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Abstract
We consider periodic homogenization of hyperelastic models incorporating incompressible
behavior via the constraint det(∇u) = 1. We show that the ’usual’ homogenized integral
functional

´
Whom(∇u) dx , where Whom is the standard multicell-formula of non-convex

homogenization restricted to volume preserving deformations, yields an upper bound for the
�-limit as the scale of periodicity tends to zero.

Mathematics Subject Classification 49J45 · 74B20 · 74Q05

1 Introduction andmain result

In this note we provide partial results towards periodic homogenization of nonlinear elastic
incompressible materials, modeled by integral functionals of the form

Fε : W 1,1(�)d → [0,+∞], Fε(u,�) =
ˆ

�

W ( x
ε
,∇u(x)) dx . (1)

Here, � ⊂ R
d with d ≥ 2 is a bounded domain and the stored elastic energy density

W : Rd × R
d×d → [0,+∞] is assumed to be Y = (− 1

2 ,
1
2 )

d -periodic in the first variable.
Homogenization of integral functionals (1) is well established: Following earlier results by
Marcellini [15] for convex integrands, it is shown in the seminal contributions by Braides [4]
and Müller [16] that under standard p-growth assumptions, that is,

∃p > 1 ∃c ≥ 1 : 1

c
|F |p − c ≤ W (y, F)

≤ c(1 + |F |)p for all F ∈ R
d×d and a.e. y ∈ R

d , (2)
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the sequence (Fε) �-converges as ε → 0 towards an autonomous integral functional

Fhom(u) =
ˆ

�

Whom(∇u) dx,

where the homogenized integrand Whom is given by a multi-cell formula

W (F) = inf
k∈N inf

ϕ∈W 1,p
0 (kY )

 

kY
W (x, F + ∇ϕ) dx . (3)

While the homogenization formula (3) captures non-trivial effects in nonlinear elasticity,
such as buckling (see e.g. [16, Theorem 4.3]), and it is expected that (3) should apply to
physically sound stored-energy functions (see [14]), it was already remarked in [16] that the
above mentioned �-convergence results do not apply directly to nonlinear elasticity for the
growth conditions in (2) being too restrictive. Realistic elastic energy densities W should
satisfy

W (x, F) = +∞ if det(F) < 0 and W (x, F) → +∞ as det(F) → 0, (4)

in order to rule out interpenetration of matter and to ensure that it takes infinite energy
to squeeze material to zero volume. Clearly, (4) is incompatible with (2). While there are
several homogenization results under relaxed versions of the growth conditions (2), see e.g.
the textbooks [12, 19] or more recent contributions [1, 2, 10, 20], there is no �-convergence
result which applies to growth conditions of the form (4). To the best of our knowledge,
[17, 18] contain the only rigorous homogenization results that apply directly to nonlinear
elasticity, which are however restricted to small loads.

In this note, we provide a nontrivial upper bound for the �-limit of (1) in the setting of
incompressible elasticity, that is, we impose an extreme version of (4) namely thatW (x, F) =
+∞ if det(F) 
= 1. More precisely, we assume that

Assumption 1 Let W : Rd × � → [0,+∞), where � := {F ∈ R
d×d : det(F) = 1}, be

a Carathéodory-function such that W (·, F) is Y -periodic for every F ∈ �. Moreover, set
W (y, F) = +∞ for all F ∈ R

d×d \� and all y ∈ Y . DefineWhom via the multi-cell formula

Whom(F) := inf
k∈NW (k)

hom(F), where W (k)
hom(F) := inf

ϕ∈W 1,∞
0 (kY )d

 

kY
W (y, F + ∇ϕ(y)) dy.

(5)

We assume that there exists c ≥ 1 such that for a.e. x ∈ R
d and all F,G ∈ �

W (x, FG) ≤ c(1 + W (x, F))(1 + W (x,G)), (6)

1

c
|F | − c ≤ W (x, F) ≤ c(Whom(F) + 1). (7)

Finally, we assume that Whom is finite on �.

Remark 2 Assumption 1 covers for instance periodic integrands with the following growth
conditions:

(I) p-growth: 1
c |F |p − c ≤ W (x, F) ≤ c(|F |p + 1) for all F ∈ �,

(II) dependence on cofactors: 1c (|F |p + |adjF |q)−c ≤ W (x, F) ≤ c (|F |p + |adjF |q)+c
for all F ∈ �.
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Upper bounds for the homogenization problem... Page 3 of 21     4 

Here p, q ∈ [1,+∞) are arbitrary growth exponents and adjF denotes the adjunct matrix
of F . For a proof see Lemma 6 below. In particular, (I) with p = 2 covers the case of
Neo-Hookean models given by W (x, F) = μ(x)(|F |2 − 3) for F ∈ � ⊂ R

3 with periodic
material constants μ(x) (which are bounded between two fixed positive numbers), while (II)
includes the more general growth of Mooney-Rivlin models W (x, F) = μ1(x)(|F |2 − 3) +
μ2(x)(|adjF |2 − 3), for which we need to fix p = q = 2.

The main result of this work is the following

Theorem 3 Let � ⊂ R
d be a bounded, open set with Lipschitz boundary and let W :

R
d × R

d×d → [0,+∞] satisfy Assumption 1. Then for every u ∈ W 1,1(�)d there exists a
family (uε)ε>0 ⊂ u + W 1,1

0 (�)d such that uε → u in L1(�)d and

lim sup
ε→0

ˆ

�

W ( x
ε
,∇uε(x)) dx ≤

ˆ

�

Whom(∇u(x)) dx, (8)

where Whom is defined in (5). ThemapWhom is finite only on�, where it is also continuous.
Moreover, Whom is quasiconvex in the sense that

Whom(F) ≤
 

O
Whom(F + ∇ϕ(x)) dx for all ϕ ∈ W 1,∞

0 (O)d , (9)

all F ∈ R
d×d and all bounded, open sets O ⊂ R

d .

The above theorem shows that a variant of the multi-cell formula of Braides and Müller
yields an upper bound for the �- lim sup of the functionals Fε in the incompressible case.
Note that the sole difference between W and Whom (see (3) and (5)) is that in the former we
take the infimum over allW 1,p-competitors and in the latter overW 1,∞-competitors. Clearly,
the formulas (3) and (5) are equivalent if the energy density satisfies (2). In the setting of
Theorem 3 this equivalence is not clear and there might be a Lavrientiev gap. Unfortunately,
we are not able to provide the corresponding lim inf inequality. In Proposition 14, under a
stronger lower bound on W we provide a non-trivial lower bound on the �-limit based on
truncations that lead to an integrand that is finite only on �, where it is also continuous.
Moreover, like Whom it is quasiconvex. We further show that in the polyconvex case there
is a commutation of truncation and homogenization for the finite-cell formulas. However, in
general we do not know if the lower bound equals the upper bound of Theorem 3.

Let us now comment on the proof of Theorem 3. The classical construction for the upper
bound of the Gamma-limit, see e.g. [16], is based on density results. Indeed, by definition
of (3) (or (5)) it is straightforward to construct a recovery sequence for affine or piecewise
affine functions u. In order to pass from piecewise affine to generalW 1,1(�)d -functions it is
important that the energy Fhom is continuous with respect to the approximation. In particular
we would need to approximate a volume preserving deformation by piecewise affine volume
preserving deformations. To the best of our knowledge, this is an open problem.

Here, we take a different approach which is strongly inspired by the relaxation result [7],
where Conti and Dolzmann considered the relaxation problem for autonomous integrands
under constraints on the determinant (see also [5] for an extension of [7] to non-autonomous
problems). A key idea in [7] is that instead of adding oscillations to the macroscopic defor-
mation one locally use the composition of the macroscopic deformation with maps with
oscillating gradients. In the context of homogenization of elliptic equations this is sometimes
referred to as harmonic coordinates. More precisely, let u be a function which is close to
an affine function with gradient F ∈ � and consider the composition u ◦ (· + F−1εϕ( ·

ε
)),
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where ϕ is a competitor for (5). The chain rule formally yields

∇u(· + F−1ϕ( ·
ε
))(I + F−1∇ϕ( ·

ε
)).

If u was affinewith gradient F , then this formula reduces to F+∇ϕ( ·
ε
), but the big advantage

is that the multiplicative structure of the gradient preserves the constraints on the determi-
nant. We mention here that in [7] also relaxation of compressible models is studied with
similar techniques. Unfortunately we are not able to extend the method to the problem of
homogenization of compressible elasticity, see Remark 12.

This note is organized as follows: in Section 2 we gather some technical results for Whom

defined in (5). In Section 3, we prove Theorem 3. Finally, we discuss in Section 4 a lower
bound on the �-limit of Fε via truncation of the integrand.

2 Preliminary results and properties ofWhom

First, we provide some bounds on the multi-cell formula and establish a useful alternative
characterization of Whom, see (5).

Lemma 4 Suppose that Assumption 1 is satisfied. For all F ∈ �, it holds

1

c
|F | − c ≤ Whom(F) (10)

where c is given by (7), while it holds Whom(F) = +∞ if F /∈ �. Moreover, for all F ∈ �

and every bounded, open set O ⊂ R
d with Lipschitz-boundary it holds that

Whom(F) = lim
k→+∞ inf

ϕ∈W 1,∞
0 (O)d

 

O
W (ky, F + ∇ϕ(y)) dy. (11)

Proof We first show that Whom(F) = +∞ if F /∈ �, that is det(F) 
= 1. Let k ∈ N and
ϕ ∈ W 1,∞

0 (kY )d . Since the determinant is a null Lagrangian, we have

0 < | det F − 1| =
∣
∣
∣
∣

 

kY
det F − 1 dy

∣
∣
∣
∣
=

∣
∣
∣
∣

 

kY
det(F + ∇ϕ) − 1 dy

∣
∣
∣
∣

≤
 

kY
| det(F + ∇ϕ) − 1| dy.

Hence, there exists a set of positive measure A ⊂ kY such that det(F + ∇ϕ) 
= 1 on A and
thus

 

kY
W (y, F + ∇ϕ(y)) dy = +∞,

which implies, by the arbitrariness of k ∈ N and ϕ ∈ W 1,∞
0 (kY )d , that Whom(F) = +∞

(see (5)). Thus, it suffices to consider F ∈ �. Next we show the lower bound (10) on Whom.
For every k ∈ N and ϕ ∈ W 1,∞

0 (kY )d we find that

c−1|F | − c = c−1
∣
∣
∣
∣

 

kY
F + ∇ϕ dy

∣
∣
∣
∣
− c ≤

 

kY
c−1|F + ∇ϕ| − c dy

(7)≤
 

kY
W (y, F + ∇ϕ) dy. (12)
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Taking the infimum over ϕ and then over k ∈ N, from Definition (5) we deduce the lower
bound c−1|F | − c ≤ Whom(F).

Finally, we consider a bounded open set O ⊂ R
d with Lipschitz-boundary and show (11).

This will be done by gradual approximation. By a change of variables we have that

ak(O) := inf
ϕ∈W 1,∞

0 (O)d

 

O
W (ky, F + ∇ϕ(y)) dy = inf

ϕ∈W 1,∞
0 (kO)d

 

kO
W (y, F + ∇ϕ(y)) dy.

We first consider the case O = Y and show that ak(Y ) → Whom(F). To this end, let δ > 0
and take k0 ∈ N and ϕ ∈ W 1,∞

0 (k0Y )d such that

Whom(F) ≥
 

k0Y
W (y, F + ∇ϕ(y)) dy − δ.

Consider k � k0 and extend ϕ by k0Y -periodicity. We define ϕ̃ ∈ W 1,∞
0 (kY )d via

ϕ̃(y) =
{

ϕ(y) if y ∈ z + k0Y ⊂ kY for some z ∈ k0Zd ,

0 otherwise.

Then by k0Y -periodicity of ϕ and W (·, F) and the upper bound in (7), we have that

ak(Y ) ≤
 

kY
W (y, F + ∇ϕ̃(y)) dy

≤ 1

kd
∑

z∈k0Zd

z+k0Y⊂kY

ˆ

z+k0Y
W (y, F + ∇ϕ(y)) dy

+ 1

kd
∑

z∈k0Zd

z+k0Y∩∂kY 
=∅

ˆ

z+k0Y
c(Whom(F) + 1) dx

≤ (k/k0)d

kd

ˆ

k0Y
W (y, F + ∇ϕ(y)) dy

+ C
(k + k0)d−1k0

kd
kd0 (Whom(F) + 1).

Letting k → +∞ we find that

lim sup
k→+∞

ak(Y ) ≤
 

k0Y
W (y, F + ∇ϕ(y)) dy ≤ Whom(F) + δ.

As δ > 0 was arbitrary and clearly ak(Y ) ≥ infn∈N an(Y ) = Whom(F), we showed that

Whom(F) = lim
k→+∞ ak(Y ). (13)

Now fix an arbitrary bounded, open set O with Lipschitz-boundary. Using the same con-
struction as above with kY replaced by kO and noting that

lim
k→+∞

1

kd |O|#{z ∈ k0Z
d : z + k0Y ∩ ∂(kO) 
= ∅} = 0

due to the Lipschitz-regularity of ∂O , we deduce in a similar way that

lim sup
k→+∞

ak(O) ≤ Whom(F). (14)

123
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In order to obtain the reverse inequality for the lim inf, let Q = (−N/2, N/2)d = NY
be a large cube that contains O . Joining any two functions ϕ1 ∈ W 1,∞

0 (O)d and ϕ2 ∈
W 1,∞

0 (Q \ O) to a function ϕ ∈ W 1,∞
0 (Q)d one obtains the subadditivity property

|kQ|ak(Q) ≤ |kO|ak(O) + |k(Q \ O)|ak(Q \ O),

where we used that |∂O| = 0. Rearranging terms and dividing by |kO|, we find that

lim inf
k→+∞ ak(O) ≥ lim inf

k→+∞
|Q|
|O|ak(Q) − lim sup

k→+∞
|Q \ O|

|O| ak(Q \ O)

(14)≥ lim inf
k→+∞

|Q|
|O|aNk(Y ) − |Q \ O|

|O| Whom(F)

(13)= |Q|
|O|Whom(F) −

( |Q|
|O| − 1

)

Whom(F)

= Whom(F).

This concludes the proof of the lemma. ��
In the next lemma, we directly show that Whom is rank-one convex and thus continuous

on �.

Lemma 5 The function Whom : Rd×d → [0,+∞] is rank-one convex. Hence, as Whom is
finite on � = {F ∈ R

d×d : det(F) = 1} it is continuous on �.

Proof We first show that Whom is rank-one convex, following the closely related arguments
of [7, Lemma 4.1]. Fix A, B ∈ � with rank(A − B) = 1 and λ ∈ [0, 1]. Moreover, set
F = λA + (1 − λ)B. Appealing to [6, Theorem 2.1], we find a finite set K ⊂ � such that
for every δ > 0 the following is true: there exists a polyhedron �P and u ∈ W 1,∞(�P )d

satisfying

u(x) = Fx on ∂�P , ∇u ∈ K a.e. in �P , |{∇u(x) /∈ {A, B}}| ≤ δ|�P |. (15)

We claim that there exists c = c(A, B) > 0 such that

|{∇u = A}| ≤ (λ + cδ)|�P | and |{∇u = B}| ≤ (1 − λ + cδ)|�P |. (16)

Indeed, due to the boundary condition satisfied by u we have that

λA + (1 − λ)B
 

�P

F dx =
 

�P

∇u dx = A
|{∇u = A}|

|�P | + B
|{∇u = B}|

|�P |
+ 1

|�P |
ˆ

{∇u /∈{A,B}}
∇u dx .

Appealing to (15), we can bound the norm of the last integral by δmaxξ∈K |ξ |. Moreover,
since A, B are invertible and rank(A − B) = 1, these matrices are linearly independent and
by standard linear algebra we find a matrix C ∈ R

d×d with norm 1 and such that 〈A,C〉 = 0
and 〈B,C〉 
= 0. Taking the scalar product of the above equality with the matrix C we find
that

|{∇u = B}| ≤ (1 − λ + δ〈B,C〉−1 max
ξ∈K |ξ |)|�P |.

A similar argument gives the claimed bound on the measure of {∇u = A}, so that (16) holds.
Finally, still due to [6, Theorem 2.1] the sets {∇u = A}, {∇u = B} and {∇u /∈ {A, B}} are
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the union of simplices ωA
j , j = 1, . . . , NA, ωB

j , j = 1, . . . , NB and ωC
j , j = 1, . . . , NC

and on each of these simplices u is affine. For each k ∈ N and j ∈ {1, . . . , NA}, we find
ϕA
j,k ∈ W 1,∞

0 (ωA
j )

d such that
 

ωA
j

W (ky, A + ∇ϕA
j,k) dy ≤ inf

ϕ∈W 1,∞
0 (ωA

j )d

 

ωA
j

W (ky, A + ∇ϕ) dy + δ. (17)

Analogously, we find for each k ∈ N and j ∈ {1, . . . , NB}, functions ϕB
j,k ∈ W 1,∞

0 (ωB
j )d

such that
 

ωB
j

W (ky, B + ∇ϕB
j,k) dy ≤ inf

ϕ∈W 1,∞
0 (ωB

j )d

 

ωB
j

W (ky, B + ∇ϕ) dy + δ. (18)

Extending ϕA
j,k and ϕB

j,k by zero and using u(x) = F(x) on ∂�P , we can define wk ∈
W 1,∞

0 (�P )d by

wk(x) = u(x) − Fx +
NA∑

j=1

ϕA
j,k(x) +

NB∑

j=1

ϕB
j,k(x). (19)

In view of Lemma 4, one the one hand we have that

Whom(F) ≤ lim inf
k→+∞

 

�P

W (ky, F + ∇wk) dy . (20)

On the other hand we can write
 

�P

W (ky, F + ∇wk) dy = 1

|�P |
NA∑

j=1

ˆ

ωA
j

W (ky, A + ϕA
j,k) dy

+ 1

|�P |
NB∑

j=1

ˆ

ωB
j

W (ky, B + ϕB
j,k) dy

+ 1

|�P |
NC∑

j=1

ˆ

ωC
j

W (ky,G j ) dy, (21)

for some G j ∈ K for all j = 1, . . . , NC . Estimates (16), (17), (18) and Lemma 4 yield

lim sup
k→+∞

 

�P

W (ky, F + ∇wk) dy

≤ 1

|�P |
NA∑

j=1

|ωA
j |(Whom(A) + δ) + 1

|�P |
NB∑

j=1

|ωB
j |(Whom(B) + δ)

+ 1

|�P |
NC∑

j=1

|ωC
j |
 

Y
W (y,G j ) dy

≤(λ + cδ)(Whom(A) + δ) + (1 − λ + cδ)(Whom(B) + δ) + δ max
G∈K

 

Y
W (y,G) dy. (22)

Combining (20), (22), and the upper bound on W via Whom we find

Whom(F) ≤ λWhom(A) + (1 − λ)Whom(B) + Cδ,

123
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where Cδ → 0 as δ → 0. Hence, the claim on rank-one convexity follows.
Finally, the continuity ofWhom on� can be deduced verbatim as in [6, Step 2 of the proof

of Theorem 3.1] by showing that Whom is separately convex in suitable local variables. ��
In the next lemma, we prove that the examples mentioned in Remark 2 indeed satisfy

Assumption 1.

Lemma 6 Let W : Rd × � → [0,+∞) be a Carathéodory-function such that W (·, F) is
Y -periodic for every F ∈ �. Moreover, assume that W satisfies one of the following two
conditions:

(I) (standard p-growth): There exist p ≥ 1 and c ≥ 1 such that for a.e. x ∈ R
d and all

F ∈ �

1

c
|F |p − c ≤ W (x, F) ≤ c(|F |p + 1), (23)

(II) (additional dependence on cofactors): There exist p, q ≥ 1 and c ≥ 1 such that for a.e.
x ∈ R

d and all F ∈ �

1

c

(|F |p + |adjF |q) − c ≤ W (x, F) ≤ c
(|F |p + |adjF |q) + c, (24)

where adjF denotes the adjunct matrix of F.

Then W satisfies Assumption 1.

Proof The two-sided growth conditions (23) and (24), together with multiplicativity property
of the adjunct matrix (see e.g. [8, Proposition 5.66 (i)]), imply the submultiplicative upper
bound (6) and the lower bound on W (x, F) of (7) with a constant depending on c in (23)
and (24) and in addition on p. The only slightly non-trivial part is to verify the upper bound
in (7). This follows by the same argument as for the lower bound on Whom in Lemma 4, see
(12). Indeed, in the case (I), by Jensen’s inequality we have for all ϕ ∈ W 1,∞

0 (kY )

c−1|F |p − c ≤ c−1
∣
∣
∣
∣

 

kY
F + ∇ϕ dy

∣
∣
∣
∣

p

− c ≤
 

kY
c−1|F + ∇ϕ|p − c dy

(23)≤
 

kY
W (y, F + ∇ϕ) dy. (25)

Hence, we deduce as in Lemma 4 that c−1|F |p − c ≤ Whom(F) and thus

Whom(F) ≥ c−1|F |p − c
(23)≥ c−1(c−1W (x, F) − 1) − c

which yields the upper bound in (7). The above argument can be extended to the case (II)
appealing to the fact that F �→ adjF is a null Lagrangian (see [8, Lemma 5.5 (ii)]. ��

Finally, we recall a version of the well-known Scorza-Dragoni theorem [11, Theorem
6.35]. This will be important in the next section in order to deal with the fact that W is only
assumed to be measurable in the spatial variable.

Theorem 7 Let E ⊂ R
d be a Lebesgue-measurable set and B ⊂ R

m be a Borel set, and let
f : E × B → R be a Carathéodory function. Then for every σ > 0 there exists a closed set
Kσ ⊂ E, with |E \ Kσ | ≤ σ , such that f restricted to Kσ × B is continuous.

We will use the following consequence of Theorem 7.

123
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Corollary 8 Suppose that W satisfies Assumption 1. For every R > 0 and σ, η ∈ (0, 1] there
exists ρ ∈ (0, 1] and a compact set Kσ ⊂ Y satisfying |Y \ Kσ | ≤ σ such that

ξ, ζ ∈ � ∧ |ξ |, |ζ |
≤ R ∧ |ξ − ζ | ≤ ρ ⇒ sup

Y∈Zd+Kσ

|W (y, ξ) − W (y, ζ )| ≤ η. (26)

Proof By Theorem 7 with E = Y and B = � there exists for every σ ∈ (0, 1] a closed
set Kσ ⊂ Y with |Y \ Kσ | ≤ σ , such that W restricted to Kσ × � is continuous and thus
uniformly continuous on Kσ × (� ∩ {F ∈ R

d×d : |F | ≤ R}). From this and the periodicity
of W the claim follows. ��

3 Construction of a recovery sequence - proof of Theorem 3

In the next lemma we extend the local construction of [7, Lemma 4.2] from the setting of
relaxation to the one of homogenization that involves the additional micro-scale ε.

Lemma 9 For all F ∈ R
d×d and η ∈ (0, 1] there exists δ > 0 such that the following is true:

for every ball B = B(x0, r) ⊂ R
d and for every u ∈ W 1,1(B)d satisfying

 

B
|∇u − F | + |Whom(∇u) − Whom(F)| dx ≤ δ, (27)

there exists a sequence (zε)ε ⊂ W 1,1(B)d with zε = u on ∂B and

lim sup
ε→0

 

B
W ( x

ε
,∇zε) dx ≤

 

B
Whom(∇u) + η dx . (28)

Additionally, there exists C < +∞ depending on the dimension d and the constant c ∈
[1,+∞) in Assumption 1 such that

lim sup
ε→0

 

B
|u − zε| dx ≤ Cr

 

B
1 + Whom(∇u) dx . (29)

Proof In the proofmany quantities depend on F and η, but in order to reduce notationwe only
indicate the dependence on η, implicitly allowing for a dependence on F , too. By definition
of Whom, we find kη ∈ N and ϕη ∈ W 1,∞

0 (kηY )d such that
 

kηY
W (y, F + ∇ϕη(y)) dy ≤ Whom(F) + η. (30)

We extend ϕη ∈ W 1,∞
0 (kηY )d kηY -periodically and identify ϕη with this extension. More-

over, we define ϕη,ε := εϕη(
·
ε
) and set

φη,ε(x) :=
{

Fx + ϕη,ε(x) if x ∈ B(ε),

Fx otherwise,
(31)

where

B(ε) :=
⋃

q∈εkηZ
d

q+εkηY⊂B

(q + εkηY ). (32)
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By construction we then have that

(i) φη,ε ∈ W 1,∞(B)d ,

(i i) φη,ε(x) = Fx for all x ∈ B \ B(ε)

(i i i) det∇φη,ε = 1 a.e. in B, (33)

where (iii) follows from the fact that in view of (30) we have det(∇φη,ε) = det(F +
∇ϕη(

x
ε
)) = 1 a.e. on B(ε) and det(∇φη,ε) = det(F) = 1 on B \ B(ε). Next, we define

vε = F−1φη,ε. (34)

We argue that vε is a bi-Lipschitz map. To this end, note that since det(∇vε) = 1 a.e., for
some (actually any) q > d we have that

ˆ

B
|(∇vε(x))

−1|q det(∇vε(x)) dx =
ˆ

B
|adj(∇vε(x))|q dx < +∞.

Since further vε(x) = x on ∂B, a direct application of [3, Theorem 2] yields that vε is a
bi-Lipschitz map from B to itself. In conclusion, given the map u ∈ W 1,1(B)d satisfying
(27) with δ > 0 small enough to be determined, we can define

zε := u ◦ vε ∈ W 1,1(B)d , (35)

which satisfies zε = u on ∂B in the sense of traces. In order to show (28), similar to [7] we
decompose

 

B
W ( x

ε
,∇zε) dx −

 

B
Whom(∇u) dx = (I )ε + (I I )ε + (I I I ), (36)

where

(I )ε :=
 

B
W ( x

ε
,∇zε) − W ( x

ε
, F + ∇ϕη,ε) dx,

(I I )ε :=
 

B
W ( x

ε
, F + ∇ϕη(

x
ε
)) − Whom(F) dx,

(I I I ) :=
 

B
Whom(F) − Whom(∇u) dx .

However, in contrast to the case of relaxation, two of the terms are ε-dependent and require
a finer analysis. We consider the three terms separately. By the kηY -periodicity of W (·, F +
∇ϕη), we have that

lim
ε→0

(I I )ε =
 

kηY
W (y, F + ∇ϕη) dy − Whom(F)

(30)≤ η. (37)

In order to estimate (I I I ) and (I )ε , we will appeal to the continuity of ξ �→ W (y, ξ) (in the
rather weak sense of Corollary 8) and of Whom. Note that

‖∇vε‖L∞(B) = ‖F−1∇φη,ε‖L∞(B) ≤ |Id| + ‖F−1∇ϕη‖L∞(kηY ) =: Rη < +∞ (38)

and

‖∇φη,ε‖L∞(B) ≤ |F | + ‖∇ϕη‖L∞(kηY ) =: Mη < +∞. (39)

Let

ση = η

4c(supξ∈�, |ξ |≤Rη
Whom(ξ) + 1)(Whom(F) + 1)

. (40)
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Appealing to the continuity of Whom (see Lemma 5) and Corollary 8, we find a compact set
Cη ⊂ Y with |Y \ Cη| ≤ ση and ρη ∈ (0, 1) sufficiently small such that, for all ξ, ζ ∈ �,

|ξ − F | ≤ ρη ⇒ |Whom(ξ) − Whom(F)| ≤ η (41)

and

|ξ − ζ | ≤ ρηRη ∧ |ξ | ≤ Mη ⇒ ‖W ( ·
ε
, ξ) − W ( ·

ε
, ζ )‖L∞(ε(Zd+Cη)) ≤ η.

(42)

Hence, due to the non-negativity of Whom(∇u),

(I I I ) = 1

|B|
ˆ

B∩{|∇u−F |≤ρη}
Whom(F) − Whom(∇u) dx

+ 1

|B|
ˆ

B∩{|∇u−F |>ρη}
Whom(F) − Whom(∇u) dx

(41)≤ η + Whom(F)

ρη

 

B
|∇u − F | dx

≤η + Whom(F)δ

ρη

. (43)

To estimate (I )ε , we decompose B as B = B(ε) ∪ (B \ B(ε)) with B(ε) defined in (32). On
B \ B(ε) it holds that zε = u, so that by the non-negativity of W we have

lim sup
ε→0

ˆ

B\B(ε)

W ( x
ε
,∇zε) − W ( x

ε
, F + ∇ϕη(

x
ε
)) dx

≤ lim sup
ε→0

ˆ

B\B(ε)

W ( x
ε
,∇u) dx

(7)≤ lim sup
ε→0

c
ˆ

B\B(ε)

Whom(∇u) + 1 dx = 0,

where we used that |B \ B(ε)| → 0 as ε → 0 for the last equality. On B(ε), we have that

∇zε = ((∇u) ◦ vε)∇vε = ((∇u − F) ◦ vε)∇vε + F + ∇ϕη(
·
ε
). (44)

Set ωε := {x ∈ B(ε) | |(∇u − F) ◦ vε| > ρη}. Equation (44) implies that on B \ ωε

|∇zε − (F + ∇ϕη(
·
ε
))| ≤ ‖∇vε‖L∞(B)|(∇u − F) ◦ vε)|

(38)≤ ρηRη (45)

and thus the continuity property (42) and the definition of Mη in (39) yield that

‖W ( ·
ε
,∇zε) − W ( ·

ε
, F + ∇ϕη(

·
ε
))‖L∞(B\ωε∩(ε(Zd+Cη))) ≤ η (46)

which yields

1

|B|
ˆ

B\ωε∩(ε(Zd+Cη))

W ( x
ε
,∇zε) − W ( x

ε
, F + ∇ϕη,ε) dx ≤ η. (47)

123



    4 Page 12 of 21 M. Ruf, M. Schäffner

To bound the contribution from the set B \ ωε ∩ (ε(Zd + Y \ Cη)), we use (44), the
non-negativity of W and its submultiplicative bound, see (6), to deduce that

1

|B|
ˆ

B\ωε∩(ε(Zd+Y\Cη))

W ( x
ε
,∇zε) − W ( x

ε
, F + ∇ϕη,ε) dx

(6)≤ c

|B|
ˆ

B∩(ε(Zd+Y\Cη))

(W ( x
ε
,∇vε) + 1)(W ( x

ε
,∇u ◦ vε) + 1) dx

(7)≤ 4c2

|B|
ˆ

B∩(ε(Zd+Y\Cη))

(Whom(∇vε) + 1)(Whom(∇u ◦ vε) + 1) dx

(38)≤ 4c2

|B| sup
ξ∈�, |ξ |≤Rη

(Whom(ξ) + 1)

︸ ︷︷ ︸

=: cη|B|

ˆ

B∩(ε(Zd+Y\Cη))

(Whom(∇u ◦ vε) + 1) dx

= cη

|B|
ˆ

vε(B∩(ε(Zd+Y\Cη)))

(Whom(∇u) + 1) dx

≤ cη

 

B
|Whom(∇u) − Whom(F)| dx + cη

|B|
ˆ

vε(B∩(ε(Zd+Y\Cη)))

Whom(F) + 1 dx

≤ cηδ + cη

|B| |vε(B ∩ (ε(Zd + Y \ Cη)))|(Whom(F) + 1), (48)

where we used the area formula for the bi-Lipschitz transformation vε : B → B that satisfies
det(∇vε) = 1 from the fourth to the fifth line and vε(B) = B from the fifth to the sixth line.
Again by the area formula, the Riemann-Lebesgue Lemma and the bound |Y \Cη| ≤ ση, we
have that

|vε(B ∩ (ε(Zd + Y \ Cη)))| = |(B ∩ (ε(Zd + Y \ Cη)))| ε→0→ |Y \ Cη||B| ≤ ση|B|.
Hence, from the choice of ση (cf. (40)) and (48) we infer that

lim sup
ε→0

1

|B|
ˆ

B\ωε∩(ε(Zd+Y\Cσ ))

W ( x
ε
,∇zε) − W ( x

ε
, F + ∇ϕη,ε) dx ≤ cηδ + η.

(49)

On the set ωε, the inequality |(∇u − F) ◦ vε| ≥ ρη implies that

Whom(∇u ◦ vε) + 1 ≤ |Whom(∇u ◦ vε) − Whom(F)| + Whom(F) + 1

≤ |Whom(∇u ◦ vε) − Whom(F)| + Whom(F) + 1

ρη

|(∇u − F) ◦ vε|

and thus, inserting the upper bounds on W , we obtain with analogous estimates as in (the
first four lines of) (48) that

ˆ

ωε

W ( x
ε
,∇zε) dx ≤cη

ˆ

ωε

(Whom(∇u ◦ vε) + 1) dx

≤ cη

(

1 + Whom(F) + 1

ρη

)

︸ ︷︷ ︸

=:̃cη

ˆ

ωε

|Whom(∇u ◦ vε) − Whom(F)|

+ |(∇u − F) ◦ vε| dx, (50)
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where cη is defined as in (48). Since vε is a bi-Lipschitzmap from B onto Bwith det(∇vε) = 1
a.e., again by the area-formula (using ωε ⊂ B and W ≥ 0)

ˆ

ωε

W ( x
ε
,∇zε) dx ≤ c̃η

ˆ

B
|Whom(∇u ◦ vε) − Whom(F)| + |(∇u − F) ◦ vε| dx

= c̃η

ˆ

B
|Whom(∇u) − Whom(F)| + |∇u − F | dx (27)≤ c̃ηδ|B|. (51)

Hence, combining (37), (43) (47), (49) and (51) we obtain

lim sup
ε→0

 

B
W ( x

ε
,∇zε) dx −

 

B
Whom(∇u) dx ≤ 4η + Whom(F)δ

ρη

+ (cη + c̃η)δ.

Choosing δ > 0 sufficiently small such that (cη + c̃η)δ + Whom(F)δ
ρη

≤ η, we obtain (28) with
η replaced by 5η and the claim follows by redefining η.

Finally, we show (29). This follows from Poincaré’s inequality (using u − zε = 0 on ∂B)
and the lower bound in (7) in the form

 

B
|u − zε| dx ≤Cr

 

B
|∇(u − zε)| ≤ Cr

 

B
|∇u| + |∇zε| dx

≤Cr
 

B
|∇u| + cW ( x

ε
,∇zε) + c2 dx

and thus (29) follows with help of (28) and (10). ��
With the above local construction, similar to [7], but taking into account the additional

scale ε, we obtain the global ’recovery’ sequence via a covering argument.

Lemma 10 Let u ∈ W 1,1(�)d . Then there exists a sequence uε ∈ u + W 1,1
0 (�)d such that

uε → u in L1(�)d satisfying also

lim sup
ε→0

ˆ

�

W ( x
ε
,∇uε) dx ≤

ˆ

�

Whom(∇u) dx . (52)

If u ∈ W 1,∞(�)d , then we can assume that uε ∈ W 1,∞(�)d , too.

Proof We can assume that Whom(∇u) ∈ L1(�). Otherwise we take uε = u.
Step 1. Fix η ∈ (0, 1]. We claim that for all j ∈ N there exist a sequence (u j

ε )ε ⊂ u +
W 1,1

0 (�)d and an open set � j ⊂ � satisfying

|� j | ≤2− j |�| and u j
ε ≡ u on � j , (53)

lim sup
ε→0

ˆ

�\� j

W ( x
ε
,∇u j

ε ) dx ≤
ˆ

�\� j

Whom(∇u) + η dx, (54)

lim sup
ε→0

ˆ

�\� j

|u j
ε − u| dx ≤Cη

ˆ

�\� j

1 + Whom(∇u) dx, (55)

where C = C(c, d) ∈ [1,+∞) is the constant in (29) (in particular it is independent of η).
We prove the claim by induction. For j = 0, we set �0 = � and u0ε = u and (53)–(55)

hold trivially.
Fix j ∈ N and suppose that (u j

ε )ε ⊂ u + W 1,1
0 (�) and the open set � j ⊂ � satisfy

(53)–(55). Let L ⊂ � be the set of Lebesgue points of ∇u and Whom(∇u) and for x ∈ L set
F(x) = ∇u(x). Let δ(x) > 0 be given by Lemma 9 for the choice F = F(x) and η > 0. In
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order to define u j+1
ε and the open set � j+1 ⊂ �, we choose for any x ∈ L ∩ � j a radius

r j (x) ∈ (0, η) such that Br j (x)(x) ⊂ � j and
 

Br (x)
|∇u j

ε − F(x)| + |Whom(∇u j
ε ) − Whom(F(x))| dy

=
 

Br (x)
|∇u − F(x)| + |Whom(∇u) − Whom(F(x))| dy ≤ δ(x)

for all 0 < r < r j (x). By the Vitali-Besicovitch covering theorem ( [11, Theorem 1.150 and
Remark 1.151]) there exists a countable family of disjoint balls {Brk (xk)}k∈N that covers � j

up to a null set.We choose finitelymany balls {Brk (xk)}N j
k=1 such that |∪

N j
k=1Brk (xk)| ≥ 1

2 |� j |.
In each of these balls we apply Lemma 9 to F = F(x), the given η > 0 and the function
u ∈ W 1,1(Brk (xk))

d to obtain the corresponding family zkε ∈ u + W 1,1
0 (Brk (xk))

d such that

lim sup
ε→0

ˆ

Brk (xk )
W ( x

ε
,∇zkε) dx ≤

ˆ

Brk (xk )
Whom(∇u) + η dx, (56)

lim sup
ε→0

ˆ

Brk (xk )
|u − zkε | ≤ Crk

ˆ

Brk (xk )
1 + Whom(∇u) dx . (57)

Let us define

u j+1
ε :=

{

u j
ε on � \ ⋃N j

k=1 Brk (xk),

zkε on Brk (xk), 1 ≤ k ≤ N j ,
and � j+1 := � j \

N j
⋃

k=1

Brk (xk),

so that� j+1 is open, u
j+1
ε = u j

ε = u on� j+1 and, since Brk (xk) ⊂ � j , the property u
j
ε = u

on � j and zkε ∈ u + W 1,1
0 (Brk (xk)) imply that u j+1

ε ∈ u + W 1,1
0 (�)d . Moreover, we have

|� j+1| ≤ |� j | − |
N j
⋃

k=1

Brk (xk)| ≤ 1

2
|� j | ≤ 2−( j+1)|�|

and thus (53) is valid for j + 1. Finally, we show the estimates (54) and (55) with j replaced
by j + 1. By construction

� \ � j+1 = (� \ � j ) ∪
N j
⋃

k=1

Brk (xk)

and thus by (54) and (56)

lim sup
ε→0

ˆ

�\� j+1

W ( x
ε
,∇u j+1

ε ) dx ≤ lim sup
ε→0

ˆ

�\� j

W ( x
ε
,∇u j

ε ) dx

+
N j
∑

k=1

lim sup
ε→0

ˆ

Brk (xk )
W ( x

ε
,∇zkε) dx

≤
ˆ

�\� j

Whom(∇u) + η dx +
N j
∑

k=1

ˆ

Brk (xk )
Whom(∇u) + η dx

=
ˆ

�\� j+1

Whom(∇u) + η dx

123



Upper bounds for the homogenization problem... Page 15 of 21     4 

which proves (54) for j replaced by j + 1. Similarly, exploiting (55) and (57) we have

lim sup
ε→0

ˆ

�
|u j+1

ε − u| dx ≤ lim sup
ε→0

ˆ

�\� j

|u j
ε − u| dx +

N j
∑

k=1

lim sup
ε→0

ˆ

Brk (xk)
|zkε − u| dx

≤Cη

ˆ

�\� j

1 + Whom(∇u) dx +
N j
∑

k=1

Crk

ˆ

Brk (xk )
1+Whom(∇u) dx

≤Cη

ˆ

�\� j+1

1 + Whom(∇u) dx,

wherewe used rk(x) ∈ (0, η) in the last inequality. This concludes the inductive construction.
Step 2. Conclusion. Fix η ∈ (0, 1]. Appealing to Step 1, we find for every j ∈ N a sequence
(u j

ε )ε ⊂ u + W 1,1
0 (�)d and an open set � j ⊂ � satisfying (53),

lim sup
ε→0

ˆ

�

W ( x
ε
,∇u j

ε ) dx ≤ lim sup
ε→0

ˆ

�\� j

W ( x
ε
,∇u j

ε ) dx + lim sup
ε→0

ˆ

� j

W ( x
ε
,∇u) dx

≤
ˆ

�\� j

Whom(∇u) + η dx + c
ˆ

� j

Whom(∇u) + 1 dx

and

lim sup
ε→0

ˆ

�

|u j
ε − u| dx ≤Cη

ˆ

�

1 + Whom(∇u) dx .

The above two limits in combination with Whom(∇u) ∈ L1(�) and (53) imply

lim sup
j→+∞

lim sup
ε→0

ˆ

�

W ( x
ε
,∇u j

ε ) dx ≤
ˆ

�

Whom(∇u) + η dx,

lim sup
j→+∞

lim sup
ε→0

ˆ

�

|u j
ε − u| dx ≤Cη

ˆ

�

1 + Whom(∇u) dx,

and the claim follows from the arbitrariness of η ∈ (0, 1] and standard diagonal sequence
arguments. Finally, if u ∈ W 1,∞(�)d , then uε ∈ W 1,∞(�)d by the construction via compo-
sition in the proof of Lemma 9. ��
Corollary 11 The function Whom : Rd×d → [0,+∞] is quasiconvex in the sense of (9).

Proof Let F ∈ R
d×d and ϕ ∈ W 1,∞(B1)

d such that ϕ(x) = Fx on ∂B1. We show that

Whom(F) ≤
 

B1
Whom(∇ϕ) dx . (58)

If det(F) 
= 1, then one can argue as in the proof of Lemma 4 that
 

B1
Whom(∇ϕ) dx = +∞ = Whom(F).

Let det(F) = 1. By Lemma 10 we find a sequence uε ∈ W 1,∞(B1)
d such that uε(x) = Fx

on ∂B1 and

lim sup
ε→0

 

B1
W ( x

ε
,∇uε) dx ≤

 

B1
Whom(∇ϕ) dx .
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However, via a change of variables the left-hand side is bounded from below by Whom(F)

due to Lemma 4 and the boundary conditions of uε. This yields the claimed inequality (58).
The extension to any bounded, open set is standard. ��
Proof of Theorem 3 It suffices to combine the Lemmata 4, 5, and 10 with Corollary 11.

Remark 12 (Compressible materials) As remarked above, Lemma 9 is a ’homogenization
version’ of related relaxation results in [7]. As mentioned in the introduction, [7] applies also
to compressible materials with a blow up behavior if det(F) → 0. Let us briefly explain
why we are not able to extend the methods of [7] to homogenization in the compressible
case. In [7], the authors assume growth conditions of the form 1

c |F |p + 1
c θ(det(F)) − c ≤

W (F) ≤ c(1+ |F |p + θ(det(F))), where θ is a convex function which may blow up at zero
and satisfies θ(ab) ≤ (1 + θ(a))(1 + θ(b)). Assume this growth condition for W (x, ·) and
let us take the same ansatz as in the proof of Lemma 9. At some point, we need to ensure
θ(∇zε) ∈ L1. However, by the multiplicative upper bound on θ and the lower bound on W ,
θ(∇zε) can be bounded from above only by the product of two L1-functions. The trick in
[7] is to make a shift in the definition of vε , that is, consider vε = F−1φη,ε(· − a) + a Then
there exists a = aη,ε such that θ(∇zε) is in L1, but the shift leads to a change of variables
and we would need that

 

kηY
W (y + ε−1aη,ε, F + ∇ϕη(y)) dy

is close toWhom(F) which is not true in general. Indeed, due to the periodicity ofW one can
assume that ε−1aη,ε converges to some element a0 ∈ Y . With some effort one can show that
the above integral then converges to the corresponding version with ε−1aη,ε replaced by a0,
so that the oscillations of ∇ϕη are not ’almost optimal’ in energy.

4 Remarks on the lower bound

In this final section, we present a lower bound on the �-lim inf of the functional Fε. In order
to conserve the constraint of incompressibility, it is in general necessary to assume a stronger
lower bound on the stored energy density of the form

∃c ≥ 1, p ≥ d : c−1|F |p − c ≤ W (x, F) for all F ∈ � and a.e. x ∈ R
d ; (59)

cf. [13]. We next need to extendW (x, ·) to all matrices as explained in the following remark.

Remark 13 Since � ⊂ R
d×d is closed, there exists an extension of W from R

d × � to
R
d ×R

d×d that is continuous in the second variable. We denote this extension by W̃ . Using
explicit formulas for such an extension (cf. the proof of [9, Theorem 7.2]) it follows that W̃
can be taken as a Carathéodory-function W̃ : Rd × R

d×d → [0,+∞) that is periodic in
the first variable. Moreover, for later purposes we note that whenever W (x, ·) is polyconvex
for a.e. x ∈ R

d , one can construct a finite, continuous extension that is also polyconvex and
non-negative. Indeed, in this case W (x, F) = w(x, (m(F), 1)) for some convex function
w(x, ·) defined on R

k−1 × {1} for some k ∈ N that counts the dimension of all minors
and m(F) containing all minors of F of order ≤ d − 1 of F . Since R

k−1 × {1} is an
affine subspace of Rk , there exists an affine projection p : Rk → R

k−1 × {1}. The formula
W̃ (x, F) = w(x, p(m(F), det(F))) then provides a polyconvex extension of W (x, ·) with
the claimed properties.
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Upon replacing the extension W̃ by max{W̃ , 1
c |F |p − c} we can assume that also W̃

satisfies

c−1|F |p − c ≤ W̃ (x, F) for all F ∈ R
d×d and a.e. x ∈ R

d , (60)

We define Wn : Rd × R
d×d → [0,+∞) by

Wn(x, F) = min
{

W̃ (x, F), n(|F |p + 1)
} + n| det(F) − 1|. (61)

Since p ≥ d each Wn satisfies p-growth assumptions of the form

1

c
|F |p − c ≤ Wn(x, F) ≤ cn(|F |p + 1).

In particular, to eachWn we can apply standard homogenization results (e.g. [16]) to deduce
that

Fε,n(u) :=
ˆ

�

Wn(
x
ε
,∇u) dx

�→
ˆ

�

Wn(∇u) dx

on W 1,p(�)d (with respect to the L1-topology) with

Wn(F) = inf
k∈NW

(k)
n (F) where W

(k)
n (F) := inf

ϕ∈W 1,p
0 (kY )d

 

kY
Wn(x, F + ∇ϕ(x)) dx .(62)

Note further that Wn ≤ Wn+1 for all n ∈ N and that Wn ↑ W as n → +∞. Let us define

W(F) := sup
n∈N

Wn(F). (63)

This integrand yields a lower bound for the �- lim inf of Fε:

Proposition 14 Suppose the assumptions of Theorem 3 are satisfied. In addition assume (59)
and let W be defined as above. Then for every family (uε)ε>0 ⊂ W 1,1(�)d such that uε → u
in L1(�)d it holds that

lim inf
ε→0

ˆ

�

W ( x
ε
,∇uε(x)) dx ≥

ˆ

�

W(∇u(x)) dx .

If the left-hand side is finite, then u ∈ W 1,p(�)d . The map W is finite exactly on �, where it
is continuous. Moreover, W is quasiconvex in the sense of (9).

Finally, assume in addition that W (x, ·) is polyconvex for a.e. x ∈ R
d . Then, for all

F ∈ R
d×d ,

∀k ∈ N : sup
n∈N

W
(k)
n (F) = inf

ϕ∈W 1,p
0 (kY )d

 

kY
W (x, F + ∇ϕ(x)) dx =: W (k)

(F). (64)

Proof Step 1. We prove the liminf inequality and the properties of W .
Let uε → u in L1(�)d . Then by the lower bound W ≥ Wn and the �-convergence result

for integral functionals with standard p-growth we have that

lim inf
ε→0

ˆ

�

W ( x
ε
,∇uε) dx ≥ lim inf

ε→0

ˆ

�

Wn(
x
ε
,∇uε) dx ≥

ˆ

�

Wn(∇u) dx .

Since Wn ≤ Wn+1 also Wn ≤ Wn+1 and therefore the lower bound of the energy follows
by applying the monotone convergence theorem. The lower bound in (60) and the same
computations as in (25) imply the lower bound Wn(F) ≥ 1

c |F |p − c and by monotonicity
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it also holds for W. Hence, if the left-hand side in the above estimate is finite, then u ∈
W 1,p(�)d . As W ≤ Whom, the finiteness of the latter on � ensures the same for W. If,
however, F ∈ R

d×d is such that det(F) 
= 1, then

W(F) ≥ Wn(F) = inf
k∈N inf

ϕ∈W 1,p
0 (kY )d

 

kY
Wn(x, F + ∇ϕ) dx

≥ inf
k∈N inf

ϕ∈W 1,p
0 (kY )d

n
 

kY
| det(F + ∇ϕ) − 1| dx p≥d≥ n| det(F) − 1|.

Letting n → +∞, it follows that W(F) = +∞. Next, W is quasiconvex as the supremum
of quasiconvex functions (each Wn is quasiconvex by standard lower semicontinuity results
for functionals with polynomial growth; cf. [8, Theorem 8.1]) and finally W is continuous
on � due to [6, Theorem 1.1].

Step 2.Weassume thatW (x, ·) is polyconvex for a.e. x ∈ R
d and prove (64). As explained

in Remark 13, in this case we can also assume that W̃ (x, ·) is polyconvex. Fix k ∈ N.

Since Wn ≤ W , we have W
(k)
n ≤ W

(k)
for all n ∈ N and thus it suffices to show that

supn W
(k)
n ≥ W

(k)
. If F /∈ �, then as in Step 1 one can show that supn∈N W

(k)
n (F) = +∞,

so that it suffices to consider the case F ∈ �. For every n ∈ N let ϕn ∈ W 1,p
0 (kY )d be such

that

W
(k)
n (F) ≥

 

kY
Wn(x, F + ∇ϕn) dx − 1

n
.

Then (59), the almost minimality of ϕn , and the upper bound in (7) imply
 

kY

1

c
|F + ∇ϕn |p − c dx

≤
 

kY
Wn(x, F + ∇ϕn) dx ≤

 

kY
Wn(x, F) + 1

n
dx ≤ c(Whom(F) + 1). (65)

Hence, there exist ϕ ∈ W 1,p
0 (Y )d and a subsequence (ϕn j ) j such that ϕn j ⇀ϕ in

W 1,p(kY )d . Next, we investigate the convergence of det(F + ∇ϕn). From the definition
of Wn and almost minimality of ϕn we infer that

 

kY
| det(F + ∇ϕn) − 1| dx ≤ 1

n

 

kY
Wn(x, F + ∇ϕn) dx ≤ 1

n

 

kY
W (x, F)

+1 dx
(7)≤ c

n
(Whom(F) + 1) ,

so that det(F + ∇ϕn) → 1 in L1(kY ). At the same time, due to the divergence structure of
the Jacobian, it is known that det(F +∇ϕn j )⇀ det(F +∇ϕ) inD′(kY ), see e.g. [8, Theorem
8.20]. Combining these two observations, we find that det(F + ∇ϕ) = 1 a.e. in kY and that
det(F + ∇ϕn j ) → det(F + ∇ϕ) in L1(kY ). For the lower order minors of F + ∇ϕn j we
have at least weak convergence in L1(kY ) to the fact that p > d − 1. By the monotonicity

of W
(k)
n (F) with respect to n we have

sup
n

W
(k)
n (F) = lim

j→∞ W
(k)
n j

(F)

≥ lim inf
j→∞

 

kY
min

{

W̃ (y, F + ∇ϕn j ), n j (|F + ∇ϕn j |p + 1)
}

dx .
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Since in general the minimum of two polyconvex functions is no longer polyconvex, we esti-
mate the integrand from below by its polyconvex hull, i.e., the greatest polyconvex function
below the map F �→ Vn j (x, F) := min{W̃ (x, F), n j (|F |p + 1)}. Since Vn j is non-negative
and finite, it follows from [8, Theorem 6.6] that the polyconvex hull PVn j with respect to
the second variable is again a Carathéodory-function. Hence, continuing the previous chain
of inequalities and using the weak lower semicontinuity of non-negative convex functionals
together with the convergence properties of the minors of F +∇ϕn j derived above, for every
n̄ ∈ N we have

sup
n

W
(k)
n (F) ≥

 

kY
PVn̄(x, F + ∇ϕ) dx . (66)

Clearly the sequence PVn is monotone increasing with respect to n. We claim that it con-
verges to W̃ as n → +∞. To this end, we note that due the polyconvexity and non-negativity
of W̃ (x, ·) and [11, Theorem 6.36] we find a sequence of polyaffine functions ai (x, ·) that
approximates W̃ (x, ·) from below and such that its coefficients belong to L∞(kY ). In par-
ticular, there exist constants Ci ≥ 1 such that

|ai (x, F)| ≤ Ci (|F |d + 1),

which then implies for every i ∈ N that

sup
n

PVn(x, F) ≥ sup
n

P min{ai (x, ·), n(| · |p + 1)}(F) = Pai (x, ·)(F) = ai (x, F).

Letting i → +∞ we deduce that supn PVn(x, F) ≥ W̃ (x, F). The other inequality is
evident. Hence, letting n̄ → +∞ in (66), we deduce from monotone convergence that

sup
n∈N

W
(k)
n (F) ≥

 

kY
W̃ (x, F + ∇ϕ) dx =

 

kY
W (x, F + ∇ϕ) dx ≥ W

(k)
(F).

This concludes the proof. ��

Remark 15 (W (F) = Whom?) A combination of Theorem 3 and Proposition 14 yields a
complete �-convergence result provided W = Whom. The construction directly implies
W ≤ Whom but there are two serious obstructions to show the reverse inequality:

i) We would need to exchange inf and sup and thus show commutation of truncation and
homogenization. This is known to be true in a convex setting (see e.g. [10, 16]), but these
arguments do not extend to a non-convex setting. However, equation (64) shows that if
the infima with respect to k in the multi-cell formulas Wn and W are attained by a finite
k ∈ N, then truncation and homogenization commute. To the best of our knowledge there
are no rigorous results on the relation between multi-cell and finite-cell formula in the
context of incompressible elasticity. In the compressible case the example of Müller [16]
shows that in general the multi-cell formula does not reduce to a finite-cell formula, but
in [17, 18] the equality of the multi-cell formula is proven for certain F corresponding
to small strains.

ii) InW (k)
hom we take the infimum over Lipschitz-functions (see (5)) while inW

(k)
we take the

infimum over W 1,p-functions (see (64)). While this makes no difference on the level of
the approximation, that is, in (62), the unboundedness ofW might feature the Lavrentiev

phenomenon and thus we might have W
(k)

(F) < W (k)
hom(F) or W (F) < Whom(F) for

some F ∈ �.
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