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Entomological lidar can provide rapid, non-intrusive assessment of insect abundance, diversity 
and composition, and has the potential to shed light on species specific preferences for habitats or 
environmental conditions. However, few studies have to date demonstrated comparisons of insect 
diversity and abundance across sites using photonic methods. Here, we present a first comparative 
entomological lidar study spanning different habitat types, investigating if the method can uncover 
consistent differences in insect diversity and composition. Using a simple, robust and parameter 
free estimation of entomological signal diversity, we recover the largest total number of insect 
observations (1,716,362), the highest daily number of observations (346,581) and the highest number 
of clusters distinguishable from noise (353) reported to date. We demonstrate consistent differences 
between four sites in terms of abundance, diversity, composition, range distributions and daily activity 
patterns. We critically discuss possible biases, constraints and future challenges for physicists and 
ecologists employing entomological lidar for diversity estimation.

Recent research has highlighted a strong global decline in insect abundance and diversity1–3. The implications 
are wide-ranging and include reduced functioning and resilience of our planet’s ecosystems and our own 
crop production4. The decline is attributed to a multitude of causes, including habitat destruction, pollution, 
invasive species and climate change5 and is most severe for terrestrial insects in industrialized regions3,6. 
However, although the tropics harbor the highest insect species diversity, studies of tropical insect diversity and 
population trends are starkly underrepresented. This lag in documenting diversity and its decline for tropical 
habitats, resulting from limited research funding in many countries in the tropics, may lead to failure to identify 
threats with delayed intervention and possibly irreversible ecosystem damage as consequences7. Biodiversity 
surveys8,9 based on trapping and manual taxonomic classification are costly and labor intensive10, highlighting 
the need for automation11 or genetic12 approaches to detect threats to insect diversity. Approaches to online in 
situ monitoring of insect diversity13 include e.g. distributed acoustic devices14–16 and machine vision setups17–19. 
However, neither of these approaches are broadly applicable across insect orders and they are currently not able 
to capture a representative composition for insect species richness assessment. Whereas the total biomass can 
be estimated by weighing catches1, and species richness can be evaluated by e-DNA or barcoding20, the species 
abundance distribution (SAD) is exceedingly challenging to determine for insects. Current modern approaches 
include individual sequencing21 or robotic sorting and microscopy11.

Photonic entomological sensors22–25 detect free flying insect in situ throughout the day without any attractant 
or particular trap design. The aerial insect density can be determined quantitatively when the details of the probe 
volume is known24,25 Such systems typically pick up insect oscillations, which include a wingbeat frequency 
(WBF) and harmonic overtones26,27. Species and sexes with distinct WBF can thus be differentiated28–30. 
Even species with similar WBFs can be distinguished by the overtone characteristics which relate to the wing 
dynamics31, surface roughness32 and the wing membrane thickness26,27,33,34 in relation to the wavelength of the 
sensor. Differences in overtone content, rather than just frequency, is analogous to the distinction in timbre 
between a flute and a trumpet playing the same note.

1Instrumentation, Imaging and Spectroscopy Laboratory, Félix Houphouët-Boigny Polytechnic Institute, 
Yamoussoukro, Côte d’Ivoire. 2Department of Physics, University of San Pedro, San Pedro, Côte d’Ivoire. 
3Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden. 4German Centre for Integrative 
Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. 5Department of Computer Science, Martin-
Luther-University Halle-Wittenberg, Halle (Saale), Germany. 6Department of Physics, Lund University, Söllvegatan 
14C, 22362 Lund, Sweden. 7Norsk Elektro Optikk A/S, Østensjøveien 34, 0667 Oslo, Norway. 8FaunaPhotonics, 
Oceanvej 1, 2150 Copenhagen, Denmark. email: benoitkouakou@gmail.com

OPEN

Scientific Reports |        (2025) 15:43544 1| https://doi.org/10.1038/s41598-025-27432-9

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-27432-9&domain=pdf&date_stamp=2025-11-20


Among photonic sensing, entomological lidar is particularly efficient in counting great numbers of insects 
passing through a laser beam (photon economy is optimal in lidar because the same light has high chance 
of intercepting an insect along a transect). However, it is generally challenging to associate the echoes with 
known taxa verified by other means. Nevertheless, numerous distinct signal types can be classified from field 
observations using unsupervised hierarchical cluster analysis (HCA)35,36. In these reports, light modulation 
spectra (including scattering from bodies, wings and their harmonics) from remote insects form the basis of a 
pairwise comparison, whereby the ensemble of observations can be clustered in groups of similar modulation 
spectra. Based on HCA, some of the clusters retrieved can be identified as male and female mosquitoes, although 
the majority of the clusters had lower WBF and remained unidentified35,36.

Depending on instrument complexity in terms of spectral- and polarization bands, similar species may not 
necessarily produce distinguishable oscillatory signals28,29. Furthermore, a single species and sex can be expected 
to produce distinct signals depending on the observation aspect26,37–39, temperature40 or payload41,42 (e.g. pollen, 
nectar, eggs or blood meals). Despite these reservations, a diverse ensemble of insects should also display a 
diverse ensemble of signals, whereas an ensemble with poor species richness should display only a few types 
of oscillatory signals. Initial work aimed at determining the number of unique clusters in entomological lidar 
data43 could discern 12 different signal types. A sensor based study44 demonstrated 70% correlation between 
photonically sensed insect clusters and insect family richness identified in co-located Malaise trap catches. This 
correlation is as high as that among adjacent Malaise traps45. To harness the full potential of entomological 
lidar, a key question is whether the number of discernible clusters are determined by the algorithms used, the 
instrument employed, or the habitat monitored, thus reflecting true biological differences. Revealing to which 
extent entomological lidar can provide insights into species abundance distributions, as well as the relationship 
between insect number and diversity are other major challenges. To address these questions, determining if 
there are consistent differences in insect abundance and diversity between different types of habitats, and how 
consistent and thus predictable abundance and richness values are from day to day is crucial.

In this study, we addressed whether or not we could determine consistent differences in insect abundance and 
diversity by deploying a near infrared entomological kHz lidar for four consecutive days in each of four distinct 
habitats. Daily insect counts ranged from tens- to hundreds of thousands of insects, and signals were clustered 
by pairwise Hierarchical Cluster Analysis (HCA). We investigated consistency between days and discrepancies 
in signal diversity across sites and explored cluster composition as well as the spatio-temporal distribution of the 
different clusters detected. We discuss possible biases and challenges in estimating biodiversity from lidar data 
in the light of our findings.

Results
We deployed an entomological lidar43 to investigate insect diversity in Yammasoukro, Ivory Coast. We report 
a total of 1,716,362 individual insect observation recorded at four sites during 4 days for each site (Figs. 1a–d, 
S1-S). Insect signals (see definition in “Methods” section) were recorded, returning observation rates varying 
from 10 to 1000 observations per minute. The four sites show distinct daily activity patterns but predominantly 
consistency between the days (Fig. 1e–h). The bush habitat displays marginal variance during the day, while the 
ponds display minor morning rush hour and a broad peak around dusk, the rice and tomato patch show minimal 
nocturnal activity, whereas a strong crepuscular peak is seen at the lake site. The transects varied in length (Figs. 
S1–S7). While the general decay with range is associated with loss of signal, insects were detected at up to 800 
m distance (Fig. 1i–l). Since the beams are elevated above the ground, the range profiles do not generally reflect 
preferences for topographic features. The last site, however, displays an activity peak at the shoreline of the lake.

Signals from each day and site are clustered independently by HCA (“Methods” section, Eq.  1). The 
compensated linkages (“Methods” section, Eq. 2), reflecting how dissimilar the modulation spectra among the 
groups are, decrease with the number of branches (Fig.  1m–p). The decay when branch numbers approach 
observation numbers imply that signals approach noise and numerical precision of instrument and computations. 
Instrument noise from real field conditions was used as a negative control, displayed in gray, and show no signal 
diversity (Fig. 1m–p).

In general, a clear cut-off in linkage, enabling to determine the exact number of clusters, cannot be expected 
for in situ data comprising thousands of species and different sexes and life stages. Moreover, WBF signals are 
affected by environmental conditions during the day. We identified the distinguishable number of clusters, NoC, 
for each day and site as the number of compensated linkages exceeding the median plus one IQR of the same 
compensated linkages (“Methods” section, Eq. 3). Applying this criterion, we did not detect any cluster for the 
negative control compensated noise linkages, Zξcomp.(p), for any of the sites or days. Thus, NoC, represents the 
number of clusters distinguishable from noise. The daily observation counts and daily numbers of clusters are 
displayed in Fig. 2.

In general, insect counts and NoCs were consistent within, but significantly different among, sites (Fig. 2). 
Interrupted measurements during one rainy day (Rice/tomato site, Nov. 10th) resulted in lower counts, and 
a windy day (Pond site, Mar. 17th) caused reduced transit times and reduced number of clusters, though. An 
asymptotic rarefaction curve, where species richness increases with number of observations is theoretically 
expected46–48. In our data, three of the sites displayed a positive correlation between number of observations 
and the number of clusters, consistent with other studies49 where too few individuals are sampled to exhaust the 
present pool of species. Therefore, extrapolation of rarefaction curves would be required to estimate asymptotic 
species richness46–48 also for our data, and as a high frequency of singleton is expected45,50 we likely do not detect 
many of the rare species. Interestingly, this relationship differed among the sites, with the bush site displaying 
the lowest NoCs, in spite of having highest number of observations likely reflecting that this site is dominated 
by a few species.
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To illustrate the wealth of signal diversity we use a single day at the bush site as example (Fig. 3). The HCA 
clustering dendrogram (Fig. 3, top) displays the number of observations assigned to each cluster. The centroid 
modulation spectra are presented for the 68 detected clusters (Fig. 3, middle section). The clusters to which 
most observations are assigned also display the least specific power spectra dominated by low frequency content 
without prominent WBF or harmonics. This means that these are likely to be umbrella clusters grouping 
observations which cannot be resolved by the instrument due to short transit times or low WBFs. Time- and 
range distributions are extracted from each cluster (Fig.  3, bottom). The range distributions may indicate 
preferences for landscape features or detection ranges for the species in the cluster. The daily activity patterns 
differ among clusters, with the insects in some clusters being more active in the mornings, and others in the 
hotter afternoons. The insects in some clusters display sharp preferences for light level niches, with activity peaks 
during the short tropical dawns and dusks.

Generally, this data shows that entomological lidar is a promising tool for diversity assessment and even 
potentially for estimating insect SADs. The number of observations in each cluster may, however, be biased by 
transit time. Including shorter transit times would reduce the ability to detect insects with low WBFs, whereas 
including longer transit times in order to resolve lower WBFs would disfavor perpendicular interceptions and 
sagittal observations, since detection ranges for species (and thus probe volumes) are likely to differ for transverse 
and sagittal observations. Moreover, clusters which have the roughly the same WBF can also differ in strength of 
even- and odd overtones (Fig. 4). This phenomenon is exemplified by cluster pairs such as C19 and C20 as well as 
C31and C32 (215 Hz and 250 Hz respectively) retrieved from the same day at the bush site. Such clusters could 
potentially arise from the same species and sex observed from different aspect angles. For both the C19–C20 pair 
and C31–C32 pair, the cluster with strong odd harmonics has a higher number of observations and has a longer 

Fig. 1.  Focal study sites and lidar trajectories, insect abundance across time and space and inferred species 
richness (linkages). Top row: study sites, with lidar beam transects indicated by arrows. The beam length 
and height over ground is indicated in both ends. (a) Bush site, the beam passes > 7m high over scrubs and 
trees, including cassava, banana and mango. Termite mounds can also be found at this site. (b) Pond site, the 
beam is transmitted from a chicken farm and passes between a pond and fish dams. (c) Rice/tomato site, the 
beam passes close to small patches with rice and tomato cultures. (d) Lake site, the long beam passes between 
crop patches and beehives before passing over a lake. (e–h) The number of observations during the days 
for each focal site. The daily activity patterns are distinct among sites, but consistent among days. (i–l) The 
number of detected insect observations across the ranges of the beams. (m–p) Detrended signal dissimilarity 
linkage computed for each day and site independently. The larger values for the first branches on the left side 
indicate signal diversity, the drop on the right hand is a result of numerical precision of measurements and 
computations. The gray lines indicate equivalent linkages computed for real instrument noise recorded during 
the campaign, providing a negative control for signal diversity. Each column corresponds to the respective 
study site, and coloration denotes sampling date. (Map data: © Google, Maxar Technologies).
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detection range. Whereas cluster C31 and C32 have similar daily pattern likely representing one species, clusters 
C19 and C20 have distinct daily activity patterns, and could either represent distinct species or reflect different 
headings during the day. Generally, our understanding is that strong odd harmonics arise in observations from 
anterior/posterior aspects since the cross section is smaller in the transverse plane26,37,39,51. Therefore, the higher 
numbers and longer detection ranges of clusters with strong odd harmonics is counter intuitive. Potentially, this 
could arise if wing surface normals are more likely to produce specular reflections during upstroke than at their 
extreme angles.

Ideally, the distribution of observation among clusters would be equivalent to the SAD, but more realistically 
the evenness of the distribution of cluster assignment co-varies with the SAD evenness. When clusters are sorted 
by descending observation number, we can accurately describe cluster abundance distributions by Eq. 4 (see 
“Methods” section) with explanation grades of R2

adj. > 99% for all sites and days (Fig. 5a–d, top row). Equation 4 
is equivalent to SAD models, and the estimated composition slopes retrieved by fitting the equation are similar 
to those reported in other diversity studies50,52. We cannot establish any significant correlation between the 
number of observations assigned to a cluster and the average observation range for that cluster (Fig.  5e–h, 
Supplementary Table S1), implying that the higher number of observations in the most common clusters are not 
explained by a larger probe volume resulting from them being detected at larger distances. We could only see 
a weak indication that the average transit times of observations within a cluster is higher for common clusters 
(Figs. 5i–l, S1) according to Genoud et al.24,53.

By parametrizing the cluster compositions from each day and site using Eq.  4 (“Methods” section, 
Supplementary Table S1), we recovered skewness. Within sites, the composition slopes are rather consistent 
among days (Fig. 6). The bush site had the highest number of observations but lowest diversity, and thus had 
a high skewness, γ, reflecting that it was dominated by few clusters (Fig. 6). In contrast, the pond site with the 
highest diversity had the most even distribution. Interestingly, the rice/tomato and lake sites displayed distinct 
patterns of diversity (Fig. 2) but their evenness could not be differentiated (Fig. 6). The diversity index NoC and 
the skewness γ can thus provide complementary information about the insect community.

Naïvely, one would like to think of insects entering an invisible beam over the fields as an unbiased assessment 
of the activity in the probed airspace. As we already eluded, some insect species are small, others large, some 
are dark and other bright. Some species have specular and resonant wings for the laser wavelengths and others 
have diffuse and omnidirectional scattering wings. To complicate the matter, flat specular54,55 scatter and 
omnidirectional56 backscattering is not attenuated equally over distance. When there are no specific preferred 
locations along the transect, the detection range distributions appear as in Figs. 1i–k and 4b, d, f, h. At close 
range, the numbers are reduced because of incomplete overlap between beam and field-of-view. This effect was 
described previously using the same Ivorian lidar57. When approaching the detection limit, rdet.(c), for a species, 
the number can be explained by Eq. 5 (“Methods” section). For the cases which were manually fitted (C19, C20, 

Fig. 2.  The relationship between number of observations and the estimated number of signal clusters. The 
number of retrieved clusters versus the number of insect observations. The points are colored by site, with gray 
representing a negative control based on signal noise. The median and IQR for each site are denoted by bars. 
Activity ranged from ~ 20,000 observations per day for the lake site to more than 300,000 observations per day 
for the bush site. The number of clusters that significantly different from noise ranged from 50 for the lake up 
350 for the pond site.
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C30 and C31 on Feb23, see Fig. 4) the explanation grades were in the order of R2
adj.≈90% (Fig. 4). The range 

attenuation was found to be spherical (α ≈ 2).
To test if detection range was accountable for clusters with small number of observations assigned to them, 

we plotted the clusters mean range in respect to their descending abundance rank (Fig. 5; middle row). We 
could not find any significant relation between average observation ranges of the cluster and the number of 
observations assigned to it. It would be reasonable to think that detection range for small species is short and 
detection range for larger species long, thus the probe volume would be larger for larger species, resulting in an 
overrepresentation of larger species. On the other hand, the biomass spectra dictate that the smallest species are 
the most numerous; these two effects may partly cancel out each other. Therefore, the listed bias effects from 
species specific probe volumes would reshuffle species in the sorted species abundance distributions, even in a 
fictive situation with perfect specificity.

Similar to range biases, the noise spectrum and thus detection limits are not the same during day and night as 
they are affected both by sunlight and atmospheric turbulence58. We expect sunlight and atmospheric turbulence 
from convection cells58 to slightly raise noise floor such that less small and far insect would be detected. Rain 
showers currently flood our detection algorithm, and we disable insect detection during rain although insect 
can fly in rain59. Wind would increase ground speed, shorten transit time and worsen frequency resolution. One 
interesting philosophical idea proposed by Genoud et al.53 is that aerial density should be deduced by weighting 
the observations by their transit times. We investigated cluster sizes in respect to the mean transit times and 
found weak correlations except for at the lake site (Fig. 5; bottom row, Supplementary Table S1). The lowest 
observable frequency and frequency resolution are both determined by transit time, and thus the width of the 
probe volume. Short observations generate the least specific signals and could be pooled together in unspecific 
clusters providing little information about diversity.

Finally, we investigated range biasing in respect to the frequency content of the clusters. The centroid power 
spectra were reduced to a single value by the first statistical moment. Accordingly, the center-of-mass frequency, 
fCoM, was obtained from each cluster for each day and site. These frequency values were correlated with the 
average observation ranges of the clusters (Fig. 7, Supplementary Table S1). We would like to emphasize that 
both range and frequency are double bound, thus their mean value could only assume value within range of the 
site and frequency range of the instrument and threshold for transit times.

The bush site showed no relation between fCoM and mean cluster range, implying that distinct oscillation 
spectra can be assumed to have similar probe volumes. For the pond site, we encounter a significant positive 

Fig. 3.  Example of hierarchical clustering based on a single day at a single site. Top; resulting dendrogram of 
signal relatedness. The branches are sorted by minimizing neighbor similarity. The sizes of the colored circles 
indicate how many observations are assigned to the cluster. Middle; the centroid modulation spectra for each 
cluster upon which clustering is based, where solid lines indicate the median spectra and grey lines indicate 
IQR. For several clusters a WBF can be deduced, multiple strong harmonics indicate glossy wings and clusters 
with same WBF but distinct strength of even and odd harmonics could result from same species observed from 
transverse or sagittal aspect. The most abundant clusters often show the least specific modulation spectrum 
which could result from them being umbrella clusters for multiple unresolved species. Bottom; the temporal 
and spatial frequency of occurrence for four selected clusters.
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correlation of 54% (Supplementary Table S1) between cluster range and higher frequency content (i.e. high WBF 
or strong harmonics). This aligns with the idea that specular reflections produce high frequency content27,60 
and transmit over longer distances54, the same phenomenon which makes it possible to signal to an airplane by 
reflecting sunlight in a wrist watch. For the rice and tomato site, the transects are short and variability in cluster 
mean ranges are limited. An effect for fCoM < 120 Hz gives rise to a significant negative correlation of − 22% (see 

Fig. 5.  Cluster composition, detection range and transit time for each day and site. Top row: The number of 
insects per cluster as a function of cluster rank. The solid lines indicate approximation by model in Eq. 5. Mid 
row: the mean range from the lidar at which insects in a cluster are detected as function of cluster rank. Bottom 
row: The mean transit time for insects in each cluster for each cluster rank.

 

Fig. 4.  Time and range distributions of two pairs of clusters with similar WBFs but distinct harmonics. 
Clusters with strong odd harmonics (a–b; e–f) display higher counts and longer detection range than clusters 
with similar WBF but stronger even harmonics (c, d; g, h). This is counterintuitive since sagittal observations 
is both more likely and have larger cross sections but produce stronger even harmonics. Daily activity pattern 
also differs between these cluster pairs with similar WBFs but distinct harmonics.
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Fig. 7c). This effect is more pronounced at lake site (Fig. 7d), where it gives rise to a negative correlation of − 48%. 
This implies that clusters observed over the lake are exclusively unspecific signals without clear WBFs and have 
modulation spectra governed by a rapid drop in power. It is possible that the lake habitat is dominated by larger 
insects and predators, whereas smaller insects with higher WBFs prefer shores. We have previously detected 
similar patterns61,62.

One complementary way to assess if inferred clusters represent distinct taxa is to investigate if clusters 
differing in modulation spectrum from the wing dynamics also differ in range distribution or daily activity 
pattern (Fig.  3, bottom row). Such differences would shed light on to which extent the recovered clusters 
prefer specific habitats, light levels or temperatures niches. To investigate cluster specific spatial- and temporal 
preferences ranges, histograms with 50 bins and 5% relative range resolution (matching the lidar accuracy) were 
calculated for all clusters for each day and site. Similarly, daily activity histograms were calculated using 96 time 
bins of 15 min width. We applied identical HCA cluster criterion as in Eqs. 1 to 3, but this time to the spatial- and 
temporal distributions rather than to the frequency content, illustrating the diversity of unique range and time 
distributions (Fig. 8).

The unique range and time patterns cannot exceed the half the number of detected clusters in Fig. 3 (the half 
factor arises from the median de-trending, Eqs. 2–3). In practice, the unique spatial and temporal distributions 

Fig. 7.  Dependence of detection range and thus probe volume in respect to frequency content. The relation 
is arbitrary, in the case of the bush-, rice/tomato- and lake- sites there was no difference in mean detection 
ranges in relation to mean modulation frequencies, fCoM, > 120 Hz, but clusters at the far ranges, r > 200 m, have 
comparatively much lower frequency (fCoM < 120 Hz) and thus unspecific content. For the pond site higher 
frequency content was detected further away.

 

Fig. 6.  Compositional parameters, median cluster count and unevenness. The cluster assignment and 
composition from each day and site can be described by two parameters, the median cluster count, A1/2, 
roughly relating to the total count, and unevenness, γ. The two sites with the highest species richness, the pond 
and rice/tomato sites, display most even composition whereas the more species poor sites have a composition 
dominated by a few clusters. In particular, the bush site features fewer clusters than the other sites.

 

Scientific Reports |        (2025) 15:43544 7| https://doi.org/10.1038/s41598-025-27432-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


for the clusters are much lower than the cluster numbers (Fig. 8). Overall, the range distributions do not differ 
much between the sites. This could also be expected from the featureless total distributions (Fig. 2; middle row). 
Presumably, the identified unique range distributions predominantly relate to detection ranges for different 
clusters. The lake habitat, where the lake shore constitutes a distinct topographic feature, displays slightly more 
range unique distributions though, illustrating that it is possible to detect microhabitat preferences using this 
approach. At all sites, the beam was elevated over ground, resulting in low variation in topographic features. A 
beam trajectory closer to microhabitats such as plants, waterbodies or alternating between sun and shade, would 
most likely result in more unique range distributions.

The number of unique daily activity patterns are somewhat larger than the number of unique range 
distributions for three of the four sites, the bush site being the exception. Most sites display around 16 different 
daily activity patterns (Fig. 8b), which has wide-ranging implications for the design of sweep nets or rotation 
trap sampling efforts to detect biodiversity. Less than 16 daily sampling occasions could imply that species are 
missed, or that their relative frequency or numbers are misrepresented.

Discussion
This comparative entomological lidar work is aimed at describing differences between sampling sites and assess 
the consistency across sampling days to assess the robustness of the estimates. We report an impressive total 
number of insect observations for a single study, counting 1.7 million observations during the 16-day duration, 
with up to 347 thousand daily observations and up to 353 differentiable clusters derived by classification of 
photonic signals for a single day and site. Lidar studies have previously recorded 312 thousand insects in 4 
days36, and 12 classes have previously been distinguished by the Ivorian lidar43 also deployed in this study. A 
transmittance-based approach has previously been shown to discern 5 classes based on clustering of WBF of 
wild flying insects40, and approximately 30 species were retrieved in a study using another photonic sensor44. 
The number of observed insects in this study is high compared to studies using non-photonic approaches. For 
instance, 1.5 million insects were detected by radar during a 4 month period63, and up to 6 classes of insects 
have been distinguished by radar64. Malaise trapping has recovered 1 million insects during a 4-year period21, 
with consecutive barcoding and extrapolation estimating that 94 thousand insect species are documented. Thus, 
other state of the art methods have both advantages and limitations, and photonics classification can provide a 
powerful complement to these approaches.

We propose a simple, robust and parameter free criterion for estimating the number of unique photonically 
observed clusters from pair-wise hierarchical clustering. The current lidar instrument and algorithm has the 
potential to discern between 50 and 350 clusters (NoCs), depending on the local diversity at the sampling site. 
We found consistent and distinct differences between four study sites, as well as differences among the respective 

Fig. 8.  The number of unique range- and temporal distributions for the four sites. Hundreds of distinct 
oscillatory power spectra could be discerned from noise, but some clusters could represent multiple species 
and multiple clusters could arise from a single species. The number of distinct spatial (a)—and daily (b) 
patterns are much lower but confirms that multiple species with distinct sizes, landscape preferences and 
niches in terms of light levels, temperature and humidity during the day.
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days when detection was performed. The differences between sampling days are likely be even stronger under 
sampling over a longer period with more pronounced weather differences.

Again, we emphasize that a single species can produce multiple signal types and thus NoCs since wing beats 
change with environmental conditions40, are distinct for the sexes29, change with payload such as eggs42, pollen, 
nectar41 and blood and that the aspect of observation change the relative strengths between their even and odd 
harmonics26,28,38,39. Furthermore, there will be a limit for the maximal number of distinguishable species with a 
certain instrument. This saturation level depends on both the signal–noise ratio, transit times and sample rate, 
the sophistication of the instrument in terms of wavelength-65,66 or polarization bands61, and the sophistication 
of the algorithm, for example implementation of waveform- or phase sensitive comparisons67,68. By inspection 
of the centroid modulation spectra we detected signals consistent with several clusters resulting from the same 
species and sex observed from different angles, whereas other clusters do not display clear WBF modulation 
and hence presumably pool multiple species. The number of clusters as described here should therefore be 
understood as a maximum number of signals that the lidar instrument and algorithm can discern from noise. 
This number is lower than the number of species present but still reflects relative species richness37. We also 
exploited the range distributions and daily activity patterns to set a minimum number of species that can be 
differentiated in this study.

Although we cannot expect a 1:1 relation between NoC and species richness, we can expect NoC to 
correlate with species richness, as demonstrated by Rydhmer et al.44. Although Rydhmer’s study was based on 
smaller distributed photonic sensors rather than a lidar, the algorithm is fairly similar to the one employed 
in is study. The numbers of clusters retrieved in this study are considerably higher than those reported by 
Rydhmer and colleagues based on studies in five Scandinavian habitats, where insect observations and catches 
were accumulated resulting in approximately 102 catches and 103 signals each week44. Further, Rydhmer et al. 
reported saturation level of approximately 40 known species in flight chambers. This means that photonically 
estimated richness likely will be underestimated in tropical forests, as species richness in tropical virgin forest 
can exceed 104 species10.

Overall, the estimated γ values are low (too even) compared to surveys with Malaise traps and manual species 
identification44,45,69. Typical γ exponent values for Scandinavian Malaise studies is ~ 1.5 with minimal deviations 
for sites and seasons44,45,52, even if the dominant species are distinct between sites. The cluster unevenness and 
the true species unevenness are presumably related, but we cannot determine their relation, as some species 
may be pooled in dominant unspecific clusters or multiple clusters arise from the same species as discussed 
above. Imprecise methods would cause bias towards more even SADs (analogous to that photon counts from a 
low-resolution spectrometer yields spectral lines that are blurred together). Further comparisons of lidar data to 
ground truth data sets to validate the lidar based inferences, would be valuable for understanding the relationship 
between cluster- and species numbers. Obtaining species specific lidar signals from known specimens through 
controlled releases has proven inefficient due to the high number of observations needed to cover different 
observation aspects26. Larger amounts of lidar signals from known species can be retrieved in cage experiments 
where enclosures contain only one known species28,29,44. Indirect comparison to Malaise trap catches placed at 
the same sites as the lidar as in Rydhmer et al.44 provide a promising approach to validate the correspondence 
of lidar data to traditional approaches, making it more valuable for conservationists. Finally, improved light 
scattering models associating physical microstructure features of specimens to expected lidar signals as done in 
pilot studies70,71 provides a promising venue to improve the understanding of what species are observed in lidar 
data.

We found an interesting discrepancy between insect abundance and cluster diversity, where the site with 
largest number of insects was not the most diverse site in terms of number of distinguishable clusters, as would 
be expected from large scale studies on the relationship between insect abundance and diversity49. Instead, 
the site with the highest insect count had the lowest diversity of distinguishable clusters with a composition 
dominated by a few clusters. While species abundance distributions are reported to be stable to low-intensity 
disturbance52, abundance distributions differ among taxonomic groups52, and have been shown to be affected by 
land management differences72. The low number of clusters in spite of extremely high number of observations 
at the bush site also suggests that the observations retrieved using lidar can almost exhaustively sample a 
community, and derive relative abundance estimates for all distinguished clusters. It is important to acknowledge 
that there are likely cryptic species present within each cluster, and that the sexes may be split into distinct 
clusters. Regardless, there is good evidence that the number of oscillation-clusters is a good representation of 
the biodiversity in the area44. Furthermore, the digital signal processing pipeline and adaptive self-referencing 
cluster criterion (Eqs. 2–3) can circumvent a lot of the challenges associated with manual morpho-species 
designation9 (also known as taxon surrogacy73).

We investigated possible biases derived from detection range issues, transit times and frequency content. In 
one site, we found that higher frequency content was detected further away. For two of the sites we found that 
clusters with frequency content below 120 Hz were exclusively detected at far distances, whereas detection of 
clusters with wing beat frequencies higher that 120 Hz was unrelated to detection range (Fig. 8). For extended 
lidar transects, we can expect different detection ranges and thus probe volumes for large/small, dark/bright, 
glossy/matte species. Furthermore, species wing thickness resonates with the lidar wavelength27,33,34. The theory 
of specular lidar targets is fascinating54,74 but not yet well established for insect wings, as more work is needed to 
estimate species specific detection ranges and prove volume sizes. Jointly, these biases mean that species could 
be swapped in the ranked SAD (Fig. 5), depending on their specific detection ranges.

There are several venues for improving entomological lidar specificity. From experience, the number of 
discernible clusters increase by implementing polarization bands61, although the improvement is marginal. 
Incorporating multiple wavelengths bands28,39,44 providing additional information on melanization65 and wing 
membranes33,34 has an even higher potential to contribute to distinguishing even more clusters.
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We emphasize that the power spectrum is not a complete description of the lidar retrieved waveforms in 
I(t) because phase information is lost. In addition, the power spectra can suffer from side lobes whenever the 
insect transit envelope through the probe volume deviates from Gaussian and frequency folding due the low 
fNyq.. Improvement, without increasing instrument complexity, could include phase- or waveform sensitive pair 
wise comparison algorithms to better exploit retrieved information. We encourage the bioacoustics and signal 
processing communities to download the data and develop such approaches. An interesting future direction for 
the lidar would be to improve the understanding how specular reflections and frequency content is transmitted 
over distance, improving classification power.

In this study insect diversity was recorded over a period of several months, and sampling at the different 
study sites was not randomized. Thus, we cannot be certain that the differences encountered between sites do 
not partly reflect seasonal differences in insect composition. While the vegetation greenness at the sites did not 
differ between November and March (Figs. 1m–p, S1–S4), even tropical insect species may have distinct yearly 
phenologies, and different species may therefore be recorded during different times of the year44. Since our aim 
with this study is to demonstrate how entomological lidar can assess consistent differences in insect abundances 
and diversity estimates among sites, the implications of this design are small though. Having established this, our 
study clearly demonstrates the possibility to use lidar as cost-effective mean of non-invasive monitoring of insect 
communities. Moreover, the approach is feasible to apply even in regions with limited research budgets which 
are strongly underrepresented in insect diversity surveys75.

In conclusion, automated in situ assessment of biodiversity would have tremendous potential to evaluate and 
improve conservation planning. The work presented here shows that lidar has the potential to provide data that 
can be used to calculate richness as well as solid proxies for commonly used diversity indices such as Shannon–
Wiener and Simpsons indices76,77. Entomological lidar thus provides a very promising biodiversity monitoring 
approach that can contribute unique data shedding light on insect abundance and diversity.

Methods
Lidar transects and sites
Four sites in vicinity of the Félix Houphouët-Boigny National Polytechnic Institute in Yamoussoukro, Ivory 
Coast were chosen for lidar observations. Yamoussoukro is below the arid Sahel region, but somewhat dryer 
than the costal region and harbors a range of habitats including bush, scrubs and small scale agricultural 
patches. Climatically, Yamoussoukro features a main rain season from March to July and a smaller rain season in 
September and October. Here, the same lidar system was deployed at multiple sites. The sites were deliberately 
placed in different habitat types (Figs. 1, S1–S7) that can be expected to display distinct insect abundance 
and species richness. Insects were recorded for four consecutive days at each site during the dry season from 
November 2021 to March 2022. As the sites were monitored at different time points, we cannot with certainty 
disentangle the difference between sites and progression into the dry season. However, this was of minor 
importance, because our aim was to compare days to each other, regardless of whether these differences were due 
to sites or seasonality. Additionally, the dry season is climatically stable, and the differences between the sites are 
pronounced. The rice/tomato site in November was not greener than the pond site in March (see Figs. S1–S4). 
Therefore, we refer to the four lidar transects by their site identity rather than their recording date (Fig. 1). One 
day was windy (17th March) and one day was rainy (10th November), otherwise the weather was stable, and 
recordings could be carried out continuously for 24 h.

Entomological lidar instrument
The Ivorian entomological lidar system was previously described in other studies43,57,71,78,79; see also Fig. S5. 
The lidar also resemble other system27,41,65,80–82. Briefly, an invisible near infrared beam from a 3W, 808 nm 
laser diode was transmitted over an area and terminated on a board with black neoprene (Fig. S6). The beam 
expander diameter was Ø102 mm, the near limit of the system was 40 m, and the beam was typically terminated 
after several hundred meters. The backscattered light from insects going through the beam was collected with 
a Newtonian telescope equipped with a spectral band pass filter and a tilted linear CMOS detector in the focal 
plane (according to Scheimpflug condition and the hinge rule). In this study, the detector was set to acquire 3500 
full waveform echoes/s, and the laser diode was modulated in synchronization with the detector to enable real 
time optical background subtraction and operation throughout the day. This implies that the effective sample 
rate, fs, of the system is 1.75 kHz and thus a Nyquist frequency, fNyq., of 875 Hz.

Entomological lidar data sets
The lidar was set to acquire raw data files in the form of 16 bit backscattered intensities by 2048 pixel (range 
bins) and 35,000 exposures (17,500 shots). Each file represents 10 s, has a size of 143 Mb, and is stored on a USB 
terabyte disk. Every day in this study corresponds to some ~ 8000 datafiles and ~ 1.5 Terabyte of data, making the 
total raw data analyzed in this study amount to ca. 24 Terabyte. Insect observations were cropped out of the raw 
data as described in previous work36,82,83. Briefly, individual observations are defined as connected islands in a 
Boolean time-range map where backscatter exceed its own median plus two interquartile ranges (IQRs) for the 
given range. This cropping reduces the data approximately by a factor 1:1000, depending on insect abundance. 
Many features can be extracted from such insect observations, n, but in this study we limited the parameters 
for each insect observation to; a range, r(n), (in meters), a time stamp, t0(n), (HH:MM) and a time dependent 
oscillatory backscatter intensity vector, I(t,n), in 16 bit. In addition, every time an insect observation was cropped 
from raw data, we also cropped an empty piece of real instrument noise, Iξ(t,n), using an identical mask in same 
file and range but with distinct t. This is used as a negative control and to avoid biases because instrument noise 
may depend on mask size in terms of duration (exposures) and aperture (pixels), temperature, background 
sunlight levels, turbulence and thus range. The detected number of insects per minute over the course of the day 
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varied from 1 to 1000 (Fig. 2a–d). The most likely transit time, Δt, was 25 ms (Fig. 2e–h). March 17th displayed a 
distinct slope because of wind (Fig. 2f) and November 10th had a reduced count because of multiple rain shower 
interruptions (Fig. 2g). The 25 ms transit time corresponds to 43 time samples, which allowed us to estimate the 
modulation power spectra, P(f,n) in 40 frequency bins from 1/25 ms = 40 Hz to fNyq. = 875 Hz, with bin spacing 
of 20 Hz and spectral resolution of Δf = 40 Hz. The power spectra were estimated by the Welch method using a 
Gaussian window of 40 samples lengths and a FWHM of 20 samples. Equivalently, we also estimated the power 
spectra of the noise, Pξ(f,n), corresponding to the conditions for each observation. In total for all days and all 
sites 1,716,362 observations (~ 75% of all observations) exceeded a transit time of 25 ms.

Hierarchical clustering of observations
HCA was previously applied to modulation spectra from entomological lidar35,36,43. In the current study, the 
dates and sites were evaluated independently and the pair-wise similarity distance, D(a,b), between all the power 
spectra retrieved from the focal site and day was computed accordingly;

	

D (a, b) = 2

√√√√
875 Hz∑

f=40 Hz

(
log

(
P (f, a)∑875 Hz

40 Hz P (f, a)

)
− log

(
P (f, b)∑875 Hz

40 Hz P (f, b)

))2

� (1)

here a and b  ∈ 1… N, a ≠ b, and denote two observation indices. The power spectra were auto-normalized such 
that only their different shapes are considered and not their absolute magnitude (which can vary a lot with 
range and position in the beam). In addition, the modulation power was logarithmized prior to calculation 
of the Euclidean statistical distances. This implies a fuzzy logical and operation across the spectral bins, and 
that all harmonic content of two observations must match to produce a similar pairwise distance. The pairwise 
distances were organized into a linkage tree Z(p) for each branch, p. Which is a compressed form of D(a,b) (since 
p ∈ 1…N−1 compared to the size of D which is N²). The branch linkages were sorted in descending order, thus 
starting with dividing the most different types of modulation spectra. In practice, D(a,b) is too large to compute 
(~ 1TB for site with highest abundance) and linkage, Z(p), was instead computed in Matlab (Statistics and 
machine learning toolbox, MathWorks, USA), using the ‘ward’ and ‘save memory’ algorithm flags. Equivalent 
linkages were computed between the instrument noise fragments, Zξ(p), as a negative control and to avoid any 
obscure biases arising from cropping, instrument- or environmental noises sources. Both the linkage for the 
insect observations, Z(p), and for the noise fragments, Zξ(p), displayed steady declines. To remove this trend, we 
compensated the linkages by a power law with an exponent, β, equal to the median slope of the linkages (sorted 
in descending order), see Eq. 2.
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(
N−1

p

)β
Z(p) , β =
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∆ log p
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The median slopes, β, were slightly below ½ (square root) for all sites and days. Following this compensation, the 
linkages are comparable (Fig. 1m–p). Whereas the observational data display a decline, the noise control display 
flat plateau. A rapid drop is observed for the linkages when p → N. This effect is not related to biodiversity, but 
results from the dimensionality of the parameter space (40 DoF, the number of frequency bins in our case) and 
numerical precision of measurements and computation.

We identified the number of clusters for each day and site, NoC, as the number of compensated linkages 
exceeding the median plus one IQR of the same compensated linkages, see Eq. 3.

	
NoC =

N−1∑
p

[
Zcomp.(p) >

(∣∣Zcomp.(p)
∣∣
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+
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∣∣
IQR

)]
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Similar procedures and criteria can be encountered in other recent entomological lidar studies44,61,71.

Abundance distributions of clusters
Numerous analytical expressions have been developed for SADs84. To estimate a proxy for SAD, we sorted the 
number of observations, A(c), for each cluster, c ∈ 1…NoC, for each day and site in descending abundance. The 
distributions was described by fitting this equation:

	
Â(c) = A0

(
1 − NoC + 1

c

)γ

� (4)

where Â(c) is the estimated counts assigned to each cluster, A0 is a scalar for cluster count and γ unevenness of 
cluster assignments. The coefficients A0 and γ are estimated by regression with confidence intervals of 2% for all 
sites and days. This model yielded explanation grades of R2

adj. > 99% for the compositions at all sites (Fig. 5). An 
unevenness of γ = 0 imply that all clusters are equally represented and a high γ value imply that composition is 
dominated by a few clusters and thus species.

Detection range of clusters
When there are no topographical preferences along the transect, the range distribution of observation pertaining 
to cluster, c, can be approximated by:
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Â(r,c) = A(c)

α

√
1 −

(
r

rdet.(c)

)α
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where A(c) is the abundance of a cluster within detection range, rdet.(c), and α describe the slope of the signal 
attenuation over distance which could differ for diffuse and specular species.

Data availability
The data is available as supplementary information for ecological interpretation and improvement of algorithms. ​
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