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using an in-house assay for the detection of neurofilament
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Summary eBioMedicine
Background Neurofilaments are key axonal proteins, with neurofilament light (NfL) and heavy (NfH) chain recog- 2025;120: 105930
nised as promising biomarkers for neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). How-  Published Online 19
ever, neurofilament medium chain (NfM) remained previously underexplored due to a lack of quantitative assays. In f}?;i";?j;fgis o
this study, we developed a sensitive immunoassay to measure NfM in cerebrospinal fluid (CSF) and analysed its 1of6)j.ebi§m%]202§.
levels in ALS, Alzheimer’s disease (AD), frontotemporal dementia (FID), and Lewy body dementia (LBD). Corre- 135930

lations among neurofilaments and their diagnostic performance were also evaluated.

Methods In this study CSF levels of three neurofilament proteins were measured in 305 participants, including
patients with ALS (n = 91), AD (n = 59), FID (n = 38), LBD (n = 18), non-neurodegenerative controls (CTRL, n = 51),
and 48 individuals initially evaluated for ALS but ultimately diagnosed with other conditions (CTRL.DD). NfM levels
were quantified using a homemade sandwich ELISA, while NfL and NfH were measured using commercialised Ella
cartridges.

Findings All three neurofilaments were significantly elevated in ALS compared to CTRL and CTRL.DD groups
(p < 0.0001 for both), with NfM and NfL also increased in FTD (p < 0.0001 for both) and AD (NfM, p < 0.0001; NfL,
p = 0.0001) compared to CTRL. NfH demonstrated the greatest distinction between ALS and FID (p < 0.0001).
Strong correlations were observed among neurofilament subunits, particularly between NfM and NfL (r = 0.93, 95%
CI: 0.91-0.94, p < 0.0001). All neurofilaments effectively distinguished ALS from CTRL and CTRL.DD, with AUC
values ranging from 0.92 to 0.99. NfM and NfL showed high accuracy in differentiating AD (NfM, AUC: 0.91; NfL,
AUC: 0.89) and FTD (NfM, AUC: 0.91; NfL, AUC: 0.92) from CTRL, while NfH best separated ALS from FTD (AUC:
0.96).

Interpretation This study provides a quantitative comparison of NfM with NfL and NfH in a neurodegenerative
cohort, highlighting its potential diagnostic value. Further research with larger cohorts, longitudinal studies, and
investigations into neurofilament distribution in different compartments is needed to clarify the distinct roles of
NfM, NfL, and NfH in the diagnosis and treatment of neurological diseases.
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Articles

Research in context

Evidence before this study

Neurofilaments are intermediate filaments found in neurons,
which play crucial roles in maintaining neuronal structure
and function. Although NfL and NfH have been widely
studied in neurodegenerative diseases, NfM has received less
attention due to the absence of sensitive quantitative assays.
As a result, NfL and NfH are well-established biomarkers for
conditions like Alzheimer's disease and amyotrophic lateral
sclerosis. In contrast, the diagnostic potential of NfM remains
largely unexplored.

Added value of this study

This study introduced a reliable, sensitive immunoassay for
detecting NfM in cerebrospinal fluid (CSF), extending
research on NfM in neurodegenerative diseases. This provides

Introduction
Neurofilaments constitute a family of intermediate
filament proteins that are essential for the development,
structural integrity, and functional maintenance of
axons within both the central and peripheral nervous
systems. The main neurofilament subunits are the
neurofilament heavy (NfH), neurofilament medium
(NfM) and the neurofilament light chain (NfL) as well
as a-internexin, and peripherin. These subunits interact
to form heteropolymers, which collectively contribute to
the organisation and stability of the neuronal cytoskel-
eton."” Although these subunits share a conserved
tripartite structure, they differ markedly in size and in
their specific roles within neurofilament assembly and
function. NfL, the smallest (68-70 kDa) and most
abundant subunit, forms the core backbone of neuro-
filaments, providing structural support. Conversely,
NfM (145-160 kDa) and NfH (200-220 kDa) feature
elongated carboxy-terminal tail domains enriched with
phosphorylation sites, which extend as side arms that
regulate inter-filament spacing and axonal diameter.**
Neurofilaments, particularly NfL, have emerged as
promising biomarkers for a wide range of neurological
disorders including neurodegenerative diseases such
as amyotrophic lateral sclerosis (ALS) and Alzheimer’s
disease (AD). These cytoskeletal proteins, released into
cerebrospinal fluid (CSF) and blood upon neuronal
damage, serve as sensitive indicators of axonal injury
and neurodegeneration.”® NfL and phosphorylated
NfH (pNfH) are significantly elevated in ALS,”* with
NfL extensively studied in AD," " frontotemporal de-
mentia (FTD),"""* and Lewy body dementia (LBD),">*
correlating with cognitive decline and neuro-
degeneration. While numerous studies have explored
NfL and pNfH levels in various neurological diseases,
research on NfM levels remains limited as so far, no
well validated quantitative assays were previously
available. However, non-quantitative protein profiling

a quantitative comparison of CSF levels of NfM with NfL and
NfH in neurodegenerative diseases. Results demonstrate that
NfM, like NfL, is significantly elevated in ALS, FTD, and AD,
supporting its diagnostic potential. The strong correlation
between NfM and NfL highlights their interconnected roles,
while NfH best differentiates ALS from FTD.

Implications of all the available evidence

This study supports NfM potential to improve diagnostic
accuracy, particularly in distinguishing ALS, AD, and FTD.
Clinically, integrating NfM measurements into biomarker
panels may enhance early disease detection and patient
stratification. Future research may build on these findings to
refine neurofilament-based diagnostic criteria and explore
their prognostic value.

studies have reported elevated NfM levels in patients
with ALS and FTD.?"*

In this study we developed a quantitative and highly
sensitive immunoassay to measure NfM levels in CSF
and subsequently utilise it for the analysis of NfM in
the CSF of patients with neurological disorders,
including ALS, AD, FTD, and LBD, alongside control
cohorts. Additionally, we investigated correlations be-
tween NfM, NfL and NfH and employed receiver
operating characteristic (ROC) analysis to evaluate and
compare their individual discriminating potentials.

Methods

Ethics

CSF samples were collected at the Department of
Neurology, University Hospital of Ulm, Germany, be-
tween 2010 and 2021. All participants or their legal
representatives gave written informed consent to
participate in the study. The study was approved by the
Ethics Committee of the University of Ulm (approval
number: 20/10) and was conducted in accordance with
the Declaration of Helsinki.

Patient selection

The focus of this study was to measure the levels of
three neurofilament proteins in the CSF of 305 patients
diagnosed with ALS (n = 91), AD (n = 59), FTD (n = 38),
LBD (n = 18), and two control groups consisting of (i)
individuals initially under suspicion of ALS but finally
diagnosed differently (CTRL.DD) (n = 48) (see Table S1
for diagnoses) and (ii) non-neurodegenerative controls
(CTRL) (n = 51).

Patients with ALS met the criteria for definite or
probable ALS based on the revised El Escorial criteria.”
They were stratified into two groups—slow and
intermediate-to-fast progressors—based on their dis-
ease progression rate, using a predefined threshold.”
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The diagnosis of AD in patients was established
based on the International Working Group 2 criteria.””
This diagnosis was further supported by the analysis
of core CSF biomarkers (A: Abeta 42 to 40 ratio, T:
phosphorylated tau 181 (pTaul81), N: total tau),
following the recommendations from the National
Institute on Ageing and Alzheimer’s Association.” All
patients with AD presented a CSF biomarker profile of
A+ T+ N+. The FTD group included 17 patients diag-
nosed with behavioural variant frontotemporal demen-
tia (bvFID), along with 21 patients with primary
progressive aphasia (PPA) subtypes: 7 with the non-
fluent variant (nfvPPA), 7 with the logopenic variant
(IvPPA), and 7 with the semantic variant (svPPA). Di-
agnoses of bvFTD and PPA were made in accordance
with accepted international criteria.’"*

Among the 18 patients with LBD, 14 were diagnosed
with Parkinson’s disease (PD) based on the UK Par-
kinson’s Disease Society Brain Bank criteria,”* while 4
were diagnosed with Parkinson’s disease dementia
(PDD) based on significant impairment in daily func-
tioning* and the clinical criteria for PDD recom-
mended by the Movement Disorder Society.*

The CTRL.DD group comprised patients initially
suspected of ALS but later diagnosed with other con-
ditions, with their NfL and NfH levels previously
assessed by Halbgebauer et al."? The final diagnoses are
detailed in Table S1 the in Supplementary Material.

The CTRL group included control patients with no
clinical signs of neurodegeneration. These subjects
were initially admitted to the department of neurology
due to symptoms such as tension-type headaches, brief
sensory disturbances or dizziness. Thorough clinical
and radiological examinations ruled out neurodegen-
erative and neuroinflammatory disorders. Each control
participant also underwent a lumbar puncture to rule
out possible central nervous system (CNS) inflamma-
tion. Evaluation criteria included a normal leukocyte
count, preserved blood-CSF barrier function (reflected
by a normal CSF albumin-to-serum ratio) and no evi-
dence of intrathecal immunoglobulin synthesis,
confirmed by quantitative analysis of IgG, IgA, IgM and
oligoclonal IgG bands.

CSF sampling and analysis

CSF samples were obtained by lumbar puncture,
centrifuged at 2000 g for 10 min, and the supernatant
was aliquoted and stored at —80 °C.** To quantify NfL
and NfH in CSF samples, commercially available Ella
microfluidic kits (Bio-techne, Minneapolis, USA) were
used and measurements were performed according to
the manufacturer’s instructions. Details of the quan-
tification protocol are provided in the Supplementary
Material. The quantification range for these assays is
2.7-10,290 pg/mL for NfL and 7.46-28,480 pg/mL for
NfH. CSF NfM levels were measured using an in-
house sandwich ELISA assay. All measurements
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were performed on aliquots subjected to an equal
number of freeze-thaw cycles, ensuring consistency
across samples.

Antibodies and recombinant protein

The in-house NfM immunoassay included a mouse
monoclonal antibody, clone OTI2C4 (OriGene Cat#
CF506794, RRID: AB_3697381) against NfM as capture
and a mouse monoclonal antibody, clone OTI2G3
(Novus Cat# NBP2-72977, RRID: AB_3383062) as de-
tector. The detector antibody was biotinylated with EZ-
Link™ NHS-PEG4-Biotin (Cat. #A39259, Thermo
Fisher Scientific, Massachusetts, USA), in a ratio biotin
to antibody 40:1 according to the biotinylation protocol
provided by Quanterix Corporation (Lexington, Massa-
chusetts, USA). For assay development and antibody
affinity screening, human recombinant NfM (Cat.
#TP324475, OriGene Technologies, Rockville, MD,
USA) was employed.

NfM sandwich ELISA method

Nunc Maxisorp 96-well microtitre plates (Thermo
Fisher Scientific, Massachusetts, USA) were coated
with 100 pL per well of capture antibody (Cat.
#CF506794) at a concentration of 3.3 pg/mL in 100 mM
bicarbonate-carbonate buffer (pH 9.6) and incubated
overnight at 4 °C. Following removal of the coating
solution, non-specific binding sites were blocked by
adding 300 pL of blocking buffer (1% bovine serum
albumin in phosphate-buffered saline (PBS) with 0.05%
Tween 20) to each well, followed by incubation at 20 °C
for 2 h. CSF samples were diluted 1:4 in blocking
buffer, and calibrators were prepared using recombi-
nant NfM (Cat. #IP324475) with concentrations
ranging from 125 to 8000 pg/mL. A volume of 100 pL of
the diluted CSF samples, blocking buffer as blank,
controls and calibrators was added in duplicate and
incubated at 30 °C for 1.5 h. The wells were then
washed three times with 300 pL of wash buffer (PBS
with 0.05% Tween 20) to remove unbound proteins.
Subsequently, 100 pL of biotinylated detector antibody
(Cat. #NBP2-72977), diluted to 1.32 pg/mL in blocking
buffer, was applied to each well and incubated for 1 h at
20 °C. After further washing, 100 pL of avidin/biotin-
based peroxidase complexes (A& B solutions, 1:200
each in PBS) (Cat. #PK-6100, Vector Laboratories, Cal-
ifornia, USA) was added and incubated for 1 h at 20 °C
to allow detection. The plate was washed again and
100 pL of 3,355 -tetramethylbenzidine (Thermo
Fisher Scientific, Massachusetts, USA) was added to
each well and incubated for 15 min at room tempera-
ture in the dark to allow colour development. The re-
action was stopped by adding 100 pL of 1 M
hydrochloric acid to each well. Absorbance was
measured at 450 nm with a reference wavelength of
570 nm. Concentrations were determined from a
4-parameter logistic standard curve.


nif-antibody:AB_3697381
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NfM assay validation

Repeatability was evaluated by measuring eight repli-
cates of a pooled CSF sample along with two individual
CSF samples. To assess intermediate precision, four
replicates of three individual CSF samples and one
pooled sample were measured across three separate
runs. The lower limit of quantification (LLOQ) and the
limit of detection (LOD) were determined using 16 blank
measurements, with the LLOQ calculated as the signal
corresponding to 10 standard deviations (SD) above the
mean, and the LOD calculated as 3 SD above the mean.”

The calibrators covered a concentration range of
125-8000 pg/mL. 5% of the samples measured excee-
ded the upper limit and their concentration was esti-
mated by extrapolation. All samples were above the
LLOQ. To assess parallelism, two endogenous CSF
samples were analysed—one with a high concentration
and one with low concentration—diluted at ratios
ranging from 1:2 to 1:8. The back-calculated concen-
trations from these dilutions were evaluated to deter-
mine the minimum required dilution (MRD). This
strategy was implemented to minimise matrix effects
and ensure accurate quantification of endogenous NfM.

To assess spike and recovery, two CSF samples were
diluted at a ratio of 1:4 and divided into three aliquots.
Each aliquot was then spiked with NfM-free sample
diluent, as well as recombinant NfM protein (Cat.
#TP324475) at medium (2000 pg/mL) and low (400 pg/
mL) concentrations. The volume of the spiked solution
was kept below 10% of the total aliquot volume, and
recovery was expressed as a percentage. To evaluate
potential cross-reactivity with abundant CSF proteins,
serial dilutions of the two CSF samples were spiked
with physiological concentrations of human serum al-
bumin (HSA) (200 pg/mL) and a higher concentration
of 600 pg/mL, as well as physiological concentrations of
immunoglobulin G (IgG) (30 pg/mL) and a higher
concentration of 90 pg/mL. NfM levels in these spiked
samples were then compared to those in unspiked
samples.

To assess potential cross-reactivity with NfL and
NfH in an indirect ELISA, recombinant proteins for
NfL (Cat. #ab224840, Abcam, Cambridge, UK) and NfH
(Cat. #TP313487, OriGene Technologies, Rockville,
MD, USA) were coated onto the assay plate, and anti-
bodies were screened for their affinity to these two
proteins. Antibodies specific to NfL (Thermo Fisher
Scientific Cat# 13-0400, RRID: AB_2532995) and NfH
(Proteintech Cat# 18934-1-AP, RRID: AB_10640801)
were used as positive controls. Furthermore, NfL and
NfH recombinant proteins were used as samples in
NfM homemade sandwich ELISA to further evaluate
possible cross-reactivity.

Statistics
Data analysis and visualisation were performed using
GraphPad Prism (RRID:SCR_002798), version 10.2.2.

The Shapiro—Wilk test was conducted to assess the data
distribution. Since the data did not follow a Gaussian
distribution, non-parametric tests were applied. Neu-
rofilament concentrations were normalised using Z-
scores. To calculate the Z-scores, the absolute values
were first log10-transformed, and then the following
formula was applied: Z = (X — p_controls)/c_controls.
In this equation, X represents each individual value
within the patient cohort, p_controls is the mean value
of the control group, and o_controls is the standard
deviation of the control group.

Disease progression rate (AFS) in ALS cohort was
calculated as: AFS = (48 — ALSFRS-R at diagnosis)/
disease duration in months from symptom onset to
diagnosis. Based on established criteria,” slow pro-
gressors (AFS < 0.4 points/month) and intermediate-
to-fast progressors (AFS > 0.4 points/month) were
defined. The prognostic value of neurofilaments in the
ALS cohort was further assessed using Kaplan—Meier
analysis. Mann-Whitney U tests were used to assess
significant differences between groups for pairwise
comparisons. For comparisons between multiple
groups, the Kruskal-Wallis test followed by Dunn’s
post-hoc analysis was performed and the adjusted p-
values from Dunn’s post hoc test were used to deter-
mine statistical significance. Effect sizes (r) for pairwise
post-hoc comparisons (Dunn’s test) were calculated as
following; r = Z/4/N, where Z is the z-value from
Kruskal-Wallis analysis and N is the combined sample
size of the two groups. Effect sizes were interpreted
according to Cohen’s criteria (Small: r = 0.10, Medium:
r = 0.30, Large: r > 0.50).*® Spearman correlation co-
efficients were calculated to assess the correlations
among neurofilament proteins and their association
with age. ROC analyses were performed to determine
cut-off values, with the optimal threshold selected based
on the maximisation of the Youden Index
(sensitivity + specificity — 1). Statistical significance was
defined as p < 0.05.

Role of funders

None of the funders had a role in the design and
conduct of the study; collection, management, analysis,
and interpretation of the data; preparation, review, or
approval of the manuscript; and decision to submit the
manuscript for publication.

Results

Performance of the established ELISA assay for the
detection of NfM

The developed assay, targeting full-length recombinant
NfM protein, demonstrated intra- and inter-assay vari-
ability of 5.5% and 10%, respectively. The LLOQ and
LOD of the assay were determined to be 107.7 pg/mL
and 23.9 pg/mL, respectively, with no cross-reactivity
observed with NfL or NfH (Supplementary Material,
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Figure S1). Parallelism experiments indicated a mini-
mum required dilution (MRD) of 1:2; however, CSF
samples were diluted 1:4 in subsequent measurements
to maximise the number of samples within the range of
the calibration curve (Supplementary Material,
Figure S2). Recovery analysis of the recombinant pro-
tein spiked at a 1:4 dilution showed a recovery rate of
96%. Stability testing showed that CSF NfM is stable for
up to 3 days at room temperature or 4 °C, and up to five
freeze-thaw cycles did not affect measured NfM con-
centrations, with variability remaining below 20%. No
cross-reactivity with human albumin or immunoglob-
ulin G was detected. Further details of assay perfor-
mance are provided in the Supplementary Materials.

Demographic features and neurofilament protein
concentrations

The main demographic parameters for each diagnostic
group are summarised in Table 1. No significant dif-
ference in age was observed between the groups. There
was also no significant difference between neurofila-
ment levels in female and male control patients (NfM
(p = 0.83), NfL (p = 0.83), NfH (p = 0.5)). Correlation
analysis revealed a strong correlation between NfM
concentrations and age in CTRL (r = 0.69 (95% CI:
0.51-0.81), p < 0.0001), and CTRL.DD (r = 0.77 (95% CI:
0.62-0.87), p < 0.0001), but not in the patient’s cohorts
(Fig. 1). The correlation between age and neurofilament
subunits was assessed in the combined control group
(CTRL and CTRL.DD), with the results summarised as
follows; NfM: (r = 0.73 (95% CI: 0.62-0.81), p < 0.0001),
NfL: (r = 0.69 (95% CI: 0.56-0.78), p < 0.0001), and NfH:
(r = 034 (95% CI: 0.14-0.51), p = 0.0006). Sex-
disaggregated demographic and biomarker data are
presented in the Supplementary Material, Table S2.

NfM, NfL and NfH levels in the diagnostic groups
All three neurofilaments showed significantly elevated
levels in ALS compared with CTRL (p < 0.0001, NfM:
r=0.90, NfL: r = 1.05, NfH: r = 0.87, large effect) and
CTRL.DD (p < 0.0001, NfM: r = 0.85, NfL: r = 1.02, NfH:
r = 0.82, large effect) (Fig. 2a). However, NfM and NfL
were significantly increased in FID vs CTRL
(p < 0.0001, NfM: r = 0.71, NfL: r = 0.64, large effect)
and AD vs CTRL (NfM: p < 0.0001, r = 0.57, large effect;
NfL: p=0.0001, r = 0.41, moderate effect), whereas NfH
values revealed no significant difference. NfH on the
other hand displayed the highest difference between
ALS and FTD (p < 0.0001, r = 0.60, large effect).
Within the ALS cohort, comparative analysis between
slow and intermediate-to-fast progressors revealed sig-
nificant differences in CSF neurofilament levels
(Supplementary Material, Figure S3 and Table S3). NfM
showed the most statistically significant elevation in
concentrations among the intermediate-to-fast pro-
gressor group (p = 0.0007). NfL and NfH also displayed
statistically significant differences between the groups,
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albeit with slightly higher p-values (p = 0.0035 and
p = 0.0055, respectively). In addition, Kaplan—Meier
survival analyses revealed that higher CSF levels of all
three neurofilaments at the time of sample collection
were associated with a trend to reduced survival proba-
bility (Supplementary Material, Figure S4).

To further assess differences in neurofilament pro-
tein concentrations, we compared the levels across
disease subgroups (Fig. 2b). A pairwise comparison was
made within the FTD and LBD subgroups. Significantly
lower NfM levels were observed in IvPPA compared to
nfvPPA (p = 0.007) and svPPA (p = 0.0023). Similarly,
NfL levels were significantly lower in IvPPA compared
to nfvPPA (p = 0.007) and svPPA (p = 0.0006). However,
no significant differences were found for NfH levels.
All three proteins displayed a trend to elevated levels in
the PDD group compared to PD, with only NfL levels
showing a significant difference (p = 0.034).

Although the absolute values of the three neuro-
filament proteins are presented in the same graph
(Fig. 2), direct comparison is not possible due to the use
of different assays, each calibrated independently. To
enable comparison of variations among the proteins,
the absolute values were log transformed, and Z-scores
were calculated. These normalised data are displayed in
Fig. 3. Additionally, we calculated ratios between
different neurofilament proteins and compared these
ratios across diagnostic groups; detailed results of these
analyses are provided in the Supplementary Material
(Figure S5).

Associations of CSF neurofilaments with each other
and ATN scores

In the entire cohort, CSF NfM values showed a stronger
correlation with CSF NfL (r = 0.93, 95% CI: 0.91-0.94,
p < 0.0001) (Fig. 4a), than with CSF NfH (r = 0.68, 95%
CI: 0.61-0.73, p < 0.0001) (Fig. 4b). A moderate to strong
correlation was noted between CSF NfL and CSF NfH
(r = 0.78, 95% CI: 0.73-0.82, p < 0.0001) (Fig. 4c). Cor-
relation analysis in a subgroup of patients demonstrated a
strong and statistically significant correlation between
CSF NfM and serum NfL (r = 0.88, 95% CI: 0.84-0.91,
p < 0.0001), as well as a moderate but significant corre-
lation between CSF NfM and serum NfH (r = 0.50, 95%
CI: 0.33-0.64, p < 0.0001) (Supplementary Material,
Figure S6).

Analysis of ATN scores and neurofilament proteins
revealed no significant correlation between the amyloid-
beta ratio and any neurofilament protein (Fig. 5a).
Among the three neurofilament proteins analysed, NfM
demonstrated the strongest and most significant cor-
relations with tau biomarkers. Specifically, NfM levels
were strongly correlated with both pTaul81 (r = 0.71,
95% CI: 0.55-0.82, p < 0.0001; Fig. 5b) and total tau
(tTau) (r = 0.77, 95% CI: 0.64-0.86, p < 0.0001; Fig. 5c).
In contrast, NfL showed only moderate correlations
with both pTaul8l (r = 0.50 (95% CI 0.27-0.67),
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Control ALS AD FTD LBD
Subgroups CTRL CTRL.DD - - bvFTD IvPPA nfvPPA svPPA PD PDD
N 51 48 91 59 17 7 7 7 14 4
female/male 26/25 15/33 44/47 36/23 4/13 3/4 3/4 2/5 6/8 1/3
Age at LP [year] 59 (52-66) 59 (50-70) 64 (55-74) 62 (59-65) 63 (60-69) 71 (62-73) 73 (60-78) 65 (57-74) 66 (60-71) 75 (71-77)
CSF NfM [pg/mL] 900 1034 14,425 4281 5308 4590 14,106 10,854 1883 3188
(552-1304) (678-1989)  (6512-22964)  (3035-7470) (1432-18613) (2806-6972) (9380-22132)  (10,311-16793)  (1194-3793) (1620-4337)
CSF NfL [pg/mL] 563 592 6033 1320 1528 1528 3528 3272 966 1626
(449-779)  (446-890)  (4092-9207) (1044-1652)  (1006-3154)  (1324-2208)  (2440-5788) (2840-5032) (589-1488)  (1379-1732)
CSF NfH [pg/mL] 756 953 6324 1044 1084 1500 1904 808 (496-1424) 1202 2024
(412-1328) (712-1302)  (4137-9476) (800-1392) (726-2076) (1064-1892)  (1208-2236) (816-1868)  (1415-2270)

Data is reported as median (Interquartile range). Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; bvFTD, behavioral variant frontotemporal dementia; CTRL, non-
neurodegenerative controls; CTRL.DD, control patients with initial diagnostic suspicion of ALS but finally diagnosed with another condition; CSF, cerebrospinal fluid; FTD, frontotemporal dementia; LBD,
lewy body dementia; IvPPA, logopenic variant primary progressive aphasia; NfH, neurofilament heavy chain; NfL, neurofilament light chain; NfM, neurofilament medium chain; nfvPPA, non-fluent
variant primary progressive aphasia; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; svPPA, semantic variant primary progressive aphasia. *Sex information was obtained through self-report

from study participants.

Table 1: Demographic data of the diagnostic cohort.

p < 0.0001) and tTau (r = 0.57 (95% CI 0.36-0.72),
p < 0.0001), while no significant correlations were
observed between NfH and either tau biomarkers
(pTaul81: r = -0.01 (95% CI -0.27 to 0.25), p = 0.93;
tTau: r = 0.01 (95% CI —0.25 to 0.27), p = 0.93).

Discriminative potential of CSF neurofilament
proteins

ROC analysis demonstrated that all three neurofila-
ment proteins could effectively discriminate ALS from

100000 A

the CTRL cohort with an area under the curve (AUC)
of 0.95 for NfM, 0.98 for NfL and 0.92 for NfH
(Fig. 6a). Similarly, patients with ALS could be well
distinguished from the CTRL.DD cases by NfM (AUC:
0.96), NfL (AUC: 0.99) and NfH (AUC: 0.99) (Fig. 6b).
In addition, NfM and NfL revealed higher accuracy for
the discrimination between patients with AD (NfM,
AUC: 0.91; NfL, AUC: 0.89) (Fig. 6¢c) and FTD (NfM,
AUC: 0.91; NfL, AUC: 0.92) (Fig. 6d) and CTRL cases.
For the discrimination between patients with ALS and

——  CTRL (r=0.69 ****)
——  CTRL.DD (r=0.77 ***)
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Fig. 1: Assessment of correlation between CSF NfM and age. Spearman correlation between CSF NfM and age in each diagnostic cohort is
shown in different colours. CTRL (r = 0.69 (95% ClI: 0.51-0.81), p < 0.0001), CTRL.DD (r = 0.77 (95% Cl: 0.62-0.87), p < 0.0001), ALS
(r = =0.22 (95% Cl: -0.42 to -0.01), p = 0.03), AD (r = -0.10 (95% Cl: -0.35 to 0.17), p = 0.44), FTD (r = 0.00 (95% Cl: -0.32 to 0.33),
p = 0.97), and LBD (r = 0.50 (95% Cl: 0.03-0.79), p = 0.03). AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; CTRL, non-
neurodegenerative controls; CTRL.DD, control patients with initial diagnostic suspicion of ALS but finally diagnosed with another condi-
tion; CSF, cerebrospinal fluid; FTD, frontotemporal dementia; LBD, Lewy body dementia; NfM, neurofilament medium chain.
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Fig. 2: Neurofilament proteins in diagnostic groups. CSF NfM, NfL and NfH concentrations in the diagnostic groups (a) and in the
extended diagnostic groups (b). Statistically significant differences between the patient cohorts and CTRL are indicated with star symbols
(*), while the comparison between patients with ALS and the CTRL.DD cohort is marked with dollar signs ($). Additional significant
differences within the diagnostic cohorts are observed with the following p-values; NfM (ALS vs AD: p = 0.0001; ALS vs LBD: p < 0.0001;
FTD vs LBD: p = 0.0179), NfL (ALS vs AD: p < 0.0001; ALS vs FTD: p = 0.0016; ALS vs LBD: p < 0.0001), and NfH (ALS vs AD: p < 0.0001;
ALS vs FTD: p < 0.0001; ALS vs LBD: p < 0.0001). Displayed are the median concentration, the 25% and 75% percentiles and whiskers from
minimum to maximum. Groups were compared by Kruskal-Wallis test and Dunns post hoc test. (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001; and $$$$ p < 0.0001). AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; bvFTD, behavioural variant fronto-
temporal dementia; CTRL, non-neurodegenerative controls; CTRL.DD, control patients with initial diagnostic suspicion of ALS but finally
diagnosed with another condition; CSF, cerebrospinal fluid; FTD, frontotemporal dementia; LBD, Lewy body dementia; IvPPA, logopenic
variant primary progressive aphasia; NfH, neurofilament heavy chain; NfL, neurofilament light chain; NfM, neurofilament medium chain;
nfvPPA, non-fluent variant primary progressive aphasia; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; svPPA, semantic
variant primary progressive aphasia.

FTD, NfH showed the best result (AUC: 0.96), fol-  Discussion

lowed by NfL (AUC: 0.83) (Fig. Ge). However, the
performance of neurofilament proteins was subopti-
mal for discriminating between patients with AD and
FTD (Fig. 6f). The optimal cut-off values for each
neurofilament, along with corresponding sensitivity,
and specificity, are summarised in the Supplementary
Material, Table S4. The combination of neurofilament
proteins did not enhance the accuracy of discrimina-
tion between patient cohorts (Supplementary Material,
Figure S7).
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CSF NfL and NfH are well studied in the literature as
axonal damage markers. However, the third neuro-
filament NfM is lagging behind in terms of available
and well validated assays and analyses in neurological
diseases. In this study we developed a sensitive sand-
wich ELISA for the quantification of NfM in CSF and
applied it in a comprehensive cohort of neurodegen-
erative diseases. The technical validation demon-
strated an excellent assay performance meeting all
relevant technical criteria. Of particular note is the
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Fig. 3: Neurofilament protein comparison using z-scores. NfL,
NfM and NfH levels were normalised using z-scores and visualised in
a forest plot layout. The forest plot displays the mean z-scores and
corresponding 95% confidence intervals, illustrating the variations
in different proteins values within each patient cohort compared to
the mean value in the respective control cohort. The NfM values are
depicted in green, NfL in blue, and NfH in purple. AD, Alzheimer's
disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal
dementia; LBD, Lewy body dementia; NfH, neurofilament heavy
chain; NfL, neurofilament light chain; NfM, neurofilament medium
chain.

high specificity for NfM with no cross-reactivity to NfL
and NfH.

Our study used a validated quantitative assay for
NfM and compared CSF levels between NfM, NfL and
NfH. As both NfL and NfH correlate significantly with
age,** we first examined if NfM (and also NfL and
NfH) depicts the same association. Confirming the
literature NfL and NfH illustrated a positive association
with age in the control group which we also detected for

a
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NfM. This effect has to be taken into account when
analysing patients in different age groups. In our cohort
of control and neurodegenerative diseases there was no
significant difference in age.

NfM, NfL and NfH on the other hand showed
significantly elevated concentrations in ALS compared
to control and CTRL.DD cohorts. While elevated levels
of NfL and NfH in ALS have been well-docu-
mented,'*'>*! quantitative data for NfM has been lack-
ing. Our study supports recent findings demonstrating
elevated NfM levels in ALS using a semi-quantitative
bead suspension array.*” Our cross-sectional analysis
demonstrated that CSF neurofilament levels are
significantly associated with disease progression in
ALS, particularly NfM showed the strongest elevation in
intermediate-to-fast progressors, followed by NfL and
NfH. This finding complements previous studies where
NfL and pNfH were established as reliable prognostic
markers for ALS, correlating with faster progression
and shorter survival.””**** Future longitudinal studies
are needed to clarify the temporal dynamics and pre-
dictive capacity of NfM and to evaluate its utility as a
monitoring or pharmacodynamic biomarker in clinical
trials.

Furthermore, we could demonstrate a significant
elevation of NfM and NfL but not NfH in AD and FTD
compared to controls which was in the case of AD most
significant for NfM. This finding confirms the literature
showing better discriminating potential for NfL than
NfH for AD and FTD compared to controls.“* The
NfM results now complement these findings. On the
other hand, only NfH was elevated in patients with ALS
compared to patients with FTD corroborating findings
of other studies.'>'7**

One possible explanation might be the underlying
structural characteristics of neurofilament subtypes.
NfL is the most abundant (neurofilament subunits
stoichiometry 7:3:2 (NfL: NfM: NfH))' and soluble
form and is rapidly released from neurons following
axonal injury. In contrast, NfH is larger and
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Spearman r = 0.78 ****
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Fig. 4: Correlation analysis between the different neurofilament proteins. (a) Correlation between CSF NfM and NfL (r = 0.93 (95% Cl
0.91-0.94), p < 0.0001) (n = 305). (b) Correlation between CSF NfM and NfH (r = 0.68 (95% Cl 0.61-0.73), p < 0.0001) (n = 305). (c)
Correlation between CSF NfL and NfH (r = 0.78 (95% Cl 0.73-0.82), p < 0.0001) (n = 305). Correlation analysis was performed using
Spearman’s correlation coefficient. Cl, confidence intervals; CSF, cerebrospinal fluid; NfH, neurofilament heavy chain; NfL, neurofilament light
chain; NfM, neurofilament medium chain.
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Fig. 5: Correlation analysis between ATN scores and CSF neurofilaments in AD cohort. (a) Correlation between Amyloid beta 42/40 and
NFM (r = -0.11 (95% Cl -0.36 to 0.16), p = 0.40), n = 59), NfL (r = -0.14 (95% Cl -0.38 to 0.13), p = 0.30), n = 59), NfH (r = ~0.12 (95%
Cl -0.37 to 0.15), p = 0.37), n = 59) (b) Correlation between pTau181 and NfM (r = 0.71 (95% Cl 0.55-0.82), p < 0.0001), n = 59), NfL
(r=0.50 (95% Cl 0.27-0.67), p < 0.0001), n = 59), NfH (r = -0.01 (95% Cl -0.27 to 0.25), p = 0.93), n = 59) (c) Correlation between Total Tau
and NfM (r = 0.77 (95% Cl 0.64-0.86), p < 0.0001), n = 59), NfL (r = 0.57 (95% Cl 0.36-0.72), p < 0.0001), n = 59), NfH (r = 0.01 (95%
Cl-0.25t0 0.27), p = 0.93), n = 59). Correlation analysis was performed using Spearman'’s correlation coefficient. Cl, confidence intervals; CSF,
cerebrospinal fluid; NfH, neurofilament heavy chain; NfL, neurofilament light chain; NfM, neurofilament medium chain.

distinguished by its heavily phosphorylated tail domain
and possibly slower release following injury. As ALS
primarily involves degeneration of large motor neurons
with high neurofilament concentrations, it results in a
marked increase of both NfL and NfH levels in CSF.
FTD, on the other hand, mainly affects cortical neurons
with smaller axons and lower NfL and NfH content,
accounting due to neurofilaments stoichiometry only
for an increase in NfL but no significant NfH elevation
supporting NfH’s relative specificity for ALS.> In the
FTD subgroups, we observed significantly elevated NfM
and NfL levels in patients with nfvPPA and svPPA
compared to those with bvFTD and IvPPA, a finding
previously reported only for NfL.*

Taken together, NfM levels in CSF are more com-
parable to NfL CSF concentrations than to NfH, despite
NfM being more closely related to NfH in terms of
amino acid sequence, structure and neurofilament as-
sembly.* This observation is supported by the correla-
tion analysis between the three neurofilaments, which
revealed the strongest association between NfL and
NfM. In contrast, NfL and NfH showed a moderate to
strong association, consistent with findings from pre-
vious studies.'**

Given the prominently elevated NfM levels in the
AD cohort, we also analysed its correlation with the CSF
ATN biomarkers assessed in these patients. Notably,
NfM showed the strongest association with pTaul81
and tTau. While the AD group included only 59 pa-
tients, limiting definitive conclusions, this finding
warrants further investigation of NfM in a larger AD
cohort.

NfM showed similar results to NfL and NfH in
discriminating between disease and controls. We
confirmed recent semi-quantitative analyses showing
high AUCs for NfM in discriminating patients with
ALS from controls,” findings which are also well-
documented for NfL and NfH.#* NfM also
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exhibited strong discriminatory potential in patients
with AD, slightly better than NfL, in differentiating AD
from controls.”>**** However, NfM did not enhance the
diagnostic power of neurofilaments in the neurode-
generative groups tested.

In our study, combining three neurofilament pro-
teins did not improve overall diagnostic performance
compared to individual subunits. This likely reflects the
shared structural and functional roles of these neuro-
filaments, which are released during axonal injury and
therefore exhibit high intercorrelation. Similar obser-
vations have been reported in previous studies, where
NfL alone provided strong diagnostic discrimination,
while the addition of NfH offered limited incremental
value.” However, specific neurofilament patterns, such
as elevated NfH in ALS and increased NfM in AD, may
still aid in distinguishing between disease subtypes,
suggesting potential value for targeted clinical applica-
tions despite the lack of overall diagnostic improvement
from combining markers.

The strength of our study lies in the use of a well
characterised and validated quantitative immunoassay
for detection of NfM in CSF. Furthermore, we evalu-
ated a comprehensive cohort of neurodegenerative
diseases, with parallel assessment of NfL and NfH for
comparison. However, limitations include the cross-
sectional design, which did not allow us to track NfM
changes over time, and the relatively small sample sizes
in some subgroups.

We present a quantitative comparison of NfM with
NfL and NfH in a neurodegenerative cohort, contrib-
uting to the existing body of literature on NfL and NfH.
Further studies on NfM, especially in FTD and AD with
larger patient cohorts, as well as investigations of NfM
in neuroinflammatory diseases and in longitudinal
studies will provide more insight into its potential value
for the (differential-) diagnosis and monitoring of
neurological diseases. Additionally, given the apparent
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Fig. 6: ROC analysis of CSF neurofilament proteins. The panels show the results of the ROC analyses comparing the levels of three
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NfL, neurofilament light chain protein; ROC, receiver operating characteristic.
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differences in the CSF concentration patterns of NfM,
NfL and NfH across neurological diseases, studies
examining the expression and distribution of these
neurofilaments in different brain compartments could
help clarify their distinct roles in various neurological
disorders.
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