

University of Magdeburg

School of Computer Science

D
S E
B

Databases

Software
Engineering

and

Dissertation

Personalized Recommender Systems for
Software Product Line Configurations

Author:

Juliana Arriel

June 25, 2018

Reviewers:

Prof. Dr. Gunter Saake

University of Magdeburg, Germany

Prof. Dr. Myra Spiliopoulou

University of Magdeburg, Germany

Prof. Dr. Eduardo Figueiredo

Federal University of Minas Gerais, Brazil

Arriel, Juliana:
Personalized Recommender Systems for Software Product Line Configurations
Dissertation, University of Magdeburg, 2018.

Abstract

Software Product Lines (SPLs) have been employed in the industry as a mass cus-
tomization process that reduces production costs and time-to-market. However, the
inherent complexity and variability of SPLs lead to an exponentially growing amount
of possible products. Thus, especially when dealing with large SPLs, scalability and
performance concerns start to be an issue and specialized assistance becomes crucial
to guide decision makers during product configuration. In this context, SPL config-
uration has been a hot research topic in the last years. In this thesis, we provide an
overview on SPL configuration techniques and, based on our insights, employ recom-
mendation techniques to enable an efficient SPL configuration process and provide
accurate and scalable solutions to decision makers. To this end, we offer four main
contributions. First, we adapt state-of-the-art collaborative-based recommender al-
gorithms to the SPL configuration context. Second, we consider non-functional
properties to improve the efficiency and quality of the recommendations. Third, we
propose an advanced recommender system that relies also on contextual information
to enable reconfiguration at runtime. Fourth, we provide visual support to guide de-
cision makers through an easy and comprehensive configuration process by allowing
them to focus on a limited set of valid and relevant parts of the configuration space.
We empirically demonstrate the usability of the implemented algorithms and tool
in different real-world scenarios from different domains.

Zusammenfassung

Software-Produktlinien (SPLs) wurden in der Industrie zur Massenproduktion in-
dividualisierter Produkte eingesetzt, um Produktionskosten und Time-to-Market
zu reduzieren. Die inhärente Komplexität und Variabilität von SPLs führt je-
doch zu einer exponentiell anwachsenden Menge an möglichen Produkten. Ger-
ade bei großen SPLs sind daher Skalierbarkeit und Performance ein Thema, und
spezialisierte Unterstützung ist entscheidend, um Entscheidungsträger bei der Pro-
duktkonfiguration zu unterstützen. In diesem Zusammenhang war die Konfigura-
tion von SPLs in den letzten Jahren ein heißes Forschungsthema. In dieser Ar-
beit wird einen Überblick über die SPL-Konfigurationstechniken gegeben und auf
Basis der Erkenntnisse mit Hilfe von Recommendersystemen ein effizienter SPL-
Konfigurationsprozess ermöglicht, um Entscheidungsträgern genaue und skalierbare
Lösungen anzubieten. Die Arbeit umfasst dabei vier wesentliche wissenschaftliche
Beiträge. Erstens, es werden moderne kollaborative Empfehlungsalgorithmen an den
SPL-Konfigurationskontext angepasst. Zweitens, es werden nicht-funktionale Eigen-
schaften betrachtet, um die Effizienz und Qualität der Empfehlungen zu verbessern.
Drittens, es wird ein erweitertes Empfehlungssystem vorgeschlagen, das sich auch
auf Kontextinformationen stützt, um Rekonfiguration zur Laufzeit zu ermöglichen.
Viertens, es werden visuelle Unterstützung eingeführt, um Entscheidungsträger durch
einen einfachen und umfassenden Konfigurationsprozess zu führen, indem ihnen er-
laubt wird, sich auf eine begrenzte Anzahl von validen und relevanten Teilen des
Konfigurationsraums zu konzentrieren. Wir demonstrieren empirisch die Anwend-
barkeit der implementierten Algorithmen und Werkzeuge in verschiedenen realen
Szenarien.

Acknowledgements

I would like to thank Gunter Saake and Myra Spiliopoulou for giving me the oppor-
tunity to pursue my Ph.D. under their supervision. Gunter provided me an excellent
research environment and gave me the freedom to follow my own research direction.
Even in busy times, he has always supported me unconditionally. Besides Gunter,
Myra has been a perfect supervisor for my thesis. Myra’s guidance resulted in the
first paper for this thesis and their substantial feedback from her vast knowledge in
recommender systems broadened my view on the Ph.D. topic. Since then, Myra has
been a constant source of support and I highly value her feedback.

I would also like to thank Eduardo Figueiredo, who has guided me since my Master’s
thesis. I am extremely grateful for his collaboration and constructive feedback. He
provided an incredibly in-depth review of the thesis. Evaluating a doctoral thesis is
an arduous task, and I am very appreciative for his feedback.

Special thanks to Pawel Matuszyk, Sandro Schulze and Sebastian Krieter for their
guidance and numerous fruitful discussions. During the last years, we had many
brainstorming sessions that had a major impact on my research. Furthermore, I
would like to thank many colleagues and students for their collaboration, discussions,
and support regarding different aspects of this thesis. Special thanks to Ebrahim
Bagheri, Jabier Martinez and Lina Ochoa. Also, I gratefully acknowledge the fi-
nancial support of the Brazilian National Council for Scientific and Technological
Development (CNPq) for the Ph.D. grant.

Finally, I would like to express my deep gratitude to my advisor Gunter Saake for
giving me the opportunity to join the workgroup Databases and Software Engineer-
ing in Magdeburg. Coming to Magdeburg and being a Ph.D. student at his group
was an incredible experience. I feel honored to have been a part of this workgroup. I
have always felt welcome here. Thanks to everybody in the team. I am also thankful
to the Institute of Computer Science (FIN) for facilitating my research studies by
providing me a nice working space.

I couldn’t have done this without all of you. Thank you!

Contents

Acknowledgements vii

List of Figures xiv

List of Tables xvi

Code Listings xvii

1 Introduction 1

2 Background 5
2.1 Software Product Line Engineering 5

2.1.1 Domain Engineering . 5
2.1.2 Application Engineering . 8

2.2 Collaborative-Based Recommender Systems 9

3 Current Research on Software Product Line Configuration 13
3.1 Preliminaries . 14
3.2 The Review Methodology . 16

3.2.1 Planning the Review . 17
3.2.2 Conducting the Review . 18
3.2.3 Reporting the Results . 21

3.3 Product Configuration Activities . 23
3.4 Product Configuration Mechanisms 28

3.4.1 Mapping Non-Functional Properties 30
3.4.1.1 Non-Functional Properties Specification 30
3.4.1.2 Non-Functional Properties Measurement 34
3.4.1.3 Reuse of Non-Functional Property Measurements . . 36

3.4.2 Mapping Product Requirements 37
3.4.2.1 Defining Stakeholder Preferences 37
3.4.2.2 Defining Product Constraints 40
3.4.2.3 Configuration Language Specification 41

3.4.3 Manual Configuration Process 44
3.4.3.1 Visualization Techniques 44
3.4.3.2 Constraint Checking and Propagation 46
3.4.3.3 Solving Configuration Conflicts 48
3.4.3.4 Mapping Stakeholder Tasks 49
3.4.3.5 Recommender System 49

x Contents

3.4.4 Automatic Configuration Process 51
3.4.4.1 Product Configuration Optimization 51
3.4.4.2 Minimal or Maximal Configuration 57
3.4.4.3 Multi-Step Configuration 57
3.4.4.4 Performance and Scalability Results 58

3.4.5 Configuration Adaptation Process 61
3.4.5.1 Configuration of Multi-Software Product Lines . . . 61
3.4.5.2 Dynamic Product Configuration 63
3.4.5.3 Product Configuration Evolution 64

3.5 Main Findings . 65
3.6 Threats to Validity . 70
3.7 Related Work . 71
3.8 Summary . 72

4 Personalized Software Product Line Configurations 75
4.1 Open Issues in SPL Configuration . 78
4.2 The Proposed Approach . 80

4.2.1 Formal Definitions . 80
4.2.2 An Overview of the Proposed Configuration Process 82
4.2.3 Recommender System Algorithms 83

4.2.3.1 Neighbourhood-Based CF Recommender 83
4.2.3.2 CF with Significance Weighting 85
4.2.3.3 CF with Shrinkage 85
4.2.3.4 CF with Hoeffding Bound 86
4.2.3.5 Average Similarity Recommender 86
4.2.3.6 Matrix Factorization Recommender 86

4.3 Evaluation . 88
4.3.1 Target Software Product Lines and Datasets 88
4.3.2 Experiment Design . 89

4.3.2.1 Parameter Optimization 89
4.3.2.2 Splitting into Training and Test Datasets 90
4.3.2.3 Evaluation Metrics 91
4.3.2.4 Baseline Comparison 92

4.3.3 Analysis of Results and Discussion 92
4.4 Threats to Validity . 97
4.5 Related Work . 98
4.6 Summary . 101

5 Personalized Extended Software Product Line Configurations 103
5.1 Open Issues from Previous Contribution 105
5.2 Hybrid Context-Aware Recommender 105

5.2.1 Formal Definitions . 108
5.2.2 Contextual Modeling . 108
5.2.3 Collaborative-Based Recommender 111

5.3 Experiment Design . 113
5.3.1 Target Software Product Line and Dataset 113
5.3.2 Parameter Optimization . 114
5.3.3 Splitting into Training and Test Datasets 115

Contents xi

5.3.4 Evaluation Metrics . 115
5.4 Analysis of Results and Discussion 116

5.4.1 Approach Effectiveness . 116
5.4.2 Context-Aware Approach Benefits 117
5.4.3 Different Combinations of Contextual Data 119

5.5 Threats to Validity . 120
5.6 Related Work . 120
5.7 Summary . 121

6 Personalized Self-Configuration of Software Product Lines 123
6.1 Open Issues in Self-Configuration of Dynamic Software Product Lines 125
6.2 Tensor-Based Recommender . 127

6.2.1 Modeling Features and Context 127
6.2.2 Using TF for Self-Configuration of SPLs 128

6.3 Experiment Design . 131
6.3.1 Target Software Product Lines and Contexts 132
6.3.2 Evaluation Protocol . 136
6.3.3 Comparison Approaches . 136

6.4 Analysis of Results and Discussion 137
6.4.1 Approach Effectiveness . 137
6.4.2 Contextual vs. Non-Contextual Approaches 139
6.4.3 Approach Performance . 140

6.5 Threats to Validity . 141
6.6 Related Work . 142
6.7 Summary . 143

7 Visual Guidance for Software Product Line Configurations 145
7.1 FeatureIDE Configurator . 147
7.2 Visualization and Selection Mechanisms 149

7.2.1 Information Hiding View . 150
7.2.2 5-Star View . 152
7.2.3 Feature’s Graph View . 153
7.2.4 Non-Functional Property’s Graph View 156

7.3 Evaluation . 157
7.3.1 Approach Effectiveness . 157
7.3.2 Approach Scalability . 161
7.3.3 Approach Performance . 162

7.4 Threats to Validity . 162
7.5 Related Work . 163
7.6 Summary . 165

8 Conclusion and Future Work 167
8.1 Conclusion . 167
8.2 Open Research Directions . 168

A Appendix 171
A.1 Papers Venues . 171
A.2 Studies Grouped by Contribution . 171

xii Contents

A.3 Supported Non-Functional Properties 171

Bibliography 179

List of Figures

2.1 A simplified extended feature model for a smart-home product line
(adapted from Cetina et al. [2009]). 7

3.1 Activities supported by the application engineering phase. 15

3.2 Systematic literature review phases. 17

3.3 Selection procedure of primary studies. 22

3.4 Temporal distribution of primary studies in six years of research on
SPL configuration retrieved in the SLR by year from each venue:
conferences, journals, workshops, and symposiums. 23

3.5 Overview of the activities supported by the SPL configuration process. 24

3.6 Retrieved primary studies that offer support for each activity and
their tool-support distribution. 29

3.7 Evaluation type supported by each activity (ICS: industrial case stud-
ies, ACS: academic case studies, IEX: industrial examples, AEX: aca-
demic examples, REX: randomized examples, OBE: observations and
experiences, EOP: expert opinions, and NEV: no evaluation). 29

3.8 Overview of the mechanisms supported by each SPL configuration
activity. 31

3.9 A sample of non-functional properties attributed to the feature siren
from the smart-home product line illustrated in Figure 2.1. 33

3.10 The semantic annotation of the properties response time and cost for
a specific configuration of a smart-home product for the feature model
in Figure 2.1. 40

3.11 Optimization approaches per technique and year. 53

3.12 EA-based encoding binary string. 55

4.1 Proposed configuration components and their interplay. 76

4.2 A simplified feature model for an ERP SPL. 78

4.3 An overview of the configuration process. 83

xiv List of Figures

4.4 F-Measure achieved by seven different recommender methods on the
ERP dataset (higher values are better). The horizontal axis shows
how much of the current configuration has been completed. The per-
formance is calculated on the remaining part of a configuration. . . . 93

4.5 F-Measure achieved by seven different recommender methods on the
E-Agribusiness dataset. 95

5.1 An overview of our feature-based recommender approach (A1: User-
Based Collaborative Filtering, A2: Feature-Based Collaborative Fil-
tering, A3: User-Based Average Similarity, A4: Feature-Based Aver-
age Similarity, and A5: Matrix Factorization). 106

5.2 F-Measure achieved by eight different recommender methods (A1:
User-Based CF, A2: Feature-Based CF, A3: User-Based AS, A4:
Feature-Based AS, A5: MF, Exp1 and Exp2: domain experts). The
horizontal axis shows how much of the current configuration has been
completed. The performance is calculated on the remaining part of a
configuration. 117

5.3 F-Measure achieved by five contextual (txt) and non-contextual (n-
txt) CF-based recommenders (A1: User-Based CF, A2: Feature-
Based CF, A3: User-Based AS, A4: Feature-Based AS, and A5: MF). 118

5.4 F-Measure achieved by the user-based CF (A1) and BRISMF (A5)
contextual recommender algorithms for different combinations of con-
textual data. 119

6.1 A 3-dimensional example of a tensor factorization model derived from
the SPL in Figure 6.2. Selected features are encoded as 1 and dese-
lected as 0. All other entries (-1 and ?) are unknown features’ interests.127

6.2 A sample of a smart-home SPL adapted from Figure 2.1. 128

6.3 F-Measure achieved by seven different recommender methods on the
Dell laptop dataset (higher values are better). The horizontal axis
shows how much of the current configuration has been completed.
The performance is calculated on the remaining part of a configuration.138

6.4 F-Measure achieved by seven different recommender methods on the
library dataset. 139

7.1 An overview of FeatureIDE’s configuration support: 1 feature model
editor, 2 - 4 configuration editor (2 showing all features, 3 showing
direct children, 4 finalizing configuration). 148

7.2 An overview of the proposed visualizations. 150

7.3 5-star view. 153

7.4 Visualization graphs. 154

List of Tables

3.1 Research questions structured by the PICOC criteria. 18

3.2 Literature supporting the SPL configuration process. 25

3.2 Literature supporting the SPL configuration process. 26

3.2 Literature supporting the SPL configuration process. 27

3.3 Literature supporting the activity: Mapping NFPs (A1a: Non-Functional
Properties Specification, A1b: Non-Functional Properties Measure-
ment, A1c: Reuse of Non-Functional Property Measurements) 32

3.4 Literature supporting the activity: Mapping Product Requirements
(A2a: Define Stakeholders’ Preferences, A2b: Define Product Con-
straints, A2c: Configuration Language Specification). 38

3.5 Literature supporting the activity: Manual Configuration Process
(A3a: Visualization Techniques, A3b: Constraint Checking and Prop-
agation, A3c: Solving Configuration Conflicts, A3d: Mapping Stake-
holder Tasks, A3e: Recommender System). 45

3.6 Literature supporting the activity: Automatic Configuration Process
(A4a: Product Configuration Optimization, A4b: Minimal or Maxi-
mal Configuration, A4c: Multi-Step Configuration). 52

3.7 CP-based encoding. 54

3.8 ILP-based encoding. 56

3.9 Performance and scalability evaluation of each approach (C: prod-
uct constraints, P: stakeholders’ preferences, FM: feature model, OC:
optimization constraints, ET: execution time). 59

3.10 Literature supporting the activity: Configuration Adaptation Process
(A5a: Configuration of Multi-Software Product Lines, A5b: Dynamic
Product Configuration, A5c: Product Configuration Evolution). 61

4.1 A simplified example of a configuration matrix with three previous
configurations (−→c 1,

−→c 2,
−→c 3) and a new partial configuration (−→pc). f1

- f4 denote features of products. 84

4.2 Main properties of the datasets. 89

xvi List of Tables

4.3 Optimal parameter values. 90

4.4 Performance of seven recommender methods w.r.t. F-Measure, pre-
cision and recall on the ERP dataset. The CF-shrinkage algorithm
performs the best w.r.t. all three measures at nearly all stages of a
configuration process. 94

4.5 Performance of seven recommender methods w.r.t. F-Measure, pre-
cision and recall on the E-Agribusiness dataset. The BRISMF algo-
rithm performs the best except for the initial part of a configuration. 96

5.1 Optimal parameter values. 115

6.1 Main properties of the datasets. 132

7.1 Characteristics of the product lines (F: features, M and O: mandatory
and optional features, OR and XOR: alternative non-exclusive and
exclusive groups, CTC: cross-tree-constraints, NFP: non-functional
properties, Height : height of the feature tree, C: valid configurations). 159

7.2 Experiment results from a usability evaluation of FeatureIDE config-
urator without (P1-P5) and with (P6-P10) the proposed visualization
components. 160

A.4 Studies grouped per contribution. 171

A.4 Studies grouped per contribution. 172

A.4 Studies grouped per contribution. 173

A.1 List of journal publications. 174

A.2 List of conference publications. 175

A.3 List of symposium and workshop publications. 176

A.5 NFPs supported by each approach. 177

Code Listings

3.1 Extended variability language adapted from Olaechea et al. [2012] and
Mendonça et al. [2009] for the smart-home product line in Figure 2.1. 42

xviii Code Listings

1. Introduction

Today’s competitive software market requires the industry to understand unique and
particular needs of their customers. Software Product Line (SPL) has proven to be
an efficient and effective strategy for mass customization by exploiting large-scale
reuse. However, although customization has been extensively studied over the past
decades, it remains a source of concerns. In the context of SPLs, additional con-
straints between features and non-functional properties (emerging from large-scale
variability spaces) add one more layer of complexity to the customization process,
a.k.a. configuration process. In this circumstances, to assist users in dealing with
the increased complexity, an easy and comprehensive configuration process becomes
crucial. Previous researchers have proposed several interactive, semi-automatic, and
automatic SPL configuration approaches. Despite their maturity, the current config-
uration process is still not able to fully use the power of customization when dealing
with variability of highly configurable SPLs.

With an interactive SPL configuration tool (known as configurator), users config-
ure personalized products by consecutively selecting desired features based on their
individual needs and SPL constraints. In this context, there are many approaches1

that aim to guide users into a valid configuration, ensuring that any partially config-
ured product is in accordance with the SPL constraints. However, when using those
approaches, features of no importance to the stakeholders also need to be taken
into account [Pereira et al., 2016b]. On this scenario, as most features are interde-
pendent, users must understand the impact of their gradual selections in order to
make valid decisions. However, the amount and complexity of options presented by
interactive approaches may exceed the capability of a user to identify an appropri-
ate configuration. Consequently, this may lead to delays due to users’ exploration of
choices at each step of the configuration process. Thus, especially when dealing with
large SPLs with complex dependencies, it is a tedious task to find a valid feature
combination as product configuration. Therefore, additional support is needed to
guide the users through the configuration process and allow them to focus on valid
and relevant parts of the configuration space.

1For a survey on these approaches, we refer to Pereira et al. [2015].

2 1. Introduction

For the semi-automatic SPL configuration scenario, Galindo et al. [2015a] proposed a
dynamic decision model with a set of questions and a defined set of possible answers.
In a similar scenario, other authors [Asadi et al., 2014, Bagheri and Ensan, 2014a,
Tan et al., 2014a] proposed a pair-wise based decision approach where users are
constantly asked to compare a pair of features and identify their relevance in terms
of satisfying given non-functional requirements. However, while question-based de-
cisions may introduce some vague descriptions and even misleading information to
questionnaires, pair-wise based decisions may introduce inconsistencies in the fea-
ture ranking. Moreover, if the features, or even the set of answers, are of equal
(or no) interest to the user, no support is provided to guide the selection process.
Furthermore, as one feature may contribute to many non-functional requirements,
the amount and complexity of information presented to users can be overwhelming,
and thus, may impede an appropriate choice.

Finally, for the automatic SPL configuration scenario, approaches2 have used con-
straint programming and evolutionary algorithms to automatically derive a con-
figuration in a single step that is in accordance with users product requirements.
Although constraint programming approaches guarantee the optimality of the gen-
erated configuration, due to the NP-hard computational complexity of finding an
optimal variant, exact approaches have inefficient exponential time. On this scenario,
evolutionary algorithms have been deeper studied in order to manage large configu-
ration spaces, deriving near optimal solutions in an efficient polynomial time. How-
ever, when using such approaches, the specification of multiple requirements may
lead to conflicting solutions. For example, a mobile-phone system often achieves a
high security only by raising its cost. Therefore, as these techniques provide a set of
feasible solutions, users may not know which one would be the better choice. In this
context, the current approaches neither guide the users in choosing a suitable solu-
tion nor offer further support for specification of stakeholders’ preferences. Finally,
improvements related to scalability and performance are still needed.

Based on the identified limitations, the envisioned contribution of my doctoral re-
search is therefore to fill the gaps in the literature by proposing a more efficient
configuration process for highly configurable SPLs. To achieve this goal, we propose
for the first time a technique that adopts a collaborative-based recommender sys-
tem that relies on past configurations from previous users to generate personalized
recommendations for a current user. Moreover, this system provides visual support
that allows users to focus on a reduced amount of information from valid and rele-
vant parts of the configuration space. To this end, we aim at answering the following
five research questions:

• RQ1. How do the current studies support the SPL configuration processes with
specific attention on feature-model configuration?

• RQ2. How to use collaborative-based recommendation techniques to predict a
suitable set of features from an SPL based on explicit information from users?

• RQ3. How can we handle the user’s context as part of a personalized collaborative-
based recommender system?

2For a survey on these approaches, we refer to Ochoa et al. [2018, 2017].

3

• RQ4. How can we handle the self-configuration of dynamic SPLs at runtime by
using a collaborative-based recommender system?

• RQ5. How can a state-of-the-art SPL configurator be integrated with the previ-
ously proposed recommender systems?

To address RQ1–5, this thesis presents five major contributions:

• RQ1: In Chapter 3, we conduct a systematic literature review on SPL configura-
tion and classify a corpus of 157 articles. Based on our insights, we define a set of
activities and mechanisms related to the SPL configuration process. Moreover, we
analyze open issues and missing support in SPL configuration to infer a research
agenda to guide future research in this field.

• RQ2: In Chapter 4, we propose a preliminary adaptation of six state-of-the-
art recommender algorithms to the SPL configuration context. We empirically
demonstrate the accuracy results of the implemented algorithms in different do-
main scenarios, based on two real-world datasets of configurations. The results of
our evaluation show that recommender algorithms, such as CF-shrinkage [Bell
et al., 2007], CF-significance weighting [Herlocker et al., 1999], and BRISMF
[Takács et al., 2009], can efficiently support the SPL configuration process.

• RQ3: In Chapter 5, we propose a context-aware recommender system for pre-
dicting feature selections in an extended SPL configuration scenario, i.e. taking
non-functional properties of features into consideration. We present an empiri-
cal evaluation based on a large real-world dataset of configurations derived from
industrial experience in the Enterprise Resource Planning domain. Our results
indicate significant improvements in the predictive accuracy of our context-aware
recommendation approach over the binary-based approach presented in Chapter 4.

• RQ4: In Chapter 6, we propose a tensor-based recommender [Karatzoglou et al.,
2010] that allows an integration of contextual data by modeling an N-dimensional
tensor User-Feature-Context instead of the traditional two-dimensional User-Feature
matrix. In the proposed approach, different types of non-functional properties are
considered as additional contextual dimensions. Moreover, we show how our ap-
proach can support the self-configuration of dynamic SPLs at runtime. We evalu-
ate our approach by means of an empirical study using two datasets of configura-
tions derived from medium-sized product lines. Our results reveal significant im-
provements in the predictive accuracy of the configuration over the non-contextual
matrix factorization approach presented in Chapter 4 and the reduction-based ap-
proaches presented in Chapter 5.

• RQ5: In Chapter 7, we provide an interactive open-source configurator, called
PROFilE. PROFilE is an Eclipse plug-in that provides several visualization mech-
anisms which encompass a recommender system that aids a user in the configu-
ration process. It narrows the configuration space of possible features down to
the permitted features and highlights selected features needed to finish a config-
uration. The remaining features are then scored with respect to their relevance

4 1. Introduction

by our recommender system. Consequently, a user is provided with a limited set
of permitted, necessary and relevant choices. We evaluate the usability of the
proposed configurator from the user’s point of view. We show that the use of a
recommender system: (i) makes the configuration process easier, (ii) enhances the
desirability of the end product, and (iii) reduces considerably the user’s mental
burden to a more manageable level. Overall, the proposed configuration environ-
ment compare favorably with existing ones in terms of usability, providing to the
user a most efficient SPL configuration process.

Besides these five main chapters, we give a brief introduction to SPLs and collaborative-
based recommender systems in Chapter 2. Finally, we conclude our thesis and sum-
marizes opportunities for future research in Chapter 8.

2. Background

In this chapter, we present all the required information to make this thesis self-
contained. Initially, we introduce software product line engineering with a brief
overview of the domain and application engineering phases. Furthermore, we present
the basic concepts about collaborative-based recommender systems and a brief over-
view of the algorithms used in this work.

2.1 Software Product Line Engineering

Software product line engineering is a paradigm within software engineering, used
to define and derive sets of similar products from reusable assets [Kang et al., 2002].
The development life-cycle of software product line engineering encompasses two
main phases: domain engineering and application engineering [Pohl et al., 2005].
While domain engineering focuses on establishing a reuse platform, application en-
gineering is concerned with the effective reuse of assets across multiple products.

2.1.1 Domain Engineering

Variable software systems are essential to fulfill the individual requirements of sev-
eral users. Such systems, known as Software Product Line (SPL), are commonly
based on reusable but interdependent artifacts represented by a set of features that
can be combined to form customized products [Pohl et al., 2005]. The domain en-
gineering phase is responsible for capturing and documenting reusable assets from
SPLs through variability models. Feature models are amongst the most widely
used domain engineering variability models [Czarnecki et al., 2000]. They provide a
standard notation to represent and manage the interdependencies among reusable
common and variable assets of an SPL, called features [Lee et al., 2002]. The term
feature model was proposed by Kang et al. in 1990 as a part of the Feature-Oriented
Domain Analysis (FODA) method. FODA is a graphical representation of common-
alities and variability of systems [Kang et al., 1990]. Over the past years, several
variability modeling techniques have been developed in order to document and man-
age reusable software artifacts [Chen and Babar, 2011, Vale et al., 2016]. Since then,

6 2. Background

feature models have been applied in a number of domains, including network pro-
tocols [Barbeau and Bordeleau, 2002], smart houses [Cetina et al., 2009], mobile
phones [Czarnecki et al., 2012], telecom systems [Griss et al., 1998], the Linux ker-
nel [Lotufo et al., 2010], and others.

A common visual representation for a feature model is a feature diagram [Kang et al.,
1990]. A feature diagram is a tree-based structure, where each node represents a
feature, and different edges illustrate the dependencies between two or more fea-
tures [Kang et al., 1998]. As an example, consider a simplified smart-home feature
model presented as a feature diagram in Figure 2.1 encompassing several functional
features (e.g., an alarm can be silent, visual or siren) and non-functional prop-
erties (NFPs) (e.g., the cost of the features). The model represents a building
equipped with a set of electrical sensors and actuators, to allow for intelligent sens-
ing and controlling of building devices. Features are depicted as boxes (i.e., nodes)
with their feature name inside and interdependencies between features are shown as
links (i.e., edges). The feature diagram defines common features found in all prod-
ucts of the product line, known as mandatory features, such as illumination, and
variable features that allow the distinction between products in the product line,
referred to as optional and alternative features, such as security and the group
sensor, respectively. Moreover, features can be classified as primitive features (i.e.,
atomic features) which are features without any children situated at the leaf level
of the feature model; otherwise they are classified as compound features (i.e., non-
atomic features) which are features decomposed into sub-features [Benavides et al.,
2005]. As an example, the smart-home feature model presents sixteen primitive fea-
tures and eleven compound features. Note that a child feature can only appear in a
product configuration if its parent feature is selected.

In addition to regular edges, feature models often contain additional composition
rules [Czarnecki et al., 2000]. Additional composition rules, also known as cross-
tree constraints (CTCs), add further feature interdependencies, thus, restricting the
selection of non-directly connected optional features [Pohl et al., 2005]. Benavides
et al. [2010] classify cross-tree constraints into two forms:

• The inclusion of a set of features a in a configuration requires the inclusion of a
set of features b (i.e., a −→ b).

• The inclusion of a set of features a in a configuration excludes a set of features b

(i.e., a ←→ b).

Moreover, a and b are usually written as logical expressions formed by the binary op-
erators ∧ (and), ∨ (or), and the unary operator ¬ (negation), and the variables that
represent the features. As an example, the requires cross-tree constraint monitoring
→ camera ∧ audio in Figure 2.1 ensures that product configurations containing
the monitoring feature must contain both features camera and audio.

Furthermore, dashed boxes extend feature models with extra information about fea-
tures (i.e., NFPs). This type of models where system’s NFPs are included is called
Extended Feature Model (EFM) [Benavides et al., 2010]. EFMs define mandatory
and optional features, as well as their NFPs and relationships [Kang et al., 1990].

2.1. Software Product Line Engineering 7

se
n
so

r
˅

 d
et

ec
ti

o
n

 →
 a

la
rm

m
o
n
it

o
ri

n
g

 →
 c

am
er

a
˄

 a
u
d
io

m
o
n
it

o
ri

n
g

 →
 c

am
er

a.
m

em
o
ry

 >
 [

8
]

sm
s

˅
 c

al
l→

 c
el

lp
h
o
n
e

b
li

n
k
in

g
_
li

g
h
ts

 →
 a

u
to

m
at

ic

b
li

n
k
in

g
_
li

g
h
ts

 →
 S

m
a
rt

H
o
m

e
.t

o
ta

l_
re

sp
o
n
se

 t
im

e
<

[1

,0
0
0

]

si
re

n
 →

 a
u
d
io

S
m

a
rt

H
o
m

e

se
cu

ri
ty

fi
re

fl

o
o
d

co

al
ar

m

ca
m

er
a

au
d
io

ce

ll
p
h
o
n
e

re
sp

o
n

se
 t

im
e

 [
5

m
s]

re
li

a
b

il
it

y
 [

8
9

%
]

co
st

[$

1
5

0
.0

]

cu
st

o
m

er
 s

a
ti

sf
a

ct
io

n
 [

m
ed

iu
m

]

se
cu

ri
ty

 [
lo

w
]

O
p

ti
o

n
al

O
r

A
lt

er
n

at
iv

e

F
ea

tu
re

M
an

d
at

o
ry

L
eg

en
d

 N
o

n
-F

u
n

ct
io

n
al

P
ro

p
er

ty

R
eq

u
ir

es

d
et

ec
ti

o
n

o
u
ts

id
e

in
si

d
e

si
le

n
t

v
is

u
al

si

re
n

m
u
lt

im
ed

ia

m
o
n
it

o
ri

n
g

in
fr

ar
ed

v
o
lu

m
et

ri
c

sm
s

ca
ll

b
li

n
k
in

g
_
li

g
h
ts

re
sp

o
n

se
 t

im
e

 [
5

0
0

m
s]

re
li

a
b

il
it

y
 [

9
8

%
]

co
st

[$

6
0

0
.0

]

cu
st

o
m

er
 s

a
ti

sf
a

ct
io

n
 [

h
ig

h
]

se
cu

ri
ty

 [
h

ig
h

]

co
st

[$

8
0

0
.0

]

cu
st

o
m

er
 s

a
ti

sf
a

ct
io

n
 [

h
ig

h
]

m
a

in
ta

in
a
b
il

it
y

[n
o

n
e]

il
lu

m
in

at
io

n

m
an

u
al

au

to
m

at
ic

se

n
so

r

se
n
si

n
g

re
sp

o
n

se
 t

im
e

 [
5

m
s]

re
li

a
b

il
it

y
 [

1
0

0
%

]

co
st

[$

7
0

0
.0

]

cu
st

o
m

er
 s

a
ti

sf
a

ct
io

n
 [

h
ig

h
]

se
cu

ri
ty

 [
h

ig
h

]

F
ig

u
re

2.
1:

A
si

m
p
li
fi
ed

ex
te

n
d
ed

fe
at

u
re

m
o
d
el

fo
r

a
sm

ar
t-

ho
m

e
p
ro

d
u
ct

li
n
e

(a
d
ap

te
d

fr
om

C
et

in
a

et
al

.
[2

00
9]

).

8 2. Background

In EFMs, NFPs can be either quantitative or qualitative, and multiple NFPs can
be associated to the same feature. Quantitative NFPs are properties represented
as a numeric value (e.g., response time and cost), otherwise qualitative NFPs
are represented using an ordinal scale, such as low, medium, and high (e.g., main-
tainability and security). Moreover, EFMs can also include hard cross-tree
constraints. Hard cross-tree constraints constitute features and NFP dependencies.
They are represented using operators (i.e., ∧, ∨, ¬,→, <, >, and =) and arithmeti-
cal expressions (i.e., +, −, ∗, /, and %) in combination with NFPs or contextual
information. All these operators and expressions can be nested arbitrarily. As
an example, the hard cross-tree constraint monitoring → (camera.memory > 8)

is depicted for the smart-house feature model in Figure 2.1. It expresses that all
houses with security monitoring must have a camera installed with at least 8GB of
memory. Additionally, it is also possible to have hard cross-tree constraints only
representing NFP dependencies.

EFMs ensure that a derived product variant forms a valid configuration. Once spec-
ified, (extended) feature models can be used for communicating with stakeholders
and for configuring a product.

2.1.2 Application Engineering

The set of features and dependencies defined by a feature model in the domain
engineering phase specifies the complete set of valid feature combinations of the
SPL. Each combination refers to a different product instance, which is derived as
part of the application engineering phase.

The application engineering phase is responsible for capturing the requirements of
a product, defining a valid combination of features that fulfill these requirements,
and deriving a product configuration from this selection of features [Pohl et al.,
2005]. Product configuration is a decision-making process that involves selecting a
concrete combination of features from a feature model. A concrete configuration
defines a configuration that complies with the feature model constraints and covers
the product requirements as much as possible. Interdependencies between features
and CTCs in the model define feature model constraints (i.e., how features can be
combined to obtain a valid configuration). For example, a smart-home configuration
cannot have both manual and automatic illumination (Figure 2.1). In addition,
product requirements are calculated by aggregating the NFPs of all selected fea-
tures by considering feature interactions. Interactions occur when features share a
common component or require additional component(s), affecting NFP values [Sieg-
mund et al., 2012b]. An example is shown in Figure 2.1. Configurations that include
both siren and blinking_lights features have a global positive impact of 100%
on reliability. Although none of them have a 100% reliability, the unexpected
result is caused by the positive interaction of both features (i.e., if the siren fails, the
smart home can make the home lights blink as a replacement for the failed alarm).

In Chapter 3 two types of product requirements are identified: product constraints
and stakeholders’ preferences. Product constraints are decision rules with regards
to product limitations, such as budget=$550.00. They complement the interdepen-
dencies expressed through the EFM, restricting the set of valid configurations. In

2.2. Collaborative-Based Recommender Systems 9

addition, stakeholders’ preferences allow the specification of the relative importance
of NFPs, such as minimize cost and response time, and maximize security.
Thus, among all valid product configurations, stakeholders desire the optimal one
that can meet multiple product constraints and stakeholder preferences.

Configuration processes are often incremental such that a user starts with an empty
configuration and selects or deselects one feature at a time until the configuration
is concrete. Due to the combinatorial possibilities of selecting variable features, the
number of possible configurations grows exponentially with the number of features
in an SPL. Consequently, the selection task of an optimal configuration requires the
exploration of a huge search space of valid configurations to find the optimal ones
that balance multiple product requirements simultaneously.

Although the configuration of a valid product arising from EFMs may reduce the
configuration space through product requirement specifications, selecting the most
appropriate set of features is still an overwhelming task due to the diversity of
application scenarios and requirements [Zanardini et al., 2016]. In addition, EFMs
tend to be inherently large and complex, with several types of variability relations,
and constraints among features and NFPs. Furthermore, a wide variety of feature
combinations may meet the product requirements. Therefore, even configuring an
EFM with such a (relatively low) number of features is not a simple task.

Configurators usually support users by representing the feature model structure
in an outlined tree hierarchy form [Bashroush et al., 2017, Pereira et al., 2015,
2016a] and the features with check boxes, where decision makers manually check the
(un)required features in order to configure a product. Nevertheless, considering the
large configuration space for even SPLs with a relatively low number of features,
finding the best configuration for a given set of product requirements can still be
a challenging task. According to Hubaux [2014], the current configurators are still
not able to efficiently guide the interactive configuration process of large-scale SPLs
due to the high information workload and the complexity of decision making. In
this context, the interactive configuration process becomes a time-consuming, error-
prone, and tedious task. A system that narrows the possible choices down to the
relevant ones is indispensable. Therefore, our focus in this thesis is to ease the
application engineering phase by employing techniques from recommender systems
to support the product configuration processes. Recommender systems use learning
algorithms to automatically find relevant features from a large set of options in a
personalized way. In the next section, we introduce recommender systems.

2.2 Collaborative-Based Recommender Systems

Today’s rapidly changing and technology-intense market environment has led to
the development of recommender systems, from companies like Amazon, YouTube,
Netflix, and eBay. A recommender system is a personalized information filtering
technique used to suggest a set of n items that will be most likely of interest to a
particular user [Ricci et al., 2011]. The suggestions provided are aimed at supporting
the user in various decision-making processes, such as the SPL configuration process.
Their goal is to alleviate the problem of information overload that occurs also in SPL

10 2. Background

configuration, where the number of possible features and configurations is too high
for a single user to handle.

A recommender system addresses this process by using information filtering algo-
rithms to predict whether a particular user will like a particular feature. Our main
motivation in applying recommender mechanisms in the SPL configuration domain
is to better understand users’ preferences, to increase their satisfaction with the
configured products, and to improve the efficiency and quality of the configuration
process. Therefore, recommender systems aim to alleviate the problem of informa-
tion overload in SPL configuration. The most common classes of such algorithms
are content-based recommender systems and collaborative filtering algorithms.

Content-based recommender systems analyze the content of items (e.g., text of a
book or audio file of a music piece). Then, given the history of a user, they search
for items similar to the ones the user purchased before. For more information on
those algorithms, we refer to the extensive survey by Lops et al. [2011]. This type of
algorithms is applicable only when the content of items can be analyzed efficiently.
In our application scenario, features are the items to be analyzed. Since features
often do not have a detailed representation (e.g., text descriptions) and can not
be easily analyzed by automated processes, their analysis is not efficiently possible.
While there are recommender systems that make use of additional content-related
information, such as ontologies, this thesis focuses on a general case, where no
existence of ontologies is required. Therefore, the class of content-based algorithms
is not applicable to our scenario.

In contrast to content-based algorithms, Collaborative Filtering (CF) algorithms do
not analyze the content of items. Instead, they build a model based on relevance
feedback from users past behavior to predict future items of interest in a personalized
way. The feedback has the form of ratings (e.g., a 5-star rating for relevant items and
a 1-star rating for non-relevant items) that are stored in a user-item-rating matrix.
In this thesis, we focus on this class of algorithms.

CF algorithms can be divided into two categories: neighbourhood-based and factor-
based algorithms. Since there is no single recommendation algorithm that performs
best in all applications, in this thesis, we adapt four neighbourhood-based recom-
mendation algorithms (i.e., Neighbourhood-Based CF, CF Significance Weighting,
CF Shrinkage, and CF Hoeffding) and two factor-based recommendation algorithms
(i.e., Matrix Factorization and Tensor Factorization) to investigate which of them
performs better in the domain of SPL configuration. Next, we present a brief de-
scription of these algorithms.

Neighbourhood-Based Collaborative Filtering (kNN-CF)

The first of them is the k-Nearest Neighbor Collaborative Filtering (kNN-CF). Neigh-
bourhood-based CF algorithms search for neighbours of the active user in the user-
item-rating matrix. The concept of a neighborhood implies that we need to discover
the k nearest neighbours (therefore, kNN-CF) of the active user in order to make
recommendations [Desrosiers and Karypis, 2011]. To find the nearest neighbors,
such neighborhood-based CF algorithms commonly make use of similarity metrics
(e.g., cosine similarity).

2.2. Collaborative-Based Recommender Systems 11

After determining the neighbourhood of the active user, predictions of ratings for
items unknown to the active user are made by calculating weighted mean rating
of all neighbours. Subsequently the top-n items with the highest predicted ratings
are recommended. We adapt this algorithm to recommending features in SPL con-
figuration. In our case, the user-item-rating matrix is a matrix with the state of
previous configurations (i.e., 1 if a feature was selected in a configuration, 0 if a
feature was deselected, and -1 otherwise). A formalization of this algorithm and
our adaptation of it to the SPL configuration scenario are shown in Section 4.2.3.1.
For further details on kNN-CF, we refer to Desrosiers and Karypis [2011], Herlocker
et al. [1999], Bell et al. [2007], and Matuszyk and Spiliopoulou [2014].

Collaborative Filtering Significance Weighting (CF-sig.)

In contrast to kNN-CF, the CF-significance weighting algorithm uses the principle
that decisions made based on configurations with a small set of selected features
are not representative and the amount of trust in these configurations should be
limited. In this context, the CF-significance weighting algorithm builds a user’s
neighborhood by assigning lower weights to configurations that have too few selected
features in common. The goal of this algorithms is to weight neighbors based on how
likely they are to provide an accurate prediction. Thus, the fewer similar selected
features between configurations exist, the less influence does the particular similarity
value have on the predicted rating value (see Section 4.2.3.2 for details and formal
definition). For further details on this algorithm, we refer to Herlocker et al. [1999].

Collaborative Filtering Shrinkage (CF-Shrinkage)

Similar to the CF-significance weighting algorithm, the CF-Shrinkage algorithm as-
sumes that similarity based on many similar selected features is more informative.
In this context, the CF-Shrinkage algorithm shrinks the similarities towards a null-
value to an extent that is inversely proportional to the number of selected features.
As the CF-significance weighting algorithm, the fewer similar selected features be-
tween configurations exist, the less influence does the particular similarity value have
on the predicted rating value (see Section 4.2.3.3 for details and formal definition).
For further details on this algorithm, we refer to Bell et al. [2007].

Collaborative Filtering Hoeffding (CF-Hoeffding)

In contrast to CF-significance weighting and CF-Shrinkage, the assumption of the
CF-Hoeffding algorithm is that decisions made on a naive computation of config-
urations’ similarity are unreliable. In this context, CF-Hoeffding builds a user’s
neighborhood by selecting only historical configurations that are reliably similar to
the current partial configuration, independently of the number of selected features.
Reliable configurations are computed through a significance-based solution derived
from Hoeffding’s Inequality [Hoeffding, 1963] to compare whether a given histori-
cal configuration is more similar to the current partial configuration than a default
configuration (see Section 4.2.3.4 for details and formal definition). For a complete
definition of this algorithm, we refer to Matuszyk and Spiliopoulou [2014].

12 2. Background

Matrix Factorization (MF)

The second class of CF algorithms is factor-based algorithms. The first of them
is the Matrix Factorization (MF) algorithm. MF algorithms decompose the user-
item-rating matrix approximately into a product of two other latent matrices [Koren
et al., 2009]. The decomposition is done by minimizing an error function using e.g.,
stochastic gradient descent. The latent matrices are used then to make rating pre-
dictions of unknown items. MF algorithms have shown their great predictive power
in numerous studies [Koren, 2009, Koren et al., 2009, Takács et al., 2009]. Especially,
the work by Koren et al. [2009] has coined their application in recommender systems.
Nowadays, MF is considered state-of-the-art in recommender systems. Therefore,
in our work, we use a representative of this class of algorithms, the BRISMF (Bi-
ased Regularized Incremental Simultaneous Matrix Factorization) method by Takács
et al. [2009], and we adapt it to our scenario of SPL configuration (see Section 4.2.3.6
for details and formal definition).

Tensor Factorization (TF)

Tensor Factorization (TF) is an N-dimensional extension of MF. While MF algo-
rithms assume homogeneity of context, in TF additional contextual variables come
into play, e.g., in the SPL configuration scenario, products are personalized based
on contextual data from features and previous users. In particular, both methods
have proven to be accurate CF techniques in the literature of recommender systems
[Karatzoglou et al., 2010, Koren and Bell, 2015]. However, the use of TF can pro-
vide recommendations based on multiple dimensions that go beyond the typical two
dimensions (i.e., users and features) used in MF [Karatzoglou et al., 2010] (see Sec-
tion 6.2). TF takes advantage of most of the benefits of MF, such as fast prediction
computations as well as simple and efficient optimization techniques. For a complete
definition of this algorithm, we refer to Karatzoglou et al. [2010].

3. Current Research on Software
Product Line Configuration

We presented initial surveys on product configuration approaches,
software product line management tools, and feature model notations
at VaMoS’17 [Ochoa et al., 2017], ICSR’15 [Pereira et al., 2015], and
SCCC’16 [Vale et al., 2016], respectively. Moreover, we presented a
systematic literature review on the semi-automatic configuration of ex-
tended product lines in the Journal of Systems and Software [Ochoa
et al., 2018]. In this chapter, we present a complete systematic literature
review on current research in Software Product Line Configuration.

According to Benavides et al. [2013], the Software Product Line (SPL) configuration
field is an active area of research and has attracted both practitioners and researchers
in the last years. Since the introduction of feature models in the 90’s by Kang
et al., a large number of publications have provided new approaches, techniques,
tools, and algorithms to support decision makers in the SPL configuration process.
However, these publications focus on very specific contributions and there is still no
clear definition regarding the mechanisms required in this phase and which existing
studies provide support for each mechanism. Thus, the literature lacks a systematic
review to analyze the currently existing approaches and present a complete overview
of the progress made in this domain. In this context, the objectives of this chapter
are to summarize the current research trends in SPL configuration and increase the
understanding of the fundamental research issues in this field. We address these
objectives by providing the following four contributions:

1. We define the relation between product derivation and product configuration,
through the categorization of the main activities supported by the application
engineering phase.

2. We perform a structured Systematic Literature Review (SLR) by following
Kitchenham and Charters [2007] guidelines. This review aims at identifying,

14 3. Current Research on Software Product Line Configuration

classifying, and assessing available research techniques in the SPL configura-
tion domain.

3. We present a formal categorization of SPL configuration mechanisms addressed
in the literature and how each work copes with the defined mechanisms.

4. We identify a set of open issues in SPL configuration to guide future research
in this field.

To this end, we assessed 157 primary studies to answer the following four research
questions:

• RQ1. What are the main SPL configuration activities?

• RQ2. Which mechanisms have been formally proposed in the literature to support
the SPL configuration activities?

• RQ3. How are these mechanisms addressed in the literature?

• RQ4. What are the main limitations faced by the current approaches and open
challenges that need attention in the future?

As a result of our SLR and corresponding research questions, we identified 112
different approaches, 5 product configuration activities, and 17 mechanisms. Mainly,
we give an in-depth view of the techniques used by each mechanism, conducted
evaluation process, tool support, and their main shortcomings.

This chapter is structured as follows. We describe our formal definition for product
derivation and product configuration in Section 3.1. Section 3.2 describes the re-
search methodology used to conduct the SLR. Section 3.3 and Section 3.4 present
a set of configuration activities and mechanisms regarded as essential for SPL con-
figuration. Moreover, Section 3.4 analyzes how the identified SPL configuration
approaches support the defined mechanisms. In addition, we show examples to
demonstrate how these mechanisms can be realized. Section 3.5 discusses the main
findings and challenges to be faced in the future. Section 3.6 presents threats to
the validity of this study. Section 3.7 discusses related work and compares our work
with them. Finally, Section 3.8 summarizes the chapter.

3.1 Preliminaries

Application engineering is an interactive process that consists of eliciting product
requirements and binding variability. In Figure 3.1, we identify and categorize a
sequence of key activities supported by the application engineering phase. The ap-
plication engineering phase consists of two main processes, namely product derivation
and product configuration. In the literature, these terms are not clearly defined and
they are easily mixed. In this section, we define product configuration as a subset of
product derivation.

3.1. Preliminaries 15

Start

Integration?

1
Reusable

Software Artifacts
Development

Stakeholders
Negotiation

4
Integration and

Testing

Additional
Development? 5

PRODUCT

CONFIGURATION

6
Product
Testing

Ok?

Delivery

Maintenance

End

Product Line
Evolution

Evolution?

Activity

Decision

LEGEND

YES NO

YES NO

YES

YES

NO

NO

3

2
Product

Requirements
Elicitation

7

9

8

Flow direction

Stage

Main focus of this thesis

Input: Domain Engineering

Figure 3.1: Activities supported by the application engineering phase.

Given an SPL, product derivation refers to the complete process of building individ-
ual products from reusable software artifacts (see Figure 3.1). It is performed as a
process of customization (2-5, 9) and generation (6-8) of a specific product through
customer negotiation. During this process, continuous iterations are performed until
all new requirements (2-3) and testing (4) of the product have been satisfied. Then,
the resulting updated SPL is used as input for the product configuration process (5).
This process is performed interactively, mapping the target application requirements
to features in the feature model. Finally, as a result of the product configuration
process, if the testing (6) has been fulfilled, a concrete implementation of the derived
product can be packed and delivered (7) to the customer. Notice that here evolution
(9) of the SPL can happen in parallel. In any circumstance, if the tests have not
been fulfilled, maintenance (8) is needed.

Based on both the state-of-the-art in application engineering and the expert knowl-
edge from five SPL researchers, we subsequently describe the nine activities pre-
sented in Figure 3.1.

1. Reusable Software Artifacts Development. This activity includes the develop-
ment of SPL assets (e.g., implementation) from the variability model developed
in the domain engineering phase.

2. Product Requirements Elicitation. This activity is concerned with collecting
the non-functional product requirements of consumers and other stakeholders.

16 3. Current Research on Software Product Line Configuration

3. Stakeholders Negotiation. This activity aims at supporting the process of ne-
gotiating existing SPL assets with the stakeholders.

4. Integration and Testing. This activity is concerned with the integration of new
assets (when requested) with existing ones, which requires new tests to verify
and validate if the additional development performs correctly.

5. Product Configuration. This activity refers to the task of making decisions to
select a set of valid combination of features from a feature model that fulfill the
product requirements. A configuration task does not require any implementa-
tion effort and is often supported by automated tools, called configurators.

6. Product Testing. To guarantee that the product will work as expected, this
activity verifies if the product meets both, functional and non-functional prod-
uct requirements. This activity is different from activity 4, since it focuses on
testing the derived product.

7. Delivery. This activity focuses on the deployment of the specific derived prod-
uct (i.e., configured features) in the customer environment.

8. Maintenance. Modification of SPL assets to correct newly discovered faults.

9. Evolution. Over time, an SPL will inevitably need to adapt (i.e., introducing
new features or interdependencies, and eliminate or customize features) to sat-
isfy real-world changes in external conditions, such as, changes in technology,
and improving design and performance.

In this thesis, we focus specifically on the product configuration activity (5) shown
in the central part of Figure 3.1. The vast variety of work in the SPL configuration
domain and the challenges faced in this field motivated us to carry out an SLR.
This SLR investigates how and to what degree existing literature addresses the
various aspects of the SPL configuration process. The main goal of this review is to
help industries decide systematically when choosing new configuration techniques in
their development environment. Moreover, we identify open issues and remaining
challenges in this field, in order to point out areas that need attention and guide
future research.

3.2 The Review Methodology

An SLR is a secondary study method that has received much attention in the
software engineering community [Brereton et al., 2007, Dyb̊a and Dingsøyr, 2008,
Kitchenham et al., 2009]. It is defined as a means of identifying, evaluating and
interpreting all available research relevant to a particular research question, or topic
area, or phenomenon of interest [Kitchenham and Charters, 2007]. In this thesis, we
have adapted and applied Kitchenham and Charters [2007] SLR guidelines, in order
to identify, classify and assess relevant information related to approaches framed in
the context of SPL configuration. In this section, we present the SLR methodology
that consists of the following phases: planning the review, conducting the review,
and reporting the results. The main activities related to each SLR phase and their
location in the thesis are shown in Figure 3.2.

3.2. The Review Methodology 17

Planning the Review
(Section 3.2.1)

Need for a
review

Research
questions

Search
strategy

Conducting the Review
(Section 3.2.2)

Search
string

Selection
criteria

Data
extraction

Reporting the Results
(Section 3.2.3)

Restrieved primary
studies

Figure 3.2: Systematic literature review phases.

3.2.1 Planning the Review

The planning the review phase aims at developing an explicit review protocol that
defines the plan that the literature review will follow for identifying, assessing, and
comparing evidence [Kitchenham and Charters, 2007]. This phase includes several
actions: (i) identification of the need for a review; (ii) specification of the research
questions; and (iii) development of a systematic search strategy that increases the
rigor, transparency, and repeatability of the review, while establishing a means to
reduce the risk of a biased study.

Identification of the need for a review. The need for an SLR originates from
the increase in the number of SPL configuration studies made available in the re-
cent years (see Section 3.2.3). Our literature review aims to complement an initial
research by Benavides et al. [2010] and Benavides et al. [2013], identifying studies
specifically in the application engineering phase, with focus on the SPL configura-
tion process. Thus, the rationale of this SLR is to get an overview about techniques
suitable for an SPL configuration infrastructure. The results contribute with rele-
vant information to support practitioners in choosing appropriate techniques, and
researchers identifying gaps in the existing techniques in order to indicate areas for
further investigation. Therefore, we expect that both practitioners and researchers
can benefit from the results of this review.

Specification of the research questions. We defined four main research ques-
tions with the help of Population, Intervention, Comparison, Outcome, and Context
(PICOC) criteria [Higgins and Green, 2005]. Table 3.1 shows the PICOC structure.
This SLR was conducted to analyze all available publications related to the research
questions RQ1—4 introduced in the beginning of this chapter. These questions are
centered around three concerns: (i) SPL configuration activities and mechanisms;
(ii) employed mechanisms; and (iii) open challenges. To address RQ1, we system-
atically identified the main SPL configuration activities using a literature review.
Then, we show how these activities are supported by each study in the literature.
Moreover, we investigate whether these studies are supported by tools and the eval-
uation process carried out by each of them (see Section 3.3). Next, to address RQ2,
we developed an initial set of mechanisms regarded as essential (based on selected
studies) for SPL configuration infrastructures. In addition, RQ3 follows collecting
evidence about existing studies and giving an in-depth view on how each study ad-
dresses each defined mechanism (see Section 3.4 for both RQ2 and RQ3). Analyzing
existing techniques allows identifying their limitations, such as which mechanisms
are missing or have not been considered, addressed by RQ4 (see Section 3.5).

18 3. Current Research on Software Product Line Configuration

PICOC DESCRIPTION

Population Literature in SPL configuration.
Intervention Mechanisms, i.e. techniques, methods, strategies, tools, ap-

proaches that support SPL configuration.
Comparison Product configuration mechanism(s) supported by each study.
Outcome How existing studies support the product configuration process,

and what the main open issues in this field are.
Context Within the domain of the application engineering phase, with

focus on the SPL configuration process.

Table 3.1: Research questions structured by the PICOC criteria.

Development of a systematic search strategy. The process of gathering and
selecting relevant publications involved three steps. First, our initial set of candidate
papers was identified from five scientific database libraries1, namely ACM Digital
Library, IEEE Xplore, ScienceDirect, Scopus and SpringerLink. These libraries were
chosen because they are the most popular online scientific databases, since they
index ACM, IEEE, Springer, and Elsevier publications that together cover many of
the leading publications in the software engineering field [Travassos and Biolchini,
2007]. We conducted a search on these libraries for studies published in journals
and conferences (including symposiums and workshops) proceedings from January
1st 2012 up to December 31th 2017. We selected the year of 2012 because Ochoa et al.
[2017] observed an increasing tendency of research on the SPL configuration field in
this year. For the second step, we conduct a screening process to exclude duplicate
studies and studies that are not relevant for answering our research questions (see
Section 3.2.2). For the third step, in addition to the search in digital libraries,
we also follow analyzing the relevant cited reference lists from the retrieved and
secondary studies (i.e., related work) to find additional contributions outside the
above mentioned subset (technique called snowballing) [Wohlin et al., 2000]. Finally,
we merge all the results from scientific databases and the snowballing technique. The
finally included papers were considered to be the primary studies.

3.2.2 Conducting the Review

Conducting the review means executing the protocol planned in the previous phase.
This phase includes several actions: (i) definition of the terms used for systematic
search; (ii) definition of the inclusion and exclusion criteria for selecting a relevant
subset of publications; and (iii) definition of the data-extraction process for each
retrieved study.

Search criteria. We use the strategy from Chen and Babar [2011] to construct the
search string. We extracted the keywords used to search the primary study sources
from our stated research questions and the analysis of selected primary studies by
Benavides et al. [2010] and Benavides et al. [2013] within the SPL configuration
domain. The search string is specified as follows:

1dl.acm.org; ieeexplore.ieee.org; sciencedirect.com; scopus.com; and link.springer.com.

3.2. The Review Methodology 19

(product line OR product family OR system family)
AND

(configuration OR configuration process OR product generation OR feature model
configuration OR multi-step configuration)

We applied variants of the terms product line and product configuration to com-
pose the search query. The terms product line, product family, or system family
restrict the search to product line techniques. In addition, the terms configuration,
configuration process, product generation, feature model configuration, or multi-step
configuration refer to the product-configuration process. This string was subtly mod-
ified in each database according to the offered search capabilities. The search was
performed considering only the title, abstract, and keywords. We developed scripts
to partially automate this process. However, the screening of the queries’ results
was performed manually, as well the snowballing process. The search strings and
the results of each search engine are provided in the Web supplementary material2.

Selection of the primary studies. The basis for the selection of the primary
studies is the Inclusion Criteria (IC) and Exclusion Criteria (EC) [Kitchenham and
Charters, 2007]. We established a set of IC and EC with the goal of filtering only
potential primary studies. The following three IC were used to include studies that
are relevant to the research questions:

• IC1. (English Papers) We included only studies published in English. Moreover,
articles have been published in journals, conferences, workshops, or symposiums.
These are four of the most common types when publishing research results in the
field of computer science and engineering.

• IC2. (Within Scope) We included only studies that deal directly with technique(s)
to support the SPL configuration process, as opposed to considering the whole
product derivation process.

• IC3. (Extended Studies) When different extensions of one paper were observed,
e.g., if a conference paper is extended into a journal version or a new functionality
is created for a specific tool-support, we intentionally classified and evaluated
them as separate primary studies for a more rigorous analysis. Note that in the
presentation of results, we grouped these works with no major differences and we
mention each different group of work as a different contribution in the field.

Initially, studies are only excluded if they meet at least one of the EC. To this end,
the following four EC were used to exclude studies that we did not consider relevant
to the research questions:

• EC1. (Abstract) We excluded introductions to special issues, workshops, tutorials,
conferences, conference tracks, panels, poster sessions, as well as editorials.

2http://wwwiti.cs.uni-magdeburg.de/˜jualves/SLR-SPLConfig

http://wwwiti.cs.uni-magdeburg.de/~jualves/SLR-SPLConfig

20 3. Current Research on Software Product Line Configuration

• EC2. (Secondary Studies) Secondary studies were not included in this review,
such as literature reviews, comparative papers, articles presenting lessons learned,
position or philosophical papers, with no technical contribution. However, the
references of these studies were read in order to identify other relevant primary
studies for inclusion through snowballing technique. Moreover, we consider sec-
ondary studies in the related work section.

• EC3. (Completeness) We excluded studies that contain unsupported claims, i.e.
which do not provide, for each claim, proper references to existing work or results
that prove the claim.

• EC4. (Automated Analysis of Feature Models) We excluded publications that fo-
cus on detecting the violation of the feature model constraints during the product
line configuration process, or restrict themselves to identifying all valid products
derivable from a model.

Data extraction. After applying the search string to each scientific database,
the retrieved studies were first analyzed regarding the excluded criteria EC1—EC4.
Afterwards, the remaining subset of studies were carefully checked for conformance
to the inclusion criteria IC1—IC3. Then, for each retrieved study, the data were
extracted and stored in a spreadsheet using a data extraction form. The form
included the following data:

• Date of search, scientific database, and search string.

• Database, authors, title, publication type (i.e., journal, conference, symposium,
or workshop), and publication year.

• Exclusion criteria EC1, EC2, EC3, and EC4 (yes or no)?

• Inclusion criteria IC1, IC2, IC3, and IC3 (yes or no)?

• Selected (yes or no)? If not selected, justification regarding exclusion.

A set of three experts on the domain of SPL configuration had specific roles when
performing this SLR. The author of this thesis performed the search for primary
studies through the data extraction process. In this process, each retrieved publica-
tion was rated separately based on reading the titles and abstracts and if necessary
checking the full text. When she decided that a paper was not relevant, she provided
a short rationale why the paper should not be included in the study. In addition,
another expert checked each included and excluded paper at this stage. Any dis-
crepancies were resolved by calling upon a third expert. This step was done in order
to check that all relevant papers were selected. Furthermore, all experts assisted
during planning and reporting the review.

Once the list of primary studies was decided, each selected publication was then read
in full detail and the content data for each selected paper was captured and extracted
in a second form. The data extraction aimed to summarize the data from the selected
primary studies for further analysis and for increasing confidence regarding their

3.2. The Review Methodology 21

relevance. All available documentation from studies served as data sources, such
as dissertations/thesis, websites, tool support, as well as the communication with
authors (e.g., emails exchanged). Here, we grouped related studies as an unique
contribution. The data extracted from each contribution were:

• Short summary about the study (i.e., what contributions and novelty they con-
stitute to), main reference(s), tooling support and website (if available).

• Evaluation type supported by the study (i.e., industrial case studies, academic
case studies, industrial examples, academic examples, randomized examples, ob-
servations and (or) experiences, and expert opinions), number of used case stud-
ies, and efficiency (i.e., maximum size of the feature models used in performance
evaluations) and effectiveness (i.e., the optimality degree to which the proposed
techniques is successful in producing the desired result) where applicable.

• SPL configuration activities and mechanisms supported by each retrieved study.

• Description of the main challenges and open issues in the SPL configuration do-
main that is raised by the authors of each selected study (if any). We captured
challenges and open issues from the future work, conclusion, or threat to validity
sections of a primary study. In the end, gaps and open challenges were identified
for each activity (see Section 3.5).

Additionally, to validate the defined activities and mechanisms in the SPL config-
uration field, we invited 15 experts to participate in a survey. Our questionnaire
contained two questions:

• 1) How important do you regard the following activities and mechanisms in SPL
configuration? (irrelevant [-2], unimportant[-1], important [1], very important [2]).

• 2) What other activities or (and) mechanisms do you regard as important?

3.2.3 Reporting the Results

The goal of the reporting phase is to make it clear to others how the search was
performed and how the study can be replicated. To select primary studies, we
followed the three steps shown in Figure 3.3. First, the retrieved publications were
found by applying the search terms to the defined sources thus revealing an initial
list of relevant studies. We obtained a set of 320 papers, illustrated as Step 1 in
Figure 3.3. As we considered studies retrieved from different scientific databases,
64 papers were excluded because they were found in more than one search engine.
Duplicate papers were automatically identified and discarded with EndNote. In
addition, we performed a screening process over the retrieved studies and excluded
155 papers that were not identified to be relevant based on the selection criteria (see
Section 3.2.2). At the end of the screening process, we identified 101 potentially
relevant papers from the automated search, illustrated as Step 2 in Figure 3.3.

From the 155 excluded papers during the screening process, 13 are secondary studies
(i.e., exclusion criteria EC2 presented in Section 3.2.2). Given that these studies

22 3. Current Research on Software Product Line Configuration

Secondary

Studies – EC2

(13)

Snowballing

(56)

Duplicated Papers

(64)

Inclusion and

Exclusion Criteria

(155)

(12) (18)

1

2

(120) (142) (28)

3
Primary Studies

(157)

Source of studies

Excluded papers

Process step

LEGEND

Selection criteria

Flow direction

Screening process

(NUM) Number of studies

Stage

Retrieved

(320)

Automated Search

(101)

Figure 3.3: Selection procedure of primary studies.

followed a systematic process to select relevant papers in the application engineering
phase, we acknowledge that they might also include relevant primary studies in their
references. Therefore, we manually analyzed the reference list of each secondary
study to identify missing relevant papers aiming at increasing the coverage and
quality of our SLR. Moreover, we also followed the reference list from the 101 relevant
retrieved papers obtained from the automated search. This technique retrieved
an additional 56 papers, shown in Figure 3.3 as the snowballing technique. This
technique ensured a significant increase of the number of relevant publications.

Finally, we conducted an update on the list of primary studies, through the merging
process of the results from the snowballing technique and the automated search. We
identified a total of 157 selected primary studies that were in the scope of this review
for further analysis (i.e., full-text reading) illustrated as Step 3 in Figure 3.3.

Figure 3.4 shows the temporal distribution of primary studies per year by publication
venues. We observe a high number of relevant publications in the SPL configuration
community since 2012. In 2012, the total number of publications reaches its max-
imum of 34 publications. Then, from 2013 to 2016 there is a significant decrease
in the number of publications (i.e., 24-29 retrieved publications). Notice that data
from 2017 cannot be incorporated in the tendency analysis because the snowballing
technique was not able to retrieve publications in 2017, since hardly authors cited
2017 papers. Otherwise, the snowballing technique retrieved a considerable amount
of important papers from 2012 to 2016 (67% in average).

In total, note that only 33 out of 157 studies, i.e. 21% (see Figure 3.4), were found
in workshops (17) and symposiums (16), whereas most (i.e., 79%) were published
in conferences (72) and journals (52). As expected, most of the selected publica-
tions appeared in the proceedings of the International Systems and Software Product
Line Conference (SPLC) considered the most representative conference for the SPL
engineering community, followed by the International Workshop on Variability Mod-

3.3. Product Configuration Activities 23

0

5

10

15

20

25

30

35

2012 2013 2014 2015 2016 2017

R
e

tr
ie

v
e

d
 p

ri
m

a
ry

 s
tu

d
ie

s

Publication year

Symposium

Workshop

Journal

Conference

Figure 3.4: Temporal distribution of primary studies in six years of research on SPL
configuration retrieved in the SLR by year from each venue: conferences, journals,
workshops, and symposiums.

eling of Software-Intensive Systems (VaMoS), a workshop also dedicated to the SPL
community, and the Journal of Information and Software Technology (IST). They
contributed with 26, 9, and 7 primary studies respectively. In total, the source from
the 157 selected primary studies were gathered from 89 different venues: 36 journals,
36 conferences, 10 symposiums, and 7 workshops (the complete list of paper venues
is found in Section A.1). Such a distribution gives us the initial impression that there
are many relevant studies in this field, since journals and conference contribute sig-
nificantly to higher quality works. However, there is still no clear picture regarding
the mechanisms needed for supporting the SPL configuration process. Next, we
developed an initial definition of the activities (Section 3.3) and mechanisms (Sec-
tion 3.4) supporting the SPL configuration process by systematically analyzing the
set of 157 retrieved primary studies.

3.3 Product Configuration Activities

We extracted 112 different contributions in the SPL configuration literature from
157 retrieved primary studies (i.e., 45 studies are extensions of other studies). In
this section, we analyze these contributions, in order to answer RQ1. We performed
a complete reading of all selected primary studies and we collected the SPL configu-
ration concern addressed by each contribution. After having extracted the main con-
cern from each study, we discussed their central proposal with experts and grouped
close contributions. We identified five groups of activities used to support the SPL
configuration process (A1—A5). Figure 3.5 gives an overview of the activities and
defines the most appropriate order to configure a product.

• A1) Mapping Non-Functional Properties. This activity maps Non-Functional
Properties (NFPs) to their respective implied features (or configurations) in the
feature model.

24 3. Current Research on Software Product Line Configuration

Mapping
Non-Functional

Properties
End

Activity

LEGEND

Mapping Product
Requirements

Flow direction

Automatic Incomplete
Configuration Process

Configuration
Adaptation Process

Manual Configuration
Process

A3

Stage

Automatic Complete
Configuration Process

Start

A1 A2

A3

A4

A5

Figure 3.5: Overview of the activities supported by the SPL configuration process.

• A2) Mapping Product Requirements. This activity focuses on the translation of
the product requirements into concrete specifications, in order to automatically
configure a product that best matches them.

• A3) Manual Configuration Process. This activity takes as input consecutive fea-
ture selections and deselections from the feature model. Manual configuration
inevitably introduces human errors and therefore ensures that each decision con-
forms with pre-defined constraints is a very important functionality of this activity.
It is helpful to begin configuring a product or to change automatic configuration
results.

• A4) Automatic Configuration Process. Feature models tend to be inherently large
and complex, with several types of variability relations and constraints. Moreover,
the diversity of stakeholders’ requirements leads to heterogeneous optimization
objectives, making the manual configuration process inappropriate or even infea-
sible. Therefore, it indicates the need for faster and more automatic mechanisms.
Automatic configuration mechanisms can be classified into two groups:

a. Automatic Complete Configuration. A configuration is complete if the auto-
matic method applied over the feature model returns a single valid configuration
with a defined selection for each feature from the feature model.

b. Automatic Incomplete Configuration. A configuration is incomplete if the au-
tomatic method applied over the feature model returns a set of valid configu-
rations that satisfy the product non-functional requirements.

• A5) Configuration Adaptation Process. This activity focuses on the adaptation
from the manual or automatic configuration considering events, such as change in
the production environment which consequently implies changes in A1 and A2.

Table 3.2 shows the configuration activities addressed by each contribution. The first
column identifies the study reference. For simplification, we present one citation per
contribution (i.e., the most recent study). For a general overview of all studies
addressing each contribution, we refer to Table A.4 in Section A.2. The Activities
column shows which activities are supported by each different contribution (A1—
A5). We use to contributions in the literature that offer full support for the

3.3. Product Configuration Activities 25

activity, to contributions that offer partial support, and to contributions that
offer no support. The # and Evaluation columns are about the number of instances
evaluated to support the paper claims and the evaluation type performed to prove
the study validity. The following evaluation types were considered: industrial case
studies (ICS), academic case studies (ACS), industrial examples (IEX), academic
examples (AEX), randomized examples (REX), observations and experiences (OBE),
and expert opinions (EOP). We use NEV for studies covering no evaluation. Finally,
the Tool-Support column identifies if there is tool-support and their respectively
related tool when mentioned in the paper.

Table 3.2: Literature supporting the SPL configuration process.

Study
Activities

Evaluation Tool-Support
A1 A2 A3 A4 A5

Siegmund et al. 9 IEX, AEX SPL Conqueror
Zanardini et al. 1 IEX FeatureIDE
Mazo et al. 50 AEX VariaMos
Kifetew et al. 1 AEX Yes
Noorian et al. 80 REX No
Pereira et al. 22 AEX, REX SPLConfig
B ↪ak et al. 9 IEX, AEX ClaferMoo
Noir et al. 1 ICS, OBE pure::variants
Ochoa et al. 1 AEX FeatureIDE
Asadi et al. 12 REX fmp
Bagheri et al. 1 AEX, OBE No
Ostrosi et al. 1 ACS Yes
Schroeter et al. 0 NEV PuMA
Sion et al. 1 IEX FeatureIDE
Myllärniemi et al. 1 IEX Kumbang
Bashari et al. - OBE AUFM tool
Tan et al. 1 AEX No
Zhang et al. 1 IEX QAPCTool
Lettner et al. 15 IEX DOPLER
Guedes et al. 2 AEX VariaMos
Ruiz et al. 1 ICS No
Leite et al. 2 IEX Dohko
Pascual et al. 12 AEX FamWare
Sánchez et al. 1 IEX No
Parra et al. 1 IEX No
Wittern et al. 3 IEX Yes
Horcas et al. 4 IEX HADAS
Oh et al. 4 AEX No
Umpfenbach et al. 1 ICS No
Hierons et al. 7 IEX, AEX No
dos Santos Neto et al. 1 AEX Yes
Benali et al. 1 ICS No
Henard et al. 5 IEX Yes
Lian and Zhang 2 AEX No
Rezapour et al. 1 IEX No
Guo et al. 3 IEX, AEX Yes
Olaechea et al. 5 AEX No
Wang and Pang 600 REX No
Sayyad et al. 7 IEX, AEX Yes
Roos-Frantz et al. 2 IEX FaMa-OVM

26 3. Current Research on Software Product Line Configuration

Table 3.2: Literature supporting the SPL configuration process.

Study
Activities

Evaluation Tool-Support
A1 A2 A3 A4 A5

Mussbacher et al. 1 ACS jUCMNav
Ognjanovic et al. 1 AEX ConfBPFM
Ter Beek et al. 2 IEX MultiVeStA
Mauro et al. 1 ICS HyVarRec
Santos et al. 2 ACS No
Wang et al. 1 IEX No
Camacho et al. 1 IEX SPLAcris
Triando et al. 1 ICS Yes
Winkelmann et al. 1 ACS No
Xue et al. 6 IEX, AEX No
Qin and Wei 0 NEV No
Khoshnevis and Shams 10 ICS, OBE Yes
Pleuss and Botterweck 1 ACS S2T2 Configurator
Mazo et al. 1 IEX, OBE VariaMos
Zhao et al. 1 ICS No
Soares et al. - OBE No
Murwantara et al. 1 IEX No
Bürdek et al. 1 IEX Yes
Valov et al. 6 IEX SPL Conqueror
Kolesnikov et al. 0 NEV No
Nieke et al. 1 ICS DarwinSPL
Zheng et al. 1 AEX Yes
Eichelberger et al. 0 NEV EASy-Producer
Mazo et al. 0 NEV VariaMos
Murguzur et al. 0 NEV LateVa toolkit
Acher et al. 5 ICS, ACS FAMILIAR
Martinez et al. 1 IEX No
Foster et al. 2 IEX No
White et al. 23 AEX FaMa
Karimpour and Ruhe 2 AEX No
Adjoyan and Seriai 0 NEV No
Zheng et al. 1 ICS No
Ayala et al. 2 ICS No
Sharifloo et al. 0 NEV No
Cubo et al. - OBE DAMASCo
Kramer et al. 1 IEX FeatureIDE
Saller et al. 1 AEX No
Wang and Ng 1 ACS No
Bajaras and Agard 1 AEX Yes
Zdravkovic et al. 1 IEX, AEX Yes
Chen et al. 1 IEX No
Ge et al. 1 AEX No
Safdar et al. 2 ICS No
Rabiser et al. 2 ICS FORCE
Brink et al. 0 NEV No
Galindo et al. 6 REX Invar
Chavarriaga et al. 0 NEV No
Urli et al. 1 IEX SpineFM
Klambauer et al. - IEX, EOP DOPLER
Heider et al. 1 IEX VaMoRT
Hajri et al. 1 ICS, OBE PUMConf

3.3. Product Configuration Activities 27

Table 3.2: Literature supporting the SPL configuration process.

Study
Activities

Evaluation Tool-Support
A1 A2 A3 A4 A5

Lu et al. 12 IEX Zen-Configurator
Pereira et al. 0 NEV FeatureIDE
Pereira et al. 2 IEX PROFilE
Schwäger and Westfechtel 0 NEV SuperMod
Zhang and Becker 0 NEV EXConfig
Fang et al. - EOP MagicDraw
Behjati et al. 1 IEX Yes
Martinez et al. 1 IEX, OBE FeatureIDE
Tan et al. - OBE Yes
Nöhrer et al. 7 IEX, AEX No
Thurimella and Bruegge - OBE Sysiphus
Lin and Kremer 1 IEX No
Gençay et al. 1 ICS No
Nieke et al. 1 ACS No
Tanhaei et al. 2 ICS, ACS No
Bures et al. 0 NEV No
Gamez and Fuentes 4 AEX Hydra
Jannach and Zanker 1 IEX No
Lee 0 NEV No
Mitchell 1 ICS No
Neves et al. 2 ACS No

Table 3.2 shows that activities A1 and A2 are only fully supported by Siegmund et al.
[2015] and Zanardini et al. [2016], respectively. Besides, despite the importance of all
five activities working together in a same approach, there is only one approach that
offers at least partial support to all five activities [Mazo et al., 2012c]. In 53 out of the
112 approaches (46.4%) at least three configuration activities are partially supported.
Only 28 approaches (25%) offer support for just one activity. Although it indicates
that the research community has realized the benefits of proposing approaches which
encompass different configuration activities, there is still need for approaches that
would fully support at least two of the defined activities (Section 3.4 presents the
set of mechanisms supported by each activity).

Regarding the evaluation type, it should be noted that the most commonly employed
evaluations use industrial (36.6%) and academic (25%) examples. In 50 out of the
112 different contributions (44.6%), only one test instance (i.e.product line) is used
to demonstrate the approach feasibility and 19.6% of them do not use any instance
(i.e., 64.2% in total). Moreover, only a small number (16.1%) of the analyzed
contributions applied more than one evaluation method. Furthermore, although
an empirical user evaluation process (through users observations and experiences)
is desirable to increase the external validity of the proposed approach, only 9.8%
of the selected contributions conducted this type of evaluation. While 59.8% of the
contributions provide tool support, there is still a big lack in the literature regarding
the empirical evaluation of these tools.

28 3. Current Research on Software Product Line Configuration

Given the complexity of the SPL configuration process, tool support seems to be
an essential aspect that can assist decision makers. Most tools extend the well
known state-of-the-art tool FeatureIDE [Martinez et al., 2014, Pereira et al., 2016b,
2017, 2016c, Rabiser et al., 2016, Sion et al., 2016, Zanardini et al., 2016]. However,
only 34 studies (30.4%) make the reader aware of how the tool could be obtained.
The remaining studies do not provide readers with detailed information about the
tool neither make clear whether the tool was extended or built for the particular
purpose of the proposed approach. Hence, we argue that the actual research com-
munity might not be aware of the importance of those information for researchers
when extending their work. Moreover, it limits the research community to empir-
ically compare and assess these tools, as well as for practitioners when using such
proposed techniques. Furthermore, only 13.4% of these contributions made the eval-
uation material (including the detailed results) publicly available for the purpose of
reproducibility of the study by other researchers. Thus, without the public resources
(i.e., tools or algorithms) it is hard to perform replication studies.

In addition to Table 3.2, Figure 3.6 shows the number of contributions in the lit-
erature partially (or fully) addressing each SPL configuration activity. Moreover,
in the same figure, we illustrate contributions either with or without tool support.
Although all five activities have drawn interest, the figure shows that activities A1
and A2 are supported by most of the approaches (i.e., 60 and 73 respectively out
of the 112 total contributions). Despite the observed trend to both activities, the
percentage of contributions that implement tool-support remains constant between
53% and 62% for activities A1, A2, A4 and A5. It is important to notice that al-
though only 50 approaches implement the activity A3, 82% of these contributions
implement tool-support.

Figure 3.7 shows the percentage of studies per activity that employ any of the
aforementioned evaluation techniques. In summary, our data reveals that from our
retrieved contributions, an increasing attention was paid to the use of industrial ex-
amples as a means to prove the validity of the proposed activities (23-36%). Regard-
ing activity A3, a higher interest was paid to the use of observations and experiences
(OBE). This might be due to the fact that this activity offers the highest percentage
of tool support (see Figure 3.6). Moreover, regarding activity A5, a large portion of
the studies did not present any kind of evaluation to demonstrate their feasibility.
Furthermore, there is still a portion of the contributions in the literature that use
case studies (i.e., ICS and ACS) as the main evaluation. Since most case study are
just a running example used to explain the proposed technique, it could be suggested
that further experiments (e.g., performance analysis) could be conducted over these
approaches as an additional contribution in this field. Next, Section 3.4 presents
detailed information about the set of mechanisms implemented by each activity.

3.4 Product Configuration Mechanisms

In this section, we systematically investigate how the retrieved primary studies from
our SLR address the SPL configuration activities. We aim at understanding differ-
ent contributions and classifying possible future directions, by answering RQ2 and
RQ3. First, based on our insights from Section 3.3, we performed a categorization

3.4. Product Configuration Mechanisms 29

0

10

20

30

40

50

60

70

80

A1 A2 A3 A4 A5

R
e
s

tr
ie

v
e

d
 p

ri
m

a
ry

 s
tu

d
ie

s

SPL configuration activity

Without tool-support

With tool-support

Figure 3.6: Retrieved primary studies that offer support for each activity and their
tool-support distribution.

Evaluation Type Distribution

13%

5%

35%

33%

6%

5%

A3

ICS ACS IEX AEX REX OBE EOP NEV

9%

4%

31%

20%

5%

14%

4%

13%

A4

24%

15%

23%

11%

2%
2%

2%

21%

A5

13%

7%

36%

26%

6%

8%
4%

A1

12%

7%

32% 30%

6%

5%
8%

A2

13%

5%

35%

33%

6%

5%
2%

A3

Figure 3.7: Evaluation type supported by each activity (ICS: industrial case stud-
ies, ACS: academic case studies, IEX: industrial examples, AEX: academic exam-
ples, REX: randomized examples, OBE: observations and experiences, EOP: expert
opinions, and NEV: no evaluation).

30 3. Current Research on Software Product Line Configuration

of the mechanisms addressed by each SPL configuration activity. Then, to ensure
completeness, we involved experts in this field to assess the relevance of these mecha-
nisms (see Section 3.2.2). This resulted in the set of seventeen mechanisms described
in Figure 3.8. We do not claim that this set is complete. However, it is simply used
to classify the current literature in SPL configuration. In the following, we present
possible practical applications to make these mechanisms easily understandable to
the readers. Moreover, we describe a brief overview about each mechanism and
discuss how the studies support them.

3.4.1 Mapping Non-Functional Properties

This section presents three mechanisms supported by the Mapping Non-Functional
Properties activity: (i) Non-Functional Properties Specification (A1a); (ii) Non-
Functional Properties Measurement (A1b); and (iii) Reuse of Non-Functional Prop-
erty Measurements (A1c). Table 3.3 sketches which studies support these mecha-
nisms. The first column identifies the study reference and the other three columns
are about the mechanisms. We use for studies providing support only for quanti-
tative NFPs. We use for studies providing support only for qualitative NFPs. We
use for studies that support both, qualitative and quantitative NFPs. Finally, we
use for studies without any support.

3.4.1.1 Non-Functional Properties Specification

This mechanism takes as input a feature model and allows annotating primitive and
compound features, or even valid and complete products with NFPs. NFPs can be
defined as an extension of a feature inside a feature model (see Section 2.1). In
Figure 2.1 in Chapter 2, we show an example of an Extended Feature Model (EFM)
using the notation inspired by Benavides et al. [2005]. In addition, NFPs can be
directly associated to valid and complete configurations due to feature interactions
(see Section 3.4.1.2). There are a large number of quantitative and qualitative NFPs
reported in the literature. For a survey on these properties we refer to [Boehm et al.,
1978, Commission et al., 2001, McCall et al., 1977, Soares et al., 2014].

As far as we are aware, Benavides et al. [2005] were the first authors to introduce
EFMs. However, there is still no consensus on a notation to define NFPs. Most
proposals agree that NFPs should be modeled and defined for primitive as well as
compound features, and they consist at least of a name, a domain, a value, and
a unit. Some authors assume that only primitive features in a feature model have
concrete implementation and consequently are annotated with NFPs. In this case,
NFPs related to compound features are represented as the aggregation of feature
NFPs of other features [Benavides et al., 2005]. As illustrated in Figure 3.9, NFPs
are used to specify quantitative non-functional information (i.e., reliability = 98%,
response time = 500 milliseconds, and cost = $600.0) and qualitative non-functional
information (i.e., high customer satisfaction and high security) about the feature.
The same property can vary for each domain, application scenario, environment,
and stakeholder. For example, the property response time may be quantitatively or
qualitatively specified. The same stands for a valid and complete configuration.

On the one hand, there are authors who propose the use of functional metrics for the
quantifiable measurement of NFPs (see Section 3.4.1.2). On the other hand, there

3.4. Product Configuration Mechanisms 31

N
o

n
-F

u
n

ct
io

n
al

P

ro
p

er
ti

es
 S

p
ec

if
ic

at
io

n

N
o

n
-F

u
n

ct
io

n
al

P

ro
p

er
ti

es

M
ea

su
re

m
en

t

D
ef

in
e

St
ak

eh
o

ld
er

s’

P
re

fe
re

n
ce

s
C

o
n

fi
gu

ra
ti

o
n

La

n
gu

ag
e

Sp
ec

if
ic

at
io

n

D
ef

in
e

P
ro

d
u

ct

C
o

n
st

ra
in

ts

D
yn

am
ic

 P
ro

d
u

ct

C
o

n
fi

gu
ra

ti
o

n

C
o

n
fi

gu
ra

ti
o

n
 o

f

M
u

lt
i-

So
ft

w
ar

e

P
ro

d
u

ct
 L

in
es

P
ro

d
u

ct
 C

o
n

fi
gu

ra
ti

o
n

Ev

o
lu

ti
o

n

M
ec

h
an

is
m

M
an

d
at

o
ry

 in
p

u
t

N
o

n
-m

an
d

at
o

ry
 i

n
p

u
t

R
eq

u
ir

em
en

t
d

o
cu

m
en

t

Fe
at

u
re

 m
o

d
el

St
ak

eh
o

ld
er

s

M
et

ri
c

 d
ef

in
it

io
n

C
o

n
fi

gu
ra

ti
o

n
s

Mapping
Non-Functional

Properties

Mapping
Product

Requirements
Automatic Configuration Process

Configuration Adaptation Process

L
E

G
E

N
D

…

(o
ld

)
(n

ew
)

P
ro

d
u

ct

C
o

n
fi

gu
ra

ti
o

n

O
p

ti
m

iz
at

io
n

M
u

lt
i-

St
ep

C

o
n

fi
gu

ra
ti

o
n

M
in

im
al

/M
ax

im
al

C

o
n

fi
gu

ra
ti

o
n

So
lv

in
g

C
o

n
fi

gu
ra

ti
o

n

C
o

n
fl

ic
ts

R
ec

o
m

m
en

d
er

 S
ys

te
m

M
ap

p
in

g
St

ak
eh

o
ld

er
s

Ta
sk

s

C
o

n
st

ra
in

t
C

h
ec

ki
n

g
an

d
 P

ro
p

ag
at

io
n

V
is

u
al

iz
at

io
n

Te

ch
n

iq
u

es

Manual Configuration Process
C

O
M

P
LE

TE

IN
C

O
M

P
LE

TE

A
1

a

A
1

b

A
1

c

A
2
a

A

2
c

A

2
b

A
3

e

A
3

a

A
3

b

A
3

c

A
3

d

A
4

b

A
4

c

A
4

a

A
5

a

A
5

b

A
5
c

R
eu

se
 o

f

N
o

n
-F

u
n

ct
io

n
al

 P
ro

p
er

ty

M
ea

su
re

m
en

ts

F
ig

u
re

3.
8:

O
ve

rv
ie

w
of

th
e

m
ec

h
an

is
m

s
su

p
p

or
te

d
b
y

ea
ch

S
P

L
co

n
fi
gu

ra
ti

on
ac

ti
v
it

y.

32 3. Current Research on Software Product Line Configuration

Study A1a A1b A1c Study A1a A1b A1c

dos Santos Neto et al. Murwantara et al.
Siegmund et al. Kolesnikov et al.
Horcas et al. Lettner et al.
Soares et al. Kifetew et al.
Guedes et al. Oh et al.
Noorian et al. Ter Beek et al.
Pereira et al. B ↪ak et al.
Umpfenbach et al. Ruiz et al.
Wang et al. Winkelmann et al.
Hierons et al. Benali et al.
Mauro et al. Leite et al.
Noir et al. Ochoa et al.
Santos et al. Pascual et al.
Sion et al. Rezapour et al.
Triando et al. Bürdek et al.
Xue et al. Guo et al.
Henard et al. Mazo et al.
Lian and Zhang Olaechea et al.
Asadi et al. Wang and Pang
Tan et al. Sayyad et al.
Zhang et al. Roos-Frantz et al.
Bagheri et al. Mazo et al.
Mussbacher et al. Ostrosi et al.
Schroeter et al. Pleuss and Botterweck
Zhao et al. Qin and Wei
Khoshnevis and Shams Wittern et al.
Sánchez et al. Myllärniemi et al.
Camacho et al. Bashari et al.
Zanardini et al. Ognjanovic et al.
Valov et al. Parra et al.

Table 3.3: Literature supporting the activity: Mapping NFPs (A1a: Non-Functional
Properties Specification, A1b: Non-Functional Properties Measurement, A1c: Reuse
of Non-Functional Property Measurements)

are authors who propose the use of domain expert judgments to assign qualitative or
quantitative NFP values, which depend on the availability of domain experts, who
must engage themselves in a time-consuming and error-prone activity.

In addition to the cross-tree constraints represented by features and binary opera-
tors, EFMs can also include hard cross-tree constraints (see Section 2.1.1). Although
the specification of hard cross-tree constraints are useful to the use of decision prop-
agation techniques (Section 3.4.3) and a more automatic configuration support (Sec-
tion 3.4.4), there are only 11 approaches which provide support for hard cross-tree
constraints [Bürdek et al., 2014, Lian and Zhang, 2015a, Mauro et al., 2016, Myl-
lärniemi et al., 2015, Ognjanovic et al., 2012, Santos et al., 2016, Sayyad et al.,
2013b, Ter Beek et al., 2016, Wang et al., 2017, Winkelmann et al., 2016, Zanardini
et al., 2016]. In addition, we are not aware of any available contribution in the
literature to guide domain experts specifying hard cross-tree constraints.

In Table 3.3, we observe 60 studies supporting NFP specification, which represents
53.6% out of the total amount of contributions. 50% of them allow users to specify

3.4. Product Configuration Mechanisms 33

Name: reliability

Domain: real

Value: 98

Unit: %

Name: cost

Domain: real

Value: 600

Unit: $

Name: customer satisfaction

Domain: string

Value: high

Unit: {high, medium, low}

Name: security

Domain: string

Value: high

Unit: {high, medium, low}

Name: response time

Domain: real

Value: 500

Unit: ms

siren

Figure 3.9: A sample of non-functional properties attributed to the feature siren
from the smart-home product line illustrated in Figure 2.1.

NFPs for both primitive and compound features. Moreover, 25 studies (i.e., 41.7%)
provide support to both quantitative and qualitative NFPs, 31 studies (i.e., 51.7%)
provide only support to quantitative NFP, and 4 studies (i.e., 6.7%) provide only
support to qualitative NFP.

Although 60 contributions are expected to be a relevant amount of studies, 38 ap-
proaches (i.e., 63.3%) work with a limited set of maximal four NFPs and 11 of them
(i.e., 20%) do not clearly specify which NFPs are supported by the respective ap-
proach (see Table A.5 in Section A.3 for a complete overview of the set of supported
NFPs). Moreover, the few approaches providing support to qualitative NFPs map
linguistic terms (e.g., very negative, negative, neutral, positive, and very positive)
onto real values to be handled as quantitative properties, except for Myllärniemi
et al. [2015].

Myllärniemi et al. [2015] rely on descriptive countermeasures to capture the impact
of the NFP security (e.g., encryption and protection level) on features and other
NFPs. In their approach, they define countermeasure variability through composi-
tion, attributes, inheritance, and constraints. Thus, countermeasures are organized
into hierarchies and represented with the cardinality of the form [n...m]; with n and
m ∈ N . For example, the NFP security in Figure 3.9 may be further represented by
the countermeasure encryption and protection level. Encryption defines two possible
types, i.e. yes or no, and protection level defines four possible types, i.e. nothing,
medium, high, and custom. Therefore, countermeasures and its types can be rep-
resented as in cardinality-based feature modeling [Vale et al., 2016]. The authors
use cardinality [1...1] to represent mandatory countermeasures, cardinality [0...1] for
optional countermeasures, [1...1] for alternative exclusive and [1...m] for alternative
non-exclusive countermeasures.

EFM is also referred in the literature to as extended product line, annotated feature
model, annotated product line, annotation of feature models, attributed feature model,
and attributed product line. Moreover, NFPs can be also referred to as feature
attributes, non-functional interdependencies, non-functional requirements, attribute
instances, quality attributes, non-functional concerns, and abstract concerns. Finally,
hard cross-tree constraints can be referred to as cross-non-functional constraints,
integrity non-functional constraints, and dependencies between features and non-
functional properties.

34 3. Current Research on Software Product Line Configuration

3.4.1.2 Non-Functional Properties Measurement

This mechanism takes as input the EFM and suitable metrics defined for each NFP,
and automatically measure NFPs in terms of their real impact over features, and
(or) valid configurations. In Table 3.3, we observe 10 approaches supporting this
mechanism. This category uses NFPs that can be measured on a metric scale, such
as response time and cost, among others.

NFPs can be measured using dynamic and static analysis. Dynamic analysis consists
of executing the configurations and monitoring the measuring of NFPs at runtime,
otherwise static analysis infers the NFP values only by examining the code, model,
or documentation. Thus, static analysis gives just qualitative statements about
configurations. For example, it cannot predict the accurate amount of response
time required by smart-home configurations, but it can predict which configurations
have a low response time compared to the other configurations. Although static
measurement cannot make accurate predictions of NFP values, it is much faster
than collecting data dynamically from a potentially exponential number of products.
Moreover, when using static analysis, partial configurations can be measured.

There are several functional metrics defined in the literature to measure NFPs
[Boehm et al., 1976, Chhabra and Gupta, 2010, Cleland-Huang et al., 2007]. These
metrics refer to many factors depending on the context and scenario of the product
line, product requirements, and related features. For example, on the one hand, in
the software context, the cost NFP can be measured as the required effort to add a
feature to a product under construction by analyzing the SPL cycle evolution, such
as, the number of lines of code, the development time, or other functional size met-
rics. On the other hand, in the smart-home context, the cost NFP can be measured
as the effort, in terms of human hours, to build and install the respective features.
Additionally, it may refer to the accumulative sum of several metrics. However,
features cannot be measured in isolation due to feature interactions.

Interactions occur when combinations among features share a common component or
require additional component(s). As an example, consider the smart-home product
line illustrated in Figure 2.1. Product variants that include both features siren

and blinking_lights have a positive impact of 100% in the NFP reliability (i.e., if
the siren fails, the smart home can make the home lights blink as a replacement for
the failed alarm). Therefore, these features interact positively in terms of reliability,
although none of them have 100% of reliability. The unexpected observed results
are caused by feature interactions of both blinking_lights and siren features.

Siegmund et al. [2015] have developed a technique called SPL Conqueror which
supports the definition and dynamic measurement of NFPs. The authors approach
takes feature interactions into consideration by having a model that defines known
interactions and measures their influence using specific sampling heuristics that meet
different feature-coverage criteria. However, in case of lack of domain knowledge to
know in advance which features interact with each other, they assume the existence
of feature interactions between each pair of features. Considering the fact that n
optional features can generate 2n different configurations, measuring all variants for
large SPLs is impractical due to the very high number of possible combinations.

3.4. Product Configuration Mechanisms 35

From their experimental results, they demonstrated that measuring footprint re-
quired the most amount of time for SPLs with either a large number of features
(e.g., 48 hous for the SPL SQLite with 85 features or 24 hours for the SPL Violet
with 100 features) or a large code base (e.g., 4 days in the case of the Linux kernel
SPL with just a small set of 25 features).

In a similar context, other approaches such as Valov et al. [2015] and Murwantara
et al. [2014] have focused just on a small sample of measured configurations. Valov
et al. [2015] infer performance using four non-linear regression methods (i.e., classi-
fication and regression trees, bagging, random forest, and support vector machines).
Empirical results show that bagging achieves the best accuracy in approximately 2
hours for 1.152 valid configurations. In a similar scenario, Murwantara et al. [2014]
use linear regression, MLP, RT (REPTree), Bagging+MLPs and Bagging+RTs to in-
fer energy consumption. However, although the authors conclude that Bagging+RT
obtained the better results, they do not present further information about efficiency.

In the same context, Sánchez et al. [2014] propose a variety of metrics for the mea-
surement of runtime NFPs, such as memory consumption, response time, and se-
curity. For a small-size SPL with 26 features, a few cross-tree constraints and 2
optimization criteria, both Best-First Search Star (BF*), and Greedy Best-First
Search (GBFS) algorithms get the optimal solution with an execution time around
0,5 and 0,7 ms. Although this approach seems to be faster than the previous ap-
proaches, it does not consider feature interactions. In this scenario, the prediction
of NFP measurements using static analysis have been further explored.

Khoshnevis and Shams [2017], dos Santos Neto et al. [2016] and Zanardini et al.
[2016] propose a resource-usage-aware configuration approach based on a rigorous
static analysis by a set of common design metrics related to source code inspection
(such as cyclomatic complexity and coupling). These approaches mainly focus on
the use of a non-dominated sorting genetic algorithm (NSGA-II metaheuristic) to
search for valid configurations that satisfy previously defined product requirements.
The evaluation shows that the proposed approaches are effective in generating a set
of products to compose an optimal product portfolio (see Section 3.4.4.1). However,
the authors do not present any information about the efficiency of the analyzer.
In a similar scenario, Zanardini et al. [2016] consider a partial configuration from
where only a set of minimal valid configurations is generated for each feature. Then,
they use an off-the-shelf static analyzer to predict resource-usage for each minimal
product, in order to search for the best configuration that fulfills the product re-
quirements. The experiments have shown that the off-the-shelf static analyzer spent
approximately 1,57 seconds to compute the NFP footprint for 768 valid products.

One step forward, Kolesnikov et al. [2013] use statically available information from
the feature model and the internal source code structure to find relevant feature
sets. Then, their approach predicts NFPs based on these features sets. Although
this research presents a relevant progress in this field, an empirical evaluation to
prove the approach validity is missing.

Camacho et al. [2016] propose a configuration language based on algebra to handle
cost measurement (see Section 3.4.2.3). The language takes into account the order
in which the features are configured (i.e., product with the same features can have

36 3. Current Research on Software Product Line Configuration

different costs). The authors execute their proposed language in a distributed system
and they show that the cost measurement for 97.648 valid configurations can be
obtained in approximately 5 minutes by using 8 nodes and 32 workers.

Finally, in the interactive configuration scenario, Lettner et al. [2012] present an
approach that uses the DOPLER tool suite to define and deploy business calcula-
tions instantly to end users after making configuration choices. This mechanism is
also referred to as non-functional properties prediction and non-functional proper-
ties value estimation. Moreover, feature interaction can be referred to as subsystem
interaction and component interaction.

3.4.1.3 Reuse of Non-Functional Property Measurements

This mechanism takes as input an EFM with measured NFPs (Section 3.4.1.2) and
applies a reuse approach during a new configuration process. The reuse approach
aims at reusing NFP values previously measured for features or products from the
same SPL, or even at reusing previously specification of metrics. It minimizes the
effort of performing a new analysis for each new product, making the configuration
process faster. As an example, consider the smart-home product line in Figure 2.1.
Suppose the reliability NFP for the feature siren already has been measured from
an earlier configuration process and this measurement satisfies the new requirements
related to the siren feature (e.g., both target customers will use the same supplier
to the feature siren). In this context, the measurement of the reliability NFP
can be reused for the configuration of the new product. This mechanism is helpful
for the automatic optimization of product configurations when dealing with NFP
measurements (see Section 3.4.4). Additionally, even if the context has changed
reuse is possible in case that NFPs are defined with the same metric specification.
We observe in Table 3.3 three studies providing support for this mechanism [Horcas
et al., 2017, Siegmund et al., 2015, Soares et al., 2015].

Soares et al. [2015] propose an approach (named NFP-RA) to define and reuse
NFPs. This approach aims to define a systematic way for reusing previous NFPs
measurements for different products, in order to minimize the effort of performing a
new analysis for each new configuration. NFP-RA maintains a repository with NFP
values that have already been analyzed (i.e., estimated, measured, simulated, etc.).
Thus, if the user desires to generate a new configuration, similar to some of the con-
figurations already derived before, adequate NFPs are reused for the new configura-
tion. Munoz [2017] implement this idea through an efficient collaborative repository,
called HADAS, that stores the energy consumption measurements of complete valid
configurations from several sources. To help developers perform a richer analysis,
HADAS stores energy-related additional information, such as the energy consump-
tion and the hardware used to obtain this data, along with its computational metric.
Therefore, HADAS also allows the inclusion of different measurements for the same
configuration. Overall, HADAS and NFP-RA aim at providing researchers a shared
place to disseminate their empirical results.

Similar to HADAS, SPL Conqueror [Siegmund et al., 2015] allows users to export and
import measurement specifications (i.e., the metric definition of how an NFP can
be measured). Thus, users may reuse the measurement setup in different contexts,

3.4. Product Configuration Mechanisms 37

which reduces the experts’ effort to define new metrics when new configurations have
to be measured.

3.4.2 Mapping Product Requirements

This section presents three mechanisms supported by the Mapping Product Require-
ments activity: (i) Define Stakeholders’ Preferences (A2a); (ii) Define Product Con-
straints (A2b); and (iii) Configuration Language Specification (A2c). Table 3.4
sketches which studies are supported by each mechanism. The first column iden-
tifies the study reference and the other columns are about the mechanisms. We
use for studies providing support for the mechanism and for studies without
any support. Overall, 73 out of 112 approaches (65.2%) provide some contribution
to this group of mechanisms, with a larger portion (56.3%) dedicated to handling
product constraints.

3.4.2.1 Defining Stakeholder Preferences

To guide the product configuration process, this mechanism takes as input the stake-
holders’ priorities in terms of features, NFPs, or configurations. Note that stake-
holders can have completely different requirements and priorities when they use a
particular variant in different application scenarios, such as country, city, or region.
Therefore, this mechanism is employed in scenarios where a decision considers mul-
tiple product requirements, and a trade-off among these requirements is required
in order to better satisfy stakeholders’ needs (e.g., in multi-objectives optimization
scenarios where there are a set of optimal configurations as solution), while still
meeting configuration rules and resource restrictions.

In Table 3.4, we observe that 19 approaches out of 73 approaches, constituting 26%,
support this mechanism. Among them, 10 approaches support NFP preferences
[Asadi et al., 2014, Bagheri et al., 2012a, Noorian et al., 2017, Ognjanovic et al., 2012,
Parra et al., 2012, Rezapour et al., 2015, Sánchez et al., 2014, Zanardini et al., 2016,
Zdravkovic et al., 2015, Zheng et al., 2017a], 8 approaches support feature preferences
[Bajaras and Agard, 2015, Bashari et al., 2014, dos Santos Neto et al., 2016, Noir
et al., 2016, Pereira et al., 2017, Tan et al., 2014b, Wittern et al., 2012, Zhang
et al., 2014], and one approach provides support for product preferences [Martinez
et al., 2015a]. Different techniques are used to specify to what degree a specific NFP
is preferred over others. There are three main techniques in SPL configuration for
eliciting prioritization and finding priorities: Analytical Hierarchical Process (AHP),
Fuzzy Logic (FL), and Weighting Factors.

Analytical Hierarchical Process (AHP). In AHP, pair-wise based comparison
among different factors (i.e., features, NFPs, and configurations) is performed to
produce a ranked list of configurations or features. Pair-wise comparison is based on
the relative importance of stakeholders’ desires through a comparison square matrix
M [n, n] = {Mi,j = σ|1 ≤ i, j ≤ n}, where n represents the number of configurations,
features, or NFPs (i.e., factors); and σ represents the relative importance of the ith

factor with regards to the jth factor. In this case, n × (n−1)
2

comparisons among
features are performed. Asadi et al. [2014] formalize the relative importance between
two factors using the terms: equality (=), slight value (<), strong value (>), very

38 3. Current Research on Software Product Line Configuration

Study A2a A2b A2c Study A2a A2b A2c

Zanardini et al. Mauro et al.
Noorian et al. Ruiz et al.
Pereira et al. Sharifloo et al.
Zheng et al. Sion et al.
dos Santos Neto et al. Xue et al.
Noir et al. Benali et al.
Zdravkovic et al. Henard et al.
Asadi et al. Leite et al.
Sánchez et al. Lian and Zhang
Bagheri et al. Mazo et al.
Ognjanovic et al. Pascual et al.
Parra et al. Siegmund et al.
Wittern et al. Foster et al.
Bajaras and Agard Guo et al.
Martinez et al. Murguzur et al.
Rezapour et al. Olaechea et al.
Bashari et al. Wang and Pang
Tan et al. White et al.
Zhang et al. Chen et al.
Ter Beek et al. Cubo et al.
B ↪ak et al. Ge et al.
Camacho et al. Karimpour and Ruhe
Santos et al. Kramer et al.
Myllärniemi et al. Saller et al.
Ochoa et al. Sayyad et al.
Roos-Frantz et al. Lettner et al.
Adjoyan and Seriai Mazo et al.
Guedes et al. Mussbacher et al.
Horcas et al. Ostrosi et al.
Kifetew et al. Qin and Wei
Nieke et al. Schroeter et al.
Oh et al. Wang and Ng
Umpfenbach et al. Eichelberger et al.
Wang et al. Triando et al.
Zheng et al. Winkelmann et al.
Ayala et al. Acher et al.
Hierons et al.

Table 3.4: Literature supporting the activity: Mapping Product Requirements (A2a:
Define Stakeholders’ Preferences, A2b: Define Product Constraints, A2c: Configu-
ration Language Specification).

3.4. Product Configuration Mechanisms 39

strong (�), and extreme value (∝). For example, if the stakeholders mention that
security is extremely more preferable and relevant than cost (i.e., security ∝ cost)
and cost has a strong value against response time (i.e., cost > response time),
the AHP technique converts the stakeholders’ judgments to numerical values and
numerical priorities are computed for each of the competing features. The traditional
values used for representing preferences among two factors are 1, 3, 5, 7, and 9;
where the highest values denote a higher importance. Values of the matrix are
then normalized based on eigenvalues estimation [Saaty, 1987]. The v eigenvector
is a non-null vector such that given the matrix M and an eigenvalue λ, we have
the following relation Mv = λv. Finally, it produces a feature (or configuration)
ranking.

6 out of 19 approaches adopt AHP [Asadi et al., 2014, Bashari et al., 2014, Noorian
et al., 2017, Ognjanovic et al., 2012, Zanardini et al., 2016, Zhang et al., 2014]. For
instance, Zhang et al. [2014] introduced the usage of positive and negative impacts
over NFPs. An NFP positive impact measures the importance of selecting a feature
for a final product configuration, while the negative impact measures the impor-
tance of deselecting that feature. Then, just the subset of features with positive
or negative impact over a particular NFP are considered in the matrix, reducing
the number of manual comparisons to be performed by stakeholders. In a similar
scenario, Tan et al. [2014b] adopt the ELO rating system which is also a pair-wise
comparison approach, originally used to compute the performance between players
(i.e., competitors). In this approach, features assume the role of players and a fea-
ture ranking is computed based on stakeholders judgments on a pair of features in
terms of satisfying a given NFP.

Fuzzy Logic (FL). FL is mainly used to deal with vague or imprecise judgments.
Fuzzy Requirements refer to stakeholders’ requirements surrounded by vagueness and
uncertainty [Bajaras and Agard, 2015, dos Santos Neto et al., 2016]. As an example,
consider the statement “Stakeholders only agree in paying a high cost for a product if
its response time is minimum, otherwise, they only pay a low price”. In this scenario,
the stakeholder judgments: high cost and minimum response time can be represented
as fuzzy functions by mapping a cost and response time scale, such as the one in
Figure 3.10. This figure shows that a specific smart-home configuration has rather
slow response time but results in high cost. Thus, we can deal with a large range of
values, instead of considering only two or few classifications: cheap and expensive,
or slow and fast. Consequently, we can offer user much more suitable products.
This method can be successfully combined with the AHP method, known as Fuzzy
Cognitive Mapping (FCM). There are 4 approaches in Table 3.4 that implement FL
[Asadi et al., 2014, Bagheri et al., 2012a, Bajaras and Agard, 2015, dos Santos Neto
et al., 2016], where one of them adopts FCM [Asadi et al., 2014].

Weighting Factors. One of the methods used for expressing stakeholders’ pref-
erences is the simple employment of absolute weighting factors, such as the manual
ranking specification of features’ relevance. In Zheng et al. [2017a], users define
weights to NFPs based on historical information from previous customers’ com-
ments. In a similar scenario, Zdravkovic et al. [2015] produce a consumer preference
model based on NFP ranking for specific consumer segments that is used as the

40 3. Current Research on Software Product Line Configuration

0

1

response time cost

LOW MEDIUM HIGH

Figure 3.10: The semantic annotation of the properties response time and cost for a
specific configuration of a smart-home product for the feature model in Figure 2.1.

input to a goal-oriented model (see Section 3.4.4.1). The remaining approaches
[Martinez et al., 2015a, Noir et al., 2016, Parra et al., 2012, Pereira et al., 2017,
Rezapour et al., 2015, Sánchez et al., 2014, Wittern et al., 2012, Zdravkovic et al.,
2015, Zheng et al., 2017a] consider simple weighting schemes to reflect stakehold-
ers’ preferences. They define weighting factors related to a complete configuration
as F (x) = w1f1 + w2f2 + · · · + wnfn where wi is the weight assigned to the ith

feature, fi is the status (i.e., 1 for selected and 0 for deselected) of the set of n
features, and i, n ∈ N. Then, to better satisfy the user needs, the function F (x) is
maximized [Pereira et al., 2017]. The same idea is adopted in the context of NFP
weights, where the value of an NFP corresponds to the aggregation sum of the NFP
from each selected feature. However, since each NFP has different measuring units
(e.g., milliseconds for response time, megabytes for memory consumption, etc) and
differing orders of magnitude, its value should be normalized before computing the
weighted measure of a complete configuration. Sánchez et al. [2014] propose the
employment of Equation 3.1 to normalize NFP measurements.

F (x) =
∑
i∈P

wi ×
Ii(C)− µi

σi
(3.1)

where P is the set of quality properties, wi is the weight of the ith quality property,
such that

∑|P |
i=1 wi = 1 (they are defined by stakeholders or measured by a domain-

specific formula), Ii(C) corresponds to the configuration aggregated measurement
of the ith property, and µi and σi are the average value and the standard deviation
of Ii(C) for all valid configurations. This formulation is responsible of converting
evaluation measures in a normalized and comparable value, i.e. Ii ∈ [0, 1].

Stakeholders’ preferences are also referred to as non-functional property preferences,
feature preferences, product preferences, and fuzzy preferences.

3.4.2.2 Defining Product Constraints

This mechanism takes as input specifications of decision rules over NFPs to guide
the product configuration process. The definition of decision rules allow the product

3.4. Product Configuration Mechanisms 41

alignment with business interests and stakeholder needs. These rules, known as
product constraints, define a set of limited resources that cannot be exceeded. They
are constraints that are defined as equalities or inequalities over the aggregation of
a specific NFP. In this way, the set of NFPs (e.g., cost) are aggregated (e.g., sum)
and an inequality (i.e., ≤, <,>,≥) or equality (i.e., =) relation is defined. These
constraints are useful for defining resource limits like budget boundaries [Ochoa
et al., 2015, Pereira et al., 2017]. For instance, Bagheri and Ensan [2014b] employ
hard limits in order to define reliability lower and upper boundaries when configuring
an SPL. Also filters may be defined as an automated product constraint, where
stakeholders select a set of key hard limits to reduce the SPL variability space.
Then, a subset of products S ′ are obtained S ′ ⊆ S from a complete set of products
or solutions S. B ↪ak et al. [2016] provide visual support to filter product constraints.

Product constraints complement the interdependencies expressed through the fea-
ture model, restricting the set of valid configurations. In Table 3.4, we observe that
63 studies support this mechanism. This mechanism is usually used with the con-
figuration optimization mechanism defined in Section 3.4.4.1. 65% of the studies
supporting this mechanism also support optimization. This mechanism is also re-
ferred to as decision rules, stakeholders constraints, resource constraints, hard limits,
and non-functional property constraints.

3.4.2.3 Configuration Language Specification

This mechanism describes EFMs, product requirements, and configurations using a
representative textual configuration language. This language is helpful to support
the activities of automatic configuration (Section 3.4.4) and configuration adaptation
(Section 3.4.5) of large-scale SPLs, since the graphical representation of a large set
of information tend to add an overwhelming layout, impacting understandability.

Inspired by Olaechea et al. [2012] and Mendonça et al. [2009], the Listing 3.1 shows
the textual extended variability modeling language for the smart-home product line
in Figure 2.1. The lines 8–27 represent the feature-tree with symbol : r denoting the
feature root. The symbols : m and : o denoting mandatory and optional features,
respectively. In addition, : g[1, ∗] and : g[1, 1] denote a group cardinality alternative
non-exclusive and exclusive, respectively. Furthermore, : p denotes NFPs.

Lines 29–33 define the cross-tree-constraints and lines 35–38 define the hard cross-
tree-constraints. Lines 41-68 represent the product requirements to search for an
optimal instance of smart-home represented by optimalHouse in line 43. The line
43 declares optimalHouse as a singleton concrete sub-type of SmartHome, effec-
tively defining an instance of the smart-home product line. Note that, in line 42,
SmartHome is declared as abstract, meaning that there are no instances of this type.
SmartHome in lines 44 and 45 also defines two additional attributes, each starting
with total_. These attributes sums up the response time and reliability of the se-
lected features. Feature.reliability returns the set of reliability values for the
specified features. Features interactions are represented by adding conditional terms
to the sum (see line 49 for an example). Lines 52–57, 59–63, and 65–67 represent
product constraints (Section 3.4.2.2), optimization objectives (Section 3.4.4.1), and
stakeholders’ preferences (Section 3.4.2.1) respectively.

42 3. Current Research on Software Product Line Configuration

Listing 3.1: Extended variability language adapted from Olaechea et al. [2012] and
Mendonça et al. [2009] for the smart-home product line in Figure 2.1.

1 <a t t r i bu t e−types>
2 abs t r a c t Feature ;
3 response−time ; r e l i a b i l i t y ; co s t ; memory : double ;
4 customer−s a t i s f a c t i o n ; s e c u r i t y : S t r ing ;
5 </a t t r i bu t e−types>
6

7 <f ea ture−model>
8 <f ea ture−t ree>
9 : r SmartHome ;

10 (. . .)
11 :m s e c u r i t y : Feature
12 : o alarm : Feature
13 : s i r e n : g [1 , ∗]
14 : p response−time = 500
15 : p r e l i a b i l i t y = 98
16 : p co s t = 600
17 : p s a t i s f a c t i o n = ”high ”
18 : p s e c u r i t y = ”high ”
19 : v i s u a l : Feature
20 : b l i n k i n g l i g h t s : Feature
21 : p response−time = 5
22 : p r e l i a b i l i t y = 99
23 : p co s t = 150
24 : p customer−s a t i s f a c t i o n = ”medium”
25 : p s e c u r i t y = ”low ”
26 (. . .)
27 <\ f ea ture−t ree>
28

29 <c on s t r a i n t s>
30 c1 : ˜ (s enso r or d e t e c t i o n) or alarm ;
31 c2 : ˜ b l i k i n g l i g h t s or automatic ;
32 (. . .)
33 </c on s t r a i n t s>
34

35 <hard−c on s t r a i n t s>
36 h1 : ˜ monitor ing or (camera . memory > 8) ;
37 h2 : ˜ b l i n k i n g l i g h t s or (SmartHome . t o t a l r e s p o n s e−time < 1000) ;
38 </hard−c on s t r a i n t s>
39 <\ f ea ture−model>
40

41 <requirement>
42 abs t r a c t SmartHome ;
43 optimalHouse : SmartHome ;
44 t o t a l r e s p o n s e−time = sum(Feature . response−time)
45 t o t a l r e l i a b i l i t y = sum(Feature . r e l i a b i l i t y)
46 (. . .)
47

48 < i n t e r a c t i o n s>
49 sum(s i r e n . r e l i a b i l i t y) + sum(b l i n k i n g l i g h t s . r e l i a b i l i t y) = 100 ;
50 </ i n t e r a c t i o n s>
51

52 <product−c on s t r a i n t s>
53 to ta l cus tomer−s a t i s f a c t i o n and t o t a l s e c u r i t y = ”high ” ;
54 optimalHouse . t o t a l r e s p o n s e−time < 1 ;
55 optimalHouse . t o t a l r e l i a b i l i t y = 100 ;
56 optimalHouse . t o t a l c o s t < 5000 ;
57 </product−c on s t r a i n t s>
58

59 <opt imizat ion>
60 max(optimalHouse . t o t a l s e c u r i t y) ;
61 max(optimalHouse . t o t a l r e l i a b i l i t y) ;
62 min(optimalHouse . t o t a l r e s p o n s e−time) ;
63 </opt imizat ion>
64

65 <pre f e r enc e s>
66 s e c u r i t y {\propto } co s t ;
67 </pr e f e r enc e s>
68 </requirement>

3.4. Product Configuration Mechanisms 43

In Table 3.4, we observe 13 approaches supporting this mechanism. These ap-
proaches propose a textual modeling language for large scale management of SPL
configurations. We split the contributions in the literature into four main groups:
(a) managing specification of configurations, (b) managing NFPs, (c) managing
product requirements, and (d) managing configurations at runtime.

Managing Specification of Configurations. Triando et al. [2016] propose an
Extended Product Selection Language (EPSL) to specify configurations as sets of
selected and deselected features by referring to other created configurations. EPSL
uses a set of logical operations (i.e., union, intersection, complement) over features
and sets of previous configurations. This results in a more concise and less repetitive
language in comparison with FeatureIDE [Pereira et al., 2016b], that describes the
complete list of features for each new created configuration.

Managing NFPs. To model variable systems, Camacho et al. [2016] use a for-
mal configuration language based on algebra operational semantic rules [Hillston,
2005] to support product management decisions and cost estimations. In a similar
scenario, Myllärniemi et al. [2015] use a textual modeling language based on weight
constraint semantic rules [Simons et al., 2002] to represent security variability.

Zanardini et al. [2016] use the Micro Textual Variability Language (µTVL) [Clarke
et al., 2010] to deal with NFPs. µTVL is a text-based feature modeling language
to describe EFMs. However, µTVL is not a programming language that generates
executable Java code from derived product configurations. Therefore, Zanardini
et al. [2016] propose an approach to link feature models specified in µTVL with
deltas to support the direct propagation of NFPs to the associated code artifacts
during product derivation. One step further, Winkelmann et al. [2016] introduce an
extension of the programming language DeltaJ, called parametric DeltaJ. Parametric
DeltaJ allows the propagation of NFP values from an EFM to Java code artifacts
via product configuration. Parametric DeltaJ also allows the description of hard
cross-tree-constraints and management of feature interactions.

Managing Product Requirements. On a broad view, ClaferMoo [B ↪ak et al.,
2016], CoCo [Ochoa et al., 2015], and FaMa-OVM [Roos-Frantz et al., 2012] propose
a variability modeling language to support the representation of EFMs and product
requirements. These approaches use state-of-the-art solvers to find a set of features
that satisfy the feature model constraints and fulfill the product requirements. In
addition, ClaferMoo supports the representation of feature interactions and CoCo
aims at managing conflicts among stakeholders’ configurations performed over a
feature model (see Section 3.4.3.3). One step further, FAMILIAR [Acher et al., 2013]
and EASy-Producer [Eichelberger et al., 2016] provide domain-specific modeling
languages to manage a set of inter-related feature models. ClaferMoo, CoCo, FaMa-
OVM, FAMILIAR, and EASy-Producer integrate an interactive configuration view
with a variability modeling language.

Managing Configurations at Runtime. In the context of dynamic configura-
tion of SPLs at runtime, Ter Beek et al. [2016] present a set of probabilistic feature-
oriented languages: FLan, PFLan, and QFLan. QFLan extends the two languages

44 3. Current Research on Software Product Line Configuration

FLan and PFLan. QFLan considers arithmetic relations among features, NFPs,
and actions at run-time to analyze probabilistic aspects of SPLs configurations and
behavior, such as the impact to install and replace features at a specific moment
or in a specific order. In a similar scenario, Santos et al. [2016] use Promela [Holz-
mann, 2003] to specify the dynamic SPL behavior and validate product requirements.
Promela consists of variables defining features, the environment and configurations
behavior. It defines a process to trigger the adaptation rules (activation and deac-
tivation) to manage context changes at runtime.

Product configuration language is also referred to as product line language, extended
variability language, variability instantiation language, product selection language,
product instantiation language, configuration instantiation language, and textual
variability modeling language.

3.4.3 Manual Configuration Process

This section presents five mechanisms supported by the Manual Configuration activ-
ity: (i) Visualization Techniques (A3a); (ii) Constraint Checking and Propagation
(A3b); (iii) Solving Conflicts among Configurations (A3c); (iv) Mapping Stakehold-
ers Tasks (A3d); and (v) Recommender System (A3e). Table 3.5 sketches which
studies are supported by each mechanism. The first column identifies the study
reference and the other columns are about the mechanisms. We use for studies
providing some support to the mechanism and for studies without any support.

3.4.3.1 Visualization Techniques

This mechanism considers the use of visualization techniques combined with inter-
active techniques to support decision makers during the SPL configuration process.
It is supported by automated tools, called configurators. Configurators aim to assist
decision makers particularly configuring large feature models with complex depen-
dencies between the variants. Configurators are needed especially (i) when the vari-
ability has grown large; (ii) there are complex dependencies between the variants;
or (iii) the configuration task is not done by the SPL engineers. Therefore, con-
figurators need to easily guide decision makers in the product configuration process
step-by-step by communicating and explaining the variability of an SPL. It should
allow even a non-technical user to perform the configuration task.

44 out of 112 studies (39.3%) provide visual support to handle the manual inter-
active configuration process, as summarized in Table 3.5. In the next sections, we
discuss how each study supports this activity. Note that studies supporting mecha-
nisms in this activity also may support the automatic and adaptation activities (see
Figure 3.5). For example, after or before automatically optimizing a configuration,
decision makers may interactively select or deselect features by means of the use of
configurators. Otherwise, some configurators do not provide support to any other
mechanism in this group, this is why they offer some support to the activities of
mapping NFPs (A1) and (or) mapping product requirements (A2). For instance, in
previous work [Pereira et al., 2017], the authors proposed an approach that supports
stakeholders specifying NFPs, their preferences and product constraints to then au-
tomatically configure a product. Therefore, by considering the overall contribution

3.4. Product Configuration Mechanisms 45

Study A3a A3b A3c A3d A3e

Eichelberger et al.
Ostrosi et al.
Schroeter et al.
Lu et al.
Schwäger and Westfechtel
Ochoa et al.
Nöhrer et al.
Thurimella and Bruegge
Rabiser et al.
Pereira et al.
Bashari et al.
Mazo et al.
Zhang et al.
Tan et al.
Hajri et al.
Pereira et al.
Sion et al.
Myllärniemi et al.
Behjati et al.
Urli et al.
Klambauer et al.
Pleuss and Botterweck
Zheng et al.
Zhang and Becker
Fang et al.
Murguzur et al.
Martinez et al.
Noir et al.
Galindo et al.
Tan et al.
Khoshnevis and Shams
Kifetew et al.
Nieke et al.
Noorian et al.
Pereira et al.
B ↪ak et al.
Zanardini et al.
Mazo et al.
Siegmund et al.
Asadi et al.
Acher et al.
Heider et al.
Lettner et al.
Mazo et al.
Brink et al.
Zhao et al.
Safdar et al.
Chavarriaga et al.
Martinez et al.
Bagheri et al.

Table 3.5: Literature supporting the activity: Manual Configuration Process (A3a:
Visualization Techniques, A3b: Constraint Checking and Propagation, A3c: Solv-
ing Configuration Conflicts, A3d: Mapping Stakeholder Tasks, A3e: Recommender
System).

46 3. Current Research on Software Product Line Configuration

of such techniques, they propose a semi-automatic approach to support the config-
uration process. For a complete overview of state-of-the-art configurators we refer
to our previous paper [Pereira et al., 2015].

3.4.3.2 Constraint Checking and Propagation

This mechanism takes as input a set of selected and deselected features. Then, it
translates the feature model into a specific representation (e.g., propositional logic)
and using exact algorithms checks the structural constraints of the feature model and
automatically informs the decision maker as soon as a selection state becomes invalid.
Therefore, this mechanism concentrates on validating feature models and managing
the configuration process by avoiding the introduction of product inconsistencies.

In Table 3.5, we observe 26 studies offering support for this mechanism: 5 stud-
ies use the decision propagation mechanism implemented in FeatureIDE [Bashari
et al., 2014, Pereira et al., 2016b,c, Rabiser et al., 2016, Sion et al., 2016]. Fea-
tureIDE [Meinicke et al., 2017] provides an interactive configuration support includ-
ing automated conformance checking of configuration and decisions propagation. It
uses constraint logic programming to provide immediate feedback on the effect of
choices made (interactively) by decision makers, not allowing them to set an invalid
selection state. As an example, consider the smart-home product line in Figure 2.1.
After the user specifies that the sensor feature is selected the tool responds by
automatically selecting alarm as well, since there is a requires constraint between
sensor and alarm. This ensures that the configuration is valid at all points in time.
Behjati et al. [2014] apply this idea to the Integrated Control Systems (ICS) domain.

Similar to FeatureIDE, PUMConf [Hajri et al., 2016] uses Natural Language Pro-
cessing (NLP) to interactively check the consistency of SPLs. For each decision,
PUMConf automatically generates use cases and domain models for the config-
ured product. Since PUMConf focuses on managing requirements, it is integrated
with an industrial requirements management tool: IBM DOORS. Kumbang [Myl-
lärniemi et al., 2015] complements this approach by proposing a mechanism to link
requirements to feature models. Then, decision makers follow making decisions over
requirements, instead of features. After each decision, Kumbang checks the config-
uration for consistency and completeness. In case of inconsistency, it is reported
to the user. Otherwise, decision propagation is applied to both feature model and
requirements.

In a similar scenario, Zen-CC [Lu et al., 2016a] and QAPCTool [Zhang et al., 2014]
propose a configuration inference system, which can automatically infer decisions
based on configuration data from requirements and selected features. Therefore,
Zen-CC advances one step further by incrementally producing conformance checking
results and employing decision propagation strategies by only updating a small set
of nodes of a tree, which are related to the currently specified requirements and
features, instead of checking all the conformance rules at each configuration step.
Zen-CC and QAPCTool are implemented as a component of Zen-Configurator and
QAMTool, respectively.

Thurimella and Bruegge [2012] propose a consistency checker for a rationale ap-
proach (i.e., questions, options, and criteria) to guide distributed stakeholders to

3.4. Product Configuration Mechanisms 47

make new decisions. Their approach is based on past data from previous decisions
to support new decisions.

Mazo et al. [2014a] and Tan et al. [2013] propose a collection of recommendation
heuristics to reduce the number of configuration steps during the interactive con-
figuration process by pointing out the order to select features. The decision maker
should always start from this set of features since, based on the feature dependen-
cies, the decisions made on these features will imply decisions on the rest of the
features. Beyond to reducing the number of features visited in the interactive con-
figuration process, these approaches also minimizes the computation time required
by the solver to propagate the configuration choices.

Besides calculating the consequences of previously made decisions, S2T2 Configu-
rator [Pleuss and Botterweck, 2012] supports the decision maker with visual expla-
nations why a decision cannot be made as intended (due to a constraint specified
in the feature model). Thus, whenever a decision is applied to the model, the con-
sequences of that decision are highlighted to decision makers to provide them with
an overview of what happened. Therefore, in contrast to the previous approaches,
S2T2 Configurator allows the decision maker to ask for an explanation and track
what is happening when a certain feature is selected or deselected. In addition,
FeatureIDE [Pereira et al., 2016b] proposes a highlight technique to guide decision
makers to a valid configuration, based on unsatisfied constraints of the feature model
(see Chapter 7 for more detail).

Several authors [Chavarriaga et al., 2014, Klambauer et al., 2013, Safdar et al.,
2017, Zhang et al., 2014] propose an automatic decision propagation mechanism to
ensure consistence validity of a configuration belonging to multi-SPLs, which Safdar
et al. [2017] named Cross Product Lines (CPL) rules. Since individual configura-
tions from multiple dependent SPLs are not necessarily compatible, using CPL rules
constraints between SPLs are expressed by inter-model dependencies and immediate
consistence among them is enforced. This way, each stakeholder decides over its own
decisions, then inter-model dependencies restricts the selection of particular features
in other feature models. Conflicts are managed by avoiding the introduction of in-
consistencies while using a decision propagation strategy. Klambauer et al. [2013]
present a tool-supported approach for dynamically monitoring distributed config-
urations of multi-SPLs by multiple users, called DOPLER. To ensure valid SPL
configurations, the tool also allows detecting violations of product requirements and
providing immediate feedback to stakeholders. Complementary, Chavarriaga et al.
[2014] propose an algorithm that supports conflict explanation through the decision
propagation process. In contrast to previous work, other approaches temporarily
allow the user to specify conflicting decisions, to decide about the inconsistencies
later [Brink et al., 2015, Eichelberger et al., 2016, Lu et al., 2016a, Nöhrer et al.,
2012a, Ochoa et al., 2015, Ostrosi et al., 2012, Schroeter et al., 2012, Schwäger and
Westfechtel, 2016, Thurimella and Bruegge, 2012, Zhao et al., 2012]. It allows users
to continue working despite the presence of errors. For further information about
these approaches, we refer the reader to Section 3.4.3.3.

Also in the automatic configuration scenario, capturing rules and propagating these
rules are the key to enable configuration automation. For further information about
these approaches, we refer the reader to Section 3.4.4.

48 3. Current Research on Software Product Line Configuration

This mechanism is also referred to as consistency checking, correctness checking,
model consistency, conformance rules, decision propagation, propagation strategies,
product line reasoning, and product line verification.

3.4.3.3 Solving Configuration Conflicts

Configuration conflicts may occur due the user making conflicting decisions during
the interactive manual configuration process. Conflicts may also be due to configu-
ration of multi-SPLs and configuration by multiple stakeholders.

Different stakeholders can configure a set of different products from a unique or
multiple feature models. To create a unique final product, this mechanism takes as
input the set of created configurations and follows merging these distinct configura-
tions satisfying as much as possible the final product requirements. A conflict among
configurations arises when the (de)selection of a feature from a specific stakeholder
configuration invalidates another configuration made by a different stakeholder due
to feature model constraints or requirements specification. This happens because
the stakeholders have different expertise and points of view, as well functional and
non-functional requirements. This becomes an issue especially when the SPL evolves
over time (i.e., to address changing customer, market, or technology requirements).

In Table 3.5, we observe 10 approaches supporting this mechanism. EASy-Producer
[Eichelberger et al., 2016] develops a variability-rich configurator to manage the
consistency of individual configurations from different stakeholders in distributed
multi-SPLs. In a similar scenario, Brink et al. [2015] propose an approach to model
an SPL as multi-SPLs and then use a tool-based algorithm to support the integration
of individual configurations. The implemented algorithm searches for a common
configuration from multi-SPLs that is in accordance with the specified requirements
and feature model constraints. In addition at solving conflicts among several static
configurations, PuMA [Schroeter et al., 2012] handles the variability among multi-
SPLs at runtime.

Some authors [Ochoa et al., 2015, Ostrosi et al., 2012, Zhao et al., 2012] propose an
approach to solve conflicts among multiple distributed stakeholders configurations
performed over the same feature model. They use Satisfiability solvers, Fuzzy Config-
uration Grammar based agents and similarity retrieval to manage conflicts. Beyond
satisfying the set of decision rules, these approaches consider product requirements
to search for a set of non-conflicting features that better fulfill business needs. In
addition, Ostrosi et al. [2012] implement different stakeholder perspectives to assist
the collaborative and distributed configuration processes (see Section 3.4.3.4).

Sysiphus [Thurimella and Bruegge, 2012] captures and shares rationale information
from multiple stakeholder decisions to solve conflicts. Rationale includes the rea-
soning of stakeholders and the justification for a decision (i.e., selection criteria and
arguments). It allows issue-based communication between distributed stakeholders.
On the basis of this information, resolutions are negotiated for resolving configura-
tion conflicts. In Sysiphus, the rationale is integrated into variability models and
it is named as Issue-Based Variability Management (IVM). In a similar scenario,
SuperMod [Schwäger and Westfechtel, 2016] offers capabilities for collaborative SPL
configurations through distributed version control by having the users working in a

3.4. Product Configuration Mechanisms 49

single-variant workspace. The tool adopts the iterative check-out, modify, and com-
mit functionalities known from version control systems for variability management.

Finally, instead of considering multi-stakeholder configurations or even multi-SPLs,
HUMUS [Nöhrer et al., 2012a] focuses on solving configuration conflicts performed
by a unique user in a specific model later without misguiding the user along the
way. Also in this scenario, Zen-Configurator [Lu et al., 2016a] presents an auto-
matic approach (named as Zen-FIX) to optimally recommend solutions to solve
conflicts generated when constraints are violated. Furthermore, in the automatic
SPL configuration scenario, dynamic SPL configurations address the problem of
finding a suitable new configuration when the current configuration is invalidated
by a context change (see Section 3.4.5.2 for further information on this mechanism).

This mechanism is also referred to as constraint violations, configuration inconsis-
tencies, non-conformity resolving, and conflicting configurations.

3.4.3.4 Mapping Stakeholder Tasks

Usually, there are multiple stakeholders that participate in the same product con-
figuration process. In accordance with Zhao et al. [2012], cooperative configuration
can reduce the search time for the desired product. However, in the process of
cooperative configuration, conflicts may occur. Consequently, to avoid such con-
flicts, configurators need to be able to guide a variety of users (including business
leads, project managers, engineers, customers, end users, among others), based on
their knowledge and expertise. Therefore, this mechanism takes as input the feature
model and the stakeholders’ profile, and provides customized views for stakeholders
that is in accordance with their expertise (i.e., depending of their tasks, rights, roles,
and responsibilities). For example, while product engineers need low-level details to
make choices during the product configuration process, such as code measurements;
customers just need high-level information. In this case, code and other complex
information should be hidden from customers. This mechanism supports decision
makers by restricting and displaying only a set of information that are relevant to
them based on their non-functional requirements. We observed 9 studies supporting
this mechanism (see Table 3.5).

This mechanism is also referred to as task-specific visualizations, user-specific visual-
izations, customer-specific visualizations, instantiation knowledge, licensing reasons,
stakeholders points of view, stakeholder perspectives, and stakeholders guidance.

3.4.3.5 Recommender System

Decision makers often have problems understanding the implications and effects of
the choices they make during the product configuration process. The main reason
is due the complexity of feature models and the heterogeneity of stakeholders with
different knowledge about the SPL. To overcome this challenge, a recommender
system takes as input a feature model and the product requirements, and returns a
set of recommendations to guide decision makers.

We observed 12 approaches supporting this mechanism (Table 3.5). We classify
these approaches into two groups: feature-based and product-based recommenda-
tions. While a feature-based recommendation aims to predict the utility of each

50 3. Current Research on Software Product Line Configuration

feature for the stakeholders, a product-based recommendation aims to predict the
utility of a complete set of features, which forms a valid configuration. In this
section, we highlight the particularities of these techniques.

Feature-Based Recommendation. Zen-Configurator [Lu et al., 2016a] recom-
mends in which order decisions should be made to minimize the number of manual
configuration steps. For each decision maker interactive choice, the tool automat-
ically checks the conformance of the configuration (Section 3.4.3.2). In case any
conformance constraint is violated, recommendations about how to solve the non-
conformity are also provided. Then, decision makers can choose one of the recom-
mendations to fix the non-conformity. Otherwise, a new optimized configuration
order is dynamically recommended to decision makers. In a similar scenario, Vari-
aMos [Mazo et al., 2014a] and Tan et al. [2013] propose a collection of recommen-
dation heuristics to improve the interactivity of SPL configuration. In addition to
minimizing the number of configuration steps, VariaMos also minimizes the time
required by the solver to propagate the configuration choices.

As we have shown in Section 3.4.2.1, Fuzzy and AHP techniques have also been
employed to rank features (and configurations) of an SPL. Bagheri et al. [2012a] use
fuzzy variables to model and represent feature preferences over NFPs. Each feature
is annotated with a fuzzy function for a given NFP to show how well that feature
is able to contribute to the given property. The approach develops a requirements
knowledge base which is used to make feature recommendations. However, the
fuzzy annotation task of each feature involves significant manual efforts from domain
experts, which is a tedious and time-consuming task.

In accordance with Zhang et al. [2014], it is much easier for stakeholders to make
pair-wise comparisons than to judge the overall impact of each feature or a com-
bination of features. Zhang et al. [2014] propose a pair-wise approach to estimate
features’ contributions over decision makers non-functional requirements. From a
randomly selected pair of features, domain experts identify which one is more rele-
vant in terms of satisfying a given NFP. Then, a ranking of recommended features is
produced in terms of their relative importance. Instead of randomly selecting a pair
of features, AUFM tool [Bashari et al., 2014] dynamically builds a decision model by
considering the structural characteristics of SPLs. However, both techniques may
generate inconsistencies due to conflicting judgments from multiple stakeholders.
To overcome this challenge and provide more accurate feature rankings, Tan et al.
[2014b] adopt an ELO rating approach. In this approach, each feature is assigned
with a numerical rating based on their relevance over NFPs. In the end, it produces
a comprehensive chart of feature contributions ranking on different NFPs.

A recommender system has been proposed in [Pereira et al., 2016c] to predict features
relevance for a current user based on configuration historical data from previous
users. The predictions are displayed as a 5-star feature score to guide the user
through a step-wise selection of features. In a similar scenario, Zheng et al. [2017a]
propose a recommender system of stakeholders’ rationale preferences related to non-
functional requirements based on the purchase history of most past customers. This
is the unique approach that recommends non-functional requirements, instead of
features or configurations, to guide stakeholders’ decisions.

3.4. Product Configuration Mechanisms 51

Product-Based Recommendation. Galindo et al. [2015b] propose an approach,
named Invar, which aims at supporting the product configuration of multi-SPLs.
Invar presents a set of questions and answers to decision makers through a unified
configuration perspective over heterogeneous variability models. Based on decision
makers’ answers, a valid and complete configuration is recommended to them.

Martinez et al. [2015a] use an interactive genetic algorithm to create a historical
dataset of valid SPL configurations. Based on stakeholders judgments over con-
figurations likability on this dataset, it uses similarity measurements to create a
prediction ranking for all possible configurations (including those that are not in
this dataset).

Noir et al. [2016] propose a recommender system for assisting decision makers choose
a single configuration resulting from a multi-objective optimization (Section 3.4.4.1).
Based on the specification of product requirements, this approach uses aggregation
metrics to compute prediction relevance for the set of resulting configuration. Noir
et al. [2016] provide a graphical and textual explanation of the multi-criteria config-
uration results. The graphical explanation maps NFP values onto a common scale
representing the degree of satisfaction from each resulting configuration. The tex-
tual explanation explains how the prediction scores are computed. After the decision
maker selects the most desirable configuration, he can justify its design choices in
the tool to improve future recommendations.

This mechanism is also referred to as product prediction, configuration prediction,
feature prediction, product recommender, and feature recommender.

3.4.4 Automatic Configuration Process

The manual interactive identification of the best configuration might lead to a prod-
uct that does not meet specific criteria related to the non-functional requirements.
Therefore, decision makers need automatic support and more requirements-level in-
formation about decisions. This section presents three mechanisms supported by the
Automatic Configuration activity: (i) Product Configuration Optimization (A4a);
(ii) Minimal or Maximal Configuration (A4b); and (iii) Multi-Step Configuration
(A4c). Table 3.6 sketches which studies are supported by each mechanism. The first
column identifies the study reference and the other columns are about the mecha-
nisms. We use for studies providing support to the mechanism and for studies
without any support.

The next three sections present the mechanisms employed to support the automatic
SPL configuration process and the implementation particularities of the analyzed
approaches. Then, Section 3.4.4.4 highlights the configuration characteristics em-
ployed by the studied approaches, and their performance and scalability results.

3.4.4.1 Product Configuration Optimization

This mechanism takes an EFM and the product requirements as input, and automat-
ically returns a set of features that fulfill the feature model interdependencies and
best satisfy the stakeholders’ requirements. First, to automatically configure a final
product, the product requirements provided by the stakeholders must be transformed

52 3. Current Research on Software Product Line Configuration

Study A4a A4b A4c Study A4a A4b A4c

Lin and Kremer Ochoa et al.
White et al. Pascual et al.
Guedes et al. Rezapour et al.
Horcas et al. Siegmund et al.
Khoshnevis and Shams Asadi et al.
Kifetew et al. Foster et al.
Noorian et al. Guo et al.
Oh et al. Olaechea et al.
Pereira et al. Sánchez et al.
Umpfenbach et al. Wang and Pang
B ↪ak et al. Karimpour and Ruhe
Hierons et al. Sayyad et al.
dos Santos Neto et al. Bagheri et al.
Noir et al. Roos-Frantz et al.
Ruiz et al. Mazo et al.
Zanardini et al. Mussbacher et al.
Benali et al. Ognjanovic et al.
Henard et al. Ostrosi et al.
Leite et al. Parra et al.
Lian and Zhang Wittern et al.

Table 3.6: Literature supporting the activity: Automatic Configuration Process
(A4a: Product Configuration Optimization, A4b: Minimal or Maximal Configu-
ration, A4c: Multi-Step Configuration).

into an appropriated mathematical objective function. The product configuration
optimization can be modeled in two different ways, known as single-objective and
multi-objective optimization. The Single-Objective Optimization (SOO) problem is
defined as the minimization or maximization of a function f(x) = (x1, x2, . . . , xn)
for n ∈ N, where x is a vector of decision variables. Moreover, a set of m inequality
constraints gi(x) ≤ 0 or a set of p equality constraints hj(x) = 0 are defined, such
that i, j,m, p, n ∈ N, i < m and j < p. This results in a single global solution. In
contrast to the SOO problem, in a Multi-Objective Optimization (MOO) problem,
F (x) is a vector of k objective functions where F (x) =

[
f(x)1, f(x)2, . . . , f(x)k

]
and

k ∈ N. Therefore, in a MOO, the user intends to maximize or minimize functions
over multiple NFPs. Since stakeholders may have conflicting or contradicting non-
functional requirements (e.g., increasing the security has negative impact on the
cost), priorities can then be used to specify which optimization requirement should
be satisfied first (see Section 3.4.2.1). Thus, a solution for an MOO problem is
a trade-off among the considered objectives in function F (x). SOO supports the
complete configuration process, while MOO supports the incomplete configuration
process (see Figure 3.5).

Once the objective function is defined, the EFM is transformed into a mathematical
representation, where the configuration process can be performed. Thus, suitable
algorithms are used to automatically find configurations, allowing the alignment of
the solution with the stakeholders’ interests. There are two classes of algorithms:
exact and approximation algorithms. Exact algorithms guarantee that the generated
configuration is optimal. However, due to the large variant space and the computa-

3.4. Product Configuration Mechanisms 53

tional complexity NP-hard of finding an optimal SPL configuration, exact algorithms
have inefficient exponential-time. Thus, approximation algorithms are employed to
approximate a good solution, generating partially-optimal product configurations in
an efficient polynomial-time.

In Table 3.6, we observe 40 studies implementing this mechanism. After performing
the complete reading of these studies, we identified four groups of techniques used to
optimize the configuration process: (1) Constraint Programming (CP), (2) Evolu-
tionary Algorithms (EA), (3) Integer Linear Programming (ILP), and (4) Mapping
and Models (MM). Figure 3.11 shows the number of studies per employed technique
and year. Note that we found other approaches that could not be classified in the
previous groups. We represented these approaches in the figure as O* (other tech-
niques). The O* group includes techniques such as greedy heuristics used exclusively
for solving knapsack problems [Pereira et al., 2017, Sánchez et al., 2014], and ad-hoc
algorithms [Siegmund et al., 2012a], as well as hybrid solutions. Next, we present a
brief description of each encoding technique and the implementation particularities
of the main primary studies. As shown in Figure 3.11, EA and CP are the most
used techniques appearing in 15 and 11 studies respectively.

0

1

2

3

4

5

6

7

SOO MOO SOO MOO SOO MOO SOO MOO SOO MOO SOO MOO

2017 2016 2015 2014 2013 2012

R
et

ri
ev

e
d

 p
ri

m
ar

y
st

u
d

ie
s

Study year

O* MM ILP EA CP

Figure 3.11: Optimization approaches per technique and year.

Encoding in Constraint Programming (CP). CP is a paradigm that proposes
an exact approach, where Constraint Satisfaction Problems (CSP) are specified as a
set of variables with their corresponding domain, and a set of constraints that affect
these domains [Olaechea et al., 2014]. In order to configure a product, features are
considered as binary variables in CSP. Then, for n features in the model, n variables
are created, such that each variable fi ∈ {0, 1}. Feature model constraints encodings
are shown in Table 3.7, where fp stands for parent feature, fc for child feature, fci
for the ith child feature of a variability constraint.

54 3. Current Research on Software Product Line Configuration

Table 3.7: CP-based encoding.
Variability constraint Encoding

Mandatory fp = fc [Salinesi et al., 2010]
Optional fp ≥ fc [Salinesi et al., 2010]
Or

∑
i=1 fci > 0 [Mannion, 2002]

Alternative
∑

i=1 fci = 1 [Salinesi et al., 2010]
Requires f1 → f2 f1 ≤ f2 or f1 = 1→ f2 = 1 [Ochoa et al., 2015, Salinesi et al., 2010]
Excludes f1 → ¬f2 f1 + f2 ≤ 1, f1 × f2 = 0, or f1 = 1→ f2 = 0 [Ochoa et al., 2015, Salinesi et al., 2010]
Cardinality [min,max] (

∑
i=1 fci ≥ min) ∧ (

∑
i=1 fci ≤ max) [Salinesi et al., 2010]

Children selection f2 = 1→ f1 = 1 [Ochoa et al., 2015]
Parent deselection f1 = 0→ f2 = 0 [Ochoa et al., 2015]

The solution of the modeled CSP is obtained by finding a suitable configuration that
meets variability constraints and product requirements. Some solutions first prune
the search space based on product non-functional requirements [Zanardini et al.,
2016]. Other approaches propose other encodings given the existence of additional
needs in the configuration problem. For instance, White et al. [2014] manage dif-
ferent CSPs at different time slots, then there are n × k variables related to the n
features of the SPL in k time slots. Moreover, Zanardini et al. [2016] enrich the
CSP representation with decision trees that are known as configuration trees where
each node represents an SPL partial configuration, and each edge an increase of the
set of features. Then, nodes are not singleton sets with a single feature, but instead
they represent a complete configuration that may be invalid.

Encoding in Evolutionary Algorithms (EA). EA are stochastic or approxi-
mate algorithms useful during optimization or learning tasks [Olaechea et al., 2014].
They emulate the natural species evolution, where given a first population of m
individuals living in an environment with limited resources, there is a competition
were only the fittest individuals survive [Hierons et al., 2016a, Lian and Zhang,
2015a, Sayyad et al., 2013c]. An individual is related to one or more chromosomes
that is composed by n genes. First, the initial population is randomly generated
or seeded with good individuals, based in a set of optimization objectives specified
by stakeholders. Then, the algorithm starts from a mature population that already
responds to a group of requirements, and follows improving the quality of the de-
rived off-springs. The implementation of seeding constraints is done by the use of
heuristic or deterministic algorithms (e.g., NSGA-II [dos Santos Neto et al., 2016,
Karimpour and Ruhe, 2013, Khoshnevis and Shams, 2017, Pascual et al., 2015a] and
IBEA [Olaechea et al., 2014, Sayyad et al., 2013c]). Genetic Algorithms (GA) and
Multi-Objective Evolutionary Algorithms (MOEA) are the most used for SPL con-
figuration (see Section 3.4.4.4). These algorithms evaluate each individual according
to the fitness function (i.e., optimization objectives and product requirements) to
produce multiple generations derived from the initial population. To obtain solu-
tions that conform to the variability constraints, correctness is defined as one of the
optimization objectives. Finally, each individual is considered a representation of
a solution in a particular domain and a trade-off is performed among the multiple
optimization objectives.

The general encoding of EA-based approaches in the SPL configuration context
considers a binary string representation as proposed with GAs. Then, for n features
in the SPL, a 1 × n vector is generated in order to represent a configuration (i.e.,

3.4. Product Configuration Mechanisms 55

𝑓1 𝑓2 𝑓3 𝑓𝑛

0 1 0 0 0 1 1

…

0 0 1 0 1 1 0

1 1 0 0 1 0 0

…

𝐶1

𝐶2

𝐶𝑚

a) String for each configuration.

…

𝑓1 𝑓2 𝑓𝑛

01..0 11..0 00..0 01..1

…

𝐶1 𝐶2 𝐶𝑚

0 1 0

b) String for each feature.

Figure 3.12: EA-based encoding binary string.

chromosome), i.e. Cj =
[
v(f1), v(f2), . . . , v(fn)

]
such that fi ∈ F , v(fi) ∈ {0, 1},

i, j ∈ N, and i < n (see Figure 3.12a) [Lian and Zhang, 2015a, Olaechea et al., 2014,
Pascual et al., 2015a].

This encoding can be further reduced by removing some prunable features as stated
by Lian and Zhang [2015a]. In this context, core and dead features are removed
from the binary string representation. An analysis that considers both sets is un-
necessary, since core features are included in all configurations, and dead features
are never included. Hierons et al. [2016a] also removes selected parent features if
one or more child features are selected. These features are added back when the
remaining decisions are defined. Karimpour and Ruhe [2013] also employed a sin-
gle binary encoding, however they have a particular need on representing multiple
configurations in the same vector. Thus, in each of the n positions of the vector,
they defined m bit values. Each of these bit values represents the selection state of
a given feature related to one of the m considered configurations (see Figure 3.12b).

Encoding in Integer Linear Programming (ILP). ILP is a technique that
considers a set of n decision variables V = {f1, f2, . . . , fn} that represent fea-
tures in the feature model, such that fi ∈ {0, 1}; and a set of constraints C =
{C1, C2, . . . , Cm} that represent both variability and requirements related to a lin-
ear combination of a subset of variables in V . For both cases n,m ∈ N. The selection
is based on an objective optimization function that should be minimized or maxi-
mized [Bagheri et al., 2012a, Noorian et al., 2017, Rezapour et al., 2015, Umpfenbach
et al., 2017]. Solutions to an ILP problem are defined by the set S = {s1, s2, . . . , st}.
If all constraints in C are satisfied we refer to S as a feasible solution.

Similar to CP-based approaches, to translate variability constraints multiple encod-
ings have been proposed. Some examples are shown in Table 3.8. Multiple encodings
are similar or equal to the ones presented in the CP encodings, given their nature
of expressing constraints over integer variables.

When all variables have a binary domain, the approach is known as 0-1 program-
ming [Noorian et al., 2017]. In order to specify additional configuration constraints,
some of the ILP-based approaches have introduced extensions to the feature model
representation. For instance, Bagheri et al. [2012a] introduced the fuzzy language,
which allows the specification of product requirements, and a set of selected or re-
quired features (which they call hard and soft constraints). Moreover, Rezapour
et al. [2015] transformed the feature model into a Graph Product Line (GPL), and

56 3. Current Research on Software Product Line Configuration

Table 3.8: ILP-based encoding.

Variability constraint Encoding

Mandatory fp = fc or fp ≤ fc [Li et al., 2012, Noorian et al., 2017]
Optional fp ≥ fc [Noorian et al., 2017]
Or

∑
i=1 fci ≥ fp [Noorian et al., 2017]

Alternative
∑

i=1 fci = fp [Li et al., 2012, Noorian et al., 2017]
Requires f1 → f2 f1 ≤ f2 [Li et al., 2012, Noorian et al., 2017]
Excludes f1 → ¬f2 f1 + f2 ≤ 1 [Li et al., 2012, Noorian et al., 2017]
Paternity fc ≤ fp [Li et al., 2012]

proposed a technique that allows the evaluation of SPL methodologies by using the
GPL encoding as main evaluation problem.

Encoding in Model and Mapping Approaches (MM). MM approaches em-
ploy a modeling technique and a set of mapping rules to derive SPL configurations
based on decision propagation from variability model(s). The three main techniques
used among the studied approaches are goal models, ontologies, and grammars.

Goal models are defined as AND/OR graph-like structure that supports the specifi-
cation of goals (i.e., objectives related to functional requirements), soft-goals (i.e.,
objectives related to NFPs), and operational plans (i.e., task to operationalize goals).
Contribution links are specified among any entity and soft-goals, using partial pos-
itive (‘+’), partial negative (‘-’), full positive (‘++’), and full negative (‘−−’) im-
plications. Guedes et al. [2017] use a particular type of goal models known as i*
orthogonal models. This model is related to feature model by means of presence
conditions, which are references to goals. They are evaluated based on the goal
satisfaction degree of the feature: Full Satisfaction (FS), Full Denial (FD), Partial
Satisfaction (PS), and Partial Denial (PD). Goal satisfaction degrees are defined
as boolean formulas, and their value is derived based on feature annotations pro-
vided by stakeholders. Similarly, Noorian et al. [2017] use a matrix that interrelates
goals and features. They described annotations in each cell to define the correlation
among the selection of goals and features (i.e., if a goal is interrelated with a feature,
its selection supposes the selection of the related feature). Moreover, they provide
different feature models to separate the problem space from the solution space.
Lastly, Mussbacher et al. [2012] presented Aspect-oriented User Requirements Nota-
tion (AoURN), an SPL framework for specifying stakeholders’ goals. Crosscutting
concerns are treated as aspects in the modeling approach. AoURN considers goal
models and feature models to represent stakeholders’ needs and SPL, and then both
are related in an impact model, where the impact of a feature in each goal is identi-
fied. In a similar context, Ostrosi et al. [2012] propose the use of a Grammars-Based
Agents for Product Integrated Configuration (G-APIC).

The product configuration optimization mechanism is also referred to as decision sce-
nario, single-objective optimization, multi-objective optimization, one-objective opti-
mization, multi-objective search, single-objective search, one-objective search, single-
criteria optimization, multi-criteria optimization, one-criteria optimization, optimal
feature selection and optimization objective.

3.4. Product Configuration Mechanisms 57

3.4.4.2 Minimal or Maximal Configuration

The mechanism taken in this section makes a step beyond the mechanism presented
in the last section. In addition to considering multi-optimization objectives, which
may result in conflicting non-functional requirements, and consequently generating
a set of valid configurations, it also considers the optimization of reuse to assist
the configuration of a single product. We adopt the term optimization of reuse to
express the maximization or minimization of reuse during the automatic product
configuration. We classify optimization of reuse in three main groups: minimization
of reuse, maximization of reuse, and delimitation of reuse.

• Minimization of reuse. The minimal number of features needed to get a valid
configuration, which represents a partial valid configuration respecting both the
SPL variability constraints and the product requirements specifications (i.e., by
removing any feature from this configuration leads to an invalid configuration).

• Maximization of reuse. The maximal number of features needed to represent a
complete valid configuration which respects both the SPL variability constraints
and the product requirement specifications (i.e., by removing any feature from
this configuration leads to a partial valid or invalid configuration).

• Delimitation of reuse. It sets a minimum or (and) maximum number of fea-
tures (i.e., at most (at least) n features) that any generated valid configuration
must include.

However, we could not find any work from our SLR implementing such mechanism.

3.4.4.3 Multi-Step Configuration

This mechanism takes as input the product requirements and a fully developed
EFM that needs to be multi-stage configured. Given a starting configuration and
a desired ending configuration that needs to be active in n steps, an optimization
method is used to select a set of features to meet each step continually. The output
is a sequence of configurations from a starting configuration through a series of
intermediate configurations to a final configuration. This path is optimized in a way
that best meets the desired set of end product requirements. Each set of features
for a step must constitute a complete and valid configuration of the SPL to avoid
selling a defective and non-viable product. There are two approaches in Table 3.6
that implement this mechanism.

White et al. [2014] propose an automatic approach for modeling and solving multi-
stage SPL configurations, called MUSCLES (MUlti-step Software Configuration
probLEm Solver). MUSCLES transforms SPLs into Constraint Satisfaction Prob-
lems (CSPs), which enables CSP solvers for deriving a single optimized path of
configurations. In accordance with White et al. [2014], the main challenge deriving
configuration paths for an SPL is to analyze a myriad of trade-offs related to the
order that the features are selected.

Lin and Kremer [2014] propose an approach to predict introduction timing of a prod-
uct configuration in the market by using SPL practices from a multiple-generation

58 3. Current Research on Software Product Line Configuration

product strategy (MGPS). In an MGPS, a company first launches an initial configu-
ration to the market. After this initial launch, the proposed approach analyzing the
market to sequentially introduce successive configurations over time, updating vari-
able features. The company predicts the sales behavior of each lunched configuration
to achieve the highest profits and better utilize their resources.

This mechanism is also referred to as multi-stage configuration, configuration path,
multiple-generation product strategy, and temporal configuration.

3.4.4.4 Performance and Scalability Results

In this section, we consider the automatic approaches that employ performance and
scalability tests as evaluation techniques. Table 3.9 presents the characteristics em-
ployed for each approach by considering the different techniques. We aim at present-
ing the execution time taken by each solution to configure an SPL by considering the
number of optimization constraints and the size of the feature model. In cases where
more than one SPL was tested, we considered only the feature model with the high-
est amount of features. This analysis is shown for each of the considered techniques,
except for MM-based approaches given the lack of performance and scalability tests
during their evaluations. For each grouped approach, we used for specifying that
the corresponding product requirement is completely supported, and for specifying
that it is not supported. The acronyms of each column title are defined as follows:
product constraints (C), stakeholders’ preferences (P), feature model (FM), number
of optimization constraints defined in a configuration scenario (#OC), and execu-
tion time for configuration (ET). Notice that the #OC column shows the number of
optimization objectives, and not the number of different types of configuration con-
straints. In addition, we did not analyze studies which performed observations and
experiences (OBE) evaluation [Bagheri et al., 2012a, Khoshnevis and Shams, 2017,
Noir et al., 2016] neither studies missing data about the performance evaluation
[Benali et al., 2015, Foster et al., 2014, Guedes et al., 2017, Karimpour and Ruhe,
2013, Lin and Kremer, 2014, Mussbacher et al., 2012, Ognjanovic et al., 2012, Oh
et al., 2017, Ostrosi et al., 2012, Ruiz et al., 2016, Umpfenbach et al., 2017, Wittern
et al., 2012, Zanardini et al., 2016].

For all cases, solutions are obtained in at least 0.5 milliseconds [Sánchez et al., 2014].
However, it is important to note that the selection among encodings can affect the
execution time of the approaches. In addition, the execution time of the solution
varies depending on the considered constraints and the size of the feature model, i.e.
if the complexity and size of the feature model increases or the number of considered
optimization constraints is higher, these values can be drastically affected.

The considered feature models for CP-based approaches have a size between 35
and 500 features. Most of the CP-based approaches use Choco3, a Java library
for constraint programming. CP-based approaches can scale up to feature model
instances with 500 features in less than 160 seconds [White et al., 2014]. However,
the commonly used feature model is a toy model automatically generated by an
external tool. Although toy models are important to demonstrate how an approach

3http://choco-solver.org/

3.4. Product Configuration Mechanisms 59

S
tu

d
y

M
e
th

o
d

C
P

F
M

F
M

S
iz
e

#
O
C

E
T

CP-based
P

ar
ra

et
al

.
J
aC

oP
so

lv
er

G
en

er
a
te

d
5
0

va
ri

a
ti

o
n

p
o
in

ts
3

2
7
.7

m
s

H
or

ca
s

et
al

.
C

h
o
co

so
lv

er
W

ea
F

Q
A

s
1
,0

0
0

va
li
d

co
n
fi
g
u

ra
ti

o
n

s
1

3
m

in
B
↪ak

et
al

.
C

h
o
co

so
lv

er
U

M
L

V
io

le
t

1
0
0

fe
a
tu

re
s

4
ti

m
e

o
u
t

L
ei

te
et

al
.

C
h

o
co

so
lv

er
G

o
o
g
le

C
o
m

p
u
te

E
n

g
in

e
3
5

fe
a
tu

re
s

3
<

1
0

m
in

O
ch

oa
et

al
.

C
h
o
co

so
lv

er
G

en
er

a
te

d
3
6
6

fe
a
tu

re
s

2
3
6

h
o
u
rs

W
h

it
e

et
al

.
C

h
o
co

so
lv

er
G

en
er

a
te

d
5
0
0

fe
a
tu

re
s

1
<

1
6
0

se
c

R
o
os

-F
ra

n
tz

et
al

.
C

h
o
co

so
lv

er
A

u
to

m
o
ti

v
e

d
o
m

a
in

U
n
d

efi
n
ed

1
ti

m
e

o
u
t

M
az

o
et

al
.

G
N

U
P

ro
lo

g
G

en
er

a
te

d
8
9

fe
a
tu

re
s

1
1
5

se
c

EA-based

d
os

S
an

to
s

N
et

o
et

al
.

N
S

G
A

II
A

rg
o
U

M
L

1
,0

0
0

fe
a
tu

re
s

2
0
.9

8
m

s
K

if
et

ew
et

al
.

G
A

D
ru

p
a
l

4
8

fe
a
tu

re
s

8
2
4
0

se
c

H
ie

ro
n
s

et
al

.
S

IP
G

en
er

a
te

d
1
0
,0

0
0

fe
a
tu

re
s

8
1
0
0

se
c

H
en

ar
d

et
al

.
S
A

T
IB

E
A

L
in

u
x

6
,8

8
8

fe
a
tu

re
s

5
1
5

m
in

L
ia

n
an

d
Z

h
an

g
IV

E
A

E
-S

h
o
p

2
9
0

fe
a
tu

re
s

5
2
.9

5
m

in
P

as
cu

al
et

al
.

N
S

G
A

-I
I

G
en

er
a
te

d
5
,0

0
0

fe
a
tu

re
s

3
1
7
.9

se
c

O
la

ec
h
ea

et
al

.
IB

E
A

E
-S

h
o
p

2
9
0

fe
a
tu

re
s

4
>

1
5

d
ay

s
W

an
g

an
d

P
an

g
M

M
A

S
an

d
A

C
S

G
en

er
a
te

d
2
0
0

fe
a
tu

re
s

1
1
,1

6
6
.1

9
m

s
S
ay

ya
d

et
al

.
IB

E
A

E
-S

h
o
p

2
9
0

fe
a
tu

re
s

5
1
2
.3

se
c

ILP

N
o
or

ia
n

et
al

.
C

P
L

E
X

a
so

lv
er

G
en

er
a
te

d
1
0
,0

0
0

fe
a
tu

re
s

1
5
4
.3

2
6

se
c

R
ez

ap
ou

r
et

al
.

-
L

a
p
to

p
4
2

fe
a
tu

re
s

2
<

1
m

in

O*

P
er

ei
ra

et
al

.
G

re
ed

y
h
eu

ri
st

ic
G

en
er

a
te

d
1
0
,0

0
0

fe
a
tu

re
s

1
1
2
.2

3
8

se
c

A
sa

d
i

et
al

.
S

H
O

P
2

G
en

er
a
te

d
2
0
0

fe
a
tu

re
s

1
8
6

se
c

S
án

ch
ez

et
al

.
B

F
*

an
d

G
B

F
S

V
id

eo
su

rv
ei

ll
a
n
ce

2
6

fe
a
tu

re
s

2
0
.5

-
0
.7

m
s

S
ie

gm
u
n

d
et

al
.

A
d

-h
o
c

al
go

ri
th

m
B

er
ke

le
y

D
B

3
6

fe
a
tu

re
s

1
<

5
0

m
in

G
u

o
et

al
.

G
IA

E
-S

h
o
p

2
9
0

fe
a
tu

re
s

4
6

d
ay

s

Table 3.9: Performance and scalability evaluation of each approach (C: product
constraints, P: stakeholders’ preferences, FM: feature model, OC: optimization con-
straints, ET: execution time).

60 3. Current Research on Software Product Line Configuration

works, the results cannot be generalized to real-world scenarios. For the bigger real-
world feature model (i.e., UML Violet with a total of 100 features), the employed
approach was not able to find an optimal solution [B ↪ak et al., 2016]. This highlights
the need to use large real-world feature models in future works to prove the feasibility
of the existing approaches in practice.

Since in most of cases it is unfeasible to test all possible combinations of selected and
deselected features, some approaches explore the use of approximation algorithms,
such as EA-based and heuristic approaches instead of exact CP-based approaches.
One identified advantage related to approximation approaches correspond to the em-
ployment of the same or similar feature models, such as the E-Shop feature model
[Guo et al., 2014, Lian and Zhang, 2015a, Olaechea et al., 2014, Sayyad et al.,
2013c]. For EA-based approaches, feature models size varies between 48 and 10,000
features, and the considered optimization constraints ranges between 1 and 8 objec-
tives. SIP [Hierons et al., 2016a] and NSGAII [dos Santos Neto et al., 2016, Pascual
et al., 2015a] EA-based approaches are suitable for solving MOO problems, being
scalable to feature models with 1,000 to 10,000 features in 0.98 milliseconds to 100
seconds. However, as in CP-based approaches, this feature model is a toy model
automatically generated by an external tool.

For ILP-based approaches, only Noorian et al. [2017] and Rezapour et al. [2015] re-
ported performance and scalability tests and can be considered in our results. The
execution time for both solutions is of approximately 1 minute. However, while
Noorian et al. [2017] consider a randomly generated feature model with 10,000 fea-
tures and 1 optimization constraint, Rezapour et al. [2015] consider a real-world
feature model with 42 features and 2 optimization constraints. Moreover, for both
approaches, the employed time during the AHP ranking (see Section 3.4.2.1) was
not considered. Therefore, for real-word large feature models, the ranking phase
which is manually performed could be a tedious and time consuming task, becoming
a bottleneck in the SPL configuration process.

In O* approaches, the GIA algorithm proposed by Guo et al. [2014] presents the
higher execution time when configuring the E-Shop SPL with 290 features and 4
optimization constraints. This time can be decreased if more product constraints
are employed. Otherwise, the greedy heuristic approach proposed by Pereira et al.
[2017] seems to be the most suitable technique to solve SOO problems being scalable
to randomly generated feature models with up to 10,000 features in approximately
12.2 seconds.

As conclusion, we identified that all approaches tend to support product constraints
(C) and only a small number of these studies explicitly offer support to handle
stakeholders’ preferences (P) and hard cross-tree constraint [Lian and Zhang, 2015a,
Sayyad et al., 2013c]. 16 of the analyzed studies explicitly provide tool support. The
remaining studies only stated they developed solely algorithms to demonstrate the
claims, and they encourage and point out the need of tool support that implements
the proposed algorithm(s). Although in this section we described the performance
evaluation characteristics from these studies which is essential for comparison rea-
sons, it is also important to evaluate other kinds of feature models not reported by
existing works, since there are many variables (e.g., market domain and complexity)

3.4. Product Configuration Mechanisms 61

Study A5a A5b A5c Study A5a A5b A5c

Safdar et al. Ruiz et al.
Schroeter et al. Santos et al.
Zheng et al. Leite et al.
Eichelberger et al. Mazo et al.
Rabiser et al. Pascual et al.
Brink et al. Bürdek et al.
Galindo et al. Bures et al.
Chavarriaga et al. Murguzur et al.
Urli et al. Sánchez et al.
Acher et al. Cubo et al.
Jannach and Zanker Kramer et al.
Klambauer et al. Lee
Mazo et al. Saller et al.
Pleuss and Botterweck Parra et al.
Nieke et al. Wang and Ng
Sharifloo et al. Wittern et al.
Gamez and Fuentes Gençay et al.
Adjoyan and Seriai Nieke et al.
Guedes et al. Tanhaei et al.
Zheng et al. Heider et al.
Ayala et al. Mitchell
Ter Beek et al. Neves et al.
Mauro et al.

Table 3.10: Literature supporting the activity: Configuration Adaptation Process
(A5a: Configuration of Multi-Software Product Lines, A5b: Dynamic Product Con-
figuration, A5c: Product Configuration Evolution).

that can influence the results. Therefore, an interesting area for work would be the
evaluation of existing approaches by using other (real-world) benchmarks.

3.4.5 Configuration Adaptation Process

This section presents three mechanisms supported by the Configuration Adaptation
activity: (i) Configuration of Multi-SPLs (A5a); (ii) Dynamic Product Configura-
tion (A5b); and (iii) Product Configuration Evolution (A5c). Table 3.10 sketches
which studies support these mechanisms. The first column identifies the study ref-
erence and the other columns are about the mechanisms. We use for studies
providing support to the mechanism and for studies without any support.

3.4.5.1 Configuration of Multi-Software Product Lines

This mechanism takes as input a set of configurations from multiple related SPLs.
Considering that a feature can interact with other features in another SPL and
resources may be shared among SPLs, the configuration must be coordinated and
adjusted in accordance with the constraints between SPLs to instantly determine vi-
olations of distinct product requirements and stakeholders’ preferences. In this con-
text, this mechanism follows managing the configuration from multiple stakeholders
over interrelated SPLs. Table 3.10 shows 14 studies supporting this mechanism.

A reason that makes the design of a centralized SPL infeasible is to keep information
privacy for business reasons [Nieke et al., 2016]. For example, different competitors

62 3. Current Research on Software Product Line Configuration

on suppliers may be interested in keeping their detailed configuration and pricing
rules private for their related SPLs. Some authors [Acher et al., 2013, Brink et al.,
2015, Eichelberger et al., 2016, Rabiser et al., 2016] report that managing a single
large model for an entire system may lead to unmanageable complexity. Since SPLs
vary with respect to their granularity (i.e., feature models describe variability at
various levels of abstraction), some authors split the complexity and information
density of a single model towards several models which make it easier to support
the collaborative configuration process of multiple distributed stakeholders (see Sec-
tion 3.4.3.4).

Cross-Model Constraint (CMC) rules are constraints defined among features in dif-
ferent models [Safdar et al., 2017]. They describe how configurations of communicat-
ing products belonging to different SPLs influence each other. Similar to cross-tree-
constraints, the most common representation are requires and excludes implications.
As an example, suppose we have two feature models: FM1 and FM2, each one with
a set of features F1 and F2 respectively. Then, a requires CMC can be established
among f1i ∈ F1 and f2j ∈ F2, such that f1i → f2j, i, j ∈ N, i < |F1|, and j < |Fj|.
Moreover, an excludes CMC can be represented as f1i → ¬f2j for the same con-
text [Chavarriaga et al., 2014]. Notice that as in cross-tree-constraints, CMC can
also be defined by propositional logic predicates, where features are represented as
boolean variables and operators as ∧, ∨, →, ↔, and ¬ [Batory, 2005]. Moreover,
hard cross-tree-constraints can also be specified between models.

Manually specifying CMC rules based on domain knowledge of experts is a time-
consuming and tedious task. Therefore, Safdar et al. [2017] propose an approach,
called Search-Based Rule Mining (SBRM), which combines multi-objective search
with machine learning techniques to mine CMC rules at runtime. In addition, Acher
et al. [2013] propose a textual and executable language, called FAMILIAR, for spec-
ifying CMC rules and managing interactions among multi-SPLs at runtime. To
separate concerns in feature modeling, FAMILIAR uses composition and decompo-
sition operators (e.g., slice, merge, aggregate).

Some authors [Chavarriaga et al., 2014, Jannach and Zanker, 2013, Mazo et al.,
2012c, Rabiser et al., 2016] support the definition of feature dependencies among
models by means of prohibits and forces relationships by decision propagation strate-
gies (see Section 3.4.3.2). Chavarriaga et al. [2014] provide explanation through
the decision propagation process. In addition, S2T2 Configurator [Pleuss and Bot-
terweck, 2012] provides a graphic layout to visualize multiple interrelated feature
models. EASy-Producer [Eichelberger et al., 2016], PuMA [Schroeter et al., 2012],
and Zheng et al. [2017a] provide a graphic user-friendly interface for multiple stake-
holders. Each stakeholder decides over its own model (see Section 3.4.3.4). Zheng
et al. [2017a] classify stakeholders regarding their capabilities of design specification
knowledge. They are classified into normal users (i.e., customers with little design
knowledge) and expert users (i.e., knowledgeable customers).

Schroeter et al. [2012] handle the configuration of multi-SPLs in dynamic environ-
ments. The approach supports the creation of multiple separate configurations from
a global configuration, as well as the integration of separate configurations from
multi-SPLs.

3.4. Product Configuration Mechanisms 63

Invar [Galindo et al., 2015b] and SpineFM [Urli et al., 2014] provide a unified per-
spective over heterogeneous variability models with different semantics to handle the
configuration of multi-SPLs. In addition, DOPLER [Klambauer et al., 2013] uses
multi-system requirements within multi-SPLs to detect violations during the config-
uration of individual systems and provide immediate feedback to the stakeholders.

This mechanism is also referred to as collaborative configuration, system-of-systems
configuration, multi-system configuration, concurrent configuration, multiple configu-
ration, distributed configuration, distributed product line composition, variability-rich
software ecosystems, and multi-stakeholders configuration.

3.4.5.2 Dynamic Product Configuration

Dynamic SPLs provide a promising strategy for planning and employing runtime
reconfiguration to adaptive software systems. This mechanism requires as input the
feature model, the current configuration and the captured contextual information.
When environments represented by SPLs change, both variability models and con-
figurations should embrace these changes to satisfy product requirements. Thus,
self-reconfiguration of system at run-time in response to a context change is needed
in order to maintain validity and completeness of the derived products.

Dynamic SPL approaches monitor variables (e.g., contexts, non-functional require-
ments, etc) in order to detect changes that require the system to adapt. This mech-
anism supports three main functionalities (i) the definition of relevant contextual
information; (ii) the definition of context influence on configuration options; and
(iii) the automatic reconfiguration of products based on the context [Nieke et al.,
2017]. Thus, for a feature to be selectable under a given context, all defined condi-
tions on that context have to be satisfied. Table 3.10 shows 27 studies supporting
this mechanism.

Saller et al. [2013] and Mauro et al. [2016] support the representation of relevant
contextual information and the automatic reconfiguration of products based on the
context. The authors propose a framework where contextual information is captured
directly within the feature model. Saller et al. [2013] define a transition system to
specify appropriate reconfigurations supporting the requirements of potentially in-
terfering runtime context patterns. Mauro et al. [2016] annotate every feature in
the feature model with a propositional formula which captures influences of contexts
on features. Then, the authors implement a hybrid variability reconfiguration en-
gine (HyVarRec) for constraint checking that uses the annotated feature model to
self-adapt at runtime when a current configuration reaches an invalid state. To self-
adapt, HyVarRec tries to find a new valid configuration most similar with the initial
one. In a similar scenario, Wang and Ng [2012] propose a hybrid constraint solv-
ing algorithm to effectively reconfigure products based on the context. Also, some
authors [Guedes et al., 2017, Leite et al., 2015, Parra et al., 2012, Pascual et al.,
2015a, Ruiz et al., 2016, Sánchez et al., 2014, Wittern et al., 2012] propose a self-
optimization of configurations at runtime and others [Safdar et al., 2017, Schroeter
et al., 2012] propose the self-reconfiguration of multi-SPLs.

DarwinSPL [Nieke et al., 2017] and Sharifloo et al. [2016] correlated contextual
variability with evolutionary variability (see Section 3.4.5.3). DarwinSPL [Nieke

64 3. Current Research on Software Product Line Configuration

et al., 2017] provides an integration with HyVarRec to reconfigure SPLs. Sharifloo
et al. [2016] developed a set of adaptation rules based on the historic of evolutions
and their effectiveness in achieving the current product requirements.

Several approaches [Ayala et al., 2016, Bures et al., 2014, Cubo et al., 2013, Lee,
2013, Mazo et al., 2015, Murguzur et al., 2014, Zheng et al., 2017b] create a set of
models to represent contextual information and to model the impact of contextual
information on possible feature selection. Complementary, Bürdek et al. [2014] pro-
pose the assignment of binding times to features. Binding times are introduced to
distinguish prior configuration decisions from left-open variation points to enable
re-configurations at runtime. This approach represents the contextual information
with models and relate context to features using hard-cross-tree constraints (includ-
ing dependencies between binding times, feature selections, and NFPs).

While the previous works have enabled program logic adaptation by the use of
models, Adjoyan and Seriai [2017] specify contextual influences and dynamic recon-
figurations at architecture level by using an architecture description language. In
addition, Kramer et al. propose a solution for dealing with Graphical User Inter-
face (GUI) document variability. In a similar scenario, other approaches [Adjoyan
and Seriai, 2017, Gamez and Fuentes, 2013, Santos et al., 2016, Ter Beek et al.,
2016] present a language for defining influence of context on configuration options.
For instance, Ter Beek et al. [2016] present a set of probabilistic feature-oriented
languages (i.e., FLan, PFLan, and QFLan) to analyze context and self-reconfigure
at runtime. The authors consider (i) arithmetic relations between NFPs; (ii) the
relations between features and NFPs; and (iii) dependencies between actions.

This mechanism is also referred to as dynamically adaptive systems, dynamic feature
deployment, dynamic reconfiguration, runtime reconfiguration, compile time config-
uration, and self-adaptation.

3.4.5.3 Product Configuration Evolution

Over the SPL evolution scenario, new configuration options become available and
valid, while existing configuration options may become obsolete and invalid. It is
important to make sure that the behavior of existing configurations is not affected.
This mechanism takes as input a previous SPL and its correspondent configura-
tions, and an evolved SPL. Then, it follows changing the previous configurations to
meet the evolved SPL constraints to form new valid and concrete configurations.
Modifying the SPL without keeping track of the changes results in loss of informa-
tion. The new configuration needs to be readjusted in accordance with (i) changes
in the source code; (ii) addition or remotion of features, relationships, cross-tree-
constraints, and NFPs; and (iii) modification of a feature type (e.g., a mandatory
feature is transformed in optional). Moreover, the configurator needs to be adapted
to hide invalid configuration option from decision makers.

To make sure that the behavior of existing configurations is not affected during the
SPL evolution, experts usually have to manually analyze different artifacts which
is infeasible considering that the number of changes in a single evolution scenario
can increase exponentially [Neves et al., 2012]. Therefore, several approaches use
previous configurations to automatically infer new ones. Table 3.10 shows 9 studies
supporting this mechanism.

3.5. Main Findings 65

DarwinSPL [Nieke et al., 2017] and Sharifloo et al. [2016] propose an approach to
keep track of the SPL evolution. DarwinSPL allows stakeholders to visualize the
whole evolution history of an SPL (i.e., the state of an SPL for arbitrary dates).
DarwinSPL configurator only shows options which are temporally valid. Sharifloo
et al. [2016] track evolutionary historic to learn how to self-reconfigure a product at
runtime in response to a context change (see Section 3.4.5.2).

Hydra [Gamez and Fuentes, 2013] uses model mappings and transformations to au-
tomatically propagate the evolution changes into the existing configurations. In
addition, it measures the effort in performing the changes in every configuration. In
a similar scenario, VaMoRT [Heider et al., 2012] informs stakeholders about the im-
pacts of variability model changes on existing configurations. VaMoRT uses regres-
sion tests to determine whether existing configurations can be reconfigured without
unexpected effects.

Tanhaei et al. [2016b] propose an approach for refactoring of feature model to syn-
chronize changes in the source code. In a similar way, Neves et al. [2012] and Nieke
et al. [2016] describe several safe evolution templates to preserve the behavior of ex-
isting configurations. In this context, Gençay et al. [2017] consider only the removal
of obsolete options from existing configurations. Similar to the previous approaches,
Mitchell [2012] develops a modeling technique, called SysML, to manage configura-
tions consistencies as the model evolves.

Nieke et al. [2016] specify transformations that go beyond program refactoring no-
tions. The authors present a method to lock specific configurations to ensure their
validity during evolution of the SPL. This method guarantees that locked configu-
rations remain valid during SPL evolution and make statements on which part of
the evolution would break the configurations. Then, the proposed approach pro-
hibits evolutions that would break locked configurations so that their validity can
be guaranteed.

The implementation of this mechanism reduces the manual changes effort and the
inconsistencies among configurations as SPL evolves. This mechanism is also referred
to as evolution of existing configurations, management of configuration evolution,
and management of temporal variability.

3.5 Main Findings

In this section, we answer RQ4 introduced in the beginning of this chapter. This
research question aims at identifying new areas of research that can lead to fur-
ther enrichment of the SPL configuration field. They will be listed in two separate
groups, one addressing the employed activities and the other addressing the evalu-
ation process.

First, we identified the following open challenges and limitations related to the
employed activities:

A1: Mapping Non-Functional Properties

• Management of qualitative NFPs. Quantitative NFPs are managed by most ap-
proaches. However, few solutions support qualitative NFPs. According to two

66 3. Current Research on Software Product Line Configuration

SLRs [Galster et al., 2014, MahdaviHezavehi et al., 2013] current methods focus
on performance and availability NFPs. Moreover, in most cases NFPs are man-
aged as nominal values. Although fuzzy logic has been adopted for few approaches
to manage qualitative NFPs, further research is still required in this field in order
to employ different techniques and better satisfy stakeholders’ needs. Current
studies do not provide enough evidence for practitioners to apply the proposed
approaches to handle variability. Therefore, we suggest further studies in the
industry to show the feasibility of the proposed approaches.

• Measurement of NFPs at runtime. Although the studies mentioned in Section 3.4.1
present a high advance in the static measurement of NFPs, there is still a lack
of techniques in the literature to efficiently support the automatic measurement
of NFPs at runtime. As a main limitation, we observe that most studies support
only one NFP measurement. Moreover, empirical experiments performed in large
industrial SPLs is still time consuming. Therefore, a tool support that allows
the definition of a set of metrics and the efficient prediction of different NFPs at
runtime is still missing.

A2: Mapping Product Requirements

• Specification of configuration requirements. Although there are several approaches
to partially assist decision makers during the semi-automatic configuration pro-
cess of extended SPLs, those approaches do not offer support to the whole set
of identified configuration constraints from this SLR (e.g., product constraints,
multi-optimization objectives, and stakeholders’ preferences) by considering fea-
ture interactions and hard cross-tree-constraints. Moreover, a configuration lan-
guage such as the one presented in Listing 3.1, as well as an automatic encoding
to solve the specification from Listing 3.1, is still missing in the literature. There-
fore, the implementation of a new approach which combines the several reported
configuration constraints with a product configuration language is a relevant area
to be explored by researchers.

• SPL Configuration Language. The specification of configurations as sets of se-
lected and deselected features is time consuming. Moreover, the specification of
configurations by referring to other created configurations may cause side-effects
in configuration evolution (Section 3.4.5.3). We did not find any approach in the
literature that provides a formal syntax and semantics to support this scenario.

A3: Manual Configuration Process

• Extended feature model tools. Feature model diagrams have a very strict repre-
sentation in state-of-the-art tools in which all functional and NFPs of the SPL
must be represented. Moreover, there is a lack of SPL tools in the literature that
allow users to represent NFPs and specify product requirements (e.g., product
constraint filters). Furthermore, we are not aware of any tool that allows decision
makers to specify hard cross-tree-constraints or even visualize the impact of these
constraints during the interactive configuration process.

3.5. Main Findings 67

• Interactive configurator view. An ample interaction with decision makers during
the variability resolution process is essential, in order to abstract the technical
details from feature models (i.e., complex and hard to reasoning constraints) and
guide stakeholders through the SPL configuration process. Since decision makers
are often not aware of all dependencies between the features, they need tools that
help them to make an efficient analysis, e.g., comparing different consequences
of decisions. Therefore, as future work, researchers should consider to extend
consolidated state-of-the-art SPL configurators with a set of further background
information about the feature model, such as its rationale, important constraints
and dependencies, and implications from NFPs on features (e.g., sensor is the
most expensive feature and alarm is the safest one). Moreover, decision makers
should be supported in understanding the consequences calculated by the reason-
ing engine and automatically applied to the model (i.e., decision propagations).

• Support multi-stakeholder tasks. Although there are configurators in the litera-
ture that deal with multi-stakeholder environments (Section 3.4.3.4), these tools
do not support the configuration process of extended SPLs. Thus, future research
is needed in this field to automatically generate configurations with a higher satis-
faction degree for a set of different decision makers. As an example, Martinez et al.
[2014] present a visualization paradigm, called FRoGs (Feature Relations Graphs).
FRoGs supports different decision makers to obtain a better understanding of fea-
ture constraints during the product configuration process. However, FRoGs does
not support the configuration process of extended SPLs.

• Explore recommendation techniques. Although AHP techniques are used by most
of the SPL configuration approaches to define stakeholders’ preferences (Sec-
tion 3.4.2.1), these approaches require pair-wise comparison, which is a time con-
suming and error prone task. Therefore, new techniques should be explored, such
as the adaptation of state-of-the-art recommendation algorithms for SPL configu-
ration. New configurators that make use of recommender systems have emerged as
Sysiphus [Thurimella and Bruegge, 2012] and PROFilE [Pereira et al., 2016c]. In
both works recommendation techniques are employed to guide the configuration
of SPLs by considering historical data related to previous configurations. Sysiphus
keeps a database of rationales from users about non-functional requirements and
PROFilE uses a historical dataset of configurations to recommend features. As
future work, the rationale captured by Sysiphus [Thurimella and Bruegge, 2012]
could be also useful by PROFilE [Pereira et al., 2016c] to guide new decisions
through the use of content-based recommendation techniques. Also, researchers
could look at the use of recommendation techniques in requirements specifica-
tion to improve the decision-making process even more during the instantiation
of their products. Finally, it is important to analyze the impact of the proposed
techniques by mean of a user-controlled study to investigate the users’ satisfaction
with the recommendations.

A4: Automatic Configuration Process

• Development of hybrid solutions. Each automatic configuration technique offers
a set of advantages and disadvantages which affect the performance of the con-
figuration process (see Table 3.9). Performance is favored in some cases (e.g.,

68 3. Current Research on Software Product Line Configuration

EA-based approaches), while in other cases performance and scalability present
critical issues (e.g., CP-based approaches). Furthermore, some approaches cannot
guarantee the satisfaction of constraints (e.g., EA-based approaches), while others
demand their compliance (e.g., CP-based approaches). These reasons demand the
implementation of hybrid solutions that consider the strengths presented by each
different technique. For example, a CP-based approach could be used to derive
a small set of valid configurations that can be used as the initial population of
an EA-based approach. This action could enhance the quality of the obtained
configurations without deeply affecting the performance of the solution.

• Tuning configuration techniques and algorithms. In the case of large and complex
models, the tuning of the configuration techniques and algorithms is required to
derive solutions with a desired performance. As acknowledged by some of the
selected studies from our SLR, tuning algorithm parameters can improve the ob-
tained results [Henard et al., 2015a, Sayyad et al., 2013c]. Moreover, heuristics
can be employed to outperform previous results, as it is the case of Guo et al.
[2014] where the performance of an SPL configuration approach based on CP was
improved by defining search heuristics. However, as an effective automatic con-
figuration process is a challenge for large SPLs, there is still opportunity for the
use of such heuristics for improvements of the performance results found in the
literature. As future work, it is also important to compare the different config-
uration techniques and algorithms proposed in the literature by using the same
evaluation process (i.e., the same feature model and configuration constraints).

• Automatic incomplete configurations. Multi-optimization objective (MOO) prob-
lems may return a set of product configurations, therefore support is needed to
guide users in the selection of one configuration from the set of possible results.
The current practice in the literature of SPL configuration is to perform a sub-
jective manual analysis. Then, a central challenge is thus to provide stakeholders
support (e.g., justification reports) to explore and choose the best configuration.
Possibly, this could be achieved through the use of visualization mechanisms plus
the use of recommendation techniques. In addition, the employment of recom-
mendation techniques to suggest the modification of existing constraints in order
to obtain most personalized configurations is also a field that could be researched.

A5: Configuration Adaptation Process

• Reconfiguration in dynamic environments. Currently, most dynamically SPL
configuration approaches are developed for static models and configuration con-
straints, where configurations are strictly tied to human actions and not to chang-
ing contexts. We are not aware of any work that make use of recommendation
techniques on self-adaptive systems. In this scenario, we suggest the use of dif-
ferent context-aware recommendation algorithms. Moreover, we recommend an-
alyzing the impact of the proposed algorithms on configuration efficiency and
performance. Also, we suggest evaluating the proposed approach under the use
of optimization techniques.

• Chose from a set of configurations. When dealing with dynamic SPL configu-
ration, we may also face the problem where there are too many configurations

3.5. Main Findings 69

for a single context we can choose from. HyVarRec [Mauro et al., 2016] targets
this problem by choosing the configuration that is most similar to the initial one.
However, it may be even more interesting to allow users to choose their preferred
configuration. In this context, we could also use recommendation techniques to
rank configurations based on historical data from previous users [Pereira et al.,
2016c]. Thus, this poses additional challenges in this field, as well as the visual-
ization and elicitation of the optimal criteria for selecting a configuration.

Next, we identified the open challenges related to the evaluation process used by the
selected studies:

Evaluation

• Evaluation type. Most of the analyzed approaches present just a running example
(i.e., case studies) that explain how the proposed configuration technique works,
without presenting a further evaluation (i.e., performance and scalability tests)
or the adoption of empirical user studies.

• Real-world SPLs. Several evaluations do not rely on real-world feature models
like it is the case of Asadi et al. [2014], Hierons et al. [2016a], Mazo et al. [2012c],
Noorian et al. [2017], Ochoa et al. [2015], Parra et al. [2012], Pascual et al. [2015a],
Pereira et al. [2017], Wang and Pang [2014], White et al. [2014]. Moreover, the
studies that rely on real-world feature models can not get a solution in few seconds
for large feature models. This supposes a threat to validity in current researches.
Thus, to support study validity, features and NFPs should be modeled based on
real data from business experiences. Also, in addition to large real-world SPLs,
we also recommend the use of state-of-the-art product lines, which allows the
comparison between results presented by different approaches.

• Tool support. Tool support should assist the complete SPL configuration process,
and not just some mechanisms, because it would lead to the need to use several
tools and information traceability among them which would, probably, have to
be done manually by the application engineer. Furthermore, there is a lack of
empirical user study to compare SPL configurators and show their practical sup-
port on real-world scenarios. For example, studies are missing the evaluation of
qualitative aspects, such as learnability, expressiveness, and usability. Although
Asadi et al. [2016] have recently empirically analyzed visualization and interaction
characteristics of configurators, the authors performed a controlled user empirical
study of a single tool. Hence, experiments should be performed to compare the
effects of different configurators.

We found that SPL configuration techniques have gained attention in the recent
years and several studies address similar mechanisms in different ways. Therefore,
the SPL community needs to tackle new challenges to improve the expressiveness
of SPLs and to manage the overwhelming complexity of SPL configurations. In
this thesis, we aim to address some of the previous identified challenges. First, in
Chapter 4, we extend the recommendation techniques presented in Pereira et al.
[2016c]. Second, in Chapter 5, we adopt recommendation techniques to support the

70 3. Current Research on Software Product Line Configuration

automatic configuration of extended SPLs. Third, in Chapter 6, we introduce a
context-aware recommender system to support the dynamic configuration of SPLs
at runtime. Finally, in Chapter 7, we follow developing a tool support that offers
all those contributions, as well as a set of visualization mechanisms to easy the
configuration process.

3.6 Threats to Validity

This section discusses potential threats to validity that might have affected the results
of the SLR. We faced similar threats to validity as any other SLR. The findings of
this SLR may have been affected by bias in the selection of the primary studies,
inaccuracy in the data extraction and in the classification of the primary studies,
and incompleteness in defining the set of activities, mechanisms, and open challenges.
Next, we summarize the main threats to the validity of our work and the strategies
we have followed to minimize their impact. We discussed the SLR validity with
respect to the two groups of common threats to validity: internal and external
validity [Wohlin et al., 2000].

Internal validity. An internal validity threat concerns the reliability of the se-
lection and data extraction process. To further increase the internal validity of the
review results, we conducted the inclusion and exclusion processes in parallel by
involving three researchers and we cross-checked the outcome after each phase. In
the case of disagreements, we discussed until a final decision was achieved. Further-
more, we documented potentially relevant studies that were excluded. Therefore,
we believe that we have not omitted any relevant study.

For the selected papers, a potential threat to validity is the reliability and accuracy
of the data extraction process, since not all information was obvious to extract (i.e.,
many papers lacked details about the design and evaluation of the reported study).
Consequently, some data had to be interpreted which involved subjective decisions
by the researchers. Therefore, to ensure the validity, multiple sources of data were
analyzed, i.e., papers, websites, technical reports, manuals, and executable. More-
over, whenever there was doubt about some extracted data in a particular paper,
we discussed the reported data from different perspectives in order to resolve all dis-
crepancies. However, we are aware that the data extraction process is a subjective
activity and likely to yield different results when executed by different researchers.

External validity. A major external validity to this study was during the identi-
fied primary studies. We limited the search by starting in the year of 2012. This may
affect the completeness of our search results. However, we aimed at highlighting the
current research on SPL configuration in the recent years, and according to Ochoa
et al. [2017] most relevant contributions in this field are from 2012 onwards. To
further decrease the probability of missing relevant papers, the search for relevant
studies was conducted in several relevant scientific databases, and it was focused not
only on journals but also on conferences, symposiums, and workshops. However, the
quality of the search engines could have influenced the completeness of the identified
primary studies (i.e., our search may have missed those studies whose authors did
not use the terms we used in our search string to specify keywords). To minimize

3.7. Related Work 71

these limitations and avoid all sorts of bias, we also analyzed the references of the
primary studies to identify other relevant primary studies. In addition, this SLR
was based on a strict protocol described in Section 3.2 which was discussed before
the start of the review to increase the reliability of the selection and data extraction
processes of the primary studies and allow other researchers to replicate this review.

Another external validity concerns the definition of SPL configuration activities and
mechanisms, as well as open challenges. It can be possible that these definitions
might have been affected by personal interest and opinions. Moreover, we are aware
that the completeness of activities, mechanisms, and open challenges is another
limitation that should be considered while interpreting the results of this review.
Therefore, additional findings not highlighted in Section 3.3 and Section 3.5 should
be included in a future review. For instance, Hubaux et al. [2012] and Benavides et al.
[2013] systematically compare product configuration and feature model configuration
and they conclude that the synergies of both areas is rather glaring. Based on this
assumption, it is also important to explore general contributions in the product
configuration domain (i.e., outside the software domain) to fully gather the spread
knowledge from a different area to benefit the SPL community, which may extend
the list of findings in this field.

Finally, although we focused only on feature models, other approaches (e.g., OVM,
decision models, and CVL) are also important in SPL [Vale et al., 2016]. We did
not include such approaches due a lack of studies in this field. Still, analyzing such
studies remains as an important next step.

3.7 Related Work

A broad SLR has been conducted by Heradio et al. [2016] to identify the most
influential researched topics in SPL, and how the interest in those topics has evolved
over the years. Strict to the SPL domain engineering phase, Vale et al. [2016] have
provided a survey on variability modeling techniques. They reported several dozens
of variability modeling approaches (inclusive feature models). In addition, Chen
and Babar [2011] conducted an SLR and reported how different types of variability
modeling are evaluated. Also Lisboa et al. [2010] and Pereira et al. [2015] presented
an SLR of variability management tools to support the SPL domain engineering
phase. Although these reviews are not directly related to ours, the high level of
detail of their research methodology supported to structure and define our own
methodology.

Benavides et al. [2010] presented the results of a literature review conducted up to
December 2009. The aim of this review was to identify a set of thirty operations and
techniques that provide automated analysis of feature models, covering the phases
of domain and application engineering. These operations are mainly focused on the
extraction of information from feature models. Since Benavides et al. [2010] have
shown that even with improved feature model analysis the configuration task is still
complex, we aim at presenting a complementary review on product configuration. In
our review, we have excluded studies that return all the products represented by the
model, or basically answer the single question of how many valid configurations a
model has (EC4). Besides the thirty operations defined in Benavides et al. [2010], we

72 3. Current Research on Software Product Line Configuration

have additionally considered configuration optimization and multi-step configuration
as relevant mechanisms to support the SPL configuration process. Thus, the review
from Benavides et al. [2010] has been substantially extended in terms of the research
methodology and findings from recent contributions.

Benavides et al. [2013] have searched how similar are the operations defined in Be-
navides et al. [2010] with the operations in product configuration. However, the
authors performed a rapid survey and highlighted the need to conduct a more ex-
haustive SLR and define a historical catalogue of configuration operations similar to
what has been reported in the feature model analysis literature by Benavides et al.
[2010]. Based on this study, we have created a preliminary catalogue of mechanisms
supported by the SPL configuration process.

Rabiser et al. [2010] present the results of an SLR conducted up to February 2008.
The goal of this review was to identify key requirements to support the entire ap-
plication engineering process. Complementary, Lopez-Herrejon et al. [2015] and
Harman et al. [2014] conducted a systematic mapping study to identify for which
requirements have search-based software engineering techniques been used. In con-
trast to both reviews, our SLR focuses just on the SPL configuration process and
contributes with a catalogue of mechanisms that serves as a summarization of the
results in this specific field.

In a more strict scope, Afzal et al. [2016] conducted an SLR to investigate how
to solve conflicts on multiple stakeholder configurations, and Guedes et al. [2015]
conducted a review on dynamic SPL configuration at runtime. We also presented
contributions in these areas. However, we presented a more broad view of these
mechanisms and how they are related with other mechanisms. Finally, complemen-
tary to our review, Asadi et al. [2016] and Pereira et al. [2016a] investigated the
effects of visualization techniques in SPL configurators by mean of a controlled em-
pirical user study. They focus on the empirical analysis of the manual configuration
activity reported in Section 3.4.3.

In conclusion, none of the aforementioned surveys directly address the SPL con-
figuration process. The main concerns addressed by previous SLRs include: SPL
testing, variability management, requirements engineering, evolution, and variabil-
ity model analysis. The configuration problem is not studied in isolation in any
of these SLR. In contrast, the current review provides further details on the SPL
configuration process, such as information related to configuration constraints, tech-
niques employed for solving the SPL configuration problem, and performance and
scalability results of existing approaches.

3.8 Summary

Currently, there are multiple heterogeneous contributions in the SPL configuration
domain. Thus, this chapter presents a Systematic Literature Review (SLR) that
shows an overview of the progress, trends, and gaps faced by researchers in this
field. We compare and classify a total of 157 primary studies from January 1st 2012
to December 31sh 2017 by following Kitchenham and Charters [2007] SLR guide-
lines. Mainly, we give an in-depth view of mechanisms used by each work, how these

3.8. Summary 73

mechanisms are empirically evaluated and their main shortcomings. The results of
the review reveal that the research in SPL configuration is still fragmented and
diverse. Available techniques have been developed fairly independently with differ-
ent purposes to address different mechanisms. Our review mainly identified (i) the
need to improve the quality of the empirical evaluation of existing approaches; (ii)
the lack of holistic solutions to support multiple configuration constraints; and (iii)
the need to improve scalability and performance conditions. This seems to indicate
that given the increasing interest and importance of this field, there are many ex-
citing opportunities of research. Therefore, in the next chapters, we make use of
recommendation techniques to overcome some of the previous identified challenges.

74 3. Current Research on Software Product Line Configuration

4. Personalized Software Product
Line Configurations

This chapter shares material with the Computer Languages, Systems
& Structures paper “Personalized Recommender Systems for Product-
line Configuration Processes” [Pereira et al., 2018b]. We presented initial
ideas at GPCE’16 [Pereira et al., 2016c]. Furthermore, we have faced the
need to implement such approach by conducting a systematic literature
review published at ICSR’15 [Pereira et al., 2015] and an empirical user
study published at ENASE’16 [Pereira et al., 2016a].

In this chapter, we propose the use of recommender techniques to support the Soft-
ware Product Line (SPL) configuration process. Although there are several ap-
proaches in the literature that make use of recommender techniques [Bagheri et al.,
2010a,b, Bagheri and Ensan, 2014a, Bagheri et al., 2012b, Galindo et al., 2015a,
Martinez et al., 2015b, 2014, Mazo et al., 2014b, Tan et al., 2014a], this chapter
presents the first approach that uses an automated and personalized recommender
system that learns about the relevant features from past configurations. Therefore,
no intervention of human experts is necessary in the creation of the recommenda-
tions. Figure 4.1 shows a complete overview of our approach.

Based on the literature [Bosch et al., 2015, Constantino et al., 2016, Payne et al.,
1993, Pereira et al., 2015, 2013], we identify the following configuration challenges
that arise from existing works and industry needs when using configurators:

• Real-world SPLs yield feature models that can be large and complex with too
many options and complex relationships (e.g., the Linux kernel [Sincero et al.,
2010]). The amount and complexity of options shown by the existing configurators
may lead decision makers to make poor decisions due to the difficulty in reasoning
about the dependencies between features.

• Psychological studies [Payne et al., 1993] have shown that decision makers (e.g.,
requirement engineers and business analysts) are usually unsure about users’ needs

76 4. Personalized Software Product Line Configurations

Current Partial

Configuration

Product

Requirements
Feature Model

Previous

Configurations

Recommender

System User

Figure 4.1: Proposed configuration components and their interplay.

when confronted with a large set of choices. According to Mazo et al. [2014b], a
high percentage (more than 60%) of decision makers are unable to find satisfactory
configurations for highly customized products.

• It is difficult to define a valid configuration since often users specify requirements
that are inconsistent with the feature model’s constraints, and also features of
no importance to the user need to be taken into account in order to fulfill the
constraints [Pereira et al., 2016b]. Moreover, logic inference rules may explicitly
infer additional constraints that are not shown by the configurator.

Thus, handling the product configuration process in large SPLs is still a critical
issue for many companies and the current literature still lacks a configurator to
support this process. To overcome these challenges, this chapter presents a new
approach to guide decision makers through a step-wise selection of features avoiding
useless and invalid decisions. The proposed approach encompasses a feature-based
personalized recommender system that aids a user in the configuration process. The
main contribution of our approach is to ease the configuration process by effectively
guiding the decision makers at understanding users’ needs and preferences. The
approach is mainly directed to decision makers who lack sufficient personal expe-
rience to evaluate the complex technical feature properties. In addition, domain
experts and product developers can also take advantage of this approach as it offers
a faster and less error-prone configuration process. In summary, we provide three
main contributions:

1. We propose a personalized recommender system that guides users through the
decision-making process and allows them to focus on valid and relevant parts of
the configuration space. The system is based on configurations from previous
users to generate personalized recommendations for a current user.

77

2. We design an open-source configurator1 to support our approach by extending
a state-of-the-art configurator FeatureIDE [Meinicke et al., 2017].

3. We empirically evaluate the recommendations’ quality of six different recom-
mender algorithms on two real-world datasets of configurations derived from
two industrial case studies.

To evaluate our approach, we answer the following three research questions:

• RQ1. Can recommender approaches support the SPL configuration process in
realistic configuration scenarios?

• RQ2. In which phase of product configuration can a recommender system make
good recommendations?

• RQ3. What is the impact of the implemented algorithms on the quality of rec-
ommendations?

To address these research questions (RQ1–3), we conducted numerous experiments
with six different recommendation algorithms on two datasets from our industry
partners (see Section 4.3.1). To address RQ1, we evaluate the performance of the
implemented algorithms by comparing them with the performance of a random al-
gorithm that simulates the performance of an uninformed user without any support
from a recommender system. This algorithm recommends randomly chosen features
and, therefore, it indicates the minimal performance level every algorithm should
reach. Regarding RQ2, we investigate if useful feature recommendations can be
performed by the algorithms with a reasonable percentage of selected features as
input. Finally, RQ3 compares the accuracy of results from seven different recom-
mender methods. Accuracy evaluates how well our proposed algorithms are capable
of understanding the preferences of the users and give recommendations that are in
accordance with the decisions that the users actually have in mind. The main pur-
pose of RQ3 is to evaluate which algorithm is most effective in producing a feature
model configuration.

The remainder of this chapter is structured as follows. Section 4.1 motivates the busi-
ness need for a feature-based recommender system by presenting the main challenges
faced by a company when configuring a product. Section 4.2 provides an overview
of the proposed approach. Section 4.3 presents the results of our experiments using
a large dataset of real-world configurations derived from two business domains. Sec-
tion 4.4 discusses the threats to the validity of our evaluation results. Section 4.5
clarifies the position of this work in the literature, highlighting the gaps filled by our
approach. Finally, Section 4.6 summarizes the contributions of this chapter.

1The tool and the full code can be found in the Web supplementary material http://wwwiti.cs.
uni-magdeburg.de/˜jualves/PROFilE/.

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/
http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

78 4. Personalized Software Product Line Configurations

ERP
pricing

product

supplier

taxes

quotation register

quotation analyze

purchase register

purchase consult

purchase alter

purchase cancel

delivery schedule

product pricing

suggested price

sale basic register
customer

customer network

offer register

offer check

sale register

sale consult

sale alter

sale cancel

offer network

Optional

Or

Alternative

Feature

Mandatory

Legend

Requires

sale

purchase

quotation

purchase order

purchase basic register

offer

sale order

Figure 4.2: A simplified feature model for an ERP SPL.

4.1 Open Issues in SPL Configuration

Many companies provide solutions for customization of their products to meet the
needs of each user. We illustrate the challenges of the product configuration process
based on a real-world SPL of an Enterprise Resource Planning (ERP) system from
a medium-sized business partner (Figure 4.2 shows an extract of the ERP feature
model2). Our business partner operates with several departments and more than
a hundred active users. Thus, this system is composed of features (i.e., modules)
that are configured in order to fulfill different user needs. The model illustrates an
integrated view of core business processes (i.e., purchase and sale system modules).
Beyond the purchase and sale modules, the complete version of the ERP system con-
sists of multiple enterprise software modules that are: supply chain management,
inventory control, finances, manufacturing, accounting, fiscal affairs, customer rela-
tionship and marketing. The ERP system integrates these various modules into one
complete system to manage processes and information across the entire business.
The complete system is considered a large application as it is composed of 1,653
features and 171 active users (i.e., previous configurations).

Product configuration is performed as a process of customization and generation
of a specific product for each user. The company configuration strategy takes into
account two activities: requirements specification and decision making. The re-
quirements specification involves multiple stakeholders, while decision making is

2The complete representation of the feature model can be found at http://wwwiti.cs.uni-
magdeburg.de/∼jualves/PROFilE/datasets-download/ERP-System.xml

4.1. Open Issues in SPL Configuration 79

conducted only by an Information Technology (IT) expert. The requirements spec-
ification activity is concerned with collecting the system’s requirements to satisfy
the users’ needs. The decision-making activity is performed interactively, mapping
the system’s requirements to features in the feature model. Finally, as a result of
the process, a complete and valid product configuration (see definitions 3 and 4 in
Section 4.2.1) is derived and delivered to the user.

In the SPL configuration context, there are many specialized configurators (see Sec-
tion 3.4.3) to guide IT experts. However, although most of these tools ensure that
any partially configured product is in accordance with the feature model constraints
(which prevents users from introducing conflicts into their configuration), configu-
rators do not yet adequately support business needs [Bosch et al., 2015]. After an
interview with eight IT experts, we identify the following three main configuration
challenges faced by the company when using configurators:

Challenge 1: Large SPLs. Industrial SPLs often define several thousand of
features. As an example, the complete ERP SPL of our business case in Section 4.3.1
contains 1,653 features and can generate billions of different valid product variants.
Thus, the amount and complexity of the options presented by the configurator lead
decision makers to get lost with so much information to be taken into account, and
spend too much time reasoning about too many options and complex relationships.
Thus, showing all features and their dependencies is impractical as a decision maker
can only focus on one part of the configuration a time. Thus, it is crucial for
companies to provide an easy to use support that will alleviate the configuration-
related challenges faced by the decision maker.

Challenge 2: Unclear Requirements and Features. The requirements are
very often not clear and exact; some vague descriptions may have been introduced
to the requirements specification. In our business scenario, this happens because
the IT expert (i.e., decision maker) is not the one who specifies the system’s re-
quirements. Moreover, the feature model may present many subjective features
that cannot be matched with the requirements. Finally, if a final product does
not meet the requirements, most likely, a re-configuration process has to be car-
ried out. Completely re-configuring products is not desirable as the user has to
wait for a new configuration. Thus, decision makers need further support to make
appropriate decisions.

Challenge 3: Get a Final Configuration. It may be very difficult to define
a valid configuration since quite often stakeholders specify requirements that are
inconsistent with the feature model’s constraints, and also features of no iterest
are normally needed to fulfill the feature model’s interdependencies. As an example,
imagine that when mapping the system’s requirements with their respective features
implied by the feature model, the features that are part of an alternative exclusive
relationship are not relevant to the user. In this case, since one feature must be
selected, adequate support is still missing in the literature to guide decision makers
to compare the features in order to select the most appropriate one. Moreover, in
another scenario, consider that the decision maker has already selected all the users’
features of interest according to the specified requirements. However, they still may

80 4. Personalized Software Product Line Configurations

not have a valid configuration. Once the remaining features are not relevant to them,
support is also needed to guide the decision makers into a valid final configuration.

In summary, our business experience shows that the SPL configuration process can
be a challenging since decision makers regularly do not know every feature and their
interdependencies, particularly for large SPLs. Thus, easy and comprehensive tool
support is crucial to guide users in making decisions. In the next section, we propose
a feature-based recommendation approach to overcome the above challenges.

4.2 The Proposed Approach

As seen in our motivating example (Section 4.1), the current configuration process
is still challenging for decision makers. To ease this process, we propose a feature-
based recommender system that guides decision makers during each step of the
SPL configuration process by delivering capabilities to effectively understand users’
needs and preferences. In this section, we formally define the terms feature model
and configuration as well as certain relevant properties of configurations. We then
use these definitions to give an overview of our approach and describe our chosen
recommender system.

4.2.1 Formal Definitions

In this section, we formally define feature models and configurations for the formal
description of the proposed configuration process. As we adapt recommendation
algorithms to the configuration process, we need a single formalism that is suited
to describe and combine both concepts. An existing formalism to describe a feature
model are propositional formulas, as they can represent arbitrary boolean dependen-
cies [Batory, 2005]. As the dependencies of a feature model are usually defined as a
conjunction of constraints, a corresponding propositional formula can be efficiently
transformed into a Conjunctive Normal Form (CNF) (i.e., a conjunction of clauses,
which are a disjunction of literals, which represent the single features), which is easy
to formalize. Consequently, we use the CNF representation in our implementation
for decision propagation and validity checking.

Definition 4.1. A feature model FM = (F,R) is a tuple that consists of a feature
space F = {−1, 0, 1}h, where h is the number of features in the feature model, and a
set of constraints R = {~r1, ~r2, ..., ~rm}, where m is the number of constraints of the
feature model. A constraint ~ri represents a clause from the feature model’s proposi-
tional formula in CNF, such that ~ri ∈ F and the component j of ri specifies whether
the feature j should be selected (rij = 1), deselected (rij = 0), or is not relevant
(rij = −1) within this constraint.

As an example, consider a feature model with four features A, B, C, and D and the
constraints A⇒ (B ∨ C) and D⇒ C. The formal representation of this feature model
has a feature space F with h = 4 and the two vectors in R, ~r1 = (0, 1, 1,−1) and
~r2 = (−1,−1, 1, 0). The vectors correspond to the constraints in CNF (¬ A ∨ B ∨
C) ∧ (¬ D ∨ C), where ~r1 represents the first clause and ~r2 the second one.

4.2. The Proposed Approach 81

Definition 4.2. Given a feature model FM, a configuration ~c ∈ F = (c1, c2, ..., ch)
represents a selection of features such that ci = 1, if feature i is selected, ci = 0 if it
is deselected, and ci = −1 if its state is undefined.

For example, considering our previously defined feature model, the configuration
~c1 = (1, 0, 1, 1), means that the features A, C, and D are selected and the feature B is
deselected. The configuration ~c2 = (−1,−1, 0, 1) states that feature C is deselected,
feature D is selected and the features A and B are currently not defined.

Definition 4.3. Given a feature model FM, a configuration ~c is complete iff ~c
defines each feature (i.e., ∀i ∈ {1, .., h} : ci 6= −1), otherwise the configuration is
partial. For a given feature model, we denote the set of all its complete configurations
with CC and the set of all its partial configurations with PC.

Definition 4.4. Given a feature model FM, a configuration ~c is valid iff it satis-
fies all constraints in R when considering all undefined features in ~c as deselected,
otherwise it is invalid. More formally, ~c is valid iff ∀~r ∈ R,∃i ∈ {1, .., h} : ri 6=
−1 ∧ complete(ci) = ri, where the function complete is defined as:

complete(ci) =

{
0, if ci = −1

c, otherwise

For a given feature model, we denote the set of all its valid configurations with VC
and the set of all its invalid configurations with IC.

Our previously considered configuration ~c1 = (1, 0, 1, 1) is complete and valid, as it
defines every feature and satisfies both constraints in R. In contrast, the configu-
ration ~c2 = (−1,−1, 0, 1) is partial, as the features A and B are undefined, and it is
invalid, as it contradicts with the constraint ~r2 = (−1,−1, 1, 0).

To recommend features during the configuration process, our recommender system
uses a configuration matrix X as input. A configuration matrix provides the status
of a set of configurations. In this context, given a feature model FM and a set of
complete and valid configurations {~c1, ...,~cn} ⊆ CC ∩ VC, a configuration matrix X
is defined as:

X =

c11 c12 · · · c1h
...

...
. . .

...
cn1 cn2 · · · cnh


Considere the feature model of our previous example. Assuming the configuration
~c1 selects the features A, C, and D, and deselects the feature B (i.e., ~c1 = (1, 0, 1, 1));
and the configuration ~c3 selects the features A and B, and deselects the features C

and D (i.e. ~c3 = (1, 1, 0, 0)), the corresponding matrix X is defined as:

X =

[
1 0 1 1
1 1 0 0

]
Given the variables and constants described above, our approach aims to restrict the
configuration space and predict the relevance of undefined features in a way that
the users can make decisions more easily.

82 4. Personalized Software Product Line Configurations

4.2.2 An Overview of the Proposed Configuration Process

Our approach creates an interactive perspective for users and offers recommenda-
tions to maximize the chances to have an adequate configuration in the end. The
workflow in Figure 4.3 presents an overview of the proposed configuration process.
The users are engaged in all steps, knowing which features are considered and their
importance for the final product. The interaction ensures that the users under-
stand the configuration space and its limitations, and are also comfortable with the
decisions that are made during the whole process.

The configuration process is carried out by considering five main activities: configure,
propagate decisions, check validity, calculate recommendations, and visualize. As
input, it takes the feature model; and the requirements for a particular product
from users, customers, and other stakeholders. The same feature model is used
to customize different products for new customers’ application scenarios. As an
example, the two real-world feature models from our case-study (see Section 4.3.1)
have been in use by the respective companies for more than 10 years.

The process starts with the user defining features of interest from a focused view of
the feature model. A focused view restricts the decision maker’s view to direct sub-
features from selected features (see Section 7.2.1 in Chapter 7). Each time a user
decides to define a feature, decision propagation is applied. This means that features
that are implied by this decision according to the feature model’s constraints are
automatically (de)selected [Janota, 2008]. As a consequence, the user cannot define
two conflicting features [Pereira et al., 2016b]. However, a configuration can still
be invalid, if due to the feature model’s constraints more features need to be de-
fined. Next, the partial configuration is checked for validity. For every valid partial
configuration, the user can decide to finish the configuration process by automati-
cally deselecting all remaining undefined features. An invalid partial configuration
requires the user to select or deselect more features. A highlighted view shows the
user which decisions are necessary to have a final valid configuration by highlighting
the corresponding features (see Section 7.2.1 in Chapter 7). Due to the applica-
tion of decision propagation the user will eventually come to a valid configuration.
Furthermore, a complete configuration created using this process will alway be valid.

In each step, the recommender algorithm predicts the relevance of each undefined
feature (see Section 4.2.3). The proposed recommender system requires as input
a current partial configuration with at least one selected feature and at least one
previous configuration to use as historical data. In Section 4.3 we investigate when
the proposed recommender algorithms hit the threshold where they have enough
historical data to start making better predictions (see RQ2 at the beginning of this
chapter). The predictions are displayed as a 5-star feature score in the focused view
to guide the current user through a step-wise selection of features. The predictions
are constantly updated as new information is received based on selected and dese-
lected features. Therefore, if the user is not familiar with the features and cannot
decide what is the best choice, suggestions are presented. Finally, if the user wishes
to finish the configuration process (i.e., he does not have the interest to select any ad-
ditional feature), the focused and highlighted view combined with the recommender
system can support them to have a desired and valid configuration.

4.2. The Proposed Approach 83

Feature

Model

Requirements

Elicitation

Configure

Partial

Configuration

Check Validity

Propagate

Decisions

Invalid Partial

Configuration

Valid Partial

Configuration

Calculate

Recommendations

Recommender

Scores

Visualize

Focused &

Highlighted

View

Complete

Configuration

Set of

Undefined

Features

Data Object

Flow direction

Start

Activity

Choice

End

LEGEND

Figure 4.3: An overview of the configuration process.

In our case-study scenario (see Section 4.1), the predictions serve as input for IT
experts to understand the users’ needs, and consequently provide them with a set of
features that are more likely to be useful. Moreover, given a previous configuration,
our approach can also support configuration update and upgrade. Through the
proposed configuration process IT experts can: (a) rely on a small relevant set
of features, instead of going through the entire feature model; (b) visualize, in an
interactive way implicit and explicit interdependences among features; and (c) go
through a list of the most recommended features. In the next sections, we detail our
proposed approach that centers around the above activities.

4.2.3 Recommender System Algorithms

Even with visual mechanisms for reasoning on feature models, manually configuring
a product can be a massive and difficult process. To ease this process, we adapt
six personalized recommendation algorithms to the scenario of SPL configuration
(Section 2.2): (i) neighbourhood-based CF, (ii) CF-significance weighting, (iii) CF-
shrinkage, (iv) CF-Hoeffding, (v) average similarity, and (vi) matrix factorization.
These algorithms use previous configurations for estimating and predicting the rel-
evance of features in order to guide a decision maker through the process of feature
selection. The aim of implementing different algorithms is a comparative analysis
and investigation of its performance in real configuration scenarios (see the research
questions in the introduction of Chapter 4).

4.2.3.1 Neighbourhood-Based CF Recommender

In this section, we present how neighbourhood-based Collaborative Filtering (CF)
algorithms can be adapted to recommend features in the SPL configuration domain.

Given the configuration matrix X (see Section 4.2.1) and a new partial configuration
−→pc ∈ PC that is currently being processed by a user, a recommendation algorithm
has the task of finding relevant features for this partial configuration. To achieve
that, the CF algorithm calculates the relevance scores for the non-selected features.
Consider a simplified example in Table 4.1. The non-selected features in the partial
configuration −→pc are f1 and f4. For those features a recommender system calcu-
lates the relevance scores. Once this calculation is completed, the most relevant
features (the ones with the highest score) are recommended. The relevance scores
are computed as follows.

84 4. Personalized Software Product Line Configurations

For a partial configuration −→pc a set of neighbours is determined. A neighbour is
a configuration −→c x ∈ X (a row vector from X with x ∈ {1, ..., n}) that is simi-
lar to −→pc according to a similarity measure. A configuration qualifies as similar, if
sim(−→pc,−→c x) > τ , where τ is a similarity threshold that is given as an input param-
eter (see Section 4.3.2.1). All neighbouring configurations build a neighbourhood
N (−→pc, τ). In our example, the configuration that is the most similar to −→pc is −→c 1,
as they both have the features f2 and f3 co-selected. Consequently, the similarity
sim(−→pc,−→c 1) is high. This is not the case of −→c 2 and −→c 3. Therefore, if we consider
−→pc and −→c 2, it is likely that they have only a few features that have been selected
commonly (co-selected). In this case, the measure of their similarity sim(−→c 1,

−→c 2)
is based mostly on non-selected features (zeroes in the configuration vectors), which
are not informative for a recommender system. This problem is known as unreliable
estimation of similarity (unreliable similarity for short). The similarity measure is, in
this case, not reliable, because its calculation is based only on few observations. We
address this problem in the following subsections (Section 4.2.3.2 – Section 4.2.3.4).

f1 f2 f3 f4−→c 1 0 1 1 1
−→c 2 1 1 0 0
−→c 3 0 0 1 1
−→pc ? 1 1 ?

Table 4.1: A simplified example of a configuration matrix with three previous config-
urations (−→c 1,

−→c 2,
−→c 3) and a new partial configuration (−→pc). f1 - f4 denote features

of products.

Since our configuration matrix X is binary, in our experiments we use similarity
measures such as Jaccard Coefficient, Mean Hamming Similarity and Dice Coeffi-
cient, which are appropriate for binary vectors. For explanation of those measures
we refer to Choi et al. [2010].

Once the neighbourhood N (−→pc, τ) ⊆ CC has been determined, the relevance score
Rel for a feature f from the set of all non-selected features (e.g., f1 in our example)
is calculated as follows:

Rel(−→pc, f) =
1

|N (−→pc, τ)|
∑

−→c x∈N (−→pc,τ)

sim(−→pc,−→c x) · cxf (4.1)

Note that the sum in the formula iterates over the neighbours of −→pc. In other words,
if many similar configurations from the neighbourhood have the feature f selected,
then the relevance score for this feature is high. This is due to the term sim(−→pc,−→c x)·
cxf , which weights the selected features with the similarity of the configurations. The
fraction 1

|N (−→pc,τ)| normalizes the sum, so that the whole expression results in being a

weighted average. Note that cxf ∈ {0, 1}, therefore our formula differs from typical
CF-based algorithms working with non-binary ratings. If cxf = 0, i.e. the feature
f was not selected in the configuration cx, then its similarity does not influence the
relevance score. Finally, in the last step, the relevance scores Rel(−→pc, f) are returned
and used for recommendations.

4.2. The Proposed Approach 85

4.2.3.2 CF with Significance Weighting

CF with significance weighting, abbreviated hereafter as CF-significance, addresses
a shortcoming of the conventional CF algorithm related to the unreliable similarity
problem. CF does not consider the number of co-selected features in the calculation
of similarity between configurations. Not considering the number of commonly se-
lected features poses a problem, since a similarity between two configurations can
be very high based merely on absent features, which are not informative. Unlike in
our simplified example in Table 4.1, in real-world applications there are many more
features. Often, in a configuration only a few of the features are selected. Conse-
quently, the corresponding configuration vector contains mostly zeroes. A similarity
between two such vectors can be high based merely on a few selected features. De-
spite high value, such a similarity is not reliable. To solve this problem, Herlocker
et al. [1999] proposed significance weighting. According to this approach similarity
based on more co-selected features is given more weight than a similarity based on
only few observations.

Similarly to the conventional CF, significance weighting builds a neighbourhood
N (−→pc, τ) ⊆ CC of a configuration −→pc by considering similarities to all other historical
configurations −→cx . However, the configurations that belong to the neighbourhood
must additionally fulfill the following criterion w(−→pc,−→c x) > τ with (notation from
Desrosiers and Karypis [2011] adjusted):

w(−→pc,−→c x) =
min(n, γ)

γ
· sim(−→pc,−→c x) (4.2)

where n is the number of co-selected features between −→pc and −→c x and γ is the
weighting parameter. The term min(n,γ)

γ
penalizes (lowers) the similarity measures

that are based on fewer co-selected features than γ. If γ is for example set to 20,
then the configurations −→pc and −→c x need to have at least 20 co-selected features in
order not to be penalized by this weighting. This parameter is typically set by a
domain expert or optimized. Also, the Equation 4.1 is updated as follows to consider
the new weighting:

Rel(−→pc, f) =
1

|N (−→pc, τ)|
∑

−→c x∈N (−→pc,τ)

w(−→pc,−→c x) · cxf (4.3)

4.2.3.3 CF with Shrinkage

CF with shrinkage, denoted hereafter as CF-shrinkage, was proposed by Ma et al.
[2007] to also address the problem of unreliable similarity. However, Ma et al. used a
different weighting formula (notation from Desrosiers and Karypis [2011] adjusted):

w(−→pc,−→c x) =
n

n+ β
· sim(−→pc,−→c x) (4.4)

with β being a parameter that controls the extent of weighting. n is again the
number of co-selected features between −→pc and −→c x. If n is much greater than β
then the weighting has only little effect. Otherwise, configurations having only a
few co-selected features are penalized more strongly [Desrosiers and Karypis, 2011].

86 4. Personalized Software Product Line Configurations

4.2.3.4 CF with Hoeffding Bound

To address the problem of unreliable similarity, Matuszyk and Spiliopoulou [2014]
proposed a different approach, denoted hereafter as CF-Hoeffding. Instead of weight-
ing similarities based on the number of co-selected features, they introduced the
concept of a reliable neighbourhood.

A reliable neighbourhood contains only configurations that are reliably similar to the
current partial configuration −→pc ∈ PC. The reliability is determined using a baseline
configuration −→c B. Matuszyk et al. proposed several methods to compute a baseline
configuration. We adjust those methods to our scenario with binary data and we
use a random baseline and a majority baseline.

The random baseline is defined as a random binary vector determining if a feature
is selected or not. The majority baseline is also a binary vector that contains a
feature (i.e., an entry of 1), if the majority of configurations contains that feature.
Therefore, this baseline represents a default configuration, as it would be defined by
an average user.

The baselines are used in determining the reliability of a neighbour. A given his-
torical configuration −→c x ∈ X is reliably similar to the current partial configuration
−→pc ∈ PC, if sim(−→pc,−→c x) � sim(−→pc,−→c B). The symbol � denotes significantly
greater than. This inequality is evaluated using a significance-based solution derived
from Hoeffding’s Inequality that considers the number of co-selected features n and a
confidence level δ. For details on calculation we refer to Matuszyk and Spiliopoulou
[2014]. All historical configurations that fulfil this inequality are considered neigh-
bours. Once the neighbourhood is defined, Equation 4.1 can be applied as in the
conventional CF to predict the relevance scores of all unselected features.

4.2.3.5 Average Similarity Recommender

This algorithm uses the same principle as CF, CF-significance weighting, CF-shrinka-
ge, and CF-Hoeffding, but it does not use the notion of a neighbourhood. Conse-
quently, the configurations of all users are considered for computing the relevance
score of a feature. Accordingly, Equation 4.1 is changed to:

Rel(−→pc, f) =
1

n

∑
−→c x∈X

sim(−→pc,−→c x) · cxf (4.5)

Note that the sum iterates over all configurations from X, which contains n config-
urations. This means that the relevance score is an average similarity of −→pc over the
configurations that have the feature f selected.

We conduct experiments with this algorithm to investigate if restricting the neigh-
bourhood size has an influence on the quality of recommendations in our application.

4.2.3.6 Matrix Factorization Recommender

In contrast to neighbourhood-based methods, matrix factorization algorithms do not
rely on the similarity of configurations. Instead, they transform the configuration

4.2. The Proposed Approach 87

matrix X (as presented e.g. in Table 4.1) into a latent space. In the following,
we give an explanation of this transformation. However, matrix factorization in
recommender systems constitutes an entire field of research that cannot be presented
here in an exhaustive way. Therefore, for more information on this concept we refer
to Bishop [2006] and Takács et al. [2009].

The transformation of the matrix X is obtained by incremental minimization of an
error function. In this work, we use the BRISMF algorithm by Takács et al. [2009]
and adapt it to our SPL configuration problem. Formally, this transformation is
represented as follows:

Xn×h = Pn×k ·Qk×h (4.6)

where P is a latent matrix of configurations and Q a latent matrix of features, n
is the number of configurations in X (see Section 4.2.1), h the number of features,
and k is the number of latent dimensions. k is an exogenous input parameter that
needs to be optimized (see Section 4.3.2.1). The latent matrices are results of the
factorization (the matrix X is factorized into two other matrices). They are called
latent, because their values are not directly interpretable and their meaning is not
known. Nevertheless, the values in the matrices are fitted in a way that minimizes
the error in the prediction of the relevance score.

Using the transformation in Equation 4.6, the relevance score for a feature f in
a partial configuration −→pc (e.g., for the feature f1 in our example in Table 4.1) is
calculated using the following equation:

Rel(−→pcf) = −→p −→pc · −→q f (4.7)

where −→p −→pc ∈ P is a row vector from the latent matrix P describing the configuration
−→pc in the latent space. −→q f ∈ Q is the corresponding latent vector of feature f , i.e.
a column vector from the matrix Q. Both −→p −→pc and −→q f have length k. Equation 4.7
describes how the prediction of a relevance score is obtained given the matrices P
and Q. In the following, we describe how the values in those matrices are obtained.

First, the matrices P and Q are initialized randomly. To improve them, Stochastic
Gradient Descent (SGD) is used to iteratively update the matrices by minimizing an
error function. The error function used in the transformation is a prediction error
between the true value cxf ∈ X (i.e., a value known from the data, e.g. cxf = 1, if a
feature was selected in a configuration) and the predicted relevance score Rel(cxf)
on a training set Tr (see Section 4.3.2.2 for definition of a training set):

Error =
∑

cxf∈Tr

(ecxf)2 (4.8)

ecxf = cxf −Rel(cxf) (4.9)

For the training, only the selected features are used (i.e., the entries, where cxf = 1),
because the meaning of a zero is ambivalent. A zero in the configuration vector can
mean deselecting a feature on purpose, or not selecting it, because the user did not

88 4. Personalized Software Product Line Configurations

know the feature, even though it was relevant. Using the zero entries as indication
of irrelevance would be misleading.

To minimize the error function and to update the matrices P and Q, SGD uses the
following formulas:

−→p cx := −→p cx + η(ecxf ·
−→q f − λ · −→p cx) (4.10)

−→q f := −→q f + η(ecxf ·
−→p cx − λ · −→q f) (4.11)

where η is a learning rate and λ is a regularization parameter that prevents overfit-
ting. Both of them are input parameters to be set in advance (see Section 4.3.2.1).
f stands again for a feature as e.g. in Table 4.1. Note that those formulas update
the vectors from the matrices P and Q in a way that minimizes the prediction er-
ror. Applying those formulas iteratively in several epochs of the Stochastic Gradient
Descent (SGD) eventually leads to an approximately minimal prediction error. For
the derivation of those formulas we refer to Takács et al. [2009].

Once the training using the SGD is completed (e.g., due to convergence or max-
imal number of iterations) the matrices P and Q can be used to make relevance
predictions, as presented in Equation 4.7.

4.3 Evaluation

This section describes the evaluation protocol used to evaluate the six different rec-
ommender algorithms introduced in Section 4.2.3. Since a configuration cannot be
invalid due the decision propagation strategies automatically applied to the configu-
ration process (see Section 4.2.2), we empirically evaluate the quality of recommen-
dations of the proposed recommender algorithms. For the purpose of comparison,
we also experiment with a random recommender system and report our results.

4.3.1 Target Software Product Lines and Datasets

In order to address the research questions (RQ1—3) introduced in the beginning
of this chapter, we use two real-world datasets of configurations3 from our industry
partners as a configuration matrix (see Section 4.2.1). Table 4.2 summarizes the
properties from both datasets (i.e., ERP System and E-Agribusiness) used in the
evaluation. For each dataset, we present four properties including the number of
features (#f), percentage of cross-tree constraints (R), number of all valid config-
urations (#C), and number of previous configurations (#−→c x). We give an upper
bound on the number of valid configurations (#C) for the models since it is not
feasible to determine the number of products for such a large model4.

As shown in Table 4.2, although the number of features of both models is quite
similar (i.e., 1,653 and 2,008), these models cover a range of sizes in terms of his-
toric configurations (i.e., 171 and 5,749). While the ERP System dataset provides

3The configuration datasets can be found at wwwiti.cs.uni-magdeburg.de/˜jualves/PROFilE/.
4We compute #C by using the automated analysis mechanism of SPLOT at http://

splot-research.org/.

wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/
http://splot-research.org/
http://splot-research.org/

4.3. Evaluation 89

a high-level representation of an SPL in the business management domain, the E-
Agribusiness dataset represents variability in the e-commerce agribusiness domain.
To the best of our knowledge, both feature models are the largest real-world datasets
of configurations ever cited in the literature. They have a very high degree of vari-
ability which would be hard for the decision maker to process without any additional
support. These characteristics from both target feature models make them ideal to
be employed in our experiments to explore our research questions.

Dataset Domain #f R #C #−→c x
ERP System Business Management 1,653 ≈ 7% > 109 171
E-Agribusiness E-Commerce 2,008 none > 109 5,749

Table 4.2: Main properties of the datasets.

4.3.2 Experiment Design

To evaluate our algorithms, we performed an offline evaluation that encompasses
three components: (i) parameter optimization, (ii) splitting into training and test
datasets, and (iii) evaluation metrics.

4.3.2.1 Parameter Optimization

Parameter optimization is essential for comparing algorithms that require parameter
tuning. A typical example of an algorithm that requires parameter tuning is the k-
means algorithm for clustering. In the k-means algorithm, a domain expert, who
uses this algorithm, needs to specify the parameter k, which stands for the number
of centroids. This parameter is not known a priori and it influences the quality of
results greatly. If the domain expert sets the parameter incorrectly, the quality of
the results will be poor. Therefore, it is common that domain experts optimize the
parameters by trying several settings.

However, optimizing parameters manually is highly subjective and might lead to un-
reliable conclusions when comparing algorithms that were tuned manually. There-
fore, it is beneficial to use an optimization algorithm for the parameter optimization
to obtain objective and replicable results.

Recommender systems also require setting of parameters. Neighbourhood-based CF,
for instance, requires a similarity measure and a threshold value τ , above which users
are considered neighbours. Matrix factorization algorithms also have parameters to
set, e.g., the number of latent dimensions k, the learning rate η and the regulariza-
tion λ. Regularization is a mechanism often used in machine learning to prevent
overfitting of models to data (see Bishop [2007] for details on this technique).

To ensure replicability of our results, in the following we describe, how we optimized
the parameters of our recommendation algorithms. In our optimization, we used a
genetic algorithm. We used a random hold-out sample of 30% of all configurations
from our dataset, i.e. this set was held out from further training and evaluation
for the sake of reliable conclusions. On this hold-out dataset the aforementioned
genetic algorithm was used to optimize the F-Measure of different recommendation

90 4. Personalized Software Product Line Configurations

algorithms (see Section 4.3.2.3). Every experiment in this phase was validated using
a 10-fold cross validation. The optimal parameter setting was then used in our
main validation phase (see Section 4.3.2.2) and applied to the remaining 70% of
configurations. The optimal parameter values are shown in Table 4.3. In the column
“method” of the table, we show our recommendation algorithms. The “parameter”
column shows which parameters the corresponding algorithm requires. The last
two columns show the optimal values of the corresponding parameters on the two
datasets used in our experiments. Note that optimal parameter settings depend
on the application domain and they are, therefore, different on different datasets.
The results presented in the following sections were achieved using those optimal
parameter settings.

Dataset
Method Parameter ERP System E-Agribusiness

Avg. Sim. Sim.Measure Jaccard Coeff. Jaccard Coeff.

kNN-CF
τ 0.000001 0.757576
Sim.Measure Jaccard Coeff. Jaccard Coeff.

CF significance
τ 0.994 0.469
Sim.Measure Dice Coeff. Jaccard Coeff.
γ 10 207.98

CF shrinkage
τ 0.999 0.33
Sim.Measure Jaccard Coeff. Mean Hamming Sim.
β 14.95 158.48

Hoeffding CF
baseline majority random
Sim.Measure Jaccard Coeff. Mean Hamming Sim.
δ 0.999 0.988

BRISMF
k 40 80
η 0.0166 0.0948
λ 0.0062 0.1

Table 4.3: Optimal parameter values.

4.3.2.2 Splitting into Training and Test Datasets

Once the optimal parameter settings were found, we performed our main evaluation
on the remaining 70% of configurations. For the sake of a fair evaluation it was
necessary to split the dataset into disjoint training and test datasets. In this main
evaluation phase, we use the leave-one-out evaluation protocol to create realistic
evaluation conditions. According to this protocol, one configuration is left out from
the training set and used for testing. The remaining configurations are given to the
algorithm as training data (i.e., the configuration matrix X). This simulates the
behaviour of a real system, where a user logs in and carries out a new configuration.
The data of the past configurations are available to the system and only the current
partial configuration should be predicted. To perform well, a recommender system
has to recommend the features that were used in the left-out test configuration based
on the training data (i.e., all other configurations).

Formally, a test configuration is a partial configuration −→pc ∈ PC that was left out
from training set, i.e. it is not contained in the configuration matrix −→pc /∈ X. The
recommender system returns an estimated configuration p̂c = {0, 1}h. Then, the
degree of overlap between the real configuration −→pc (known from the data, but held

4.3. Evaluation 91

out from the recommendation algorithm) and the predicted one p̂c is calculated using
an evaluation measure (see Section 4.3.2.3; note that it is not a similarity measure
from Section 4.2.3.1).

To further simulate the progress of a user in the configuration process, we gradually
give parts of the configuration to the recommender system as training data, e.g.,
10% of a complete configuration. Then, a new prediction p̂c@10% is made and its
quality is estimated using the aforementioned quality measure. The quality of a
prediction is good if the predicted configuration overlaps with the remaining 90%
of the configuration that is not known to the system. A good recommender system
should learn from the given parts of the configuration and improve the quality of
recommendations of the remaining features as it obtains more information about
the current configuration.

The entire process is repeated for all configurations and all recommendation algo-
rithms separately. The final quality measure of a recommendation algorithm is the
average quality over all configurations.

4.3.2.3 Evaluation Metrics

In our evaluation, we use precision, recall and F-measure at w, where w is the
number of recommendations displayed to a user. We use a value of w = 10, which
is typical to recommender systems, since usually no more than 10 recommendations
can be displayed (see Shani and Gunawardana [2011] for more details). Even if more
recommendations are displayed, users mostly consider only the top positions. In the
following, we explain how those measures are calculated.

Given a set Rec of features recommended by an algorithm and a set of truly relevant
features Rel known from a test configuration, precision is calculated as follows:
Precision = |Rec∩Rel|

w
. Analogously, recall is calculated using the formula: Recall =

|Rec∩Rel|
|Rel| . Precision states how many of the recommended features were relevant.

Recall measures what percentage of relevant features has been recommended. Thus,
in an ideal recommender system these values should be maximal (i.e., equal to 1).
However, maximizing one of them, while ignoring the other, is not a challenging
task. Therefore, in our evaluation we use a measure that combines both, i.e. the
F-Measure:

F -Measure =
2 · Precision ·Recall
Precision+Recall

(4.12)

On the one hand, F-Measure is high when both precision and recall are high. On
the other hand, when only one of the components is high (i.e., either precision or
recall), then F-Measure is low. This is an ideal characteristic, since our goal is to
maximize both precision and recall.

Evaluation metrics that are typical to recommender systems, such as RMSE (Root
Mean Squared Error) and MAE (Mean Absolute Error) [Shani and Gunawardana,
2011], are in this case not applicable, since in our scenario we have binary data in
the matrix X which is not compatible with these metrics (see Section 4.2.1).

92 4. Personalized Software Product Line Configurations

4.3.2.4 Baseline Comparison

As a comparison baseline we use a random recommender system. It returns a ran-
domly ordered list of non-selected features as recommendations. It is important to
compare with this algorithm, because it indicates a basic performance level every
algorithm should reach. If a method does not outperform the random recommender,
then it should not be used in the given application scenario. Furthermore, the per-
formance of this algorithm is equivalent to the performance of a hypothetical, fully
uninformed user without any support from a recommender system. If a method out-
performs the random baseline, it means that can be used in this scenario and that it
performs a configuration better than an uninformed configurator. However, in most
real-world applications no human configurator is fully uninformed. Therefore, to
additionally indicate how useful our recommendation algorithms are, we report the
precision and recall values. Those values indicate the quality of recommendations.

Precision and recall are objective measures of quality. The subjective value of a
recommender systems to users can be determined only in a large user study. This,
however, is part of Chapter 7.

4.3.3 Analysis of Results and Discussion

In our evaluation we performed more than 149,000 experiments on a cluster running
the (Neuro)Debian operating system [Halchenko and Hanke, 2012]. As an experi-
ment, in this case, we understand making and evaluating recommendations for one
user in the process of configuration. Therefore, the total number of experiments de-
pends on the total number of previous configurations in both datasets. Furthermore,
each experiment was conducted at different stages of the configuration process. For
each experiment, there are nine such stages for different level of completeness of a
configuration (e.g., 10%, 20%, etc.). All experiments were conducted for each of
our seven methods separately. Consequently, this gives us 4,720 experiments on the
ERP dataset and 144,864 experiments on the E-Agribusiness dataset. Note that
a part of the configurations from the datasets have been held out for the purpose
of parameter optimization (see Section 4.3.2.1). Those additional experiments for
parameter optimization are not counted here.

In Figure 4.4 and Table 4.4 we present the results on the dataset from the ERP
domain. Since we performed a leave one out validation for each configuration sep-
arately, the results presented here are averages over all configurations. The figure
represents the F-Measure achieved by seven different recommender methods. On
the horizontal axis of the figure, we present the completeness of a configuration, i.e.
the percentage of features that are given to the algorithm as training data, where
only the remaining part of the configuration needs to be predicted.

On the ERP dataset, we observe that the CF-shrinkage and CF-significance weight-
ing algorithms outperform all other recommendation algorithms at all stages of the
configuration process, with a better result for the CF-shrinkage algorithm. More-
over, although the BRISMF algorithm does not outperform those two algorithms,
it presents also good results outperforming the other three algorithms, as well the
random recommender. We observe an increase of performance for those algorithms

4.3. Evaluation 93

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10% 30% 50% 70% 90%

F-
M

ea
su

re

Completeness of a Configuration

Avg. Similarity

BRISMF

CF

CF-Hoeffding

CF-shrinkage

CF-significance

Random

Figure 4.4: F-Measure achieved by seven different recommender methods on the
ERP dataset (higher values are better). The horizontal axis shows how much of the
current configuration has been completed. The performance is calculated on the
remaining part of a configuration.

as the configuration becomes more complete, i.e. as the recommendation algorithm
receives more data for training.

The CF algorithm and the average similarity algorithm perform nearly the same
(their curves overlap). They dominate the random recommender at nearly all stages
of configuration process, except for the initial part, when little information about the
current configuration is available. In addition, note that the CF-Hoeffding algorithm
only outperforms the random recommender when we have a partial configuration
with more than 50% of selected features. The random recommender only shows the
minimal level of F-Measure by guessing the relevance scores (i.e., it serves only as a
comparison baseline). Therefore, the CF-Hoeffding algorithm is not recommended
to be used in this domain.

The corresponding numeric values of F-Measure and also precision and recall are
shown in Table 4.4. Also in the table, we see that the CF-shrinkage and CF-
significance weighting algorithms dominate the other algorithms not only with re-
spect to F-Measure, but also with respect to precision and recall at nearly all stages
of the configuration process.

In Figure 4.5 and Table 4.5, we present the analogous results on the E-Agribusiness
dataset. On this dataset, the BRISMF algorithm performs the best, except for the

94 4. Personalized Software Product Line Configurations

Completeness of Configuration
Measure Method 0.1 0.3 0.5 0.7 0.9

F-Measure

Avg. Similarity 0.0108 0.0198 0.0297 0.0409 0.0621
BRISMF 0.0449 0.0562 0.0707 0.1020 0.1451
CF 0.0109 0.0198 0.0297 0.0409 0.0622
CF-Hoeffding 0.0070 0.0098 0.0136 0.0200 0.0329
CF-shrinkage 0.0751 0.1507 0.2036 0.2707 0.3169
CF-significance 0.0502 0.1493 0.1965 0.2543 0.2983
Random 0.0108 0.0103 0.0110 0.0086 0.0086

Precision

Avg. Similarity 0.0517 0.0644 0.0737 0.0814 0.0847
BRISMF 0.4203 0.3975 0.3754 0.3203 0.2475
CF 0.0525 0.0644 0.0737 0.0814 0.0856
CF-Hoeffding 0.0678 0.0627 0.0788 0.0822 0.0754
CF-shrinkage 0.4093 0.5347 0.5390 0.5059 0.4068
CF-significance 0.3644 0.5237 0.5102 0.4686 0.3788
Random 0.1153 0.0805 0.0788 0.0492 0.0263

Recall

Avg. Similarity 0.0069 0.0133 0.0217 0.0324 0.0587
BRISMF 0.0240 0.0306 0.0397 0.0625 0.1073
CF 0.0069 0.0133 0.0217 0.0324 0.0588
CF-Hoeffding 0.0038 0.0062 0.0093 0.0136 0.0242
CF-shrinkage 0.0450 0.0977 0.1479 0.2219 0.3072
CF-significance 0.0277 0.0970 0.1435 0.2055 0.2923
Random 0.0060 0.0064 0.0064 0.0052 0.0078

Table 4.4: Performance of seven recommender methods w.r.t. F-Measure, precision
and recall on the ERP dataset. The CF-shrinkage algorithm performs the best w.r.t.
all three measures at nearly all stages of a configuration process.

initial part of a configuration (i.e., less than 12% of selected features). In this part,
the CF, CF-Hoeffding, CF-shrinkage, and CF-significance weighting algorithms yield
a better result recall and F-Measure. At all other stages of the configuration process
BRISMF clearly outperformed the remaining algorithms.

Different than on the ERP dataset, we observe an decrease of performance for
those algorithms as the configuration becomes more complete. Moreover, here
the CF and average similarity algorithms perform very differently. While CF is
the second best algorithm, the average similarity algorithm performs worse than
the random recommender. Consequently, this algorithm should not be used in the
E-Agribusiness scenario.

In comparison to the ERP dataset the absolute values of the quality measure are
lower on the E-Agribusiness dataset. Since this dataset is more difficult in terms of
predicting the relevant features, good predictions with a random recommender are
unlikely, and the relative performance difference between the random recommender
and the other algorithms, especially BRISMF, is larger.

When analyzing the datasets in details, we could notice that for each configuration in
the E-Agribusiness dataset there are in average a lower number of selected features

4.3. Evaluation 95

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

10% 30% 50% 70% 90%

F-
M

ea
su

re

Completeness of a Configuration

Avg. Similarity

BRISMF

CF

CF-Hoeffding

CF-shrinkage

CF-significance

Random

Figure 4.5: F-Measure achieved by seven different recommender methods on the
E-Agribusiness dataset.

(i.e., 73 features) than for each configuration in the ERP dataset (i.e., 207 features).
This can also explains the different tendency of the curves. While the F-Measure
curves on the ERP dataset show an increasing tendency (except for the random
recommender), in the E-Agribusiness dataset such a tendency cannot be observed. In
the E-Agribusiness dataset when a configuration becomes more complete, then there
are fewer and fewer features that are relevant, i.e. their relative proportion in the set
of all features drops. This results from the fact that features used by a user cannot be
recommended any more. Thus, the number of remaining relevant features decreases
as the configuration becomes more complete. Therefore, precision that influences
the F-measure also decreases. On this dataset this effect outweighs the learning
effect and, therefore, the curves are not monotonically increasing. Nevertheless, the
curve of the BRISMF algorithm increases initially and reaches optimum around 50%
of a configuration.

Considering the results of our experiments, we answer the research questions (RQ1–3)
as follows:

RQ1. Can recommender approaches support the SPL configuration process in realis-
tic configuration scenarios? Yes, we have shown that the implemented recommen-
dation algorithms find relevant features better than our comparison baseline and
by recommending them it can support SPL configuration. Consequently, the au-
tomation of our approach assumes that the user is capable of providing the system

96 4. Personalized Software Product Line Configurations

Completeness of Configuration
Measure Method 0.1 0.3 0.5 0.7 0.9

F-Measure

Avg. Similarity 0.0003 0.0005 0.0004 0.0001 0.0000
BRISMF 0.0089 0.0134 0.0148 0.0144 0.0110
CF 0.0094 0.0086 0.0079 0.0065 0.0047
CF-Hoeffding 0.0094 0.0086 0.0079 0.0065 0.0047
CF-shrinkage 0.0094 0.0086 0.0079 0.0065 0.0047
CF-significance 0.0094 0.0086 0.0079 0.0065 0.0047
Random 0.0053 0.0054 0.0047 0.0041 0.0030

Precision

Avg. Similarity 0.0018 0.0014 0.0009 0.0002 0.0000
BRISMF 0.0584 0.0529 0.0413 0.0259 0.0127
CF 0.0401 0.0286 0.0207 0.0115 0.0052
CF-Hoeffding 0.0401 0.0286 0.0207 0.0115 0.0052
CF-shrinkage 0.0401 0.0286 0.0207 0.0115 0.0052
CF-significance 0.0401 0.0286 0.0207 0.0115 0.0052
Random 0.0234 0.0177 0.0125 0.0075 0.0035

Recall

Avg. Similarity 0.0002 0.0004 0.0003 0.0001 0.0001
BRISMF 0.0049 0.0082 0.0108 0.0125 0.0119
CF 0.0062 0.0060 0.0061 0.0057 0.0055
CF-Hoeffding 0.0062 0.0060 0.0062 0.0057 0.0055
CF-shrinkage 0.0062 0.0060 0.0061 0.0057 0.0055
CF-significance 0.0062 0.0060 0.0061 0.0057 0.0055
Random 0.0035 0.0039 0.0037 0.0039 0.0038

Table 4.5: Performance of seven recommender methods w.r.t. F-Measure, precision
and recall on the E-Agribusiness dataset. The BRISMF algorithm performs the best
except for the initial part of a configuration.

with a partial configuration (i.e., it requires only one manual selection of a single
feature that are in accordance with stakeholders’ needs) and at least one previous
configuration to use as training data. However, we would like to highlight that
our approach is designed to work most effectively with a large historical dataset of
previous configurations.

RQ2. In which phase of product configuration can a recommender system make
good recommendations? Our results show that the CF-shrinkage, CF-significance
weighting, and BRISMF algorithms provide better recommendations than a random
recommender already at the initial stage of the configuration process (i.e., with
10% of selected features). The optimal percentage differs and depends both on the
application domain and on the recommendation algorithm.

RQ3. What is the impact of the implemented algorithms on the quality of recom-
mendations? The choice of the algorithm has a large impact on the quality of
recommendations. Due to the best performance in our experiments we recommend
the usage of one of the three algorithms: CF-shrinkage, CF-significance weighting,
and BRISMF. However, since there is no single best algorithm for all application
scenarios, we recommend the practitioners who apply our methods to test the afore-
mentioned three algorithms and to select the best one.

4.4. Threats to Validity 97

4.4 Threats to Validity

Even though the experiments presented in this chapter provide evidence that the
solution proposed is feasible, a key issue when performing these experiments is some
assumptions that may affect the validity of the results. Questions we need to answer
include: Was the study designed and performed in a sound and controlled manner?
To which domain can the results be generalized? To address these questions, we
discuss the experiment threads with respect to the four groups of common valid-
ity threats: external validity, internal validity, construct validity, and conclusion
validity [Wohlin et al., 2000].

External validity. External validity concerns the ability to generalize the results
to other environments, such as other domain contexts [Wohlin et al., 2000]. To
minimize threats to external validity, our experiments rely on the two largest avail-
able datasets of SPL configurations already cited in the literature. Although the
number of benchmark instances can also be considered a threat to external validity,
once there is no other large real-world dataset of SPL configurations available, we
could not proceed doing more experiments. Still, conducting experiments with other
datasets of configurations remains as an important next step, which is part of our
future work.

Internal validity. Threats to internal validity are influences that have not been
considered and can affect the performance of our approach [Wohlin et al., 2000].
Thus, to increase internal validity, we use either standard or straightforward tech-
niques to implement the recommender algorithms. We choose six well established
state-of-the-art recommender algorithms to apply in the SPL configuration context
and we show that three of them can efficiently support decision makers configur-
ing a product. However, we cannot guarantee that those three algorithms are the
best recommender algorithms to be applied in the SPL configuration context. Addi-
tional experiments using other personalized recommender algorithms are conducted
in Chapter 5 and Chapter 6.

Moreover, to increase the internal validity of our experiments’ results, we carried out
not one execution of a test configuration, but we executed all available configurations
from the dataset as test. Then, we reported the average of the F-Measure value of
the execution of each configuration as the result in order to reduce any variation of
performance and limit this validity threat.

Another validity threat may be related to the employed CNF representation in our
implementation for decision propagation and validity checking (see Section 4.2.1).
As a CNF is not unique, an equivalent CNF might lead to other results. This
includes transitive dependencies that are not explicitly stated in the CNF. Thus,
the (de)selection of features other than the recommended ones may also lead to a
valid configuration. However, in order to minimize this effect, the feature model is
always constructed with the same transformation algorithm.

Construct validity. The decision of which state-of-the-art configurator to extend
for use in our approach can be a threat to construct validity. To minimize this valid-
ity threat, we chose to extend FeatureIDE based on results from two user empirical

98 4. Personalized Software Product Line Configurations

studies [Constantino et al., 2016, Pereira et al., 2013] (see Chapter 7). However, any
other configurator could be used in combination with our approach.

Conclusion validity. Conclusion validity concerns the relation between the treat-
ments and the outcome of the experiment [Wohlin et al., 2000]. A potential conclu-
sion validity threat is the type of the used SPLs. To enhance conclusion validity,
we performed our experiments using two relatively large real-world SPLs of different
sizes, having different types of features, structures, and from different application
domains. However, we are aware that the results of our experiments cannot be
generalized for all kinds of feature models. Thus, we try to minimize this validity
threat by documenting the characteristics of the SPLs used5 (see Table 4.2). We
expect that especially large systems, such as the Linux Kernel with thousands of
features [Sincero et al., 2010], would benefit from our approach.

Moreover, the list of identified challenges from our business case studies (see Sec-
tion 4.1) are not the only missing aspects that are needed to support the configura-
tion process of large-scale industrial SPLs. Still, analyzing other real-would scenarios
and pointing out other challenges remains as an important next step, which is part
of our user empirical study described in Chapter 7.

We conclude that while several validity threats exist, our results are promising as we
have achieved high performance for three state-of-the-art recommender algorithms
applied to the SPL configuration scenario. We assume that most real-world problems
will be of similar scale. However, more analysis of which recommender algorithms
provide the best results is needed. Moreover, conducting user empirical experiments
is also an important part of our future work.

4.5 Related Work

A large body of literature has been dedicated to the SPL configuration process
[Benavides et al., 2013]. These studies deal with the information overload resulting
from interactive mechanisms to configure large and complex SPLs with multiple
competing and conflicting features. While some of these studies [Antkiewicz and
Czarnecki, 2004, Bagheri et al., 2010a,b, Bagheri and Ensan, 2014a, Bagheri et al.,
2012b, Benavides et al., 2007, Martinez et al., 2014, Mazo et al., 2014b, 2012a,
Mendonça et al., 2009, Spinczyk and Beuche, 2004, Tan et al., 2014a] aim to predict
the utility of each feature for the user, others [Bagheri et al., 2010b, 2012b, Galindo
et al., 2015a, Henard et al., 2015b, Hierons et al., 2016b, Lian and Zhang, 2015b,
Martinez et al., 2015b, Pascual et al., 2015b, Tan et al., 2015a] aim to predict
the utility of an entire set of features, which forms a valid product configuration.
Next, we classify the related works into two main groups: feature-based recommender
systems and product-based recommender systems.

Feature-Based Recommender System

On the feature recommender system scenario, Mazo et al. [2014b] present a set
of recommendation heuristics to prioritize choices and recommend a collection of

5The complete representation of both SPLs can be found at http://wwwiti.cs.uni-
magdeburg.de/∼jualves/PROFilE/

4.5. Related Work 99

candidate features to be configured. The purpose of their approach is to reduce the
number of configuration steps and optimize the computation time required by the
solver to propagate the configuration choices. However, the authors do not propose
any mechanism to guide the decision makers in choosing among the set of candidate
features. In this chapter, we propose a recommender approach that provides the
decision maker with additional information about features’ relevance.

Bagheri and Ensan [2014a] present dynamic decision models for guiding decision
makers through the product configuration process. In their approach, decision mak-
ers are iteratively asked to choose between two competing features. Then, based
on the decision maker’s choices, algorithms are used to automatically predict the
utility of the features to the decision maker and provide a ranking of recommended
features that are close to their preferences. However, this approach may introduce
inconsistencies in the ranking (e.g., if a user ranks feature a more important than
feature b, feature b more important than feature c, and feature c more important
than feature a). Moreover, if two or more features that must be (de)selected (due
feature model’s constraints) are of equal (or no) interest to the decision makers, no
support is provided to guide the configuration process. Therefore, when decision
makers are not sure about which decision must be taken, the approach proposed in
this chapter provides them with further information about the features’ relevance.
Thus, Bagheri and Ensan [2014a] approach benefits from our feature-based recom-
mendation approach.

In a similar scenario, Tan et al. [2014a] and Bagheri et al. [2010a] propose a feature
pair-wise comparison system to support decision makers in configuring a product.
In their approach, the decision maker compares a randomly selected pair of features
and identifies their relevance in terms of satisfying a set of non-functional require-
ments. Based on the decision maker’s choices, feature rankings are produced for each
decision maker’s non-functional requirement. These feature rankings are then used
as a recommender system to guide the product configuration process. However, as
one feature may contribute to many non-functional requirements, the amount and
complexity of options presented by the system may overwhelm the decision maker.
Moreover, for performing this approach efficiently, multiple decision makers should
be consulted. Consequently, a large amount of user input is needed. To address
these challenges, we propose in this chapter a recommender system mainly based on
data from previous users. Therefore, the proposed approach does not involve a large
amount of manual interactive input from users. Moreover, we performed several
experiments to prove that our approach can be efficiently automated.

Bagheri et al. [2010b, 2012b] propose a feature ranking approach based on soft and
hard constraints. Soft constraints represent the stakeholders’ preferences regarding
complex technical product properties. Hard constraints represent features that the
stakeholders are sure that fulfill their requirements. Thus, feature recommendations
are employed on the set of open features based on their degree of contribution to
the satisfaction of the stakeholders’ soft constraints. Then, the decision maker can
interactively select the features they desire until the feature model is fully config-
ured. However, when hard constraints are inconsistent (e.g., the stakeholders might
request for different features that cannot be satisfied simultaneously), decision mak-
ers need to prioritize them. In this context, Bagheri et al. provide a perspective

100 4. Personalized Software Product Line Configurations

view of non-functional properties related to each feature, and we propose a comple-
mentary approach that prioritizes features to decision makers based on the use of
state-of-the-art collaborative-based recommender algorithms.

There are also approaches that use visualization mechanisms to aid the users in
the configuration process. Among them, Martinez et al. [2014] present a visual-
ization paradigm, called FRoGs (Feature Relations Graphs). FRoGs shows the
impact, in terms of constraints, of the considered feature on all other features.
The purpose of their approach is to support decision makers in obtaining a bet-
ter understanding of feature constraints, and to serve as a recommendation system
during the product configuration process. However, FRoGs as well as several oth-
ers interactive configurators (e.g., FeatureIDE [Thüm et al., 2014], SPLOT [Men-
donça et al., 2009], FaMa [Benavides et al., 2007], VariaMos [Mazo et al., 2012a],
pure::variants [Spinczyk and Beuche, 2004], Feature Plug-in [Antkiewicz and Czar-
necki, 2004]) have not implemented further configuration support to guide the user
prioritizing the features. Consequently, the amount and complexity of information
presented may exceed the capability of a user to identify an appropriate config-
uration. In this context, our system additionally guides the product configuration
process by delivering capabilities to effectively communicate with the decision maker
and understand their needs and preferences.

Product-Based Recommender System

On the product recommender system scenario, Martinez et al. [2015b] present the
use of product line techniques in the computer-generated artwork domain. The
authors approach use tailored data mining interpolation techniques to predict con-
figuration likability based on people’s vote feedback for a dataset of configurations.
Their approach is developed in two phases. First, a dataset of configurations is
created using a genetic algorithm. Second, based on people’s vote feedback for the
dataset of configurations, tailored data mining interpolation techniques are used to
predict configuration likability. Thus, a ranking is created among all valid configura-
tions. This ranking serves as input to the artists to understand people’s perception.
However, people’s votes are not directly related to a feature due to a large number
of features and relationships presented in a configuration. Consequently, it cannot
be generalized to the SPL configuration domain.

Galindo et al. [2015a] propose an approach, named Invar, which provides the users
with a decision model with a set of questions and a defined set of possible an-
swers. Based on the users’ answers, a product is configured using decision propa-
gation strategies through web service mechanisms. However, some vague descrip-
tions may be introduced in the questionnaires and additional users’ preferences are
not allowed. Consequently, it may be hard for users to know which answer ful-
fills stakeholders’ requirements better. Contrary to this approach, our approach
focuses on the staged and gradual selection of features based on users’ preferences
through recommendations.

Considering a broader view on SPL configuration, in the optimization scenario, there
are many recent works in the literature that support the automatic selection of fea-
tures addressing each stakeholder’s non-functional requirements (see Chapter 3).

4.6. Summary 101

However, automatic approaches have focused on techniques to derive product con-
figurations in a single step, not allowing users to interactively change the obtained
product(s). Moreover, since those techniques may provide a set of feasible solutions,
users may not know which one would be the better choice. To guide users in choosing
among the set of solutions, these works can benefit from the proposed recommender
approach by computing the scores of the configurations’ relevance.

Although there are many interesting studies that assist users through the feature-
based and product-based configuration process, the process is still far from trivial
and is often limited to tool support. The available configurators show to the users
the set of all features and do not guide them in interactively configuring a product.
To address this issue, we propose a feature-based recommender system to support
users through the product configuration process by directing the order of selecting
features and predicting which of them are more useful. In contrast to the current
literature, our approach benefits from a simplified view of the configuration space by
dynamically predicting the importance of the features. It only requires the manual
selection of a single feature to offer recommendations that can be successfully used
as an additional support by other approaches.

4.6 Summary

This chapter provides a further contribution towards the adoption of personalized
recommender algorithms in the SPL configuration domain. Using this approach,
decision makers can go through a small set of relevant features to configure a product.
This interactive configuration process is supported by a state-of-the-art configurator
that is intended to assist the decision makers in dynamically selecting features by
considering the structural characteristics of feature models (Chapter 7). It ensures a
valid and complete product configuration while simultaneously interacting with the
decision maker, both to learn their preferences and provide new recommendations.

We evaluate the performance of six state-of-the-art recommender algorithms by us-
ing two real-world SPLs. Our experiment results show that our proposed approach
for helping users understand their feature preferences is able to positively impact
the quality of the product configuration process. Three of the six proposed recom-
mendation algorithms clearly and consistently outperform the random recommender
in finding relevant features. In summary, the proposed approach is very useful as:
(i) it provides feature predictions that are in accordance with the preferences of
users and constraints over the feature model, and (ii) it has good performance on
partial configurations with just 10% of selected features. Furthermore, our approach
can be automated. By selecting the features with higher predictions, our approach
automatically creates a minimum or a maximum product configuration that meets
all the feature model constraints (see Section 3.4.4). It requires only one manual
selection of a single feature to create an initial partial configuration. Thus, the pro-
posed approach can further facilitate the adoption of SPL practices and increase
their benefits, such as mass personalization. In the next chapter, we extend our
work to consider features’ non-functional properties as input contextual data and
consequently be able to capture currently relevant features for a user even though
no configuration with these features have been observed in the past, and no features
have been initially selected by a current user.

102 4. Personalized Software Product Line Configurations

5. Personalized Extended Software
Product Line Configurations

This chapter shares material with the VaMoS’18 paper “A Context-
Aware Recommender System for Extended Software Product Line Con-
figurations”[Pereira et al., 2018d]. We presented initial ideas at GPCE’16
[Pereira et al., 2016c] and COMLAN [Pereira et al., 2018b]. Furthermore,
we have given an overview on semi-automatic approaches for extended
software product line configurations at VaMoS’17 [Ochoa et al., 2017]
and JSS [Ochoa et al., 2018].

A key part of a Software Product Line (SPL) is a model that represents features
and their dependencies (i.e., SPL configuration rules). As shown in Chapter 2, this
model can be extended by adding Non-Functional Properties (NFPs) as feature at-
tributes resulting in Extended Feature Models (EFMs). Deriving products from an
EFM requires considering the configuration rules of the model and satisfying the
product functional and non-functional requirements. Although the configuration of
a valid product arising from EFMs may reduce the configuration space, selecting the
most appropriate set of features is still an overwhelming task due to many factors
including technical limitations and diversity of contexts. Consequently, configuring
large and complex SPLs by using configurators is often beyond the users’ capabili-
ties of identifying valid combinations of features that match their (non-functional)
requirements. Therefore, the configuration process may result in inappropriate or
inefficient configurations. To overcome these limitations, we introduced the adoption
of recommender systems in Chapter 4.

Our previous approach relies on the single use of binary data from previous config-
urations to generate personalized recommendations. Hence, this approach prevents
the recommendation of new facts or new perspectives that would be valuable to
the user. In this chapter, we extend this idea by considering product requirements
as additional contextual data and thereby improving the overall recommendation
quality. Similar to our previous work [Pereira et al., 2017], our current approach

104 5. Personalized Extended Software Product Line Configurations

is mainly built on the idea that feature priorities may change, based on the target
stakeholders and the context of the configuration.

Our solution works interactively on a stream of selections and deselections of features
and uses contextual modeling to incorporates NFPs. These data have an essential
advantage, that is, being adaptive to changes of user preferences and release of new
features. Consequently, our system is currently able to capture relevant features for
a user even though no configuration with these features have been observed in the
past. The aim of our system is to reduce the users’ configuration effort and enhance
their configuration experience.

To summarize, in this chapter, we provide the following three contributions:

1. We adopt a context-aware recommender system tailored for the EFM config-
uration scenario.

2. We target a challenge in the recommender system field, which is the recom-
mendation of unexpected events (e.g., new features).

3. We conduct extensive experiments on a large real-world industrial SPL to
evaluate the proposed approach.

For evaluating our approach, we formulate three research questions to be answered
by means of an experimental study:

• RQ1. Can a context-aware recommender system support the configuration process
of EFMs in realistic scenarios?

• RQ2. Which are the recommendation quality benefits of a context-aware approach
against a non-contextual approach?

• RQ3. What is the effect of using different combinations of contextual data?

To answer our research questions, we conducted numerous experiments with five
context-aware recommendation algorithms on a real-world dataset of SPL config-
urations1. To address RQ1, we compare the results from all algorithms with the
interactive configuration process and a randomized approach. To address RQ2,
we compare the context-aware recommendation approach proposed in this chapter
against the non-context-aware recommendation approach introduced in Chapter 4.
Finally, since our context-aware approach is intended to work in three main stages,
RQ3 follows analyzing the impact of each stage in the quality of recommendations.

The remainder of this chapter is structured as follows: Section 5.1 motivates our
work by presenting the open issues faced by our previous approach described in
Chapter 4. We introduce our approach in Section 5.2, and describe evaluation
design and results in Section 5.3 and Section 5.4, respectively. Section 5.5 discusses
the threats to the validity of our evaluation results. We give an overview on related
work in Section 5.6. Finally, we summarize this chapter in Section 5.7.

1The configuration dataset can be found in the Web supplementary material at http://wwwiti.
cs.uni-magdeburg.de/˜jualves/PROFilE/.

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/
http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

5.1. Open Issues from Previous Contribution 105

5.1 Open Issues from Previous Contribution

To support the SPL configuration task, recommender systems can provide sugges-
tions that effectively prune the large configuration space so that users are directed
towards features that best meet their needs and preferences. In the previous chap-
ter, we proposed the use of a personalized feature-based recommender that relies on
configurations from previous users to generate personalized recommendations for a
current user. In particular, we adapted Collaborative Filtering (CF) algorithms to
predict how much a user will like a particular feature. The CF-based system uses a
configuration matrix X~c×f as input, where ~c = {~c1, ...,~cn} ⊆ CC ∩VC represents the
set of n complete and valid previous configurations whose preferences are known for
the set of h features in f ∈ F (for further details we refer to Section 4.2.1). Our
previous approach aims at predicting the relevance of a set of undefined features f
⊆ F for a current user with a partial configuration ~pc ⊆ PC, based on likely relevant
features from X. Notice that ~pc is continuously augmented as the user interacts
with the system over time guiding him on how to get a complete configuration.

Though our previous approach has shown to be useful for supporting the SPL config-
uration process, it exhibits at least one limitation: It only examines binary variables,
indicating the selection of a feature in previous (user) configuration(s). Hence, it
is sensitive to the number of features configured for a user in the past (known as
sparsity problem in recommender systems [Adomavicius and Tuzhilin, 2011]). This
problem is addressed in this chapter by combining multiple techniques within the
recommender system [Burke, 2002].

5.2 Hybrid Context-Aware Recommender

To overcome the sparsity problem faced by the previous approach and the infor-
mation overload generated by state-of-the-art SPL configurators, we propose a hy-
brid recommender system. Our system combines four recommendation techniques:
(i) context-aware, (ii) knowledge-based, (iii) CF-based, and (iv) rule-based. The
context-aware recommender attempts to suggest features based on inferences about
the user’s needs and preferences. It has contextual knowledge about product re-
quirements, e.g. the financial context of a user. In addition, the knowledge-based
recommender builds a complete utility function from historical data. The utility
function infers many different factors that contribute to the value of a configuration
by weighting the significance of each feature for each user, such as the popularity of
new features by computing the similarity with other features and analyzing historical
data, rather than just selected features. Then, the CF-based recommender recog-
nizes similarities between users on the basis of previous configurations and generates
recommendations. Finally, the rule-based recommender recommends only features
that satisfy the configurations rules from an EFM.

To summarize, we use knowledge data from features, users, and configurations to
assign weights to the matrix X based on contextual data from product requirements.
Next, we use this as input to a CF-based recommender that will recommend features
that satisfy the configurations rules from an EFM and better meet the product
requirements. Hence, contextual-aware and knowledge-based systems don’t suffer

106 5. Personalized Extended Software Product Line Configurations

C
o

n
fig

u
re

(2
)

P
artial

C
o

n
fig

u
ratio

n

S
et o

f

U
n
d

efin
ed

F
eatu

res

L
E

G
E

N
D

S
p

ecify

(1
)

N
o

P
red

ictio
n

M
o

d
elin

g

P
o

st-F
ilterin

g

A
1

P
red

ict

A
d

ju
stm

en
ts

(5
)

Y
es

C
h
eck

C
o

m
p

leten
ess

(3
)

P
re-F

ilterin
g

C
o
m

p
u
te

P
red

ictio
n
s

(4
)

D
ata O

b
ject

F
lo

w
 d

irectio
n

A
ctiv

ity

S
tart

C
o
n
tex

tu
al

M
o
d
elin

g

E
n
d

IN
P

U
T

S

D
ataset o

f

C
o
n
fig

u
ratio

n
s

E
x
ten

d
ed

 S
P

L

R
eq

u
irem

en
ts’

S
p
ecificatio

n
s

A
2

A
3

A
4

Algorithms

P
ro

d
u

ct

R
eq

u
irem

en
ts

Algorithms

L
ist o

f

R
e-R

an
k

ed

F
eatu

res

L
ist o

f R
an

k
ed

F
eatu

res

A
5

F
igu

re
5.1:

A
n

overv
iew

of
ou

r
featu

re-b
ased

recom
m

en
d
er

ap
p
roach

(A
1:

U
ser-B

ased
C

ollab
orative

F
ilterin

g,
A

2:
F

eatu
re-B

ased
C

ollab
orative

F
ilterin

g,
A

3:
U

ser-B
ased

A
verage

S
im

ilarity,
A

4:
F

eatu
re-B

ased
A

verage
S
im

ilarity,
an

d
A

5:
M

atrix
F

actorization
).

5.2. Hybrid Context-Aware Recommender 107

from the sparsity problem because they do not (only) rely on binary data about
previous configurations.

In Figure 5.1, we present a general overview of the configuration process, which
consists of five main activities: (1) specify contextual data, (2) configure product, (3)
check product completness, (4) compute predictions, and (5) predict adjustments. It
uses the users’ explicit requirements, previous configurations, and implicit data of
features and users to predict the relevance of unselected features in a given config-
uration. Next, we briefly describe each of these activities:

(1) First, the user explicitly specifies contextual information in the system by collect-
ing the product requirements from stakeholders. As we focus on the later stages,
such as the (pre-)filtering and then the actual recommendation process, we assume
that the users are capable of understanding the goals of the target system and
translate those goals into product requirements. For example, laptops for gamers
differ from laptops targeting other types of customer profiles (i.e., low performance
laptops would not meet the needs of a gamer due to the high processing demand
of current games). We are aware that one of the key problems of product con-
figuration is to find out what actually is the stakeholders’ requirements [Rabiser
et al., 2012a]. This, however, goes beyond the scope of this chapter. Nevertheless,
after this interactive activity, the process is fully automated by our approach.

(2) Next, a pre-filtering stage builds a filter to include only historical data pertaining
to the user-specified criteria in which the recommendation is relevant. Then,
the user selects features of interest from a configuration view on the list of ranked
features from our recommender system. Each time the user configures a particular
feature, decision propagation strategies are automatically applied to validate the
configuration and the ranked list of relevant features is updated (see Chapter 7
for more details).

(3) Subsequently, we check the completeness of the configuration by verifying whether
there are some undefined features. In case we have a partial configuration, we
compute feature predictions. Thus, the system attempts to model and learn users’
preferences automatically by interactively obtaining preference feedback on their
partial configuration.

(4) To compute predictions, the prediction modeling stage uses knowledge-based in-
formation directly in the recommendation algorithm (Section 5.2.3) as an explicit
predictor of a user’s preference.

(5) Then, the post-filtering stage reorders the recommended features by weighting the
predictions with the probability of NFPs relevance in the user’s specific context.
The basic idea at this stage is to analyze the user’s preferences in the given context
to find specific feature configuration patterns (e.g., user prefers a cheaper product)
and then use these patterns to adjust the features’ predictions, resulting in more
useful recommendations.

Next, Section 5.2.1 formally defines the terms used to describe our recommender
system. Then, Section 5.2.2 explains how contextual data are specified and modeled

108 5. Personalized Extended Software Product Line Configurations

by our approach and Section 5.2.3 describes the implemented CF-based algorithms
that use contextual data to compute recommendations.

5.2.1 Formal Definitions

An SPL can be extended by adding NFPs as feature attributes, known as extended
SPL [Benavides et al., 2010]. An Extended SPL describes the dependencies and
constraints among functional features and NFPs through an EFM (see Section 2.1).
In this section, we formally define EFM and configurations for the formal description
of the proposed configuration process in Section 5.2.2 and Section 5.2.3.

Definition 5.1. An EFM EFM(F, P,R) is a tuple that consists of a set of n
features F = {f1, f2, ..., fn}, a set of m NFPs P = {p1, p2, ..., pm}, and a set of k
configuration rules R = {~r1, ~r2, ..., ~rk}.

A configuration rule ~ri represents a clause from the EFM’s propositional formula
in CNF, such that ~ri ∈ {−1, 0, 1}n and the component j of ~ri specifies whether
the feature j should be selected (rij = 1), deselected (rij = 0), or is not relevant
(rij = −1) within this constraint.

Definition 5.2. Given an EFM, a configuration ~c = (cf1 , cf2 , ..., cfn) represents
a selection of features such that cfi = 1, if feature fi is selected, cfi = 0 if it is
deselected, and cfi = −1 if its state is undefined.

Definition 5.3. A configuration ~c is complete iff ~c defines each feature (i.e., ∀i ∈
{1, .., n} : cfi 6= −1), otherwise it is partial. For a given EFM, we denote the set
of all its complete configurations with CC and the set of all its partial configurations
with PC.

Definition 5.4. A configuration ~c is valid iff it satisfies all constraints in R when
considering all undefined features in ~c as deselected (i.e., ∀~r ∈ R, ∃i ∈ {1, .., n} :
ri 6= −1), otherwise it is invalid. For a given EFM, we denote the set of all its
valid configurations with VC and the set of all its invalid configurations with IC.

Based on the above formalization, our approach aims to use contextual data from
features and users to restrict the configuration space and predict the relevance of
undefined features in a way that the users can make decisions more easily.

5.2.2 Contextual Modeling

In our approach, contextual data can be obtained: explicitly, implicitly, and by
inferring. Firstly, the user must specify which contextual information is relevant
given the product requirements. Then, we deal with modeling the contextual data
by incorporating them into the recommendation process. Next, we describe how to
obtain contextual data.

• Explicitly : a set of previous configurations, a current partial configuration, prod-
uct contraints, and stekeholders’ preferences.

• Implicitly : domain expert judgement to specify NFPs [Bagheri and Ensan, 2014a,
Machado et al., 2014a, Ochoa et al., 2015].

5.2. Hybrid Context-Aware Recommender 109

• Inferring : use of functional metrics to a static or runtime quantifiable measure-
ment of NFPs (see Section 3.4.1), which allows the detection of interactions re-
sulting from a valid set of features.

We assume that implicitly and inferring NFPs were previously specified by using
state-of-the-art techniques. For instance, Cruz et al. [2013] and Zanardini et al.
[2016] infer NFPs based on a rigorous static source code inspection, e.g., analysis of
coupling, number of code lines, and cyclomatic complexity. In this case, the success
of implicitly specifying or inferring NFPs depends very significantly on the quality
of such techniques, and it also varies considerably across different systems.

The context-aware recommendation process is performed into three main stages: pre-
filtering, prediction modeling, and post-filtering, as visualized in Figure 5.1. Next,
we describe how our approach incorporates each one of these stages.

Pre-Filtering. This stage takes as input a user specification of product constraints
as pre-filtering data. To this end, the user specifies product constraints based on
implicitly and inferring NFPs from features and configurations. The aim of this
stage is to filter out noisy or irrelevant data before they are used for computing
recommendations [Adomavicius and Tuzhilin, 2011]. An example of contextual pre-
filter data for the smart-home product line in Figure 2.1 is given by ensuring that
the cost and response time of the product do not exceed $2,550.00 and 300 ms,
respectively. This pre-filter data is then used to reduce the initial matrix X (Sec-
tion 4.2.1), containing data about previous configurations, to a matrix W using the
following equation:

X → WD[cost≤2,550,time≤300](User,Feature,Config) (5.1)

where [cost ≤ 2, 550, time ≤ 300] denotes two contextual pre-filters, and D[cost ≤
2, 550, time ≤ 300](User, Feature, Config) denotes the historical configuration data-
set obtained from D by keeping only the set of data where cost and time constraints
are satisfied.

By using this reduction-based approach, we may not have enough data for accurate
features’ prediction. This is the case because this stage builds a local prediction
model for a particular context, and this may limit the power of the predictions
due to few remaining data [Adomavicius and Tuzhilin, 2011]. To overcome such
limitation, we use the n-dimensional Euclidean metric [Amatriain and Pujol, 2015]
to search for similar configurations to the ones in the matrix W based on data
from configurations’ NFPs. Then, to have a significant amount of historical data,
i.e. filters with more than N configurations, we add a set of the highest similar
configurations to the matrix W , where N is some predetermined threshold (e.g.,
50% of the dataset was used in this study).

Prediction Modeling. After filtering the set of relevant configurations and fea-
tures, contextual data are used directly inside the recommendation-generating algo-
rithms as part of the features’ prediction estimation. Unlike the traditional recom-
mender systems that deal with ratings, our knowledge-based recommender relies on
the notion of weights as a way to measure the utility of a feature for a user. Thus,

110 5. Personalized Extended Software Product Line Configurations

we assign a utility weight u for all selected features in W . The general formula to
measure the utility u of feature j for configuration ~cw ∈ W (a row vector from W
with w ∈ {1, ..., n}) is given as:

u(w, j) =
Freq(cwj

)

Period(cwj
)

(5.2)

where Freq and Period are information inferred by the system. Freq represents how
often the customer of the configuration ~cw used feature j and Period the number
of days since the last usage of feature j by ~cw, which measures the popularity of
feature j. Following the idea that features have a short life cycle, this measurement is
important to prevent the recommendation of outdated features. Moreover, features’
popularity drift over time. Thus, the system is capable to capture such signals
and timely adapt its recommendations accordingly. However, in this scenario, the
recommendation of unexpected events, e.g. new features, are no longer possible. To
overcome this limitation, we calculate an additional utility weight s for all deselected
features in W , based on their similarity with other features’ NFPs.

Since the range of values among NFPs may vary widely (e.g., 1-60,000 ms for re-

sponse time and $50-1,550 for cost), we firstly use a feature scaling method (also
called unity-based normalization) to normalize the range of NFP values to a com-
mon scale in the range of [0, 1]. Then, we calculate the weighted arithmetic mean s
for deselected features in W :

s(w, j) =
h∑
k=1

ci,k ·
Sim(fj, fk)∑h
l=1 Sim(fj, fl)

· 1

h
(5.3)

where h represents the number of features, and Sim(fj, fk) measures the similarity
between a target feature j and another feature k based on their normalized NFP
values. In our experiments, we use the n-dimensional Euclidean metric [Amatriain
and Pujol, 2015] to calculate similarity. Once the weights w and s are estimated for
the matrix W , traditional recommendation algorithms are used to compute the list
of the N highest features’ predictions for an active user (see Section 5.2.3).

To summarize, the prediction modeling stage follows four main steps: (i) assign a
utility weight w for all selected features; (ii) normalize features’ NFPs; (iii) calculate
the similarity between features based on their normalized NFPs; and (iv) calculate
a weighted arithmetic mean s for deselected features based on their similarity weight
with the other features. This stage makes the recommender system to continuously
adapt to the set of new features and to discard outdated features. Therefore, even
without any historical knowledge about the features’ utility, recommendations can
be done by modeling and inferring a weight s. Thus, the use of contextual data in
the prediction modeling stage avoids the sparsity problem (known as the cold-start
problem in recommender systems) where users have a few set of selected features
[Adomavicius and Tuzhilin, 2011]).

Post-Filtering. In this stage, contextual information is used after computing rec-
ommendations to adjust the resulting set of predictions, i.e., when generating the
final ranked list of relevant features. We use a model-based post-filtering approach

5.2. Hybrid Context-Aware Recommender 111

[Adomavicius and Tuzhilin, 2011], in which we build a predictive model by weight-
ing the predicted features with an additional probability of relevance based on the
contextual data from users’ preferences. According to Asadi et al. [2014], users’
preferences can be categorized into six levels: high, medium, and low positive; and
low, medium, and high negative. In case the user classifies an NFP pi as a posi-
tive influence over the computed predictions, we weight the computed predictions
by considering the values 1 (high), 0.66 (medium), and 0.33 (low) as an additional
probability of relevance a that is directly proportional to the predicted value. In
case the user classifies an NFP pj as a negative influence, we consider the values
1 (high), 0.66 (medium), and 0.33 (low) as an additional probability of relevance b
that is inversely proportional to the predicted value. To summarize, the relevance
score Rel(~pc, f) computed in Section 5.2.3 is updated using the following equation:

Rel(~pc, f) =
Rel(~pc, f) ·

∑n
i=1 ai · pif∑m

j=1 bj · pjf
(5.4)

where n and m correspond to the number of NFPs with positive and negative influ-
ences, respectively. As an example, for the smart-home product line in Figure 2.1,
the user may mention that a high security house has a high positive effect over the
product requirements, while a high response time has a high negative effect. On
the optimization objective scenario, the user wish to minimize the system response

time, while maximizing the system security. Consequently, a feature with high
security and fast response time is more preferable and relevant than another feature
with slightly higher prediction but lower security and higher response time. The
specification of users’ preferences is especially important when there are competing
features’ predictions and a trade-off is needed (see Section 3.4.4).

5.2.3 Collaborative-Based Recommender

Since there is no single recommender algorithm that performs the best in all applica-
tions, in this section, we adapt five traditional CF-based recommender algorithms to
the extended SPL configuration scenario: (A1) User-Based CF, (A2) Feature-Based
CF, (A3) User-Based Average Similarity, (A4) Feature-Based Average Similarity,
and (A5) Matrix Factorization. Given the matrix W and a new partial configura-
tion −→pc ∈ PC that is currently being configured by a target user, these algorithms
are used to estimate unknown features’ preferences for −→pc. The first two algorithms
are neighborhood-based CF approaches, which require the definition of a distance
function between users or features, respectively [Desrosiers and Karypis, 2011]. We
make a comparative analysis of the two main types of neighborhood-based algo-
rithms: user-based and feature-based CF. In addition, we conduct experiments with
the user-based and feature-based average similarity (AS) algorithms to investigate
if restricting the neighbourhood size has an influence on the quality of recommen-
dations in our application. Finally, we compare these algorithms with the Matrix
Factorization (MF) algorithm introduced in Section 4.2.3. In the following, we will
discuss how these algorithms are used by our approach to predict the relevance of
specific user-feature combinations.

A1. User-Based CF. The main idea of a user-based CF algorithm is that sim-
ilar users have similar patterns of configurations, therefore similar features receive

112 5. Personalized Extended Software Product Line Configurations

similar weights. First, we search for similar users (i.e., nearest neighbours) to a
target user in the matrix W . A similar user is a previous user, who has weights
attributed to features (a row vector from W) that are similar to the ones from a
target user according to a similarity measure. To find the most similar users, we use
either the Pearson Correlation Coefficient (PCC) similarity measure or the cosine
similarity. For a detailed explanation of both measures we refer to Amatriain and
Pujol [2015]. A set of feature weights from a previous user qualifies as similar, if
Sim(−→pc,−→cw) > τ , where τ is a similarity threshold that is given as an input pa-
rameter (Section 5.3.2). If a similarity measure exceeds a given threshold τ , then
the corresponding configuration is considered a neighbour. All neighbours build a
neighbourhood N (−→pc, τ) = −→cw ∈ CC ∧ sim(−→pc,−→cw) > τ .

Second, once the neighborhood N (−→pc, τ) has been determined, the algorithm calcu-
lates the relevance score Rel(−→pc, f) of an undefined feature f for a target configura-
tion −→pc as the weighted average of her neighborhood weights for the feature f . The
overall prediction function is as follows:

Rel(−→pc, f) = p̄c+

∑
−→cw∈N (−→pc,τ) Sim(−→pc,−→cw) · (cwf

− c̄w)∑
−→cw∈N (−→pc,τ) |Sim(−→pc,−→cw)|

(5.5)

where −→pc represents the set of features which an active user has selected and c̄w =
(
∑

j∈−→pc cwj
)/(|−→pc|) is the mean weight (analogously for p̄c) for each configuration w

for the specified set of j selected features in −→pc. Note that the sum in the formula
iterates over the neighbours of −→pc, where each prediction is weighted with the simi-
larity weight of its owner to the target configuration. Since our approach works with
context-weights instead of ratings, we do not face the problem of one user rating
all items highly, while another user might rate all items negatively. Therefore, the
weights in the matrix W do not need to be mean-centered before determining the
predictions. Moreover, note that this formula differs from the one in Section 4.2.3.1
because here we work with non-binary ratings.

A2. Feature-Based CF. In feature-based CF, the neighbourhood is constructed
in terms of features (or columns in the weighting matrix W) rather than users. The
weighted average value of these (raw) utilities is reported as the predicted value.

In particular, we calculate the NFP weight similarity between a target feature f for
which the predictions are being computed and all the other features. Similarly, we
use PCC and cosine similarity measurements and denote the neighbourhood of a tar-

get feature f as N (
−→
f , τ). Then, the weighted average of the neighbours weightings

is used to compute the prediction of feature f for the target user −→pc. The relevance
score Rel(−→pc, f) is calculated as follows:

Rel(−→pc, f) =

∑
−→
fj∈N (

−→
f ,τ)

Sim(
−→
fj ,
−→
f) · pcfj∑

−→
fj∈N (

−→
f ,τ)
|Sim(

−→
fj ,
−→
f)|

(5.6)

The basic idea of this algorithm is to leverage the user’s own weights on similar
features when making the prediction (i.e., similar features are of similar relevance
for the same user). For example, in the configuration scenario, the feature peer group
will typically be features of a similar popularity. Therefore, the weight history of
the same user on such features is a reliable predictor of the interests of that user.

5.3. Experiment Design 113

A3. User-Based AS. This algorithm uses the same principle as CF, but it
does not use the notion of a neighbourhood. Consequently, all weights attributed
to features in the matrix W are considered for computing the relevance score of a
feature for a target user. Accordingly, Equation 5.5 is changed to:

Rel(−→pc, f) = p̄c+

∑
−→cw∈W Sim(−→pc,−→cw) · (ci,f − c̄w)∑

−→cw∈W |Sim(−→pc,−→cw)|
(5.7)

Note that the sum iterates over all the users in W . This means that the relevance
score of feature f is an average similarity of all other users’ weights attributed to
feature f .

A4. Feature-Based AS. Similar to the user-based AS recommender, Equa-
tion 5.6 is changed to:

Rel(−→pc, f) =

∑
−→
fj∈W

Sim(
−→
fj ,
−→
f) · pcfj∑

−→
fj∈W

|Sim(
−→
fj ,
−→
f)|

(5.8)

Here the sum iterates over all features in W . This means that the relevance score of
feature f is an average similarity over all other features’ weights attributed to the
same target user −→pc.

A5. MF Recommender. This algorithm uses the same principle and formulas
described in Section 4.2.3.6 to compute the relevance score Rel(−→pcf). However,
here instead of using the binary matrix X as input, we use W (see definition in
Section 5.2.2 - Pre-Filtering stage).

In the last step, the relevance scores Rel(−→pc, f) are returned to the post-filtering
stage. In this stage, to provide an optimized guidance for the user, features are
ranked with respect to user’s preferences (see Section 5.2.2). Note that we did
not use three of the recommender algorithms used in Chapter 4 (i.e., CF with
Significance Weighting, CF with Shrinkage, and CF with Hoeffding Bound). These
algorithms address the problem of not reliable similarity by considering the number
of co-selected features between configurations (see Section 4.2.3). However, as we
always work with a weighted dense matrix W , we do not face this problem here.

5.3 Experiment Design

This section describes the experiment design to evaluate our hybrid context-aware
approach introduced in Section 5.2.

5.3.1 Target Software Product Line and Dataset

We evaluate the effectiveness of our configuration approach by applying it to a real-
world dataset of 2,000 configurations and 203 features from our business partner in
the ERP domain. It delivers an application scenario where customers, features, and
configurations are described as relations having the following attributes:

114 5. Personalized Extended Software Product Line Configurations

• Customer: receives the feature recommendations; defined as Customer(CustomerID,
Name, Market Domain, Location, Type).

• Feature: set of all features that can be recommended; defined as Feature(FeatureID,
Cost, Profit, Provider, Category).

• Configuration: set of selected features for a previous customer; defined as Config-
uration(CustomerID, FeatureID, Frequency of Usage, Date Last Usage).

Moreover, the contextual information consists of the following specifications:

• Product constraints: market domain, location, and type.

• Stakeholders’ preferences: minimize the system’s cost for the customer, while
maximizing the system profit for the company.

To evaluate our algorithms, on this dataset, we performed an offline evaluation that
encompasses three main steps: (i) parameter optimization, (ii) splitting into training
and test datasets, and (iii) evaluation metrics. In the next sections, we discuss each
one of these steps. These steps are similar to the ones in Section 4.3.2.

5.3.2 Parameter Optimization

The implemented algorithms require the specification of a similarity measure and
a threshold value τ to define which users are considered neighbours. The matrix
factorization (BRISMF) algorithm also have three parameters to set: the number
of latent dimensions k, the learning rate η, and the regularization λ. To find the
optimal parameters to make the algorithms fit an unknown dataset, we perform an
initial optimization step. This step is essential as it may influence the quality of the
recommendations considerably. For example, since we are considering using either
PCC or cosine similarity as the similarity measure of four algorithms to predict
features’ relevance, we must compare the performances of these two methods to
determine which of them produce the best predictive model. Therefore, we hold out
a random sample of 50% of all configurations from our original dataset and run a
genetic algorithm. The genetic algorithm was used to optimize the F-Measure of
the five used recommendation algorithms (Section 5.3.4). Every parameter in this
phase was validated using a 10-fold cross validation. The optimal similarity measure
for CF and AS algorithms are cosine similarity and the approximately optimal
threshold values τ are 0.7576 and 0.5661 for both user-based CF and feature-based
CF algorithms, respectively. Moreover, for the BRISMF algorithm, the values for
the parameters k, η, and λ are 65, 0.086 and 0.81, respectively.

The optimal parameter settings from this algorithm are shown in Table 5.1. In
the column algorithm, we show our recommendation algorithms. The parameter
column shows which parameters the corresponding algorithm requires. The last
column shows the optimal values of the corresponding parameters. Next, these
parameter settings are used in our main evaluation and applied to the remaining
50% of configurations.

5.3. Experiment Design 115

Algorithm Parameter ERP System

User-based CF
τ 0.7576
Sim. Measure Cosine Sim.

Feature-based CF
τ 0.5661
Sim. Measure Cosine Sim.

User-based Avg. Sim. Sim. Measure Cosine Sim.
Feature-based Avg. Sim. Sim. Measure Cosine Sim.

Matrix Factorization
k 65
η 0.086
λ 0.81

Table 5.1: Optimal parameter values.

5.3.3 Splitting into Training and Test Datasets

In this main evaluation phase, we use the leave-one-out evaluation protocol. Ac-
cording to this protocol, one configuration is used for testing and the remaining
ones are given to the algorithm as training data (i.e., all other configurations). For-
mally, the specified entries of the configuration matrix −→pc /∈ X are referred to as
the training data, whereas the partial configuration −→pc ∈ PC is referred to as the
test data. It simulates the behavior of an active user configuring a single target
product in a configuration system, where the remaining configurations are available
to the system to assist him in finding the features matching their individual prefer-
ences and expectations. However, to further simulate the interactive configuration
process by an active user, the set of features is randomly partitioned into 10 equal
sized sub-sets. Then, we increasingly give a sub-set of (de)selected features from a
test configuration to the recommender system as training data and the remaining
ones are hidden from the algorithm and used as testing, e.g., 10% of a complete
configuration is used as training and 90% as test data. To perform well, the system
has to recommend the features that were hidden from the algorithm.

To ensure reliability, the cross-validation process is repeated 1,000 times (i.e., where
1,000 represents the remaining 50% of the configurations from our original dataset)
for each stage of the configuration process (e.g., 10%, 20%,...,90%) and for each of
the six methods with each configuration used exactly once as the testing data. This
give us a total of 54,000 experiments. Consequently, to produce a single estimation,
the final quality measure of a recommendation method is then the average quality
over all configurations.

5.3.4 Evaluation Metrics

Once the recommender system returned a ranked list of relevant features, we per-
form a quality measurement of the recommendations. Firstly, we compare the real
set of truly relevant features Rel known from the test configuration with the set of
recommended ones Rec using precision and recall as quality measure. Since we ap-
proach recommendation as a ranking task, we are mainly interested in relatively few
most relevant features. Thus, precision and recall are computed based on the top-
10 ranked features (i.e., w = 10) which is common in recommender systems [Shani

116 5. Personalized Extended Software Product Line Configurations

and Gunawardana, 2011]. While precision measures the proportion of recommended
features that were truly selected, recall measures the proportion of all truly selected
features that appear in the top-w ranked features. They are calculated as follows:
Precision = |Rec∩Rel|

w
and Recall = |Rec∩Rel|

|Rel| . Consequently, the optimal value for
both measures is 1.0, indicating that all truly selected features have been correctly
recommended, without any deselected features among the recommendation. Since
our goal is to maximize both, precision and recall, in our evaluation we use a measure
that combines both, i.e., the F-Measure:

F -Measure =
2 · Precision ·Recall
Precision+Recall

(5.9)

The F-Measure is high, when both precision and recall are high. Thus, the quality
of a recommendation is good, if the top-w predicted features overlaps with the set
of truly selected features from the test configuration.

5.4 Analysis of Results and Discussion

In this section, we investigate how efficient and effective the proposed recommender
system is in supporting the SPL configuration process by answering the research
questions RQ1–3 introduced in the beginning of this chapter.

5.4.1 Approach Effectiveness

We evaluate the effectiveness of the algorithms by comparing them with a random
baseline method that simulates the performance of an uninformed user without any
support from a recommender system. However, as in most real-world applications
no human is fully uninformed, to additionally indicate how useful our recommenda-
tion algorithms are, we reported also the results from an interactive configuration
process from two domain experts (Exp1 and Exp2). In this context, for each test-
ing configuration, we informed the expert the target user context (i.e., the product
requirements) as well as the training set of pre-selected features. Then, for each
percentage of features that were given to them as training data, they choose the
features that most suited the specified requirements.

Figure 5.2 presents the F-Measure achieved by the eight methods: a random baseline
method, five recommendation algorithms, and two domain experts. On the horizontal
axis of the figure, we present the completeness of a configuration, i.e. the percentage
of features that were given to the method as training data, where only the remaining
part of the configuration needed to be predicted.

We observe that all methods presented good results outperforming the baseline ran-
dom recommender. For all algorithms, we observe an increase of performance as the
configuration becomes more complete. This is because the algorithms receive more
data for training or rasoning. The user-based CF (A1) and BRISMF (A5) algorithms
achieved the best performance over all the other algorithms at nearly all stages of
the configuration process, except for the initial part of a configuration, when few
information about the current configuration is available. Overall, CF algorithms
yielded a better performance than AS algorithms (i.e., A1 outperformed A3, and

5.4. Analysis of Results and Discussion 117

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

0,32

0,36

0,4

0,44

0,48

10% 30% 50% 70% 90%

F-
M

ea
su

re

Completeness of a Configuration

A1

A2

A3

A4

A5

Exp1

Exp2

Random

Figure 5.2: F-Measure achieved by eight different recommender methods (A1: User-
Based CF, A2: Feature-Based CF, A3: User-Based AS, A4: Feature-Based AS, A5:
MF, Exp1 and Exp2: domain experts). The horizontal axis shows how much of the
current configuration has been completed. The performance is calculated on the
remaining part of a configuration.

A2 outperformed A4). One potencial reason is that AS algorithms do not rely on
any neighborhood information. In average the CF algorithms provided even better
results than the interactive configuration performed by domain experts. Moreover,
domain experts are engaged in a time-consuming and tedious task.

5.4.2 Context-Aware Approach Benefits

In this section, we estimate how effective our context-aware approach is in compar-
ison with the previous non-contextual version of our approach (see Chapter 4). It
is worth mentioning that we do not use the datasets from Section 4.3.1, since these
datasets do not work with NFPs. Therefore, we run the non-contextual version of
the five implemented algorithms in our target dataset. In Figure 5.3, we report the
F-Measure results achieved by both approaches for each of the five algorithms.

The contextual recommendation algorithms (txt) significantly outperform the non-
contextual algorithms (n-txt) in terms of predictive accuracy at all the stages of the
configuration process. The main reason is the benefit of having additional relevant
data for calculating unknown features’ relevance, instead of only having binary infor-
mation. The non-contextual version of the algorithms are limited by the users that

118 5. Personalized Extended Software Product Line Configurations

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

0,32

0,36

0,4

0,44

0,48

10% 30% 50% 70% 90%

F-
M

ea
su

re

Completeness of a Configuration

A1-txt

A1-n-txt

A2-tex

A2-n-txt

A3-txt

A3n-txt

A4-txt

A4-n-txt

A5-txt

A5-n-txt

Figure 5.3: F-Measure achieved by five contextual (txt) and non-contextual (n-txt)
CF-based recommenders (A1: User-Based CF, A2: Feature-Based CF, A3: User-
Based AS, A4: Feature-Based AS, and A5: MF).

are explicitly associated with the features that they recommend and therefore has
difficulty when the space of selected features is sparse (i.e., in average few users have
selected the same features). Sparsity is a significant problem in the SPL configura-
tion domain, since there are many features available and, unless the configuration
dataset is very large, the chances that another user will share a large number of
selected features is small. Consequently, pure CF-based recommenders work best on
datasets where the density of user configuration is relatively high across a small and
static number of features. However, which of these two trends dominates depends
on the application domain and available data. Therefore, we extended the state-
of-the-art FeatureIDE configurator with our recommender approach by using the
contextual data only for those contextual situations where this method outperforms
the standard non-contextual version of the same algorithm (see Chapter 7). In our
implementation, if the context-based system cannot make a recommendation with
sufficient confidence, then just a collaborative recommendation is attempted. Thus,
the approach proposed in this chapter is expected to perform equally well or better
than the approach presented in Chapter 4 in practice. Next, to better understand
the contextual behavior of our approach, we perform a preliminary experimental
study to evaluate the contextual stages specified in Section 5.2.2.

5.4. Analysis of Results and Discussion 119

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

0,32

0,36

0,4

0,44

0,48

10% 30% 50% 70% 90%

F-
M

ea
su

re

Completeness of a Configuration

A1-Pre+Mod+Post

A1-Pre+Mod

A1-Mod

A1-Mod+Post

a) A1: User-Based CF Recommender.

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

0,32

0,36

0,4

0,44

0,48

10% 30% 50% 70% 90%

F-
M

ea
su

re

Completeness of a Configuration

A5-Pre+Mod+Post

A5-Pre+Mod

A5-Mod

A5-Mod+Post

b) A5: BRISMF Recommender.

Figure 5.4: F-Measure achieved by the user-based CF (A1) and BRISMF (A5)
contextual recommender algorithms for different combinations of contextual data.

5.4.3 Different Combinations of Contextual Data

In Section 5.2.2, we described the main contextual stages under which our approach
is developed (see Figure 5.1). Since not all stages might be useful for recommenda-
tion purposes, in this section we empirically evaluate the effect that each stage has
in the quality of the recommendations.

Figure 5.4 shows the results for the most effective algorithms (i.e., BRISMF and
user-based CF in Section 5.4.1). We observed that all proposed algorithms achieved
the best performance when making use of all available contextual data. For ex-
ample, for the user-based CF algorithm the performance differences between the
A1-Pre+Mod+Post and A1-Pre+Mod, A1-Mod and A1-Mod+Post methods range
38%, 3%, and 41% in average respectively for the F-measure across the same dataset.
It is evident that explicitly modeling a large amount of data significantly boosts the
recommendation performance under the same algorithm. Furthermore, note that
although the A1-Mod recommender is outperformed by the A1-Pre+Mod+Post rec-
ommender, the results from both methods are quite similar. Therefore, this implies
that inappropriate contextual modeling in the pre-filtering and post-filtering stages
can even hurt the performance.

We would also like to point out that accurate configuration predictions unques-
tionably depends on the degree of which the recommender system incorporates the
relevant contextual information. There are several approaches, e.g. from machine
learning, data mining, and statistics, to determine the relevance of a given type of
contextual information. These approaches aim at screening all the NFPs and fil-
tering out those that do not affect a particular recommendation application. This,
however, goes beyond the scope of this chapter and remains as an important next
step, which is part of our future work.

120 5. Personalized Extended Software Product Line Configurations

5.5 Threats to Validity

Next, we discuss the four groups of common validity threats: internal validity, ex-
ternal validity, construct validity, and conclusion validity [Wohlin et al., 2000].

Contextual settings may affect the performance of an algorithm, which might form
a threat to internal validity. In our context, such a threat might be due to the
fact that we used contextual requirements settings from the company for all the
algorithms. They are conform to the company needs and have been proven to give
good results. However, the accuracy of the recommender algorithm may be different
depending on whether contextual information (i.e., product requirements) is used in
the pre-filtering, post-filtering, or modeling stage. For example, in other scenarios,
cost information (cheap vs. expensive) may be most useful to pre-filter relevant
data, but location information (i.e., state) may be the most appropriate to use as
a post-filter. However, determining the benefit of different contextual information
in the SPL configuration scenario with respect to different stages of context-aware
recommender systems constitutes an interesting and promising direction.

External validity threats are related to the generalization of the results of the experi-
ments [Wohlin et al., 2000]. In our evaluation, we ran more than 54,000 experiments
using a large-scale case study which has 203 features and 2,000 configurations. To
the best of our knowledge, this is the largest real-world dataset of configurations
with NFPs already cited in the SPL literature. However, the results from our exper-
iments may not be generalized to other SPLs. Therefore, future experiments with
additional case studies are required to further generalize the results.

To deal with construct validity threats, we used the same measure, i.e. F-Measure
to compare the accuracy of the algorithms. There are other evaluation metrics
that are typical of recommender systems, such as RMSE of MAE. However, since
our non-contextual approach uses binary data (Chapter 4), these metrics are not
applicable. Therefore, for a fair comparison, in this chapter we also use F-Measure
as an evaluation metric. Moreover, we ran all the experiments on the same machines
with the same configuration (i.e., 2 sockets Intel Xeon E5620 @2.40GHz with 4 cores
per socket and 20GB of RAM) for all algorithms.

Conclusion validity threats are concerned with factors that can influence the results
of the experiments [Wohlin et al., 2000]. Since SPLs present a large variability space,
the current partial configuration may vary from user to user. To reduce the bias
that the results were obtained by a particular current set of optimal (de)selected
features, we repeated the experiments 1,000 times for each testing configuration in
our dataset.

5.6 Related Work

Recommender systems reduce the complexity of comprehension tasks and help to
get insights for making decisions [Ricci et al., 2011]. Recommendation techniques
have been studied by the SPL research community to support several tasks beyond
configuration (e.g., feature location Marcén et al. [2017], creating variability mod-
els [Dumitru et al., 2011, Hamza and Walker, 2015]). In this chapter, we focus

5.7. Summary 121

on recommendations to guide the configuration process of extended SPLs and we
acknowledge several works in this field.

Several approaches address the configuration in extended SPLs by using dynamic
decision models [Bagheri and Ensan, 2014a, Galindo et al., 2015a, La Rosa et al.,
2009, Tan et al., 2014a, Zhang et al., 2014]. Through decision models, the user can
interactively construct a complete preference function by weighing the significance of
each relevant feature in terms of satisfying their non-functional requirements. How-
ever, as real-world EFMs tend to be inherently large and complex, this often creates
a significant burden of interaction, i.e. the user has to assess several types of vari-
ability relations among features and NFPs. Furthermore, as product requirements
may be conflicting and one feature may contribute to many requirements, users may
still be unsure about their preferences.

To overcome the limitations of the above approaches, several authors have proposed
optimization techniques to automatically support the configuration process (see Sec-
tion 3.4.4). However, these techniques usually return a set of optimal configurations
and none of them guides the user in selecting the most appropriate one. Hence,
these techniques can be complementary to our approach that aims at guiding the
user in the selection of a single configuration.

In addition to recommendation techniques to support the configuration task, there
are numerous academic and industrial tools for reasoning about SPLs (e.g., Fea-
tureIDE [Thüm et al., 2014], SPLOT [Mendonça et al., 2009], VariaMos [Mazo
et al., 2012a], pure::variants [Spinczyk and Beuche, 2004]). Whereas these tools
focus on satisfying the SPL constraints, our approach builds a prediction model
to identify features’ relevance based on product requirements through analysis of
features’ NFPs from extended SPLs.

5.7 Summary

In this chapter, we propose a hybrid recommender approach for predicting feature
selections in an extended SPL configuration scenario, i.e. taking non-functional
properties (NFPs) of features into consideration. Our approach adopts traditional
CF recommendation algorithms to estimate features’ preferences based on users’
contextual information. The proposed approach is not only able to support new
configurations, but also provides configuration upgrades for previous derived con-
figurations. To assess its effectiveness, we present an empirical evaluation based
on a large real-world dataset of configurations derived from industrial experience
in the Enterprise Resource Planning (ERP) domain. Our results indicate signif-
icant improvements in the predictive accuracy of the proposed context-aware rec-
ommendation approach over a non-contextual recommendation approach presented
in Chapter 4. In the next chapter, we evaluate our approach under the use of a
multi-dimensional tensor factorization recommender algorithm.

122 5. Personalized Extended Software Product Line Configurations

6. Personalized Self-Configuration
of Software Product Lines

This chapter shares material with the SPLC’18 paper“N-dimensional
Tensor Factorization for Self-Configuration of Software Product Lines at
Runtime” [Pereira et al., 2018c]. We presented initial ideas at ICSE’17
Student Research Competition [Pereira, 2017].

Dynamic Software Product Lines (SPLs) provide configuration options to adjust
a software system at runtime to deal with changes in the users’ context [Hinchey
et al., 2012]. To enable such a dynamic configuration, several semi-automatic and
automatic approaches have been proposed in previous work [Guedes et al., 2015].
Nevertheless, the applicability of these approaches is still limited. In particular, for
SPLs with a huge exponential configuration space, they have shown to be infeasible.

On the one hand, semi-automatic approaches require many tasks to be carried out
manually by decision makers. Consequently, decision makers must know a lot of de-
tailed, technical information about the features and the context. However, decision
makers usually lack such knowledge, which often leads them to invalid configura-
tions and an increase in configuration time. On the other hand, although automatic
approaches do not require any user intervention, these approaches may generate
a set of resulting suboptimal configurations. Thus, as a complementary solution,
we propose a context-aware recommendation technique to automatically prioritize
features and self-configure SPLs at runtime.

Recommendation techniques have become essential to efficiently filter the huge
amount of SPL variants and support the configuration of personalized products
[Pereira et al., 2016c, 2018b,d]. In recommender systems, user’s preferences may be
inferred from consumption patterns from other users (a technique known as Col-
laborative Filtering (CF)). In previous chapter, we studied five different CF rec-
ommendation algorithms to support the context-aware SPL configuration process.
However, these algorithms do not provide a straightforward way of integrating con-
text data (i.e., features’ non-functional properties (NFPs) [Benavides et al., 2010])

124 6. Personalized Self-Configuration of Software Product Lines

into the model [Koren et al., 2009]. Instead, they use a reduction-based approach to
reduce the problem of N-dimensional User×Feature×Contexts recommendations
to the traditional two-dimensional User × Feature recommendation. For example,
to recommend a laptop to a gamer, this approach uses only the data from previ-
ous users which has high processing laptops. Although reduction approaches lead
to more relevant data for calculating unknown features interest, they also lead to
fewer data used in this calculation based only on the configurations with the same
or similar context. Thus, to improve the quality of the recommendations, we in-
corporate a multidimensional recommendation technique (i.e., Tensor Factorization
(TF)) so that it allows the specification of contextual data in the form of a tensor
[Karatzoglou et al., 2010]. Our aim is to take advantage of the same principles
behind MF in Chapter 4 to deal with N-dimensional contextual information. There-
fore, the TF approach proposed here has three main advantages compared to our
previous reduction-based approach. First, there is no need for pre-filtering or post-
filtering of the data based on context since TF uses all the available data to model
the users and features. Second, it provides a computational simplicity. Instead of
relying on a sequence of techniques, TF relies on a single and less computationally
expensive model. Third, it provides capabilities to handle N-dimensional data. The
TF approach generalizes well to an arbitrary amount of contextual information. In
Section 6.4.1, we empirically study the tradeoff between a reduction-based approach
and a TF approach. In particular, we are interested in whether and how good a TF
approach can be to support the self-configuration process of SPLs at runtime.

To this end, we formulate the following three research questions that guide us in
evaluating our approach.

• RQ1. How effective does an N-dimensional TF recommender system support
the SPL self-configuration compared to others state-of-the-art contextual recom-
mender techniques?

• RQ2. How accurate is a context-aware TF recommender system compared to a
state-of-the-art non-contextual recommender?

• RQ3. How long does it take, on average, for a TF recommender system to self-
configure a complete valid product?

To answer these questions and prove the applicability of our approach, we present
an empirical study on two subject systems: a laptop and a library product lines1.
Both product lines take various contextual information into account, such as by
whom, when, and where the laptop and library are used. To address RQ1, we
demonstrate the effectiveness of our approach based on interactive recommenda-
tion updates against four context-aware reduction-based approaches introduced in
Chapter 5 and a random configuration of features as baseline. To address RQ2,
we compare the results from our proposed context-aware TF approach with the
non-contextual MF approach introduced in Chapter 4. Finally, since recommender

1The product lines and the configuration datasets can be found at http://wwwiti.cs.
uni-magdeburg.de/˜jualves/PROFilE/.

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/
http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

6.1. Open Issues in Self-Configuration of Dynamic Software Product Lines 125

systems are frequently intended to work on very large datasets, the performance of
the recommender is essential. Thus, for RQ3, we investigate how fast is our pro-
posed technique. To ensure a good user experience, the approach must be able to
handle changes in the environment ensuring a very short response time for delivering
self-configurations.

Overall, we make the following three contributions:

1. We adopt a tensor-based recommender system tailored for the extended SPL
configuration scenario in which we explicitly take the user’s context into account.

2. We target a challenge in the field of dynamic SPLs, which is the efficient
self-configuration by interactive recommendation updating.

3. We conduct extensive experiments on two medium-sized product lines to eval-
uate our proposed approach.

The remaining chapter is structured as follows. Section 6.1 motivates our work
by presenting the open issues in the SPL self-configuration literature. Section 6.2
presents our approach. Subsequently, Section 6.3 describes the design of the per-
formed experiments and Section 6.4 discusses the experimental results. In addition,
Section 6.5 further discusses threats to the validity of our results and Section 6.6
gives an overview on related work. Finally, Section 6.7 summarizes the chapter.

6.1 Open Issues in Self-Configuration of Dynamic

Software Product Lines

The automatic process of building personalized products from an SPL is known as
self-configuration. Dynamic SPLs are software systems in which self-configurations
occur at runtime (see Section 3.4.5). Previous works in the SPL literature have
proposed several static and dynamic self-configuration approaches. However, the
current self-configuration process of dynamic SPLs is still limited when dealing with
the variability of highly configurable systems. We identify the following open issues
in this field:

• In static self-configuration approaches, features are selected based only on product
requirements and human desires. Nowadays, this may not be enough due to
context changes that without reconfiguration would lead to context violations.

• Because a valid context type is not necessarily Boolean, the problem evolves from
SAT to a general constraint satisfaction problem (CSP). From the problem solving
perspective, checking the consistency of a configuration can also be non-trivial.
Therefore, due to the computational complexity of the task, improvements related
to scalability and performance are still needed to manage the complexity of larger
variability models.

126 6. Personalized Self-Configuration of Software Product Lines

• Given a set of product requirements and adaptation rules that explicitly define
under which circumstances a reconfiguration should take place, there may be
a set of resulting valid configurations instead of a single one. Therefore, those
configurations should be prioritized before the configuration process continues.
An example of this scenario is when a smart home application reaches the energy
limit, but the user is executing a critical task that requires energy consumption.
The low energy level context requires the heating to be shutdown, but for the
temperature, use of heating is a critical non-functional requirement and it requires
energy. Therefore, these two possible configurations are conflicting (the heating
must be either turned on or turned off, it cannot be in both states at the same
time) and one of them must be chosen before the adaptation process continue.
The manual prioritization of features may result in an overwhelming task. Thus,
developing an automatic and effective set of prioritization is a challenging task for
developers due to the complexity and dynamicity of the context. According to our
SLR in Chapter 3, studies do not use any strategy for dealing with configuration
selection conflicts in runtime environments, except by HyVarRec [Mauro et al.,
2016] that selects the configuration most similar to the last derived configuration.

• Some studies rely on many tasks to be carried out manually. For example, some
approches rely on the experience of an expert to describe adaptation rules. Conse-
quently, unexpected environmental changes (e.g., new features might be integrated
at runtime) may be unknown for the expert and not take into consideration during
the reconfiguration process.

Based on the identified limitations, the envisioned contribution of this chapter is
therefore to fill the gap in the literature by proposing a polynomial-time recom-
mendation approach for self-configuration of dynamic SPLs. Although in previous
chapters (Chapter 4 and Chapter 5), we show that Matrix Factorization (MF) can be
used successfully in many static environments, in dynamic environments additional
contextual variables come into play. As an example, consider the online social media
Facebook, where the contextual variables: privacy, security, performance, network,
and access load play an important role in defining a configuration. For instance,
Web applications can suffer from load fluctuations depending on the number of ac-
cess. An important challenge in this scenario is to avoid the impact on performance
by dynamically self-reconfiguring the system at runtime to meet the current user’s
context. Similar to state-of-the-art approaches, we aim at automatically adjusting
the software features based on external and internal system settings (i.e., implicit
information). External system settings are product resource constraints that limit
the environment context, such as network access. Internal system settings are pref-
erences options that allow users to customize their Facebook environment, such as
privacy options. The set of internal and external settings is known as product re-
quirements which are determined based on the users’ current context. Although the
product requirements and SPL constraints limit the configuration space, Facebook
has hundreds of features and relationships, leading to several different possible con-
text options. To efficiently overcome this challenge, our approach relies on explicit
information from other users to self-configure a product over contextual changes in
the environment. For instance, the system can rely on friends and apps to suggest
new Facebook features to current users. To this end, the two-dimensional matrix

6.2. Tensor-Based Recommender 127

0 0 0 0 0

1 1 1 1 1

0 1 0 0 ?

1 0 1 1 ?

1 -1 1 1 ?

-1 1 0 -1 ?

F
ea

tu
re

User

F
S

W

U

ACTIVE USER

Figure 6.1: A 3-dimensional example of a tensor factorization model derived from
the SPL in Figure 6.2. Selected features are encoded as 1 and deselected as 0. All
other entries (-1 and ?) are unknown features’ interests.

is turned into a multidimensional tensor and feature predictions are done by using
Tensor Factorization (TF), an N-dimensional extension of MF.

The use of TF can provide recommendations based on multiple dimensions that go
beyond the typical two dimensions (i.e., users and features) used in MF [Karatzoglou
et al., 2010]. The order of a tensor is the number of dimensions, i.e. the number of
relevant contextual information. In the example given in Figure 6.1, the usual two-
dimensional User × Feature matrix is converted into a three-order tensor User ×
Feature×Weather. The intuition behind using TF to support the self-configuration
of dynamic SPLs is that there should be some latent features that determine how to
configure a product at runtime. Hence, if we can discover the set of latent features
from a current configuration through the user-specified context, we should be able
to predict the configuration for a specific user (i.e., the characteristics associated
with the user, the feature, and the context should match among them). TF takes
advantage of most of the benefits of MF, such as fast prediction computations as
well as simple and efficient optimization techniques. For more information of this
algorithm, we refer to Section 6.2.2.

6.2 Tensor-Based Recommender

In this section, we explain the details of how we have adapted the 2-dimensional
MF for an N-dimensional TF. First, we introduce how context is specified and mod-
eled and how we relate context to features. Afterwards, we describe details of the
proposed TF approach and illustrate it by means of an example.

6.2.1 Modeling Features and Context

Our approach is based on the idea of making use of EFMs to integrate context
information as a specific kind of NFPs (similar to Saller et al. [2013] and Mauro
et al. [2016]). This way, we make the context information explicit and relate it to
features of the SPL. It makes possible to easily assess the context information and
reason about corresponding feature selections in the configuration.

128 6. Personalized Self-Configuration of Software Product Lines

Smart Home

heating air

HVAC

ventilation water-on

Weather
[sunny]

window

open close cleaning

automation

door

open close

illumination

on off

garden

pet-care

Temperature
[<15º C]

Time
[6pm, 10pm]

Optional

Alternative

Non-Exclusive

Alternative

Exclusive

Feature

Mandatory

LEGEND

Property

Requires

access-rights

Figure 6.2: A sample of a smart-home SPL adapted from Figure 2.1.

As an example, we introduce three different contexts in the feature model of Fig-
ure 6.2: Temperature, Weather, and Time. Each context is associated with a partic-
ular feature, for instance, weather is associated with the window feature, thus, may
influence whether the window is open or closed. Furthermore, each context may
encompass an abitrary number of numeric or categorical values, e.g., the weather
can be sunny or rainy.

For our approach, we consider each context as a separate dimension in our rec-
ommendation model (note that also features and the configuration itself constitute
separate dimensions), with each dimension encompassing a number of predefined
numeric or categorical values. Since this may lead to a high number of dimension,
as a preliminary step, we aim at minimizing our recommendation model by omit-
ting contexts that are not relevant (i.e., which have no influence on the feature
(de)selection).

To determine which properties are relevant, we apply the binary operations of union
and intersection over the set of NFP values. For example, consider a simple case of
a single-attribute dimension Weather which has only two possible qualitative values
Sunny and Rainy. To determine the relevance of context Weather, we first split the
dataset of configurations into two sets, one containing the set of Sunny configura-
tions and another containing the set of Rainy configurations. Then, for each set
we perform an union operation over all selected features across all configurations
(i.e., the transitive closure of all features selected in at least one of the configu-
rations) followed by an intersection operation between the sets. Consequently, if
the distributions of selected features for sunny and rainy days are the same (i.e.,
Config(Sunny) ∩ Config(Rainy) = 1), then the dimension Weather would not
matter for recommendation purposes. Hence, the weather context does not affect
the configured product, and thus, the Weather dimension can be omitted from the
TF model.

Next, we explain details of our TF model and how we make use of it to automate
the configuration process.

6.2.2 Using TF for Self-Configuration of SPLs

Our basic idea for applying an N-dimensional TF approach for context-aware self-
configuration is to model the relevant product context by taking the interactions

6.2. Tensor-Based Recommender 129

between users, features, and context into account. The proposed tensor-based tech-
nique is actually a context optimization method based on the set of previous config-
urations. For the sake of simplicity, we describe our approach for a single contextual
variable C, and therefore the tensor X, containing the previous configurations, is
a 3-dimensional tensor2 X ∈ xn×m×c, where n is the number of configurations, m
the number of features, and c the number of numeric or categorical values from a
relevant contextual variable.

A configuration is given as X ∈ {0, 1,−1}n×m×c, where the values 0 and 1 indicate
that a user deselected and selected a feature, respectively. In addition, -1 indicates
a lack of knowledge from the user regarding the feature relevance (i.e., the feature
is undefined). The list of recommended features can then be learned from the set
of previous configurations and contexts observed in X. To this end, we apply High
Order Singular Value Decomposition (HOSVD) as shown in Figure 6.1, to factorize
the 3-dimensional tensor into three matrices User: U ∈ Rn×dU , Feature: F ∈
Rm×dF , and Context: C ∈ Rc×dC , and one central core tensor S ∈ RdU×dF×dC . This
factorization allows to predict which features are most likely to be selected for a
given context. In particular, the prediction function for a single user i, feature j,
and context k is:

Yi,j,k = S ×U Ui ×F Fj ×C Ck (6.1)

such that Y approximates X, i.e. minimizes a loss function L(Y,X) between the
real and the predicted values. Additionally, we use a tensor-matrix multiplication
operator denoted by ×U where the index U shows the direction to multiply the
matrix, e.g. T = X ×U U is Ti,j,k =

∑n
i=1 Xi,j,kUi,j.

However, minimizing the loss function for models with a large number of parameters
will lead to overfitting [Bishop, 2007]. A common way to prevent overfitting is
to regularize the optimization criterion. Therefore, we add to the loss function a
regularization term Ω(Y). The objective function for the minimization problem is:

R[U, F,C, S] = min(L(Y,X) + Ω(Y)) (6.2)

Loss Function. We define the loss function as:

L(Y,X) =
1

||S||1

∑
i,j,k

Di,j,k ∗ l(Yi,j,k, Xi,j,k) (6.3)

where D ∈ {0; 1}n×m×c is a binary tensor Di,j,k whenever Xi,j,k is observed; and
l(Yi,j,k, Xi,j,k) is computed by the least squares loss function l(Yi,j,k, Xi,j,k) = 1

2
(Yi,j,k−

Xi,j,k)
2.

Regularization. We define the regularization function as:

Ω(Y) = Ω[U, F,C] + Ω[S] (6.4)

2We only consider third order tensors for explaining the concepts, though the generalization to
an N-dimensional tensor is trivial.

130 6. Personalized Self-Configuration of Software Product Lines

where Ω[U, F,C] and Ω[S] are computed by the Frobenius norm [Golub and Van Loan,
2012]:

Ω[U, F,C] =
1

2
[λ||U ||2Frob + λ||F ||2Frob + λ||C||2Frob] (6.5)

Ω[S] =
1

2
[λS||S||2Frob] (6.6)

with λ and λS being the regularization parameters for the matrices and core tensor
respectively, and ||.||2Frob represents the Frobenius norm [Golub and Van Loan, 2012].

The Frobenius norm ||U || of a matrix U is given by: ||U ||Frob =
√∑n

i=1

∑m
j=1u

2
i,j.

We use the simplest algorithm to solve the optimization problem of Equation 6.2
which performs Stochastic Gradient Descent (SGD) in the factors Ui, Fj, Ck and S
for a given tensor Xi,j,k (see Algorithm 1). SGD is a standard algorithm for training
a wide range of models in machine learning. This algorithm uses a stochastic update
approach, that means we need to compute the gradients of the loss function and the
objective function with respect to the individual components of the model:

∂Ui
l(Yi,j,k, Xi,j,k) = ∂Yi,j,k l(Yi,j,k, Xi,j,k)S ×F Fj ×C Ck

∂Fj
l(Yi,j,k, Xi,j,k) = ∂Yi,j,k l(Yi,j,k, Xi,j,k)S ×U Ui ×C Ck

∂Ck
l(Yi,j,k, Xi,j,k) = ∂Yi,j,k l(Yi,j,k, Xi,j,k)S ×U Ui ×F Fj

∂Sl(Yi,j,k, Xi,j,k) = ∂Yi,j,k l(Yi,j,k, Xi,j,k)Ui × Fj × Ck

As an example, consider the three-dimensional cube User × Feature × Weather
shown in Figure 6.1 for the smart home simplified EFM in Figure 6.2. Assume that
we want to automatically and intelligently self-configure features to an active user.
As for the standard two-dimensional case, we start with an initial set of previous
configurations. It has the following dimensions:

• User : people for whom features are self-configured in an application.

• Feature: features that can be self-configured in a given application.

Initialize U , F , C, and S with small random values.
set t = t0
while (i, j, k) in observations Y do
η ← 1√

t
and t← t+ 1

Yi,j,k = S ×U Ui ×F Fj ×C Ck
Ui = Ui − ηλUi − η∂Ui

l(Yi,j,k, Xi,j,k)
Fj = Fj − ηλFj − η∂Fj

l(Yi,j,k, Xi,j,k)
Ck = Ck − ηλCk − η∂Ck

l(Yi,j,k, Xi,j,k)
S = S − ηλSS − η∂Sl(Yi,j,k, Xi,j,k)

end while
return U, F,C, S

Algorithm 1: Tensor Factorization (X)

6.3. Experiment Design 131

• Weather : weather forecast when the application is dynamically self-configured,
e.g. Weather{Sunny,Rainy}.

Then, we define a function Yi,j,k on the recommendation space User × Feature ×
Weather specifying how much feature j ∈ Feature is important for a user i ∈ User
in weather k ∈ Weather. For example, the first user configured the features open

window, open door, and water-on for a sunny day. A second user configured the
features open window, close door, and pet-care also for a sunny day. Overall,
we assume that we have the historical configuration data for the first four users in
the multidimensional cube as described in Figure 6.1. Then, we monitor the context
to detect changes that require the system to adapt. Consequently, when adaptation
is required, we select and deselect all hard features that are in accordance with the
adaptation rules described in the EFM. Next, the remaining features are prioritized
by our algorithm and predicted until we self-configure a valid complete configuration.

Suppose that the current context for the active user Elizabeth is sunny, and thus, the
relevance of the interest on features close and open door, water-on, and pet-care

need to be computed. To self-configure these features for Elizabeth, the decisions
should be made at runtime based in how often the specific unknown features “?” are
configured for the specific context Sunny. So, we use the Algorithm 1 to compute
Yi,j,k = S ×U Ui ×F Fj ×W Wk, where i = Elizabeth; j = {close and open door,
water-on, and pet-care}; and k = Sunny. U ∈ R5×6, F ∈ R6×2, W ∈ R2×5, and
S ∈ R6×2×5. Note that, in our example, some features constitute states (e.g., open)
to easily exemplify our approach. However, in our case study, we use real system
features in their actual sense.

Finally, the system should self-configure the best N features that make the config-
uration valid for the specified context. Given a predictor Y , the list of the top N
highest scoring features for a given user u and context c can be calculated by:

Top(u, c,N) = maxNf∈F (Yu,f,c) (6.7)

where N denotes the number of features to get a valid and complete configuration.
A valid and complete configuration is a configuration where each feature is defined
(i.e., (de)selected) and it satisfies all functional and non-functional variability con-
straints. Therefore, as each top feature is selected, decision propagation strategies
are applied to automatically validate the configuration where dependent features are
automatically (de)selected and the remaining ones stay undefined, until we have a
complete configuration (i.e., all features are defined).

6.3 Experiment Design

To evaluate the benefits and drawbacks of our approach, and thus, to answer our re-
search questions, we conduct an empirical study. In this section, we provide details
about the datasets used, the experimental protocol, and the state-of-the-art ap-
proaches we compare our proposal with. All material (e.g., EFM, datasets, results)
of our evaluation is accessible at our complementary webpage3.

3http://wwwiti.cs.uni-magdeburg.de/˜jualves/PROFilE/

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

132 6. Personalized Self-Configuration of Software Product Lines

6.3.1 Target Software Product Lines and Contexts

For our study, we make use of two state-of-the-art product lines: Dell laptop [Men-
donça et al., 2009] and library [Tan et al., 2013]. In Table 6.1, we present five
characteristics for each product line, including the number of features (#f), number
of cross-tree-constraints (R), an upper bound estimation of the number of valid con-
figurations by FeatureIDE statistics [Meinicke et al., 2017] (#C), number of previous
configurations (#−→c x), and number of context dimensions (dN). Using these sub-
ject product lines, we evaluate the effectiveness of our approach. The effectiveness
evaluates how well the proposed approach is capable of understanding the context
of the users and self-configure a product at runtime.

Dataset #f R #C #−→c x dN

Dell laptop [Mendonça et al., 2009] 68 7 >154,832 42 4
Library [Tan et al., 2013] 135 none >273,534 74 5

Table 6.1: Main properties of the datasets.

Dell Laptop Product Line

The first subject system constitutes a publicly available dataset of laptop configura-
tions [Mendonça et al., 2009]. The dataset is a tensor containing laptop configura-
tions, encompassing 42 products (i.e., previous configurations) and 68 features. It is
constructed as a 6-dimensional tensor representing User × Feature × Usage × Line
× Price × Performance. It delivers an application scenario where the four contexts
(i.e., Usage, Line, Price, and Performance) are described as relations having the
following attributes:

• Usage [Game, Play, Program, Study, Work]

• Line [Personal, Professional, Gamer]

• Price [Cheap, Medium, Expensive]

• Performance [Low, Medium, High]

By counting the occurrence of each entry, a tensor of size 42 × 68 × 5 × 3 × 3 × 3
was created.

A Dell laptop is available in all different shapes, prices, and configurations. In order
to evaluate our approach, we have to analyze the influence of a varying context
on the user configuration. To this end, we defined three target contexts: gamer,
programmer, and kid laptops. The contextual information consists of the following
specifications:

Gamer laptop: The aim of the final product is to serve as a portable gaming laptop.
We assume the following (informal) requirements for this context:

• lightning-fast gaming installs and loads;

6.3. Experiment Design 133

• able to play intensive games (e.g., Battlefield 4, Watch Dogs, Assassin’s Creed
IV, etc.) as well as online games (via wifi);

• as such games require a lot of power, this laptop needs more longevity out (i.e.,
should not run hot all the time);

• portable yet powerful;

• high Memory (RAM) is also crucial;

• games are storage-intensive, i.e. this laptop should be able to store 20+ games
(5-10 GB each); and

• should support multiple applications running at once and streaming games.

Programmer laptop: For this context, the customer needs a laptop with a great
combination of performance and power, thus, assuming the following requirements:

• adequate support for all programming language compilers, interpreters, local
servers, and code editors;

• Speed is important (e.g., to program several intensive game applications), thus,
a very good processor is required;

• good amount of memory with additional storage to efficiently run local servers,
compilers, code editor, and a web browser simultaneously;

• battery life is not a priority (as the laptop is supposed to be used in the office);

• as users are supposed to spent lots of time in programming, comfortable features
are crucial, i.e. this laptop should provide comfortable keyboard and a large
and high-resolution display (e.g., to reduce/prevent eye strain).

Kids laptop: This product should serve as an entertainment laptop for kids, assuming
the following requirements:

• good wireless connection (for playing games and watching videos online);

• lightweight and highly portable (as it is for kids); and

• longer battery life (assuming that kids use it away from standard power source).

Library SPL

For our second subject system, we derived the dataset from the state-of-the-art
library SPL [Tan et al., 2013]. The scope and purpose of this SPL is to have a library
system equipped with all operations and facilities needed to provide services to its
membership holders. In general, a library has its own management system, operating
environment, payment methods, network and security system. In addition, the
library offers several services to its users through an offline and online environment.

134 6. Personalized Self-Configuration of Software Product Lines

The library SPL consists of 74 previous configurations and 135 features. From the
configurations, we constructed a 7-dimensional, dense tensor constituting User ×
Feature × Resource Access × Device × Internet Connection × Environment × Age
Range. By counting the occurrence of each entry, a tensor of size 74 × 135 × 2 × 4
× 2 × 6 × 4 was created. It delivers an application scenario where the five contexts
(i.e., Resource Access, Device, Internet Connection, Environment, and Age Range)
are described as relations having the following attributes:

• Resource Access [Digital, Phisical]

• Device [Mobile, Computer, Tablet, None]

• Internet Connection [Yes, No]

• Environment [City, Company, University, Farm, Prison, Any]

• Age Range [<10, 10-20, 20-60, >60]

To obtain a dataset of configurations, we conducted a priori experiment with 37
Software Engineering and Database Master and PhD students from two universities
(University of Magdeburg in Germany and Federal University of Minas Gerais in
Brazil). The students were asked to solve a given configuration task4, consisting
of three subtasks: (i) analyze the library feature model; (ii) configure two prod-
ucts based on the library feature model; and (iii) briefly describe the requirements
specification for the created configuration.

For our evaluation, we use the whole set of generated configurations based on four
contextual target environments derived from our apriori experiment: digital sci-
entific library, digital company e-book library, software engineering research group
library, and farm library. The contextual information consists of the following spec-
ifications:

Digital Scientific Library. It constitutes a digital scientific library of research articles
and books.

• access is purely online (via Web);

• allows to search by classification and keywords due to multiple indices;

• registration via email;

• enables notification about newly published titles;

• no loan and renewal, as items are downloaded in PDF format;

• usage is free of charge for university’s employees and students (from university
network), and for other users an annual fee applies;

• password authentication and digital certificates for security; and

4Further details about the configuration task carried out by the participants are available at
http://wwwiti.cs.uni-magdeburg.de/˜jualves/PROFilE/.

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

6.3. Experiment Design 135

• reasonable security for payment data and transactions.

Digital Company E-book Library. It constitutes a digital library for a small company
that allows to manage e-books.

• entirely free of charge with e-books accessible via mobile interface;

• all interactions (e.g., registration, searching the library, etc.) must be possible
via mobile devices;

• no overdue policies or reservations (due to e-books only);

• email notification about new resources; and

• no specific network security measures.

Software Engineering Research Group Library. It serves as a small information sys-
tem to track lending of books, periodicals, and technical reports between members
of a research group at a university.

• access for members by a specific website;

• notifications on new arrivals;

• web interface for log in, search and reserve resources, view account, etc.;

• policy for renewing reservations (i.e., not possible if already reserved by someone
else);

• catalog should state fees for loss and damage of items; and

• fees can only be paid cash.

Farm Library. It constitutes a traditional (public) library system.

• should be able to operate offline;

• physical items, fees for damage and loss as well as for returning items late;

• reminders (for returning items) as notification via email and mobile phone mes-
sage; and

• comprehensive user profile (including borrowing history) to be used for reading
campaigns.

136 6. Personalized Self-Configuration of Software Product Lines

6.3.2 Evaluation Protocol

We assess the effectiveness of our approach by conducting a leave-one-out cross-
validation study. Leave-one-out cross-validation involves using one configuration as
the validation set and the remaining configurations (n−1 where n is the total number
of configurations) as the training set. For each validation set (i.e., target configura-
tions defined in Section 6.3.1), we select α ∗ 100% features from the dataset that are
subject to recommendation. For example, if α = 0.8, we randomly give 80% of the
configured features to the recommender system, while we hide the remaining features
(20%). We considered different percentages, that is, α = {0; 0.2; 0.4; 0.6; 0.8}. Sub-
sequently, the system automatically conduct a self-configuration of a product based
on the target context defined in Section 6.3.1 by using the tensor-based recommen-
dation algorithm, as well the recommendation methods introduced in Section 6.3.3.
This is repeated 1,000 times for each dataset and target context to ensure different
combinations for each validation set. Therefore, we carried out 1, 000 × 5 × 3 runs
on the Dell laptop dataset and 1, 000×5×4 runs on the library dataset. All experi-
ments were conducted for each of our seven methods separately. Consequently, they
give us 105,000 experiments on the Dell laptop dataset and 140,000 experiments
on the library dataset. Note that a part of the configurations from the datasets
have been held out for the purpose of parameter optimization. Every parameter in
this phase was validated using a 10-fold cross validation over the use of other four
target contexts (i.e., office and study laptops, and city and prison libraries). Those
additional experiments for parameter optimization are not counted here.

We used the Precision and Recall metrics to make a comparison between the set
Rec of self-configured features by the algorithm and a set of relevant features Rel
known from the oracle containing the desired configuration. Precision is calculated
as follows: Precision = |Rec∩Rel|

w
. where w represents the number of self-configured

features by the algorithm to have a valid complete configuration. Analogously, recall
is calculated using the formula: Recall = |Rec∩Rel|

|Rel| . Precision states how many of the
self-configured features were relevant. Recall measures what percentage of relevant
features has been self-configured. Since our goal is to maximize both precision and
recall, in our evaluation we use a measure that combines both (i.e., the F-Measure),
defined as follows:

F -Measure =
2 · Precision ·Recall
Precision+Recall

(6.8)

All the experiments were performed on a 2 sockets Intel Xeon E5620 @2.40GHz with
4 cores per socket and 20GB of RAM. All reported results constitute the F-Measure
average of all runs.

6.3.3 Comparison Approaches

We evaluate the effectiveness of our approach by comparing it with a random base-
line recommender that simulates the performance of an uninformed user without
any support from a recommender system (see Section 4.3). Additionally, we also
compare our approach to the context-aware reduction-based approach introduced in
Chapter 5, which is based on traditional CF methods. This approach compute rec-
ommendations using only the configurations made in the same context as the target

6.4. Analysis of Results and Discussion 137

one according to the contextual information introduced in Section 6.3.1. For the Dell
laptop product line, we use the context Usage as pre-filtering data, Performance as
prediction modeling data, and Price as post-filtering data. For the library SPL, we
use the contexts Resource Access, Environment and Age Range as pre-filtering data;
and Device and Internet Conection as post-filtering data. For more information on
those stages, we refer to Chapter 5.

Finally, to demonstrate the improved effectiveness of a context-aware approach, we
compare the proposed TF approach with the non-contextual MF approach intro-
duced in Chapter 4. This approach uses the BRISMF algorithm by Takács et al.
[2009] to transform a two-dimensional configuration matrix into a latent space by
incremental minimization of an error function. In addition, to make a fair compar-
ison, we encoded unknown feature interests from past configurations as -1, instead
of using zero entries as in Chapter 4.

6.4 Analysis of Results and Discussion

In this section, we investigate how efficient and effective is our proposed N-dimensio-
nal context-aware TF algorithm. To this end, we answer the research questions
stated in the beginning of this chapter based on the results of our evaluation. First,
in Section 6.4.1, we evaluate the efficiency of our approach by comparing it with a
random selection of features and the reduction-based approach introduced in Chap-
ter 5. Second, in Section 6.4.2, we assess the impact of using contextual information
by comparing the proposed context-aware TF approach to the non-context-aware
MF approach introduced in Chapter 4. Finally, in Section 6.4.3, we demonstrate
how fast our approach can self-configure an SPL.

6.4.1 Approach Effectiveness

Figure 6.3 and Figure 6.4 present the F-Measure achieved by the six methods: TF,
four reduction-based algorithms (user-based CF and AS, and feature-based CF and
AS), and a random baseline method. F-Measure combines recall and precision,
i.e. higher values are better. On the horizontal axis of the figure, we present
the completeness of a configuration, i.e. the percentage of (de)selected features
that were given to the method as training data, where only the remaining part of
the configuration needed to be self-configured. In practice, it simulates the hard
requirements imposed by the context. The reported results for each dataset are
averaged over all F-Measures computed for the set of target contexts introduced in
Section 6.3.1 which we use as validation set. For example, for the Dell laptop dataset,
we average all F-Measure values from an exhaustive cross-validation for each of the
three target contexts (i.e., gamer, programmer, and kids). Moreover, note that the
F-Measure value cannot be directly compared to the previous computed F-Measure
values in Chapter 4 and Chapter 5, since here we do not compute precision based
on the list of the top-10 recommended features. Instead, we run the algorithm
each time to self-configure each top-1 feature at once until we have a valid and
complete configuration.

In summary, our data reveal that, on average, the TF method outperforms the
reduction-based methods on the Dell laptop dataset, while it slightly underperforms

138 6. Personalized Self-Configuration of Software Product Lines

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0% 20% 40% 60% 80%

F-
M

ea
su

re

Completeness of a Configuration

N-dimentional TF

2-dimentional MF

User-based CF

User-based AS

Feature-based CF

Feature-based AS

Random

Figure 6.3: F-Measure achieved by seven different recommender methods on the
Dell laptop dataset (higher values are better). The horizontal axis shows how much
of the current configuration has been completed. The performance is calculated on
the remaining part of a configuration.

on the library dataset for feature-based and user-based AS algorithms. Experi-
mentally, when comparing the prediction quality of the reduction-based and the
tensor-based approaches, it is clear that the reduction-based approaches work bet-
ter on larger datasets. On the library dataset with 74 configurations, the results are
even better than on the Dell laptop dataset with 42 configurations. This is because
reduction-based approaches (see Chapter 5) provide recommendations on a particu-
lar segment and build a local prediction model for this segment. Consequently, these
recommendations are based on a small number of configurations limited to the same
or similar context. This tradeoff between having fewer yet more relevant data for
calculating predictions (i.e., the sparsity effect) explains why the reduction-based
method underperforms the tensor-based method on some segments and outperforms
on others.

Moreover, we observe that all algorithms outperform the baseline random recom-
mender. However, for some algorithms, we observe a decrease of the F-Measure
as the configuration becomes more complete, i.e. when we use more than 80%
of selected features as training data. This is because the precision considers w as

6.4. Analysis of Results and Discussion 139

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0% 20% 40% 60% 80%

F-
M

ea
su

re

Completeness of a Configuration

N-dimentional TF

2-dimentional MF

User-based CF

User-based AS

Feature-based CF

Feature-based AS

Random

Figure 6.4: F-Measure achieved by seven different recommender methods on the
library dataset.

the number of self-configured features to automatically generate a valid and com-
plete configuration. However, for most of the target products, the data validation
does not represent a maximum valid configuration (e.g., the relevance of the feature
Additional_Warranty was not specified by gamer and programmer dell laptops).
Nevertheless, it does not mean that the self-selected features are not relevant since
they are represented as unknown relevance (−1) in the validation set. Overall, the
N-dimensional TF and the AS reduction-based algorithms achieved the best per-
formance over all other algorithms at all stages of the configuration process. The
main reason is the benefit of having more historical data for calculating unknown
features’ relevance. However, reduction-based approaches are a rather computation-
ally expensive operation as for each combination of contextual requirements, a CF
model needs to be trained and tested (Chapter 5). Therefore, in the given dynamic
scenario where the system needs to be constantly reconfigured to deal with changes
in the environment, the use of a TF algorithm seems more appropriate.

6.4.2 Contextual vs. Non-Contextual Approaches

Since it is still not clear if context matters in our scenario, in this section we con-
ducted some experiments to assess the relevance of contextual information. We

140 6. Personalized Self-Configuration of Software Product Lines

compare our context-aware multidimensional TF approach with the non-context-
aware two-dimensional MF approach introduced in Chapter 4 and we analyze the
trade-offs between them. We choose this algorithm instead of others presented pre-
viously because it is usually more effective since it allows us to discover the latent
configurations underlying the interactions between users and features. We conducted
a comparison analysis between the algorithms from both approaches on our target
datasets. It is worth mentioning that we do not use the datasets of configurations
from Chapter 4, since these datasets do not work with NFPs. In Figure 6.3 and
Figure 6.4, we present the F-Measure results achieved by both approaches for each
considered dataset.

Our data reveal that the performance of the tensor-based approach outperforms
the matrix-based approach on both datasets disregarding the completeness of the
configuration, which indicates that context matters. The main reason is the benefit
of having contextual data for calculating feature predictions, instead of only having
binary information. The use of binary data turns the SPL configuration problem into
a sparse two-dimensional matrix in which we have no contextual information and
very few (de)selected features from previous users that must be used to compute
feature predictions. However, the extent to which the contextual approach can
outperform the non-contextual approach may depend on many different factors,
such as the application domain and the specifics of the contextual available data.
Consequently, pure matrix-based approaches work best on static environments where
context does not matter.

Overall, the proposed tensor-based approach is more efficient than a pure matrix-
based approach via singular value decomposition, whereas on the library SPL dataset
the F-Measure values clearly outperform the values achieved in the Dell laptop
dataset. This may be because the library SPL consists of a larger dataset with
a higher number of context dimensions. Therefore, we believe that for most of
the applications with context information available, context-aware recommendation
techniques are supposed to outperform non-contextual recommendation techniques.
Still, conducting experiments with other SPLs to prove this claim remains part of
our future work.

6.4.3 Approach Performance

In a last experiment, we evaluate how fast our approach is by measuring its response
time for self-configuring a valid and complete configuration. We record the average
response time during the effectiveness experiment presented in Section 6.4.1 for each
target context being analyzed.

Both datasets lead to a reasonable runtime (up to 112.5ms). The prediction run-
time of our tensor-based approach is independent of the size of the dataset (i.e.,
number of previous configurations) and is dominated by the factorization dimen-
sions. For the larger factorization of the library SPL (7 dimensions), the runtime
of our approach is worse than that for the smaller factorization of the Dell laptop
(6 dimensions), resulting into 112.5ms and 51.6ms, respectively. The runtime in
the Dell laptop dataset for 1-4 context dimensions are 15.6ms, 27.7ms, 39.5ms,
and 51.6ms respectively; and in the library dataset for 1-5 context dimensions are

6.5. Threats to Validity 141

30.2ms, 47.5ms, 71.3ms, 88.8ms, and 112.5ms respectively. Hence, we conclude
that our approach scales linearly to the dimensionalities dU , dF , and dC of the fac-
tors User × Feature× Context.

While we found it to be very sensitive to the number of contextual dimensions (i.e.,
the more context dimensions exist, the more time is required for training), we ob-
served that by increasing the completeness of configurations, we obtain better results
in a faster time. To improve the results, on larger datasets with large context di-
mensions the training phase may be done offline. Moreover, we aim at optimizing
Algorithm 1, as it is trivial to parallelize the algorithm by performing several up-
dates independently, because it accesses only one row of U , F , and C at a time.
Therefore, we may use a low level language such as C++; and use parallel concur-
rency to exploit all processor’s cores and add the results of each different thread.
Also, the tradeoff between quality and speed can be minimized by controlling the
number of context dimensions. That means depending on the application we can
statistically measure each contextual relevance and thus reduce the number of con-
text dimensions. Thus, further efforts can be taken in future to improve the current
implementation regarding performance.

We conclude that, although the training phase posed additional challenges for our
algorithms, the tensor-based approach works efficiently (within milliseconds) for
both datasets. In addition, the number of NFPs for these product lines reaches a
threshold of five which is an usual number of context dimensions used in real-world
applications (see Mairiza et al. [2010] and Sommerville and Sawyer [1997]).

6.5 Threats to Validity

In this section, we describe some concerns related to the validity of our experiments.
We have followed the guidelines proposed by Wohlin et al. [2000] in order to identify
and discuss how the main validity threats to our approach were addressed. We dis-
cuss the four groups of common validity threats: internal validity, external validity,
construct validity, and conclusion validity [Wohlin et al., 2000].

An internal validity threat concerns the specification of NFPs. In this work, we
have investigated and created suitable NFPs based on experts opinion and general
characteristics of NFPs found in the literature [Commission et al., 2001, Mairiza
et al., 2010] (i.e., our focus is in the recommender system). In our approach, we
assume that a particular NFP has been already measured or specified and we use
it in our N-dimensional model. We are aware that measuring NFPs might influence
the scalability and time performance of our approach. This, however, goes beyond
the scope of this thesis. In addition, our approach does not consider aggregation
measures of NFPs. This is a complex problem, and its general solution also lies
outside of the scope of this thesis.

We have identified two external validity threats. The first validity threat is the char-
acteristics of the product lines and datasets used for evaluating our approach. We
have addressed this validity threat by reporting the characteristics of the product
lines and datasets5, such as the product line size, the variability degree, the num-

5The complete representation (xml files) of the product lines can be found at http://wwwiti.cs.
uni-magdeburg.de/˜jualves/PROFilE/.

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/
http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

142 6. Personalized Self-Configuration of Software Product Lines

ber of cross-tree constraints and previous configurations (see Table 6.1). Note that
in our experiments we used different product lines from Chapter 4 and Chapter 5.
These product lines were more suitable for our experiments due to their easily un-
derstandable domain and an available real medium-sized dataset of configurations.
However, we are aware that the use of other datasets of configurations with different
characteristics could have impacted our results.

The second validity threat is the selection of the comparison approaches. To address
this threat, we have included all known feature-based recommendation algorithms.
However, since multi-objective optimization algorithms may also support the process
of self-configuration of SPLs, we plan to extend our experiments with optimization
algorithms as part of our future work.

Construct validity threats have been addressed by using the same evaluation pro-
cess for all algorithms and using a standard evaluation metric. To simulate the
practical configuration task while measuring the effectiveness and performance of
our approach, the set of self-configured features were chosen randomly from the
whole set of relevant features. Moreover, to ensure significance of the results, the
reported F-Measure values are averaged over 105,000 and 140,000 runs, respectively.
However, it is important to mention that our approach is designed to work most
effectively when a large dataset of previous configurations and context are available.
This is a requirement for our recommender system that allows us to build a set of
more reliable configurations.

Finally, to address conclusion validity threats every effort has been made to eliminate
machine dependencies and minimize the influence of the environment (i.e., platform,
coding, compiling, caching, etc.). Moreover, all tests were performed using the
same machine and the same compiler. Furthermore, all the data used to run these
experiments is publicly available for replication.

We conclude that while several validity threats exist, our results are promising as
we have shown the viability of applying our approach to dynamic SPL configuration
scenarios. We assume that most real-world problems will be of similar scale.

6.6 Related Work

Several authors have proposed exact and approximate optimization approaches to
automatically support the statical and dynamic self-configuration of SPLs [Afzal
et al., 2016, Guedes et al., 2015, Lopez-Herrejon et al., 2015, Ochoa et al., 2018,
2017]. Statical approaches have focused on techniques to derive product configura-
tions in a single step (e.g., [Bagheri et al., 2010b, 2012b, Henard et al., 2015b, Hierons
et al., 2016b, Lian and Zhang, 2015b, Machado et al., 2014b, Pascual et al., 2015b,
Shi, 2017, Tan et al., 2015a, Xiang et al., 2018]). In static approaches, features
are selected based only on product requirements and human desires. Nowadays,
this may not be enough due to context changes that without reconfiguration would
lead to context violations. Thus, dynamic approaches monitors the environment
and when context changes, it dynamically adapts (self-reconfigure) its behaviour to
the current situation to keep fulfilling its requirements (e.g., [Alférez et al., 2014,
Almeida et al., 2014, Bürdek et al., 2014, Cetina et al., 2008, Mizouni et al., 2014,

6.7. Summary 143

Pascual et al., 2015a, Ruiz et al., 2016, Sharifloo et al., 2016]). However, quite of-
ten it requires the optimization of multiple and sometimes contradicting objectives.
Consequently, there may be a set of resulting valid configurations instead of a single
one, i.e., a wide variety of feature combinations may meet the requirements. Fur-
thermore, as the size and complexity of a software system increases, not only exact
techniques but also approximated ones present scalability issues. Consequently, im-
provements related to effectiveness, scalability and performance are still needed. To
achieve this, we propose a TF recommender system to add contextual data and thus
exploit additional information to reduce the search effort to self-configure SPLs at
runtime. Moreover, our approach that aims at self-configuring a single product can
be complementary to these existing techniques.

To the best of our knowledge, there is no previous work on the use of an N-
dimensional context-aware TF algorithm in the SPL configuration domain, which is
the main contribution of this chapter.

6.7 Summary

Dynamic Software Product Lines (SPLs) demand self-adaptation of their behavior
to deal with runtime contextual changes in their environment and offer a person-
alized product to users. In this chapter, we proposed an efficient multidimensional
context-aware recommender approach to handle the self-configuration of SPLs at
runtime. Our approach adopts a Tensor Factorization (TF) recommendation al-
gorithm to predict unknown features interest on undefined features from a set of
previous configurations according to product requirements. It dynamically and
proactively adapts the feature selection according to the context of the running
applications (e.g., availability of resources and current user needs) while avoiding
unexpected behavior. To assess the effectiveness of our approach, we conducted a
series of experiments on state-of-the-art product lines. In our experiments, we em-
pirically demonstrated that the quality of the proposed context-aware TF approach
improves against the non-contextual MF approach (Chapter 4) up to 37% in terms of
the F-Measure metric. In addition, it has a good performance already at the initial
configuration stage. Moreover, we have shown that although the proposed approach
presents a similar behavior to reduction-based recommendation approaches (Chap-
ter 5), tensor-based approaches seem to be more appropriate in dynamic contexts.
In the next section, we present our tool support which encompass a recommender
system and visualization mechanisms to guide the interactive configuration process.

144 6. Personalized Self-Configuration of Software Product Lines

7. Visual Guidance for Software
Product Line Configurations

This chapter shares material with the SAC’18 paper “Visual Guid-
ance for Product Line Configuration Using Recommendations and Non-
Functional Properties” [Pereira et al., 2018a] and the ICSR’16 paper
“FeatureIDE: Scalable Product Configuration of Variable Systems”[Pereira
et al., 2016b]. We presented initial ideas at GPCE’16 [Pereira et al.,
2016c], COMLAN [Pereira et al., 2018b], and VaMoS’18 [Pereira et al.,
2018d]. Furthermore, we have presented a preliminary empirical user
study of FeatureIDE without the implementation of our approach at
ENASE’16 [Pereira et al., 2016a].

In Software Product Line (SPL) engineering, the product configuration process aims
to define, for each customer, a valid and complete configuration satisfying its require-
ments (both functional and non-functional). This interactive process is not trivial
[Hubaux, 2014] and it is problematic mainly for the following reasons:

• In real-world SPLs, the number of features can be numerous with several types
of variability relations, constraints among features, and NFPs. Hence, it is im-
practical for the user to keep track of all features and their dependencies during
the configuration process. According to an industrial survey [Berger et al., 2013],
the comprehension and visualization of models capturing the features of the SPL
are reported as an issue for around 60% of the participants. Another survey on
variability management tool support [Bashroush et al., 2017] shows that 17% of
the tools explicitly discuss having limitations related to visualization.

• The constraints that can exist between the features (e.g., requires or excludes
relations) can be numerous as well. Although tool support can trigger feature
constraints without user involvement based on logical rules, the user may easily
lose control of the consequences of the selections. On the one hand, it may be

146 7. Visual Guidance for Software Product Line Configurations

difficult for a user to specify a valid configuration, especially since also features
of no interest need to fulfill their dependencies. On the other hand, the user
can unintentionally introduce conflicts by specifying mutually exclusive features.
Consequently, the number of features and constraints impact the interactive con-
figuration process both in the time that it takes and in the quality of the results.

• The selection of functional features can determine a valid configuration respond-
ing perfectly to the functional needs of the product. However, it might have
non desired NFPs (e.g., slow performance or too expensive). Although automatic
approaches for obtaining configurations that optimize NFPs exist [Ochoa et al.,
2017], they focus on techniques to derive configurations in a single step, not al-
lowing users to interact with the configuration process.

There are many SPL tools that aim to provide configuration support and several
recommendation heuristics have been proposed to guide the order of feature selection
(see Section 3.4.3). However, no visual support is provided to decision makers to
focus on likely relevant configuration options including recommendations. Thus, we
address this challenge by providing a visualization mechanism that shows to the
user the impact, in terms of SPL constraints and NFPs, of each relevant feature
over a set of target product requirements. Moreover, relevant features are scored
(five-stars classification) and ranked (top-10 features) according to their importance
for the user. In summary, we provide the following three contributions:

1. A set of interrelated visualizations: 1) Information hiding. 2) 5-star view to
suggest feature selections. 3) Feature’s graph to visualize features constraints
and the positive or negative impact of NFPs. 4) NFP’s graph to visualize the
impact of an NFP over features and other NFPs.

2. The implementation is publicly available as an extension of the SPL tool Fea-
tureIDE [Meinicke et al., 2017]. This system provides visual support to users.
It guides them through the decision-making process and allows them to focus
on valid and relevant parts of the configuration space.

3. An empirical evaluation of the approach in terms of effectiveness, scalability
and performance on eleven SPLs.

Furthermore, from our experimental results on eleven realistic product lines, we
answer the following three research questions:

• RQ1. Does the set of proposed visualizations support the configuration process
of realistic product lines?

• RQ2. Does the set of proposed visualizations avoid information overload?

• RQ3. How long does it take to construct the set of visualizations when increasing
the complexity of the problem?

7.1. FeatureIDE Configurator 147

To address RQ1, we evaluate the effectiveness of the implemented visualization
mechanisms by an user empirical study of our tool support. Regarding RQ2, we
investigate if the proposed views are scalable for large feature models. Finally, RQ3
analyzes if the implemented views achieved complete visual continuity.

This chapter is structured as follows: Section 7.1 presents relevant background infor-
mation about the state-of-the-art tool we extended with our approach. Section 7.2
describes the proposed visualization mechanisms. Section 7.3 presents the evalu-
ation. Section 7.4 discusses the threats to the validity of our evaluation results.
Section 7.5 presents related work. Finally, Section 7.6 summarizes the chapter.

7.1 FeatureIDE Configurator

Users can be guided to configure valid products using specialized configurators.
Based on a preliminary survey [Pereira et al., 2015] and two empirical user studies
[Constantino et al., 2016, Pereira et al., 2013], we decided to follow extending a state-
of-the-art tool FeatureIDE [Meinicke et al., 2017] with the proposed recommender
system. FeatureIDE is an open-source Eclipse-based tool which widely covers all
phases of SPL development. Besides being integrated with several programming
and composition languages, FeatureIDE provides the key functionality of typical
tools, such as SPL editor, analyzer, and configurator. Moreover, FeatureIDE is
actively used by industry practitioners and academic researchers.

In this section, we present the configuration support of FeatureIDE. With a close
connection to FeatureIDE’s feature-model editor, the configuration editor can pro-
vide several mechanisms that guide the user. With automated decision propagation,
FeatureIDE ensures that any partially configured product is in accordance to the fea-
ture model so that the result only describes valid combination of reusable artifacts.
Therefore, by integrating the proposed recommender system with FeatureIDE, we
can provide to users a most efficient and complete environment.

Preventing Conflicting Feature Combinations

Product configuration is a decision process to form a valid feature combination,
where the interdependencies of all features are considered [Pohl et al., 2005]. Espe-
cially when dealing with large feature models with complex feature dependencies,
a configuration process without tool support is an error-prone and tedious task.
Completely configuring products and checking validity afterwards is henceforth not
advisable as at least one feature dependency is probably violated.

To ease the SPL configuration process, FeatureIDE provides an iterative strategy,
which only allows feature selections that comply with the feature model’s depen-
dencies. Thus, similar to the configurators SPLOT [Mendonça et al., 2009] and fmp
[Antkiewicz and Czarnecki, 2004], FeatureIDE prevents the user to introduce con-
flicts in their configuration. This functional characteristic of FeatureIDE is based on
two concepts: (a) a close coupling between configurations and their feature models
and (b) decision propagation.

148 7. Visual Guidance for Software Product Line Configurations

Figure 7.1: An overview of FeatureIDE’s configuration support: 1 feature model
editor, 2 - 4 configuration editor (2 showing all features, 3 showing direct children,
4 finalizing configuration).

Close Connection of Feature Models and Configurations. The feature model
and the configuration editor of FeatureIDE are closely connected and influence each
other. On the one hand, the configuration editor of FeatureIDE uses the same hi-
erarchical structure as the corresponding feature model. Furthermore, the feature
model influences configurations so that, for instance, a renaming of a feature also
renames the feature in each configuration. On the other hand, each selection in a
configuration forces a validity check considering the corresponding feature model.
In addition, all implied and excluded features are automatically (de)selected and a
change of their selection is forbidden. In Figure 7.1. 1 - 2 , we depict this function-
ality for the product line EShop. In Figure 7.1. 1 , the dependencies of the feature
model are hard to resolve. However, the representation in the configuration editor
(see Figure 7.1. 2) allows an iterative selection of features.

Decision Propagation. Based on the close connection between feature mod-
els and configurations, FeatureIDE’s configuration editor prevents conflicts in each
iteration of the configuration process using decision propagation. In detail, if a
(de)selection of a feature forces the (de)selection of another feature, FeatureIDE au-
tomatically adopts the implied configuration changes. For instance, if we select the
feature Welcomemessage in the product line EShop (see Figure 7.1. 2), all parent
features will be also selected.

Although FeatureIDE presents several mechanisms to support an easier configuration
process, we identified the following challenges:

• Unclear requirement specification. Some vague descriptions and even misleading
information may be introduced to the requirements making hard the preliminary
process to relate requirements to features in the feature model.

7.2. Visualization and Selection Mechanisms 149

• Too many options and complex relationships. Configuring a product can be a
difficult process as users usually do not know all features and their dependencies,
especially for large feature models [Benavides et al., 2010]. Consequently, showing
all features and relationships (see Figure 7.1. 2) is impractical as a user can only
focus on one part of the configuration at once.

• Subjective features and unclear user preferences. Decision makers may be unsure
about users needs when confronted with a set of unknown features.

• Requirement Inconsistencies. Users often specify requirements that are inconsis-
tent with the feature model’s constraints and no support is provided to decision
makers to prioritize the most relevant choices.

• Get a valid configuration. Although FeatureIDE ensures that any partially con-
figured product is in accordance with the SPL constraints, it does not guide users
into a valid configuration. To finish the configuration process, features of no im-
portance to the user need to be taken into account (i.e., to fulfill the constraints).
Since decision makers again are not provided with additional support to guide
them in this proces, this may lead to delays due to users’ exploration of choices
at each step of the configuration process.

Thus, handling the SPL configuration process in FeatureIDE is still a critical issue
and the current literature still lacks a complete technique to support this process.
In the next section, we illustrate FeatureIDE’s facilities to support these challenges
by providing an advanced configuration support. Our approach ensures a valid and
complete configuration while simultaneously maintaining efficiency as the user can
focus on their features of interest.

7.2 Visualization and Selection Mechanisms

To represent functional and non-functional features’ interdependencies, as well as
features’ relevance on SPL configurators, we provide a set of four visualization com-
ponents: 1) information hiding, 2) 5-star view, 3) feature’s graph, and 4) NFP’s
graph. The use of visualization and interactive techniques on SPL can widely re-
duce the complexity of understanding large and complex feature models [Card et al.,
1999b, Nestor et al., 2008a]. The visualizations allow the user to freely explore the
functional and NFPs related to the product-under-configuration in order to choose
the features that best meet their requirements. Our aim is to support the visualiza-
tion of relevant information configuring a target product.

Through the proposed visualization mechanisms, decision makers can: (a) rely on
a small relevant set of features, instead of going through the entire feature model;
(b) visualize, in an interactive way implicit and explicit interdependences among
features and NFPs; and (c) go through a list of the most recommended features. In
addition, the user is able to automatically configure a complete product in any point
of the configuration process. Consequently, the recommendation algorithm selects
the top features to meet a complete valid configuration that is in accordance with
the SPL constraints and product requirements. This is especially applicable when
configuring large-scale SPLs in which the interactive configuration is recognized to be

150 7. Visual Guidance for Software Product Line Configurations

Configure

Visualize

Previous

Configurations

Specify

Compute

Visualizations Activity

LEGEND

Current

Configuration

NFP‘s Graph

Feature‘s Graph

Product

Requirements

(NFPs’ filter)

Recommender

Scores

User

Extended

Product Line

Flow direction Data Object

5-Star & Inf.

Hiding View

Figure 7.2: An overview of the proposed visualizations.

a time-consuming and tedious task. Next, we describe each visualization component
shown in Figure 7.2.

7.2.1 Information Hiding View

To ease the configuration process, we provide information hiding mechanisms1 that
focus the user’s view on the relevant configuration space.

Focused View. This mechanism focuses the decision makers’s view on the part of
the configuration that is currently (de)selected. The essential idea of this mechanism
is that a feature tree hierarchy represents the features’ degrees of abstraction. The
higher a feature is located in the tree, the higher its level of abstraction is. In
contrast, leaf features (i.e., features without any children) are the most detailed
and technical features. Consequently, a user should first decide between the most
abstract features before going into detail. To support this intuitive process, we
implement a level-wise view on the feature tree (see Algorithm 2 and Section 4.2.1 for
the formulation). We assume that when the user selects a feature, they are probably
interested in its sub-features (e.g., fine-grained features of the same area). Thus, the
view automatically expands and shows only the direct sub-features from selected
features. This behavior is exemplary illustrated in Figure 7.1. 3 . Initially, only
the feature Storefront is expanded. After the user selects the feature Homepage,
the expand algorithm shows the sub-features Staticcontent and Dynamiccontent.
With the focus on direct sub-features, we reduce significantly the user decision space
in each configuration step. Thus, the user has a proper overview of the configuration
process and is able to focus on one particular choice at-each-time. However, when
the user has selected all features of their choice, their configuration might still be
invalid due to unsatisfied feature model constraints (i.e., decision propagation and
expand algorithms can only benefit to configure partial configurations). In this case,
it is necessary to (de)select further features to make the configuration valid. Next,
we present a highlighted view that supports the user in this process. The sequence
of the variation point at which the user makes their configuration decisions may
have significant impact on the efficiency of the product configuration.

1A demo video of these mechanisms in FeatureIDE can be found at https://youtu.be/
zM9K3wqUiVE

https://youtu.be/zM9K3wqUiVE
https://youtu.be/zM9K3wqUiVE

7.2. Visualization and Selection Mechanisms 151

In addition, filters can be applied simultaneously to NFPs. Filters define NFPs
thresholds from a minimum to a maximum value that fulfills the product non-
functional requirements. We assume that the decision makers are capable of un-
derstanding the goals of the target system and they are able to translate those goals
into priority information that would allow them to filter relevant features. Thus,
the set of features in the visualizations is adapted to satisfy the set of predefined
filters. By providing this mechanism, we can additionally reduce the decision makers
configuration workload.

input : FM, ~pc
output: Focused View

1 compress(FM);
2 foreach ci = 1 ∈ ~pc do

3 ~ch← children(ci);

4 foreach chj ∈ ~ch do
5 expand(chj) from {ci};
6 end

7 end

Algorithm 2: Focused view algorithm.

Finalize Partial Configurations. Decision propagation and specialized expand
algorithms can only help to configure partial configurations. Still, a configuration
needs to fulfill all dependencies defined in the feature model. Automatic selection
of features is an efficient way to create a valid configuration based on the given
partial configuration (e.g., the auto-completing mechanism presented by SPLOT
[Mendonça et al., 2009]). However, such algorithms arbitrarily select features with-
out considering the user intentions. Thus, undesired features might be selected as
well. In order to address this challenge, the tools VISIT-FC [Nestor et al., 2008b]
and FaMa [Trinidad et al., 2008] introduce dependency visualization mechanisms to
support the user in configuring products, but both tools present all features to the
user. In contrast, our tool provides a mechanism that guides the user to a valid
configuration, reasoning from a smaller number of features.

Based on unsatisfied clauses of the feature model’s CNF-representation [Benavides
et al., 2010], this mechanism shows the user which decisions are necessary to finish
the configuration process by highlighting the corresponding features. First, the algo-
rithm transforms a propositional formula into Conjunctive Normal Form (CNF). For
a valid configuration, all clauses of the CNF must be satisfied. Using the user current
partial configuration ~pc, the algorithm determines the set of all unsatisfied clauses
UR ⊆ R in the CNF. This set can be defined as UR = {~r ∈ R | ∀i ∈ {1, .., |F|} :
ri = −1 ∨ complete(ci) 6= ri} (see Section 4.2.1 for the formulation). Then, the
algorithm is able to highlight every feature that is contained in an unsatisfied clause
(see Algorithm 3). More formally, for each ~r ∈ UR the algorithm determines all
features i with ri 6= −1. To provide optimized guidance for the decision maker, the
algorithm considers each unsatisfied clause separately and highlights its features. As
each clause needs to be satisfied, the user can focus on one clause at a time. We
associate the green and blue colors to features that may be selected and deselected

152 7. Visual Guidance for Software Product Line Configurations

respectively. In order to satisfy the CNF clause, the decision maker would either
need to deselect a blue parent feature or select one of its green children features.
Naturally, (de)selecting one of those features automatically satisfies the correspond-
ing clause ~r. We exemplary show this behavior in Figure 7.1. 4 . As shown, only the
current open clause (displayed in the tooltip of Physicalgoods) is expanded. The
feature Producttype was automatically selected by decision propagation. Thus, at
least one of its children (highlighted with green) has to be selected to satisfy the
open clause. A deselection of a feature might also satisfy a clause as shown in Fig-
ure 7.1. 3 with a blue highlighting of the feature Homepage. After a clause is satisfied
by the decision maker (de)selection, the focus automatically changes to the next un-
satisfied clause. Thus, again the number of configuration options presented to the
user is reduced to a minimum. Using this mechanism, the user can efficiently finish
the configuration process and simultaneously prevent undesired feature selections.

input : FM = (F,R), ~pc
output: Finalized Partial Configuration

1 UR ← getUnsatisfied(R, ~pc)
2 foreach ri ∈ UR do
3 if ri = 1 then
4 green(ri)
5 else
6 blue(ri)
7 end

8 end

Algorithm 3: Highlight view algorithm.

In the next section, we propose a set of three visualization mechanisms over a focused
and highlighted view on the configuration.

7.2.2 5-Star View

In practice, the configuration process starts either from scratch or by loading a
partial consistent configuration file. The 5-star view represents features’ relevance
over a focused view of the feature model plus a color highlighting notation (see
Section 7.2.1). It uses the state-of-the-art recommender algorithm introduced in
the previous chapters to display the score in the form of a 5-star scale as shown in
Figure 7.3. From this view, the user will be able to (de)select features of interest to
configure a product. Features’ scores are computed after each user interaction. Each
score is normalized in a scale from zero to five and associated with an unselected
feature on the focused view. This view reflects a generalization of knowledge that is
inferred from previous configurations, and ensures the consistency of complete and
partial configurations.

This is particularly helpful to users when it is not clear which feature selection fulfills
their requirements better. Thus, the user can efficiently explore the configuration
space and finish the configuration process preventing undesired feature selections.

7.2. Visualization and Selection Mechanisms 153

7.2.3 Feature’s Graph View

To represent the impact of undefined features (i.e., non-(de)selected) over a set
of relevant features and NFPs, we extend the FRoGs view proposed by Martinez
et al. [2014]. Similar to FRoGs, each graph is a radial ego network representation
associated with a specific target feature fc displayed in the center (e.g., sensor in
Figure 7.4a). We extend FRoGs notation by showing to decision makers how the
selection of fc affects the features’ scores of a set of relevant features and the values of
its NFPs. Also, while FRoGs proposes to use all the features in the feature model, we
reduce the information density by using only the features of the focused view. Then,
the set of n relevant features and m NFPs are displayed around fc with a constant
separation of 2π/(n+m). This separation allows to uniformly distribute all features
and NFPs around the circle. Each graph displays different circular sectors (i.e.,
zones) associated with two main perspectives: features’ relevance scores and values
of NFPs. Our approach assumes that the features are annotated with NFPs and
NFPs interactions have been previously measured for state-of-the-art approaches.

Perspective: Features’ Relevance Scores. A set of relevant features is dis-
played in this perspective depending on their computed relevance score (Section 7.2.2).
Features’ relevance scores are associated with a minimum value of 0 and a maximum
value of 5. Features are positioned in the range of these values on the graph. To
represent different ranges of values, the zones in this perspective are displayed with
different shades of the yellow color. The light yellow of the positive zone contrasts
with the dark yellow of the negative zone. Features in the positive zone are closest
to fc meaning that, if fc is selected, these features are more likely to be selected (i.e.,
the extreme of this zone is represented for the maximum value of relevance score,
which is 5). Features in the negative zone are furthest from fc meaning that if fc is
selected these features are more likely to be deselected (i.e., the extreme of this zone
is represented for the minimum value of relevance score, which is 0). As an example,
Figure 7.4a shows the impact of the feature sensor on the relevance score of nine
relevant features. Relevant features are the set of undefined features displayed in
the focused view (Figure 7.3), as well as sensor dependent features. As we can
see in this example, the selection of the feature sensor potentially encourages the
selection of fire, alarm, siren, and manual located in the extreme of the positive

SmartHome

security

sensor

alarm

illumination

manual

automatic

fire

flood

glass

Figure 7.3: 5-star view.

154 7. Visual Guidance for Software Product Line Configurations

S
e
n

s
o

r

a)
F

eatu
re’s

grap
h
.

C
o

s
t

C
o

s
t

C
o

s
t

b
)

N
on

-fu
n
ction

al
p
rop

erty
’s

grap
h
.

P
o

sitiv
e

N
eg

ativ
e

U
n
d
efin

ed

R
eq

u
ired

 F
o
rm

alized

R
eq

u
ired

 In
ferred

E
x

clu
d

ed
 F

o
rm

alized

E
x

clu
d

ed
 In

ferred

A
ltern

ativ
e E

x
clu

siv
e

A
ltern

ativ
e N

o
n

-E
x
clu

siv
e

L
EG

EN
D

R
E
L
A
T
IO
N
T
Y
P
E
S

Z
O
N
E
S

P
E
R
S
P
E
C
T
IV
E
S

F
u

n
ctio

n
al F

eatu
res

Q
u

alitativ
e N

F
P

s

Q
u

an
titativ

e N
F

P
s

N
F

P
s In

terd
ep

en
d
en

cies

F
igu

re
7.4:

V
isu

alization
grap

h
s.

7.2. Visualization and Selection Mechanisms 155

zone. Although the sub-features of alarm (i.e., silent, visual, and siren) are
not displayed in the focused view, the target feature sensor requires alarm. Conse-
quently, at least one of alarm sub-features need to be selected if sensor is selected.
Therefore, we classify these features as relevant. A relevance score for a relevant
feature is updated over time depending on −→pc.
We use and for required and excluded features constraints, respectively. If
it is neither a requires nor an excludes constraint, we use . On the one hand,
the notation fi illustrates that there is no occurrence of fc without fi given −→pc.
However, when a set of required features are linked by a dashed line, at least one
feature must be selected if fc is selected, otherwise exactly one of those features must
be selected. For example, the selection of sensor requires the selection of exactly
one of the features manual, and automatic, and the selection of at least one of the
features fire, flood, and glass. On the other hand, the notation fi illustrates
that there is no occurrence of fc and fi together given −→pc.
Requires and excludes notations are consequences of formalized and inferred con-
straints. Inferred constraints are represented by adding an extra circle in the node
with the color associated to the type of the constraint (i.e., for requires and for
excludes). An inferred constraint is a constraint that is not explicitly formalized
in the feature model by the feature tree and the CTCs, but that exists because
of logical rules [Martinez et al., 2014]. Figure 7.4a shows an example of inferred
constraint for the features silent, visual, and siren. In the feature model shown
in Figure 2.1, there is a CTC sensor requires alarm. Consequently, by looking
at the feature tree, the feature alarm requires at least one of the features silent,
visual, and siren. Therefore this implication is not explicitly formalized neither
in the feature tree nor in the CTCs. We display all the dependent features of fc
and its relation types by analyzing the propositional formula of the feature model.
Figure 7.4 shows the complete legend of the graph as it is shown in the tool.

Perspective: Values of NFPs. A set of NFPs is displayed in this perspective
depending on their values over the feature fc. NFP values are categorized into
two main categories: quantitative and qualitative. For a detailed explanation on
these categories we refer to Chapter 3, Section 3.4. In this work, as we focus on
the visualizations, we assume that quantitative and qualitative values were already
specified by using state-of-the-art techniques.

Since the types of quantitative NFPs are quite different, their range of values may
suffer a wide variation (e.g., 100-60,000ms for response time and $50-850 for cost).
In this scenario, the range of values should be normalized so that each NFP con-
tributes approximately proportionately to their minimum and maximum values.
Thus, we use a simplest feature scaling method (a.k.a. unity-based normalization)
to rescale the range of NFP values between any arbitrary minimum and maximum
value to a common scale in the range of [0, 1]. The general formula is given as:

p′i =
pi −minpi

maxpi −minpi
(7.1)

where pi is the NFP value and p′i is the normalized value. We normalize the values
by finding the minimum minpi and maximum maxpi values pi assumes. Our aim is
that the corresponding normalized values allow the comparison of different NFPs.

156 7. Visual Guidance for Software Product Line Configurations

NFPs are associated with a negative or positive impact of their values over fc. Thus,
an NFP is displayed in the zones by considering a scale ranging from a negative
impact of 0 to a positive impact of 1. For quantitative NFPs where higher values
have a negative influence over the configuration (e.g., cost), we reverse the scale
(i.e., p′i = 1− p′i). For qualitative NFPs, we automatically mapped them onto real
values to be handled as quantitative properties in a scale of [0,1]. To represent the
six different zones in the graph, we consider six qualitative levels [Asadi et al., 2014]:
high [0.85, 1], medium [0.68, 0.85] and low [0.51, 0.68] positive; and low [0.34, 0.51],
medium [0.17, 0.34] and high [0, 0.17] negative. Thus, 1 implies the highest positive
quality level while the value 0 illustrates the highest negative quality level.

To represent different ranges of values, the zones in this perspective are displayed
with different shades of the blue color (Figure 7.4a). As much light is the color
of the zone where the NFP is positioned much positive influence it has over fc
(e.g., security), while as much dark the color much negative the influence (e.g.,
response time). Multiple NFPs can be associated with the same feature, as well as
some features may not be annotated with any NFP. Therefore, the proposed graph
adapts dynamically in accordance with the amount of information to be displayed
(i.e., if there are no NFP associated to fc, then the graph fully represents the
perspective of features’ relevance scores).

7.2.4 Non-Functional Property’s Graph View

Apart from interacting with the list of undefined features, the user can interact
with NFPs displayed in the feature’s graph view. This view is associated with an
NFP pc displayed in the center (e.g., cost in Figure 7.4b). It shows the effect of pc
over relevant features and other NFPs. Each graph displays different circular zones
associated with two perspectives: features’ NFP values and NFPs interdependencies.

Perspective: Features’ NFP Values. A set of relevant features is displayed
in this perspective depending on their pc value. The zones in this perspective are
associated with a minimum to a maximum value of pc. As much light the color where
the feature is displayed, much positive the influence of pc over the feature, otherwise
much negative the influence. As an example, by visualizing the functional features
perspective in Figure 7.4b, the decision maker has an overview of which features are
cheaper (e.g., manual) and more expensive (e.g., visual).

Perspective: NFPs Interdependencies. The set of NFPs is displayed in this
perspective depending on their effect on pc. To measure the effect of an NFP on
pc, we use the Pearson Correlation Coefficient (PCC) also known as bivariate cor-
relation. PCC measures the degree of covariation between two NFPs. For example,
given two NFPs cost and security, if, on average, expensive products have high
security (and cheap product low security), we say that cost and security are cor-
related. To measure the correlation between NFPs, our approach needs to find all
valid combinations of features that contribute to both NFPs. However, the number
of feature combinations in a feature model may be exponential to the number of
features in the worst case. Therefore, we compute PCC using the subset of previous
configurations from past users. Thus, PCC is the covariance of two NFPs pc and pi
divided by the product of their standard deviations. The equation is given as:

7.3. Evaluation 157

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
=

cov(X, Y)√
var(X) · var(Y)

(7.2)

where xi and yi are the values that pc and pi assumes for each given previous config-
uration. x̄ = 1

n

∑n
i=1 xi is the sample mean (analogously for ȳ). Thus, the value r is

obtained based on the subset of n valid previous configurations (i.e., samples), then
it is an estimation of the true value of the correlation of all valid configurations. It
assumes the values between [-1,1], where -1 implies a negative linear correlation (i.e.,
pi decreases as pc increases), a value of 0 implies that there is no linear correlation
between pi and pc, and 1 implies a positive linear correlation (i.e., pi increases as
pc increases). Thus, the degree of correlation is more significant as it is closer to 1
(direct correlation) or -1 (inverse correlation).

To represent the different ranges of correlations, NFPs are positioned in the range
of the values [-1,1] on the graph. Thus, NFPs closest to pc has a positive effect
on pc, meaning that for a positive value of pc there is a positive effect of pi (i.e.,
the extreme of this zone is represented for the maximum value of PCC correlation,
which is 1). NFPs furthest from pc has a negative effect on pc, meaning that for a
positive value of pc there is a negative effect of pi (i.e., the extreme of this zone is
represented for the minimum value of PCC correlation, which is -1). In this scenario,
if a lower value of pc is more desirable (i.e., it has a more positive effect over the
configuration for stakeholders), then we plot the NFPs in the graph by taking into
account the inverse correlation of pc. As example, Figure 7.4b shows that the NFPs
response time and performance have a higher negative effect in the configuration
over a positive effect of the NFP cost (i.e., cheaper products have a high response
time and low performance).

7.3 Evaluation

To empirically evaluate our approach, we extend the state-of-the-art tool FeatureIDE
with the proposed visualizations described in Section 7.2. All the experiments were
performed on an Intel Core @3.30GHz with 8GB of RAM. In this section, we re-
port the settings of the conducted experiments and analysis that were performed to
answer the research questions RQ1–3 introduced in the beginning of this chapter.
Overall, the experiments reported in this section intend to present a preliminary
observation on the feasibility of our approach.

7.3.1 Approach Effectiveness

We empirically analyze the effectiveness of our approach to reduce the complexity of
the interactive configuration process by assisting the decision makers to reasoning on
a small set of relevant information. We designed a preliminary experiment in which
10 participants used the FeatureIDE configurator to configure the Dell laptop prod-
uct line2 [Mendonça et al., 2009]. This product line is suitable for our experiment
because the domain is easy to understand and a realistic dataset of configurations

2We adapt the Dell laptop product line found at http://www.splot-research.org/. The com-
plete feature model with a dataset of 33 real configurations can be found at http://wwwiti.cs.
uni-magdeburg.de/˜jualves/PROFilE/.

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/
http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

158 7. Visual Guidance for Software Product Line Configurations

was available. Table 7.1 (in the seventh row) summarizes the main characteristics
of the Dell product line. The first column identifies the product line. We use |F|
for the total number of features, |M| and |O| for the number of mandatory and
optional features, |OR| and |XOR| for the number of alternative non-exclusive and
exclusive groups, |CTC| for the number of cross-tree-constraints, and |NFP| for the
number of NFPs. Then, we use Height for the height of the feature tree and |C| for
an upper bound estimation of the number of valid configurations (computed by the
FeatureIDE Statistics using a timeout-length of 15 minutes). Finally, Graph Data
column shows the number of displayed features and NFPs, and the Time column
shows the time in milliseconds to generate the graphs for the worst case scenario.

Firstly, we developed a requirement specification for a gamer Dell laptop3. Lap-
tops for gaming differs from laptops targeting other type of customer profiles (e.g.,
atom netbooks would not meet the needs of a gamer laptop due to the high pro-
cessing demand of current games, which require a high performance). In this con-
text, if the product obtained by the user is significantly different from the expected
ones, we assume that our approach is not appropriately guiding the user. We use
Recall = |ci ∩ cj|/|cj| to evaluate the similarity between a user configuration ci and
an expected configuration cj (i.e., a valid set of truly relevant features known from
the specified requirements). We consider as cj the expected product configuration
much similar to ci. The recall vary between 0 and 1. As much close to 1 is the re-
call, much similar ci is of cj. Therefore, we assume that our approach is successfully
guiding the user to meet the specified requirements.

The experiment consisted of two groups with 5 Master’s students without SPL ex-
perience and with knowledge in computer games to make sure they are on the same
level of background. One group used the FeatureIDE configurator without the pro-
posed visualizations, while the other group used the FeatureIDE configurator with
our visualization components. Moreover, in order to balance knowledge of partici-
pants, we conducted a training session of 1 hour to introduce the basic concepts of
SPL configuration and the tool support. After the training session, we asked the
participants to perform a configuration task of a gamer Dell laptop by following
the requirement specification. All configurations were created from scratch and all
tasks were based on the Dell product line to provide the same level of difficulty
among the participants. For each participant (P1 to P10 to keep their anonymity),
we performed an analysis of the total of configuration interactions (i.e., number of
decisions), the number of rollbacks (i.e., modification of a previous decision), the
time spent to complete the configuration, and the confidence level of obtaining the
target product. Table 7.2 summarizes our findings. The first column identifies the
participant. The recall obtained for each configuration is shown in the second col-
umn. The number of configuration interactions and rollbacks are displayed in the
third and fourth columns respectively, while the time spent for the user (in minutes)
to complete the configuration task is shown in the fifth column. Moreover, the con-
fidence level of each final configuration for each participant is displayed in the last
column. Participants had the following options to answer: I am not confident,

I am a little confident, I am confident, and I am very confident.

3Further details about the product specification and the configuration task carried out by the
participants are available at http://wwwiti.cs.uni-magdeburg.de/˜jualves/PROFilE/

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

7.3. Evaluation 159

P
ro

d
u
ct

L
in

e
|F
|
|M
|
|O
|
|O

R
|
|X

O
R
|
|C

T
C
|
|N

F
P
|

H
ei

g
h
t

|C
|

G
ra

p
h

D
a
ta

T
im

e
(m

s)

M
o
b
il
e

M
ed

ia
[F

ig
u
ei

re
d
o

et
a
l.
,

2
0
0
8
]

1
7

6
1
1

1
1

1
6

4
2
5
2

1
6

2
8
7

E
m

a
il

S
y
st

em
[T

h
ü

m
et

a
l.
,

2
0
1
4
]

2
3

3
2
0

0
1

0
6

3
5
,6

3
2

2
5

3
6
3

S
m

a
rt

H
o
m

e
[A

lf
ér

ez
et

a
l.
,

2
0
0
9
]

2
8

3
2
5

1
1

3
6

4
1
8
2
,2

8
0

1
7

3
4
8

D
ev

o
lu

ti
o
n

[T
h
ü

m
et

a
l.
,

2
0
1
4
]

3
2

1
1

2
1

3
1

0
6

6
1
9
,6

5
6

1
7

1
9
8

G
a
sp

a
rc

[A
ra

n
eg

a
et

a
l.
,

2
0
1
2
]

3
8

2
3

1
5

1
4

0
6

6
3
5
2

1
7

2
4
7

F
ra

S
C

A
ti

[S
ei

n
tu

ri
er

et
a
l.
,

2
0
1
2
]

6
3

1
9

4
4

0
2

4
3

6
5

>
7
8
0
,0

0
9

3
9

1
,6

0
4

D
el

l
la

p
to

p
[M

en
d

o
n
ça

et
a
l.
,

2
0
0
9
]

6
8

1
3

5
5

0
1
2

7
5

4
>

3
9
1
,5

2
9

5
2

4
,3

5
6

M
o
d
el

T
ra

n
sf

o
rm

a
ti

o
n

[C
za

rn
ec

k
i

a
n

d
H

el
se

n
,

2
0
0
3
]

8
8

1
8

7
0

1
4

1
1

0
6

7
>

7
7
5
,4

4
6

3
6

3
,4

9
1

B
a
tt

le
o
f

T
a
n

k
s

[T
h

ü
m

et
a
l.
,

2
0
1
4
]

1
4
4

8
1
3
6

1
9

0
6

4
>

7
9
9
,6

8
2

6
2

6
,9

3
9

W
eb

P
o
rt

a
l

[M
en

d
o
n
ça

et
a
l.
,

2
0
0
8
]

2
3
7

5
1

1
8
6

3
4

0
0

6
1
1

>
5
5
9
,1

4
6

6
0

8
,3

9
6

e-
S
h

o
p

[L
a
u

,
2
0
0
6
]

2
8
6

7
6

2
1
0

3
9

0
2
7

6
1
1

>
5
8
3
,7

5
8

5
8

8
,3

2
8

Table 7.1: Characteristics of the product lines (F: features, M and O: mandatory
and optional features, OR and XOR: alternative non-exclusive and exclusive groups,
CTC: cross-tree-constraints, NFP: non-functional properties, Height : height of the
feature tree, C: valid configurations).

160 7. Visual Guidance for Software Product Line Configurations

Partic. Recall Decision Rollbacks Time Confidence

P1 1 23 8 27
P2 0.77 21 6 20
P3 0.69 17 5 22
P4 0.93 19 6 18
P5 1 17 3 19

Average 0.87 19.4 5.6 21.2 N/A

P6 1 17 4 38
P7 1 15 2 32
P8 0.92 13 0 40
P9 1 14 1 36
P10 1 15 2 48

Average 0.98 14.8 1.8 38.8 N/A

Table 7.2: Experiment results from a usability evaluation of FeatureIDE configurator
without (P1-P5) and with (P6-P10) the proposed visualization components.

From the average values of Table 7.2, we can see that the gaps between these two
approaches are large for decision makers of this product line. The users of our ap-
proach have advantages in terms of the accuracy of the final complete configuration,
the number of decisions to make, the number of rollbacks, and the confidence level.
The recall for users of our approach is higher than for users of the traditional con-
figuration approach (due the low recall of P2 and P3), which suggest that the users
of our approach will be more confident about the fitness of the final product (see
confidence column). Although by using our approach the users took much longer
to finalize the configuration process, they are more confident and consequently they
performed a relative minor number of rollbacks. Therefore, we believe that the time
consumed was due the users’ understanding of the features’ and NFPs’ dependencies.

In addition, we ask the participants the main difficulties they faced using the config-
urator. This analyzes the problems that participants may have to carry out the con-
figuration task by using both tool supports. On the one hand, the five main concerns
reported by the participants P1-5 were: (i) I was not sure where to start (P3); (ii)
the relationships among features are not explicitly clear in the configuration view, as
it is in the feature model editor view (P1 and P4); (iii) the automatic (de)selection
applied to validate the configuration makes me lose control of the consequence of
my selections (P2 and P3); (vi) I need support to reason over competitive features
(P4); and (v) I cannot track the non-functional requirements (P1, P2, P3, and P5).
However, the positive point was unanimous about the easy process to (de)select
a feature through check boxes. Moreover, some of the participants (P1, P4, and
P5) mentioned that the automatic (de)selection of dependent features is a favorable
point. On the other hand, the five main concerns reported by the participants P6-10
were: (i) even with the training session in the beginning, some terms in the legend
(e.g., formalized and inferred) were somehow confusing during the task (P7 and
P8); (ii) the graph view is showing in new windows, instead of in the configuration
view next to the focused view (P6 and P8); (iii) I cannot click on the name of the

7.3. Evaluation 161

feature in the configuration view for the visualization graph. I have aways to go to
the menu to select the visualization view (P6); (vi) I cannot (de)select the features
by checking it on the graph (P9 and P10); and (v) I do not like the blue color in
the graph (P10). However, all participants mentioned as positive points the focused
5-star view and the filter mechanism. In addition, they also cited as positive points
the features’ relation types view (P6, P9, and P10), the effect of NFPs associated
to each feature (P7 and P8), comparison among features’ NFP values (P6, P7, P8,
and P10), and different tones of colors for the zones of the graph (P10).

7.3.2 Approach Scalability

We investigate whether the implemented visualization components are scalable for
large and complex product lines. We present experimental results for 11 product
lines acquired from existing publications in the product line community [Pereira
et al., 2017]. The characteristics of the product lines are described in Table 7.1.
Each feature of each feature model (except the Dell laptop) has been annotated
with 6 NFPs: cost, response time, performance, security, reliability, and
maintainability. The values for quantitative NFPs have been set randomly with
a uniform distribution: cost takes real values between $0 and $500; response

time takes integer values between 0ms and 60,000ms; performance takes percentage
values between 0% and 100%. Finally, the NFPs security, reliability, and
maintainability take the following qualitative values [HighN, MedN, LowN, LowP,
MedP, HighP] introduced for Asadi et al. [2014]. For the Dell laptop product line, we
consider 3 real-world numeric quantitative NFPs (price, frequency, and rotation)
and 2 real-world categorical qualitative NFPs (security and performance). The
values for these NFPs were specified by game domain experts. The number of NFPs
for these product lines reaches a threshold of six which is the upper bound number
suggested by some authors (Mairiza et al. [2010] and Sommerville and Sawyer [1997])
as the most often used for realistic systems.

To perform our experiment, we developed a computer program that randomly chose
a feature to be analyzed and consequently selected. The program repeats the process
until obtaining a complete configuration. Since running it for the set of all different
valid sequences of feature selections is NP-hard [White et al., 2009], we performed
this experiment by taking into account a set of 1,000 runs. Each configuration was
created from scratch and no filter to stakeholders’ requirements was applied. For
each feature being analyzed, we collected the number of relevant features plus the
number of NFPs being displayed by the graphs and we record the worst case sce-
nario (i.e., with higher information overload). The Graph Data column of Table 7.1
presents the experiment results for each product line.

In the worst case, the graph showed up 56 features and 6 NFPs (i.e., 62 nodes) for
the Battle of Tanks product line. Although this product line is not the largest, it
has few mandatory features and a small height of the feature tree. Consequently, a
parent feature has many dependent sub-features and, when they are selected, there
are many required features (due the XOR relation). To have insights about the
scalability of the resultant visualization, we showed the generated graph with the
worst case scenario to the ten participants of our user study (Section 7.3.1) in order to
find out if they have any trouble understanding the graph. All participants were able

162 7. Visual Guidance for Software Product Line Configurations

to completely explain the information in the graph. In summary, they described that
once the relevant information are in the extreme of the graph (i.e., higher prediction
and positive NFP values) and represented for different notations (i.e., , , ,
and), they can easily focus on a reduced amount of data and quickly decide which
feature would be more relevant to them. However, they complained mainly about
the large name of some features and the feature positions in each zone. Overall,
although there are some points to be improved in the future regarding usability, our
approach was applicable for this worst-case scenario regarding scalability.

7.3.3 Approach Performance

We evaluate the performance of our approach by measuring the response time of
the tool for generating the visualization graphs. Displaying a feature’s graph is an
algorithm with order O(nm) where n is the number of features related to the feature
in the center (i.e., fc) plus the unselected features showing up in the focused view,
and m is the number of NFPs related to fc. Moreover, displaying the NFP’s graph
is also an algorithm with order O(nm), here n is the number of unselected features
showing up in the focused view, and m is the number of NFPs (except the one in
the center). However, beforehand we need to run a CNF algorithm to build the
functional features perspective which is an NP-hard problem. As a consequence,
this process can negatively affect the user experience as visual continuity is not
reached. We capture the response time during the scalability experiment presented
in Section 7.3.2. For each feature being analyzed, we record the highest time spent
for the configurator to generate the visualizations (see Time column of Table 7.1).
In the worst case, we have around 8 seconds for the Web Portal and e-Shop product
lines. These were worst cases however further efforts can be done to improve the
current implementation regarding performance.

7.4 Threats to Validity

In this section, we discuss the two main groups of common validity threats: internal
validity and external validity.

Regarding the internal validity, we identify the characteristics of the Dell laptop
product line used for evaluating the efficiency and the number of participants as two
relevant factors (Section 7.3.1). We used a publicly available product line and we
have investigated and created suitable NFPs based on experts opinion and general
characteristics of NFPs found in the literature [Commission et al., 2001, Mairiza
et al., 2010]. In addition, we discussed the experiment design with experienced
researchers in the product line field. However, additional experiments are required
to determine the impact in other scenarios.

Another limitation of this study concerns to the focused view used by the proposed
graphs. On the one hand, the focused view reduces the information density. On the
other hand, it might cause that the user will lose the “global view”. To minimize
this validity threat, we allow the user to expand the focused view in the 5-star
perspective but we agree that loosing the global view in the graph perspectives
might be problematic. Also, the way that the features are filtered (child features)
might cause that the effectiveness of our approach depend on the topology of the

7.5. Related Work 163

target feature model. To simulate the practical configuration task while measuring
the scalability and performance of our approach (Section 7.3.2 and Section 7.3.3
respectively), the set of selected features were chosen randomly from the whole set
of relevant features. We carried out 1,000 runs to ensure significance of the results
of this stochastic process and we reported the worst scenario to prove its feasibility.

Regarding external validity, our experiments to check the scalability rely on eleven
large and medium size real-word product lines with different types of features and
structures and from a set of diverse domains (Table 7.1). However, the use of other
product lines with different characteristics could have impacted our results. We try
to minimize this validity threat by documenting the characteristics of the product
lines4. Still, conducting experiments with additional product lines with realistic
NFPs remains part of our future work.

Our approach is designed to work effectively when a large dataset of realistic previous
configurations is available. This is a requirement for our recommender system that
allows us to compute a set of more reliable feature scores and build the visualizations.
We also use this dataset to compute NFPs’ interdependencies. However, in this work,
we assume the use of state-of-the-art approaches to compute NFP values resultants
of the interaction of a valid set of features (i.e., our focus is in the visualizations). We
are aware that measuring NFPs might influence the scalability and time performance
of our approach. This, however, goes beyond the scope of this thesis.

7.5 Related Work

Visualization reduces the complexity of comprehension tasks and helps to get insights
and make decisions on a tackled problem [Card et al., 1999a]. Visualization in
SPL engineering is a relevant challenge [Bashroush et al., 2017, Berger et al., 2013]
and therefore it has been studied by the research community to support several
tasks beyond configuration (e.g., SPL testing [Lopez-Herrejon and Egyed, 2013] or
traceability between features and implementation assets [Kästner et al., 2008]). In
this chapter, we focus on visualizations to guide the configuration process [Nestor
et al., 2008a] and we acknowledge several related works in this field.

Czarnecki et al. [2008], as part of their work in probabilistic feature models, proposed
a visualization for recommending features during the interactive configuration of
a product based on existing configurations. The visualization represents a score
associated to each feature. Regarding scores, Chapter 4, Chapter 5, and Chapter 6
studied different algorithms to be used as scores for recommender systems in SPL
configuration. We took these algorithms and we extended the visualization aspects
which was very limited in Czarnecki et al. work. In addition, both works did not
consider NFPs as part of the configuration process.

Martinez et al. [2014] presented FRoGs (Feature Relations Graphs), a visualization
paradigm based on radial ego networks that inspired two of our visualizations. Their
work uses a simple algorithm for calculating the score based on the co-occurrence of
the features, they did not consider NFPs and we extended it to show other relevant

4The complete representation (xml files) of all product lines can be found at http://wwwiti.cs.
uni-magdeburg.de/˜jualves/PROFilE/

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/
http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

164 7. Visual Guidance for Software Product Line Configurations

information. In addition, several works on visualization during configuration suggest
the importance of reducing the information density and using techniques to bring
the attention to the user to the relevant features (e.g., incremental browsing and
increasing the size in Botterweck et al. [2008] or manually introducing visibility
conditions in Dhungana et al. [2011]). We also follow these principles in our approach
while this was not present in Martinez et al. work.

Schneeweiss and Botterweck [2010] presented Feature Flow Maps which focused on
NFPs. This visualization helps to comprehend the contribution of each selected
feature in the global value of an NFP. However, the positive or negative impact
between features is not visualized. This visualization can be complementary to
ours. Bagheri and Ensan [2014a] proposed to use colors inside the feature diagram
to encourage or discourage features based on an interactive gambling process. The
NFPs are considered by showing the interdependencies among them and the impact
of each feature in the NFPs. We propose a set of visualization paradigms that are
alternatives to this work but both can be complementary as well.

Several authors proposed automatic approaches to automatically configure a prod-
uct optimizing NFPs [Ochoa et al., 2018, 2017]. These approaches often provide a
set of possible solutions due to conflicting NFPs. Murashkin et al. [2013] proposed
a visualization to help the users to select a solution among the ones automatically
found. Contrary to this, our visualization focuses on staged and gradual configu-
ration processes to support the interactive selection of features. In addition, our
approach can be combined with Murashkin et al. approach in order to allow users
to see further information about features and NFPs for the set of allowed solutions.
Other approaches, such as Temple et al. [2017], narrow the configuration space by
automatically discovering extra constraints related to specific requirements. This
can be also complementary to our approach.

Finally, a series of tools present support to the SPL configuration process [Pereira
et al., 2015]. Similarly to FeatureIDE tool, these tools follow managing variability
in SPLs. Antkiewicz and Czarnecki [2004] and Mendonça et al. [2009] introduce
a manual configurator to support users removing variability from feature models.
In both tools, feature models are visualized as a feature-tree structure and cross-
tree constraints textually as logical expressions between features. Although SPLOT
[Mendonça et al., 2009] provides constraints information among features to the user
after each decision made during the configuration process, one common capability
missing in these tools is the use of visualization and interaction techniques to sup-
port the manual configuration process before each decision. In order to address this
issue, VISIT-FC (Visual and Interactive Tool for Feature Configuration) [Nestor
et al., 2008b] and FAMA [Trinidad et al., 2008] tools introduced visualization tech-
niques of feature models considering dependences graphically as arrows between
features. However, these tools display to the user all features, relationships and
cross-tree constraints included in the model. As discussed in Section 7.1, real-world
feature models can be large and complex with many features, relationships and con-
straints. For larger-scale problems, these tools make the configuration process a
cumbersome, time-consuming, error-prone and tedious task. Current tools still lack
adequate mechanisms to visualize variability model, thus making variability harder
to manage. In contrast, our approach follows showing only the relevant features and

7.6. Summary 165

NFPs to the user, instead of the huge amount of information presented by the other
tools. It supports users to visualize in an interactive way the conflicting features and
guide them through of a hierarchical and graphical exploration of the model while
predicting features and NFPs relevance. Therefore, our approach performs well on
these large-scale problems and makes use of visualization techniques to help users
interactively configuring a product.

7.6 Summary

In this chapter, we have proposed and evaluated a set of interrelated visualizations
to improve the efficiency of decision makers to configure a product. We extended
the state-of-the-art configurator FeatureIDE with our approach. The proposed ap-
proach ensures the consistency of the configured products. In addition, it reduces
the configuration effort and complexity of decision making by providing a restricted
view of the configuration space and by dynamically assisting the decision makers to
reasoning on a focused set of relevant information about features and NFPs. We
conducted a set of numerous experiments with eleven state-of-the-art product lines
to evaluate three important practical characteristics of our approach: effectiveness,
scalability, and performance. Our experimental results show that the proposed set
of visualizations are useful as: (i) it is able to improve the effectiveness of the config-
uration process in three perspectives: the accuracy of the configuration, the number
of decisions to take, and the confidence level of decision makers; and (ii) it is scalable
for state-of-the-art product lines. We assume that most real-world problems will be
of similar scale to our experiments.

166 7. Visual Guidance for Software Product Line Configurations

8. Conclusion and Future Work

Mass customization of standardized products has become a trend to succeed in
today’s market environment. Software Product Lines (SPLs) address this trend by
describing a family of software products that share a common set of features. Differ-
ent combinations of predefined features enable tailoring the product to fit the needs
of each customer. These needs are related to functional properties of the system
(optional features) as well as non-functional properties (e.g., performance or cost of
the final product). However, choosing the appropriate set of features that matches
the customer’s needs is hampered due to the complexity of variability constraints
and the limitation of tool support to check functional properties interdependencies.
In addition, the importance of non-functional properties as relevant drivers dur-
ing configuration has been overlooked. In this context, recommender systems can
support decision makers by filtering the number of configurations and suggesting a
suitable set of features in accordance with the stakeholders’ needs. In the following,
we conclude our thesis that centers on the use of recommendation techniques and
briefly discuss potential future work on SPL configuration.

8.1 Conclusion

This work involved four phases. First, we conducted a Systematic Literature Re-
view (SLR) on the SPL configuration domain to increase the understanding of the
fundamental research issues in this field (Chapter 3). Second, to overcome a set of
SPL configuration issues found in the literature, we introduced the adoption of a
collaborative-based personalized recommender system for SPL configuration (Chap-
ter 4, Chapter 5, and Chapter 6). To this end, we presented an initial formalization
of seven recommender algorithms to the SPL configuration context: Neighbourhood-
Based Collaborative Filtering (CF), CF-Hoeffding, CF-Shrinkage, CF-Significance
Weighting, Average Similarity, Matrix Factorization, and Tensor Factorization. Thi-
rd, the algorithms were validated against several real-world and state-of-the-art
SPLs. To draw conclusions from the algorithms’ effectiveness, we compare them
with a baseline random recommender algorithm. The preliminary experiments show
that four of the seven proposed recommendation algorithms (i.e., CF-Shrinkage,

168 8. Conclusion and Future Work

CF-Significance Weighting, Matrix Factorization, and Tensor Factorization) clearly
and consistently outperform the baseline recommender in finding relevant features.
For non-extended SPLs, it has a good performance already at the initial stage of the
configuration process (i.e., with just 10% of selected features), while for extended
SPLs it presents good performance without the preliminary selection of features.
Fourth, based on insights from previous user empirical studies [Constantino et al.,
2016, Pereira et al., 2013] and the SLR presented in Chapter 3, we extended an
established state-of-the-art configurator with our recommender system (Chapter 7).
In addition, we proposed a set of interactive and automatic visual mechanisms that
are intended to support users selecting among a vast number of features, avoiding
useless and invalid decisions. In contrast to the current literature, the proposed
approach benefits from a simplified view of the configuration space by dynamically
predicting the importance of the features. Moreover, this is the first approach that
uses a collaborative-based recommender system that learns about the relevant fea-
tures from previous users configurations.

8.2 Open Research Directions

One of the main outcome of our SLR in Chapter 3 is the identification of new areas
of research that can lead to further enrichment of the SPL configuration field. In this
section, we present the short-term goal which considers the open challenges related
to the chapters of this thesis.

Direction 1: Use of other recommendation algorithms

As a next step, we will extend the proposed approaches to consider other well-
established state-of-the-art recommendation algorithms. Moreover, we plan to adapt
these algorithms to consider extra variables (e.g., selection order of features, market
domain similarity, date of feature creation, and others). For instance, we may use
the assigment of Feature Binding Time from Bürdek et al. [2014] and time-based
discounting of weights to account for drift in stakeholders’ preferences over the or-
der of feature (de)selections. Also, we aim at working with the set of configuration
constraints defined in Section 3.4 and explore the concept of optimization of reuse
created in Section 3.4.4.2. We plan therefore provide an integrated environment
by combining state-of-the-art automatic configuration approaches (e.g., EA-based
techniques) with recommender algorithms to support the set of defined configuration
constraints. Then, we intend to compare our approach with state-of-the-art opti-
mization approaches. We believe that the combination of various algorithms may
outperform single methods in terms of accuracy and performance. Finally, we plan
to investigate how the different configuration constraints can influence the accuracy
and performance results from proposed algorithms.

Direction 2: Use of other dataset of configurations

Since there are no other publicly available dataset with real configurations and ob-
taining them from companies is problematic, we could not test our approach on
further datasets. However, as future work, we plan to search for other real-world

8.2. Open Research Directions 169

datasets of configurations (e.g., by establish partnership with companies). By test-
ing our approach on other systems, we can investigate how the diversity of appli-
cation scenarios and the number of previous configurations affect the quality of the
recommendations (i.e., at which point they start to be useful). Moreover, since
recommender algorithms are frequently intended to work on very large datasets of
configurations, we also aim at analyzing the impact of the proposed algorithms on
configuration performance. From the company perspective, the recommender algo-
rithms must be able to handle a large number of features ensuring a short response
time for delivering recommendation results to ensure a good user experience.

Direction 3: Tool support and empirical user study

We aim at extending PROFilE1 with new recommender algorithms and proposing
new visualization techniques to complement the ones proposed in Chapter 7. More-
over, we plan to perform an user controlled study of PROFilE to investigate the
user’s satisfaction with the recommendations. Also, we aim at comparing PRO-
FilE with others configurators in the literature to investigate the gain in terms of
acceptance and usability of the proposed interactive configuration processes. We
hope to conduct the experiments in various settings, i.e. in industrial and academic
contexts, in different application domains, and with various kinds of participants to
have different degrees of expertise.

Direction 4: Context-aware SPL configuration process

We intend to explore various types of statistical tests to identify which of the contex-
tual NFPs and configuration constraints are truly significant in the sense that they
indeed affect the recommendations. Here, we also aim at considering the historical
order of features (de)selection as a contextual variable by assuming that different
types of actions may give rise to and call for different types of relevant features,
thus assuming a bidirectional relationship between (de)selection of features and un-
derlying contexts. Moreover, as most proposals for dynamic SPL configuration at
runtime neglect model evolution, we also plan to investigate the use of recommen-
dation techniques in this domain. Finally, we plan to evaluate our approach under
the use of different recommendation algorithms on self-adaptive systems.

Direction 5: Systematic literature review

As future work, we aim at extending the SLR presented in Chapter 3 by considering
the coming years and new proposed approaches in this field. Also, we plan to conduct
an empirical study with experts in the SPL configuration field in order to rank the
importance of the new findings.

1http://wwwiti.cs.uni-magdeburg.de/˜jualves/PROFilE/

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/

170 8. Conclusion and Future Work

A. Appendix

A.1 Papers Venues

This appendix shows the complete list of considered publication venues referring to
journals (see Table A.1), conferences (see Table A.2), workshops and symposiums
(see Table A.1). For each publication venue, we presented the venue acronym and
the set of published primary studies.

A.2 Studies Grouped by Contribution

Table A.4 shows 157 retrieved primary studies from our systematic literature re-
view. Notice that we grouped similar contributions and we refer to each group in
Section 3.4 by using a single citation from the most recent published paper.

A.3 Supported Non-Functional Properties

Table A.4 presents the set of NFPs supported by each study. Notice that most of
the studies do not clearly specify which NFPs they supported.

Table A.4: Studies grouped per contribution.

ID Study

S1 Adjoyan and Seriai [2015, 2017]
S2 Gençay et al. [2017]
S3 Guedes et al. [2017]
S4 Horcas et al. [2017], Munoz [2017], Munoz et al. [2017]
S5 Khoshnevis and Shams [2017]
S6 Kifetew et al. [2017]
S7 Nieke et al. [2017]
S8 Noorian et al. [2014, 2016, 2017]
S9 Oh et al. [2017]
S10 Machado et al. [2014a], Pereira et al. [2017]

172 A. Appendix

Table A.4: Studies grouped per contribution.

ID Study

S11 Safdar et al. [2017]
S12 Umpfenbach et al. [2017]
S13 Wang et al. [2017]
S14 Zheng et al. [2017b]
S15 Zheng et al. [2017a]
S16 Ayala et al. [2016]
S17 Ter Beek et al. [2013], ter Beek et al. [2015a,b], Ter Beek et al. [2016]
S18 B ↪ak et al. [2016], Murashkin et al. [2013], Olaechea et al. [2012]
S19 Camacho et al. [2016]
S20 Eichelberger et al. [2014, 2016], Eichelberger and Schmid [2015], El-Sharkawy

et al. [2015], Schmid and Eichelberger [2015]
S21 Hajri et al. [2016]
S22 Hierons et al. [2016a]
S23 Lu et al. [2014, 2016a,b]
S24 Mauro et al. [2016]
S25 Cruz et al. [2013], dos Santos Neto et al. [2016]
S26 Nieke et al. [2016]
S27 Noir et al. [2016]
S28 Pereira et al. [2016b], Thüm et al. [2014]
S29 Pereira et al. [2016c]
S30 Rabiser et al. [2016]
S31 Ruiz et al. [2016]
S32 Santos et al. [2016]
S33 Schwäger and Westfechtel [2016]
S34 Sharifloo et al. [2016]
S35 Sion et al. [2016]
S36 Tanhaei et al. [2016a,b]
S37 Triando et al. [2016]
S38 Winkelmann et al. [2016]
S39 Tan et al. [2015b], Xue et al. [2016]
S40 Villela et al. [2012], Zanardini et al. [2016]
S41 Zhang and Becker [2016]
S42 Bajaras and Agard [2015]
S43 Benali et al. [2015]
S44 Brink et al. [2015, 2012]
S45 Fang et al. [2015]
S46 Dhungana et al. [2013], Galindo et al. [2015b], Rabiser et al. [2012b]
S47 Henard et al. [2015a]
S48 Leite et al. [2015]
S49 Lian and Zhang [2015a]
S50 Martinez et al. [2015a]
S51 Mazo et al. [2015], Sawyer et al. [2012]
S52 Myllärniemi et al. [2015]
S53 Ochoa et al. [2015]
S54 Pascual et al. [2015a, 2013]
S55 Rezapour et al. [2015]
S56 Siegmund et al. [2015, 2012a,b,c]
S57 Soares et al. [2015]
S58 Valov et al. [2015]
S59 Svee and Zdravkovic [2015], Zdravkovic et al. [2015]
S60 Asadi et al. [2014], Soltani et al. [2012]
S61 Bagheri and Ensan [2014b], Bashari et al. [2014]
S62 Behjati et al. [2014, 2012, 2013]

A.3. Supported Non-Functional Properties 173

Table A.4: Studies grouped per contribution.

ID Study

S63 Bürdek et al. [2014]
S64 Bures et al. [2014]
S65 Chavarriaga et al. [2014]
S66 Foster et al. [2014]
S67 Guo et al. [2014]
S68 Lin and Kremer [2014], Lin and Okudan [2012]
S69 Mazo et al. [2014a]
S70 Murguzur et al. [2014]
S71 Murwantara et al. [2014], Murwantara and Bordbar [2014]
S72 Martinez et al. [2014]
S73 Olaechea et al. [2014]
S74 Sánchez et al. [2014], Sanchez et al. [2013]
S75 Tan et al. [2014b]
S76 Urli et al. [2014]
S77 Wang and Pang [2014]
S78 White et al. [2014]
S79 Zhang et al. [2014]
S80 Acher et al. [2013]
S81 Chen et al. [2013]
S82 Cubo et al. [2013]
S83 Gamez and Fuentes [2013]
S84 Ge et al. [2013]
S85 Jannach and Zanker [2013]
S86 Karimpour and Ruhe [2013]
S87 Holl et al. [2012a, 2013, 2012b], Klambauer et al. [2013]
S88 Kolesnikov et al. [2013]
S89 Kramer et al. [2013]
S90 Lee [2013]
S91 Saller et al. [2013]
S92 Sayyad et al. [2013a,b,c]
S93 Tan et al. [2013]
S94 Bagheri et al. [2012a]
S95 Roos-Frantz et al. [2012]
S96 Heider et al. [2012]
S97 Lettner et al. [2012]
S98 Mazo et al. [2012b,c]
S99 Mitchell [2012]
S100 Mussbacher et al. [2012]
S101 Neves et al. [2012]
S102 Nöhrer et al. [2012a,b]
S103 Ognjanovic et al. [2012]
S104 Ostrosi et al. [2012]
S105 Parra et al. [2012]
S106 Pleuss and Botterweck [2012]
S107 Qin and Wei [2012]
S108 Schroeter et al. [2012]
S109 Thurimella and Bruegge [2012]
S110 Wang and Ng [2012]
S111 Wittern et al. [2012]
S112 Zhao et al. [2012]

174 A. Appendix

A
c
r
o
n
y
m

P
r
im

a
r
y

st
u
d
y

V
e
n
u
e

-
W

in
k
el

m
a
n
n

et
a
l.

[2
0
1
6
]

C
en

tr
a
l

E
u

ro
p

e
(C

E
U

R
)

W
o
rk

sh
o
p

P
ro

ce
ed

in
g
s

-
K

h
o
sh

n
ev

is
a
n
d

S
h
a
m

s
[2

0
1
7
]

F
ro

n
ti

er
s

o
f

C
o
m

p
u
te

r
S
ci

en
ce

-
G

en
ça

y
et

a
l.

[2
0
1
7
],

W
a
n
g

et
a
l.

[2
0
1
7
]

J
o
u

rn
a
l

o
f

In
te

ll
ig

en
t

M
a
n
u

fa
ct

u
ri

n
g

-
N

o
o
ri

a
n

et
a
l.

[2
0
1
7
]

J
o
u

rn
a
l

o
f

S
o
ft

w
a
re

:
E

v
o
lu

ti
o
n

a
n
d

P
ro

ce
ss

-
Z

h
en

g
et

a
l.

[2
0
1
7
b

]
T

h
e

In
t.

J
o
u

rn
a
l

o
f

A
d

v
a
n

ce
d

M
a
n
u

fa
ct

u
ri

n
g

T
ec

h
n

o
lo

g
y

-
R

ez
a
p

o
u

r
et

a
l.

[2
0
1
5
]

T
ra

n
sp

o
rt

a
ti

o
n

R
es

ea
rc

h
P

a
rt

E
:
L

o
g
is

ti
cs

a
n

d
T

ra
n
sp

o
rt

a
ti

o
n

R
ev

ie
w

A
S

C
d
o
s

S
a
n
to

s
N

et
o

et
a
l.

[2
0
1
6
],

X
u

e
et

a
l.

[2
0
1
6
]

J
o
u

rn
a
l

A
p

p
li
ed

S
o
ft

C
o
m

p
u

ti
n
g

C
D

S
P

L
S

a
w

y
er

et
a
l.

[2
0
1
2
]

IE
E

E
C

o
m

p
u

te
r

D
y
n

a
m

ic
S

o
ft

w
a
re

P
ro

d
u

ct
L

in
es

C
E

R
A

W
a
n

g
a
n

d
N

g
[2

0
1
2
]

C
o
n

cu
rr

en
t

E
n
g
in

ee
ri

n
g

R
es

ea
rc

h
a
n

d
A

p
p

li
ca

ti
o
n
s

C
L

O
U

D
L

ei
te

et
a
l.

[2
0
1
5
]

In
t.

C
o
n
fe

re
n

ce
o
n

C
lo

u
d

C
o
m

p
u

ti
n

g
IJ

ID
eM

B
a

ja
ra

s
a
n

d
A

g
a
rd

[2
0
1
5
]

In
t.

J
o
u

rn
a
l

o
n

In
te

ra
ct

iv
e

D
es

ig
n

a
n

d
M

a
n
u

fa
ct

u
ri

n
g

IJ
K

S
S

B
a
sh

a
ri

et
a
l.

[2
0
1
4
]

In
t.

J
o
u
rn

a
l

o
f

K
n

o
w

le
d
g
e

a
n
d

S
y
st

em
s

S
ci

en
ce

IS
T

A
sa

d
i

et
a
l.

[2
0
1
4
],

B
eh

ja
ti

et
a
l.

[2
0
1
3
],

G
a
li
n
d

o
et

a
l.

[2
0
1
5
b

],
G

a
m

ez
a
n

d
F

u
en

te
s

[2
0
1
3
],

L
u

et
a
l.

[2
0
1
6
a
],

T
a
n

h
a
ei

et
a
l.

[2
0
1
6
a
],

T
h
u

ri
m

el
la

a
n

d
B

ru
eg

g
e

[2
0
1
2
]

In
fo

rm
a
ti

o
n

a
n

d
S

o
ft

w
a
re

T
ec

h
n
o
lo

g
y

IT
O

R
P

er
ei

ra
et

a
l.

[2
0
1
7
]

In
t.

T
ra

n
sa

ct
io

n
s

in
O

p
er

a
ti

o
n

a
l

R
es

ea
rc

h
J
C

I
L

in
a
n

d
K

re
m

er
[2

0
1
4
]

J
o
u

rn
a
l

o
f

C
o
m

p
u

te
rs

in
In

d
u

st
ry

J
C

S
T

T
a
n

h
a
ei

et
a
l.

[2
0
1
6
b

]
J
o
u
rn

a
l

o
f

C
o
m

p
u

te
r

S
ci

en
ce

a
n

d
T

ec
h
n

o
lo

g
y

J
E

O
F

o
st

er
et

a
l.

[2
0
1
4
]

J
o
u

rn
a
l

o
f

E
n

g
in

ee
ri

n
g

O
p

ti
m

iz
a
ti

o
n

J
IM

O
st

ro
si

et
a
l.

[2
0
1
2
]

J
o
u

rn
a
l

o
f

In
te

ll
ig

en
t

M
a
n
u
fa

ct
u

ri
n

g
J
IS

M
D

M
a
zo

et
a
l.

[2
0
1
2
c]

In
t.

J
o
u
rn

a
l

o
f

In
fo

rm
a
ti

o
n

S
y
st

em
M

o
d
el

in
g

a
n

d
D

es
ig

n
J
L

A
M

P
C

a
m

a
ch

o
et

a
l.

[2
0
1
6
],

Z
a
n

a
rd

in
i

et
a
l.

[2
0
1
6
]

J
o
u

rn
a
l

o
f

L
o
g
ic

a
l

a
n
d

A
lg

eb
ra

ic
M

et
h

o
d
s

in
P

ro
g
ra

m
m

in
g

J
M

S
Y

Z
h

en
g

et
a
l.

[2
0
1
7
a
]

J
o
u

rn
a
l

o
f

M
a
n
u

fa
ct

u
ri

n
g

S
y
st

em
s

J
O

R
S

U
m

p
fe

n
b
a
ch

et
a
l.

[2
0
1
7
]

J
o
u
rn

a
l

o
f

th
e

O
p

er
a
ti

o
n

a
l

R
es

ea
rc

h
S

o
ci

et
y

J
R

E
B

a
g
h
er

i
a
n
d

E
n

sa
n

[2
0
1
4
b

],
Z

d
ra

v
k
o
v
ic

et
a
l.

[2
0
1
5
]

J
o
u

rn
a
l

o
f

R
eq

u
ir

em
en

ts
E

n
g
in

ee
ri

n
g

J
S

Q
in

a
n

d
W

ei
[2

0
1
2
]

J
o
u

rn
a
l

o
f

S
o
ft

w
a
re

J
S

E
K

E
N

o
o
ri

a
n

et
a
l.

[2
0
1
4
]

In
t.

J
o
u

rn
a
l

o
f

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

a
n
d

K
n
o
w

le
d

g
e

E
n
g
in

ee
ri

n
g

J
S

E
P

B
a
g
h

er
i

et
a
l.

[2
0
1
2
a
]

J
o
u
rn

a
l

o
f

S
o
ft

w
a
re

:
E

v
o
lu

ti
o
n

a
n

d
P

ro
ce

ss
J
S

J
U

W
a
n
g

a
n
d

P
a
n

g
[2

0
1
4
]

J
o
u

rn
a
l

o
f

S
h

a
n
g
h

a
i

J
ia

o
to

n
g

U
n

iv
er

si
ty

(S
ci

en
ce

)
J
S

S
P

a
sc

u
a
l

et
a
l.

[2
0
1
5
a
],

W
h

it
e

et
a
l.

[2
0
1
4
]

J
o
u

rn
a
l

o
f

S
y
st

em
s

a
n

d
S
o
ft

w
a
re

J
S

T
T

T
P

le
u

ss
a
n

d
B

o
tt

er
w

ec
k

[2
0
1
2
]

In
t.

J
o
u

rn
a
l

o
n

S
o
ft

w
a
re

T
o
o
ls

fo
r

T
ec

h
n

o
lo

g
y

T
ra

n
sf

er
R

S
S

E
M

a
zo

et
a
l.

[2
0
1
4
a
]

R
ec

o
m

m
en

d
a
ti

o
n

S
y
st

em
s

in
S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

S
C

P
A

ch
er

et
a
l.

[2
0
1
3
],

T
h

ü
m

et
a
l.

[2
0
1
4
]

S
ci

en
ce

o
f

C
o
m

p
u

te
r

P
ro

g
ra

m
m

in
g

S
o
S

y
M

R
a
b
is

er
et

a
l.

[2
0
1
6
]

S
o
ft

w
a
re

a
n

d
S

y
st

em
s

M
o
d

el
in

g
S

Q
J

M
u

ss
b
a
ch

er
et

a
l.

[2
0
1
2
],

R
o
o
s-

F
ra

n
tz

et
a
l.

[2
0
1
2
],

S
ie

g
m

u
n

d
et

a
l.

[2
0
1
2
c]

,
Z

h
a
n

g
et

a
l.

[2
0
1
4
]

S
o
ft

w
a
re

Q
u

a
li
ty

J
o
u

rn
a
l

S
S
M

B
↪a
k

et
a
l.

[2
0
1
6
]

S
o
ft

w
a
re

&
S

y
st

em
s

M
o
d

el
in

g
T

K
D

E
J
a
n

n
a
ch

a
n

d
Z

a
n

k
er

[2
0
1
3
]

IE
E

E
T

ra
n

sa
ct

io
n
s

o
n

K
n

o
w

le
d

g
e

a
n
d

D
a
ta

E
n

g
in

ee
ri

n
g

T
O

S
E

M
B

eh
ja

ti
et

a
l.

[2
0
1
4
],

H
ie

ro
n
s

et
a
l.

[2
0
1
6
a
]

A
C

M
T

ra
n

sa
ct

io
n
s

o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

a
n
d

M
et

h
o
d

o
lo

g
y

Table A.1: List of journal publications.

A.3. Supported Non-Functional Properties 175

A
c
r
o
n
y
m

P
r
im

a
r
y

st
u
d
y

V
e
n
u
e

A
C

S
C

T
a
n

et
a
l.

[2
0
1
3
]

A
u

st
ra

la
si

a
n

C
o
m

p
u

te
r

S
ci

en
ce

C
o
n

fe
re

n
ce

A
P

S
E

C
H

o
ll

et
a
l.

[2
0
1
2
a
,

2
0
1
3
],

T
a
n

et
a
l.

[2
0
1
4
b
]

A
si

a
-P

a
ci

fi
c

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

C
o
n

fe
re

n
ce

A
S

E
G

u
o

et
a
l.

[2
0
1
4
],

R
a
b
is

er
et

a
l.

[2
0
1
2
b

],
S

a
y
y
a
d

et
a
l.

[2
0
1
3
b

],
S
ch

w
ä
g
er

a
n
d

W
es

tf
ec

h
te

l
[2

0
1
6
]

In
t.

C
o
n

fe
re

n
ce

o
n

A
u

to
m

a
te

d
S

o
ft

w
a
re

E
n

g
in

ee
ri

n
g

A
S

M
E

L
in

a
n

d
O

k
u

d
a
n

[2
0
1
2
]

In
t.

D
es

ig
n

E
n

g
in

ee
ri

n
g

T
ec

h
n
ic

a
l

C
o
n
fe

re
n

ce
s

B
D

C
L

O
U

D
M

u
rw

a
n
ta

ra
a
n

d
B

o
rd

b
a
r

[2
0
1
4
]

In
t.

C
o
n

fe
re

n
ce

o
n

B
ig

D
a
ta

a
n

d
C

lo
u
d

C
o
m

p
u
ti

n
g

B
IR

S
v
ee

a
n

d
Z

d
ra

v
k
o
v
ic

[2
0
1
5
]

In
t.

C
o
n

fe
re

n
ce

o
n

P
er

sp
ec

ti
v
es

in
B

u
si

n
es

s
In

fo
rm

a
ti

cs
R

es
ea

rc
h

C
A

iS
E

M
a
zo

et
a
l.

[2
0
1
2
b

]
In

t.
C

o
n

fe
re

n
ce

o
n

A
d

v
a
n

ce
d

In
fo

rm
a
ti

o
n

S
y
st

em
s

E
n

g
in

ee
ri

n
g

C
B

S
o
ft

M
a
ch

a
d

o
et

a
l.

[2
0
1
4
a
]

B
ra

zi
li
a
n

C
o
n
g
re

ss
o
n

S
o
ft

w
a
re

C
D

V
E

Z
h

a
o

et
a
l.

[2
0
1
2
]

In
t.

C
o
n

fe
re

n
ce

o
n

C
o
o
p

er
a
ti

v
e

D
es

ig
n

,
V

is
u
a
li
za

ti
o
n
,

a
n

d
E

n
g
in

ee
ri

n
g

C
E

C
C

ru
z

et
a
l.

[2
0
1
3
]

C
o
n

g
re

ss
o
n

E
v
o
lu

ti
o
n
a
ry

C
o
m

p
u
ta

ti
o
n

C
lo

u
d

T
ec

h
B

en
a
li

et
a
l.

[2
0
1
5
]

In
t.

C
o
n

fe
re

n
ce

o
n

C
lo

u
d

T
ec

h
n
o
lo

g
ie

s
a
n

d
A

p
p
li
ca

ti
o
n

s
E

C
M

F
A

B
eh

ja
ti

et
a
l.

[2
0
1
2
]

E
u

ro
p

ea
n

C
o
n
fe

re
n

ce
o
n

M
o
d
el

li
n

g
F

o
u
n

d
a
ti

o
n

s
a
n

d
A

p
p

li
ca

ti
o
n

s
E

C
S

A
M

u
n

o
z

et
a
l.

[2
0
1
7
]

E
u

ro
p

ea
n

C
o
n
fe

re
n

ce
o
n

S
o
ft

w
a
re

A
rc

h
it

ec
tu

re
:

C
o
m

p
a
n

io
n

P
ro

ce
ed

in
g
s

E
u

S
E

C
M

it
ch

el
l

[2
0
1
2
]

E
u

ro
p

ea
n

S
y
st

em
s

E
n
g
in

ee
ri

n
g

C
o
n
fe

re
n

ce
G

E
C

C
O

M
a
rt

in
ez

et
a
l.

[2
0
1
5
a
],

S
a
fd

a
r

et
a
l.

[2
0
1
7
]

G
en

et
ic

a
n
d

E
v
o
lu

ti
o
n

a
ry

C
o
m

p
u

ta
ti

o
n

C
o
n
fe

re
n

ce
G

P
C

E
K

ra
m

er
et

a
l.

[2
0
1
3
],

N
ev

es
et

a
l.

[2
0
1
2
],

P
er

ei
ra

et
a
l.

[2
0
1
6
c]

In
t.

C
o
n
fe

re
n

ce
o
n

G
en

er
a
ti

v
e

P
ro

g
ra

m
m

in
g
:

C
o
n
ce

p
ts

a
n

d
E

x
p

er
ie

n
ce

s
IC

A
C

S
IS

T
ri

a
n

d
o

et
a
l.

[2
0
1
6
]

In
t.

C
o
n

fe
re

n
ce

o
n

A
d

v
a
n

ce
d

C
o
m

p
u

te
r

S
ci

en
ce

a
n
d

In
fo

rm
a
ti

o
n

S
y
st

em
s

IC
M

IC
G

e
et

a
l.

[2
0
1
3
]

In
t.

C
o
n

fe
re

n
ce

o
n

M
ea

su
re

m
en

t,
In

fo
rm

a
ti

o
n

a
n
d

C
o
n
tr

o
l

IC
S

E
H

en
a
rd

et
a
l.

[2
0
1
5
a
],

S
a
y
y
a
d

et
a
l.

[2
0
1
3
c]

,
S
ie

g
m

u
n

d
et

a
l.

[2
0
1
2
a
]

In
t.

C
o
n

fe
re

n
ce

o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

IC
S

E
S

S
C

h
en

et
a
l.

[2
0
1
3
]

In
t.

C
o
n

fe
re

n
ce

o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

a
n

d
S
er

v
ic

e
S
ci

en
ce

s
IC

S
O

C
W

it
te

rn
et

a
l.

[2
0
1
2
]

In
t.

C
o
n

fe
re

n
ce

o
n

S
er

v
ic

e-
O

ri
en

te
d

C
o
m

p
u
ti

n
g

IC
S

R
C

u
b

o
et

a
l.

[2
0
1
3
],

P
er

ei
ra

et
a
l.

[2
0
1
6
b

]
In

t.
C

o
n

fe
re

n
ce

o
n

S
o
ft

w
a
re

R
eu

se
IC

S
T

L
u

et
a
l.

[2
0
1
6
b

]
In

t.
C

o
n

fe
re

n
ce

o
n

S
o
ft

w
a
re

T
es

ti
n
g
,

V
er

ifi
ca

ti
o
n

a
n
d

V
a
li
d
a
ti

o
n

ii
W

A
S

M
u

rw
a
n
ta

ra
et

a
l.

[2
0
1
4
]

In
t.

C
o
n
fe

re
n

ce
o
n

In
f.

In
te

g
ra

ti
o
n

a
n
d

W
eb

-B
a
se

d
A

p
p

li
ca

ti
o
n

s
a
n
d

S
er

v
ic

es
M

O
D

E
L

S
C

h
a
v
a
rr

ia
g
a

et
a
l.

[2
0
1
4
]

In
t.

C
o
n

fe
re

n
ce

o
n

M
o
d
el

D
ri

v
en

E
n
g
in

ee
ri

n
g

L
a
n
g
u

a
g
es

a
n

d
S
y
st

em
s

P
A

A
M

S
A

y
a
la

et
a
l.

[2
0
1
6
]

In
t.

C
o
n

fe
re

n
ce

o
n

P
ra

ct
ic

a
l

A
p

p
li
ca

ti
o
n

s
o
f

A
g
en

ts
a
n
d

M
u
lt

i-
A

g
en

t
S
y
st

em
s

P
R

O
F

E
S

B
ri

n
k

et
a
l.

[2
0
1
5
]

In
t.

C
o
n

fe
re

n
ce

n
o

P
ro

d
u
ct

-F
o
cu

se
d

S
o
ft

w
a
re

P
ro

ce
ss

Im
p

ro
v
em

en
t

Q
o
S

A
M

y
ll
ä
rn

ie
m

i
et

a
l.

[2
0
1
5
]

In
t.

C
o
n

fe
re

n
ce

o
n

Q
u

a
li
ty

o
f

S
o
ft

w
a
re

A
rc

h
it

ec
tu

re
s

R
E

F
S
Q

K
la

m
b

a
u

er
et

a
l.

[2
0
1
3
]

In
t.

C
o
n
fe

re
n

ce
o
n

R
eq

u
ir

em
en

ts
E

n
g
in

ee
ri

n
g
:

F
o
u

n
d
a
ti

o
n

fo
r

S
o
ft

w
a
re

Q
u

a
li
ty

S
A

N
E

R
L

ia
n

a
n

d
Z

h
a
n

g
[2

0
1
5
a
]

In
t.

C
o
n

fe
re

n
ce

o
n

S
o
ft

w
a
re

A
n
a
ly

si
s,

E
v
o
lu

ti
o
n

,
a
n

d
R

ee
n

g
in

ee
ri

n
g

S
C

C
O

g
n

ja
n

o
v
ic

et
a
l.

[2
0
1
2
]

In
t.

C
o
n

fe
re

n
ce

o
n

S
er

v
ic

es
C

o
m

p
u
ti

n
g

S
E

K
E

A
d

jo
y
a
n

a
n

d
S
er

ia
i

[2
0
1
5
]

In
t.

C
o
n
fe

re
n

ce
o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

a
n
d

K
n
o
w

le
d

g
e

E
n

g
in

ee
ri

n
g

S
L

E
O

ch
o
a

et
a
l.

[2
0
1
5
]

In
t.

C
o
n

fe
re

n
ce

o
n

S
o
ft

w
a
re

L
a
n
g
u

a
g
e

E
n

g
in

ee
ri

n
g

S
P

L
C

E
ic

h
el

b
er

g
er

et
a
l.

[2
0
1
4
,

2
0
1
6
],

E
ic

h
el

b
er

g
er

a
n

d
S

ch
m

id
[2

0
1
5
],

F
a
n
g

et
a
l.

[2
0
1
5
],

H
ei

d
er

et
a
l.

[2
0
1
2
],

H
o
rc

a
s

et
a
l.

[2
0
1
7
],

L
ee

[2
0
1
3
],

L
et

tn
er

et
a
l.

[2
0
1
2
],

M
a
zo

et
a
l.

[2
0
1
5
],

M
u
n

o
z

[2
0
1
7
],

M
u

ra
sh

k
in

et
a
l.

[2
0
1
3
],

M
u
rg

u
zu

r
et

a
l.

[2
0
1
4
],

N
ö
h
re

r
et

a
l.

[2
0
1
2
a
],

N
o
ir

et
a
l.

[2
0
1
6
],

O
la

ec
h

ea
et

a
l.

[2
0
1
4
],

S
a
ll
er

et
a
l.

[2
0
1
3
],

S
ch

m
id

a
n

d
E

ic
h

el
b

er
g
er

[2
0
1
5
],

S
ch

ro
et

er
et

a
l.

[2
0
1
2
],

S
io

n
et

a
l.

[2
0
1
6
],

S
o
lt

a
n

i
et

a
l.

[2
0
1
2
],

T
er

B
ee

k
et

a
l.

[2
0
1
3
],

te
r

B
ee

k
et

a
l.

[2
0
1
5
b
],

U
rl

i
et

a
l.

[2
0
1
4
],

V
a
lo

v
et

a
l.

[2
0
1
5
],

V
il
le

la
et

a
l.

[2
0
1
2
],

Z
h

a
n

g
a
n
d

B
ec

k
er

[2
0
1
6
]

In
t.

S
y
st

em
s

a
n

d
S
o
ft

w
a
re

P
ro

d
u
ct

L
in

e
C

o
n

fe
re

n
ce

U
C

C
R

u
iz

et
a
l.

[2
0
1
6
]

In
t.

C
o
n

fe
re

n
ce

o
n

U
ti

li
ty

a
n
d

C
lo

u
d

C
o
m

p
u

ti
n

g
V

IS
S

O
F

T
M

a
rt

in
ez

et
a
l.

[2
0
1
4
]

In
t.

W
o
rk

in
g

C
o
n

fe
re

n
ce

o
n

S
o
ft

w
a
re

V
is

u
a
li
za

ti
o
n

Table A.2: List of conference publications.

176 A. Appendix

A
c
r
o
n
y
m

P
r
im

a
r
y

st
u
d
y

V
e
n
u
e

Symposium

C
B

S
E

B
u
re

s
et

a
l.

[2
0
1
4
]

In
t.

S
y
m

p
o
si

u
m

o
n

C
o
m

p
o
n
en

t-
B

a
se

d
S

o
ft

w
a
re

E
n

g
in

ee
ri

n
g

F
S

E
H

a
jr

i
et

a
l.

[2
0
1
6
],

O
h

et
a
l.

[2
0
1
7
],

S
ie

g
m

u
n

d
et

a
l.

[2
0
1
5
]

In
t.

S
y
m

p
o
si

u
m

o
n

F
o
u

n
d
a
ti

o
n
s

o
f

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

IS
o
L

A
T

er
B

ee
k

et
a
l.

[2
0
1
6
]

In
t.

S
y
m

p
o
si

u
m

o
n

L
ev

er
a
g
in

g
A

p
p

li
ca

ti
o
n

s
o
f

F
o
rm

a
l

M
et

h
o
d

s
IS

S
R

E
L

u
et

a
l.

[2
0
1
4
]

In
t.

S
y
m

p
o
si

u
m

o
n

S
o
ft

w
a
re

R
el

ia
b

il
it

y
E

n
g
in

ee
ri

n
g

IS
S

T
A

T
a
n

et
a
l.

[2
0
1
5
b
]

In
t.

S
y
m

p
o
si

u
m

o
n

S
o
ft

w
a
re

T
es

ti
n

g
a
n

d
A

n
a
ly

si
s

S
A

C
A

d
jo

y
a
n

a
n

d
S

er
ia

i
[2

0
1
7
],

N
o
o
ri

a
n

et
a
l.

[2
0
1
6
],

P
a
rr

a
et

a
l.

[2
0
1
2
]

S
y
m

p
o
si

u
m

o
n

A
p
p

li
ed

C
o
m

p
u
ti

n
g

S
B

C
A

R
S

S
á
n

ch
ez

et
a
l.

[2
0
1
4
]

B
ra

zi
li
a
n

S
y
m

p
o
si

u
m

o
n

S
o
ft

w
a
re

C
o
m

p
o
n

en
ts

,
A

rc
h
it

ec
tu

re
s

a
n

d
R

eu
se

S
B

E
S

G
u

ed
es

et
a
l.

[2
0
1
7
],

S
a
n
to

s
et

a
l.

[2
0
1
6
]

B
ra

zi
li
a
n

S
y
m

p
o
si

u
m

o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

S
E

A
M

S
P

a
sc

u
a
l

et
a
l.

[2
0
1
3
],

S
h
a
ri

fl
o
o

et
a
l.

[2
0
1
6
]

In
t.

S
y
m

p
o
si

u
m

o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

fo
r

A
d

a
p

ti
v
e

a
n

d
S
el

f-
M

a
n

a
g
in

g
S

y
st

em
s

S
S
B

S
E

K
if

et
ew

et
a
l.

[2
0
1
7
]

In
t.

S
y
m

p
o
si

u
m

o
n

S
ea

rc
h
-B

a
se

d
S

o
ft

w
a
re

E
n
g
in

ee
ri

n
g

Workshop

C
M

S
B

S
E

K
a
ri

m
p

o
u
r

a
n
d

R
u

h
e

[2
0
1
3
],

S
a
n

ch
ez

et
a
l.

[2
0
1
3
],

S
a
y
y
a
d

et
a
l.

[2
0
1
3
a
]

In
t.

W
o
rk

sh
o
p

o
n

C
o
m

b
in

in
g

M
o
d

el
li
n

g
a
n

d
S
ea

rc
h
-B

a
se

d
S

o
ft

w
a
re

E
n

g
in

ee
ri

n
g

E
T

X
E

l-
S
h

a
rk

a
w

y
et

a
l.

[2
0
1
5
]

E
cl

ip
se

T
ec

h
n
o
lo

g
y

eX
ch

a
n
g
e

F
M

S
P

L
E

te
r

B
ee

k
et

a
l.

[2
0
1
5
a
]

In
t.

W
o
rk

sh
o
p

o
n

F
o
rm

a
l

M
et

h
o
d
s

a
n

d
A

n
a
ly

si
s

in
S

o
ft

w
a
re

P
ro

d
u

ct
L

in
e

E
n

g
in

ee
ri

n
g

N
F

P
in

D
S

M
L

O
la

ec
h

ea
et

a
l.

[2
0
1
2
]

In
t.

W
o
rk

sh
o
p

o
n

N
o
n

fu
n
ct

io
n
a
l

S
y
st

em
P

ro
p

er
ti

es
in

D
o
m

a
in

S
p

ec
ifi

c
M

o
d

el
in

g
L

a
n
g
u

a
g
es

S
E

E
S

S
ie

g
m

u
n
d

et
a
l.

[2
0
1
2
b

]
In

t.
W

o
rk

sh
o
p

o
n

S
o
ft

w
a
re

E
n
g
in

ee
ri

n
g

fo
r

E
m

b
ed

d
ed

S
y
st

em
s

V
a
M

o
S

B
ü

rd
ek

et
a
l.

[2
0
1
4
],

D
h
u
n

g
a
n

a
et

a
l.

[2
0
1
3
],

H
o
ll

et
a
l.

[2
0
1
2
b
],

K
o
le

sn
ik

o
v

et
a
l.

[2
0
1
3
],

M
a
u

ro
et

a
l.

[2
0
1
6
],

N
ie

k
e

et
a
l.

[2
0
1
7
,
2
0
1
6
],

N
ö
h
re

r
et

a
l.

[2
0
1
2
b
],

S
o
a
re

s
et

a
l.

[2
0
1
5
]

In
t.

W
o
rk

sh
o
p

o
n

V
a
ri

a
b

il
it

y
M

o
d

el
in

g
o
f

S
o
ft

w
a
re

-I
n
te

n
si

v
e

S
y
st

em
s

V
a
ri

C
o
m

p
B

ri
n

k
et

a
l.

[2
0
1
2
]

In
t.

W
o
rk

sh
o
p

o
n

V
a
ri

a
b
il
it

y
&

C
o
m

p
o
si

ti
o
n

Table A.3: List of symposium and workshop publications.

A.3. Supported Non-Functional Properties 177

S
tu

d
y

N
o
n
-F

u
n
c
ti
o
n
a
l
P
r
o
p
e
r
ti
e
s

G
u
ed

es
et

a
l.

b
a
tt

er
y,

n
et

w
o
rk

,
st

o
ck

,
w

ea
th

er
H

o
rc

a
s

et
a
l.

en
er

g
y

K
h
o
sh

n
ev

is
a
n
d

S
h

a
m

s
co

h
es

io
n

,
co

u
p

li
n
g
,

g
ra

n
u

la
ri

ty
,

b
u

si
n

es
s

en
ti

ty
co

n
v
er

g
en

ce
K

if
et

ew
et

a
l.

li
n
es

o
f

co
d
e,

cy
cl

o
m

a
ti

c
co

m
p

le
x
it

y,
te

st
a
ss

er
ti

o
n

s,
n
u

m
b

er
o
f

in
st

a
ll
a
ti

o
n

s,
n
u

m
b

er
o
f

d
ev

el
o
p

er
s,

n
u
m

b
er

o
f

ch
a
n

g
es

,
n
u

m
b

er
o
f

fa
u
lt

s
N

ie
k
e

et
a
l.

L
o
ca

ti
o
n

N
o
o
ri

a
n

et
a
l.

sa
ti

sf
a
ct

io
n

,
co

st
,

se
cu

ri
ty

,
ea

se
to

u
se

,
p
re

fo
rm

a
n

ce
,

sa
fe

ty
P

er
ei

ra
et

a
l.

co
st

,
d
eg

re
e

o
f

p
re

fe
re

n
ce

U
m

p
fe

n
b

a
ch

et
a
l.

v
o
lu

m
e,

co
st

s,
p

ro
fi

t
Z

h
en

g
et

a
l.

d
el

iv
er

y
ti

m
e,

se
rv

ic
e

q
u

a
li
ty

,
p
ro

d
u
ct

q
u

a
li
ty

T
er

B
ee

k
et

a
l.

co
st

,
w

ei
g
h
t,

lo
a
d

C
a
m

a
ch

o
et

a
l.
,

Q
in

a
n
d

W
ei

co
st

M
a
u

ro
et

a
l.

m
a
x

sp
ee

d
,

ro
a
d
,

lo
ca

ti
o
n

d
o
s

S
a
n
to

s
N

et
o

et
a
l.

co
st

,
su

it
a
b

il
it

y
N

o
ir

et
a
l.

se
cu

ri
ty

,
sa

fe
ty

,
C

P
U

re
sp

o
n

se
,

li
fe

ti
m

e,
o
v
er

h
ea

d
,

m
a
in

te
n

a
n
ce

,
co

st
,

p
o
w

er
co

n
su

m
p

ti
o
n

R
u

iz
et

a
l.

co
st

,
C

P
U

,
m

em
o
ry

,
d
is

k
S

a
n
to

s
et

a
l.

sp
ee

d
,

ro
a
d
,

lo
ca

ti
o
n

H
en

a
rd

et
a
l.
,

L
ia

n
a
n
d

Z
h
a
n

g
,

S
a
y
y
a
d

et
a
l.
,

X
u

e
et

a
l.

co
st

,
u

se
d

b
ef

o
re

,
d

ef
ec

ts

Z
a
n

a
rd

in
i

et
a
l.

m
em

o
ry

co
n

su
m

p
ti

o
n

,
n
u
m

b
er

o
f

in
st

ru
ct

io
n

s
B

en
a
li

et
a
l.

in
st

a
ll
a
ti

o
n

ti
m

e
L

ei
te

et
a
l.

v
C

P
U

,
m

em
o
ry

,
co

st
M

y
ll

ä
rn

ie
m

i
et

a
l.

se
cu

ri
ty

O
ch

o
a

et
a
l.

co
st

s,
h
u

m
a
n

re
so

u
rc

es
,

ti
m

e
P

a
sc

u
a
l

et
a
l.

u
sa

b
il
it

y,
b

a
tt

er
y

co
n

su
m

p
ti

o
n

,
m

em
o
ry

fo
o
tp

ri
n
t

R
ez

a
p

o
u

r
et

a
l.

q
u

a
li
ty

,
p

ri
ce

S
ie

g
m

u
n

d
et

a
l.

re
li
a
b

il
it

y,
co

m
p

le
x
it

y,
fo

o
tp

ri
n
t,

p
er

fo
rm

a
n
ce

S
o
a
re

s
et

a
l.

fo
o
tp

ri
n
t,

p
er

fo
rm

a
n
ce

,
m

em
o
ry

co
n

su
m

p
ti

o
n

,
u
sa

b
il
it

y
V

a
lo

v
et

a
l.

p
er

fo
rm

a
n

ce
A

sa
d

i
et

a
l.

co
st

,
se

cu
ri

ty
,

p
er

fo
rm

a
n

ce
,

re
li
a
b

il
it

y,
ea

se
o
f

u
se

B
a
sh

a
ri

et
a
l.

ti
m

e-
to

-m
a
rk

et
,

d
ev

el
o
p

m
en

t
co

st
,

cu
st

o
m

er
sa

ti
sf

a
ct

io
n

,
se

cu
ri

ty
,

u
sa

b
il
it

y,
re

li
a
b

il
it

y,
p

er
fo

rm
a
n

ce
,

su
p
p

o
rt

a
b

il
it

y
B

ü
rd

ek
et

a
l.

b
in

d
in

g
ti

m
e

G
u
o

et
a
l.

co
st

,
re

li
a
b

il
it

y,
b
a
tt

er
y

u
sa

g
e,

re
sp

o
n

se
ti

m
e,

ra
m

p
-u

p
ti

m
e,

d
ev

el
o
p

m
en

t
ti

m
e,

d
ep

lo
y
m

en
t

ti
m

e
M

a
zo

et
a
l.

p
er

fo
rm

a
n

ce
,

re
u

se
,

co
st

M
u

rw
a
n
ta

ra
et

a
l.

en
er

g
y

co
n

su
m

p
ti

o
n

O
la

ec
h
ea

et
a
l.

re
li
a
b

il
it

y,
se

cu
ri

ty
,

fo
o
tp

ri
n
t,

m
a
ss

,
b
a
tt

er
y,

re
sp

o
n

se
ti

m
e,

ra
m

p
-u

p
ti

m
e,

co
st

,
d
ep

lo
y
m

en
t

ti
m

e,
p
ri

o
r

u
sa

g
e,

d
ef

ec
ts

S
á
n

ch
ez

et
a
l.

re
q
u

ir
ed

m
em

o
ry

,
re

co
n
fi

g
u
ra

ti
o
n

ti
m

e,
re

sp
o
n

se
ti

m
e,

a
cc

u
ra

cy
,

a
v
a
il
a
b
il
it

y,
se

cu
ri

ty
T

a
n

et
a
l.

ea
se

o
f

u
se

W
a
n
g

a
n
d

P
a
n

g
p

er
fo

rm
a
n

ce
,

m
o
n
ey

,
d

ev
el

o
p

m
en

t
ti

m
e

Z
h
a
n

g
et

a
l.

co
st

,
p

er
fo

rm
a
n

ce
,

se
cu

ri
ty

,
u

sa
b

il
it

y
B

a
g
h

er
i

et
a
l.

sp
ee

d
,

p
er

fo
rm

a
n

ce
R

o
o
s-

F
ra

n
tz

et
a
l.

a
cc

u
ra

cy
,

m
em

o
ry

,
R

O
M

,
ra

n
g
e,

la
te

n
cy

,
co

st
,

cy
cl

e
L

et
tn

er
et

a
l.

p
ro

fi
t,

b
re

a
k

ev
en

M
u

ss
b
a
ch

er
et

a
l.

im
p

o
rt

a
n
ce

O
g
n

ja
n

o
v
ic

et
a
l.

co
st

,
re

sp
o
n

se
ti

m
e

P
a
rr

a
et

a
l.

q
u

a
li
ty

,
re

sp
o
n

se
ti

m
e

W
it

te
rn

et
a
l.

co
st

,
st

o
ra

n
g
e

ca
p
a
ci

ty
Z

h
a
o

et
a
l.

ex
h

a
u

st
,

ex
h
a
u

st
p

re
ss

u
re

,
ra

te
d

p
o
w

er
,

n
o
is

e,
w

ei
g
h
t,

fu
el

co
n

su
m

p
ti

o
n

,
st

a
b

il
it

y

Table A.5: NFPs supported by each approach.

178 A. Appendix

Bibliography

Acher, M., Collet, P., Lahire, P., and France, R. B. (2013). Familiar: A domain-
specific language for large scale management of feature models. Science of Com-
puter Programming (SCP), 78(6):657–681. (cited on Page 26, 38, 43, 45, 61, 62, 173,

and 174)

Adjoyan, S. and Seriai, A.-D. (2015). An architecture description language for
dynamic service-oriented product lines. In International Conference on Software
Engineering and Knowledge Engineering (SEKE). (cited on Page 171 and 175)

Adjoyan, S. and Seriai, A.-D. (2017). Reconfigurable service-based architecture
based on variability description. In ACM Symposium on Applied Computing
(SAC), pages 1154–1161. ACM. (cited on Page 26, 38, 61, 64, 171, and 176)

Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems. In
Recommender systems handbook, pages 217–253. Springer. (cited on Page 105, 109,

110, and 111)

Afzal, U., Mahmood, T., and Shaikh, Z. (2016). Intelligent software product line
configurations: A literature review. Computer Standards & Interfaces, 48:30–48.
(cited on Page 72 and 142)

Alférez, G. H., Pelechano, V., Mazo, R., Salinesi, C., and Diaz, D. (2014). Dynamic
adaptation of service compositions with variability models. Journal of Systems
and Software (JSS), 91:24–47. (cited on Page 142)

Alférez, M., Santos, J. P., Moreira, A., Garcia, A., Kulesza, U., Araújo, J., and
Amaral, V. (2009). Multi-view composition language for software product line
requirements. In International Conference on Software Language Engineering
(SLE), pages 136–154. ACM. (cited on Page 159)

Almeida, A., Cavalcante, E., Batista, T., Cacho, N., and Lopes, F. (2014). A
component-based adaptation approach for multi-cloud applications. In Inter-
national Conference on Computer Communications (INFOCOM), pages 49–54.
IEEE. (cited on Page 142)

Amatriain, X. and Pujol, J. M. (2015). Data mining methods for recommender
systems. In Recommender Systems Handbook, pages 227–262. Springer. (cited on

Page 109, 110, and 112)

180 Bibliography

Antkiewicz, M. and Czarnecki, K. (2004). FeaturePlugin: feature modeling plug-in
for eclipse. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), pages 67–72. ACM. (cited on

Page 98, 100, 147, and 164)

Aranega, V., Etien, A., and Mosser, S. (2012). Using feature model to build model
transformation chains. In International Conference on Model Driven Engineering
Languages and Systems (MODELS), pages 562–578. Springer. (cited on Page 159)

Asadi, M., Soltani, S., Gašević, D., and Hatala, M. (2016). The effects of visu-
alization and interaction techniques on feature model configuration. Empirical
Software Engineering, 21(4):1706–1743. (cited on Page 69 and 72)

Asadi, M., Soltani, S., Gasevic, D., Hatala, M., and Bagheri, E. (2014). Toward
automated feature model configuration with optimizing non-functional require-
ments. Information and Software Technology (IST), 56(9):1144–1165. (cited on

Page 2, 25, 32, 37, 38, 39, 45, 52, 59, 69, 111, 156, 161, 172, 174, and 177)

Ayala, I., Amor, M., and Fuentes, L. (2016). Using spl to develop aal systems based
on self-adaptive agents. In International Conference on Practical Applications of
Agents and Multi-Agent Systems (PAAMS), pages 263–275. Springer. (cited on

Page 26, 38, 61, 64, 172, and 175)

Bagheri, E., Asadi, M., Gasevic, D., and Soltani, S. (2010a). Stratified analytic hi-
erarchy process: prioritization and selection of software features. In International
Systems and Software Product Line Conference (SPLC), pages 300–315. Springer.
(cited on Page 75, 98, and 99)

Bagheri, E., Di Noia, T., Ragone, A., and Gasevic, D. (2010b). Configuring software
product line feature models based on stakeholders’ soft and hard requirements.
In International Systems and Software Product Line Conference (SPLC), pages
16–31. Springer. (cited on Page 75, 98, 99, and 142)

Bagheri, E. and Ensan, F. (2014a). Dynamic decision models for staged software
product line configuration. Requirements Engineering Journal (REJ), 19(2):187–
212. (cited on Page 2, 75, 98, 99, 108, 121, and 164)

Bagheri, E. and Ensan, F. (2014b). Dynamic decision models for staged software
product line configuration. Requirements Engineering Journal (REJ), 19(2):187–
212. (cited on Page 41, 172, and 174)

Bagheri, E., Noia, T. D., Gasevic, D., and Ragone, A. (2012a). Formalizing inter-
active staged feature model configuration. Journal of Software: Evolution and
Process (JSEP), 24(4):375–400. (cited on Page 25, 32, 37, 38, 39, 45, 50, 52, 55, 58, 173,

174, and 177)

Bagheri, E., Noia, T. D., Gasevic, D., and Ragone, A. (2012b). Formalizing inter-
active staged feature model configuration. Journal of Software: Evolution and
Process (JSEP), 24(4):375–400. (cited on Page 75, 98, 99, and 142)

Bibliography 181

Bajaras, M. and Agard, B. (2015). A methodology to form families of products by
applying fuzzy logic. International Journal on Interactive Design and Manufac-
turing (IJIDeM), 9(4):253–267. (cited on Page 26, 37, 38, 39, 172, and 174)

B ↪ak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., and W ↪asowski, A. (2016).
Clafer: unifying class and feature modeling. Software & Systems Modeling (SSM),
15(3):811–845. (cited on Page 25, 32, 38, 41, 43, 45, 52, 59, 60, 172, and 174)

Barbeau, M. and Bordeleau, F. (2002). A protocol stack development tool using gen-
erative programming. In ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE), pages 93–109. Springer. (cited

on Page 6)

Bashari, M., Noorian, M., and Bagheri, E. (2014). Product line stakeholder pref-
erence elicitation via decision processes. International Journal of Knowledge and
Systems Science (IJKSS), 5(4):35–51. (cited on Page 25, 32, 37, 38, 39, 45, 46, 50, 172,

174, and 177)

Bashroush, R., Garba, M., Rabiser, R., Groher, I., and Botterweck, G. (2017).
Case tool support for variability management in software product lines. ACM
Computing Surveys (CSUR), 50(1):14:1–14:45. (cited on Page 9, 145, and 163)

Batory, D. (2005). Feature models, grammars, and propositional formulas. In Inter-
national Systems and Software Product Line Conference (SPLC), volume 3714,
pages 7–20. Springer. (cited on Page 62 and 80)

Behjati, R., Nejati, S., and Briand, L. C. (2014). Architecture-level configuration
of large-scale embedded software systems. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 23(3):25. (cited on Page 27, 45, 46, 172, and 174)

Behjati, R., Nejati, S., Yue, T., Gotlieb, A., and Briand, L. (2012). Model-based
automated and guided configuration of embedded software systems. In European
Conference on Modelling Foundations and Applications (ECMFA), pages 226–243.
Springer. (cited on Page 172 and 175)

Behjati, R., Yue, T., Briand, L., and Selic, B. (2013). Simpl: A product-line mod-
eling methodology for families of integrated control systems. Information and
Software Technology (IST), 55(3):607–629. (cited on Page 172 and 174)

Bell, R., Koren, Y., and Volinsky, C. (2007). Modeling relationships at multiple
scales to improve accuracy of large recommender systems. In International Confer-
ence on Knowledge Discovery and Data Mining (SIGKDD), pages 95–104. ACM.
(cited on Page 3 and 11)

Benali, A., El Asri, B., and Kriouile, H. (2015). A pareto-based artificial bee colony
and product line for optimizing scheduling of vm on cloud computing. In Inter-
national Conference on Cloud Technologies and Applications (CloudTech), pages
1–7. IEEE. (cited on Page 25, 32, 38, 52, 58, 172, 175, and 177)

182 Bibliography

Benavides, D., Felfernig, A., Galindo, J. A., and Reinfrank, F. (2013). Automated
analysis in feature modelling and product configuration. In Safe and Secure Soft-
ware Reuse, pages 160–175. Springer. (cited on Page 13, 17, 18, 71, 72, and 98)

Benavides, D., Mart́ın-Arroyo, P. T., and Cortés, A. R. (2005). Automated reasoning
on feature models. In International Conference on Advanced Information Systems
Engineering (CAiSE), volume 5, pages 491–503. Springer. (cited on Page 6 and 30)

Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010). Automated analysis of feature
models 20 years later: a literature review. Information Systems, 35(6):615–708.
(cited on Page 6, 17, 18, 71, 72, 108, 123, 149, and 151)

Benavides, D., Segura, S., Trinidad, P., and Cortés, A. R. (2007). FAMA: tooling
a framework for the automated analysis of feature models. In Proceedings of the
Workshop on Variability Modelling of Software-intensive Systems (VaMoS), pages
129–134. ACM. (cited on Page 98 and 100)

Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K., and
Wasowski, A. (2013). A survey of variability modeling in industrial practice.
In Proceedings of the Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 7:1–7:8. ACM. (cited on Page 145 and 163)

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, New
York. accessed November 15, 2017. (cited on Page 87)

Bishop, C. M. (2007). Pattern recognition and Machine Learning (Information Sci-
ence and Statistics). Springer, 1 edition. (cited on Page 89 and 129)

Boehm, B., Brown, R., Kaspar, H., Lipow, M., McLeod, G., and Merritt, M. (1978).
Characteristics of software quality. trw series of software technology, trw systems
and energy. Inc., also published by North Holland, 1973. (cited on Page 30)

Boehm, B. W., Brown, J. R., and Lipow, M. (1976). Quantitative evaluation of
software quality. In International Conference on Software Engineering (ICSE),
pages 592–605. IEEE Computer Society Press. (cited on Page 34)

Bosch, J., Capilla, R., and Hilliard, R. (2015). Trends in systems and software
variability. IEEE Software, 32(3):44–51. (cited on Page 75 and 79)

Botterweck, G., Thiel, S., Nestor, D., bin Abid, S., and Cawley, C. (2008). Visual
tool support for configuring and understanding software product lines. In Inter-
national Systems and Software Product Line Conference (SPLC), pages 77–86.
IEEE. (cited on Page 164)

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007).
Lessons from applying the systematic literature review process within the software
engineering domain. Journal of Systems and Software (JSS), 80(4):571–583. (cited

on Page 16)

Bibliography 183

Brink, C., Heisig, P., and Sachweh, S. (2015). Using cross-dependencies during
configuration of system families. In International Conference no Product-Focused
Software Process Improvement (PROFES), pages 439–452. Springer. (cited on

Page 26, 45, 47, 48, 61, 62, 172, and 175)

Brink, C., Peters, M., and Sachweh, S. (2012). Configuration of mechatronic multi
product lines. In Conference of the International workshop on Variability & com-
position (VariComp), pages 7–12. ACM. (cited on Page 172 and 176)

Bürdek, J., Lity, S., Lochau, M., Berens, M., Goltz, U., and Schürr, A. (2014).
Staged configuration of dynamic software product lines with complex binding time
constraints. In Proceedings of the Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), page 16. ACM. (cited on Page 26, 32, 61, 64, 142, 168,

173, 176, and 177)

Bures, T., Hnetynka, P., and Plasil, F. (2014). Strengthening architectures of smart
cps by modeling them as runtime product-lines. In International Symposium on
Component-Based Software Engineering (CBSE), pages 91–96. ACM. (cited on

Page 27, 61, 64, 173, and 176)

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User mod-
eling and user-adapted interaction (UMUAI), 12(4):331–370. (cited on Page 105)

Camacho, C., Llana, L., and Nunez, A. (2016). Cost-related interface for soft-
ware product lines. Journal of Logical and Algebraic Methods in Programming
(JLAMP), 85(1):227–244. (cited on Page 26, 32, 35, 38, 43, 172, 174, and 177)

Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999a). Readings in information
visualization - using vision to think. Academic Press. accessed December 5, 2017.
(cited on Page 163)

Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999b). Readings in information
visualization: using vision to think. Morgan Kaufmann. (cited on Page 149)

Cetina, C., Fons, J., and Pelechano, V. (2008). Applying software product lines
to build autonomic pervasive systems. In International Systems and Software
Product Line Conference (SPLC), pages 117–126. Ieee. (cited on Page 142)

Cetina, C., Giner, P., Fons, J., and Pelechano, V. (2009). Autonomic computing
through reuse of variability models at runtime: the case of smart homes. Com-
puter, 42(10):37–43. (cited on Page xiii, 6, and 7)

Chavarriaga, J., Noguera, C., Casallas, R., and Jonckers, V. (2014). Propagating
decisions to detect and explain conflicts in a multi-step configuration process. In
International Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 337–352. Springer. (cited on Page 26, 45, 47, 61, 62, 173, and 175)

Chen, J., Cheng, Y., and Nie, D. (2013). Product configuration method based on
ontology mapping. In International Conference on Software Engineering (ICSE),
pages 97–101. IEEE. (cited on Page 26, 38, 173, and 175)

184 Bibliography

Chen, L. and Babar, M. A. (2011). A systematic review of evaluation of variability
management approaches in software product lines. Information and Software
Technology (IST), 53(4):344–362. (cited on Page 5, 18, and 71)

Chhabra, J. K. and Gupta, V. (2010). A survey of dynamic software metrics. Journal
of Computer Science and Technology (JCST), 25(5):1016–1029. (cited on Page 34)

Choi, S., Cha, S., and Tappert, C. C. (2010). A survey of binary similarity and
distance measures. Journal of Systemics, Cybernetics and Informatics (JSCI),
8(1):43–48. accessed November 15, 2017. (cited on Page 84)

Clarke, D., Muschevici, R., Proença, J., Schaefer, I., and Schlatte, R. (2010). Vari-
ability modelling in the abs language. In International Symposium on Formal
Methods for Components and Objects, pages 204–224. Springer. (cited on Page 43)

Cleland-Huang, J., Settimi, R., Zou, X., and Solc, P. (2007). Automated classifi-
cation of non-functional requirements. Requirements Engineering Journal (REJ),
12(2):103–120. (cited on Page 34)

Commission, I. O. F. S. E. et al. (2001). Software engineering–product quality–part
1: Quality model. ISO/IEC, 9126:2001. (cited on Page 30, 141, and 162)

Constantino, K., Pereira, J. A., Padilha, J., Vasconcelos, P., and Figueiredo, E.
(2016). An empirical study of two software product line tools. In International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE).
Springer. (cited on Page 75, 98, 147, and 168)

Cruz, J., Neto, P. S., Britto, R., Rabelo, R., Ayala, W., Soares, T., and Mota, M.
(2013). Toward a hybrid approach to generate software product line portfolios.
In IEEE Congress on Evolutionary Computation (CEC), pages 2229–2236. IEEE.
(cited on Page 109, 172, and 175)

Cubo, J., Gamez, N., Fuentes, L., and Pimentel, E. (2013). Composition and self-
adaptation of service-based systems with feature models. In International Con-
ference on Software Reuse (ICSR), pages 326–342. Springer. (cited on Page 26, 38,

61, 64, 173, and 175)

Czarnecki, K., Eisenecker, U. W., and Czarnecki, K. (2000). Generative program-
ming: methods, tools, and applications, volume 16. Addison Wesley Reading.
(cited on Page 5 and 6)

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., and W ↪asowski, A. (2012).
Cool features and tough decisions: a comparison of variability modeling ap-
proaches. In Proceedings of the Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), pages 173–182. ACM. (cited on Page 6)

Czarnecki, K. and Helsen, S. (2003). Classification of model transforma-
tion approaches. Available at: http://www.ptidej.net/course/ift6251/fall05/
presentations/050914/Czarnecki Helsen.pdf/. (cited on Page 159)

http://www.ptidej.net/course/ift6251/fall05/presentations/050914/Czarnecki_Helsen.pdf/
http://www.ptidej.net/course/ift6251/fall05/presentations/050914/Czarnecki_Helsen.pdf/

Bibliography 185

Czarnecki, K., She, S., and Wasowski, A. (2008). Sample spaces and feature mod-
els: there and back again. In International Systems and Software Product Line
Conference (SPLC), pages 22–31. IEEE. (cited on Page 163)

Desrosiers, C. and Karypis, G. (2011). A comprehensive survey of neighborhood-
based recommendation methods. In Recommender Systems Handbook, pages 107–
144. Springer. (cited on Page 10, 11, 85, and 111)

Dhungana, D., Grünbacher, P., and Rabiser, R. (2011). The DOPLER meta-tool for
decision-oriented variability modeling: a multiple case study. Automated Software
Engineering (ASE), 18(1):77–114. (cited on Page 164)

Dhungana, D., Seichter, D., Botterweck, G., Rabiser, R., Grünbacher, P., Benavides,
D., and Galindo, J. A. (2013). Integrating heterogeneous variability modeling
approaches with invar. In Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), page 8. ACM. (cited on Page 172 and 176)

dos Santos Neto, P. d. A., Britto, R., Rabêlo, R. d. A. L., de Almeida Cruz, J. J.,
and Lira, W. A. L. (2016). A hybrid approach to suggest software product line
portfolios. Journal Applied Soft Computing (ASC), 49:1243–1255. (cited on Page 25,

32, 35, 37, 38, 39, 52, 54, 59, 60, 172, 174, and 177)

Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-
Herrera, C., and Mirakhorli, M. (2011). On-demand feature recommendations
derived from mining public product descriptions. In International Conference on
Software Engineering (ICSE), pages 181–190. IEEE. (cited on Page 120)

Dyb̊a, T. and Dingsøyr, T. (2008). Strength of evidence in systematic reviews in soft-
ware engineering. In International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 178–187. ACM. (cited on Page 16)

Eichelberger, H., El-Sharkawy, S., Kröher, C., and Schmid, K. (2014). Easy-
producer: product line development for variant-rich ecosystems. In International
Systems and Software Product Line Conference (SPLC), pages 133–137. ACM.
(cited on Page 172 and 175)

Eichelberger, H., Qin, C., Sizonenko, R., and Schmid, K. (2016). Using ivml to
model the topology of big data processing pipelines. In International Systems
and Software Product Line Conference (SPLC), pages 204–208. ACM. (cited on

Page 26, 38, 43, 45, 47, 48, 61, 62, 172, and 175)

Eichelberger, H. and Schmid, K. (2015). Ivml: a dsl for configuration in variability-
rich software ecosystems. In International Systems and Software Product Line
Conference (SPLC), pages 365–369. ACM. (cited on Page 172 and 175)

El-Sharkawy, S., Kröher, C., Eichelberger, H., and Schmid, K. (2015). Experience
from implementing a complex eclipse extension for software product line engi-
neering. In Eclipse Technology eXchange (ETX), pages 13–18. ACM. (cited on

Page 172 and 176)

186 Bibliography

Fang, M., Leyh, G., Doerr, J., Elsner, C., and Zhao, J. (2015). Towards model-
based derivation of systems in the industrial automation domain. In International
Systems and Software Product Line Conference (SPLC), pages 283–292. ACM.
(cited on Page 27, 45, 172, and 175)

Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,
Soares, S., Ferrari, F. C., Khan, S. S., Filho, F. C., and Dantas, F. (2008). Evolv-
ing software product lines with aspects: An empirical study. In International
Conference on Software Engineering (ICSE), pages 261–270. ACM. (cited on

Page 159)

Foster, G., Turner, C., Ferguson, S., and Donndelinger, J. (2014). Creating targeted
initial populations for genetic product searches in heterogeneous markets. Journal
of Engineering Optimization (JEO), 46(12):1729–1747. (cited on Page 26, 38, 52,

58, 173, and 174)

Galindo, J. A., Dhungana, D., Rabiser, R., Benavides, D., Botterweck, G., and
Grünbacher, P. (2015a). Supporting distributed product configuration by inte-
grating heterogeneous variability modeling approaches. Information and Software
Technology (IST), 62:78–100. (cited on Page 2, 75, 98, 100, and 121)

Galindo, J. A., Dhungana, D., Rabiser, R., Benavides, D., Botterweck, G., and
Grünbacher, P. (2015b). Supporting distributed product configuration by inte-
grating heterogeneous variability modeling approaches. Information and Software
Technology (IST), 62:78–100. (cited on Page 26, 45, 51, 61, 63, 172, and 174)

Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avgeriou, P. (2014). Variability
in software systems a systematic literature review. IEEE Trans. Softw. Eng.,
40(3):282–306. (cited on Page 66)

Gamez, N. and Fuentes, L. (2013). Architectural evolution of famiware using
cardinality-based feature models. Information and Software Technology (IST),
55(3):563–580. (cited on Page 27, 61, 64, 65, 173, and 174)

Ge, J., Yang, C., Duan, T., and Chen, Y. (2013). Research on method of con-
struction and configuration of product family based on ontology. In International
Conference on Measurement, Information and Control (ICMIC), volume 2, pages
1436–1440. IEEE. (cited on Page 26, 38, 173, and 175)

Gençay, E., Schüller, P., and Erdem, E. (2017). Applications of non-monotonic
reasoning to automotive product configuration using answer set programming.
Journal of Intelligent Manufacturing (JIM), pages 1–16. (cited on Page 27, 61, 65,

171, and 174)

Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 3. JHU
Press. (cited on Page 130)

Griss, M. L., Favaro, J., and Alessandro, M. D. (1998). Integrating feature modeling
with the RSEB. In International Conference on Software Reuse (ICSR), pages
76–85. IEEE. (cited on Page 6)

Bibliography 187

Guedes, G., Silva, C., and Soares, M. (2017). Comparing configuration approaches
for dynamic software product lines. In Brazilian Symposium on Software Engi-
neering (SBES), pages 134–143. ACM. (cited on Page 25, 32, 38, 52, 56, 58, 61, 63,

171, 176, and 177)

Guedes, G., Silva, C., Soares, M., and Castro, J. (2015). Variability management
in dynamic software product lines: A systematic mapping. In Brazilian Sympo-
sium on Software Components, Architectures and Reuse (SBCARS), pages 90–99.
IEEE. (cited on Page 72, 123, and 142)

Guo, J., Zulkoski, E., Olaechea, R., Rayside, D., Czarnecki, K., Apel, S., and Atlee,
J. M. (2014). Scaling exact multi-objective combinatorial optimization by paral-
lelization. In IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pages 409–420. ACM. (cited on Page 25, 32, 38, 52, 59, 60, 68, 173,

175, and 177)

Hajri, I., Goknil, A., Briand, L. C., and Stephany, T. (2016). Pumconf: a tool
to configure product specific use case and domain models in a product line. In
Proceedings of the International Symposium Foundations of Software Engineering
(FSE), pages 1008–1012. ACM. (cited on Page 26, 45, 46, 172, and 176)

Halchenko, Y. O. and Hanke, M. (2012). Open is not enough. let’s take the next step:
an integrated, community-driven computing platform for neuroscience. Frontiers
in Neuroinformatics, 2012. accessed November 15, 2017. (cited on Page 92)

Hamza, M. and Walker, R. J. (2015). Recommending features and feature relation-
ships from requirements documents for software product lines. In International
Workshop on Realizing Artificial Intelligence Synergies in Software Engineering
(RAISE), pages 25–31. IEEE Press. (cited on Page 120)

Harman, M., Jia, Y., Krinke, J., Langdon, W. B., Petke, J., and Zhang, Y. (2014).
Search based software engineering for software product line engineering: a survey
and directions for future work. In Proceedings of the 18th International Software
Product Line Conference-Volume 1, pages 5–18. ACM. (cited on Page 72)

Heider, W., Rabiser, R., Grünbacher, P., and Lettner, D. (2012). Using regression
testing to analyze the impact of changes to variability models on products. In
International Systems and Software Product Line Conference (SPLC), pages 196–
205. ACM. (cited on Page 26, 45, 61, 65, 173, and 175)

Henard, C., Papadakis, M., Harman, M., and Le Traon, Y. (2015a). Combining
multi-objective search and constraint solving for configuring large software prod-
uct lines. In International Conference on Software Engineering (ICSE), volume 1,
pages 517–528. IEEE. (cited on Page 25, 32, 38, 52, 59, 68, 172, 175, and 177)

Henard, C., Papadakis, M., Harman, M., and Le Traon, Y. (2015b). Combining
multi-objective search and constraint solving for configuring large software prod-
uct lines. In International Conference on Software Engineering (ICSE), pages
517–528. IEEE. (cited on Page 98 and 142)

188 Bibliography

Heradio, R., Perez-Morago, H., Fernandez-Amoros, D., Cabrerizo, F. J., and
Herrera-Viedma, E. (2016). A bibliometric analysis of 20 years of research on
software product lines. Information and Software Technology, 72:1–15. (cited on

Page 71)

Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. (1999). An algorithmic
framework for performing collaborative filtering. In International ACM Con-
ference on Research and Development in Information Retrieval (SIGIR), pages
230–237. ACM. (cited on Page 3, 11, and 85)

Hierons, R. M., Li, M., Liu, X., Segura, S., and Zheng, W. (2016a). Sip: Op-
timal product selection from feature models using many-objective evolution-
ary optimization. ACM Transactions on Software Engineering and Methodology
(TOSEM), 25(2):17. (cited on Page 25, 32, 38, 52, 54, 55, 59, 60, 69, 172, and 174)

Hierons, R. M., Li, M., Liu, X., Segura, S., and Zheng, W. (2016b). SIP: op-
timal product selection from feature models using many-objective evolution-
ary optimization. ACM Transactions on Software Engineering and Methodology
(TOSEM), 25(2):17. (cited on Page 98 and 142)

Higgins, J. P. and Green, S. (2005). Cochrane handbook for systematic reviews of
interventions. (cited on Page 17)

Hillston, J. (2005). Process algebras for quantitative analysis. In Logic in Computer
Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages
239–248. IEEE. (cited on Page 43)

Hinchey, M., Park, S., and Schmid, K. (2012). Building dynamic software product
lines. IEEE Computer, 45(10):22–26. (cited on Page 123)

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association (JASA), 58(301):13–30. (cited on

Page 11)

Holl, G., Grünbacher, P., Elsner, C., and Klambauer, T. (2012a). Supporting aware-
ness during collaborative and distributed configuration of multi product lines. In
Asia-Pacific Software Engineering Conference (APSEC), volume 1, pages 137–
147. IEEE. (cited on Page 173 and 175)

Holl, G., Grünbacher, P., Elsner, C., Klambauer, T., and Vierhauser, M. (2013).
Constraint checking in distributed product configuration of multi product lines.
In Asia-Pacific Software Engineering Conference (APSEC), volume 1, pages 347–
354. IEEE. (cited on Page 173 and 175)

Holl, G., Thaller, D., Grünbacher, P., and Elsner, C. (2012b). Managing emerging
configuration dependencies in multi product lines. In Proceedings of the Work-
shop on Variability Modelling of Software-intensive Systems (VaMoS), pages 3–10.
ACM. (cited on Page 173 and 176)

Holzmann, G. (2003). Spin model checker, the: primer and reference manual.
Addison-Wesley Professional. (cited on Page 44)

Bibliography 189

Horcas, J.-M., Pinto, M., and Fuentes, L. (2017). Green configurations of functional
quality attributes. In International Systems and Software Product Line Conference
(SPLC), pages 79–83. ACM. (cited on Page 25, 32, 36, 38, 52, 59, 171, 175, and 177)

Hubaux, A. (2014). What research in software product line engineering is not solving
in configuration. In International Systems and Software Product Line Conference
(SPLC), page 19. ACM. (cited on Page 9 and 145)

Hubaux, A., Jannach, D., Drescher, C., Murta, L., Mannisto, T., Czarnecki, K.,
Heymans, P., Nguyen, T., and Zanker, M. (2012). Unifying software and product
configuration: A research roadmap. In Proceedings of the Workshop on Configu-
ration (ECAI). (cited on Page 71)

Jannach, D. and Zanker, M. (2013). Modeling and solving distributed configuration
problems: A csp-based approach. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 25(3):603–618. (cited on Page 27, 61, 62, 173, and 174)

Janota, M. (2008). Do sat solvers make good configurators? In International Systems
and Software Product Line Conference (SPLC), pages 191–195. Springer. (cited

on Page 82)

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990).
Feature-oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute. (cited on Page 5, 6, and 13)

Kang, K. C., Kim, S., Lee, J., Kim, K., Kim, G. J., and Shin, E. (1998). FORM: a
feature-oriented reuse method with domain-specific reference architectures. An-
nals of Software Engineering, 5(1):143–168. (cited on Page 6)

Kang, K. C., Lee, J., and Donohoe, P. (2002). Feature-oriented product line engi-
neering. IEEE Software, 19(4):58–65. (cited on Page 5)

Karatzoglou, A., Amatriain, X., Baltrunas, L., and Oliver, N. (2010). Multiverse
recommendation: N-dimensional tensor factorization for context-aware collabora-
tive filtering. In ACM Recommender Systems Conference (ACM RecSys), pages
79–86. ACM. (cited on Page 3, 12, 124, and 127)

Karimpour, R. and Ruhe, G. (2013). Bi-criteria genetic search for adding new
features into an existing product line. In International Workshop on Combin-
ing Modelling and Search-Based Software Engineering (CMSBSE), pages 34–38.
IEEE. (cited on Page 26, 38, 52, 54, 55, 58, 173, and 176)

Kästner, C., Trujillo, S., and Apel, S. (2008). Visualizing software product line
variabilities in source code. In International Systems and Software Product Line
Conference (SPLC), pages 303–312. ACM. (cited on Page 163)

Khoshnevis, S. and Shams, F. (2017). Automating identification of services and
their variability for product lines using nsga-ii. Frontiers of Computer Science,
11(3):444–464. (cited on Page 26, 32, 35, 45, 52, 54, 58, 171, 174, and 177)

190 Bibliography

Kifetew, F. M., Muñante, D., Gorroñogoitia, J., Siena, A., Susi, A., and Perini,
A. (2017). Grammar based genetic programming for software configuration prob-
lem. In International Symposium on Search-Based Software Engineering (SSBSE),
pages 130–136. Springer. (cited on Page 25, 32, 38, 45, 52, 59, 171, 176, and 177)

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and Linkman,
S. (2009). Systematic literature reviews in software engineering–a systematic lit-
erature review. Information and Software Technology (IST), 51(1):7–15. (cited

on Page 16)

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic lit-
erature reviews in software engineering. (cited on Page 13, 16, 17, 19, and 72)

Klambauer, T., Holl, G., and Grünbacher, P. (2013). Monitoring system-of-systems
requirements in multi product lines. In International Working Conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ), pages 379–
385. Springer. (cited on Page 26, 45, 47, 61, 63, 173, and 175)

Kolesnikov, S. S., Apel, S., Siegmund, N., Sobernig, S., Kästner, C., and Senkaya, S.
(2013). Predicting quality attributes of software product lines using software and
network measures and sampling. In Proceedings of the Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), page 6. ACM. (cited on Page 26,

32, 35, 173, and 176)

Koren, Y. (2009). Collaborative filtering with temporal dynamics. In International
Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 447–456.
ACM. (cited on Page 12)

Koren, Y. and Bell, R. (2015). Advances in collaborative filtering. In Recommender
systems handbook, pages 77–118. Springer. (cited on Page 12)

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42:30–37. (cited on Page 12 and 124)

Kramer, D., Oussena, S., Komisarczuk, P., and Clark, T. (2013). Using document-
oriented guis in dynamic software product lines. In ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences (GPCE), vol-
ume 49, pages 85–94. ACM. (cited on Page 26, 38, 61, 64, 173, and 175)

La Rosa, M., van der Aalst, W. M., Dumas, M., and Ter Hofstede, A. H. (2009).
Questionnaire-based variability modeling for system configuration. Software and
Systems Modeling (SoSyM), 8(2):251–274. (cited on Page 121)

Lau, S. Q. (2006). Domain analysis of e-commerce systems using feature-based
model templates. PhD thesis, Master’s thesis, Dept. Electrical and Computer
Engineering, University of Waterloo, Canada. (cited on Page 159)

Lee, J. (2013). Dynamic feature deployment and composition for dynamic software
product lines. In International Systems and Software Product Line Conference
(SPLC), pages 114–116. ACM. (cited on Page 27, 61, 64, 173, and 175)

Bibliography 191

Lee, K., Kang, K. C., and Lee, J. (2002). Concepts and guidelines of feature modeling
for product line software engineering. In International Conference on Software
Reuse (ICSR), pages 62–77. Springer. (cited on Page 5)

Leite, A. F., Alves, V., Rodrigues, G. N., Tadonki, C., Eisenbeis, C., and de Melo, A.
C. M. A. (2015). Automating resource selection and configuration in inter-clouds
through a software product line method. In International Conference on Cloud
Computing (CLOUD), pages 726–733. IEEE. (cited on Page 25, 32, 38, 52, 59, 61, 63,

172, 174, and 177)

Lettner, D., Vierhauser, M., Rabiser, R., and Grünbacher, P. (2012). Supporting
end users with business calculations in product configuration. In International
Systems and Software Product Line Conference (SPLC), pages 171–180. ACM.
(cited on Page 25, 32, 36, 38, 45, 173, 175, and 177)

Li, J., Liu, X., Wang, Y., and Guo, J. (2012). Formalizing Feature Selection Prob-
lem in Software Product Lines Using 0-1 Programming. In Wang, Y. and Li, T.,
editors, International Conference on Intelligent Systems and Knowledge Engineer-
ing, volume 124 of AINSC, pages 459–465. Springer, Berlin, Heidelberg. (cited

on Page 56)

Lian, X. and Zhang, L. (2015a). Optimized feature selection towards functional and
non-functional requirements in software product lines. In International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 191–200.
IEEE. (cited on Page 25, 32, 38, 52, 54, 55, 59, 60, 172, 175, and 177)

Lian, X. and Zhang, L. (2015b). Optimized feature selection towards functional and
non-functional requirements in software product lines. In International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 191–200.
IEEE. (cited on Page 98 and 142)

Lin, C.-Y. and Kremer, G. E. O. (2014). Strategic decision making for multiple-
generation product lines using dynamic state variable models: The cannibalization
case. Journal of Computers in Industry (JCI), 65(1):79–90. (cited on Page 27, 52,

57, 58, 173, and 174)

Lin, C.-Y. and Okudan, G. (2012). Application of dynamic state variable models
for multiple-generation product lines with cannibalization across generations. In
International Design Engineering Technical Conferences and Computers and In-
formation in Engineering Conference (ASME), pages 167–177. American Society
of Mechanical Engineers. (cited on Page 173 and 175)

Lisboa, L. B., Garcia, V. C., Lucrédio, D., de Almeida, E. S., de Lemos Meira, S. R.,
and de Mattos Fortes, R. P. (2010). A systematic review of domain analysis tools.
Information and Software Technology, 52(1):1–13. (cited on Page 71)

Lopez-Herrejon, R. E. and Egyed, A. (2013). Towards interactive visualization sup-
port for pairwise testing software product lines. In International Working Con-
ference on Software Visualization (VISSOFT). IEEE. (cited on Page 163)

192 Bibliography

Lopez-Herrejon, R. E., Linsbauer, L., and Egyed, A. (2015). A systematic mapping
study of search-based software engineering for software product lines. Information
and Software Technology (IST), 61:33–51. (cited on Page 72 and 142)

Lops, P., de Gemmis, M., and Semeraro, G. (2011). Content-based recommender
systems: state of the art and trends. In Recommender Systems Handbook, pages
73–105. Springer. (cited on Page 10)

Lotufo, R., She, S., Berger, T., Czarnecki, K., and W ↪asowski, A. (2010). Evolution
of the linux kernel variability model. In SPLC, pages 136–150. Springer. (cited

on Page 6)

Lu, H., Yue, T., Ali, S., Nie, K., and Zhang, L. (2014). Zen-cc: An automated and
incremental conformance checking solution to support interactive product config-
uration. In Proceedings of the International Symposium on Software Reliability
Engineering (ISSRE), pages 13–22. IEEE. (cited on Page 172 and 176)

Lu, H., Yue, T., Ali, S., and Zhang, L. (2016a). Model-based incremental con-
formance checking to enable interactive product configuration. Information and
Software Technology (IST), 72:68–89. (cited on Page 45, 46, 47, 49, 50, 172, and 174)

Lu, H., Yue, T., Ali, S., and Zhang, L. (2016b). Nonconformity resolving recom-
mendations for product line configuration. In IEEE International Conference on
Software Testing, Verification and Validation (ICST), pages 57–68. IEEE. (cited

on Page 27, 172, and 175)

Ma, H., King, I., and Lyu, M. R. (2007). Effective missing data prediction for col-
laborative filtering. In Kraaij, W., de Vries, A. P., Clarke, C. L. A., Fuhr, N., and
Kando, N., editors, International ACM Conference on Research and Development
in Information Retrieval (SIGIR), pages 39–46. ACM. accessed November 15,
2017. (cited on Page 85)

Machado, L., Pereira, J., Garcia, L., and Figueiredo, E. (2014a). Splconfig: Prod-
uct configuration in software product line. In Brazilian Congress on Software
(CBSoft), pages 1–8. ACM. (cited on Page 108, 171, and 175)

Machado, L., Pereira, J., Garcia, L., and Figueiredo, E. (2014b). SPLConfig: prod-
uct configuration in software product line. In Brazilian Congress on Software
(CBSoft), pages 1–8. ACM. (cited on Page 142)

MahdaviHezavehi, S., Galster, M., and Avgeriou, P. (2013). Variability in qual-
ity attributes of service-based software systems: A systematic literature review.
Information and Software Technology, 55(2):320–343. (cited on Page 66)

Mairiza, D., Zowghi, D., and Nurmuliani, N. (2010). An investigation into the
notion of non-functional requirements. In ACM Symposium on Applied Computing
(SAC), pages 311–317. ACM. (cited on Page 141, 161, and 162)

Mannion, M. (2002). Using first-order logic for product line model validation. In
International Systems and Software Product Line Conference (SPLC), pages 176–
187. Springer. (cited on Page 54)

Bibliography 193

Marcén, A. C., Font, J., Pastor, Ó., and Cetina, C. (2017). Towards feature location
in models through a learning to rank approach. In International Systems and
Software Product Line Conference (SPLC), pages 57–64. ACM. (cited on Page 120)

Martinez, J., Rossi, G., Ziadi, T., Bissyandé, T. F. D. A., Klein, J., and Le Traon, Y.
(2015a). Estimating and predicting average likability on computer-generated art-
work variants. In Genetic and Evolutionary Computation Conference (GECCO),
pages 1431–1432. ACM. (cited on Page 26, 37, 38, 40, 45, 51, 172, and 175)

Martinez, J., Rossi, G., Ziadi, T., Bissyandé, T. F. D. A., Klein, J., and Le Traon,
Y. (2015b). Estimating and predicting average likability on computer-generated
artwork variants. In GECCO, pages 1431–1432. ACM. (cited on Page 75, 98, and 100)

Martinez, J., Ziadi, T., Mazo, R., Bissyandé, T. F., Klein, J., and Le Traon, Y.
(2014). Feature relations graphs: A visualisation paradigm for feature constraints
in software product lines. In International Working Conference on Software Vi-
sualization (VISSOFT), pages 50–59. IEEE. (cited on Page 27, 28, 45, 67, 75, 98, 100,

153, 155, 163, 173, and 175)

Matuszyk, P. and Spiliopoulou, M. (2014). Hoeffding-CF: neighbourhood-based
recommendations on reliably similar users. In International Conference on User
Modeling, Adaptation, and Personalization (UMAP), pages 146–157. Springer.
(cited on Page 11 and 86)

Mauro, J., Nieke, M., Seidl, C., and Yu, I. C. (2016). Context aware reconfiguration
in software product lines. In Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages 41–48. ACM. (cited on Page 26, 32,

38, 61, 63, 69, 126, 127, 172, 176, and 177)

Mazo, R., Dumitrescu, C., Salinesi, C., and Diaz, D. (2014a). Recommendation
heuristics for improving product line configuration processes. In Recommendation
Systems in Software Engineering (RSSE), pages 511–537. Springer. (cited on

Page 26, 32, 45, 47, 50, 173, 174, and 177)

Mazo, R., Dumitrescu, C., Salinesi, C., and Diaz, D. (2014b). Recommendation
heuristics for improving product line configuration processes. In Recommendation
Systems in Software Engineering (RSSE), pages 511–537. Springer. (cited on

Page 75, 76, and 98)

Mazo, R., Muñoz-Fernández, J. C., Rincón, L., Salinesi, C., and Tamura, G. (2015).
Variamos: an extensible tool for engineering (dynamic) product lines. In Inter-
national Systems and Software Product Line Conference (SPLC), pages 374–379.
ACM. (cited on Page 26, 38, 45, 61, 64, 172, and 175)

Mazo, R., Salinesi, C., and Diaz, D. (2012a). VariaMos: a tool for product line
driven systems engineering with a constraint based approach. In International
Conference on Advanced Information Systems Engineering (CAiSE), pages 147–
154. CEUR-WS.org. (cited on Page 98, 100, and 121)

194 Bibliography

Mazo, R., Salinesi, C., and Diaz, D. (2012b). Variamos: a tool for product line
driven systems engineering with a constraint based approach. In International
Conference on Advanced Information Systems Engineering (CAiSE). (cited on

Page 173 and 175)

Mazo, R., Salinesi, C., Djebbi, O., Diaz, D., and Lora-Michiels, A. (2012c). Con-
straints: The heart of domain and application engineering in the product lines
engineering strategy. International Journal of Information System Modeling and
Design (IJISMD), 3(2):50. (cited on Page 25, 27, 32, 38, 45, 52, 59, 61, 62, 69, 173,

and 174)

McCall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in software
quality: Vol. 1: Concepts and definitions of software quality. General Electric.
(cited on Page 30)

Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., and Saake, G. (2017).
Mastering Software Variability with FeatureIDE. Springer. (cited on Page 46, 77,

132, 146, and 147)

Mendonça, M., Bartolomei, T. T., and Cowan, D. D. (2008). Decision-making coor-
dination in collaborative product configuration. In ACM Symposium on Applied
Computing (SAC), pages 108–113. ACM. (cited on Page 159)

Mendonça, M., Branco, M., and Cowan, D. (2009). S.P.L.O.T.: software product
lines online tools. In Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pages 761–762. ACM.
(cited on Page xvii, 41, 42, 98, 100, 121, 132, 147, 151, 157, 159, and 164)

Mitchell, S. (2012). Efficiently managing product baseline configurations in the
model-based system development of a combat system product family. In European
Systems Engineering Conference (EuSEC), pages 622–632. INCOSE. (cited on

Page 27, 61, 65, 173, and 175)

Mizouni, R., Matar, M. A., Al Mahmoud, Z., Alzahmi, S., and Salah, A. (2014). A
framework for context-aware self-adaptive mobile applications spl. Expert Systems
with Applications, 41(16):7549–7564. (cited on Page 142)

Munoz, D.-J. (2017). Achieving energy efficiency using a software product line ap-
proach. In International Systems and Software Product Line Conference (SPLC),
pages 131–138. ACM. (cited on Page 36, 171, and 175)

Munoz, D.-J., Pinto, M., and Fuentes, L. (2017). Green software development and
research with the hadas toolkit. In European Conference on Software Architecture:
Companion Proceedings (ECSA), pages 205–211. ACM. (cited on Page 171 and 175)

Murashkin, A., Antkiewicz, M., Rayside, D., and Czarnecki, K. (2013). Visualization
and exploration of optimal variants in product line engineering. In International
Systems and Software Product Line Conference (SPLC), pages 111–115. ACM.
(cited on Page 164, 172, and 175)

Bibliography 195

Murguzur, A., Capilla, R., Trujillo, S., Ortiz, Ó., and Lopez-Herrejon, R. E. (2014).
Context variability modeling for runtime configuration of service-based dynamic
software product lines. In International Systems and Software Product Line Con-
ference (SPLC), pages 2–9. ACM. (cited on Page 26, 38, 45, 61, 64, 173, and 175)

Murwantara, I., Bordbar, B., and Minku, L. L. (2014). Measuring energy con-
sumption for web service product configuration. In International Conference on
Information Integration and Web-Based Applications and Services (iiWAS), pages
224–228. ACM. (cited on Page 26, 32, 35, 173, 175, and 177)

Murwantara, I. M. and Bordbar, B. (2014). A simplified method of measurement
of energy consumption in cloud and virtualized environment. In International
Conference on Big Data and Cloud Computing (ICBDCC), pages 654–661. IEEE.
(cited on Page 173 and 175)

Mussbacher, G., Araújo, J., Moreira, A., and Amyot, D. (2012). Aourn-based mod-
eling and analysis of software product lines. Software Quality Journal (SQJ),
20(3-4):645–687. (cited on Page 26, 32, 38, 52, 56, 58, 173, 174, and 177)

Myllärniemi, V., Raatikainen, M., and Männistö, T. (2015). Representing and
configuring security variability in software product lines. In International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA), pages 1–10.
IEEE. (cited on Page 25, 32, 33, 38, 43, 45, 46, 172, 175, and 177)

Nestor, D., Thiel, S., Botterweck, G., Cawley, C., and Healy, P. (2008a). Applying
visualisation techniques in software product lines. In International Symposium
on Software Visualization (SOFTVIS), pages 175–184. ACM. (cited on Page 149

and 163)

Nestor, D., Thiel, S., Botterweck, G., Cawley, C., and Healy, P. (2008b). Applying
Visualisation Techniques in Software Product Lines. In International Symposium
on Software Visualization (SOFTVIS), pages 175–184. ACM. (cited on Page 151

and 164)

Neves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., and Borba, P. (2012).
Investigating the safe evolution of software product lines. ACM SIGPLAN In-
ternational Conference on Generative Programming: Concepts and Experiences
(GPCE), 47(3):33–42. (cited on Page 27, 61, 64, 65, 173, and 175)

Nieke, M., Engel, G., and Seidl, C. (2017). Darwinspl: an integrated tool suite
for modeling evolving context-aware software product lines. In Proceedings of the
Workshop on Variability Modelling of Software-intensive Systems (VaMoS), pages
92–99. ACM. (cited on Page 26, 38, 45, 61, 63, 65, 171, 176, and 177)

Nieke, M., Seidl, C., and Schuster, S. (2016). Guaranteeing configuration validity
in evolving software product lines. In Proceedings of the Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), pages 73–80. ACM. (cited on

Page 27, 61, 65, 172, and 176)

196 Bibliography

Nöhrer, A., Biere, A., and Egyed, A. (2012a). A comparison of strategies for tolerat-
ing inconsistencies during decision-making. In International Systems and Software
Product Line Conference (SPLC), pages 11–20. ACM. (cited on Page 27, 45, 47, 49,

173, and 175)

Nöhrer, A., Biere, A., and Egyed, A. (2012b). Managing sat inconsistencies with
humus. In Proceedings of the Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), pages 83–91. ACM. (cited on Page 173 and 176)

Noir, J. L., Madelénat, S., Gailliard, G., Labreuche, C., Acher, M., Barais, O.,
and Constant, O. (2016). A decision-making process for exploring architectural
variants in systems engineering. In International Systems and Software Product
Line Conference (SPLC), pages 277–286. ACM. (cited on Page 25, 32, 37, 38, 40, 45,

51, 52, 58, 172, 175, and 177)

Noorian, M., Asadi, M., Bagheri, E., and Du, W. (2014). Addressing non-functional
properties in feature models: a goal-oriented approach. International Journal of
Software Engineering and Knowledge Engineering (JSEKE), 24(10):1439–1487.
(cited on Page 171 and 174)

Noorian, M., Bagheri, E., and Du, W. (2016). Quality-centric feature model con-
figuration using goal models. In ACM Symposium on Applied Computing (SAC),
pages 1296–1299. ACM. (cited on Page 171 and 176)

Noorian, M., Bagheri, E., and Du, W. (2017). Toward automated quality-centric
product line configuration using intentional variability. Journal of Software: Evo-
lution and Process (JSEP), 29(9). (cited on Page 25, 32, 37, 38, 39, 45, 52, 55, 56, 59,

60, 69, 171, 174, and 177)

Ochoa, L., González-Rojas, O., and Thüm, T. (2015). Using decision rules for solving
conflicts in extended feature models. In International Conference on Software
Language Engineering (SLE), pages 149–160. ACM. (cited on Page 25, 32, 38, 41,

43, 45, 47, 48, 52, 54, 59, 69, 108, 172, 175, and 177)

Ochoa, L., Gonzalez-Rojasa, O., Pereira, J. A., Castro, H., and Saake, G. (2018).
A systematic literature review on the semi-automatic configuration of extended
product lines. Journal of Systems and Software. Accepted. (cited on Page 2, 13,

103, 142, and 164)

Ochoa, L., Pereira, J. A., González-Rojas, O., Castro, H., and Saake, G. (2017).
A survey on scalability and performance concerns in extended product lines con-
figuration. In Proceedings of the Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), pages 5–12. ACM. (cited on Page 2, 13, 18, 70, 103, 142,

146, and 164)

Ognjanovic, I., Mohabbati, B., Gaevic, D., Bagheri, E., and Bokovic, M. (2012). A
metaheuristic approach for the configuration of business process families. In SCC,
pages 25–32. IEEE. (cited on Page 26, 32, 37, 38, 39, 52, 58, 173, 175, and 177)

Bibliography 197

Oh, J., Batory, D., Myers, M., and Siegmund, N. (2017). Finding near-optimal
configurations in product lines by random sampling. In Proceedings of the In-
ternational Symposium Foundations of Software Engineering (FSE), pages 61–71.
ACM. (cited on Page 25, 32, 38, 52, 58, 171, and 176)

Olaechea, R., Rayside, D., Guo, J., and Czarnecki, K. (2014). Comparison of exact
and approximate multi-objective optimization for software product lines. In Inter-
national Systems and Software Product Line Conference (SPLC), pages 92–101.
ACM. (cited on Page 25, 32, 38, 52, 53, 54, 55, 59, 60, 173, 175, and 177)

Olaechea, R., Stewart, S., Czarnecki, K., and Rayside, D. (2012). Modelling and
multi-objective optimization of quality attributes in variability-rich software. In
International Workshop on Nonfunctional System Properties in Domain Specific
Modeling Languages (NFPinDSML), page 2. ACM. (cited on Page xvii, 41, 42, 172,

and 176)

Ostrosi, E., Fougères, A.-J., Ferney, M., and Klein, D. (2012). A fuzzy configuration
multi-agent approach for product family modelling in conceptual design. Journal
of Intelligent Manufacturing (JIM), 23(6):2565–2586. (cited on Page 25, 32, 38, 45,

47, 48, 52, 56, 58, 173, and 174)

Parra, C., Romero, D., Mosser, S., Rouvoy, R., Duchien, L., and Seinturier, L.
(2012). Using constraint-based optimization and variability to support continuous
self-adaptation. In ACM Symposium on Applied Computing (SAC), pages 486–
491. ACM. (cited on Page 25, 32, 37, 38, 40, 52, 59, 61, 63, 69, 173, 176, and 177)

Pascual, G. G., Lopez-Herrejon, R. E., Pinto, M., Fuentes, L., and Egyed, A.
(2015a). Applying multiobjective evolutionary algorithms to dynamic software
product lines for reconfiguring mobile applications. Journal of Systems and Soft-
ware (JSS), 103:392–411. (cited on Page 25, 32, 38, 52, 54, 55, 59, 60, 61, 63, 69, 143,

172, 174, and 177)

Pascual, G. G., Lopez-Herrejon, R. E., Pinto, M., Fuentes, L., and Egyed, A.
(2015b). Applying multiobjective evolutionary algorithms to dynamic software
product lines for reconfiguring mobile applications. Journal of Systems and Soft-
ware (JSS), 103:392–411. (cited on Page 98 and 142)

Pascual, G. G., Pinto, M., and Fuentes, L. (2013). Run-time adaptation of mobile ap-
plications using genetic algorithms. In International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS), pages 73–82. IEEE
Press. (cited on Page 172 and 176)

Payne, J. W., Bettman, J. R., and Johnson, E. J. (1993). The Aadaptive Decision
Maker. Cambridge University Press. (cited on Page 75)

Pereira, J. A. (2017). Runtime collaborative-based configuration of software product
lines. In International Conference on Software Engineering (ICSE), pages 94–96.
IEEE Press. (cited on Page 123)

198 Bibliography

Pereira, J. A., Constantino, K., and Figueiredo, E. (2015). A systematic literature
review of software product line management tools. In International Conference
on Software Reuse (ICSR), pages 73–89. Springer. (cited on Page 1, 9, 13, 46, 71, 75,

147, and 164)

Pereira, J. A., Constantino, K., Figueiredo, E., and Saake, G. (2016a). Quantitative
and qualitative empirical analysis of three feature modeling tools. In International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE),
pages 66–88. Springer. (cited on Page 9, 72, 75, and 145)

Pereira, J. A., Krieter, S., Meinicke, J., Schröter, R., Saake, G., and Leich, T.
(2016b). FeatureIDE: scalable product configuration of variable systems. In In-
ternational Conference on Software Reuse (ICSR), pages 397–401. Springer. (cited

on Page 1, 27, 28, 43, 45, 46, 47, 76, 82, 145, 172, and 175)

Pereira, J. A., Maciel, L., Noronha, T. F., and Figueiredo, E. (2017). Heuristic and
exact algorithms for product configuration in software product lines. International
Transactions in Operational Research (ITOR), 24(6):1285–1306. (cited on Page 25,

28, 32, 37, 38, 40, 41, 44, 45, 52, 53, 59, 60, 69, 103, 161, 171, 174, and 177)

Pereira, J. A., Martinez, J., Gurudu, H. K., Krieter, S., and Saake, G. (2018a).
Visual guidance for product line configuration using recommendations and non-
functional properties. (cited on Page 145)

Pereira, J. A., Matuszyk, P., Krieter, S., Spiliopoulou, M., and Saake, G. (2016c). A
feature-based personalized recommender system for product-line configuration. In
ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences (GPCE), pages 120–131. ACM. (cited on Page 27, 28, 45, 46, 50, 67,

69, 75, 103, 123, 145, 172, and 175)

Pereira, J. A., Matuszyk, P., Krieter, S., Spiliopoulou, M., and Saake, G. (2018b).
Personalized recommender systems for product-line configuration processes. Com-
puter Languages, Systems & Structures (COMLAN). (cited on Page 75, 103, 123,

and 145)

Pereira, J. A., Schulze, S., Figueiredo, E., and Saake, G. (2018c). N-dimensional
tensor factorization for self-configuration of software product lines at runtime. In
International Systems and Software Product Line Conference (SPLC). ACM. to
appear. (cited on Page 123)

Pereira, J. A., Schulze, S., Krieter, S., Ribeiro, M., and Saake, G. (2018d). A context-
aware recommender system for extended software product line configurations.
In Proceedings of the Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 1–8. ACM. (cited on Page 103, 123, and 145)

Pereira, J. A., Souza, C., Figueiredo, E., Abilio, R., Vale, G., and Costa, H. A. X.
(2013). Software variability management: an exploratory study with two feature
modeling tools. In Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS), pages 20–29. IEEE. (cited on Page 75, 98, 147, and 168)

Bibliography 199

Pleuss, A. and Botterweck, G. (2012). Visualization of variability and configura-
tion options. International Journal on Software Tools for Technology Transfer
(JSTTT), 14(5):497–510. (cited on Page 26, 32, 45, 47, 61, 62, 173, and 174)

Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Software product line en-
gineering: foundations, principles and techniques. Springer, Berlin Heidelberg.
(cited on Page 5, 6, 8, and 147)

Qin, Y. and Wei, G. (2012). Product configuration flow from obtaining customer
requirement to providing the final customized product. Journal of Software (JS),
7(2):308–315. (cited on Page 26, 32, 38, 173, 174, and 177)

Rabiser, D., Prähofer, H., Grünbacher, P., Petruzelka, M., Eder, K., Angerer, F.,
Kromoser, M., and Grimmer, A. (2016). Multi-purpose, multi-level feature mod-
eling of large-scale industrial software systems. Software & Systems Modeling
(SSM), pages 1–26. (cited on Page 26, 28, 45, 46, 61, 62, 172, and 174)

Rabiser, R., Grünbacher, P., and Dhungana, D. (2010). Requirements for product
derivation support: Results from a systematic literature review and an expert
survey. Information and Software Technology, 52(3):324–346. (cited on Page 72)

Rabiser, R., Grünbacher, P., and Lehofer, M. (2012a). A qualitative study on user
guidance capabilities in product configuration tools. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 110–119. ACM.
(cited on Page 107)

Rabiser, R., Grünbacher, P., and Lehofer, M. (2012b). A qualitative study on user
guidance capabilities in product configuration tools. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 110–119. ACM.
(cited on Page 172 and 175)

Rezapour, S., Hassani, A., and Farahani, R. Z. (2015). Concurrent design of product
family and supply chain network considering quality and price. Transportation
Research Part E: Logistics and Transportation Review, 81:18–35. (cited on Page 25,

32, 37, 38, 40, 52, 55, 59, 60, 172, 174, and 177)

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recommender systems
handbook. Springer. (cited on Page 9 and 120)

Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., and Lauenroth, K.
(2012). Quality-aware analysis in product line engineering with the orthogonal
variability model. Software Quality Journal (SQJ), 20(3-4):519–565. (cited on

Page 25, 32, 38, 43, 52, 59, 173, 174, and 177)

Ruiz, C., Duran-Limon, H. A., and Parlavantzas, N. (2016). Towards a software
product line-based approach to adapt iaas cloud configurations. In International
Conference on Utility and Cloud Computing (UCC), pages 398–403. ACM. (cited

on Page 25, 32, 38, 52, 58, 61, 63, 143, 172, 175, and 177)

Saaty, R. (1987). The analytic hierarchy process ? what it is and how it is used.
Mathematical Modelling, 9(3):161–176. (cited on Page 39)

200 Bibliography

Safdar, S. A., Lu, H., Yue, T., and Ali, S. (2017). Mining cross product line rules
with multi-objective search and machine learning. In Genetic and Evolutionary
Computation Conference (GECCO), pages 1319–1326. ACM. (cited on Page 26,

45, 47, 61, 62, 63, 172, and 175)

Salinesi, C., Mazo, R., Diaz, D., and Djebbi, O. (2010). Using integer constraint
solving in reuse based requirements engineering. In International Requirements
Engineering Conference, pages 243–251. IEEE. (cited on Page 54)

Saller, K., Lochau, M., and Reimund, I. (2013). Context-aware dspls: model-based
runtime adaptation for resource-constrained systems. In International Systems
and Software Product Line Conference (SPLC), pages 106–113. ACM. (cited on

Page 26, 38, 61, 63, 127, 173, and 175)

Sánchez, L. E., Diaz-Pace, J. A., Zunino, A., Moisan, S., and Rigault, J.-P. (2014).
An approach for managing quality attributes at runtime using feature models.
In Brazilian Symposium on Software Components, Architectures and Reuse (SB-
CARS), pages 11–20. IEEE. (cited on Page 25, 32, 35, 37, 38, 40, 52, 53, 58, 59, 61, 63,

173, 176, and 177)

Sanchez, L. E., Moisan, S., and Rigault, J.-P. (2013). Metrics on feature models
to optimize configuration adaptation at run time. In International Workshop on
Combining Modelling and Search-Based Software Engineering (CMSBSE), pages
39–44. IEEE. (cited on Page 173 and 176)

Santos, I. S., Rocha, L. S., Neto, P. A. S., and Andrade, R. (2016). Model verifi-
cation of dynamic software product lines. In Brazilian Symposium on Software
Engineering (SBES), pages 113–122. ACM. (cited on Page 26, 32, 38, 44, 61, 64, 172,

176, and 177)

Sawyer, P., Mazo, R., Diaz, D., Salinesi, C., and Hughes, D. (2012). Constraint
programming as a means to manage configurations in self-adaptive systems. EEE
Computer Dynamic Software Product Lines (CDSPL), pages 1–12. (cited on

Page 172 and 174)

Sayyad, A. S., Ingram, J., Menzies, T., and Ammar, H. (2013a). Optimum feature
selection in software product lines: Let your model and values guide your search.
In International Workshop on Combining Modelling and Search-Based Software
Engineering (CMSBSE), pages 22–27. IEEE. (cited on Page 173 and 176)

Sayyad, A. S., Ingram, J., Menzies, T., and Ammar, H. (2013b). Scalable product
line configuration: A straw to break the camel’s back. In IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 465–474.
IEEE. (cited on Page 25, 32, 38, 52, 173, 175, and 177)

Sayyad, A. S., Menzies, T., and Ammar, H. (2013c). On the value of user preferences
in search-based software engineering: a case study in software product lines. In
International Conference on Software Engineering (ICSE), pages 492–501. IEEE.
(cited on Page 54, 59, 60, 68, 173, and 175)

Bibliography 201

Schmid, K. and Eichelberger, H. (2015). Easy-producer: from product lines to
variability-rich software ecosystems. In International Systems and Software Prod-
uct Line Conference (SPLC), pages 390–391. ACM. (cited on Page 172 and 175)

Schneeweiss, D. and Botterweck, G. (2010). Using flow maps to visualize product
attributes during feature configuration. In International Systems and Software
Product Line Conference (SPLC), pages 219–228. IEEE. (cited on Page 164)

Schroeter, J., Mucha, P., Muth, M., Jugel, K., and Lochau, M. (2012). Dynamic
configuration management of cloud-based applications. In International Systems
and Software Product Line Conference (SPLC), pages 171–178. ACM. (cited on

Page 25, 32, 38, 45, 47, 48, 61, 62, 63, 173, and 175)

Schwäger, F. and Westfechtel, B. (2016). Supermod: tool support for collaborative
filtered model-driven software product line engineering. In IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 822–827.
IEEE. (cited on Page 27, 45, 47, 48, 172, and 175)

Seinturier, L., Merle, P., Rouvoy, R., Romero, D.and Schiavoni, V., and Stefani,
J. (2012). A component-based middleware platform for reconfigurable service-
oriented architectures. Software Practice and Experience, 42(5):559–583. (cited

on Page 159)

Shani, G. and Gunawardana, A. (2011). Evaluating recommendation systems. In
Recommender Systems Handbook. Springer. (cited on Page 91 and 115)

Sharifloo, A. M., Metzger, A., Quinton, C., Baresi, L., and Pohl, K. (2016). Learning
and evolution in dynamic software product lines. In International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages
158–164. IEEE. (cited on Page 26, 38, 61, 63, 64, 65, 143, 172, and 176)

Shi, K. (2017). Combining evolutionary algorithms with constraint solving for con-
figuration optimization. pages 665–669. IEEE. (cited on Page 142)

Siegmund, N., Grebhahn, A., Apel, S., and Kästner, C. (2015). Performance-
influence models for highly configurable systems. In Proceedings of the Inter-
national Symposium Foundations of Software Engineering (FSE), pages 284–294.
ACM. (cited on Page 25, 27, 32, 34, 36, 38, 45, 52, 172, 176, and 177)

Siegmund, N., Kolesnikov, S. S., Kästner, C., Apel, S., Batory, D., Rosenmüller, M.,
and Saake, G. (2012a). Predicting performance via automated feature-interaction
detection. In International Conference on Software Engineering (ICSE), pages
167–177. IEEE Press. (cited on Page 53, 59, 172, and 175)

Siegmund, N., Mory, M., Feigenspan, J., Saake, G., Nykolaychuk, M., and Schu-
mann, M. (2012b). Interoperability of non-functional requirements in complex
systems. In International Workshop on Software Engineering for Embedded Sys-
tems (SEES), pages 2–8. IEEE Press. (cited on Page 8, 172, and 176)

202 Bibliography

Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., and Saake,
G. (2012c). Spl conqueror: Toward optimization of non-functional properties in
software product lines. Software Quality Journal (SQJ), 20(3-4):487–517. (cited

on Page 172 and 174)

Simons, P., Niemelä, I., and Soininen, T. (2002). Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1-2):181–234. (cited on Page 43)

Sincero, J., Tartler, R., Egger, C., Schröder-Preikschat, W., and Lohmann, D.
(2010). Facing the linux 8000 feature nightmare. In European Conference on
Computer Systems (EuroSys). (cited on Page 75 and 98)

Sion, L., Van Landuyt, D., Joosen, W., and de Jong, G. (2016). Systematic quality
trade-off support in the software product-line configuration process. In Interna-
tional Systems and Software Product Line Conference (SPLC), pages 164–173.
ACM. (cited on Page 25, 28, 32, 38, 45, 46, 172, and 175)

Soares, L. R., do Carmo Machado, I., and de Almeida, E. S. (2015). Non-
functional properties in software product lines: A reuse approach. In Proceedings
of the Workshop on Variability Modelling of Software-intensive Systems (VaMoS),
page 67. ACM. (cited on Page 26, 32, 36, 172, 176, and 177)

Soares, L. R., Potena, P., do Carmo Machado, I., Crnkovic, I., and de Almeida, E. S.
(2014). Analysis of non-functional properties in software product lines: a system-
atic review. In Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 328–335. IEEE. (cited on Page 30)

Soltani, S., Asadi, M., Gašević, D., Hatala, M., and Bagheri, E. (2012). Automated
planning for feature model configuration based on functional and non-functional
requirements. In International Systems and Software Product Line Conference
(SPLC), pages 56–65. ACM. (cited on Page 172 and 175)

Sommerville, I. and Sawyer, P. (1997). Viewpoints: principles, problems and a
practical approach to requirements engineering. Annals of software engineering,
3(1):101–130. (cited on Page 141 and 161)

Spinczyk, O. and Beuche, D. (2004). Modeling and building software product lines
with eclipse. pages 18–19. ACM. (cited on Page 98, 100, and 121)

Svee, E.-O. and Zdravkovic, J. (2015). Towards a consumer preference-based taxon-
omy for information systems development. In International Conference on Per-
spectives in Business Informatics Research (BIR), pages 213–227. Springer. (cited

on Page 172 and 175)

Takács, G., Pilászy, I., Németh, B., and Tikk, D. (2009). Scalable collaborative
filtering approaches for large recommender systems. Journal of Machine Learning
Research (JMLR), 10:623–656. accessed November 15, 2017. (cited on Page 3, 12,

87, 88, and 137)

Bibliography 203

Tan, L., Lin, Y., and Liu, L. (2014a). Quality ranking of features in software prod-
uct line engineering. In Asia-Pacific Software Engineering Conference (APSEC),
volume 2, pages 57–62. IEEE. (cited on Page 2, 75, 98, 99, and 121)

Tan, L., Lin, Y., and Liu, L. (2014b). Quality ranking of features in software prod-
uct line engineering. In Asia-Pacific Software Engineering Conference (APSEC),
volume 2, pages 57–62. IEEE. (cited on Page 25, 32, 37, 38, 39, 45, 50, 173, 175, and 177)

Tan, L., Lin, Y., Ye, H., and Zhang, G. (2013). Improving product configuration in
software product line engineering. In Australasian Computer Science Conference
(ACSC), pages 125–133. Australian Computer Society, Inc. (cited on Page 27, 45,

47, 50, 132, 133, 173, and 175)

Tan, T. H., Xue, Y., Chen, M., Sun, J., Liu, Y., and Dong, J. S. (2015a). Optimizing
selection of competing features via feedback-directed evolutionary algorithms. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 246–256. ACM. (cited on Page 98 and 142)

Tan, T. H., Xue, Y., Chen, M., Sun, J., Liu, Y., and Dong, J. S. (2015b). Optimizing
selection of competing features via feedback-directed evolutionary algorithms. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 246–256. ACM. (cited on Page 172 and 176)

Tanhaei, M., Habibi, J., and Mirian-Hosseinabadi, S.-H. (2016a). Automating fea-
ture model refactoring: A model transformation approach. Information and Soft-
ware Technology (IST), 80:138–157. (cited on Page 172 and 174)

Tanhaei, M., Habibi, J., and Mirian-Hosseinabadi, S.-H. (2016b). A feature model
based framework for refactoring software product line architecture. Journal of
Computer Science and Technology (JCST), 31(5):951–986. (cited on Page 27, 61,

65, 172, and 174)

Temple, P., Acher, M., Jézéquel, J.-M. A., Noel-Baron, L. A., and Galindo, J. A.
(2017). Learning-based performance specialization of configurable systems. Re-
search report, IRISA, Inria Rennes ; University of Rennes 1. accessed December
5, 2017. (cited on Page 164)

Ter Beek, M. H., Lafuente, A. L., and Petrocchi, M. (2013). Combining declarative
and procedural views in the specification and analysis of product families. In
International Systems and Software Product Line Conference (SPLC), pages 10–
17. ACM. (cited on Page 172 and 175)

ter Beek, M. H., Legay, A., Lafuente, A. L., and Vandin, A. (2015a). Quantitative
analysis of probabilistic models of software product lines with statistical model
checking. Electronic Proceedings in Theoretical Computer Science (EPTCS).
(cited on Page 172 and 176)

ter Beek, M. H., Legay, A., Lafuente, A. L., and Vandin, A. (2015b). Statistical
analysis of probabilistic models of software product lines with quantitative con-
straints. In International Systems and Software Product Line Conference (SPLC),
pages 11–15. ACM. (cited on Page 172 and 175)

204 Bibliography

Ter Beek, M. H., Legay, A., Lafuente, A. L., and Vandin, A. (2016). Statistical model
checking for product lines. In International Symposium on Leveraging Applications
of Formal Methods (ISoLA), pages 114–133. Springer. (cited on Page 26, 32, 38, 43,

61, 64, 172, 176, and 177)

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014).
FeatureIDE: an extensible framework for feature-oriented software development.
Science of Computer Programming (SCP), 79(0):70–85. (cited on Page 100, 121,

159, 172, and 174)

Thurimella, A. K. and Bruegge, B. (2012). Issue-based variability management.
Information and Software Technology (IST), 54(9):933–950. (cited on Page 27, 45,

46, 47, 48, 67, 173, and 174)

Travassos, G. and Biolchini, J. (2007). Systematic review applied to software en-
gineering. In Brazilian Symposium on Software Engineering (SBES), page 436.
ACM. (cited on Page 18)

Triando, Muschevici, R., and Azurat, A. (2016). Incremental product configuration
in software product line engineering. In International Conference on Advanced
Computer Science and Information Systems (ICACSIS), pages 597–604. Scopus.
(cited on Page 26, 32, 38, 43, 172, and 175)

Trinidad, P., Cortés, A. R., Benavides, D., and Segura, S. (2008). Three-dimensional
feature diagrams visualization. In International Systems and Software Product
Line Conference (SPLC), pages 295–302. Springer. (cited on Page 151 and 164)

Umpfenbach, E. L., Dalkiran, E., Chinnam, R. B., and Murat, A. E. (2017). Opti-
mization of strategic planning processes for configurable products. Journal of the
Operational Research Society (JORS), pages 1–20. (cited on Page 25, 32, 38, 52, 55,

58, 172, 174, and 177)

Urli, S., Blay-Fornarino, M., and Collet, P. (2014). Handling complex configurations
in software product lines: a tooled approach. In International Systems and Soft-
ware Product Line Conference (SPLC), pages 112–121. ACM. (cited on Page 26,

45, 61, 63, 173, and 175)

Vale, G., Ab́ılio, R., Pereira, J., Figueiredo, E., Afonso, P., and Costa, H. (2016).
Identification and relationship between notation and tool for feature models with
graphic representation. In International Conference of the Chilean Computer Sci-
ence Society (SCCC), pages 1–12. IEEE. (cited on Page 5, 13, 33, and 71)

Valov, P., Guo, J., and Czarnecki, K. (2015). Empirical comparison of regression
methods for variability-aware performance prediction. In International Systems
and Software Product Line Conference (SPLC), pages 186–190. ACM. (cited on

Page 26, 32, 35, 172, 175, and 177)

Villela, K., Arif, T., and Zanardini, D. (2012). Towards product configuration taking
into account quality concerns. In International Systems and Software Product Line
Conference (SPLC), pages 82–90. ACM. (cited on Page 172 and 175)

Bibliography 205

Wang, L. and Ng, W.-K. (2012). Hybrid solving algorithms for an extended dynamic
constraint satisfaction problem based configuration system. Concurrent Engineer-
ing Research and Applications (CERA), 20(3):223–236. (cited on Page 26, 38, 61,

63, 173, and 174)

Wang, L., Zhong, S.-S., and Zhang, Y.-J. (2017). Process configuration based on
generative constraint satisfaction problem. Journal of Intelligent Manufacturing
(JIM), 28(4):945–957. (cited on Page 26, 32, 38, 172, and 174)

Wang, Y.-l. and Pang, J.-w. (2014). Ant colony optimization for feature selection in
software product lines. Journal of Shanghai Jiaotong University (Science) (JSJU),
19:50–58. (cited on Page 25, 32, 38, 52, 59, 69, 173, 174, and 177)

White, J., Dougherty, B., and Schmidt, D. C. (2009). Selecting highly optimal
architectural feature sets with filtered cartesian flattening. Journal of Systems
and Software (JSS), 82(8):1268–1284. (cited on Page 161)

White, J., Galindo, J. A., Saxena, T., Dougherty, B., Benavides, D., and Schmidt,
D. C. (2014). Evolving feature model configurations in software product lines.
Journal of Systems and Software (JSS), 87:119–136. (cited on Page 26, 38, 52, 54,

57, 58, 59, 69, 173, and 174)

Winkelmann, T., Koscielny, J., Seidl, C., Schuster, S., Damiani, F., and Schaefer,
I. (2016). Parametric deltaj 1.5: Propagating feature attributes into implementa-
tion artifacts. In Gemeinsamer Tagungsband der Workshops der Tagung Software
Engineering, pages 40–54. (cited on Page 26, 32, 38, 43, 172, and 174)

Wittern, E., Kuhlenkamp, J., and Menzel, M. (2012). Cloud service selection based
on variability modeling. In International Conference on Service-Oriented Com-
puting (ICSOC), pages 127–141. Springer. (cited on Page 25, 32, 37, 38, 40, 52, 58,

61, 63, 173, 175, and 177)

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., and Wesslen, A. (2000).
Experimentation in software engineering: an introduction. (cited on Page 18, 70,

97, 98, 120, and 141)

Xiang, Y., Zhou, Y., Zheng, Z., and Li, M. (2018). Configuring software product lines
by combining many-objective optimization and sat solvers. ACM Transactions on
Software Engineering and Methodology (TOSEM), 26(4):14. (cited on Page 142)

Xue, Y., Zhong, J., Tan, T. H., Liu, Y., Cai, W., Chen, M., and Sun, J. (2016).
Ibed: Combining ibea and de for optimal feature selection in software product
line engineering. Journal Applied Soft Computing (ASC). (cited on Page 26, 32, 38,

172, 174, and 177)

Zanardini, D., Albert, E., and Villela, K. (2016). Resource–usage–aware configu-
ration in software product lines. Journal of Logical and Algebraic Methods in
Programming (JLAMP), 85(1):173–199. (cited on Page 9, 25, 27, 28, 32, 35, 37, 38, 39,

43, 45, 52, 54, 58, 109, 172, 174, and 177)

206 Bibliography

Zdravkovic, J., Svee, E.-O., and Giannoulis, C. (2015). Capturing consumer pref-
erences as requirements for software product lines. Requirements Engineering
Journal (REJ), 20(1):71–90. (cited on Page 26, 37, 38, 39, 40, 172, and 174)

Zhang, B. and Becker, M. (2016). Supporting product configuration in application
engineering using exconfig. In International Systems and Software Product Line
Conference (SPLC), pages 324–327. ACM. (cited on Page 27, 45, 172, and 175)

Zhang, G., Ye, H., and Lin, Y. (2014). Quality attribute modeling and quality aware
product configuration in software product lines. Software Quality Journal (SQJ),
22(3):365–401. (cited on Page 25, 32, 37, 38, 39, 45, 46, 47, 50, 121, 173, 174, and 177)

Zhao, Y., Wang, H., Hong, H., and Chen, J. (2012). Cased-based reasoning
based on extension theory for conflict resolution in cooperative design. In In-
ternational Conference on Cooperative Design, Visualization, and Engineering
(CDVE), pages 134–142. Springer. (cited on Page 26, 32, 45, 47, 48, 49, 173, 175,

and 177)

Zheng, P., Xu, X., Yu, S., and Liu, C. (2017a). Personalized product configuration
framework in an adaptable open architecture product platform. Journal of Man-
ufacturing Systems (JMSY), 43:422–435. (cited on Page 26, 37, 38, 39, 40, 45, 50, 61,

62, 172, 174, and 177)

Zheng, Y.-j., Yang, Y., Su, J.-f., Zhang, N., and Jiao, Y. (2017b). Dynamic op-
timization method for configuration change in complex product design. Journal
of Advanced Manufacturing Technology (JAMT), 92(9-12):4323–4336. (cited on

Page 26, 38, 61, 64, 172, and 174)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 25. June 2018

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Code Listings
	1 Introduction
	2 Background
	2.1 Software Product Line Engineering
	2.1.1 Domain Engineering
	2.1.2 Application Engineering

	2.2 Collaborative-Based Recommender Systems

	3 Current Research on Software Product Line Configuration
	3.1 Preliminaries
	3.2 The Review Methodology
	3.2.1 Planning the Review
	3.2.2 Conducting the Review
	3.2.3 Reporting the Results

	3.3 Product Configuration Activities
	3.4 Product Configuration Mechanisms
	3.4.1 Mapping Non-Functional Properties
	3.4.1.1 Non-Functional Properties Specification
	3.4.1.2 Non-Functional Properties Measurement
	3.4.1.3 Reuse of Non-Functional Property Measurements

	3.4.2 Mapping Product Requirements
	3.4.2.1 Defining Stakeholder Preferences
	3.4.2.2 Defining Product Constraints
	3.4.2.3 Configuration Language Specification

	3.4.3 Manual Configuration Process
	3.4.3.1 Visualization Techniques
	3.4.3.2 Constraint Checking and Propagation
	3.4.3.3 Solving Configuration Conflicts
	3.4.3.4 Mapping Stakeholder Tasks
	3.4.3.5 Recommender System

	3.4.4 Automatic Configuration Process
	3.4.4.1 Product Configuration Optimization
	3.4.4.2 Minimal or Maximal Configuration
	3.4.4.3 Multi-Step Configuration
	3.4.4.4 Performance and Scalability Results

	3.4.5 Configuration Adaptation Process
	3.4.5.1 Configuration of Multi-Software Product Lines
	3.4.5.2 Dynamic Product Configuration
	3.4.5.3 Product Configuration Evolution

	3.5 Main Findings
	3.6 Threats to Validity
	3.7 Related Work
	3.8 Summary

	4 Personalized Software Product Line Configurations
	4.1 Open Issues in SPL Configuration
	4.2 The Proposed Approach
	4.2.1 Formal Definitions
	4.2.2 An Overview of the Proposed Configuration Process
	4.2.3 Recommender System Algorithms
	4.2.3.1 Neighbourhood-Based CF Recommender
	4.2.3.2 CF with Significance Weighting
	4.2.3.3 CF with Shrinkage
	4.2.3.4 CF with Hoeffding Bound
	4.2.3.5 Average Similarity Recommender
	4.2.3.6 Matrix Factorization Recommender

	4.3 Evaluation
	4.3.1 Target Software Product Lines and Datasets
	4.3.2 Experiment Design
	4.3.2.1 Parameter Optimization
	4.3.2.2 Splitting into Training and Test Datasets
	4.3.2.3 Evaluation Metrics
	4.3.2.4 Baseline Comparison

	4.3.3 Analysis of Results and Discussion

	4.4 Threats to Validity
	4.5 Related Work
	4.6 Summary

	5 Personalized Extended Software Product Line Configurations
	5.1 Open Issues from Previous Contribution
	5.2 Hybrid Context-Aware Recommender
	5.2.1 Formal Definitions
	5.2.2 Contextual Modeling
	5.2.3 Collaborative-Based Recommender

	5.3 Experiment Design
	5.3.1 Target Software Product Line and Dataset
	5.3.2 Parameter Optimization
	5.3.3 Splitting into Training and Test Datasets
	5.3.4 Evaluation Metrics

	5.4 Analysis of Results and Discussion
	5.4.1 Approach Effectiveness
	5.4.2 Context-Aware Approach Benefits
	5.4.3 Different Combinations of Contextual Data

	5.5 Threats to Validity
	5.6 Related Work
	5.7 Summary

	6 Personalized Self-Configuration of Software Product Lines
	6.1 Open Issues in Self-Configuration of Dynamic Software Product Lines
	6.2 Tensor-Based Recommender
	6.2.1 Modeling Features and Context
	6.2.2 Using TF for Self-Configuration of SPLs

	6.3 Experiment Design
	6.3.1 Target Software Product Lines and Contexts
	6.3.2 Evaluation Protocol
	6.3.3 Comparison Approaches

	6.4 Analysis of Results and Discussion
	6.4.1 Approach Effectiveness
	6.4.2 Contextual vs. Non-Contextual Approaches
	6.4.3 Approach Performance

	6.5 Threats to Validity
	6.6 Related Work
	6.7 Summary

	7 Visual Guidance for Software Product Line Configurations
	7.1 FeatureIDE Configurator
	7.2 Visualization and Selection Mechanisms
	7.2.1 Information Hiding View
	7.2.2 5-Star View
	7.2.3 Feature's Graph View
	7.2.4 Non-Functional Property's Graph View

	7.3 Evaluation
	7.3.1 Approach Effectiveness
	7.3.2 Approach Scalability
	7.3.3 Approach Performance

	7.4 Threats to Validity
	7.5 Related Work
	7.6 Summary

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Open Research Directions

	A Appendix
	A.1 Papers Venues
	A.2 Studies Grouped by Contribution
	A.3 Supported Non-Functional Properties

	Bibliography

