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Abstract

This dissertation addresses the challenges of solving high-dimensional stochastic dif-
ferential equations (SDEs) often spatially discretized stochastic partial di!erential
equations (SPDEs) driven by both standard Brownian motion (sBm) and fractional
Brownian motion (fBm). The primary focus is on model order reduction (MOR)
techniques, essential for simplifying large-scale systems into lower-dimensional, com-
putationally e”cient models while preserving critical dynamics.
We study numerical solutions for large-scale linear stochastic systems, such as

spatially discretized SPDEs driven by standard and fractional Brownian motion.
Particular emphasis is placed on the stochastic heat equation, where a spectral
Galerkin scheme is employed for spatial discretization, extending existing results to
SPDEs influenced by Wiener and fractional noise. Due to the lack of asymptotic
stability in semi-discretized SPDEs under large noise, we develop MOR schemes
specifically designed for unstable systems with Wiener noise. A novel Gramian-based
approach is proposed to identify dominant subspaces, with Gramians constructed
through Lyapunov equations. Since covariance information is not directly avail-
able, e”cient sampling-based methods incorporating variance reduction techniques
and deterministic approximations of covariance functions are introduced. An error
bound is established, providing a priory criteria for selecting the reduced system
dimension, and ensuring the applicability of the method even in deterministic set-
tings. Comprehensive numerical experiments validate the proposed MOR schemes,
demonstrating their computational e”ciency and e!ectiveness in high-dimensional
stochastic systems.
We also investigate systems driven by fBm with the Hurst parameter H → [1/2, 1),

using the Young and Stratonovich interpretations. Fractional Young di!erential
equations capture memory e!ects, and we analyze fundamental solutions to intro-
duce empirical reduced order methods based on snapshots or approximated Grami-
ans. For H > 1/2, empirical Gramians from the simulation data are proposed. We
present projection-based ROMs, noting the need for improvements in Stratonovich
settings. Numerical experiments validate our techniques, o!ering insights into e!ec-
tive MOR for stochastic systems with fractional noise, and aiding e”cient compu-
tational strategies for practical applications.
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Introduction

Computational science has emerged as a critical third pillar in science and industry,
complementing theoretical and experimental approaches. It enables deep insights
into systems in various fields like physics, chemistry, biology, economics, and en-
gineering. The growing need for real-time simulation, control, and prediction of
complex systems presents significant challenges. These challenges often lead to op-
timal control problems involving dynamical systems (DS) governed by (stochastic)
partial di!erential equations ((S)PDEs).
Advancements over the past decades, driven by increased computational power

and improved numerical algorithms, have made it possible to solve many complex
problems that were previously intractable. However, standard spatial discretization
methods for high-resolution DS often result in large-scale, high-dimensional systems
of stochastic or ordinary di!erential equations. To address these challenges, MOR

Physical System + Data

(S)PDEs

(S)ODEs Reduced # of (S)ODEs

Simulation ControlEstimation

Modeling

Descritization

Model reduction

Figure 0.1: Process to a Reduced-Order Modeling

techniques provide a promising approach. These techniques simplify large-scale
systems into low-dimensional Reduced-Order Models (ROMs), facilitating robust
simulation and active control (Figure 0.1). MOR aims to find low-dimensional ap-
proximations of high-dimensional DS by focusing on dominant modes, thus reducing
computational complexity while preserving essential input-output behaviors (Figure
0.2). The reduction process must be reliable, computationally e”cient, and result
in minimal approximation errors. There has been an enormous interest in MOR
techniques for deterministic equations. Let us refer to [5, 13], where an overview
of di!erent approaches is given and further references can be found. MOR for Itô

1
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u1(·)
u2(·)
...

um(·)

x1(·)
x2(·)
...

xn(·)

y1(·)
y2(·)
...

yp(·)

Figure 0.2: Input-output systems

stochastic di!erential equations (SDEs) is also very natural thinking of computation-
ally very involved techniques like Mont-Carlo methods. There has been vast progress
in the development of MOR schemes in the Itô setting. Let us refer to [14, 100, 116]
in order to point out three di!erent approaches in this context. Chapter 3 is devoted
to the concept of MOR and defines various MOR methods, highlighting the most
critical ones: the Balanced Truncation (BT) method and the Proper Orthogonal
Decomposition (POD) method, which are pivotal in reducing system complexity
while preserving essential dynamics.
Balanced Truncation is a prominent method for MOR in both deterministic and

stochastic systems. It uses Singular Value Decomposition (SVD) to approximate a
matrix to its lower-rank form, as detailed by Moore [76] and further developed by
Mullis and Roberts [74]. In deterministic systems, Lyapunov Balanced Reduction
(LBR), which involves solving reachability and observability Lyapunov equations,
ensures stability and provides error bounds, as established by Glover [89] and Enns
[33]. For stochastic systems, balanced truncation incorporates stochastic Gramians
to account for noise impact, allowing for accurate simplification of complex models
with clear error bounds, crucial for fields like aerospace and financial engineering.
This adaptation was notably advanced in the late 1980s and 1990s [41, 25], and
recent discussions on Itô type SDEs can be found in [10, 14].
POD method is another crucial MOR technique developed through contribu-

tions by Karhunen [56], Loéve [67], and others [63, 92, 15]. It has been exten-
sively applied in various scientific and engineering domains, including fluid dynam-
ics [42, 49, 107, 112], electric circuit analysis [88], and structural dynamics [4].
Comprehensive reviews on the history and applications of POD can be found in
[20, 22, 58, 65, 118]. While POD has been e!ectively used for deterministic systems
derived from PDEs, its extension to SDEs influenced by Wiener processes has been
less explored. Notable applications in stochastic settings include the stochastic Burg-
ers equation [48, 122] and stochastic Hamiltonian systems, where POD techniques
were shown to improve solution accuracy and stability [116]. This dissertation ex-
plores advanced MOR techniques in stochastic systems driven by standard Brownian
motion (sBM) and fractional Brownian motion (fBm).
Fractional Brownian motion, introduced by Kolmogorov [62] and further explored

by Mandelbrot and Van Ness [69], di!ers from classical Brownian motion by its Hurst
parameter H, which ranges from 0 to 1 and adjusts its self-similarity index. While
sBm has a self-similarity index of 1/2 and stationary increments, fBm’s varying H

allows it to model a wider array of phenomena but also prevents it from being a
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semimartingale or Markov process when H ↙= 1/2. This distinction complicates the
analytical treatment of fBm but opens new research avenues. Integrating processes
with respect to fBm, particularly for H > 1/2, can be approached using pathwise
methods based on Young’s integration [123] or fractional calculus [34]. Malliavin
calculus has also been pivotal, with foundational work by Decreusefond and Üstünel
[27], and further contributions by Carmona and Coutin [21], Alós, Mazet, and Nu-
alart [1, 2], and the monographs by Hu and Biagini [44, 18]. A comprehensive
discussion of fBm, detailing its properties and various integration techniques is pro-
vided in Chapter 2.
Due to its self-similarity and long-range dependency, fBm is an excellent candi-

date for simulating various phenomena in practice. The significance of long-range
dependence is underscored by the extensive volume of literature that features this
concept in their titles. Such publications span diverse fields including finance [66],
econometrics [105], internet modeling [55], hydrology [87], climate studies [117], lin-
guistics [3], DNA sequencing [57], and physics [38, 39, 93].

In this dissertation, we study a Rq-valued fBm process WH =
)︄
W

H

1
, . . . ,W

H

q

[︄↘
,

characterized by a mean of zero, Hurst parameter H → [1/2, 1), and the covariance
matrix K = (kij)i,j=1,...,q. The process is characterized by

E[WH(t)(WH(t))↘] = Kt
2H

, for t → [0, T ],

where T > 0 denotes the terminal time. These processes are defined on a fil-
tered probability space

)︄
#,F, (Ft)t≃[0,T ],P

[︄
, where (Ft)t≃[0,T ] is assumed to be right-

continuous and complete.
Initially, we focus onWiener noise, corresponding toH = 1

2
, and assumeW

1
2 := W

is (Ft)t≃[0,T ]-adapted, with increments W (t+ h)↘W (t) being independent of Ft for
t, h ∝ 0. Comprehensive details and concepts about SDEs and Itô calculus are
provided in Chapter 1. In the latter part of this dissertation, we extend our analysis
to fBm with Hurst parameter H ∝ 1

2
. This unified approach allows us to analyze

the properties and behaviors of both Wiener processes and fBm, using their unique
characteristics in various stochastic modeling scenarios.
We consider the following large-scale controlled linear SDE:

dx(t) = [Ax(t) + Bu(t)]dt+
q⌊︄

i=1

Nix(t)dWi(t), x(0) = x0, (0.1a)

y(t) = Cx(t), t → [0, T ], (0.1b)

where A,Ni → Rn→n, B → Rn→m and C → Rp→n. The state dimension n is assumed to
be large and the quantity of interest y is often low-dimensional, i.e., p ′ n, but we
also discuss the case of a large p. By x(t; x0, u), we denote the state in dependence
on the initial state x0 and the control u, for which we assume that it is (Ft)t≃[0,T ]-

adapted and ⇐u⇐2
T

:= E
]︄

T

0
⇐u(s)⇐2

2
ds < ⇓ with ⇐·⇐

2
representing the Euclidean

norm.

The first goal of this dissertation is to construct a system with state xr and
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quantity of interest yr having the same structure as (0.1) but a much smaller state
dimension r ′ n. At the same time, it is aimed to ensure y ∞ yr. Such a reduced
order model (ROM) is particularly beneficial if many evaluations (0.1) for several
controls u are required (e.g. in an optimal control problem) combined with the need
to generate many samples of y for each u. Now, a ROM shall be achieved under
very general conditions such as the absence of mean square asymptotic stability, i.e.,
E ⇐x(t; x0, 0)⇐22 ⇔ 0 (as t ⇔ ⇓) is not given. Methods involving such a stability
condition are intensively studied in the literature [9, 14, 96, 103] since it is often
guaranteed if (0.1a) results from a spatial discretization of a SPDE such as

ςX(t, φ)

ςt
= %X(t, φ) +Bu(t) +

q⌊︄

i=1

NiX(t, φ)
ςWi(t)

ςt
. (0.2)

The solution X(t, ·) to the heat equation (0.2) is viewed as a stochastic process
taking values in a Hilbert space and shall be approximated by x. In this context,
A can be seen as a discretized version of the Laplacian % and B, Ni represent dis-
cretizations of the linear bounded operators B, Ni. Moreover, Wi can be interpreted
as Fourier coe”cients corresponding to a truncated series of space-time noise. Fur-
ther explanations on di!erent schemes for spatial discretization can, e.g., be found in
[8, 24, 40]. However, even in a setting like in (0.2), mean square asymptotic stability
can be violated since the noise can easily cause instabilities (e.g. if it is su”ciently
large).

Such a scenario is of interest in this thesis. We establish generalizations of bal-
ancing related MOR schemes in order to make them applicable to general systems
(0.1). These MOR methods rely on matrices called Gramians that can be used to
identify the dominant subspaces of (0.1). Based on this characterization of the rel-
evance of di!erent state directions, less important information in the dynamics is
removed leading to the desired ROM. This step can be interpreted as an optimization
procedure applied to spatially discretized SPDE. In an unstable setting, Gramians
need to be defined that generally exist in contrast to previous approaches. We con-
sider generalized time-limited Gramians in Chapter 5. Such type of Gramians have
been used in deterministic frameworks [37, 64, 74, 102]. Although such an ansatz
is beneficial for the setting we want to cover, the analysis of MOR methods based
on generalized time-limited Gramians is much more challenging. Furthermore, the
question of how to compute these Gramians in practice is very di”cult but vital
since they are required in order to derive the ROM.

In Chapter 5, we introduce the time-limited Gramian in the stochastic setting
studied here. This chapter presents the work published in [101], where the theoret-
ical findings are elaborated and applied. We point out the relation between these
Gramians and the dominant subspaces of (0.1) and show their relation to matrix
(di!erential) equations. Subsequently, we discuss two di!erent MOR techniques
based on these Gramians and analyze the respective error. In particular, an error
bound is established that allows us to point out situations in which the approaches
work well. It is important to point out that this bound is more than just a gener-
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alization of the deterministic case [102]. The new type of representation links the
truncated Hankel singular values of the system or the truncated eigenvalues of the
reachability Gramian, respectively, to the error of the approximation without need-
ing asymptotic stability and is hence beneficial also in unstable settings. Moreover,
we discuss di!erent strategies that can be used to compute the proposed Gramians.
They are solutions to Lyapunov equations. However, in a time-limited scenario,
covariance information at the terminal time enters these Lyapunov equations which
is not immediately available. Since direct methods only work in moderately high
dimensions, we focus on sampling based approaches to estimate the required co-
variances. In order to increase the e”ciency of such procedures we apply variance
reduction methods in this context leading to an e”cient way of solving for the
time-limited Gramians. Apart from this empirical procedure, a second strategy to
approximate covariance functions and hence the Gramians is investigated, where
potentially expensive sampling is not required. This chapter concludes with several
numerical experiments showing the e”ciency of the MOR methods.
The second objective of this thesis is to develop MOR methods for stochastic

systems driven by fBm with non-zero initial conditions. The system under consid-
eration is described by:

dx(t) = [Ax(t) + Bu(t)]dt+
q⌊︄

i=1

Nix(t) ↗ dWH

i
(t), x(0) = x0 = X0z,

y(t) = Cx(t), t → [0, T ],

(0.3)

where W
H = {WH

1
, . . . ,W

H

q
} are independent fBm with Hurst index H → [1/2, 1).

The matrices are defined similarly to those in system (0.1), with X0 → Rn→v, z → Rv

and T > 0 being the terminal time. System (0.3) is defined as an integral equation
using Young integration (H > 1/2) and Strtonovich integration (H = 1/2) to make
sense of

]︄
t

0
Nix(s) ↗ dWH

i
(s).

As mentioned before, when H ↙= 1

2
, the process WH is neither a semimartingale

nor a Markov process. These are the main obstacles when MOR techniques are
designed for such systems. The dimension reduction we focus on is conducted by
identifying the dominant subspaces using quadratic forms of the solution to the
stochastic equation, specifically Gramian matrices. By characterizing the relevance
of di!erent state directions using Gramians, less important information can be re-
moved to achieve the desired ROM. Our work considers various types of Gramians
depending on their availability in di!erent settings. The exact Gramians are studied
on compact intervals [0, T ] as well as on infinite time horizons. As stated earlier,
these have previously been used in deterministic frameworks or Itô stochastic di!er-
ential equations (see Chapter 5 and [9, 10, 14]). Given the Young case of H > 1/2,
the fractional driver does not have independent increments making it hard to extend
the concept of Gramians to this setting. One of our contributions is the analysis
of fundamental solutions of Young di!erential equations. We prove a weak form
of semigroup property in Lemma 6.4 which is the basis for a proper definition of
Gramians forH > 1/2 and new even ifH = 1/2. This lemma is the key for the entire
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theory and opens up opportunities to study MOR for equations with drivers solely
having stationary increments. The lemma 6.4 is, for example, exploited to show
that certain eigenspaces of these Gramians are associated with dominant subspaces
of the system and therefore confirms that the choice of Gramians is meaningful.
However, this approach is still very challenging from the computational point of
view for fBms with H > 1/2. This is due to a missing link of the proposed ex-
act Gramians to Lyapunov equations, a connection that is the foundation for the
previous theory of MOR with H = 1/2 (Itô case). The link to matrix equations
only exists when H = 1/2, because the increments of the driver are independent
in that case. Therefore, empirical Gramians based on simulation data are intro-
duced. Computing this approximation of the exact Gramians is still challenging
yet vital since they are needed for deriving the ROM. We further point out, how
exact Gramians can be computed for Stratonovich stochastic di!erential equations.
Here, the equivalence to Itô equations is exploited. Although we show that these
Gramians identify redundant information in Stratonovich settings, MOR turns out
to be not as natural as in the Itô case. In fact, we illustrate that projection-based
dimension reduction for Stratonovich equations leads to ROMs that lack important
properties. For instance, stability might not be preserved in the ROM and the error
does not solely depend on the truncated eigenvalues of the Gramians. This indicates
that there are situations in which the projection-based ROM performs poorly. For
that reason, we propose a modification of the ROM having all these nice properties
known for Itô equations (stability and meaningful error bounds).

As previously mentioned, such a system (0.3) results from the spatial discretiza-
tion of a SPDE driven by fBm, such as the heat equation (0.2) with fBm instead
of Wiener noise. SPDEs driven by fBm have attracted considerable research atten-
tion in mathematics. Numerous studies have examined various aspects of SPDEs
influenced by fBm with di!erent values of the Hurst parameter. In recent years, sig-
nificant progress has been made in the theory of SPDEs driven by fBm, especially
for H →

)︄
1

2
, 1
[︄
. Noteworthy advancements include the extensive study of SPDEs in

Hilbert spaces with infinite-dimensional fBm, as discussed in [31, 53, 71]. Further
details on the theory of such equations can be found in Chapter 4.
To address the spatial discretization of SPDEs, the Galerkin method is frequently

employed. This method approximates the solution of the SPDE by using a finite-
dimensional subspace of trial functions. In Chapter 4, we also explore a spectral
Galerkin scheme for specific SPDEs driven by fBm, building upon the methods stud-
ied in [29] for certain SPDEs with fractional noise. This scheme is applied specifically
to equation (0.2) with fBm. The convergence of the spectral Galerkin solution to the
mild solution of the corresponding SPDE was demonstrated. This discretization re-
sulted in high-dimensional linear SDEs, motivating the extension of balancing-based
model order reduction to mean square asymptotically stable controlled stochastic
systems. Several investigations have focused on the implementation of the Galerkin
method for spatial discretization in the context of SPDEs driven by fBm. The pa-
pers in [53, 120] apply the spectral Galerkin method for the spatial discretization of
SPDEs driven by fBm with a Hurst parameter H >

1

2
.
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In the end, Chapter 6, which is based on our works published in [50, 51], be-
gins with a brief discussion of the setting and the general structure of the reduced
system by projection. This includes an initial insight into how projection-based re-
duced systems need to be modified to ensure better approximation quality in the
Stratonovich setting. Following this, we study the properties of the fundamental so-
lution to the underlying stochastic system which is vital for any kind of theoretical
concerns and new for each choice of the Hurst index H. A weak type of semigroup
property leads to a natural notion of Gramians, which we show to characterize the
dominant subspaces of the system and form the basis for our dimension reduction.
This subspace identification is an essential theoretical contribution as it explains
the role of the Gramian introduced here. Since exact Gramians are not available
for every choice of H, several modifications and approximations are discussed. We
also provide strategies for computing Gramians for Stratonovich equations. Sub-
sequently, we describe the concept of balancing for all variations of the proposed
Gramians. This is followed by a truncation procedure to yield a ROM. We fur-
ther prove that the truncation method is not optimal in the Stratonovich case (no
stability preservation and a potentially large error) and suggest an alternative that
is based on transformation into the equivalent Ito framework. This is another key
contribution of this thesis. It is noted that the truncation method is not optimal in
the Stratonovich case (H = 1/2), and an alternative based on transformation into
the equivalent Itô framework is suggested. Finally, we apply the methods described
to solve the stochastic heat equation with fractional noise. This section presents
the results of our simulations that demonstrate the e!ectiveness of the proposed
methods in solving these equations under various noise conditions.



1 Preliminaries in Stochastic

This chapter explores fundamental concepts and theorems essential to the theory of
SDEs. The content provided is derived from the foundational works of Kloeden and
Platen [60], Øksendal [86] and Mao [70].

1.1 The Basic Concepts of Probability Theory

Definition 1.1 Suppose that we have a non-empty set denoted as #, representing
the sample space. We define a ω-algebra, also known as a ω-field F, as a collection
of sets {Ai}i↔1, where each Ai is a subset of #. This collection must satisfy the
following conditions:

(i) ∈ → F

(ii) A → F ∋ A
↭ → F where A

↭ = # \ A is complement of A in #,

(iii) {Ai}i↔1 △ F ∋
⌋︄⇐

i=1
Ai → F.

The pair (#,F) is known as a measurable space, where the sets belonging to F are
termed as F-measurable sets. Given C ↓ 2!, the smallest ω-algebra containing C is
denoted ω(C). On Rd, the Borel ω-algebra is B(Rd) := ω(O) where O is the family
of open sets. Its elements are called Borel sets.
Afterward, we introduce the probability measure denoted as P and illustrate its

associated properties.

Definition 1.2 A probability measure P, which is defined over the measurable space
(#,F), is a function P : F ⇔ [0, 1] such that

(i) P(#) = 1,

(ii) for any disjoint sequence {Ai}i↔1
△ F (i.e. Ai ▽ Aj = ∈ if i ↙= j )

P(
⇐⌈︄

i=1

Ai) =
⇐⌊︄

i=1

P(Ai).

The triple (#,F,P) is called a probability space.
In this context, we assume that the probability space is complete, which means that
for every B → F with P(B) = 0 and every A △ B we also have A → F.

8
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Definition 1.3 If (#,F,P) is a probability space, then x : (#,F) ⇔ (R,B(R)) is a
random variable if, for every a → R,

{↼ → # : x(↼) ↔ a} → F.

This function x is also called real-valued F-measurable random variable. A Rd-
valued function x(↼) = (x1(↼), . . . , xd(↼))

↘ : (#,F) ⇔ (Rd
,B(Rd)) is said to be a

random vector if all elements xi are random variables.

We consider x as an integrable real-valued random variable with respect to the
probability measure P. The expression

E[x] =
⌉︄

!

x(↼) dP(↼),

denotes the expected value of x under the measure P. If the law of x(↼) is absolutely
continuous with respect to Lebesgue measure on R, then there exists a probability
density function f such that the cumulative distribution function satisfies

F (x) =

⌉︄
x

↑⇐
f(t)dt

and in that case

E[x] =
⌉︄ ⇐

↑⇐
xf(x)dx.

Furthermore, the expression

Var(x) = E
{︄
(x↘ E[x])2

}︄
=

⌉︄ ⇐

↑⇐
(x↘ E[x])2 f(x)dx

represents the variance of x, assuming the existence of all relevant integrals within
this context. The p-th moment of x, for p > 0, is defined as E [|x|p] if E [|x|p] < ⇓.
Given another real-valued random variable y, the covariance between x and y is
given by

Cov(x, y) = E [(x↘ E[x]) (y ↘ E[y])] ,
x and y are said to be uncorrelated if Cov(x, y) = 0. Note that uncorrelated random
variables need not be independent. However, for jointly Gaussian random variables,
zero covariance does imply independence. This fact will be used later in the char-
acterization of Brownian motion

1.2 Stochastic Processes

Definition 1.4 A collection {xt}t≃I of random variables taking values in Rd is
referred to as a stochastic process, where I represents the index set and Rd denotes
the state space. In most cases, the index set I is taken to be the non-negative real
line, R+ = [0,⇓), though it could also be an interval [a, b], the nonnegative integers,



1 Preliminaries in Stochastic 10

or even subsets of Rd. For each fixed t → I, the process defines a random variable

# ̸ ↼ ↦⇔ xt(↼) → Rd
.

Alternatively, for each fixed ↼ → #, one obtains a function

I ̸ t ↦⇔ xt(↼) → Rd
,

which is termed a sample path of the process, for fixed ↼ often denoted as x·(↼).
In some cases, it is more practical to express x(t,↼) in place of xt(↼), viewing the
stochastic process as a mapping from I ∀ # into Rd.

Remark 1.5 Instead of x(t), it might happen during this thesis that we also write
xt.

Definition 1.6 Let (#,F,P) be a probability space. A filtration (on (#,F,P) ) is
a family {Ft}t≃[0,T ]

of ω-algebras Ft △ F such that

0 ↔ s < t ∋ Fs △ Ft for s, t → [0, T ]

which means that {Ft} is an increasing family. The filtration is said to be right
continuous if Ft =

⟨︄
s>t

Fs for all t ∝ 0.

Definition 1.7 The process x(t), where t belongs to the interval [0, T ], is considered
non-anticipating (or adapted to Ft) if and only if x(t) is measurable with respect to
Ft. Often we use the natural filtration, that is, Ft = ω{x(s) : s ↔ t}.

1.2.1 Markov Processes

A stochastic process can be classified as a Markov process if the evolution of an
event is solely determined by its current state, without considering its past history.
Hence, knowledge of the event’s past is unnecessary. This feature is applicable
in other types of processes, including the Wiener process, which is the stochastic
process used in this study. The Markov process is now explicitly defined.

Definition 1.8 Consider a probability space (#,F,P) and a stochastic process
x(t), t → [0, T ]. The process x(t) is defined as a Markov process if, for any se-
quence of times t1 < t2 < . . . < tn+1 where each ti → [0, T ] and for any sequence of
real numbers x1, x2, . . . , xn+1, the specified conditional probability satisfies

P
⟩︄
x(tn+1) < xn+1

/︄/︄/︄x(tn) = xn, x(tn↑1) = xn↑1, . . . , x(t1) = x1

\︄

= P
⟩︄
x(tn+1) < xn+1

/︄/︄/︄x(tn) = xn

\︄
(1.1)

In the continuous case, we can also consider the Markov property with respect to a
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filtration {Ft}t≃[0,T ]:

P(x(t) → B|Fs) = P(x(t) → B|x(s)), (1.2)

where Ft := ω{x(s)|0 ↔ s ↔ t} for all t → [0, T ] and B is a Borel set, then (1.2) is
equivalent to (1.1). In fact, a Markov process has the property that the past and
future are independent when the present is known.

1.2.2 Martingales

Martingales represent a particular class of stochastic processes, often described as
”fair games” due to their defining property that the conditional expected future
value equals the current value.

Definition 1.9 A stochastic process x = {x(t)}t≃[0,T ] on the probability space
(#,F,P) with respect to the filtration {Ft}t>0 is a martingale if it satisfies the
following conditions:

1. For every t → [0, T ], E(|x(t)|) < ⇓.

2. For every t → [0, T ], x(t) is Ft-measurable.

3. For every 0 ↔ s < t, the following property holds with probability one

E(x(t)|Fs) = x(s), (1.3)

In the case of a discrete-time martingale process x0, x1, x2, . . ., the identity (1.3)
reduced to

E(xn | xn↑1) = xn↑1, w.p.1,

for n = 1, 2, 3, . . . Interpreted in a gambling context, this means that the expected
winnings of the next game, conditioned on the knowledge of the winnings from
games up to the present, equals the winnings of the current game.

1.2.3 Standard Brownian Motion

A stochastic process that captures significant interest is the sBm, commonly referred
to as the Wiener process in much of the stochastic processes literature. This process
plays a crucial role in the theory of SDEs and Itô calculus. We then define this
process and outline its characteristics.

Definition 1.10 Let (#,F,P) be a probability space with filtration {Ft}t↔0
. A

(standard) one-dimensional Brownian motion (or Wiener process) is a real-valued
continuous {Ft} adapted process {W (t)}

t↔0
with the following properties:

1. W (0) = 0 a.s.,

2. The process W (t), t ∝ 0 has independent and stationary increments,
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3. The increment W (t)↘W (s) follows a normal distribution with mean zero and
variance t↘ s, in summary,

W (t)↘W (s) ∃ N(0, t↘ s).

The term ”independent increments” means that for any selection of non-negative
real numbers:

0 ↔ s1 ↔ t1 ↔ s2 ↔ t2 ↔ . . . ↔ sn ↔ tn < ⇓,

the random increments:

W (t1)↘W (s1),W (t2)↘W (s2), . . . ,W (tn)↘W (sn)

are independent and ”stationary increments” imply that for any 0 < s, t < ⇓, the
distribution of the increment W (t + s) ↘ W (s) is the same as W (t) ↘ W (0). For
further use (see Section 2.2), we also introduce the two-sided sBm W = (W (t))t≃R
as

W (t) =

/︂
W1(t) if t ∝ 0,

W2(↘t) if t < 0,
(1.4)

where W1(t) and W2(↘t) are two independent (one-sided) standard Brownian
motions.

In the context of sBm, from now on we shall consider the following filtration.

Definition 1.11 Suppose that W (t,↼) is a n-dimensional Brownian motion. Then,

we define the natural filtration Ft := F
(n)

t as the ω-algebra generated by the random
variables {Wi(s)}1↗i↗n

0↗s↗t

. In other words, Ft is the smallest ω-algebra containing all

sets of the form:
{↼ : W (t1,↼) → B1, . . . ,W (tk,↼) → Bk},

where tj ↔ t for j ↔ k = 1, 2, . . . and Bj △ Rn are Borel sets.

1.3 Stochastic Integrals

In this section we introduce stochastic integrals with respect to Brownian motion and
use them to formalize the notion of a solution to a stochastic di!erential equation
(SDE). Let (#,F, {Ft}t≃[0,T ],P) be a filtered probability space, where the filtration
is given by

Ft := ω{W (s) : 0 ↔ s ↔ t},

the natural filtration of a one-dimensional Wiener process W = {W (t)}t≃[0,T ], aug-
mented in the usual way to satisfy the standard hypotheses (completeness and right-
continuity).
Let f : [0, T ]∀R ⇔ R and g : [0, T ]∀R ⇔ R be Borel-measurable functions. We
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consider the following SDE

dx(t) = f(t, x(t)) dt+ g(t, x(t)) dW (t), t → [0, T ], (1.5)

where x = {x(t)}t≃[0,T ] is an R-valued stochastic process with almost surely contin-
uous sample paths.
A process x = {x(t)}t≃[0,T ] is said to be a (strong) solution of the SDE (1.5) with

initial condition x(0) = x0 if

x(t) = x0 +

⌉︄
t

0

f(s, x(s)) ds+

⌉︄
t

0

g(s, x(s)) dW (s), t → [0, T ], (1.6)

where, function f is referred to as the drift, and g is referred to as the di!usion
coe”cient.
While the first integral in equation (1.6) is a standard Lebesgue integral, the

second integral presents a significant challenge due to the fact that Wiener process
paths are nowhere of bounded variation. Consequently, the usual Riemann-Stieltjes
or Lebesgue integration techniques are not directly applicable, necessitating the
development of stochastic integration theory. It is important to note that the Wiener
process can be replaced by other processes satisfying the martingale property to
define generalized stochastic integrals.
In order to define the above stochastic integrals, we first need to introduce some

necessary concepts.

1.3.1 Stochastic Integral for Simple Functions

We begin by considering indicator functions, which serve as the building blocks for
constructing stochastic integrals. Define the indicator function of an interval [0, T ]
as follows:

↽[0,T ](t) =

/︂
1 if 0 ↔ t ↔ T,

0 otherwise.
(1.7)

Then, the stochastic integral of ↽[0,T ](t) with respect to W (t) is given by

⌉︄ ⇐

0

↽[0,T ](t)dW (t) =

⌉︄
T

0

↽[0,T ](t)dW (t) := W (T )↘W (0).

Now, consider the partition 0 = t0 < t1 < . . . < tn = T of the interval [0, T ], with
the partition width %ti = ti+1↘ ti. We define a deterministic function f(t) as a step
function if

f(t) =
n↑1⌊︄

i=0

f(ti)↽[ti,ti+1](t),

and, if the integral exists, we define the integral of f(t) with respect to W (t) as the
Itô integral.
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Definition 1.12 Let ε = maxi %ti > 0 be the largest step size in the partition.
The Itô integral of the step function f(t) is defined as:

⌉︄
T

0

f(t)dW (t) := lim
ϑ⇒0

n↑1⌊︄

i=0

f(ti) [W (ti+1)↘W (ti)] ,

where the function f is evaluated at the left endpoint, specifically at ti, for each
subinterval [ti, ti+1]. The resulting stochastic integral

]︄
T

0
f(t)dW (t) is FT -measurable

and belongs to the space L
2(#;R).

Remark 1.13 For the Stratonovich integral, which is denoted by
]︄

T

0
f(t) ↗ dW (t),

the conditions remain similar, with the only di!erence being that the function f(t)
is evaluated at the midpoint of the interval, i.e.

⌉︄
T

0

f(t) ↗ dW (t) := lim
ϑ⇒0

n↑1⌊︄

i=0

f

\︂
ti + ti+1

2

⎛
[W (ti+1)↘W (ti)] .

Before discussing the properties of the Itô integral, it is necessary first to define
second-moment stochastic functions.

Definition 1.14 ConsiderM2([0, T ];R) as the space of all real-valued {Ft}-adapted
processes f = {f(t)}0↗t↗T such that

⇐f⇐2
T
= E

⌉︄
T

0

|f(t)|2dt < ⇓.

Definition 1.15 A real-valued stochastic process g = {g(t)}0↗t↗T is called a simple
(or step) process if there exists a partition 0 = t0 < t1 < . . . < tk = T of the
interval [0, T ] and a sequence of bounded, Fti

↘measurable random variables ϱi for
0 ↔ i ↔ k ↘ 1, such that

g(t) = ϱ0↽[t0,t1](t) +
k↑1⌊︄

i=1

ϱi↽(ti,ti+1](t). (1.8)

Let M0([0, T ];R) represent the collection of all such processes. It is clear that
M0([0, T ];R) △ M2([0, T ];R). We proceed to define the Itô integral for these simple
processes.

Definition 1.16 For a simple process g → M0([0, T ];R), the Itô integral is defined
as:

⌉︄
b

a

g(t)dW (t) =
k↑1⌊︄

i=0

ϱi (W (ti+1)↘W (ti)) .
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This integral is FT -measurable and belongs to L
2(#;R).

Lemma 1.17 [70] For any simple process g → M0([0, T ];R)

E
\︂⌉︄

T

0

g(t)dW (t)

⎛
= 0,

E
/︄/︄/︄/︄
⌉︄

T

0

g(t)dW (t)

/︄/︄/︄/︄
2

= E
⌉︄

T

0

|g(t)|2dt.

Using this property, we can extend the definition of Itô integral from simple pro-
cesses to all processes in M2([0, T ];R).

1.3.2 Stochastic Integrals for General Processes

Definition 1.18 For f → M2([0, T ];R), define the Itô integral as

⌉︄
T

0

f(t)dW (t) = lim
n⇒⇐

⌉︄
T

0

gn(t)dW (t) in L
2(#;R),

where {gn} is a sequence of simple process such that

lim
n⇒⇐

E
⌉︄

b

a

|f(t)↘ gn(t)|2dt = 0.

In the similar manner, we can define the Stratonovich integral for f → M2([0, T ];R).

The following lemma establishes key properties of the Itô integral, linking it to
the Lebesgue integral.

Lemma 1.19 [70](Properties of the Itô Integral) Let f, g → M2([0, T ];R) and ϑ, ⇀

be two real numbers. Then, the Itô integral satisfies the following properties:
(i) The operator is linear, meaning that

⌉︄
T

0

[ϑf(t) + ⇀g(t)]dW (t) = ϑ

⌉︄
T

0

f(t)dW (t) + ⇀

⌉︄
T

0

g(t)dW (t).

(ii) The expectation of the Itô integral is zero:

E
⌉︄

T

0

f(t)dW (t) = 0.

(iii) The Itô integral
]︄

T

0
f(t)dW (t) is FT -measurable.

(iv) If both
]︄

T

0
f(t)dW (t) and

]︄
T

0
g(t)dW (t) exist, then

E
\︂⌉︄

T

0

f(s)dW (s)

⌉︄
T

0

g(⇁)dW (⇁)

⎛
=

⌉︄
T

0

E (f(t)g(t)) dt.
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In particular, the Itô isometry holds:

⎞⎞⎞⎞
⌉︄

T

0

f(t)dW (t)

⎞⎞⎞⎞
2

T

= E
\︂⌉︄

T

0

f(t)dW (t)

⎛2

=

⌉︄
T

0

E
)︄
|f(t)|2

[︄
dt

(v) If s, t → [0, T ] with s ↔ t, we have

E
\︂⌉︄

s

0

f(⇁)dW (⇁)

⌉︄
t

0

g(⇁)dW (⇁)

⎛
=

⌉︄
s

0

E (f(⇁)g(⇁)) d⇁,

In particular,

E
\︂⌉︄

s

0

f(⇁)dW (⇁)

⌉︄
t

0

f(⇁)dW (⇁)

⎛2

=

⌉︄
s

0

E
)︄
f
2(⇁)

[︄
d⇁.

For further information, see [60, 70, 86].

Definition 1.20 Let Lp
)︄
R+;Rd

[︄
for p ∝ 1 represent the set of all Ft-adapted,

Rd-valued measurable processes f = {f(t)}t↔0 such that

E
\︂⌉︄

T

0

⇐f(t)⇐p
2
dt

⎛
< ⇓ for every T > 0,

where ⇐ · ⇐2 is the Euclidean norm.

Definition 1.21 A one-dimensional Itô (Stratonovich) process is a continuous,
adapted process x(t) for t ∝ 0 of the form

x(t) = x(0) +

⌉︄
t

0

f(s)ds+

⌉︄
t

0

g(s)(↗)dW (s), (1.9)

where f → L1 (R+;R) and g → L2 (R+;R). The stochastic di!erential equation is

dx(t) = f(t)dt+ g(t)(↗)dW (t). (1.10)

Definition 1.22 The above definition could be extended to the multi-dimensional
case. Let W (t) = (W1(t), . . . ,Wq(t))

↘
, t ∝ 0 be a q-dimensional Brownian motion

defined on the complete probability space (#,F,P) adapted to the filtration {Ft}t↔0
.

Then, a d-dimensional Itô (Stratonovich) process is an Rd-valued continuous adapted
process x(t) = (x1(t), . . . , xd(t))

T on t ∝ 0, where f = (f1, . . . , fd)↘ → L1
)︄
R+;Rd

[︄

and g = (gij)d→q → L2
)︄
R+;Rd→q

[︄
.

Remark 1.23 A straightforward relationship exists between the solutions of Itô
and Stratonovich equations. When x = (x(t))t≃[0,⇐) is a solution to the Itô equation
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given below:

x(t) = x0 +

⌉︄
t

0

f(s, x(s))ds+

⌉︄
t

0

g(s, x(s))dW (s), (1.11)

where (W (t))t≃[0,⇐) is a one-dimensional Wiener process, it follows that (x(t))t≃[0,⇐)

is a solution to the Stratonovich equation presented below (see [121]):

x(t) = x0 +

⌉︄
t

0

f(s, x(s))ds+

⌉︄
t

0

g(s, x(s)) ↗ dW (s), (1.12)

where f(t, x) = f(t, x) ↘ 1

2
g(t, x)

ςg

ςx
(t, x). Hence, Itô and Stratonovich stochastic

equations can be easily transformed to each other. So we can say that the relation
between Itô and Stratonovich Integral is defined as follows

⌉︄
t

0

g(s, x(s)) ↗ dW (s) =

⌉︄
t

0

g(s, x(s))dW (s) +
1

2

⌉︄
t

0

g(s, x(s))
ςg

ςx
(s, x(s))ds (1.13)

As shown in Lemma 1.19, a key advantage of Itô integrals over Stratonovich
integrals is their compatibility with the basic properties of the Wiener process. The
Itô model is often preferred because it does not anticipate future events, making
it useful in various fields such as biology [115], option pricing, risk management
and modeling financial derivatives [47, 52], as well as in signal processing and noise
reduction in stochastic systems [19]. It is also important to note that the equations
(1.11) and (1.12) are equivalent when g(t, x) does not depend on x.
The Stratonovich integral is widely used in physical sciences and engineering be-

cause it follows the traditional chain rule, making it easier for those in these fields
to understand. It is essential in feedback systems and cases where the noise of
the system has multiplicative characteristics. This type of integration is commonly
applied in areas such as modeling thermal fluctuations, statistical mechanics [35],
control theory with non-linear noise e!ects [70] and population dynamics under
environmental changes [75].
Since there is a direct relationship between the Itô and Stratonovich integrals

(equation (1.13)), calculations can often be done using either type. A key feature
of the Stratonovich integral is that it follows the standard chain rule for transfor-
mations, unlike the Itô formula, which includes second-order terms, as shown in
Theorems 1.24 and 1.25. This makes the Stratonovich integral more convenient
in certain applications. However, unlike Itô integrals, Stratonovich integrals do not
form martingales. Despite being less convenient for transformations, the Itô integral
has advantages in computation.
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1.4 Itô Formula

1.4.1 One Dimensional Itô Formula

One of the fundamental concepts in stochastic analysis, particularly in Itô calculus,
is the Itô formula.

Theorem 1.24 [60] Assume that x(t) is an one-dimensional Itô process (see Defi-
nition 1.21 ) generated by:

dx(t) = f(t)dt+ g(t)dW (t),

where f → L1 (R+;R) and g → L2 (R+;R). Let h → C1,2 (R+ ∀ R;R), which means
that h is a continuously di!erentiable function with respect to the first variable
and twice continuously di!erentiable function with respect to the second variable
on R+ ∀ R. Then, h (t, x(t)) is also an Itô process and the following relation holds
almost sure:

dh(t, x(t)) =
ς

ςt
h (t, x(t)) dt+

ς

ςx
h (t, x(t)) dx(t) +

1

2

ς
2

ςx2
h (t, x(t)) (dx(t))2

=

\︂
ς

ςt
h (t, x(t)) + f(t)

ς

ςx
h (t, x(t)) +

1

2
g
2(t)

ς
2

ςx2
h (t, x(t))

⎛
dt

+ g(t)
ς

ςx
h (t, x(t)) dW (t).

1.4.2 Multidimensional Itô Formula

Now, we extend the Itô formula to the d-dimensional case.

Theorem 1.25 [60] Let x(t) be a d-dimensional Itô process on t ∝ 0 (see Definition
1.22 ) with the stochastic di!erential

dx(t) = f(t)dt+ g(t)dW (t)

where f → L1
)︄
R+;Rd

[︄
and g → L2

)︄
R+;Rd→q

[︄
. Let h(t, x) → C1,2(R+ ∀ Rd;Rp).

Then, h(t, x(t)) is also an Itô process with the stochastic di!erential given by

dh(t, x(t)) =
⎡
ς

ςt
h(t, x(t)) +

ς

ςx
h(t, x(t))f(t)

+
1

2
trace

\︂
g
T (t)

ς
2

ςx2
h(t, x(t))g(t)

⎛⎤
dt+

ς

ςx
h(t, x(t))g(t)dW (t) a.s.

where

dtdt = 0 dtdWi(t) = 0

dWi(t)dWi(t) = dt dWi(t)dWj(t) = 0 if i ↙= j.
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Remark 1.26 The q-dimensional Wiener process can be extended as follows:
Consider W (t) = (W1(t), . . . ,Wq(t))

↘, a Rq-valued Wiener process defined on a
complete filtered probability space

)︄
#,F, (Ft)t≃[0,T ],P

[︄
. This process has mean zero

and a covariance matrix K = (kij)i,j=1,...,q. It satisfies the property E[W (t)W (t)↘] =
Kt for t → [0, T ], where T > 0 represents the terminal time. It is worth mentioning
that, often we consider K = Iq, where Iq is the identity matrix.

Example 1.27 [86] Let x(t) and y(t) be Itô processes on R. Applying the Itô
formula to the function g(x, y) = x · y, we obtain the following:

d(x(t)y(t)) = dg(x(t), y(t)) =
ςg

ςx
(x(t), y(t))dx(t) +

ςg

ςy
(x(t), y(t))dy(t)

+
1

2

ς
2
g

ςx2
(x(t), y(t))(dx(t))2 +

ς
2
g

ςxςy
(x(t), y(t))dx(t)dy(t)

+
1

2

ς
2
g

ςy2
(x(t), y(t))(dy(t))2

= y(t)dx(t) + x(t)dy(t) + dx(t)dy(t).

From this derivation, we obtain the integrated form:

x(t)y(t) = x(0)y(0) +

⌉︄
t

0

y(s) dx(s) +

⌉︄
t

0

x(s) dy(s) +

⌉︄
t

0

dx(s) dy(s),

which is also known as the Itô product rule.

1.5 Existence and Uniqueness of Solutions for
SDEs

Consider W (t) = (W1(t), ...,Wq(t))↘ as an q-dimensional Wiener process defined on
a filtered probability space

)︄
#,F, (Ft)t≃[0,T ],P

[︄
1. Let 0 ↔ t0 < T < ⇓ and x0 be

a random variable in Rd, which is Ft0-measurable and satisfies E [x0]
2
< ⇓. Let

f : [t0, T ]∀Rd ⇔ Rd and g : [t0, T ]∀Rd ⇔ Rd→q be two Borel measurable functions.
We consider the following d-dimensional Itô stochastic di!erential equation:

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t) for t0 ↔ t ↔ T (1.14)

with the initial condition x(t0) = x0. Using Definition 1.22, this equation can be
rewritten in its integral form as:

x(t) = x0 +

⌉︄
t

t0

f(s, x(s))ds+

⌉︄
t

t0

g(s, x(s))dW (s) for t0 ↔ t ↔ T (1.15)

Now, we define the solution of the stochastic integral equation (1.15).

1(Ft)t→[0,T ] shall be right continuous and complete.
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Definition 1.28 A stochastic process {x(t)}t0↗t↗T taking values in Rd is said to be
a solution of equation (1.15) if it satisfies the following conditions:

• {x(t)} is continuous and adapted to Ft,

• {f(t, x(t))} → L1([t0, T ];Rd) and {g(t, x(t))} → L2([t0, T ];Rd→q),

• for each t → [t0, T ], equation (1.15) holds with probability 1.

Theorem 1.29 [70] Assume that there exist two positive constants C1 and C2 such
that

(i) (Lipschitz Condition): for all x, y → Rd and t → [0, T ]

⇐f(t, x)↘ f(t, y)⇐2 + ⇐g(t, x)↘ g(t, y)⇐2 ↔ C1⇐x↘ y⇐2.

(ii) (Linear Growth Bound): for all x → Rd and t → [0, T ],

⇐f(t, x)⇐2 + ⇐g(t, x)⇐2 ↔ C2(1 + ⇐x⇐2).

where ⇐ · ⇐2 is Euclidean norm. Then there exists a unique solution x(t) to equation
(1.14) and the solution belongs to M2

)︄
[t0, T ] ;Rd

[︄
.

1.6 Convergence of Random Sequences

Consider the scenario where we have a sequence of Rd↘valued random variables
{Xi}⇐i=1

and our interest lies in their long-term behavior, specifically whether a
Rd↘valued random variable X exists as a limit of the sequence Xn in a certain
sense. The concept of convergence for such sequences can be classified in various
ways, essentially dividing into two categories: a stronger form requiring the sample
paths of Xn to approximate those of X closely and a weaker form demanding only
that their probability distributions converge.

1.6.1 Strong Convergence

Assuming that all random variables are defined on a shared probability space, we
identify three primary modes of convergence within the stronger category:

(i) Convergence with probability one (w.p.1):

P
⟩︄⎣

↼ → # : lim
n⇒⇐

⇐Xn(↼)↘X(↼)⇐
2
= 0

⎦\︄
= 1.

This mode is also called almost sure convergence.

(ii) Mean-square convergence: Let E (⇐Xn⇐22) < ⇓ for n = 1, 2, . . . and also
E (⇐X⇐2

2
) < ⇓,

lim
n⇒⇐

E
)︄
⇐Xn ↘X⇐2

2

[︄
= 0.



1 Preliminaries in Stochastic 21

(iii) Convergence in probability:

lim
n⇒⇐

P ({↼ → # : ⇐Xn(↼)↘X(↼)⇐
2
∝ ↪}) = 0 for all ↪ > 0.

Remark 1.30 Convergence in probability is also referred to as stochastic conver-
gence. It is important to note that both almost sure convergence (i) and mean-square
convergence (ii) imply convergence in probability (iii).

1.6.2 Weak Convergence

For less strict forms of convergence, it is not necessary to have detailed knowledge
of the specific random variables or their respective probability spaces. Instead,
understanding their distribution functions su”ces. Highlighted below are key types
of convergence within this category.

(iv) Convergence in Distribution: The criterion for convergence in distribution,
also termed as convergence in law, is outlined as follows:

lim
n⇒⇐

FXn
(x) = FX(x) at every continuity point of FX .

This concept refers to the convergence of the distribution functions associated
with the sequence of random variables Xn to the distribution function of X.

(v) Weak Convergence: The definition of weak convergence is given by:

lim
n⇒⇐

⌉︄ ⇐

↑⇐
f(x)dFXn

(x) =

⌉︄ ⇐

↑⇐
f(x)dFX(x),

applicable for all test functions f : R ⇔ R, typically continuous functions that
become zero outside a certain bounded interval, which might vary based on
the specific function.

1.7 Stability Analysis of SDEs

Stability represents a crucial aspect in the analysis of dynamical systems. Specif-
ically, for systems governed by SDEs, various approaches exist to examine their
stability, commonly based on probabilistic criteria as outlined in [25, 113]. These
include concepts like stochastic stability and moment stability. In the following, we
introduce several of these criteria, starting with the concept of stochastic stability.

1.7.1 Stochastic Stability

Also referred to as stability in probability, the definition of stochastic stability is
provided as follows:
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Definition 1.31 A system described by the SDE (1.14) is called stochastically
stable if, for any initial condition x0, there exists a ε > 0 such that ⇐x0⇐ < ε,
ensuring that for every ↪ > 0,

lim
x0⇒0

P
⎢

sup
t≃[0,⇐)

⇐x (t, x0)⇐2 ∝ ↪

⎥
= 0. (1.16)

Definition 1.32 The system (1.14) is considered stochastically asymptotically sta-
ble, or stable with probability one if it is stable and satisfies

lim
x0⇒0

P
⟩︄
lim
t⇒⇐

⇐x (t, x0)⇐2 = 0
\︄
= 1. (1.17)

A more strict criterion than stochastic stability for the SDE (1.14) is also discussed
in the following subsection.

1.7.2 Mean Square Stability

Definition 1.33 A system characterized by the SDE (1.14) is called mean square
stable if, for any x0 → L

2
)︄
#,Rd

[︄
, there exists a ε > 0 such that ⇐x0⇐L2(!,Rd)

< ε

and for all ↪ > 0 and all t > 0, it holds that

⇐x (t, x0)⇐L2([t0,T ];Rd)
↔ ↪. (1.18)

Remark 1.34 The mean square stability implies stochastic stability.

Definition 1.35 If the system in (1.14) is mean square stable and fulfills

lim
t⇒⇐

⇐x(t, x0)⇐2L2([t0,T ];Rd)
= 0, (1.19)

then it is termed asymptotically mean square stable.

Definition 1.36 We define equation (1.14) as exponentially mean-square stable,
possessing a decay rate of at least ϑ ∝ 0, provided that there exists a positive
constant M such that for all t > 0, the following inequality holds

⇐x(t, x0)⇐L2([t0,T ];Rd)
↔ Me

↑ωt
. (1.20)

1.8 Euler-Maruyama Method for SDEs

In this section, we address the numerical solution of the d↘dimensional Itô equation
(1.14) for the stochastic process x(t), defined over the interval t → [0, T ] with the ini-
tial condition x(0) = x0. To solve equation (1.14) numerically, we employ the Euler-
Maruyama method. This method represents the first-order approximation in the
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Taylor series expansion for stochastic processes. Specifically, the Euler-Maruyama
scheme is formulated as:

Yi+1 = Yi + f(ti, Yi)%ti + g(ti, Yi)%Wi,

for i = 1, . . . , N↘1, where Yi denotes the numerical approximation of x(t) in discrete
time steps and %Wi = W (ti+1)↘W (ti).

Definition 1.37 Given time steps %i = %ti with ε = maxi %i > 0 representing the
maximum step size, the numerical approximation Y

(ϑ) of x(t) exhibits strong con-
vergence of order ↩ > 0 at time T if there exists a positive constant C, independent
of ε and a ε0 > 0 such that

↪(ε) =
⎞⎞⎞x(T )↘ Y

(ϑ)

T

⎞⎞⎞
L2(!)

↔ Cε
ϖ

for each ε → (0, ε0).

In the following theorem, we establish the order of strong convergence, denoted
by ↩ = 1

2
, for the Euler-Maruyama method.

Theorem 1.38 ([61, Theorem 10.2.2]) Suppose the conditions

⇐x0⇐L2(!)
< ⇓,

⎞⎞⎞x0 ↘ Y
(ϑ)

0

⎞⎞⎞
L2(!)

↔ C1ε
1/2

,

⇐f(t, x)↘ f(t, y)⇐2 + ⇐g(t, x)↘ g(t, y)⇐2 ↔ C2⇐x↘ y⇐2,
⇐f(t, x)⇐2 + ⇐g(t, x)⇐2 ↔ C3(1 + ⇐x⇐2)

and
⇐f(s, x)↘ f(t, x)⇐2 + ⇐g(s, x)↘ g(t, x)⇐2 ↔ C4(1 + ⇐x⇐2)|s↘ t|1/2

hold for all s, t → [0, T ] and x, y → Rn, where constants C1, . . . , C4 do not depend on
ε. Then, for the Euler-Maruyama approximation Y

(ϑ),
⎞⎞⎞x(T )↘ Y

(ϑ)

T

⎞⎞⎞
L2(!)

↔ C5ε
1/2

holds, where the constant C5 does not depend on ε.



2 Fractional Brownian Motion

It is well known that classical Brownian motion is a random process with stationary
increments and self-similarity with an index of 1/2. This continuous Gaussian pro-
cess exhibits these properties, which are evident in natural phenomena such as the
movement of particles in a fluid (Brownian motion) and the fluctuation in financial
asset prices.
Given these characteristics, an interesting question arises: can we identify a

stochastic process that also exhibits a Gaussian distribution, stationary increments
and self-similarity, but with a self-similarity index di!erent from 1/2? Indeed, such
a process exists. Originally proposed by Kolmogorov [62] in the early 1940s to de-
scribe fluid turbulence. This process, now widely known as fractional Brownian
motion (fBm), was later popularized by Mandelbrot and Van Ness [69].
The characterization of fBm is based on the Hurst parameter H, or self-similarity

index, which ranges from 0 to 1. This flexibility makes fBm particularly valuable for
modeling various phenomena, as the Hurst parameter H can be adjusted to closely
align with the empirical data. However, it is important to note the limitations of
fBm, especially when the self-similarity index H diverges from 1/2. Under such
conditions, fBm does not satisfy the criteria of a semimartingale or a Markov pro-
cess, which significantly restricts the analytical tools available for problem-solving.
Despite these challenges, the exploration of fBm introduces new opportunities for
experts in stochastic calculus to develop innovative solutions.
The following chapter will provide an analysis of the properties associated with

fBm, drawing on references [18, 30, 83, 84].

2.1 Properties of Fractional Brownian Motion

In this chapter, we consider all random variables within the filtered probability space)︄
#,F, (Ft)t≃[0,T ],P

[︄
1 (see Chapter 1 for more details).

A zero-mean Gaussian random process W
H = {WH(t) : t ∝ 0} is called a frac-

tional Brownian motion with Hurst parameter H → (0, 1), if all sample paths are
continuous and its covariance function is given by:

E
{︄
W

H(t)WH(s)
}︄
= RH(t, s) =

1

2
(s2H + t

2H ↘ |t↘ s|2H). (2.1)

FBm exhibits the following properties:

1(Ft)t→[0,T ] shall be right continuous and complete.

24
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• Self-Similarity: The processes {WH(t), t ∝ 0} and {a↑H
W

H(at), t ∝ 0} for
any constant a > 0 have the same probability distributions, because

E[a↑H
W

H(at)a↑H
W

H(as)] = a
↑2HE[WH(at)WH(as)]

=
a
↑2H

2

⎧
(at)2H + (as)2H ↘ |at↘ as|2H

⎫

=
1

2

⎧
t
2H + s

2H ↘ |t↘ s|2H
⎫
= E[WH(t)WH(s)].

(2.2)

• Stationary increments: Equation (2.1) shows that the moments of fBm in the
interval [s, t] follow a normal distribution with mean zero and variance is given
by

E
{︄
(WH(t)↘W

H(s))2
}︄
= |t↘ s|2H ,

and for any k ∝ 1,

E
{︄
(WH(t)↘W

H(s))2k
}︄
=

(2k)!

k!2k
|t↘ s|2Hk

. (2.3)

Definition 2.1 Let {x(t)}t↔0 and {y(t)}t↔0 be two stochastic processes defined on
the probability space (#,F,P). We say that {y(t)}t↔0 is a modification of {x(t)}t↔0

if for every t ∝ 0,
P({↼ → # : x(t,↼) = y(t,↼)}) = 1,

meaning that for every t ∝ 0, y(t) = x(t) almost surely.

Theorem 2.2 (Kolmogorov’s Continuity Criterion)[18] Let {x(t)}t≃[0,T ] be a
stochastic process. If for every T > 0 and positive constants D, ϑ and ⇀, there exist
such values that for all 0 ↔ s, t ↔ T ,

E(|x(t)↘ x(s)|ω) ↔ D|t↘ s|1+ϱ
,

then x(t) has a continuous modification.

If we do not assume the continuity of all sample paths, we select k in equation
(2.3) such that 2Hk > 1. Consequently, Kolmogorov’s Continuity Criterion ensures
that the fBm has a modification with continuous paths. Furthermore, the following
lemma, adapted from [36], establishes the Hölder continuity of the fBm paths:

Lemma 2.3 [36] For any ↪ > 0 and T > 0, there exists a non-negative random
variable Gς,T such that, for all p ∝ 1, E(|Gς,T |p) < ⇓ and for s, t → [0, T ], the
following inequality holds:

|WH(t)↘W
H(s)| ↔ Gς,T |t↘ s|H↑ς

. (2.4)

In other words, the paths of fBm are Hölder continuous of order H ↘ ↪ for ↪ > 0
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with H ↘ ↪ > 0.

For H = 1/2, the covariance function (2.1) reduces to R1/2(t, s) = min{t, s} and
the process W 1/2 is equivalent to sBm. In this case, the increments of the process
in disjoint intervals are independent. However, for H ↙= 1/2, the increments depend
on each other.
If we define x(n) = W

H(n)↘W
H(n↘ 1) for n ∝ 1, then {x(n) : n ∝ 1} forms a

stationary Gaussian sequence with variance 1 and the covariance function is given
by:

▷H(n) := Cov(x(k), x(k + n))

= E[(WH(k)↘W
H(k ↘ 1))(WH(n+ k)↘W

H(n+ k ↘ 1))]

= E[WH(k)WH(n+ k)]↘ E[WH(k)WH(n+ k ↘ 1)]

↘ E[WH(k ↘ 1)WH(n+ k)] + E[WH(k ↘ 1)WH(n+ k ↘ 1)]

=
1

2

⎧
(n+ 1)2H + (n↘ 1)2H ↘ 2n2H

⎫

=
1

2
{
\︂
2H

0

⎛
n
2H +

\︂
2H

1

⎛
n
2H↑1 +

\︂
2H

2

⎛
n
2H↑2 + . . .

+

\︂
2H

0

⎛
n
2H ↘

\︂
2H

1

⎛
n
2H↑1 +

\︂
2H

2

⎛
n
2H↑2 + . . .↘ 2n2H}

=
1

2

⎩
2

\︂
2H

2

⎛
n
2H↑2 + . . .

⎭
∞ (2H)!

2!(2H ↘ 2)!
n
2H↑2

= H(2H ↘ 1)n2H↑2
. (2.5)

Therefore, as n approaches infinity, ▷H(n) ⇔ 0. Consequently, for all n > 0,
if H >

1

2
, then ▷H(n) > 0 and

⎨⇐
n=1

▷H(n) = ⇓. In this case, we say that the
sequence {x(n) : n ∝ 1} exhibits long-range dependence. Due to this long-range
dependency property, fBm with a Hurst parameter H >

1

2
is particularly well-suited

for simulating a variety of phenomena. If H <
1

2
, then for all n > 0, ▷H(n) < 0 and⎨⇐

n=1
|▷H(n)| < ⇓.

2.2 Di!erent Stochastic Representation of fBm

In this section, we show that fBm can be represented as a Wiener integral (Itô
integral, see Section 1.3) in di!erent ways.
The first representation of fBm (as introduced in [69]) is known as the time rep-

resentation.

Proposition 2.4 Let H → (0, 1
2
) ↑ (1

2
, 1), set

cH =

⎬
1

2H
+

⌉︄ ⇐

0

⟩︄
(1 + u)H↑ 1

2 ↘ u
H↑ 1

2

\︄2

du < ⇓,
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and let W = (W (t))t≃R be a two-sided sBm (see (1.4)). Then, (any continuous
modification of) the process WH = (WH(t))t>0, defined as

W
H(t) =

1

cH

\︂⌉︄
0

↑⇐

⟩︄
(t↘ u)H↑ 1

2 ↘ (↘u)H↑ 1
2

\︄
dW (u) +

⌉︄
t

0

(t↘ u)H↑ 1
2dW (u)

⎛
,

(2.6)

is a fBm with Hurst parameter H.

The second representation of fBm is the spectral representation (also called har-
monizable representation [83]).

Proposition 2.5 Let H → (0, 1
2
) ↑ (1

2
, 1), set

dH =

⎬

2

⌉︄ ⇐

0

1↘ cos u

u2H+1
du < ⇓,

and let W = (W (t))t≃R be a two-sided sBm ( see (1.4)). Then, (any continuous
modification of) the process WH = (WH(t))t>0, defined as

W
H(t) =

1

dH

⎢⌉︄
0

↑⇐

1↘ cos(ut)

|u|H+
1
2

dW (u) +

⌉︄ ⇐

0

sin(ut)

|u|H+
1
2

dW (u)

⎥
, (2.7)

is a fBm with Hurst parameter H.

In conclusion, the following proposition referenced in [27, 82], presents an alterna-
tive representation of fBm. This representation shows that fBm can be expressed as a
Volterra process, which means that it can be depicted asWH(t) =

]︄
t

0
KH(t, s)dW (s),

with W = {W (t)}t>0 denoting a sBm and KH being a well-defined square-integrable
kernel. (This representation will be used in Chapter 4.)

Proposition 2.6 Let H → (0, 1
2
) ↑ (1

2
, 1) and, for t > s > 0, set

KH(t, s) =

⎪
⏐⏐⏐⏐⏐⎝

⏐⏐⏐⏐⏐⎠

⎜
H(2H↑1)

)︄ 1
0 (1↑x)1→2Hx

H→ 3
2 dx

s
1
2↑H

]︄
t

s
(u↘ s)H↑ 3

2u
H↑ 1

2du, if H >
1

2

⎜
2H

(1↑2H)
)︄ 1
0 (1↑x)→2Hx

H→ 1
2 dx

∀
⎡
( t
s
)H↑ 1

2 (t↘ s)H↑ 1
2 ↘ (H ↘ 1

2
)s

1
2↑H

]︄
t

s
u
H↑ 3

2 (u↘ s)H↑ 1
2du

⎤
if H <

1

2

Let W = (W (t))t↔0 be a sBm and define W
H = (WH(t))t↔0 by

W
H(t) =

⌉︄
t

0

KH(t, s)dW (s). (2.8)

Then, (any continuous modification of) WH is a fBm with Hurst parameter H.
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2.3 Simulation of Fractional Brownian Motion

This section is dedicated to simulating fBms. In this section, we will explain the
Cholesky decomposition method to simulate fBms. As we know, in the case of
H = 1/2, fBm is identical to sBm; hence, this process has independent increments.
However, for H ↙= 1/2, the increments of the process are dependent. As shown in
the previous section, if we define x(k) = W

H(k)↘W
H(k ↘ 1), then the covariance

between x(k) and x(k + n) is given by

Cov(x(k), x(k + n)) =
1

2

{︄
(n+ 1)2H ↘ 2n2H + (n↘ 1)2H

}︄
. (2.9)

Therefore, the primary task in simulating fBms is to generate the increments of this
process. To achieve this, consider the vector

Z = (WH(1),WH(2)↘W
H(1),WH(3)↘W

H(2), . . . ,WH(N)↘W
H(N ↘ 1)).

Vector Z follows a normal distribution with mean zero and covariance matrix &,
i.e., Z ∃ N(0,&), where

&i,j = E
)︄
W

H(i+ 1)↘W
H(i),WH(j + 1)↘W

H(j)
[︄

=
1

2

{︄
(j ↘ i↘ 1)2H ↘ 2(j ↘ i)2H + (j ↘ i+ 1)2H

}︄
, i, j = 0, . . . , N ↘ 1.

(2.10)

Now, to simulate Z, let C be an N ∀N matrix and vector V = (v1, . . . , vN)↘ with
Vi ∃ N(0, 1) for i = 1, . . . , N . If we find matrix C such that C↘

C = &, then it is

clear that C↘
V ∃ N(0, C↘

C) since C
↘
V =

⟩︄⎨
N

j=1
cjivj

\︄

i=1,...,N

, then

E
{︄
C

↘
V,C

↘
V
}︄
=

⎟

⟨︂⟩︂

⎨
N

j=1
c
2

j1

⎨
N

j=1
cj1cj2 . . .

⎨
N

j=1
cj1cjN

...
...

...⎨
N

j=1
cj1cjN

⎨
N

j=1
cj2cjN . . .

⎨
N

j=1
c
2

jN

⨆︁

⨆︂∮︁ = C
↘
C,

by setting Z = C
↘
V , we successfully simulate Z.

Given that the matrix & is a positive definite symmetric matrix, it admits a
Cholesky decomposition. This decomposition implies that & can be expressed as
& = LDL

↘, where L is a lower triangular matrix and D is a diagonal matrix.
Consequently, Z can be easily obtained using this decomposition. Figure 2.1 displays
the simulated sample paths for three di!erent values of the Hurst parameter H.
In this figure, the cumulative sums of the fBm samples are illustrated. Negative
correlations are evident for H = 0.2, resulting in more irregular sample paths,
whereas the paths are smoother for H = 0.8 due to positive correlations. From
equation (2.5), we can infer that the covariances are negative when H < 1/2 and
positive when H > 1/2. This behavior is also depicted in Figure 2.2, where the
increments x(n) = W

H(n) ↘W
H(n ↘ 1) are shown for the same values of H as in

Figure 2.1. For H = 0.2, the negative correlation results in high variability, while
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for H = 0.8, the sample path exhibits periods of increase and decrease.

Figure 2.1: Samples of fBm for di!erent Hurst parameters

Figure 2.2: Samples of fBm increments for di!erent Hurst parameters.
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Remark 2.7 Using the self-similarity property of fBm (2.2), we can simulate the
sequence

)︄
W

H(t0),WH(t1)↘W
H(t0), . . . ,WH(tn)↘W

H(tn↑1)
[︄
, where ti → [a, b]

for i = 0, 1, . . . , n and b > a ∝ 0, by applying the simulation method given in
equation (2.10).

2.4 Semimartingale and Markov Property

This section explores the asymptotic behavior p-variation of fBm. Furthermore,
it will be shown that fBm does not belong to the semimartingale class unless it
coincides with sBm, which is the case for H = 1

2
. A process is classified as a

semimartingale if it can be represented as a combination of a local martingale and
a càdlàg adapted process with locally finite variation (for an authoritative text on
semimartingales, see [91]). However, it is worth mentioning that, if W

H(t) is a
fBm with Hurst parameter H →

)︄
3

4
, 1
[︄
and W (t) is an independent sBm, then the

process defined by Mt = W
H(t)+W (t) for t > 0 qualifies as a semimartingale. The

comprehensive exploration of this phenomenon is available in [23].
Consider a stochastic process with continuous paths denoted as x = {x(t), t ∝ 0}

and let p > 0 be a constant. The p-variations of x over the interval [0, T ] are defined
as the following limit:

P↘ lim
n⇒⇐

n↑1⌊︄

i=0

|x((i+ 1)T

n
)↘ x(

iT

n
)|p,

where the expression “P↘ lim” indicates the limit in probability.

Remark 2.8 If the p-variation exists and is almost surely nonzero, then for any
q > p, the q-variation is zero and for q < p, the q-variation is infinite.

According to [83], we deduce the following result about the p-variations of fBm.

Corollary 2.9 Let W
H be a fBm of the Hurst parameter H → (0, 1) and let p →

[1,+⇓). Then, in L
2(#) and as n ⇔ ⇓, one has

n↑1⌊︄

i=0

/︄/︄/︄/︄W
H(

(i+ 1)T

n
)↘W

H(
iT

n
)

/︄/︄/︄/︄
p

⇔

⎪
⏐⎝

⏐⎠

0, if p >
1

H
,

E |G|p , if p = 1

H
, with G ∃ N(0, 1),

+⇓, if p <
1

H
.

Based on Corollary 2.9 and the observations noted in Remark 2.8, it can be
concluded that, if H <

1

2
, the quadratic variation is unbounded, while for H >

1

2
,

the quadratic variation becomes zero and the 1-variation becomes unbounded.
We have now established that fBm typically does not fall into the category of

semimartingales, with the only exception being when the Hurst parameter is equal to
1

2
. This particularity makes integration in relation to it a challenging and significant

issue.

Theorem 2.10 [106] Let W
H be a fBm of Hurst index H → (0, 1/2) ↑ (1/2, 1).
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Then W
H is not a semimartingale.

For fBm, we have the following result about the Markov property.

Theorem 2.11 [83] Let WH be a fBm of Hurst index H → (0, 1/2)↑ (1/2, 1). Then
W

H is not a Markov process (see Definition 1.8).

2.5 Stochastic Calculus with respect to fBm

One of the key challenges in working with fBm is the definition and interpretation
of stochastic integrals with respect to fBm. Traditional Itô calculus, which is well-
suited for integration with respect to sBm, does not extend naturally to fBm due to
its non-Markovian nature and long-range dependencies. The objective of stochastic
calculus lies in the establishment of stochastic integrals in the form of

⌉︄
T

0

u(t)dWH(t),

where u = {u(t), t → [0, T ]} represents a stochastic process. From this point on,
our focus will be on fBm in the scenario where H >

1

2
. This is because, in Chapter

6, our analysis and discussions will be specifically related to this case.

2.5.1 Stochastic Integration of Deterministic Processes

If u is a deterministic function, a general procedure is available to define the stochas-
tic integral of u concerning a Gaussian process, employing convergence within L

2(#).
We shall commence by examining this general approach, specifically in the context
of fBm.
Let us consider an one-dimensional fBm W

H = {WH(t), t ∝ 0} where the Hurst
parameter H → (1

2
, 1). Consider a fixed time interval [0, T ] and denote the set of step

functions defined on this interval as ◁. The integration of a step function, denoted
as ϖ(t) =

⎨
n↑1

i=0
aj↽[ti,ti+1](t), can be expressed in a straightforward way as follows:

⌉︄
T

0

ϖ(t)dWH(t) =
n↑1⌊︄

i=0

aj

)︄
W

H(ti+1)↘W
H(ti)

[︄
,

where ↽[ti,ti+1](t) is the indicator function defined in equation (1.7). Our objective
is to expand the definition of this integral by including a wider range of functions,
using convergence within the space L2(#). In order to achieve this goal, we proceed
by introducing the Hilbert space H (see Appendix A.2), which is defined as the
closure of ◁ with respect to the scalar product as:

⇒↽[0,t],↽[0,s]⇑H = RH(t, s),

where RH(t, s) defined in equation (2.1). The expression for the second partial
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derivative of the covariance function (2.1), represented as

ς
2
RH

ςtςs
= ϑH |t↘ s|2H↑2

,

where ϑH is defined as H(2H ↘ 1) and it should be emphasized that this equation
is integrable. Therefore,

RH(t, s) = ϑH

⌉︄
t

0

⌉︄
s

0

|r ↘ u|2H↑2dudr. (2.11)

Formula (2.11) suggests that the scalar product within the Hilbert space H can be
written as:

⇒ϖ,0⇑H = ϑH

⌉︄
T

0

⌉︄
T

0

|r ↘ u|2H↑2
ϖ(r)0(u)dudr, (2.12)

this holds true for any pair of step functions ϖ and 0 belonging to ◁.
Consequently, it is possible to establish a definition for a linear subspace of func-

tions that are included within the Hilbert space H in the following way. Let |H| be
the space of measurable functions ϖ : [0, T ] ⇔ R satisfying the condition

⇐ϖ⇐2|H| = ϑH

⌉︄
T

0

⌉︄
T

0

|r ↘ u|2H↑2|ϖ(r)||ϖ(u)|dudr < ⇓.

The incompleteness of the space |H| with the inner product ⇒., .⇑H, together with its
isometric embedding into a subspace of H, has been established and documented in
reference [90].
The following lemma, which was proposed in [72], o!ers an additional estimate.

Lemma 2.12 Let H >
1

2
and ϖ → L

1
H ([0, T ]), it holds that

⇐ϖ⇐|H| ↔ bH⇐ϖ⇐
L

1
H ([0,T ])

where bH is a constant.

As a result, we may witness the embeddings

L
2([0, T ]) △ L

1
H ([0, T ]) △ |H| △ H.

Moreover, it is possible to establish the Wiener-type integral
]︄

T

0
ϖ(t)dWH(t) for

functions ϖ that belong to the space |H|. It is important to note that an additional
range of functions can be incorporated in contrast to the scenario of sBm. Within
this particular framework, the isometry property of the Itô stochastic integral is
substituted by the use of the formula:

E
∮︂\︂⌉︄

T

0

ϖ(t)dWH(t)

⎛2
⨀︁
= ϑH

⌉︄
T

0

⌉︄
T

0

|r ↘ u|2H↑2
ϖ(r)ϖ(u)dudr = ⇐ϖ⇐2H.
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2.5.2 Stochastic Integration of Random Processes

The literature has presented numerous ways for integrating random processes with
respect to fBm. In the case where H >

1

2
, the stochastic integral

]︄
T

0
u(t)dWH(t)

can be defined using a pathwise approach, taking advantage of the results estab-
lished by Young [123]. He defined it as a limit in L

2 of the Riemann sums. An-
other approach involves the application of Malliavin calculus techniques to construct
stochastic calculus for fBm. The beginnings of this technique can be traced back to
the influential research conducted by Decreusefond and Üstünel [27]. Other relevant
sources supporting this methodology include [1, 2, 18, 21, 44], along with numerous
other scientific references. In the following discussion, we will introduce a pathwise
approach to define Young integration.

2.5.2.1 Young Integration

The development of the definition of
]︄

T

0
u(t)dWH(t) can be achieved by employing

a pathwise approach involving Riemann-Stieltjes integrals, considering the insights
provided by the Young study [123].
Let us consider T > 0 to be the endpoint of our time period. Henceforth, we

assume that all functions under consideration are defined over the interval [0, T ].
For a given ϑ → [0, 1], Cω denotes the class of functions f : [0, T ] ⇔ R that are
Hölder continuous with index ϑ, i.e., functions f that meet the criterion

|f |ω = sup
0↗s<t↗T

|f(t)↘ f(s)|
(t↘ s)ω

< ⇓.

Furthermore, we define ⇐f⇐⇐ := sup
t≃[0,T ]

|f(t)| and endow Cω with the norm

⇐f⇐ω = ⇐f⇐⇐ + |f |ω.

Definition 2.13 Suppose that f → Cω and g → Cϱ, where ϑ + ⇀ > 1. Given a
sequence (tn

i
)kn
i=0

of partitions of [0, T ] with limn⇒⇐ maxkn↑1

i=0
{tn

i+1
↘ t

n

i
} = 0. Then,

the Young integral
]︄

T

0
f(s)dg(s) is then defined as

⌉︄
T

0

f(s)dg(s) := lim
n⇒⇐

kn↑1⌊︄

i=0

f(tn
i
)
{︄
g(tn

i+1
)↘ g(tn

i
)
}︄
.

It should be noted that the existence of the Young integral was established in [123].
Therefore, if u = {u(t), t → [0, T ]} represents a stochastic process with trajectories
that exhibit ↩↘Hölder continuity, where ↩ > 1 ↘ H, then the Riemann-Stieltjes
integral

]︄
T

0
u(t)dWH(t) exists pathwise. This implies that for any specific element

↼ → #, the integral
]︄
T

0
u(t,↼)dWH(t,↼) exists as the path-wise limit of the Riemann

sums.
In particular, when H >

1

2
, as the paths of WH are a.s. Hölder continuous with

ϑ = H ↘ ↪ and considering F → C2, then the following change of variables formula
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is valid:

F (WH(t)) = F (0) +

⌉︄
t

0

F
⇑(WH(s))dWH(s) (2.13)

Furthermore, The Young integral is consistent with the following chain rule.

Theorem 2.14 [83] Suppose ϖ : R2 ⇔ R is a C2 function and consider f, g belonging
to Cω for some ϑ →

)︄
1

2
, 1
}︄
. It is established that the integrals

]︄
.

0

φε

φf
(f(u), g(u)) df(u)

and
]︄

.

0

φε

φg
(f(u), g(u)) dg(u) are well-defined Young integrals. Furthermore, for any

t → [0, T ], it holds that

ϖ(f(t), g(t)) = ϖ(f(0), g(0)) +

⌉︄
t

0

ςϖ

ςf
(f(u), g(u)) df(u) +

⌉︄
t

0

ςϖ

ςg
(f(u), g(u)) dg(u).

(2.14)

H = 1/2 represents the boundary case, in which the Young integration no longer
works. For that reason, the probabilistic approach of Stratonovich is chosen in the
following way.

Definition 2.15 Let H = 1/2 and (tn
i
)kn
i=0

a partition like in Definition 2.13. Given
a continuous semimartingale Y , we set

⌉︄
T

0

Y (s) ↗ dWH(s) :=

⌉︄
T

0

Y (s)dWH(s) +
1

2
[Y,WH ]T ,

where the first term is the Itô integral

⌉︄
T

0

Y (s)dWH(s) := P↘ lim
n⇒⇐

kn↑1⌊︄

i=0

Y (tn
i
)
)︄
W

H(ti+1)↘W
H(ti)

[︄

and

[Y,WH ]T := P↘ lim
n⇒⇐

kn↑1⌊︄

i=0

)︄
Y (tn

i+1
)↘ Y (tn

i
)
[︄ )︄

W
H(ti+1)↘W

H(ti)
[︄

is the quadratic covariation.

Let us refer to Chapter 1 for more details concerning the stochastic calculus given
H = 1/2. The Stratonovich integral can be viewed as the natural extension of
Young since the Stratonovich setting still ensures that it has a “classical” chain
rule. Moreover, WH , H = 1/2, can be approximated by “smooth” processes WH,ς

with bounded variation paths when Stratonovich stochastic di!erential equations
are considered, e.g., WH,ς can be piecewise linear (Wong-Zakai) [54, 110, 121]. Due
to these connections and in order to distinguish from the Itô setting, we use the
circle notation ↗dWH for both the Young and Stratonovich cases. Nevertheless,
the Young and Stratonovich di!erential equations driven by a fBm have important
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applications in various fields.

Remark 2.16 [83] Consider WH as a fBm with Hurst parameter H → (0, 1
2
). Given

the unbounded nature of the quadratic variation of WH , which follows directly from
Corollary 2.9 for p = 2, it can be easily verified that the trajectories of WH do
not belong to the space

⌋︄
ω≃( 12 ,1]

Cω. This observation implies that Definition 2.13

is inapplicable to H <
1

2
. Consequently, the Young integral turns out to be an

unsuitable option for performing integration concerning a fBm of Hurst parameter
less than 1

2
.

In contrast to the Itô stochastic integral with respect to sBm, the Young integral]︄
T

0
F (WH(t))↗dWH(t) does not exhibit zero mean and its variance does not possess

a straightforward formula. Now, we aim to clarify how the methods employed in
Malliavin calculus facilitate the calculation of the mean and the variance of the
integral mentioned above.

2.5.3 Malliavin Calculus for fBm

Consider the fBm W
H = {WH(t), t ∝ 0} characterized by the Hurst parameter

H → (1
2
, 1). This process, WH , is Gaussian, allowing us to establish the associated

stochastic calculus of variations, often referred to as the Malliavin calculus. Malli-
avin calculus is an infinite-dimensional di!erential calculus initially introduced by
Malliavin in [68]. The fundamental operators within the Malliavin calculus consist
of the derivative operator D

H and its adjoint, the divergence operator ε. For a
comprehensive exploration of the Malliavin calculus and its applications within the
framework of fBm, we recommend referring to [73, 85, 114].
Let us consider a fixed time interval denoted as [0, T ]. The set S is defined as a

collection of elementary random variables, every single one of them represented as:

F = f(WH(ϖ1), . . . ,W
H(ϖn)), (2.15)

where n ∝ 1, f → C⇐
p
(Rn) (meaning f and all its partial derivatives are continuous

and exhibit polynomial growth order) and ϖi → H. The derivative operator D
H

associated with an elementary random variable F in the form of (2.15) is defined as
the H-valued random variable:

D
H
F =

n⌊︄

i=1

ςf

ςxi

(WH(ϖ1), . . . ,W
H(ϖn))ϖi.

The following integration-by-parts identity is established as follows.

Lemma 2.17 [84] Let F denote an elementary random variable, as represented in
equation (2.15). Then, for every arbitrary element ϖ belonging to the Hilbert space
H, the following relationship is valid:

E(⇒DH
F,ϖ⇑H) = E(FW

H(ϖ)). (2.16)
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As a result, if F and G are elementary random variables and h → H, the following
relationship is established:

E(G⇒DH
F, h⇑H) = E(↘F ⇒DH

G, h⇑H + FGW
H(h)) (2.17)

Formula (2.17) leads to the conclusion that the derivative operator DH is a closable
operator, transforming functions from L

p(#) to L
p(#;H), for any p ∝ 1. The

Sobolev space D1,p is defined as the closure of S under the norm

⇐F⇐1,p =
{︄
E(|F |p) + E

)︄
⇐DH

F⇐pH
[︄}︄ 1

p
,

where p ∝ 1. D1,p can be regarded as an infinite-dimensional weighted Sobolev
space.
The divergence operator ε serves as the adjoint of the derivative operator. More

specifically, we consider a random variable u in L
2(#;H) belonging to the domain

of the divergence operator, denoted as Dom ε, if

|E(⇒DH
F, u⇑H)| ↔ cu⇐F⇐L2(!)

for any F → S. In such cases, ε(u) is defined through the duality relationship:

E(F ε(u)) = E(⇒DH
F, u⇑H), (2.18)

valid for any F → D1,2. To provide an illustration, we will investigate an elementary
H-valued random variable in the form of u =

⎨
m

k=1
Fkϖk, where Fk → D1,2 and

ϖk → H. In the given scenario, the variable u is considered to be within the domain
of the divergence operator. By utilizing equation (2.17), it is possible to deduce that
the expression for ε(u) can be derived as:

ε(u) =
m⌊︄

k=1

)︄
FkW

H(ϖk)↘ ⇒DH
Fk,ϖk⇑H

[︄
. (2.19)

The term FkW
H(ϖk)↘ ⇒DH

Fk,ϖk⇑H is denoted as the Wick product of the random
variables Fk and W

H(ϖk) and is represented as

Fk ≃WH(ϖk) = FkW
H(ϖk)↘ ⇒DH

Fk,ϖk⇑H (2.20)

Using this notation, equation (2.19) can be modified as:

ε(u) =
m⌊︄

k=1

Fk ≃WH(ϖk).

The notation ε(u) =
]︄

T

0
u(t)≃dWH(t) will be utilized in cases when u is a stochastic

process that falls within the domain of the divergence operator.
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2.5.4 Fractional Wick Itô Skorohod Integrals

Now we aim to define the stochastic integral ε(F ) =
]︄

T

0
F (t)≃dWH(t) as an element

within L
2(H), provided that F (t) is a suitable integrand. It is important to note

that we are assuming H >
1

2
. For simplicity in notation, we denote the fractional

Wick Itô Skorohod (fWIS) integral by

⌉︄
T

0

F (t) ≃ dWH(t) :=

⌉︄
T

0

F (t)εWH(t).

To define this integral, we consider an arbitrary partition of the interval [0, T ],
denoted by {tn

i
}kn
i=0

, where limn⇒⇐ max0↗i↗kn↑1{tni+1
↘ t

n

i
} = 0 and introduce the

Riemann sum:

S(F, 1) =
kn↑1⌊︄

i=0

F (ti) ≃
)︄
W

H(tn
i+1

)↘W
H(tn

i
)
[︄
.

Definition 2.18 Let LH(0, T ) be a family consisting of stochastic processes F on
[0, T ] possessing the following properties:

• F → LH(0, T ) if and only if

E[⇐F⇐2H] = ϑHE
⨀︂⌉︄

T

0

⌉︄
T

0

|r ↘ u|2H↑2
F (r)F (u)dudr

⨁︁
< ⇓

• F is Malliavin di!erentiable,

• For 0 ↔ t ↔ T , there exists DH

t
F (s) such that:

E
⨀︂⌉︄

[0,T ]4

D
H

t1
F (s1)D

H

t2
F (s2)ϖ(t1, t2)ϖ(s1, s2)dt1ds1dt2ds2

⨁︁
< ⇓.

The following theorem, which is the most significant in this section, introduces
the fWIS integral based on Theorem 3.6.1 in [18].

Theorem 2.19 Let (F (t), t → [0, T ]) be a stochastic process such that F → LH(0, T ).
Then, the following limit exists in L

2(#,F,P):

lim
n⇒0

kn↑1⌊︄

i=0

F (ti) ≃
)︄
W

H(ti+1)↘W
H(ti)

[︄
,

and this limit is denoted by
]︄

T

0
F (s)εWH(s), known as the fWIS integral. Further-

more, this integral satisfies the following relations:

E
⨀︂⌉︄

T

0

F (s)εWH(s)

⨁︁
= 0,
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and
⎞⎞⎞⎞
⌉︄

T

0

F (s)ωWH(s)

⎞⎞⎞⎞
LH(0,T )

:= E
⨀︂
|
⌉︄

T

0

F (s)ωWH(s)|2
⨁︁

= E
∮︂⌉︄

[0,T ]4
D

H

t1
F (s1)D

H

t2
F (s2)ε(t1, t2)ε(s1, s2)dt1ds1dt2ds2

⨀︁

+ ϑHE
∮︂⌉︄

[0,T ]2
|r ↘ u|2H↑2

F (r)F (u)dudr

⨀︁
.

The following properties are directly deduced from the above theorem:

• If F,G → LH(0, T ), then for any arbitrary constants a and b, the following
relation holds:

⌉︄
t

0

(aF (s) + bG(s))εWH(s) = a

⌉︄
t

0

F (s)εWH(s) + b

⌉︄
t

0

G(s)εWH(s).

• If F → LH(0, T ), E
{︄
sup

0↗s↗t
F (s)

}︄2
< ⇓ and also sup

0↗s↗t
E|DH

t
F (s)|2 < ⇓,

then
]︄

t

0
F (s)εWH(s) has a continuous version.

Remark 2.20 [30] Suppose {tn
i
}kn
i=0

is a sequence of partitions of the interval [0, T ],
such that limn⇒⇐ max0↗i↗kn↑1{tni+1

↘ t
n

i
} = 0. If

⎨
kn↑1

i=0
F (ti)

)︄
W

H(tn
i+1

)↘W
H(tn

i
)
[︄

converges in the space of L
2(#,F,P), then this limit corresponds to the Young

integral ( see Subsections 2.5.2.1).

The following theorem expresses the relationship between the fWIS integral and the
Young integral.

Theorem 2.21 [18] If F → LH(0, T ), then the following relation holds:

⌉︄
t

0

F (s) ↗ dWH(s) =

⌉︄
t

0

F (s)εWH(s) +

⌉︄
t

0

⌉︄
s

0

D
H

v
Fϖ(s, v)dvds.

In a special case when F is a function of WH(t), we can write

⌉︄
t

0

F (WH(s)) ↗ dWH(s) =

⌉︄
t

0

F (WH(s))εWH(s)

+H(2H ↘ 1)

⌉︄
t

0

⌉︄
s

0

F
⇑(WH(s))(s↘ v)2H↑2dvds

=

⌉︄
t

0

F (WH(s))εWH(s) +H

⌉︄
t

0

F
⇑(WH(s))s2H↑1ds.

(2.21)

These two stochastic integrals have the following important properties:

• E
⎡]︄

t

0
F (s)εWH(s)

⎤
= 0, while, in general, E

⎡]︄
t

0
F (s) ↗ dWH(s)

⎤
↙= 0.
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• The chain rule for the fWIS integral is more complex compared to the Young
integral.

Since the rules for the Young integral are similar to the Riemann-Stieltjes integral,
in this thesis we consider the fractional stochastic integral in the Young integral
form.

Example 2.22 According to the definition of Young integration, we have:

⌉︄
t

0

W
H(s) ↗ dWH(s) =

1

2
(WH(t))2,

hence (2.21) implies that:

⌉︄
t

0

W
H(s)εWH(s) =

1

2
(WH(t))2 ↘H

⌉︄
t

0

s
2H↑1ds =

1

2

{︄
(WH(t))2 ↘ t

2H
}︄
.

The following example shows that E
⎡]︄

t

0
F (s) ↗ dWH(s)

⎤
is not necessarily 0.

Example 2.23 [30] It is well-known that if x is a standard normal random variable,
x ∃ N(0, 1), then

E[xn] =

/︂
n!

(
⇓
2)n(n

2 )!
if n is even,

0 if n is odd.

Consider f(x) = x
n and referring to equation (2.21), we obtain

E
⨀︂⌉︄

t

0

f
)︄
W

H(s)
[︄
↗ dWH(s)

⨁︁
= E

⨀︂
H

⌉︄
t

0

s
2H↑1

f
⇑ )︄
W

H(s)
[︄
ds

⨁︁

= nH

⌉︄
t

0

s
2H↑1E

{︄
f
⇑ )︄
W

H(s)
[︄}︄

ds

= nH

⌉︄
t

0

s
2H↑1E

⎡)︄
W

H(s)
[︄n↑1

⎤
ds

= nH

⌉︄
t

0

s
(n+1)H↑1E

∮︂\︂
W

H(s)

sH

⎛n↑1
⨀︁
ds

=

/︂
n!t

(n+1)H

(
⇓
2)n→1(n+1)(n→1

2 )!
if n is odd,

0 if n is even.

Remark 2.24 [30] Consider an arbitrary partition {tn
i
}kn
i=0

of the interval [0, T ],
such that limn⇒⇐ max0↗i↗kn↑1{tni+1

↘ t
n

i
} = 0. Also, suppose that F → LH(0, T ) is

a stochastic process. As mentioned above, for a standard Brownian motion process
(W (t), t ∝ 0), the Itô integral is defined as the limit of Riemann sums, that is,⎨

kn↑1

i=0
F (ti) (W (ti+1)↘W (ti)), as n ⇔ ⇓. Similarly, the Stratonovich integral is

defined as
⎨

kn↑1

i=0
F ( ti+ti+1

2
) (W (ti+1)↘W (ti)). In the case of fBm, it has been shown
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that both limits,

lim
n⇒⇐

kn↑1⌊︄

i=0

F (ti)
)︄
W

H(ti+1)↘W
H(ti)

[︄
,

and

lim
n⇒⇐

kn↑1⌊︄

i=0

F (
ti + ti+1

2
)
)︄
W

H(ti+1)↘W
H(ti)

[︄
,

converge to the pathwise Riemann Stieltjes integral (Young integral).

2.6 Fractional Itô Formula

Now, we proceed to express the fractional Itô formula. To illustrate this formula, we
first present the following theorem, which characterizes the Malliavin ϖ-derivative of
fWIS integral. If F : # ⇔ R is a given function, we define the Malliavin ϖ-derivative
of F at s as follows:

D
ε

s
F =

⌉︄

R
D

H

v
F ϖ(s, v)dv,

where D
H

v
F denotes the Malliavin derivative.

Theorem 2.25 [18] Consider the stochastic process (F (t), t → [0, T ]) in the space
LH(0, T ) such that sup

0↗s↗T
E[|Dε

s
F (s)|2] < ⇓. Define 2t =

]︄
t

0
F (u) εWH(u), for

t → [0, T ]. Then, for s, t → [0, T ], the following equation holds almost surely:

D
ε

s
2t =

⌉︄
t

0

D
ε

s
F (u) εWH

u
+

⌉︄
t

0

F (u)ϖ(s, u)du.

Now, let us express the fractional Itô formula in the general case.

Theorem 2.26 [18] Suppose that 2t = ϱ +
]︄

t

0
G(u)du +

]︄
t

0
F (u) εWH(u), where

(F (u), 0 ↔ u ↔ T ) is a stochastic process in LH(0, T ). Assume that there is an
ϑ > 1↘H such that

E
{︄
|F (u)↘ F (v)|2

}︄
↔ C|u↘ v|2ω,

where |u↘ v| ↔ ε for some ε > 0 and

lim
0↗u,v↗t,|u↑v|⇒0

E
⎡/︄/︄Dε

u
(F (u)↘ F (v))

/︄/︄2
⎤
= 0.

Also, let f → C1,2

b
(R+ ∀ R;R). Furthermore, assume that

E
⨀︂⌉︄

t

0

|F (s)Dε

s
2s|ds

⨁︁
< ⇓, E

⨀︂
sup

0↗s↗T

|G(s)|
⨁︁
< ⇓,

and (ςf(s, 2s)/ςx)F (s) for s → [0, T ] belong to the space LH(0, T ). Then, for each
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0 ↔ t ↔ T , the following equation holds almost surely:

f(t, 2t) = f(0, ϱ) +

⌉︄
t

0

ςf

ςs
(s, 2s)ds+

⌉︄
t

0

ςf

ςx
(s, 2s)G(s)ds

+

⌉︄
t

0

ςf

ςx
(s, 2s)F (s) εWH(s) +

⌉︄
t

0

ς
2
f

ςx2
(s, 2s)F (s)Dε

s
2sds.

We end this section by presenting an Itô formula for fBm in the specific case where
2t = W

H(t), which holds for all values of H in the interval (0, 1) .

Theorem 2.27 [18] Let H → (0, 1) and the function f(t, x) : R+ ∀ R ⇔ R is
of class C1,2(R ∀ R;R) and also the following random variables are all elements of
L
2(#,F,P):

f
)︄
t,W

(H)(t)
[︄
,

⌉︄
t

0

ςf

ςs

)︄
s,W

(H)(s)
[︄
ds, and

⌉︄
t

0

ς
2
f

ςx2

)︄
s,W

(H)(s)
[︄
s
2H↑1ds.

Then,

f(t,WH(t)) = f(0, 0) +

⌉︄
t

0

ςf

ςs
(s,WH(s))ds+

⌉︄
t

0

ςf

ςx
(s,WH(s)) εWH(s)

+H

⌉︄
t

0

ς
2
f

ςx2
(s,WH(s))s2H↑1ds.

Example 2.28 Let f(t,WH(t)) = (WH(t))2. Consequently, we have:

d(WH(t))2 = 2WH(t) εWH(t) + 2Ht
2H↑1dt.

2.7 Existence and Uniqueness of Solution of SDE
with fBm

In this section, we aim to establish the theorem for the global existence and unique-
ness of solutions for multidimensional, time-dependent SDEs driven by fBm with a
Hurst parameter H >

1

2
. We consider the following multidimensional SDE:

xi(t) = x0,i +

⌉︄
t

0

ai(s, x(s))ds+
q⌊︄

j=1

⌉︄
t

0

ωij(s, x(s)) ↗ dWH

j
(s) for i = 1, . . . , d

= x0 +

⌉︄
t

0

a(s, x(s))ds+

⌉︄
t

0

ω(s, x(s)) ↗ dWH(s), t → [0, T ].

(2.22)

In this scenario, we consider W
H = (WH

1
, . . . ,W

H

q
) as a q-dimensional fBm with

the same Hurst parameter H → (1
2
, 1) defined on complete filtered probability space
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)︄
#,F, (Ft)t≃[0,T ],P

[︄
. x0 is a d↘dimensional random variable and the coe”cients

ai, ωij : #∀[0, T ]∀Rd ⇔ R are measurable functions and for a matrix M = (mi,j)d→q

denotes ⇐M⇐2
2
=

⎨
i,j
|mi,j|2. Equation (2.22) is considered as the Young integral

equation (Section 2.5.2.1).
Let H be such that 1

2
< H < 1 and ϑ satisfy 1 ↘ H < ϑ <

1

2
. Define the space

Vω,⇐
0

)︄
[0, T ];Rd

[︄
to consist of all measurable functions f : [0, T ] ⇔ Rd which satisfy

the following condition:

⇐f⇐ω,⇐ := sup
t≃[0,T ]

\︂
|f(t)|+

⌉︄
t

0

|f(t)↘ f(s)|
(t↘ s)ω+1

ds

⎛
< ⇓,

and we have, for all 0 < ◁ < ϑ

Cω+↼
)︄
[0, T ];Rd

[︄
△ Vω,⇐

0

)︄
[0, T ];Rd

[︄
△ Cω↑↼

)︄
[0, T ];Rd

[︄

where Cω denotes the class of Hölder continuous functions.
Let us consider the following assumptions on the coe”cients, which are supposed

to hold for P-almost all ↼ → #. The constants MN , LN and the function a0 may
depend on ↼.

(H↽) : ω(t, x) is continuously di!erentiable with respect to x and there exist con-
stants 0 < ⇀, ε ↔ 1. Additionally, for every N ∝ 0, there is a constant MN > 0
such that the following conditions are satisfied:

(i) Lipschitz continuity

⇐ω(t, x)↘ ω(t, y)⇐2 ↔ M0⇐x↘ y⇐2, ¬x → Rd
, ¬t → [0, T ]

(ii) Hölder continuity in time:

⇐ω(t, x)↘ ω(s, x)⇐2 + ⇐ςxi
ω(t, x)↘ ςxi

ω(s, x)⇐
2
↔ M0|t↘ s|ϱ

for all x → Rd and t, s → [0, T ].

(iii) Local Hölder continuity of ςxi
ω

⇐ςxi
ω(t, x)↘ ςyiω(t, y)⇐2 ↔ MN⇐x↘ y⇐ϑ

2
¬⇐x⇐2, ⇐y⇐2 ↔ R, ¬t → [0, T ]

for 1 ↔ i ↔ d,

(iv) There exist ↩ → [0, 1] and K0 > 0 such that

⇐ω(t, x)⇐2 ↔ K0 (1 + ⇐x⇐ϖ
2
) , ¬x → Rd

, ¬t → [0, T ].

(Ha) : There exists a function a0 → L
p
)︄
[0, T ];Rd

[︄
, where p ∝ 2 and for each N ∝ 0,

there exists a constant LN > 0 such that the following conditions hold:
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(i) Local Lipschitz continuity:

⇐a(t, x)↘ a(t, y)⇐2 ↔ LN⇐x↘ y⇐2, ¬⇐x⇐2, ⇐y⇐2 ↔ N, ¬t → [0, T ]

(ii) Boundedness:

⇐a(t, x)⇐2 ↔ L0⇐x⇐2 + a0(t), ¬x → Rd
, ¬t → [0, T ]

Let

ϑ0 = min

⎩
1

2
, ⇀,

ε

1 + ε

⎭
.

The existence and uniqueness theorem of the solution to equation (2.22) is estab-
lished in Theorem 2.1 in [95].

Theorem 2.29 [95] Let x0 be an Rd↘valued random variable, the coe”cients ω(t, x)
and a(t, x) satisfy assumptions H↽ and Ha with ⇀ > 1 ↘ H and ε >

1

H
↘ 1. If

ϑ → (1↘H,ϑ0) and p ∝ 1/ϑ, then there exists a unique stochastic process x →
L
0
)︄
(#,F,P);Vω,⇐

0

)︄
[0, T ];Rd

[︄[︄
that solves the stochastic equation (2.22) and, more-

over, for P-almost all ↼ → #

x(↼, ·) = (xi(↼, ·))d→1
→ C

1↑ω
)︄
[0, T ];Rd

[︄
.

2.8 Numerical Methods for SDEs with fBm

The pursuit of explicit solutions for stochastic di!erential equations driven by fBm
is sometimes unachievable for a significant number of equations. Consequently,
the development of numerical methods becomes crucial in addressing this class of
equations. The stochastic di!erential equations (2.22) can be numerically solved us-
ing various general-purpose stochastic numerical techniques (refer to, for example,
[60, 77] and related literature). [28] delve into the 2-step Euler scheme simplified
through Wong-Zakai approximations, achieving a pathwise convergence rate of close
to

)︄
H ↘ 1

3

[︄
in the Hölder norm for H within the interval

)︄
1

3
, 1
[︄
. The authors in

[78, 80] suggested that the optimal convergence rate for the supremum norm could
be 2H↘ 1

2
. Furthermore, [45, 46] establish the Crank-Nicolson scheme and the mod-

ified Euler scheme’s optimal strong convergence rates for H →
)︄
1

2
, 1
[︄
, employing a

combination of Malliavin calculus and fractional calculus techniques. In this section,
we discuss two numerical methods for SDEs driven by fBm, which will be utilized
in Chapter 6.

2.8.1 Euler Method

The results presented in this subsection are based on the findings of [79], where the
authors established the Euler method in the case of fBm. We consider the following
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SDE:

x(t) = x0 +

⌉︄
t

0

a(x(s))ds+

⌉︄
t

0

ω(x(s)) ↗ dWH(s), t → [0, T ]. (2.23)

The interval [0, T ] is partitioned by the set of {0 = t0 < t1 < . . . < tn = T},
where tk = kT

n
for 0 ↔ k ↔ n and n → N. The rates of convergence will be

discussed relative to this partition scheme. For simplicity, we denote %W
H

k
instead

of WH(tk+1) ↘ W
H(tk) and %k = tk+1 ↘ tk. Assuming H >

1

2
, we consider the

integral with respect to W
H as defined by the Young integral (see Definition 2.13).

The Euler scheme y
n for equation (2.23) is given by:

/︂
y
n

0
= x0,

y
n

k+1
= y

n

k
+ a(yn

k
)%k + ω(yn

k
)%W

H

k
, k → {0, . . . , n↘ 1},

(2.24)

where standard assumptions are made on a and ω and y
n

t
= y

n
[nt]
n

for t → [0, T ].

Theorem 2.30 [79] Let a → C2

b
and ω → C3

b
, indicating that the functions a and

ω are continuously di!erentiable twice and three times with bounded derivatives,
respectively. Furthermore, let us assume that they also fulfill the conditions outlined
in Theorem 2.29. Then, the Euler scheme yn for equation (2.23), as defined by (2.24)
and as n ⇔ ⇓, satisfies:

n
2H↑1[yn

T
↘ x(T )]

a.s.↘↘⇔ ↘1

2

⌉︄
T

0

ω
⇑(x(s))DH

s
x(T )ds,

where D
H

s
x(t), for s, t → [0, T ], denotes the Malliavin derivative at time s of x(t)

with respect to fBm W
H defined in Section 2.5.3. This result is notable because it

lacks an analog in the classical theory of stochastic processes driven by sBm.

Remark 2.31 In [79], the author introduced a di!erent form of the pathwise inte-
gral with respect to fBm, specifically the forward integral

]︄
t

0
Y (s)dX↑(s) (refer to

[108] for further information on this integral). As established in [109], when X and
Y are two real-valued processes with paths that are almost surely Hölder continuous
of orders ϑ > 0 and ⇀ > 0 respectively, such that ϑ + ⇀ > 1, the forward integral]︄

t

0
Y (s)d↑X(s) is equivalent to the Young integral

]︄
t

0
Y (s)dX(s).

2.8.2 Implicit Midpoint Method

In practical applications, sti! di!erential equations often pose significant challenges
for numerical simulations in both deterministic and stochastic systems. Implicit
methods are generally more e!ective than explicit methods when dealing with sti!
problems. This section aims to explore an implicit numerical method suitable for
addressing sti! SDEs. The focus of the numerical section for fBm will be on the
stochastic implicit midpoint method. The methodology is based on the framework
presented in [43] and therefore the following discussion and results conform to the
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findings of this reference. We consider the SDE as follows:

dy(t) = V (y(t)) dx(t) =
d⌊︄

l=1

Vl (y(t)) dxl(t), y(0) = y0 → Rm
, t → [0, T ], (2.25)

where x(t) = (x1(t), . . . , xd(t))
↘ → Rd with x1(t) = t and x2(t), . . . , xd(t) being

independent fBms with Hurst parameter H →
)︄
1

2
, 1
[︄
. The well-posedness of (2.25) is

interpreted pathwise through the Young integral (see Section 2.5.2.1), which is valid
for fractional Brownian motion with Hurst index H > 1/2. This follows the analytic
framework established in [43], where the existence and uniqueness of solutions are
obtained via fractional calculus estimates for Hölder continuous driving signals.
In the context of a numerical algorithm, we utilize a uniform division of the

interval [0, T ] with a step size defined as %t = T

n
, where n → N. We represent tk

as tk = k%t, for k = 0, . . . , n. Consider an s-stage Runge-Kutta method applied to
(2.25):

y
n

tk+1,i
= y

n

tk
+

s⌊︄

j=1

aijV

⟩︄
y
n

tk+1,j

\︄
%xk, (2.26)

y
n

tk+1
= y

n

tk
+

s⌊︄

i=1

biV

⟩︄
y
n

tk+1,i

\︄
%xk, (2.27)

with i, j = 1, . . . , s, k = 0, . . . , n↘ 1,%xk = x(tk+1)↘ x(tk) → Rd and y
n

t0
= y0 → Rm.

Here, yn
tk+1,i

, i = 1, . . . , s, are called stage values.
Following [43], we construct continuous extensions of the discrete scheme. This

allows one to perform a precise pathwise error analysis by comparing the exact
solution y(t) and the numerical interpolate y

n

t
through an error decomposition into

a local truncation term and a quadrature-type remainder. The continuous form is
defined as follows:
To derive order conditions on coe”cients of Runge-Kutta methods with the strong

convergence rate 2H ↘ 1
2 , the authors in [43] first construct the continuous versions

(2.28) and (2.29) for the Runge-Kutta methods (2.26) and (2.27), taking advantages
of the stage values yn

tk,i
. Denote ∅tℜn := tk+1 for t → (tk, tk+1]. In particular, t = tk

if and only if t = ∅tℜn for some k = 0, · · · , n. The continuous version reads

y
n

t,i
:= y

n

(t↑h)⇔0 +
s⌊︄

j=1

⌉︄
t

(t↑h)⇔0
aijV

)︄
y
n

[s]n,j

[︄
dXs, i = 1, · · · , s, (2.28)

y
n

t
:= y0 +

s⌊︄

i=1

⌉︄
t

0

biV
)︄
y
n

[s]n,i

[︄
dXs, (2.29)

where s ℑ t = max{s, t}.
Theorem 2.32 [43] Let us assume that V → C3

b
(Rm;Rm→d), which means that V

is three times continuously di!erentiable with bounded derivatives, with H >
1

2
.
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Define ci as ci =
⎨s

j=1
aij. Given the conditions

s⌊︄

i=1

bi = 1 and
s⌊︄

i=1

bici =
1

2
, (2.30)

the Runge-Kutta method applied to equation (2.25) exhibits a strong convergence
rate of 2H↘ 1

2
. Specifically, for a constant C that does not depend on n, the following

inequality holds:
⎞⎞⎞⎞⎞ sup
t≃[0,T ]

|y(t)↘ y
n

t
|

⎞⎞⎞⎞⎞
Lp(!)

↔ C(%t)2H↑ 1
2 , p ∝ 1,

where %t = T

n
and y

n

t
are defined in equation (2.29).

For solving SDE (2.22), we consider the 1-stage Runge-Kutta method with coef-
ficients defined by the following Butcher tableau:

1

2

1

2

1
.

This Runge-Kutta method is the implicit midpoint scheme. Hence, it takes the
following form when applied to (2.22):

xn(tk+1) = xn(tk) +
⎡
a

⟩︄
xn(tk) + xn(tk+1)

2

\︄⎤
%t+

q⌊︄

i=1

ω
i

⟩︄
xn(tk) + xn(tk+1)

2

\︄
%W

H

i,k
,

(2.31)

Here, we define %W
H

i,k
= W

H

i
(tk+1) ↘ W

H

i
(tk). This method satisfies condition

(2.30) and Theorem 2.32, indicate that its mean-square convergence rate (see Section
1.6) is 2H ↘ 1/2 ,i.e.,

⎞⎞⎞⎞max
1↗k↗n

|x(t)↘ xn(tk)|
⎞⎞⎞⎞
L2(!)

↔ C(%t)2H↑ 1
2 .



3 Model Order Reduction

Model reduction techniques have been developed to reduce the computational cost
associated with high-dimensional dynamical systems. These methods aim to cre-
ate simplified models with lower dimensions that require less computational re-
sources to simulate while preserving the essential dynamics of the full system (refer
to [6, 12, 13, 94] and related references). This chapter focuses on model order re-
duction for deterministic and stochastic linear dynamical systems. It begins with an
exploration of Lyapunov operators and stability in deterministic systems, extending
these concepts to stochastic systems. It introduces Gramian matrices as tools for
characterizing dominant subspaces, forming the basis for MOR techniques. Special
attention is given to the Balanced Truncation method and the POD method, which
is applied to reduce the computational complexity of high-dimensional systems while
retaining their essential dynamics.

3.1 Linear Deterministic Systems

In the context of linear state-space systems, we analyze a system G characterized
by di!erential equations governing states x(t) → Rn, input u(t) → Rm and output
y(t) → Rp, described as:

/︂
ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)
(3.1)

where A → Rn→n with ω(A) △ C↑, defined as the spectrum of A within the open left
half complex plane C↑, along with B → Rn→m and C → Rp→n, represent components
of the system.
The study of system (3.1), which can be alternatively identified as G, (A,B,C)

and (A,B), requires a revisit of fundamental concepts such as stability, controlla-
bility, reachability and observability. These concepts are explained in the following.

Definition 3.1 The system (A,B) is considered controllable if there exists a control
u(t) capable of steering the system from an initial state x(0) = x0 to the state
x(t) = 0 within a time t. Alternatively, it should enable steering from the initial
state x0 to any desired state x1 within a time t1.

Conversely, the concept of reachability is defined when the zero state is steered
toward a desired state, presenting a converse statement as given in Definition 3.1.

Definition 3.2 The system G is reachable if a control u(t) exists that can drive the

47



3 Model Order Reduction 48

system either from the initial state x(0) = 0 to the final state x(t1) = x1 or from
the initial state x(0) = x0 ↙= 0 to a final state x(t1) = x1.

The controllability (reachability) matrix, termed the Kalman matrix of the system
G, is denoted as

R = [B AB A
2
B . . . A

n↑1
B].

The system is identified as controllable (reachable) if this matrix is obtained in full
rank. Additionally, the notation R(A,B) denotes the range of R, corresponding to
the reachability space of the deterministic system.

Definition 3.3 The system G is observable if the initial state x(0) can be de-
termined from the outputs of the system over time and the applied inputs. The
observability matrix, which is key in determining this property, is presented as fol-
lows:

O =

⨁︂

⨂︁⨂︁⨂︁⨂︁⨂︁⨂︂

C

CA

CA
2

...
CA

n↑1

∑︁

∏︁∏︁∏︁∏︁∏︁∫︁
.

In a similar manner to the controllability matrix R, the system is observable if the
observability matrix O has full rank. In the study of the system G, controllability
and observability serve as mathematical complements, una!ected by changes in
basis representation. As a result, the reachability of G corresponds directly to the
observability of the dual system G

↓. For additional techniques to determine the
controllability and observability of the system, see[5].
Here, the function x(t; x0, u) denotes the solution to the state equation (3.1).

Specifically, the solution takes the form:

x(t; x0, u) = e
At
x0 +

⌉︄
t

0

e
A(t↑⇀)

Bu(⇁) d⇁, for t ∝ 0,

so, we have
y(t) = Cx(t; x0, u) for t ∝ 0.

In the next section, we derive the link between controllability and observability
matrices and the algebraic Lyapunov equations.
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3.1.1 Lyapunov Operators

Associated with (3.1), the Lyapunov equations are given by

AP + PA
↘ = ↘BB

↘
, (3.2a)

A
↘
Q+QA = ↘C

↘
C, (3.2b)

where P and Q are symmetric matrices in Rn→n representing the controllability
and observability Gramians of the system, respectively. Considering the stability
assumptions of the system, P and Q can be expressed as integrals:

P =

⌉︄ ⇐

0

e
At
BB

↘
e
A

↑
tdt, (3.3a)

Q =

⌉︄ ⇐

0

e
A

↑
t
C

↘
Ce

Atdt. (3.3b)

Utilizing Theorem 3.4 to verify the controllability and observability of the system,
we find that the Gramians P and Q must be positive definite. Furthermore, for the
controllability and observability matrices R and O, it is required that they possess
full rank.

Theorem 3.4 [5][Reachability and Observability conditions] The following state-
ments are equivalent:

(i) The pair (A,B), A → Rn→n, B → Rn→m, is reachable.

(ii) The rank of the reachability matrix is full: rankR(A,B) = n.

(iii) The reachability Gramian is positive definite P > 0.

and also the following statements are equivalent:

(i) The pair (C,A), C → Rp→n, A → Rn→n, is observable.

(ii) The rank of the observability matrix is full: rankO(C,A) = n.

(iii) The observability Gramian is positive definite: Q > 0.

3.1.1.1 Vectorization and Kronecker Product

The concept of vectorization and the Kronecker product are introduced as compu-
tational tools to facilitate the calculation of the controllability and observability of
Gramians, P and Q, derived from (3.2). The results are as follows:

(A↖ I + I ↖ A) vec(P ) = ↘vec(BB
↘), (3.4a)

)︄
A

↘ ↖ I + I ↖ A
↘[︄ vec(Q) = ↘vec(C↘

C). (3.4b)
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where ·↖ · is the Kronecker product between two matrices and vec(·) be the vector-
ization of a matrix (see Appendix B for more details).
We then introduce the operator LA from equation (3.2) as LA : Sn ⇔ Sn with

Sn := {X | X → Rn→n symmetric matrix }, defined by:

LA : X ↘⇔ AX +XA
↘
. (3.5)

The adjoint operator L↓
A
, with respect to the Frobenius inner product (which

means that ⇒X, Y ⇑ = trace(X↘
Y ) where X and Y are two matrices), is given as:

L↓
A
: X ↘⇔ A

↘
X +XA. (3.6)

With the introduction of LA, it becomes compatible to work with the Kronecker
product notation as well, defining:

LA = A↖ I + I ↖ A, (3.7)

L↓
A
= A

↘ ↖ I + I ↖ A
↘
. (3.8)

Expanding on equation (3.2), we can establish that:

LA(P ) ↔ ↘BB
↘
, L↓

A
(Q) ↔ ↘C

↘
C. (3.9)

These characterizations are vital in the analysis of stability, controllability and
observability of the system (3.1).

3.1.2 Stability

To ascertain the stability of a deterministic system, we utilize the following theorem
as a set of equivalent conditions:

Theorem 3.5 [Stability of Linear Systems] For a linear system with deterministic,
time-invariant and homogeneous characteristics, described by (3.1), the following
statements are equivalent:

(i) The system is asymptotically stable,

(ii) ω (LA) △ C↑, i.e. ω(A) △ C↑,

(iii) ⊤X > 0 : LA(X) < 0,

(iv) ¬Y > 0, ⊤X > 0 : LA(X) = ↘Y ,

where ω(A) is the spectrum of the matrix A and C↑ denotes the set of complex
numbers with negative real parts, ensuring stability. The stability criteria presented
here can be extended to linear stochastic systems. Subsequently, we introduce model
order reduction strategies for deterministic systems. The extension of these strate-
gies to stochastic systems is explored in Section 3.2.2.
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3.1.3 Model Order Reduction for Deterministic Systems

The primary concept of model reduction involves approximating a high-dimensional
dynamical system with a lower-dimensional model that preserves its essential dy-
namic features. In this section, we present several model order reduction (MOR)
techniques. We begin by defining the reduced-order system.

3.1.3.1 Reduced order system

The system Gr, representing a lower-order model, approximates the full state-space
system G of order n. The equations governing the dynamics of Gr are given by:

/︂
ẋr(t) = Arxr(t) + Bru(t), xr(0) = x0,

yr(t) = Crxr(t),
(3.10)

where xr(t) → Rr and r ′ n. Our goal is to minimize the norm di!erence between
y and yr to evaluate the maximum deviation between the output of the original
system y and its approximation yr. To generate Gr, we utilize orthogonal truncation,
involving a coordinate transformation xS(t) = Sx(t) via a transformation matrix
S → Rn→n that is invertible. Putting this coordinate transformation into (3.1) yields
a modified state-space representation:

ẋS(t) = ASxS(t) + BSu(t), xS(0) = Sx0,

y(t) = CSxS(t), t ∝ 0,
(3.11)

where

AS = SAS
↑1 =

\︂
A11 A12

A21 A22

⎛
, A11 → Rr→r

,

BS = SB =

\︂
B1

B2

⎛
, B1 → Rr→m

,

CS = CS
↑1 =

)︄
C1 C2

[︄
, C1 → Rp→r

.

Hence, the model for Gr is configured as:

[Ar Br Cr] = [A11 B1 C1] .

This technique of orthogonal truncation serves as a projection method, enabling
the reduction from the original system G in Rn to a more manageable system Gr in
Rr.
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3.1.3.2 Petrov Projection and Galerkin Projection

Within the framework of non-orthogonal projection methodologies, transformations
labeled as M and V are designed as

M
↘ =

)︄
Ir 0r→(n↑r)

[︄
S, Rn ⇔ Rr (3.12)

V = S
↑1

\︂
Ir

0↘
r→(n↑r)

⎛
, Rr ⇔ Rn (3.13)

with the purpose of enabling the projection from the vector space Rn to the vector
space Rr, as well as its corresponding inverse operation. It is worth noting that
these transformations satisfy

M
↘
V = Ir, V M

↘ = (VM
↘)(VM

↘) (3.14)

Such projection methodologies fall under the classification of a Petrov-Galerkin pro-
jection. The Galerkin projection, characterized by the condition M = V , which
means that S denotes an orthogonal matrix, is used to transform the model from G

in Rn to Gr in Rr. For the Petrov Galerkin projection, we have

[Ar Br Cr] =
{︄
M

↘
AV M

↘
B CV

}︄
.

In order to understand the Petrov-Galerkin projection, let us consider the follow-
ing analysis. Suppose we aim to represent the solution x(t) → Rn of the original
model G using only r variables in the ROM Gr. We can write

x(t) = V xr(t) → Range(V ), where x(t) → Rn
, xr(t) → Rr

.

As a consequence, the residual R is expressed as:

R = V ẋr(t)↘ [AV xr(t) + Bu(t)].

The Petrov-Galerkin projection requires that the projection of the residual R into
the range (W ) is zero. This condition can be expressed as M↘

R = 0. This equation
yields

M
↘(V ẋr(t)↘ AV xr(t)↘ Bu(t)) = ẋr(t)↘M

↘
AV xr(t)↘M

↘
Bu(t) = 0,

resulting in

ẋr(t) = M
↘
AV xr(t) +M

↘
Bu(t). (3.15)

In the upcoming section, we present the Balanced Truncation method. However,
before doing so, we will clarify the notion of ”balance” as used in this context.

Remark 3.6 A stable system (3.1), represented by G, is said to be balanced if the
Gramians, i.e., the solutions P and Q to the Lyapunov equations (3.2a) and (3.2b),
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satisfy the following condition:

P = Q = diag (ω1, . . . , ωn)

where the singular values are ordered as ω1 ∝ ω2 ∝ . . . ∝ ωn > 0.

3.1.3.3 Balanced Truncation

This section focuses on the utilization of Balanced Truncation (BT) as a method to
approximate a system. Using Singular Value Decomposition (SVD), see Appendix
A.1.1, a matrix can be approximated to its lower-rank form, optimized via the L

2

norm. This technique forms the basis for methodologies in model reduction for linear
dynamical systems, such as BT method. BT aligns the reachability and observability
of states, initially outlined by [76] and further detailed by [74]. A specific BT variant,
Lyapunov Balanced Reduction (LBR), is implemented by solving the reachability
and observability Lyapunov equations in tandem. The stability of this method was
established by [89], with error bounds provided by [33]. This method is one among
several balancing strategies.
We rewrite the algebraic Lyapunov equations (3.2) as follow:

AP + PA
↘ +BB

↘ = 0,

A
↘
Q+QA+ C

↘
C = 0.

The eigenvalues derived from the product of the controllability and observability
Grammians are known as Hankel singular values (HSVs), which are denoted by
ωi = (3i(PQ))

1
2 .The significance of these singular values, which remain unchanged

under coordinate transformations, can be seen in the areas of system theory and
control.
The strategy of reducing the state space by deleting the dimensions that are least

observable or controllable, resulting in a lower-order approximate model, can be
achieved through a five-step procedure:

(i) Compute the reachability Grammian P and observability Grammian Q,

(ii) Compute the Cholesky factor R of Q and L of P such that Q = R
↘
R and

P = LL
↘, so we have

PQ = (LL↘)(R↘
R) = L(RL)↘R,

(iii) Compute the SVD RL = V &U↘, where U and V are unitary matrices. Then,
multiplying from the left by V

↘ and from the right by U we have

V
↘
RLU = &,

and finally multiplying from the left and from the right by &↑1/2, we obtain

&↑1/2
V

↘
RLU&↑1/2 = I.
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(iv) Use the coordinate transformation xS(t) = Sx(t), where

S = &↑1/2
V

↘
R, S

↑1 = LU&↑1/2
.

(v) Compute the truncation system Gr (3.10) after transforming the state-space
system G (3.1).

In the transformed coordinate system, denoted by

AS = SAS
↑1 =

\︂
A11 A12

A21 A22

⎛
, A11 → Rr→r

BS = SB =

\︂
B1

B2

⎛
, B1 → Rr→m (3.16)

CS = CS
↑1 =

)︄
C1 C2

[︄
, C1 → Rp→r

so we have
[Ar Br Cr] = [A11 B1 C1] ,

the transformed Grammians PS = SPS
↘ and QS = S

↑↘
QS

↑1 can be obtained.

PS = SPS
↘ =

⟩︄
&↑ 1

2V
↘
R

\︄
P

⟩︄
R

↘
V &↑ 1

2

\︄
=

⟩︄
&↑ 1

2V
↘
\︄
RL(RL)↘

⟩︄
V &↑ 1

2

\︄

=
⟩︄
&↑ 1

2V
↘
\︄
V &2

V
↘
⟩︄
V &↑ 1

2

\︄
=

⟩︄
&↑ 1

2

\︄
&2

⟩︄
&↑ 1

2

\︄
= &,

QS = S
↑↘

QS
↑1 =

⟩︄
LU&↑ 1

2

\︄↘
Q

⟩︄
LU&↑ 1

2

\︄
=

⟩︄
&↑ 1

2U
↘
\︄
(RL)↘RL

⟩︄
U&↑ 1

2

\︄

=
⟩︄
&↑ 1

2U
↘
\︄
U&2

U
↘
⟩︄
U&↑ 1

2

\︄
=

⟩︄
&↑ 1

2

\︄
&2

⟩︄
&↑ 1

2

\︄
= &.

Therefore, according to Remark 3.6, the Gramians PS and QS characterize the
system in a balanced form. The approximation by BT method ensures stability
preservation by the following theorem (see[5, 74])

Theorem 3.7 (Stability preservation) Given a homogeneous linear time-invariant
system (3.1), if ω(LA) ↓ C↑ and a block diagonal matrix & = diag(&1,&2) > 0 with
ω(&1) ▽ ω(&2) = ∈ exists, satisfying

LA(&) ↔ 0 and L↓
A
(&) ↔ 0,

then for the balanced truncated system, we have ω(LAr
) ↓ C↑ where

LAr
= Ar ↖ I + I ↖ Ar. (3.17)

Additionally, the H⇐ norm (representing the maximum frequency response) of
the error system remains bounded by the following theorem.

Theorem 3.8 Let G be a system as in (3.1), where LA ↓ C↑. When a balanced
truncation is performed of r-th order, the resultant system is denoted as Gr. The
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bound on the error due to truncation is given by:

||y ↘ yr||⇐ ↔ 2(ωr+1 + . . .+ ωn).

3.1.3.4 Proper Orthogonal Decomposition

The development of POD was a collective e!ort by various scientists. In particular,
Karhunen [56] and Loéve [67] contributed significantly, giving rise to what is known
as the Karhunen-Loéve decomposition. Other important contributions to the field
include [63, 92, 15]. The POD method has been successfully used in a wide variety of
scientific and engineering problems, such as fluid dynamics [42, 49, 107, 112], electric
circuit analysis [88], or structural dynamics [4]. For an expansive review of the
history and diverse applications of the POD, [20, 22, 58, 65, 118] are recommended.
In addressing the challenges posed by the analysis and simulation of large-scale

nonlinear dynamical systems, MOR techniques serve as essential tools. This sec-
tion elaborates on the application of a prominent method: the POD method also
termed Principal Component Analysis (PCA). These methods are pivotal in ad-
dressing the complexities of nonlinear systems derived from PDEs, especially after
their discretization into finite-dimensional dynamical systems.
We consider the dynamics of nonlinear systems represented by the general form:

ẋ(t) = Ax(t) + f(x(t)) + Bu(t), x(0) = x0, (3.18)

y(t) = Cx(t),

where matrices A, B and C respectively define the linear dynamics, control inputs
e!ects and observation matrix, as described in system (3.1). x(t) → Rn denotes the
state vector at time t and f : Rn ↘⇔ Rn represents the non-linear interactions within
the system. The primary goal is to construct a ROM that accurately captures the
essential dynamics of (3.18) while significantly reducing computational complexity.
The strategy for reducing the state space through the application of the POD

method, which yields a lower-order approximate model, can be systematically achieved
by the following three-step procedure:

(i) Data Collection and Snapshot Matrix Construction: Conduct simula-
tions using specified initial conditions and inputs to collect data. These data
are structured into a snapshot matrix Z, capturing dynamics of the system in
discrete time instances:

Z = [x(t0) x(t1) . . . x(tN)].

(ii) Extraction of the Dominant Subspace via SVD: Apply SVD to the
snapshot matrix Z to decompose it and extract the most influential modes of
system behavior. This decomposition,

Z = [Vr Vr̄]

⨀︂
&r 0
0 &r̄

⨁︁ ⨀︂
U

↘
r

U
↘
r̄

⨁︁
⇔ POD basis Vr = [v1, . . . , vr]
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where V ↘
r
Vr = Ir, isolates the significant singular values (and their correspond-

ing vectors) which are then used to construct the POD basis Vr. The basis
vectors vi in Vr span the dominant subspace capturing the core dynamics.

(iii) Galerkin Projection and Reduced Model Derivation: Utilize the POD
basis for Galerkin projection (See Subsection 3.1.3.2) on the original system,
leading to a reduced model. This model includes the system dynamics within
a reduced-dimensional space, maintaining a balance between simplicity and
accuracy. It is characterized by a reduced linear matrix, nonlinearity and
input component, as shown in

ẋ̄(t) = V
↘
r
AVrx̄(t) + V

↘
r
f(Vrx̄(t)) + V

↘
r
Bu(t), ∋ Vrx̄(t) ∞ x(t),

yr(t) = CVrx̄(t).

The essence of MOR lies in the selection of an optimal subspace, represented by
Vr, that ensures the reduced model’s output yr(t) closely approximates the original
system output y(t) with minimal error, which means that

⇐y(t)↘ yr(t)⇐ ′ ◁,

e!ectively capturing the essential dynamics of the system within a lower-dimensional
framework.
This MOR strategy employs snapshot-based approaches to e”ciently handle non-

linear systems where traditional analytical solutions are infeasible. Using the dy-
namic data stored in the snapshot matrix and carefully selecting the projection
subspace, POD enables the creation of e”cient and representative ROMs. For a
more detailed exploration of POD in combination with SVD, refer to [118].

Remark 3.9 Selecting the appropriate dimension r for the POD basis is essential
and is typically determined by analyzing the decay rate of singular values to assess
their significance. Additionally, the e!ectiveness of the POD method heavily relies
on the conditions of the inputs used in initial simulations, emphasizing the necessity
for precise and comprehensive data collection.

3.2 linear Stochastic Dynamical Systems

Consider a q-dimensional Wiener process W (t) = (W1(t), . . . ,Wq(t))↘ with zero
mean and a covariance matrix K = (kij)i,j=1,...,q on the interval [0, T ], where T > 0.
This process is part of a stochastic system on a complete, right-continuous filtered
probability space (#,F, (Ft)t≃[0,T ],P). We assume that W is adapted to the filtration
(Ft)t≃[0,T ] and the increments W (t + h) ↘W (t) are independent of Ft for t, h ∝ 0.
Consider a controlled, high-dimensional linear SDE system of Itô type(see Section
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1.3) is given by

dx(t) = [Ax(t) + Bu(t)]dt+
q⌊︄

i=1

Nix(t)dWi(t), x(0) = x0, (3.19a)

y(t) = Cx(t), t ∝ 0, (3.19b)

with A,Ni → Rn→n, B → Rn→m, C → Rp→n and the state x(t; x0, u) depending on the
initial state x0 and control u. We consider M2([0, T ];Rm) as the set of all (Ft)t↔0-
adapted stochastic processes v with values in Rm that are square-integrable with
respect to the measure P↖ dt (see Definition 1.14 ). The energy norm in this space
is expressed as

⇐v⇐2
T
:= E

⨀︂⌉︄
T

0

v
↘(t)v(t) dt

⨁︁
= E

⨀︂⌉︄
T

0

⇐v(t)⇐2
2
dt

⨁︁
, (3.20)

where ⇐·⇐
2
represents the Euclidean norm and two processes v1 and v2 belonging to

M2([0, T ];Rm) are deemed equivalent if they are almost surely identical with respect
to P↖ dt. For the infinite horizon, the space is denoted by M2(R+;Rm).
The stochastic system (3.19) can be identified as GN , (A,N,B,C) or (A,N).

Definition 3.10 An Rn-valued process {x(t)}t↔0 is said to be the solution to the
SDE (3.19) if it satisfies:

x(t; x0, u) = x0 +

⌉︄
t

0

[Ax(s) + Bu(s)]ds+
q⌊︄

i=1

⌉︄
t

0

Nix(s)dWi(s)

almost surely for all t ∝ 0, where x0 → Rn represents the initial condition and
u → M2([0, T ];Rm) is control term. For the solution of (3.19) in the uncontrolled
case, i.e,

dx(t) = Ax(t)dt+
q⌊︄

i=1

Nix(t)dWi(t), y(t) = Cx(t), t ∝ 0, x(0) = x0, (3.21)

We briefly write xx0 := x (t, x0, 0), where xx0 is called homogeneous solution.

Theorem 3.11 Let xx0 be the solution of system (3.21) with any initial value
x0 → Rn, then Y(t) = E

{︄
xx0(t)x

↘
x0
(t)

}︄
is the solution of the matrix integral equation

Y(t) = x0x
↘
0
+

⌉︄
t

0

Y (s)dsA↘ + A

⌉︄
t

0

Y (s)ds+
q⌊︄

i,j=1

Ni

⌉︄
t

0

Y (s)dsN↘
j
ki,j, (3.22)

for t ∝ 0.

Proof. See Theorem 1.4.3 in [25].
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The solutions of the SDE (3.19) and (3.21) satisfy the conditions of Theorem 1.29,
which guarantees the existence and uniqueness of their solutions. The homogeneous
system (3.21) corresponds to the fundamental matrix solution

’(t, ⇁) = In +

⌉︄
t

⇀

A’(s, ⇁)ds+
q⌊︄

i=1

⌉︄
t

⇀

Ni’(s, ⇁)dWi(s), t ∝ 0, (3.23)

for t ∝ ⇁ ∝ 0. We have

’(t, 0) = ’(t) = In +

⌉︄
t

0

A’(s)ds+
q⌊︄

i=1

⌉︄
t

0

Ni’(s)dWi(s), t ∝ 0, (3.24)

and In is the identity matrix. Hence, the general solution xx0 of uncontrolled SDE
(3.21) with initial condition x(0) = x0 can be expressed as xx0 = ’(t)x0.
As a result, considering t ∝ ⇁ ∝ 0, we can express ’(t), defined in equation (3.24),

as follows:

’(t) = I +

⌉︄
⇀

0

A’(s) ds+

⌉︄
t

⇀

A’(s) ds

+
q⌊︄

i=1

⨀︂⌉︄
⇀

0

Ni’(s) dWi(s) +

⌉︄
t

⇀

Ni’(s) dWi(s)

⨁︁

= ’(⇁) +

⌉︄
t

⇀

A’(s) ds+
q⌊︄

i=1

⌉︄
t

⇀

Ni’(s) dWi(s).

Upon multiplying both sides of the above equation by ’↑1(⇁) from the right, we
obtain:

’(t)’↑1(⇁) = In +

⌉︄
t

⇀

A’(s)’↑1(⇁)ds+
q⌊︄

i=1

⌉︄
t

⇀

Ni’(s)’
↑1(⇁)dWi(s). (3.25)

As evident from equation (3.25), it aligns with the original formulation given in
equation (3.23). We summarize this result in the following remark:

Remark 3.12 For t ∝ ⇁ ∝ 0, we have ’(t, ⇁) = ’(t)’↑1(⇁), since ’(t)’↑1(⇁)
satisfies equation (3.23).

We define the following proposition as an interesting result that we use in following
chapters.

Proposition 3.13 [97] Assume that all matrices A,N1, . . . , Nq commute. Hence,
these matrices commute with the fundamental solution ’, i.e.

A’(t) = ’(t)A and Ni’(t) = ’(t)Ni

for all t → [0, T ] and i = 1, . . . , q.
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A drawback of the stochastic system is the inability to provide a general ex-
plicit description of the fundamental matrix solution. However, a specific case of
an explicit fundamental matrix solution ’(t) occurs when all matrices A and Ni for
i = 1, . . . , q in equation (3.21) commute, as seen below.

Proposition 3.14 Assume that all A,Ni commute. Then the fundamental solution
’(t) of (3.21) is

’(t) = exp

⎢⎢
A↘ 1

2

q⌊︄

i,j=1

(NiNj) kij

⎥
t+

q⌊︄

i=1

NiWi(t)

⎥
.

Proof. We write Z(t) for the exponent in (3.21), such that

dZ(t) =

⎢
A↘ 1

2

q⌊︄

i,j=1

(NiNj) kij

⎥
dt+

q⌊︄

i=1

NidWi(t).

Then we have

d’(t) = e
Z(t)dZ(t) +

1

2
e
Z(t)(dZ(t))2

= ’(t)

⎢⎢
A↘ 1

2

q⌊︄

i,j=1

(NiNj) kij

⎥
dt+

q⌊︄

i=1

NidWi(t) +
1

2

q⌊︄

i,j=1

(NiNj) kijdt

⎥

= A’(t)dt+
q⌊︄

i=1

Ni’(t)dWi(t),

since ’(t) commutes by assumption with A and all Ni for i → {1, . . . , q}.

We now proceed to the nonhomogeneous SDE presented in (3.19), employing the
fundamental matrix solution (3.24), as described in the following theorem.

Theorem 3.15 Given the fundamental matrix solution ’(t), we obtain as the so-
lution of (3.19)

x(t) = ’(t)

\︂
x0 +

⌉︄
T

0

’↑1(s)Bu(s)ds

⎛
. (3.26)

Proof. For a more detailed exposition of the proof, which is provided in a broader
context, reference [25] is suggested.

We proceed by expanding the generalized Lyapunov equations stated in (3.2) to
cover the stochastic system described in (3.19).

3.2.1 Lyapunov Equations in Stochastic Case

Lyapunov equations play a critical role in characterizing the stability and control
properties of linear stochastic systems. For the system described by (3.19), the
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corresponding Lyapunov equations can be obtained in a generalized form as:

AP + PA
↘ +

q⌊︄

i,j=1

NiPN
↘
j
kij = ↘BB

↘
, (3.27a)

A
↘
Q+QA+

q⌊︄

i,j=1

N
↘
i
QNjkij = ↘C

↘
C. (3.27b)

The symmetric matrices P and Q from Rn→n, which satisfy the semi-positive
definite conditions P ∝ 0 and Q ∝ 0, uniquely solve these Lyapunov equations
under specific system conditions. These conditions are closely connected to the
system’s observability and reachability, key concepts that can be defined as follows
(adapted from [10]):

Definition 3.16 (Unobservability and Unreachability): Consider a system as de-
scribed in (3.19). A vector v → Rn is termed:

• Unobservable, if for the initial condition x(0) = v with u ⊥ 0, the output
y ⊥ 0.

• Unreachable, if for any input u and for all t > 0, x(t) ↙= v when starting from
the initial condition x(0) = 0.

Based on the stability conditions of the system, particularly the asymptotic mean-
square stability of the system (3.19), the subspaces associated with unobservability
and unreachability can be described through the kernels of Q and P , respectively.

Theorem 3.17 [10] Additionally outlines

(a) A state v is unobservable if and only if Qv = 0.

(b) A state v is unreachable if and only if Pv = 0.

Crucially, the system is completely observable and reachable if and only if Q > 0
and P > 0 respectively. These conditions ensure that all states significantly a!ect
the system’s outputs and can be influenced by the inputs, aligning with the founda-
tional requirements for e!ective control and monitoring. The stochastic version of
Gramian matrices are defined as follows

P = E
\︂⌉︄ ⇐

0

’(⇁)BB
↘’(⇁) d⇁

⎛
, (3.28a)

Q = E
\︂⌉︄ ⇐

0

’(⇁)C↘
C’(⇁) d⇁

⎛
. (3.28b)

The existence of the infinite integrals in (3.28) is guaranteed by the mean square
asymptotic stability of the system (Theorem 3.19). Now, we present the generalized
Lyapunov equations (3.27) for the linear stochastic system using the Kronecker
product notation, while preserving the analogy with the linear deterministic system.
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3.2.1.1 Vectorization and Kronecker product in stochastic case

By utilizing the Kronecker product notation, the generalized Lyapunov equations
from (3.27) can be reformulated as follows:

⎢
A↖ I + I ↖ A+

q⌊︄

i,j=1

Ni ↖Njkij

⎥
vec(P ) = ↘ vec

)︄
BB

↘[︄
, (3.29a)

⎢
A

↘ ↖ I + I ↖ A
↘ +

q⌊︄

i,j=1

N
↘
i
↖N

↘
j
kij

⎥
vec(Q) = ↘ vec

)︄
C

↘
C
[︄
. (3.29b)

where, as mentioned before, · ↖ · is the Kronecker product between two matrices
and vec(·) is the vectorization of a matrix (see Appendix B for more details). Let us
review the definition of the operator LA as stated in equations (3.5) and (3.7) and
subsequently introduce the operator (N : Sn ⇔ Sn, where Sn is the space of n ∀ n

symmetric matrices, given by

(N(X) :=
q⌊︄

i,j=1

NiXN
↘
j
kij, or (N :=

q⌊︄

i,j=1

Ni ↖Njkij, (3.30)

with adjoints concerning the Frobenius inner product given by

(↓
N
(X) :=

q⌊︄

i,j=1

N
↘
i
XNjkij, or (↓

N
:=

q⌊︄

i,j=1

N
↘
i
↖N

↘
j
kij. (3.31)

Based on these definitions, we may establish the following inequalities for the stochas-
tic system, as compared to the deterministic inequalities in (3.9).

LA(P ) + (N(P ) ↔ ↘BB
↘
, (3.32)

L↓
A
(Q) + (↓

N
(Q) ↔ ↘C

↘
C. (3.33)

As we have outlined the roles of the operators LA and (N in the generalized Lya-
punov equations, we now aim to establish a more direct mathematical equivalence
using the Kronecker product formulation. This approach not only simplifies the rep-
resentation, but also enhances our understanding of the interactions between these
operators and the matrix structures within the stochastic system framework. To
this end, we introduce the following remark that contains the equivalence of these
formulations under the Kronecker product notation.



3 Model Order Reduction 62

Remark 3.18 Defining

K = A↖ I + I ↖ A+
q⌊︄

i,j=1

Ni ↖Njkij, (3.34)

K↘ = A
↘ ↖ I + I ↖ A

↘ +
q⌊︄

i,j=1

N
↘
i
↖N

↘
j
kij. (3.35)

This establishes the equivalence of equation (3.29) by employing equations (3.5),
(3.6), (3.30) and (3.31) as follows:

K vec(P ) = (LA + (N) vec(P ) = ↘ vec
)︄
BB

↘[︄
, (3.36a)

K↘ vec(Q) = (L↓
A
+ (↓

N
) vec(Q) = ↘ vec

)︄
C

↘
C
[︄
. (3.36b)

Next, we introduce the stability of the stochastic system to the generalized Lya-
punov equations and their solutions.

3.2.2 Stability

The following theorem presents equivalent criteria for ensuring the asymptotic mean-
square stability of equation (3.21), similar to Theorem 3.5. For more details about
mean-square stability, see Section 1.7.2.

Theorem 3.19 [25](Stability of Stochastic Linear System) The criteria below are
equivalent:

(i) Equation (3.21) achieves asymptotic mean-square stability (see Definition 1.35).

(ii) Equation (3.21) exhibits exponential mean-square stability (see Definition
1.36).

(iii) ω (LA + (N) △ C↑ or equivalently ω (K) △ C↑.

(iv) ⊤X > 0 such that LA(X) + (N(X) < 0.

(v) ¬Y < 0 : ⊤X > 0 such that LA(X) + (N(X) = Y .

3.2.3 Characterization of Dominant Subspaces Using
Gramian Matrices

Let us explore the relation between P and the dominant subspaces in (3.19a) for
the case of zero initial data. We recall an argument from [96, Section 3] blow. To
obtain this relationship, consider the matrix partition of B:

B =
{︄
b1 . . . bm

}︄
,
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which leads to

’(t)B =
{︄
x(t, b1, 0) . . . x(t, bm, 0)

}︄
=

{︄
xb1 . . . xbm

}︄
,

thus, we have the following identity:

E
{︄
’(t)BB

↘’↘(t)
}︄
=

m⌊︄

k=1

E
{︄
xbk

x
↘
bk

}︄
.

Applying Theorem 3.11 to each summand leads to:

E
{︄
’(t)BB

↘’↘(t)
}︄
= BB

↘ + A

⌉︄
t

0

E
{︄
’(s)BB

↘’↘(s)
}︄
ds

+

⌉︄
t

0

E
{︄
’(s)BB

↘’↘(s)
}︄
dsA↘

+
q⌊︄

i,j=1

Ni

⌉︄
t

0

E
{︄
’(s)BB

↘’↘(s)
}︄
N

↘
j
kij. (3.37)

By considering the limit as t ⇔ ⇓ and assuming asymptotic mean square stability
(Theorem 3.19 (i)), the left-hand side tends to zero, thus confirming equation (3.27a).
We now proceed to analyze the process ⇒x(t; 0, u), ▷⇑2, where ▷ → Rn, setting

’(t, s) = ’(t)’↑1(s) for t ∝ s ∝ 0 (Remark 3.12). Inserting equation (3.26) yields
the following bound:

E |⇒x(t; 0, u), ▷⇑2| = E
/︄/︄/︄/︄
⌉︄

t

0

⇒▷,’(t, s)Bu(s)⇑2ds
/︄/︄/︄/︄

= E
/︄/︄/︄/︄
⌉︄

t

0

⇒B↘’↘(t, s)▷, u(s)⇑2ds
/︄/︄/︄/︄

↔ E
⌉︄

t

0

⎞⎞B↘’↘(t, s)▷
⎞⎞
2
⇐u(s)⇐2ds.

By Cauchy’s inequality, it follows that

E |⇒x(t; 0, u), ▷⇑2| ↔
\︂
E
⌉︄

t

0

⎞⎞B↘’↘(t, s)▷
⎞⎞2

2
ds

⎛ 1
2
\︂
E
⌉︄

t

0

⇐u(s)⇐2
2
ds

⎛ 1
2

.

Remark 3.20 [14] In stochastic systems, the fundamental matrix ’(t, ⇁) is defined
di!erently from its deterministic counterparts. Unlike deterministic systems where
the semigroup property ’(t, ⇁) = ’(t↘⇁) typically holds, in stochastic contexts, this
property does not apply P-almost surely due to variability in noise trajectories. This
highlights a fundamental di!erence in behavior between stochastic and deterministic
systems. Furthermore, although a direct comparison of ’(t, ⇁) and ’(t ↘ ⇁) is not
possible on a pointwise basis due to di!erent noise influences over intervals [0, t↘ ⇁ ]
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and [⇁, t], their expected values related to system behavior are equivalent, which
means that

E
{︄
’(t, ⇁)BB

↘’↘(t, ⇁)
}︄
= E

{︄
’(t↘ ⇁)BB

↘’↘(t↘ ⇁)
}︄
.

This equivalence is derived since both terms solve the equation (3.22). Therefore,
both sides conform to the integral equation (3.37) from the initial time ⇁ ↔ t ↔ T ,
which has a unique solution.

Consequently, based on Remark 3.20, we derive:

E
⌉︄

t

0

⎞⎞B↘’↘(t, ⇁)▷
⎞⎞2

2
ds = ▷

↘E
⌉︄

t

0

’(t, ⇁)BB
↘’↘(t, ⇁)ds ▷

= ▷
↘E

⌉︄
t

0

’(t↘ ⇁)BB
↘’↘(t↘ ⇁)ds ▷

= ▷
↘E

⌉︄
t

0

’(s)BB
↘’↘(s)ds ▷ ↔ ▷

↘
P▷,

and consequently,

sup
t≃[0,T ]

E |⇒x(t; 0, u), ▷⇑2| ↔
)︄
▷
↘
P▷

[︄1/2 ⇐u⇐T . (3.38)

If ▷ → kerP , then the right-hand side of (3.38) is zero, which implies that
⇒x(t; 0, u), ▷⇑2 = 0, for all t → [0, T ], P-almost surely, regardless of the control u
used. This indicates that the trajectories of x are orthogonal to kerP and thus,

P {x(t; 0, u) → imP, t → [0, T ]} = 1,

for every u → M2([0, T ];Rm), indicating that no state outside imP is reachable (from
zero). Let {▷k}k=1,...,n

be an orthonormal basis of Rn, consisting of eigenvectors of
P . The representation

x(t; 0, u) =
n⌊︄

k=1

⇒x(t; 0, u), ▷k⇑2 ▷k,

the Fourier coe”cient can be bound from (3.38) as follows

sup
t≃[0,T ]

E |⇒x(t; 0, u), ▷k⇑2| ↔ 3

1
2
k
⇐u⇐

T
, (3.39)

where 3k is the eigenvalue corresponding to ▷k. If 3k is small, the same is true for
⇒x(·, 0, u), ▷k⇑2 and therefore ▷k is a less relevant direction that can be neglected.
To quantify the energy contained by the initial states x0 via observations, we

consider the observability Gramian matrix Q as the unique solution to the matrix
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di!erential equation (3.27b):

A
↘
Q+QA+

q⌊︄

i,j=1

N
↘
i
QNjkij = ↘C

↘
C.

This formulation of Q is justified under the first part of Theorem 3.19. Using the
relation

E
{︄
x
↘
x0
Qxx0

}︄
= tr

)︄
QE

{︄
xx0x

↘
x0

}︄[︄
,

we can integrate the result from Theorem 3.11. Observing that the trace operator
allows for permutation within a matrix product, we derive:

E
⎡
x
↘
x0
Qxx0

⎤
= x

↘
0 Qx0 + E

⌉︄
t

0

x(s, x0, 0)
↘

⎟

⟩︂A
↘
Q+QA+

q⌊︄

i,j=1

N
↘
i QNjkij

⨆︁

∮︁x(s, x0, 0)ds,

Substituting (3.27b) into this equation, we get:

E
⎡
x
↘
x0
Qxx0

⎤
= x

↘
0 Qx0 ↘ E

⌉︄
t

0

x(s, x0, 0)
↘
C

↘
Cx(s, x0, 0)ds, (3.40)

given the mean square asymptotic stability of system (3.19a), the left side of equation
(3.40) vanishes as t ⇔ ⇓. Thus, the energy observed is expressed by:

E
⌉︄ ⇐

0

⇐y(s, x0, 0)⇐22ds = E
⌉︄ ⇐

0

⇐Cx(s, x0, 0)⇐22ds = x
↘
0 Qx0. (3.41)

From equation (3.41), we derive that the states which are di!cult to observe, those that
contribute minimally to the overall observation energy, are characterized by producing
lower values of x↘

0
Qx0. These states are hence considered unimportant in the context of

the system’s output observability because they have minimal influence on the output data
collected over an infinite time horizon.

Essentially, equation (3.41) clarifies that such ”di!cult-to-observe” states are principally
aligned with the eigenspaces of the observability Gramian Q corresponding to its smaller
eigenvalues. The eigenvectors associated with these smaller eigenvalues define directions
in the state space that are inherently less detectable through output measurements. Thus,
the magnitude of the eigenvalues of Q serves as an indicator of the degree of observability
of the corresponding state directions: smaller eigenvalues signify lower observability.

Additionally, the practical expression for Q (equation (3.28b)) can be derived by substi-
tuting the solution form Cxx0 = C”(t)x0 into equation (3.41), resulting in the following:

x
↘
0 E

⌉︄ ⇐

0

”(t)↘C↘
C”(t)dtx0 = x

↘
0 Qx0,

since this is valid for any x0 → Rn, we conclude:

Q = E
⌉︄ ⇐

0

”(t)↘C↘
C”(t)dt.

In summary, our analysis shows that identifying and removing less important state
directions from equations (3.19a) and (3.19b), along with findings from (3.39) and (3.41),
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simplifies the model. This simplification makes the model easier to manage and faster to
run without losing accuracy. By focusing only on the essential parts of the system, we use
computational resources more e#ectively, leading to better performance.

3.2.4 Model Order Reduction for Stochastic Systems

Suppose we aim to solve (3.19). When the dimension n of the stochastic process x(t)
is exceptionally large, numerically solving the system (3.19) becomes computationally ex-
pensive. As previously mentioned, the core idea behind model reduction is to approximate
this high-dimensional stochastic dynamical system with a lower-dimensional model that
preserves its essential dynamic characteristics. In this section, we introduce several MOR
techniques for stochastic systems.

3.2.4.1 Reduced order system

Similar to the linear deterministic system discussed in Section 3.1.3.1, we denote the
reduced system by GN,r, which is defined by:

dxr(t) = [Arxr(t) +Bru(t)]dt+
q⌊︄

i=1

Ni,rdWi(t), xr(0) = x0,r (3.42a)

yr(t) = Crxr(t) t ∝ 0 (3.42b)

where xr(t) → Rr and r ′ n. We introduce a new variable xS(t) = Sx(t). This can be
interpreted as a coordinate transform that is chosen in order to transform the original
system using a suitable regular matrix S → Rn→n. This transformation is the basis for the
dimension reduction. Now, inserting xS(t) = Sx(t) into (3.19), we obtain

dxS(t) = [ASxS(t) +BSu(t)]dt+
q⌊︄

i=1

NS,ixS(t)dWi(t), xS(0) = x0,S , (3.43a)

y(t) = CSxS(t), t ∝ 0, (3.43b)

where

AS = SAS
↑1 =

\︂
A11 A12

A21 A22

⎛
, A11 → Rr→r

NS,i = SNiS
↑1 =

\︂
Ni,11 Ni,12

Ni,21 Ni,22

⎛
, Ni,11 → Rr→r

BS = SB =

\︂
B1

B2

⎛
, B1 → Rr→m

CS = CS
↑1 =

)︄
C1 C2

[︄
, C1 → Rp→r

xS(t) = Sx(t) =

\︂
x1(t)
x2(t)

⎛
, x1(t) → Rr

A reduced system is derived by eliminating the equations associated with x2 in (3.43).
Subsequently, x2 ⊥ 0 within the equations about x1, resulting in a reduced system (3.42)
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with following components:

[xr(t) Ar Ni,r Br Cr] = [x1(t) A11 Ni,11 B1 C1] . (3.44)

3.2.4.2 Petrov-Galerkin Projection in the Stochastic Framework

Referencing Section 3.1.3.2, the Petrov-Galerkin projection uses matrices M,V → Rn→r,
as defined in equations (3.12) and (3.13), respectively, with properties described in (3.14).
In the context of the Petrov-Galerkin projection, the model transformation is expressed
as: {︄

Ar Ni,r Br Cr

}︄
=

{︄
M

↘
AV M

↘
NiV M

↘
B CV

}︄
. (3.45)

To establish the stochastic relationship related to (3.15), the residual R is defined in the
stochastic setting as:

R = V dxr(t)↘AV xr(t)dt↘Bu(t)dt↘
q⌊︄

i=1

Nixr(t)dWi(t).

The Petrov-Galerkin projection requires that the residual R to be orthogonal to the sub-
space spanned by M . This condition, given by M

↘
R = 0, results in the following equation

for the reduced-order dynamics:

M
↘(V dxr(t)↘AV xr(t)dt↘Bu(t)dt↘

q⌊︄

i=1

Nixr(t)dWi(t))

= dxr(t)↘M
↘
AV xr(t)dt↘M

↘
Bu(t)dt↘

q⌊︄

i=1

M
↘
NiV xr(t)dWi(t) = 0,

ultimately yielding the compact form:

dxr(t) = [M↘
AV xr(t) +M

↘
Bu(t)]dt+

q⌊︄

i=1

M
↘
NiV xr(t)dWi(t).

If M = V has orthonormal columns, we obtain what is known as a Galerkin approx-
imation, this is also mentioned in Section 3.1.3.2. This approximation technique will be
defined in detail in the following section.

3.2.4.3 Reduced-order Model by Galerkin Projection

The following subsection is based on the framework and discussions presented in [99]. To
simplify the analysis, we introduce the eigenvalue decomposition of the reachability matrix

P = S
↘$S,

where S
↑1 = S

↘ and $ =

⨀︂
$1 0
0 $2

⨁︁
= diag (ϖ1, . . . ,ϖn) is the matrix of eigenvalues of

P . Suppose that the spectrum of P is ordered, that is, ϖ1 ∝ . . . ∝ ϖn ∝ 0. This ordering
facilitates defining the transformed state vector xS(t) = Sx(t). The fundamental solution
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of the balanced realization (3.43), ”S , is given by

”S = S”S↘
,

which can be derived by multiplying equation (3.24) with S from the left and with S
↘

from the right. Consequently, the reachability Gramian for equation (3.43) is expressed
as

PS := E
⌉︄ ⇐

0

”S(s)BSB
↘
S ”

↘
S (s)ds = SPS

↘ = $.

We partition xS as

xS =

⨀︂
x1

x2

⨁︁
,

where x1 and x2 correspond to $1 and $2, respectively. Drawing from the insights in
Section 3.2.3, it is evident that x2 has a minimal impact on the system dynamics. We
achieve the MOR by truncating the equations associated with x2 in equation (3.43) and
we set the remaining components of x2 to zero. Using the Galerkin projection method
discussed in Subsection 3.2.4.2 and applying equation (3.45), we derive the reduced system
characterized by equation (3.42), with the associated matrices detailed as follows:

Ar = A11 = V
↘
AV, Ni,r = Ni,11 = V

↘
NiV, Br = B1 = V

↘
B, Cr = C1 = CV,

where V represents the first r columns of S↘ = [V ϱ] (see equation (3.13)).

3.2.4.4 Stochastic Balanced Truncation

The balanced truncation method, when adapted for stochastic systems, marks a crucial
step forward in simplifying complex models that are a#ected by randomness and uncer-
tainty. This adaptation, developed in the late 1980s and 1990s, aimed to ensure that essen-
tial aspects of systems influenced by unpredictable disturbances could be captured more
e#ectively. It did so by including stochastic Gramians, which consider how noise impacts
the behavior of system dynamics. This change allows for a more accurate simplification of
complicated stochastic models. A key benefit of using this method for stochastic systems
is its ability to reduce models in a way that provides clear error bounds. This means that
we can be confident that the simplified models still accurately reflect the original system’s
behavior in uncertain conditions. As a result, the balanced truncation method has be-
come essential in fields like aerospace, climate modeling and financial engineering, where
it is critical to simplify complex systems without losing important details. This evolution
highlights the method’s significant role in control theory and systems engineering today,
showing how it helps create simpler, yet still reliable, models [41, 25]. More recently, for
SDEs of Itô type, you can find relevant discussions in [10, 14].
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We rewrite the algebraic Lyapunov equations (3.27) as follows:

AP + PA
↘ +

q⌊︄

i,j=1

NiPN
↘
j kij = ↘BB

↘
,

A
↘
Q+QA+

q⌊︄

i,j=1

N
↘
i QNjkij = ↘C

↘
C.

As we mentioned before, by eliminating the dimensions with minimal observability or con-
trollability, we can obtain a ROM approximation. This process is detailed in a five-step
method described in Subsection 3.1.3.3. Within the new coordinate framework, repre-
sented as

[Ar Nr,i Br Cr] = [A11 Ni,11 B1 C1] ,

where

NS,i = SNiS
↑1 =

\︂
Ni,11 Ni,12

Ni,21 Ni,22

⎛
, Ni,11 → Rr→r

,

and A11, B1, and C1 are defined as (3.16). The corresponding transformed Gramians,
PS = SPS

↘ and QS = S
↑↘

QS
↑1, with the following property, are then computed.

PS = QS = SPS
↘ = S

↑↘
QS

↑1 = $

where

$ =

⎟

⟨︂⟩︂
ς1 0

. . .

0 ςn

⨆︁

⨆︂∮︁ ,

here, ςi =
⋃︁
ϖi(PQ) are HSVs of the system, where they are organized in descending

order, such that ς1 ∝ ς2 ∝ . . . ∝ ςn ∝ 0. We finalize our discussion on MOR through the
balanced truncation method, applied to linear stochastic systems (3.19), with the following
theorem.

Theorem 3.21 [25] Consider the full system GN (3.19) to be asymptotically stochasti-
cally stable, which implies

ς(LA +%N ) △ C↑.

Assume $ = diag($1,$2) > 0 is a block-diagonal matrix with $1 → Rr→r and also
ς($1) ▽ ς($2) = ∈ and the conditions

LA($) +%N ($) ↔ 0, and L↓
A($) +%↓

N ($) ↔ 0,

are met. Then, for the reduced system GN,r (3.42), it is established that

ς(LAr
+%Nr

) △ C↑,

where LAr
defined in (3.17) and

%Nr
:=

q⌊︄

i,j=1

Ni,r ↖Nj,rkij .
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This theorem highlights the preservation of stability when applying the balanced trun-
cation method to an asymptotically stable system.

3.2.4.5 Stochastic POD Mehod

To our knowledge, the extension of the POD technique to SDEs influenced by Wiener
processes has received limited attention. An application of the POD method is mentioned
in [48] and [122], focusing exclusively on the stochastic Burgers equation. However, these
studies do not tackle the empirical approximation of the nonlinear term and rely solely
on low-order time integration methods. [116] extended POD techniques to stochastic
Hamiltonian systems, emphasizing structure preservation for improved solution accuracy
and stability, as demonstrated in experiments with the stochastic nonlinear Schrödinger
equation.

Let Zj be an n∀N matrix representing empirical data on the system (3.19) for the jth
realization of the Wiener process, as follows:

Zj =
{︄
x
)︄
t1,W

j
[︄
, x

)︄
t2,W

j
[︄
, . . . , x

)︄
tN ,W

j
[︄}︄

, for W
j → &, j = 1, . . . , Ns,

where N,Ns > 0 are the number of time points and samples of the Wiener process,
respectively. We want this method to be computationally inexpensive. Therefore, Ns

should be small. We consider

Z := [x0, Z1, Z2, . . . , ZNs
] .

In fact, Z can be a collection of snapshots of a solution of this system for di#erent
realizations of the Wiener process W (t). These snapshots are calculated for a particular
set of initial conditions x0 and control term u(t). A low-rank approximation of Z can be
done by performing the SVD of Z and truncating it after the first r largest singular values,
that is,

Z = V̂ $̂Û
↘
=

)︄
V ℵ

[︄\︂ $
ℵ

⎛\︂
U

↘

ℵ

⎛
∞ V $U↘

,

where $̂ = diag (ς1,ς2, . . .) is the diagonal matrix of the singular values, V̂ and Û are
orthogonal matrices, $ is the diagonal matrix of the first r largest singular values and
V and U are orthogonal matrices constructed by taking the first r columns of V̂ and Û ,
respectively. Let x̂ denote a vector in Rr. Substituting x = V x̂ in (3.19) yields a reduced
SDE for x̂ as

dx̂(t) = [V ↘
AV x̂(t) + V

↘
Bu(t)]dt+

q⌊︄

i=1

V
↘
NiV x̂(t)dWi(t), x̂(0) = V

↘
x0, (3.46a)

y(t) = CV x̂(t), t ∝ 0. (3.46b)

If the singular values of Z exhibit rapid decay, a high-quality approximation of Z can
be achieved for r, with r ′ n. Consequently, (3.46) serves as a low-dimensional ap-
proximation of (3.19), allowing for more e!cient computational solutions. The solution
approximation to (3.19) is reconstructed using x(t) = V x̂(t). This procedure, which in-
volves deriving the matrix V from the empirical or simulation data set Z, is often described
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as the o’ine phase in the context of model reduction. Although this stage can be compu-
tationally expensive, it is performed only once. On the other hand, computing solutions
within the reduced-dimensional framework of (3.46) referred to the online stage of model
reduction and is supposed to be faster and more e!cient than solving the full system
(3.19).



4 SPDEs Driven by Fractional
Brownian Motion

In this chapter, we explore SPDEs driven by fBm with an additional control component.
We employ an abstract evolution equation approach to represent these SPDEs. In re-
cent years, significant developments have been made in the theory of SPDEs driven by
fBm, particularly for H →

)︄
1

2
, 1
[︄
. In particular, SPDEs in a Hilbert space with infinite-

dimensional fBm have been extensively studied, as referenced in [31, 32, 71]. To begin,
we define C0-semigroups to characterize mild solutions. Next, we introduce and validate
the model of focus. The chapter continues with an example of a stochastic heat equation
driven by fBm. In the following sections, we apply the Galerkin scheme to our example,
similar to the one used in [29] for certain SPDEs with fractional noise. For SPDEs driven
by fBm, references such as [53, 120] discuss the use of the spectral Galerkin method for
spatial discretization when the Hurst parameter H >

1

2
.

4.1 Preliminary

4.1.1 C0-semigroups

The concept of C0-semigroups and their corresponding generators is crucial to introduce
evolution equations. The following definitions and theorems are adapted from the book of
Vrabie [119]. While Vrabie discusses C0-semigroups on Banach spaces, our focus will be
on the Hilbert space setting, which is su!cient for our purposes. Let U denote a separable
Hilbert space (see Appendix A.2) and let L(U) be the set of all linear bounded operators
from U to U .

Definition 4.1 Afamily {S(t); t ∝ 0} of bounded linear operators S(t) → L(U) is called
a C0-semigroup on U if:

(i) S(0) = I, where I is the identity operator on U ,

(ii) S(t+ s) = S(t)S(s) for all t, s ∝ 0,

(iii) limt⇒0+ S(t)x = x for all x → U .

Theorem 4.2 [119] Let {S(t); t ∝ 0} be a C0-semigroup. Then there exist constants
φ → R and M ∝ 1 such that for all t ∝ 0,

⇐S(t)⇐L(U) ↔ Me
ϱt
. (4.1)

72
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Definition 4.3 The infinitesimal generator or simply the generator of the C0-semigroup
{S(t); t ∝ 0} is the operator A : D(A) △ U ⇔ U defined by:

D(A) =

⎩
x → U | lim

t⇒0+

1

t
(S(t)x↘ x) exists

⎭
,

Ax = lim
t⇒0+

1

t
(S(t)x↘ x), x → D(A).

Equivalently, we say that A generates {S(t); t ∝ 0}.

Remark 4.4 • The generator of a C0-semigroup is a linear operator but not neces-
sarily bounded.

• A C0-semigroup is called a contraction semigroup if M = 1 and φ = 0 in (4.1),i.e.,
for all t ∝ 0, we have

⇐S(t)⇐L(U) ↔ 1.

Next, we state the basic properties of C0-semigroups.

Theorem 4.5 [119] Let A : D(A) △ U ⇔ U be the generator of a C0-semigroup
{S(t); t ∝ 0}. Then:

(i) For all x → U and t ∝ 0, we have

lim
h⇒0+

1

h

⌉︄
t+h

t

S(s)xds = S(t)x.

(ii) For all x → U and t > 0, we have

⌉︄
t

0

S(s)xds → D(A) and A

\︂⌉︄
t

0

S(s)xds

⎛
= S(t)x↘ x.

(iii) For all x → D(A) and t ∝ 0, we have S(t)x → D(A). In addition, the mapping
t ↦⇔ S(t)x is continuously di#erentiable on [0,+⇓) and satisfies

d

dt
(S(t)x) = AS(t)x = S(t)Ax.

(iv) For all x → D(A) and 0 ↔ t0 ↔ t < ⇓, we have

⌉︄
t

t0

AS(s)xds =

⌉︄
t

t0

S(s)Axds = S(t)x↘ S(t0)x.

We summarize further important properties of the generator of a C0-semigroup in the
following theorems.

Theorem 4.6 [119] Let A : D(A) △ U ⇔ U be the generator of a C0-semigroup
{S(t); t ∝ 0}. Then D(A) is dense in U and A is a closed operator1.

1The graph of operator A is closed in U ∀ U
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Theorem 4.7 [119] If A : D(A) △ U ⇔ U is the generator of two C0-semigroups
{S(t); t ∝ 0} and {T (t); t ∝ 0}, then S(t) = T (t) for all t ∝ 0.

4.1.2 Operator Spaces

Consider two separable Hilbert spaces denoted as (U, ⇐ · ⇐U , ⇒·, ·⇑U ) and (V, ⇐ · ⇐V , ⇒·, ·⇑V ).
As it mentioned before, the space of all bounded linear operators from U to V is represented
by L(U ;V ). For simplicity, we abbreviate L(U) = L(U ;U). The set L1(V ) represents the
space of nuclear operators (see Appendix A.2.1), while L2(V, U) denotes the space of
Hilbert-Schmidt operators from V to U (refer to Appendix A.2.2). The inner product for
these operators, ⇒S,T⇑HS , is given by ⇒S,T⇑HS =

⎨⇐
k=1

⇒Svk,Tvk⇑U , where {vk}⇐k=1
is an

orthonormal basis in V . The corresponding norm is denoted by ⇐ · ⇐HS .
Throughout this chapter, we assume that the operator Q meets the following condition.

Assumption 4.8 Let Q → L1(V ) be a self-adjoint, non-negative definite and bounded
linear operator.

Define V0 := Q
1
2 (V ). We denote by L0

2
the Hilbert space of the Hilbert-Schmidt opera-

tors from V0 to U , with the inner product defined as

⇒”1,”2⇑L0
2
=

⇐⌊︄

k=1

⋂︁
”1Q

1
2 vk,”2Q

1
2 vk

⨄︁

U

,

where {vk}⇐k=1
is an orthonormal basis in V . The norm on this space is then defined as

⇐T⇐L0
2
=

⎞⎞⎞TQ
1
2

⎞⎞⎞
HS

.

In this chapter, we introduce the following condition on the operator A:

Assumption 4.9 Let A : D(A) △ U ↘⇔ U be a linear, unbounded, self-adjoint and
positive definite operator defined on a Hilbert space U , with a compact inverse.

Based on Assumption 4.9, the fractional power A↑ω can be expressed as:

A↑ω =
1

((ϑ)

⌉︄
t

0

t
ω↑1

e
↑At dt, ϑ > 0,

where e
↑At is the analytic semigroup generated by ↘A, given by

e
↑At =

1

2↼i

⌉︄

”

e
↑zt

R(z;A) dz, t ∝ 0, (4.2)

with ( being a contour in the resolvent set ↽(↘A), such that arg z ⇔ ±⇀ as |z| ⇔ ⇓,
for some ⇀ →

)︄
⇁

2
,↼

[︄
. Here, R(z;A) = (zI ↘A)↑1 is the resolvent of A.

Under Assumption 4.9, A↑ω has a unique inverse denoted by Aω and the domain U̇
ω

:=
dom(Aω) is a Banach space equipped with the norm

⇐u⇐2
U̇

ω :=
⎞⎞⎞A

ω

2 u

⎞⎞⎞
2

U

=
⇐⌊︄

k=1

ϖ
ω

k
⇒u, uk⇑2U ,

where ϑ → R, u → U̇
ω

and {uk}k≃N is an orthonormal basis of operator A in the separable
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Hilbert space U , consisting of its eigenvectors, satisfying:

Auk = ϖkuk, (4.3)

where 0 < ϖ1 ↔ ϖ2 ↔ . . ... Specifically, for ϑ < 0, U̇
ω

is defined as the closure of U with

the norm ⇐ · ⇐
U̇

ω . For ϑ > 0, the spaces U̇
ω

are Banach spaces and U̇
↑ω

is isometrically

isomorphic to the dual of U̇
ω

. The spaces U̇
ω △ U △ U̇

↑ω

form a Gelfand triple when
ϑ > 0.

Introducing the fractional order space, we denote by L0

2,ϖ
, with ⇁ ∝ 0, the Hilbert space

of Hilbert-Schmidt operators from V0 to U̇
ϖ

, with the inner product

⇒”1,”2⇑L0
2,ε

=
⇐⌊︄

k=1

⋂︁
”1Q

1
2 vk,”2Q

1
2 vk

⨄︁

U̇
ε
,

where {vk}⇐k=1
is an orthonormal basis in V . Furthermore, the norm of T in L0

2,ϖ
is given

by

⇐T⇐L0
2,ε

=
⎞⎞⎞A

ε

2 TQ
1
2

⎞⎞⎞
HS

.

In particular, when ⇁ = 0, L0

2,ϖ
reduces to L0

2
.

4.2 Evolution Equations with fBm

In this section, we address an infinite-dimensional system characterized by the noise pro-
cess WH . The process WH takes values in a separable Hilbert space V and is defined on a

complete right-continuous filtered probability space
⟩︄
&,F, (Ft)t↔0

,P
\︄
. Furthermore, we

assume that WH is a fBm process with respect to the filtration (Ft)t↔0
. The key proper-

ties of this process and the definition of an integral with respect to W
H are discussed in

Chapter 2. In this context, we consider Young integration with respect to fBm (refer to
Definition 2.13).

Let Q satisfies Assumption 4.8, then the V -valued fBm W
H is defined by the formal

sum:

W
H(t) =

⇐⌊︄

i=1

A
µivi↪

H

i (t). (4.4)

where {↪H

i
}i≃N is a sequence of stochastically independent scalar fBms with the same

Hurst parameter H >
1

2
, {vi}i≃N is an orthonormal basis of V and additionally µ1 ∝

µ2 ∝ · · · ∝ 0 is a bounded sequence of nonnegative numbers such that Qvi = µivi with
limn⇒⇐ µn = 0 and

⎨⇐
i=1

µi < ⇓.
Let G → L0

2
, then the stochastic integral with respect to Q-fBm W

H can be defined as

⌉︄
T

0

G(s)dWH(s) =
⇐⌊︄

i=1

⌉︄
T

0

G(s)Q1/2
vid↪

H

i (s)

=
⇐⌊︄

i=1

A
µi

⌉︄
T

0

G(s)vid↪
H

i (s), (4.5)
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where the convergence of the sums is understood in the mean square sense in V .
Throughout the remainder of this chapter, we will use C, K and L to represent generic
positive constants, which may vary in value with each appearance.

4.2.1 Existence and Uniqueness of Mild Solution

In this section, our main aim is to establish the existence and uniqueness of mild solutions
to the following stochastic evolution equation with multiplicative fBms:

dX(t) =
⟩︄
ÃX(t) +Bu(t)

\︄
dt+N(X(t)) ↗ dWH(t), t → [0, T ],

X(0) = X0 → U. (4.6)

Where WH(t) denotes the fBm with the covariance operator Q, as specified in Assumption
4.8 and the operator Ã = ↘A, where the operator A satisfies Assumption 4.9.

The process u : R+ ∀ & ⇔ Rm is adapted to (Ft)t↔0
, satisfying

sup
t≃[0,T ]

E⇐u(t)⇐22 ↔ C (4.7)

for every T > 0, where ⇐ · ⇐2 represents the Euclidean norm in Rm. We also impose the
following assumptions on the initial value X0 the operator B and the operator N.

Assumption 4.10 Let φ → (0, 1] and ⇁ → [0,φ). We assume that the initial value X0 is
F0-measurable and takes values in U̇

ϖ

, with X0 → L
2(&; U̇

ϖ

). This implies the existence
of a constant K > 0 such that

⇐X0⇐L2(!;U̇
ε
)
↔ K.

Assumption 4.11 Let φ → (0, 1] and ⇁ → [0,φ). Suppose that B is a bounded linear

operator on Rm with values in U̇
ϖ+ϱ↑1

and satisfies

⇐B⇐
L(Rm,U̇

ε+ϑ→1
)
< C.

Assumption 4.12 Let φ → (0, 1] and ⇁ → [0,φ). Consider a mapping N : U̇
ϖ ⇔ L0

2
which

is measurable and satisfies N(U̇
ϖ

) △ L0

2,ϖ+ϱ↑1
. Assume that there exists a constant L > 0

such that the following conditions are met:

(i)
⎞⎞⎞A

ε+ϑ→1
2 N(u)

⎞⎞⎞
L0
2

↔ L
)︄
1 + ⇐u⇐

U̇
ε

[︄
, for u → U̇

ϖ

,

(ii)
⎞⎞⎞A

ε+ϑ→1
2 (N(u)↘N(v))

⎞⎞⎞
L0
2

↔ L⇐u↘ v⇐
U̇

ε , for u, v → U̇
ϖ

,

(iii)
⎞⎞⎞DH

s A
ε+ϑ→1

2 N(u)
⎞⎞⎞
L0
2

↔ L
)︄
1 + ⇐u⇐

U̇
ε

[︄
, for u → U̇

ϖ

,

(iv)
⎞⎞⎞DH

s A
ε+ϑ→1

2 (N(u)↘N(v))
⎞⎞⎞
L0
2

↔ L⇐u↘ v⇐
U̇

ε , for u, v → U̇
ϖ

.

Here, DH
s denotes the Malliavin derivative defined in Section 2.5.3 in Chapter 2.
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It is established that, under Assumption 4.9, the following initial value problem

dX(t) +AX(t) dt = 0, X(0) = X0, t → [0, T ],

has a unique solution given by X(t) = S(t)X0, where S(t) = e
↑At for t ∝ 0, as defined in

(4.2). It is widely recognized that the semigroup S(t) exhibits the following properties:

⇐As
S(t)⇐L(U) ↔ Ct

↑s
, t, s ∝ 0, (4.8)

⇐As
Ṡ(t)⇐L(U) ↔ Ct

↑s↑1
, t, s ∝ 0, (4.9)

⇐A↑↪(I ↘ S(t))⇐L(U) ↔ Ct
↪
, t ∝ 0, ↽ → [0, 1]. (4.10)

These properties are crucial for the regularity analysis of the solution.

Remark 4.13 In this chapter, we refer to the results in [29] to derive the following
outcome. As mentioned earlier, in our case, we consider the fractional Brownian motion
W

H and the solution X(t) to be defined on di#erent Hilbert spaces V and U , respectively,
while in [29] the authors treated both on the same Hilbert space.

Now we give the definition of mild solution to equation (4.6).

Definition 4.14 Let {X(t)}t≃[0,T ] be a predictable U -valued stochastic process. We refer
to {X(t)}t≃[0,T ] as a mild solution of the equation (4.6) if the operator

)X0(X)(t) := S(t)X0 +

⌉︄
t

0

S(t↘ s)Bu(s)ds+

⌉︄
t

0

S(t↘ s)N(X(s)) ↗ dWH(s), (4.11)

is well-defined and for almost every t → [0, T ], it satisfies )X0(X)(t) = X(t) almost surely.
But we will see that the mild solution has more regularity with the Assumption 4.12 (see
Theorem 4.17).

To demonstrate that the concept of a mild solution is applicable in L
2(&;U), it is

necessary to verify that the stochastic convolution

Rt :=

⌉︄
t

0

S(t↘ s)N(X(s)) ↗ dWH(s), t → [0, T ],

is well-defined within L
2(&;U). According to Theorem 2.21 presented in Chapter 2, we

can express

Rt =

⌉︄
t

0

S(t↘ s)N(X(s))ωWH(s) +

⌉︄
t

0

⌉︄
s

0

D
H

s (S(t↘ ↩)N(X(↩)))ε(s, ↩) d↩ds, (4.12)

where ε(s, ↩) = H(2H↘1)|s↘ ↩ |2H↑2 and the first term on the right-hand side represents
the fWIS integral, as defined in Section 2.5.4 of Chapter 2.

In [29], the author consider the following Wiener integral representation of WH :

W
H(t) =

⌉︄
t

0

KH(t, s)dW (s)
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where the kernel function KH(t, s) is defined in Proposition 2.6 as follows

KH(t, s) =

⎪
⎝

⎠
cH

]︄
t

s

)︄
u

s

[︄
H↑ 1

2 (u↘ s)H↑ 3
2du, if H >

1

2

bH

⎡
( t
s
)H↑ 1

2 (t↘ s)H↑ 1
2 ↘ (H ↘ 1

2
)s

1
2↑H

]︄
t

s
u
H↑ 3

2 (u↘ s)H↑ 1
2du

⎤
if H <

1

2

(4.13)

where bH and cH are constants dependent on the Hurst parameter H. By employing
this kernel function, the integral with respect to fBm is defined as

⌉︄
t

0

f(s)dWH(s) =

⌉︄
t

0

K
↓
H,t(f)(s)dW (s),

which indicates that, instead of directly integrating with respect to fBm, we can express
the integral as the Itô integral (see Section 1.3 for more details). In particular, when
1

2
< H < 1, the operator K↓

H,t
can be expressed as

K
↓
H,t(f)(s) =

⌉︄
t

s

f(↩)
▷KH(↩, s)

▷↩
d↩,

where, according to (4.13),

▷KH(↩, s)

▷↩
= cH

⟩︄
↩

s

\︄
H↑ 1

2
(↩ ↘ s)H↑ 3

2 .

In the literature, it has been established that K↓
H,t

is an isometry from ◁ to L
2([0, T ]),

where ◁ represents the space of step functions, denoted by εt =
⎨

m

j=1
aj1(tj→1,tj ]

(t) (for
more details, see Section 2.5.1).

As stated in Proposition 6.12 of [44], the first integral on the right-hand side of (4.12)
can be expressed as ⌉︄

t

0

K
↓
H,t(S(t↘ s)N(X(s)))dWs.

In other words, by applying equation (4.12) alongside the above expression, we can rewrite

Rt =

⌉︄
t

0

K
↓
H,t(S(t↘ s)N(X(s)))dWs +

⌉︄
t

0

⌉︄
t

0

D
H

s (S(t↘ ↩)N(X(↩)))ε(s, ↩) d↩ds. (4.14)

To demonstrate that Rt is well-defined, we need to introduce the following function space.
For p ∝ 2 and ⇁ ∝ 0, let O2

ϖ denote the space of all U̇
ϖ

-valued predictable processes
{X(t) : t → [0, T ]} satisfying

⇐X⇐O2
ε
:= sup

t≃[0,T ]

⇐X(t)⇐
L2(!;U̇

ε) = sup
t≃[0,T ]

⟩︄
E⇐X(t)⇐2

U̇
ε

\︄ 1
2
< ⇓.

For the special case where ⇁ = 0, the space O2

0
becomes a Banach space equipped with

the norm

⇐X⇐O2
0
:= sup

t≃[0,T ]

)︄
E⇐X(t)⇐2U

[︄ 1
2 < ⇓.

In this scenario, O2

0
is simply denoted by O2. However, when ⇁ > 0, the space
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⟩︄
O2
ϖ , ⇐ · ⇐O2

ε

\︄
is not a Banach space. However, it is straightforward to verify that for

any M → (0,⇓), the subset

O2

ϖ(M) =
⎣
x → O2

ϖ : ⇐X⇐O2
ε
↔ M

⎦

equipped with the norm ⇐ · ⇐O2 forms a complete metric space.

Lemma 4.15 [29] Assume that Assumptions 4.8, 4.9, (i) and (iii) from Assumption 4.12
are satisfied. Let φ → (0, 1], ⇁ → [0,φ), max{0, 3 ↘ 4H} < φ ↘ ⇁ and consider X(t) as a
predictable process such that X(t) → O2

ϖ for any t → [0, T ]. Then, there exists a constant
C > 0 such that

⇐Rt⇐L2(!;U̇
ε
)
↔ C

⎢
1 + sup

s≃[0,T ]

⇐X(s)⇐
L2(!;U̇

ε
)

⎥
t
4H+ϑ→3

2 , t → [0, T ].

Proof. The proof follows the same steps as the proof of Lemma 3.2 in [29], as follow

⇐Rt⇐L2(!;U̇
ε
)
↔

⎞⎞⎞⎞
⌉︄

t

0

K
↓
H,t(S(t↘ s)N(X(s)))dWs

⎞⎞⎞⎞
L2(!;U̇

ε
)

+

⎞⎞⎞⎞
⌉︄

t

0

⌉︄
t

0

D
H

s (S(t↘ ↩)N(X(↩)))ε(s, ↩)ds d↩

⎞⎞⎞⎞
L2(!;U̇

ε
)

↔ C

⎞⎞⎞⎞⎞

\︂⌉︄
t

0

⎞⎞⎞K↓
H,tA

ε

2 S(t↘ s)N(X(s))Q
1
2

⎞⎞⎞
2

HS

ds

⎛ 1
2

⎞⎞⎞⎞⎞
L2(!;R)

+ C

⎞⎞⎞⎞⎞

\︂⌉︄
t

0

⌉︄
t

0

⎞⎞⎞DH

s A
ε

2 S(t↘ ↩)N(X(↩))
⎞⎞⎞
2

L0
2

ds d↩

⎛ 1
2

⎞⎞⎞⎞⎞
L2(!;R)

+

⎞⎞⎞⎞⎞

\︂⌉︄
t

0

⌉︄
t

0

⎞⎞⎞DH

s A
ε

2 S(t↘ ↩)N(X(↩))
⎞⎞⎞
2

L0
2

|ε(s, ↩)|2ds d↩
⎛ 1

2

⎞⎞⎞⎞⎞
L2(!;R)

↔ C

⎢
1 + sup

s≃[0,T ]

⇐X(s)⇐
L2(!;U̇

ε)

⎥\︂⌉︄
t

0

⎞⎞⎞K↓
H,tA

→ϑ+1
2 S(t↘ s)

⎞⎞⎞
2

U

ds

⎛ 1
2

+ C

⎢
1 + sup

s≃[0,T ]

⇐X(s)⇐
L2(!;U̇

ε
)

⎥
t

+ C

⎢
1 + sup

s≃[0,T ]

⇐X(s)⇐
L2(!;U̇

ε
)

⎥\︂⌉︄
t

0

⌉︄
t

0

⎞⎞⎞A
→ϑ+1

2 S(t↘ ↩)
⎞⎞⎞
2

U

|ε(s, ↩)|2ds d↩
⎛ 1

2

.

So we can write

⇐Rt⇐L2(!;U̇
ε
)
↔ C(1 + sup

s≃[0,T ]

⇐X(s)⇐
L2(!;U̇

ε
)
) (I1 + t+ I2) . (4.15)

According to Lemma 3.2 from [29], for I we have

I1 ↔ Ct
ϑ+2H→1

2 (4.16)
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Now, for I2 we have

I
2

2 ↔ CH
2(2H ↘ 1)2

⌉︄
t

0

⌉︄
t

0

(t↘ ↩)ϱ↑1|s↘ ↩ |4H↑4ds d↩

= 2CH
2(2H ↘ 1)2

⌉︄
t

0

(t↘ ↩)ϱ↑1

⌉︄
⇀

0

(↩ ↘ s)4H↑4ds d↩

=
2CH

2(2H ↘ 1)2

4H ↘ 3

⌉︄
t

0

(t↘ ↩)ϱ↑1
↩
4H↑3

d↩

By substituting u = ⇀

t
, applying the Beta function definition and using the relation

B(x, y) = ”(x)”(y)

”(x+y)
, we obtain

I
2

2 ↔ 2CH
2(2H ↘ 1)2

4H ↘ 3
t
4H+ϱ↑3

⌉︄
1

0

(1↘ u)ϱ↑1
u
4H↑3du

=
2CH

2(2H ↘ 1)2

4H ↘ 3
B(4H ↘ 2,φ)t4H+ϱ↑3

=
2CH

2(2H ↘ 1)2((4H ↘ 2)((φ)

(4H ↘ 3)((4H + φ ↘ 2)
t
4H+ϱ↑3

, (4.17)

where the integral is finite, since φ → (3↘ 4H, 1]. Combining (4.15), (4.16) and (4.17), we
can obtain that there exists a constant C > 0 such that

⇐Rt⇐L2(!;U̇
ε
)
↔ C

⎢
1 + sup

s≃[0,T ]

⇐X(s)⇐
L2(!;U̇

ε
)

⎥
t
4H+ϑ→3

2 , t → [0, T ].

Next, we present a lemma that serves as a crucial component in establishing the global
existence and uniqueness of the mild solution for equation (4.6).

Lemma 4.16 [29] Let 0 < 0 ↔ 1, 0 < ϑ < 1, ω > ↘ϑi and let b, c and d be non-negative
constants. Additionally, let a : [0, T ] ⇔ R+ be a non-decreasing, bounded function and
let x(t) be a non-negative, bounded function on [0, T ) satisfying the inequality

x(t) ↔ a(t) + b

⌉︄
t

0

(t↘ s)↩↑1
x(s) ds+ c

⌉︄
t

0

(t↘ s)ω↑1
s
ϑ
x(s) ds.

Under these conditions, there exists a constant µ > 0 such that

x(t) ↔ 2e▷µta(t), t → [0, T ),

where 0 < ⇀ < min{ϑ, 0} and ϑ+ ⇀ < 1.

We are now ready to present the existence and uniqueness theorem, following the ap-
proach in [29].

Theorem 4.17 [29] Assume that Assumptions 4.8, 4.9, 4.10, 4.11 and 4.12 are satisfied.
Let φ → (0, 1], ⇁ → [0,φ) and max{0, 3↘ 4H} < φ ↘ ⇁. Then, equation (4.6) has a unique
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mild solution and there exists a constant C > 0 such that

⇐X(t)⇐O2
ε
= sup

t≃[0,T ]

⟩︄
E⇐X(t)⇐2

U̇
ε

\︄ 1
2 ↔ C. (4.18)

Proof. In [29], the author employed a standard technique to demonstrate that the operator
)X0 , as defined in equation (4.11), maps O2

ϖ(M) into itself. Furthermore, it was shown
that there exists a su!ciently small time ↩ such that )X0 acts as a contraction mapping
under the norm ⇐ ·⇐O2 , where M → (0,⇓). This result implies the existence of a finite time
↩ → (0, T ) for which the equation (4.6) admits a unique local mild solution for t → [0, ↩),
which is a predictable process satisfying

sup
t≃[0,⇀)

⟩︄
E⇐X(t)⇐2

U̇
ε

\︄ 1
2 ↔ M. (4.19)

Following the approach in [29], we now establish that the uniform estimate (4.18) guar-
antees the existence of a unique global mild solution to equation (4.6) for t → [0, T ].

Let t → [0, ↩). Applying equation (4.12) and Assumption 4.10 and utilizing Hölder
inequality, we obtain

⇐X(t)⇐
L2(!;U̇

ε) ↔CK +

⎞⎞⎞⎞
⌉︄

t

0

S(t↘ s)Bu(s) ds

⎞⎞⎞⎞
L2(!;U̇

ε)

+

⎞⎞⎞⎞
⌉︄

t

0

S(t↘ ↩)N(X(↩))ωWH(↩)

⎞⎞⎞⎞
L2(!;U̇

ε)

+

⎞⎞⎞⎞
⌉︄

t

0

D
H

s S(t↘ ↩)N(X(↩))ε(s, ↩)ds d↩

⎞⎞⎞⎞
L2(!;U̇

ε)

↔CK + J + I1 + I2. (4.20)

Utilizing equation (4.8), along with Assumption 4.11, we obtain the following result:

⎞⎞⎞⎞
⌉︄

t

0

S(t↘ s)Bu(s) ds

⎞⎞⎞⎞
2

L2(!;U̇
ε)

↔
⎞⎞⎞⎞
⌉︄

t

0

⎞⎞⎞A
ε

2 S(t↘ s)B
⎞⎞⎞
2

L0
2

⇐u(s)⇐22ds
⎞⎞⎞⎞
L(!;R)

↔ ⇐B⇐2
L(Rm;U̇

ε+ϑ→1
)

⎞⎞⎞⎞
⌉︄

t

0

⇐A
1→ϑ

2 S(t↘ s)⇐2U⇐u(s)⇐22ds
⎞⎞⎞⎞
L(!;R)

↔ C⇐B⇐2
L(Rm;U̇

ε+ϑ→1
)

⌉︄
t

0

(t↘ s)ϱ↑1E⇐u(s)⇐22ds

↔ C⇐B⇐2
L(Rm;U̇

ε+ϑ→1
)
sup

s≃[0,T ]

E⇐u(s)⇐22tϱ ↔ CT
ϱ

which is derived from the relation (4.7) for the control term u(t). So it yields

J ↔ CT
ϑ

2 . (4.21)
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Based on the proof of Theorem 3.5 in [29], the following inequality holds for I1:

I1 ↔C

\︂⌉︄
t

0

s
1↑2H(t↘ s)2H+ϱ↑2

⟩︄
1 + ⇐X(s)⇐

L2(!;U̇
ε
)

\︄
2

ds

⎛ 1
2

+ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1

⟩︄
1 + ⇐X(s)⇐

L2(!;U̇
ε
)

\︄
2

ds

⎛ 1
2

. (4.22)

According to Assumption 4.12 (iii) and by following the reasoning outlined in the proof
of Lemma 4.15, we obtain

I2 ↔ C

\︂⌉︄
t

0

⌉︄
t

0

⎞⎞⎞A
→ϑ+1

2 S(t↘ ↩)
⎞⎞⎞
2

U

|ε(s, ↩)|2 (1 + ⇐X(s)⇐
L2(!;U̇

ε
)
)2ds d↩

⎛ 1
2

↔ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1
s
4H↑3(1 + ⇐X(s)⇐

L2(!;U̇
ε
)
)2ds

⎛ 1
2

. (4.23)

By substituting (4.21), (4.22) and (4.23) into (4.20) and applying both the Cauchy and
Hölder inequalities, the following result is derived

⇐X(t)⇐2
L2(!;U̇

ε) ↔CT
ϱ + C

⌉︄
t

0

(t↘ s)ϱ↑1⇐X(s)⇐2
L2(!;U̇

ε)ds

+ C

⌉︄
t

0

s
1↑2H(t↘ s)2H+ϱ↑2⇐X(s)⇐2

L2(!;U̇
ε)ds

+ C

⌉︄
t

0

s
4H↑3(t↘ s)ϱ↑1⇐X(s)⇐2

L2(!;U̇
ε)ds. (4.24)

By utilizing (4.19) in conjunction with Lemma 4.16 and incorporating it into (4.24), we
derive that

⇐X(t)⇐
L2(!;U̇

ε) ↔ C,

for t → [0, ↩ ], the same estimate holds for t → [↩, 2↩ ] and so on. So, the proof is completed.

4.3 Spectral Galerkin Method

In this section, we apply a spectral Galerkin method for the spatial discretization of
equation (4.6). Let Ã = (↘A) with A : D(A) ⇔ U be a densely defined, linear operator
that is self-adjoint and positive definite. The operator A has an orthonormal basis {uk}k≃N
in the separable Hilbert space U , consisting of its eigenvectors, satisfying:

Auk = ϖkuk, (4.25)

where 0 ↔ ϖ1 ↔ ϖ2 ↔ . . . and limn⇒⇐ ϖn = ⇓. The operator Ã generates a contraction
C0-semigroup {S(t)); t ∝ 0} defined by

S(t)x =
⇐⌊︄

k=1

e↑◁kt (x, uk)uk, (4.26)
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for x → U . The system is exponentially stable (φ < 0 in (4.1)) when ϖ1 > 0. For a given
n → N, We introduce the finite-dimensional subspaces Un △ U and Vn △ V , defined as
follows:

Un = span{u1, u2, . . . , un}, Vn = span{v1, v2, . . . , vn}.

Therefore, we introduce projection operators Pn : U ⇔ Un and P̃n : V ⇔ Vn given by:

Pnv =
n⌊︄

k=1

⇒u, uk⇑Uuk, u → U,

P̃nv =
n⌊︄

k=1

⇒v, vk⇑V vk, v → V.

This implies that

⇐Pnu⇐2U =

⎞⎞⎞⎞⎞

n⌊︄

k=1

⇒u, uk⇑Uuk

⎞⎞⎞⎞⎞

2

U

=
n⌊︄

k=1

|⇒u, uk⇑U |2 ↔
⇐⌊︄

k=1

|⇒u, uk⇑U |2 = ⇐u⇐2U , u → U,

⎞⎞⎞P̃nv

⎞⎞⎞
2

V

=

⎞⎞⎞⎞⎞

n⌊︄

k=1

⇒v, vk⇑V vk

⎞⎞⎞⎞⎞

2

V

=
n⌊︄

k=1

|⇒v, vk⇑V |2 ↔
⇐⌊︄

k=1

|⇒v, vk⇑V |2 = ⇐v⇐2V , v → V.

We define the operator An : U ⇔ Un as An = APn, so that Ãn = ↘An. Since Ãn is
bounded for each n → N, it is known that Ãn generates a C0-semigroup on Un, denoted

by Sn(t) = S(t)Pn = e
Ãnt for t → [0, T ]. For any x → Un, we have the representation

Sn(t)x =
⎨

n

k=1
e↑◁kt ⇒x, uk⇑U uk. It is straightforward to verify that

Sn(t)Pn = S(t)Pn, (4.27)

and

⎞⎞A↑0 (I ↘ Pn)u
⎞⎞
U
↔ ϖ

↑0

n+1
⇐u⇐U , v ∝ 0, u → U. (4.28)

Furthermore, utilizing (4.27) and (4.28), we obtain

⇐(S(t)↘ Sn(t)Pn)u⇐U = ⇐S(t) (I ↘ Pn)u⇐U ↔ Mt
↑0

ϖ
↑0

n+1
⇐u⇐U , u ∝ 0, u → U. (4.29)

The spectral Galerkin method for equation (4.6) can thus be formulated as

dXn(t) = ÃnXn(t) dt+ PnBu(t) dt+ PnN (Xn(t)) P̃n ↗ dW
H(t), t → [0, T ], (4.30)

with the initial condition Xn(0) = PnX0 and Xn(t) → Un for all t.
The corresponding mild solution to equation (4.30) is expressed as

Xn(t) =Sn(t)Xn(0) +

⌉︄
t

0

Sn(t↘ s)PnBu(s) ds

+

⌉︄
t

0

Sn(t↘ s)PnN (Xn(s)) P̃n ↗ dW
H(s), (4.31)

where Xn(0) = PnX0 and t → [0, T ]. Our primary objective now is to establish an error
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bound for the spatial semidiscretization. To achieve this, we begin by presenting a key
lemma.

Lemma 4.18 Assume that the conditions of Theorem 4.17 are satisfied. Then, there
exists a constant C > 0 such that

⇐Xn(t)⇐O2
ε
= sup

t≃[0,T ]

⟩︄
E⇐Xn(t)⇐2

U̇
ε

\︄ 1
2 ↔ C.

Proof. The proof follows similarly to that of Theorem 4.17 and is therefore omitted for
brevity.

Theorem 4.19 Under the assumptions of Theorem 4.17, there exists a constant C > 0
such that

⇐X(t)↘Xn(t)⇐L2(!;U)
↔ C

\︂
µ

1
2
n+1

+ ϖ
↑ ε

2
n+1

⎛
, t → [0, T ]. (4.32)

Proof. The following proof is based on the fundamental reasoning used in Theorem 4.2 of
[29]. By subtracting equation (4.31) from equation (4.11) and evaluating the norms, we
obtain

⇐X(t)↘Xn(t)⇐L2(!;U)
↔ ⇐(S(t)↘ Sn(t)Pn)X0⇐L2(!;U)

+

⎞⎞⎞⎞
⌉︄

t

0

(S(t↘ s)Bu(s)↘ Sn(t↘ s)PnBu(s)) ds

⎞⎞⎞⎞
L2(!;U)

+

⎞⎞⎞⎞
⌉︄

t

0

⟩︄
S(t↘ s)N(X(s))↘ Sn(t↘ s)PnN(Xn(s))P̃n

\︄
↗ dWH(s)

⎞⎞⎞⎞
L2(!;U)

=: J1 + J2 + J3, (4.33)

Clearly, by considering equation (4.8), Assumption 4.10 and equation (4.28), we can derive
the following estimate for J1:

J1 =
⎞⎞⎞A

ε

2 S(t)A↑ ε

2 (I ↘ Pn)X0

⎞⎞⎞
L2(!;U)

↔ Cϖ
↑ ε

2
n+1

. (4.34)

For the term J2, applying Assumption 4.11, along with equations (4.7), (4.8) and (4.28),
we obtain

J2 =

⎞⎞⎞⎞
⌉︄

t

0

A
1→ϑ

2 S(t↘ s)A↑ ε

2 (I ↘ Pn)A
ε+ϑ→1

2 Bu(s)ds

⎞⎞⎞⎞
L2(!;U)

↔ C

⎢
sup

s≃[0,T ]

E⇐u(s)⇐22

⎥ 1
2

⇐B⇐
L(Rm;U̇

ε+ϑ→1
)
T

ϑ

2 ϖ
↑ ε

2
n+1

↔ Cϖ
↑ ε

2
n+1

(4.35)
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To estimate J3, we begin by splitting it into three components:

J3 ↔
⎞⎞⎞⎞
⌉︄

t

0

(S(t↘ s)N(X(s))↘ Sn(t↘ s)PnN(X(s))) ↗ dWH(s)

⎞⎞⎞⎞
L2(!;U)

+

⎞⎞⎞⎞
⌉︄

t

0

(Sn(t↘ s)PnN(X(s))↘ Sn(t↘ s)PnN(Xn(s))) ↗ dWH(s)

⎞⎞⎞⎞
L2(!;U)

+

⎞⎞⎞⎞
⌉︄

t

0

⟩︄
Sn(t↘ s)PnN(Xn(s))↘ Sn(t↘ s)PnN(Xn(s))P̃n

\︄
↗ dWH(s)

⎞⎞⎞⎞
L2(!;U)

:= J3,1 + J3,2 + J3,3. (4.36)

Using equation (4.12) along with the Minkowski inequality, we obtain

J3,1 ↔
⎞⎞⎞⎞
⌉︄

t

0

S(t↘ s)(I ↘ Pn)N(X(s))ωWH(s)

⎞⎞⎞⎞
L2(!;U)

+

⎞⎞⎞⎞
⌉︄

t

0

⌉︄
s

0

D
H

s (S(t↘ ↩)(I ↘ Pn)N(X(↩)))ε(s, ↩) d↩ds

⎞⎞⎞⎞
L2(!;U)

=: J ⇑
3,1 + J

⇑⇑
3,1, (4.37)

Utilizing Theorem 4.2 from [29], we obtain the following:

J
⇑
3,1 ↔ Cϖ

↑ ε

2
n+1

t
2H+ϑ→ε→1

2 + Cϖ
↑ ε

2
n+1

. (4.38)

In the case of J
⇑⇑
3,1

, utilizing Assumption 4.12 (iii) and applying the steps outlined in
Lemma 4.15, we arrive at the following:

J
⇑⇑
3,1 ↔

⎞⎞⎞⎞⎞

\︂⌉︄
t

0

⌉︄
t

0

⎞⎞⎞DH

s A
1→ϑ

2 S(t↘ ↩)A
→ε

2 (I ↘ Pn)A
ε→ϑ+1

2 N(X(↩))
⎞⎞⎞
2

L0
2

|ε(s, ↩)|2ds d↩
⎛ 1

2

⎞⎞⎞⎞⎞
L2(!;R)

↔ Cϖ
↑ ε

2
n+1

\︂⌉︄
t

0

⌉︄
t

0

⎞⎞⎞A
1→ϑ

2 S(t↘ ↩)
⎞⎞⎞
2

|ε(s, ↩)|2ds d↩
⎛ 1

2

↔ Cϖ
↑ ε

2
n+1

t
4H+ϑ→3

2 . (4.39)

Substituting (4.38) and (4.39) into (4.37), we obtain

J3,1 ↔ Cϖ
↑ ε

2
n+1

+ Cϖ
↑ ε

2
n+1

t
2H+ϑ→ε→1

2 + Cϖ
↑ ε

2
n+1

t
4H+ϑ→3

2 (4.40)

In the case of J3,3, we can write

J3,3 =

⎞⎞⎞⎞
⌉︄

t

0

(Sn(t↘ s)PnN(Xn(s))) (I ↘ P̃n) ↗ dWH(s)

⎞⎞⎞⎞
L2(!;U)

,

now, by applying (4.4) in place of WH(t), (4.12) and Assumption 4.8, then the Theorem
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7.10 of [44], we obtain the following expression for J3,3:

J3,3 =

⎞⎞⎞⎞
⌉︄

t

0

(Sn(t↘ s)PnN(Xn(s))) (I ↘ P̃n) ↗ dWH(s)

⎞⎞⎞⎞
L2(!;U)

↔ Cµ

1
2
n+1

⎞⎞⎞⎞⎞

\︂⌉︄
t

0

⇐K↓
H,tA

→ϑ+1
2 Sn(t↘ s)PnA

ϑ→1
2 N(Xn(s))⇐2L0

2
ds

⎛ 1
2

⎞⎞⎞⎞⎞
L2(!;R)

+ Cµ

1
2
n+1

⎞⎞⎞⎞⎞

\︂⌉︄
t

0

⌉︄
t

0

⇐DH

s A
→ϑ+1

2 Sn(t↘ ↩)PnA
ϑ→1
2 N(Xn(↩))⇐L0

2
d↩ds

⎛ 1
2

⎞⎞⎞⎞⎞
L2(!;R)

+ Cµ

1
2
n+1

⎞⎞⎞⎞⎞

\︂⌉︄
t

0

⌉︄
t

0

⇐DH

s A
→ϑ+1

2 Sn(t↘ ↩)PnA
ϑ→1
2 N(Xn(↩))⇐2L0

2
|ε(s, ↩)|2 d↩ds

⎛ 1
2

⎞⎞⎞⎞⎞
L2(!;R)

Following the same argument as in Lemma 4.15, we obtain

J3,3 ↔ Cµ

1
2
n+1

t
2H+ϑ→1

2 + Cµ

1
2
n+1

+ Cµ

1
2
n+1

t
4H+ϑ→3

2 (4.41)

We now turn our attention to the estimation J3,2. Utilizing Assumption 4.12 (ii) along
with equation (4.12), we obtain

J3,2 ↔
⎞⎞⎞⎞
⌉︄

t

0

A
1→ϑ

2 Sn(t↘ s)PnA
ϑ→1
2 (N(X(s))↘N(Xn(s))) ωW

H(s)

⎞⎞⎞⎞
L2(!;U)

+

⎞⎞⎞⎞
⌉︄

t

0

⌉︄
t

0

D
H

s A
1→ϑ

2 Sn(t↘ ↩)PnA
ϑ→1
2 (N(X(↩))↘N(Xn(↩)))ε(s, ↩)ds d↩

⎞⎞⎞⎞
L2(!;U)

:= J
⇑
3,2 + J

⇑⇑
3,2 (4.42)

Based on Theorem 4.2 from [29], we can write

J
⇑
3,2 ↔ C

\︂⌉︄
t

0

s
1↑2H(t↘ s)2H+ϱ↑2 ⇐X(s)↘Xn(s)⇐2L2(!;U)

ds

⎛ 1
2

+ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1 ⇐X(s)↘Xn(s)⇐2L2(!;U)
ds

⎛ 1
2

(4.43)

By using (ii) from Assumption 4.12 and (4.27), we obtain

J
⇑⇑
3,2 ↔

\︂⌉︄
t

0

⌉︄
t

0

⎞⎞⎞DH

s A
1→ϑ

2 S(t↘ ↩)PnA
ϑ→1
2 (N(X(↩))↘N(Xn(↩)))

⎞⎞⎞
2

L0
2

|ε(s, ↩)|2ds d↩
⎛ 1

2

↔ C

\︂⌉︄
t

0

⌉︄
t

0

⎞⎞⎞A
→ϑ+1

2 S(t↘ ↩)
⎞⎞⎞
2

|ε(s, ↩)|2 ⇐X(s)↘Xn(s)⇐2L2(!;U)
ds d↩

⎛ 1
2

↔ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1
s
4H↑3 ⇐X(s)↘Xn(s)⇐2L2(!;U)

ds

⎛ 1
2

(4.44)
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Substituting (4.43) and (4.44) into (4.42), we obtain

J3,2 ↔ C

\︂⌉︄
t

0

s
1↑2H(t↘ s)2H+ϱ↑2 ⇐X(s)↘Xn(s)⇐2L2(!;U)

ds

⎛ 1
2

+ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1 ⇐X(s)↘Xn(s)⇐2L2(!;U)
ds

⎛ 1
2

+ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1
s
4H↑3 ⇐X(s)↘Xn(s)⇐2L2(!;U)

ds

⎛ 1
2

(4.45)

By substituting equations (4.40), (4.41) and (4.45) into (4.36), we obtain the following
estimate for J3:

J3 ↔Cµ

1
2
n+1

+ Cϖ
↑ ε

2
n+1

+ C

\︂⌉︄
t

0

s
1↑2H(t↘ s)2H+ϱ↑2 ⇐X(s)↘Xn(s)⇐2L2(!;U)

ds

⎛ 1
2

+ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1 ⇐X(s)↘Xn(s)⇐2L2(!;U)
ds

⎛ 1
2

+ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1
s
4H↑3 ⇐X(s)↘Xn(s)⇐2L2(!;U)

ds

⎛ 1
2

(4.46)

Furthermore, inserting (4.34), (4.35) and (4.46) into (4.33), we have

⇐X(t)↘Xn(t)⇐L2(!;U)
↔ C

\︂
µ

1
2
n+1

+ ϖ
↑ ε

2
n+1

⎛

+ C

\︂⌉︄
t

0

s
1↑2H(t↘ s)2H+ϱ↑2 ⇐X(s)↘Xn(s)⇐2L2(!;U)

ds

⎛ 1
2

+ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1 ⇐X(s)↘Xn(s)⇐2L2(!;U)
ds

⎛ 1
2

+ C

\︂⌉︄
t

0

(t↘ s)ϱ↑1
s
4H↑3 ⇐X(s)↘Xn(s)⇐2L2(!;U)

ds

⎛ 1
2

In this situation, the conditions of Lemma 4.16 are satisfied. Hence, applying the Cauchy
inequality, we similarly derive (4.32). This concludes the proof.

4.4 Example

4.4.1 Stochastic Heat Equation

A key example that meets the generator assumptions is Ã = *, which corresponds to
the heat equation. In the following, we present an example to illustrate the application
of the abstract framework discussed in Section 4.2. We begin with a modified version of
an example studied in [14]. In particular, not an Itô equation driven by a Brownian mo-
tion is studied. Instead, we consider the following Young/Stratonovich stochastic partial
di#erential equation driven by a (scalar) fractional Brownian motion W

H with the Hurst
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parameter H → [1/2, 1).

Example 4.20 Consider a two-dimensional surface with perfect insulation along its
boundaries and a heat source located at its center. This situation can be described using
the following controlled stochastic partial di#erential equation, where t ∝ 0 and 0 → [0,↼]2:

▷X(t, 0)

▷t
= *X(t, 0) + 1

[
ϖ

4 ,
3ϖ
4 ]2

(0)u(t) + e
↑|↩1↑ϖ

2 |↑↩2X(t, 0) ↗ ▷W
H(t)

▷t
,

X(t, 0) = 0, t ∝ 0, 0 → ▷[0,↼]2, and X(0, 0) = 0,
(4.47)

where W
H is a scalar fBm that can model a random heat source or the impact of wind.

Furthermore, we define

(i) U = L
2
)︄
[0,↼]2

[︄
, V = R, m = 1,

(ii) Ã is the Laplace operator, B = 1
[
ϖ

4 ,
3ϖ
4 ]2

(·),

(iii) Let g(01, 02) = e
↑|↩1↑ϖ

2 |↑↩2 , then N(x) = g(·)x = e
↑|·↑ϖ

2 |↑·
x for x → L

2([0,↼]2).

The eigenvalues of the Laplacian on [0,↼]2 are expressed as ↘ϖij = ↘(i2 + j
2) for

i, j → Z+. The corresponding eigenvectors, which form an orthonormal basis, are defined as
uij =

fij

↖fij↖U , where fij = sin(i·) sin(j·). For simplicity and to match the form presented in

(4.25), we denote the k-th largest eigenvalue as ↘ϖk, k → N and the associated eigenvector
as uk.

The scalar output of the system is the average temperature over the non-heated area
as follows

Y(t) =
4

3↼2

⌉︄

[0,⇁]2\[ϖ4 ,
3ϖ
4 ]2

X(t, 0)d0, (4.48)

where Cx = 4

3⇁2

]︄
[0,⇁]2\[ϖ4 ,

3ϖ
4 ]2

x(0)d0 for x → L
2([0,↼]2).

Now, we apply the spectral Galerkin method introduced in Section 4.3 to the type of
equation introduced in Example 4.20. We assume the presence of an orthonormal basis
(uk)k≃N of U , which is included inD(A). Using (4.30), we can achieve the spectral Galerkin
method as follows.

dXn(t) =
⎡
ÃnXn(t) +Bnu(t)

⎤
dt+Nn (Xn(t)) ↗ dWH(t), t → [0, 1],

Xn(0) = X0,n, (4.49)

where

• Ãnx = Pn(↘A)x =
⎨

n

k=1
⇒↘Ax, uk⇑U uk → Un for all x → D(A),

• Bnx = PnBx =
⎨

n

k=1
⇒Bx, uk⇑U uk → Un for all x → Rm,

• Nn(x) = Pn(g(·)x) =
⎨

n

k=1
⇒g(·)x, uk⇑U uk → Un for all x → U ,

• X0,n = PnX0 =
⎨

n

k=1
⇒X0, uk⇑U uk → Un.
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The mild solution of equation (4.49) is expressed as

Xn(t) = Sn(t)X0,n +

⌉︄
t

0

Sn(t↘ s)Bnu(s)ds+

⌉︄
t

0

Sn(t↘ s)Nn (Xn(s)) ↗ dWH(s), (4.50)

for t ∝ 0. Furthermore, we consider the p-dimensional approximating output.

yn(t) = CXn(t), t ∝ 0.

We express Xn(t) as:

Xn(t) =
n⌊︄

k=1

⇒X(t), uk⇑Uuk,

where {uk}k≃N is an orthonormal basis of the Hilbert space U . We now describe the vector
of Fourier coe!cients for the Galerkin solution Xn and define

x(t) = (⇒Xn(t), u1⇑U , . . . , ⇒Xn(t), un⇑U )
↘
.

The components of x satisfy the following:

⇒Xn(t), uk⇑U = ⇒Sn(t)X0,n, uk⇑U +

⌉︄
t

0

⇒Sn(t↘ s)Bnu(s), uk⇑U ds

+

⋀︁⌉︄
t

0

Sn(t↘ s)Nn (Xn(s)) ↗ dWH(s), uk

⋁︁

U

.

Using the representation Sn(t)x =
⎨

n

i=1
e
↑◁it ⇒x, ui⇑U ui (x → Un), we obtain

⇒Sn(t)X0,n, uk⇑U = e
↑◁kt ⇒X0,n, uk⇑U = e

↑◁kt ⇒x0, uk⇑U ,

and

⇒Sn(t↘ s)Bnu(s), uk⇑U = e
↑◁k(t↑s) ⇒Bnu(s), uk⇑U = e

↑◁k(t↑s) ⇒B, uk⇑U u(s),

this holds for k = 1, . . . , n. Furthermore, we have

⇒
⌉︄

t

0

Sn(t↘ s)Nn (Xn(s)) ↗ dWH(s), uk⇑U

=

⌉︄
t

0

⇒Sn(t↘ s)Nn (Xn(s)) , uk⇑U ↗ dWH(s)

=
n⌊︄

i=1

⌉︄
t

0

⇒Sn(t↘ s)g(·)ui, uk⇑U ⇒Xn(s), ui⇑U ↗ dWH(s)

=
n⌊︄

i=1

⌉︄
t

0

e
↑◁k(t↑s) ⇒g(·)ui, uk⇑U ⇒Xn(s), ui⇑U ↗ dWH(s)

Hence, in compact form, x is given by

x(t) = e
At
x0 +

⌉︄
t

0

e
A(t↑s)

Bu(s)ds+

⌉︄
t

0

e
A(t↑s)

Nx(s) ↗ dWH(s) (4.51)
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where

• A = diag (↘ϖ1, . . . ,↘ϖn)

• B = (⇒B, uk⇑U )k=1,...,n

• N = (⇒g(·)ui, uk⇑U )k,i=1,...,n

• x0 = (⇒x0, u1⇑U , . . . , ⇒x0, un⇑U )
↘.

Below, we demonstrate that the solution to equation (4.51) also satisfies the strong solution
equation. Define

g(t) := x0 +

⌉︄
t

0

e↑As
Bu(s)ds+

⌉︄
t

0

e↑As
Nx(s) ↗ dWH(s), t ∝ 0.

According to Theorem 2.14, for x(t) = eAt
g(t), we have

e
↘
i x(t) = e

↘
i e

At
g(t) = e

↘
i g(0) +

⌉︄
t

0

d

⟩︄
e
↘
i e

As

\︄
g(s) +

⌉︄
t

0

e
↘
i e

As
dg(s)

= e
↘
i

\︂
x0 +

⌉︄
t

0

AeAs
g(s)ds+

⌉︄
t

0

Bu(s)ds+

⌉︄
t

0

Nx(s) ↗ dWH(s)

⎛
,

where ei is the i-th unit vector of Rn. Therefore, we have

x(t) = x0 +

⌉︄
t

0

[Ax(s) +Bu(s)]ds+

⌉︄
t

0

Nx(s) ↗ dWH(s), t ∝ 0. (4.52)

The scalar output corresponding to the Galerkin solution is given by

yn(t) = Cx(t), t ∝ 0,

where C
↘ = (Cuk)k=1,...,n

. This follows from the relation

yn(t) = Cx(t) =
n⌊︄

k=1

⇒Xn(t), uk⇑UCuk. (4.53)

The Fourier coe!cients of the Galerkin solution for SPDE in Example (4.20) are given
by (4.52) and are expressed in terms of the following components:

• A = diag(0,↘1,↘1,↘2, . . .),

• B =

\︂⋀︁
1
[ϖ4 ,

3ϖ
4 ]

2(·), uk
⋁︁

U

⎛

k=1,...,n

,

• N =
⟩︄⋂︁

e
↑|·↑ϖ

2 |↑·
ui, uk

⨄︁

U

\︄

k,i=1,...,n

.



5 Gramian-Based Model
Reduction for Unstable
Stochastic Systems

As we revisit the system dynamics previously discussed in Chapter 3, we present the
system (3.19) again for continuity and ease of reference. The matrices within the system
retain their defined properties as follows:

dx(t) = [Ax(t) +Bu(t)]dt+
q⌊︄

i=1

Nix(t)dWi(t), x(0) = x0, (5.1a)

y(t) = Cx(t), t → [0, T ], (5.1b)

where (5.1a) represents the state dynamics and (5.1b) defines the output equation of the
system. The state dimension n is assumed to be large and the quantity of interest y

is often low-dimensional, i.e., p ′ n, but we also discuss the case of a large p. Using
Definition 3.10, x(t, x0, u), defined the state in dependence on the initial state x0 and the
control u → M2([0, T ];Rm) (see (3.20)).

The goal is to construct a system with state xr and quantity of interest yr having the
same structure as (5.1) but a much smaller state dimension r ′ n (see Section 3.2.4.1).
At the same time, the aim is to ensure y ∞ yr. The detailed results of this study have
been published in [101].

5.1 Gramian-Based MOR

5.1.1 Gramians and Characterization of Dominant
Subspaces

Identifying the e#ective dimensionality of the system (5.1) requires the study of the fun-
damental solution to the homogeneous stochastic state equation defined in (3.24). As
previously developed, the matrix-valued stochastic process ”, which characterizes these
fundamental solutions, satisfies

”(t) = In +

⌉︄
t

0

A”(s)ds+
q⌊︄

i=1

⌉︄
t

0

Ni”(s)dWi(s), t → [0, T ], (5.2)

where In denotes the identity matrix. By multiplying (5.2) by the initial state vector
x0 from the right and assuming no control input (u ⊥ 0), we obtain the solution to the
stochastic state equation (5.1a).
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Now, we extend the concept of stochastic Gramians discussed in Chapter 3 by intro-
ducing their time-limited counterparts. Based on the stochastic fundamental matrix ”
defined previously, we establish the time-limited Gramians as follows:

PT :=E
⌉︄

T

0

”(s)BB
↘”↘(s)ds (5.3)

QT :=E
⌉︄

T

0

”↘(s)C↘
C”(s)ds, (5.4)

where PT and QT are supposed to identify the less relevant states in (5.1a) and (5.1b),
respectively. The time-limited Gramians PT and QT serve as stochastic analogs to the
deterministic time-limited Gramians, which are obtained in the absence of noise influences
(Ni = 0 for all i), leading to ”(t) = e

At. MOR scheme based on such Gramians in
a deterministic framework is investigated, e.g., in [37, 64, 102]. PT and QT generally
exist in contrast to their limits limT⇒⇐ PT and limT⇒⇐QT which require mean square
asymptotic stability. MOR methods based on these limits are, for example, considered in
[9, 14, 96, 103] and are already analyzed in detail. However, in practice, the necessary
stability condition is often not satisfied.

Building on the foundational analysis introduced in Chapter 3, this section delves deeper
into the relationship between the covariance matrix PT and the dominant subspaces of
the system described by (5.1a), specifically under the condition of zero initial data. As
previously outlined, we consider an orthonormal basis (pk)k=1,...,n of Rn, consisting of
eigenvectors of PT , to express the state evolution:

x(t; 0, u) =
n⌊︄

k=1

⇒x(t; 0, u), pk⇑2 pk.

As delineated in Section 3.2.3, with the initial state set to zero, the upper bound of the
Fourier coe!cients is governed by:

sup
t≃[0,T ]

E |⇒x(t, 0, u), pk⇑2| ↔ ϖ

1
2
k
⇐u⇐

T
, (5.5)

where ϖk denotes the eigenvalue associated with pk. A smaller ϖk suggests a negligible
influence of the corresponding eigenvector pk on the behavior of the system, allowing the
reduction of its presence in the system model.

Further, to assess the impact of the state directions on the quantity of interest y, we
revisit the expansion of the initial state x0 as:

x0 =
n⌊︄

k=1

⇒x0, qk⇑2 qk,

where (qk)k=1,...,n is an orthonormal basis of eigenvectors of QT , each associated with an
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eigenvalue µk. The solution representation of the state variable provides that:

y(t;x0, u) = C”(t)x0 + C

⌉︄
t

0

”(t, s)Bu(s)ds

=
n⌊︄

k=1

⇒x0, qk⇑2C”(t)qk + C

⌉︄
t

0

”(t, s)Bu(s)ds,

with t → [0, T ]. The eigenspaces corresponding to minor eigenvalues µk are determined to
be of minimal consequence to y, supported by:

E
⌉︄

T

0

⇐C”(t)qk⇐22 dt = q
↘
k
QT qk = µk. (5.6)

This indicates that the eigenspaces of QT corresponding to small eigenvalues µk are not
crucial for the performance of the system. Given that the less significant directions in
the state space, as identified in equations (5.1a) and (5.1b) through (5.5) and (5.6), are
intended to be eliminated. This can be done by diagonalizing PT such that less important
variables in (5.1a) can be easily identified and truncated. Another, but computationally
more expensive, approach is based on simultaneously diagonalizing PT and QT which
allows the removal of more redundant information from the system. Both strategies are
discussed in Section 5.1.2.

Below, we point out the relation between the Gramians and linear matrix di#erential
equations, crucial for computing these Gramians PT and QT to facilitate the derivation
of a reduced system. Specifically, by employing the di#erential formulation from equation
(3.37), it can be demonstrated that the matrix function

F (t) = E[”(t)BB
↘”↘(t)], for t → [0, T ], (5.7)

satisfies the following di#erential equation:

Ḟ (t) = AF (t) + F (t)A↘ +
q⌊︄

i,j=1

NiF (t)N↘
j Kij , F (0) = BB

↘
.

Utilizing the operators LA and %N , as defined in equations (3.5) and (3.30) respectively,
we can express this relationship more precisely:

Ḟ (t) = LA (F (t)) +%N (F (t)) , F (0) = BB
↘
. (5.8)

Integrating both sides of (5.8) yields

F (T )↘BB
↘ = LA (PT ) +%N (PT ) . (5.9)

The link between QT and the corresponding matrix equation is established in a dif-
ferent way. Before formulating this result in the following proposition, we first clarify
the definitions of the Lyapunov operators L↓

A
and %↓

N
, as delineated in (3.6) and (3.31)
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respectively:

L↓
A = A

↘
X +XA, %↓

N (X) :=
q⌊︄

i,j=1

N
↘
i XNjkij .

Proposition 5.1 Let C
↘
C be contained in the eigenspace of the Lyapunov operator

L↓
A
+%↓

N
. Then, G(t) = E[”↘(t)C↘

C”(t)], t → [0, T ], satisfies

Ġ(t) = L↓
A (G(t)) +%↓

N (G(t)) , G(0) = C
↘
C. (5.10)

Proof. Since C
↘
C is contained in the eigenspace of the Lyapunov operator, there exists

ϑ1, . . . ,ϑn2 → C such that C
↘
C =

⎨
n
2

k=1
ϑkVk, where (Vk) are eigenvectors of L↓

A
+ %↓

N

corresponding to the eigenvalues (φk). Then, we have

E[”↘(t)C↘
C”(t)] =

n
2⌊︄

k=1

ϑkE[”↘(t)Vk”(t)].

Let us apply Ito’s product rule, see Example 1.27, to ”↘(t)Vk”(t) resulting in

d

⟩︄
”↘(t)Vk”(t)

\︄
= d

⟩︄
”↘(t)

\︄
Vk”(t) + ”↘(t)Vkd (”(t)) + d

⟩︄
”↘(t)

\︄
Vkd (”(t)) .

We insert the stochastic di#erential of ” above, compare with (5.2), leading to

d

⟩︄
”↘(t)Vk”(t)

\︄
=

⎢
”↘(t)A↘dt+

q⌊︄

i=1

”↘(t)N↘
i dWi(t)

⎥
Vk”(t)

+ ”↘(t)Vk

⎢
A”(t)dt+

q⌊︄

i=1

Ni”(t)dWi(t)

⎥

+ ”↘(t)
q⌊︄

i,j=1

N
↘
i VkNjkij”(t)dt

= ”↘(t)

⎟

⟩︂A
↘Vk + VkA+

q⌊︄

i,j=1

N
↘
i VkNjkij

⨆︁

∮︁”(t)dt

+
q⌊︄

i=1

”↘(t)
⟩︄
N

↘
i VkNi

\︄
”(t)dWi(t)

We apply the expected value to both sides of the above identity and exploit that the
integrals have mean zero (see Lemma 1.19). Hence, we obtain

d

dt
E[”↘(t)Vk”(t)] = E[”↘(t)(L↓

A +%↓
N )(Vk)”(t)] = φkE[”↘(t)Vk”(t)].

This implies that E[”↘(t)Vk”(t)] = eϱkt Vk providing E[”↘(t)C↘
C”(t)] =

⎨
n
2

k=1
ϑk eϱkt Vk.
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Consequently, we obtain

d

dt
E[”↘(t)C↘

C”(t)] =
n
2⌊︄

k=1

ϑk e
ϱkt φkVk =

n
2⌊︄

i=1

ϑk e
ϱkt(L↓

A +%↓
N )(Vk)

= (L↓
A +%↓

N )(E[”↘(t)C↘
C”(t)])

using the linearity of L↓
A
+%↓

N
. This concludes the proof.

Remark 5.2 The assumptions of Proposition 5.1 are invariably satisfied if the operator
K, defined in Remark 3.18 as

K = A↖ I + I ↖A+
q⌊︄

i,j=1

Ni ↖Njkij , (5.11)

is diagonalizable over C because in that case there is a basis of Cn
2
consisting of eigen-

vectors of K↘. Hence, vec(C↘
C) can be spanned by these eigenvectors which are of the

form vec(Vk) with Vk being an eigenvector of L↓
A
+ %↓

N
providing that C

↘
C is in the

eigenspaces of this operator. Therefore, from the computational point of view, the as-
sumption of Proposition 5.1 does not restrict the generality since the set of diagonalizable
n
2 ∀ n

2 matrices is dense in Cn
2→n

2
.

In fact, we can find a stochastic representation of the solution to (5.10) di#erent from
E[”↘(t)C↘

C”(t)], t → [0, T ]. Introducing the fundamental solution ”d by the equation

”d(t) = I +

⌉︄
t

0

A
↘”d(s)ds+

q⌊︄

i=1

⌉︄
t

0

N
↘
i ”d(s)dWi(s),

we see thatG(t) = E[”d(t)C↘
C”↘

d
(t)]. This is a direct consequence of the relation between

E[”(t)BB
↘”↘(t)] and the solution of (5.8) when (A,B,Ni) is replaced by (A↘

, C
↘
, N

↘
i
).

Therefore, E[”d(t)C↘
C”↘

d
(t)], t → [0, T ], solves the equation (5.10) and hence coincides

with E[”↘(t)C↘
C”(t)], t → [0, T ], given the assumption of Proposition 5.1.

Generally, we have ”d(t) ↙= ”↘(t). In case all matrices A,N1, . . . , Nq commute, we know
that A and Ni commute with ”1. Hence, ”d(t) = ”↘(t) which can be seen as transposing
(5.2) and subsequently exploiting the commutative property. This is particularly given in
the deterministic case where Ni = 0 for all i = 1, . . . , q.

Under the assumption of Proposition 5.1, it holds that

G(T )↘ C
↘
C = L↓

A (QT ) +%↓
N (QT ) , (5.12)

exploiting (5.10). In fact, we need to compute PT and QT within the MOR procedure
described later. Lyapunov equations (5.9) and (5.12) are used to do so. However, one
needs to have access to F (T ) and G(T ) which are the terminal values of the matrix-
di#erential equations (5.8) and (5.10). This is indeed very challenging in a framework,
where n B 100. We will address possible approaches for computing PT and QT for such
settings in Section 5.3.

1see Proposition 3.13
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5.1.2 Reduced Order Modeling by Transformation of
Gramians

In this chapter, we delve deeper into MOR techniques that are previously introduced
in Section 3.2.4. A crucial step in this process involves selecting an appropriate regular
transformation matrix S, which redefines the state variable as xS(t) = Sx(t). This trans-
formation, discussed in detail in Section 3.1.3.1, facilitates the dimensionality reduction
of the system by focusing on its most significant dynamic behaviors.

Inserting this transformed state variable into the original system equation (5.1), as
derived in Chapter 3, we obtain the transformed stochastic di#erential equations:

dxS(t) = [ASxS(t) +BSu(t)]dt+
q⌊︄

i=1

Ni,SxS(t)dWi(t), y(t) = CSxS(t), t → [0, T ],

(5.13)

where the transformed system matrices are defined as follows:

(AS , BS , CS , Ni,S) = (SAS↑1
, SB,CS

↑1
, SNiS

↑1).

This setup ensures that the transformed system (5.13) has the same input-output behavior
as (5.1) but the fundamental solution and hence the Gramians are di#erent. The funda-
mental solution of (5.13) is ”S(t) = S”(t)S↑1 which can be observed by multiplying (5.2)
with S from the left and with S

↑1 from the right. Consequently, the new Gramians are

PT,S = E
⌉︄

T

0

”S(s)BSB
↘
S ”

↘
S (s) ds = SPTS

↘

QT,S = E
⌉︄

T

0

”↘
S (s)C

↘
S CS”S(s)ds = S

↑↘
QTS

↑1

The idea is to diagonalize at least one of these Gramians, since in a system with diagonal
Gramians, the orthonormal bases (pk) and (qk) are canonical unit vectors (columns of
the identity matrix). Thus, unimportant directions can be identified easily by (5.5) and
(5.6) and are associated to the small diagonal entries of the new Gramians. For the first

approach, we set S = S1, where S1 is part of the eigenvalue decomposition PT = S
↘
1
$(1)

T
S1.

This leads to PT,S = $(1)

T
with $(1)

T
being the diagonal matrix of eigenvalues of PT . Notice

that S↘ = S
↑1 holds in this case. If (5.1a) is mean square asymptotically stable, PT can

be replaced by limT⇒⇐ PT . This method based on the limit is investigated in Section
3.2.4.3.

The second approach uses S = S2 as the stochastic Balance Truncation method2, which

leads to PT = QT = $(2)

T
, where $(2)

T
is the diagonal matrix of the square roots of

eigenvalues of PTQT or HSVs of the system. Given PT , QT > 0, the transformation S2

and its inverse are obtained by

S2 = $(2)

T

↑ 1
2
U

↘
R, S

↑1

2
= LU$(2)

T

↑ 1
2
. (5.14)

where the ingredients of (5.14) are computed by the factorizations PT = LL
↘, QT = R

↘
R

2See Section 3.2.4.4
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and the singular value decomposition of RL = U$(2)

T
U

↘. The same procedure can be
conducted for the limits of the Gramians (as T ⇔ ⇓) if mean square asymptotic stability
is given (see Section 3.2.4.4). However, such a stability condition is generally too restrictive
in practice. We introduce the matrix

$T = diag(ςT,1, . . . ,ςT,n) = $(1)

T
,$(2)

T

as the diagonal matrix of either eigenvalues of PT or of HSVs of system (5.1). For
S = S1, S2 the coe!cients of (5.13) are partitioned as follows

AS =

\︂
A11 A12

A21 A22

⎛
, BS =

\︂
B1

B2

⎛
, CS =

)︄
C1 C2

[︄
,

Ni,S =

\︂
Ni,11 Ni,12

Ni,21 Ni,22

⎛
, xS(t) =

\︂
x1(t)
x2(t)

⎛
, $T =

\︂
$T,1

$T,2

⎛
,

(5.15)

where x1(t) → Rr, A11 → Rr→r, B1 → Rr→m, C1 → Rp→r, Ni,11 → Rr→r and $T,1 → Rr→r etc.
The variables x2 are associated to the matrix $T,2 of small diagonal entries of $T and
are the less relevant ones. A reduced system is now obtained by truncating the equations
of x2 in (5.13). Additionally, we set x2 ⊥ 0 in the equations for x1 leading to a reduced
system

dxr(t) = [Arxr(t) +Bru(t)]dt+
q⌊︄

i=1

Ni,rdWi(t), xr(0) = x0,r (5.16a)

yr(t) = Crxr(t), t → [0, T ], (5.16b)

As in equation (3.44), we observe that

[xr(t) Ar Ni,r Br Cr] = [x1(t) A11 Ni,r B1 C1] ,

approximating (5.1). Below, we give another interpretation for (5.16). Let us decompose
the transformation, another representation for (3.12) and (3.13)

S =

\︂
M

↘

ϱ

⎛
, S

↑1 =
)︄
V ϱ

[︄
(5.17)

where M↘ and V are the first r rows and columns of S and S
↑1, respectively (see Section

3.2.4.2 ). Notice that M
↘
V = I and hence VM

↘ is a projection (see equation (3.14)).
Furthermore, we have M = V if S = S1. Consequently, (5.16) can be seen as a Petrov-
Galerkin projection model with Ar = M

↘
AV , Br = M

↘
B, Cr = CV and Ni,r = M

↘
NiV

which is obtained by the state approximation x(t) ∞ V xr(t), as derived in equation (3.45)
of Chapter 3. Inserting this approximation into (5.1) and subsequently multiplying the
state equation with M

↘ to enforce the remainder term to be zero then results in (5.16).

5.2 Output Error Bound

In this section, we prove a bound for the error between (5.1) and (5.16). Below, we
assume zero initial conditions, i.e., x0 = 0 and x0,r = 0. We begin with a general bound
following the steps of [14, 96]. The solutions x(t) and xr(t), t → [0, T ], to (5.1) and (5.16)



5 Gramian-Based Model Reduction for Unstable Stochastic
Systems

98

can be expressed using their fundamental matrices ”(t) and ”r(t), respectively, see [96].
Therefore, we have

x(t; 0, u) =

⌉︄
t

0

”(t, s)Bu(s)ds, xr(t; 0, u) =

⌉︄
t

0

”r(t, s)Bru(s)ds.

As discussed in Remark 3.12, we have ”(t, s) = ”(t)”↑1(s) and ”r(t, s) = ”r(t)”↑1
r (s).

Consequently, representations for the outputs are

y(t) = Cx(t; 0, u) = C

⌉︄
t

0

”(t, s)Bu(s)ds,

yr(t) = Crxr(t; 0, u) = Cr

⌉︄
t

0

”r(t, s)Bru(s)ds,

(5.18)

where t → [0, T ]. Then, we find

E⇐y(t)↘ yr(t)⇐2 = E
⎞⎞⎞C

⌉︄
t

0

”(t, s)Bu(s)ds↘ Cr

⌉︄
t

0

”r(t, s)Bru(s)ds
⎞⎞⎞
2

↔ E
⌉︄

t

0

⎞⎞⎞ (C”(t, s)B ↘ Cr”r(t, s)Br)u(s)
⎞⎞⎞
2

ds

↔ E
⌉︄

t

0

⎞⎞⎞C”(t, s)B ↘ Cr”r(t, s)Br

⎞⎞⎞
F

⇐u(s)⇐2ds.

(5.19)

Here, ⇐ · ⇐F denotes the Frobenius norm (see Appendix A.1.2). Using Cauchy’s inequality,
it holds that

E⇐y(t)↘ yr(t)⇐2 ↔
\︂
E
⌉︄

t

0

⎞⎞⎞C”(t, s)B ↘ Cr”r(t, s)Br

⎞⎞⎞
2

F

ds

⎛ 1
2
\︂
E
⌉︄

t

0

⇐u(s)⇐22ds
⎛ 1

2

=

\︂
E
⌉︄

t

0

⎞⎞⎞Ce”e(t, s)Be

⎞⎞⎞
2

F

ds

⎛ 1
2
\︂
E
⌉︄

t

0

⇐u(s)⇐22ds
⎛ 1

2

,

where ”e =
{︄
# 0

0 #r

}︄
is the fundamental solution to the system with coe!cients:

A
e =

{︄
A 0

0 Ar

}︄
, N

e

i =
⎡
Ni 0

0 Ni,r

⎤
, B

e =
{︄

B

Br

}︄
, C

e = [ C ↑Cr ] .

Applying the arguments that are used in Remark 3.20, we know that

E[”e(t, s)Be
B

e↘”e↘(t, s)] = E[”e(t↘ s)Be
B

e↘”e↘(t↘ s)]. (5.20)

For t → [0, T ], the identity in (5.20) yields

E
⌉︄

t

0

⎞⎞⎞Ce”e(t, s)Be

⎞⎞⎞
2

F

ds = E
⌉︄

t

0

tr(Ce”e(t, s)Be
B

e↘”e↘(t, s)Ce↘)ds

= E
⌉︄

t

0

tr(Ce”e(s)Be
B

e↘”e↘(s)Ce↘)ds

↔ tr
⟩︄
C

e

⌉︄
T

0

F
e(s)dsCe↘

\︄

(5.21)
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with F
e(t) = E

{︄
”e(t)Be

B
e↘”e↘(t)

}︄
exploiting Fubini’s theorem as well as the fact that

the trace and C
e are linear operators. Since F (t) = E

{︄
”(t)BB

↘”↘(t)
}︄
is a stochastic

representation for equation (5.8), see Section 5.1.1, F e satisfies

Ḟ
e

(t) = A
e
F

e(t) + F
e(t)Ae↘ +

q⌊︄

i,j=1

N
e

i F
e(t)N e

j

↘
kij , F

e(0) = B
e
B

e↘
, (5.22)

using the same arguments. From (5.22), it can be seen that the left upper n ∀ n block
of F e is F which solves (5.8). On the other hand, the right lower r ∀ r block Fr and the
right upper n∀ r block F̃ of F e satisfy

Fr
˙ (t) = ArFr(t) + Fr(t)A

↘
r +

q⌊︄

i,j=1

Ni,rFr(t)N
↘
j,rkij , Fr(0) = BrB

↘
r , (5.23)

Ḟ̃ (t) = AF̃ (t) + F̃ (t)A↘
r +

q⌊︄

i,j=1

NiF̃ (t)N↘
j,rkij , F̃ (0) = BB

↘
r , (5.24)

with stochastic representations

Fr(t) = E[”r(t)BrB
↘
r ”

↘
r (t)], F̃ (t) = E[”(t)BB

↘
r ”

↘
r (t)]. (5.25)

Consequently, using (5.21) with the partition F
e =

⎡
F F̃

F̃
↑

Fr

⎤
, we find

E
⌉︄

t

0

⎞⎞⎞Ce”e(t, s)Be

⎞⎞⎞
2

F

ds ↔ tr
⟩︄
CPT C

↘
\︄
+ tr

⟩︄
CrP̄ TC

↘
r

\︄
↘ 2 tr

⟩︄
CP̃ TC

↘
r

\︄
,

where PT,r =
]︄
T

0
Fr(t)dt and P̃ T =

]︄
T

0
F̃ (t)dt solve

Fr(T )↘BrB
↘
r = ArPT,r + PT,rA

↘
r +

q⌊︄

i,j=1

Ni,rPT,rN
↘
j,rkij , (5.26)

F̃ (T )↘BB
↘
r = AP̃ T + P̃ TA

↘
r +

q⌊︄

i,j=1

NiP̃ TN
↘
j,rkij . (5.27)

Summing up, we obtain that

sup
t≃[0,T ]

E⇐y(t)↘ yr(t)⇐2 ↔
⟩︄
tr(CPTC

↘) + tr(CrPT,rC
↘
r )↘ 2 tr(CP̃ TC

↘
r )

\︄ 1
2 ⇐u⇐T . (5.28)

The bound in (5.28) is very useful in order to check for the quality of a reduced system.
Since PT has to be computed to obtain (5.16), the actual cost to determine the bound
lies in solving the low-dimensional matrix equations (5.26) and (5.27). However, (5.28) is
only an a-posteriori estimate which is computed after the reduced order model is derived.
Therefore, we discuss the role of $T,2 = diag(ςT,r+1, . . . ,ςT,n) which is either the matrix
of neglected eigenvalues of PT or HSVs of the system. $T,2 is associated to the truncated
state variables x2 of (5.13), compare with (5.15). By (5.5) and (5.6), it is already known
that such variables x2 are less relevant if ςT,r+1, . . . ,ςT,n are small. This makes the values



5 Gramian-Based Model Reduction for Unstable Stochastic
Systems

100

ςi a good a-priori criterion for the choice of r. In the following, we want to investigate
how the truncated values ςT,r+1, . . . ,ςT,n characterize the error of the approximation. For
that reason, we prove an error bound depending on $T,2. As we will see, $T,2 is not the
only factor having an impact on the bound that is structurally independent of whether we
choose S = S1 or S = S2.

Theorem 5.3 Let y be the output of (5.1) and yr be the one of (5.16). Suppose that
S = S1, S2, where S1 is the factor of the eigenvalue decomposition of the Gramian PT

and S2 is the balancing transformation defined in (5.14). Using partition (5.15) of the
realization (AS , BS , CS , Ni,S), we have

sup
t≃[0,T ]

E⇐y(t)↘ yr(t)⇐2

↔
⎢
tr

\︂
$T,2

⨀︂
C

↘
2 C2 + 2A↘

12Q̃2 +
q⌊︄

i,j=1

N
↘
i,12

⟩︄
2Q̃

\︂
Nj,12

Nj,22

⎛
↘QrNj,12

\︄
kij

⨁︁⎛

+ 2 tr

\︂
Q̃

\︂
F̃ 1 ↘ F11

F̃ 2 ↘ F21

⎛⎛
+ tr

\︂
Qr(F11 ↘ Fr)

⎛⎥ 1
2

⇐u⇐T ,

where Qr and Q̃ =
)︄
Q̃1 Q̃2

[︄
and are the unique solutions to

A
↘
r Qr +QrAr +

q⌊︄

i,j=1

N
↘
i,rQrNj,rkij = ↘C

↘
r Cr, (5.29)

A
↘
r Q̃+ Q̃AS +

q⌊︄

i,j=1

N
↘
i,rQ̃Nj,Skij = ↘C

↘
r CS . (5.30)

Moreover, the above bound involves

FS(T ) := SF (T )S↘ =
⎡
F11 F12
F21 F22

⎤
and F̃S(T ) := SF̃ (T ) =

⎡
F̃ 1

F̃ 2

⎤
,

where F (T ), Fr = Fr(T ) and F̃ (T ) are the terminal values of (5.8), (5.23) and (5.24),
respectively.

The terms in the bound of Theorem 5.3 that do not directly depend on $T,2 are related
to the covariance error of the dimension reduction at the terminal time T (with u ⊥ 0).
To see this, let V be the matrix introduced in (5.17). As explained below (5.17), the state
of the reduced system (5.16) can be interpreted as an approximation of the original state
in the subspace spanned by the columns of V . By the stochastic representations of F (T ),
F̃ (T ) and Fr(T ) (see (5.7) and (5.25)), we can view F (T ) and Fr(T ) as covariances of the
original and reduced model at time T , whereas F̃ (T ) describes the correlations between
both systems. Let us now assume that

F (T ) ∞ F̃ (T )V ↘
, (5.31)

F (T ) ∞ V Fr(T )V
↘
, (5.32)

i.e., the covariance at T is well-approximated in the reduced system. This is, e.g.,
given if the uncontrolled state is well-approximated in the range of V at time T , i.e.,
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”(T )B ∞ V ”r(T )Br. Now, multiplying (5.31) with S from the left and with M (defined

in (5.17)) from the right, we obtain that
⎡
F̃ 1↑F11

F̃ 2↑F21

⎤
is small. Multiplying (5.32) with M

↘

from the left and with M the right provides a low deviation between F11 = M
↘
F (T )M

and Fr. Although we additionally have these terms related to the covariance error, looking
at $T,2 is still suitable for getting an intuition concerning the error and hence a first idea
for the choice of r. This is because a small $T,2 goes along with a small error between
”(T )B and its approximation V ”r(T )Br in the range of V . This observation can be made
due to

E
⌉︄

T

0

⇐ (”(t)B)↘ zT ⇐22dt = z
↘
T PT zT = 0,

where zT → kerPT . Since t ↦⇔ ”(t) is P-almost surely continuous, we have (”(t)B)↘ zT = 0
P-almost surely for all t → [0, T ]. Choosing t = T , we therefore know that the columns of
”(T )B are orthogonal to kerPT . Given that PT is symmetric, its image and kernel are
orthogonal complements of each other in the vector space. Therefore, the orthogonality of
”(T )B to the kernel implies that ”(T )B → imPT . Hence, there is a matrix ZT such that

”(T )B = PTZT = S
↑1$TS

↑↘
ZT =

)︄
V ϱ

[︄\︂$T,1

$T,2

⎛\︂
V

↘

ϱ

⎛
ZT ∞ V $T,1V

↘
ZT ,

i.e., the columns of ”(T )B lie almost in the span of V if $T,2 is small. Therefore, a
good approximation can be expected if one truncates states with associated small values
ςT,r+1, . . . ,ςT,n. This can be confirmed by computing the representation in (5.28) after a
reduced order dimension r was chosen based on the values ςT,i. We prove the error bound
in the following:

Proof of Theorem 5.3. Since S = S1, S2 diagonalizes PT , we have

AS$T + $TA
↘
S +

q⌊︄

i,j=1

Ni,S$TN
↘
j,Skij = ↘BSB

↘
S + FS(T ). (5.33)

We set Ỹ T := SP̃ T and obtain the corresponding equation by multiplying (5.27) with S

from the left resulting in

ASỸ T + Ỹ TA
↘
r +

q⌊︄

i,j=1

Ni,SỸ TN
↘
j,rkij = ↘BSB

↘
r + F̃S(T ). (5.34)

Now, we analyze the trace expression 1
2 :=

⟩︄
tr(CPTC

↘) + tr(CrPT,rC
↘
r )↘ 2 tr(CP̃ TC

↘
r )

\︄

in (5.28). We see that

1
2 =

⟩︄
tr(CS$TC

↘
S ) + tr(CrPT,rC

↘
r )↘ 2 tr(CSỸ TC

↘
r )

\︄

=
⟩︄
tr(Cr$T,1C

↘
r ) + tr(C2$T,2C

↘
2 ) + tr(CrPT,rC

↘
r )↘ 2 tr(CSỸ TC

↘
r )

\︄
.

(5.35)
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Exploiting (5.30) yields

↘ tr(CSỸ TC
↘
r ) = ↘ tr(Ỹ TC

↘
r CS) = tr

⎟

⟩︂Ỹ T

⨁︂

⨂︂A↘
r Q̃+ Q̃AS +

q⌊︄

i,j=1

N
↘
i,rQ̃Nj,Skij

∑︁

∫︁

⨆︁

∮︁

= tr

⎟

⟩︂Q̃

⨁︂

⨂︂ASỸ T + Ỹ TA
↘
r +

q⌊︄

i,j=1

Ni,SỸ TN
↘
j,rkij

∑︁

∫︁

⨆︁

∮︁ .

Comparing (5.30) and (5.34), we find that

↘ tr(CSỸ TC
↘
r ) = ↘ tr(Q̃BSB

↘
r ) + tr(Q̃F̃S(T )). (5.36)

Using the partition in (5.15), the first r columns of (5.33) are

\︂
Ar

A21

⎛
$T,1 +

\︂
$T,1A

↘
r

$T,2A
↘
12

⎛
+

q⌊︄

i,j=1

\︂\︂
Ni,r

Ni,21

⎛
$T,1N

↘
j,r +

\︂
Ni,12

Ni,22

⎛
$T,2N

↘
j,12

⎛
kij

= ↘BSB
↘
r +

\︂
F11

F21

⎛
.

(5.37)

We insert (5.37) into (5.36) and obtain

↘ tr(CSỸ TC
↘
r ) = tr

\︂
Q̃

\︂
F̃ 1 ↘ F11

F̃ 2 ↘ F21

⎛⎛

+ tr

⎢
Q̃

∮︂\︂
Ar

A21

⎛
$T,1 +

\︂
$T,1A

↘
r

$T,2A
↘
12

⎛

+
q⌊︄

i,j=1

kij

\︂\︂
Ni,r

Ni,21

⎛
$T,1N

↘
j,r +

\︂
Ni,12

Ni,22

⎛
$T,2N

↘
j,12

⎛⨀︁⎥

= tr

\︂
Q̃

\︂
F̃ 1 ↘ F11

F̃ 2 ↘ F21

⎛⎛
+ tr

⎟

⟩︂$T,2

⨁︂

⨂︂A↘
12Q̃2 +

q⌊︄

i,j=1

N
↘
i,12Q̃

\︂
Nj,12

Nj,22

⎛
kij

∑︁

∫︁

⨆︁

∮︁

+ tr

⎟

⟩︂$T,1

⨁︂

⨂︂Q̃
\︂
Ar

A21

⎛
+A

↘
r Q̃1 +

q⌊︄

i,j=1

N
↘
i,rQ̃

\︂
Nj,r

Nj,21

⎛
kij

∑︁

∫︁

⨆︁

∮︁ .

Using the partition of the balanced realization in (5.15), we observe that the last term
of the above equation is the first r columns of (5.30). So, we can say

↘ tr(CSỸ TC
↘
r ) = tr

\︂
Q̃

\︂
F̃ 1 ↘ F11

F̃ 2 ↘ F21

⎛⎛
+ tr

⎟

⟩︂$T,2

⨁︂

⨂︂A↘
12Q̃2 +

q⌊︄

i,j=1

N
↘
i,12Q̃

\︂
Nj,12

Nj,22

⎛
kij

∑︁

∫︁

⨆︁

∮︁

↘ tr($T,1C
↘
r Cr).

(5.38)
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Inserting (5.38) into (5.35), we have

1
2 = tr

⎟

⟩︂$T,2

⨁︂

⨂︂C↘
2 C2 + 2A↘

12Q̃2 + 2
q⌊︄

i,j=1

N
↘
i,12Q̃

\︂
Nj,12

Nj,22

⎛
kij

∑︁

∫︁

⨆︁

∮︁

+ 2 tr

\︂
Q̃

\︂
F̃ 1 ↘ F11

F̃ 2 ↘ F21

⎛⎛
+ tr

⟩︄
(PT,r ↘ $T,1)C

↘
r Cr

\︄
.

(5.39)

Equation (5.29) now yields

tr
⟩︄
(PT,r ↘ $T,1)C

↘
r Cr

\︄

= ↘ tr

⎟

⟩︂Qr

⨁︂

⨂︂Ar(PT,r ↘ $T,1) + (PT,r ↘ $T,1)A
↘
r +

q⌊︄

i,j=1

Ni,r(PT,r ↘ $T,1)N
↘
j,rkij

⨆︁

∮︁

∑︁

∫︁

The combination of (5.26) and the left upper block of (5.33) gives

Ar(PT,r ↘ $T,1) + (PT,r ↘ $T,1)A
↘
r +

q⌊︄

i,j=1

Ni,r(PT,r ↘ $T,1)N
↘
j,rkij

=
q⌊︄

i,j=1

Ni,12$T,2N
↘
j,12kij + (Fr ↘ F11).

Consequently, we have

tr
⟩︄
(PT,r ↘ $T,1)C

↘
r Cr

\︄
= ↘ tr

⎟

⟩︂$T,2

⨁︂

⨂︂
q⌊︄

i,j=1

N
↘
i,12QrNj,12kij

∑︁

∫︁

⨆︁

∮︁+ tr (Qr(F11 ↘ Fr)) .

So, we obtain that

1
2 = tr

⎟

⟩︂$T,2

⨁︂

⨂︂C↘
2 C2 + 2A↘

12Q̃2 +
q⌊︄

i,j=1

N
↘
i,12

⟩︄
2Q̃

\︂
Nj,12

Nj,22

⎛
↘QrNj,12

\︄
kij

∑︁

∫︁

⨆︁

∮︁

+ 2 tr

\︂
Q̃

\︂
F̃ 1 ↘ F11

F̃ 2 ↘ F21

⎛⎛
+ tr (Qr(F11 ↘ Fr)) ,

which concludes the proof of this theorem.

Notice that the estimate in Theorem 5.3 is also beneficial if Ni = 0 for all i = 1, . . . , q,
since it improves the deterministic bound [102] in the sense that we can generally deduce
the relation between the truncated HSVs and the actual approximation error here. It is
important to note that, in the deterministic case, ”improvement” is not meant in terms
of accuracy. The error bound representation in [102] just has the drawback that it al-
lows making similar conclusions only if the underlying system is asymptotically stable.
Moreover, the result of Theorem 5.3 is a generalization of the bounds for mean square
asymptotically stable stochastic systems [14, 103], where the covariance related terms
vanish as T ⇔ ⇓.
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5.3 Computation of Gramians

In this section, we discuss how to compute PT and QT which allow us to identify redundant
information in the system. These matrices are solutions to Lyapunov equations (5.9) and
(5.12) with left hand sides depending on F (T ) and G(T ), respectively. Given F (T ) and
G(T ) it is therefore required to solve generalized Lyapunov equations

L(X) = LA(X) +%N (X), (5.40)

e!ciently, where L is some matrix of suitable dimension. According to Remark 3.18 in
Chapter 3 this can be done by vectorization, i.e., one can try to solve vec (L) = K vec(X)
with the Kronecker matrix K defined in (5.11). Since K is of order n

2, the complexity
of deriving vec(X) from this linear system of equations is O(n6) making this procedure
infeasible for n B 100.

However, more e!cient techniques have been developed in order to solve (5.40), see,
e.g. [26], where a sequence of standard Lyapunov equations (%N = 0) are solved to find
X. Such standard Lyapunov equations can either be tackled by direct methods, such as
Bartels-Stewart [7], which cost O(n3) operations, or by iterative methods such as ADI or
Krylov subspace methods [111], which have a much smaller complexity than the Bartels-
Stewart algorithm, in particular, when the left hand side is of low rank or structured
(complexity of O(n2) or less).

Solving for PT and QT now relies on having access to F (T ) and G(T ) which are the
terminal values of the matrix-di#erential equations (5.8) and (5.10). The remainder of
this section will deal with strategies to compute these terminal values.

5.3.1 Exact Methods

One solution to overcome the issue of unknown F (T ) and G(T ) is to use vectorizations of
(5.8) and (5.10) for dimensions n of a few hundreds. If we define f(t) := vec(F (t)) and
g(t) = vec(G(t)), then

ḟ(t) = Kf(t), f(0) = vec(BB
↘), ġ(t) = K↘

g(t), g(0) = vec(C↘
C),

where K is defined in (5.11). Therefore, obtaining F (T ) and G(T ) rely on the e!cient
computation of a matrix exponential, since

f(T ) = eKT vec(BB
↘), g(T ) = eK

↑
T vec(C↘

C).

One can find a discussion on how to determine a matrix exponential e!ciently in [64] and
references therein. Alternatively, one might think of discretizing the matrix di#erential
equations (5.8) and (5.10) to find an approximation of F (T ) and G(T ). However, as
stated above, these equations are equivalent to ordinary di#erential equations of order n2.
Solving such extremely large scale systems is usually not feasible. In addition, only implicit
schemes would allow for a reasonable step size in the discretization making the problem
even more complex. For that reason, we discuss more suitable numerical approximations
in the following.
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5.3.2 Sampling Based Approaches

We aim to derive an approximation of the terminal value F (T ) = E[”(T )BB
↘”↘(T )] of

(5.8) by di#erent stochastic representations. This alternative approach is required since
computing eKT is not feasible if n B 100 knowing that K → Rn

2→n
2
. Therefore, we discuss

sampling-based approaches in the following. Let ”i(T ), i → {1, . . . ,M}, be i.i.d. copies
of ”(T ). Then, we have 1

M

⎨
M

i=1
”i(T )BB

↘”i(T )↘ ∞ F (T ) if M is su!ciently large.
This requires to sample the random variable ”(T )B possibly many times. ”(T )B is the
terminal value of the stochastic di#erential equation

dxB(t) = AxB(t)dt+
q⌊︄

i=1

NixB(t)dWi(t), xB(0) = B, (5.41)

where xb(t) → Rn→m. System (5.41) can be seen as a homogeneous version of (5.1a)
since the control dependence is gone3. If (5.1) needs to be evaluated for many di#erent
controls u and additionally a large number of samples are required for each fixed u, it even
pays o# to generate many samples of the solution to (5.41). In particular, this is true if
the number of columns of B is low. However, we want to avoid evaluating (5.41) too often.
The number of samples M required for a good estimate of F (T ) depends on the variance of
”(T )BB

↘”↘(T ). Therefore, we want to reduce the variance by finding a better stochastic
representation than E[”(T )BB

↘”↘(T )]. In the spirit of variance reduction techniques,
we first find the zero-variance unbiased estimator. To do so, we apply Ito’s product rule
(see Example 1.27) in order to obtain

d

⟩︄
xB(t)x

↘
B(t)

\︄
= d (xB(t))x

↘
B(t) + xB(t)d

⟩︄
x
↘
B(t)

\︄
+ d (xB(t)) d

⟩︄
x
↘
B(t)

\︄

=

⎢
AxB(t)dt+

q⌊︄

i=1

NixB(t)dWi(t)

⎥
x
↘
B(t)

+ xB(t)

⎢
x
↘
B(t)A

↘dt+
q⌊︄

i=1

x
↘
B(t)N

↘
i dWi(t)

⎥

+
q⌊︄

i,j=1

NixB(t)x
↘
B(t)N

↘
j kij

= (LA +%N )
⟩︄
xB(t)x

↘
B(t)

\︄
dt+

q⌊︄

i=1

LNi

⟩︄
xB(t)x

↘
B(t)

\︄
dWi(t).

This stochastic di#erential is now exploited to find

d

⟩︄
eK(T↑t) vec(xB(t)x

↘
B(t))

\︄
= ↘ eK(T↑t)K vec(xB(t)x

↘
B(t))dt

+ eK(T↑t)
d

⟩︄
vec(xB(t)x

↘
B(t))

\︄

=
q⌊︄

i=1

eK(T↑t) vec
⟩︄
LNi

⟩︄
xB(t)x

↘
B(t)

\︄\︄
dWi(t)

3See equation (3.21)
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using that vec
)︄
(LA +%N )

)︄
xB(t)x↘B(t)

[︄[︄
= K vec(xB(t)x↘B(t)). Hence, we have

vec
)︄
xB(T )x↘B(T )

[︄
= eKT vec(BB

↘) +
⎨

q

i=1

]︄
T

0
eK(T↑t) vec

)︄
LNi

)︄
xB(t)x↘B(t)

[︄[︄
dWi(t).

Devectorizing this equation yields

F (T ) = xB(T )x
↘
B(T )↘

q⌊︄

i=1

⌉︄
T

0

F

⟩︄
T ↘ t,LNi

⟩︄
xB(t)x

↘
B(t)

\︄\︄
dWi(t), (5.42)

where the second argument in F represents the initial condition of (5.8). The right hand
side of (5.42) now is an unbiased zero variance estimator of F (T ). However, this estimator
depends on F which is not available. Therefore, given a symmetric matrix X0, we approx-
imate F (t,X0) by a computable matrix function F(t,X0) that we specify later. This leads
to the unbiased estimator

EF(T ) := xB(T )x
↘
B(T )↘

q⌊︄

i=1

⌉︄
T

0

F
⟩︄
T ↘ t,LNi

⟩︄
xB(t)x

↘
B(t)

\︄\︄
dWi(t), (5.43)

for F (T ). The hope is that a few samples of EF(T ) can give an accurate approximation
of F (T ). Of course, EF(T ) can only be simulated by further discretizing the above Ito
integrals, e.g., by a Riemann-Stieltjes sum approximation. The variance of EF(T ) is

E
⎞⎞⎞EF(T )↘ F (T )

⎞⎞⎞
2

F

= E
⎞⎞⎞

q⌊︄

i=1

⌉︄
T

0

F (T ↘ t,Xi(t))↘ F (T ↘ t,Xi(t)) dWi(t)
⎞⎞⎞
2

F

=
q⌊︄

i,j=1

E
⌉︄

T

0

⋂︁
F (T ↘ t,Xi(t))↘ F (T ↘ t,Xi(t)) ,

F (T ↘ t,Xj(t))↘ F (T ↘ t,Xj(t))
⨄︁

F

kijdt

setting Xi(t) = NixB(t)x↘B(t) + xB(t)x↘B(t)N
↘
i

and exploiting Ito’s isometry (see Lemma
1.19). Consequently, the benefit of the variance reduction depends on the di#erence
F (t,X0)↘ F(t,X0).

We conclude this section by discussing suitable approximations F(t,X0) of F (t,X0).
For that reason, we establish the following theorem.

Theorem 5.4 Let F (t,X0), t → [0, T ], be the solution to

Ḟ (t) = LA (F (t)) +%N (F (t)) , F (0) = X0,

where the initial data X0 is a symmetric matrix. Then, there exist constants c and c such
that

eAt
X0 e

A
↑
t+c

⌉︄
t

0

eAs%N (I) eA
↑
s ds ↔ F (t) ↔ eAt

X0 e
A

↑
t+c

⌉︄
t

0

eAs%N (I) eA
↑
s ds.
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Proof. Exploiting the product rule, it can be seen that F is implicitly given by

F (t) = eAt
X0 e

A
↑
t+

⌉︄
t

0

eA(t↑s)%N (F (s)) eA
↑
(t↑s) ds. (5.44)

The solution t ↦⇔ F (t) is continuous and F (t) is a symmetric matrix for all t → [0, T ].
Consequently, exploiting (see Corollary B.8), there exist continuous and real functions
ϖ1, . . . ,ϖn such that ϖ1(t), . . . ,ϖn(t) represent the eigenvalues of F (t) for each fixed t.
We now define continuous functions by ϖ := min{ϖ1, . . . ,ϖn} and ϖ := max{ϖ1, . . . ,ϖn}.
Symmetric matrices can be estimated from below and above by their smallest and largest
eigenvalue, respectively, leading to ϖ(t)I ↔ F (t) ↔ ϖ(t)I. Therefore, given an arbitrary
vector in v → Rn, we have

v
↘%N (F (t)) v =

q⌊︄

i,j=1

(Niv)
↘
F (t)Njvkij =

q⌊︄

i,j=1

(Niv)
↘
F (t)Njve

↘
i K

1
2K

1
2 ej

=
q⌊︄

i,j=1

(Niv)
↘
F (t)Njv

q⌊︄

k=1

⇒K
1
2 ei, ek⇑2⇒K

1
2 ej , ek⇑2

=
q⌊︄

k=1

⎢
q⌊︄

i=1

Niv⇒K
1
2 ei, ek⇑2

⎥↘

F (t)

⎢
q⌊︄

j=1

Njv⇒K
1
2 ej , ek⇑2

∑︂ ∏︂∫︂ ⋃︂
=:vk

⎥

/︂
↔ ϖ(t)

⎨
q

k=1
v
↘
k
Ivk

∝ ϖ(t)
⎨

q

k=1
v
↘
k
Ivk

resulting in ϖ(t)%N (I) ↔ %N (F (t)) ↔ ϖ(t)%N (I), where ei is the canonical basis of Rq.
Since ϖ,ϖ are continuous on [0, T ], they can be bounded from below and above by some
suitable constants. Applying this to (5.44), we obtain the result by substitution.

Of course, the constants in Theorem 5.4 are generally unknown. However, this result
gives us the intuition that F (t,X0) can be approximated by

F(t,X0) = eAt
X0 e

A
↑
t+c

⌉︄
t

0

eAs%N (I) eA
↑
s ds, (5.45)

where c → [c, c̄] is a real number. From the proof of Theorem 5.4, we further know that
c, c̄ ∝ 0 if X0 is positive semidefinite. We cannot generally expect a reduction of the
variance for all choices of c. However, a good candidate will reduce the computational
complexity. A general strategy how to find such a candidate is an interesting question for
future research.

Remark 5.5 Besides generating (a few) samples of xB from (5.41), we require the matrix
exponentials eAti an a grid 0 = t0 < t1 < . . . < tnk

= T to determine the estimator (5.43)
with F as in (5.45). Here, ng is the number of grid points when discretizing the Itô integral
in (5.43). If the points ti are equidistant with step size h, one first computes eAh. The other
exponentials are then powers of eAh such that a certain number of matrix multiplications
(depending on ng ) have to be conducted.
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The Gramian QT can be computed from (5.12) requiring to determine G(T ). According
to Remark 5.2, we know that G(T ) = E[xC(T )x↘C(T )], where

dxC(t) = A
↘
xC(t)dt+

q⌊︄

i=1

N
↘
i xC(t)dWi(t), xC(0) = C

↘
,

with xC(t) → Rn→p. Exploiting the above consideration regarding F (T ), we can see that

EG(T ) := xC(T )x
↘
C(T )↘

q⌊︄

i=1

⌉︄
T

0

G
⟩︄
T ↘ t,L↓

Ni

⟩︄
xC(t)x

↘
C(t)

\︄\︄
dWi(t) (5.46)

is a possible unbiased estimator for G(T ). The approximation G of G can be chosen as in
(5.45) replacing (A,Ni) ↦⇔ (A↘

, N
↘
i
).

5.3.3 Gramians Based on Deterministic Approximations of
F (T ) and G(T )

Based on Theorem 5.4, an estimation of F (T ) (and also G(T )) is given in (5.45). Instead
of using these approximations in a variance reduction procedure like in Section 5.3.2, we
exploit it directly in (5.9) and (5.12). This leads to matrices PT and QT solving

F(T,BB
↘)↘BB

↘ = LA (PT ) +%N (PT ) ,

G(T,C↘
C)↘ C

↘
C = L↓

A (QT ) +%↓
N (QT ) ,

where the left-hand sides are defined by

F(T,BB
↘) = eAT

BB
↘ eA

↑
T +cF

⌉︄
T

0

eAs%N (I) eA
↑
s ds, cF → R, (5.47)

G(T,C↘
C) = eA

↑
T
C

↘
C eAT +cG

⌉︄
T

0

eA
↑
s%↓

N (I) eAs ds, cG → R. (5.48)

Certainly, the choice of the constants cF and cG determine how well PT and QT are ap-
proximated by PT and QT , e.g., in terms of the characterization of the respective dominant
subspaces of system (5.1). Notice that for Ni = 0, F(T,BB

↘) and G(T,C↘
C) yield the

exact values for F (T,BB
↘) and G(T,C↘

C). At this point, it is important to mention that
the Gramian approximation of this section is computationally less complex than the one
in Section 5.3.2. First of all, we do not need to sample from (5.41) and secondly, no Itô
integral as in (5.43) has to be discretized. Calculating F and G might also require to com-
pote matrix exponentials on a partition of [0, T ], company with Remark 5.5. However,
fewer grid points than for the sampled Gramians of Section 5.3.2have to be considered
since an ordinary integral can be discretized with a larger step size compared to an Ito
integral. Alternatively, the integrals in (5.47) and (5.48) can also be determined without
a discretization since it holds that
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LA

\︂⌉︄
T

0

eAs%N (I)eA
↑
s
ds

⎛
= ↘%N (I) + eAT%N (I)eA

↑
T

L↓
A

\︂⌉︄
T

0

eA
↑
s%↓

N (I)eAs
ds

⎛
= ↘%↓

N (I) + eA
↑
T%↓

N (I)eAT

This approach has the advantage that only the matrix exponential eAT at the terminal
time is needed.

5.4 Numerical Experiments

In order to indicate the benefit of the model reduction method presented in Section 5.1,
we consider a linear controlled SPDE as follow

▷X(t, 0)

▷t
= *X(t, 0) +Bu(t) +

q⌊︄

i=1

NiX(t, 0)
▷Wi(t)

▷t
. (5.49)

In addition, we emphasize the applicability to unstable systems by rescaling and shifting
the Laplacian. The concrete example of interest is (for t → [0, 1] and 0 → [0,↼]2)

▷X(t, 0)

▷t
= (ϑ*+ φI)X(t, 0) + 1

[
ϖ

4 ,
3ϖ
4 ]2

(0)u(t) + ⇁ e↑|↩1↑ϖ

2 |↑↩2 X(t, 0)
▷W (t)

▷t
,

X(t, 0) = 0, t → [0, 1], 0 → ▷[0,↼]2, and X(0, 0) ⊥ 0,

where ϑ,φ > 0, ⇁ → R and W is an one-dimensional Wiener process. X(t, ·), t → [0, T ],
is interpreted as a process taking values in H = L

2([0,↼]2). The input operator B in
(5.49) is characterized by 1

[
ϖ

4 ,
3ϖ
4 ]2

(·) and the noise operator N1 = N is defined trough

NX = e↑|·↑ϖ

2 |↑·X for X → L
2([0,↼]2). Since the Dirichlet Laplacian generates a C0-

semigroup and its eigenfunctions (hk)k≃N represent a basis of H, the same is true for
ϑ* + φI. Therefore, we interpret the solution of the above SPDE in the mild sense.
For more information on SPDEs and the concept of mild solution, we refer to [24]. The
quantity of interest is the average temperature in the noncontrolled area, i.e.,

Y(t) = CX(t, ·) := 4

3↼2

⌉︄

[0,⇁]2\[ϖ4 ,
3ϖ
4 ]2

X(t, 0)d0.

In order to solve this SPDE numerically, a spatial discretization can be considered as a
first step. Here, we choose a spectral Galerkin method that is based on the global basis of
eigenfunctions (hk)k≃N. The idea is to construct an approximation Xn to X taking values
in the subspace Hn = span{h1, . . . , hn} and which converges to the SPDE solution with
n ⇔ ⇓. For more detailed information on this discretization scheme, we refer to [40].
The vector of Fourier coe!cients x(t) = (⇒Xn(t), h1⇑H , . . . , ⇒Xn(t), hn⇑H)↘ is a solution of
a system like (5.1) with q = 1 and discretized operators

• A = ϑ diag(↘ϖ1, . . . ,↘ϖn) + φI, B = (⇒B, hk⇑H)
k=1...n

, C = (Chk)k=1...n
,

• N1 = (⇒Nhi, hk⇑H)
k,i=1...n

and x0 = 0,
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where (↘ϖk)k≃N are the ordered eigenvalues of *. We refer to Chapter 4, where a similar
example with fBm noise was studied, providing further details on the derivation of this
system and its associated matrices. For the case of Wiener noise, we refer to [14]. Now,
a small ϑ and a larger φ yield an unstable A, i.e., ς(A) ↙△ C↑ which already violates
asymptotic mean square stability of (5.1), i.e., E ⇐x(t;x0, 0)⇐22 ⊋ 0 as t ⇔ ⇓ . Moreover,
a larger ⇁ (larger noise) causes further instabilities. For that reason, we pick ϑ = 0.4,
φ = 3 and ⇁ = 2 in order to demonstrate the MOR procedure for a relatively unstable
system. Notice that enlarging φ or ⇁ (or making ϑ smaller) leads to a higher degree of
instability. This a#ects the approximation quality in the reduced system given T is fixed.
The intuition is that the less stable a system is the stronger the dominant subspaces are
expanding in time. This is because some variables in unstable systems are strongly growing
such that initially redundant directions become more relevant from a certain point of time.
This can also be observed in numerical experiments.

In the following, we fix a normalized control u(t) = cu e↑0.1t, t → [0, T ], (the constant
cu ensures ⇐u⇐

T
= 1) and apply the MOR method to the spatially discretized SPDE that

is based on the balancing transformation S = S2 described in Section 5.1.2. In Section
5.4.1, we compare the approximation quality of the ROMs using either the exact Gramian
or inexact Gramians introduced in Section 5.3. Subsequently, Section 5.4.2 shows the
reduced model accuracy in higher state space dimension, where solely inexact Gramians
are available. We conclude the numerical experiments by discussing the impact of the
terminal time T and the covariance matrix K in Section 5.4.3.

5.4.1 Simulations for n = 100 and T = 1

We compare the associated ROM (5.16) with the original system in dimension n = 100 first
since this choice allows to determine F (T ), G(T ) and hence the Gramians PT , QT exactly
according to Section 5.3.1. As a consequence, we can compare the MOR scheme involving
the exact Gramians with the same type of scheme relying on the approximated Gramians
that are computed exploiting the approaches in Sections 5.3.2 and 5.3.3. In particular, we
first approximate F (T ) and G(T ) based on a Monte-Carlo simulation using 10 realizations
of the estimators (5.43) and (5.46), respectively. The functions F and G entering these
estimators are chosen as in (5.45) with c = 0. We refer to the resulting matrices as the
Section 5.3.2 Gramians. At this point, we want to emphasize that these sampling based
Gramians do not necessarily have to be accurate approximations of the exact Gramians
in a component-wise sense. It is more important that the dominant subspaces of the
system (eigenspaces of the Gramians) are captured in the approximation. Notice that the
dominant subspace characterization is not improved if the number of samples is enlarged
to 1000. Secondly, we determine the approximations PT and QT according to Section
5.3.3 and call them Section 5.3.3 Gramians. The associated constants are chosen to be
cF = cG = 0.

In Figure 5.1, the HSVs ςT,i, i = {1, . . . , 50}, of system (5.1) are displayed. By Theorem
5.3 and the explanations below this theorem, it is known that small truncated ςT,i go along
with a small reduction error of the MOR scheme. Due to the rapid decay of these values,
we can therefore conclude that a small error can already be achieved for small reduced
dimensions r. For instance, we observe that ςT,i < 3.5e↘06 for i ∝ 8 indicating very high
accuracy in the ROM for r ∝ 7. This is confirmed by the error plot in Figure 5.2 and the
second column of Table 5.1. Moreover, Figure 5.2 shows the tightness of the error bound



5 Gramian-Based Model Reduction for Unstable Stochastic
Systems

111

in (5.28) that was specified in Theorem 5.3. The bound di#ers from the exact error only
by a factor between 2.5 and 4.6 for the reduced dimensions considered in Figure 5.2 and
is hence a good indicator of expected performance. Notice that the error is only exact up
to deviations occurring due to the semi-implicit Euler-Maruyama discretization of (5.1)
and (5.16) as well as the Monte-Carlo approximation of the expected value using 10 000
paths. Besides the MOR error based on PT and QT , Table 5.1 states the errors in case
the approximating Gramians of Sections 5.3.2 and 5.3.3 are used. It can be seen that
both approximations perform roughly the same and that one loses an order of accuracy
compared to the exact Gramian approach. However, one can lower the reduction error
by an optimization with respect to the constants c, cF , cG. Moreover, we see that the
accuracy is very good for the estimators of the covariances F (T ) and G(T ) used here.
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)︄
supt≃[0,1] E⇐y(t) ↘

yr(t)⇐2
[︄

and logarithmic
bound in (5.28) for di#erent
values of r.

Error sup
t≃[0,1] E⇐y(t)↘ yr(t)⇐2 of MOR using

Reduced dimension r exact Gramians PT , QT Section 5.3.2 Gramians Section 5.3.3 Gramians

2 7.00e↘04 2.61e↘03 1.75e↘03
4 2.09e↘04 1.82e↘03 8.61e↘04
8 2.99e↘06 2.63e↘05 4.51e↘05
16 5.38e↘08 1.31e↘06 1.55e↘06

Table 5.1: Error between the output y of (5.1) with n = 100 and the reduced output
yr of (5.16) using di!erent Gramians to compute the balancing transfor-
mation S = S2.

5.4.2 Simulations for n = 1000 and T = 1

We repeat the simulations of Subsection 5.4.1 for n = 1000. This is a scenario, where the
exact Gramians are not available anymore. Therefore, we conduct the balancing MOR
scheme using the Sections 5.3.2 and 5.3.3 Gramians only. In the context of the Section
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5.3.2 Gramians, it is important to mention that in higher dimensions it is required to
use very e!cient discretizations of the Ito integrals in (5.43) and (5.46). Otherwise, a
very small step size is needed such that from the computational point of view it is better
to omit these Ito integrals within the estimators, i.e., just xB and xC are supposed to be
sampled to approximate F (T ) and G(T ). Table 5.2 shows that the balancing related MOR
technique based on the approximated Gramians of Sections 5.3.2 and 5.3.3 is beneficial
in high dimensions. A very small reduction error can be observed and in the majority of
the cases the sampling based approach seems slightly more accurate than the approach of
Section 5.3.3 given the same type of approximations for F (T ) and G(T ) for each ansatz.

Error sup
t≃[0,1] E⇐y(t)↘ yr(t)⇐2 of MOR using

Reduced dimension r Section 5.3.2 Gramians Section 5.3.3 Gramians

2 1.43e↘03 1.72e↘03
4 2.07e↘03 8.57e↘04
8 5.18e↘05 9.26e↘05
16 2.13e↘06 4.88e↘06

Table 5.2: Error between the output y of (5.1) with n = 1000 and the reduced
output yr of (5.16) using Sections 5.3.2 and 5.3.3 Gramians to compute
the balancing transformation S = S2.

5.4.3 Relevance of T and K

As in Section 5.4.1, let us fix n = 100 to be able to compute the Gramians exactly. We
begin with deriving reduced systems on di#erent intervals [0, T ]. Secondly, we extend our
model to a stochastic di#erential equation with noise dimension q = 2 and investigate the
e#ect of di#erent correlations between the two Wiener processes.

Relevance of the Terminal Time Let us study the scenario of Section 5.4.1 with
T = 0.5, 1, 2, 3 using the exact Gramians to illustrate that dominant subspaces are chang-
ing in time. Indeed, we observe in Table 5.3 that for a fixed reduced dimension r the error
gets bigger the larger the interval [0, T ] is. This means that with increasing T the reduced
dimension has to be enlarged to ensure a certain desired approximation error. This is also
intuitive in the sense that it is generally harder to find a good approximation on a larger
interval in comparison to a smaller one.

Error sup
t≃[0,T ]

E⇐y(t)↘ yr(t)⇐2 of MOR for
Reduced dimension r T = 0.5 T = 1 T = 2 T = 3

2 3.98e↘04 7.00e↘04 2.17e↘02 3.13e↘02
4 1.46e↘05 2.09e↘04 2.86e↘04 6.86e↘04
8 2.82e↘07 2.99e↘06 7.80e↘06 2.23e↘05
16 5.46e↘09 5.38e↘08 1.12e↘07 2.90e↘07

Table 5.3: Error between the output y of (5.1) and the reduced output yr of (5.16)
using the exact Gramians: n = 100, S = S2 and T = 0.5, 1, 2, 3.
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Relevance the the Covariance Structure Let us extend the SPDE discretization

by introducing N2 := N

6
5
1

so that we have a system of the form (5.1) with q = 2 and
standard Wiener processes W1 and W2. The goal is to investigate how the correlation
between W1 and W2 influences the MOR error. For that reason, we choose the following
three scenarios: E[W1(t)W2(t)] = ↽t with ↽ = 0, 0.5, 1. Table 5.4 states the MOR errors for
these correlations. In this example, we can observe that a higher correlation between the
processes yields a larger error. A di#erent observation was made in numerical examples
studied in [98], where systems with high correlations in the noise processes gave a smaller
reduction error. However, [98] studies di#erent types of stochastic di#erential equations
in the context of asset price models that do not have control inputs.

Error sup
t≃[0,1] E⇐y(t)↘ yr(t)⇐2 of MOR for

Reduced dimension r !!f▷ = 0 !!f fff▷ = 0.5!f ffff▷ = 1!!

2 1.10e↘03 1.43e↘03 1.79e↘03
4 2.44e↘04 2.34e↘04 3.24e↘04
8 5.71e↘06 8.95e↘06 1.34e↘05
16 1.64e↘07 2.37e↘07 3.36e↘07

Table 5.4: Error between the output y of (5.1) and the reduced output yr of (5.16)
using the exact Gramians: n = 100, S = S2, T = 1, q = 2 and di!erent
correlations ▷ = 0, 0.5, 1.



6 Model Reduction for Stochastic
Systems Driven by fBm

In this chapter, we study large-scale linear fractional stochastic systems representing, for
example, spatially discretized stochastic partial di#erential equations (SPDEs) driven by
fBm with a Hurst parameter H → [1

2
, 1). Such equations in the case of H <

1

2
are more

realistic in modeling real-world phenomena compared to frameworks that do not capture
memory e#ects. To the best of our knowledge, dimension reduction schemes for fBm
settings have not been studied so far.

In this chapter, we investigate empirical reduced-order methods that are either based
on snapshots (e.g., POD method) or on approximated Gramians. In each case, dominant
subspaces are learned from data. These model reduction techniques are introduced and
analyzed for stochastic systems with fractional and Wiener noise and later applied to
spatially discretized SPDEs driven by fBm to reduce the computational cost arising from
both the high dimension of the considered stochastic system and the large number of
required Monte Carlo runs.

We validate our proposed techniques with numerical experiments for some large-scale
stochastic di#erential equations driven by fBm. These results are published in [50, 51].

6.1 Setting and (Projection-Based) Reduced
System

We consider the following Young/Stratonovich stochastic di#erential equation controlled

by u → M2([0, T ];Rm) satisfying ⇐u⇐2
T
:= E

]︄
T

0
⇐u(t)⇐2

2
dt < ⇓ (see (3.20)).

dx(t) = [Ax(t) +Bu(t)]dt+
q⌊︄

i=1

Nix(t) ↗ dWH

i (t), x(0) = x0 = X0z,

y(t) = Cx(t), t → [0, T ],

(6.1)

where A,Ni → Rn→n, B → Rn→m, C → Rp→n, X0 → Rn→v, z → Rv and T > 0 is the terminal
time. W

H

1
, . . . ,W

H
q are independent fBm with Hurst index H → [1/2, 1). System (6.1) is

defined as an integral equation using Definitions 2.13 (H > 1/2) and 2.15 (H = 1/2) to
make sense of

]︄
t

0
Nix(s) ↗ dWH

i
(s).

For the latter reduction procedure, rewriting the Stratonovich setting in the Itô form
can be beneficial. Given H = 1/2, the state equation in (6.1) is equivalent to the Itô
equation

dx(t) = [(A+
1

2

q⌊︄

i=1

N
2

i )x(t) +Bu(t)]dt+
q⌊︄

i=1

Nix(t)dW
H

i (t) (6.2)

exploiting that the quadratic covariation process is
⎨

q

i=1

]︄
t

0
N

2

i
x(s)ds, t → [0, T ] (See (1.13)

114
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in Chapter 1).
The goal of this chapter is to find a system of reduced order. This reduction is achieved

through the application of the Petrov-Galerkin projection method, which is detailed in
Section 3.2.4.2 of Chapter 3. For clarity, the Petrov-Galerkin method involves identifying
a subspace that is spanned by the columns of a matrix V → Rn→r. This subspace facili-
tates the approximation x(t) ∞ V xr(t), where xr(t) represents the reduced state vector.
Inserting this into (6.1) yields

V xr(t) = X0z +

⌉︄
t

0

[AV xr(s) +Bu(s)]ds+
q⌊︄

i=1

⌉︄
t

0

NiV xr(s) ↗ dWH

i (s) + e(t),

yr(t) = CV xr(t), (6.3)

We enforce the error e(t) to be orthogonal to some space spanned by columns ofM → Rn→r,
for which we assume that M↘

V = I. Multiplying (6.3) with M
↘ from the left yields

dxr(t) = [Arxr(t) +Bru(t)]dt+
q⌊︄

i=1

Ni,rxr(t) ↗ dWH

i (t), xr(0) = x0,r = X0,rz,

yr(t) = Crxr(t), t → [0, T ],

(6.4)

where X0,r = M
↘
X0 and

Ar = M
↘
AV, Br = M

↘
B, Ni,r = M

↘
NiV, Cr = CV,

refer to equation (3.45) in Chapter 3. If M = V has orthonormal columns, we obtain a
Galerkin approximation, as discussed in Section 3.2.4.3. On the other hand, we want to
point out that reduced order systems can also be of a di#erent form when H = 1/2. In-
serting x(t) ∞ V xr(t) into (6.2) instead of (6.1) and conducting the same Petrov-Galerkin
procedure, we obtain a reduced Itô system with drift coe!cient Ar +

1

2

⎨
q

i=1
M

↘
N

2

i
V .

Transforming this back into a Stratonovich equation yields

dx̄r(t) = [
)︄
Ar +

1

2

q⌊︄

i=1

(M↘
N

2

i V ↘N
2

i,r)
[︄
x̄r(t) +Bru(t)]dt+

q⌊︄

i=1

Ni,rx̄r(t) ↗ dWH

i (t),

(6.5)

which is clearly di#erent from the state equation in (6.4). This is due to the Itô -
Stratonovich correction not being a linear transformation, as derived in (1.13). Another
goal of this chapter is to analyze whether xr or x̄r performs better for H = 1/2. This
question arises due to the fact that as soon as classical integration (Young/Stieltjes-sense)
does not work anymore (e.g., H ↔ 1/2), potential extensions of Young/Stieltjes-integrals
are no longer unique. Therefore, it is interesting to ask for an optimal setting in which
the dimension reduction is conducted. So, it can make sense to consider reduced systems
(6.5) rather than the direct and maybe more intuitive choice (6.4).
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6.2 Fundamental Solutions and Gramians

6.2.1 Fundamental Solutions and Their Properties

Before we are able to compute suitable reduced systems, we require fundamental solutions
”.

Definition 6.1 A process x(t) valued in Rn, defined for t → [0, T ], is recognized as a
solution to the stochastic di#erential equation (SDE) specified in (6.1) if it almost surely
satisfies the equation:

x(t;x0, u) = x0 +

⌉︄
t

0

[Ax(s) +Bu(s)]ds+
q⌊︄

i=1

⌉︄
t

0

Nix(s) ↗ dWH

i (s) (6.6)

where x0 in Rn is the initial state and u belongs to the space M2([0, T ];Rm), serving as
the control function. In the specific case where no control is applied, the SDE simplifies
to:

dx(t) = Ax(t)dt+
q⌊︄

i=1

Nix(t) ↗ dWH

i (t), (6.7)

y(t) = Cx(t), for t → [0, T ], x(0) = x0, (6.8)

which defines the homogeneous solution xx0 as xx0 := x(t;x0, 0).

These ” will later lead to the concept of Gramians that identify dominant subspaces.
The fundamental solution associated to (6.7) is a two-parameter matrix-valued stochastic
process ” solving

”(t, s) = I +

⌉︄
t

s

A”(↩, s)d↩ +
q⌊︄

i=1

⌉︄
t

s

Ni”(↩, s) ↗ dWH

i (↩) (6.9)

for t ∝ s ∝ 0. For simplicity, we set ”(t) := ”(t, 0) meaning that we omit the second
argument if it is zero. We can separate the variables, since we have ”(t, s) = ”(t)”(s)↑1

for t ∝ s ∝ 0, as discussed in Remark 3.12 in the Wiener case. This result can be extended
to the context of fractional noise. Now, we derive the solution of the state equation (6.1)
in the following proposition, which is a known result based on the product rule.

Proposition 6.2 The solution of the state equation (6.1) for H → [1/2, 1) is given by

x(t;x0, u) = ”(t)x0 +

⌉︄
t

0

”(t, s)Bu(s)ds, t → [0, T ]. (6.10)

Proof. Defining k(t) = x0+
]︄
t

0
”(s)↑1

Bu(s)ds, the result follows directly from the classical
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product rule (available in the Young/Stratonovich case) to ”(t)k(t), t → [0, T ]. Thus

”(t)k(t) = x0 +

⌉︄
t

0

”(s) dk(s) +

⌉︄
t

0

(d”(s))k(s)

= x0 +

⌉︄
t

0

Bu(s)ds+

⌉︄
t

0

A”(s)k(s)ds+
q⌊︄

i=1

⌉︄
t

0

Ni”(s)k(s) ↗ dWH

i (s),

meaning that ”(t)k(t), t → [0, T ], is the solution to (6.1). The desired result follows directly
from the identity ”(t, s) = ”(t)”↑1(s).

As noted previously, a limitation of the stochastic system is its inability to o#er a uni-
versally explicit expression for the fundamental matrix solution. Nevertheless, an explicit
representation of the fundamental matrix solution, ”(t), is achievable in instances where
the matrices A and Ni for i = 1, . . . , q in Equation (6.7) are commutative, as demonstrated
subsequently.

Proposition 6.3 Assume that all A,Ni commute. Then the fundamental solution ”(t)
of (6.7) is

”(t) = exp

⎢
At+

q⌊︄

i=1

NiW
H

i (t)

⎥
.

Proof. We write Z(t) for the exponent in (6.7), such that

dZ(t) = Adt+
q⌊︄

i=1

Ni ↗ dWH

i (t).

Then we have

d”(t) = e
Z(t)

dZ(t) = ”(t)

⎢
Adt+

q⌊︄

i=1

Ni ↗ dWH

i (t)

⎥

= A”(t)dt+
q⌊︄

i=1

Ni ↗ dWH

i (t),

since ”(t) commutes by assumption with A and all Ni for i → {1, . . . , q}.

The fundamental solution lacks the strong semigroup feature compared to the deter-
ministic case (Ni = 0). This means that ”(t, s) = ”(t↘ s) does not hold P-almost surely,
as the trajectories of WH on [0, t↘ s] and [s, t] are distinct. As discussed in Remark 3.20
of Chapter 3, the same property holds in the Wiener case. In the following lemma, we
can demonstrate that the semigroup property holds in distribution exploiting the station-
ary increments of WH . In fact, this lemma is the key for studying MOR for stochastic
systems driven by processes with stationary (not necessarily independent) increments and
can therefore be applied to settings beyond the case studied in this chapter.

Lemma 6.4 It holds that the fundamental solution of (6.1) satisfies

”(t, s)
d
= ”(t↘ s), t ∝ s ∝ 0.
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Proof. We consider ”(·) on the interval [0, t↘ s] and ”(·, s) on [s, t]. Introducing the step

size *t = t↑s

N
, we find the partitions tk = k*t and t

(s)

k
= s + tk, k → {0, 1, . . . , N}, of

[0, t↘ s] and [s, t]. We employ the Euler discretization of Equation (6.9), as introduced in
Section 2.8.1, as follows:

”k+1 = ”k +A”k*t+
q⌊︄

j=1

Nj”k*W
H

j,k
,

”(s)

k+1
= ”(s)

k
+A”(s)

k
*t+

q⌊︄

j=1

Nj”
(s)

k
*W

H,(s)

j,k
,

(6.11)

where we define *W
H

j,k
= W

H

j
(tk+1) ↘ W

H

j
(tk) and *W

H,(s)

j,k
= W

H

j
(t(s)

k+1
) ↘ W

H

j
(t(s)

k
).

According to Theorem 2.30, the Euler scheme converges P-almost surely for H > 1/2
yielding in particular convergence in distribution, that is

”N

d↘↘⇔ ”(t↘ s), ”(s)

N

d↘↘⇔ ”(t, s), (6.12)

as N ⇔ ⇓. The Euler method does not converge almost surely in the Stratonovich setting.
However, for H = 1/2, we can rewrite (6.9) as the Itô equation

”(t, s) = I +

⌉︄
t

s

(A+
1

2

q⌊︄

i=1

N
2

i )”(↩, s)d↩ +
q⌊︄

i=1

⌉︄
t

s

Ni”(↩, s)dW
H

i (↩).

This equation can be discretized by a scheme like in (6.11) (Euler-Maruyama). The
corresponding convergence is in L

1(&,F,P) (see Theorem 1.38), so that we also have
(6.12) for H = 1/2 as well. By simple calculation, we can get from (6.11) that

”N =
N↑1⋂︂

k=0

⎟

⟩︂I +A*t+
q⌊︄

j=1

Nj*W
H

j,k

⨆︁

∮︁ =: F (Z),

”(s)

N
=

N↑1⋂︂

k=0

⎟

⟩︂I +A*t+
q⌊︄

j=1

Nj*W
H,(s)

j,k

⨆︁

∮︁ = F (Z(s)),

where Z := (*W
H

j,k
) and Z

(s) := (*W
H,(s)

j,k
) (j = 1, . . . , q and k = 0, . . . , N ↘ 1) are

Gaussian vectors with mean zero. Notice that the function F is just slightly di#erent for
H = 1/2, i.e., A is replaced by A + 1

2

⎨
q

i=1
N

2

i
. It remains to show that the covariance

matrices of Z and Z
(s) coincide leading to ”N (t, s)

d
= ”N (t ↘ s). Subsequently, the

result is followed by (6.12). Using the independence of WH

i
and W

H

j
for i ↙= j, the non

zero entries of the covariances of Z and Z
(s) are E[*W

H

j,k
*W

H

j,1
] and E[*W

H,(s)

j,k
*W

H,(s)

j,1
]

(k, 2 = 0, 1, . . . , N ↘ 1), respectively. These expressions are the same, since exploiting
(2.1), we obtain that

E[*W
H,(s)

j,k
*W

H,(s)

j,1
] = E[

)︄
W

H

j (s+ tk+1)↘W
H

j (s+ tk)
[︄)︄
W

H

j (s+ t1+1)↘W
H

j (s+ t1)
[︄
]

=
1

2

)︄
|tk+1 ↘ t1|2H + |tk ↘ t1+1|2H ↘ |tk+1 ↘ t1+1|2H ↘ |tk ↘ t1|2H

[︄
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is independent of s. This concludes the proof.

Let us mention that the result of Lemma 6.4 is new even for the well-studied case of
H = 1/2. In fact, we later exploit that Lemma 6.4 yields

E
⎡
”(t, s)M”(t, s)↘

⎤
= E

⎡
”(t↘ s)M”(t↘ s)↘

⎤
,

for a matrix M of suitable dimension. This property was proved for H = 1/2 using
relations to matrix ODEs. This is not possible for general H, so that the much stronger
result of Lemma 6.4 is required.

6.2.2 Exact and Empirical Gramians

6.2.2.1 Exact Gramians and Dominant Subspaces

Similar to the approach presented in the POD-based method outlined in Section 6.4.2,
our methodology involves partitioning the primary system described in equation (6.1)
into distinct subsystems in the following manner:

dxu(t) = [Axu(t) +Bu(t)]dt+
q⌊︄

i=1

Nixu(t) ↗ dWH

i (t), xu(0) = 0, yu(t) = Cxu(t),

(6.13)

dxx0(t) = Axx0(t)dt+
q⌊︄

i=1

Nixx0(t) ↗ dWH

i (t), xx0(0) = x0 = X0z, yx0(t) = Cxx0(t).

(6.14)

Proposition 6.2 shows that we have the representations

xx0(t) = ”(t)x0, and xu(t) =

⌉︄
t

0

”(t, s)Bu(s)ds,

so that y(t) = yx0(t) + yu(t) follows. Lemma 6.4 is now vital for a suitable definition of
Gramians. Due to the weak semigroup property of the fundamental solution in Lemma
6.4, it turns out that (see Section 3.2.3 for more details):

Pu,T := E
⨀︂ ⌉︄

T

0

”(s)BB
↘”(s)↘ds

⨁︁
, Px0,T := E

⨀︂ ⌉︄
T

0

”(s)X0X
↘
0 ”(s)↘ds

⨁︁
. (6.15)

are the right notion of Gramians for (6.13) and (6.14). With (6.15) we then define a
Gramian PT := Pu,T + Px0,T for the original state equation (6.1). In case of the output
equation in (6.1), a Gramian can be introduced directly by

QT := E
⌉︄

T

0

”(s)↘C↘
C”(s)ds. (6.16)

The following proposition contains estimates that tell us in which sense the above Gramians
characterize dominant subspaces of the system. It heavily relies on Lemma 6.4 indicating
the importance of this key lemma in the theory of dimension reduction for stochastic
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systems driven by fBm. In particular, the next proposition addresses the theoretical
shortcomings of [51].

Proposition 6.5 Given v → Rn, an initial state of the form x0 = X0z, a parameter
p = 1, 2 and a control u → M2([0, T ];Rm) that is assumed to be deterministic if p = 2.
Then, we have that

⌉︄
T

0

E⇒xx0(t), v⇑22dt ↔ v
↘
Px0,T v⇐z⇐22, sup

t≃[0,T ]

E|⇒xu(t), v⇑2|p ↔ (v↘Pu,T v)
p

2 ⇐u⇐p
T

(6.17)

for p = 1, 2. Consequently, we have

⌉︄
T

0

E|⇒x(t), v⇑2|dt ↔
A
2
⋃︁
v↘PT vmax{

A
T⇐z⇐2, T⇐u⇐T }. (6.18)

for general u → M2([0, T ];Rm) and

⌉︄
T

0

E|⇒x(t), v⇑2|2dt ↔ 2v↘PT vmax{⇐z⇐22, T⇐u⇐2T }. (6.19)

if u is further deterministic. Moreover, it holds that

⌉︄
T

0

E⇐C”(t)v⇐22dt = v
↘
QT v. (6.20)

Proof. The first relation is a simple consequence of the inequality of Cauchy-Schwarz and
the representation of xx0 in Proposition 6.2. Thus,

⌉︄
T

0

E⇒xx0(t), v⇑22dt = E
⌉︄

T

0

⇒”(t)X0z, v⇑22dt = E
⌉︄

T

0

⇒z,X↘
0 ”(t)↘v⇑22dt

↔ ⇐z⇐22E
⌉︄

T

0

⇐X↘
0 ”(t)↘v⇐22dt

= ⇐z⇐22v↘
⌉︄

T

0

E
⎡
”(t)X0X

↘
0 ”(t)↘

⎤
dtv

= v
↘
Px0,T v⇐z⇐22.

Utilizing equation (6.10) and the Cauchy-Schwarz inequality once more, we have

E|⇒xu(t), v⇑2|p = E
/︄/︄/︄/︄⇒
⌉︄

t

0

”(t, s)Bu(s)ds, v⇑2
/︄/︄/︄/︄
p

↔ E
⨀︂\︂⌉︄

t

0

|⇒”(t, s)Bu(s), v⇑2| ds
⎛p⨁︁

= E
⨀︂\︂⌉︄

t

0

/︄/︄/︄⇒u(s), B↘”(t, s)↘v⇑2
/︄/︄/︄ ds

⎛p⨁︁

↔ E
⨀︂\︂⌉︄

t

0

⇐u(s)⇐2⇐B↘”(t, s)↘v⇐2ds
⎛p⨁︁

↔
\︂
v
↘E

⌉︄
t

0

”(t, s)BB
↘”(t, s)↘ds v

⎛ p

2

⇐u⇐p
T
.
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for t → [0, T ]. Based on Lemma 6.4, we obtain that

E
⎡
”(t, s)BB

↘”(t, s)↘
⎤
= E

⎡
”(t↘ s)BB

↘”(t↘ s)↘
⎤
.

Hence,

E|⇒xu(t), v⇑2|p ↔ (v↘E
⌉︄

t

0

”(t↘ s)BB
↘”(t↘ s)↘ds v)

p

2 ⇐u⇐p
T
↔ (v↘Pu,T v)

p

2 ⇐u⇐p
T

by variable substitution and the increasing nature of Pu,T and ⇐u⇐2
T
in T . This shows the

second part of (6.17). Exploiting Proposition 6.2, we know that x = xx0 + xu. Therefore,
we have

⌉︄
T

0

E⇒x(t), v⇑22dt ↔ 2
⟩︄⌉︄

T

0

E⇒xx0(t), v⇑22dt+
⌉︄

T

0

E⇒xu(t), v⇑22dt
\︄

↔ 2
⟩︄⌉︄

T

0

E⇒xx0(t), v⇑22dt+ T sup
t≃[0,T ]

E⇒xu(t), v⇑22
\︄

by the linearity of the inner product in the first argument. Applying (6.17) to this in-
equality yields (6.18) using that PT = Px0,T + Pu,T . On the other hand, we obtain

⌉︄
T

0

E|⇒x(t), v⇑2|dt ↔
⌉︄

T

0

E|⇒xx0(t), v⇑2|dt+
⌉︄

T

0

E|⇒xu(t), v⇑2|dt

↔
A
T

⎬⌉︄
T

0

E⇒xx0(t), v⇑22dt+ T sup
t≃[0,T ]

E|⇒xu(t), v⇑2|.

Applying (6.17) with p = 1 to this inequality yields (6.18) using that

⨄︂
v↘Px0,T v +

⨄︂
v↘Pu,T v ↔

A
2
⋃︁
v↘PT v.

By the definitions of QT in (6.16) and the Euclidean norm, we have

⌉︄
T

0

E⇐C”(t)v⇐22dt = v
↘
⌉︄

T

0

E
⎡
”(t)↘C↘

C”(t)
⎤
dtv = v

↘
QT v.

So this proof is concluded.

Remark 6.6 If the limits Px0 = limT⇒⇐ Px0,T , Pu = limT⇒⇐ Pu,T , P = limT⇒⇐ PT and
Q = limT⇒⇐QT exist, the Gramians in Proposition 6.5 can be replaced by their limit as
we have v

↘
PT v ↔ v

↘
Pv, v↘QT v ↔ v

↘
Qv etc for all v → Rn, as discussed in Section 3.2.3

of Chapter 3.

The following remark explains the role of the results in Proposition 6.5 in more detail.
In fact, Proposition 6.5 delivers the theoretical motivation for the dimension reduction
procedure studied in this chapter.

Remark 6.7 We can read Proposition 6.5 as follows. If v is an eigenvector of Px0,T

and Pu,T , respectively, associated to a small eigenvalue, then xx0 and xu are small in the
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direction of v. Such state directions can therefore be neglected. The same interpretation
holds for x using (6.18) when v is a respective eigenvector of PT . Now, given t0 → [0, T ),
we expand the state variable as

x(t0) =
n⌊︄

k=1

⇒x(t0), qk⇑2qk,

where (qk)k=1,...,n represents an orthonormal set of eigenvectors of QT . We aim to answer
the question which directions qk in x(t0) barely contribute to y on [t0, T ]. We can represent
the state in (6.1) by

x(t) = x(t0) +

⌉︄
t

t0

[Ax(s) +Bu(s)]ds+
q⌊︄

i=1

⌉︄
t

t0

Nix(s) ↗ dWH

i (s), t → [t0, T ]. (6.21)

and introduce x̃ as the solution of (6.21) when replacing x(t0) by

x̃(t0) := x(t0)↘ ⇒x(t0), qk⇑2qk,

i.e., the direction qk is neglected. The process x↘ x̃ then solves (6.21) with u ⊥ 0 starting
in ⇒x(t0), qk⇑2qk at t0. Therefore, the di#erence in the associated outputs is

y(t)↘ Cx̃(t) = ⇒x(t0), qk⇑2C”(t, t0)qk, t → [t0, T ],

using the solution representation in (6.10). For that reason, we solely focus on the term
C”(t, t0)qk and observe that

⌉︄
T

t0

E⇐C”(t, t0)qk⇐22dt =
⌉︄

T

t0

E⇐C”(t↘ t0)qk⇐22dt ↔
⌉︄

T

0

E⇐C”(t)qk⇐22dt

using Lemma 6.4. Identity (6.20) therefore tells us that the direction v = qk in x(t0) has
a low impact on y(t), t → [t0, T ], if the corresponding eigenvalue is small. Such qk can
be removed from the each state x(t0) without causing a large error in between the exact
output y and its approximation Cx̃.

6.2.2.2 Approximation and Computation of Gramians

In theory, Proposition 6.5 together with Remark 6.7 is the key when aiming to identify
dominant subspaces of (6.1) that lead to ROMs. However, for practical purposes, strategies
to compute the associated Gramians are vital.

Empirical Gramians for H → 1/2 The Gramians that we defined above are
hard to compute. In fact, no established connection exists between these Gramians and
algebraic Lyapunov equations or matrix di#erential equations when H >

1

2
, in contrast

to the Wiener case, which is detailed in Section 5.1.1 of Chapter 5. For that reason,
we suggest an empirical approach in the following in which approximate Gramians based
on sampling are calculated. In particular, we consider a discretization of the integral
representations by a Monte Carlo method. Let us introduce an equidistant time grid
0 = s0 < s1 < · · · < sN = T and let Ns further be the number of Monte-Carlo samples.



6 Model Reduction for Stochastic Systems Driven by fBm 123

Given that N and Ns are su!ciently large, we obtain

Pu,T ∞ P̄ u,T =
T

N ·Ns

N⌊︄

i=1

Ns⌊︄

j=1

”(si,↪j)BB
↘”(si,↪j)

↘
,

Px0,T ∞ P̄ x0,T =
T

N ·Ns

N⌊︄

i=1

Ns⌊︄

j=1

”(si,↪j)X0X
↘
0 ”(si,↪j)

↘
,

(6.22)

where ↪j → &. Now, the advantage is that ”(·)B and ”(·)X0 are easy to sample as
they are the solutions of the control independent variable xx0 in (6.14) with initial states
x0 ↦⇔ B and x0 ↦⇔ X0, respectively. This is particularly feasible if B and X0 only have
a few columns. Based on (6.22), we can then define P̄ T := P̄ x0,T + P̄ u,T approximating
PT . Here, the goal is to choose N and Ns so that the estimates in Proposition 6.5 still
hold (approximately) ensuring the dominant subspace characterization by the empirical
Gramians. Notice that if the limits of the Gramians as T ⇔ ⇓ shall be considered, then
the terminal time needs to be chosen su!ciently large. In fact, it is also not an issue to
write down the empirical version of QT which is

Q̄T =
T

N ·Ns

N⌊︄

i=1

Ns⌊︄

j=1

”(si,↪j)
↘
C

↘
C”(si,↪j).

However, this object is computationally much more involved. This is because C”(·) is
not a solution to an equations like (6.14) that can be sampled easily in case only a few
initial states are of interest. In fact, we might have to sample from (6.9) to determine Q̄T .
This is equivalent to computing samples of xx0 in (6.14) for n di#erent initial states, i.e.,
x0 ↦⇔ I. The issue is that n is very large, whereas the number of columns of B and X0 is
generally low. This leaves the open question of whether Q̄T is numerically tractable.

Exact computation of Gramians for H = 1/2 Let us briefly discuss that the
computation of PT , QT or their limits as T ⇔ ⇓ is easier when we are in the Stratonovich
setting of H = 1/2. Once more let us point out the relation between Itô and Stratonovich
di#erential equation. So, the fundamental solution of the state equation in (6.1) defined
in (6.9) is also the fundamental solution of (6.2), i.e., it satisfies

”(t) = I +

⌉︄
t

0

AN”(s)ds+
q⌊︄

i=1

⌉︄
t

0

Ni”(s)dW
H

i (s),

where AN := A+ 1

2

⎨
q

i=1
N

2

i
. Let us consider the linear operators

LAN
(X) = ANX +XA

↘
N , and %N (X) =

q⌊︄

i=1

NiXN
↘
i ,

then it is a well-established fact, as a consequence of Itô’s product rule demonstrated in
Example 1.27, that Z(t) = E

{︄
”(t)M”(t)↘

}︄
solves

d

dt
Z(t) = LAN

{︄
Z(t)

}︄
+%N

{︄
Z(t)

}︄
, Z(0) = M, t ∝ 0, (6.23)
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where M is a matrix of suitable dimension. Setting M = BB
↘ +X0X

↘
0

and integrating
(6.23) yields

Z(T )↘BB
↘ ↘X0X

↘
0 = LAN

{︄
PT

}︄
+%N

{︄
PT

}︄
(6.24)

using that PT = E
⎡ ]︄

T

0
”(s)

⟩︄
BB

↘ + X0X
↘
0

\︄
”(s)↘ds

⎤
. If system (6.1) is mean square

asymptotically stable, that is, E⇐”(t)⇐2 decays exponentially to zero, then we even find

↘BB
↘ ↘X0X

↘
0 = LAN

{︄
P
}︄
+%N

{︄
P
}︄

for the limit P of PT . There is still a small gap in the theory left in Theorem 5.1 on how
to compute QT in the case of H = 1/2. Therefore, the following proposition was stated
under the additional assumption that C↘

C is contained in the eigenspace of L↓
AN

+ %↓
N
,

where L↓
AN

(X) = A
↘
N
X +XAN , %↓

N
(X) =

⎨
q

i=1
N

↘
i
XNi. We prove this result in full

generality below.

Proposition 6.8 Given that we are in the Stratonovich setting of H = 1/2. Then, the
function Z↓(t) = E

{︄
”(t)↘C↘

C”(t)
}︄
solves

d

dt
Z↓(t) = L↓

AN

{︄
Z↓(t)

}︄
+%↓

N

{︄
Z↓(t)

}︄
, Z↓(0) = C

↘
C, t ∝ 0. (6.25)

Proof. Let us vectorize the matrix di#erential equation (6.23) leading to

d

dt
vec[Z(t)] = K vec[Z(t)], vec[Z(0)] = vec[M ],

where K defined as follows

K = AN ↖ I + I ↖AN +
q⌊︄

i=1

Ni ↖Ni.

Therefore, we know that

eKt vec[M ] = vec[Z(t)] = vec
⎡
E
{︄
”(t)M”(t)↘

}︄⎤
= E

{︄
”(t)↖ ”(t)

}︄
vec[M ],

again exploiting the relation between the vectorization and the Kronecker product (see
Proposition B.5). Since this holds for all matrices M , it follows that E

{︄
”(t)↖”(t)

}︄
= eKt.

This is now applied to

vec
{︄
Z↓(t)

}︄
= vec

⎡
E
{︄
”(t)↘C↘

C”(t)
}︄⎤

= E
{︄
”(t)↘ ↖ ”(t)↘

}︄
vec[C↘

C] = eK
↑
t vec[C↘

C]

since E
{︄
”(t)↘ ↖ ”(t)↘

}︄
=

)︄
E
{︄
”(t)↖ ”(t)

}︄[︄↘
. Therefore, it holds that

d

dt
vec[Z↓(t)] = K↘ vec[Z↓(t)], vec[Z↓(0)] = vec[C↘

C].

Devectorizing this equation and exploiting that K↘ serves as the matrix representation of
L↓
AN

+%↓
N

leads to the claim of this proposition.
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Integrating (6.25) and using that QT = E
{︄ ]︄

T

0
”(t)↘C↘

C”(t)dt
}︄
leads to

Z↓(T )↘ C
↘
C = L↓

AN

{︄
QT

}︄
+%↓

N

{︄
QT

}︄
. (6.26)

Once more, mean square asymptotic stability yields the well-known relation

↘C
↘
C = L↓

AN

{︄
Q
}︄
+%↓

N

{︄
Q
}︄

by taking the limit as T ⇔ ⇓ in (6.26). Although we found algebraic equation (6.24) and
(6.26) from which PT and QT could be computed, it is still very challenging to solve these
equations. This is mainly due to the unknowns Z(T ) and Z↓(T ). In fact, Section 5.3 of
Chapter 5 discusses strategies based on sampling and variance reduction to address the
problems defined in equations (6.24) and (6.26). For further details, the reader is referred
to this chapter.

6.3 Model Reduction of Young/Stratonovich
Di!erential Equations

In this section, we introduce ROMs that are based on the (empirical) Gramians of Section
6.2.2 as they (approximately) identify the dominant subspaces of (6.1). In order to accom-
plish this, we discuss state space transformations first that diagonalize these Gramians.
This diagonalization facilitates the assignment of unimportant directions in the dynamics
to specific state components, as outlined in Proposition 6.5. Subsequently, the issue is
split up into two parts. A truncation procedure is briefly explained for the general case
of H → [1/2, 1), in which unimportant state variables are removed. This strategy is as-
sociated with (Petrov-)Galerkin schemes sketched in Section 6.1. Later, we focus on the
case of H = 1/2 and point out an alternative ansatz that is supposed to perform better
than the previously discussed projection method. Let us notice once more that since a
fractional Brownian motion with H > 1/2 does not have independent increments, no Lya-
punov equations associated with the Gramians can be derived. Therefore, we frequently
refer to the empirical versions of these Gramians and the corresponding reduced dimension
techniques.

6.3.1 State Space Transformation and Balancing

We introduce a new variable xS(t) = Sx(t), where S is a regular matrix. This can be
interpreted as a coordinate transform that is chosen in order to diagonalize the Gramians
of Section 6.2.2. This transformation is the basis for the dimension reduction discussed
in Sections 6.3.2 and 6.3.3. Using the same procedure as discussed in Section 5.1.2, we
substitute xS(t) = Sx(t) into Equation (6.1) to obtain:

dxS(t) = [ASxS(t) +BSu(t)]dt+
q⌊︄

i=1

Ni,SxS(t) ↗ dWH

i (t), xS(0) = x0,S = X0,Sz,

y(t) = CSxS(t), t → [0, T ],

(6.27)
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where AS = SAS
↑1, BS = SB, Ni,S = SNiS

↑1, X0,S = SX0 and CS = CS
↑1. As

previously noted throughout this thesis and as evidenced by equation (6.27), the output
remains unchanged under the transformation. However, the fundamental solution of the
state equation in (6.27) is

”S(t) = S”(t)S↑1
. (6.28)

Relation (6.28) immediately transfers to the Gramians which are

PT,S : = E
⌉︄

T

0

”S(s)(BSB
↘
S +X0,SX

↘
0,S)”S(s)

↘ds = SPTS
↘ (6.29)

QT,S : = E
⌉︄

T

0

”S(s)
↘
C

↘
S CS”S(s)ds = S

↑↘
QTS

↑1
. (6.30)

Exploiting (6.28) again, the same relations like in (6.29) and (6.30) hold true if PT and QT

are replaced by their limits P,Q or their empirical versions P̄ T , Q̄T . In the next definition,
di#erent diagonalizing transformations S are introduced.

Definition 6.9 (i) Let the state space transformation S be given by the eigenvalue
decomposition PT = S

↘$S, where $ is the diagonal matrix of eigenvalues of PT .
Then, the procedure is called PT -balancing.

(ii) Let PT and QT be positive definite matrices. If S is of the form S = $
1
2U

↘
L
↑1 with

the factorization PT = LL
↘ and the spectral decomposition L

↘
QTL = U$2

U
↘,

where $2 is the diagonal matrix of eigenvalues of PTQT . Then, the transformation
is called PT /QT -balancing.

(iii) Replacing PT and QT by their limits (as T ⇔ ⇓) in (i) and (ii), then the schemes
are called P -balancing (see Section 3.2.4.3) or P/Q-balancing (see Section 3.2.4.4),
respectively, where in these cases $ is either the matrix of eigenvalues of P or $2

contains the eigenvalues of PQ.

(iv) Using the empirical versions of PT and QT instead, the methods in (i) and (ii) are
called P̄ T -balancing and P̄ T /Q̄T -balancing. Here, $ can be viewed as a random
diagonal matrix of the respective eigenvalues.

Notice that balancing based on Gramians PT , P or P̄ T refers to the aim of an approxi-
mation of the full state x instead of y. Diagonalizing only one Gramian is, of course, also
computationally cheaper but certainly leads to a worse approximation of y if information
in QT , Q or Q̄T is not involved in the model reduction procedure. It is not di!cult to
check that the transformations introduced in Definition 6.9 diagonalize the underlying
Gramians. Nevertheless, we formulate the following proposition.

Proposition 6.10 • Using the matrix S in Definition 6.9 (i), we find that the state
variable Gramian of system (6.27) is PT,S = $.

• If instead S is of the form given in Definition 6.9 (ii), we have PT,S = QT,S = $.

• The same type of diagonalization is established if the underlying Gramians are either
P,Q or P̄ T , Q̄T .
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Proof. The result follows by inserting the respective S into (6.29) and (6.30). Since these
relations also hold true for the pairs P,Q and P̄ T , Q̄T , the same argument applies in these
cases as well.

Having diagonal Gramians $, Proposition 6.5 (choose v to be the ith unit vector in
Rn) together with Remark 6.7 tells us that we can neglect state components in (6.27)
that correspond to small diagonal entries ςi of $. Those have to be truncated to obtain
a reduced system.

6.3.2 Reduced Order Models Based on Projection

In that spirit, we decompose the diagonal Gramian based on one of the balancing proce-
dures in Definition 6.9. We write

$ =

⨀︂
$1

$2

⨁︁
, (6.31)

where $1 → Rr→r contains the r large diagonal entries of $ and $2 the remaining small
ones. We further partition the balanced coe!cient of (6.27) as follows

AS =
⎡
A11 A12
A21 A22

⎤
, BS =

⎡
B1
B2

⎤
, Ni,S =

⎡
Ni,11 Ni,12

Ni,21 Ni,22

⎤
X0,S =

⎡
X0,1

X0,2

⎤
CS = [ C1 C2 ] .

(6.32)

The balanced state of (6.27) is decomposed as xS = [ x1
x2 ], where x1 and x2 are associated

to $1 and $2, respectively. Now, exploiting the insights of Proposition 6.5, x2 barely
contributes to (6.27). We remove the equation for x2 from the dynamics and set it equal
to zero in the remaining parts. This yields a reduced system

dxr(t) = [A11xr(t) +B1u(t)]dt+
q⌊︄

i=1

Ni,11xr(t) ↗ dWH

i (t), xr(0) = x0,r = X0,1z,

yr(t) = C1xr(t), t → [0, T ],

(6.33)

which is of the form like in (6.4). If balancing according to Definition 6.9 is used, then V

are the first r columns of S↑1, whereas W represents the first r columns of S↘, as derived
in equation (5.17) of Chapter 5. Notice that if solely PT , P or P̄ T are diagonalized (instead
of a pair of Gramians), we have S

↑1 = S
↘ and hence W = V . This method is discussed

in detail under the Galerkin approximation in Section 3.2.4.3.

6.3.3 An Alternative Approach for the Stratonovich Setting
(H = 1/2)

6.3.3.1 The Alternative

As sketched in Section 6.1, the truncation/projection procedure is not unique for H = 1/2
meaning that (6.5) can be considered instead of (6.33) (being of the form (6.4)). Such a
reduced system is obtained if we rewrite the state of (6.27) as a solution to an Itô equation
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meaning that AS becomes ASN = AS + 1

2

⎨
q

i=1
N

2

i,S
in the Itô setting. Now, removing x2

from this system like we explained in Section 6.3.2, we obtain a reduced Itô system

dxr(t) = [AN,11xr(t) +B1u(t)]dt+
q⌊︄

i=1

Ni,11xr(t)dW
H

i (t), xr(0) = x0,r = X0,1z,

yr(t) = C1xr(t), t → [0, T ],

(6.34)

where AN,11 = A11 +
1

2

⎨
q

i=1
(N2

i,11
+Ni,12Ni,21) is the left upper r ∀ r block of ASN . In

Stratonovich form, the system is

dxr(t) = [(A11 +
1

2

q⌊︄

i=1

Ni,12Ni,21)xr(t) +B1u(t)]dt+
q⌊︄

i=1

Ni,11xr(t) ↗ dWH

i (t),

yr(t) = C1xr(t), t → [0, T ], xr(0) = x0,r = X0,1z,

(6.35)

which has a state equation of the structure given in (6.5).

6.3.3.2 Comparison of (6.33) and (6.35) for H = 1/2

Let us continue setting H = 1/2. Moreover, we assume x0 = 0 in this subsection for
simplicity. We only focus on P - as well as P/Q-balancing (explained in Definition 6.9 (iii))
in order to emphasize our arguments. In addition, we always suppose that P and Q are
positive definite. Let us point out that relations between (6.1) and (6.35) are well-studied
due to the model reduction theory of Itô equations exploiting that these Stratonovich
equations are equivalent to (6.2) and (6.34). In fact, the (uncontrolled) state equation is
mean square asymptotically stable (E⇐”(t)⇐2 ⇔ 0 as t ⇔ ⇓) if and only if the same is
true for (6.2) (see Theorem 3.21). This type of stability is well-investigated in Itô settings,
see, e.g., [25, 59]. It is again equivalent to the existence of a positive definite matrix X,
so that the operator LAN

+%N evaluated at X is a negative definite matrix (as discussed
in part (iv) of Theorem 3.19), i.e.,

LAN

{︄
X
}︄
+%N

{︄
X
}︄
< 0. (6.36)

Now, applying P/Q-balancing to (6.1) under the assumptions we made in this subsection,
the reduced system (6.35) preserves this property, i.e., there exists a positive definite
matrix Xr, so that

AN,11Xr +XrA
↘
N,11 +

q⌊︄

i=1

Ni,11XrN
↘
i,11 < 0. (6.37)

This result was established in [11] and Theorem 3.21 given that ςr ↙= ςr+1, where ςi

is the ith diagonal entry of $. If P -balancing is used instead, (6.37) basically holds as
described in [99]. However, generally a further Galerkin projection of the reduced system
(not causing an error) is required in order to ensure stability preservation. We illustrated
with the following example that stability is not necessarily preserved in (6.33) given the
Stratonovich case.
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Example 6.11 Let us fix x0 = 0, q = 1 and consider (6.1) with

A =

⨀︂
↘13

8

5

4

↘5

4
↘2

⨁︁
, B = C

↘ =

⨀︂
1
0

⨁︁
, N1 =

⨀︂
3

2
↘1

1 1

⨁︁

and hence AN =
{︄↑1 0

0 ↑2

}︄
. This system is asymptotically mean square stable, since (6.36)

is satisfied. We apply P/Q-balancing in order to compute ROMs (6.33) and (6.35) for
r = 1 and H = 1/2. Now, we find that 2AN,11 + N

2

1,11
= ↘0.85926 < 0 which is

equivalent to (6.37) in the scalar case. On the other hand, (6.33) is not stable, because
2(A11 + 0.5N2

1,11
) +N

2

1,11
= 0.13825 > 0.

Example 6.11 shows us that we cannot generally expect a good approximation of (6.1)
by (6.33) in the Stratonovich setting as the asymptotic behavior can be contrary. This
is an important theoretical finding as it indicates that direct dimension reduction in the
Stratonovich framework is not optimal.

We emphasize this argument further by looking at the error of the approximations if the
full model (6.1) and the reduced system (6.33) have the same asymptotic behavior. First,
let us note the following. If (6.1) is mean square asymptotically stable, then applying P -
or P/Q-balancing to this equation ensures the existence of a matrix W (depending on the
method), so that

sup
t≃[0,T ]

E ⇐y(t)↘ yr(t)⇐2 ↔
⟩︄
tr
⟩︄
$2W

\︄\︄ 1
2 ⇐u⇐

T
, (6.38)

where yr is the output of (6.35). This was proved in [14, 99]. Notice that W is independent
of the diagonalized Gramian $ and $2 contains the truncated eigenvalues only, see (6.31).
It is important to mention that [99] just looked at the P -balancing case if C = I but
(6.38) holds for general C, too. Let us now look at ROM (6.33) and check for a bound like
(6.38). First of all, we need to assume stability preservation in (6.33) for the existence of
a bound. This preservation is not naturally given according to Example 6.11 in contrast
to (6.35).

Theorem 6.12 Given that we consider the Stratonovich setting of H = 1/2. Let system
(6.1) with output y and x0 = 0 be mean square asymptotically stable. Moreover, suppose
that (6.33) with output yr and x0,r = 0 preserves this stability. In case (6.33) is based on
either P -balancing or P/Q-balancing according to Definition 6.9 (iii), we have

sup
t≃[0,T ]

E ⇐y(t)↘ yr(t)⇐2 ↔
⟩︄
tr
⟩︄
$1(Q̂

↘
1 ↘Qr)*N,11

\︄
+ tr

⟩︄
$2W

\︄\︄ 1
2 ⇐u⇐

T
, (6.39)

where

W := C
↘
2 C2 + 2A↘

N,12Q̂2 +
q⌊︄

i=1

N
↘
i,12

⟩︄
2Q̂

⎡
Ni,12

Ni,22

⎤
↘QrNi,12

\︄
.

The above matrices result from the partition (6.32) of the balanced realization (6.27) of

(6.1) and ASN =
⎡
AN,11 AN,12

AN,21 AN,22

⎤
, where ASN = AS + 1

2

⎨
q

i=1
N

2

i,S
. Furthermore, we set



6 Model Reduction for Stochastic Systems Driven by fBm 130

*N,11 =
⎨

q

i=1
Ni,12Ni,21 and assume that Q̂ = [ Q̂1 Q̂2 ] and Qr are the unique solutions to

(AN,11 ↘
1

2
*N,11)

↘
Q̂+ Q̂ASN +

q⌊︄

i=1

N
↘
i,11Q̂Ni,S = ↘C

↘
1 CS , (6.40)

(AN,11 ↘
1

2
*N,11)

↘
Qr +Qr(AN,11 ↘

1

2
*N,11) +

q⌊︄

i=1

N
↘
i,11QrNi,11 = ↘C

↘
1 C1. (6.41)

The bound in (6.39) further involves the matrix $ =
⎡
$1

$2

⎤
of either eigenvalues of P

(P -balancing) or square roots of eigenvalues of PQ (P/Q-balancing). In particular, $2

represents the truncated eigenvalues of the system.

Proof. We have to compare the outputs of (6.27) and (6.33). This is the same like cal-
culating the error between the corresponding Itô versions of these systems. In the Itô
equation of (6.27), AS is replaced by ASN and the Itô form of (6.33) involves

A11 +
1

2

q⌊︄

i=1

N
2

i,11 = AN,11 ↘
1

2
*N,11,

instead of A11. Since either P -balancing or P/Q-balancing is used, we know that at least
one of the Gramians is diagonal, i.e., P = $ (see Proposition 6.10). Since we are in the
case of H = 1/2, we also know the relation to Lyapunov equations by Section 6.2.2.2, so
that we obtain

ASN$+ $A↘
SN +

q⌊︄

i=1

Ni,S$N
↘
i,S = ↘BSB

↘
S . (6.42)

In the Itô setting, an error bound has been established in [14]. Applying this result yields

sup
t≃[0,T ]

E ⇐y(t)↘ yr(t)⇐2 ↔
⟩︄
tr(CS$C

↘
S ) + tr(C1PrC

↘
1 )↘ 2 tr(CSP̂C

↘
1 )

\︄ 1
2 ⇐u⇐

T
. (6.43)

The reduced system Gramian Pr as well as the mixed Gramian P̂ exist due to the assump-
tion that stability is preserved in the reduced system. They can be defined as the unique
solutions of

(AN,11 ↘
1

2
*N,11)Pr + Pr(AN,11 ↘

1

2
*N,11)

↘ +
q⌊︄

i=1

Ni,11PrN
↘
i,11 = ↘B1B

↘
1 , (6.44)

ASN P̂ + P̂ (AN,11 ↘
1

2
*N,11)

↘ +
q⌊︄

i=1

Ni,SP̂N
↘
i,11 = ↘BSB

↘
1 . (6.45)

Using the partitions of ASN and the other matrices in (6.32), we evaluate the first r
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columns of (6.42) to obtain

↘BSB
↘
1 = ASN

{︄
$1
0

}︄
+ $

⨀︂
A

↑
N,11

A
↑
N,12

⨁︁
+

q⌊︄

i=1

Ni,S$

⨀︂
N

↑
i,11

N
↑
i,12

⨁︁
(6.46)

=
⎡
AN,11

AN,21

⎤
$1 +

⨀︂
$1A

↑
N,11

$2A
↑
N,12

⨁︁
+

q⌊︄

i=1

⟩︄⎡
Ni,11

Ni,21

⎤
$1N

↘
i,11 +

⎡
Ni,12

Ni,22

⎤
$2N

↘
i,12

\︄
.

Using the properties of the trace, we find the relation tr(CP̂C
↘
1
) = tr(Q̂BSB

↘
1
) between

the mixed Gramians satisfying (6.40) and (6.45). In more detail, one can find this relation
by inserting (6.45) into tr(Q̂B̃B

↘
1
) and exploiting that two matrices can be switched in the

trace of a product of both without changing the result. We insert (6.46) into this relation
giving us

↘ tr(CSP̂C
↘
1 ) = tr

⎢
Q̂

∮︂ ⎡
AN,11

AN,21

⎤
$1 +

⨀︂
$1A

↑
N,11

$2A
↑
N,12

⨁︁

+
q⌊︄

i=1

⎡
Ni,11

Ni,21

⎤
$1N

↘
i,11 +

⎡
Ni,12

Ni,22

⎤
$2N

↘
i,12

⨀︁⎥
.

= tr

⎢
$1

∮︂
Q̂

⎡
AN,11

AN,21

⎤
+ (AN,11 ↘

1

2
*N,11)

↘
Q̂1 +

q⌊︄

i=1

N
↘
i,11Q̂

⎡
Ni,11

Ni,21

⎤⨀︁⎥

+
1

2
tr
⟩︄
$1*

↘
N,11Q̂1

\︄
+ tr

⎢
$2

∮︂
A

↘
N,12Q̂2 +

q⌊︄

i=1

N
↘
i,12Q̂

⎡
Ni,12

Ni,22

⎤⨀︁⎥
.

The first r columns of (6.40) give us

Q̂

⎡
AN,11

AN,21

⎤
+ (AN,11 ↘

1

2
*N,11)

↘
Q̂1 +

q⌊︄

i=1

N
↘
i,11Q̂

⎡
Ni,11

Ni,21

⎤
= ↘C

↘
1 C1

and hence

↘ tr(CSP̂C
↘
1 ) = ↘ tr(C1$1C

↘
1 ) +

1

2
tr
⟩︄
$1*

↘
N,11Q̂1

\︄

+ tr

⎢
$2

∮︂
A

↘
N,12Q̂2 +

q⌊︄

i=1

N
↘
i,12Q̂

⎡
Ni,12

Ni,22

⎤⨀︁⎥
.

We exploit this for the bound in (6.43) and further find that

tr(CS$C
↘
S ) = tr(C1$1C

↘
1 ) + tr(C2$2C

↘
2 ).
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Thus, we have

tr(CS$C
↘
S ) + tr(C1PrC

↘
1 )↘ 2 tr(CSP̂C

↘
1 )

= tr(C1(Pr ↘ $1)C
↘
1 ) + tr

⟩︄
$1*

↘
N,11Q̂1

\︄

+ tr

⎢
$2

∮︂
C

↘
2 C2 + 2A↘

N,12Q̂2 + 2
q⌊︄

i=1

N
↘
i,12Q̂

⎡
Ni,12

Ni,22

⎤⨀︁⎥
. (6.47)

Now, we analyze Pr ↘ $1. The left upper r ∀ r block of (6.42) fulfills

(AN,11 ↘
1

2
*N,11)$1 + $1(AN,11 ↘

1

2
*N,11)

↘ +
q⌊︄

i=1

Ni,11$1N
↘
i,11

= ↘B1B
↘
1 ↘

q⌊︄

i=1

Ni,12$2N
↘
i,12 ↘

1

2
*N,11$1 ↘ $1

1

2
*↘

N,11.

Comparing this with (6.44) yields

(AN,11 ↘
1

2
*N,11)(Pr ↘ $1) + (Pr ↘ $1)(AN,11 ↘

1

2
*N,11)

↘ +
q⌊︄

i=1

Ni,11(Pr ↘ $1)N
↘
i,11

=
q⌊︄

i=1

Ni,12$2N
↘
i,12 +

1

2
*N,11$1 + $1

1

2
*↘

N,11.

Therefore, using (6.41), we obtain that

tr(C1(Pr ↘ $1)C
↘
1 ) = tr((Pr ↘ $1)C

↘
1 C1)

= ↘ tr
⟩︄
(Pr ↘ $1)[(AN,11 ↘

1

2
*N,11)

↘
Qr +Qr(AN,11 ↘

1

2
*N,11) +

q⌊︄

i=1

N
↘
i,11QrNi,11]

\︄

= ↘ tr
⟩︄
[(AN,11 ↘

1

2
*N,11)(Pr ↘ $1) + (Pr ↘ $1)(AN,11 ↘

1

2
*N,11)

↘

+
q⌊︄

i=1

Ni,11(Pr ↘ $1)N
↘
i,11]Qr

\︄
= ↘ tr

⟩︄
[

q⌊︄

i=1

Ni,12$2N
↘
i,12 +*N,11$1]Qr

\︄

= ↘ tr
⟩︄
[$2

q⌊︄

i=1

N
↘
i,12QrNi,12 + $1Qr*N,11]

\︄
.

Inserting this into (6.47) concludes the proof.

Even if stability is preserved in (6.33), we cannot ensure a small error if we only know
that $2 has small diagonal entries. This is the main conclusion from Theorem 6.12 as the
bound depends on a matrix $1 with potentially very large diagonal entries reflecting the
dominant eigenvalues associated with the key modes of the system. This is an indicator
that there are cases in which (6.33) might perform poorly. The correction term 1

2
*N,11 =

1

2

⎨
q

i=1
Ni,12Ni,21 in (6.35) ensures that the expression in (6.39) that depends on *N,11 is

canceled out. This leads to the bound in (6.38). At this point, let us also refer to the error
analysis for PT /QT -balancing for H = 1/2 in the Ito setting in Section 5.2 of Chapter 5.
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Let us conclude this Chapter by conducting a numerical experiment.

6.4 Numerical Results

In this section, the reduced order techniques that are based on balancing and lead to a
system like in (6.33) or (6.35) are applied to an example. In detail, stochastic heat equation
driven by fractional Brownian motions with di#erent Hurst parameters H are considered
and formally discretized in space. This discretization yields a system of the form (6.1)
which we reduce concerning the state space dimension. Before we provide details on the
model reduction procedure, let us briefly describe the time-discretization that is required
here as well. We use an implicit scheme, because spatial discretizations of the underlying
stochastic partial di#erential equations are sti#.

6.4.1 Time Integration

The stochastic di#erential equations (6.1), (6.33) and (6.35) can be numerically solved
using various general-purpose stochastic numerical schemes. As previously mentioned,
sti# di#erential equations pose significant challenges for numerical simulation in both
deterministic and stochastic systems. Implicit methods are generally more e#ective than
explicit methods for solving sti# problems. This work aims to utilize an implicit numerical
method well-suited for addressing sti# stochastic di#erential equations. The stochastic
implicit midpoint method will be the focus throughout the numerical section. For a more
detailed discussion of Runge-Kutta methods based on increments of the driver, refer to
Section 2.8.2 for (H > 1/2) and [104] for (H = 1/2). In particular, we rewrite the
stochastic implicit midpoint method, as defined in (6.48), as follows:

xk+1 = xk +

⨀︂
A

\︂
xk + xk+1

2

⎛
+Bu

\︂
tk +

*t

2

⎛⨁︁
*t+

q⌊︄

i=1

Ni

\︂
xk + xk+1

2

⎛
*W

H

i,k
(6.48)

when applying it to (6.1), where *t denotes the time step related to equidistant grid
points tk. Moreover, we define *W

H

i,k
= W

H

i
(tk + 1) ↘ W

H

i
(tk). The midpoint method

converges with almost sure/Lp-rate (arbitrary close to) 2H ↘ 1/2 for H → [1/2, 1). Before
proceeding to the numerical experiments, let us briefly sketch the POD scheme that we
use as a reference method within the numerics.

6.4.2 POD-Based Method

The proper orthogonal decomposition (POD) method is a data-driven strategy for the
reduction of large-scale models that is based on the singular value decomposition (SVD)
of snapshot matrices. However, POD techniques for stochastic di#erential equations driven
by fBm have not been studied yet. For the convenience of the readers, a brief explanation
of the POD method is provided here. For a more detailed discussion, please refer to Section
3.2.4.5..

The idea is to sample the solution for fixed u and x0 to obtain matrices

Zj = [x (t1,↪j) , x (t2,↪j) , . . . , x (tN,↪j)] , for ↪j → &, j = 1, . . . ,Ns,
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where N,Ns > 0 are the number of considered time points and samples. We introduce a
data matrix Z := [X0, Z1, Z2, . . . , ZNs

] and calculate its SVD:

Z =
)︄
V ϱ

[︄\︂$Z

ϱ

⎛\︂
U

↘

ϱ

⎛
.

The dominant subspace is identified by considering only singular vectors associated to the
singular values in $Z above a certain threshold. We end up with a POD-based reduced
system (6.4), where the projection matrix V = W consists of vectors associated to large
singular values of the snapshot matrix. Instead of using POD for (6.1) directly, we can
also apply it to subsystems (6.13) and (6.14). Subsequently, we find an approximation for
(6.1) by the sum of the reduced subsystems.

6.4.3 Dimension Reduction for a Stochastic Heat Equation

We recall the stochastic heat equation from Example 4.20
)︄
t → [0, 1], 0 → [0,↼]2

[︄
:

▷X(t, 0)

▷t
= a*X(t, 0) + 1

[
ϖ

4 ,
3ϖ
4 ]2

(0)u(t) + ⇁e
↑|↩1↑ϖ

2 |↑↩2X(t, 0) ↗ ▷W
H(t)

▷t
,

X(t, 0) = 0, t → [0, 1], 0 → ▷[0,↼]2, and X(0, 0) = b cos(0),
(6.49)

where a, b > 0, ⇁ → R and a single input meaning that m = 1. Instead of considering
the entire state, we focus on a finite number of observations, specifically the average
temperature in the non-heated region, given by:

Y(t) =
4

3↼2

⌉︄

[0,⇁]2\[ϖ4 ,
3ϖ
4 ]2

X(t, 0)d0. (6.50)

We approximate Y(t) using the output of the Galerkin solution discussed in Chapter 4.
The Galerkin approximation for this specific case is detailed in Example 4.20 and is given
by:

yn(t) = Cx(t)

where C
T = (Cuk)k=1,...,n

. Here, C is the integral operator defined on the right-hand
side of equation (6.50) and (uk)k=1,...,n

are the eigenvectors of the Laplace operator with
Dirichlet boundary conditions. The corresponding state x is expressed as (refer to Example
4.20):

x(t) =

⌉︄
t

0

Ax(s) +Bu(s)ds+

⌉︄
t

0

Nx(s) ↗ dWH(s),

where:

• A = diag(0,↘1,↘1,↘2, . . .) and U = L
2([0,↼]2),

• N =
⟩︄⋂︁

e
↑|·↑ϖ

2 |↑·
ui, uk

⨄︁

U

\︄

k,i=1,...,n

,

• B =

\︂⋀︁
1
[ϖ4 ,

3ϖ
4 ]

2(·), uk
⋁︁

U

⎛

k=1,...,n

.
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In the following, we fix a = 0.2, b = 1 and set n = 1024. We investigate two cases. These
are H = 0.5 and H = 0.75. In the following, we explain the particular dimension reduction
techniques for each scenario.
Case H = 0.75 : We have pointed out in Section 6.2.2.2 that Gramians PT and QT (or
their limits P and Q) are hard to compute for H > 1/2, since a link of these matrices
to ordinary di#erential or algebraic equations is unknown. Therefore, we solely consider
empirical Gramians discussed in Section 6.2.2.2 for H = 0.75. In fact, P̄ T is available by
sampling the solution of (6.14), whereas Q̄T seems computationally much more involved.
For that reason, we apply P̄ T -balancing (see Definition 6.9 (iv)) to system (6.1) that
obtained from the above heat equation. This results in (6.27) which is truncated in order
to find the reduced equation (6.33). Two other related approaches are conducted in this
section as well.

• We apply the same P̄ T -balancing procedure to subsystems (6.13) and (6.14), i.e.,
P̄ u,T -balancing is used for (6.13) and P̄ x0,T -balancing for (6.14), compared to (6.22).
The sum of the resulting reduced order systems is then used to approximate (6.1).
Refer to this second ansatz as splitting-based P̄ T -balancing.

• Another empirical dimension reduction technique, as discussed above, is the POD
method. In this method, the solution space of (6.1) is learned using samples, which
are potentially based on various initial states x0 and controls u. Note that the
snapshot matrices are computed from a small set of x0 and u to provide a POD-
based reduced system (6.4) that perform well for a larger number of x0 and u. In
this approach, we apply the POD scheme to the subsystems (6.13) and (6.14) and
approximate (6.1) by the sum of the reduced subsystems. We refer to this method
as splitting-based POD.

Case H = 0.5: Similar techniques are exploited for the Stratonovich setting. However,
we have the advantage that PT and QT can be computed from matrix equations; see
(6.24) and (6.26). Still, these equations are di!cult to solve. Therefore, we use the
sampling and variance reduction-based schemes proposed in Section 5.3 of Chapter 5 in
order to solve them. Due to the availability of both Gramians, we apply PT /QT -balancing,
see Definition 6.9 (ii), instead of the procedure based on diagonalizing P̄ T . However, we
truncate di#erently, i.e., the reduced system (6.35) is used instead due to the drawbacks of
(6.33) pointed out in Section 6.3.3.2 when H = 0.5. The splitting-based PT /QT -balancing
is defined the same way. It is the technique, where Pu,T /QT -balancing is conducted for
(6.13) and Px0,T /QT -balancing is exploited for (6.14) to obtain reduced systems of the
form (6.35) for each subsystem. Again, we use a splitting-based POD scheme according
to Section 6.4.2 for H = 0.5.

For the discretization in time, the stochastic midpoint method (6.48), stated in Section
6.4.1, is employed here, where the number of time steps is N = 100. Moreover, all empirical
objects are calculated based on Ns = 103 samples. The error between the reduced systems

and the original model is computed for the control u(t) =
⨄︂

2

⇁
sin(t), where the reduction

error is measured by the quantity RE =
supt≃[0,1] E⇐y(t)↘ yr(t)⇐2

supt≃[0,1] E⇐y(t)⇐2
.

In the case of H = 0.5, Figure 6.1 illustrates that splitting-based PT /QT -balancing
(2. Gramian), which was described just above and PT /QT -balancing (1. Gramian), which
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Figure 6.1: RE for three approaches with
Hurst parameters H = 0.5.

Table 6.1: RE for r → {2, 4, 8, 16}
and H = 0.5.

r POD 1. Gramian 2. Gramian
2 2.4471e↘ 02 2.6131e↘ 03 2.4251e↘ 03
4 8.1898e↘ 04 3.6254e↘ 04 3.9410e↘ 04
8 9.0777e↘ 05 1.4427e↘ 05 1.5756e↘ 5
16 3.4842e↘ 05 6.2128e↘ 07 6.1161e↘ 07
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Figure 6.2: RE for three approaches with
Hurst parameters H = 0.75.

Table 6.2: RE for r → {2, 4, 8, 16}
and H = 0.75.

r POD 1. Gramian 2. Gramian
2 1.9428e↘ 02 2.0531e↘ 02 2.0543e↘ 02
4 4.6419e↘ 04 4.2626e↘ 04 5.6448e↘ 04
8 3.5032e↘ 05 7.8586e↘ 05 7.1846e↘ 05
16 1.1479e↘ 05 1.652e↘ 05 9.8581e↘ 06

generate very similar results, produces notably better outcomes compared to the splitting-
based POD method. The worst case errors of the plot are also state in the associated Table
6.1.

On the other hand, the Young setting in which we have H = 0.75 presents a di#erent
scenario. Figure 6.2 demonstrates that splitting-based POD exhibits a better performance
compared to splitting-based P̄ T -balancing (2. Gramian) and the usual P̄ T -balancing (1.
Gramian) methods, except when the reduced dimension is 16. Surprisingly, for r = 16, the
2. Gramian method yields better results compared to the POD method. It is worth noting
that both empirical Gramian methods provide similar outcomes, which is an indicator for
a nearly identical reduction potential for both subsystems (6.13) and (6.14). Note that
the error of the plot can be found in Table 6.2.

For both, H = 0.5 and H = 0.75 an enormous reduction potential can be observed,
meaning that small dimensions r lead to accurate approximations. According to Remark
6.7 this is known a-priori by the strong decay of certain eigenvalues associated with the
system Gramians, since small eigenvalues indicate variables of low relevance. Given H =
0.75, Figure 6.3 shows the eigenvalues of P̄ T (1. Gramian), the sum eigenvalues of P̄ u,T

and P̄ x0,T (2. Gramian) as well as the sum of the singular values corresponding to the
POD snapshot matrices of subsystems (6.13) and (6.14). Similar types of algebraic values
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Figure 6.3: First 50 POD singular values
or eigenvalues associated to
P̄ T for H = 0.75.
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Figure 6.4: First 50 POD singular values
or eigenvalues associated to
PT/QT for H = 0.5.

are considered for H = 0.5 in Figure 6.4. Here, square roots of eigenvalues of PTQT (1.
Gramian) or the sum of square roots of eigenvalues of Pu,TQT and Px0,TQT (2. Gramian)
are depicted. The large number of small eigenvalues (or singular values) explains why
small errors could be achieved in our simulations.



Conclusions

This dissertation develops advanced techniques in model order reduction for stochastic
systems driven by both standard and fractional Brownian motion. The focus is on ad-
dressing theoretical challenges and proposing practical computational frameworks to re-
duce the complexity of high-dimensional stochastic systems. The following is a summary
of the key contributions presented in each chapter.

The introductory chapter, Chapter 1, establishes the mathematical foundation of the
dissertation. It covers essential concepts in stochastic calculus, including stochastic pro-
cesses, stochastic integrals, and the Itô formula. These preliminaries set the stage for
subsequent chapters by providing a robust framework for analyzing stochastic systems.

Chapter 2 delves into fractional Brownian motion, highlighting its distinct properties
such as self-similarity and long-range dependence, governed by the Hurst parameter H.
This chapter discusses various integration techniques suitable for fBm, including Young
integration and Malliavin calculus, and explores numerical methods for solving stochastic
di#erential equations driven by fBm.

Chapter 3 focuses on model order reduction for deterministic and stochastic linear
dynamical systems. The chapter begins with an exploration of Lyapunov operators and
stability in deterministic systems, extending these concepts to stochastic systems. It
introduces Gramian matrices as tools for characterizing dominant subspaces, which form
the basis for MOR techniques. Special attention is given to the Balanced Truncation
method and the Proper Orthogonal Decomposition method, which are applied to reduce
the computational complexity of high-dimensional systems while retaining their essential
dynamics.

Chapter 4 introduces linear stochastic partial di#erential equations (SPDEs) in an ab-
stract evolution equation framework. We focused on stochastic heat equations with frac-
tional noise, approximated using a spectral Galerkin scheme. The convergence of the spec-
tral Galerkin solution to the mild solution of the corresponding SPDE was demonstrated.
This discretization resulted in high-dimensional linear SDEs, motivating the extension of
balancing-based model order reduction to mean square asymptotically stable controlled
stochastic systems.

Chapter 5 addresses model order reduction for large-scale linear stochastic systems, such
as spatially discretized stochastic partial di#erential equations, where asymptotic stability
is often not guaranteed due to noise. The focus is on developing Gramian-based MOR
schemes suitable for unstable systems. These Gramians are constructed to identify domi-
nant subspaces and can be computed using Lyapunov equations, which require covariance
information. To address this, e!cient sampling-based methods with variance reduction
are proposed, along with deterministic approximations of covariance functions. An error
bound is derived, providing a criterion for selecting the reduced dimension of the system.
Numerical experiments demonstrate the e#ectiveness of the proposed MOR techniques.

Finally, in Chapter 6, we study large-scale linear systems driven by fBm with Hurst
parameter H → [1/2, 1). These equations are interpreted in the sense of Young (H > 1/2)
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or Stratonovich (H = 1/2), with Young equations particularly suited to capture mem-
ory e#ects in real-world phenomena. Addressing the computational challenges of high-
dimensional systems, we investigate model reduction techniques for both settings. We
analyze fundamental solutions of the systems, introducing empirical reduced-order meth-
ods based on snapshots (e.g., POD method) or approximated Gramians, which identify
dominant subspaces. For H > 1/2, the absence of links between Gramians and alge-
braic equations complicates the computation, so we propose empirical Gramians derived
from simulation data. Projection-based models are constructed using dominant subspaces,
though such projections may not preserve stability in Stratonovich settings. To address
this, we propose an improved reduced-order model for H = 1/2. The proposed techniques
are validated through numerical experiments on large-scale stochastic di#erential equa-
tions derived from spatially discretized fractional stochastic PDEs. This study provides
valuable insights into reduced-order methods for stochastic systems with fractional noise,
enabling more e!cient computational strategies for practical applications.

In conclusion, this dissertation makes significant contributions to the field of MOR by
developing innovative techniques tailored to stochastic systems driven by sBM and fBm.
These methods provide a unified approach to dimension reduction, applicable to a broad
range of stochastic modeling scenarios.



Summary of Contributions

This thesis is partially based on the papers that are listed below.

Preprint

N. Jamshidi and M. Redmann, (Empirical) Gramian-based dimension reduction for stochas-
tic di!erential equations driven by fractional Brownian motion, Applied Probability Jour-
nals, submitted.

Sections 6.2, 6.3 and 6.4 are based on this paper. However, in this thesis the results are
explained more detailed.

Publications

M. Redmann and N. Jamshidi, Gramian-based model reduction for unstable stochastic sys-
tems, Mathematics of Control, Signals, and Systems, vol. 34, 2022, pp. 855–881.

Results of this paper enter in Chapter 5.

N. Jamshidi and M. Redmann, Sampling-based model order reduction for stochastic dif-
ferential equations driven by fractional Brownian motion, Proceedings in Applied Mathe-
matics and Mechanics, vol. 23, 2023, pp. 1–6.

Section 6.4.2 are based on this paper.

Breakdown of Contributions

My individual contributions to each of the papers are as follows:

• ”Gramian-based model reduction for unstable stochastic systems”:
The core idea for this paper was proposed by Prof. Redmann, and we collabora-
tively developed the theoretical framework. However, the majority of the theoretical
contributions were led by Prof. Redmann. I was responsible for writing the experi-
mental code.

• ”Sampling-based model order reduction for stochastic di!erential equa-
tions driven by fractional Brownian motion”:
This paper focused on developing model order reduction schemes for large-scale sys-
tems driven by fractional Brownian motions. The concept was initiated by Prof.
Redmann. I contributed by applying the Proper Orthogonal Decomposition (POD)
method in this context and comparing it with the Gramian-based approach. I was
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responsible for implementing the experimental code, and Prof. Redmann and I
co-authored the paper together.

• ”(Empirical) Gramian-based dimension reduction for stochastic di!eren-
tial equations driven by fractional Brownian motion”:
This work aimed to extend the results from the previous paper on sampling-based
MOR for stochastic di#erential equations driven by fBms to a more general case.
Prof. Redmann incorporated the case where H = 1

2
(standard Brownian motion),

while I conducted the numerical experiments. I also wrote the section on fractional
Brownian motion, while Prof. Redmann contributed the Stratonovich calculus for
the standard Brownian motion case and revised the entire paper.



A Norms

A.1 Norms of Vectors and Matrices in Finite
Dimensions

Consider V ⇔ R as a linear space over the real or complex number field. A norm on V is
a function v : V ⇔ R such that the following properties are satisfied:

• Strictly positive: v(x) ∝ 0 for all x → V and v(x) = 0 if and only if x = 0.

• Satisfies the triangle inequality: v(x+ y) ↔ v(x) + v(y) for all x, y → V .

• Exhibits positive homogeneity: v(ϑx) = |ϑ|v(x) for any scalar ϑ → C and x → V .

For a vector x = (x1, . . . , xn)↘ → Cn, the norm, often referred to as the Hölder or
p-norm, is articulated as:

⇐x⇐p =

⎪
⎝

⎠
(
⎨

n

i=1
|xi|p)

1
p , 1 ↔ p < ⇓,

max
1↗i↗n

|xi|, p = ⇓.

Matrix norms of significance are those formulated from the vector p-norm specified
above. Specifically, for a matrix A = (aij) → Cn→m, the corresponding induced p-norm is:

⇐A⇐p = sup
x↙=0

⇐Ax⇐p
⇐x⇐p

,

For p = 1, 2,⇓, the matrix norms are expressed as follows:

⇐A⇐1 = max
1↗j↗m

n⌊︄

i=1

|aij |,

⇐A⇐2 =
⋃︁
max(ϖ(A↓A)),

⇐A⇐⇐ = max
1↗i↗n

m⌊︄

j=1

|aij |,

where ϖ(A↓
A) signifies the maximal eigenvalue of the positive-semidefinite matrix A

↓
A,

and A
↓ is the conjugate transpose of the matrix A.

Besides the induced matrix norms, there are alternative matrix norms, such as the
Schatten p-norms, which are invariant under unitary transformations. For the formulation
of these norms, we reference the singular value decomposition.
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A.1.1 Singular Value Decomposition

Singular value decomposition (SVD), as referenced in [81], applied to a matrix A → Cn→m,
ensures the existence of non-negative real numbers {ςi}ri=1

and unitary matrices

U = [u1 . . . un] → Cn→n
, UU

↓ = In

V = [v1 . . . vm] → Cm→m; V V
↓ = Im

where In and Im denote the identity matrices of dimensions n∀n and m∀m, respectively,
such that:

A = U$V ↓
,

where

$ =

\︂
$1 0
0 0

⎛

where $1 is a diagonal matrix with non-negative real numbers on the diagonal:

$1 =

⎟

⟨︂⟩︂
ς1 0

. . .

0 ςr

⨆︁

⨆︂∮︁ ,

here the singular values ςi of A are arranged in a non-increasing order,i.e ς1 ∝ ς2 ∝ . . . ∝
ςr > 0 and r = rank(A). The columns of U and V are known as the left and right singular
vectors of A, respectively. Moreover, the vectors {ui}ri=1

and {vi}ri=1
satisfy

Avi = ςiui and A
↓
ui = ςivi for i = 1, . . . , r.

They are eigenvectors of AA↓ and A
↓
A, respectively, with eigenvalues ϖi = ς

2

i
for i =

1, . . . , r. The vectors {ui}ni=r+1
and {vi}mi=r+1

(if r < n and r < m, respectively) are
eigenvectors of AA↓ and A

↓
A with eigenvalue 0.

A.1.2 Schatten p-norm

Consequently, for a matrix A = (aij) within the complex space Cn→m with m ↔ n,
we define the Schatten p-norm, which is not derived from other norms, in the following
manner:

⇐A⇐S,p =
/︂
(
⎨

m

i=1
(ςi(A))p)

1
p , 1 ↔ p < ⇓,

ςmax(A), p = ⇓,

where ςi(A) are referred to as the singular values of the matrix A, or equivalently, the
square roots of the i-th largest eigenvalues of the product AA↓.

For particular cases where p = 1, 2,⇓, the Schatten p-norms are specified as follows:

⇐A⇐S,p =

⎪
⏐⏐⎝

⏐⏐⎠

⎨
m

i=1
ςi(A), p = 1, (trace norm),

)︄⎨
m

i=1
(ςi(A))2

[︄ 1
2 = trace(A↓

A), p = 2, (Frobenius norm),

(ϖmax(AA↓))
1
2 , p = ⇓, (spectral norm).
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A.2 Banach and Hilbert Spaces

A Banach space is identified as a vector space V over the field R for real numbers or C for
complex numbers equipped with a norm ⇐ · ⇐ that turns V into a complete metric space.
This means that every Cauchy sequence in V has a limit in V . Hilbert spaces are spacial
cases of Banach spaces with a richer structure that arises from the presence of an inner
product, a mapping from V ∀ V to R defined by:

⇒·, ·⇑ : V ∀ V ⇔ R (A.1)

(x, y) ⇔ ⇒x, y⇑ → R (A.2)

This function is characterized by the following properties:

• Strict positiveness: For all x → V , ⇒x, x⇑ ∝ 0 with equality if and only if x = 0.

• Linearity in the first argument: For all x, y → V and scalars ϑ,φ → R, it holds that

⇒ϑx+ φy, z⇑ = ϑ⇒x, z⇑+ φ⇒y, z⇑

.

• Conjugate symmetry: For all x, y → V , ⇒x, y⇑↓ = ⇒y, x⇑.

The norm induced by this inner product on V is given by ⇐x⇐ =
⋃︁
⇒x, x⇑.

Definition A.1 A Hilbert space is separable provided it contains a dense countable sub-
set.

Theorem A.2 A Hilbert space H is separable if and only if it has one countable or-
thonormal basis, and this is equivalent to every orthonormal basis for H being countable.

A.2.1 Nuclear Operator

Let H be a separable Hilbert space with {ek} as a complete orthonormal basis in H. If
T → L1(H,H), the trace of T is defined as

TrT =
⇐⌊︄

j=1

⇒Tej , ej⇑H .

Proposition A.3 [24] A nonnegative operator T → L(H) is classified as nuclear (or trace
class) operator if and only if, for any orthonormal basis {ek} of H, we have

⇐⌊︄

j=1

⇒Tej , ej⇑H < +⇓.

Furthermore, in this situation, the trace of T satisfies TrT = ⇐T⇐1.
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A.2.2 Hilbert-Schmidt Operator

A linear continuous operator T : V ⇔ U between two Hilbert spaces V and U is called a
Hilbert-Schmidt operator if

⇐T⇐2HS :=
⇐⌊︄

k=1

⇐Tek⇐2U < ⇓,

where {ek}⇐k=1
is an orthonormal basis for the Hilbert space V , and ⇐ · ⇐U is the norm on

U . The quantity ⇐T⇐HS is called the Hilbert-Schmidt norm of T , and it is independent of
the choice of the orthonormal basis {ek}. The space of all Hilbert-Schmidt operators is a
Hilbert space itself, denoted by L2(V, U), with the inner product

⇒T1, T2⇑HS =
⇐⌊︄

k=1

⇒T1ek, T2ek⇑U .

For a comprehensive treatment of Hilbert-Schmidt operators, see [24] .



B Kronecker Product

In this section, we explore the process of vectorizing a matrix alongside an exploration of
the Kronecker product, including an examination of its attributes. This particular matrix
operation simplifies various computational procedures. As such, it is utilized in deducing
the controllability and observability Gramians from the Lyapunov equations, as indicated
in (3.2) or (3.27), and in determining the matrices K and K↘ of a system as discussed in
Remark 3.18. For an in-depth discussion on the characteristics of the Kronecker product
and proof of these properties, the reader is referred to [16].

Definition B.1 Consider a matrix A → Rn→m. The vectorization operator is defined as

vecA =

⨁︂

⨂︁⨂︂
col1(A)

...
colm(A)

∑︁

∏︁∫︁ → Rnm→1
,

resulting in a nm∀ 1 column vector by consolidating the columns of A. To reconstruct
A from vecA, we utilize the inverse vectorization process:

A = vec↑1(vecA).

Further, we demonstrate the following for C → Rm→p:

trace(AC) = (vecC↘) vecA.

Definition B.2 Let A → Rn→m and B → Rp→k. Then, the Kronecker product A ↖ B of
A → Rnp→mk is the partitioned matrix

A↖B =

⨁︂

⨂︁⨂︁⨂︁⨂︂

A(1,1)B A(1,2)B . . . A(1,m)B

A(2,1)B A(2,2)B . . . A(2,m)B

...
...

. . .
...

A(n,1)B A(n,2)B . . . A(n,m)B

∑︁

∏︁∏︁∏︁∫︁
. (B.1)

Unlike matrix multiplication, the Kronecker product A↖B does not entail a restriction
on either the size of A or the size of B.

The following results are immediate consequences of the definition of the Kronecker
product.
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Proposition B.3 [16] Let ϑ → R, A → Rn→m, B → Rp→k and C → Rm→p. Then,

A↖ (ϑB) = (ϑA)↖B = ϑ(A↖B), (B.2)

A↖B = B ↖A, (B.3)

(A↖B)↘ = A
↘ ↖B

↘
, (B.4)

Proposition B.4 [16] Let A,B → Rn→m and C → Rp→k. Then,

(A+B)↖ C = A↖ C +B ↖ C, (B.5)

C ↖ (A+B) = C ↖A+ C ↖B. (B.6)

Proposition B.5 [16] Let A → Rn→m, B → Rp→k, and C → Rq→l. Then,

A↖ (B ↖ C) = (A↖B)↖ C.

Hence, we write A↖B ↖ C for A↖ (B ↖ C) and (A↖B)↖ C.

Proposition B.6 [16] Let A → Rn→m, B → Rp→k and C → Rm→p. Then,

vec(ACB) = (B↘ ↖A) vec(C)

The following result demonstrates a practical alignment between traditional matrix
multiplication and the Kronecker product operation.

Proposition B.7 [16] Let A → Rn→m, B → Rl→k, C → Rm→q, and D → Rk→p. Then,

(A↖B)(C ↖D) = AC ↖BD.

Corollary B.8 [17] Let t ⇔ A(t) be a continuous map from an interval I into the space
of n∀n matrices. Then there exist continuous functions ϖ1(t) . . .ϖn(t) that, for each t → I,
are the eigenvalues of A(t).
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[92] V. S. Pugačev, The general theory of correlation of random functions, Izv. Akad.
Nauk SSSR Ser. Mat., 17 (1953), pp. 401–420.

[93] H. Qian, Fractional brownian motion and fractional gaussian noise, in Processes
with Long-Range Correlations: Theory and Applications, Springer, 2003, pp. 22–33.

[94] A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for partial
di!erential equations: an introduction, vol. 92, Springer, 2015.

[95] A. Rascanu et al., Di!erential equations driven by fractional brownian motion,
Collectanea Mathematica, (2002), pp. 55–81.

[96] M. Redmann, Type II singular perturbation approximation for linear systems with
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