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Referat

Die altersbedingte Makuladegeneration (AMD) ist eine multifaktorielle Erkrankung mit
genetischen und nicht-genetischen Risikofaktoren, die mit progredientem Visusverlust
bis hin zur Erblindung einhergeht. Die neovaskulare Spatform wird mittels intravitrealer
Injektionen von Medikamenten, die gegen den Vascular Endothelial Growth Factor A
(VEGF-A) gerichtet sind, therapiert. Das Therapieansprechen variiert dabei individuell
erheblich. Hier wird ebenfalls ein Einfluss genetischer Varianten vermutet. Im Zuge
dieser Arbeit wurden 19 an neovaskularer AMD (nAMD) erkrankte Patient*innen, die
eine Therapie mittels VEGF-Inhibitoren erhielten, bezlglich Varianten im VEGFA-Gen
untersucht. Diese wurden hinsichtlich einer Assoziation mit AMD und dem
Therapieansprechen ausgewertet. Zusatzlich wurden sieben mittels Gen-Panel-
Diagnostik identifizierte Varianten in den Genen des Komplementsystems mit einer
zweiten Methode verifiziert und im Hinblick auf einen mdglichen Einfluss auf die

Pathogenese der AMD ausgewertet.

Im VEGFA-Gen (Referenzsequenz: NM_003376.6) wurden die synonyme Variante
€.534C>T, p.Ser178= (rs25648) und die intronische Variante ¢.856-28C>T (rs3025000)
identifiziert. Nach den Kriterien des American College of Medical Genetics and
Genomics (ACMG) sind beide Varianten als benigne Veranderungen einzuordnen. Die
Literaturrecherche legt nahe, dass beide Varianten nicht mit dem AMD-Risiko assoziiert
sind, rs3025000 jedoch das Therapieansprechen beeinflussen kdénnte. In der
vorliegenden Arbeit konnte dagegen kein Zusammenhang zwischen diesen Varianten
und dem Ansprechen nachgewiesen werden. Es zeigte sich ein Hinweis auf einen
moglichen Zusammenhang des T-Allels von rs25648 mit einem niedrigeren Risiko der

Erkrankung an einer AMD, was jedoch einer Bestatigung in grofieren Kohorten bedarf.

Alle aus der Gen-Panel-Diagnostik ausgewahlten Varianten konnten mittels
allelspezifischer PCR oder Sanger-Sequenzierung verifiziert werden. Nach ACMG ist
NM_006610:c.359A>G, p.Asp120Gly in MASP2 likely  pathogenic  und
NM_005666:¢c.595G>T, p.Glu199Ter in CFHR2 pathogenic. Beide Varianten haben
funktionelle Konsequenzen. Im Falle einer Assoziation mit AMD, die mittels prospektiver,
gréRerer Studien bestatigt werden mdisste, kdnnen solche funktionell relevanten
Varianten auf einen Beitrag der jeweiligen Gene zur Pathogenese der AMD hinweisen.
Zudem koénnten das Risiko beeinflussende Varianten in einem polygenetischen Kontext
eine individualisierte Risikoeinschatzung und Behandlung ermoglichen.

Michel, Paula: Sequenzveranderungen in Kandidatengenen bei Patient*innen mit

altersbedingter Makuladegeneration und deren potenzieller Einfluss auf ein
Therapieansprechen, Halle (Saale), Univ., Med. Fak., Diss., 80 Seiten, 2025
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1 Einleitung

1.1 AMD - eine Hauptursache fir Erblindung in Hochlohnlandern

Der gegenwartige demographische Wandel und die damit einhergehende Alterung der
Gesellschaft beeinflussen die Gesundheitsversorgung bedeutend, da sie zu einer
Zunahme der Pravalenz altersassoziierter Erkrankungen flhren (1). Diese meist
komplex bedingten und chronisch verlaufenden Erkrankungen bedrohen die
Selbstandigkeit und Lebensqualitat alterer Menschen, welche wichtige Ziele in deren
Versorgung darstellen. Eine solche altersbedingte Erkrankung stellt auch die
altersbedingte Makuladegeneration (AMD; MIM# 603075) dar, welche durch

progredienten Visusverlust bis hin zur Erblindung gekennzeichnet ist.

Der Visusverlust beruht auf einer Schadigung der Netzhaut, insbesondere im Bereich
der Makula. Ursachlich sind pathologische Veranderungen des Stoffwechsels im Bereich
des retinalen Pigmentepithels (RPE) (2), die mit subretinalen Ablagerungen von
Stoffwechselprodukten, sogenannten Drusen, und schlieldlich der Degeneration von
RPE und Photorezeptorzellen, einhergehen (3). Als zugrundeliegende Mechanismen
werden dysregulierte Phagozytose und oxidativer Stress, Akkumulation von Lipiden,
beeintrachtigtes Remodeling der extrazellularen Matrix (EZM), und komplementbedingte
Inflammation vermutet (2—4). Die resultierende Verdickung der Bruch-Membran fuhrt zu
einem vermindertem Austausch von Abfallprodukten, Nahrstoffen und Sauerstoff
zwischen Retina und Choriokapillaris und letztendlich einer Hypoxie (5). Es resultieren
eine gesteigerte Expression des Wachstumsfaktors Vascular Endothelial Growth Factor
A (VEGF-A) sowie eine VEGF-unabhangige Angiogenese und somit eine beglnstigte

Bildung von Neovaskularisationen (5).

Drusen kennzeichnen die friihen Stadien der AMD, aber fihren meist noch nicht zu
Seheinschrankungen. Schreitet die Erkrankung voran, kann eine geografische Atrophie
oder eine neovaskulare AMD (nAMD) entstehen, welche mit einem zentralen
Visusverlust einhergehen (Abbildung 1). Charakteristisch fur die geografische Atrophie
sind scharf begrenzte Zelluntergange des RPE (6). In der Folge atrophieren auch die
daruber befindlichen Photorezeptorzellen. Die neovaskulare Spatform wird hingegen
durch die oben genannten GefalRneubildungen verursacht, welche unkontrolliert unter
RPE und Retina einsprossen. Da diese insuffizient gebaut sind, kénnen sie Uber
Hamorrhagien und den Austritt von Flissigkeit schnell zu einem starken Visusverlust
fuhren (7).



Die Lebensqualitat Betroffener wird mit Fortschreiten der Erkrankung immer starker
eingeschrankt. Wird die Lebensqualitat nach der Time Trade Off Methode, welche den
Anteil verbleibender Lebensjahre, die ein Patient bereit ware abzugeben, um vdllige
Gesundheit wiederzuerlangen, verglichen, so ahneln sich die Nutzwerte einer leichten
AMD und einer Wirbelfraktur (8,9). Die Einschrankung der Lebensqualitat durch eine
sehr schwere AMD ist hingegen vergleichbar mit der durch ein fortgeschrittenes

Prostatakarzinom (8,10).
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Abbildung 1: Stadien der AMD. Einteilung nach der klinischen Klassifikation des Beckman
Initiative for Macular Research Classification Committee (11).

1.2 Epidemiologie

Die AMD ist eine multifaktorielle Erkrankung, daher interagiert die genetische
Pradisposition mit weiteren Risikofaktoren. Zu den starksten Risikofaktoren gehdren das
Rauchen (12—-14) und das Alter (12,15,16). Die Pravalenz von AMD im frihen Stadium
betragt bei 55- bis 59-Jahrigen 3,5 % und steigt bei den = 85-Jahrigen auf 17,6 % (17).
Die Spatformen der AMD betreffen 0,1 % der 55- bis 59-Jahrigen und 9,8 % der = 85-
Jahrigen (17). Im Zusammenhang mit dem demografischen Wandel ist daher eine
Zunahme der Betroffenen anzunehmen. Es wird prognostiziert, dass im Jahr 2040
weltweit 288 Millionen Menschen von AMD betroffen sein werden und Europa nach

Asien die zweitmeisten AMD-Falle aufweisen wird (18). Die Anzahl der AMD-Betroffenen



in der EU kdnnte von zurzeit 67 Millionen auf 77 Millionen im Jahr 2050 steigen und

somit um 15 % zunehmen (19).
1.3 Genetische Pradisposition

1.3.1 Das Komplementsystem mit CFH als Hauptrisikogen

Den allgemeinen Risikofaktoren steht die genetische Pradisposition fur die Erkrankung
an AMD gegenutber. Nachdem Zwillings- (20,21) und Familienstudien (22,23) die
Heritabilitdt der AMD impliziert hatten, wurden Chromosom 1q31 und 10926 als
Suszeptibilitatsloci identifiziert (24). In einer der ersten erfolgreichen genomweiten
Assoziationsstudien (GWAS) (25) sowie weiteren familien- und populationsbasierten
Assoziationsstudien wurde schlief3lich das Gen des Komplementfaktors H (CFH) auf
Chromosom 1q31 als erstes Hauptrisikogen identifiziert (25-28). Besonders der
Missensevariante NM_000186:¢.1204T>C, p.Tyr402His (rs1061170), die den
Austausch von Tyrosin durch Histidin an der Aminosaureposition 402 im kodierenden
Bereich des CFH-Gens bewirkt, wurde ein risikosteigernder Effekt zugeschrieben. Das
Vorhandensein des C-Allels, einer der Varianten des Gens, filhrt zu einer fast dreifachen
Steigerung des AMD-Risikos (26,29).

Faktor H gehdrt zum Komplementsystem, einem ca. 30 Proteine umfassenden,
kaskadenartigen Abwehrmechanismus des angeborenen Immunsystems (30)
(Abbildung 2). Dieses Abwehrsystem kann auf drei verschiedenen Wegen aktiviert
werden, die durch die Bildung einer Konvertase fir Komplementfaktor C3 (C3) in eine
gemeinsame Endstrecke mit Bildung eines Membranangriffskomplexes (MAC) minden

(30). Faktor H ist dabei ein komplementregulatorisches Protein (31).

Die Assoziation von rs1061170 in CFH mit dem AMD-Risiko und der Nachweis von
Komplementfaktoren in Drusen (32,33) rickten das Komplementsystem in den
Vordergrund fir weitere Studien zu den genetischen Einflussfaktoren der AMD. In Genen
verschiedener Komplementfaktoren wurden nachfolgend protektive und risikosteigernde
genetische Varianten identifiziert (Abbildung 2). So fuhren Varianten, die die Funktion
von Faktor | beeintrachtigen, ebenfalls zu einem erhéhten AMD-Risiko (34,35). Faktor |
reguliert, wie Faktor H, die Komplementkaskade (30). Weitere risikoassoziierte
Varianten befinden sich in den Genen der Complement Factor H Related Proteins
(CFHR), die zu derselben Genfamilie wie CFH gehdren. In diesen Genen wurden
Deletionen identifiziert, die protektiv beztglich AMD sind (36—38). Auch Varianten in C3
sind mit AMD assoziiert (39—-41).



Der Komplementfaktor C3 nimmt mit seinen Spaltprodukten C3a und C3b als
Ausgangspunkt des alternativen Weges der Komplementaktivierung, Bestandteil dessen
C3-Konvertase sowie der C5-Konvertase und als Anaphylatoxin und Opsonin eine
zentrale Rolle in der Komplementkaskade ein (30). Als Pathomechanismus der C3-
Varianten wird daher eine gestdrte Regulation der Komplementaktivierung tber C3 in
Betracht gezogen (42). Weiter downstream in der Komplementkaskade befindet sich der
Komplementfaktor C9 (C9), der Bestandteil des MAC ist (30). In C9 ist insbesondere die
Missensevariante NM_001737:¢c.499C>T, p.Pro167Ser (rs34882957) mit erhdhtem
AMD-Risiko assoziiert (42,43). Die Nonsensevariante ¢.346C>T, p.Arg95Ter
(rs121909592), eine in einem vorzeitigen Stoppcodon resultierende Variante in C9, ist
hingegen mit einer deutlichen Risikoreduktion fur AMD verbunden (44). Varianten in den
paralogen Genen fur Komplementfaktor C2 (C2) und Komplementfaktor B (CFB) sind
vorwiegend protektiv (3,45—47). Die Heritabilitdt der AMD ist komplex. Seit der
Entdeckung von CFH als krankheitsassoziiertes Gen wurden genetische Varianten, die
das AMD-Risiko beeinflussen, in vielen weiteren Genen verschiedener Signalwege
identifiziert. So wiesen in einer grofien genomweiten Assoziationsstudie 52 Varianten an
34 verschiedenen Genorten eine Assoziation mit AMD auf (43). Ein Uberblick (iber die

AMD-assoziierten Signalwege und Gene ist in Abbildung 2 dargestellit.

Neben Faktoren der Komplementkaskade stehen auch das extrazellulare Remodeling,
der Fettstoffwechsel, und die Angiogenese, im Fokus der Forschung zu den genetischen
Ursachen der AMD (Abbildung 2). Das extrazelluldare Remodeling ist abhangig von der
Balance zwischen Matrixmetalloproteinasen (MMPs) und deren Inhibitoren (TIMPs) und
kdénnte insbesondere eine Rolle in der Pathogenese fortgeschrittener AMD spielen (48—
50). In einer Studie wurde zudem rs42450006 upstream von MMP9 identifiziert, eine
Variante, die spezifisch mit der neovaskularen Form der fortgeschrittenen AMD
assoziiert ist (43). Weitere mit AMD assoziierte Gene sind unter anderem COL8AT,
COL4A3 und COL10A1, welche Kollagenkomponenten kodieren (43,51). Auch
Varianten in Genen des Fettstoffwechsels sind mit dem AMD-Risiko assoziiert: Allel e2
des ApoE-Gens erhoht das Risiko, wahrend Allel e4 zu einer Risikoreduktion fihrt (52).
Weitere assoziierte Loci sind LPL, LIPC und CETP (43,50,53).

Neben 1931 war in der Metaanalyse von Fisher et al. auch die Region 10926 stark mit
AMD gekoppelt (24). Diese enthalt unter anderem die Gene ARMS2 und HTRA1. Da
diese im starken Kopplungsungleichgewicht stehen, ist die Identifikation des kausalen
Gens erschwert (54). Die durch HTRA1 kodierte Serinprotease steht jedoch im Verdacht,
Uber den TGF-3-Signalweg zu Angiogenese zu fuhren (55) und in das Remodeling der
EZM zwischen Choriokapillaris und Retina involviert zu sein (56). Auch bei ARMS2 wird

4



eine Beteiligung am EZM-Remodeling vermutet (57). Insgesamt ist die Bedeutung der

Region fir die AMD-Pathogenese noch unzureichend geklart.

ARMS2/HTRA1

Fettstoff-
wechsel

Altersbedingte
Makula-
degeneration

extrazellu-
lares
Remodeling

Komplement-
system
klassischer Weg MBL Lektinweg
MASP
C2rs547154 T-Allel: o)
Qo CFB rs641153 A-Allel:
7]
= =0 OR: 0,41 L
g
£ “ “ C3-Konvertase CFlrs141853578 T-Allel:
5 OR:22,2
= C3(H,0) C3a
C3rs147859257 CFI
G-Allel: OR: 2,91 CFH
CFH i
v | CFHrs121913059
1 T-Allel: OR: 23,11
C5-Konvertase N
C5a ,  CFHrs1061170
. / | C-Allel: OR: 2,45
. .

CFHRs
CFHR1 und CFHR3

NC_000001.11:g.(196753076_?)_(?_196839375)del:
OR:0,47

C5
C9rs121909592 T-Allel: C6-9
OR:0,2

Abbildung 2: Mit der Pathogenese der AMD in Verbindung gebrachte Gene und Signalwege.
Gene verschiedener Komplementfaktoren und weiterer Signalwege wurden mit der Entwicklung
der AMD in Verbindung gebracht (43,52,58-60). Protektive (griin) und risikosteigernde (rot)
Varianten der Gene des Komplementsystems verdeutlichen bespielhaft die Assoziation
verschiedener Komplementfaktoren mit dem AMD-Risiko (26,28,35,37,41,44,47). Die Odds Ratio
(OR) gibt dabei an, wie grol® die Chance ist, an AMD zu erkranken, wenn das jeweilige
Variantenallel vorliegt verglichen mit dem Vorliegen des Wildtypallels. Die Chance, an AMD zu
erkranken, ist also bei Trager*innen eines C-Allels der CFH-Variante rs1061170 etwa 2,5 Mal so
hoch wie in der Gruppe ohne C-Allel (28).

1.3.2 Angiogenese — VEGFA spielt eine wichtige Rolle in der Pathogenese
der AMD

Die Angiogenese stellt einen weiteren Signalweg dar, bei dem eine Assoziation

genetischer Varianten mit dem Auftreten von AMD naheliegt. Hierbei spricht vor allem
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die Rolle des VEGF-A in der Pathogenese der Erkrankung, insbesondere bei der
neovaskularen Spatform der AMD, flir VEGFA als funktionelles Kandidatengen. VEGF-
A wurde als permeabilitatssteigernder, von Tumorzellen sezernierter vascular
permeability factor (VPF) beschrieben (61) und spater durch Ferrara und Henzel als
Wachstumsfaktor des GefalRendothels identifiziert (62,63). VEGF-A gehdrt, gemeinsam
mit VEGF-B, -C, -D, -E und PGF, zu einer Familie von vaskularen Wachstumsfaktoren

und besitzt selbst mehrere, durch alternatives Spleilen bedingte Isoformen (63).

VEGF-A entfaltet seine Wirkung auf das GefalRendothel vorrangig Gber die Bindung an
die Rezeptortyrosinkinase VEGFR-2 (63). Uber die Dimerisierung des Rezeptors und
Autophosphorylierung wird eine Signalkaskade in Gang gesetzt, die zu Proliferation,
Migration und gesteigertem Uberleben der Endothelzellen fihrt (63). Zudem erhéht sich
die Permeabilitat der BlutgefalRe (61). Hypoxie beeinflusst die Expression von VEGF-A.
Durch gesteigerte Bindung von HIF-1 an ein upstream nahe des 5°-Endes von VEGFA
gelegenes hypoxia response element wird die Transkription von VEGFA verstarkt (64).
Zudem wird die Boten-Ribonukleinsaure (messenger ribonucleic acid; mRNA) bei
Hypoxie durch Bindung von Proteinen an AU-reiche Elemente in der 3"-UTR stabilisiert
(65,66). Die hypoxiebedingte Uberexprimierung von VEGF-A und darauffolgende
Bildung von Neovaskularisationen ist Bestandteil des Pathomechanismus der
Netzhautschadigung bei neovaskuldarer AMD. Es wurden Varianten in VEGFA
beschrieben, die mit dem AMD-Risiko im Zusammenhang stehen (58,67-69).

Insgesamt sind die Assoziationen jedoch nicht konsistent (3,70).
1.4 Therapie der AMD

AMD ist bisher nicht heilbar. Die Supplementierung von Nahrungserganzungsmitteln
wird eingesetzt, um zu versuchen, die Progression der frihen AMD zu verlangsamen.
Untersucht wurde dies insbesondere durch die Age-Related Eye Disease-Studien, wobei
eine Supplementierung von Vitamin C und E, Beta-Carotin und Zink- sowie Kupferoxid
mit einer Senkung des Progressionsrisikos einherging (71). Fur die geografische
Atrophie gibt es derzeit keine wirksame Therapie. Kommt es zu Neovaskularisationen,
stellt der zlgige Beginn intravitrealer Injektionen von gegen VEGF gerichteten
Medikamenten den Goldstandard dar. Als intravitreale Anti-VEGF-Medikamente bei
neovaskularer AMD kénnen Ranibizumab, Brolucizumab, Aflibercept, Faricimab und im
off-label use Bevacizumab eingesetzt werden. Bevacizumab ist ein vollstandiger
humanisierter, monoklonaler Antikérper, Ranibizumab ein von Bevacizumab
abgeleitetes Fab-Fragment (72). Brolucizumab ist ein kleineres, aus den variablen

Domanen einer leichten und einer schweren Kette bestehendes Antikdrper-Fragment



(73). Aflibercept ist ein rekombinantes Fusionsprotein, das die zweite Domane von
VEGFR-1 und die dritte Domane von VEGFR-2 enthélt, die wiederum an die Fc-Domane
von IgG1 gebunden sind (74). Im Unterschied zu den anderen Anti-VEGF-
Medikamenten kann Aflibercept zusatzlich zu VEGF-A auch PGF und VEGF-B, weitere
vaskulare Wachstumsfaktoren, binden (75,76). Faricimab ist ein humanisierter
bispezifischer Antikérper, der neben VEGF-A auch Angiopoietin-2, einen

Wachstumsfaktor der Angiogenese, bindet (77,78).

Doch bei einem Teil der Patient*innen schreitet die Erkrankung trotz Anti-VEGF-
Therapie voran (50) (Abbildung 3). Bei Behandlung mit Ranibizumab verbessert sich der
mittels standardisierter Sehtafel gemessene Visus bei 25 — 40 % der Patient*innen um
mindestens 15 Buchstaben, andererseits weisen 5—-10 % trotz Therapie eine
Verschlechterung von mehr als 15 Buchstaben auf (79,80). Varianten innerhalb der
Bindungstelle fur VEGF-Inhibitoren, kdnnen die Affinitdt der Bindung stark senken (81).
Entsprechende VEGFA-Varianten stellen somit einen Ansatz fur die Erklarung eines

unterschiedlichen Therapieansprechens dar.

J.-§ Tracing HD ( 6/20 ) Regular Retinal Intensity +5

|-JHD ( 10/10 ) Fine Retinal Intensity +5

Abbildung 3: Bilder der optischen Kohdrenztomografie (OCT) von zwei Patient*innen mit
neovaskularer AMD nach Behandlung mit VEGF-Inhibitoren. (A) Patient*in mit gutem
Therapieansprechen auf die Behandlung mit VEGF-Inhibitoren. Es ist keine subretinale
Flussigkeit vorhanden. (B) Trotz Anti-VEGF-Therapie haben sich eine grofe Narbe und eine
Abhebung der Retina entwickelt haben. Bilder: Praxisklinik Augenarzte am Markt, Halle.



Die AMD-Hauptrisikogene waren friih Gegenstand der Untersuchung des
Therapieansprechens. So wurde der Genotyp CC der mit erhéhtem AMD-Risiko
assoziierten CFH-Variante rs1061170 als ein Risikofaktor fir ein schlechteres Ergebnis
bezlglich der Fern- und Nahvisus nach der Therapie mit Bevacizumab identifiziert
(p=0,0039) (82). Andere Studien wiederum kamen zu der Erkenntnis, dass der Genotyp
CC mit einem besseren Visus nach Therapie mit Ranibizumab verbunden ist (83), bzw.

diese Variante keine Assoziation mit dem Therapieansprechen aufweist (84,85).

Im VEGFA-Gen, das das Zielprotein der Therapie kodiert, wurden Assoziationen des T-
Allels der intronischen Variante NM_003376.6:¢.856-28C>T (rs3025000) und des C-
Allels der upstream von VEGFA gelegenen Missensevariante rs699947 mit einem
besseren Therapieansprechen in Bezug auf den Visus festgestellt (86,87), was
allerdings durch die Comparison of AMD Treatments Trials (CATT)-Studie nicht bestatigt
wurde (88). Varianten in VEGFA stehen insgesamt nicht konsistent mit dem
Theraieansprechen in Zusammenhang (88). Phan et al. stellen fest, dass zur
Untersuchung moglicher  Assoziationen  genetischer Varianten mit  dem
Therapieansprechen neben prospektiven Studien zu identifizierten Varianten auch
weitere individuelle Studien durchgefihrt werden sollten, um mehr Wissen tber bisher

wenig untersuchte Varianten und ethnische Unterschiede zu schaffen (76).

1.5 Vorausgegangene molekulargenetische Untersuchung der

Studienpopulation

Dieser Arbeit ging die molekulargenetische Untersuchung der Patient*innen beztiglich
genetischer Varianten in den Genen des Komplementsystems mithilfe von Next
Generation Sequencing (NGS) voraus. Hierzu wurde ein Custom-Panel mit 55
enthaltenen Genen genutzt. Das Ziel war dabei die Identifizierung von Varianten, welche
das Risiko, eine AMD zu entwickeln, beeinflussen. In der vorliegenden Arbeit wurden
diese Daten zur weiteren Auswertung genutzt, sowie weitere molekulargenetische

Untersuchungen durchgefuhrt.



2 Zielstellung

In dieser Arbeit sollen sieben Varianten, welche bei 19 Patient*innen mit nAMD mittels
Genpaneldiagnostik identifiziert wurden, mit einer zweiten Methode, einer
allelspezifischen Polymerasekettenreaktion (PCR) bzw. Sequenzierung nach Sanger,

verifiziert werden.

Weiterhin sollen diese sieben Varianten mithilfe von Populationsdatenbanken, in silico-
Tools, sowie Fachliteratur beurteilt werden. Auf diesem Weg soll die AMD-bezogene

pathogenetische Bedeutung der Varianten eingeschatzt werden.

Die Studienpopulation soll zudem eine molekulargenetische Diagnostik hinsichtlich
Varianten innerhalb des VEGFA-Gens durchlaufen. Zur Interpretation gefundener
Veranderungen werden ebenfalls Populationsdatenbanken, in silico-Tools und
Fachliteratur herangezogen. Mithilfe einer Kontrollgruppe soll Gberprift werden, ob ein
Zusammenhang zwischen Varianten in VEGFA und der Erkrankung an einer AMD
besteht. Zudem wird das Therapieansprechen auf VEGF-A-Inhibitoren ausgewertet.
Dies soll zu einem besseren Verstandnis des Therapieversagens bei Anti-VEGF-A-
Therapien fihren und so zur Grundlage flr eine Pradiktion des Therapieansprechens

und eine Individualisierung der Behandlung beitragen.



3 Material und Methoden
3.1 Studienpopulation und Kontrollgruppe

Die Studie wurde durch die Ethik-Kommission der Medizinischen Fakultat der Martin-
Luther-Universitat Halle-Wittenberg genehmigt (Bearbeitungsnummer: 2016-96). Die

Patient*innen gaben ihr informiertes Einverstandnis zur Studienteilnahme.

Die Studienpopulation bildeten 19 an nAMD erkrankte Patient*innen, welche eine Anti-
VEGF-Therapie erhielten. Das Alter betrug im Mittel 76,95 Jahre (Spannweite: 69 Jahre
bis 88 Jahre). Der Eingangsvisus beider Augen wurde dokumentiert und anschliel3end
der VEGF-Inhibitor dreimalig in einem Intervall von vier Wochen intravitreal injiziert. Vier
Wochen nach der Behandlung wurde der Therapieerfolg kontrolliert und die Therapie im
Falle persistierender Krankheitsaktivitat fortgeflihrt. Anschlieend wurde erneut der

Visus dokumentiert.

36 nicht an einer AMD erkrankte Individuen dienten als populationsgematchte
Kontrollgruppe. Sie wiesen zum Zeitpunkt der Studienteilnahme keine AMD-typischen
Netzhautveranderungen, wie Drusen, Odeme oder Narben, auf. Das mittlere Alter betrug
in dieser Gruppe 78,94 Jahre (Spannweite: 64 Jahre bis 89 Jahre).
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3.2 Materialien

3.2.1 Chemikalien

100 bp DNA Ladder
Betain-Losung 5 M
Dimethylsulfoxid
Elution Buffer

Ethanol
Formamid
Glycerin

GoTaqg G2 Colorless Master Mix

Ladepuffer

LE Agarose
Orange G
PCR-Produkt-Reinigungsreagenz ExoSAP-IT

Primer

Rotiphorese 10x TBE-Puffer

SERVA DNA Stain Clear G

Ultra pure water

3.2.2 Kits

Big Dye Terminator v1.1 Cycle Sequencing Kit
Dye Ex 2.0 Spin Kit

QlAamp DNA Mini Kit

11

Invitrogen (Carlsbad)
Sigma-Aldrich (Steinheim)
Thermo Fisher (Waltham)
Qiagen (Hilden)

10 mmol/l Tris-Cl; pH 8,5
AppliChem GmbH (Darmstadt)
Applied Biosystems (Darmstadt)
Sigma-Aldrich (Steinheim)
Promega (Mannheim)

Tag-Polymerase; GoTaq Reaction
Buffer (pH 8.5); 400uM dATP;
400uM dGTP; 400uM dCTP; 400uM
dTTP; 3mM MgCl>

50% Glycerin und 0,05% Orange G
in 0,5x TBE-Puffer

Biozym (Oldendorf)
Sigma-Aldrich (Steinheim)
Thermo Fisher (Waltham)

Exonuklease |; Shrimp-Alkaline-
Phosphatase; Puffer

IDT Biologika (Dessau-RoRlau)
Metabion (Planegg)
Carl Roth (Karlsruhe)

1,0 mol/l Tris-Borat;, 20 mmol/l
EDTA, destilliertes Wasser; pH 8,3

Serva (Heidelberg)
Biochrom GmbH (Berlin)

Applied Biosystems (Darmstadt)
Qiagen (Hilden)
Qiagen (Hilden)



3.2.3 Gerate und Verbrauchsmaterialien

Applied Biosystems 3500 Series Genetic Thermo Fisher (Waltham)
Analyzer

Centrifuge 5424 Eppendorf (Hamburg)
Centrifuge 5430 Eppendorf (Hamburg)
Combitips advanced Eppendorf (Hamburg)
Eppendorf Research plus Pipetten Eppendorf (Hamburg)
Geldokumentationssystem E-Box CX5 Vilber Lourmat (Collégien)
Gelelektrophoresesystem EasyCast Thermo Fisher (Waltham)
Laborwaage Kern (Balingen)
Mastercycler nexus gradient Eppendorf (Hamburg)
Mehrkanalpipette Research plus 0,5 - 10 pl Eppendorf (Hamburg)
Mikrowelle Sharp (Hamburg)
MiniSpin plus Eppendorf (Hamburg)
Multipette M4 1 pl - 10 ml Eppendorf (Hamburg)
Netzgerat Biometra Analytik Jena (Jena)
PCR-Platte 96 Well Sarstedt (NUmbrecht)
Reagiergefalle Sarstedt (NUmbrecht)
SafeSeal-Tips professional Biozym (Oldendorf)
Spektralphotometer NanoDrop 2000 Thermo Fisher (Waltham)
Thermomixer 5436 Eppendorf (Hamburg)
Vibrationsmischer Vortex-Genie 2 Scientific Industries (Bohemia)

3.2.4 Datenbanken und Software

2Struc https://2struc.cryst.bbk.ac.uk/twostruc

AlphaFold https://alphafold.ebi.ac.uk/

BLAST https://www.ensembl.org/Multi/
Tools/Blast?db=core

CADD https://cadd.gs.washington.edu/

ClinVar https://www.ncbi.nlm.nih.gov/clinvar/
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color_h

Database of Single Nucleotide
Polymorphisms

DECIPHER
DynaMut
Ensembl

GalaxyTBM

Genome Aggregation Database
Human Phenotype Ontology
[-TASSER

Jpred 4

MutationTaster

NanoDrop Software
OMIM

PhastCons

PhyloP

PolyPhen-2

Primer-BLAST

Primer3Plus

PSIPRED
PyMOL v2.5.5

Reverse Complement

Robetta

http://www.protein.osakau.ac.jp/rcsfp/
supracryst/suzuki/jpxtal/Katsutani/en/
hydrophobicity.php

https://www.ncbi.nlm.nih.gov/snp/

https://www.deciphergenomics.org/
https://biosig.lab.ug.edu.au/dynamut/
https://www.ensembl.org/index.html

https://galaxy.seoklab.org/cgi-
bin/submit.cgi?type=TBM

https://gnomad.broadinstitute.org/
https://hpo.jax.org/app/
https://zhanggroup.org/I-TASSER/
https://www.compbio.dundee.ac.uk/jpred/

https://www.genecascade.org/Mutation
Taster2021/#transcript

Thermo Fisher (Waltham)
https://www.omim.org/
http://compgen.bscb.cornell.edu/phast/
http://compgen.bscb.cornell.edu/phast/

http://genetics.bwh.harvard.
edu/pph2/bgi.shtml

https://www.ncbi.nlm.nih.gov/tools/primer-
blast/

https://www.bioinformatics.nl/cgi-
bin/primer3plus/primer3plus.cgi

http://bioinf.cs.ucl.ac.uk/psipred/
Schrddinger (New York)

https://www.bioinformatics.org/sms/
rev_comp.html

https://robetta.bakerlab.org/
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http://genetics.bwh.harv/

s2D

Scratch Protein Predictor
SEQUENCE Pilot
Sequence Scanner v1.0
SIFT

SpliceAl

SPSS Statistics 27.0.0
SWISS-MODEL

UCSC

UniProt

VarSome

https://www-cohsoftware.ch.cam.
ac.uk/index.php/s2D

http://scratch.proteomics.ics.uci.edu/
J.S.I. Medical Systems (Ettenheim)
Applied Biosystems (Darmstadt)
https://sift.bii.a-star.edu.sg/
https://spliceailookup.broadinstitute.org/
IBM (Armonk)
https://swissmodel.expasy.org/
https://genome.ucsc.edu/
https://www.uniprot.org/

https://varsome.com/
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3.3 Methoden

3.3.1 Ablauf

Das VEGFA-Gen aller Patient*innen wurde mittels Sequenzierung nach Sanger auf
genetische Varianten untersucht. Dafiur wurden zundchst sequenzspezifische
Oligonukleotide (Primer) designt. Die Exons wurden inklusive eines flankierenden
Intronbereiches mittels PCR amplifiziert. Zur Beurteilung der PCR-Produkte wurde eine
Agarosegelelektrophorese angefertigt. Vorbereitend fur die Sequenzierung wurden die
Amplifikate enzymatisch gereinigt, einer Sequenzier-PCR zugeflhrt und Uberflissige
Didesoxyribonukleosid-Triphosphate (ddNTP) mithilfe des Dye Ex 2.0 Spin Kits entfernt.
Ein Teil der Proben wurde nach der enzymatischen Reinigung an den bioanalytischen
Dienstleister Eurofins versandt. Die molekulargenetische Untersuchung der
Kontrollgruppe erfolgte ebenfalls mittels Sanger-Sequenzierung der Exons, in denen in

der Gruppe der AMD-Patient*innen Varianten nachgewiesen wurden.

Aus den Varianten, welche in der NGS-Genpaneldiagnostik identifiziert wurden, wurden
die Varianten mit der gréften vorhergesagten pathogenetischen Relevanz fir die
weitere Auswertung ausgewahlt und mit einer zweiten Methode verifiziert. Dafur wurde
ein auf den drei in silico-Pathogenitatspradiktionstools Sorting Intolerant From Tolerant
(SIFT) (89), Polymorphism Phenotyping Version 2 (PolyPhen-2) (90) und Combined
Annotation Dependent Depletion (CADD) (91) basierender Score genutzt. Die Varianten
wurden zur Verifikation einer allelspezifischen PCR zugefiihrt, deren Ergebnis mittels
Agarosegelelektrophorese beurteilt wurde. Die im NGS detektierte Variante
NM_001737:c.1427T>C im C9-Gen wurde mittels Sequenzierung nach Sanger

verifiziert, da die allelspezifische PCR nicht aussagekraftig war.

Die Klassifikation der Varianten erfolgte anhand der Kriterien des American College of
Medical Genetics and Genomics (ACMG) (92). Zur statistischen Auswertung wurde die
Statistik-Software SPSS Statistics (Version 27.0.0) (93) genutzt.

3.3.2 DNA-Isolation

Die Desoxyribonukleinsaure (deoxyribonucleic acid; DNA) der Patient*innen wurde nach
Laborstandard und unter Verwendung des QlAamp DNA Mini Kit aus Vollblut prapariert.
200 ul Blut wurden mittels 20 pl Proteinase, 200 ul Lysepuffer 10-mindtiger Inkubation
bei bei 56 °C lysiert. Zur Fallung wurden 200 pl Ethanol (96 %) hinzugegeben und die
DNA durch Zentrifugation fiir eine Minute bei 8000 rpm an eine Silikagelsaule gebunden.
Der Waschvorgang wurde zweimal durchgefuhrt und bestand aus der Zugabe von

Waschpuffer 1, Zentrifugation fur 1 min bei 8000 rpm und anschlieRender Wiederholung
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dieses Vorganges mit Waschpuffer 2. Die DNA wurde schlie3lich mit 50 ul Elutionspuffer

durch Zentrifugation der Saulen fur eine Minute bei 8000 rpm eluiert.
3.3.3 Konzentrations- und Reinheitsbestimmung

Mithilfe der Software Nanodrop 2000 (94) wurden Konzentration und Reinheit der DNA
mit einem Spektralphotometer bestimmt. Dazu wurde zuerst eine Leermessung mit 1 pl
Elution Buffer durchgefiihrt und anschlielRend 1 pl der DNA vermessen. Zur Berechnung
der Konzentration wird die Formel ¢ = E/(¢ x d) genutzt, welche sich durch Umstellung
des Lambert-Beerschen Gesetzes (E =¢xcxd) ergibt. Dabei entspricht ¢ der
Konzentration, E der Extinktion, € dem Extinktionskoeffizienten und d der Schichtdicke.
Entsprechend der gemessenen Konzentration wurde die DNA unter Zugabe von Elution

Buffer auf eine Konzentration von 50 ng/ul verdinnt.
3.3.4 Primerdesign

Als Grundlage fir die Primererstellung wurde die Sequenz von VEGFA (Ensembl-
ID: ENSG00000112715) aus der Genomdatenbank Ensembl (95) bezogen. Verwendet
wurde das Transkript 203 mit der Transkript-ID ENST00000372055.9. Fir jedes der acht
Exons wurden ein Vorwarts- sowie ein Rickwartsprimer mittels Primer3Plus (96)
designt. Die Zielsequenz umfasste neben dem jeweiligen Exon auch etwa 100
Basenpaare up- bzw. downstream, um einerseits das gesamte Exon sequenzieren und

andererseits auch Spleildstellenmutationen feststellen zu kénnen.

Die Lange der Primer wurde auf den Bereich von 18 bis 27 Basenpaaren festgelegt, da
langere Primer spezifischer sind, aber auch mit einem hdheren Risiko fir
Sekundarstrukturen oder Primerdimere einhergehen. Daher wurden Primer mit niedrigen
Werten der Scores flr Intraprimer-Homologien geachtet. Berlcksichtigt wurde zudem,
dass sich die Schmelztemperaturen zusammengehdriger Primer nicht mehr als 1 °C
unterscheiden. Dies sollte gewahrleisten, dass beide Primer unter denselben
Reaktionsbedingungen effizient funktionieren. Um unspezifischen Sekundarprodukten
vorzubeugen wurden die Bindungsstellen der Primer mit dem Primerdesign-Tool Primer-
BLAST (97) Uberpruft. Die Primer sollten so spezifisch wie moglich fur die Zielsequenz
im VEGFA-Gen auf Chromosom 6 sein und auf diesem Chromosom keine weiteren
Bindungen aufweisen. Anhand dieser Kriterien wurden geeignete Primer ausgewahlt,
welche in Tabelle 1 dargestellt sind. Auf dieselbe Weise wurden die Primer flr das
zehnte Exon des C9-Gens (Ensembl-ID: ENSG00000113600) designt, um die Variante
NM_001737:c.1427T>C mittels Sanger-Sequenzierung zu verifizieren (Tabelle 1).
Hierfur wurde das Ensembl-Transkript ENST00000263408 verwendet.
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Tabelle 1: Primer der Sanger-Sequenzierung von VEGFA und C9

Exon Primer Vorwirtssequenz AmplikongroRe
Riickwartssequenz (bp)

1 VEGFA-e1.1-F/R 5-GAGAGACGGGGTCAGAGAGA-3’ 596
5-TCGGCGAGCTACTCTTCCT-3"

1 VEGFA-e1.2-F/R 5-CGAGAAGTGCTAGCTCGGG-3° 516
5’-CCTAAGACGACAGAGGGGGA-3’

2 VEGFA-e2-F/R 5-CTGGGGTTTTCCTCCTGCAT-3" 517
5-CAGAGACCTGAACAGCGGAG-3’

3 VEGFA-e3-F/R 5-GCCTTCACCAGTGTTGATGG-3" 600
5-AAGGAGATGGTTGGGGCTTG-3’

4 VEGFA-e4-F/R 5-GGGGTTGCTTTCGGGTATCT-3" 524
5-GACGGGGGCCAAAAAGTACA-3’

5 VEGFA-e5-F/R 5-TGTACTTTTTGGCCCCCGTC-3’ 459
5-CATCCCATTGTTGCTGCCAC-3’

6 VEGFA-e6-F/R 5-TCCCACCAAAGCCTTGTCAG-3’ 599
5-GGGTCCCCTCCCTTAATCCT-3"

7 VEGFA-e7-F/R 5-GTCTTTTGCTGTAGCGCTCG-3’ 540
5-CTACCACTCAGGCAACCAGG-3’

8 VEGFA-e8-F/R 5-ACCACACCTTCCTGTCCTCT-3" 466
5-TTCCGGGCTCGGTGATTTAG-3"

10 C9-e10-F/R 5-AACCCCAAAGTGCATATTTTTGTC-3" 497

5-ATCAGCCTCCTTAACTCCGTAA-3’

3.3.5 Polymerasekettenreaktion

Die PCR dient dazu, einen bestimmten DNA-Abschnitt in vitro zu vervielfaltigen. Die
Menge der Zielsequenz nimmt dabei Gber mehrere Zyklen exponenziell zu (98). Jeder
Zyklus besteht aus drei Schritten: Zuerst werden beide DNA-Strange bei 95 °C
voneinander getrennt (Denaturierung). Anschlielend binden die Primer bei niedrigerer
Temperatur an den komplementaren Bereich eines DNA-Stranges (Hybridisierung). Die
Hybridisierungstemperatur richtet sich nach der der Schmelztemperatur des Primers,
welche von der Lange des Primers und dem Anteil der verschiedenen Nukleinbasen
abhangt. Im letzten Schritt, der Elongation, transferiert die DNA-Polymerase
Desoxyribonukleosid-Triphosphate (dNTP) an das 3'-Ende des an die DNA

angelagerten Primers.
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Fir den Standard-PCR-Ansatz (Tabelle 4) wurden zu einem Mikroliter DNA (50 ng/ul)
jeweils 1 pl des Vorwartsprimers (10 pmol/ul) und 1 pl des Rickwartsprimers
(10 pmol/ul) sowie 9,5 pl destilliertes Wasser und 12,5 pul GoTaq Mastermix gegeben. Im
Mastermix sind DNA-Polymerase, Reaktionspuffer (pH 8,5), dANTP (dATP, dGTP, dCTP,
dTTP) und MgCl. enthalten.

Fir die Exons 2 bis 8 verlief die PCR nach dem PCR-Programm 6030 (Tabelle 2) mit
einer Hybridisierungstemperatur von 60 °C erfolgreich. Die PCR-Bedingungen fur
Exon 1 mussten jedoch optimiert werden, da es unzureichend amplifiziert wurde. Dazu
wurde der PCR-Ansatz modifiziert, die Hybridisierungstemperatur und Zyklenzahl
variiert sowie eine Touchdown-PCR eingesetzt. Zur Modifikation des PCR-Ansatzes
wurde die DNA-Menge erhoht und die Zusatze Dimethylsulfoxid, Formamid und Betain
verwendet. PCR-Zusatze verbessern aufgrund unterschiedlicher Mechanismen die
Amplifikation (98,99). Das beste Ergebnis fur Exon 1vegra-e1.1-er Wurde durch Zugabe
1 mol/l konzentriertem Betain erreicht. Indem Betain die Wasserstoffbriickenbindungen
zwischen den Nukleotiden schwacht (98), reduziert es die Abhangigkeit der
Schmelztemperatur vom GC-Gehalt und senkt diese somit (100). Betain I6st zudem
Sekundarstrukturen auf (101). Die Erhéhung der DNA-Menge im PCR-Ansatz flihrte bei
Exon 1vecra-e12-FR ZU €iner besseren Amplifikation. Aulierdem wurde zur Minimierung
unspezifischer Produkte eine Touchdown-PCR verwendet (Tabelle 3). Bei dieser PCR-
Methode fallt die zu Beginn hohe Hybridisierungstemperatur tber die folgenden Zyklen
allmahlich ab (102). Die niedrige Hybridisierungstemperatur der letzten Zyklen fuhrt dann
zu einer effizienten Amplifikation der spezifischen Produkte der vorherigen Zyklen. Die

optimierten PCR-Bedingungen sind in Tabelle 4 dargestellit.

Tabelle 2: PCR-Programm 6030

Temperatur Dauer Zyklen
Denaturierung 95 °C 2 min
Denaturierung 95 °C 30s
Hybridisierung 60 °C 30s 30
Elongation 72 °C 1 min
Elongation 72 °C 5 min
Kiihlung 10 °C -
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Tabelle 3: PCR-Programme Touchdown 61 °C (TD 61 °C) und Touchdown 63 °C (TD 63 °C)

Temperatur Dauer Zyklen
TD61°C TD63°C
Denaturierung 95 °C 95 °C 2 min
Denaturierung 95 °C 95 °C 30s
Hybridisierung 61°C 63 °C 30s 2
Elongation 72 °C 72 °C 1 min
Denaturierung 95 °C 95 °C 30s
Hybridisierung 59 °C 61 °C 30s 2
Elongation 72 °C 72 °C 1 min
Denaturierung 95 °C 95 °C 30s
Hybridisierung 57 °C 59 °C 30s 2
Elongation 72 °C 72 °C 1 min
Denaturierung 95 °C 95 °C 30s
Hybridisierung 55 °C 57 °C 30s 29
Elongation 72°C 72 °C 1 min
Elongation 72°C 72°C 10 min
Kiihlung 10 °C 10 °C -

Tabelle 4: Optimierte PCR-Bedingungen zur Amplifikation von Exon 1 sowie Standard-
PCR-Ansatz

Konzentration Volumen pro Reaktion in pl
Exon 1 Exon 1 Exons 2, 3, 4,
VEGFA-e1.1-F/R VEGFA-e1.2-F/R 5,6,7,8

PCR-Ansatz

DNA 50 ng/pl 1,0 1,2 1,0
Primer F 10 pmol/ul 1,0 1,0 1,0
Primer R 10 pmol/pl 1,0 1,0 1,0
GoTaq Mastermix 12,5 12,5 12,5
destilliertes Wasser 4,5 9,3 9,5
Betain 5 mol/l 5,0 0,0 0,0
Summe 25 25 25
PCR-Programm Touchdown Touchdown 6030

63 °C 63 °C

3.3.6 Agarosegelelektrophorese

Die Agarosegelelektrophorese dient der Darstellung des amplifizierten DNA-Abschnittes
und der Detektion unspezifischer Produkte. Dabei kann mithilfe eines Langenstandards
auch die GroRe des PCR-Produktes abgeschatzt und mit der erwarteten Produktlange

des eingesetzten Primerpaares verglichen werden. Auf dieser Grundlage kénnen die
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Parameter der PCR, wie Hybridisierungstemperatur, Anzahl der Zyklen und
Zusammensetzung der Reagenzien, verandert werden, wenn fir das jeweilige

Primerpaar kein Produkt der erwarteten Lange erzielt wird (Abbildung 4)

Negativkontrollen Kontroll-DNA

PCR-Produkte

Primer

Abbildung 4: Gelelektrophorese der Amplifikate der acht Exons des VEGFA-Gens zur
Etablierung der Primer. Zur Amplifikation von Exon 1 wurden aufgrund der Léange des ersten
Exons zwei Primerpaare eingesetzt, deren Produkte mit 1.1 (VEGFA-e1.1-F/R) und 1.2 (VEGFA-
e1.2-F/R) gekennzeichnet sind.

Fur die Herstellung eines 1,6 %-Agarosegels wurden 1,6 g Agarose in 100 ml 0,5-
facher TBE-Puffer gegeben und bis zur Aufklarung erhitzt. Anschlieliend wurden 4 pl
eines Farbstoffes fur Nukleinsduredetektion (SERVA DNA Stain Clear G) hinzugeflgt.
Das Gel wurde nach der Abklhlung in eine mit 0,5-fachem TBE-Puffer gefillte
Elektrophoresekammer gelegt. In einer Terasakiplatte wurden 2 ul Ladepuffer vorgelegt
und dazu 10 pl der Probe gegeben und untergemischt. Die gesamten 12 ul wurden
schliel3lich in die Geltaschen pipettiert. Als Langenstandard wurde eine 100 bp-DNA-

Leiter verwendet. An die Kammer wurde fir 20 min eine Spannung von 130 V angelegt.
3.3.7 Enzymatische Aufreinigung der PCR-Produkte

Um nach der PCR uberschissige Primer und unverbrauchte dNTP zu entfernen, wurde
das PCR-Produkt enzymatisch aufgereinigt. Dazu wurden zu 1 yl PCR-Produkt 3,4 pl
destilliertes Wasser und 0,6 ul ExoSAP-IT gegeben (Tabelle 5) und im Thermocycler fur
15 min bei 37 °C inkubiert, um das PCR-Produkt zu reinigen. AnschlieRend wurden die

Enzyme des Aufreinigungsreagenz 15 min bei 80 °C inaktiviert.

Tabelle 5: Pipettierschema der enzymatischen Aufreinigung

Menge in pl
PCR-Produkt 1,0
ExoSAP-IT 0,6
destilliertes Wasser 3.4
Summe 5,0
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3.3.8 Sequenzierung nach Sanger

Die Sanger-Sequenzierung zur Bestimmung der Nukleotidabfolge von DNA wurde von
Frederick Sanger entwickelt, der dafir 1980 seinen zweiten Nobelpreis fir Chemie
erhielt (103). Sie beruht auf der Didesoxymethode, welche durch den Einsatz von ddNTP
und dem dadurch verursachten Kettenabbruch gekennzeichnet ist (103). Zuerst wird
eine Sequenzier-PCR durchgeflhrt, wobei nur ein Primer (Vorwarts- oder
Rickwartssequenz) verwendet und somit nur eine Richtung zur Synthese des neuen
DNA-Stranges genutzt wird. Dabei kénnen sowohl dNTP als auch ddNTP eingebaut
werden, wobei der Einbau eines ddNTP (Terminator) zum Kettenabbruch fihrt, da die
3’-Hydroxygruppe fehlt, an die weitere Nukleotide geknipft werden. Auf diesem Weg
entstehen unterschiedlich lange Fragmente, die fir die Analyse allerdings
gekennzeichnet werden missen. Bei der Sanger-Sequenzierung kann dies
grundsatzlich mithilfe von Radionukliden oder Fluoreszenzmarkern erreicht werden. In
dieser Arbeit wurden Fluorophor-markierte ddNTP in der Sequenzier-PCR verwendet.
Die Fluoreszenz wird in den Kapillaren eines Sanger-Sequenziergerates durch einen
Laserdetektor dokumentiert (103).

Bevor das PCR-Produkt in das Sequenziergerat eingeladen wird, missen Uberflissige
Terminatoren entfernt werden. Diese nicht eingebauten ddNTP kénnten die Analyse der
Probe stoéren, indem sie zu dye blobs, Bereiche mit unsauber abgebildeter Sequenz,

fuhren.

Zur Entfernung der Terminatoren wurde das PCR-Produkt mithilfe des
Dye Ex 2.0 Spin Kits durch eine Aufreinigung mittels Silikagelsdule gesaubert. Die
Gelsaule wurde mithilfe des Vibrationsmischers resuspendiert und anschlieend fir
3 min bei 3000 rpm zentrifugiert, um Gberflissiges Wasser zu entfernen. Anschliel3end
wurde das Produkt der Sequenzier-PCR auf das Gel pipettiert und die Saule in einem
Auffanggefal® bei 3000 rpm drei Minuten lang zentrifugiert. Das Eluat enthielt das
gereinigte PCR-Produkt, wahrend die Uberflissigen ddNTP in den Poren des Gels

zurlckgehalten wurden.

3.3.9 Nachweis von Einzelnukleotidpolymorphismen mittels
allelspezifischer PCR

Die allelspezifische PCR ist eine Methode, die es ermdglicht, verschiedene Allele durch
PCR und nachfolgende Gelelektrophorese nachzuweisen. Dazu werden je Probe zwei
PCRs mit verschiedene Vorwartsprimern durchgefihrt. Diese sind am 3’-Ende

modifiziert, sodass die letzte Base entweder zum Wildtyp oder zur Variante
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komplementar ist (104). Um die Spezifitat der Vorwartsprimer zu erhéhen, wird auch die
vorletzte Base modifiziert, sodass ein Basenfehlpaarung entsteht. Da unterschiedliche
Basenfehlpaarungen die Hybridisierung zwischen Primer und Template unterschiedlich
stark destabilisieren, wird bei starker Basenfehlpaarung der letzten Base eine schwache
Basenfehlpaarung der vorletzten Base gewahlt und anders herum (105). Fir beide PCR-
Ansatze wird derselbe Rickwartsprimer verwendet und zudem wird ein Kontroll-
Primerpaar eingesetzt, welches an anderer Stelle bindet (104). Bei Homozygoten
erwartet man entweder ein Produkt in der PCR mit dem wildtyp- oder mit dem
variantenspezifischen Vorwartsprimer. Bei Heterozygoten entstehen in beiden Fallen
PCR-Produkte (Abbildung 5). Um die Spezifitdt des variantenspezifischen Primers zu
testen, wurde eine Probe mit homozygotem Wildtypallel als Kontrolle sequenziert, wobei
erwartet wurde, dass bei Einsatz des variantenspezifischen Primers kein PCR-Produkt
entsteht. Die Spezifitat des wildtypspezifischen Primers konnte nicht mithilfe einer Probe
mit homozygotem Vorliegen der jeweiligen Variante getestet werden, da sich in der
Studienpopulation keine Patient*innen mit diesem Genotyp befanden. Die verwendeten
Primer sind in Tabelle 6 zusammengefasst. Um die Variante NM_001737:c.1427T>C,
p.lle476Thr in Exon 10 des C9-Gens darzustellen, wurden ein zweites Mal Primer
designt, welche jedoch ebenfalls nicht zu einer allelspezifischen Amplifikation flhrten.
Nach der Optimierung der PCR-Bedingungen wurde fiir NM_001710:c.1407C>G,
p.lle469Met in CFB das Programm Touchdown 61 °C und fir NM_000064:¢c.2533G>A,
p.Val845Met in C3 das Programm Touchdown 63 °C genutzt (Tabelle 3). Fir alle
anderen Varianten wurde das Programm 6030 (Tabelle 2) verwendet. Zur internen
Kontrolle der Funktionsfahigkeit des PCR-Ansatzes wurde Exon 3 des VEGFA-Gens
unter Nutzung der Primer VEGFA-e3-F und VEGFA-e3-R (Tabelle 1) mitamplifiziert. Die

PCR-Produkte wurden mittels Agarosegelelektrophorese dargestellt.
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internes Kontrollprodukt 600 bp

allelspezifisches PCR-Produkt 289 bp

Primerrest

V: variantenspezifischer Vorwartsprimer
W: wildtypspezifischer Vorwartsprimer

Abbildung 5: Gelelektrophorese der allelspezifischen PCR der genetischen Variante
NM_000632:¢.1790G>A, p.Gly597Glu im ITGAM-Gen. Unter Einsatz des wildtypspezifischen
Vorwartsprimers kommt es sowohl bei A25, wo ¢.1790G>A heterozygote vorliegt, als auch bei
A15, wo das G-Allel homozygot vorliegt, zu einer Amplifikation, erkennbar an der Bande bei ca.
300 bp. Wird der variantenspezifische Primer eingesetzt, entsteht nur bei A25 ein PCR-Produkt
von ca. 300 bp und bei Patient*in A15 lediglich das ca. 600 bp groBe Produkt der internen
Kontrollprimer VEGFA-e3-F/R. Patient*in A15 tragt die genetische Variante somit nicht. In der
Negativkontrolle ist bei Abwesenheit der zu amplifizierenden DNA kein PCR-Produkt entstanden.
V: variantenspezifischer Vorwartsprimer; W: wildtypspezifischer Vorwartsprimer.
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Tabelle 6: Primer der allelspezifischen PCR

Primer Vorwiértssequenz Variante AmplikongroRe
Vorwartssequenz Wildtyp (bp)
Riickwartssequenz

MASP2-e3- 5-CCCGTGAACGGCTTCTCGTTGGAGTACC-3° 194

VR 5 CCCGTGAACGGCTTCTCGTTGGAGTACT-3"
5-CCTGGGTCTTGCCTTCACTCCCTGTGAC-3"

CFHR2-e4- 5-ATCAAATAACATGTAGAAACGGACAATGGTCGT-3" 185

YR g ATCAMATAACATGTAGAAACGGACAATGGTCGG-3"
5-ATATAGACATTTGGTAGGCAAGCATTCAGCAGA-3’

C9-e10-1- 5 -TTCATTTTCACTGGAACCAGATTATAGG-3’ 195

FVIFwIR 5-TTCATTTTCACTGGAACCAGATTATAGA-3’
5-TGATTGTTTAAAAGCTAACATCACATCT-3"

C9-e10-2- 5 -CATTTTTCATTTTCACTGGAACCAGATTATAGG-3’ 233

FVIFWIR 5-CATTTTTCATTTTCACTGGAACCAGATTATAGA-3’
5-GACCTCCCTGATAGCAGTCATCTT-3"

CFB-e22- 5-GGAAAACCTGGAAGATGTTTTCTACCAAATGAAG-3" 207

YR 5 GGAAMACCTGGAAGATGTTTTCTACCAAATGAAC-3"
5-ATTCTAAGGTTAAGTGAACAGTGCCAGGAAAC-3’

C5-e18- 5-CCACAACCAGCTTTCTGGAAAATAACTAT-3’ 227

FVIFWIR 5-CCACAACCAGCTTTCTGGAAAATAACTAC-3’
5-GCACCCTGCCTATAATTCTATTTTGGAA-3’

ITGAM- 5-GTGGGGGCCAGGACCTCACAATGGATCA-3’ 289

|e:3,/5|;w/R 5-GTGGGGGCCAGGACCTCACAATGGATCG-3’
5-GACTCTGACCTCTCCGGCTTCCTTGCCT-3"

C3-e20- 5-TAATTGTAGAGAACGGCTCGGATTTCCCT-3’ 260

Fv/IFw/R

5-TAATTGTAGAGAACGGCTCGGATTTCCCC-3’
5-CGTTTAGTTCACAGGCTTCAGCAAAGACA-3’

3.3.10 Interpretation der pathogenetischen Relevanz der identifizierten

genetischen Varianten

Die zur Interpretation der identifizierten Sequenzvarianten genutzten ACMG-Kriterien

berlcksichtigen neben der Art der Mutation und der resultierenden Auswirkung auch

Daten aus Genomdatenbanken, Literatur sowie Segregationsanalysen und Vorhersagen

mittels in silico-Tools (92). Die Kriterien wurden manuell auf die identifizierten

genetischen Varianten angewendet. Daraufhin wurden die Varianten anhand der
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zutreffenden Kriterien einer von funf Kategorien (pathogenic, likely pathogenic, uncertain

significance, likely benign, benign) zugeordnet.

Die europaischen Populationen des 1000-Genomprojektes (1000G) (Datensatz: 1000
Genomes Project Phase 3; Population: EUR) sowie der Genomdatenbank Genome
Aggregation Database (gnomAD) (106) (Datensatz: gnomAD v2.1.1, Population:
European (non-Finnish)) wurden zur Einordnung der beobachteten Allelfrequenzen
genutzt. Flr die Bewertung der in silico-Evidenz wurden zur Pathogenitatspradiktion von
Missensevarianten neben dem SIFT-, CADD- und PolyPhen-2-Score auch die
Bewertung durch die Pradiktionstools Rare Exome Variant Ensembl Learner (REVEL)
(107) sowie Mutation Taster (108) genutzt. Zur Pradiktion eines mdéglichen Einflusses
auf das SpleiRen wurde SpliceAl genutzt (109). Die Konservierung wurde durch den
phastCons- und den phyloP-Score abgebildet (110). Der phastCons-Score kann Werte
von 0 bis 1 annehmen, wobei die Wahrscheinlichkeit, dass ein Nukleotid konserviert ist,
umso hoher ist, desto naher der Wert bei 1 liegt. Der phyloP-Score nimmt Werte von
- 14 bis 6 an, wobei positive Werte eine Konservierung und negative Werte eine

Akzeleration anzeigen.

UniProt (111) lieferte Informationen Uber die Proteinsequenz und -struktur und diente
zur Ermittlung, ob die Mutation innerhalb einer funktionellen Domane lokalisiert ist. Die
Datenbank Decipher (112) gab einen Uberblick tiber benachbarte genetische Varianten
und deren Phanotypassoziationen. Auch die Datenbank ClinVar (113) wurde verwendet,
um bereits beobachtete Phanotypassoziationen der identifizierten Variante zu

recherchieren.
3.3.11 Statistische Methoden

Um den Zusammenhang zwischen genetischen Varianten in VEGFA und der
Entwicklung einer AMD zu betrachten, wurde zuerst die Verteilung der jeweiligen Allele
und Genotypen auf Studienpopulation und Kontrollgruppe berechnet. Daraufhin wurden
zur Betrachtung eines mdglichen Zusammenhangs der Allele und Genotypen mit der
Entwicklung einer AMD die Odds Ratio (OR) mit 95-%-Konfidenzintervall (95%-KI) und
der p-Wert (114) mittels SPSS ermittelt. Dazu wurden die Falle mit den Haufigkeiten
gewichtet und eine binar-logistische Regression durchgefuhrt. Um die Abweichung vom
Hardy-Weinberg-Equilibrium (HWE) fur Studienpopulation und Kontrollgruppe zu
betrachten, wurde der p-Wert der Abweichung der tatsachlichen Genotyphaufigkeit von
der erwarteten Haufigkeit mittels Chi-Quadrat-Test ermittelt. Ebenso wurde die
Verteilung der Allele und Genotypen auf Patient*innen mit stabilem Visus unter Anti-

VEGF-Therapie und Patient*innen mit einem Visusabfall von mehr als drei Zeilen und
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damit schlechtem Ansprechen auf die Therapie mit VEGF-Inhibitoren betrachtet, um den
Zusammenhang von VEGFA-Varianten und dem Therapieansprechen zu beurteilen.
Auch hier wurden OR mit 95%-KI und p-Wert ermittelt. Da bei der Variante rs25648 in
der Gruppe der Patient*innen mit gutem Therapieansprechen der Genotyp TT nicht
auftrat, wurde hier fir die Berechnung der OR eine Haldane-Anscombe-Korrektur

angewendet.
3.3.12 Sekundarstrukturanalyse und Proteinmodelle

Fur die identifizierten Missensevarianten wurde die Ausbildung von B-Faltblattern und a-
Helices mithilfe der Sekundarstrukturpradiktionstools PSIPRED (115), Jpred4 (116) und
s2D (117) und der Modellierungsserver SWISS-MODEL (118) und I-TASSER (119)
untersucht. Das Onlinetool 2Struc (120) wurde genutzt, um aus den 3D-Modellen die
Sekundarstruktur zu generieren. Die Aminosauresequenzen wurden von UniProt
bezogen (Tabelle 7). Es wurde verglichen, ob fir Wildtyp und Variante Unterschiede in

der Sekundarstruktur vorhergesagt werden (Anhang 1).

Mithilfe der 3D-Grafiksoftware PyMOL (Version 2.5.5) (121) wurden zudem 3D-Modelle
der jeweiligen Proteine modifiziert, sodass sie den jeweiligen Aminosdureaustausch
enthalten und beziglich der Wasserstoffbriickenbindungen (Anhang 2) und
Hydrophobizitat (Anhang 3) mit dem Wildtyp verglichen werden kdénnen. Dabei wurde
das Rotamer mit der hdéchsten Frequenz ausgewahlt (Anhang 4). Ein Rotamer
bezeichnet die Konformation der Seitenketten einer Aminosaure in einem Protein (122).
Zudem wurde die Energie im Bereich von 5 A um den Aminosaureaustausch minimiert,
um die Konformation zu optimieren. Das jeweilige PDB-File, welches die Informationen
uber die dreidimensionale Struktur des Proteins enthalt, wurde von der Proteinstruktur-
Datenbank AlphaFold (123,124) bezogen (Tabelle 7).

Tabelle 7: Accession number in der Proteindatenbank UniProt und Identifier des
Proteinstrukturmodells

Protein UniProt accession number Identifier

MASP-2 000187 AF-000187-F1
C9 P02748 AF-P02748-F1
Faktor B P00751 AF-P00751-F1
C5 P01031 AF-P01031-F1
Integrin a-M P11215 AF-P11215-F1
Cc3 P01024 AF-P01024-F1
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4 Ergebnisse
4.1 Identifizierung von 2zwei VEGFA-Varianten in der

Studienpopulation

In der Gruppe der AMD-Betroffenen wurden insgesamt zwei Abweichungen von der
Referenzsequenz des VEGFA-Gens (Transkript NM_003376.6) identifiziert (Abbildung
6, Tabelle 8). Die synonyme Variante ¢.534C>T, p.Ser178= (rs25648) und die
intronische Variante ¢.856-28C>T (rs3025000) wurden jeweils sowohl hetero-, als auch
homozygot detektiert. Die Varianten sind nicht in den funktionellen Proteindomanen von
VEGF-A lokalisiert. Diese sind eine Platelet-derived growth factor (PDGF)-Domane zur
Rezeptorbindung sowie, bei Heparin bindende Isoformen von VEGF-A, eine C-terminale
Heparinbindungsdomane, die die Bindung an die Rezeptoren moduliert und relevant fir
die Endothelzellproliferation ist (125,126). Beide Varianten wurden in der
Populationsdatenbank gnomAD bereits beschrieben (T = 0,1668 bzw. T = 0,3060;

v2.1.1) und auch in der Gruppe der Individuen ohne AMD jeweils hetero- und homozygot

nachgewiesen.
¢.534C>T, p.Ser178= ¢.856-28C>T
(rs25648) (rs3025000)
Exons 1 2 3 I4 5 6 i |8
VEGFA ] I I ]
| I | | |
5-UTR 3"-UTR
NM 003376.6 [ 1 [ 2] 3 [ 4 J57 6 T 7 18]
Domanen

Abbildung 6: Schematische Darstellung des VEGFA-Gens mit den in der AMD-
Patient*innen-Gruppe identifizierten Varianten. Als blaue Balken sind die 8 Exons des
VEGFA-Gens sowie die untranslatierten Regionen (abgeflachte Balken) dargestellt. Zudem sind
am Transkript NM_003376.6 (grau) die funktionellen Proteindomanen (griin) PDGF und VEGF_C
gezeigt.
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Tabelle 8: Gegeniiberstellung der identifizierten VEGFA-Varianten und des Visus.
Dargestellt sind die beiden im Patient*innenkollektiv festgestellten Varianten des VEGFA-Gens
gegenuber dem Therapieansprechen (stabiler Visus oder Visusabfall unter Therapie mittels
VEGF-Inhibitor). Die Spalten 3 und 4 zeigen den Genotyp der Varianten ¢.856-28C>T und
¢.534C>T, p.Ser178=.

Patient*in Visus Genotyp Genotyp
c.856-28C>T  ¢.534C>T
A1 stabil CC CcC
A2 stabil CcC CcC
A3 abfallend TT CcC
A4 abfallend TT CcC
A5 abfallend CC CcC
A6 stabil TT CcC
A7 abfallend CT CcC
A8 abfallend CcC CcC
A9 stabil TT CC
A10 stabil CcC CT
A12 stabil TT CC
A13 abfallend CcC CcC
A14 abfallend CT CC
A15 abfallend CT CcC
A16 abfallend CC TT
A19 stabil CcC CcC
A23 abfallend CT CC
A24 abfallend CcC CcC
A25 stabil CT CC

Zudem wurden die Varianten mit der hdchsten pradiktierten Pathogenitat aus der NGS-
Panel-Analyse ausgewahlt. Die sieben Varianten konnten mittels allelspezifischer PCR
bzw. Sanger-Sequenzierung verifiziert werden. Alle sieben Veranderungen sind im
Exonbereich gelegene, nicht-synonyme Varianten, die jeweils bei einem Individuum
aus der Gruppe der AMD-Betroffenen heterozygot nachgewiesen wurden. Sechs
Varianten sind Missensevarianten und wiesen einen SIFT-Score < 0,05 (deleterious),
einen PolyPhen-2-Score > 0,908 (probably damaging) und einen CADD-Score > 20 auf
und erhielten somit 3 Punkte im daraus gebildeten Score fur die grote pradiktierte
pathogenetische Relevanz. Zudem wurde die Variante NM_005666:¢.595G>T,
p.Glu199Ter im CFHR2-Gen zur weiteren Auswertung ausgewahlt. Diese Variante
erhielt keinen SIFT- und PolyPhen-2-Score, da diese Tools Missensevarianten
aufgrund der verursachten Aminosauresubstitution beurteilen. Die Variante ¢.595G>T,
p.Glu199Ter fuhrt durch den Basenaustausch jedoch zu einem Stoppcodon. Da eine
solche Nonsensevariante zu einem verkurzten Protein oder dem vorzeitigen Abbau der
mMRNA fihrt, wurde sie trotzdem zur weiteren Auswertung ausgewahlt. Weitere

Nonsensevarianten wurden in der Studienpopulation nicht nachgewiesen. Bereits
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eindeutig als Risikovarianten fiir die Entwicklung einer AMD beschriebene Varianten,
wie die Hauptrisikovariante NM_000186.4:¢.1204T>C, p.Tyr402His im CFH-Gen,
wurden in dieser Studienpopulation nicht detektiert. Die in silico-Pradiktionen der
ausgewahlten Varianten des NGS-Panels durch die drei Tools SIFT, PolyPhen-2 und
CADD sowie durch Mutation Taster und die Konservierung sind in Tabelle 9
dargestellt.

Tabelle 9: Mittels NGS-Panel der Gene des Komplementsystems identifizierte Varianten in
der Studienpopulation. SIFT (S): < 0,05: deleterious; PolyPhen-2 (P): > 0,908: probably

damaging; C: CADD; Mutation Taster (MT): B: benign, D: deleterious; phastCons (phast): 0
(nicht konserviert) — 1 (konserviert); phyloP (phylo): - 14 (Akzeleration) — 6 (Konservierung).

Gen Variante Score NGS-Varianten MT Konservierung
kodierende DNA
Protein

S P C phast phylo

MASP2 NM_006610:c.359A>G 0,01 0993 288 D 1 4,502
p.Asp120Gly

CFHR2 NM_005666:c.595G>T / / 350 B 0,005 -0,158
p.Glu199Ter

C9 NM_001737:¢c.1427T>C 0,00 090 268 B 0,976 3,883
p.lle476Thr

CFB NM_001710:¢c.1407C>G 0,02 0972 228 D 0,991 -0,101
p.lle469Met

C5 NM_001735:¢c.2297G>A 0,01 0998 285 D 1 4,469
p.Arg766GIn

ITGAM NM_000632:c.1790G>A 0,00 0998 251 B 0,995 2,206
p.Gly597Glu

C3 NM_000064:c.2533G>A 0,00 1,000 26,7 B 1 1,44
p.Val845Met

4.2 Bewertung der Varianten im VEGFA-Gen

4.2.1 Variante ¢.534C>T, p.Ser178=: kein Einfluss auf die Proteinsequenz

Die Substitution ¢.534C>T, p.Ser178= (rs25648) befindet sich im ersten Exon bzw. der
5°-UTR und wurde bei zwei Patient*innen festgestellt. Die Veranderung ist synonym und
fuhrt folglich zu keinem Austausch des an dieser Stelle befindlichen Serins. In der
Studienpopulation tragt Patient*in A10 die Veranderung heterozygot und Patient*in A16
homozygot (Abbildung 7). Die ermittelten Allelfrequenzen von rs25648 zeigten einen
niedrigeren Anteil des T-Allels in der Gruppe mit AMD verglichen mit der Kontrollgruppe
ohne AMD (OR T gegenuber C=0,277; 95%-Kl=0,076 —1,016; p =0,053)
(Tabelle 10). Die Genotypen CT und TT zusammen waren in der Kontrollgruppe haufiger
(OR =0,147; 95%-KI = 0,030 — 0,733; p = 0,019) (Tabelle 10). Der Genotyp TT wurde
in der Gruppe mit AMD und der Kontrollgruppe jeweils nur einmal detektiert (Tabelle 10).
Die Verteilung der Genotypen zeigte in der Gruppe mit AMD keine Ubereinstimmung mit
dem HWE (Tabelle 10).
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Abbildung 7: Elektropherografische Darstellung der Basenabfolge des Riickwartsstranges
im ersten Exon des VEGFA-Gens. Patient*in A10 ist heterozygot fur c.534C>T (Genotyp CT),
Patient*in A16 tragt das Minorallel homozygot (Genotyp TT) und Patient*in A8 tragt homozygot
das Majorallel (Genotyp CC).

Tabelle 10: Verteilung der Allele und Genotypen der Varianten c.534C>T, p.Ser178= und
c.856-28C>T und Assoziation mit der Entwicklung einer AMD. p-Wert HWE: p-Wert der
Abweichung vom HWE; OR: Odds Ratio; 95%-KI: 95-%-Konfidenzintervall.

Haufigkeit in % (n) OR mit 95%-KI  p-Wert
genetische Variante gnomAD AMD keine AMD
c.534C>T Allel
(rs25648) C 83,3 92,1 (35) 76,4 (55) 0,277 0.053
T 16,7 7,9 (3) 23,6 (17) (0,076 - 1,016) ’
Genotyp
CC 69,4 89,5 (17) 55,6 (20) 0,147
(0,030 - 0,733) 0,019
CT 27,9 53 (1) 41,7 (15) CT/TT vs. CC
1,944
TT 2,7 5,3 (1) 2,8(1) (0,115-32,933) 0,645
TT vs. CC/CT
pWerthwe |
0,005 0,352
¢.856-28C>T Allel
(rs3025000) C 69,4 60,5 (23) 72,2 (52) 1,696 0212
T 30,6 39,5 (15) 27,8 (20) (0,739 - 3,889) ’
Genotyp
CC 48,0 47,4 (9) 50,0 (18) 1,111
(0,365 — 3,380) 0,853
CT 42,8 26,3 (5) 44,4 (16) CT/TT vs. CC
6,071
TT 9,2 26,3 (5) 5,6 (2) (1,051 -35,077) 0,044
TT vs. CC/CT
0,050 0,518

Anhand der ACMG-Kriterien ist diese Variante als benigne einzuordnen, da die Frequenz
des T-Allels mit etwa 17 % in gnomAD und 1000G in Europa hoch ist. Zudem handelt es
sich um eine synonyme Variante, die das Spleif3en voraussichtlich nicht beeinflusst und
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sich nicht an einer stark konservierten Position befindet (phyloP = 0,604). Unterstitzt

wird die benigne Klassifizierung auch durch die benigne Bewertung durch in silico-Tools.
4.2.2 Intronische Variante c.856-28C>T

Die intronische Variante ¢.856-28C>T (rs3025000) konnte bei flnf Patient*innen (A3,
A4, A6, A9, A12) homozygot und bei weiteren funf (A7, A14, A15, A23, A25) heterozygot
nachgewiesen werden (Abbildung 8). Die Haufigkeit des Minorallels T betragt in der
Gruppe mit AMD 0,395 und liegt somit etwas Uber der europaischen
Vergleichspopulationen (1000G: 0,290; gnomAD: 0,306). Das T-Allel ist in dieser Studie
in der Gruppe mit AMD haufiger (OR T gegenuber C = 1.696; 95%-KI = 0,739 — 3,889;
p =0,212). Der Anteil des Genotyp TT war ebenfalls in der Gruppe der von AMD
Betroffenen groRer (OR =6,071; 95%-KI = 1,051 -35,077; p=0,044). Auch die
Genotypen CT und TT zusammen wiesen eine héhere Frequenz in der AMD-Gruppe auf
(OR=1,111; 95%-Kl = 0,365 — 3,380; p=0,853). Die Verteilung der Allele und
Genotypen sowie die Assoziation mit der Entwicklung einer AMD sind in Tabelle 10
dargestellt. Die Variante ist nach ACMG als benigne Variante einzuordnen, da sie in
europaischen Vergleichspopulationen sehr haufig nachgewiesen wurde und auch die in

silico-Evidenz flir Benignitat spricht.

A3 TT

/\M/\ o

Abbildung 8: Elektropherografische Darstellung der Basenabfolge des Riickwartsstranges
im Intronbereich upstream von Exon 4 des VEGFA-Gens. Patient*in A7 ist heterozygot fur
€.856-28C>T (Genotyp CT), Patient*in A3 tragt das Minorallel homozygot (Genotyp TT) und
Patient*in A1 tragt homozygot das Majorallel (Genotyp CC).
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4.3 Ansprechen auf die Therapie mittels VEGF-Inhibitoren

In der Gruppe der AMD-Betroffenen sprachen 8 Patient*innen auf die Anti-VEGF-
Therapie an, wahrend 11 Patient*innen nicht ausreichend ansprachen. Die Einteilung
erfolgte dabei anhand des Dezimalvisus unter Therapie. Die Patient*innen wurden in
solche mit stabilem Visus und mit Visusabfall unter Therapie eingeteilt, wobei ein
Visusabfall einen Verlust von mehr als drei Zeilen bedeutete. Das Minorallel T der
VEGFA-Variante rs25648 wurde einmal (6,3 %) in der Gruppe der Patient*innen mit
stabilem Visus und zweimal (9,0 %) in der Gruppe mit Visusabfall unter Therapie
nachgewiesen (OR: 0,667; 95%-KI = 0,055 — 8,057; p = 0,750) (Tabelle 11). In der
Gruppe mit stabilem Visus tragt Patient*in A10 die Variante heterozygot (CT). Patient*in
A16 aus der Gruppe mit stabilem Visus unter Therapie tragt den Genotyp TT und somit
die Variante rs25648 homozygot. Alle anderen Patient*innen beider Gruppen weisen die

Variante nicht auf.

Das T-Allel der zweiten in der Studienpopulation identifizierten Variante, rs3025000,
wurde siebenmal (43,8 %) in der Gruppe der Patient*innen mit stabilem Visus und
achtmal (36,4 %) in der Gruppe mit Visusabfall unter Therapie festgestellt (OR: 1,361;
95%-KI = 0,365 — 5,072; p = 0,646) (Tabelle 11). Der heterozygote Genotyp CT wurde
einmal (12,5 %) in der Gruppe mit stabilem Visus nachgewiesen und 3 Patient*innen
(37,5 %) wiesen in dieser Gruppe die Variante homozygot (TT) auf. Bei den
Patient*innen mit Visusabfall trotz Anti-VEGF-Therapie trat der Genotyp CT viermal
(36,4 %) und der Genotyp TT zweimal (18,2 %) auf (Tabelle 11).

Tabelle 11: Verteilung der Allele und Genotypen der VEGFA-Varianten auf Patient*innen

mit stabilem Visus bzw. Visusabfall unter Therapie mit VEGF-Inhibitoren. OR: Odds Ratio;
95 % KI: 95-%-Konfidenzintervall.

Haufigkeit in % (n) OR mit 95%-KI p-Wert
genetische Variante Visus stabil Visusabfall
c.534C>T Allel
(rs25648) Cc 93,8 (15) 90,9 (20) 0,667 0750
T 6,3 (1) 9,0 (2) (0,055-8,057) ’
Genotyp
cC 87,5 (7) 90,9 (10) 0,700
(0,037-13,179) 0,812
CT 12,5 (1) 0,0 (0) CT/TT vs.CC
2,429
T 0,0(0) 9,1 (1) (0,087-67,573) 0,601
TT vs. CC/CT
c.856-28C>T Allel
(rs3025000) C 56,3 (9) 63,6 (14) 1,361 0646
T 43,8 (7) 36,4 (8) (0,365-5,072) ’
Genotyp
CcC 50,0 (4) 45,5 (5) 1,200
(0,194-7,441) 0,845
CT 12,5 (1) 36,4 (4) CT/MTvs.CC
0,370
TT 37,5 (3) 18,2 (2) (0,046-3,015) 0,353
TT vs. CC/ICT
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4.4 Bewertung der Varianten der NGS-Genpaneldiagnostik

4.4.1 Die Veranderung c.359A>G, p.Asp120Gly betrifft die CUB-Domane des
MASP2-Gens

Patient*in A13 wies die heterozygote Substitution NM_006610:c.359A>G, p.Asp120Gly
(rs72550870) im MASP2-Gen auf (Abbildung 9). Der Austausch von T gegen C flihrt
dabei zu einem Ersatz der sauren Aminosaure Asparaginsaure durch das neutrale
Glycin an Aminosaureposition 120. Die Haufigkeit des C-Allels betragt in Europa 0,039
(1000G). PhastCons- (1) und phyloP-Score (4,502) sprechen fiir eine starke
Konservierung an der Position dieses Basenaustausches. Die betroffene Aminosaure ist
ebenfalls stark konserviert. Dies erhoht die Wahrscheinlichkeit, dass Varianten an dieser
Stelle schlechter toleriert werden und spricht fir eine mogliche Auswirkung auf
Proteinebene, was auch durch funktionelle Studien unterstitzt wird. In vitro wurde eine
Beeintrachtigung der Bildung von MBL-MASP-2-Komplexen und somit eine veranderte
Proteinfunktion durch die Variante nachgewiesen (128,129). Die Variante befindet sich
in der funktionell wichtigen CUB1-Domane. In der Literatur wurde diese Variante bei
Patient*innen mit Immundefizienz nachgewiesen (128,130). Jedoch sind auch gesunde
Trager*innen der Variante berichtet worden (130—132). Die Variante ist in der Datenbank
ClinVar enthalten. Das G-Allel wurde bezuglich MASP-2-Defizienz zweimal als likely
pathogenic und je einmal als pathogenic und als Variante unklarer Signifikanz (VUS)
klassifiziert. Anhand der ACMG-Kriterien kann die Variante als likely pathogenic

eingeordnet werden.
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Abbildung 9: Darstellung der allelspezifischen PCR zum Nachweis von
NM_006610:c.359A>G, p.Asp120Gly mittels Gelelektrophorese. Unter Einsatz des
wildtypspezifischen Vorwartsprimers entsteht bei A13 und bei A15 ein ca. 200 bp groRes Produkt,
wahrend bei Verwendung des variantenspezifischen Primers nur bei A13 ein entsprechendes
PCR-Produkt entsteht. Somit tragt A13 die Variante c.359A>G in MASP2 heterozygot wahrend
A15 die Variante nicht tragt.

4.4.2 Vorzeitiges Stoppcodon durch ¢.595G>T, p.Glu199Ter im CFHR2-Gen

Die Substitution NM_005666:c.595G>T, p.Glu199Ter (rs41257904), welche bei
Patient*in A10 vorlag, fihrt zur Entstehung eines neuen Stoppcodons (TAA) und ist
somit eine Nonsensevariante (Abbildung 10). Das resultierende Protein ware stark
trunkiert: Das Stoppcodon befande sich bereits an Position 597 statt 813 und es wirde
zum teilweisen bzw. vollstandigen Verlust der fir die C3b-Bindung wichtigen Doméanen
SCR 3 und SCR 4 kommen (133). Da stark verkirzte mRNA wesentlich starker abgebaut
wird (nonsense-mediated mRNA decay; NMD), um Schaden durch trunkierte Proteine
zu vermeiden (134,135), ist es moglich, dass die mRNA nicht translatiert wird.
Insbesondere bei einem vorzeitigen Stoppcodon mindestens 50 bp upstream der letzten
Exon-Exon-Grenze, kann ein NMD ausgeldst werden (136). Da ¢.595G>T, p.Glu199Ter
weniger als 50 bp vor der letzten Exon-Exon-Grenze liegt, ware es mdglich, dass die
MRNA bei Vorliegen dieser Variante dem NMD entgeht. Dies entspricht auch der
Pradiktion durch Mutation Taster. Mittels funktioneller Untersuchungen konnte jedoch
gezeigt werden, dass bei Vorliegen der Variante kein Protein synthetisiert wird, da die
Variante zu einem Verlust der Proteindomane SCR 4 fuhrt (137). Individuen, welche die
Variante tragen, wiesen eine verminderte Serumkonzentrationen von FHR2 auf
(38,137). Die Variante fuhrt somit zu einem Funktionsverlust, jedoch sind in der
Datenbank ClinVar keine pathogenen Varianten, die zu einem Funktionsverlust fuhren,

hinterlegt.
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Abbildung 10: Transkript NM_005666 von CFHR2. Im Ausschnitt der Sequenz des vierten
Exons ist die Variante ¢.595G>T rot markiert. Der Austausch von G gegen T fihrt zum
Stoppcodon TAA. Die Variante betrifft die funktionellen Domanen SCR 3 und SCR 4 des FHR2-
Proteins.

Diese Variante kann aufgrund des resultierenden vorzeitigen Stoppcodons und den

resultierenden funktionellen Konsequenzen als pathogenic klassifiziert werden.
4.4.3 Heterozygote Veranderung c.1427T>C, p.lle476Thr im C9-Gen

Die Missense-Variante NM_001737:c1427T>C, p.lled76Thr (rs141645272) flhrt zu
einem Austausch von lIsoleucin gegen Threonin an der Aminosaureposition 476.
Patient*in A19 tragt diese Variante heterozygot. Sie befindet sich in der MAC/Perforin-
Domane (MACPF-Domane), welche funktionell wichtig fir die Lyse von
Krankheitserregern durch den Membranangriffskomplex ist (138). Jedoch gibt es keine
eindeutigen Anhaltspunkte durch funktionelle Studien, Datenbanken oder in silico-
Analysen, ob diese Variante als benigne oder pathogene Variante einzuordnen ist,

weshalb laut ACMG-Kriterien eine Variante unklarer Signifikanz vorliegt.

Die Variante rs141645272 ist selten. Die Frequenz des C-Allels betragt in Europa 0,0022
(gnomAD) und ist in anderen Populationen noch niedriger. In der Datenbank ClinVar ist
die Variante bereits einmal als likely benign aufgefuhrt, jedoch ohne Spezifizierung eines

Phanotyps.

4.4.4 Potenzielle Schwachung des SpleiBdonors durch ¢.1407C>G,
p-lle469Met im CFB-Gen

Die Variante NM_001710:¢.1407C>G, p.lle469Met (rs201798809), welche bei Patient*in
A1 nachgewiesen wurde, betrifft das vorletzte Nukleotid von Exon 10 des CFB-Gens und
liegt damit innerhalb der letzten Aminosaure, sodass ein moglicher Einfluss auf das

Spleillen bedacht werden muss. Basierend auf dem MaxEntScan-Modell, welches auf
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dem Prinzip der maximalen Entropie aufbaut (139), wird eine Schwachung des
Spleilldonors pradiktiert. SpliceAl sagt wiederum keinen Einfluss auf das Splei3en
vorher. Laut Uniprot befindet sich die Veranderung in der von-Willebrand-Faktor-A-
Domane (vVWF-A-Domane), welche in die Ligandenbindung von Faktor B involviert ist
(140).

Das von der Variante betroffene Nukleotid ist selbst nicht konserviert (phyloP: - 0,101),
aber befindet sich in einem konservierten Element (phastCons: 0,991). Die Frequenz
betragt in der europaischen Population 0,0002 in gnomAD und 0,001 laut dem 1000-
Genomprojekt, wobei das G-Allel in der europdischen Population am haufigsten
vorkommt und in den meisten anderen Populationen ganzlich fehlt. Die Variante ist als
seltene Variante zu betrachten. Mutation Taster annotiert rs201798809 als pathogene
Variante. Insgesamt ist rs201798809 nach den ACMG-Guidelines eine VUS.

Laut ClinVar wurde das G-Allel bereits fir den Phanotyp atypisches Hamolytisch-
Uramisches Syndrom (aHUS) (MIM# 612924), einer durch Komplementlberaktivierung
verursachten Erkrankung (141), einmal likely benign und einmal als VUS klassifiziert.

Bezlglich Makuladegeneration wurde das G-Allel ebenfalls als VUS klassifiziert.
4.4.5 Seltene Varianten unklarer Signifikanz im C5- und ITGAM-Gen

Bei Patient*in A3 wurde die Cb-Variante NM_001735:¢c.2297G>A, p.Arg766GIn
(rs758933855) heterozygot nachgewiesen. Aus der Proteindatenbank Uniprot wird
ersichtlich, dass sich die Veranderung in keiner bekannten, funktionell gut untersuchten
Domane von C5 befindet. Die Variante rs758933855 ist nach den ACMG-Guidelines eine
VUS, da zu wenig Evidenz fur Pathogenitat oder Benignitat vorliegt. Das A-Allel ist in

gnomAD v2.1.1 nicht vorhanden.

Die Variante NM_000632:¢.1790G>A, p.Gly597Glu (rs199700282) in ITGAM wurde bei
Patient A25 heterozygot nachgewiesen. Die Frequenz des A-Allels betragt in Europa
0,0001168 (gnomAD), wahrend es in anderen Populationen in gnomAD nur ein weiteres
detektiert wurde. Die Variante ist nicht in der Literatur beschrieben. Zudem sind auch
keine funktionellen Auswirkungen oder Phanotypassoziationen benachbarter Varianten

beschrieben.
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4.4.6 Bisher nicht beschriebene Variante ¢.2533G>A, p.Val845Met im C3-

Gen

Auch NM _000064:c.2533G>A, p.Val845Met, eine C3-Variante, die bei Patient*in A12
heterozygot vorliegt ist aufgrund fehlender Evidenz eine VUS. Sie ist in der
Populationsdatenbank gnomAD (Datensatz: gnomAD v2.1.1) und im 1000-

Genomprojekt (Datensatz: 1000 Genomes Project Phase 3) nicht vorhanden.

Nach Decipher befinden sich in derselben Domane weitere Varianten, welche mit aHUS
in Verbindung gebracht werden. An Aminosaureposition 844 befindet sich die
Missensevariante ¢.2531A>G, p.GIn844Arg, dessen C-Allel als likely pathogenic fur
aHUS mit C3-Anomalie (MIM# 612925) klassifiziert wurde. Die Nonsensevariante
€.2562C>G, p.Tyr854Ter ist ein Risikofaktor flr denselben Phanotyp.

4.5 Proteinmodelle der Missensevarianten

4.5.1 Position der Variante im jeweiligen Protein

Asp120Gly in MASP-2: Die an Aminosaureposition 120 befindliche Asparaginséure
stellt eine Bindungsstelle fir Ca?" dar. Da Asp120Gly sowie der Austausch der
benachbarten Residuen Tyrosin an den Positionen 74 und 121, Glutaminsaure an den
Positionen 98 und 124 und Asparaginsaure an Position 75 gegen Alanin zu fehlender
oder sehr schwacher Bindung an MBL fluhrt, ist diese Region wahrscheinlich fir die
Bindung an MBL und Ficoline verantwortlich (142). Asp120 und Asp75 sind dabei
wahrscheinlich nicht direkt in die Interaktion involviert, sondern binden, zusammen mit
Glu67, Ser122, Asn123 und einem Wassermolekil, ein Ca%*-lon und stabilisieren
daruber die Bindungsstelle fir MBL und Ficoline (142). Die Mutation von Asparaginsaure
zu Glycin an Position 120 konnte daher tber die Destabilisierung der Ca?*-Bindung zum

Verlust der Fahigkeit zur Bindung von MBL und Ficolinen fihren (142).

11e476Thr in C9: Diese Variante betrifft die MACPF-Domane. Es wird vermutet, dass
die meisten vom Monomer zur Pore fihrenden Konformationsanderungen von C9 in
dieser Domane stattfinden (143,144).

lle469Met im Faktor B: Die vVWF-A-Domane besteht, homolog zur Integrin aM A-
Domane, aus B-Faltblattern, welche von a-Helices flankiert werden (145). [le469 befindet
sich in der C-terminalen Helix der Doméane, die sich bei den Integrinen nach
Ligandenbindung nach unten verlagert (146). Die Interaktion von an C3b gebundenem
Faktor B (C3bB) mit Faktor D fuhrt zu einer Konformationsanderung und Entwindung der

C-terminalen Helix und schlieRlich zur Bindung von Faktor D und Bildung der C3-
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Konvertase des alternativen Wegs (140). Jedoch kann auch ohne Faktor D eine aktive
C3-Konvertase entstehen (145). Analog zur Integrin aM A-Domane kénnte dies durch
eine Verlagerung der C-terminalen Helix nach unten durch die Bindung von C3b
ermdglicht werden (145,146). Die daraus resultierende funktionelle Bedeutung der C-
terminalen Helix der vWF-A-Doméane fir die Komplementaktivierung Uber den

alternativen Weg koénnte durch lle469Met beeinflusst werden.

Die Varianten Arg766GIn in C5, Gly597Glu im Integrin a-M und Val845Met in C3
betreffen keine funktionell abgrenzbare Proteindoméne, was jedoch einen Einfluss auf

das Protein nicht ausschlief3t.
4.5.2 Sekundarstrukturanalyse

Die Variante Asp120Gly in MASP-2 befindet sich am Ubergang eines B-Faltblattes in
einen Random Coil, also einer strukturell flexiblen Region ohne erkennbare
Sekundarstruktur. Die Sekundarstruktur wird durch die Mutation voraussichtlich nicht
verandert. 1le476Thr in C9 befindet sich in einer a-Helix und Val845Met in C3 liegt in
einem B-Faltblatt. In beiden Fallen kommt es durch die Mutation, laut Pradiktion,
ebenfalls nicht zu einer Beeinflussung der Sekundarstruktur. Die Varianten Arg766Gin
(C5) und Gly597Glu (Integrin a-M) befinden sich laut Vorhersage in einem Random Call,
was durch die Mutation nicht beeinflusst wird. l1le469Met im Komplementfaktor B liegt
am Ubergang einer a-Helix zu einem Random Coil. Das Tool PSIPRED pradiktiert bei
Vorhandensein von Isoleucin an Aminosaureposition 469 eine a-Helix, bei
Vorhandensein von Methionin einen Random Coil (Abbildung 10), wobei zu beachten
ist, dass sich die a-Helix an dieser Stelle ohnehin in einen Random Coil auflost. Zur
Validierung wurde die Analyse dennoch auf das Sekundarstrukturpradiktionstool
SCRATCH (147) und die Modellierungsserver GalaxyWeb (148) und Robetta (149)
erweitert. Die Vorhersagen aller anderen Tools, auRer PSIPRED, zeigten keinen
Unterschied in der Sekundarstruktur zwischen Isoleucin oder Methionin an Position 469
(Abbildung 10). Aufgrund der hohen Beweglichkeit von Random Coils kénnen kurzzeitig

auch Sekundarstrukturen auftreten, die dann jedoch nicht dauerhaft bestehen bleiben.
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Residuum D
UniProt
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469M Jpred4

469M s2D

469M SWISS-MODEL
469M |I-TASSER

469M SCRATCH

469M Galaxy-Web

469M Robetta

Wildtyp

Mutation

Abbildung 11: Ausschnitt der Sekundarstrukturvorhersage von Faktor B an Position 469.
Laut der Vorhersage von PSIPRED geht die a-Helix bei Vorliegen von Methionin in ein B-Faltblatt
tiber und ab Position 469 liegt ein Random Coil vor. Die anderen Tools zeigen keine Anderung
der Sekundarstruktur durch lle469Met. S (gelb): B-Faltblatt; H (rot): a-Helix; weil: Random Coil;
grin markiert: Position der Variante.

4.5.3 3D-Modelle

Die mit dem jeweiligen Aminosaureaustausch modifizierten Proteinmodelle wurden
hinsichtlich der Wasserstoffbriickenbindungen (Anhang 2) und Hydrophobizitat
(Anhang 3) mit dem Wildtyp verglichen, da nichtkovalente Bindungen wie
Wasserstoffbriickenbindungen und hydrophobe Effekte zur Stabilitat der
dreidimensionalen Struktur von Proteinen beitragen und die Interaktion mit anderen
Molekllen ermdglichen (150). Der Verlust oder Gewinn von Salzbricken oder
Wasserstoffbrickenbindungen kann durch die Beeinflussung der lokalen Struktur
krankheitsverursachend sein, selbst wenn die freie Enthalpie (AG) nicht verandert wird
(150). Asp120Gly ragt in die Oberflache von MASP-2 hinein und kénnte zum Verlust
einer Wasserstoffbriickenbindung fuhren (Abbildung 12) sowie die Hydrophobizitat
steigern (Abbildung 13). Hydrophobe Interaktionen und Wasserstoffbrickenbindungen
spielen auch bei der Dimerbildung von MASP-2 eine Rolle und sind innerhalb der

Proteinfamilie an der Oberflache zwischen den Monomeren konserviert (142).
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Abbildung 12: Ausschnitt aus MASP-2 im 3D-Modell mit Darstellung der
Wasserstoffbriickenbindungen von Asp120. (A) Wildtyp mit Wasserstoffbriickenbindungen
von Asp120 zu Ser122, Asp42 und Asp75. (B) Durch die Substitution von Asparaginsaure gegen
Glycin geht die Wasserstoffbrickenbindung zu Ser122 verloren. Die
Wasserstoffbrickenbindungen zu Asp42 und Asp75 bleiben unverandert.

Abbildung 13: Ausschnitt aus der grafischen Darstellung der Hydrophobizitat von MASP-2
im 3D-Modell. Asp120 ist Teil der Proteinoberflache. Die Hydrophobizitdt wurde mittels des
Skriptes "Color h" in PyMol nach der normalisierten Eisenberg-Konsensusskala (151) dargestellt.
Je starker die Rotfarbung, umso starker ist die Hydrophobizitat. (A) Dargestellt ist die schwache
Hydrophobizitat, wenn sich an Position 120 Asparaginsaure befindet. (B) Es zeigt sich eine leichte
Zunahme der Hydrophobizitat bei einer Substitution gegen Glycin.

Auch die nachgewiesenen Mutationen in C9 und C5 kénnten die lokalen nichtkovalenten
Krafte beeinflussen. lle476Thr in C9 schwacht die Hydrophobizitat (Abbildung 14) und
bewirkt im Modell eine zusatzliche Wasserstoffbriickenbindung (Abbildung 15), was sich

auf die Funktionalitat der MACPF-Domane auswirken kann.
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Abbildung 14: Ausschnitt aus der grafischen Darstellung der Hydrophobizitat von C9 im
3D-Modell. lle476 befindet sich im Kern von C9. Ein Teil der Oberflache ist nach der
Hydrophobizitat der dort befindlichen Aminosauren eingefarbt und im Hintergrund dargestellt.
lle476Thr ragt nicht in die Oberflache. (A) Darstellung der starken Hydrophobizitat durch Isoleucin
an Position 476. (B) Abnahme der Hydrophobizitat durch den Austausch gegen Threonin.

Abbildung 15: Ausschnitt aus C9 im 3D-Modell mit Darstellung der
Wasserstoffbriickenbindungen von 11e476. (A) Isoleucin an der Aminosaureposition 476 bildet
Wasserstoffbrickenbindungen zu Leu479 und Thr344. (B) Durch lle476Thr entsteht zuséatzlich
zu diesen Wasserstoffbriickenbindungen eine weitere zu Gly343.

In C5 gehen durch Arg766GIn die Wasserstoffbriicke zu Ser228 und die beiden
Wasserstoffbricken zu Val229 in der Pradiktion verloren (Abbildung 16), wahrend die
Hydrophobizitat nur leicht zunimmt. 1le469Met in Faktor B, Val845Met in C3 und
Gly597Glu in Integrin a-M schwachen die Hydrophobizitat lediglich gering (Anhang 3).
Jedoch kann es durch die Mutation in Integrin a-M zur Ausbildung einer zweiten
Wasserstoffbrickenbindung zu Asp592 und in Faktor B zum Verlust der
Wasserstoffbrickenbindung zu Tyr466 kommen (Anhang 2).
Wasserstoffbrickenbindungen beeinflussen die Stabilitdt des Proteins (152,153). Die
Auswirkungen einer bestimmten Aminosauresubstitution auf das Protein sind dabei
unterschiedlich und abhangig von der Umgebung der betroffenen Aminosaure, wobei
neben dem Einfluss auf die Wasserstoffbriickenbindungen weitere Auswirkungen der
Aminosauresubtitution, u.a. auf die hydrophoben Interaktionen und die Konformation

eine Rolle spielen (152).
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Abbildung 16: Ausschnitt aus C5 im 3D-Modell mit Darstellung der
Wasserstoffbriickenbindungen von Arg766. (A) Darstellung der beiden
Wasserstoffbriickenbindungen von Arg766 zu Val229 sowie der Wasserstoffbriickenbindung zu
Ser228. (B) Die Substitution von Arginin gegen Glutamin fuhrt zum Verlust der
Wasserstoffbriickenbindungen zu Ser228 und Val229.

Das Tool DynaMut (154) trifft mithilfe der Anderung der thermodynamischen Stabilitat
(AAG) Vorhersagen uber den Einfluss von Varianten auf die Stabilitat der Proteinstruktur.
Werte < 0 kcal/mol wurden dabei als destabilisierend definiert, Werte = 0 kcal/mol als
stabilisierend (154). Somit wirken Asp120Gly (MASP-2), lle476Thr (C9), Arg766GiIn (C5)
und Val845Met (C3) moglicherweise destabilisierend und 1le469Met (Faktor B) sowie
Gly597Glu (Integrin a-M) madglicherweise stabilisierend (Anhang 5).
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5 Diskussion

5.1 Zusammenhang der nachgewiesenen VEGFA-Varianten mit

der Erkrankung an einer AMD

5.1.1 Funktionelle Konsequenzen synonymer und intronischer Varianten

Als synonyme bzw. intronische Variante verandern die in der Studienpopulation
festgestellten VEGFA-Varianten c¢.534C>T, p.Ser178= (rs25648) und c.856-28C>T
(rs3025000) zwar nicht die Aminosauresequenz, aber dennoch kdénnen sie sich auf die
Proteinfunktion auswirken. Madgliche, aber teils noch nicht bis ins Detail verstandene
Mechanismen sind verandertes SpleiRen, veranderte mRNA-Stabilitat und
Beeinflussung der Proteinfaltung und - konformation (155,156). Genetische Varianten
kénnen neben den Spleillstellen an den Intron-Exon-Grenzen den Spleidvorgang
betreffende intronische Sequenzmotive, wiederkehrende DNA-Abschnitte, beeinflussen.
Pra-mRNAs besitzen Pseudo-Spleil3stellen, die nicht genutzt werden, aber durch
Aktivierung von Enhancern gestarkt werden kénnen (157,158). Die Nutzung der
Pseudospleif’stelle kann zur Insertion eines kryptischen Exons flihren (159,160). Auch
die Insertion eines kryptischen Exons mit Stoppcodon und folglicher Trunkierung des
Proteins ist beschrieben (160-162). Varianten in den Spleil3stellen kdénnen zu
Exonskipping und Intronretention fiihren (159,160,163). Aufgrund dieser Mechanismen
ist auch bei nicht-kodierenden Varianten ein Einfluss auf das Protein nicht
ausgeschlossen. Mithilfe des Tools SpliceAl ergibt sich jedoch in silico kein Anhalt, dass
rs3025000 das Spleilen verandert.

Es wurde beobachtet, dass auch synonyme Mutationen die Proteinfaltung beeinflussen
kénnen (164). Im MDR1-Gen, welches das Transportprotein P-Glykoprotein kodiert,
kénnen Kombinationen synonymer Mutationen die Struktur der Substratbindungsstelle
und die Sustratspezifitdt verandern (155,165). Eine mdgliche Erklarung ist, dass die
durch die synonyme Mutation verursachte Anderung des jeweiligen Codons zum Stalling
der Ribosomen fiihren kann (165). Das Stalling fiihrt wiederum zur Anderung der
Faltungspfade wahrend der Proteinfaltung (165). Funktionelle oder quantitative
Auswirkungen synonymer Varianten, wie rs25648, sind demnach nicht ausgeschlossen,

obwohl die Aminosauresequenz unverandert bleibt.

Insbesondere wird vermutet, dass Varianten im Promotor und in den untranslatierten
Regionen die VEGFA-Expression beeinflussen (166,167). So sind bei Vorliegen der
Minorallele der VEGFA-Varianten rs2010963 (5°-UTR) und rs3025039 (3'-UTR) eine

starkere VEGFA-Expression und hoéhere Serumkonzentrationen beobachtet worden
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(167). Die 5°-UTR, in welcher sich auch rs25648 befindet, beeinflusst, welcher Weg zur
Initiation der Translation genutzt wird, wie effizient dieser ist und welche Initiationsstelle
verwendet wird und kann die Translation auch Uber sequenzspezifische MmRNA-
Bindungsproteine beeinflussen (168). Die 5-UTR der VEGF-A-mRNA enthalt die
Elemente IRES-A und -B, welche beeinflussen, ob AUG oder ein upstream gelegenes
alternatives CUG-Startcodon zur Translation genutzt wird (65). Mit c.-94C>G
(rs2010963) ist eine VEGFA-Variante bekannt, die Uber eine Dysfunktion von IRES-B
die Translation beeinflusst und mit unter anderem erhdéhtem Risiko fur diabetische
Makuladdeme verbunden ist (169,170). Die Veranderung rs25648 befindet sich
downstream dieser Elemente, doch kann ein Einfluss auf Translationsregulation und
SpleilRen nicht ausgeschlossen werden. Mithilfe SpliceAl ergibt sich jedoch auch fir die

Variante rs25648 in silico kein Anhalt, dass das Spleil3en beeinflusst wird.

Um die funktionellen Auswirkungen identifizierter Varianten beurteilen zu kénnen, sollten
auch in vivo- und in vitro-Untersuchungen durchgefiihrt werden. Funktionelle
Untersuchungen zum Einfluss von rs25648 auf die VEGFA-Expression und
Proteinkonzentration ergaben bisher jedoch inkonsistente Ergebnisse. Bei Vorliegen des
CC-Genotyps von rs25648 wurde eine erhohte VEGF-A-Konzentration festgestellt (166).
In anderen Studien wurden wiederum keine Unterschiede beziglich der VEGF-A-
Konzentration abhangig von rs25648 gefunden (171,172). Auch rs3025000 war nicht mit
dem VEGF-A-Serumlevel assoziiert (173). Ruggiero et al. stellten dazu fest, dass
haufige VEGFA-Varianten die unterschiedliche Serumkonzentration nicht erklaren und
vermuten, dass seltene, und gegebenenfalls in verschiedenen Populationen
unterschiedliche Varianten ursachlich sind (173). Daher ist die funktionelle Relevanz der
Variante zum aktuellen Zeitpunkt auch durch funktionelle Untersuchungen nicht

eindeutig geklart.

5.1.2 Mogliche Assoziation von ¢.534C>T, p.Ser178= mit der Entwicklung
einer AMD

Anhand der in der Studienpopulation und bei den nicht an AMD erkrankten Individuen
beobachteten Allelfrequenzen deutet sich eine mogliche Assoziation von ¢.534C>T,
p.Ser178= (rs25648) mit der Entwicklung einer AMD an. Das T-Allel wurde haufiger in
der Kontrollgruppe ohne AMD nachgewiesen, was auf einen protektiven Effekt des T-
Allels bezuglich des AMD-Risikos hinweist. Die Verteilung der Genotypen CT und TT
gegenuber CC weist ebenfalls auf ein niedrigeres Risiko bei Vorliegen mindestens eines
T-Allels hin. Die Ungleichverteilung der Genotypen zeigt sich auch in der Abweichung
vom HWE in der Gruppe der AMD-Betroffenen. Das HWE beschreibt, dass die
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Allelfrequenzen in einer Population von Generation zu Generation unverandert bleiben
und wird in Assoziationsstudien genutzt, um Fehler bei der Genotypisierung zu
detektieren (174). Eine Abweichung vom HWE in der Gruppe der Betroffenen kann
jedoch auch auf eine Assoziation der jeweiligen genetischen Variante mit der Erkrankung
hinweisen (174). Die kleine Fallzahl flhrt allerdings zu einer grolen Unsicherheit der
Werte, weshalb sich kein eindeutiger Zusammenhang ableiten lasst. Im Gegensatz zu
dem Ergebnis dieser Arbeit stellten Fang et al. bei einer OR des T-Allels mit einem Wert
von 0,93 und einem adjustierten p-Wert von 1 fest, dass kein Zusammenhang dieser

Variante mit neovaskularer AMD bestehe (70).

Wiederum wurde bei Diabetikern mit proliferativer Retinopathie, die ebenfalls mit
Gefalneubildungen einhergeht, im Vergleich zu Diabetikern ohne Retinopathie eine
Haufung des T-Allels gezeigt (OR = 2,89; 95 %-Kl = 1,42-5.88; p = 0,002) (175) und
somit das T-Allel als Risikoallel identifiziert. Eine 2020 veroffentlichte Metaanalyse mit
26 inkludierten Studien stellte insgesamt keine Assoziation fest, zeigte jedoch in der
kaukasischen Subgruppe ebenfalls eine Assoziation zwischen dem T-Allel und einem
erhohten Risiko flr diabetische Retinopathie (T vs. C: OR = 2,89; 95%-KI = 1,43-5,83;
p = 0,003; (176). In anderen Analysen wurde hingegen keine Assoziation der Variante
mit diabetischer Retinopathie festgestellt (177,178). So auch in einer Metaanalyse mit
82 inkludierten Publikationen (177). Es konnte hier kein Zusammenhang zwischen
rs25648 und diabetischer Retinopathie in der Gesamtauswertung gezeigt werden, wobei
ethnische Unterschiede der fur das Risiko verantwortlichen Varianten maéglich sind und
fur rs25648 keine Subgruppenanalyse durchgeflihrt wurde (177). Das Risiko fir eine
Erkrankung an Diabetes mellitus Typ 2 an sich betreffend wurde hingegen eine
Assoziation des T-Allels mit einem niedrigeren Risiko festgestellt (172). Auch unter
Bertcksichtigung des bisher uneindeutigen funktionellen Einflusses von rs25648, ist ein
Zusammenhang mit dem AMD-Risiko und ein méglicher Einfluss auf die Pathogenese

bisher nicht eindeutig erklarbar.

5.1.3 Kein eindeutiger Zusammenhang weiterer VEGFA-Varianten mit dem
AMD-Risiko

Die zweite in dieser Arbeit nachgewiesene Variante, ¢.856-28C>T (rs3025000), wurde
mit der Entstehung von choroidalen Neovaskularisationen im Rahmen starker
Kurzsichtigkeit in Verbindung gebracht (p = 0,063) (179), jedoch bisher nicht mit einem
Einfluss auf das AMD-Risiko. Das T-Allel und Genotypen, die mindestens ein T-Allel
enthalten, waren in der vorliegenden Arbeit in der Fallgruppe haufiger, 95 %-KI und p-

Werte wiesen jedoch ebenfalls auf eine hohe Unsicherheit der Werte hin. Somit zeigte
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sich in dieser Arbeit ebenfalls kein klarer Zusammenhang zwischen der genetischen
Variante und dem AMD-Risiko.

Der Einfluss von VEGFA-Varianten auf das AMD-Risiko ist auch insgesamt inkonsistent
(3,70). Der Genotyp TT der intronischen Variante rs1413711 von VEGFA ist mit
erhdhtem Risiko fir AMD insgesamt und auch speziell mit erhdhtem Risiko flr
neovaskulare AMD assoziiert (67,69). Zudem wurden Varianten in der regulatorischen
Region von VEGFA als Risikofaktoren fur AMD beschrieben. Das C-Allel von rs833061,
einer Variante im VEGFA-Promotor, ist ein Risikofaktor fir AMD und mit einem erhdhten
Risiko fur die neovaskulare Spatform assoziiert (67—69). Die Veranderungen rs2010963
in der 5-UTR (68) und rs3025039 in der 3'-UTR (69) waren in einzelnen Studien mit
dem AMD-Risko assoziiert, aber dieses Ergebnis konnte in einer Metaanalyse nicht
bestatigt werden (67). Die Pathogenese der Erkrankung deutet auf einen méglichen
Zusammenhang zwischen den Varianten von VEGFA und dem Auftreten von AMD hin,
was allerdings weiterer Untersuchungen mit grof3en Fallzahlen bedarf. In dieser Arbeit
konnte kein eindeutiger Zusammenhang zwischen Varianten in VEGFA und dem AMD-

Risiko gezeigt werden.

Sowohl protektive als auch risikosteigernde Varianten kdnnten in einem genetischen
Risikoscore (GRS) eine Individualisierung der Betreuung von AMD-Patient*innen
ermdglichen. So kénnten das AMD-Risiko, das Risiko einer Progression zu einer AMD-
Spatform, und das Therapieansprechen besser abgeschatzt werden und Vorsorge und
Behandlung kénnten dann individualisiert erfolgen. Innerhalb des europaischen EYE-
RISK-Projektes wurde ein Test zur Ermittlung eines GRS entwickelt, der seltene und
haufige Varianten enthalt, wobei keine VEGFA-Varianten inkludiert sind (180). Dieser
fuhrte bei spater AMD zu héheren Scores als bei friher oder intermediarer AMD (p-
Wert < 0,001) (180). Bisher werden genetische Risikoscores im klinischen Alltag jedoch
nicht eingesetzt. Neben der Identifizierung risikomodifizierender genetischer Varianten
unter der Beachtung mdglicher populationsspezifischer Unterschiede sollten auch nicht-
genetische Risikofaktoren berlcksichtigt werden, da AMD eine komplexe Erkrankung

ist.

5.2 Fehlende pharmakogenetische Assoziation der VEGFA-
Varianten mit der Anti-VEGF-Therapie

Da gegen VEGF gerichtete Wirkstoffe zuerst in der Therapie maligner Neoplasien
eingesetzt wurden (63,181), wurde der Einfluss genetischer Varianten auf das
Therapieansprechen auf Anti-VEGF-Medikamente auch in diesem Kontext untersucht

(182,183). Es zeigten sich Assoziationen mehrerer VEGFA-Varianten mit einem
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besseren Gesamtiberleben (OS) und progressionsfreien Uberleben (PFS) unter
Chemotherapie in Kombination mit Anti-VEGF-Medikamenten, unter anderem fiir die 5°-
UTR-Variante rs2010963, rs3025039 in der 3'-UTR und rs699947 im Promotor
(184,185). Jedoch waren diese Ergebnisse nicht konsistent (171,186). Von den
untersuchten Varianten wurde in der Studienpopulation dieser Arbeit die Variante
rs25648 identifiziert. Es zeigte sich, dass das C-Allel von rs25648 mit einem besseren
OS assoziiert ist und einen Trend zu einem besseren PFS (p = 0,049) aufweist, wobei
der Einfluss auf das PFS nach Korrektur fir multiple Testung einen p-Wert > 0,05
aufwies (185,186). Chionh et al. vermuten, dass die Beeinflussung des
progressionsfreien und des Gesamtuberlebens durch veranderte Expression von VEGF-
A-mRNA bewirkt wird (171). Der Genotyp CC ist bei kolorektalem Karzinom mit
gesteigertem PFS und OS verbunden, jedoch nicht pradiktiv fir das Ansprechen auf den
VEGF-Inhibitor Bevacizumab (171). Diese Ergebnisse weisen auf einen eher

prognostischen als pradiktiven Effekt der Variante hin.

In der Behandlung der nAMD ist die intravitreale Applikation von Anti-VEGF-
Medikamenten eine wirksame Therapie. Jedoch sprechen nicht alle Patient*innen auf
die Behandlung an (187). Bereits mit dem Risiko der Entwicklung einer AMD assoziierte
Gene gehdrten zu den ersten Kandidatengenen fir die Untersuchung eines
Zusammenhanges mit dem Therapieansprechen, wobei in zwei gro3en Studien kein
Zusammenhang mit dem Therapieansprechen von AMD-Patient*innen gezeigt werden
konnte (84,188). Die CATT-Studie untersuchte vier Risikovarianten in den Genen CFH,
ARMS2, HTRA1 und C3 bei 834 Patient*innen, wobei sich kein Zusammenhang dieser
Varianten mit dem Therapieansprechen zeigte (84). Die Inhibition of VEGF in Age-
related Choroidal Neovascularisation (IVAN) Studie untersuchte drei Varianten, welche
vorher mit dem Therapieansprechen assoziiert wurden. Darunter befanden sich die
Hauptrisikovariante fur AMD, NM_000186.4:c.1204T>C, p.Tyr402His (rs1061170) in
CFH sowie Gene des VEGF-Signalweges und der Angiogenese. Die IVAN-Studie zeigte
ebenfalls keinen Zusammenhang der untersuchten Gene mit dem Therapieansprechen
(188). In kleineren Studien wurde ein méglicher Zusammenhang zwischen Varianten in
CFH und ARMS2 und dem Therapieansprechen gesehen (189). Metaanalysen, welche
die beiden genannten Studien enthielten, zeigten eine Assoziation des C-Allels der CFH-
Variante rs1061170 mit einem schlechteren Therapieansprechen, insbesondere in der
kaukasischen Bevdlkerung (18,190,191).

Varianten in VEGFA sind bisher nicht eindeutig mit dem Therapieansprechen von nAMD-
Patient*innen assoziiert (88,192). In der CATT-Studie wurde in einer grolien Kohorte

kein Zusammenhang der untersuchten VEGFA-Varianten festgestellt (88). Kleinere
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Studien zeigten zum Teil einen Zusammenhang zwischen VEGFA-Varianten und dem
Therapieansprechen, teilweise mit widersprichlichen Ergebnissen bezlglich des
Risikoallels (76,87,192,193). Insgesamt sind pharmakogenetische Assoziationen von
VEGFA mit dem Ansprechen auf Anti-VEGF-Medikamente zurzeit nicht eindeutig. Im
Einklang mit diesen Ergebnissen, zeigte sich auch in dieser Arbeit kein eindeutiger

Zusammenhang zwischen Varianten in VEGFA und dem Therapieansprechen.

Die IVAN-Studie beinhaltete auch die in dieser Arbeit identifizierte VEGFA-Variante
rs25648 und zeigte keinen Zusammenhang dieser Variante mit dem
Therapieansprechen (188). Das T-Allel von rs3025000 wurde in einer prospektiven
Studie mit 201 Patient*innen unter Anti-VEGF-Therapie mit einem besseren
Therapieergebnis bezliglich der Sehkraft und einer wahrscheinlicheren Zugehorigkeit
zur Gruppe mit Therapieansprechen in Verbindung gebracht (86). Das T-Allel habe
hierbei eine OR von ca. 3 beziglich eines positiven Therapieansprechens (86,194). Die
Datenlage zur Assoziation von rs3025000 mit dem Ansprechen auf eine Anti-VEGF-
Therapie ist allerdings schwach. Reviews, unter anderem eine Metaanalyse zu
genetischen Biomarkern des Therapieansprechens aus dem Jahr 2018, nennen nur die
oben genannte Studie von Abedi et al. als Referenz flr eine Assoziation von rs3025000
mit dem Anti-VEGF-Therapieansprechen (194—196). In einer Studie mit Patient*innen
mit choroidalen Neovaskularisationen im Rahmen starker Kurzsichtigkeit wurde
hingegen keine Assoziation von rs3025000, rs25648 oder einem der anderen
untersuchten SNPs in VEGFA zum Therapieansprechen auf eine Anti-VEGF-Therapie
mittels Ranibizumab beobachtet (179). Ebenso beobachteten Kitchens et al. keine
Assoziation zwischen rs3025000 und dem Ansprechen auf Anti-VEGF-Therapie bei der
Untersuchung dieser Variante bezlglich der Nutzung als Biomarker fir das
Therapieansprechen auf VEGF-Inhibitoren (197). In der Studienpopulation dieser Arbeit
zeigte sich ebenfalls keine Assoziation der Variante mit dem Therapieansprechen,
jedoch wurde das T-Allel nur einmal (6,3 %) in der Gruppe mit stabilem Visus unter
Therapie und zweimal (9,0 %) in der Gruppe mit unzureichendem Therapieansprechen
nachgewiesen, sodass eine Assoziation moglicherweise bei groRerer Fallzahl

nachweisbar ware.

Insgesamt ist unsicher, ob VEGFA-Varianten das Therapieansprechen auf VEGF-
Inhibitoren beeinflussen. Eine Ursache der unterschiedlichen Ergebnisse bezlglich einer
Assoziation mit dem Therapieansprechen konnten auch die verschiedenen Malle des
Ansprechens sein. Fur die Messung des Therapieansprechens wurde in der IVAN-
Studie die Gesamtdicke der Netzhaut genutzt (188), in dieser Arbeit jedoch der Visus.

Weitere Studien nutzten multiple Male inklusive anatomischer Messwerte, dem Visus
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und der Anzahl an Injektionen als Marker fir das Therapieansprechen (84,192).
Aulerdem sind ethnische Unterschiede in Bezug auf pharmakogenetische
Assoziationen denkbar (192), weshalb Studien mit ethnisch unterschiedlichen

Studienpopulationen zu unterschiedlichen Ergebnissen fiihren kénnen.

Auch wenn fur rs25648 und rs3025000 kein Zusammenhang mit dem
Therapieansprechen gezeigt wurde, kdnnten in dieser Arbeit nicht identifizierte VEGFA-
Varianten oder Varianten in anderen Genen mit dem Therapieansprechen in
Zusammenhang stehen. Zudem kénnten unterschiedliche Anti-VEGF-Medikamente mit
verschiedenen Genen und Varianten assoziiert sein, was aufgrund der geringen Fallzahl
in dieser Arbeit nicht untersucht wurde. Zu beachten ist dabei, dass verschiedene Anti-
VEGF-Medikamente unterschiedliche Moglichkeiten der Bindung an Mitglieder der
VEGF-Familie aufweisen (76). Zudem spielen, wie auch in der Pathogenese der AMD,
weitere nicht-genetische Faktoren eine Rolle beim Therapieansprechen, welche in
dieser Arbeit nicht erfasst wurden. Nicht-genetische Faktoren sind insbesondere Art und
GrofRe der Lasionen sowie Visus bei Therapiebeginn, aber auch das Alter und Rauchen
(76). Um genetische Varianten als Pradiktoren flir das Therapieansprechen zu nutzen,
mussen die Effekte der Varianten stark genug sein (76), wobei zurzeit im klinischen
Alltag noch keine genetischen Biomarker genutzt werden (198). Zukunftig kdnnten
jedoch genetische und nicht-genetische Faktoren gemeinsam zur Individualisierung der

Therapie herangezogen werden.

5.3 Beeintrachtigte = Enzymfunktion durch c.359A>G,
p-Asp120Gly im MASP2-Gen

Die Variante ¢.359A>G, p.Asp120Gly (rs72550870) befindet sich in der CUB1-Domane
des MASP-2-Proteins (Abbildung 17). Diese befindet sich N-terminal und bildet mit einer
zweiten CUB-Domane und einer dazwischenliegenden EGF-ahnlichen Doméane die
Bindungsstelle fiir die Ca?*-abhangige Bindung von MASP-2 an MBL oder Ficoline
(129,199-201). Diese Bindung ist Voraussetzung fur die Aktivierung des
Komplementsystems Uber den Lektinweg. Der Komplex aus dem an die
Pathogenoberflache gebundenen MBL oder Ficolin und MASP-2 spaltet die
Komplementfaktoren C4 und C2, welche schlief3lich die C3-Konvertase des Lektinweges
bilden. Die CUB1-Domane ist zudem an der ebenfalls Ca?*-abhéngigen Bildung von
MASP-2-Dimeren beteiligt (200). Die genetische Veradnderung betrifft daher einen
funktionell wichtigen Bereich von MASP-2 und der Einfluss auf die Proteinfunktion wurde
bereits in Studien nachgewiesen (128,202,203). Das Vorhandensein des G-Allels ist mit
niedrigeren MASP-2-Serumkonzentrationen assoziiert (202,203). Zudem fuhrt die
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Substitution zum Verlust der Fahigkeit von MASP-2, Komplexe mit MBL zu bilden (128).
Eine Erklarung dafiir konnte sein, dass sich die Variante in der Ca?*-Bindungsstelle der
CUB1-Domane befindet (129). Durch den Verlust eines der Ca?"Liganden durch
Asp120Gly entfallt die Stabilisierung der Proteinstruktur an der Bindungsstelle fir MBL
(142). Auch das Proteinmodell (Abbildungen 12 und 13) legt nahe, dass durch den
Austausch von Asparaginsaure gegen Glycin lokale Interaktionen in der Proteinstruktur

verandert werden konnten.

11025 K 11035K 11045K 11055 K
Chromosom 1 -« ‘ ‘ | \ %

fone =} 0 IR

5-GGCTTCTCGTTGGAGTAGCCGGAGCGGAAGGTAATGT-3

Dominen | CUB1 i| EGF-like | CUB2 |

Aminosduresequenz  ELSHLCEYDFVKLSSGAKVLATLCGQESTDTERAPGKDTFYSLGSSLDITFRSDYSNEK

Ca%*-Bindung

Abbildung 17: Transkript NM_006610 von MASP2. Dargestellt sind die ersten fiinf Exons,
Ausschnitte aus der Basenabfolge und der Aminosauresequenz und die fur die Bindung an
MBL/Ficoline zustéandigen Domanen CUB1, EGF-like und CUB2. Die Veranderung rs72550870
ist rot markiert. Zudem sind die Bindungsstellen fir Ca?* eingezeichnet.

Die veranderte Proteinstruktur und der Verlust der Funktion implizieren, dass die
Variante die Aktivitdt des Lektinweges beeinflussen kdénnte. Jedoch sind die
Auswirkungen auf Betroffene uneindeutig: Homozygote Trager der Variante weisen teils
eine durch haufigere, vor allem infektidse Krankheiten gepragte Vorgeschichte auf
(128,130), sind aber teils auch gesund (130-132). Bei Heterozygoten ist selbst die
Aktivitat des MBL-MASP-2-Komplexes unbeeinflusst (202). Die klinische Penetranz ist
zumindest bezlglich einer Immundefizienz unvollstandig und bei Heterozygotie scheint
der Lektinweg dennoch suffizient aktiviert zu werden. Jedoch ist das Komplementsystem
komplex und spielt in der Pathogenese der AMD eine wichtige Rolle, weshalb die

Auswirkung von rs72550870 auf diese Erkrankung gesondert untersucht werden sollte.

Bei AMD-Patient*innen wurde im Kammerwasser eine verringerte MASP-2-
Konzentration nachgewiesen (204). Dies deutet an, dass insbesondere funktionell
relevante Varianten in MASPZ2 auch einen Einfluss auf die Entwicklung einer AMD haben
kénnten. Aufgrund seiner nachgewiesenen funktionellen Auswirkungen ist daher

interessant, ob rs72550870 in groReren Studienpopulationen mit AMD assoziiert ist.

50



Falls eine Assoziation mit AMD gezeigt wird, kdnnte die Variante zu einem besseren

Verstandnis der Rolle von MASP-2 in der AMD-Pathogenese beitragen.

5.4 CFHR2 ist moglicherweise relevant fur die Pathogenese der
AMD

CFH und die Gene der Komplement-Faktor-H-verwandten Proteine (FHR) liegen im
RCA-Gencluster (Regulator of Complement Activation) auf Chromosom 1 im Abschnitt
1932 (205). Dieses Cluster entstand durch segmentale Duplikationen eines
gemeinsamen Vorfahrens (206). Wie auch CFH bestehen die CFHR-Gene aus short
consensus repeats (SCR), also repetitiven Einheiten, welche ca. 60 Aminosauren
umfassen (207). Aufgrund des gleichen Ursprunges ahneln die SCRs der CFHR-Gene
in unterschiedlichem Umfang denen von CFH (133). Es wird vermutet, dass die Faktor-
H-verwandten Proteine gemeinsam mit Faktor H fur die Feinabstimmung des
Komplementsystems zustandig sind (38,208). Genetische Varianten sind bisher
insbesondere mit komplementbedingten Nierenerkrankungen wie aHUS und C3-
Glomerulopathie (MIM# 614809) in Verbindung gebracht worden (209,210). Es wurden
jedoch auch mit dem AMD-Risiko assoziierte Kopienzahlveranderungen identifiziert (36—
38), wobei der Aufbau aus segmentalen Duplikationen flir Rearrangements pradisponiert
(211).

FHR-2 selbst besteht aus vier SCR-Domanen, wobei die zwei N-terminalen Domanen
SCR 1 und 2 in die Formation von Dimeren eingebunden sind und die zwei C-terminalen
Doméanen SCR 3 und 4 an C3b und C3d binden (133). Die Sequenz von SCR 3 und 4
ahnelt stark der Sequenz von SCR 19 und 20 von CFH, welche ebenfalls die Funktion
der C3b-Bindung haben (133). Die in dieser Arbeit nachgewiesene CFHR2-Variante
c.595G>T, p.Glu199Ter (rs41257904) fuhrt zu einem teilweisen bzw. vollstandigen
Verlust der SCR-Doméanen 3 und 4 und betrifft somit die C3b-Bindungsstellen. Es wurde
durch funktionelle Untersuchungen gezeigt, dass das vorzeitige Stoppcodon zu einem
Verlust der Proteinexpression fihrt und die Variante somit die FHR-2-Konzentration
senkt (38,137).

Das Gleichgewicht zwischen Faktor H und FHR-2 spielt jedoch vermutlich eine Rolle bei
der Kontrolle der Komplementinaktivierung (133). Dieses Zusammenwirken kann durch
Funktionsgewinn durch Duplikationen und Hybrid-Proteine verursachende Deletionen,
aber auch durch Funktionsverlust gestoért werden, denn FHR-2 inhibiert auch die C3-
Konvertase des alternativen Weges und die Formation des Membranangriffskomplexes
(133).
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Eine 2021 veréffentlichte Arbeit zur Rolle von Faktor H und der FHRs bei AMD (38)
identifizierte protektive Einzelnukleotidpolymorphismen innerhalb der CFHR-Gene, die
auch zu verminderter oder fehlender Expression der jeweiligen Proteine flihren (38). So
sind die intronische Variante rs3790414 und die exonische Variante rs79351096 in
CFHR2 mit verringertem AMD-Risiko assoziiert (38). Insgesamt wurde gezeigt, dass
seltene und proteinverandernde Varianten in CFHR2 mit AMD assoziiert sind, was
impliziert, dass dieses Gen eine Rolle in der Pathogenese der AMD spielt (38). Der
entsprechende Krankheitsmechanismus muss noch weiter beleuchtet werden, sodass
zukUnftig eine auf dem Genotyp am CFH-Lokus basierende Modulation der FHRs bzw.

des Komplementsystems einen moglichen Therapieansatz darstellen konnte (38,210).

5.5 Die Veranderung c.1427T>C, p.lle476Thr liegt in der MACPF-

Domane von C9

Die in dieser Arbeit nachgewiesene C9-Variante ¢.1427T>C, p.lle476Thr (rs141645272)
wurde in einer weiteren Studie bereits bei AMD-Betroffenen, jedoch auch bei gesunden
Kontrollindividuen nachgewiesen (OR = 1,24; p = 0,23) (43,212). Ebenfalls in der
MACPF-Domane befindet sich die Missensevariante rs34882957. Diese fuhrt zur
Verdopplung des AMD-Risikos (41,42) und geht mit einer erhdhten Serumkonzentration
von C9 einher (33). Ein Funktionsgewinn mit resultierender gesteigerter MAC-Formation
koénnte in diesem Fall zu einem erhdhten AMD-Risiko fihren (2). Verschiedene Studien
sahen entweder eine erhdhte C9-Konzentration (34,213) oder eine starkere Aktivitat
(214) als Ursache. Zudem bewirkt rs34882957 eine verstarkte Polymerisation von C9
(213,214). Weiterhin  wurden seltene Varianten identifiziert, welche die
Serumkonzentration erhéhen, aber nicht zu einer gesteigerten Polymerisation oder
MAC-Konzentration fuhren (213). Funktionelle Auswirkungen kénnen auch bei der in
dieser Arbeit nachgewiesenen C9-Variante rs141645272 nicht ausgeschlossenen
werden. Das Proteinmodell gibt zwar keinen Anhalt fir eine Veranderung der
Sekundarstruktur durch die Variante, jedoch kann der Austausch des hydrophoben
Isoleucins gegen das hydrophile Threonin die Ilokale Proteinstruktur und
Wechselwirkung beeinflussen (151). Funktionelle in vivo- und in vitro-Studien kénnten
hier Aufschluss Uber eine mdgliche Auswirkung der Variante auf die Proteinfunktion

geben.

In von AMD betroffenen Familien waren seltene Varianten, u. a. rs34882957, mit einem
zeitigeren Krankheitsbeginn und starkeren Fortschreiten der Erkrankung verbunden
(215). Ein Screening auch auf seltene Varianten im C9-Gen und anderen mit AMD

assoziierten Genen kénnte daher sinnvoll sein (180,215). Da insbesondere seltene
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Varianten mit einem Funktionsverlust oder einem hohen pathogenetischen
Pradiktionsscore, wie einem CADD = 20, mit einem gesteigerten Risiko verbunden sind
(180), kdonnte auch die in dieser Arbeit nachgewiesene Veranderung rs141645272

(CADD: 26,2) eine solche seltene, risikosteigernde Variante darstellen.
5.6 Varianten in CFB sind vorwiegend protektiv

Vermutlich auch aufgrund der sehr niedrigen Frequenz des G-Allels, ist die in dieser
Arbeit identifizierte Variante ¢.1407C>G, p.lle469Met (rs201798809) in der Literatur nicht
beschrieben. Varianten in CFB, im paralogen C2 und im angrenzenden SK/V2L haben
einen protektiven Effekt bezuglich AMD (45,216-220). So wiesen die in starkem
Kopplungsungleichgewicht stehenden Varianten rs4151667 (CFB) und rs9332739 (C2)
eine OR von 0,37 auf (45). Ebenso protektiv sind rs641153 (CFB) und rs547154 (C2),
welche sich ebenfalls in starkem Kopplungsungleichgewicht befinden (45,220). Bei
rs641153 konnte der Austausch von Arginin gegen Glutamin an Aminosaureposition 32
die hamolytische Aktivitdt reduzieren, wodurch das Risiko flir eine chronische

Komplementaktivierung sinkt (45,221).

Fur die Genotypen TA und AA von rs4151667 und auch flr protektive Allele von
Varianten in C2, wurde bei geografischer Atrophie eine Assoziation mit positivem
Ansprechen auf antioxidative Therapie festgestellt (222). Dieselbe Studie zeigte
allerdings keine Assoziation der protektiven Allele in CFB/C2 mit dem

Therapieansprechen bei neovaskularer AMD (222).

Die Lage der in dieser Arbeit nhachgewiesenen Variante rs201798809 an der Exon-
Intron-Grenze, in der funktionell wichtigen C-terminalen Helix der vVWF-A-Doméane und
die moégliche Auswirkung auf die lokalen non-kovalenten Krafte sind Anhaltspunkte, dass
die Funktion von Faktor B durch die Variante beeinflusst werden kénnte. Die in der
Literatur bereits beschrieben genetischen Varianten legen jedoch im Fall von
Funktionsverlust eher einen protektiven Effekt nahe. Dennoch ist nicht ausgeschlossen,

dass es zu einem Funktionsgewinn und dann einem risikosteigernden Effekt kommt.
5.7 Kein eindeutiger Zusammenhang zwischen C5 und AMD

Varianten in C5 standen bisher nicht eindeutig im Zusammenhang mit AMD (223). Die
der in dieser Studienpopulation nachgewiesenen Veranderung ¢.2297G>A, p.Arg766GIn
(rs758933855) benachbarte Variante rs17611 war in einer niederlandischen
Studienpopulation bei heterozygotem Vorliegen protektiv fur fortgeschrittene AMD, was
sich in den in der Studie genutzten Referenzpopulationen und einer anderen Studie

jedoch nicht bestatigte (40,223). In weiteren Studien wurde keine Assoziation der
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untersuchten SNPs in C5 mit AMD festgestellt (39,40,224). Jedoch ist es Bestandteil von
Drusen (33,225) und ein Knock-out des C5a-Rezeptors fihrt zu verminderter VEGF-
Synthese und weniger laserinduzierten Neovaskularisationen (226). Zudem ist das
Plasma-C5a bei AMD erhéht (227,228). Zusammen mit seiner Funktion der Einleitung
der MAC-Formation implizieren diese Erkenntnisse, dass C5 eine Rolle in der AMD-
Pathogenese spielen kénnte. Obwohl haufige C5-Varianten, wie oben beschrieben,
keinen Einfluss auf das AMD-Risiko zu haben scheinen (223), kdénnten seltenere
Varianten mit groReren funktionellen Auswirkungen die funktionellen Zusammenhange
zwischen Varianten eines Gens und der Pathogenese der Erkrankung sichtbar machen
(43). Das Minorallel von rs758933855 wurde in der Datenbank gnomAD nur einmal
gezahlt. Die Vorhersage maglicher funktioneller Auswirkungen ist jedoch begrenzt, aber
ein Einfluss auf die lokale Proteinstruktur durch den Verlust von

Wasserstoffbriickenbindungen ist maglich.

Insgesamt ist eine weitere Forschung zum Einfluss dieser Komplementkomponente und
seiner genetischen Varianten auf AMD nétig. Dazu kdnnen seltene Varianten einen
wichtigen Beitrag leisten, wenn es gelingt, Auswirkungen auf die Proteinfunktion

aufzudecken.

5.8 Unklare pathogenetische Relevanz der Variante c.1790G>A,
p.Gly597Glu in ITGAM

ITGAM kodiert die a-M-Untereinheit des aMp2-Integrins. Die Integrine sind
Adhéasionsmolekiile der Leukozyten (229). Uber das C3b-Abbauprodukt iC3b kénnen
komplementbedeckte Partikel mittels aMB2 gebunden und phagozytiert werden (229).
Das ITGAM-Gen ist nicht mit AMD, aber mit der Autoimmunerkrankung Lupus
erythematodes assoziiert. Die grofdte Evidenz liegt dabei fir die Missensevariante
rs1143679 vor (230,231). Diese Variante beeintrachtigt die Leukozytenadhasion an iC3b
und die Phagozytose (232)

Das Proteinmodell liefert keinen Hinweis auf eine Anderung der Proteinstruktur durch
die in dieser Arbeit nachgewiesene Variante ¢.1790G>A, p.Gly597Glu (rs199700282)
und DynaMut pradiktiert eine stabilisierende Wirkung. Jedoch ist damit nicht

ausgeschlossen, dass rs199700282 trotzdem Proteinstruktur und -funktion verandert.

Dysregulierte Phagozytose, wie sie durch rs1143679 verursacht wird, wird als Teil der
Pathogenese der AMD betrachtet. Zudem scheinen Monozyten, die aMB2 tragen, eine
Rolle in der Bildung choroidaler Neovaskularisationen zu spielen und sind bei

Patient*innen mit neovaskuldrer AMD erhoht (233,234). Eine Korrelation zwischen
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aMp2*-Monozyten und der Anzahl an bendtigten Injektionen von VEGF-Inhibitoren wird
vermutet (233). ITGAM kdénnte also durchaus auch zur AMD-Pathogenese beitragen,

jedoch gibt es bisher zu wenig Evidenz fir einen Zusammenhang.
5.9 Einfluss von Varianten in C3 auf die AMD-Pathogenese

C3 ist der Angriffspunkt der Regulation des Komplementsystems durch Faktor H und
Faktor I. Die seltene Variante rs147859257 fuhrt zu einer verminderten Inaktivierung von
C3 durch diese Komplementregulatoren und zu einem fruheren Krankheitsbeginn sowie
einer starkeren Progression (42,215). Der Grund daflr kénnte bei rs147859257, und
ebenso bei der haufigeren Variante rs2230199, eine verringerte Bindung von Faktor H
an C3 sein (41,235). Insgesamt scheint der Verlust der Regulation von C3 und eine
daraufhin gesteigerte Komplementaktivierung eine Rolle in der Pathogenese der AMD

Zu spielen

Die in dieser Arbeit nachgewiesene Variante ¢.2533G>A, p.Val845Met wurde bisher
weder beschrieben, noch ist die Variante in Datenbanken hinterlegt. Ebenso wie seltene
C9-Varianten, werden seltene Varianten in C3 mit einem Funktionsverlust oder einem
hohen pradiktiven Risikoscore mit einem gesteigerten AMD-Risiko in Verbindung
gebracht (180). Der CADD-Score von 26,7 spricht hier fir eine mogliche Pathogenitat
von ¢.2533G>A. Die direkt benachbarte Missensevariante rs1599510478 ist likely
pathogenic fir aHUS mit C3-Anomalie, was zeigt, dass auch Missensevarianten in
diesem Bereich des C3-Gens mit komplementvermittelten Erkrankungen assoziiert sein

konnen.
5.10 Starken und Limitationen der Arbeit

Bisherige pharmakogenetische Untersuchungen einer Assoziation von VEGFA-
Varianten mit dem Ansprechen auf VEGF-Inhibitoren waren auf die Analyse bestimmter
Genotypen im VEGFA-Gen beschrankt (Anhang 6) (88,188,192,193,236).

Eine Starke dieser Arbeit ist daher, dass eine Komplettsequenzierung der kodierenden
Abschnitte des VEGFA-Gens inklusive eines flankierenden intronischen Bereichs mittels
Sanger-Sequenzierung erfolgte, um VEGFA-Varianten zu identifizieren. Im Gegensatz
zu GWAS, die sich dazu eignen, hypothesenfrei an grolien Studienpopulationen
Assoziationen aufzudecken, hat die Komplettsequenzierung, wie sie in dieser Arbeit
eingesetzt wurde, den Vorteil, dass neue oder sehr seltene genetische Varianten
detektiert werden kdnnen, die durch GWAS normalerweise nicht erfasst werden (34).
Identifizierte seltene Varianten kdnnen anschlieRend hinsichtlich ihrer Assoziation an

einer gro3en Studienpopulation untersucht werden. Ein solcher Hybridansatz wurde in
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der umfangreichen GWAS von Fritsche et al. eingesetzt und es wird betont, dass die
Identifizierung von Varianten durch Sequenzierung und eine nachfolgende
Assoziationsanalyse an einer groften Studienpopulation mittels Array einen sinnvollen

Ansatz zur Untersuchung der Heritabilitdt komplexer Erkrankungen darstellt (43).

Eine weitere wesentliche Starke dieser Arbeit ist der Vergleich mit einer Kontrollgruppe
nicht an nAMD erkrankter Individuen hinsichtlich der festgestellten VEGFA-Varianten.
Somit konnten die nachgewiesenen Allelfrequenzen mit einer populationsgematchten
und, bei Mittelwerten von 76,95 Jahren bzw. 78,94 Jahren, auch beziglich des Alters
ahnlich zusammengesetzten Kontrollgruppe verglichen werden. Dies ist relevant, da
genetische Risikofaktoren in unterschiedlichen Populationen variieren kénnen. Eine
vergleichbare Zusammensetzung der Kontrollgruppe hinsichtlich des Alters ist wichtig,
da das Erkrankungsrisiko mit steigendem Alter ansteigt und zunachst gesunde
Kontrollpersonen im hoéheren Alter an einer AMD erkranken kdnnten. Trotz des hohen
mittleren Alters der Kontrollgruppe und der augenarztlichen Untersuchung hinsichtlich
Anzeichen einer AMD kann nicht vollig ausgeschlossen werden, dass Individuen dieser

Gruppe zu einem spateren Zeitpunkt noch an einer AMD erkranken.

Die Variantenklassifikation stellt eine besondere Herausforderung dar, erfolgte oft
uneinheitlich und wird stetig weiterentwickelt. Mittlerweile sind die ACMG-Kriterien als
Standard etabliert. In dieser Arbeit wurden diese bei der Interpretation der identifizierten
genetischen Varianten berucksichtigt, was eine strukturierte Auswertung ermoglicht (92).
Allerdings wurden die ACMG-Kriterien fur monogenetische Erkrankungen entwickelt.
Dabei befinden sich viele Erkrankungen hinsichtlich ihrer Atiologie auf einem Spektrum
von monogenetisch bis multifaktoriell bedingt, weshalb Weiterentwicklungen beztglich
der Klassifikation von Risikoallelen komplexer Erkrankungen Gegenstand aktueller
Forschung sind (91,233).

Eine Limitation der Aussagekraft der Ergebnisse dieser Arbeit ist die Anzahl der
Patient*innen in der Studienpopulation. Funktionell relevante Varianten mit einem
grolRen Effekt auf das Erkrankungsrisiko kdnnen Gene aufzeigen, die eine Rolle in der
Pathogenese der jeweiligen Erkrankung spielen (43). Aufgrund der meist niedrigen
Allellifrequenz sind jedoch grof’e Studienpopulationen nétig, um eine Assoziation
nachweisen zu kdnnen (43). Die in dieser Arbeit ausgewerteten Varianten in den Genen
des Komplementsystems konnten funktionell annotiert werden, jedoch kann keine
Aussage zu einer Assoziation mit der Erkrankung an AMD getroffen werden, da die
Varianten selten sind und jeweils nur einmal in der Studienpopulation nachgewiesen

wurden. Die beiden nachgewiesenen Varianten in VEGFA sind hingegen haufige
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Varianten, sodass sich Hinweise auf potenzielle Zusammenhange zeigen kénnen,
jedoch auch hier keine eindeutige Assoziation nachgewiesen werden kann. Um eine
mdgliche Assoziation zu bestatigen sind prospektive Studien mit Fallzahlplanung nétig.
Zudem konnten seltene, in dieser Arbeit nicht detektierte Varianten in groReren
Studienpopulationen nachweisbar sein. Auch genetische Varianten in anderen Genen
und Signalwegen, die in dieser Arbeit nicht untersucht wurden, kénnen einen Einfluss
auf das Erkrankungsrisiko haben. So wurden in einer umfangreichen GWAS neben
Varianten in Genen des Komplementsystems und der Angiogenese auch Varianten in
Genen des Fettstoffwechsels und des extrazellularen Remodelings identifiziert, die mit
AMD assoziiert sind (43).

Aufgrund der eingesetzten Methoden konnten in dieser Arbeit keine exonubergreifenden
strukturellen Varianten oder tief intronisch gelegenen Varianten detektiert werden. Diese
kénnten sich jedoch ebenfalls auf das Erkrankungsrisiko oder Therapieansprechen
auswirken. Strukturelle Varianten, die das AMD-Risiko beeinflussen, wurden in den
CFHR-Genen identifiziert. Hierbei ist die haufigste Kopienzahlveranderung eine
kombinierte Deletionen von CFHR1 und CFHR3, welche mit einer OR von 0,47 protektiv
bezlglich AMD ist (36,37). Homozygotie flhrt dabei zur Abwesenheit von FHR-1 und
FHR-3 im Serum (36). Zudem wurden in dieser Arbeit ausschliellich genetische
Faktoren betrachtet. Das AMD-Erkrankungsrisiko wird jedoch auch durch nicht-

genetische Risikofaktoren beeinflusst, welche in dieser Arbeit nicht betrachtet wurden.
5.11 Schlussfolgerung

In dieser Arbeit wurde erfolgte eine Komplettsequenzierung des kodierenden sowie
eines flankierenden intronischen Bereichs im VEGFA-Gen, um genetische Varianten zu
identifizieren, die moglicherweise mit dem Therapieansprechen in einem

Zusammenhang stehen.

Hierbei wurden zwei genetische Varianten in VEGFA identifiziert. Die synonyme
Variante rs25648 wund die intronische Variante rs3025000 sind in der
Allgemeinbevdlkerung haufige Varianten, die die Aminosauresequenz nicht verandern.
Auswirkungen auf Proteinebene sind dennoch nicht ausgeschlossen, jedoch wurde
bisher kein eindeutiger Zusammenhang zwischen diesen VEGFA-Varianten und der
VEGF-A-Serumkonzentration nachgewiesen (166,171-173).

Die Ergebnisse dieser Arbeit zeigen keinen eindeutigen Zusammenhang der beiden
nachgewiesenen VEGFA-Varianten mit dem AMD-Risiko, deuten jedoch auf einen

maoglichen Einfluss von rs25648 auf die Entwicklung einer AMD hin. Es ist moglich, dass
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ein Zusammenhang in einer grolleren Kohorte nachweisbar ware. Bisherige
Untersuchungen konnten jedoch keine eindeutige Assoziation nachweisen und in silico
sowie anhand von Untersuchungen zur Genexpression lasst sich bisher kein eindeutiger
Wirkmechanismus dieser Varianten ableiten. Vereinzelt wurde ein Zusammenhang
zwischen anderen VEGFA-Varianten und dem AMD-Risiko hergestellt, wobei die
Bedeutung von VEGFA fir das AMD-Risiko insgesamt unklar ist (3,70), obwohl die
Pathogenese der Erkrankung einen moglichen Zusammenhang zwischen VEGFA und

dem Auftreten von AMD impliziert.

Die beiden identifizierten VEGFA-Varianten stehen in dieser kleinen Studienpopulation
zudem nicht mit dem Ansprechen auf VEGF-Inhibitoren in Zusammenhang. Es besteht
jedoch ebenfalls die Maoglichkeit, dass eine Assoziation in grolReren Kohorten
nachweisbar ware bzw. sich andere, in dieser Studie nicht detektierte genetische
Varianten im VEGFA-Gen auf das Therapieansprechen auswirken. Zudem konnte das
Therapieansprechen auch mit anderen, in dieser Arbeit nicht untersuchten Genen
assoziiert sein, insbesondere im Komplementsystem, welches zentral fir die
Pathogenese der AMD ist. Weiterhin wirken sich auch nicht-genetische Faktoren auf das
Therapieansprechen aus (76), deren Effekt genetische Faktoren auch Uberwiegen
konnte. Detaillierte genetische Untersuchungen von Kandidatengenen hinsichtlich
pharmakogenetischer Zusammenhange liefern einen wichtigen Beitrag fiir eine bessere

Datenbasis fir zuklnftige personalisierte Therapieansatze.

Die Bedeutung des Komplementsystem fir die Pathophysiologie der AMD wird dadurch
hervorgehoben, dass viele der mit dem AMD-Risiko assoziierten Varianten in Genen,
die fur Komponenten der Komplementkaskade kodieren, liegen (25,39,237). So befindet
sich die erste identifizierte Hauptrisikovariante fir AMD, ¢.1204T>C, p.Tyr402His, in
CFH (25). Auch in dieser Arbeit wurden genetische Varianten in den Genen des
Komplementsystems nachgewiesen. Sieben Varianten in den Genen MASP2, CFHR?2,
C9, CFB, C5, ITGAM und C3 wurden anhand der pradiktierten Pathogenitat zur weiteren
Analyse ausgewahlt und konnten mit einer zweiten Methode verifiziert werden. Alle
Varianten lagen dabei jeweils heterozygot bei je einem Individuum aus der Gruppe der
AMD-Betroffenen vor. Die MASP2-Variante ¢.359A>G, p.Asp120Gly wurde bereits mit
MASP-Defizienz in Verbindung gebracht und weist einen Einfluss auf die Proteinfunktion
auf (128,129). Die Nonsensevariante ¢.595G>T, p.Glu199Ter in CFHRZ2 beeinflusst die
Proteinsynthese und wirkt sich somit ebenfalls auf die Proteinfunktion aus (38,137).
CFHR2 gehort dabei zu derselben Genfamilie wie CFH und auch die CFHR-Gene
implizieren, einen Einfluss auf die AMD-Pathogenese zu haben, wobei der

Krankheitsmechanismus noch unzureichend geklart ist (38). Seltene Varianten mit
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funktionellen  Auswirkungen auf das Protein  kdénnen  Hinweise  auf
krankheitsverursachende Gene geben (43) und damit zur weiteren Aufklarung der
Pathogenese der AMD und der genetischen Pradisposition beitragen. Im Sinne einer
komplexen Erkrankung tragen neben genetischen auch nicht-genetische Faktoren zum
Erkrankungsrisiko bei. Daher sind mogliche Risikovarianten und - gene in einem
polygenen Kontext zu betrachten. Insbesondere Varianten, die das Risiko nur leicht
erhohen, aber eine relativ hohe Allelfrequenz haben, kdnnten in einen polygenetischen
Risikoscore einbezogen werden. Dies unterstreicht die Notwendigkeit funktioneller
Untersuchungen und Studien an gréfieren Kohorten, um weitere Risikogene fir die AMD
identifizieren zu konnen. Zuklnftig konnte auf diesem Weg eine individuellere

Risikoeinschatzung und eine personalisierte Behandlung ermoglicht werden.
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7 Thesen

1. In dieser Studienpopulation deutet sich an, dass NM_003376.6:c.534C>T,
p.Ser178= im VEGFA-Gen mit dem Risiko der Entwicklung einer AMD in einem

Zusammenhang stehen kdnnte.

2. Zum Nachweis einer moglichen Assoziation der nachgewiesenen VEGFA-
Varianten mit dem AMD-Risiko sind prospektive Studien mit gréReren Fallzahlen

notig.

3. Es ergeben sich anhand dieser Studie keine eindeutigen Assoziationen der
detektierten VEGFA-Varianten mit einem veranderten Therapieansprechen.
Jedoch ist nicht auszuschlielen, dass ein Zusammenhang in einer grof3eren

Kohorte nachweisbar ware.

4, Kodierende Varianten in VEGFA wurden in dieser Studienpopulation nicht
nachgewiesen. Andere, in dieser Studie nicht detektierte genetische Varianten
im VEGFA-Gen oder Varianten in anderen Genen koénnen sich auf das
Therapieansprechen auswirken. Zudem ist es moglich, dass nicht-genetische
Faktoren einen gréleren Einfluss auf das Therapieansprechen aufweisen als

genetische.

5. In dieser Arbeit wurde eine Komplettsequenzierung der kodierenden und
flankierenden intronischen Abschnitte des VEGFA-Gens durchgefihrt. Dieser
Ansatz erlaubt die Detektion neuer und mdoglicherweise pharmakogenetisch
relevanter Varianten und liefert eine wichtige Grundlage flr zukinftige

pesonalisierte pharmakogenetische Therapieansatze.

6. Das Komplementsystem steht im Zusammenhang mit der Pathogenese der
AMD. Falls die in dieser Arbeit nachgewiesenen Varianten
NM_006610:c.359A>G, p.Asp120Gly in MASP2 und NM_005666:c.595G>T,
p.Glu199Ter in CFHR2 in groReren Kohorten eine Assoziation mit AMD
aufweisen, kdnnte das zu einem besseren Verstandnis der Bedeutung von
MASP2 und CFHR2 fur die Pathogenese der AMD beitragen.

7. Die Identifikation von Risikovarianten und -genen ist relevant flr ein besseres
Verstandnis der AMD-Pathogenese und eine zukunftig individuellere

Risikoeinschatzung und Behandlung.
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Anhang 1: Ausschnitte der Sekundarstrukturanalysen von MASP-2, C3, C9, C5 und Integrin
a-M. (A) Asp120Gly befindet sich am Ubergang eines B-Faltblattes in einen Random Coil. (B)
Val845Met befindet sich in einem [-Faltblatt. (C) lle476Thr liegt in einer a-Helix. (D), (E)
Arg766GIn sowie Gly597Glu liegen in einem Random Coil. Es werden keine Anderungen der
Sekundarstruktur durch die Aminosauresubstitutionen pradiktiert. S (gelb): B-Faltblatt; H (rot): o-
Helix; weil: Random Coil; griin markiert: Position der Variante.



Faktor B p.lle469Met

C3 p.Val845Met

Anhang 2: Ausschnitte aus der grafischen Darstellung von Faktor B, Integrin a-M und C3
im 3D-Modell. (A) Isoleucin (hellblau eingefarbt) an Position 469  bildet
Wasserstoffbrickenbindungen zu Phe465 und Tyr466. Die Substitution lle469Met kdnnte zum
Verlust der Wasserstoffbrickenbindung zu Tyr466 fuhren. (B) Durch den Austausch von Glycin
gegen Glutaminsdure bildet sich eine zweite Wasserstoffbriickenbindung zu Asp592. (C)
Val845Met wirkt sich nicht auf die Wasserstoffbriickenbindungen aus.



Faktor B p.lle469Met C5 p.Arg766GIn

Integrin a-M p.Gly597Glu C3 p.Val845Met

Anhang 3: Darstellung der Hydrophobizitit nach der normalisierten Eisenberg-
Konsensusskala. Je starker die Rotfarbung, umso starker ist die Hydrophobizitat. (A) Die
hydrophobe Aminosaure Isoleucin wird gegen die ebenfalls hydrophobe Aminosaure Methionin
ausgetauscht. (B) Durch den Austausch von Arginin an Position 766 gegen Glutamin nimmt die
Hydrophobizitat leicht zu. (C) Gly597Glu befindet sich an der Oberflache des Proteins. Die
Hydrophobizitdt nimmt durch die Mutation leicht ab. (D) Substitution der hydrophoben
Aminosaure Valin gegen das ebenfalls hydrophobe Methionin.

Anhang 4: Durch Pymol angegebene Frequenz der Rotamere. Bei der Modifizierung des
Proteins wurde von den vorgeschlagenen Rotameren das Rotamer mit der héchsten Frequenz
ausgewahlt. Da Glycin keine Rotamere besitzt, ist keine Frequenz angegeben.

Protein Mutation Frequenz
Rotamer (%)

MASP-2 Asp120Gly /

C9 lle476Thr 54,3

Faktor B lle469Met 21,0

C5 Arg766GIn 26,7

Integrin a-M Gly597Glu 17,6

C3 Val845Met 19,3

Anhang 5: Pradiktion des Einflusses der Variante auf die Stabilitat der Proteinstruktur
durch Dynamut. Destabilizing: AAG < 0 kcal/mol, stabilizing: AAG = 0 kcal/mol.

Protein Mutation AAG (kcal/mol) Vorhersage
MASP-2 Asp120Gly -1,119 destabilizing
C9 le476Thr -1,692 destabilizing
Faktor B lle469Met 0,474 stabilizing
C5 Arg766Gin -0,412 destabilizing
Integrin a-M Gly597Glu 0,422 stabilizing

C3 Val845Met -0,257 destabilizing




Anhang 6: Studien zum Einfluss genetischer Varianten auf das Therapieansprechen. Die
Tabelle gibt einen Uberblick Uber bisherige Studien zum Einfluss genetischer Varianten auf das
Ansprechen auf VEGF-Inhibitoren und deren Ergebnis. Die ersten beiden Studien haben
zusatzlich eine Kontrollgruppe nicht von AMD betroffener Proband*innen untersucht, wie es auch
in dieser Arbeit erfolgt ist. Die Anzahl der Proband*innen der Kontrollgruppe ist in diesem Fall in
Klammern dargestellt. PMID: PubMed ID, F: Anzahl Individuen der Studienpopulation, K:

Kontrollgruppe, Med: verwendetes Anti-VEGF-Medikament, AFL: Aflibercept, RAN:
Ranibizumab, BEV: Bevacizumab.
Studie F Gene Unter- Med Ergebnis
(PMID) (K) suchung
Kozhevnikova 193 5 SNPs in CFl, SNP Assay AFL rs2285714 (CFI): T
et al., 2022 (238) (147) ARMS2, C3, schlechteres Ansprechen
PMID: 35884963 CFH
Kubicka- 111 3 SNPsin CFH, SNP Assay RAN, rs1061170 (VEGFA): CC
Trzaska et al., (58) Cc2,C3 BEV besseres Ansprechen; CC
2022 (239) urjd_ C-Allel héheres AMD-
PMID 35630075 Risiko
Hagstrom et al., 834 4 SNPs in CFH,  SNP Assay RAN, keine Assoziation
2013 (84) ARMS2, HTRA1 BEV
PMID 23337555 und C3
Guymer et al., 780 33 Gene GWAS AFL, keine Assoziation
2024 (236) inklusive RAN
PMID 38980270 VEGFA
Lotery et al., 509 485 SNPs SNP Assay RAN, rs10490924
2013 (188) BEV (HTRA1/ARMS2): T
PMID 24070809 grenzwertige Assoziation
mit besserem Ansprechen
Park et al., 2014 273 17 SNPs in 13 SNP Assay RAN  rs302539 (VEGFA): TT
(192) Genen inklusive starkere Visuszunahme;
PMID 25558172 VEGFA rs10490924 (ARMS2) und
rs1100638 (HTRA1): GG
gréRere Reduktion der
zentralen Makuladicke
Zhao et al., 2013 223 rs943080 in SNP Assay RAN,  rs943080 (VEGFA): T und
(240) VEGFA BEV TT schlechtes Ansprechen
PMID 23745581
Abedi et al., 201 7 SNPs in SNP Assay RAN, rs3025000 (VEGFA): T
2013 (86) VEGFA BEV besseres Ansprechen
PMID 23149126 inklusive
rs3025000
Boltz et al., 185 7 SNPs in einzelne BEV  rs3024997, rs2010963
2012 (241) VEGFA SNPs (beide VEGFA): GG
PMID 22521084 (Schmelz- geringere
kurvenanaly- Visusverbesserung
se)
Strunz et al., 179 30 SNPs GWAS, AFL, keine Assoziation
2022 (242) inklusive Replikation RAN
PMID 35682771 rs3025000 in 30 Varianten
VEGFA inklusive
rs3025000
(VEGFA)
Orlin et al., 2012 150 7 SNPs in CFH,  SNP Assay RAN, keine Assoziation
(243) ARMS2, HTRA1 BEV
PMID 21878851
McKibbin et al., 104 3 SNPs in Genotypisie- RAN  Trend fiir besseres
2012 (83) HTRA1, CFH, rung Ansprechen bei AMD-
PMID 21558292 VEGFA einzelner Risikogenotypen
Varianten
(Sequenzie-
rung)
Kitchens et al., 101 VEGFA SNP Assay RAN, rs10490924 (LOC387715):
2013 (197) inklusive BEV TT schlechteres Ergebnis
PMID 24143065 rs25648, CFH, im OCT
LOC387715
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