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Abstract

We consider periodic homogenization of hyperelastic models incorporating incompressible
behavior via the constraint det(Vu) = 1. We show that the ’usual’ homogenized integral
functional f Whom (Vut) dx, where Wiy, is the standard multicell-formula of non-convex
homogenization restricted to volume preserving deformations, yields an upper bound for the
I'-limit as the scale of periodicity tends to zero.

Mathematics Subject Classification 49J45 - 74B20 - 74Q05

1 Introduction and main result

In this note we provide partial results towards periodic homogenization of nonlinear elastic
incompressible materials, modeled by integral functionals of the form

Fe: WHH (@) — [0, +o0], Fe(u,Q):/ W (£, Vu(x)) dx. (1)
Q

Here, @ C R¢ with d > 2 is a bounded domain and the stored elastic energy density
W : R? x R*4 — [0, 4-00] is assumed to be ¥ = (—4, $)4-periodic in the first variable.
Homogenization of integral functionals (1) is well established: Following earlier results by
Marcellini [15] for convex integrands, it is shown in the seminal contributions by Braides [4]

and Miiller [16] that under standard p-growth assumptions, that is,

1
dp>13c>1: —|FIP—c<W(Q,F)
C

<c(1+4|F))? forall F e R%*? andae. y € R?, )
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the sequence (F) I'-converges as ¢ — 0 towards an autonomous integral functional

Fhom (1) = / Whom (Vu) dx,
Q
where the homogenized integrand Wy, is given by a multi-cell formula

W(F) = inf  inf W(x, F + V) dx. 3)
keN pewy P (ky) J kY

While the homogenization formula (3) captures non-trivial effects in nonlinear elasticity,
such as buckling (see e.g. [16, Theorem 4.3]), and it is expected that (3) should apply to
physically sound stored-energy functions (see [14]), it was already remarked in [16] that the
above mentioned I"-convergence results do not apply directly to nonlinear elasticity for the
growth conditions in (2) being too restrictive. Realistic elastic energy densities W should
satisfy

W(x, F) = +oo if det(F) < 0 and Wk, F) —> +o00 as det(F) — 0, (4

in order to rule out interpenetration of matter and to ensure that it takes infinite energy
to squeeze material to zero volume. Clearly, (4) is incompatible with (2). While there are
several homogenization results under relaxed versions of the growth conditions (2), see e.g.
the textbooks [12, 19] or more recent contributions [1, 2, 10, 20], there is no I'-convergence
result which applies to growth conditions of the form (4). To the best of our knowledge,
[17, 18] contain the only rigorous homogenization results that apply directly to nonlinear
elasticity, which are however restricted to small loads.

In this note, we provide a nontrivial upper bound for the I'-limit of (1) in the setting of
incompressible elasticity, that is, we impose an extreme version of (4) namely that W (x, F) =
o0 if det(F) # 1. More precisely, we assume that

Assumption1 Let W : R? x £ — [0, +00), where £ := {F € R*4 : det(F) = 1}, be
a Carathéodory-function such that W (-, F') is Y-periodic for every F € X. Moreover, set
W(y, F) = +ooforall F € R¥*¢\ T andall y € Y. Define Wpop, via the multi-cell formula

Whom (F) := inf W (F), where W& (F):=  inf W(y, F + Vo(y))dy.
keN peW, ® (ky)d Jky
5
We assume that there exists ¢ > 1 such that fora.e. x e R? andall F,G € ¥
W, FG) <c(1+ W(x, F))(1+ W(x, G)), (6)
1
E|F|_CSW(xaF)fc(Whom(F)+1)~ @)

Finally, we assume that Wy, is finite on X.

Remark 2 Assumption 1 covers for instance periodic integrands with the following growth
conditions:
(I) p-growth: %|F|P —c<W(x,F)<c(FIP+1)forall F € X,

(II) dependence on cofactors: % (|F|? + |adjF|9)—c < W(x, F) < c(|F|? + |adjF|?)+c
forall F € .
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Here p, g € [1, +00) are arbitrary growth exponents and adjF denotes the adjunct matrix
of F. For a proof see Lemma 6 below. In particular, (I) with p = 2 covers the case of
Neo-Hookean models given by W(x, F) = u(x)(|F |2 —3) for F € £ C R? with periodic
material constants p(x) (which are bounded between two fixed positive numbers), while (II)
includes the more general growth of Mooney-Rivlin models W (x, F) = w1 (x)(|F |2 —3)+
;Lz(x)(|ade|2 — 3), for which we need to fix p = g = 2.

The main result of this work is the following

Theorem3 Let @ C R? be a bounded, open set with Lipschitz boundary and let W :
R? x RI*4 — [0, +o00] satisfy Assumption 1. Then for every u € W1(Q)? there exists a
family (ug)e=o C u + Wol‘l(Q)d such that uy — u in LY()? and

lim sup/ W(f, Vi (x))dx < / Whom (Vu(x)) dx, (8)
e—0 Q Q

where Whon is defined in (5). The map Whon is finite only on X, where it is also continuous.
Moreover, Whon is quasiconvex in the sense that

Woom (F) < 7[ Woom(F + V() dx  forall g € W20, ©
JO

all F € R gnd all bounded, open sets O C R?.

The above theorem shows that a variant of the multi-cell formula of Braides and Miiller
yields an upper bound for the I"-lim sup of the functionals F; in the incompressible case.
Note that the sole difference between W and Wiom (see (3) and (5)) is that in the former we
take the infimum over all W!-7-competitors and in the latter over W !->-competitors. Clearly,
the formulas (3) and (5) are equivalent if the energy density satisfies (2). In the setting of
Theorem 3 this equivalence is not clear and there might be a Lavrientiev gap. Unfortunately,
we are not able to provide the corresponding lim inf inequality. In Proposition 14, under a
stronger lower bound on W we provide a non-trivial lower bound on the I"-limit based on
truncations that lead to an integrand that is finite only on X, where it is also continuous.
Moreover, like Whon, it is quasiconvex. We further show that in the polyconvex case there
is a commutation of truncation and homogenization for the finite-cell formulas. However, in
general we do not know if the lower bound equals the upper bound of Theorem 3.

Let us now comment on the proof of Theorem 3. The classical construction for the upper
bound of the Gamma-limit, see e.g. [16], is based on density results. Indeed, by definition
of (3) (or (9)) it is straightforward to construct a recovery sequence for affine or piecewise
affine functions . In order to pass from piecewise affine to general W1 (Q)“-functions it is
important that the energy Fjom 1S continuous with respect to the approximation. In particular
we would need to approximate a volume preserving deformation by piecewise affine volume
preserving deformations. To the best of our knowledge, this is an open problem.

Here, we take a different approach which is strongly inspired by the relaxation result [7],
where Conti and Dolzmann considered the relaxation problem for autonomous integrands
under constraints on the determinant (see also [5] for an extension of [7] to non-autonomous
problems). A key idea in [7] is that instead of adding oscillations to the macroscopic defor-
mation one locally use the composition of the macroscopic deformation with maps with
oscillating gradients. In the context of homogenization of elliptic equations this is sometimes
referred to as harmonic coordinates. More precisely, let # be a function which is close to
an affine function with gradient F € ¥ and consider the composition u o (- + F~'eg( s
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4 Page4of21 M. Ruf, M. Schaffner

where ¢ is a competitor for (5). The chain rule formally yields
Vu(-+ F o)) + F~'Ve(2).

If u was affine with gradient F', then this formula reduces to F'+V¢(;), but the big advantage
is that the multiplicative structure of the gradient preserves the constraints on the determi-
nant. We mention here that in [7] also relaxation of compressible models is studied with
similar techniques. Unfortunately we are not able to extend the method to the problem of
homogenization of compressible elasticity, see Remark 12.

This note is organized as follows: in Section 2 we gather some technical results for Wyom
defined in (5). In Section 3, we prove Theorem 3. Finally, we discuss in Section 4 a lower
bound on the I'-limit of F; via truncation of the integrand.

2 Preliminary results and properties of Whom

First, we provide some bounds on the multi-cell formula and establish a useful alternative
characterization of Wyom, see (5).

Lemma 4 Suppose that Assumption 1 is satisfied. For all F € %, it holds
1
Z|F| — ¢ < Whom(F) (10)

where c is given by (7), while it holds Whom (F) = +o0 if F ¢ X. Moreover, forall F € X
and every bounded, open set O C R? with Lipschitz-boundary it holds that

Woom(F) = lim  inf ][W(ky,mvm))dy. (11)
k=00 yewy > 0)d J O

Proof We first show that Wy (F) = 400 if F ¢ X, that is det(F) # 1. Let k € N and
@€ W(} " (kY)?. Since the determinant is a null Lagrangian, we have

0O<|detF —1|=

][ detF—ldy‘ = 'f det(F + Vo) — 1dy
kY kY

< ][ | det(F + Vo) — 1]dy.
kY

Hence, there exists a set of positive measure A C kY such that det(F + Vg¢) # 1 on A and
thus

W(y, F + Vo(y))dy = +oo,
kY

which implies, by the arbitrariness of k € N and ¢ € WO1 (kY )d, that Whom (F) = 400
(see (5)). Thus, it suffices to consider F' € X. Next we show the lower bound (10) on Whop,.
Forevery k e Nand ¢ € Wol’oo(kY)d we find that

c_1|F|—c =c!

][ F—i—V(pdy‘—cf][ c_1|F+V<p|—cdy
kY kY

@)
< W(y, F + Vop)dy. (12)
kY
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Taking the infimum over ¢ and then over k € N, from Definition (5) we deduce the lower
bound ¢ |F| — ¢ < Whom (F).

Finally, we consider a bounded open set O c R? with Lipschitz-boundary and show (11).
This will be done by gradual approximation. By a change of variables we have that

w©)i= it f Wy FVeondy= it WOLF+Ve0)dy.
peW, > (0)! J O eeW, > k0)! JkO

We first consider the case O = Y and show that ag(Y) — Whom (F). To this end, let § > 0
and take ko € Nand ¢ € WOI’OO(ko Y)4 such that

Whom (F) = Wy, F+Voe(y)) dy — 3.
koY

Consider k > kg and extend ¢ by koY -periodicity. We define ¢ € Wol’oo(k Y)? via

@(y) ify e z+koY C kY for some z € koZ?,
0 otherwise.

o0y = {
Then by koY -periodicity of ¢ and W (-, F') and the upper bound in (7), we have that

ar(Y) < ]iy W(y. F + V@) dy

1
g 2 W(y, F + Vo(y))dy
7€k()Zd atko¥
koY CkY
1
ta X[ )+ s
ZEkoZd z+koY
2+ko Y NOKY £
(k/ko)?
= Wy, F+ Ve(y)dy
koY
k + ko) 'k
4 E RO R e (F) + 1),

kd
Letting k — 400 we find that
lim sup @z (V) < ][ Wy, F+ Vo) dy < Waom(F) + 6.
k— 400 koY

As § > 0 was arbitrary and clearly ax (Y) > inf, ey an(Y) = Whom (F), we showed that
Whom(F) = lim ax(Y). (13)
k——+00

Now fix an arbitrary bounded, open set O with Lipschitz-boundary. Using the same con-
struction as above with kY replaced by kO and noting that

1
lim —#{z € koZ : 2+ koY N3 (kO =0
(DI jajo e € M2 2t koY NOKO) £ 6)

due to the Lipschitz-regularity of 9 O, we deduce in a similar way that

limsup ax (0) < Whom (F). (14)

k—+00
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4 Page6of21 M. Ruf, M. Schéffner

In order to obtain the reverse inequality for the liminf, let 0 = (=N/2, N /2% = NY
be a large cube that contains O. Joining any two functions ¢ € WOI’OO(O)‘J and ¢y €

Wy (0 \ 0) to a function ¢ € W,"*(Q)? one obtains the subadditivity property

lkQlax(Q) < [kOlar(0) + [k(Q \ O)]ax(Q \ 0),
where we used that |0 O| = 0. Rearranging terms and dividing by |k O|, we find that

0 _
liminf ax (O) > lim inf @ak(Q) — lim sup 127 |ak(Q\ 0)
k—+o00 k—+oo |O| k—>to00 10|
(14 10 10\ 0|
> liminf — Y)— Whom (F
> ]{1213;0 |0|61Nk( ) 0] hom (F)
13y 9] 10|
= — Whom(F)— | — — 1| W F
|0| hom( ) |O| hom( )
= Whom (F).
This concludes the proof of the lemma. O

In the next lemma, we directly show that Whop, is rank-one convex and thus continuous
on X.

Lemma5 The function Whom : RI%d 5 [0, +00] is rank-one convex. Hence, as Wnom is
finiteon ¥ = {F € R4*d . det(F) = 1} it is continuous on .

Proof We first show that Wyon, is rank-one convex, following the closely related arguments
of [7, Lemma 4.1]. Fix A, B € ¥ with rank(A — B) = 1 and A € [0, 1]. Moreover, set
F = XA + (1 — 1)B. Appealing to [6, Theorem 2.1], we find a finite set K C X such that
for every 8 > 0 the following is true: there exists a polyhedron Qp and u € Wh(Qp)¢
satisfying

u(x) = FxondQp, VueKae.inQp, [{Vu(x)¢{A,B}}| <5|Q2p|. (15)
We claim that there exists ¢ = c¢(A, B) > 0 such that
HVu = A} < (A +¢8)|Q2p| and [{Vu =B} < (1 —x1+cd)|Qp|. (16)
Indeed, due to the boundary condition satisfied by # we have that

[{Vu = A} {Vu = B}|
[Q2p] [2p]

M+ (A —-1)B 7[ Fdx:7[ Vudx = A
JQp JQp

1

— Vudx.
12p| Jivug(a,By)

Appealing to (15), we can bound the norm of the last integral by 6 maxzck |]. Moreover,
since A, B are invertible and rank(A — B) = 1, these matrices are linearly independent and
by standard linear algebra we find a matrix C € R?*? with norm 1 and such that (A, C) = 0
and (B, C) # 0. Taking the scalar product of the above equality with the matrix C we find
that

[{Vu = B}| < (1 — »+8(B, C)” " max [£])|Qp|.
EekK

A similar argument gives the claimed bound on the measure of {Vu = A}, so that (16) holds.
Finally, still due to [6, Theorem 2.1] the sets {Vu = A}, {Vu = B} and {Vu ¢ {A, B}} are
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theunionofsimplicesw’f‘,j = 1,...,NA,wf,j =1,...,Np andch,j =1,...,N¢c
and on each of these siniplices u is affine. For each k € Nand j € {1,..., N4}, we find
‘/’;"k € Wol’oo(w;‘)d such that

][ W(ky, A—i—V(p;\k) dy < inf ][ Wi(ky, A+ Vp)dy + 6. (17)
Wt ’ peWy X (@hH? Jof
Analogously, we find for each k € Nand j € {1, ..., Np}, functions gaﬁk S W0 (a)B)d
such that
][ W(ky, B + V(pfk) dy < inf ][ W(ky, B+ Vo)dy + 6. (18)
b ' (pEWé’oo(w_?)d w?

Extending gojf‘k and (pfk by zero and using u(x) = F(x) on dQ2p, we can define wy €
Wo > (2p)? by

Na Np
w(X) = u(x) = Fx + Yo () + Y ¢ (x). (19)
j=1 j=1

In view of Lemma 4, one the one hand we have that

Whom (F) < lim inf W(ky, F + Vwg)dy. (20)

k—+00 Qp

On the other hand we can write

1
Wi(ky, F + Vw)dy =
Qp |QP

Na
| Z/A W(ky, A+ ¢l dy
j=1"%;
L
— Wky, B+ ¢ )d
+|QP|j=1/wf (ky, B+ ¢j ;) dy

W(ky, Gj)dy, 21
+ oo Z/ (k. Gj)dy e
forsome G; € K forall j =1,..., Nc. Estimates (16), (17), (18) and Lemma 4 yield

lim sup Wi(ky, F + Vwy)dy
k—+o00 JQp

Np

le |(Whom (A) +8) + —— le |(Whom (B) + 6)

IQI

o |Z|wc|][W<y,G )dy

<A+ c8)(Whom(A) +6) + (1 — A 4+ ¢c8) (Whom(B) +8) + 6 glea%][ Wy, G)dy. (22)
Y

IQI

Combining (20), (22), and the upper bound on W via Wyo, we find
Whom(F) =< )LWhom(A) + (1 - }\)Whom(B) + Cs,
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4 Page8of21 M. Ruf, M. Schéffner

where Cs — 0 as § — 0. Hence, the claim on rank-one convexity follows.
Finally, the continuity of Wyom on X can be deduced verbatim as in [6, Step 2 of the proof
of Theorem 3.1] by showing that Wyop, is separately convex in suitable local variables. O

In the next lemma, we prove that the examples mentioned in Remark 2 indeed satisfy
Assumption 1.

Lemma6 Let W : RY x £ — [0, +00) be a Carathéodory-function such that W(-, F) is
Y-periodic for every F € X. Moreover, assume that W satisfies one of the following two
conditions:

(I) (standard p-growth): There exist p > 1 and ¢ > 1 such that for a.e. x € RY and all
FeX

1
—|F|P —c < W, F) <c(|FI” + 1), (23)
c

(1I) (additional dependence on cofactors): There exist p, q > 1 and ¢ > 1 such that for a.e.
xeRYandall F € ©

1
—(IFI” + adjF|?) —c < W(x, F) < ¢ (|FI” + [adjF|?) +c, (24)
C

where adjF denotes the adjunct matrix of F.

Then W satisfies Assumption 1.

Proof The two-sided growth conditions (23) and (24), together with multiplicativity property
of the adjunct matrix (see e.g. [8, Proposition 5.66 (i)]), imply the submultiplicative upper
bound (6) and the lower bound on W (x, F) of (7) with a constant depending on c in (23)
and (24) and in addition on p. The only slightly non-trivial part is to verify the upper bound
in (7). This follows by the same argument as for the lower bound on Wy, in Lemma 4, see
(12). Indeed, in the case (I), by Jensen’s inequality we have for all ¢ € WO1 kYY)

P
cHUFIP—c <! ][ F + Vedy —c§][ ¢ F 4+ Vo|P —cdy
kY kY

23)
<

kY

W(y, F+ Vg)dy. (25)
Hence, we deduce as in Lemma 4 that ¢! |F|P — ¢ < Whom (F) and thus

-1 23
Whom(F) = ¢ |FIP —¢ = ¢ (¢ WX, F)—=1)—¢

which yields the upper bound in (7). The above argument can be extended to the case (II)
appealing to the fact that F' — adjF is a null Lagrangian (see [8, Lemma 5.5 (ii)]. O

Finally, we recall a version of the well-known Scorza-Dragoni theorem [11, Theorem
6.35]. This will be important in the next section in order to deal with the fact that W is only
assumed to be measurable in the spatial variable.

Theorem 7 Let E C RY be a Lebesgue-measurable set and B C R™ be a Borel set, and let
f 1 E x B — R be a Carathéodory function. Then for every o > O there exists a closed set
K, C E, with |E \ Ks| < o0, such that f restricted to K, x B is continuous.

We will use the following consequence of Theorem 7.
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Corollary 8 Suppose that W satisfies Assumption 1. For every R > 0 and o, 1 € (0, 1] there
exists p € (0, 1] and a compact set K, C Y satisfying |Y \ K| < o such that

§,cex A &l 1¢]
<SR AN [E-ClZp = sup Wy, &) — WO, Ol <n. (26)
YeZid+K,

Proof By Theorem 7 with E = Y and B = X there exists for every o € (0, 1] a closed
set K, C Y with |Y \ K| < o, such that W restricted to K, x ¥ is continuous and thus
uniformly continuous on K, x (X N{F € R?*4 . |F| < R}). From this and the periodicity
of W the claim follows. O

3 Construction of a recovery sequence - proof of Theorem 3

In the next lemma we extend the local construction of [7, Lemma 4.2] from the setting of
relaxation to the one of homogenization that involves the additional micro-scale ¢.

Lemma9 Forall F € RY*? and n € (0, 1] there exists 8 > 0 such that the following is true:
for every ball B = B(xg, r) C R? and for every u € WL (B)? satisfying

][ [Vu — F| + [Whom (Vi) — Whom (F)|dx <4, (27)
B
there exists a sequence (zc)e C WLYBY with z, = u on 9B and

lim sup][ W(5, Vze)dx < ][ Whom (Vu) + ndx. (28)
e—0 B B

Additionally, there exists C < +00 depending on the dimension d and the constant ¢ €
[1, +00) in Assumption 1 such that

limsup][ lu —ze|dx < Cr 7[ 1 4+ Whom (Vu) dx. (29)
B JB

e—0

Proof Inthe proof many quantities depend on F and 1, but in order to reduce notation we only
indicate the dependence on 7, implicitly allowing for a dependence on F, too. By definition
of Whom, we find k,; € N and ¢, € W™ (k, Y)“ such that

j Wy, F 4+ Vey(y)dy < Whom(F) + 1. (30)
nY

We extend ¢, € Wol’oo(k,,Y )? kyY -periodically and identify ¢, with this extension. More-
over, we define ¢ ¢ := €y (;) and set

Fx+g¢:(x) ifx e B®,
Xx) = ' 31
Pn.e () {F X otherwise, GD
where
B® = ] (q+ekyY). (32)
qeak,,Zd
q+ek,YCB
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4 Page 10o0f 21 M. Ruf, M. Schéffner

By construction we then have that
(i) e € Wh(B),
(ii) ¢y.e(x) = Fx forallx € B\ B
(iii) detVey, =1ae.in B, (33)

where (iii) follows from the fact that in view of (30) we have det(V¢y, ) = det(F +
Ven(2)) = 1 ae. on B® and det(Ve, ) = det(F) = 1 on B\ B®). Next, we define

Ve = F71¢n,e- (34)

We argue that v, is a bi-Lipschitz map. To this end, note that since det(Vv,) = 1 a.e., for
some (actually any) ¢ > d we have that

/ |(Vve(x)) 719 det(Vvg (x)) dx = / ladj(Vve (x))|? dx < +o0.
B B

Since further v;(x) = x on dB, a direct application of [3, Theorem 2] yields that v, is a
bi-Lipschitz map from B to itself. In conclusion, given the map u € wh1(B)d satisfying
(27) with § > 0 small enough to be determined, we can define

ze ;= uov, € Whi(B), (35)

which satisfies zz. = u on d B in the sense of traces. In order to show (28), similar to [7] we
decompose

][ W(s, Vze)dx —][ Whom(Vu)dx = (I)e + (U + (I11), (36)
B B
where

D) :=][ W(%, Vze) — W(%, F+ Vg, .)dx,
B
1), :=]i W(%, F+ V‘Pn(%)) — Whom (F) dx,

(I 5:][ Whom (F) — Whom (Vu) dx.
B

However, in contrast to the case of relaxation, two of the terms are e-dependent and require
a finer analysis. We consider the three terms separately. By the k; Y -periodicity of W (-, F' +
Vgy), we have that

. 30y
lim (11) :][ W, F+Vey)dy — Whom(F) < 1. (37)
e—0 kyY

In order to estimate (//7) and ()., we will appeal to the continuity of & — W (y, &) (in the
rather weak sense of Corollary 8) and of Wy . Note that

IVelloo(sy = 1 F 'V ellopy < 1d] + |F~ Vo llLow,y) = Ry < +oo  (38)
and
IVénellLes) < [F|l+ IIVeyllLow,y) = My < +o0. (39)

Let
oy = 7
"7 de(supees. 1e<r, Whom (&) + D) (Whom (F) + 1)

(40)
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Upper bounds for the homogenization problem... Page 11 of 21 4

Appealing to the continuity of Whom (see Lemma 5) and Corollary 8, we find a compact set
C, C Y with |Y \ Cy| <0y and p; € (0, 1) sufficiently small such that, forall §, ¢ € X,

E—Fl=py = [Whom(§) = Whom(F)| <7 (41)

and

E—cl<pyRy A [E1<M, = WG E - W Ollimeaiicyy <0
42)

Hence, due to the non-negativity of Wyom (Vu),

1
(Il = Whom (F) — Whom (Vi) dx
1B BN{|[Vu—F|<py)

1
Whom (F) — Whom(Vu) dx
|B| BN{|Vu—F|>py}

@ Whom (F
< U+M][|Vu—Fldx
P B

<n+ w' (43)

Pn
To estimate (I),, we decompose B as B = B® U (B \ B®) with B®) defined in (32). On
B\ B® it holds that z, = u, so that by the non-negativity of W we have

lim sup/ WG V2 = WE F o+ Vg (5) dx
B\B

e—0

< lim sup/ W(Z, Vu)dx
B\B

e—0

@)
< lim supc/ Whom (Vu) + 1dx =0,
B\B®

e—0
where we used that |B \ B®| — 0 as ¢ — 0 for the last equality. On B®), we have that
Vze = (Vi) o ve)Vue = (Vi — F) o ve) Ve + F + Vo (5). (44)

Set ws == {x € B® | |(Vu — F) o vg| > pn}. Equation (44) implies that on B \ w,

. (38)
IVze = (F + V()] = Vel |(Vu — F)ove)| = pyRy (45)
and thus the continuity property (42) and the definition of M), in (39) yield that
IW (5. Vze) = W F + Voy() | iogronn(e@i+cyy <1 (46)

which yields

1

— W, Vzg) = W(, F+ Ve, o) dx <. 47
|Bl JB\wen(e(zd+Cy))
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4 Page12of 21 M. Ruf, M. Schéffner

To bound the contribution from the set B \ w, N (¢(Z¢ 4+ Y \ Cy)), we use (44), the
non-negativity of W and its submultiplicative bound, see (6), to deduce that

1

— W(%, Vze) — W(%, F+ Vg, ,)dx
|B| JB\w.n(e(zd+1\Cp))

©6)

< - (W(%, Vve) + D(W (5, Vuove) + 1) dx
IBl JBn(e@i+1\Cy))

() 4c?

< — (Whom (Vvg) + 1) (Whom (Vu o vg) + 1) dx

~ IB| JBne@d+y\c,)

(38) 4¢?
< = sup  (Whom(§) + 1) (Whom (Vi 0 v) + 1) dx
IB| ¢ex, IEI<Ry BN(e(ZA+Y\Cy))
_. 5
1B
C
= (Whom (V) + 1) dx
IBl Jv, (BN(e(@d+Y\C,)))
C
Scn][ |Whom(vu)_Wh0m(F)|dx+7n Whom (F) + 1dx
B [Bl Jv,(Bn(e@d+Y\Cy)))
C
< cyd+ élvsw N @EZ+ Y\ C))I(Whom (F) + 1), 48)

where we used the area formula for the bi-Lipschitz transformation v, : B — B that satisfies
det(Vv,) = 1 from the fourth to the fifth line and v, (B) = B from the fifth to the sixth line.
Again by the area formula, the Riemann-Lebesgue Lemma and the bound |Y \ C;;| < 0;), we
have that

e—0

[ve(B N (e(Z + Y\ CNI = (BN (e(Z? + Y\ C))| = Y\ Cyl|B| < ay|BI.

Hence, from the choice of o)) (cf. (40)) and (48) we infer that

1
lim sup — W(%, Vze) — W(%, F 4+ Vg,e)dx <cyd+1.
e—0  |Bl JB\w:n(e@d+Y\Cy))
(49)

On the set wy, the inequality |(Vu — F) o ve| > p; implies that
Whom (Vu 0 ve) + 1 < [Whom(Vu 0 vg) — Whom (F)| + Whom (F) + 1
Whom (F) + 1

< Whom (Vi © ve) = Whom (F)| £ == ==——[(Vis = F) o |
]

and thus, inserting the upper bounds on W, we obtain with analogous estimates as in (the
first four lines of) (48) that

W(%, Vze) dx fc,,/ (Whom (Vu o ve) + 1) dx

wg wg
Whom (F) + 1
fcrz(l + | Whom (Ve 0 U¢) — Whom (F)|
Py s
=:F,7
+ |(Vu — F) o v | dx, (50)
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where ¢, is defined as in (48). Since v, is a bi-Lipschitz map from B onto B withdet(Vv,) = 1
a.e., again by the area-formula (using w, C B and W > 0)

W(g,st)dxan/ [Whom (Vit 0 ve) — Whom (F)| + [(Vu — F) o ve| dx
B

Wg
~ e
=Cn/IWhom(Vu)—Whom(F)|+|Vu—F|dx = é8|Bl. (5D
B

Hence, combining (37), (43) (47), (49) and (51) we obtain
VVhom(F)(S

lim sup][ W(f, Vze)dx — ][ Whom (Vi) dx < 4n +
B ’ B Py

e—0

+ (cp + 8.

Choosing 8 > 0 sufficiently small such that (¢, +,)8 + 222 < . we obtain (28) with
n replaced by 57 and the claim follows by redefining 7.

Finally, we show (29). This follows from Poincaré’s inequality (using # — z. = O on 0 B)
and the lower bound in (7) in the form

flu—z»sldx sc:»][ V- 20)] < Cr][ Vil + V2| dx
B B B
<Cr 7[ |Vu| +cW (%, Vze) + ¢* dx
JB

and thus (29) follows with help of (28) and (10). ]

With the above local construction, similar to [7], but taking into account the additional
scale €, we obtain the global "recovery’ sequence via a covering argument.

Lemma 10 Letu € WE1(Q)9. Then there exists a sequence ug € u + W(;’l () such that
us — u in LY () satisfying also

lim sup/ W(f, Vu,) dx 5/ Whom (Vu) dx. (52)
e—0 Q Q

Ifu € Whoo(Q)4, then we can assume that us € WH(Q)4, too.

Proof We can assume that Whom (Vi) € L1 (). Otherwise we take u, = u.

Step 1. Fix n € (0, 1]. We claim that for all j € N there exist a sequence (ug)e Cu-+
Wg’l (2)? and an open set j C S satisfying

121 <27/|Q| and u/ =u onQj, (53)
lim sup W(%, Vué) dx < Whom (VM) + n d'x’ (54)
=0 JQ\Q; \%;
timsup [ Jul —uldy <Cp [ 1+ Whon(Ti) (55)
e—0 Jo\Q; 2\Q;

where C = C(c, d) € [1, 400) is the constant in (29) (in particular it is independent of 7).
We prove the claim by induction. For j = 0, we set Q¢ = 2 and ug = u and (53)-(55)
hold trivially.
Fix j € N and suppose that (ul), C u + W&’l(Q) and the open set 2; C € satisfy
(53)-(55). Let L C 2 be the set of Lebesgue points of Vu and Wyom (Vi) and for x € L set
F(x) = Vu(x). Let §(x) > 0 be given by Lemma 9 for the choice F = F(x) and n > 0. In
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4 Page14of21 M. Ruf, M. Schaffner

order to define u£+l and the open set ;41 C €2, we choose for any x € L N ©; a radius
rj(x) € (0, n) such that By (v (x) C 2 and

f |Vul — F(xX)| 4+ [Whom (Vi) — Whom (F (x))] dy
By (x)

= ]{3 w [Vu — F(x)| + |Whom (Vi) — Whom (F(x))|dy < 8(x)

forall 0 < r < r;j(x). By the Vitali-Besicovitch covering theorem ( [11, Theorem 1.150 and
Remark 1.151]) there exists a countable family of disjoint balls { B, (x) }kew that covers 2;
up to anull set. We choose finitely many balls { B, ()ck)}llcv':i1 such that | U,I:ZI B, (xi)| > % [€2;].
In each of these balls we apply Lemma 9 to F = F(x), the given n > 0 and the function
u e Wl’l(Brk (x1))? to obtain the corresponding family z’s‘ cEu-+ Wol’l(Brk (xi))? such that

lim sup/ W(%, Vzlg) dx < / Whom (Vu) + ndx, (56)
=0 JBy () By (xk)
lim sup / lu—zX| < Cri / 1 + Whom (Vu) dx. (57)
=0 J By (xk) By (xk)
Let us define
, wl on 2\ UV, By, (xp) Mo
ulth = 1" k=1 Pric and  Qjy1 =\ By (),
Zg onBy(xp), 1 =k <Nj, —
so that €2 is open, u£+1 = uﬁ =uon ;1 and, since B, (xx) C 2}, the property ué =u

on 2; and zf cu—+ W&’l (B, (xx)) imply that ué'H cu+ W(}’l ($2)4. Moreover, we have

Nj
_ ' »
19411 <121 = 1 By ()| < 51921 <27V
k=1

and thus (53) is valid for j + 1. Finally, we show the estimates (54) and (55) with j replaced
by j + 1. By construction

Nj

Q\ Q1 =@\ ) U B, (%)
k=1

and thus by (54) and (56)

lim sup/ W, Vungl) dx < lim sup/ W(z, Vug) dx
Q\Qj4 Q\Q;

e—0 e—0

N;
—I—Zlimsup/ W(%,Vzls‘) dx
k=1 Brk(xk)

e—0

N;
< / Whom (Vi) +ndx + ) / Whom (Vt) + 17 dx
Q\Q/ k=1 Brk(xk)

_ / Whom (Vit) + 7 dx
Q\Qj4
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which proves (54) for j replaced by j + 1. Similarly, exploiting (55) and (57) we have

N;
limsup/ |u£+] —u|dx Slimsup/ |u£—u|dx+21imsup/ Iz];—uldx
e—0 JQ e—>0 JQ\Q; =1 €0 /By (xp)

Nj

Z Cry / 14+ Whom (Vi) dx

SCn/ 1+ Whom (Vu) dx +
Q\Q; k=1 Brk (xk)

SCU/ I+ Whom(Vu) dx,
Q\Qj 41

where we used r¢ (x) € (0, ) in the last inequality. This concludes the inductive construction.
Step 2. Conclusion. Fix € (0, 1]. Appealing to Step 1, we find for every j € N a sequence

wl)e C u+ Wy ()7 and an open set Q; C Q satisfying (53),

limsup/ W (£, Vul)dx <limsup W(E, Vul)dx +limsup [ W(%, Vu)dx
e—0 Q e—0 Q\Q; e—0 Q;

< / Waom (Vit) + 5 dx + ¢ / Waom (Vi) + 1 dx
Q\Q; Q;
and

limsup/ |u£ —u|dx SCn/ 1 + Whom (Vu) dx.
Q Q

e—0
The above two limits in combination with Wyom (Vu) € L'() and (53) imply

limsuplimsup/ W, Vul) dx 5/ Whom (Vu) + ndx,
Q Q

j—+o00 =0

lim sup lim sup/ |u£ —u|dx §Cn/ 1 + Whom(Vu) dx,
Q Q

j—>+oo =0

and the claim follows from the arbitrariness of n € (0, 1] and standard diagonal sequence
arguments. Finally, if u € W ()4, then u, € W°(Q)4 by the construction via compo-
sition in the proof of Lemma 9. O

Corollary 11 The function Whon : RI%d 5 [0, +00] is quasiconvex in the sense of (9).

Proof Let F € R4*? and ¢ € W!>°(B})? such that ¢(x) = Fx on 8 B|. We show that

Whom (F) < R Whom (V@) dx. (58)
1
If det(F) # 1, then one can argue as in the proof of Lemma 4 that
R Whom (V@) dx = 400 = Whom (F).
1
Let det(F) = 1. By Lemma 10 we find a sequence u, € wLoo(B)4 such that u, (x) = Fx
on 0 B; and

lim sup W(z, Vue)dx < ][ Whom (V) dx.
e—>0 JB; B
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4 Page 16 of 21 M. Ruf, M. Schéffner

However, via a change of variables the left-hand side is bounded from below by Whom (F)
due to Lemma 4 and the boundary conditions of u,. This yields the claimed inequality (58).
The extension to any bounded, open set is standard. O

Proof of Theorem 3 1t suffices to combine the Lemmata 4, 5, and 10 with Corollary 11.

Remark 12 (Compressible materials) As remarked above, Lemma 9 is a homogenization
version’ of related relaxation results in [7]. As mentioned in the introduction, [7] applies also
to compressible materials with a blow up behavior if det(F) — 0. Let us briefly explain
why we are not able to extend the methods of [7] to homogenization in the compressible
case. In [7], the authors assume growth conditions of the form %IF |7 + %Q(det(F ) —c <
W(F) <c(1+|F|P +6(det(F))), where 0 is a convex function which may blow up at zero
and satisfies 6(ab) < (1 4+ 0(a))(1 + 6(b)). Assume this growth condition for W (x, -) and
let us take the same ansatz as in the proof of Lemma 9. At some point, we need to ensure
6(Vze) € L'. However, by the multiplicative upper bound on 6 and the lower bound on W,
0(Vz) can be bounded from above only by the product of two L'-functions. The trick in
[7] is to make a shift in the definition of v,, that is, consider v, = F ! ¢y,e(- —a) +a Then
there exists a = a,, ¢ such that 6(Vz,) is in L', but the shift leads to a change of variables
and we would need that

W+ e aye, F+ Vo, (y) dy
kyY
is close to Whom (F) which is not true in general. Indeed, due to the periodicity of W one can
assume that 8’1a,,, £ converges to some element ap € Y. With some effort one can show that
the above integral then converges to the corresponding version with s’la,,, ¢ replaced by ao,
so that the oscillations of V¢, are not *almost optimal’ in energy.

4 Remarks on the lower bound

In this final section, we present a lower bound on the I'-lim inf of the functional F;. In order
to conserve the constraint of incompressibility, it is in general necessary to assume a stronger
lower bound on the stored energy density of the form

dc>1,p>d: c_1|F|P—c§W(x,F) forallFeEanda.e.xe]Rd; (59)

cf. [13]. We next need to extend W (x, -) to all matrices as explained in the following remark.

Remark 13 Since ¥ C R?*4 ig closed, there exists an extension of W from R? x ¥ to
R? x R?*4 that is continuous in the second variable. We denote this extension by w. Using
explicit formulas for such an extension (cf. the proof of [9, Theorem 7.2]) it follows that W
can be taken as a Carathéodory-function W : R x R9%d 5 [0, +00) that is periodic in
the first variable. Moreover, for later purposes we note that whenever W (x, -) is polyconvex
for a.e. x € RY, one can construct a finite, continuous extension that is also polyconvex and
non-negative. Indeed, in this case W(x, F) = w(x, (m(F), 1)) for some convex function
w(x, -) defined on R¥~! x {1} for some k € N that counts the dimension of all minors
and m(F) containing all minors of F of order < d — 1 of F. Since RF=1 % {1} is an
affine subspace of R¥, there exists an affine projection p : R¥ — R¥~! x {1}. The formula
VT/(x, F) = w(x, p(m(F), det(F))) then provides a polyconvex extension of W (x, -) with
the claimed properties.
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Upon replacing the extension W by max{W, %|F|17 — ¢} we can assume that also W
satisfies

¢ NFIP —¢c < W(x,F) forall F e R*? and a.e. x € R, (60)
We define W, : R? x R¥*4 — [0, +00) by
W, (x, F) = min {vT/(x, F),n(|F|” + 1} +n|det(F) — 1|. (61)

Since p > d each W, satisfies p-growth assumptions of the form
1
—|F|P — ¢ < Wa(x, F) < cu(IFIP + 1).
c

In particular, to each W,, we can apply standard homogenization results (e.g. [16]) to deduce
that

Fon(u) i= / Wi (X, Vu) dx - / W, (V) dx
Q Q
on WP ()¢ (with respect to the L'-topology) with
Wo(F) = inf W (F) where W(F):=  inf ][ W, (x, F + Vo(x)) dx (62)
keN peWy P (kyyd JkY
Note further that W,, < W, 4 for all n € N and that W, + W as n — +o0. Let us define

W(F) := sup W, (F). (63)
neN

This integrand yields a lower bound for the I'-lim inf of F:

Proposition 14 Suppose the assumptions of Theorem 3 are satisfied. In addition assume (59)
and let W be defined as above. Then for every family (ug)e~0 C WL Q) such thatu, — u
in LY(Q)4 it holds that

hmlnf/ W(, Vug(x))dx>/W(Vu(x))dx

If the left-hand side is finite, then u € WP (Q)?. The map W is finite exactly on S, where it
is continuous. Moreover, W is quasiconvex in the sense of (9).

Finally, assume in addition that W (x, ) is polyconvex for a.e. x € RY. Then, for all
F e Rdxd

VkeN: supW(F)= inf W, F 4+ Vo) de = w®

1 (F). (64)
neN peWy P (ky)d JkY

Proof Step 1. We prove the liminf inequality and the properties of W.
Let u, — u in L1(Q)?. Then by the lower bound W > W,, and the I"-convergence result
for integral functionals with standard p-growth we have that

hmmf/ W(%, Vue) dx >11m1nf/ Wy (%, Vue) dx >/ W, (Vu)dx.
Since W, < W,41 also W, < W, and therefore the lower bound of the energy follows

by applying the monotone convergence theorem. The lower bound in (60) and the same
computations as in (25) imply the lower bound W, (F) > %|F |” — ¢ and by monotonicity
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4 Page 18 of 21 M. Ruf, M. Schéffner

it also holds for W. Hence, if the left-hand side in the above estimate is finite, then u €
WP (Q)4. As W < Wiom, the finiteness of the latter on ¥ ensures the same for W. If,
however, F € R9*4 ig such that det(F) # 1, then

W(F) > W,(F) = inf  inf W, (x, F + V) dx
keN gew P (kyyd Jky

>d
> inf inf n][ |det(F + Vg) — 1] dx pz n|det(F) — 1.
kEqueWOl’p(kY)d kY

Letting n — +o0, it follows that W(F) = +o00. Next, W is quasiconvex as the supremum
of quasiconvex functions (each W, is quasiconvex by standard lower semicontinuity results
for functionals with polynomial growth; cf. [8, Theorem 8.1]) and finally W is continuous
on X due to [6, Theorem 1.1].

Step 2. We assume that W (x, -) is polyconvex fora.e. x € R? and prove (64). As explained

in Remark 13, in this case we can also assume that VT/(x, -) is polyconvex. Fix k € N.
Since W,, < W, we have W,(lk) < W(k) for all n € N and thus it suffices to show that
sup, W' > WY If F ¢ =, then as in Step 1 one can show that sup, .y W' (F) = 00,

so that it suffices to consider the case F € X. For every n € Nlet ¢, € WO1 "7 (kY)? be such
that

— 1
w9 (F) > ][ W, (x, F + Ve,) dx — —.
kY n
Then (59), the almost minimality of ¢,, and the upper bound in (7) imply
1
]l —|F + Vg,|P —cdx
ky €

1

< Wa(x, F+ V) dx < ][ Wa(x, F) + —dx < c(Whom(F) + 1).  (65)
kY 34 n

Hence, there exist ¢ € Wol”' (Y)? and a subsequence (¢n;); such that ¢,,—¢ in

WLP(kY)d. Next, we investigate the convergence of det(F + V¢,). From the definition
of W,, and almost minimality of ¢, we infer that

1 1
][ Idet(F+V<ﬂn)—1|dx§f][ Wyx, F+Vg,)dx < — W(x, F)
kY n Jky n Jky

T c
+1ldx < ;(Whom(F)+1)7

so that det(F 4+ Vg,) — 1in L(kY). At the same time, due to the divergence structure of
the Jacobian, it is known that det(F + Vn;)— det(F + Vo) inD'(kY), see e.g. [8, Theorem
8.20]. Combining these two observations, we find that det(F + V¢) = 1 a.e. in kY and that
det(F + Vgo,,_/.) — det(F + Vo) in L! (kY). For the lower order minors of F + Vo, we
have at least weak convergence in L!(kY) to the fact that p > d — 1. By the monotonicity

of W:,k) (F) with respect to n we have
sup W (F) = 1im WO (F)
n j—00 J

> li_minf][ min{VT/(y, F +V(p,,j),nj(|F+V<pnj|p + 1)} dx.
kY

J]— 00
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Since in general the minimum of two polyconvex functions is no longer polyconvex, we esti-
mate the integrand from below by its polyconvex hull, i.e., the greatest polyconvex function
below the map F > V), (x, F) := min{W(x, F),nj(JF|? +1)}. Since Vi, is non-negative
and finite, it follows from [8, Theorem 6.6] that the polyconvex hull PV, ; with respect to
the second variable is again a Carathéodory-function. Hence, continuing the previous chain
of inequalities and using the weak lower semicontinuity of non-negative convex functionals
together with the convergence properties of the minors of F + Vg, ; derived above, for every
n € N we have

sup W (F) > ][ PVi(x, F + Vo) dx. (66)
n kY

Clearly the sequence PV, is monotone increasing with respect to n. We claim that it con-

verges to W asn — +o0. To this end, we note that due the polyconvexity and non-negativity

of W(x, -) and [11, Theorem 6.36] we find a sequence of polyaffine functions a; (x, -) that

approximates W (x, -) from below and such that its coefficients belong to L>°(kY). In par-

ticular, there exist constants C; > 1 such that

lai (x, F)| < C(IFI1¥ + 1),
which then implies for every i € N that

sup PV, (x, F) > sup P min{a; (x, -), n(| - |” + D}(F) = Pa; (x, )(F) = a; (x, F).

Letting i — 400 we deduce that sup, PV, (x, F) > W (x, F). The other inequality is
evident. Hence, letting n — +o00 in (66), we deduce from monotone convergence that

sup W (F) > ][ W(x, F+ Vo) dx = ][ W(x, F + Vo) dx > W (F).
neN kY kY

This concludes the proof. O

Remark 15 (W(F) = Whom?) A combination of Theorem 3 and Proposition 14 yields a
complete ["-convergence result provided W = Wyon. The construction directly implies
W < Wyom but there are two serious obstructions to show the reverse inequality:

i) We would need to exchange inf and sup and thus show commutation of truncation and
homogenization. This is known to be true in a convex setting (see e.g. [10, 16]), but these
arguments do not extend to a non-convex setting. However, equation (64) shows that if
the infima with respect to k in the multi-cell formulas W, and W are attained by a finite
k € N, then truncation and homogenization commute. To the best of our knowledge there
are no rigorous results on the relation between multi-cell and finite-cell formula in the
context of incompressible elasticity. In the compressible case the example of Miiller [16]
shows that in general the multi-cell formula does not reduce to a finite-cell formula, but
in [17, 18] the equality of the multi-cell formula is proven for certain F corresponding
to small strains.

ii) In Wlﬂ;)n we take the infimum over Lipschitz-functions (see (5)) while in W(k) we take the
infimum over W P-functions (see (64)). While this makes no difference on the level of
the approximation, that is, in (62), the unboundedness of W might feature the Lavrentiev
phenomenon and thus we might have W (F) < WX (F) or W(F) < Whom(F) for

some F € X.
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