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Mobile LoRaWAN links suffer from rapid RSSI/SNR fluctuations due to motion, obstacles, and interference,
degrading reliability and wasting energy. This work evaluates lightweight signal-strength prediction combined
with adaptive control on resource-constrained hardware. A Kalman filter is applied to smooth per-packet
RSSI/SNR and to trigger parameter updates to transmit power, spreading factor, and coding rate only when
persistent degradation is detected. The approach is implemented on an Arduino sender and a Raspberry Pi
receiver and tested in urban, rural, park, and free-field environments. Results show variance reductions in
RSSI of about one third and SNR of about one fifth, translating into energy savings of 15-27% without loss
of reliability. Compared with a reactive baseline and the principles of LoORaWAN ADR, the method responds
faster to recovery and avoids prolonged high-power operation in mobility. The findings indicate that simple

predictive filtering is an effective building block for robust and energy-efficient mobile LoRaWAN systems.

1 INTRODUCTION

The IoT relies on efficient and reliable communica-
tion, often in remote or mobile scenarios. Among
LPWAN protocols, LoRaWAN stands out for its
long range and energy efficiency, making it ideal
for battery-powered devices in rural or infrastructure-
scarce areas. However, in mobile conditions, signal
strength varies unpredictably due to distance, inter-
ference, obstacles, and motion, causing packet loss,
latency, and unstable connectivity.

This work explores lightweight methods for pre-
dicting signal strength in mobile LoRaWAN nodes
to stabilize links and improve energy efficiency. By
forecasting link quality, the system can adjust trans-
mission parameters or delay non-urgent messages un-
til conditions improve. The approach combines Lo-
RaWAN’s low-power design with simple predictive
models, such as the Kalman filter, implemented on
microcontrollers and single-board computers like Ar-
duino or Raspberry Pi. The following sections outline
the hardware setup, system architecture, and predic-
tion techniques, followed by results and future work.
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2 SYSTEM DESIGN AND
IMPLEMENTATION

To evaluate signal prediction and improvement meth-
ods in mobile scenarios, a compact IoT system was
developed with two components: a mobile sender
node that transmits packets while moving, and a sta-
tionary receiver that collects, filters, and analyzes sig-
nal data. The aim was to create a lightweight, re-
producible setup capable of capturing real-time signal
variations with minimal hardware complexity.

2.1 Hardware Setup

The hardware architecture is designed to mimic prac-
tical IoT deployments where cost, portability, and en-
ergy efficiency are critical. Both nodes use commer-
cially available components to ensure reproducibility
and scalability.

The sender node (Fig. 1) is based on an Arduino
Mega 2560 with a Dragino LoRa Shield v1.4 [1] us-
ing the Semtech SX1276 [2] transceiver operating at
868 MHz. It is powered by a 5V power bank and
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Figure 1: Mobile sender node based on Arduino Mega with
Dragino LoRa Shield.

Figure 2: Stationary receiver node with Raspberry Pi 3 B+
and Dragino LoRa BEE.

uses an SMA omnidirectional antenna. The station-
ary gateway (Fig. 2) employs a Raspberry Pi 3 B+
connected to a Dragino LoRa Bee v1.1 (SX1276, 868
MHz) [3] through SPI, using the same type of antenna
for compatibility. This configuration reflects a prac-
tical IoT deployment: portable, energy-efficient, and
built entirely from off-the-shelf components.

2.2 Software Architecture

The Arduino runs C++ firmware that periodically
sends numbered packets and waits for acknowledg-
ments (ACKs) containing updated communication
parameters. The receiver, implemented in Python on
the Raspberry Pi, listens for packets, logs the RSSI
and SNR, and applies a lightweight Kalman filter to
smooth out fluctuations caused by movement and in-
terference.

Based on the filtered RSSI and SNR values, the re-
ceiver adaptively suggests adjustments to the sender’s
TP, SE, or CR. These updated parameters are embed-
ded within standard ACK messages, ensuring syn-
chronization without additional overhead. If packet
ACKs are missed, the sender increases its TP until
the link stabilizes. All packets and adaptation events
are timestamped and stored for later analysis.

This feedback loop enables real-time link opti-
mization directly on low-power hardware. The sim-
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plicity of the implementation shows that predictive
control can run on resource-limited devices such as
Arduino and Raspberry Pi, offering an accessible base
for further experimentation.

3 SIGNAL STRENGTH
PREDICTION

This section outlines the methodology for manag-
ing and interpreting signal strength data in mobile
LoRaWAN nodes within an adaptive communication
system. The core technique is the Kalman filter, a
lightweight algorithm that smooths noisy measure-
ments to improve decision-making. The section ex-
plains the filter’s mechanics, its application to RSSI
and SNR smoothing, and its main limitations and fu-
ture improvement prospects [4].

3.1 Kalman Filter Overview

Originally developed for navigation, the Kalman fil-
ter estimates a system’s state by combining predic-
tions with new measurements [5], [6]. Here, the state
represents the underlying RSSI or SNR, while noise
arises from interference, distance, and multipath ef-
fects. The recursive prediction—correction process
tracks real changes while suppressing short-term fluc-
tuations.

3.1.1 Prediction, Correction, and Smoothing

The Kalman filter operates in two iterative steps. Dur-
ing the prediction step, it estimates the next RSSI or
SNR value from the current state, assuming gradual
change with process noise (Q) representing expected
variation between measurements. The uncertainty of
this prediction is tracked through a covariance ma-
trix. When a new measurement arrives, the correc-
tion step combines it with the prediction, weighted by
measurement noise (R), to obtain an updated estimate
with reduced uncertainty. The Kalman gain (K) de-
termines how much confidence to assign to the new
measurement versus the model.

This cycle repeats for every received packet, pro-
viding a smoothed, adaptive estimate of link quality.
In mobile LoORaWAN systems, this smoothing is cru-
cial: RSSI and SNR often fluctuate sharply due to re-
flections, interference, or brief obstructions. Without
filtering, such transient drops could trigger unneces-
sary transmission power increases. The Kalman filter
instead highlights persistent signal trends while atten-
uating random noise, enabling the control logic to re-
spond only to meaningful degradation.
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3.1.2 Implementation Details

Separate filters were applied to RSSI and SNR, ini-
tialized at -90 dBm and 0 dB with tuned parameters:

* Process noise (Q) defines expected signal
change. Smaller O (0.01) stabilizes walking
scenarios, while larger Q (0.1) adapts faster to
vehicular motion.

= Measurement noise (R) represents sample vari-
ance, for example R = 1.5. A higher R makes
the filter less sensitive to random fluctuations.

For slow movement, small Q and moderate R pro-
vided stable estimates. Increasing Q improved re-
sponsiveness at higher speeds. Packets were transmit-
ted every five seconds, which was sufficient for walk-
ing while keeping computation light.

Filtered outputs were then passed to the adaptive
logic. Instead of reacting to every fluctuation, the con-
troller used two thresholds and a dwell period requir-
ing several consecutive packets before adjusting pa-
rameters. When filtered RSSI or SNR dropped be-
low the lower limits, TP, SF, or CR increased; when
they rose above, parameters were gradually reduced
to save energy.
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Figure 3: Decision heatmap.

This behavior approximates discrete minimization
of the cost function

ic{RSSI,SNR}

J(p) = E(TP,SF,CR) + A H('?i<9i_),
(1
where p € {0,..., 12} x{7,...,12} x{%,..., 3 } is the
parameter vector, E(-) denotes energy per packet, I(-)
is the indicator function, 6; are lower thresholds (e.g.,
Bgssy = —92 dBm), and A weights reliability against
energy. Due to hardware limits, this optimization is
implemented as a greedy threshold policy rather than
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solved explicitly. Equation (1) formalizes the trade-
off between minimizing energy and maintaining reli-
able link quality.

Figure 3 shows the decision space over filtered
RSSI-SNR bins. The combination of smoothing, hys-
teresis, and dwell time prevents frequent toggling, en-
suring a stable and energy-efficient control loop.

4 EXPERIMENTAL PROTOCOL
AND DATA COLLECTION

To evaluate prediction and adaptation under realistic
conditions, experiments were conducted in four envi-
ronments: urban, rural, park, and free field. Each set-
ting exposed the system to distinct propagation chal-
lenges involving interference, obstacles, and open-
line attenuation [7], [8], [9]. Instead of maximizing
packet counts, the goal was to capture diverse real-
world mobile LoRaWAN behavior.

4.1 Field Environments and Motion
Profiles

The four test sites (Fig. 4) captured varied propaga-
tion conditions. The urban area featured frequent
line-of-sight blockages from pedestrians and build-
ings, causing rapid RSSI/SNR fluctuations. The rural
route followed a long village road with minimal inter-
ference and gradual distance-driven attenuation. The
park offered semi-open terrain with few obstructions,
serving as a clean baseline for short-term variability.
The free-field site, located on an elevated open area,
provided near-ideal line-of-sight conditions isolating
fundamental signal dynamics.

Figure 4: Measurement environments: urban (top left), ru-
ral (top right), park (bottom left), and open field (bottom
right).

Across all environments, two motion profiles were
tested: slow walking at 4-5 km/h and faster traverses
at 9—10km/h, enabling evaluation of the Kalman fil-
ter’s responsiveness under differing mobility condi-
tions.
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4.2 Experimental Setup and Data
Logging

The sender used default LoRa parameters and trans-
mitted numbered packets at a fixed cadence. Each
packet carried a CRC for integrity, while the receiver
logged both raw and filtered RSSI/SNR values. When
thresholds were crossed, adaptive commands adjusted
TP, SF, or CR. This produced two datasets: a raw (un-
filtered) control path and a filtered adaptive path, en-
abling direct comparison.
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Figure 5: Adaptive packet flow and decision loop between
sender and receiver.

The complete communication flow is shown in
Figure 5. Each received packet triggered the compu-
tation of RSSI/SNR statistics, Kalman filtering, and
rule-based adaptation, followed by an ACK contain-
ing updated parameters. All log entries included
timestamps, signal metrics, and adaptation decisions,
allowing precise reconstruction of the decision pro-
cess and evaluation of filter behavior.

To quantify motion intensity, a simple mobility in-

dicator was derived from the median absolute deriva-
dRSSI; D

tive of filtered RSSI over time, median( v
expressed in dB/s. Higher values indicated faster
movement or sudden environmental transitions.

4.3 Representative Dataset

From the complete dataset, four representative traces,
one from each environment, were selected for de-
tailed analysis. The urban case highlighted sharp,
short-lived fades caused by pedestrians, largely sup-
pressed by filtering. The rural case showed smooth
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distance-driven decline accurately tracked by the fil-
ter. The park and free-field results confirmed baseline
behavior under clean propagation, revealing how the
Kalman filter maintains stability without masking true
signal trends. These examples collectively demon-
strate how the adaptive control loop performs under
varying mobility and environmental complexity.

5 RESULTS AND ANALYSIS

Building on the experimental setups described previ-
ously, this section evaluates how the prediction and
control loop behaved under real mobility across ur-
ban, rural, park, and free-field traces. The analysis fo-
cuses on reliability, stability, responsiveness to speed,
and energy efficiency using time-series comparisons,
variance summaries, and paired slow/fast traverses.

5.1 Reliability Outcomes

Across all runs, end-to-end reliability remained high.
Packets were received with valid CRCs and acknowl-
edgments were consistently returned. In the urban
trace, temporary fades appeared when pedestrians
briefly obstructed the line-of-sight. Such events could
trigger false alarms in a threshold-only controller, but
the Kalman filter smoothed them effectively, allowing
the system to avoid unnecessary power increases.

In the rural trace, RSSI declined gradually with
distance, and the adaptation policy reacted only to
persistent degradation, confirming correct detection
even under smoothing.

5.2 Smoothing and Stability

Stability was evaluated by comparing the variance
of raw and filtered RSSI/SNR values across envi-
ronments. High variance implies frequent threshold
crossings that lead to erratic control. By reducing
variance, the Kalman filter allowed the controller to
focus on persistent changes rather than noise.

In both urban and rural traces, the filter reduced
RSSI variance by roughly one-third and SNR vari-
ance by about one-fifth. These reductions yielded
steadier control; most short fades were removed while
the long-term trend remained. In the rural and park
tests, where path loss dominated, the filter preserved
the overall trajectory but damped small oscillations
caused by reflections.

Figures 6 and 7 illustrate these effects: raw traces
fluctuate around thresholds, while filtered curves re-
main stable. The filter thus balanced smoothness and
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responsiveness, improving control reliability without
masking genuine degradation.

This balance is critical. An adaptive system that
chases every spike will waste energy and become un-
stable, while one that smooths too aggressively may
miss the onset of real problems. By achieving less jit-
ter while still tracking the overall decline, the Kalman
filter demonstrated that stability and responsiveness
can coexist. These results show that smoothing is not
just cosmetic but an essential component of reliable
control in mobile LoRaWAN links.

Raw vs. filtered RSSI and SNR
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Figure 6: Time-series of raw and filtered RSSI and SNR.
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Figure 7: Variance reduction across environments.

5.3 Slow vs. Fast Motion Sensitivity

The system’s responsiveness depends on how quickly
channel conditions change. Two runs of equal dis-
tance but different speeds were compared: a slow
walk (4-5 km/h) and a fast traverse (9—10 km/h).

In the slow run, the filtered RSSI followed the
trend closely, suppressing minor dips. In the fast run,
it lagged slightly behind rapid losses because the pro-
cess noise Q was conservatively tuned. The link re-
mained stable, but the delay showed that parameters
were not optimal for higher speeds.

This trade-off illustrates a general rule: small Q
favors stability, larger Q faster adaptation at the cost
of more noise. A refinement would be to adjust Q
dynamically with estimated speed, while hysteresis
and dwell thresholds prevent false triggers. Figure 8
shows consistent control decisions across speeds.
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Figure 8: Comparison of slow and fast traverses.

5.4 Raw vs. Filtered Paths Decisions

Because both raw and filtered decision paths were
logged, it was possible to compare what the controller
would have done without filtering against what it ac-
tually did.

In the urban run, the raw path triggered repeated
power increases from short fades, while the filtered
path stayed steady. In rural and park runs, where sig-
nal changes were gradual, both paths mostly agreed,
showing that smoothing preserved real degradations.

Filtering thus reshaped the decision process: it re-
duced impulsive reactions and made control more se-
lective, adjusting parameters only after sustained poor
link quality. Dwell counters or hysteresis rules can
further confirm persistence before action, improving
efficiency without compromising reliability.

5.5 Energy Impact and ADR
Comparison

The final analysis quantifies how predictive filtering
improved energy efficiency compared with a purely
reactive controller and standard LoRaWAN ADR.

5.5.1 Methodology for Energy Measurement

Energy per packet was estimated using Time-on-
Air (ToA) and transmit current (/) values obtained
from LoRaWAN transmission models [10, 11, 12, 9].
Based on the logged transmission sequences, total
energy consumption was calculated for two control
paths: adaptive (filtered) and reactive (raw). The rel-
ative energy savings were then computed as shown
in (2), enabling a direct comparison between

predictive and reactive control under identical
experimental con-ditions.
E .
Eqavea(%) = 100 <1 - ‘”’) )
reactive
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Energy saving by environment
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Figure 9: Energy savings by environment.

5.5.2 Quantified Savings and Comparison

The results in Figure 9 show consistent improvements
across all environments. Energy use dropped by ap-
proximately 27% in the park, 25% in free-field, 24%
in rural, and 15% in urban conditions. Savings were
highest where transient fades were common, since fil-
tering prevented over-reactions.

A comparison was made with the standard Lo-
RaWAN ADR strategy. ADR is primarily designed
for stationary devices and focuses on long-term sta-
bility, which often leads to conservative behavior after
a degradation event [13]. It typically maintains high
transmission power for extended periods, even when
conditions have already improved.

The adaptive method evaluated here was tuned for
mobility. It increases parameters only after sustained
evidence of poor link quality and quickly returns to
lower power once conditions recover. This agility al-
lows it to maintain reliability while avoiding unnec-
essary energy expenditure, achieving a lower power
footprint than traditional ADR systems [14].

Overall, predictive filtering shifted control from
a reactive to a proactive mode. By distinguishing
between noise and genuine degradation, it preserved
communication reliability while significantly reduc-
ing energy consumption, which is critical for mobile
IoT devices operating under strict power constraints.

6 DISCUSSION AND FUTURE
WORK

The results show that prediction and smoothing sig-
nificantly improve the stability of mobile LoRaWAN
links under fading and motion. However, several lim-
itations remain, and there are clear opportunities to
extend the system. This section reflects on practical
constraints and outlines directions for future research.

The Kalman filter’s effectiveness depends on pa-
rameter tuning, especially the process noise Q and
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measurement noise R. A conservative Q ensured sta-
bility during slow motion but caused lag at higher
speeds. A single fixed parameter set cannot perform
well under all mobility conditions, suggesting that
machine-learning-based tuning could enhance adapt-
ability [15]. The dataset, though covering four envi-
ronments (urban, rural, park, free field), omits vehic-
ular and indoor scenarios, which would reveal addi-
tional fading effects and test generality.

The sender—receiver setup (Arduino Mega and
Raspberry Pi 3 B+ with SX127x) ensured repro-
ducibility but limits generalization. Other radios, an-
tennas, or stacks may behave differently, while high
delivery ratios partly reflect controlled conditions.

Finally, the optimization targeted reliability, re-
ducing power only under strong link quality. Real
deployments may require balancing lifetime or inter-
ference instead. Multi-objective control remains chal-
lenging for large-scale LoORaWAN systems [16].

Overall, the prototype stabilizes decisions and
avoids overreaction but does not yet provide a univer-
sal solution for all mobility profiles or device types.

7 CONCLUSIONS

This work demonstrated that predictive filtering com-
bined with adaptive control significantly improves the
reliability and energy efficiency of mobile LoORaWAN
communication. Field experiments across urban, ru-
ral, park, and free-field environments showed that
lightweight filtering, such as the Kalman approach,
effectively stabilizes fluctuating RSSI and SNR val-
ues under mobility, providing a dependable founda-
tion for transmission control.

Filtering cut variability by one-third and saved
15-27% energy without affecting reliability. By sup-
pressing short-lived fades and preventing unnecessary
power escalation, the system maintained high packet
delivery ratios while conserving energy. Compared
with standard ADR, the adaptive approach responded
faster to link recovery, restoring efficiency that ADR
often leaves unused in mobile scenarios.

However, several limitations remain. The Kalman
filter’s performance depends heavily on parameter
tuning, and a fixed setup cannot optimally handle all
motion regimes. The dataset excluded key scenarios
such as vehicular or indoor mobility and transitions
between line-of-sight and non-line-of-sight. The Ar-
duino—Raspberry Pi prototype ensured reproducibil-
ity but limits generalization to other radios or denser
deployments. Moreover, the control objective was re-
stricted to maximizing reliability rather than jointly
optimizing lifetime, interference, and throughput.
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Future work should explore adaptive parameter
tuning, multi-objective optimization, and context-
aware control using GPS or inertial data. Combin-
ing filtering with machine learning - e.g., predictive
models or reinforcement learning - could enable au-
tonomous adaptation. Scaling to multi-node networks
will further test scalability and coordination.

The findings c onfirm th at in telligent si gnal pro-
cessing is a key enabler for robust and sustainable mo-
bile LoRaWAN systems, paving the way for depend-
able IoT communication under dynamic conditions.
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