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Intraspecific and intraindividual trait
variability decrease with tree richness in a
subtropical tree biodiversity experiment

Pablo Castro Sánchez-Bermejo 1,2,3 , Carlos P. Carmona 4,5,
Meredith Christine Schuman 6,7, Raquel Benavides 8,9,
Lena Sachsenmaier 2,10, Shan Li 11, Xiaojuan Liu 11 & Sylvia Haider 3

Phenotypic variability within tree species responds to local tree species rich-
ness. However, we lack evidence on how different sources of trait variation
shape tree-tree interactions. Along a diversity gradient from one to eight tree
species, here we collect 4568 leaves from 381 trees to study changes in
intraspecific and intraindividual leaf trait variability, and assess their con-
tribution to community functional diversity. Intraspecific trait variability in
functional traits decreases with tree species richness, while similar responses
for intraindividual variability are revealed by spectral traits. Functional overlap
between conspecific trees increases through intraindividual variation, but is
reduced through intraspecific variability, meaning that intraspecific variability
may reduce intraspecific competitive interactions while intraindividual varia-
bility could arise due to varying light within the canopy. Last, intraspecific and
intraindividual variability explain high community functional richness and
divergence, respectively, especially in mixtures. Our findings emphasize that
fine-scale variability influences tree-tree interactions and drive local functional
diversity.

Plant trait-based ecology focuses onphenotypicdifferences as away to
understand ecological and evolutionary processes1–3. While the field
has typically focused on differences between species, substantial trait
variation occurs at different levels of biological organization (among
populations, between individuals within the same population, or
within individuals4,5) which could be important to understand adap-
tations to the environment6 and species coexistence7. For instance, in
response to competition, plants are able to shift the trait expression to
adopt a more conservative strategy in the use of resources8 or to

prevent local competitive exclusion by increasing dissimilarities with
other individuals9,10. However, while these shifts have been widely
studied, less attention has been paid to the variability of traits between
individuals within the same population, hereafter referred to as
intraspecific trait variability (i.e. the extent of the differences between
the trait values of individuals from the same population of a species).

Among others, intraspecific trait variability can be driven by
species diversity, as it regulates the probability of local interactions
with species of varying identities and, therefore, influences the trait
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expression of plants11. In this context, as the limiting similarity theory
suggests that individuals can coexist only if they acquire resources
differently12, intraspecific trait variability within populations may
reduce intraspecific competition by allowing individuals from the
same species (conspecifics) to exploit alternative resources13,14. This
suggests that, given that conspecifics acquire and use resources in a
similar way, intraspecific trait variability is expected to be larger in
species-poor communities. Further, intraspecific trait variability
depends not only on intraspecific competition but also on niche
availability15. That is why, when the number of species in a community
increases (which commonly results in resource partitioning16), indivi-
duals tend to become more dissimilar from the heterospecific neigh-
bors. As a result, species may adopt a so called niche packing strategy
characterized by the exploitation of a specific resource in a specific
manner, resulting in lower intraspecific trait variability compared to
monocultures17. For example, conspecific trees in monocultures have
been found to produce leaves with different specific leaf areas (SLA) to
exploit different sections of the light gradient; by contrast, in mixed
communities, as species specialize in exploiting specific parts of the
canopy space, conspecifics tended to produce leaves with similar
SLA18. As a result, limited intraspecific variability may act as a
mechanism that would allow species to exploit different niches,
resulting in species complementarity in species-rich communities19. In
fact, recent studies found that intraspecific leaf variability of plant
populations decreased with increasing plant diversity17,20,21. However,
in contrast to the limiting similarity rationale, plant-plant interactions
can also be driven by competitive hierarchies, meaning that traits shift
towards a more competitive ability depending on the closest
neighbors9. In this context, individuals from the same species may
adjust their traits to varying competitors’ identities. Therefore, a
diverse community could result in an heterogenous biotic environ-
ment in which plants from the same species adopt different strategies
simultaneously, resulting in higher intraspecific trait variability com-
pared tomonocultures11. In fact, this is supportedby results fromother
studies and by the responses found for tree organs other than
leaves22–24. For instance, Benavides et al.23 showed that intraspecific
trait variability in tree species was higher in mixtures compared to
monocultures, specially in relation to architectural traits, and dis-
cussed that this change may arise from the spatial complementarity
provided by species dissimilarities. As a result, these contrasting
results among studies propose that there is no general direction of
change of intraspecific trait variability in response to species diversity,
but that it likely depends on the specific interaction partners as well as
the plant organ studied.

Scaling down in the levels of biological organization, intraindivi-
dual variability, i.e., the extent of different trait values across different
repeated architectural units of the plant body structure (e.g. leaves
from the same plant25–27), could alsomatter for plant-plant interactions
and, therefore, may respond to species diversity. For instance, as the
light interception by leaves is a key factor in competition28, plants
express different leaf phenotypes within individuals to adjust to light
exposure (e.g. leaves directly exposed to sunlight show higher pho-
tosynthetic rates than shade leaves28,29). Additionally, it has been sug-
gested that plants can experience intraindividual changes in eco-
physiological traits that may eventually lead to enhanced water-use
efficiency30 or cope with environmental unpredictability31. As species
composition affects spatial arrangement and, therefore, light expo-
sure, leaves also respond to the surrounding diversity17. This may be
relevant in the case of trees as such plastic responses are especially
noticeable in these organisms due to their great longevity and exten-
sive modularity32. For instance, intraindividual leaf variability in trees
was observed to decreasewith local tree species diversity17,33 and it has
been suggested that, similarly to intraspecific variability, high intrain-
dividual leaf variability could support intraspecific complementarity
(functional complementarity between conspecifics). This would imply

that, under scenarios of high intraindividual variability, conspecifics
may tend to be dissimilar in their leaves by exploiting dissimilar niches.
Nevertheless, this role of intraindividual variability in plant-plant
interactions and themechanisms involved remain still unclear. Indeed,
changes in intraindividual trait variability may not be necessarily
related to limiting similarity, but, instead, may respond to spatial and
environmental heterogeneity of the environment. For instance, in
forests, enhanced intraindividual trait variability emerges in mono-
cultures, where low canopy density and structural diversity result in
less buffered environmental conditions34. This variability may help to
cope with the higher temporal variability in environmental conditions
over time33. That is why, in order to clarify whether intraindividual
variability generates intraspecific complementarity, it is important to
understand the patterns of intraindividual variability along tree spe-
cies diversity gradients as well as its effect on how different con-
specifics overlap in their traits.

Functional diversity (i.e. the extent of phenotypic differences in a
community) is one of the most common tools in trait-based ecology35

and can reveal key facets of ecosystem functioning (e.g. net primary
productivity, biochemical cycles) and community assembly (e.g.
environmental filtering, limiting similarity1,36). Functional diversity
estimations typically consider a single mean trait value for each spe-
cies; this strategy reduces the amount of trait measurements but
neglects trait variation within species2. Nevertheless, intraspecific trait
variability can account for a non-negligible proportion of the total trait
variability within and across ecological communities4,37. Further,
approaches considering intraindividual trait variability have shown
that the sum of the variation occurring intraspecifically and intraindi-
viduallymaybe even larger than the differences between species in the
case of some leaf traits such as SLA or leaf nitrogen content5,38. This
shows the importance of studying species traits beyond single mean
trait values to quantify community functional diversity, especially at
local scales and in species-poor communities39–42. Therefore, it has
been suggested that the different sources of trait variation occurring
within species, from the variability between populations to the
intraindividual variability, could affect community functional
diversity43. In recent years, differentmethods to incorporate variability
into functional diversitymetrics have beendeveloped39,44–47. The useof
these methods allows testing the notion that community functional
diversity is higher when considering intraspecific or intraindividual
variability43,48, as well as understanding how this effect changes with
species richness.

Here, we study the patterns of intraspecific and intraindividual
leaf trait variability in a tree diversity experiment in subtropical China
(BEF-China49). The modular architecture of trees enables pronounced
plastic responses50, making this system particularly suitable for
exploring how trait variability changeswith increasing species richness
(see proposed hypothesis in Supplementary Fig. 1). By using leaf
spectroscopy, we estimate five morphological and chemical leaf
functional traits in 381 tree individuals from eight species along a tree
species richnessgradientwithmonocultures andmixtures of 2, 4 and8
tree species. Additionally, we identify 29 leaf spectral traits associated
to different segments of the leaf reflectance spectrum. We assess
population variability in functional and spectral traits by using two
functional indices thatmeasure different facets of the functional space
(functional richness and functional divergence) at the intraspecific
(mean trait values of individual trees within the same population) and
the intraindividual level (leaf trait values within an individual tree),
respectively. Further, we assess intraspecific overlap as the shared trait
space between the trait distributions of conspecific trees belonging to
the same population. Specifically, we aim (1) to determine how tree
species richness affects intraspecific and intraindividual leaf functional
and spectral trait variability, and (2) to assess the direct and indirect
effects (via intraspecific and intraindividual variability) of tree species
richness on intraspecific trait overlap. Further, we use a framework
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that allows including hierarchical sources of trait variation on com-
munity functional diversity, from the population level to the leaf level,
passing through the individual level39,51, and null models to identify
which sources of variation within species affect functional diversity.
With this, we aim (3) to characterize the influence of intraspecific and
intraindividual variability on the functional diversity of a community
across levels of tree species richness. The results show that intraspe-
cific trait variability decreases with tree species richness, reflecting a
spectrum fromhigh intraspecific complementarity inmonocultures to
low intraspecific complementarity in mixed communities. The
decrease in intraindividual functional trait variability with increasing
tree species richness is less evident and does not result in conspecifics
adopting alternative trait strategies. However, this decrease in
intraindividual variability is prominent in the case of spectral traits.
Last, both intraspecific and intraindividual trait variability contribute
to functional diversity of the community, especially in the mixtures,
but each source of trait variation affects different aspects of the
trait space.

Results
Responses of trait variability to tree species richness
The first two axes of a principal component analysis (PCA) on the leaf-
level values of five functional traits (N = 4568) explained 79% of the
total variation in our dataset (Fig. 1a). PC1 was strongly associated with

leaf drymatter content (LDMC), specific leaf area (SLA) and leaf carbon
content (C) (with loadings 0.90, −0.89 and −0.67, respectively; Sup-
plementary Table 1) and reflected differences in the content of dry
matter from conservative thicker leaves to acquisitive thinner leaves.
PC2 was related to leaf phosphorous content (P) and leaf nitrogen
content (N) (with loadings 0.70 and 0.65, respectively) and reflected
differences in nutrition status.

Overall, intraspecific leaf functional trait variability between
individuals within populations decreased with tree species richness.
First, analyses with single axes of leaf functional trait variation, which
aimed to detect changes associatedwith specific axis of leaf functional
trait variation, revealed that intraspecific variability in PC1 decreased
with tree species richness (χ2(df = 1) = 4.85, P =0.03, standard estimate
(β) = −0.28, N = 63 for functional richness (FRic; the extent of the
functional volume of the population); Fig. 1b, and Supplementary
Table 2). However, this effect was not significant for the intraspecific
variability of PC2. Second, we estimated trait probability densities
based on both PC1 and PC2 (multivariate FRic) to assess the main
changes in the total trait space of the population of the population (i.e.
between the conspecific trees within each plot). This analysis revealed
that tree species richness also had a significant negative effect on
multivariate FRic at the intraspecific level (χ2(df = 1) = 4.60, P = 0.03,
β = −0.30, N = 63; Fig. 2a). In contrast, we found no effect of tree spe-
cies richness on multivariate functional divergence (FDiv; the degree

PC1 (53.43%)

PC
2 

(2
5.

64
%

)

PC1
Thicker Thinner

PC2
Low nutrient content High nutrient content

a
Intraspecific

Intraindividual

PC2FDiv

PC2FRic

PC1FDiv

PC1FRic

PC2FDiv

PC2FRic

PC1FDiv

PC1FRic

−0.50 −0.25 0.00 0.25 0.50
Regression coefficients of tree species richness

Significance p < 0.05 ns

bCastanea henryi

Castanopsis
sclerophylla

Choerospondias axillaris
Liquidambar formosana

Nyssa sinensis

Quercus serrata

Sapindus mukorossi

Triadica sebifera

00..9999

00000....55555

00000..22225555

SLA

LDMC

C

N
P

−4

−2

0

2

4

−5.0 −2.5 0.0 2.5 5.0

Fig. 1 | Main axes of leaf trait variation and effect of tree species richness on
intraspecific and intraindividual leaf trait variability. a Biplot for the first two
axes of a principal component analysis (PCA) of five functional traits predicted for
leaves collected in eight species growing in a subtropical tree diversity experiment
(N= 4568; colored points: mean species values). Data are based on spectro-
scopically predicted trait values of leaves collected from trees growing along an
experimental species richness gradient with mixtures of 1, 2, 4 and 8 tree species.
The color gradient visualizes different probability densities, with red colors cor-
responding toportions of the spacewith highest densities of observations. The first
component (PC1) reflects a gradient from thicker leaves (towards the left) that are
expected to have a longer lifespan and higher survival probability in response to
abiotic and biotic hazards than cheaply constructed thinner leaves (towards the
right) which are expected to have higher photosynthetic rates (Supplementary

Figs. 3, 4). The second component (PC2) reflects a gradient in nutrition status
ranging from low nutrient content leaves with low photosynthetic capacity
(towards the bottom) to high nutrient content leaves that could show high pho-
tosynthetic rates. Colors and leaf silhouettes correspond to the tree species
included in the study (Supplementary Table 3). Linear mixed-effects models to
study intraspecific and intraindividual variability of PC1 and PC2 (b) show sig-
nificant decrease in intraspecific functional richness of PC1 with increasing tree
species richness (χ2(df = 1) = 4.85, P =0.03, standard estimate (β) = −0.28). Regres-
sion coefficients (points) and standard error (error bars) are shown for the intras-
pecific level (top, N = 63) and intraindividual level (bottom, N = 381). Colors
represent the significance determined by two-sided likelihood ratio test (black
P <0.05, grey P >0.05).

Article https://doi.org/10.1038/s41467-025-67265-8

Nature Communications |        (2025) 16:11009 3

www.nature.com/naturecommunications


to which the abundance in the trait space is distributed towards the
extremes of the functional volume) (χ2(df = 1) = 0.14, P =0.70,
β = −0.05; Fig. 2c). The results for intraspecific variability contrast with
the effects found for the intraindividual level, as only for intraindivi-
dual FDiv of PC2 we found a marginally significant decrease with tree
species richness (χ2(df = 1) = 2.74, P = 0.09, β = −0.09; Supplementary
Fig. 2c). We found no effect of tree species richness on any of the

multivariate functional indices used at the intraindividual level (FRic
and FDiv with χ2(df = 1) = 0.22, P =0.64, β = −0.06 and χ2(df = 1) = 0.88,
P =0.88, β = −0.01, respectively, N = 381; Fig. 2b, d).

Responses of spectral variability to tree species richness
Analyses on leaf reflectance spectrameasured on the range of the solar
radiation (400-2500 nm) support a decrease of leaf spectral trait
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onmeasurements of fivemorphological and chemical leaf traits in an experimental
species richness gradient with monocultures and mixtures of 2, 4 and 8 tree spe-
cies. Significance was tested using a two-sided likelihood ratio test against a model
with no tree species richness effect. Grey bands represent a 95% confidence
interval. Colors correspond to the different tree species included in the study
(Supplementary Table 3), whose identity was included as a random effect in our
models.
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variability with tree species richness, both intraspecifically and
intraindividually. Specifically, we found that intraindividual variability
(measured asFRic) decreasedwith tree species richness in the caseof 8
principal components associated with different segments of the leaf
reflectance spectrum (N = 381; Fig. 3b; see SupplementaryTable 4 for P
values). For one of these principal components, we also found a sig-
nificant decrease of FRic at the intraspecific level (χ2(df = 1) = 4.13,
P =0.04,β = −0.29, N = 63; Fig. 3c).While significant effectswere found
in the case of FRic, the results for FDiv were not significant (see

Supplementary Fig. 5). The principal components forwhichwe found a
response in their variability were associated to segments ranging from
498 to 746 nm (Fig. 3a) and showed low correlations with leaf func-
tional traits (Fig. 3d).

Effects of trait variability on intraspecific overlap
We used a structural equation model (SEM) to understand the rela-
tionships leading conspecific trees to overlap in the functional trait
space of their population (Supplementary Fig. 8, 9). Our model fit the
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data well (Fisher’s C(df = 2) = 0.20 P =0.91, N = 63). We found that
changes in the intraspecific overlap (the mean overlap between the
functional volumes of conspecific trees within a population; Fig. 4) are
well explained by tree species richness and multivariate intraspecific
and intraindividual FRic (marginal R2 = 0.60, conditional R2 = 0.70).
Intraspecific FRic significantly decreased with tree species richness
(F(df = 1) = 5.10, P = 0.03, β = −0.29) and had in turn a negative impact
on intraspecific overlap (F(df = 1) = 78.24, P <0.001, β = −0.69). How-
ever, we did not find any effect of tree species richness on intraindi-
vidual FRic (F(df = 1) = 0.36, P = 0.58, β = −0.12), and we found an
increase of intraspecific overlap with intraindividual FRic (F(df =
1) = 15.76, P < 0.001, β = 0.33). Additionally, tree species richness had a
directmarginal positive effect on intraspecific overlap (F(df = 1) = 2.81,
P =0.09, β = 0.13). These results remained qualitatively similar in SEMs
with functional indices based on single axes of trait variation (PC1 or
PC2 of Fig. 1a; and Supplementary Fig. 10).

Effects of trait variation on community functional diversity
In order to study the importance of intraspecific and intraindividual
trait variability in the assessment of functional diversity of a commu-
nity and its dependence on species richness, we built four null models
that randomized functional trait probability densities at threedifferent
levels where trait variation arises (Fig. 5, and Supplementary Fig. 11, 12).
This approach ensured that simulated assemblages had identical tree
species composition as the observed communities, but differed in the
functional trait variability within species. Specifically, the sources of
random functional trait variation differed between the four null
models: (1) random population model (assuming random functional
trait distribution of the populations in an assemblage, but within the
constraints of the species to which each population belongs), (2)
random tree model (assuming random functional trait distribution
among trees from the same population, but within the constraints of
the species to which each tree belongs), (3) random leaf model
(assuming random functional trait distribution among leaves from the
same tree, but within the constraints of the species to which each tree
belongs) and (4) population-restricted random leaf model (assuming
random functional trait distribution among leaves from the same tree,
but within the constraints of the population to which each tree
belongs; see methods for details on the null models). Based on 500
simulations we calculated the standardized effect sizes (SESs) of FRic
and FDiv for every type of nullmodel and every sampled community to
determine how much the observed functional diversity deviates from
what would be expected under the null models. We then used linear
mixed-effects models to study differences in SESs among null models
and along a gradient of tree species richness (Supplementary Fig. 12).

We found a significant interaction between tree species richness
and the type of model on SESFRic (χ

2(df = 3) = 14.48, P <0.001, N = 128;
Supplementary Table 5). Specifically, SESFRic did not differ from 0 in
the random populationmodel, suggesting no differences between the
FRic of null models and observed communities. Still, SESFRic became
significantly higher than 0 with increasing tree species richness in the
random tree null model and the population-restricted random leaf

model, suggesting that FRic in the diverse observed communities was
higher compared to FRic from the null models. In the case of the
random leaf model, SESFRic was lower than 0 with low tree species
richness and similar to 0 in the highest levels of tree species richness,
suggesting that in monocultures, observed SESFRic values were lower
compared to the null model, and there were no differences between
the null model and observed FRic in diverse communities. The inter-
action between tree species richness and null model was not sig-
nificant for SESFDiv (χ2(df = 3) = 4.50, P =0.21, N = 128), but we found
significant effects of tree species richness (χ2(df = 1) = 18.53, P <0.001,
β = 0.13) and the type of null model (χ2(df = 3) = 70.56, P <0.001). For
this functional index the random population and the random tree
models did not differ from0 and only the random leaf and population-
restricted random leaf models were significantly higher than 0, spe-
cially inmore diverse communities, suggesting that only for these two
last null models the observed values of FDiv were higher than the ones
from the null models. All analyses remained qualitatively similar when
studying functional indices on single axes of trait variation (PC1 or PC2
of Fig. 1a; and Supplementary Fig. 13).

Discussion
With our study, we show that intraspecific leaf functional trait varia-
bility correlated negatively with tree species richness and in turn, had a
strong negative correlation with intraspecific trait overlap within a
community. We interpret this to indicate that trees of a given species
are on average functionally more similar in species-rich communities
than when they are growing in monoculture. In contrast, intraindivi-
dual leaf functional trait variability was weakly correlated with tree
species richness, but strongly and positively correlated with intraspe-
cific trait overlap. We interpret that, as the leaves within each tree
become functionally more similar, the trait expressions of individual
trees become more dissimilar to each other. These results are sup-
ported by the spectral analyses, which suggest that the decrease in
phenotypic variability (at the intraspecific and intraindividual level) is
also reflected by spectral traits. Our results also show that the orga-
nization of intraspecific and intraindividual functional trait variability
influences community functional diversity, especially at higher levels
of tree species richness.

Our approach allowed us to study how functional trait varia-
bility responded negatively to tree species richness in terms of
functional variation between and within individuals. The negative
association of tree species richness with functional variability
between individuals of a species is consistent with the limiting
similarity hypothesis, suggesting that higher intraspecific variability
would minimize intraspecific competitive interactions in mono-
cultures, while intraspecific variability is of secondary importance
for species coexistence in species-rich communities13,17,52,53. Indeed,
responses of intraspecific variability in leaf functional traits were
found to decrease with species richness in observational studies21,
and also in other BEF-experiments18, supporting the idea that leaf
variability between conspecifics is a mechanism for com-
plementarity in trees. However, these results contrast with previous

Fig. 3 | Spectral segmentation and effect of tree species richness on the varia-
bility of spectral components at the intraspecific and intraindividual level.
a Fragmentation of leaf reflectance spectrum into segments holding one identified
principal component using a Hierarchical Spectral Clustering with Parallel Analyses
(HPS-CA; Supplementary Figs. 6, 7) on 4568 leaf reflectance spectra collected from
trees growing along an experimental species richness gradientwithmixtures of 1, 2,
4 and 8 tree species. Each segment is represented in a different color and the line
represents the mean reflectance measured at different wavelengths (from 400 to
2500nm) in in our study. Regression estimates from linear mixed-effects to study
intraindividual and intraspecific spectral variability of the principal components
associated to the identified segments (b) show a significant decrease of intraindi-
vidual FRic with tree species richness in 8 principal components (the ones

associated with segments 15, 18, 23, 24, 30, 31, 35, and 36; N = 381) and (c) a sig-
nificant decrease of intraspecific FRic with tree species richness in one principal
component (the one associated with the segment 18). Colors of the regression
estimates represent the significance as determined by a two-sided likelihood ratio
test against a model with no tree species richness effect (black P <0.05, grey
P >0.05), error bars represent to the standard error and colors on the axis corre-
spond to the segments in (a). P values and standard estimates for each segment are
shown in Supplementary Table 4. d Correlation between principal components
associated to identified segments and leaf functional traits used in the study. Each
circle represents a correlation, with size representing the R2 and the color indi-
cating the direction of change (white, negative; black, positive). Segment numbers
are derived from the HSC-PA process shown in Supplementary Fig. 7.
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observational studies on trees that found an increase in intraspecific
functional trait variability with tree species richness22–24. These stu-
dies mentioned that higher structural complexity (i.e. the structural
diversity in the occupancy of the aboveground space) could release
competition, allowing species to occupy a larger niche space. In fact,
most of the responses found in these studies involved architectural
traits (e.g. crown projection area), for which increasing tree species
richness often leads to higher complexity in canopy space-filling54,55.
However, most of these studies were observational and included
trees differing in age and distance from neighbors. Such hetero-
geneous settings would impede, for instance, separating the varia-
bility arising from neighborhood diversity from that associated to
ontogeny56,57.

Our results also indicate that variability in the leaf economics
spectrum (LES58), accounts for most of the changes at the intraspecific
level (as indicated by the results of functional richness for PC1).
Therefore, most of the variability occurs between conservative leaves
which are expected to have a long lifespan and high resistance against
abiotic and biotic hazards, and acquisitive leaves with short lifespans
which are expected to be fast in the acquisition of resources and effi-
cient in photosynthetic activity59,60. This pattern is consistent with the
responses found in other studies for SLA18, a trait widely used as a
proxy for acquisitiveness. It suggests that conspecifics adjust their leaf
design in terms of resource use (some individuals more conservative
and some more acquisitive), resulting in intraspecific coexistence.
Consistently, we found a trend towards a positive effect of tree species
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Fig. 4 | Piecewise structural equation model (SEM) studying the mechanisms
driving the intraspecific overlap in leaf functional traits. The SEM tests the
direct effect of tree species richness on intraspecific overlap as well as its indirect
effects mediated viamultivariate intraspecific and intraindividual variability, which
is expressed as functional richness (FRic) here, but see Supplementary Fig. 10 for a
non-simplified SEM inwhich intraspecific and intraindividual functional divergence
(FDiv) were also included. Data are based on multivariate functional indices mea-
sured at the intraspecific and intraindividual level for eight tree species growing
along an experimental species richness gradient with monocultures and mixtures
of 2, 4 and 8 tree species. Significant effects of tree species richness were found on
intraspecific trait variability (FRic) (two-sided F-test: F(df = 1) = 5.10, P =0.03,

β = −0.29), while intraspecific overlap responded significantly to intraspecific trait
variability (FRic) (two-sided F-test: F(df = 1) = 78.24, P <0.001, β = −0.69) and
intraindividual trait variability (FRic) (two-sided F-test: F(df = 1) = 0.36, P =0.58,
β = −0.12). The width and color of the arrows indicate the strength and direction of
the effect, with blue arrows showing positive effects and red arrows negative ones.
Significant results are represented by solid lines while non-significant relationships
are represented by semi-transparent lines. Asterisks indicate significant effects
(*p <0.05, ***p <0.001), while the dot represents marginally significant effects
(p <0.10). Themarginal and conditional R2 (R2mandR2c, respectively) are indicated
for every model of the piecewise SEM.
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richness on intraspecific functional trait overlap. These results rein-
force the idea that species richness leads to the convergence of con-
specifics in their leaf phenotypic space, resulting in higher niche
packing of species due to the higher similarity between conspecifics in
the resource-use strategy.

Recent studies suggest that intraindividual variability, which pri-
marily relies on epigenetics and phenotypic plasticity25, has evolved in
natural populations in order to adapt to changing environmental

conditions30,31,61. However, this source of variation has been widely
disregarded and its role in the context of tree-tree interactions remains
largely unclear. Proβ et al.18 suggested that intraindividual variability in
leaves could act in a similar way as intraspecific variability, meaning
that higher intraindividual variability could minimize competitive
interactions among conspecifics. Therefore, intraindividual trait
variability should be higher in monocultures compared to mixtures.
However, while a clear decrease in intraindividual variability in
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Fig. 5 | Differences between observed and random values of community func-
tional diversity along a species richness gradient for four null models that
randomized different sources of trait variation. We built (a) null models that
differ in the level of biological organization in which the randomization was per-
formed (population level, tree level or leaf level; Supplementary Fig. 12) based on
leaf-level data collected from plots with 1, 2, 4 or 8 tree species. Data are based on
standardized effect sizes (SES) assessed for every null model and functional index
(functional richness (FRic) and functional divergence (FDiv)). Linear mixed-effects
models showed that the responses of (b) SESFRic to tree species richness depended
on the type of null model (χ2(df = 3) = 14.48, P <0.001, N = 120), but (c) this inter-
action was not significant in the case of SESFDiv (χ

2(df = 3) = 4.50, P =0.21, N = 128).
However, SESFDiv responded significantly to tree species richness (χ2(df = 1) = 18.53,

P <0.001, standard estimate (β) = 0.13) and the type of null model (χ2(df =
3) = 70.56, P <0.001). Significance was tested by using a two-sided likelihood ratio
test. SESs are lower than zero (below the dashed line) when the observed values of
functional diversity are lower than the simulated ones, while SESs are higher than
zero when the observed values are higher than the simulated ones. Semi-
transparent bands represent a 95% confidence interval. Points correspond to the
mean value of SESs for each diversity level and error bars represent their standard
deviation. Boxplots for comparing the values for the SESs in different models are
included in the right panels. Horizontal lines inside the box indicate the median,
box limits represent the upper and lower quartiles and the whiskers are 1.5 times
interquartile range.
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response to tree species richness previously reported, these studies
did not explore how this could be related to intraspecific functional
trait overlap33,62. In contrast, our results indicate that intraindividual
leaf functional trait variability promotes trait overlap within a popu-
lation, suggesting that the role of intraindividual variability in intras-
pecific complementarity could have been overestimated. Further,
while intraindividual variability barely responded to tree species rich-
ness in the caseof the leaf functional traits used in this study, this effect
was prominent in the analyses of spectral traits. In addition, the prin-
cipal components responding to tree species richness in the case of
spectral intraindividual variability were poorly correlated with func-
tional traits from the leaf economics spectrum. This suggests that
while traits from the leaf economics provide a better mechanistic and
ecological interpretation, theymay not be sufficient to understand the
patterns of intraindividual trait variability and, therefore, incorporat-
ing traits beyond the ones commonly used, as well as other sources of
phenotypic information (e.g. leaf spectroscopy), can complement and
support the study of phenotypic variability63. Interestingly, our results
indicate that tree species richness affects intraindividual variability
associated to optical properties in the visible range (VIS; 400-700nm)
and the red edge transition (680-750nm). These regions are strongly
linked to leaf photosynthetic and protective pigments, such as car-
otenoids or chlorophyll64 (Supplementary Fig. 14), suggesting that the
content of these pigments may be more variable in the monocultures
compared to the mixtures. As a possible explanation, the lack of clear
stratification of the canopy in monocultures54 could result in a higher
differentiation in light availability between sun and shade leaves32,
resulting in higher variability in the content of pigments between
leaves of the same tree. In sum, our data suggest that intraindividual
variability in tree-tree interactions is associated with intraspecific
overlap andmay arise as a response to varying light within the canopy.

Our results, interpreted in terms of the deviation of observed
functional diversity from null models, showed that the structure of
intraspecific and intraindividual functional trait variability contributes
positively to communities’ functional diversity. While differences
among species are still the most prominent source of functional trait
variation, intraspecific and intraindividual variability can represent
almost half of the total leaf trait variability in our species, especially in
the case of predicted leaf nitrogen and phosphorus contents38 (Sup-
plementary Fig. 15). Therefore, it becomes reasonable that the varia-
bility within species will also partly explain how functional diversity is
distributed65. Surprisingly, although a higher contribution of func-
tional trait variability in monocultures would be aligned with the lim-
iting similarity hypothesis, the increase of the divergence from the null
models suggests that intraspecific and intraindividual functional trait
variability contributed more to functional diversity in species-rich
communities. One possible explanation is that trees tend to differ in
trait values from the other trees in the community (from the same or a
different species). As a result, this would lead to an increase in the
functional diversity of the community that would be more noticeable
as the number of species increases21.

Differences between the deviations in different null models
revealed that intraspecific and intraindividual functional trait varia-
bility contribute to different facets of functional diversity. In the case
of intraindividual variability, the negative departure of FRic from the
random leaf null model indicate that, as different populations are
exposed to different environmental conditions, the leaves belonging
to the same population are highly similar among them compared to
other leaves from the same species. Further, the coincidence in the
discrepancies between the observed and expected FRic in the random
tree and the population-restricted random leaf null models maymean
that higher FRic in observed communities is only attributable to
intraspecific functional trait variability. In contrast, the higher
observed functional divergence (FDiv) in comparison to the expecta-
tions of the random leaf and the population-restricted random leaf null

models suggests that communities have a more multimodal distribu-
tions, that is, there are several modes (peaks) across the functional
space, resulting from intraindividual functional trait variability.
Indeed, while the role of intraspecific variability in producing multi-
modal trait distributions had already been studied66, our results indi-
cated that this effect could be amplified when considering
intraindividual variability. This means that, even within one experi-
mental plot, there is not a unique optimal trait value, but different
optimal leaf designs are expressed. This is consistent with previous
literature, as due to microenvironmental conditions along the tree
crown, multiple leaf designs can be expressed in order to maximize
fitness67, affecting the distribution of traits in the community. Inter-
estingly, while we found differences between the observed functional
diversity and the expectations in the random tree, random leaf and
population-restricted random leaf model, observed populations did
not depart significantly from randomly chosen populations for either
functional richness or functional divergence. This suggests that,
despite the responses found for intraspecific trait overlap, population
identity does not matter for functional diversity. However, we should
be careful when interpreting this result because, while we did not find
differences in the contributions of different populations from the
experiment presentedhere, populations in natural systemswith higher
environmental heterogeneity could differ substantially in their con-
tribution to the functional diversity of the community46.

In summary, both intraspecific and intraindividual functional trait
variability responded to tree species richness and affected the dis-
tribution of functional diversity. This outcome provides a better
understanding of how the variation within species influences func-
tional diversity and supports the idea that intraspecific variability is an
important component to be considered when studying the functional
diversity of ecological communities at fine or local scales42,66. Addi-
tionally, we show that intraindividual variability does not only matter
for the ecological processes occurring at the population level68, but
also shapes the trait distribution of ecological communities. However,
our approach based on the prediction of leaf functional traits from
spectral data, while remaining of interest as it allowsprocessing a large
dataset that accounts for the intraindividual variability working at a
community scale, may raise some concerns. Specifically, although the
accuracy of our method to predict some traits for each species indi-
vidually is high (see Supplementary Table 6), the accuracy decreases
for some other traits in some species (e.g. leaf phosphorus content of
Choerospondias axillaris). This increase in the noise in our metrics of
intraspecific and intraindividual trait variability, which in turn may
obscure or distort relationships between diversity and trait variation69.
While general patterns of intraspecific and intraindividual trait varia-
bility are supported by direct analyses on the leaf spectral data, results
involving traits with lower predictive accuracy should be interpreted
with caution, and the absence of significant effects may also reflect
methodological constraints next to biological absence of patterns.

Using a trait dataset that accounts for hierarchical sources of trait
variation for eight tree species across a gradient of tree species rich-
ness, we showed that trait variability within and between individual
trees is relevant for understanding patterns of intraspecific functional
diversity. Traits are a response to pressures from the abiotic and biotic
environment, but simultaneously affect ecosystem functioning70. For
instance, intraspecific variability in trees has also been shown to be an
important factor increasing primary productivity71, and similar effects
are expected for intraindividual trait variability6. Therefore, under-
standing the patterns of trait variation could reveal new facets of the
mechanisms behind ecosystem functioning. Altogether, our study
demonstrates the importance of considering biological units below
thepopulation or species level in trait-based ecology, thus highlighting
the importance of moving from a species-based trait ecology to an
individual-based trait ecology, that could enable better understanding
of processes occurring at the local scales.
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Methods
Study site and experimental design
This study was conducted in a biodiversity–ecosystem functioning
(BEF) experiment, the BEF-China tree diversity experiment, located in
Xingangshan, in Jiangxi Province, China (lat. 29°08′11″N, long. 117°90′
93″E). While BEF-China was primarily created to investigate ecosystem
functions inplanted areaswithdifferent levels of tree-species diversity,
thereby simulating the impact of species extinction, this experiment
has also been used to address intraspecific changes of trees in
response to their biotic context72. The climate is subtropical with a
mean annual temperature of 16.5 °C (ranging from 0.4 °C in January to
34.2 °C in July) and mean annual precipitation of 1,821mm73. We
worked on Site A, where trees were planted in 2009 andwhich extends
over an area of 27 ha with an elevation ranging from 205 to 275m a.s.l.
and slopes from 8.5° to 40° (Supplementary Fig. 16). In each plot,
400 saplings were planted in a uniform grid with 1.29-meter spacing,
resulting in plots of 25.8 by 25.8 meters with species randomly allo-
cated to planting positions. In the experiment, the trees are arranged
according to the ‘broken-stick’ design outlined by Bruelheide et al.49.
This design involves dividing the species pool into two equal groups
for each subordinate richness level. From the total pool of 24 species,
we worked with eight tree species: Castanea henryi Rehder & E.H.
Wilson, Castanopsis sclerophylla (Lindl. & Paxton) Schottky, Choer-
ospondias axillaris (Roxb.) B.L.Burtt & A.W.Hill, Liquidambar for-
mosana Hance, Nyssa sinensis Oliv., Quercus serrata Murray, Sapindus
mukorossi Gaertn. and Triadica sebifera (L.) Small (see Supplementary
Table 3 for details on species family); in plots ranging from the
monoculture to the8-speciesmixture passing through2- and4-species
mixtures. Hence, all species are equally represented at every species
richness level.

Field sampling
Sampling of leaves used for themain analyses (hereafter referred to as
regular set) took place from mid-August to mid-September 2023. In
every plot, we randomly chose six individuals from every species, and
every species was sampled in two plots at each diversity level (see
Supplementary Figs. 17, 18 to see the spatial arrangement of the sam-
pled trees within each plot and how pairwise distance among tree
remained constant along the diversity gradient). This results in a total
of 384 trees from eight different species in 30 plots. However, the
theoretical number of 384 trees was reduced to 381 due to the high
mortality of Triadica sebifera in one of the plots, where we found only
three individuals for that population. In order to capture the variability
of the whole individual, from each tree we collected 12 fully developed
leaves free from apparent mechanical or pathogen damage at three
different heights and four different orientations of the crown, resulting
in 4572 leaves. Immediately after collection, leaves were stored in
sealable plastic bags with moistened tissue. Samples were transported
in an isothermal bag equipped with cooling bags to prevent dehy-
dration. In the laboratory, samples were temporarily stored at 6–8 °C
for a maximum of 12 h before further processing.

In addition, we collected a set of leaf samples that was inde-
pendent from the regular set in order to predict the leaf economics
spectrum (LES) trait values for the samples of the regular set based
on the relationship between reflectance spectra and measured trait
values of the calibration set (Supplementary Fig. 19; see leaf trait
prediction section for details). For the calibration set, we included
20 leaf samples per species across all species richness levels, col-
lected at different heights and orientations within the crown, in
order to maximize the variability of trait samples for each species
(i.e., combinations of species considering closest neighbors, differ-
ent positions of the leaf within the crown, and the tree’s location
within the experiment). Each of the 160 samples was composed of
four leaves on average depending on the leaf size, to ensure suffi-
cient material for laboratory analyses.

Spectroscopy and laboratory analyses
Visible-near infrared spectrometry (Vis-NIRS) is emerging as a high-
throughput phenotyping technique to manage large sample sizes and
predict individual leaf trait values using calibration models41,74. For all
leaves (regular and calibration samples), we acquired reflectance
spectra with a portable Vis-NIRS device (ASD FieldSpec4 Wide-Res
Field Spectroradiometer, Malvern Panalytical Ltd, Almelo, Nether-
lands). Reflectance was measured across the full range of the solar
radiation spectrum (350-2500nm) by taking three repeated measures
on the adaxial side of each leaf while avoiding main veins. The equip-
ment was optimized regularly with a calibration white panel (Spec-
tralon, Labsphere, Durham, New Hampshire, USA). For each
measurement, ten spectra were averaged internally to reduce noise. A
splice correction was applied to the spectral data to minimize the
disjunctions between the three sensors of the ASD FieldSpec (VNIR,
SWIR1 and SWIR2, with ranges 350-1000 nm, 1001-1800 nm and 1801-
2500 nm, respectively). Therefore, the splicing regions were config-
ured according to the points between sensors (from 750 to 1000 and
from 1800 to 195075). After splice correction, outlier detection was
performed by using a similar procedure as in Li et al.64. First, all spectra
were visually inspected in the laboratory after acquisition. Addition-
ally, for every species separately, we calculated the local outlier factor
of every spectrum76 and hence considered as outliers 25 spectra that
had a value higher than 2 for the local outlier factor (Supplementary
Fig. 20). Finally, we excluded the spectral region between 350 and
399 nm for subsequent analyses due to the typical large amount of
sensor noise in this region77.

For the samples of the calibration set, we determined five mor-
phological and chemical leaf functional traits which are assumed to
reflect a plant’s strategy in termsof the investment of nutrients anddry
mass in the leaves60,78 and are key components of the leaf economics
spectrum58,59 (Supplementary Fig. 21): specific leaf area (SLA; leaf area
divided by leaf dry mass; mm²/mg), leaf dry matter content (LDMC;
leaf dry mass divided leaf fresh mass; mg/g), carbon content (C; %),
nitrogen content (N; %), and phosphorus content (P; µg/g). After col-
lection, the saturated fresh leaves of the calibration LES samples were
weighed (DeltaRange Precision Balance PB303-S; Mettler-Toledo
GmbH, Gießen, Germany) and scanned at a resolution of 300 dpi to
measure leaf area (WinFOLIA; Regent Instruments, Quebec, QC,
Canada). Leaves were oven-dried at 80 °C for 72 h and weighed to
calculate SLA and LDMC. Dried leaves were ground (Mixer Mill 400;
Retsch, Haan, Germany), and 200mgof the resulting powderwas used
for a nitric acid digestion. After the digestion, P wasmeasured through
amolybdate spectrophotometricmethod (UV-VIS Spectrophotometer
UV-1280; Shimadzu, Duisburg, Germany)79. Additionally, we used an
elemental analyzer (Vario El Cube; Elementar, Langenselbold, Ger-
many) to gas-chromatographically determine C and N contents.

Leaf trait prediction
The calibration dataset (spectral data and corresponding trait mea-
surements) was then divided into train and test sets, which account for
a proportion of 75% and 25%, respectively. We used a convolutional
neural network (CNN) approach for leaf trait prediction based on the
spectral data33,80. First, input spectra from the train and test sets were
augmented from 2501 to 12,255 wavelength features by using trans-
formations based on a combination of standard normal variates and
Savitzky-Golay derivatives81. Then, a CNN composed of one convolu-
tional layer followed by three dense layers was fitted to train the
samples. To avoid overfitting, batch normalization was applied after
the convolutional layer81. Hyperparameter tuning for every CNN was
performed independently for every trait, by adjusting the number of
filters, their size for the convolutional layers, and the number of nodes
in the dense layers (Supplementary Table 7). For model optimization,
an Adam algorithm and a loss function based on the mean squared
error was used. All species were used together in a CNN to provide
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greater spectral and trait variability in our training and test sets. We
tested the predictive ability of the CNNs by assessing the coefficient of
determination (R2) and the root mean squared error (RMSE) for the
predicted and measured values in the test set and in the train set. The
mean R2 of the test set was 0.74 ± 0.15 (mean± standard deviation),
with a maximum R2 for SLA and LDMC (both 0.91) and minimum for P
(0.54). The mean R2 of the train set was 0.80 ± 0.14, with a maximum
for LDMC (0.96) andminimum forP (0.62; Supplementary Figs. 22, 23).
These trainedCNNswereused forpredicting trait values of leaves from
the regular set of samples. After leaf trait prediction, we excluded, on
average across all traits, 3.46% of the predicted trait values (1.35% for
SLA, 1.78% for LDMC, 3.31% for C, 3.85% for N and 5.14% for P; Sup-
plementary Fig. 24, Supplementary Table 8) as they lay outside the
interval formed by the median, plus or minus 3 median absolute
deviations82. This threshold for excludingpredicteddatawas chosen as
these values seemed unrealistic and were negative in some cases
(Supplementary Fig. 25). The suitability of our sample size for the use
of CNN for predicting leaf traits was assessed by evaluating changes in
the R2 under different scenarios of completeness of the training set,
thus, simulating the predictive ability of the CNNs when we only use a
subset of samples from the training set (see Supplementary Fig. 26).
Leaf trait predictions and consecutive statistical analyses were con-
ducted in the R environment with R version 4.2.383.

Metrics of intraindividual and intraspecific functional trait
variability
We identified themain axes of functional trait variability byperforming
principal component analyses (PCA) on the scaled predicted func-
tional traits of all our leaves. Then, by using aHorn’s parallel analysis to
choose axes of trait variability, as implemented in the paran package84,
we selected the first two axes, which accounted for 79.07% of the
variability in our dataset (53.43% and 25.64% explained by the first and
second axis, respectively; see Fig. 1, and Supplementary Fig. 3, 4,
Supplementary Table 1) and showed adjusted eigenvalues > 1 (2.63 and
1.26 for the first and the second axis, respectively). Due to the presence
of missing values in our dataset as a consequence of the removal of
extremepredicted trait data (see Leaf trait prediction section),missing
valueswere imputedusing a PCA-basedmethod as implemented in the
missMDA package85 for every species independently prior to the PCA
described above. This procedure, while avoiding unrealistic values,
may also underestimate intraspecific and intraindividual variation.

The selected axes were used to measure the leaf intraindividual
and intraspecific trait variability of a given individual or population,
respectively, by estimating trait probability densities39,86 using the
package TPD51 (Supplementary Fig. 27). Therefore, we assessed trait
variability by considering probabilistic multivariate trait distributions
with two dimensions (PC1 and PC2). Further, trait variability for single
axes (for PC1 and PC2 independently) was also assessed. First, by
considering leaf-level values on PC1 and PC2, we compiled a trait
probability density for every individual tree as an approach to
intraindividual trait variability. We estimated the bandwidth of the
kernel functions by using an unconstrained bandwidth matrix as
implemented in the ks package87 and applied a 5% quantile threshold
to the trait probability densities. In order to calculate intraspecific trait
variability, we first assessed the mean PCA scores of every tree indi-
vidual by using a bootstrap approach46 and used the individual-level
data to assess trait probability densities for all populations (following
the same procedure as described for the trait probability densities of
individuals). In both cases (individual and species levels), from the trait
probability densities, we calculated two functional indices that
describe two components of trait variability: (1) functional richness
(FRic) indicates the total extent of the trait probability density and
aims to detect changes in the niche space of individual trees and of the
populations39,88, respectively, and (2) functional divergence (FDiv)
indicates the degree towhich the abundancewithin the functional trait

space is distributed toward the edge of the functional volume and,
therefore, describes whether the distribution of leaves and tree indi-
viduals, respectively, in the trait space is clustered or dispersed39,51,89.
Last, the trait probability densitiesmeasured for individual trees based
on leaf-level data were used to assess the intraspecific trait overlap as
the mean overlap between all the trees belonging to the same
population39. Both functional indices and intraspecific trait overlap
were estimated by using the TPD package51.

Metrics of intraindividual and intraspecific spectral variability
We used the leaf reflectance spectra collected for the regular set in
order to study changes in spectral variability. Leaf reflectance spectra
are integrative measures of the leaf phenotype and reflect morpholo-
gical, physiological, and chemical characteristics related to the plant’s
growth strategy63, making these measurements ecologically mean-
ingful. However, the multidimensionality of this data results in com-
plexity formanagement and analysis90,makingdifficult the assessment
of leaf spectral variability. Therefore, prior to analyses, we reduced the
number of dimensions in the spectral data by identifying segments of
the leaf reflectance spectrum that can be summarized by one unique
principal component. To do so, we used a Hierarchical Spectral Clus-
tering with Parallel analysis (HPS-CA), a data-driven dimension reduc-
tion approach originally developed for the segmentation of human
facial features91,92. As in Li et al.90, we first used a Horn’s parallel
analyses84 on all the wavelengths for which reflectance was measured
(each of the 2101 featuresmeasured between the 400 and 2500nm) in
order to seewhich principal components were retained, assuming that
a principal component is retained when its associated eigenvalue is
higher than 1 (see Supplementary Fig. 6a). When more than one
component was retained, the wavelengths were clustered into two
groups (i.e. segments) by using spectral clustering as implemented in
the kernlab package93. This process was then repeated in each gener-
ated segment until a segment for which only one principal component
was retained (supplementary Fig. 6b, c) was identified. We identified
56 segments of which 29 retained only one principal component
(Supplementary Fig. 7). The principal components retained by these
segments were then used as spectral traits to calculate the same
functional indices described above (FRic and FDiv) at the intraindivi-
dual and intraspecific level as described above for leaf functional traits.

Statistical analyses
To assess the effect of tree species richness on leaf intraindividual
and intraspecific functional trait variability (for both multivariate
functional indices and functional indices for PC1 and PC2) and
spectral trait variability (for the 29 principal components identified
using theHSC-PA), we used linearmixed-effectsmodels (LMMs) with
the functional indices as a response variable and tree species rich-
ness (log2-transformed) as a fixed factor. In addition, tree diameter
at breast height (DBH) and slope of the terrain in the position of the
tree were included as covariates in the model for intraindividual
variability, while the mean slope of the terrain in the plot was
included as a covariate in the model for intraspecific trait variability
due to its variability across the study site (Supplementary Fig. 16). In
a first step, aspect (measured as a categorical variable) was con-
sidered as a covariate in our model, but it was afterwards discarded
due to the low importance of this variable (see Supplementary
Fig. 28, and Supplementary Table 9). We included species identity
and plot identity nested in tree composition of the plot as crossed
random effects in the models of intraindividual trait and spectral
variability, and species identity and tree composition of the plot as
random effects in the models of intraspecific trait and spectral
variability. We used diagnostic plots of the residuals to study the
assumptions of normality, homoscedasticity and linearity in our
models: residuals vs fitted values plots, histograms of the residuals
and Q-Q plots for the deviance of the residuals. Then, we tested the
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significance of fixed effects using a two-sided likelihood ratio tests94

and assessed standard estimates (β) as effect sizes using the
effectsize package95. Finally, we assessed the quality of fit of our
model by calculating themarginal and conditional R2, which address
the variance explained only by fixed effects and the variance
explained by the entire model including the random effects,
respectively.

In order to assess the effects of tree species richness on intras-
pecific leaf trait overlap and how this effect is mediated by the
intraspecific and intraindividual leaf functional trait variability, we
used a Piecewise Structural Equation Model (piecewise SEM) as
implemented in the piecewiseSEM package96. Here, species identity
was included as a random effect. First, we defined the conceptual
model as a set of regressions, representing the relationships between
the variables and fit linear mixed models (LMMs) based on these
relationships (Supplementary Fig. 8). Correlated error terms were
included between indices of intraindividual functional trait variability
and between indices of intraspecific functional trait variability. The
mean slope of the plot was included as a covariate in the models for
intraspecific and intraindividual functional trait variability. Then, the
model fit was evaluated based on d-separation test and Fisher’s C
statistics96. Eventually, as intraindividual and intraspecific functional
divergence did not show any significance and weak standard esti-
mates, we reduced the SEM by excluding these two metrics and the
correlated error terms. All of these results remained qualitatively
similar when using the full and the reduced SEM (Supplemen-
tary Fig. 10).

Null models for functional diversity
In order to assess the effects of intraspecific and intraindividual
functional trait variability in the assessment of functional diversity of a
community and its relationship with species richness, we used null
models that randomized different sources of trait variation occurring
within the species.

First, observed functional diversity in every plot was assessed by
using sums of trait probability densities from the leaf-level to the
community level, therefore, expanding to the individual level the trait
probability density framework for functional diversity developed in
Carmona et al.39 (Supplementary Fig. 11). Thus, based on the leaf-level
data (level 1), we estimated trait probability density for individuals
(level 2) and, afterwards these trait probability densities were summed
at the species level (considering the given species in a population; level
3). Finally, by summing the trait probability densities of the different
populations occurring in a community we obtained final trait prob-
ability densities at the community level (level 4). The community trait
probability densities were then used to assess FRic and FDiv asmetrics
of functional diversity in a plot. For this last step, the contribution of
the trait probability density of every population was weighted
according to the sum of wood volume of every species in the central
area of every plot (including the 36 trees in the center of the plot). To
assess the wood volume (WV) of the trees, basal area and height were
measured in 2022 and the conversion factor calculated by Huang
et al.97 for our study species in our study site was used to estimate
wood volume as:

WV=0:5412m3m�3 � 0:1985m�3 × basal area ×height ð1Þ

Following this framework, we ran simulations randomizing hier-
archically different sources of variation occurring within the species
(Supplementary Fig. 12). Therefore, these null models simulated
communities with the same species composition and abundances, but
they randomized data on different steps of the framework for mea-
suring functional diversity:
(1) Randompopulation null model:The trait probability densities of

every population were calculated based on observed data and,

afterwards, these population trait probability densities were
shuffled for every species. This model aims to test which is the
effect of considering the functional identity of the population in
the plot.

(2) Random tree null model: The trait probability densities of all
trees were calculated based on the observed leaf values and the
treeswere shuffled for every species. Thismodel aims to test the
effect of intraspecific variability on community functional
diversity.

(3) Random leaf null model: Leaf-level functional trait values were
shuffled for every species before calculating functional diversity.
This model aims to detect the whole effect of the variability
occurring within species (intraspecifically and intraindividually)
on functional diversity.

As the intraindividual variability tends to be clustered
around the centroid of every tree and trees in the same popu-
lation are more similar to each other compared to trees from
other populations (Supplementary Fig. 4), the random leaf null
model could represent highly unrealistic scenarios. Therefore,
we decided to build another null model for the assignment of
random leaves in which the pool of leaves was more restricted
than in the random leaf null model:

(4) Population-restricted random leaf null model: Leaf-level func-
tional trait values were shuffled for every population before
calculating functional diversity. This model aims to detect the
effect of the whole variability occurring within populations
(intraspecific and intraindividual variability) in functional
diversity.

We simulated 500 null assemblages for every plot and every type
of null model. We visually inspected the changes and stabilization of
the mean and variance of every null distribution with an additive
number of simulations (Supplementary Fig. 29). Finally, to assess the
differences between the observed and the simulated values of the
functional indices we used standardized effect sizes (SES) as in Gotelli
and McCabe98

SES=
FDobserved �meanðFDsimulatedÞ

SDðFDsimulatedÞ
ð2Þ

Where FD corresponds to any of themeasured functional indices. SESs
were calculated independently for every plot and type of null model.
To test the effects of tree species richness and the type of null model
on the SES for every functional index, we used LMMs and included the
plot identity nested in tree species composition, as a random effect. In
every model, we included the SES of every functional index as a
response variable. Thus, we fitted two models with tree species rich-
ness (log2 transformed), type of the null model, and their interaction
as response variables. Then, we tested the significance of fixed effects
by using two-sided likelihood ratio tests, following the sameprocedure
described previously for LMMs fitted for the intraspecific and
intraindividual trait variability. All LMMs were fitted using the lmer
function in the lmerTest package99. We considered that the fitted null
model coefficients were significantly different from the random
scenario when the 95%-confidence intervals did not overlap with zero.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All materials needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Information. The data
used in this study are available at the Zenodo repository100 with the
identifier (https://doi.org/10.5281/zenodo.14190699).
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Code availability
R codes used in this study are available at the Zenodo repository100

with the identifier (https://doi.org/10.5281/zenodo.14190699).
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