
 

 
 

Sequenzveränderungen in Kandidatengenen bei Patient*innen mit 

altersbedingter Makuladegeneration und deren potenzieller Einfluss auf ein 

Therapieansprechen 

 

 

Dissertation  

 

zur Erlangung des akademischen Grades 

Doktor der Medizin (Dr. med.) 

 

 

vorgelegt 

der Medizinischen Fakultät 

der Martin-Luther-Universität Halle-Wittenberg 

 

 

von Paula Michel  

 

Betreuer*innen:  Prof. Dr. med. Katrin Hoffmann, Halle 

   Prof. Dr. med. Claudia Grünauer-Kloevekorn, Halle 

Gutachter*innen:  Prof. Denise Horn, Berlin 

PD Laura Kühlewein, Tübingen 

 

 

Datum der Verteidigung: 15.10.2025 

  



 

 
 

Referat  

Die altersbedingte Makuladegeneration (AMD) ist eine multifaktorielle Erkrankung mit 

genetischen und nicht-genetischen Risikofaktoren, die mit progredientem Visusverlust 

bis hin zur Erblindung einhergeht. Die neovaskuläre Spätform wird mittels intravitrealer 

Injektionen von Medikamenten, die gegen den Vascular Endothelial Growth Factor A 

(VEGF-A) gerichtet sind, therapiert. Das Therapieansprechen variiert dabei individuell 

erheblich. Hier wird ebenfalls ein Einfluss genetischer Varianten vermutet. Im Zuge 

dieser Arbeit wurden 19 an neovaskulärer AMD (nAMD) erkrankte Patient*innen, die 

eine Therapie mittels VEGF-Inhibitoren erhielten, bezüglich Varianten im VEGFA-Gen 

untersucht. Diese wurden hinsichtlich einer Assoziation mit AMD und dem 

Therapieansprechen ausgewertet. Zusätzlich wurden sieben mittels Gen-Panel-

Diagnostik identifizierte Varianten in den Genen des Komplementsystems mit einer 

zweiten Methode verifiziert und im Hinblick auf einen möglichen Einfluss auf die 

Pathogenese der AMD ausgewertet. 

Im VEGFA-Gen (Referenzsequenz: NM_003376.6) wurden die synonyme Variante 

c.534C>T, p.Ser178= (rs25648) und die intronische Variante c.856-28C>T (rs3025000) 

identifiziert. Nach den Kriterien des American College of Medical Genetics and 

Genomics (ACMG) sind beide Varianten als benigne Veränderungen einzuordnen. Die 

Literaturrecherche legt nahe, dass beide Varianten nicht mit dem AMD-Risiko assoziiert 

sind, rs3025000 jedoch das Therapieansprechen beeinflussen könnte. In der 

vorliegenden Arbeit konnte dagegen kein Zusammenhang zwischen diesen Varianten 

und dem Ansprechen nachgewiesen werden. Es zeigte sich ein Hinweis auf einen 

möglichen Zusammenhang des T-Allels von rs25648 mit einem niedrigeren Risiko der 

Erkrankung an einer AMD, was jedoch einer Bestätigung in größeren Kohorten bedarf. 

Alle aus der Gen-Panel-Diagnostik ausgewählten Varianten konnten mittels 

allelspezifischer PCR oder Sanger-Sequenzierung verifiziert werden. Nach ACMG ist 

NM_006610:c.359A>G, p.Asp120Gly in MASP2 likely pathogenic und 

NM_005666:c.595G>T, p.Glu199Ter in CFHR2 pathogenic. Beide Varianten haben 

funktionelle Konsequenzen. Im Falle einer Assoziation mit AMD, die mittels prospektiver, 

größerer Studien bestätigt werden müsste, können solche funktionell relevanten 

Varianten auf einen Beitrag der jeweiligen Gene zur Pathogenese der AMD hinweisen. 

Zudem könnten das Risiko beeinflussende Varianten in einem polygenetischen Kontext 

eine individualisierte Risikoeinschätzung und Behandlung ermöglichen. 

Michel, Paula: Sequenzveränderungen in Kandidatengenen bei Patient*innen mit 
altersbedingter Makuladegeneration und deren potenzieller Einfluss auf ein 
Therapieansprechen, Halle (Saale), Univ., Med. Fak., Diss., 80 Seiten, 2025
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1 Einleitung  

1.1 AMD – eine Hauptursache für Erblindung in Hochlohnländern  

Der gegenwärtige demographische Wandel und die damit einhergehende Alterung der 

Gesellschaft beeinflussen die Gesundheitsversorgung bedeutend, da sie zu einer 

Zunahme der Prävalenz altersassoziierter Erkrankungen führen (1). Diese meist 

komplex bedingten und chronisch verlaufenden Erkrankungen bedrohen die 

Selbständigkeit und Lebensqualität älterer Menschen, welche wichtige Ziele in deren 

Versorgung darstellen. Eine solche altersbedingte Erkrankung stellt auch die 

altersbedingte Makuladegeneration (AMD; MIM# 603075) dar, welche durch 

progredienten Visusverlust bis hin zur Erblindung gekennzeichnet ist. 

Der Visusverlust beruht auf einer Schädigung der Netzhaut, insbesondere im Bereich 

der Makula. Ursächlich sind pathologische Veränderungen des Stoffwechsels im Bereich 

des retinalen Pigmentepithels (RPE) (2), die mit subretinalen Ablagerungen von 

Stoffwechselprodukten, sogenannten Drusen, und schließlich der Degeneration von 

RPE und Photorezeptorzellen, einhergehen (3). Als zugrundeliegende Mechanismen 

werden dysregulierte Phagozytose und oxidativer Stress, Akkumulation von Lipiden, 

beeinträchtigtes Remodeling der extrazellulären Matrix (EZM), und komplementbedingte 

Inflammation vermutet (2–4). Die resultierende Verdickung der Bruch-Membran führt zu 

einem vermindertem Austausch von Abfallprodukten, Nährstoffen und Sauerstoff 

zwischen Retina und Choriokapillaris und letztendlich einer Hypoxie (5). Es resultieren 

eine gesteigerte Expression des Wachstumsfaktors Vascular Endothelial Growth Factor 

A (VEGF-A) sowie eine VEGF-unabhängige Angiogenese und somit eine begünstigte 

Bildung von Neovaskularisationen (5).  

Drusen kennzeichnen die frühen Stadien der AMD, aber führen meist noch nicht zu 

Seheinschränkungen. Schreitet die Erkrankung voran, kann eine geografische Atrophie 

oder eine neovaskuläre AMD (nAMD) entstehen, welche mit einem zentralen 

Visusverlust einhergehen (Abbildung 1). Charakteristisch für die geografische Atrophie 

sind scharf begrenzte Zelluntergänge des RPE (6). In der Folge atrophieren auch die 

darüber befindlichen Photorezeptorzellen. Die neovaskuläre Spätform wird hingegen 

durch die oben genannten Gefäßneubildungen verursacht, welche unkontrolliert unter 

RPE und Retina einsprossen. Da diese insuffizient gebaut sind, können sie über 

Hämorrhagien und den Austritt von Flüssigkeit schnell zu einem starken Visusverlust 

führen (7).  
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Die Lebensqualität Betroffener wird mit Fortschreiten der Erkrankung immer stärker 

eingeschränkt. Wird die Lebensqualität nach der Time Trade Off Methode, welche den 

Anteil verbleibender Lebensjahre, die ein Patient bereit wäre abzugeben, um völlige 

Gesundheit wiederzuerlangen, verglichen, so ähneln sich die Nutzwerte einer leichten 

AMD und einer Wirbelfraktur (8,9). Die Einschränkung der Lebensqualität durch eine 

sehr schwere AMD ist hingegen vergleichbar mit der durch ein fortgeschrittenes 

Prostatakarzinom (8,10). 

 

Abbildung 1: Stadien der AMD. Einteilung nach der klinischen Klassifikation des Beckman 
Initiative for Macular Research Classification Committee (11). 

1.2 Epidemiologie 

Die AMD ist eine multifaktorielle Erkrankung, daher interagiert die genetische 

Prädisposition mit weiteren Risikofaktoren. Zu den stärksten Risikofaktoren gehören das 

Rauchen (12–14) und das Alter (12,15,16). Die Prävalenz von AMD im frühen Stadium 

beträgt bei 55- bis 59-Jährigen 3,5 % und steigt bei den ≥ 85-Jährigen auf 17,6 % (17). 

Die Spätformen der AMD betreffen 0,1 % der 55- bis 59-Jährigen und 9,8 % der ≥ 85-

Jährigen (17). Im Zusammenhang mit dem demografischen Wandel ist daher eine 

Zunahme der Betroffenen anzunehmen. Es wird prognostiziert, dass im Jahr 2040 

weltweit 288 Millionen Menschen von AMD betroffen sein werden und Europa nach 

Asien die zweitmeisten AMD-Fälle aufweisen wird (18). Die Anzahl der AMD-Betroffenen 



 

3 
 

in der EU könnte von zurzeit 67 Millionen auf 77 Millionen im Jahr 2050 steigen und 

somit um 15 % zunehmen (19).   

1.3 Genetische Prädisposition 

1.3.1 Das Komplementsystem mit CFH als Hauptrisikogen  

Den allgemeinen Risikofaktoren steht die genetische Prädisposition für die Erkrankung 

an AMD gegenüber. Nachdem Zwillings- (20,21) und Familienstudien (22,23) die 

Heritabilität der AMD impliziert hatten, wurden Chromosom 1q31 und 10q26 als 

Suszeptibilitätsloci identifiziert (24). In einer der ersten erfolgreichen genomweiten 

Assoziationsstudien (GWAS) (25) sowie weiteren familien- und populationsbasierten 

Assoziationsstudien wurde schließlich das Gen des Komplementfaktors H (CFH) auf 

Chromosom 1q31 als erstes Hauptrisikogen identifiziert (25–28). Besonders der 

Missensevariante NM_000186:c.1204T>C, p.Tyr402His (rs1061170), die den 

Austausch von Tyrosin durch Histidin an der Aminosäureposition 402 im kodierenden 

Bereich des CFH-Gens bewirkt, wurde ein risikosteigernder Effekt zugeschrieben. Das 

Vorhandensein des C-Allels, einer der Varianten des Gens, führt zu einer fast dreifachen 

Steigerung des AMD-Risikos (26,29). 

Faktor H gehört zum Komplementsystem, einem ca. 30 Proteine umfassenden, 

kaskadenartigen Abwehrmechanismus des angeborenen Immunsystems (30) 

(Abbildung 2). Dieses Abwehrsystem kann auf drei verschiedenen Wegen aktiviert 

werden, die durch die Bildung einer Konvertase für Komplementfaktor C3 (C3) in eine 

gemeinsame Endstrecke mit Bildung eines Membranangriffskomplexes (MAC) münden 

(30). Faktor H ist dabei ein komplementregulatorisches Protein (31).  

Die Assoziation von rs1061170 in CFH mit dem AMD-Risiko und der Nachweis von 

Komplementfaktoren in Drusen (32,33) rückten das Komplementsystem in den 

Vordergrund für weitere Studien zu den genetischen Einflussfaktoren der AMD. In Genen 

verschiedener Komplementfaktoren wurden nachfolgend protektive und risikosteigernde 

genetische Varianten identifiziert (Abbildung 2). So führen Varianten, die die Funktion 

von Faktor I beeinträchtigen, ebenfalls zu einem erhöhten AMD-Risiko (34,35). Faktor I 

reguliert, wie Faktor H, die Komplementkaskade (30). Weitere risikoassoziierte 

Varianten befinden sich in den Genen der Complement Factor H Related Proteins 

(CFHR), die zu derselben Genfamilie wie CFH gehören. In diesen Genen wurden 

Deletionen identifiziert, die protektiv bezüglich AMD sind (36–38). Auch Varianten in C3 

sind mit AMD assoziiert (39–41).  
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Der Komplementfaktor C3 nimmt mit seinen Spaltprodukten C3a und C3b als 

Ausgangspunkt des alternativen Weges der Komplementaktivierung, Bestandteil dessen 

C3-Konvertase sowie der C5-Konvertase und als Anaphylatoxin und Opsonin eine 

zentrale Rolle in der Komplementkaskade ein (30). Als Pathomechanismus der C3-

Varianten wird daher eine gestörte Regulation der Komplementaktivierung über C3 in 

Betracht gezogen (42). Weiter downstream in der Komplementkaskade befindet sich der 

Komplementfaktor C9 (C9), der Bestandteil des MAC ist (30). In C9 ist insbesondere die 

Missensevariante NM_001737:c.499C>T, p.Pro167Ser (rs34882957) mit erhöhtem 

AMD-Risiko assoziiert (42,43). Die Nonsensevariante c.346C>T, p.Arg95Ter 

(rs121909592), eine in einem vorzeitigen Stoppcodon resultierende Variante in C9, ist 

hingegen mit einer deutlichen Risikoreduktion für AMD verbunden (44). Varianten in den 

paralogen Genen für Komplementfaktor C2 (C2) und Komplementfaktor B (CFB) sind 

vorwiegend protektiv (3,45–47). Die Heritabilität der AMD ist komplex. Seit der 

Entdeckung von CFH als krankheitsassoziiertes Gen wurden genetische Varianten, die 

das AMD-Risiko beeinflussen, in vielen weiteren Genen verschiedener Signalwege 

identifiziert. So wiesen in einer großen genomweiten Assoziationsstudie 52 Varianten an 

34 verschiedenen Genorten eine Assoziation mit AMD auf (43). Ein Überblick über die 

AMD-assoziierten Signalwege und Gene ist in Abbildung 2 dargestellt.  

Neben Faktoren der Komplementkaskade stehen auch das extrazelluläre Remodeling, 

der Fettstoffwechsel, und die Angiogenese, im Fokus der Forschung zu den genetischen 

Ursachen der AMD (Abbildung 2). Das extrazelluläre Remodeling ist abhängig von der 

Balance zwischen Matrixmetalloproteinasen (MMPs) und deren Inhibitoren (TIMPs) und 

könnte insbesondere eine Rolle in der Pathogenese fortgeschrittener AMD spielen (48–

50). In einer Studie wurde zudem rs42450006 upstream von MMP9 identifiziert, eine 

Variante, die spezifisch mit der neovaskulären Form der fortgeschrittenen AMD 

assoziiert ist (43). Weitere mit AMD assoziierte Gene sind unter anderem COL8A1, 

COL4A3 und COL10A1, welche Kollagenkomponenten kodieren (43,51). Auch 

Varianten in Genen des Fettstoffwechsels sind mit dem AMD-Risiko assoziiert: Allel e2 

des ApoE-Gens erhöht das Risiko, während Allel e4 zu einer Risikoreduktion führt (52). 

Weitere assoziierte Loci sind LPL, LIPC und CETP (43,50,53).  

Neben 1q31 war in der Metaanalyse von Fisher et al. auch die Region 10q26 stark mit 

AMD gekoppelt (24). Diese enthält unter anderem die Gene ARMS2 und HTRA1. Da 

diese im starken Kopplungsungleichgewicht stehen, ist die Identifikation des kausalen 

Gens erschwert (54). Die durch HTRA1 kodierte Serinprotease steht jedoch im Verdacht, 

über den TGF-β-Signalweg zu Angiogenese zu führen (55) und in das Remodeling der 

EZM zwischen Choriokapillaris und Retina involviert zu sein (56). Auch bei ARMS2 wird 
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eine Beteiligung am EZM-Remodeling vermutet (57). Insgesamt ist die Bedeutung der 

Region für die AMD-Pathogenese noch unzureichend geklärt.  

 

Abbildung 2:  Mit der Pathogenese der AMD in Verbindung gebrachte Gene und Signalwege. 
Gene verschiedener Komplementfaktoren und weiterer Signalwege wurden mit der Entwicklung 
der AMD in Verbindung gebracht (43,52,58–60). Protektive (grün) und risikosteigernde (rot) 
Varianten der Gene des Komplementsystems verdeutlichen bespielhaft die Assoziation 
verschiedener Komplementfaktoren mit dem AMD-Risiko (26,28,35,37,41,44,47). Die Odds Ratio 
(OR) gibt dabei an, wie groß die Chance ist, an AMD zu erkranken, wenn das jeweilige 
Variantenallel vorliegt verglichen mit dem Vorliegen des Wildtypallels. Die Chance, an AMD zu 
erkranken, ist also bei Träger*innen eines C-Allels der CFH-Variante rs1061170 etwa 2,5 Mal so 
hoch wie in der Gruppe ohne C-Allel (28).  

1.3.2 Angiogenese – VEGFA spielt eine wichtige Rolle in der Pathogenese 

der AMD 

Die Angiogenese stellt einen weiteren Signalweg dar, bei dem eine Assoziation 

genetischer Varianten mit dem Auftreten von AMD naheliegt. Hierbei spricht vor allem 
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die Rolle des VEGF-A in der Pathogenese der Erkrankung, insbesondere bei der 

neovaskulären Spätform der AMD, für VEGFA als funktionelles Kandidatengen. VEGF-

A wurde als permeabilitätssteigernder, von Tumorzellen sezernierter vascular 

permeability factor (VPF) beschrieben (61) und später durch Ferrara und Henzel als 

Wachstumsfaktor des Gefäßendothels identifiziert (62,63). VEGF-A gehört, gemeinsam 

mit VEGF-B, -C, -D, -E und PGF, zu einer Familie von vaskulären Wachstumsfaktoren 

und besitzt selbst mehrere, durch alternatives Spleißen bedingte Isoformen (63).  

VEGF-A entfaltet seine Wirkung auf das Gefäßendothel vorrangig über die Bindung an 

die Rezeptortyrosinkinase VEGFR-2 (63). Über die Dimerisierung des Rezeptors und 

Autophosphorylierung wird eine Signalkaskade in Gang gesetzt, die zu Proliferation, 

Migration und gesteigertem Überleben der Endothelzellen führt (63). Zudem erhöht sich 

die Permeabilität der Blutgefäße (61). Hypoxie beeinflusst die Expression von VEGF-A. 

Durch gesteigerte Bindung von HIF-1 an ein upstream nahe des 5´-Endes von VEGFA 

gelegenes hypoxia response element wird die Transkription von VEGFA verstärkt (64). 

Zudem wird die Boten-Ribonukleinsäure (messenger ribonucleic acid; mRNA) bei 

Hypoxie durch Bindung von Proteinen an AU-reiche Elemente in der 3´-UTR stabilisiert 

(65,66). Die hypoxiebedingte Überexprimierung von VEGF-A und darauffolgende 

Bildung von Neovaskularisationen ist Bestandteil des Pathomechanismus der 

Netzhautschädigung bei neovaskulärer AMD. Es wurden Varianten in VEGFA 

beschrieben, die mit dem AMD-Risiko im Zusammenhang stehen  (58,67–69). 

Insgesamt sind die Assoziationen jedoch nicht konsistent (3,70). 

1.4 Therapie der AMD 

AMD ist bisher nicht heilbar. Die Supplementierung von Nahrungsergänzungsmitteln 

wird eingesetzt, um zu versuchen, die Progression der frühen AMD zu verlangsamen. 

Untersucht wurde dies insbesondere durch die Age-Related Eye Disease-Studien, wobei 

eine Supplementierung von Vitamin C und E, Beta-Carotin und Zink- sowie Kupferoxid 

mit einer Senkung des Progressionsrisikos einherging (71). Für die geografische 

Atrophie gibt es derzeit keine wirksame Therapie. Kommt es zu Neovaskularisationen, 

stellt der zügige Beginn intravitrealer Injektionen von gegen VEGF gerichteten 

Medikamenten den Goldstandard dar. Als intravitreale Anti-VEGF-Medikamente bei 

neovaskulärer AMD können Ranibizumab, Brolucizumab, Aflibercept, Faricimab und im 

off-label use Bevacizumab eingesetzt werden. Bevacizumab ist ein vollständiger 

humanisierter, monoklonaler Antikörper, Ranibizumab ein von Bevacizumab 

abgeleitetes Fab-Fragment (72). Brolucizumab ist ein kleineres, aus den variablen 

Domänen einer leichten und einer schweren Kette bestehendes Antikörper-Fragment 
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(73). Aflibercept ist ein rekombinantes Fusionsprotein, das die zweite Domäne von 

VEGFR-1 und die dritte Domäne von VEGFR-2 enthält, die wiederum an die Fc-Domäne 

von IgG1 gebunden sind (74). Im Unterschied zu den anderen Anti-VEGF-

Medikamenten kann Aflibercept zusätzlich zu VEGF-A auch PGF und VEGF-B, weitere 

vaskuläre Wachstumsfaktoren, binden (75,76). Faricimab ist ein humanisierter 

bispezifischer Antikörper, der neben VEGF-A auch Angiopoietin-2, einen 

Wachstumsfaktor der Angiogenese, bindet (77,78). 

Doch bei einem Teil der Patient*innen schreitet die Erkrankung trotz Anti-VEGF-

Therapie voran (50) (Abbildung 3). Bei Behandlung mit Ranibizumab verbessert sich der 

mittels standardisierter Sehtafel gemessene Visus bei 25 – 40 % der Patient*innen um 

mindestens 15 Buchstaben, andererseits weisen 5 – 10 % trotz Therapie eine 

Verschlechterung von mehr als 15 Buchstaben auf (79,80). Varianten innerhalb der 

Bindungstelle für VEGF-Inhibitoren, können die Affinität der Bindung stark senken (81). 

Entsprechende VEGFA-Varianten stellen somit einen Ansatz für die Erklärung eines 

unterschiedlichen Therapieansprechens dar.  

 
 

 

Abbildung 3: Bilder der optischen Kohärenztomografie (OCT) von zwei Patient*innen mit 
neovaskulärer AMD nach Behandlung mit VEGF-Inhibitoren. (A) Patient*in mit gutem 
Therapieansprechen auf die Behandlung mit VEGF-Inhibitoren. Es ist keine subretinale 
Flüssigkeit vorhanden. (B) Trotz Anti-VEGF-Therapie haben sich eine große Narbe und eine 
Abhebung der Retina entwickelt haben. Bilder: Praxisklinik Augenärzte am Markt, Halle. 

A

B
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Die AMD-Hauptrisikogene waren früh Gegenstand der Untersuchung des 

Therapieansprechens. So wurde der Genotyp CC der mit erhöhtem AMD-Risiko 

assoziierten CFH-Variante rs1061170 als ein Risikofaktor für ein schlechteres Ergebnis 

bezüglich der Fern- und Nahvisus nach der Therapie mit Bevacizumab identifiziert 

(p=0,0039) (82). Andere Studien wiederum kamen zu der Erkenntnis, dass der Genotyp 

CC mit einem besseren Visus nach Therapie mit Ranibizumab verbunden ist (83), bzw. 

diese Variante keine Assoziation mit dem Therapieansprechen aufweist (84,85).  

Im VEGFA-Gen, das das Zielprotein der Therapie kodiert, wurden Assoziationen des T-

Allels der intronischen Variante NM_003376.6:c.856-28C>T (rs3025000) und des C-

Allels der upstream von VEGFA gelegenen Missensevariante rs699947 mit einem 

besseren Therapieansprechen in Bezug auf den Visus festgestellt (86,87), was 

allerdings durch die Comparison of AMD Treatments Trials (CATT)-Studie nicht bestätigt 

wurde (88). Varianten in VEGFA stehen insgesamt nicht konsistent mit dem 

Theraieansprechen in Zusammenhang (88). Phan et al. stellen fest, dass zur 

Untersuchung möglicher Assoziationen genetischer Varianten mit dem 

Therapieansprechen neben prospektiven Studien zu identifizierten Varianten auch 

weitere individuelle Studien durchgeführt werden sollten, um mehr Wissen über bisher 

wenig untersuchte Varianten und ethnische Unterschiede zu schaffen (76). 

1.5 Vorausgegangene molekulargenetische Untersuchung der 

Studienpopulation 

Dieser Arbeit ging die molekulargenetische Untersuchung der Patient*innen bezüglich 

genetischer Varianten in den Genen des Komplementsystems mithilfe von Next 

Generation Sequencing (NGS) voraus. Hierzu wurde ein Custom-Panel mit 55 

enthaltenen Genen genutzt. Das Ziel war dabei die Identifizierung von Varianten, welche 

das Risiko, eine AMD zu entwickeln, beeinflussen. In der vorliegenden Arbeit wurden 

diese Daten zur weiteren Auswertung genutzt, sowie weitere molekulargenetische 

Untersuchungen durchgeführt.  
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2 Zielstellung 

In dieser Arbeit sollen sieben Varianten, welche bei 19 Patient*innen mit nAMD mittels 

Genpaneldiagnostik identifiziert wurden, mit einer zweiten Methode, einer 

allelspezifischen Polymerasekettenreaktion (PCR) bzw. Sequenzierung nach Sanger, 

verifiziert werden. 

Weiterhin sollen diese sieben Varianten mithilfe von Populationsdatenbanken, in silico-

Tools, sowie Fachliteratur beurteilt werden. Auf diesem Weg soll die AMD-bezogene 

pathogenetische Bedeutung der Varianten eingeschätzt werden. 

Die Studienpopulation soll zudem eine molekulargenetische Diagnostik hinsichtlich 

Varianten innerhalb des VEGFA-Gens durchlaufen. Zur Interpretation gefundener 

Veränderungen werden ebenfalls Populationsdatenbanken, in silico-Tools und 

Fachliteratur herangezogen. Mithilfe einer Kontrollgruppe soll überprüft werden, ob ein 

Zusammenhang zwischen Varianten in VEGFA und der Erkrankung an einer AMD 

besteht. Zudem wird das Therapieansprechen auf VEGF-A-Inhibitoren ausgewertet. 

Dies soll zu einem besseren Verständnis des Therapieversagens bei Anti-VEGF-A-

Therapien führen und so zur Grundlage für eine Prädiktion des Therapieansprechens 

und eine Individualisierung der Behandlung beitragen. 
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3 Material und Methoden 

3.1 Studienpopulation und Kontrollgruppe  

Die Studie wurde durch die Ethik-Kommission der Medizinischen Fakultät der Martin-

Luther-Universität Halle-Wittenberg genehmigt (Bearbeitungsnummer: 2016-96). Die 

Patient*innen gaben ihr informiertes Einverständnis zur Studienteilnahme. 

Die Studienpopulation bildeten 19 an nAMD erkrankte Patient*innen, welche eine Anti-

VEGF-Therapie erhielten. Das Alter betrug im Mittel 76,95 Jahre (Spannweite: 69 Jahre 

bis 88 Jahre). Der Eingangsvisus beider Augen wurde dokumentiert und anschließend 

der VEGF-Inhibitor dreimalig in einem Intervall von vier Wochen intravitreal injiziert. Vier 

Wochen nach der Behandlung wurde der Therapieerfolg kontrolliert und die Therapie im 

Falle persistierender Krankheitsaktivität fortgeführt. Anschließend wurde erneut der 

Visus dokumentiert. 

36 nicht an einer AMD erkrankte Individuen dienten als populationsgematchte 

Kontrollgruppe. Sie wiesen zum Zeitpunkt der Studienteilnahme keine AMD-typischen 

Netzhautveränderungen, wie Drusen, Ödeme oder Narben, auf. Das mittlere Alter betrug 

in dieser Gruppe 78,94 Jahre (Spannweite: 64 Jahre bis 89 Jahre). 
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3.2 Materialien 

3.2.1 Chemikalien 

100 bp DNA Ladder     Invitrogen (Carlsbad) 

Betain-Lösung 5 M     Sigma-Aldrich (Steinheim) 

Dimethylsulfoxid     Thermo Fisher (Waltham) 

Elution Buffer      Qiagen (Hilden) 

10 mmol/l Tris-Cl; pH 8,5 

Ethanol       AppliChem GmbH (Darmstadt) 

Formamid      Applied Biosystems (Darmstadt) 

Glycerin      Sigma-Aldrich (Steinheim) 

GoTaq G2 Colorless Master Mix   Promega (Mannheim) 

Taq-Polymerase; GoTaq Reaction 

Buffer (pH 8.5); 400µM dATP; 

400µM dGTP; 400µM dCTP; 400µM 

dTTP; 3mM MgCl2 

Ladepuffer 50% Glycerin und 0,05% Orange G 

in 0,5x TBE-Puffer 

LE Agarose      Biozym (Oldendorf) 

Orange G      Sigma-Aldrich (Steinheim) 

PCR-Produkt-Reinigungsreagenz ExoSAP-IT Thermo Fisher (Waltham) 

Exonuklease I; Shrimp-Alkaline-

Phosphatase; Puffer 

Primer       IDT Biologika (Dessau-Roßlau) 

Metabion (Planegg) 

Rotiphorese 10x TBE-Puffer    Carl Roth (Karlsruhe) 

1,0 mol/l Tris-Borat; 20 mmol/l 

EDTA; destilliertes Wasser; pH 8,3 

SERVA DNA Stain Clear G    Serva (Heidelberg) 

Ultra pure water     Biochrom GmbH (Berlin) 

 

3.2.2 Kits 

Big Dye Terminator v1.1 Cycle Sequencing Kit Applied Biosystems (Darmstadt) 

Dye Ex 2.0 Spin Kit     Qiagen (Hilden) 

QIAamp DNA Mini Kit     Qiagen (Hilden) 
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3.2.3 Geräte und Verbrauchsmaterialien 

Applied Biosystems 3500 Series Genetic  Thermo Fisher (Waltham) 
Analyzer  

Centrifuge 5424      Eppendorf (Hamburg) 

Centrifuge 5430     Eppendorf (Hamburg) 

Combitips advanced     Eppendorf (Hamburg) 

Eppendorf Research plus Pipetten   Eppendorf (Hamburg) 

Geldokumentationssystem E-Box CX5  Vilber Lourmat (Collégien) 

Gelelektrophoresesystem EasyCast   Thermo Fisher (Waltham) 

Laborwaage      Kern (Balingen) 

Mastercycler nexus gradient    Eppendorf (Hamburg) 

Mehrkanalpipette Research plus 0,5 - 10 µl  Eppendorf (Hamburg) 

Mikrowelle      Sharp (Hamburg) 

MiniSpin plus      Eppendorf (Hamburg) 

Multipette M4 1 µl - 10 ml    Eppendorf (Hamburg) 

Netzgerät Biometra     Analytik Jena (Jena) 

PCR-Platte 96 Well     Sarstedt (Nümbrecht) 

Reagiergefäße     Sarstedt (Nümbrecht) 

SafeSeal-Tips professional    Biozym (Oldendorf) 

Spektralphotometer NanoDrop 2000   Thermo Fisher (Waltham) 

Thermomixer 5436     Eppendorf (Hamburg) 

Vibrationsmischer Vortex-Genie 2   Scientific Industries (Bohemia) 

 

3.2.4 Datenbanken und Software 

2Struc      https://2struc.cryst.bbk.ac.uk/twostruc 

AlphaFold     https://alphafold.ebi.ac.uk/ 

BLAST      https://www.ensembl.org/Multi/ 
Tools/Blast?db=core 

CADD      https://cadd.gs.washington.edu/ 

ClinVar     https://www.ncbi.nlm.nih.gov/clinvar/ 
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color_h     http://www.protein.osakau.ac.jp/rcsfp/ 
      supracryst/suzuki/jpxtal/Katsutani/en/ 
      hydrophobicity.php     

 
Database of Single Nucleotide  https://www.ncbi.nlm.nih.gov/snp/ 
Polymorphisms 

DECIPHER     https://www.deciphergenomics.org/ 

DynaMut     https://biosig.lab.uq.edu.au/dynamut/ 

Ensembl     https://www.ensembl.org/index.html 

GalaxyTBM    https://galaxy.seoklab.org/cgi-  
   bin/submit.cgi?type=TBM 

Genome Aggregation Database  https://gnomad.broadinstitute.org/ 

Human Phenotype Ontology   https://hpo.jax.org/app/ 

I-TASSER     https://zhanggroup.org/I-TASSER/ 

Jpred 4     https://www.compbio.dundee.ac.uk/jpred/ 

MutationTaster    https://www.genecascade.org/Mutation 
Taster2021/#transcript 

NanoDrop Software    Thermo Fisher (Waltham) 

OMIM      https://www.omim.org/ 

PhastCons     http://compgen.bscb.cornell.edu/phast/ 

PhyloP      http://compgen.bscb.cornell.edu/phast/ 

PolyPhen-2     http://genetics.bwh.harvard. 
edu/pph2/bgi.shtml 

Primer-BLAST    https://www.ncbi.nlm.nih.gov/tools/primer- 
blast/ 

Primer3Plus     https://www.bioinformatics.nl/cgi-  

      bin/primer3plus/primer3plus.cgi 

PSIPRED     http://bioinf.cs.ucl.ac.uk/psipred/ 

PyMOL v2.5.5     Schrödinger (New York) 

Reverse Complement   https://www.bioinformatics.org/sms/ 
rev_comp.html 

Robetta     https://robetta.bakerlab.org/ 

http://genetics.bwh.harv/
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s2D      https://www-cohsoftware.ch.cam. 
      ac.uk/index.php/s2D 

Scratch Protein Predictor   http://scratch.proteomics.ics.uci.edu/ 

SEQUENCE Pilot    J.S.I. Medical Systems (Ettenheim) 

Sequence Scanner v1.0   Applied Biosystems (Darmstadt) 

SIFT      https://sift.bii.a-star.edu.sg/ 

SpliceAI     https://spliceailookup.broadinstitute.org/ 

SPSS Statistics 27.0.0   IBM (Armonk) 

SWISS-MODEL     https://swissmodel.expasy.org/ 

UCSC      https://genome.ucsc.edu/ 

UniProt     https://www.uniprot.org/ 

VarSome     https://varsome.com/ 

 

  

https://varsome.com/
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3.3 Methoden 

3.3.1 Ablauf 

Das VEGFA-Gen aller Patient*innen wurde mittels Sequenzierung nach Sanger auf 

genetische Varianten untersucht. Dafür wurden zunächst sequenzspezifische 

Oligonukleotide (Primer) designt. Die Exons wurden inklusive eines flankierenden 

Intronbereiches mittels PCR amplifiziert. Zur Beurteilung der PCR-Produkte wurde eine 

Agarosegelelektrophorese angefertigt. Vorbereitend für die Sequenzierung wurden die 

Amplifikate enzymatisch gereinigt, einer Sequenzier-PCR zugeführt und überflüssige 

Didesoxyribonukleosid-Triphosphate (ddNTP) mithilfe des Dye Ex 2.0 Spin Kits entfernt. 

Ein Teil der Proben wurde nach der enzymatischen Reinigung an den bioanalytischen 

Dienstleister Eurofins versandt. Die molekulargenetische Untersuchung der 

Kontrollgruppe erfolgte ebenfalls mittels Sanger-Sequenzierung der Exons, in denen in 

der Gruppe der AMD-Patient*innen Varianten nachgewiesen wurden. 

Aus den Varianten, welche in der NGS-Genpaneldiagnostik identifiziert wurden, wurden 

die Varianten mit der größten vorhergesagten pathogenetischen Relevanz für die 

weitere Auswertung ausgewählt und mit einer zweiten Methode verifiziert. Dafür wurde 

ein auf den drei in silico-Pathogenitätsprädiktionstools Sorting Intolerant From Tolerant 

(SIFT) (89), Polymorphism Phenotyping Version 2 (PolyPhen-2) (90) und Combined 

Annotation Dependent Depletion (CADD) (91) basierender Score genutzt. Die Varianten 

wurden zur Verifikation einer allelspezifischen PCR zugeführt, deren Ergebnis mittels 

Agarosegelelektrophorese beurteilt wurde. Die im NGS detektierte Variante 

NM_001737:c.1427T>C im C9-Gen wurde mittels Sequenzierung nach Sanger 

verifiziert, da die allelspezifische PCR nicht aussagekräftig war. 

Die Klassifikation der Varianten erfolgte anhand der Kriterien des American College of 

Medical Genetics and Genomics (ACMG) (92). Zur statistischen Auswertung wurde die 

Statistik-Software SPSS Statistics (Version 27.0.0) (93) genutzt. 

3.3.2 DNA-Isolation 

Die Desoxyribonukleinsäure (deoxyribonucleic acid; DNA) der Patient*innen wurde nach 

Laborstandard und unter Verwendung des QIAamp DNA Mini Kit aus Vollblut präpariert. 

200 µl Blut wurden mittels 20 µl Proteinase, 200 µl Lysepuffer 10-minütiger Inkubation 

bei bei 56 °C lysiert. Zur Fällung wurden 200 µl Ethanol (96 %) hinzugegeben und die 

DNA durch Zentrifugation für eine Minute bei 8000 rpm an eine Silikagelsäule gebunden. 

Der Waschvorgang wurde zweimal durchgeführt und bestand aus der Zugabe von 

Waschpuffer 1, Zentrifugation für 1 min bei 8000 rpm und anschließender Wiederholung 
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dieses Vorganges mit Waschpuffer 2. Die DNA wurde schließlich mit 50 µl Elutionspuffer 

durch Zentrifugation der Säulen für eine Minute bei 8000 rpm eluiert. 

3.3.3 Konzentrations- und Reinheitsbestimmung  

Mithilfe der Software Nanodrop 2000 (94) wurden Konzentration und Reinheit der DNA 

mit einem Spektralphotometer bestimmt. Dazu wurde zuerst eine Leermessung mit 1 µl 

Elution Buffer durchgeführt und anschließend 1 µl der DNA vermessen. Zur Berechnung 

der Konzentration wird die Formel c = E/(ε x d) genutzt, welche sich durch Umstellung 

des Lambert-Beerschen Gesetzes (E = ε x c x d) ergibt. Dabei entspricht c der 

Konzentration, E der Extinktion, ε dem Extinktionskoeffizienten und d der Schichtdicke. 

Entsprechend der gemessenen Konzentration wurde die DNA unter Zugabe von Elution 

Buffer auf eine Konzentration von 50 ng/µl verdünnt. 

3.3.4 Primerdesign  

Als Grundlage für die Primererstellung wurde die Sequenz von VEGFA (Ensembl-

ID: ENSG00000112715) aus der Genomdatenbank Ensembl (95) bezogen. Verwendet 

wurde das Transkript 203 mit der Transkript-ID ENST00000372055.9. Für jedes der acht 

Exons wurden ein Vorwärts- sowie ein Rückwärtsprimer mittels Primer3Plus (96) 

designt. Die Zielsequenz umfasste neben dem jeweiligen Exon auch etwa 100 

Basenpaare up- bzw. downstream, um einerseits das gesamte Exon sequenzieren und 

andererseits auch Spleißstellenmutationen feststellen zu können. 

Die Länge der Primer wurde auf den Bereich von 18 bis 27 Basenpaaren festgelegt, da 

längere Primer spezifischer sind, aber auch mit einem höheren Risiko für 

Sekundärstrukturen oder Primerdimere einhergehen. Daher wurden Primer mit niedrigen 

Werten der Scores für Intraprimer-Homologien geachtet. Berücksichtigt wurde zudem, 

dass sich die Schmelztemperaturen zusammengehöriger Primer nicht mehr als 1 °C 

unterscheiden. Dies sollte gewährleisten, dass beide Primer unter denselben 

Reaktionsbedingungen effizient funktionieren. Um unspezifischen Sekundärprodukten 

vorzubeugen wurden die Bindungsstellen der Primer mit dem Primerdesign-Tool Primer-

BLAST (97) überprüft. Die Primer sollten so spezifisch wie möglich für die Zielsequenz 

im VEGFA-Gen auf Chromosom 6 sein und auf diesem Chromosom keine weiteren 

Bindungen aufweisen. Anhand dieser Kriterien wurden geeignete Primer ausgewählt, 

welche in Tabelle 1 dargestellt sind. Auf dieselbe Weise wurden die Primer für das 

zehnte Exon des C9-Gens (Ensembl-ID: ENSG00000113600) designt, um die Variante 

NM_001737:c.1427T>C mittels Sanger-Sequenzierung zu verifizieren (Tabelle 1). 

Hierfür wurde das Ensembl-Transkript ENST00000263408 verwendet. 
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Tabelle 1: Primer der Sanger-Sequenzierung von VEGFA und C9 

Exon Primer Vorwärtssequenz 

Rückwärtssequenz 

Amplikongröße 
(bp) 

1 VEGFA-e1.1-F/R 5´-GAGAGACGGGGTCAGAGAGA-3´ 

5´-TCGGCGAGCTACTCTTCCT-3´ 

596 

1 VEGFA-e1.2-F/R 5´-CGAGAAGTGCTAGCTCGGG-3´ 

5´-CCTAAGACGACAGAGGGGGA-3´ 

516 

2 VEGFA-e2-F/R 5´-CTGGGGTTTTCCTCCTGCAT-3´ 

5´-CAGAGACCTGAACAGCGGAG-3´ 

517 

3 VEGFA-e3-F/R 5´-GCCTTCACCAGTGTTGATGG-3´ 

5´-AAGGAGATGGTTGGGGCTTG-3´ 

600 

4 VEGFA-e4-F/R 5´-GGGGTTGCTTTCGGGTATCT-3´ 

5´-GACGGGGGCCAAAAAGTACA-3´ 

524 

5 VEGFA-e5-F/R 5´-TGTACTTTTTGGCCCCCGTC-3´ 

5´-CATCCCATTGTTGCTGCCAC-3´ 

459 

6 VEGFA-e6-F/R 5´-TCCCACCAAAGCCTTGTCAG-3´ 

5´-GGGTCCCCTCCCTTAATCCT-3´ 

599 

7 VEGFA-e7-F/R 5´-GTCTTTTGCTGTAGCGCTCG-3´ 

5´-CTACCACTCAGGCAACCAGG-3´ 

540 

8 VEGFA-e8-F/R 5´-ACCACACCTTCCTGTCCTCT-3´ 

5´-TTCCGGGCTCGGTGATTTAG-3´ 

466 

10 C9-e10-F/R 5´-AACCCCAAAGTGCATATTTTTGTC-3´ 

5´-ATCAGCCTCCTTAACTCCGTAA-3´ 

497 

3.3.5 Polymerasekettenreaktion 

Die PCR dient dazu, einen bestimmten DNA-Abschnitt in vitro zu vervielfältigen. Die 

Menge der Zielsequenz nimmt dabei über mehrere Zyklen exponenziell zu (98). Jeder 

Zyklus besteht aus drei Schritten: Zuerst werden beide DNA-Stränge bei 95 °C 

voneinander getrennt (Denaturierung). Anschließend binden die Primer bei niedrigerer 

Temperatur an den komplementären Bereich eines DNA-Stranges (Hybridisierung). Die 

Hybridisierungstemperatur richtet sich nach der der Schmelztemperatur des Primers, 

welche von der Länge des Primers und dem Anteil der verschiedenen Nukleinbasen 

abhängt. Im letzten Schritt, der Elongation, transferiert die DNA-Polymerase 

Desoxyribonukleosid-Triphosphate (dNTP) an das 3´-Ende des an die DNA 

angelagerten Primers. 
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Für den Standard-PCR-Ansatz (Tabelle 4) wurden zu einem Mikroliter DNA (50 ng/µl) 

jeweils 1 µl des Vorwärtsprimers (10 pmol/µl) und 1 µl des Rückwärtsprimers 

(10 pmol/µl) sowie 9,5 µl destilliertes Wasser und 12,5 µl GoTaq Mastermix gegeben. Im 

Mastermix sind DNA-Polymerase, Reaktionspuffer (pH 8,5), dNTP (dATP, dGTP, dCTP, 

dTTP) und MgCl2 enthalten. 

Für die Exons 2 bis 8 verlief die PCR nach dem PCR-Programm 6030 (Tabelle 2) mit 

einer Hybridisierungstemperatur von 60 °C erfolgreich. Die PCR-Bedingungen für 

Exon 1 mussten jedoch optimiert werden, da es unzureichend amplifiziert wurde. Dazu 

wurde der PCR-Ansatz modifiziert, die Hybridisierungstemperatur und Zyklenzahl 

variiert sowie eine Touchdown-PCR eingesetzt. Zur Modifikation des PCR-Ansatzes 

wurde die DNA-Menge erhöht und die Zusätze Dimethylsulfoxid, Formamid und Betain 

verwendet. PCR-Zusätze verbessern aufgrund unterschiedlicher Mechanismen die 

Amplifikation (98,99). Das beste Ergebnis für Exon 1VEGFA-e1.1-F/R wurde durch Zugabe 

1 mol/l konzentriertem Betain erreicht. Indem Betain die Wasserstoffbrückenbindungen 

zwischen den Nukleotiden schwächt (98), reduziert es die Abhängigkeit der 

Schmelztemperatur vom GC-Gehalt und senkt diese somit (100). Betain löst zudem 

Sekundärstrukturen auf (101). Die Erhöhung der DNA-Menge im PCR-Ansatz führte bei 

Exon 1VEGFA-e1.2-F/R zu einer besseren Amplifikation. Außerdem wurde zur Minimierung 

unspezifischer Produkte eine Touchdown-PCR verwendet (Tabelle 3). Bei dieser PCR-

Methode fällt die zu Beginn hohe Hybridisierungstemperatur über die folgenden Zyklen 

allmählich ab (102). Die niedrige Hybridisierungstemperatur der letzten Zyklen führt dann 

zu einer effizienten Amplifikation der spezifischen Produkte der vorherigen Zyklen. Die 

optimierten PCR-Bedingungen sind in Tabelle 4 dargestellt. 

Tabelle 2: PCR-Programm 6030 

 Temperatur Dauer Zyklen 

Denaturierung 95 °C 2 min  

Denaturierung 95 °C 30 s  

30 Hybridisierung 60 °C 30 s 

Elongation 72 °C 1 min 

Elongation 72 °C 5 min  

Kühlung 10 °C -  

 

 

 



 

19 
 

Tabelle 3: PCR-Programme Touchdown 61 °C (TD 61 °C) und Touchdown 63 °C (TD 63 °C) 

 Temperatur Dauer Zyklen 

TD 61 °C TD 63 °C 

Denaturierung 95 °C 95 °C 2 min  

Denaturierung 95 °C 95 °C 30 s  

2 Hybridisierung 61 °C 63 °C 30 s 

Elongation 72 °C 72 °C 1 min 

Denaturierung 95 °C 95 °C 30 s  

2 Hybridisierung 59 °C 61 °C 30 s 

Elongation 72 °C 72 °C 1 min 

Denaturierung 95 °C 95 °C 30 s  

2 Hybridisierung 57 °C 59 °C 30 s 

Elongation 72 °C 72 °C 1 min 

Denaturierung 95 °C 95 °C 30 s  

29 Hybridisierung 55 °C 57 °C 30 s 

Elongation 72 °C 72 °C 1 min 

Elongation 72 °C 72 °C 10 min  

Kühlung 10 °C 10 °C -  

Tabelle 4: Optimierte PCR-Bedingungen zur Amplifikation von Exon 1 sowie Standard-
PCR-Ansatz 

 Konzentration Volumen pro Reaktion in µl 

Exon 1 

VEGFA-e1.1-F/R 

Exon 1 

VEGFA-e1.2-F/R 

Exons 2, 3, 4, 

5, 6, 7, 8 

PCR-Ansatz     

DNA 50 ng/µl 1,0 1,2 1,0 

Primer F 10 pmol/µl 1,0 1,0 1,0 

Primer R 10 pmol/µl 1,0 1,0 1,0 

GoTaq Mastermix  12,5 12,5 12,5 

destilliertes Wasser  4,5 9,3 9,5 

Betain 5 mol/l 5,0 0,0 0,0 

Summe  25 25 25 

PCR-Programm  Touchdown 

63 °C 

Touchdown 

63 °C 

6030 

3.3.6 Agarosegelelektrophorese 

Die Agarosegelelektrophorese dient der Darstellung des amplifizierten DNA-Abschnittes 

und der Detektion unspezifischer Produkte. Dabei kann mithilfe eines Längenstandards 

auch die Größe des PCR-Produktes abgeschätzt und mit der erwarteten Produktlänge 

des eingesetzten Primerpaares verglichen werden. Auf dieser Grundlage können die 
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Parameter der PCR, wie Hybridisierungstemperatur, Anzahl der Zyklen und 

Zusammensetzung der Reagenzien, verändert werden, wenn für das jeweilige 

Primerpaar kein Produkt der erwarteten Länge erzielt wird (Abbildung 4) 

 

Abbildung 4: Gelelektrophorese der Amplifikate der acht Exons des VEGFA-Gens zur 
Etablierung der Primer. Zur Amplifikation von Exon 1 wurden aufgrund der Länge des ersten 
Exons zwei Primerpaare eingesetzt, deren Produkte mit 1.1 (VEGFA-e1.1-F/R) und 1.2 (VEGFA-
e1.2-F/R) gekennzeichnet sind. 

Für die Herstellung eines 1,6 %-Agarosegels wurden 1,6 g Agarose in 100 ml 0,5-

facher TBE-Puffer gegeben und bis zur Aufklarung erhitzt. Anschließend wurden 4 µl 

eines Farbstoffes für Nukleinsäuredetektion (SERVA DNA Stain Clear G) hinzugefügt. 

Das Gel wurde nach der Abkühlung in eine mit 0,5-fachem TBE-Puffer gefüllte 

Elektrophoresekammer gelegt. In einer Terasakiplatte wurden 2 µl Ladepuffer vorgelegt 

und dazu 10 µl der Probe gegeben und untergemischt. Die gesamten 12 µl wurden 

schließlich in die Geltaschen pipettiert. Als Längenstandard wurde eine 100 bp-DNA-

Leiter verwendet. An die Kammer wurde für 20 min eine Spannung von 130 V angelegt. 

3.3.7 Enzymatische Aufreinigung der PCR-Produkte 

Um nach der PCR überschüssige Primer und unverbrauchte dNTP zu entfernen, wurde 

das PCR-Produkt enzymatisch aufgereinigt. Dazu wurden zu 1 µl PCR-Produkt 3,4 µl 

destilliertes Wasser und 0,6 µl ExoSAP-IT gegeben (Tabelle 5) und im Thermocycler für 

15 min bei 37 °C inkubiert, um das PCR-Produkt zu reinigen. Anschließend wurden die 

Enzyme des Aufreinigungsreagenz 15 min bei 80 °C inaktiviert.  

Tabelle 5: Pipettierschema der enzymatischen Aufreinigung 

 Menge in µl 

PCR-Produkt 1,0 

ExoSAP-IT 0,6 

destilliertes Wasser 3,4 

Summe 5,0 

 

100 bp-
Leiter

100 bp-
Leiter1.1 1.2 2 3 4 5 6 7 8 1.1 1.2 2 3 4 5 6 7 8

Negativkontrollen Kontroll-DNA

600 bp

400 bp

200 bp

100 bp

PCR-Produkte

Primer
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3.3.8 Sequenzierung nach Sanger 

Die Sanger-Sequenzierung zur Bestimmung der Nukleotidabfolge von DNA wurde von 

Frederick Sanger entwickelt, der dafür 1980 seinen zweiten Nobelpreis für Chemie 

erhielt (103). Sie beruht auf der Didesoxymethode, welche durch den Einsatz von ddNTP 

und dem dadurch verursachten Kettenabbruch gekennzeichnet ist (103). Zuerst wird 

eine Sequenzier-PCR durchgeführt, wobei nur ein Primer (Vorwärts- oder 

Rückwärtssequenz) verwendet und somit nur eine Richtung zur Synthese des neuen 

DNA-Stranges genutzt wird. Dabei können sowohl dNTP als auch ddNTP eingebaut 

werden, wobei der Einbau eines ddNTP (Terminator) zum Kettenabbruch führt, da die 

3´-Hydroxygruppe fehlt, an die weitere Nukleotide geknüpft werden. Auf diesem Weg 

entstehen unterschiedlich lange Fragmente, die für die Analyse allerdings 

gekennzeichnet werden müssen. Bei der Sanger-Sequenzierung kann dies 

grundsätzlich mithilfe von Radionukliden oder Fluoreszenzmarkern erreicht werden. In 

dieser Arbeit wurden Fluorophor-markierte ddNTP in der Sequenzier-PCR verwendet. 

Die Fluoreszenz wird in den Kapillaren eines Sanger-Sequenziergerätes durch einen 

Laserdetektor dokumentiert (103). 

Bevor das PCR-Produkt in das Sequenziergerät eingeladen wird, müssen überflüssige 

Terminatoren entfernt werden. Diese nicht eingebauten ddNTP könnten die Analyse der 

Probe stören, indem sie zu dye blobs, Bereiche mit unsauber abgebildeter Sequenz, 

führen. 

Zur Entfernung der Terminatoren wurde das PCR-Produkt mithilfe des 

Dye Ex 2.0 Spin Kits durch eine Aufreinigung mittels Silikagelsäule gesäubert. Die 

Gelsäule wurde mithilfe des Vibrationsmischers resuspendiert und anschließend für 

3 min bei 3000 rpm zentrifugiert, um überflüssiges Wasser zu entfernen. Anschließend 

wurde das Produkt der Sequenzier-PCR auf das Gel pipettiert und die Säule in einem 

Auffanggefäß bei 3000 rpm drei Minuten lang zentrifugiert. Das Eluat enthielt das 

gereinigte PCR-Produkt, während die überflüssigen ddNTP in den Poren des Gels 

zurückgehalten wurden.  

3.3.9 Nachweis von Einzelnukleotidpolymorphismen mittels 

allelspezifischer PCR 

Die allelspezifische PCR ist eine Methode, die es ermöglicht, verschiedene Allele durch 

PCR und nachfolgende Gelelektrophorese nachzuweisen. Dazu werden je Probe zwei 

PCRs mit verschiedene Vorwärtsprimern durchgeführt. Diese sind am 3´-Ende 

modifiziert, sodass die letzte Base entweder zum Wildtyp oder zur Variante 
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komplementär ist (104). Um die Spezifität der Vorwärtsprimer zu erhöhen, wird auch die 

vorletzte Base modifiziert, sodass ein Basenfehlpaarung entsteht. Da unterschiedliche 

Basenfehlpaarungen die Hybridisierung zwischen Primer und Template unterschiedlich 

stark destabilisieren, wird bei starker Basenfehlpaarung der letzten Base eine schwache 

Basenfehlpaarung der vorletzten Base gewählt und anders herum (105). Für beide PCR-

Ansätze wird derselbe Rückwärtsprimer verwendet und zudem wird ein Kontroll-

Primerpaar eingesetzt, welches an anderer Stelle bindet (104). Bei Homozygoten 

erwartet man entweder ein Produkt in der PCR mit dem wildtyp- oder mit dem 

variantenspezifischen Vorwärtsprimer. Bei Heterozygoten entstehen in beiden Fällen 

PCR-Produkte (Abbildung 5). Um die Spezifität des variantenspezifischen Primers zu 

testen, wurde eine Probe mit homozygotem Wildtypallel als Kontrolle sequenziert, wobei 

erwartet wurde, dass bei Einsatz des variantenspezifischen Primers kein PCR-Produkt 

entsteht. Die Spezifität des wildtypspezifischen Primers konnte nicht mithilfe einer Probe 

mit homozygotem Vorliegen der jeweiligen Variante getestet werden, da sich in der 

Studienpopulation keine Patient*innen mit diesem Genotyp befanden. Die verwendeten 

Primer sind in Tabelle 6 zusammengefasst. Um die Variante NM_001737:c.1427T>C, 

p.Ile476Thr in Exon 10 des C9-Gens darzustellen, wurden ein zweites Mal Primer 

designt, welche jedoch ebenfalls nicht zu einer allelspezifischen Amplifikation führten. 

Nach der Optimierung der PCR-Bedingungen wurde für NM_001710:c.1407C>G, 

p.Ile469Met in CFB das Programm Touchdown 61 °C und für NM_000064:c.2533G>A, 

p.Val845Met in C3 das Programm Touchdown 63 °C genutzt (Tabelle 3). Für alle 

anderen Varianten wurde das Programm 6030 (Tabelle 2) verwendet. Zur internen 

Kontrolle der Funktionsfähigkeit des PCR-Ansatzes wurde Exon 3 des VEGFA-Gens 

unter Nutzung der Primer VEGFA-e3-F und VEGFA-e3-R (Tabelle 1) mitamplifiziert. Die 

PCR-Produkte wurden mittels Agarosegelelektrophorese dargestellt.  
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Abbildung 5: Gelelektrophorese der allelspezifischen PCR der genetischen Variante 
NM_000632:c.1790G>A, p.Gly597Glu im ITGAM-Gen. Unter Einsatz des wildtypspezifischen 
Vorwärtsprimers kommt es sowohl bei A25, wo c.1790G>A heterozygote vorliegt, als auch bei 
A15, wo das G-Allel homozygot vorliegt, zu einer Amplifikation, erkennbar an der Bande bei ca. 
300 bp. Wird der variantenspezifische Primer eingesetzt, entsteht nur bei A25 ein PCR-Produkt 
von ca. 300 bp und bei Patient*in A15 lediglich das ca. 600 bp große Produkt der internen 
Kontrollprimer VEGFA-e3-F/R. Patient*in A15 trägt die genetische Variante somit nicht. In der 
Negativkontrolle ist bei Abwesenheit der zu amplifizierenden DNA kein PCR-Produkt entstanden. 
V: variantenspezifischer Vorwärtsprimer; W: wildtypspezifischer Vorwärtsprimer. 
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Tabelle 6: Primer der allelspezifischen PCR 

Primer Vorwärtssequenz Variante 

Vorwärtssequenz Wildtyp 

Rückwärtssequenz 

Amplikongröße 
(bp) 

MASP2-e3-
Fv/Fw/R 

5´-CCCGTGAACGGCTTCTCGTTGGAGTACC-3´ 

5´-CCCGTGAACGGCTTCTCGTTGGAGTACT-3´ 

5´-CCTGGGTCTTGCCTTCACTCCCTGTGAC-3´ 

194 

CFHR2-e4-
Fv/Fw/R 

5´-ATCAAATAACATGTAGAAACGGACAATGGTCGT-3´ 

5´-ATCAAATAACATGTAGAAACGGACAATGGTCGG-3´ 

5´-ATATAGACATTTGGTAGGCAAGCATTCAGCAGA-3´ 

185 

C9-e10-1-
Fv/Fw/R 

5´-TTCATTTTCACTGGAACCAGATTATAGG-3´ 

5´-TTCATTTTCACTGGAACCAGATTATAGA-3´ 

5´-TGATTGTTTAAAAGCTAACATCACATCT-3´ 

195 

C9-e10-2-
Fv/Fw/R 

5´-CATTTTTCATTTTCACTGGAACCAGATTATAGG-3´ 

5´-CATTTTTCATTTTCACTGGAACCAGATTATAGA-3´ 

5´-GACCTCCCTGATAGCAGTCATCTT-3´ 

233 

CFB-e22-
Fv/Fw/R 

5´-GGAAAACCTGGAAGATGTTTTCTACCAAATGAAG-3´ 

5´-GGAAAACCTGGAAGATGTTTTCTACCAAATGAAC-3´ 

5´-ATTCTAAGGTTAAGTGAACAGTGCCAGGAAAC-3´ 

207 

C5-e18-
Fv/Fw/R 

5´-CCACAACCAGCTTTCTGGAAAATAACTAT-3´ 

5´-CCACAACCAGCTTTCTGGAAAATAACTAC-3´ 

5´-GCACCCTGCCTATAATTCTATTTTGGAA-3´ 

227 

ITGAM-
e15-
Fv/Fw/R 

5´-GTGGGGGCCAGGACCTCACAATGGATCA-3´ 

5´-GTGGGGGCCAGGACCTCACAATGGATCG-3´ 

5´-GACTCTGACCTCTCCGGCTTCCTTGCCT-3´ 

289 

C3-e20-
Fv/Fw/R 

5´-TAATTGTAGAGAACGGCTCGGATTTCCCT-3´ 

5´-TAATTGTAGAGAACGGCTCGGATTTCCCC-3´ 

5´-CGTTTAGTTCACAGGCTTCAGCAAAGACA-3´ 

260 

3.3.10 Interpretation der pathogenetischen Relevanz der identifizierten 

genetischen Varianten 

Die zur Interpretation der identifizierten Sequenzvarianten genutzten ACMG-Kriterien 

berücksichtigen neben der Art der Mutation und der resultierenden Auswirkung auch 

Daten aus Genomdatenbanken, Literatur sowie Segregationsanalysen und Vorhersagen 

mittels in silico-Tools (92). Die Kriterien wurden manuell auf die identifizierten 

genetischen Varianten angewendet. Daraufhin wurden die Varianten anhand der 
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zutreffenden Kriterien einer von fünf Kategorien (pathogenic, likely pathogenic, uncertain 

significance, likely benign, benign) zugeordnet.  

Die europäischen Populationen des 1000-Genomprojektes (1000G) (Datensatz: 1000 

Genomes Project Phase 3; Population: EUR) sowie der Genomdatenbank Genome 

Aggregation Database (gnomAD) (106) (Datensatz: gnomAD v2.1.1, Population: 

European (non-Finnish)) wurden zur Einordnung der beobachteten Allelfrequenzen 

genutzt. Für die Bewertung der in silico-Evidenz wurden zur Pathogenitätsprädiktion von  

Missensevarianten neben dem SIFT-, CADD- und PolyPhen-2-Score auch die 

Bewertung durch die Prädiktionstools Rare Exome Variant Ensembl Learner (REVEL) 

(107) sowie Mutation Taster (108) genutzt. Zur Prädiktion eines möglichen Einflusses 

auf das Spleißen wurde SpliceAI genutzt (109). Die Konservierung wurde durch den 

phastCons- und den phyloP-Score abgebildet (110). Der phastCons-Score kann Werte 

von 0 bis 1 annehmen, wobei die Wahrscheinlichkeit, dass ein Nukleotid konserviert ist, 

umso höher ist, desto näher der Wert bei 1 liegt. Der phyloP-Score nimmt Werte von 

- 14 bis 6 an, wobei positive Werte eine Konservierung und negative Werte eine 

Akzeleration anzeigen.  

UniProt (111) lieferte Informationen über die Proteinsequenz und -struktur und diente 

zur Ermittlung, ob die Mutation innerhalb einer funktionellen Domäne lokalisiert ist. Die 

Datenbank Decipher (112) gab einen Überblick über benachbarte genetische Varianten 

und deren Phänotypassoziationen. Auch die Datenbank ClinVar (113) wurde verwendet, 

um bereits beobachtete Phänotypassoziationen der identifizierten Variante zu 

recherchieren. 

3.3.11 Statistische Methoden 

Um den Zusammenhang zwischen genetischen Varianten in VEGFA und der 

Entwicklung einer AMD zu betrachten, wurde zuerst die Verteilung der jeweiligen Allele 

und Genotypen auf Studienpopulation und Kontrollgruppe berechnet. Daraufhin wurden 

zur Betrachtung eines möglichen Zusammenhangs der Allele und Genotypen mit der 

Entwicklung einer AMD die Odds Ratio (OR) mit 95-%-Konfidenzintervall (95%-KI) und 

der p-Wert (114) mittels SPSS ermittelt. Dazu wurden die Fälle mit den Häufigkeiten 

gewichtet und eine binär-logistische Regression durchgeführt. Um die Abweichung vom 

Hardy-Weinberg-Equilibrium (HWE) für Studienpopulation und Kontrollgruppe zu 

betrachten, wurde der p-Wert der Abweichung der tatsächlichen Genotyphäufigkeit von 

der erwarteten Häufigkeit mittels Chi-Quadrat-Test ermittelt. Ebenso wurde die 

Verteilung der Allele und Genotypen auf Patient*innen mit stabilem Visus unter Anti-

VEGF-Therapie und Patient*innen mit einem Visusabfall von mehr als drei Zeilen und 
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damit schlechtem Ansprechen auf die Therapie mit VEGF-Inhibitoren betrachtet, um den 

Zusammenhang von VEGFA-Varianten und dem Therapieansprechen zu beurteilen. 

Auch hier wurden OR mit 95%-KI und p-Wert ermittelt. Da bei der Variante rs25648 in 

der Gruppe der Patient*innen mit gutem Therapieansprechen der Genotyp TT nicht 

auftrat, wurde hier für die Berechnung der OR eine Haldane-Anscombe-Korrektur 

angewendet. 

3.3.12 Sekundärstrukturanalyse und Proteinmodelle 

Für die identifizierten Missensevarianten wurde die Ausbildung von β-Faltblättern und α-

Helices mithilfe der Sekundärstrukturprädiktionstools PSIPRED (115), Jpred4 (116) und 

s2D (117) und der Modellierungsserver SWISS-MODEL (118) und I-TASSER (119) 

untersucht. Das Onlinetool 2Struc (120) wurde genutzt, um aus den 3D-Modellen die 

Sekundärstruktur zu generieren. Die Aminosäuresequenzen wurden von UniProt 

bezogen (Tabelle 7). Es wurde verglichen, ob für Wildtyp und Variante Unterschiede in 

der Sekundärstruktur vorhergesagt werden (Anhang 1).  

Mithilfe der 3D-Grafiksoftware PyMOL (Version 2.5.5) (121) wurden zudem 3D-Modelle 

der jeweiligen Proteine modifiziert, sodass sie den jeweiligen Aminosäureaustausch 

enthalten und bezüglich der Wasserstoffbrückenbindungen (Anhang 2) und 

Hydrophobizität (Anhang 3) mit dem Wildtyp verglichen werden können. Dabei wurde 

das Rotamer mit der höchsten Frequenz ausgewählt (Anhang 4). Ein Rotamer 

bezeichnet die Konformation der Seitenketten einer Aminosäure in einem Protein (122). 

Zudem wurde die Energie im Bereich von 5 Å um den Aminosäureaustausch minimiert, 

um die Konformation zu optimieren. Das jeweilige PDB-File, welches die Informationen 

über die dreidimensionale Struktur des Proteins enthält, wurde von der Proteinstruktur-

Datenbank AlphaFold (123,124) bezogen (Tabelle 7). 

Tabelle 7: Accession number in der Proteindatenbank UniProt und Identifier des 
Proteinstrukturmodells 

Protein UniProt accession number Identifier 

MASP-2 O00187 AF-O00187-F1 

C9 P02748 AF-P02748-F1 

Faktor B P00751 AF-P00751-F1 

C5 P01031 AF-P01031-F1 

Integrin α-M P11215 AF-P11215-F1 

C3 P01024 AF-P01024-F1 
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4 Ergebnisse  

4.1 Identifizierung von zwei VEGFA-Varianten in der 

Studienpopulation 

In der Gruppe der AMD-Betroffenen wurden insgesamt zwei Abweichungen von der 

Referenzsequenz des VEGFA-Gens (Transkript NM_003376.6) identifiziert (Abbildung 

6, Tabelle 8). Die synonyme Variante c.534C>T, p.Ser178= (rs25648) und die 

intronische Variante c.856-28C>T (rs3025000) wurden jeweils sowohl hetero-, als auch 

homozygot detektiert. Die Varianten sind nicht in den funktionellen Proteindomänen von 

VEGF-A lokalisiert. Diese sind eine Platelet-derived growth factor (PDGF)-Domäne zur 

Rezeptorbindung sowie, bei Heparin bindende Isoformen von VEGF-A, eine C-terminale 

Heparinbindungsdomäne, die die Bindung an die Rezeptoren moduliert und relevant für 

die Endothelzellproliferation ist (125,126). Beide Varianten wurden in der 

Populationsdatenbank gnomAD bereits beschrieben (T = 0,1668 bzw. T = 0,3060; 

v2.1.1) und auch in der Gruppe der Individuen ohne AMD jeweils hetero- und homozygot 

nachgewiesen.  

 

Abbildung 6: Schematische Darstellung des VEGFA-Gens mit den in der AMD-
Patient*innen-Gruppe identifizierten Varianten. Als blaue Balken sind die 8 Exons des 
VEGFA-Gens sowie die untranslatierten Regionen (abgeflachte Balken) dargestellt. Zudem sind 
am Transkript NM_003376.6 (grau) die funktionellen Proteindomänen (grün) PDGF und VEGF_C 
gezeigt.  
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Tabelle 8: Gegenüberstellung der identifizierten VEGFA-Varianten und des Visus. 
Dargestellt sind die beiden im Patient*innenkollektiv festgestellten Varianten des VEGFA-Gens 
gegenüber dem Therapieansprechen (stabiler Visus oder Visusabfall unter Therapie mittels 
VEGF-Inhibitor). Die Spalten 3 und 4 zeigen den Genotyp der Varianten c.856-28C>T und 
c.534C>T, p.Ser178=. 

Patient*in Visus Genotyp 
c.856-28C>T 

Genotyp 
c.534C>T 

A1 stabil CC CC 

A2 stabil CC CC 

A3 abfallend TT CC 

A4 abfallend TT CC 

A5 abfallend CC CC 

A6 stabil TT CC 

A7 abfallend CT CC 

A8 abfallend CC CC 

A9 stabil TT CC 

A10 stabil CC CT 

A12 stabil TT CC 

A13 abfallend CC CC 

A14 abfallend CT CC 

A15 abfallend CT CC 

A16 abfallend CC TT 

A19 stabil CC CC 

A23 abfallend CT CC 

A24 abfallend CC CC 

A25 stabil CT CC 

Zudem wurden die Varianten mit der höchsten prädiktierten Pathogenität aus der NGS-

Panel-Analyse ausgewählt. Die sieben Varianten konnten mittels allelspezifischer PCR 

bzw. Sanger-Sequenzierung verifiziert werden. Alle sieben Veränderungen sind im 

Exonbereich gelegene, nicht-synonyme Varianten, die jeweils bei einem Individuum 

aus der Gruppe der AMD-Betroffenen heterozygot nachgewiesen wurden. Sechs 

Varianten sind Missensevarianten und wiesen einen SIFT-Score < 0,05 (deleterious), 

einen PolyPhen-2-Score > 0,908 (probably damaging) und einen CADD-Score > 20 auf 

und erhielten somit 3 Punkte im daraus gebildeten Score für die größte prädiktierte 

pathogenetische Relevanz. Zudem wurde die Variante NM_005666:c.595G>T, 

p.Glu199Ter im CFHR2-Gen zur weiteren Auswertung ausgewählt. Diese Variante 

erhielt keinen SIFT- und PolyPhen-2-Score, da diese Tools Missensevarianten 

aufgrund der verursachten Aminosäuresubstitution beurteilen. Die Variante c.595G>T, 

p.Glu199Ter führt durch den Basenaustausch jedoch zu einem Stoppcodon. Da eine 

solche Nonsensevariante zu einem verkürzten Protein oder dem vorzeitigen Abbau der 

mRNA führt, wurde sie trotzdem zur weiteren Auswertung ausgewählt. Weitere 

Nonsensevarianten wurden in der Studienpopulation nicht nachgewiesen. Bereits 
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eindeutig als Risikovarianten für die Entwicklung einer AMD beschriebene Varianten, 

wie die Hauptrisikovariante NM_000186.4:c.1204T>C, p.Tyr402His im CFH-Gen, 

wurden in dieser Studienpopulation nicht detektiert. Die in silico-Prädiktionen der 

ausgewählten Varianten des NGS-Panels durch die drei Tools SIFT, PolyPhen-2 und 

CADD sowie durch Mutation Taster und die Konservierung sind in Tabelle 9 

dargestellt.  

Tabelle 9: Mittels NGS-Panel der Gene des Komplementsystems identifizierte Varianten in 
der Studienpopulation. SIFT (S): < 0,05: deleterious; PolyPhen-2 (P): > 0,908: probably 
damaging; C: CADD; Mutation Taster (MT): B: benign, D: deleterious; phastCons (phast): 0 
(nicht konserviert) – 1 (konserviert); phyloP (phylo): - 14 (Akzeleration) – 6 (Konservierung). 

Gen Variante 
kodierende DNA 
Protein 

Score NGS-Varianten MT Konservierung 

  S P C  phast phylo 

MASP2 NM_006610:c.359A>G 
p.Asp120Gly 

0,01 0,993 28,8 D 1 4,502 

CFHR2 NM_005666:c.595G>T 
p.Glu199Ter 

/ / 35,0 B 0,005 -0,158 

C9 NM_001737:c.1427T>C 
p.Ile476Thr 

0,00 0,950 26,8 B 0,976 3,883 

CFB NM_001710:c.1407C>G 
p.Ile469Met 

0,02 0,972 22,8 D 0,991 -0,101 

C5 NM_001735:c.2297G>A 
p.Arg766Gln 

0,01 0,998 28,5 D 1 4,469 

ITGAM NM_000632:c.1790G>A 
p.Gly597Glu 

0,00 0,998 25,1 B 0,995 2,206 

C3 NM_000064:c.2533G>A 
p.Val845Met 

0,00 1,000 26,7 B 1 1,44 

4.2 Bewertung der Varianten im VEGFA-Gen  

4.2.1 Variante c.534C>T, p.Ser178=: kein Einfluss auf die Proteinsequenz 

Die Substitution c.534C>T, p.Ser178= (rs25648) befindet sich im ersten Exon bzw. der 

5´-UTR und wurde bei zwei Patient*innen festgestellt. Die Veränderung ist synonym und 

führt folglich zu keinem Austausch des an dieser Stelle befindlichen Serins. In der 

Studienpopulation trägt Patient*in A10 die Veränderung heterozygot und Patient*in A16 

homozygot (Abbildung 7). Die ermittelten Allelfrequenzen von rs25648 zeigten einen 

niedrigeren Anteil des T-Allels in der Gruppe mit AMD verglichen mit der Kontrollgruppe 

ohne AMD (OR T gegenüber C = 0,277; 95%-KI = 0,076 – 1,016; p = 0,053) 

(Tabelle 10). Die Genotypen CT und TT zusammen waren in der Kontrollgruppe häufiger 

(OR = 0,147; 95%-KI = 0,030 – 0,733; p = 0,019) (Tabelle 10). Der Genotyp TT wurde 

in der Gruppe mit AMD und der Kontrollgruppe jeweils nur einmal detektiert (Tabelle 10). 

Die Verteilung der Genotypen zeigte in der Gruppe mit AMD keine Übereinstimmung mit 

dem HWE (Tabelle 10). 
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Abbildung 7: Elektropherografische Darstellung der Basenabfolge des Rückwärtsstranges 
im ersten Exon des VEGFA-Gens. Patient*in A10 ist heterozygot für c.534C>T (Genotyp CT), 
Patient*in A16 trägt das Minorallel homozygot (Genotyp TT) und Patient*in A8 trägt homozygot 
das Majorallel (Genotyp CC). 

Tabelle 10: Verteilung der Allele und Genotypen der Varianten c.534C>T, p.Ser178= und 
c.856-28C>T und Assoziation mit der Entwicklung einer AMD. p-Wert HWE: p-Wert der 
Abweichung vom HWE; OR: Odds Ratio; 95%-KI: 95-%-Konfidenzintervall.  

 

Anhand der ACMG-Kriterien ist diese Variante als benigne einzuordnen, da die Frequenz 

des T-Allels mit etwa 17 % in gnomAD und 1000G in Europa hoch ist. Zudem handelt es 

sich um eine synonyme Variante, die das Spleißen voraussichtlich nicht beeinflusst und 

C T

T T

C C

A16

A10

A8

OR mit 95%-KI p-Wert

genetische Variante gnomAD * AMD keine AMD

c.534C>T Allel

(rs25648) C 83,3 92,1 (35) 76,4 (55)

T 16,7 7,9 (3) 23,6 (17)

Genotyp

CC 69,4 89,5 (17) 55,6 (20)

CT 27,9 5,3 (1) 41,7 (15)

TT 2,7 5,3 (1) 2,8 (1)

p-Wert HWE

0,005 0,352

c.856-28C>T Allel

(rs3025000) C 69,4 60,5 (23) 72,2 (52)

T 30,6 39,5 (15) 27,8 (20)

Genotyp

CC 48,0 47,4 (9) 50,0 (18)

CT 42,8 26,3 (5) 44,4 (16)

TT 9,2 26,3 (5) 5,6 (2)

p-Wert HWE

0,050 0,518

Häufigkeit in % (n)

0,277                        

(0,076 - 1,016)

1,696               

(0,739 - 3,889)

6,071                                          

(1,051 – 35,077)                         

TT vs. CC/CT

0,044

0,053

0,147                             

(0,030 – 0,733)                         

CT/TT vs. CC

0,019

1,944                           

(0,115 – 32,933)                                 

TT vs. CC/CT

0,645

0,212

1,111                                  

(0,365 – 3,380)                        

CT/TT vs. CC

0,853
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sich nicht an einer stark konservierten Position befindet (phyloP = 0,604). Unterstützt 

wird die benigne Klassifizierung auch durch die benigne Bewertung durch in silico-Tools. 

4.2.2 Intronische Variante c.856-28C>T  

Die intronische Variante c.856-28C>T (rs3025000) konnte bei fünf Patient*innen (A3, 

A4, A6, A9, A12) homozygot und bei weiteren fünf (A7, A14, A15, A23, A25) heterozygot 

nachgewiesen werden (Abbildung 8). Die Häufigkeit des Minorallels T beträgt in der 

Gruppe mit AMD 0,395 und liegt somit etwas über der europäischen 

Vergleichspopulationen (1000G: 0,290; gnomAD: 0,306). Das T-Allel ist in dieser Studie 

in der Gruppe mit AMD häufiger (OR T gegenüber C = 1.696; 95%-KI = 0,739 – 3,889; 

p = 0,212). Der Anteil des Genotyp TT war ebenfalls in der Gruppe der von AMD 

Betroffenen größer (OR = 6,071; 95%-KI = 1,051 – 35,077; p = 0,044). Auch die 

Genotypen CT und TT zusammen wiesen eine höhere Frequenz in der AMD-Gruppe auf 

(OR = 1,111; 95%-KI = 0,365 – 3,380; p = 0,853). Die Verteilung der Allele und 

Genotypen sowie die Assoziation mit der Entwicklung einer AMD sind in Tabelle 10 

dargestellt. Die Variante ist nach ACMG als benigne Variante einzuordnen, da sie in 

europäischen Vergleichspopulationen sehr häufig nachgewiesen wurde und auch die in 

silico-Evidenz für Benignität spricht.   

 
Abbildung 8: Elektropherografische Darstellung der Basenabfolge des Rückwärtsstranges 
im Intronbereich upstream von Exon 4 des VEGFA-Gens. Patient*in A7 ist heterozygot für 
c.856-28C>T (Genotyp CT), Patient*in A3 trägt das Minorallel homozygot (Genotyp TT) und 
Patient*in A1 trägt homozygot das Majorallel (Genotyp CC). 
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4.3 Ansprechen auf die Therapie mittels VEGF-Inhibitoren 

In der Gruppe der AMD-Betroffenen sprachen 8 Patient*innen auf die Anti-VEGF-

Therapie an, während 11 Patient*innen nicht ausreichend ansprachen. Die Einteilung 

erfolgte dabei anhand des Dezimalvisus unter Therapie. Die Patient*innen wurden in 

solche mit stabilem Visus und mit Visusabfall unter Therapie eingeteilt, wobei ein 

Visusabfall einen Verlust von mehr als drei Zeilen bedeutete. Das Minorallel T der 

VEGFA-Variante rs25648 wurde einmal (6,3 %) in der Gruppe der Patient*innen mit 

stabilem Visus und zweimal (9,0 %) in der Gruppe mit Visusabfall unter Therapie 

nachgewiesen (OR: 0,667; 95%-KI = 0,055 – 8,057; p = 0,750) (Tabelle 11). In der 

Gruppe mit stabilem Visus trägt Patient*in A10 die Variante heterozygot (CT). Patient*in 

A16 aus der Gruppe mit stabilem Visus unter Therapie trägt den Genotyp TT und somit 

die Variante rs25648 homozygot. Alle anderen Patient*innen beider Gruppen weisen die 

Variante nicht auf.  

Das T-Allel der zweiten in der Studienpopulation identifizierten Variante, rs3025000, 

wurde siebenmal (43,8 %) in der Gruppe der Patient*innen mit stabilem Visus und 

achtmal (36,4 %) in der Gruppe mit Visusabfall unter Therapie festgestellt (OR: 1,361; 

95%-KI = 0,365 – 5,072; p = 0,646) (Tabelle 11). Der heterozygote Genotyp CT wurde 

einmal (12,5 %) in der Gruppe mit stabilem Visus nachgewiesen und 3 Patient*innen 

(37,5 %) wiesen in dieser Gruppe die Variante homozygot (TT) auf. Bei den 

Patient*innen mit Visusabfall trotz Anti-VEGF-Therapie trat der Genotyp CT viermal 

(36,4 %) und der Genotyp TT zweimal (18,2 %) auf (Tabelle 11).  

Tabelle 11: Verteilung der Allele und Genotypen der VEGFA-Varianten auf Patient*innen 
mit stabilem Visus bzw. Visusabfall unter Therapie mit VEGF-Inhibitoren. OR: Odds Ratio; 
95 % KI: 95-%-Konfidenzintervall. 

 

OR mit 95%-KI p-Wert

genetische Variante Visus stabil Visusabfall

c.534C>T Allel

(rs25648) C 93,8 (15) 90,9 (20)

T 6,3 (1) 9,0 (2)

Genotyp

CC 87,5 (7) 90,9 (10)

CT 12,5 (1) 0,0 (0)

TT 0,0 (0) 9,1 (1)

c.856-28C>T Allel

(rs3025000) C 56,3 (9) 63,6 (14)

T 43,8 (7) 36,4 (8)

Genotyp

CC 50,0 (4) 45,5 (5)

CT 12,5 (1) 36,4 (4)

TT 37,5 (3) 18,2 (2)

Häufigkeit in % (n)

0,667                           

(0,055-8,057)
0,750

0,700                

(0,037-13,179)                      

CT/TT vs. CC

0,812

0,370                         

(0,046-3,015)        

TT vs. CC/CT

0,353

2,429               

(0,087-67,573)                   

TT vs. CC/CT

0,601

1,361              

(0,365-5,072)
0,646

1,200                

(0,194-7,441)    

CT/TT vs. CC

0,845
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4.4 Bewertung der Varianten der NGS-Genpaneldiagnostik 

4.4.1 Die Veränderung c.359A>G, p.Asp120Gly betrifft die CUB-Domäne des 

MASP2-Gens 

Patient*in A13 wies die heterozygote Substitution NM_006610:c.359A>G, p.Asp120Gly 

(rs72550870) im MASP2-Gen auf (Abbildung 9). Der Austausch von T gegen C führt 

dabei zu einem Ersatz der sauren Aminosäure Asparaginsäure durch das neutrale 

Glycin an Aminosäureposition 120. Die Häufigkeit des C-Allels beträgt in Europa 0,039 

(1000G). PhastCons- (1) und phyloP-Score (4,502) sprechen für eine starke 

Konservierung an der Position dieses Basenaustausches. Die betroffene Aminosäure ist 

ebenfalls stark konserviert. Dies erhöht die Wahrscheinlichkeit, dass Varianten an dieser 

Stelle schlechter toleriert werden und spricht für eine mögliche Auswirkung auf 

Proteinebene, was auch durch funktionelle Studien unterstützt wird. In vitro wurde eine 

Beeinträchtigung der Bildung von MBL-MASP-2-Komplexen und somit eine veränderte 

Proteinfunktion durch die Variante nachgewiesen (128,129). Die Variante befindet sich 

in der funktionell wichtigen CUB1-Domäne. In der Literatur wurde diese Variante bei 

Patient*innen mit Immundefizienz nachgewiesen (128,130). Jedoch sind auch gesunde 

Träger*innen der Variante berichtet worden (130–132). Die Variante ist in der Datenbank 

ClinVar enthalten. Das G-Allel wurde bezüglich MASP-2-Defizienz zweimal als likely 

pathogenic und je einmal als pathogenic und als Variante unklarer Signifikanz (VUS) 

klassifiziert. Anhand der ACMG-Kriterien kann die Variante als likely pathogenic 

eingeordnet werden.  
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Abbildung 9: Darstellung der allelspezifischen PCR zum Nachweis von 
NM_006610:c.359A>G, p.Asp120Gly mittels Gelelektrophorese. Unter Einsatz des 
wildtypspezifischen Vorwärtsprimers entsteht bei A13 und bei A15 ein ca. 200 bp großes Produkt, 
während bei Verwendung des variantenspezifischen Primers nur bei A13 ein entsprechendes 
PCR-Produkt entsteht. Somit trägt A13 die Variante c.359A>G in MASP2 heterozygot während 
A15 die Variante nicht trägt. 

4.4.2 Vorzeitiges Stoppcodon durch c.595G>T, p.Glu199Ter im CFHR2-Gen 

Die Substitution NM_005666:c.595G>T, p.Glu199Ter (rs41257904), welche bei 

Patient*in A10 vorlag, führt zur Entstehung eines neuen Stoppcodons (TAA) und ist 

somit eine Nonsensevariante (Abbildung 10). Das resultierende Protein wäre stark 

trunkiert: Das Stoppcodon befände sich bereits an Position 597 statt 813 und es würde 

zum teilweisen bzw. vollständigen Verlust der für die C3b-Bindung wichtigen Domänen 

SCR 3 und SCR 4 kommen (133). Da stark verkürzte mRNA wesentlich stärker abgebaut 

wird (nonsense-mediated mRNA decay; NMD), um Schäden durch trunkierte Proteine 

zu vermeiden (134,135), ist es möglich, dass die mRNA nicht translatiert wird. 

Insbesondere bei einem vorzeitigen Stoppcodon mindestens 50 bp upstream der letzten 

Exon-Exon-Grenze, kann ein NMD ausgelöst werden (136). Da c.595G>T, p.Glu199Ter 

weniger als 50 bp vor der letzten Exon-Exon-Grenze liegt, wäre es möglich, dass die 

mRNA bei Vorliegen dieser Variante dem NMD entgeht. Dies entspricht auch der 

Prädiktion durch Mutation Taster. Mittels funktioneller Untersuchungen konnte jedoch 

gezeigt werden, dass bei Vorliegen der Variante kein Protein synthetisiert wird, da die 

Variante zu einem Verlust der Proteindomäne SCR 4 führt (137). Individuen, welche die 

Variante tragen, wiesen eine verminderte Serumkonzentrationen von FHR2 auf 

(38,137). Die Variante führt somit zu einem Funktionsverlust, jedoch sind in der 

Datenbank ClinVar keine pathogenen Varianten, die zu einem Funktionsverlust führen, 

hinterlegt. 
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Abbildung 10: Transkript NM_005666 von CFHR2. Im Ausschnitt der Sequenz des vierten 
Exons ist die Variante c.595G>T rot markiert. Der Austausch von G gegen T führt zum 
Stoppcodon TAA. Die Variante betrifft die funktionellen Domänen SCR 3 und SCR 4 des FHR2-
Proteins.  

Diese Variante kann aufgrund des resultierenden vorzeitigen Stoppcodons und den 

resultierenden funktionellen Konsequenzen als pathogenic klassifiziert werden.  

4.4.3 Heterozygote Veränderung c.1427T>C, p.Ile476Thr im C9-Gen  

Die Missense-Variante NM_001737:c1427T>C, p.Ile476Thr (rs141645272) führt zu 

einem Austausch von Isoleucin gegen Threonin an der Aminosäureposition 476. 

Patient*in A19 trägt diese Variante heterozygot. Sie befindet sich in der MAC/Perforin-

Domäne (MACPF-Domäne), welche funktionell wichtig für die Lyse von 

Krankheitserregern durch den Membranangriffskomplex ist (138). Jedoch gibt es keine 

eindeutigen Anhaltspunkte durch funktionelle Studien, Datenbanken oder in silico-

Analysen, ob diese Variante als benigne oder pathogene Variante einzuordnen ist, 

weshalb laut ACMG-Kriterien eine Variante unklarer Signifikanz vorliegt.  

Die Variante rs141645272 ist selten. Die Frequenz des C-Allels beträgt in Europa 0,0022 

(gnomAD) und ist in anderen Populationen noch niedriger. In der Datenbank ClinVar ist 

die Variante bereits einmal als likely benign aufgeführt, jedoch ohne Spezifizierung eines 

Phänotyps. 

4.4.4 Potenzielle Schwächung des Spleißdonors durch  c.1407C>G, 

p.Ile469Met im CFB-Gen 

Die Variante NM_001710:c.1407C>G, p.Ile469Met (rs201798809), welche bei Patient*in 

A1 nachgewiesen wurde, betrifft das vorletzte Nukleotid von Exon 10 des CFB-Gens und 

liegt damit innerhalb der letzten Aminosäure, sodass ein möglicher Einfluss auf das 

Spleißen bedacht werden muss. Basierend auf dem MaxEntScan-Modell, welches auf 

SCR 1

1 2 3 4 5
CFHR2

Chromosom 1
196 935 K 196 945 K 196 955 K 196 965 K

Exone

5 - A G A A A C G G A C A A T G G T C A T A A C C A C C A A A A T G C T T A G - 3 

SCR 2 SCR 3 SCR 4Domänen

Exon-Grenze c.613c.595
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dem Prinzip der maximalen Entropie aufbaut (139), wird eine Schwächung des 

Spleißdonors prädiktiert. SpliceAI sagt wiederum keinen Einfluss auf das Spleißen 

vorher. Laut Uniprot befindet sich die Veränderung in der von-Willebrand-Faktor-A-

Domäne (vWF-A-Domäne), welche in die Ligandenbindung von Faktor B involviert ist 

(140). 

Das von der Variante betroffene Nukleotid ist selbst nicht konserviert (phyloP: - 0,101), 

aber befindet sich in einem konservierten Element (phastCons: 0,991). Die Frequenz 

beträgt in der europäischen Population 0,0002 in gnomAD und 0,001 laut dem 1000-

Genomprojekt, wobei das G-Allel in der europäischen Population am häufigsten 

vorkommt und in den meisten anderen Populationen gänzlich fehlt. Die Variante ist als 

seltene Variante zu betrachten. Mutation Taster annotiert rs201798809 als pathogene 

Variante. Insgesamt ist rs201798809 nach den ACMG-Guidelines eine VUS. 

Laut ClinVar wurde das G-Allel bereits für den Phänotyp atypisches Hämolytisch-

Urämisches Syndrom (aHUS) (MIM# 612924), einer durch Komplementüberaktivierung 

verursachten Erkrankung (141), einmal likely benign und einmal als VUS klassifiziert. 

Bezüglich Makuladegeneration wurde das G-Allel ebenfalls als VUS klassifiziert. 

4.4.5 Seltene Varianten unklarer Signifikanz im C5- und ITGAM-Gen 

Bei Patient*in A3 wurde die C5-Variante NM_001735:c.2297G>A, p.Arg766Gln 

(rs758933855) heterozygot nachgewiesen. Aus der Proteindatenbank Uniprot wird 

ersichtlich, dass sich die Veränderung in keiner bekannten, funktionell gut untersuchten 

Domäne von C5 befindet. Die Variante rs758933855 ist nach den ACMG-Guidelines eine 

VUS, da zu wenig Evidenz für Pathogenität oder Benignität vorliegt. Das A-Allel ist in 

gnomAD v2.1.1 nicht vorhanden.  

Die Variante NM_000632:c.1790G>A, p.Gly597Glu (rs199700282) in ITGAM wurde bei 

Patient A25 heterozygot nachgewiesen. Die Frequenz des A-Allels beträgt in Europa 

0,0001168 (gnomAD), während es in anderen Populationen in gnomAD nur ein weiteres 

detektiert wurde. Die Variante ist nicht in der Literatur beschrieben. Zudem sind auch 

keine funktionellen Auswirkungen oder Phänotypassoziationen benachbarter Varianten 

beschrieben.  
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4.4.6 Bisher nicht beschriebene Variante c.2533G>A, p.Val845Met im C3-

Gen 

Auch NM_000064:c.2533G>A, p.Val845Met, eine C3-Variante, die bei Patient*in A12 

heterozygot vorliegt ist aufgrund fehlender Evidenz eine VUS. Sie ist in der 

Populationsdatenbank gnomAD (Datensatz: gnomAD v2.1.1) und im 1000-

Genomprojekt (Datensatz: 1000 Genomes Project Phase 3) nicht vorhanden. 

Nach Decipher befinden sich in derselben Domäne weitere Varianten, welche mit aHUS 

in Verbindung gebracht werden. An Aminosäureposition 844 befindet sich die 

Missensevariante c.2531A>G, p.Gln844Arg, dessen C-Allel als likely pathogenic für 

aHUS mit C3-Anomalie (MIM# 612925) klassifiziert wurde. Die Nonsensevariante 

c.2562C>G, p.Tyr854Ter ist ein Risikofaktor für denselben Phänotyp. 

4.5 Proteinmodelle der Missensevarianten  

4.5.1 Position der Variante im jeweiligen Protein 

Asp120Gly in MASP-2: Die an Aminosäureposition 120 befindliche Asparaginsäure 

stellt eine Bindungsstelle für Ca2+ dar. Da Asp120Gly sowie der Austausch der 

benachbarten Residuen Tyrosin an den Positionen 74 und 121, Glutaminsäure an den 

Positionen 98 und 124 und Asparaginsäure an Position 75 gegen Alanin zu fehlender 

oder sehr schwacher Bindung an MBL führt, ist diese Region wahrscheinlich für die 

Bindung an MBL und Ficoline verantwortlich (142). Asp120 und Asp75 sind dabei 

wahrscheinlich nicht direkt in die Interaktion involviert, sondern binden, zusammen mit 

Glu67, Ser122, Asn123 und einem Wassermolekül, ein Ca2+-Ion und stabilisieren 

darüber die Bindungsstelle für MBL und Ficoline (142). Die Mutation von Asparaginsäure 

zu Glycin an Position 120 könnte daher über die Destabilisierung der Ca2+-Bindung zum 

Verlust der Fähigkeit zur Bindung von MBL und Ficolinen führen (142). 

Ile476Thr in C9: Diese Variante betrifft die MACPF-Domäne. Es wird vermutet, dass 

die meisten vom Monomer zur Pore führenden Konformationsänderungen von C9 in 

dieser Domäne stattfinden (143,144). 

Ile469Met im Faktor B: Die vWF-A-Domäne besteht, homolog zur Integrin αM A-

Domäne, aus β-Faltblättern, welche von α-Helices flankiert werden (145). Ile469 befindet 

sich in der C-terminalen Helix der Domäne, die sich bei den Integrinen nach 

Ligandenbindung nach unten verlagert (146). Die Interaktion von an C3b gebundenem 

Faktor B (C3bB) mit Faktor D führt zu einer Konformationsänderung und Entwindung der 

C-terminalen Helix und schließlich zur Bindung von Faktor D und Bildung der C3-
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Konvertase des alternativen Wegs (140). Jedoch kann auch ohne Faktor D eine aktive 

C3-Konvertase entstehen (145). Analog zur Integrin αM A-Domäne könnte dies durch 

eine Verlagerung der C-terminalen Helix nach unten durch die Bindung von C3b 

ermöglicht werden (145,146). Die daraus resultierende funktionelle Bedeutung der C-

terminalen Helix der vWF-A-Domäne für die Komplementaktivierung über den 

alternativen Weg könnte durch Ile469Met beeinflusst werden. 

Die Varianten Arg766Gln in C5, Gly597Glu im Integrin α-M und Val845Met in C3 

betreffen keine funktionell abgrenzbare Proteindomäne, was jedoch einen Einfluss auf 

das Protein nicht ausschließt. 

4.5.2 Sekundärstrukturanalyse 

Die Variante Asp120Gly in MASP-2 befindet sich am Übergang eines β-Faltblattes in 

einen Random Coil, also einer strukturell flexiblen Region ohne erkennbare 

Sekundärstruktur. Die Sekundärstruktur wird durch die Mutation voraussichtlich nicht 

verändert. Ile476Thr in C9 befindet sich in einer α-Helix und Val845Met in C3 liegt in 

einem β-Faltblatt. In beiden Fällen kommt es durch die Mutation, laut Prädiktion, 

ebenfalls nicht zu einer Beeinflussung der Sekundärstruktur. Die Varianten Arg766Gln 

(C5) und Gly597Glu (Integrin α-M) befinden sich laut Vorhersage in einem Random Coil, 

was durch die Mutation nicht beeinflusst wird. Ile469Met im Komplementfaktor B liegt 

am Übergang einer α-Helix zu einem Random Coil. Das Tool PSIPRED prädiktiert bei 

Vorhandensein von Isoleucin an Aminosäureposition 469 eine α-Helix, bei 

Vorhandensein von Methionin einen Random Coil (Abbildung 10), wobei zu beachten 

ist, dass sich die α-Helix an dieser Stelle ohnehin in einen Random Coil auflöst. Zur 

Validierung wurde die Analyse dennoch auf das Sekundärstrukturprädiktionstool 

SCRATCH (147) und die Modellierungsserver GalaxyWeb (148) und Robetta (149) 

erweitert. Die Vorhersagen aller anderen Tools, außer PSIPRED, zeigten keinen 

Unterschied in der Sekundärstruktur zwischen Isoleucin oder Methionin an Position 469 

(Abbildung 10). Aufgrund der hohen Beweglichkeit von Random Coils können kurzzeitig 

auch Sekundärstrukturen auftreten, die dann jedoch nicht dauerhaft bestehen bleiben. 
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Abbildung 11: Ausschnitt der Sekundärstrukturvorhersage von Faktor B an Position 469. 
Laut der Vorhersage von PSIPRED geht die α-Helix bei Vorliegen von Methionin in ein β-Faltblatt 
über und ab Position 469 liegt ein Random Coil vor. Die anderen Tools zeigen keine Änderung 
der Sekundärstruktur durch Ile469Met. S (gelb): β-Faltblatt; H (rot): α-Helix; weiß: Random Coil; 
grün markiert: Position der Variante. 

4.5.3 3D-Modelle 

Die mit dem jeweiligen Aminosäureaustausch modifizierten Proteinmodelle wurden 

hinsichtlich der Wasserstoffbrückenbindungen (Anhang 2) und Hydrophobizität 

(Anhang 3) mit dem Wildtyp verglichen, da nichtkovalente Bindungen wie 

Wasserstoffbrückenbindungen und hydrophobe Effekte zur Stabilität der 

dreidimensionalen Struktur von Proteinen beitragen und die Interaktion mit anderen 

Molekülen ermöglichen (150). Der Verlust oder Gewinn von Salzbrücken oder 

Wasserstoffbrückenbindungen kann durch die Beeinflussung der lokalen Struktur 

krankheitsverursachend sein, selbst wenn die freie Enthalpie (ΔG) nicht verändert wird 

(150). Asp120Gly ragt in die Oberfläche von MASP-2 hinein und könnte zum Verlust 

einer Wasserstoffbrückenbindung führen (Abbildung 12) sowie die Hydrophobizität 

steigern (Abbildung 13). Hydrophobe Interaktionen und Wasserstoffbrückenbindungen 

spielen auch bei der Dimerbildung von MASP-2 eine Rolle und sind innerhalb der 

Proteinfamilie an der Oberfläche zwischen den Monomeren konserviert (142).  

 

AA-Position 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
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Abbildung 12: Ausschnitt aus MASP-2 im 3D-Modell mit Darstellung der 
Wasserstoffbrückenbindungen von Asp120. (A) Wildtyp mit Wasserstoffbrückenbindungen 
von Asp120 zu Ser122, Asp42 und Asp75. (B) Durch die Substitution von Asparaginsäure gegen 
Glycin geht die Wasserstoffbrückenbindung zu Ser122 verloren. Die 
Wasserstoffbrückenbindungen zu Asp42 und Asp75 bleiben unverändert. 

 

Abbildung 13: Ausschnitt aus der grafischen Darstellung der Hydrophobizität von MASP-2 
im 3D-Modell. Asp120 ist Teil der Proteinoberfläche. Die Hydrophobizität wurde mittels des 
Skriptes "Color h" in PyMol nach der normalisierten Eisenberg-Konsensusskala (151) dargestellt. 
Je stärker die Rotfärbung, umso stärker ist die Hydrophobizität. (A) Dargestellt ist die schwache 
Hydrophobizität, wenn sich an Position 120 Asparaginsäure befindet. (B) Es zeigt sich eine leichte 
Zunahme der Hydrophobizität bei einer Substitution gegen Glycin. 

Auch die nachgewiesenen Mutationen in C9 und C5 könnten die lokalen nichtkovalenten 

Kräfte beeinflussen. Ile476Thr in C9 schwächt die Hydrophobizität (Abbildung 14) und 

bewirkt im Modell eine zusätzliche Wasserstoffbrückenbindung (Abbildung 15), was sich 

auf die Funktionalität der MACPF-Domäne auswirken kann.  

 

MASP-2
BA

MASP-2
A B
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Abbildung 14: Ausschnitt aus der grafischen Darstellung der Hydrophobizität von C9 im 
3D-Modell. Ile476 befindet sich im Kern von C9. Ein Teil der Oberfläche ist nach der 
Hydrophobizität der dort befindlichen Aminosäuren eingefärbt und im Hintergrund dargestellt. 
Ile476Thr ragt nicht in die Oberfläche. (A) Darstellung der starken Hydrophobizität durch Isoleucin 
an Position 476. (B) Abnahme der Hydrophobizität durch den Austausch gegen Threonin.  

 

Abbildung 15: Ausschnitt aus C9 im 3D-Modell mit Darstellung der 
Wasserstoffbrückenbindungen von Ile476. (A) Isoleucin an der Aminosäureposition 476 bildet 
Wasserstoffbrückenbindungen zu Leu479 und Thr344. (B) Durch Ile476Thr entsteht zusätzlich 
zu diesen Wasserstoffbrückenbindungen eine weitere zu Gly343. 

In C5 gehen durch Arg766Gln die Wasserstoffbrücke zu Ser228 und die beiden 

Wasserstoffbrücken zu Val229 in der Prädiktion verloren (Abbildung 16), während die 

Hydrophobizität nur leicht zunimmt. Ile469Met in Faktor B, Val845Met in C3 und 

Gly597Glu in Integrin α-M schwächen die Hydrophobizität lediglich gering (Anhang 3). 

Jedoch kann es durch die Mutation in Integrin α-M zur Ausbildung einer zweiten 

Wasserstoffbrückenbindung zu Asp592 und in Faktor B zum Verlust der 

Wasserstoffbrückenbindung zu Tyr466 kommen (Anhang 2). 

Wasserstoffbrückenbindungen beeinflussen die Stabilität des Proteins (152,153). Die 

Auswirkungen einer bestimmten Aminosäuresubstitution auf das Protein sind dabei 

unterschiedlich und abhängig von der Umgebung der betroffenen Aminosäure, wobei 

neben dem Einfluss auf die Wasserstoffbrückenbindungen weitere Auswirkungen der 

Aminosäuresubtitution, u.a. auf die hydrophoben Interaktionen und die Konformation 

eine Rolle spielen (152).  

BA

C9
A B
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Abbildung 16: Ausschnitt aus C5 im 3D-Modell mit Darstellung der 
Wasserstoffbrückenbindungen von Arg766. (A) Darstellung der beiden 
Wasserstoffbrückenbindungen von Arg766 zu Val229 sowie der Wasserstoffbrückenbindung zu 
Ser228. (B) Die Substitution von Arginin gegen Glutamin führt zum Verlust der 
Wasserstoffbrückenbindungen zu Ser228 und Val229. 

Das Tool DynaMut (154) trifft mithilfe der Änderung der thermodynamischen Stabilität 

(ΔΔG) Vorhersagen über den Einfluss von Varianten auf die Stabilität der Proteinstruktur. 

Werte < 0 kcal/mol wurden dabei als destabilisierend definiert, Werte ≥ 0 kcal/mol als 

stabilisierend (154). Somit wirken Asp120Gly (MASP-2), Ile476Thr (C9), Arg766Gln (C5) 

und Val845Met (C3) möglicherweise destabilisierend und Ile469Met (Faktor B) sowie 

Gly597Glu (Integrin α-M) möglicherweise stabilisierend (Anhang 5). 
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5 Diskussion 

5.1 Zusammenhang der nachgewiesenen VEGFA-Varianten mit 

der Erkrankung an einer AMD 

5.1.1 Funktionelle Konsequenzen synonymer und intronischer Varianten  

Als synonyme bzw. intronische Variante verändern die in der Studienpopulation 

festgestellten VEGFA-Varianten c.534C>T, p.Ser178= (rs25648) und c.856-28C>T 

(rs3025000) zwar nicht die Aminosäuresequenz, aber dennoch können sie sich auf die 

Proteinfunktion auswirken. Mögliche, aber teils noch nicht bis ins Detail verstandene 

Mechanismen sind verändertes Spleißen, veränderte mRNA-Stabilität und 

Beeinflussung der Proteinfaltung und - konformation (155,156). Genetische Varianten 

können neben den Spleißstellen an den Intron-Exon-Grenzen den Spleißvorgang 

betreffende intronische Sequenzmotive, wiederkehrende DNA-Abschnitte, beeinflussen. 

Prä-mRNAs besitzen Pseudo-Spleißstellen, die nicht genutzt werden, aber durch 

Aktivierung von Enhancern gestärkt werden können (157,158). Die Nutzung der 

Pseudospleißstelle kann zur Insertion eines kryptischen Exons führen (159,160). Auch 

die Insertion eines kryptischen Exons mit Stoppcodon und folglicher Trunkierung des 

Proteins ist beschrieben (160–162). Varianten in den Spleißstellen können zu 

Exonskipping und Intronretention führen (159,160,163). Aufgrund dieser Mechanismen 

ist auch bei nicht-kodierenden Varianten ein Einfluss auf das Protein nicht 

ausgeschlossen. Mithilfe des Tools SpliceAI ergibt sich jedoch in silico kein Anhalt, dass 

rs3025000 das Spleißen verändert. 

Es wurde beobachtet, dass auch synonyme Mutationen die Proteinfaltung beeinflussen 

können (164). Im MDR1-Gen, welches das Transportprotein P-Glykoprotein kodiert, 

können Kombinationen synonymer Mutationen die Struktur der Substratbindungsstelle 

und die Sustratspezifität verändern (155,165). Eine mögliche Erklärung ist, dass die 

durch die synonyme Mutation verursachte Änderung des jeweiligen Codons zum Stalling 

der Ribosomen führen kann (165). Das Stalling führt wiederum zur Änderung der 

Faltungspfade während der Proteinfaltung (165). Funktionelle oder quantitative 

Auswirkungen synonymer Varianten, wie rs25648, sind demnach nicht ausgeschlossen, 

obwohl die Aminosäuresequenz unverändert bleibt.   

Insbesondere wird vermutet, dass Varianten im Promotor und in den untranslatierten 

Regionen die VEGFA-Expression beeinflussen (166,167). So sind bei Vorliegen der 

Minorallele der VEGFA-Varianten rs2010963 (5´-UTR) und rs3025039 (3´-UTR) eine 

stärkere VEGFA-Expression und höhere Serumkonzentrationen beobachtet worden 
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(167). Die 5´-UTR, in welcher sich auch rs25648 befindet, beeinflusst, welcher Weg zur 

Initiation der Translation genutzt wird, wie effizient dieser ist und welche Initiationsstelle 

verwendet wird und kann die Translation auch über sequenzspezifische mRNA-

Bindungsproteine beeinflussen (168). Die 5´-UTR der VEGF-A-mRNA enthält die 

Elemente IRES-A und -B, welche beeinflussen, ob AUG oder ein upstream gelegenes 

alternatives CUG-Startcodon zur Translation genutzt wird (65). Mit c.-94C>G 

(rs2010963) ist eine VEGFA-Variante bekannt, die über eine Dysfunktion von IRES-B 

die Translation beeinflusst und mit unter anderem erhöhtem Risiko für diabetische 

Makulaödeme verbunden ist (169,170). Die Veränderung rs25648 befindet sich 

downstream dieser Elemente, doch kann ein Einfluss auf Translationsregulation und 

Spleißen nicht ausgeschlossen werden. Mithilfe SpliceAI ergibt sich jedoch auch für die 

Variante rs25648 in silico kein Anhalt, dass das Spleißen beeinflusst wird. 

Um die funktionellen Auswirkungen identifizierter Varianten beurteilen zu können, sollten 

auch in vivo- und in vitro-Untersuchungen durchgeführt werden. Funktionelle 

Untersuchungen zum Einfluss von rs25648 auf die VEGFA-Expression und 

Proteinkonzentration ergaben bisher jedoch inkonsistente Ergebnisse. Bei Vorliegen des 

CC-Genotyps von rs25648 wurde eine erhöhte VEGF-A-Konzentration festgestellt (166). 

In anderen Studien wurden wiederum keine Unterschiede bezüglich der VEGF-A-

Konzentration abhängig von rs25648 gefunden (171,172). Auch rs3025000 war nicht mit 

dem VEGF-A-Serumlevel assoziiert (173). Ruggiero et al. stellten dazu fest, dass 

häufige VEGFA-Varianten die unterschiedliche Serumkonzentration nicht erklären und 

vermuten, dass seltene, und gegebenenfalls in verschiedenen Populationen 

unterschiedliche Varianten ursächlich sind (173). Daher ist die funktionelle Relevanz der 

Variante zum aktuellen Zeitpunkt auch durch funktionelle Untersuchungen nicht 

eindeutig geklärt. 

5.1.2 Mögliche Assoziation von c.534C>T, p.Ser178= mit der Entwicklung 

einer AMD  

Anhand der in der Studienpopulation und bei den nicht an AMD erkrankten Individuen 

beobachteten Allelfrequenzen deutet sich eine mögliche Assoziation von c.534C>T, 

p.Ser178= (rs25648) mit der Entwicklung einer AMD an. Das T-Allel wurde häufiger in 

der Kontrollgruppe ohne AMD nachgewiesen, was auf einen protektiven Effekt des T-

Allels bezüglich des AMD-Risikos hinweist. Die Verteilung der Genotypen CT und TT 

gegenüber CC weist ebenfalls auf ein niedrigeres Risiko bei Vorliegen mindestens eines 

T-Allels hin. Die Ungleichverteilung der Genotypen zeigt sich auch in der Abweichung 

vom HWE in der Gruppe der AMD-Betroffenen. Das HWE beschreibt, dass die 
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Allelfrequenzen in einer Population von Generation zu Generation unverändert bleiben 

und wird in Assoziationsstudien genutzt, um Fehler bei der Genotypisierung zu 

detektieren (174). Eine Abweichung vom HWE in der Gruppe der Betroffenen kann 

jedoch auch auf eine Assoziation der jeweiligen genetischen Variante mit der Erkrankung 

hinweisen (174). Die kleine Fallzahl führt allerdings zu einer großen Unsicherheit der 

Werte, weshalb sich kein eindeutiger Zusammenhang ableiten lässt. Im Gegensatz zu 

dem Ergebnis dieser Arbeit stellten Fang et al. bei einer OR des T-Allels mit einem Wert 

von 0,93 und einem adjustierten p-Wert von 1 fest, dass kein Zusammenhang dieser 

Variante mit neovaskulärer AMD bestehe (70).  

Wiederum wurde bei Diabetikern mit proliferativer Retinopathie, die ebenfalls mit 

Gefäßneubildungen einhergeht, im Vergleich zu Diabetikern ohne Retinopathie eine 

Häufung des T-Allels gezeigt (OR = 2,89; 95 %-KI = 1,42-5.88; p = 0,002)  (175) und 

somit das T-Allel als Risikoallel identifiziert. Eine 2020 veröffentlichte Metaanalyse mit 

26 inkludierten Studien stellte insgesamt keine Assoziation fest, zeigte jedoch in der 

kaukasischen Subgruppe ebenfalls eine Assoziation zwischen dem T-Allel und einem 

erhöhten Risiko für diabetische Retinopathie (T vs. C: OR = 2,89; 95%-KI = 1,43–5,83; 

p = 0,003; (176). In anderen Analysen wurde hingegen keine Assoziation der Variante 

mit diabetischer Retinopathie festgestellt (177,178). So auch in einer Metaanalyse mit 

82 inkludierten Publikationen (177). Es konnte hier kein Zusammenhang zwischen 

rs25648 und diabetischer Retinopathie in der Gesamtauswertung gezeigt werden, wobei 

ethnische Unterschiede der für das Risiko verantwortlichen Varianten möglich sind und 

für rs25648 keine Subgruppenanalyse durchgeführt wurde (177). Das Risiko für eine 

Erkrankung an Diabetes mellitus Typ 2 an sich betreffend wurde hingegen eine 

Assoziation des T-Allels mit einem niedrigeren Risiko festgestellt (172). Auch unter 

Berücksichtigung des bisher uneindeutigen funktionellen Einflusses von rs25648, ist ein 

Zusammenhang mit dem AMD-Risiko und ein möglicher Einfluss auf die Pathogenese 

bisher nicht eindeutig erklärbar.  

5.1.3 Kein eindeutiger Zusammenhang weiterer VEGFA-Varianten mit dem 

AMD-Risiko 

Die zweite in dieser Arbeit nachgewiesene Variante, c.856-28C>T (rs3025000), wurde 

mit der Entstehung von choroidalen Neovaskularisationen im Rahmen starker 

Kurzsichtigkeit in Verbindung gebracht (p = 0,063) (179), jedoch bisher nicht mit einem 

Einfluss auf das AMD-Risiko. Das T-Allel und Genotypen, die mindestens ein T-Allel 

enthalten, waren in der vorliegenden Arbeit in der Fallgruppe häufiger, 95 %-KI und p-

Werte wiesen jedoch ebenfalls auf eine hohe Unsicherheit der Werte hin. Somit zeigte 
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sich in dieser Arbeit ebenfalls kein klarer Zusammenhang zwischen der genetischen 

Variante und dem AMD-Risiko.  

Der Einfluss von VEGFA-Varianten auf das AMD-Risiko ist auch insgesamt inkonsistent 

(3,70). Der Genotyp TT der intronischen Variante rs1413711 von VEGFA ist mit 

erhöhtem Risiko für AMD insgesamt und auch speziell mit erhöhtem Risiko für 

neovaskuläre AMD assoziiert (67,69). Zudem wurden Varianten in der regulatorischen 

Region von VEGFA als Risikofaktoren für AMD beschrieben. Das C-Allel von rs833061, 

einer Variante im VEGFA-Promotor, ist ein Risikofaktor für AMD und mit einem erhöhten 

Risiko für die neovaskuläre Spätform assoziiert (67–69). Die Veränderungen rs2010963 

in der 5´-UTR (68) und rs3025039 in der 3´-UTR (69) waren in einzelnen Studien mit 

dem AMD-Risko assoziiert, aber dieses Ergebnis konnte in einer Metaanalyse nicht 

bestätigt werden (67).  Die Pathogenese der Erkrankung deutet auf einen möglichen 

Zusammenhang zwischen den Varianten von VEGFA und dem Auftreten von AMD hin, 

was allerdings weiterer Untersuchungen mit großen Fallzahlen bedarf.  In dieser Arbeit 

konnte kein eindeutiger Zusammenhang zwischen Varianten in VEGFA und dem AMD-

Risiko gezeigt werden. 

Sowohl protektive als auch risikosteigernde Varianten könnten in einem genetischen 

Risikoscore (GRS) eine Individualisierung der Betreuung von AMD-Patient*innen 

ermöglichen. So könnten das AMD-Risiko, das Risiko einer Progression zu einer AMD-

Spätform, und das Therapieansprechen besser abgeschätzt werden und Vorsorge und 

Behandlung könnten dann individualisiert erfolgen. Innerhalb des europäischen EYE-

RISK-Projektes wurde ein Test zur Ermittlung eines GRS entwickelt, der seltene und 

häufige Varianten enthält, wobei keine VEGFA-Varianten inkludiert sind (180). Dieser 

führte bei später AMD zu höheren Scores als bei früher oder intermediärer AMD (p-

Wert < 0,001) (180). Bisher werden genetische Risikoscores im klinischen Alltag jedoch 

nicht eingesetzt. Neben der Identifizierung risikomodifizierender genetischer Varianten 

unter der Beachtung möglicher populationsspezifischer Unterschiede sollten auch nicht-

genetische Risikofaktoren berücksichtigt werden, da AMD eine komplexe Erkrankung 

ist. 

5.2 Fehlende pharmakogenetische Assoziation der VEGFA-

Varianten mit der Anti-VEGF-Therapie 

Da gegen VEGF gerichtete Wirkstoffe zuerst in der Therapie maligner Neoplasien 

eingesetzt wurden (63,181), wurde der Einfluss genetischer Varianten auf das 

Therapieansprechen auf Anti-VEGF-Medikamente auch in diesem Kontext untersucht 

(182,183). Es zeigten sich Assoziationen mehrerer VEGFA-Varianten mit einem 
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besseren Gesamtüberleben (OS) und progressionsfreien Überleben (PFS) unter 

Chemotherapie in Kombination mit Anti-VEGF-Medikamenten, unter anderem für die 5´-

UTR-Variante rs2010963, rs3025039 in der 3´-UTR und rs699947 im Promotor 

(184,185). Jedoch waren diese Ergebnisse nicht konsistent (171,186). Von den 

untersuchten Varianten wurde in der Studienpopulation dieser Arbeit die Variante 

rs25648 identifiziert.  Es zeigte sich, dass das C-Allel von rs25648 mit einem besseren 

OS assoziiert ist und einen Trend zu einem besseren PFS (p = 0,049) aufweist, wobei 

der Einfluss auf das PFS nach Korrektur für multiple Testung einen p-Wert > 0,05 

aufwies (185,186). Chionh et al. vermuten, dass die Beeinflussung des 

progressionsfreien und des Gesamtüberlebens durch veränderte Expression von VEGF-

A-mRNA bewirkt wird (171). Der Genotyp CC ist bei kolorektalem Karzinom mit 

gesteigertem PFS und OS verbunden, jedoch nicht prädiktiv für das Ansprechen auf den 

VEGF-Inhibitor Bevacizumab (171). Diese Ergebnisse weisen auf einen eher 

prognostischen als prädiktiven Effekt der Variante hin. 

In der Behandlung der nAMD ist die intravitreale Applikation von Anti-VEGF-

Medikamenten eine wirksame Therapie. Jedoch sprechen nicht alle Patient*innen auf 

die Behandlung an (187). Bereits mit dem Risiko der Entwicklung einer AMD assoziierte 

Gene gehörten zu den ersten Kandidatengenen für die Untersuchung eines 

Zusammenhanges mit dem Therapieansprechen, wobei in zwei großen Studien kein 

Zusammenhang mit dem Therapieansprechen von AMD-Patient*innen gezeigt werden 

konnte (84,188). Die CATT-Studie untersuchte vier Risikovarianten in den Genen CFH, 

ARMS2, HTRA1 und C3 bei 834 Patient*innen, wobei sich kein Zusammenhang dieser 

Varianten mit dem Therapieansprechen zeigte (84). Die Inhibition of VEGF in Age-

related Choroidal Neovascularisation (IVAN) Studie untersuchte drei Varianten, welche 

vorher mit dem Therapieansprechen assoziiert wurden. Darunter befanden sich die 

Hauptrisikovariante für AMD, NM_000186.4:c.1204T>C, p.Tyr402His (rs1061170) in 

CFH sowie Gene des VEGF-Signalweges und der Angiogenese. Die IVAN-Studie zeigte 

ebenfalls keinen Zusammenhang der untersuchten Gene mit dem Therapieansprechen 

(188). In kleineren Studien wurde ein möglicher Zusammenhang zwischen Varianten in 

CFH und ARMS2 und dem Therapieansprechen gesehen (189). Metaanalysen, welche 

die beiden genannten Studien enthielten, zeigten eine Assoziation des C-Allels der CFH-

Variante rs1061170 mit einem schlechteren Therapieansprechen, insbesondere in der 

kaukasischen Bevölkerung (18,190,191). 

Varianten in VEGFA sind bisher nicht eindeutig mit dem Therapieansprechen von nAMD-

Patient*innen assoziiert (88,192). In der CATT-Studie wurde in einer großen Kohorte 

kein Zusammenhang der untersuchten VEGFA-Varianten festgestellt (88). Kleinere 
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Studien zeigten zum Teil einen Zusammenhang zwischen VEGFA-Varianten und dem 

Therapieansprechen, teilweise mit widersprüchlichen Ergebnissen bezüglich des 

Risikoallels (76,87,192,193). Insgesamt sind pharmakogenetische Assoziationen von 

VEGFA mit dem Ansprechen auf Anti-VEGF-Medikamente zurzeit nicht eindeutig. Im 

Einklang mit diesen Ergebnissen, zeigte sich auch in dieser Arbeit kein eindeutiger 

Zusammenhang zwischen Varianten in VEGFA und dem Therapieansprechen. 

Die IVAN-Studie beinhaltete auch die in dieser Arbeit identifizierte VEGFA-Variante 

rs25648 und zeigte keinen Zusammenhang dieser Variante mit dem 

Therapieansprechen (188). Das T-Allel von rs3025000 wurde in einer prospektiven 

Studie mit 201 Patient*innen unter Anti-VEGF-Therapie mit einem besseren 

Therapieergebnis bezüglich der Sehkraft und einer wahrscheinlicheren Zugehörigkeit 

zur Gruppe mit Therapieansprechen in Verbindung gebracht (86). Das T-Allel habe 

hierbei eine OR von ca. 3 bezüglich eines positiven Therapieansprechens (86,194). Die 

Datenlage zur Assoziation von rs3025000 mit dem Ansprechen auf eine Anti-VEGF-

Therapie ist allerdings schwach. Reviews, unter anderem eine Metaanalyse zu 

genetischen Biomarkern des Therapieansprechens aus dem Jahr 2018, nennen nur die 

oben genannte Studie von Abedi et al. als Referenz für eine Assoziation von rs3025000 

mit dem Anti-VEGF-Therapieansprechen (194–196). In einer Studie mit Patient*innen 

mit choroidalen Neovaskularisationen im Rahmen starker Kurzsichtigkeit wurde 

hingegen keine Assoziation von rs3025000, rs25648 oder einem der anderen 

untersuchten SNPs in VEGFA zum Therapieansprechen auf eine Anti-VEGF-Therapie 

mittels Ranibizumab beobachtet (179). Ebenso beobachteten Kitchens et al. keine 

Assoziation zwischen rs3025000 und dem Ansprechen auf Anti-VEGF-Therapie bei der 

Untersuchung dieser Variante bezüglich der Nutzung als Biomarker für das 

Therapieansprechen auf VEGF-Inhibitoren (197). In der Studienpopulation dieser Arbeit 

zeigte sich ebenfalls keine Assoziation der Variante mit dem Therapieansprechen, 

jedoch wurde das T-Allel nur einmal (6,3 %) in der Gruppe mit stabilem Visus unter 

Therapie und zweimal (9,0 %) in der Gruppe mit unzureichendem Therapieansprechen 

nachgewiesen, sodass eine Assoziation möglicherweise bei größerer Fallzahl 

nachweisbar wäre. 

Insgesamt ist unsicher, ob VEGFA-Varianten das Therapieansprechen auf VEGF-

Inhibitoren beeinflussen. Eine Ursache der unterschiedlichen Ergebnisse bezüglich einer 

Assoziation mit dem Therapieansprechen könnten auch die verschiedenen Maße des 

Ansprechens sein. Für die Messung des Therapieansprechens wurde in der IVAN-

Studie die Gesamtdicke der Netzhaut genutzt (188), in dieser Arbeit jedoch der Visus. 

Weitere Studien nutzten multiple Maße inklusive anatomischer Messwerte, dem Visus 
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und der Anzahl an Injektionen als Marker für das Therapieansprechen (84,192). 

Außerdem sind ethnische Unterschiede in Bezug auf pharmakogenetische 

Assoziationen denkbar (192), weshalb Studien mit ethnisch unterschiedlichen 

Studienpopulationen zu unterschiedlichen Ergebnissen führen können.  

Auch wenn für rs25648 und rs3025000 kein Zusammenhang mit dem 

Therapieansprechen gezeigt wurde, könnten in dieser Arbeit nicht identifizierte VEGFA-

Varianten oder Varianten in anderen Genen mit dem Therapieansprechen in 

Zusammenhang stehen. Zudem könnten unterschiedliche Anti-VEGF-Medikamente mit 

verschiedenen Genen und Varianten assoziiert sein, was aufgrund der geringen Fallzahl 

in dieser Arbeit nicht untersucht wurde. Zu beachten ist dabei, dass verschiedene Anti-

VEGF-Medikamente unterschiedliche Möglichkeiten der Bindung an Mitglieder der 

VEGF-Familie aufweisen (76). Zudem spielen, wie auch in der Pathogenese der AMD, 

weitere nicht-genetische Faktoren eine Rolle beim Therapieansprechen, welche in 

dieser Arbeit nicht erfasst wurden.  Nicht-genetische Faktoren sind insbesondere Art und 

Größe der Läsionen sowie Visus bei Therapiebeginn, aber auch das Alter und Rauchen 

(76). Um genetische Varianten als Prädiktoren für das Therapieansprechen zu nutzen, 

müssen die Effekte der Varianten stark genug sein (76), wobei zurzeit im klinischen 

Alltag noch keine genetischen Biomarker genutzt werden (198). Zukünftig könnten 

jedoch genetische und nicht-genetische Faktoren gemeinsam zur Individualisierung der 

Therapie herangezogen werden. 

5.3 Beeinträchtigte Enzymfunktion durch c.359A>G, 

p.Asp120Gly im MASP2-Gen 

Die Variante c.359A>G, p.Asp120Gly (rs72550870) befindet sich in der CUB1-Domäne 

des MASP-2-Proteins (Abbildung 17). Diese befindet sich N-terminal und bildet mit einer 

zweiten CUB-Domäne und einer dazwischenliegenden EGF-ähnlichen Domäne die 

Bindungsstelle für die Ca2+-abhängige Bindung von MASP-2 an MBL oder Ficoline 

(129,199–201). Diese Bindung ist Voraussetzung für die Aktivierung des 

Komplementsystems über den Lektinweg. Der Komplex aus dem an die 

Pathogenoberfläche gebundenen MBL oder Ficolin und MASP-2 spaltet die 

Komplementfaktoren C4 und C2, welche schließlich die C3-Konvertase des Lektinweges 

bilden. Die CUB1-Domäne ist zudem an der ebenfalls Ca2+-abhängigen Bildung von 

MASP-2-Dimeren beteiligt (200). Die genetische Veränderung betrifft daher einen 

funktionell wichtigen Bereich von MASP-2 und der Einfluss auf die Proteinfunktion wurde 

bereits in Studien nachgewiesen (128,202,203). Das Vorhandensein des G-Allels ist mit 

niedrigeren MASP-2-Serumkonzentrationen assoziiert (202,203). Zudem führt die 
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Substitution zum Verlust der Fähigkeit von MASP-2, Komplexe mit MBL zu bilden (128). 

Eine Erklärung dafür könnte sein, dass sich die Variante in der Ca2+-Bindungsstelle der 

CUB1-Domäne befindet (129). Durch den Verlust eines der Ca2+-Liganden durch 

Asp120Gly entfällt die Stabilisierung der Proteinstruktur an der Bindungsstelle für MBL 

(142). Auch das Proteinmodell (Abbildungen 12 und 13) legt nahe, dass durch den 

Austausch von Asparaginsäure gegen Glycin lokale Interaktionen in der Proteinstruktur 

verändert werden könnten.  

 

Abbildung 17: Transkript NM_006610 von MASP2. Dargestellt sind die ersten fünf Exons, 
Ausschnitte aus der Basenabfolge und der Aminosäuresequenz und die für die Bindung an 
MBL/Ficoline zuständigen Domänen CUB1, EGF-like und CUB2. Die Veränderung rs72550870 
ist rot markiert. Zudem sind die Bindungsstellen für Ca2+ eingezeichnet. 

Die veränderte Proteinstruktur und der Verlust der Funktion implizieren, dass die 

Variante die Aktivität des Lektinweges beeinflussen könnte. Jedoch sind die 

Auswirkungen auf Betroffene uneindeutig: Homozygote Träger der Variante weisen teils 

eine durch häufigere, vor allem infektiöse Krankheiten geprägte Vorgeschichte auf 

(128,130), sind aber teils auch gesund (130–132). Bei Heterozygoten ist selbst die 

Aktivität des MBL-MASP-2-Komplexes unbeeinflusst (202). Die klinische Penetranz ist 

zumindest bezüglich einer Immundefizienz unvollständig und bei Heterozygotie scheint 

der Lektinweg dennoch suffizient aktiviert zu werden. Jedoch ist das Komplementsystem 

komplex und spielt in der Pathogenese der AMD eine wichtige Rolle, weshalb die 

Auswirkung von rs72550870 auf diese Erkrankung gesondert untersucht werden sollte.  

Bei AMD-Patient*innen wurde im Kammerwasser eine verringerte MASP-2-

Konzentration nachgewiesen (204). Dies deutet an, dass insbesondere funktionell 

relevante Varianten in MASP2 auch einen Einfluss auf die Entwicklung einer AMD haben 

könnten. Aufgrund seiner nachgewiesenen funktionellen Auswirkungen ist daher 

interessant, ob rs72550870 in größeren Studienpopulationen mit AMD assoziiert ist. 
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Falls eine Assoziation mit AMD gezeigt wird, könnte die Variante zu einem besseren 

Verständnis der Rolle von MASP-2 in der AMD-Pathogenese beitragen. 

5.4 CFHR2 ist möglicherweise relevant für die Pathogenese der 

AMD 

CFH und die Gene der Komplement-Faktor-H-verwandten Proteine (FHR) liegen im 

RCA-Gencluster (Regulator of Complement Activation) auf Chromosom 1 im Abschnitt 

1q32 (205). Dieses Cluster entstand durch segmentale Duplikationen eines 

gemeinsamen Vorfahrens (206). Wie auch CFH bestehen die CFHR-Gene aus short 

consensus repeats (SCR), also repetitiven Einheiten, welche ca. 60 Aminosäuren 

umfassen (207). Aufgrund des gleichen Ursprunges ähneln die SCRs der CFHR-Gene 

in unterschiedlichem Umfang denen von CFH (133). Es wird vermutet, dass die Faktor-

H-verwandten Proteine gemeinsam mit Faktor H für die Feinabstimmung des 

Komplementsystems zuständig sind (38,208). Genetische Varianten sind bisher 

insbesondere mit komplementbedingten Nierenerkrankungen wie aHUS und C3-

Glomerulopathie (MIM# 614809) in Verbindung gebracht worden (209,210). Es wurden 

jedoch auch mit dem AMD-Risiko assoziierte Kopienzahlveränderungen identifiziert (36–

38), wobei der Aufbau aus segmentalen Duplikationen für Rearrangements prädisponiert 

(211).  

FHR-2 selbst besteht aus vier SCR-Domänen, wobei die zwei N-terminalen Domänen 

SCR 1 und 2 in die Formation von Dimeren eingebunden sind und die zwei C-terminalen 

Domänen SCR 3 und 4 an C3b und C3d binden (133). Die Sequenz von SCR 3 und 4 

ähnelt stark der Sequenz von SCR 19 und 20 von CFH, welche ebenfalls die Funktion 

der C3b-Bindung haben (133). Die in dieser Arbeit nachgewiesene CFHR2-Variante 

c.595G>T, p.Glu199Ter (rs41257904) führt zu einem teilweisen bzw. vollständigen 

Verlust der SCR-Domänen 3 und 4 und betrifft somit die C3b-Bindungsstellen. Es wurde 

durch funktionelle Untersuchungen gezeigt, dass das vorzeitige Stoppcodon zu einem 

Verlust der Proteinexpression führt und die Variante somit die FHR-2-Konzentration 

senkt (38,137). 

Das Gleichgewicht zwischen Faktor H und FHR-2 spielt jedoch vermutlich eine Rolle bei 

der Kontrolle der Komplementinaktivierung (133). Dieses Zusammenwirken kann durch 

Funktionsgewinn durch Duplikationen und Hybrid-Proteine verursachende Deletionen, 

aber auch durch Funktionsverlust gestört werden, denn FHR-2 inhibiert auch die C3-

Konvertase des alternativen Weges und die Formation des Membranangriffskomplexes 

(133). 
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Eine 2021 veröffentlichte Arbeit zur Rolle von Faktor H und der FHRs bei AMD (38) 

identifizierte protektive Einzelnukleotidpolymorphismen innerhalb der CFHR-Gene, die 

auch zu verminderter oder fehlender Expression der jeweiligen Proteine führen (38). So 

sind die intronische Variante rs3790414 und die exonische Variante rs79351096 in 

CFHR2 mit verringertem AMD-Risiko assoziiert (38). Insgesamt wurde gezeigt, dass 

seltene und proteinverändernde Varianten in CFHR2 mit AMD assoziiert sind, was 

impliziert, dass dieses Gen eine Rolle in der Pathogenese der AMD spielt (38). Der 

entsprechende Krankheitsmechanismus muss noch weiter beleuchtet werden, sodass 

zukünftig eine auf dem Genotyp am CFH-Lokus basierende Modulation der FHRs bzw. 

des Komplementsystems einen möglichen Therapieansatz darstellen könnte (38,210).  

5.5 Die Veränderung c.1427T>C, p.Ile476Thr liegt in der MACPF-

Domäne von C9 

Die in dieser Arbeit nachgewiesene C9-Variante c.1427T>C, p.Ile476Thr (rs141645272) 

wurde in einer weiteren Studie bereits bei AMD-Betroffenen, jedoch auch bei gesunden 

Kontrollindividuen nachgewiesen (OR = 1,24; p = 0,23) (43,212). Ebenfalls in der 

MACPF-Domäne befindet sich die Missensevariante rs34882957. Diese führt zur 

Verdopplung des AMD-Risikos (41,42) und geht mit einer erhöhten Serumkonzentration 

von C9 einher (33).  Ein Funktionsgewinn mit resultierender gesteigerter MAC-Formation 

könnte in diesem Fall zu einem erhöhten AMD-Risiko führen (2). Verschiedene Studien 

sahen entweder eine erhöhte C9-Konzentration (34,213) oder eine stärkere Aktivität 

(214) als Ursache. Zudem bewirkt rs34882957 eine verstärkte Polymerisation von C9 

(213,214). Weiterhin wurden seltene Varianten identifiziert, welche die 

Serumkonzentration erhöhen, aber nicht zu einer gesteigerten Polymerisation oder 

MAC-Konzentration führen (213). Funktionelle Auswirkungen können auch bei der in 

dieser Arbeit nachgewiesenen C9-Variante rs141645272 nicht ausgeschlossenen 

werden. Das Proteinmodell gibt zwar keinen Anhalt für eine Veränderung der 

Sekundärstruktur durch die Variante, jedoch kann der Austausch des hydrophoben 

Isoleucins gegen das hydrophile Threonin die lokale Proteinstruktur und 

Wechselwirkung beeinflussen (151). Funktionelle in vivo- und in vitro-Studien könnten 

hier Aufschluss über eine mögliche Auswirkung der Variante auf die Proteinfunktion 

geben. 

In von AMD betroffenen Familien waren seltene Varianten, u. a. rs34882957, mit einem 

zeitigeren Krankheitsbeginn und stärkeren Fortschreiten der Erkrankung verbunden 

(215). Ein Screening auch auf seltene Varianten im C9-Gen und anderen mit AMD 

assoziierten Genen könnte daher sinnvoll sein (180,215). Da insbesondere seltene 
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Varianten mit einem Funktionsverlust oder einem hohen pathogenetischen 

Prädiktionsscore, wie einem CADD ≥ 20, mit einem gesteigerten Risiko verbunden sind 

(180), könnte auch die in dieser Arbeit nachgewiesene Veränderung rs141645272 

(CADD: 26,2) eine solche seltene, risikosteigernde Variante darstellen.  

5.6 Varianten in CFB sind vorwiegend protektiv 

Vermutlich auch aufgrund der sehr niedrigen Frequenz des G-Allels, ist die in dieser 

Arbeit identifizierte Variante c.1407C>G, p.Ile469Met (rs201798809) in der Literatur nicht 

beschrieben. Varianten in CFB, im paralogen C2 und im angrenzenden SKIV2L haben 

einen protektiven Effekt bezüglich AMD (45,216–220). So wiesen die in starkem 

Kopplungsungleichgewicht stehenden Varianten rs4151667 (CFB) und rs9332739 (C2) 

eine OR von 0,37 auf (45). Ebenso protektiv sind rs641153 (CFB) und rs547154 (C2), 

welche sich ebenfalls in starkem Kopplungsungleichgewicht befinden (45,220). Bei 

rs641153 könnte der Austausch von Arginin gegen Glutamin an Aminosäureposition 32 

die hämolytische Aktivität reduzieren, wodurch das Risiko für eine chronische 

Komplementaktivierung sinkt (45,221).  

Für die Genotypen TA und AA von rs4151667 und auch für protektive Allele von 

Varianten in C2, wurde bei geografischer Atrophie eine Assoziation mit  positivem 

Ansprechen auf antioxidative Therapie festgestellt (222). Dieselbe Studie zeigte 

allerdings keine Assoziation der protektiven Allele in CFB/C2 mit dem 

Therapieansprechen bei neovaskulärer AMD (222).  

Die Lage der in dieser Arbeit nachgewiesenen Variante rs201798809 an der Exon-

Intron-Grenze, in der funktionell wichtigen C-terminalen Helix der vWF-A-Domäne und 

die mögliche Auswirkung auf die lokalen non-kovalenten Kräfte sind Anhaltspunkte, dass 

die Funktion von Faktor B durch die Variante beeinflusst werden könnte. Die in der 

Literatur bereits beschrieben genetischen Varianten legen jedoch im Fall von 

Funktionsverlust eher einen protektiven Effekt nahe. Dennoch ist nicht ausgeschlossen, 

dass es zu einem Funktionsgewinn und dann einem risikosteigernden Effekt kommt.  

5.7 Kein eindeutiger Zusammenhang zwischen C5 und AMD  

Varianten in C5 standen bisher nicht eindeutig im Zusammenhang mit AMD (223). Die 

der in dieser Studienpopulation nachgewiesenen Veränderung c.2297G>A, p.Arg766Gln 

(rs758933855) benachbarte Variante rs17611 war in einer niederländischen 

Studienpopulation bei heterozygotem Vorliegen protektiv für fortgeschrittene AMD, was 

sich in den in der Studie genutzten Referenzpopulationen und einer anderen Studie 

jedoch nicht bestätigte (40,223). In weiteren Studien wurde keine Assoziation der 
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untersuchten SNPs in C5 mit AMD festgestellt (39,40,224). Jedoch ist es Bestandteil von 

Drusen (33,225) und ein Knock-out des C5a-Rezeptors führt zu verminderter VEGF-

Synthese und weniger laserinduzierten Neovaskularisationen (226). Zudem ist das 

Plasma-C5a bei AMD erhöht (227,228). Zusammen mit seiner Funktion der Einleitung 

der MAC-Formation implizieren diese Erkenntnisse, dass C5 eine Rolle in der AMD-

Pathogenese spielen könnte. Obwohl häufige C5-Varianten, wie oben beschrieben, 

keinen Einfluss auf das AMD-Risiko zu haben scheinen (223), könnten seltenere 

Varianten mit größeren funktionellen Auswirkungen die funktionellen Zusammenhänge 

zwischen Varianten eines Gens und der Pathogenese der Erkrankung sichtbar machen 

(43). Das Minorallel von rs758933855 wurde in der Datenbank gnomAD nur einmal 

gezählt. Die Vorhersage möglicher funktioneller Auswirkungen ist jedoch begrenzt, aber 

ein Einfluss auf die lokale Proteinstruktur durch den Verlust von 

Wasserstoffbrückenbindungen ist möglich.  

Insgesamt ist eine weitere Forschung zum Einfluss dieser Komplementkomponente und 

seiner genetischen Varianten auf AMD nötig. Dazu können seltene Varianten einen 

wichtigen Beitrag leisten, wenn es gelingt, Auswirkungen auf die Proteinfunktion 

aufzudecken. 

5.8 Unklare pathogenetische Relevanz der Variante c.1790G>A, 

p.Gly597Glu in ITGAM 

ITGAM kodiert die α-M-Untereinheit des αMβ2-Integrins. Die Integrine sind 

Adhäsionsmoleküle der Leukozyten (229). Über das C3b-Abbauprodukt iC3b können 

komplementbedeckte Partikel mittels αMβ2 gebunden und phagozytiert werden (229). 

Das ITGAM-Gen ist nicht mit AMD, aber mit der Autoimmunerkrankung Lupus 

erythematodes assoziiert. Die größte Evidenz liegt dabei für die Missensevariante 

rs1143679 vor (230,231). Diese Variante beeinträchtigt die Leukozytenadhäsion an iC3b 

und die Phagozytose (232) 

Das Proteinmodell liefert keinen Hinweis auf eine Änderung der Proteinstruktur durch 

die in dieser Arbeit nachgewiesene Variante c.1790G>A, p.Gly597Glu (rs199700282) 

und DynaMut prädiktiert eine stabilisierende Wirkung. Jedoch ist damit nicht 

ausgeschlossen, dass rs199700282 trotzdem Proteinstruktur und -funktion verändert.  

Dysregulierte Phagozytose, wie sie durch rs1143679 verursacht wird, wird als Teil der 

Pathogenese der AMD betrachtet. Zudem scheinen Monozyten, die αMβ2 tragen, eine 

Rolle in der Bildung choroidaler Neovaskularisationen zu spielen und sind bei 

Patient*innen mit neovaskulärer AMD erhöht (233,234). Eine Korrelation zwischen 
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αMβ2+-Monozyten und der Anzahl an benötigten Injektionen von VEGF-Inhibitoren wird 

vermutet (233). ITGAM könnte also durchaus auch zur AMD-Pathogenese beitragen, 

jedoch gibt es bisher zu wenig Evidenz für einen Zusammenhang. 

5.9 Einfluss von Varianten in C3 auf die AMD-Pathogenese  

C3 ist der Angriffspunkt der Regulation des Komplementsystems durch Faktor H und 

Faktor I. Die seltene Variante rs147859257 führt zu einer verminderten Inaktivierung von 

C3 durch diese Komplementregulatoren und zu einem früheren Krankheitsbeginn sowie 

einer stärkeren Progression (42,215). Der Grund dafür könnte bei rs147859257, und 

ebenso bei der häufigeren Variante rs2230199, eine verringerte Bindung von Faktor H 

an C3 sein (41,235). Insgesamt scheint der Verlust der Regulation von C3 und eine 

daraufhin gesteigerte Komplementaktivierung eine Rolle in der Pathogenese der AMD 

zu spielen  

Die in dieser Arbeit nachgewiesene Variante c.2533G>A, p.Val845Met wurde bisher 

weder beschrieben, noch ist die Variante in Datenbanken hinterlegt. Ebenso wie seltene 

C9-Varianten, werden seltene Varianten in C3 mit einem Funktionsverlust oder einem 

hohen prädiktiven Risikoscore mit einem gesteigerten AMD-Risiko in Verbindung 

gebracht (180). Der CADD-Score von 26,7 spricht hier für eine mögliche Pathogenität 

von c.2533G>A. Die direkt benachbarte Missensevariante rs1599510478 ist likely 

pathogenic für aHUS mit C3-Anomalie, was zeigt, dass auch Missensevarianten in 

diesem Bereich des C3-Gens mit komplementvermittelten Erkrankungen assoziiert sein 

können.  

5.10 Stärken und Limitationen der Arbeit 

Bisherige pharmakogenetische Untersuchungen einer Assoziation von VEGFA-

Varianten mit dem Ansprechen auf VEGF-Inhibitoren waren auf die Analyse bestimmter 

Genotypen im VEGFA-Gen beschränkt (Anhang 6) (88,188,192,193,236).  

Eine Stärke dieser Arbeit ist daher, dass eine Komplettsequenzierung der kodierenden 

Abschnitte des VEGFA-Gens inklusive eines flankierenden intronischen Bereichs mittels 

Sanger-Sequenzierung erfolgte, um VEGFA-Varianten zu identifizieren. Im Gegensatz 

zu GWAS, die sich dazu eignen, hypothesenfrei an großen Studienpopulationen 

Assoziationen aufzudecken, hat die Komplettsequenzierung, wie sie in dieser Arbeit 

eingesetzt wurde, den Vorteil, dass neue oder sehr seltene genetische Varianten 

detektiert werden können, die durch GWAS normalerweise nicht erfasst werden (34). 

Identifizierte seltene Varianten können anschließend hinsichtlich ihrer Assoziation an 

einer großen Studienpopulation untersucht werden. Ein solcher Hybridansatz wurde in 
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der umfangreichen GWAS von Fritsche et al. eingesetzt und es wird betont, dass die 

Identifizierung von Varianten durch Sequenzierung und eine nachfolgende 

Assoziationsanalyse an einer großen Studienpopulation mittels Array einen sinnvollen 

Ansatz zur Untersuchung der Heritabilität komplexer Erkrankungen darstellt (43). 

Eine weitere wesentliche Stärke dieser Arbeit ist der Vergleich mit einer Kontrollgruppe 

nicht an nAMD erkrankter Individuen hinsichtlich der festgestellten VEGFA-Varianten. 

Somit konnten die nachgewiesenen Allelfrequenzen mit einer populationsgematchten 

und, bei Mittelwerten von 76,95 Jahren bzw. 78,94 Jahren, auch bezüglich des Alters 

ähnlich zusammengesetzten Kontrollgruppe verglichen werden. Dies ist relevant, da 

genetische Risikofaktoren in unterschiedlichen Populationen variieren können. Eine 

vergleichbare Zusammensetzung der Kontrollgruppe hinsichtlich des Alters ist wichtig, 

da das Erkrankungsrisiko mit steigendem Alter ansteigt und zunächst gesunde 

Kontrollpersonen im höheren Alter an einer AMD erkranken könnten. Trotz des hohen 

mittleren Alters der Kontrollgruppe und der augenärztlichen Untersuchung hinsichtlich 

Anzeichen einer AMD kann nicht völlig ausgeschlossen werden, dass Individuen dieser 

Gruppe zu einem späteren Zeitpunkt noch an einer AMD erkranken.  

Die Variantenklassifikation stellt eine besondere Herausforderung dar, erfolgte oft 

uneinheitlich und wird stetig weiterentwickelt. Mittlerweile sind die ACMG-Kriterien als 

Standard etabliert. In dieser Arbeit wurden diese bei der Interpretation der identifizierten 

genetischen Varianten berücksichtigt, was eine strukturierte Auswertung ermöglicht (92). 

Allerdings wurden die ACMG-Kriterien für monogenetische Erkrankungen entwickelt. 

Dabei befinden sich viele Erkrankungen hinsichtlich ihrer Ätiologie auf einem Spektrum 

von monogenetisch bis multifaktoriell bedingt, weshalb Weiterentwicklungen bezüglich 

der Klassifikation von Risikoallelen komplexer Erkrankungen Gegenstand aktueller 

Forschung sind (91,233).  

Eine Limitation der Aussagekraft der Ergebnisse dieser Arbeit ist die Anzahl der 

Patient*innen in der Studienpopulation. Funktionell relevante Varianten mit einem 

großen Effekt auf das Erkrankungsrisiko können Gene aufzeigen, die eine Rolle in der 

Pathogenese der jeweiligen Erkrankung spielen (43). Aufgrund der meist niedrigen 

Allellfrequenz sind jedoch große Studienpopulationen nötig, um eine Assoziation 

nachweisen zu können (43). Die in dieser Arbeit ausgewerteten Varianten in den Genen 

des Komplementsystems konnten funktionell annotiert werden, jedoch kann keine 

Aussage zu einer Assoziation mit der Erkrankung an AMD getroffen werden, da die 

Varianten selten sind und jeweils nur einmal in der Studienpopulation nachgewiesen 

wurden. Die beiden nachgewiesenen Varianten in VEGFA sind hingegen häufige 
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Varianten, sodass sich Hinweise auf potenzielle Zusammenhänge zeigen können, 

jedoch auch hier keine eindeutige Assoziation nachgewiesen werden kann. Um eine 

mögliche Assoziation zu bestätigen sind prospektive Studien mit Fallzahlplanung nötig. 

Zudem könnten seltene, in dieser Arbeit nicht detektierte Varianten in größeren 

Studienpopulationen nachweisbar sein. Auch genetische Varianten in anderen Genen 

und Signalwegen, die in dieser Arbeit nicht untersucht wurden, können einen Einfluss 

auf das Erkrankungsrisiko haben. So wurden in einer umfangreichen GWAS neben 

Varianten in Genen des Komplementsystems und der Angiogenese auch Varianten in 

Genen des Fettstoffwechsels und des extrazellulären Remodelings identifiziert, die mit 

AMD assoziiert sind (43).  

Aufgrund der eingesetzten Methoden konnten in dieser Arbeit keine exonübergreifenden 

strukturellen Varianten oder tief intronisch gelegenen Varianten detektiert werden. Diese 

könnten sich jedoch ebenfalls auf das Erkrankungsrisiko oder Therapieansprechen 

auswirken. Strukturelle Varianten, die das AMD-Risiko beeinflussen, wurden in den 

CFHR-Genen identifiziert. Hierbei ist die häufigste Kopienzahlveränderung eine 

kombinierte Deletionen von CFHR1 und CFHR3, welche mit einer OR von 0,47 protektiv 

bezüglich AMD ist (36,37). Homozygotie führt dabei zur Abwesenheit von FHR-1 und 

FHR-3 im Serum (36). Zudem wurden in dieser Arbeit ausschließlich genetische 

Faktoren betrachtet. Das AMD-Erkrankungsrisiko wird jedoch auch durch nicht-

genetische Risikofaktoren beeinflusst, welche in dieser Arbeit nicht betrachtet wurden. 

5.11 Schlussfolgerung 

In dieser Arbeit wurde erfolgte eine Komplettsequenzierung des kodierenden sowie 

eines flankierenden intronischen Bereichs im VEGFA-Gen, um genetische Varianten zu 

identifizieren, die möglicherweise mit dem Therapieansprechen in einem 

Zusammenhang stehen.  

Hierbei wurden zwei genetische Varianten in VEGFA identifiziert. Die synonyme 

Variante rs25648 und die intronische Variante rs3025000 sind in der 

Allgemeinbevölkerung häufige Varianten, die die Aminosäuresequenz nicht verändern. 

Auswirkungen auf Proteinebene sind dennoch nicht ausgeschlossen, jedoch wurde 

bisher kein eindeutiger Zusammenhang zwischen diesen VEGFA-Varianten und der 

VEGF-A-Serumkonzentration nachgewiesen (166,171–173).  

Die Ergebnisse dieser Arbeit zeigen keinen eindeutigen Zusammenhang der beiden 

nachgewiesenen VEGFA-Varianten mit dem AMD-Risiko, deuten jedoch auf einen 

möglichen Einfluss von rs25648 auf die Entwicklung einer AMD hin. Es ist möglich, dass 
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ein Zusammenhang in einer größeren Kohorte nachweisbar wäre. Bisherige 

Untersuchungen konnten jedoch keine eindeutige Assoziation nachweisen und in silico 

sowie anhand von Untersuchungen zur Genexpression lässt sich bisher kein eindeutiger 

Wirkmechanismus dieser Varianten ableiten. Vereinzelt wurde ein Zusammenhang 

zwischen anderen VEGFA-Varianten und dem AMD-Risiko hergestellt, wobei die 

Bedeutung von VEGFA für das AMD-Risiko insgesamt unklar ist (3,70), obwohl die 

Pathogenese der Erkrankung einen möglichen Zusammenhang zwischen VEGFA und 

dem Auftreten von AMD impliziert.  

Die beiden identifizierten VEGFA-Varianten stehen in dieser kleinen Studienpopulation 

zudem nicht mit dem Ansprechen auf VEGF-Inhibitoren in Zusammenhang. Es besteht 

jedoch ebenfalls die Möglichkeit, dass eine Assoziation in größeren Kohorten 

nachweisbar wäre bzw. sich andere, in dieser Studie nicht detektierte genetische 

Varianten im VEGFA-Gen auf das Therapieansprechen auswirken. Zudem könnte das 

Therapieansprechen auch mit anderen, in dieser Arbeit nicht untersuchten Genen 

assoziiert sein, insbesondere im Komplementsystem, welches zentral für die 

Pathogenese der AMD ist. Weiterhin wirken sich auch nicht-genetische Faktoren auf das 

Therapieansprechen aus (76), deren Effekt genetische Faktoren auch überwiegen 

könnte. Detaillierte genetische Untersuchungen von Kandidatengenen hinsichtlich 

pharmakogenetischer Zusammenhänge liefern einen wichtigen Beitrag für eine bessere 

Datenbasis für zukünftige personalisierte Therapieansätze. 

Die Bedeutung des Komplementsystem für die Pathophysiologie der AMD wird dadurch 

hervorgehoben, dass viele der mit dem AMD-Risiko assoziierten Varianten in Genen, 

die für Komponenten der Komplementkaskade kodieren, liegen (25,39,237). So befindet 

sich die erste identifizierte Hauptrisikovariante für AMD, c.1204T>C, p.Tyr402His, in 

CFH (25). Auch in dieser Arbeit wurden genetische Varianten in den Genen des 

Komplementsystems nachgewiesen. Sieben Varianten in den Genen MASP2, CFHR2, 

C9, CFB, C5, ITGAM und C3 wurden anhand der prädiktierten Pathogenität zur weiteren 

Analyse ausgewählt und konnten mit einer zweiten Methode verifiziert werden. Alle 

Varianten lagen dabei jeweils heterozygot bei je einem Individuum aus der Gruppe der 

AMD-Betroffenen vor. Die MASP2-Variante c.359A>G, p.Asp120Gly wurde bereits mit 

MASP-Defizienz in Verbindung gebracht und weist einen Einfluss auf die Proteinfunktion 

auf (128,129). Die Nonsensevariante c.595G>T, p.Glu199Ter in CFHR2 beeinflusst die 

Proteinsynthese und wirkt sich somit ebenfalls auf die Proteinfunktion aus (38,137). 

CFHR2 gehört dabei zu derselben Genfamilie wie CFH und auch die CFHR-Gene 

implizieren, einen Einfluss auf die AMD-Pathogenese zu haben, wobei der 

Krankheitsmechanismus noch unzureichend geklärt ist (38). Seltene Varianten mit 
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funktionellen Auswirkungen auf das Protein können Hinweise auf 

krankheitsverursachende Gene geben (43) und damit zur weiteren Aufklärung der 

Pathogenese der AMD und der genetischen Prädisposition beitragen. Im Sinne einer 

komplexen Erkrankung tragen neben genetischen auch nicht-genetische Faktoren zum 

Erkrankungsrisiko bei. Daher sind mögliche Risikovarianten und - gene in einem 

polygenen Kontext zu betrachten. Insbesondere Varianten, die das Risiko nur leicht 

erhöhen, aber eine relativ hohe Allelfrequenz haben, könnten in einen polygenetischen 

Risikoscore einbezogen werden. Dies unterstreicht die Notwendigkeit funktioneller 

Untersuchungen und Studien an größeren Kohorten, um weitere Risikogene für die AMD 

identifizieren zu können. Zukünftig könnte auf diesem Weg eine individuellere 

Risikoeinschätzung und eine personalisierte Behandlung ermöglicht werden. 
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7 Thesen  

1. In dieser Studienpopulation deutet sich an, dass NM_003376.6:c.534C>T, 

p.Ser178= im VEGFA-Gen mit dem Risiko der Entwicklung einer AMD in einem 

Zusammenhang stehen könnte. 

2. Zum Nachweis einer möglichen Assoziation der nachgewiesenen VEGFA-

Varianten mit dem AMD-Risiko sind prospektive Studien mit größeren Fallzahlen 

nötig. 

3. Es ergeben sich anhand dieser Studie keine eindeutigen Assoziationen der 

detektierten VEGFA-Varianten mit einem veränderten Therapieansprechen. 

Jedoch ist nicht auszuschließen, dass ein Zusammenhang in einer größeren 

Kohorte nachweisbar wäre. 

4. Kodierende Varianten in VEGFA wurden in dieser Studienpopulation nicht 

nachgewiesen. Andere, in dieser Studie nicht detektierte genetische Varianten 

im VEGFA-Gen oder Varianten in anderen Genen können sich auf das 

Therapieansprechen auswirken. Zudem ist es möglich, dass nicht-genetische 

Faktoren einen größeren Einfluss auf das Therapieansprechen aufweisen als 

genetische. 

5. In dieser Arbeit wurde eine Komplettsequenzierung der kodierenden und 

flankierenden intronischen Abschnitte des VEGFA-Gens durchgeführt. Dieser 

Ansatz erlaubt die Detektion neuer und möglicherweise pharmakogenetisch 

relevanter Varianten und liefert eine wichtige Grundlage für zukünftige 

pesonalisierte pharmakogenetische Therapieansätze.   

6. Das Komplementsystem steht im Zusammenhang mit der Pathogenese der 

AMD. Falls die in dieser Arbeit nachgewiesenen Varianten 

NM_006610:c.359A>G, p.Asp120Gly in MASP2 und NM_005666:c.595G>T, 

p.Glu199Ter in CFHR2 in größeren Kohorten eine Assoziation mit AMD 

aufweisen, könnte das zu einem besseren Verständnis der Bedeutung von 

MASP2 und CFHR2 für die Pathogenese der AMD beitragen. 

7. Die Identifikation von Risikovarianten und -genen ist relevant für ein besseres 

Verständnis der AMD-Pathogenese und eine zukünftig individuellere 

Risikoeinschätzung und Behandlung. 
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Anhang 

 

Anhang 1: Ausschnitte der Sekundärstrukturanalysen von MASP-2, C3, C9, C5 und Integrin 
α-M. (A) Asp120Gly befindet sich am Übergang eines β-Faltblattes in einen Random Coil. (B) 
Val845Met befindet sich in einem β-Faltblatt. (C) Ile476Thr liegt in einer α-Helix. (D), (E) 
Arg766Gln sowie Gly597Glu liegen in einem Random Coil. Es werden keine Änderungen der 
Sekundärstruktur durch die Aminosäuresubstitutionen prädiktiert. S (gelb): β-Faltblatt; H (rot): α-
Helix; weiß: Random Coil; grün markiert: Position der Variante. 

        MASP-2 p.Asp120Gly

         C3 p.Val845Met

         C9 p.Ile476Thr

         C5 p.Arg766Gln

         Integrin α-M p.Gly597Glu

AA-Position 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

Residuum  S  S  L  D  I  T  F  R  S  D/G  Y  S  N  E  K

UniProt S S S S S S S S

120D PSIPRED S S S S S S S S

120D Jpred4 S S S S S S S S

120D s2D S S S S S S S

120D SWISS-MODEL S S S S S S S

120D I-TASSER S S S S S S S S

120G PSIPRED S S S S S S S S

120G Jpred4 S S S S S S S S

120G s2D S S S S S S S

120G SWISS-MODEL S S S S S S S

120G I-TASSER S S S S S S S SM
u

ta
ti

o
n

W
ild

ty
p

AA-Position 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

Residuum P V L I S Q K L S P I/T Y N L V P V

UniProt S S S S S S S S S H H H H S

476I PSIPRED S S S S H H H H

476I Jpred4 H H H H H H H H H H H H H H

476I s2D H H

476I SWISS-MODEL S S S S S S S S S H H H

476I I-TASSER S S S S S S S H H H H

476T PSIPRED S S S S H H H H

476T Jpred4 H H H H H H H H H H H H

476T s2D S H H H

476T SWISS-MODEL S S S S S S S S S H H H

476T I-TASSER S S S S S S S H H H H

W
ild

ty
p

M
u

ta
ti

o
n

AA-Position 593 594 595 596 597 598 599 600 601 602 603 604 605

Residuum L T M D G/E L V D L T V G A

UniProt S S S S S S S S S S S

597G PSIPRED S S S S

597G Jpred4 S S S S S

597G s2D S S S

597G SWISS-MODEL S S S S S S

597G I-TASSER S S S

597E PSIPRED S S S S

597E Jpred4 S S S S S

597E s2D S S S

597E SWISS-MODEL S S S S S S

597E I-TASSER S S S

W
ild

ty
p

M
u

ta
ti

o
n

AA-Position 760 761 762 763 764 765 766 767 768 769 770 771

Residuum V S K P E I R/Q S Y F P E

UniProt S S S

766R PSIPRED

766R Jpred4

766R s2D

766R SWISS-MODEL

766R I-Tasser

766Q PSIPRED

766Q Jpred4

766Q s2D

766Q SWISS-MODEL

766Q I-TASSER

W
ild

ty
p

M
u

ta
ti

o
n

AA-Position 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

Residuum V V R N E Q V/M E I R A V L Y N Y

UniProt S S S S S S S S S S S

845V PSIPRED S S S S S S S S S S S S

845V Jpred4 S S S S S S S S S S S S S

845V s2D S S S S S S S S S S S S S

845V SWISS-MODEL S S S S S S S S S S S

845V I-TASSER S S S S S S S S S S S S

845M PSIPRED S S S S S S S S S S S S

845M Jpred4 S S S S S S S S S S S S S

845M s2D S S S S S S S S S S S S

845M SWISS-MODEL S S S S S S S S S S S

845M I-TASSER S S S S S S S S S S S S S

W
ild

ty
p

M
u

ta
ti

o
n

A

B

C

D

E

B

E

D
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Anhang 2: Ausschnitte aus der grafischen Darstellung von Faktor B, Integrin α-M und C3 
im 3D-Modell. (A) Isoleucin (hellblau eingefärbt) an Position 469 bildet 
Wasserstoffbrückenbindungen zu Phe465 und Tyr466. Die Substitution Ile469Met könnte zum 
Verlust der Wasserstoffbrückenbindung zu Tyr466 führen. (B) Durch den Austausch von Glycin 
gegen Glutaminsäure bildet sich eine zweite Wasserstoffbrückenbindung zu Asp592. (C) 
Val845Met wirkt sich nicht auf die Wasserstoffbrückenbindungen aus.  

 

Faktor B p.Ile469Met

Integrin α-M p.Gly597Glu

C3 p.Val845Met

A

B

C
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Anhang 3: Darstellung der Hydrophobizität nach der normalisierten Eisenberg-
Konsensusskala. Je stärker die Rotfärbung, umso stärker ist die Hydrophobizität. (A) Die 
hydrophobe Aminosäure Isoleucin wird gegen die ebenfalls hydrophobe Aminosäure Methionin 
ausgetauscht. (B) Durch den Austausch von Arginin an Position 766 gegen Glutamin nimmt die 
Hydrophobizität leicht zu. (C) Gly597Glu befindet sich an der Oberfläche des Proteins. Die 
Hydrophobizität nimmt durch die Mutation leicht ab. (D) Substitution der hydrophoben 
Aminosäure Valin gegen das ebenfalls hydrophobe Methionin. 

Anhang 4: Durch Pymol angegebene Frequenz der Rotamere. Bei der Modifizierung des 
Proteins wurde von den vorgeschlagenen Rotameren das Rotamer mit der höchsten Frequenz 
ausgewählt. Da Glycin keine Rotamere besitzt, ist keine Frequenz angegeben. 

Protein Mutation Frequenz    

Rotamer (%) 

MASP-2 Asp120Gly / 

C9 Ile476Thr 54,3 

Faktor B Ile469Met 21,0 

C5 Arg766Gln 26,7 

Integrin α-M Gly597Glu 17,6 

C3 Val845Met 19,3 

 

Anhang 5: Prädiktion des Einflusses der Variante auf die Stabilität der Proteinstruktur 
durch Dynamut. Destabilizing: ∆∆G < 0 kcal/mol, stabilizing: ∆∆G ≥ 0 kcal/mol. 

Protein Mutation ∆∆G (kcal/mol) Vorhersage 

MASP-2 Asp120Gly -1,119 destabilizing 

C9 Ile476Thr -1,692 destabilizing 

Faktor B Ile469Met 0,474 stabilizing 

C5 Arg766Gln -0,412 destabilizing 

Integrin α-M Gly597Glu 0,422 stabilizing 

C3 Val845Met -0,257 destabilizing 

 
 

 

 

 

Faktor B p.Ile469Met C5 p.Arg766Gln
Faktor B

Integrin α-M p.Gly597Glu C3 p.Val845Met

BA

C D
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Anhang 6: Studien zum Einfluss genetischer Varianten auf das Therapieansprechen. Die 
Tabelle gibt einen Überblick über bisherige Studien zum Einfluss genetischer Varianten auf das 
Ansprechen auf VEGF-Inhibitoren und deren Ergebnis. Die ersten beiden Studien haben 
zusätzlich eine Kontrollgruppe nicht von AMD betroffener Proband*innen untersucht, wie es auch 
in dieser Arbeit erfolgt ist. Die Anzahl der Proband*innen der Kontrollgruppe ist in diesem Fall in 
Klammern dargestellt. PMID: PubMed ID, F: Anzahl Individuen der Studienpopulation, K: 
Kontrollgruppe, Med: verwendetes Anti-VEGF-Medikament, AFL: Aflibercept, RAN: 
Ranibizumab, BEV: Bevacizumab. 

Studie 
(PMID) 

F 
(K) 

Gene Unter-
suchung 

Med Ergebnis 

Kozhevnikova  
et al., 2022 (238) 
PMID: 35884963 

193 
(147) 

5 SNPs in CFI, 
ARMS2, C3, 
CFH 

SNP Assay AFL rs2285714 (CFI): T 
schlechteres Ansprechen 

Kubicka-
Trzaska et al., 
2022 (239) 
PMID 35630075 

111 
(58) 

3 SNPs in CFH, 
C2, C3 

SNP Assay 
 
 

RAN, 
BEV  

rs1061170 (VEGFA): CC 
besseres Ansprechen; CC 
und C-Allel höheres AMD-
Risiko 

Hagstrom et al., 
2013 (84) 
PMID 23337555 

834 4 SNPs in CFH, 
ARMS2, HTRA1 
und C3 

SNP Assay RAN, 
BEV 

keine Assoziation  

Guymer et al., 
2024 (236) 
PMID 38980270 

780 33 Gene 
inklusive 
VEGFA 

GWAS AFL, 
RAN 

keine Assoziation 

Lotery et al., 
2013 (188) 
PMID 24070809 

509 485 SNPs SNP Assay RAN, 
BEV 

rs10490924 
(HTRA1/ARMS2): T 
grenzwertige Assoziation 
mit besserem Ansprechen 

Park et al., 2014 
(192) 
PMID 25558172 

273 17 SNPs in 13 
Genen inklusive 
VEGFA 

SNP Assay RAN rs302539 (VEGFA): TT 
stärkere Visuszunahme; 
rs10490924 (ARMS2) und 
rs1100638 (HTRA1): GG 
größere Reduktion der 
zentralen Makuladicke 

Zhao et al., 2013 
(240) 
PMID 23745581 

223 rs943080 in 
VEGFA 

SNP Assay RAN, 
BEV 

rs943080 (VEGFA): T und 
TT schlechtes Ansprechen 

Abedi et al., 
2013 (86) 
PMID 23149126 

201 7 SNPs in 
VEGFA 
inklusive 
rs3025000 

SNP Assay RAN, 
BEV 

rs3025000 (VEGFA): T 
besseres Ansprechen 

Boltz et al., 
2012 (241) 
PMID 22521084 

185 7 SNPs in 
VEGFA 

einzelne 
SNPs 
(Schmelz-
kurvenanaly-
se) 

BEV rs3024997, rs2010963 
(beide VEGFA): GG 
geringere 
Visusverbesserung 

Strunz et al., 
2022 (242) 
PMID 35682771 

179 30 SNPs 
inklusive 
rs3025000 in 
VEGFA 

GWAS, 
Replikation 
30 Varianten 
inklusive 
rs3025000 
(VEGFA) 

AFL, 
RAN 

keine Assoziation 

Orlin et al., 2012 
(243) 
PMID 21878851 

150 7 SNPs in CFH, 
ARMS2, HTRA1 

SNP Assay RAN, 
BEV 

keine Assoziation 

McKibbin et al., 
2012 (83) 
PMID 21558292 

104 3 SNPs in 
HTRA1, CFH, 
VEGFA 

Genotypisie-
rung 
einzelner 
Varianten 
(Sequenzie-
rung) 

RAN Trend für besseres 
Ansprechen bei AMD-
Risikogenotypen 

Kitchens et al., 
2013 (197) 
PMID 24143065 

101 VEGFA 
inklusive 
rs25648, CFH, 
LOC387715 

SNP Assay RAN, 
BEV 

rs10490924 (LOC387715): 
TT schlechteres Ergebnis 
im OCT 
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