions (FP1) – (FP3), the orientation constraint (C7) (if necessary) and 

the LIFO constraint (C2) and 

(iii) observe (collectively) the reloading ban constraint (C3). 
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Proof: 

(i) Each pickup point which is not a last pickup is followed by a sequence of one or more consecu-

tive pickup points. This sequence of pickup points ends with a last pickup point which is followed 

by a delivery point. We call this last pickup point “corresponding last pickup point” of the original 

pickup point. Thus for each pickup point a packing plan can be derived by simply removing 

placements for items not yet loaded from the packing plan of the corresponding last pickup point. 

Obviously, the derived plans will contain the correct items and fulfill the conditions (FP1) – (FP3) 

together with constraint (C7) (if necessary). Since the cumulative LIFO constraint (CLC) is 

stronger than the LIFO constraint for pickup points (C1), all derived plans fulfill the constraint 

(C1), too. 

(ii) For each delivery point in a LIFO route, the “corresponding last pickup point” is found as follows. 

We consider all pickup points lying in the route before the regarded delivery point and choose the 

last of them as corresponding last pickup point. Obviously, for each delivery point exists at least 

one pickup point lying in the route before it. Furthermore, the so selected pickup point is a last 

pickup point because it directly precedes the regarded delivery point or there are only delivery 

points located between them. Thus for each delivery point, a packing plan can be derived by simp-

ly removing placements for items already unloaded from the packing plan of its corresponding 

last pickup point. The derived packing plans will contain the correct items and fulfill the condi-

tions (FP1) – (FP3) together with constraint (C7) (if necessary). Finally, the proof of the LIFO 

constraint for delivery points (C2) can take place indirectly like the proof of Proposition 1 be-

cause in case of LIFO routes, it is still ensured that delivery points lie in invers order of their cor-

responding pickup points. Thus a violation of constraint (C2) would result in a violation of con-

straint (C1) at a pickup point. 

(iii) The packing plans for all nodes will be generated by simply removing placements from the pack-

ing plans of the last pickup points. Since these original packing plans of the last pickup points ob-

serve reloading ban constraint (C3), the derived plans will fulfill it too. □ 

 

In section 4.2, it was shown that in case of IPR routes the inclusion of the cumulative LIFO con-

straint (CLC) does not lead to an additional restriction of the search space. In case of LIFO routes, it 

holds the same. The proof is not presented here because it is almost identical to the proof of Proposi-

tion 2. 

The outcome of Proposition 3 is that the concept of packing checks from the IPR approach (only 

performing packing checks for the request sequences of the last pickup points) can be taken over to the 

Simultaneous Packing approach. However, the packing procedure now must additionally ensure the 

reloading ban constraint for the last pickup points. This check must be made per LIFO route block 

because only last pickup points contained in the same LIFO route block have common requests and 

common items. Thus for last pickup points which do not belong to the same LRB, the reloading ban 

https://www.dict.cc/englisch-deutsch/precede.html
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constraint is observed automatically. 

 

Example 3 (continued): To check the LRB �ͳ → �ʹ → �ʹ → �͵ → �Ͷ → �Ͷ → �ͷ → �ͷ →�͵ → �ͳ in terms of packing for the 2L-PDP the following steps must be performed: 

 finding packing plans for the three request sequences (1, 2), (1, 3, 4), (1, 3, 5),  

 checking if the items of request 1 hold the same placements in all three plans, 

 checking if the items of request 3 hold the same placements in the second and third plan. 

To check the whole LIFO route from Example 3 in terms of packing for the 2L-PDP, it furthermore has 

to be checked (independently) if a feasible packing plan for the request sequence (6, 7) exists. Since 

the second LRB �͸ → �͹ → �͹ → �͸ contains only one last pickup point, there are no interdepend-

encies between packing plans of the second LRB to observe. The packing plans for the individual 

points in the route can be derived as follows from the plans of the last pickup points: 

 for P1, D2 from the plan of P2 (request sequence (1, 2)), 

 for P3, D4 from the plan of P4 (request sequence (1, 3, 4)), 

 for D5, D3, D1 from the plan of P5 (request sequence (1, 3, 5)), 

 for P6, D7, D6 from the plan of P7 (request sequence (6, 7)). 

 

Proposition 4: Let rs1 and rs2 be two request sequences with p+q and p+s requests, respectively  

(p, q, s > 0). Furthermore, let the first p requests of both request sequences be identically: 

rs1 = (i1,...,ip,ip+1,...,ip+q), rs2 = (i1,...,ip,ip+q+1,...,ip+q+s). If v and u (v ∈ {1,...,6}, u ∈ {1,...,5}) exist such 

that the heuristic Hv can pack both request sequences using the ordering Ordu, then the resulting pack-

ing plans for both request sequences fulfill the reloading ban constraint, i.e. the items of requests 

{i1,...,ip} hold the same placements in both plans. 

Proof: Let j be the total number of items belonging to the first p identical requests {i1,...,ip} of the 

request sequences rs1 and rs2. Then the corresponding item sequences is1 and is2 contain j identical 

items at the beginning (after getting ordered by Ordu). When the heuristic Hv constructs the packing 

plan for both item sequences, obviously the first j identical items are getting the same placements be-

cause the heuristics do not look forward, i.e. to determine the placements for the first j items, only the 

properties (length and width) of these items are taken into account. The heuristics do not take into 

account the number, length or width of further items in is1 and is2 holding positions greater than j. To-

gether with the fact that H1–H6 do not contain any stochastic components, this ensures identical 

placements for the first j items in both packing plans. □ 

 

With Proposition 4 it becomes clear, that to check a LRB in terms of packing for the 2L-PDP, it is 

sufficient to find a certain heuristic Hv and a certain ordering Ordu such that the pair (Hv, Ordu) can 

pack successfully the request sequences of all last pickup points of the considered LRB. Now the 

packing procedure packing_check_rs for the IPR routes can be enhanced to the procedure 
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packing_check_lrb which checks a LRB in terms of packing for the 2L-PDP. 

In Algorithm  3, the packing procedure packing_check_lrb is shown in detail. The procedure uses 

the cache cache-lrb to speed up the search. The procedure checks first if the input lrb is contained in 

cache-lrb. In this case, the result is taken from the cache and the procedure terminates. Otherwise, the 

procedure builds up the array rs-arr of all request sequences of last pickup points of lrb. Then the pro-

cedure tries to find a (u, v)-pair for which Hv can construct packing plans for all elements of rs-arr 

using the ordering Ordu. For this purpose, the procedure uses three nested loops over the orderings, the 

heuristics and the item sequences. Each time a new ordering will be processed, the item sequence ar-

ray is-arr will be built up. It contains the ordered item sequences for the request sequences of rs-arr. 

To speed up the packing procedure, this step will be done before entering the loop over the heuristics. 

In the most inner loop, the elements of is-arr are getting packing checked with heuristic Hv. The bool-

ean variable ok indicates whether all item sequences could be packed successfully using the (Hv, Or-

du)-pair. In case of ok=true the procedure ends with result=true because packing plans fulfilling the 

reloading ban constraint for all last pickup points of lrb were found. Otherwise ok=false signals that at 

least one item sequence could not be packed with heuristic Hv using ordering Ordu. In this case, the 

procedure continues with the next heuristic or the next ordering. If there are no further (Hv, Ordu)-pairs 

remaining, the procedure ends with result=false. Before leaving the procedure, the overall packing 

result for lrb is saved in cache-lrb. 

 

packing_check_lrb (in: lifo route block lrb, out: boolean result) 

 if  cache-lrb.contains(lrb)  then 

  return  cache-lrb.get-result(lrb) 

 rs-arr := build-request-sequences(lrb)  // build request sequences for all last pickup points in lrb   

 for  u := 1 to 5  do       // loop over u (orderings)  

  is-arr := { }      // allocate empty array for item sequences 

 for  j := 1 to sizeof(rs-arr)  do 

   is-arr[j] := build-item-sequence(rs-arr[j], Ordu) // build corresponding item sequences for request seq. 

  for  v := 1 to 6  do      // loop over v (heuristics) 

  ok := true 

 for  j := 1 to sizeof(is-arr)  do   // loop over j (item sequences) 

       if  heuristic Hv can not pack item sequence is-arr[j]  then 

     ok := false    // set ok to false to neglect (u, v)-pair 

   break inner for loop    // break for loop over index j 

   if  ok = true  then 

    cache-lrb.set-result(lrb, true)   // Hv + Ordu have checked all request-seq. with success 

    return  true    // save positive result in cache-lrb and return 

 cache-lrb.set-result(lrb, false)    // all (u, v)-pairs were tried without success 

 return false       // save negative result in cache-lrb and return 

Algorithm 3: Packing procedure packing_check_lrb. 
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Finally, it should be mentioned that the procedure packing_check_lrb does not save packing plans 

during the search process for already checked LRBs, because this would consume too much memory. 

In the cache-lrb (beside the LRB itself and its checking result) only the values u and v are saved, i.e. 

the numbers of the heuristic Hv and the ordering Ordu which were able to construct feasible packing 

plans for all last pickup points of the considered LRB. When the stopping criterion in the LNS routing 

procedure is met and the search is getting aborted, the packing plans for all last pickup points in the 

best solution are reconstructed by the appropriate packing heuristic Hv in combination with the appro-

priate ordering Ordu. 

5 Computational experiments 

The section is organized as follows. In the first part we test our solution approach against well-

known 2L-CVRP instances to check whether we can reach the solution quality of the best so far exist-

ing algorithms for the 2L-CVRP. Since the 2L-CVRP is a special case of the 2L-PDP, where all 

pickups take place in the depot and after performing one delivery, no other pickup may follow in the 

route, our solutions approach can be used to solve 2L-CVRP instances, too. We use a modified version 

of the first hybrid algorithm (IPR) to meet the special requirements of the 2L-CVRP. In the 2L-CVRP 

there is to construct only one packing plan for each route with no LIFO constraint for pickup points 

(C1) and no reloading ban constraint (C3) to observe. Thus the two additional requirements to the 

routes (see section 4.2) can be dropped in this test, while LIFO constraint of the 2L-CVRP is ensured 

by the packing procedure.  

 In the second part, 60 new benchmark instances with up to 150 requests and 433 items are intro-

duced. In the third part, which is the main part of this section, the two new solution approaches “Inde-

pendent Partial Routes” and “Simultaneous Packing” are tested against the new instances. The test 

results will be compared with two lesser constrained problem variants, namely the “Unrestricted” and 

“One Dimensional” (1D). In the Unrestricted variant, we assume that at each node any reloading can 

be made without any cost or time consumption, hence both LIFO constraints (C1) and (C2) and the 

reloading ban constraint (C3) will be neglected in this variant. In the 1D variant, we drop furthermore 

the requirement to construct feasible packing plans, hence it is only required that the total area of all 

items loaded on the vehicle does not exceed the total area of the loading area, without considering if a 

feasible packing exists. Thus, the 1D variant is identical to the classical PDP with two scalar capacity 

conditions (weight and area). For both 1D variant and Unrestricted variant, we use a modified version 

of the IPR hybrid algorithm where the two additional requirements to the routes are dropped. In the 1D 

variant no packing checks will be done at all, while in the Unrestricted variant there will be construct-

ed feasible packing plans for all nodes in a route. These packing plans do not need to meet the LIFO 

constraint for pickup points, thus the first criterion in all orderings (see section 4.1) is neglected in this 

variant. 

Both hybrid algorithms are implemented in Java programming language using Eclipse IDE. All the 
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experiments have been conducted on a PC with Intel Core i7-6700K (4.0 GHz, 32 GB RAM) running 

Windows 10 operating system. The identical chosen parameter setting for the routing procedure LNS 

of both hybrid algorithms is shown in Table 5. All parameter values were determined based on limited 

computational experiments using a trial and error strategy. 

 

Table 5: Parameter setting for the LNS routing procedure. 

Parameter Description Value 

rmin lower bound for no. of removed customers 0.04∙n 

rmax upper bound for no. of removed customers 0.4∙n 

w start temperature control parameter 0.005 

c rate of geometrical cooling 0.9999 

p(RhR), p(RhS) 

p(RhW), p(RhT) 

probability of Random / Shaw removal  

 probability of Worst / Tour removal  

0.3, 0.4 

0.1, 0.2 

p(IhG), p(IhR2), p(IhR3) probability of Greedy / Regret-2 / Regret-3 insert 0.1, 0.6, 0.3 

wr1, wr2 weights of relatedness formula for Shaw removal  9, 2 

5.1 Computational results for 2L-CVRP 

Gendreau et al. (2008) have introduced 36 CVRP problems containing up to 255 customers. For 

each of these CVRP problems, they created five 2L-CVRP instances by considering different classes 

of item characteristics (Class 1–5). Thereby, the instances of Class 1 are pure CVRP problems, where-

as the 144 instances of Classes 2–5 are “real” 2L-CVRP problems. For these instances, each item be-

longs to one of three possible shape categories with equal probability, while the number of items de-

manded by a customer is determined as random value from a given interval. The details of the items 

characteristics are shown in Table 6. The average number of items per customer rises from 1.5 for 

instances of Class 2 up to 3 items per customer for instances of Class 5. 

 

Table 6: The item characteristics for 2L-CVRP instances of Class 2–5.  

Class 
Item-Number 

mi 

Vertical Homogeneous Horizontal 

Length Width Length Width Length Width 

2 [1, 2] [0.4L, 0.9L] [0.1W, 0.2W] [0.2L, 0.5L] [0.2W, 0.5W] [0.1L, 0.2L] [0.4W, 0.9W] 

3 [1, 3] [0.3L, 0.8L] [0.1W, 0.2W] [0.2L, 0.4L] [0.2W, 0.4W] [0.1L, 0.2L] [0.3W, 0.8W] 

4 [1, 4] [0.2L, 0.7L] [0.1W, 0.2W] [0.1L, 0.4L] [0.1W, 0.4W] [0.1L, 0.2L] [0.2W, 0.7W] 

5 [1, 5] [0.1L, 0.6L] [0.1W, 0.2W] [0.1L, 0.3L] [0.1W, 0.3W] [0.1L, 0.2L] [0.1W, 0.6W] 

 

Our hybrid algorithm, in the following denoted with “LNS+6CH”, was tested five times against 

each of the 144 instances considering the problem variant with LIFO constraint and fixed orientation 

(“NoRotate”) allowing up to one hour CPU time. The results are first averaged over the five runs and 

then averaged over the Classes 2–5 for each of the 36 problems. In Table 7, the results for the 

LNS+6CH hybrid algorithm are compared to those obtained by  
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 ACO with 3 hours CPU time (Fuellerer et al., 2009), Pentium IV 3.2 GHz, 

 EGTS + LBFH (Leung et al., 2011), Intel Core 2 Duo 2.0 GHz, 

 PRMP (Zachariadis et al., 2013), Intel Core 2 Duo E6600 2.4 GHz, 

 VNS (Wei et al., 2015), Intel Xeon E5430 with a 2.66 GHz. 

 

Table 7: Results for 2L-CVRP (averaged over Classes 2–5).  

Prob-

lem 

ACO EGTS + LFBH PRMP VNS LNS+6CH 

ttd-avg    rt-avg gap

% 

ttd-avg  rt-avg gap 

 % 

ttd-avg  rt-avg gap 

% 

ttd-avg rt-avg gap 

% 

ttd-avg  rt-avg gap 

% 

1 295.10 8.9 2.79 303.40 3.2 5.68 287.09 1.4 0.00 287.52 4.5 0.15 298.01 5.6 3.80 

2 345.28 0.7 0.31 345.23 1.3 0.30 344.21 1.0 0.00 344.21 0.6 0.00 345.23 5.0 0.30 

3 383.12 3.7 0.45 387.89 5.0 1.70 381.40 1.3 0.00 381.43 1.5 0.01 384.58 5.0 0.83 

4 441.11 3.6 0.26 443.25 2.4 0.75 439.97 1.6 0.00 440.27 1.0 0.07 442.14 5.0 0.49 

5 383.21 15.7 0.21 387.60 4.6 1.36 382.39 2.6 0.00 382.39 4.2 0.00 386.80 6.0 1.15 

6 500.76 5.2 0.26 502.25 3.5 0.55 499.48 5.6 0.00 499.48 1.7 0.00 502.88 5.0 0.68 

7 705.64 14.3 0.49 715.54 8.3 1.90 702.27 5.3 0.01 702.18 12.3 0.00 711.31 5.4 1.30 

8 713.33 19.9 2.26 716.36 8.3 2.69 699.55 7.0 0.28 697.58 21.2 0.00 713.12 7.4 2.23 

9 616.69 5.8 0.28 621.23 4.3 1.02 615.93 6.2 0.16 614.95 3.7 0.00 615.94 5.0 0.16 

10 701.65 61.6 2.01 731.69 23.3 6.38 688.63 55.0 0.12 687.80 115.8 0.00 711.32 20.5 3.42 

11 736.53 71.5 1.57 762.83 38.0 5.20 725.83 75.3 0.10 725.11 54.5 0.00 748.82 23.8 3.27 

12 617.07 8.6 0.41 622.35 7.9 1.27 615.23 7.1 0.12 614.52 7.5 0.00 620.41 5.1 0.96 

13 2598.46 76.3 1.75 2647.88 30.8 3.69 2554.93 119.6 0.05 2553.76 53.5 0.00 2617.70 25.4 2.50 

14 1050.48 202.3 1.93 1075.04 49.0 4.31 1030.61 637.1 0.00 1033.12 416.5 0.24 1054.56 67.4 2.32 

15 1223.03 172.5 3.09 1223.19 65.8 3.10 1193.88 68.2 0.63 1186.38 298.5 0.00 1210.15 57.5 2.00 

16 701.72 9.4 0.10 703.74 13.0 0.39 701.01 14.2 0.00 701.01 3.4 0.00 704.75 5.0 0.53 

17 865.56 7.5 0.17 869.93 16.1 0.68 865.33 40.9 0.15 864.06 4.4 0.00 864.57 5.0 0.06 

18 1073.34 362.1 1.52 1096.57 67.8 3.72 1061.29 95.1 0.38 1057.27 396.5 0.00 1078.03 120.7 1.96 

19 779.29 149.8 2.05 798.20 61.7 4.53 767.13 188.3 0.46 763.62 297.5 0.00 779.68 49.9 2.10 

20 544.79 1322.6 2.34 559.17 232.5 5.05 535.89 1660.9 0.67 532.31 921.8 0.00 544.18 440.9 2.23 

21 1061.44 1284.6 2.63 1084.98 179.0 4.91 1043.12 420.2 0.86 1034.25 1003.0 0.00 1055.95 428.2 2.10 

22 1086.84 904.9 2.45 1113.64 152.3 4.97 1068.35 524.3 0.71 1060.87 1107.8 0.00 1085.37 301.6 2.31 

23 1100.68 1490.3 2.96 1130.13 215.3 5.72 1080.59 519.5 1.09 1068.99 953.0 0.00 1094.16 496.8 2.35 

24 1158.06 389.6 2.03 1177.28 132.7 3.72 1143.88 1064.3 0.78 1135.05 841.3 0.00 1157.30 129.9 1.96 

25 1428.74 3007.9 3.07 1470.11 373.2 6.06 1403.33 2319.5 1.24 1386.16 1306.0 0.00 1423.94 1002.6 2.73 

26 1427.91 4379.0 4.98 1431.32 499.0 5.23 1374.49 1491.2 1.05 1360.19 1240.3 0.00 1387.02 1459.4 1.97 

27 1400.46 1898.3 2.79 1445.64 371.4 6.10 1378.13 4163.8 1.15 1362.50 1242.3 0.00 1396.34 632.8 2.48 

28 2734.60 10800.8 2.70 2808.10 979.8 5.46 2677.71 8640.1 0.57 2662.59 2423.3 0.00 2683.39 3600.0 0.78 

29 2361.32 10800.9 4.80 2396.78 1150.4 6.37 2273.25 5484.3 0.89 2253.26 2672.8 0.00 2309.20 3600.0 2.48 

30 1906.16 10800.7 4.10 1983.48 1699.0 8.32 1858.69 4676.9 1.51 1831.09 2502.0 0.00 1876.39 3600.0 2.47 

31 2431.13 10800.8 4.18 2497.25 4368.2 7.02 2370.77 5845.4 1.59 2333.55 2760.8 0.00 2390.12 3600.0 2.42 

32 2400.06 10800.6 4.96 2438.65 2445.8 6.65 2332.28 9433.2 2.00 2286.62 2664.0 0.00 2337.85 3600.0 2.24 

33 2467.61 10800.6 4.72 2543.24 2053.7 7.93 2404.52 5662.5 2.04 2356.37 2614.5 0.00 2413.23 3600.0 2.41 

34 1272.29 10800.7 5.84 1276.27 3443.5 6.17 1231.90 13141.8 2.48 1202.10 2825.8 0.00 1241.73 3600.0 3.30 

35 1612.42 10800.7 10.00 1606.38 4560.8 9.59 1500.97 8989.6 2.40 1465.77 3053.0 0.00 1593.32 3600.0 8.70 

36 1846.66 10800.8 5.39 1850.50 3667.1 5.61 1774.94 10059.6 1.30 1752.16 3282.5 0.00 1891.36 3600.0 7.94 

Avg   2.55   4.28   0.69   0.01   2.25 
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The allowed CPU time for LNS+6CH is set to one third of the CPU time consumed by the ACO 

algorithm of Fuellerer et al. (2009) but not less than 5 seconds. For each algorithm, the average total 

travel distance and average computation time (averaged over Classes 2–5) are provided. For each 

problem, the minimum average total travel distance value is marked in bold. The gap in percent is 

calculated as (avg-ttd / min-avg-ttd – 1)*100%. 

The results show that LNS+6CH performs better than the “older” algorithms ACO (0.30%) and 

EGTS + LFBH (2.03%) but cannot reach the solution quality of the “newer” algorithms PRMP 

(1.56%) and VNS (2.24%). Nevertheless, these gaps are small and the computation times used for 

LNS+6CH are comparable to those of the other algorithms, so LNS+6CH can be considered as “state 

of the art” procedure for solving the 2L-CVRP.  

5.2 Benchmark instances for 2L-PDP 

The 60 new 2L-PDP instances were generated based on the 2L-CVRP instances by Gendreau et al. 

(2008). First 20 2L-CVRP instances with 25 to 150 customers were selected as shown in Table 8.  

 

Table 8: 2L-CVRP instances used to create new 2L-PDP benchmark instances. 

Average item count 

per request 

Customer count 

25 50 75 100 150 

1.5 09-2 19-2 21-2 25-2 30-2 

2.0 09-3 19-3 21-3 25-3 30-3 

2.5 09-4 19-4 21-4 25-4 30-4 

3.0 09-5 19-5 21-5 25-5 30-5 

 

For each of the selected 2L-CVRP instances, three 2L-PDP instances were created with different 

characteristics regarding the distribution of pickup and delivery points of the requests. In the first vari-

ant "Random", the sites are uniformly distributed in a rectangular section of the plane, while they are 

clustered in the other variants. In the second variant "Mixed clusters", individual clusters may contain 

pickup as well as delivery points, while only sites of one sort can occur in an individual cluster of the 

third variant "Pure clusters". The three types of 2L-PDP instances are denoted by the suffixes “-Rnd”, 

“-Mix” and “-Pur”, e.g. the instances constructed based on 09-2 are denoted with 09-2-Rnd, 09-2-Mix 

and 09-2-Pur. 

 As in the original 2L-CVRP instances, each four 2L-PDP instances for the same problem number 

and the same distribution variant (e.g. 09-2-Rnd to 09-5-Rnd) share the same node set. The item sets, 

the requests weights and the dimension of the loading areas (L = 40, W = 20) were taken over from the 

original instances without any change (see Table 9). The vehicles weight capacity was slightly adapted 

to ensure that the weight constraint (C4) does not become redundant but a good utilization of the load-

ing area is still possible and the packing task is not too easy. The maximum route length was defined 

so that best solutions found by the hybrid algorithms contain a reasonable number of routes (from 3 to 
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15 routes depending on the size of the instance). The characteristics of the 2L-PDP instances are sum-

marized in Table 9. The instances are offered at the website 

http://www.mansci.ovgu.de/Forschung/Materialien.html. 

 

Table 9: Overview of the new 2L-PDP benchmark instances. 

Parameter Value Remark 

Total number of instances  60  

Request number per instance 25 / 50 / 75 / 100 / 150 12 instances each 

Node number per instance 50 / 100 / 150 / 200 / 300 12 instances each 

Average number of items per request 1.5 / 2.0 / 2.5 / 3.0 15 instances each 

Distribution variants of pickup / delivery points Random / Pure Cluster / Mixed Cluster 20 instances each 

5.3 Computational results for the 2L-PDP 

The detailed results for the 2L-PDP instances regarding total travel distance (ttd) are presented in 

Table 10 and 11. The structure for both tables is identical, Table 10 covers the “Rotate” variant where 

90° rotations of the items are allowed, while Table 11 corresponds to the “NoRotate” variant with the 

additional constraint (C7). 

Table 10: Results (travel distances) for different variants of 2L-PDP  (“Rotate” variant). 

Instance 1D Unrestricted Simultaneous Packing Independent Partial Routes 

type 
req. 

n 

items

m 

CPU 

sec 
avg-ttd avg-ttd   gap %  

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 

09-2 25 40 30 786.63 823.83 4.70 156.62 962.75 22.97 - 1007.82 28.41 - 

09-3 25 61 30 812.82 849.68 4.58 158.31 971.18 19.95 - 999.83 23.25 - 

09-4 25 63 30 801.42 845.59 5.37 145.94 995.88 24.76 - 1017.64 27.33 - 

09-5 25 91 30 772.90 785.15 1.54 185.65 900.69 16.77 - 975.16 25.96 - 

19-2 50 82 60 1215.46 1283.19 5.53 175.56 1527.66 26.03 - 1595.75 31.31 - 

19-3 50 103 60 1257.50 1299.03 3.30 183.71 1548.52 23.43 - 1603.02 27.67 - 

19-4 50 134 60 1277.66 1339.93 4.91 178.30 1580.34 23.70 - 1655.35 29.44 - 

19-5 50 157 60 1113.60 1136.04 1.99 268.14 1410.24 26.86 - 1495.82 33.92 - 

21-2 75 114 120 1659.17 1745.65 5.45 201.10 2086.47 25.66 - 2113.70 27.40 - 

21-3 75 164 120 1845.22 1952.08 5.72 182.00 2236.64 20.96 - 2259.65 22.28 - 

21-4 75 168 120 1683.96 1735.30 2.98 191.06 2098.60 24.43 - 2126.25 26.06 - 

21-5 75 202 120 1560.33 1596.65 2.39 258.28 1970.56 26.13 - 2024.57 29.64 - 

25-2 100 157 300 2254.38 2398.23 6.39 176.77 2878.46 27.57 - 2944.73 30.60 - 

25-3 100 212 300 2258.33 2348.21 3.97 204.74 2844.93 25.84 - 2909.35 28.81 - 

25-4 100 254 300 2274.79 2350.94 3.36 190.97 2842.27 24.92 - 2913.71 28.19 - 

25-5 100 311 300 2009.49 2043.85 1.71 271.30 2654.88 31.81 - 2736.86 36.05 - 

30-2 150 225 900 3018.56 3169.07 5.00 191.66 3844.96 27.32 - 3900.22 29.20 - 

30-3 150 298 900 3182.12 3313.98 4.15 190.92 3958.25 24.37 - 4027.43 26.60 - 

30-4 150 366 900 3144.45 3251.56 3.41 194.16 3913.52 24.43 - 3953.07 25.74 - 

30-5 150 433 900 2772.60 2821.62 1.72 274.09 3540.44 27.61 - 3613.64 30.34 - 

Average      3.91 198.96  24.78   28.41  

http://www.mansci.ovgu.de/Forschung/Materialien.html
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Table 11: Results (travel distances) for different variants of 2L-PDP (“NoRotate” variant). 

Instance 1D Unrestricted Simultaneous Packing Independent Partial Routes 

type 
req. 

n 

items

m 

CPU 

sec 
avg-ttd avg-ttd   gap %  

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 

09-2 25 40 30 786.63 888.97 12.77 127.93 1015.79 29.61 - 1049.79 33.72 - 

09-3 25 61 30 812.82 894.75 9.79 153.85 1021.14 25.96 - 1060.53 30.56 - 

09-4 25 63 30 801.42 892.24 10.93 106.92 1013.19 26.90 - 1027.84 28.63 - 

09-5 25 91 30 772.90 785.12 1.59 180.01 901.34 16.85 - 979.45 26.51 - 

19-2 50 82 60 1215.46 1340.42 10.41 179.32 1594.17 31.72 - 1651.59 36.14 - 

19-3 50 103 60 1257.50 1347.99 7.27 180.90 1609.69 28.31 - 1653.40 31.92 - 

19-4 50 134 60 1277.66 1371.68 7.40 162.01 1628.44 27.71 - 1684.76 31.88 - 

19-5 50 157 60 1113.60 1152.01 3.43 231.37 1437.16 29.42 - 1534.23 37.52 - 

21-2 75 114 120 1659.17 1810.71 9.27 203.86 2172.99 30.97 - 2219.16 33.90 - 

21-3 75 164 120 1845.22 1993.00 7.97 177.08 2311.73 25.08 - 2338.55 26.57 - 

21-4 75 168 120 1683.96 1771.38 5.12 170.97 2140.80 26.98 - 2172.33 28.86 - 

21-5 75 202 120 1560.33 1632.27 4.70 229.42 2004.40 28.31 - 2043.14 30.89 - 

25-2 100 157 300 2254.38 2526.46 12.11 170.78 3005.40 33.20 - 3088.52 36.98 - 

25-3 100 212 300 2258.33 2443.66 8.19 192.45 2963.90 31.14 - 3025.99 33.99 - 

25-4 100 254 300 2274.79 2406.40 5.78 175.17 2929.75 28.80 - 2988.75 31.53 - 

25-5 100 311 300 2009.49 2075.81 3.31 233.85 2683.32 33.21 - 2770.52 37.70 - 

30-2 150 225 900 3018.56 3315.24 9.88 171.31 3990.33 32.15 - 4028.47 33.45 - 

30-3 150 298 900 3182.12 3434.56 7.94 177.21 4094.93 28.69 - 4148.72 30.42 - 

30-4 150 366 900 3144.45 3344.72 6.38 185.50 4048.24 28.72 - 4084.07 29.93 - 

30-5 150 433 900 2772.60 2865.08 3.29 243.84 3602.58 29.87 - 3668.91 32.38 - 

Average      7.38 182.69  28.68   32.17  

 

In the leftmost column of both tables, the instance types are listed. The next three columns show 

the number of requests, the number of items and the allowed CPU time, which varies from 30 to 900 

seconds depending on the size of the instance (apart from that, the allowed computation time for the 

1D variant is set to only 20% of the normal value). The fifth column shows the total travel distances 

for the 1D variant for which only the weight constraint (C4), and the routing constraints (C5) and (C6) 

are considered and no packing check will be done (only the total item area will still be checked). In the 

following nine columns, the total travel distances, the gaps and the reloading quantities are indicated 

for the Unrestricted variant and also for the two hybrid algorithms (Simultaneous Packing / Independ-

ent Partial Routes) for the original problem variant. In the Unrestricted, variant the constraints (C1) – 

(C3) are omitted while the others constraints, especially the need to find valid packing plans, are still 

in force. In this variant reloading effort at each pickup or delivery point can occur, i.e. temporary or 

permanent changes of placements of items which do not belong to the loaded / unloaded request may 

happen. In the Simultaneous Packing and Independent Partial Routes solution approach all constraints 

are in force as described in Chapter 3, where all reloading effort is ruled out by the constraints (C1) – 

(C3). In the Simultaneous Packing approach, the reloading ban constraint is enforced by a new type of 

packing procedure, while in the Independent Partial Routes approach the reloading ban constraint (C3) 

is enforced by an additional routing condition instead of the simultaneous packing checks which re-
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duces the numerical effort but restricts the search space more. All presented total travel distances are 

mean values over five runs. To keep the tables compact the results are averaged, furthermore, over all 

instances of the same type, e.g. “09-2” stands for the three 2L-PDP instances which are derived from 

the original 2L-CVRP instance 09-2. The corresponding gaps are calculated as 

(ttd – ttd1D) / ttd1D * 100 (%). The reloading effort is given as percentage of the total item area (= sum 

of the area of all items in the instance). If an item is reloaded, say, at three nodes in the route, then the 

area of the item is counted three times. Thus it may occur that the reloading effort exceeds 100%. In 

the last lines of Tables 10 and 11, the gap values of the 2L-PDP variants are averaged over the 60 in-

stances. Detailed results for each single instance are presented in Tables 13 and 14 of appendix A. 

Summarizing the results for the “Rotate” problem variant, we can state that the travel distances in-

crease significantly increases if the 2L-PDP instances are solved instead of the corresponding 1D-PDP 

instances. For the Unrestricted variant, the total travel distances grow on average by 3.91% compared 

to the 1D case. For the original problem variant, the mean gap is even higher and amounts to 24.78% 

(Simultaneous Packing approach) and 28.41% (Independent Partial Routes approach), respectively. 

For the Unrestricted variant arises a reloading effort of 198.96% on average, which means that each 

item was reloaded (on average) nearly two times during its route, while for the two new hybrid algo-

rithms for the original problem variant no reloading effort occurs by definition. So we come to the 

conclusion that avoiding any reloading effort leads to increase of the travel costs of approximately 

20% or the other way round, we can save approximately 20% of the travel costs if we are willing to 

pay this in form of the additional reloading effort. The comparison between the two new hybrid algo-

rithms shows that the more complex Simultaneous Packing approach performs 2.83% (124.78% to 

128.41%) better than the simpler Independent Partial Routes approach if no reloading is allowed. This 

result coincides with the expectation formulated in section 4 (see Table 1). 

For the “NoRotate” problem variant, the results regarding total travel distance show gaps which 

are approximately 4% points larger than in the “Rotate” variant. This result is plausible because the 

packing task without the possibility to rotate items is more difficult to solve. This leads to an addition-

al restriction of the solution space and an increase of the best objective function value. In case of omit-

ting the constraints (C1) – (C3), the “NoRotate” problem variant shows a smaller reloading effort 

(182.69% to 198.96%) because the longer routes lead to generally “less occupied” loading areas and to 

less situations where reloading effort can occur. Furthermore, the results of the “NoRotate” variant 

confirm the conclusions we made in the previous paragraph. 

In Table 12, the average computing times to find the best solution and the average total number of 

iterations executed are shown for the two new hybrid algorithms. Again the results are averaged over 

all instances of the same type, while the detailed results are presented in Table 15 of Appendix A. The 

times are given as absolute values and as percentages of the allowed computing time per instance. In 

the last column the ratio of executed iterations of both hybrid algorithms is shown (iterationsSP / itera-

tionsIPR). All values are averaged over five runs. The results show that the simpler Independent Partial 

http://www.dict.cc/englisch-deutsch/the.html
http://www.dict.cc/englisch-deutsch/other.html
http://www.dict.cc/englisch-deutsch/way.html
http://www.dict.cc/englisch-deutsch/round.html
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Routes approach only needs 44.78% of the computing time on average to find the best solution while 

the Simultaneous Packing approach needs 48.63% to find the best solution. The comparison of total 

executed iterations shows that the Simultaneous Packing approach can execute only approximately 

40% of the iterations of the other approach in the same computing time. This shows that the Simulta-

neous Packing approach is more expensive in terms of CPU usage than the Independent Partial Routes 

approach because of the more complex packing algorithm. On the other hand, there may be still poten-

tial for further improvements with the Simultaneous Packing approach if more CPU time would be 

allowed (especially for the instances with 150 requests). Again, this result coincide with the expecta-

tion formulated in section 4 (see Table 1). 

 

Table 12: Total iteration numbers and computing times to find the best solution (“Rotate” variant). 

Instance Independent Partial Routes Simultaneous Packing 
Ratio 

    iterations type 
req. 

n 

items

m 

CPU 

sec 

 Runtime    

to best 

Runtime to 

best in % 

Total     

iterations 

 Runtime    

to best 

  Runtime to 

best in % 

Total     

iterations 

09-2 25 40 30 3.93 13.10 743407.67 3.38 11.27 316799.00 0.43 

09-3 25 61 30 5.57 18.58 760754.67 4.41 14.69 325637.33 0.43 

09-4 25 63 30 5.04 16.79 737302.00 4.85 16.16 322605.67 0.44 

09-5 25 91 30 4.69 15.63 744638.00 1.75 5.83 281710.67 0.38 

19-2 50 82 60 20.80 34.67 318347.67 18.74 31.23 121372.67 0.38 

19-3 50 103 60 16.93 28.21 319906.33 24.49 40.82 125209.33 0.39 

19-4 50 134 60 19.87 33.12 312806.33 23.58 39.29 124830.00 0.40 

19-5 50 157 60 12.88 21.46 267537.00 17.10 28.49 95587.33 0.36 

21-2 75 114 120 56.77 47.31 228759.33 69.26 57.72 85333.33 0.37 

21-3 75 164 120 70.48 58.73 250279.67 70.77 58.98 101774.67 0.40 

21-4 75 168 120 66.60 55.50 204657.00 73.52 61.26 71585.67 0.35 

21-5 75 202 120 59.60 49.67 178960.33 71.32 59.43 63674.33 0.35 

25-2 100 157 300 177.60 59.20 357548.33 195.71 65.24 141081.33 0.39 

25-3 100 212 300 179.42 59.81 347215.00 198.79 66.26 141376.00 0.41 

25-4 100 254 300 184.13 61.38 330252.00 160.52 53.51 137278.00 0.42 

25-5 100 311 300 169.64 56.55 265729.67 181.00 60.33 103366.33 0.39 

30-2 150 225 900 626.13 69.57 389412.33 661.43 73.49 152337.67 0.39 

30-3 150 298 900 630.90 70.10 378192.67 725.95 80.66 163377.33 0.43 

30-4 150 366 900 634.83 70.54 354757.67 717.30 79.70 149151.33 0.42 

30-5 150 433 900 500.48 55.61 286010.67 614.65 68.29 111248.33 0.39 

Average     44.78   48.63  0.40 

6 Conclusions and future work  

In this paper, the vehicle routing problem with pickup and delivery (PDP) has been extended to an 

integrated vehicle routing and loading problem with 2D rectangular items to be transported in homo-

geneous vehicles on a rectangular 2D loading area (2L-PDP). In the problem formulation, we focused 

on the question under which conditions any reloading effort, i.e. any movement of items after loading 

and before unloading, can be avoided. It turned out that the LIFO constraints for pickup and delivery 
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points are not sufficient. Instead, the new reloading ban constraint was required to rule out any reload-

ing effort. 

Two solution approaches implemented as hybrid algorithms consisting of a routing and a packing 

procedure were proposed to tackle the 2L-PDP. In the first solution approach (Independent Partial 

Routes), a large neighborhood search procedure for routing is combined with a packing procedure  

using six well-known constructive packing heuristics. To ensure the LIFO constraint at delivery points 

and the reloading ban constraint the search space must be restricted to routes which are fulfilling two 

additional requirements (1) and (2) (see Section 4.2). In the second more complex solution approach 

(Simultaneous Packing), basically the same routing procedure is combined with a new type of packing 

procedure which is able to construct a series of interrelated packing plans fulfilling the reloading ban 

constraint (see Section 4.4). Therefore, in the second approach the additional requirement (1) to the 

routes can be dropped.  

The hybrid algorithms were tested with the well-known 2L-CVRP instances by Gendreau et al. 

(2008) and reached a good solution quality compared to the best 2L-CVRP solution methods available. 

For testing the hybrid 2L-PDP algorithms, 60 2L-PDP instances with up to 150 requests and up to 433 

items were introduced. The results for the 2L-PDP variants are plausible in that the second approach 

performs nearly 3% better than the first solution approach on average. Neglecting LIFO and reloading 

ban constraints (Unrestricted variant) would lead to a reduction of around 20% of the total travel dis-

tance. Put differently, ruling out any reloading has to be paid by a 20% increase of travel distance. 

In future research, a packing procedure based on the second solution approach should be devel-

oped, which is able to observe the LIFO constraint for delivery points, too. This would allow to drop 

also the additional requirement (2) so that a further improvement of the solution quality could be ex-

pected. 
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Appendix A 

 

Table 13: Results (travel distances) for different variants of 2L-PDP  (“Rotate” variant, complete results). 

Instance 1D Unrestricted Simultaneous Packing Independent Partial Routes 

name 
req. 

n 

items

m 

CPU 

sec 
avg-ttd avg-ttd   gap %  

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 

09-2-Rnd 25 40 30 704.24 733.44 4.15 220.87 944.26 34.08 – 944.43 34.11 – 

09-2-Mix 25 40 30 828.46 885.71 6.91 154.00 1025.23 23.75 – 1098.42 32.59 – 

09-2-Pur 25 40 30 827.21 852.33 3.04 95.01 918.75 11.07 – 980.59 18.54 – 

09-3-Rnd 25 61 30 727.29 755.03 3.81 167.18 944.26 29.83 – 949.75 30.59 – 

09-3-Mix 25 61 30 881.69 892.55 1.23 167.03 1034.77 17.36 – 1115.25 26.49 – 

09-3-Pur 25 61 30 829.47 901.47 8.68 140.71 934.50 12.66 – 934.50 12.66 – 

09-4-Rnd 25 63 30 709.10 730.40 3.00 174.54 945.28 33.31 – 945.28 33.31 – 

09-4-Mix 25 63 30 847.03 905.10 6.86 145.93 1045.78 23.46 – 1111.18 31.19 – 

09-4-Pur 25 63 30 848.14 901.27 6.26 117.35 996.58 17.50 – 996.46 17.49 – 

09-5-Rnd 25 91 30 706.07 709.09 0.43 205.65 869.40 23.13 – 869.40 23.13 – 

09-5-Mix 25 91 30 821.05 833.10 1.47 155.85 955.09 16.33 – 1098.32 33.77 – 

09-5-Pur 25 91 30 791.58 813.27 2.74 195.45 877.58 10.86 – 957.75 20.99 – 

19-2-Rnd 50 82 60 1123.94 1212.26 7.86 197.88 1590.74 41.53 – 1594.11 41.83 – 

19-2-Mix 50 82 60 1434.45 1517.19 5.77 181.75 1733.38 20.84 – 1865.05 30.02 – 

19-2-Pur 50 82 60 1087.98 1120.11 2.95 147.06 1258.88 15.71 – 1328.09 22.07 – 

19-3-Rnd 50 103 60 1188.44 1224.59 3.04 227.07 1613.54 35.77 – 1612.66 35.70 – 

19-3-Mix 50 103 60 1484.52 1534.46 3.36 191.25 1748.10 17.76 – 1839.38 23.90 – 

19-3-Pur 50 103 60 1099.54 1138.03 3.50 132.82 1283.92 16.77 – 1357.02 23.42 – 

19-4-Rnd 50 134 60 1213.39 1246.89 2.76 200.90 1633.25 34.60 – 1641.95 35.32 – 

19-4-Mix 50 134 60 1480.96 1554.61 4.97 177.80 1794.54 21.17 – 1917.66 29.49 – 

19-4-Pur 50 134 60 1138.63 1218.30 7.00 156.21 1313.23 15.33 – 1406.45 23.52 – 

19-5-Rnd 50 157 60 1060.30 1079.21 1.78 327.44 1544.18 45.64 – 1544.28 45.65 – 

19-5-Mix 50 157 60 1304.16 1334.05 2.29 271.72 1562.40 19.80 – 1761.23 35.05 – 

19-5-Pur 50 157 60 976.34 994.85 1.90 205.26 1124.14 15.14 – 1181.94 21.06 – 

21-2-Rnd 75 114 120 1767.76 1828.34 3.43 225.93 2338.90 32.31 – 2340.32 32.39 – 

21-2-Mix 75 114 120 1799.79 1877.38 4.31 231.19 2172.83 20.73 – 2209.18 22.75 – 

21-2-Pur 75 114 120 1409.95 1531.23 8.60 146.17 1747.68 23.95 – 1791.59 27.07 – 

21-3-Rnd 75 164 120 1971.75 2053.05 4.12 195.62 2465.74 25.05 – 2464.34 24.98 – 

21-3-Mix 75 164 120 1968.64 2134.77 8.44 191.60 2374.29 20.61 – 2407.09 22.27 – 

21-3-Pur 75 164 120 1595.27 1668.42 4.59 158.80 1869.91 17.22 – 1907.51 19.57 – 

21-4-Rnd 75 168 120 1743.98 1817.47 4.21 207.66 2341.08 34.24 – 2323.37 33.22 – 

21-4-Mix 75 168 120 1815.20 1871.71 3.11 209.61 2174.64 19.80 – 2244.16 23.63 – 

21-4-Pur 75 168 120 1492.70 1516.72 1.61 155.89 1780.08 19.25 – 1811.23 21.34 – 

21-5-Rnd 75 202 120 1630.90 1659.14 1.73 280.62 2237.01 37.16 – 2250.07 37.96 – 

21-5-Mix 75 202 120 1728.91 1765.75 2.13 262.50 2067.03 19.56 – 2154.49 24.62 – 

21-5-Pur 75 202 120 1321.19 1365.06 3.32 231.73 1607.64 21.68 – 1669.15 26.34 – 

25-2-Rnd 100 157 300 2417.89 2559.98 5.88 200.45 3104.05 28.38 – 3106.46 28.48 – 

25-2-Mix 100 157 300 2223.29 2380.69 7.08 199.64 2948.81 32.63 – 3081.46 38.60 – 

25-2-Pur 100 157 300 2121.95 2254.02 6.22 130.20 2582.53 21.71 – 2646.27 24.71 – 

25-3-Rnd 100 212 300 2423.59 2528.47 4.33 206.07 3105.41 28.13 – 3098.09 27.83 – 

25-3-Mix 100 212 300 2196.52 2274.95 3.57 242.74 2906.68 32.33 – 3045.32 38.64 – 
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25-3-Pur 100 212 300 2154.88 2241.20 4.01 165.41 2522.70 17.07 – 2584.63 19.94 – 

25-4-Rnd 100 254 300 2471.34 2545.58 3.00 191.98 3088.07 24.95 – 3095.72 25.26 – 

25-4-Mix 100 254 300 2186.82 2269.58 3.78 231.34 2886.40 31.99 – 3035.13 38.79 – 

25-4-Pur 100 254 300 2166.21 2237.66 3.30 149.58 2552.36 17.83 – 2610.30 20.50 – 

25-5-Rnd 100 311 300 2146.53 2185.33 1.81 269.22 2946.79 37.28 – 2929.42 36.47 – 

25-5-Mix 100 311 300 1981.35 2013.81 1.64 308.35 2733.71 37.97 – 2889.13 45.82 – 

25-5-Pur 100 311 300 1900.61 1932.41 1.67 236.32 2284.15 20.18 – 2392.03 25.86 – 

30-2-Rnd 150 225 900 3212.91 3357.04 4.49 192.59 4125.77 28.41 – 4127.65 28.47 – 

30-2-Mix 150 225 900 2941.75 3085.51 4.89 246.16 3888.60 32.19 – 3989.23 35.61 – 

30-2-Pur 150 225 900 2901.00 3064.66 5.64 136.23 3520.50 21.35 – 3583.79 23.54 – 

30-3-Rnd 150 298 900 3319.29 3458.27 4.19 195.97 4218.74 27.10 – 4224.18 27.26 – 

30-3-Mix 150 298 900 3085.68 3237.63 4.92 232.76 3999.59 29.62 – 4158.31 34.76 – 

30-3-Pur 150 298 900 3141.39 3246.05 3.33 144.04 3656.44 16.40 – 3699.78 17.78 – 

30-4-Rnd 150 366 900 3323.61 3432.26 3.27 206.47 4189.11 26.04 – 4181.14 25.80 – 

30-4-Mix 150 366 900 3038.70 3126.83 2.90 229.36 3910.82 28.70 – 4021.36 32.34 – 

30-4-Pur 150 366 900 3071.03 3195.58 4.06 146.64 3640.62 18.55 – 3656.72 19.07 – 

30-5-Rnd 150 433 900 2955.31 3051.51 3.26 275.64 3889.38 31.61 – 3892.39 31.71 – 

30-5-Mix 150 433 900 2660.34 2700.66 1.52 322.03 3577.25 34.47 – 3731.25 40.25 – 

30-5-Pur 150 433 900 2702.15 2712.68 0.39 224.58 3154.68 16.75 – 3217.27 19.06 – 

Average      3.91 198.96  24.78   28.41  

 

 

      Table 14: Results (travel distances) for different variants of 2L-PDP (“NoRotate” variant, complete results). 

Instance 1D Unrestricted Simultaneous Packing Independent Partial Routes 

name 
req. 

n 

items

m 

CPU 

sec 
avg-ttd avg-ttd   gap %  

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 
avg-ttd   gap % 

reloading 

effort 

09-2-Rnd 25 40 30 704.24 762.44 8.27 136.43 977.09 38.74 – 977.09 38.74 – 

09-2-Mix 25 40 30 828.46 951.79 14.89 148.06 1065.49 28.61 – 1107.33 33.66 – 

09-2-Pur 25 40 30 827.21 952.69 15.17 99.29 1004.77 21.47 – 1064.96 28.74 – 

09-3-Rnd 25 61 30 727.29 752.41 3.45 162.73 963.25 32.44 – 963.25 32.44 – 

09-3-Mix 25 61 30 881.69 977.87 10.91 161.75 1086.04 23.18 – 1147.82 30.18 – 

09-3-Pur 25 61 30 829.47 953.98 15.01 137.09 1014.14 22.26 – 1070.50 29.06 – 

09-4-Rnd 25 63 30 709.10 737.21 3.96 152.77 958.60 35.19 – 958.60 35.19 – 

09-4-Mix 25 63 30 847.03 989.50 16.82 87.39 1074.08 26.81 – 1111.18 31.19 – 

09-4-Pur 25 63 30 848.14 950.02 12.01 80.60 1006.88 18.72 – 1013.73 19.52 – 

09-5-Rnd 25 91 30 706.07 716.79 1.52 189.33 869.40 23.13 – 869.40 23.13 – 

09-5-Mix 25 91 30 821.05 823.11 0.25 188.69 957.04 16.56 – 1098.42 33.78 – 

09-5-Pur 25 91 30 791.58 815.46 3.02 162.02 877.58 10.86 – 970.54 22.61 – 

19-2-Rnd 50 82 60 1123.94 1256.20 11.77 198.62 1651.75 46.96 – 1657.00 47.43 – 

19-2-Mix 50 82 60 1434.45 1561.96 8.89 195.70 1782.44 24.26 – 1897.36 32.27 – 

19-2-Pur 50 82 60 1087.98 1203.09 10.58 143.66 1348.33 23.93 – 1400.42 28.72 – 

19-3-Rnd 50 103 60 1188.44 1258.80 5.92 201.45 1650.19 38.85 – 1651.61 38.97 – 

19-3-Mix 50 103 60 1484.52 1586.18 6.85 186.91 1824.13 22.88 – 1870.79 26.02 – 

19-3-Pur 50 103 60 1099.54 1198.98 9.04 154.32 1354.76 23.21 – 1437.80 30.76 – 

19-4-Rnd 50 134 60 1213.39 1275.84 5.15 186.71 1659.92 36.80 – 1666.77 37.36 – 

19-4-Mix 50 134 60 1480.96 1591.69 7.48 173.25 1819.19 22.84 – 1932.04 30.46 – 

19-4-Pur 50 134 60 1138.63 1247.50 9.56 126.07 1406.21 23.50 – 1455.46 27.83 – 
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19-5-Rnd 50 157 60 1060.30 1093.82 3.16 276.44 1563.10 47.42 – 1567.80 47.86 – 

19-5-Mix 50 157 60 1304.16 1352.91 3.74 228.17 1578.70 21.05 – 1792.71 37.46 – 

19-5-Pur 50 157 60 976.34 1009.30 3.38 189.50 1169.67 19.80 – 1242.20 27.23 – 

21-2-Rnd 75 114 120 1767.76 1914.73 8.31 219.04 2427.36 37.31 – 2450.61 38.63 – 

21-2-Mix 75 114 120 1799.79 1951.98 8.46 226.31 2251.38 25.09 – 2297.14 27.63 – 

21-2-Pur 75 114 120 1409.95 1565.43 11.03 166.22 1840.23 30.52 – 1909.73 35.45 – 

21-3-Rnd 75 164 120 1971.75 2089.50 5.97 189.03 2519.17 27.76 – 2521.73 27.89 – 

21-3-Mix 75 164 120 1968.64 2177.43 10.61 190.37 2468.48 25.39 – 2514.22 27.71 – 

21-3-Pur 75 164 120 1595.27 1712.05 7.32 151.83 1947.55 22.08 – 1979.70 24.10 – 

21-4-Rnd 75 168 120 1743.98 1842.86 5.67 186.36 2380.33 36.49 – 2378.51 36.38 – 

21-4-Mix 75 168 120 1815.20 1919.86 5.77 192.46 2211.61 21.84 – 2271.51 25.14 – 

21-4-Pur 75 168 120 1492.70 1551.43 3.93 134.09 1830.46 22.63 – 1866.97 25.07 – 

21-5-Rnd 75 202 120 1630.90 1693.52 3.84 242.49 2266.97 39.00 – 2269.90 39.18 – 

21-5-Mix 75 202 120 1728.91 1803.61 4.32 248.00 2107.93 21.92 – 2164.75 25.21 – 

21-5-Pur 75 202 120 1321.19 1399.67 5.94 197.78 1638.30 24.00 – 1694.79 28.28 – 

25-2-Rnd 100 157 300 2417.89 2678.67 10.79 177.22 3248.80 34.36 – 3260.42 34.85 – 

25-2-Mix 100 157 300 2223.29 2516.00 13.17 189.28 3048.13 37.10 – 3215.23 44.62 – 

25-2-Pur 100 157 300 2121.95 2384.71 12.38 145.85 2719.28 28.15 – 2789.91 31.48 – 

25-3-Rnd 100 212 300 2423.59 2631.36 8.57 209.89 3224.03 33.03 – 3215.21 32.66 – 

25-3-Mix 100 212 300 2196.52 2368.35 7.82 212.11 2991.48 36.19 – 3130.54 42.52 – 

25-3-Pur 100 212 300 2154.88 2331.26 8.19 155.34 2676.20 24.19 – 2732.23 26.79 – 

25-4-Rnd 100 254 300 2471.34 2620.74 6.05 176.39 3165.64 28.09 – 3155.20 27.67 – 

25-4-Mix 100 254 300 2186.82 2289.26 4.68 211.66 2956.18 35.18 – 3090.57 41.33 – 

25-4-Pur 100 254 300 2166.21 2309.21 6.60 137.48 2667.44 23.14 – 2720.49 25.59 – 

25-5-Rnd 100 311 300 2146.53 2210.69 2.99 237.91 2976.51 38.67 – 2983.29 38.98 – 

25-5-Mix 100 311 300 1981.35 2052.81 3.61 274.93 2783.52 40.49 – 2908.70 46.80 – 

25-5-Pur 100 311 300 1900.61 1963.95 3.33 188.71 2289.93 20.48 – 2419.58 27.31 – 

30-2-Rnd 150 225 900 3212.91 3475.64 8.18 175.50 4265.40 32.76 – 4257.73 32.52 – 

30-2-Mix 150 225 900 2941.75 3261.25 10.86 206.96 4051.89 37.74 – 4151.40 41.12 – 

30-2-Pur 150 225 900 2901.00 3208.83 10.61 131.48 3653.69 25.95 – 3676.27 26.72 – 

30-3-Rnd 150 298 900 3319.29 3575.52 7.72 181.68 4320.93 30.18 – 4329.80 30.44 – 

30-3-Mix 150 298 900 3085.68 3365.50 9.07 207.16 4138.23 34.11 – 4252.08 37.80 – 

30-3-Pur 150 298 900 3141.39 3362.66 7.04 142.79 3825.63 21.78 – 3864.27 23.01 – 

30-4-Rnd 150 366 900 3323.61 3525.60 6.08 197.54 4324.26 30.11 – 4291.85 29.13 – 

30-4-Mix 150 366 900 3038.70 3219.18 5.94 217.04 4042.58 33.04 – 4161.23 36.94 – 

30-4-Pur 150 366 900 3071.03 3289.39 7.11 141.92 3777.89 23.02 – 3799.13 23.71 – 

30-5-Rnd 150 433 900 2955.31 3092.13 4.63 247.94 3931.38 33.03 – 3909.83 32.30 – 

30-5-Mix 150 433 900 2660.34 2732.56 2.71 299.78 3637.44 36.73 – 3809.21 43.19 – 

30-5-Pur 150 433 900 2702.15 2770.56 2.53 183.80 3238.91 19.86 – 3287.70 21.67 – 

Average      7.38 182.69  28.68   32.17  
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Table 15: Total iteration numbers and computing times to find the best solution (“Rotate” variant, complete results). 

Instance Independent Partial Routes Simultaneous Packing 
Ratio 

    iterations name 
req. 

n 

items

m 

CPU 

sec 

 Runtime    

to best 

Runtime to 

best in % 

Total     

iterations 

 Runtime    

to best 

  Runtime to 

best in % 

Total     

iterations 

09-2-Rnd 25 40 30 3.14 10.47 677510 4.13 13.77 301744 0.45 

09-2-Mix 25 40 30 1.79 5.97 859628 1.87 6.23 343621 0.40 

09-2-Pur 25 40 30 6.86 22.87 693085 4.14 13.80 305032 0.44 

09-3-Rnd 25 61 30 7.66 25.53 676485 3.46 11.53 296549 0.44 

09-3-Mix 25 61 30 3.42 11.40 870142 1.94 6.47 356203 0.41 

09-3-Pur 25 61 30 5.64 18.80 735637 7.82 26.07 324160 0.44 

09-4-Rnd 25 63 30 3.69 12.30 658966 3.80 12.67 293943 0.45 

09-4-Mix 25 63 30 1.50 5.00 858187 5.32 17.73 358785 0.42 

09-4-Pur 25 63 30 9.92 33.07 694753 5.42 18.07 315089 0.45 

09-5-Rnd 25 91 30 2.50 8.33 660934 0.93 3.10 256483 0.39 

09-5-Mix 25 91 30 7.54 25.13 869122 2.54 8.47 335365 0.39 

09-5-Pur 25 91 30 4.03 13.43 703858 1.78 5.93 253284 0.36 

19-2-Rnd 50 82 60 18.15 30.25 301668 27.04 45.07 121480 0.40 

19-2-Mix 50 82 60 29.48 49.13 377188 7.55 12.58 147204 0.39 

19-2-Pur 50 82 60 14.77 24.62 276187 21.63 36.05 95434 0.35 

19-3-Rnd 50 103 60 25.65 42.75 307649 26.88 44.80 124157 0.40 

19-3-Mix 50 103 60 9.89 16.48 365401 10.74 17.90 154127 0.42 

19-3-Pur 50 103 60 15.24 25.40 286669 35.86 59.77 97344 0.34 

19-4-Rnd 50 134 60 18.80 31.33 291448 16.73 27.88 123299 0.42 

19-4-Mix 50 134 60 22.12 36.87 369146 29.31 48.85 150056 0.41 

19-4-Pur 50 134 60 18.70 31.17 277825 24.69 41.15 101135 0.36 

19-5-Rnd 50 157 60 12.59 20.98 227995 16.64 27.73 98035 0.43 

19-5-Mix 50 157 60 9.83 16.38 342502 23.82 39.70 113064 0.33 

19-5-Pur 50 157 60 16.21 27.02 232114 10.83 18.05 75663 0.33 

21-2-Rnd 75 114 120 55.08 45.90 226599 62.27 51.89 99188 0.44 

21-2-Mix 75 114 120 55.68 46.40 269231 69.27 57.73 94611 0.35 

21-2-Pur 75 114 120 59.56 49.63 190448 76.24 63.53 62201 0.33 

21-3-Rnd 75 164 120 57.04 47.53 265594 58.88 49.07 119277 0.45 

21-3-Mix 75 164 120 74.63 62.19 276408 75.12 62.60 113066 0.41 

21-3-Pur 75 164 120 79.77 66.48 208837 78.32 65.27 72981 0.35 

21-4-Rnd 75 168 120 36.28 30.23 220580 59.64 49.70 89828 0.41 

21-4-Mix 75 168 120 72.46 60.38 232932 80.12 66.77 75745 0.33 

21-4-Pur 75 168 120 91.05 75.88 160459 80.79 67.33 49184 0.31 

21-5-Rnd 75 202 120 80.05 66.71 179722 52.74 43.95 82425 0.46 

21-5-Mix 75 202 120 40.37 33.64 205508 92.29 76.91 69756 0.34 

21-5-Pur 75 202 120 58.39 48.66 151651 68.93 57.44 38842 0.26 

25-2-Rnd 100 157 300 166.90 55.63 360736 211.72 70.57 153021 0.42 

25-2-Mix 100 157 300 186.16 62.05 396084 188.72 62.91 150189 0.38 

25-2-Pur 100 157 300 179.73 59.91 315825 186.68 62.23 120034 0.38 

25-3-Rnd 100 212 300 211.22 70.41 346793 225.58 75.19 151316 0.44 

25-3-Mix 100 212 300 128.54 42.85 381004 189.64 63.21 148064 0.39 

25-3-Pur 100 212 300 198.51 66.17 313848 181.15 60.38 124748 0.40 

25-4-Rnd 100 254 300 163.23 54.41 329294 141.33 47.11 151164 0.46 

25-4-Mix 100 254 300 139.60 46.53 372671 184.21 61.40 144303 0.39 
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25-4-Pur 100 254 300 249.57 83.19 288791 156.02 52.01 116367 0.40 

25-5-Rnd 100 311 300 182.83 60.94 243853 221.73 73.91 105327 0.43 

25-5-Mix 100 311 300 112.10 37.37 338184 135.55 45.18 122609 0.36 

25-5-Pur 100 311 300 214.00 71.33 215152 185.72 61.91 82163 0.38 

30-2-Rnd 150 225 900 588.85 65.43 387306 748.72 83.19 169808 0.44 

30-2-Mix 150 225 900 639.49 71.05 438919 481.07 53.45 160988 0.37 

30-2-Pur 150 225 900 650.04 72.23 342012 754.51 83.83 126217 0.37 

30-3-Rnd 150 298 900 761.26 84.58 363763 773.34 85.93 175194 0.48 

30-3-Mix 150 298 900 528.54 58.73 428842 666.94 74.10 168398 0.39 

30-3-Pur 150 298 900 602.89 66.99 341973 737.58 81.95 146540 0.43 

30-4-Rnd 150 366 900 626.66 69.63 340395 821.90 91.32 159951 0.47 

30-4-Mix 150 366 900 513.93 57.10 416217 539.58 59.95 164887 0.40 

30-4-Pur 150 366 900 763.90 84.88 307661 790.42 87.82 122616 0.40 

30-5-Rnd 150 433 900 591.70 65.74 270265 525.86 58.43 127891 0.47 

30-5-Mix 150 433 900 357.22 39.69 362924 581.38 64.60 122701 0.34 

30-5-Pur 150 433 900 552.52 61.39 224843 736.71 81.86 83153 0.37 

Average     44.78   48.63  0.40 
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