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ARTICLE INFO ABSTRACT
Keywords: Variant calling in complex genomic regions remains a critical challenge in cancer genomics, yet systematic
Bioinformatics

evaluations of false positive rates in such regions are rarely reported. This investigative study examined somatic
mutations in esophageal squamous cell carcinoma (ESCC) using Whole Genome Sequencing (WGS) data, that
Somatic mutations identified a high frequency of putative mutations in MUC3A, a gene with an inherently complex sequence ar-
Variant callers chitecture. Quantitative laboratory validation attempts failed to confirm any of these computationally predicted
Gancer mutations, prompting systematic re-analysis. By assessing multiple variant calling algorithms and implementing
a Panel of Normals (PON) filtering strategy, we demonstrate that standard bioinformatics pipelines generated
extensive false positive calls in MUC3A, with false positive rates approaching 100 % for this gene. While previous
studies have acknowledged limitations in variant calling for repetitive or homologous regions, our work provides
evidence of complete analytical failure in the MUC3A gene, and establishes a reproducible framework for
identifying such artefacts. These findings address a critical research gap by quantifying the magnitude of false
discovery in complex genomic contexts and demonstrating that multi-tool consensus approaches combined with
PON filtering are insufficient without accompanied experimental validation. We recommend mandatory quan-
titative confirmation for variants identified in sequence-complex genes and advocate for transparent reporting of
validation rates in cancer genomic studies to prevent propagation of spurious findings in literature. This paper
provides a cautionary warning to future research to take into consideration the limitations of alignment and
variant calling tools and to employ a combination of tools to obtain robust and reliable results.

Next generation sequencing
Gene complexity

1. Introduction While conditions such as HIV/AIDS, malaria and tuberculosis remain
major public health concerns, cancer has emerged as a significant and

Africa faces a substantial and growing complex burden of disease critical health challenge with late-stage diagnoses, limited access to
characterized by the dual challenge of persistent infectious diseases and molecular diagnostics and targeted therapies, and inadequate oncology
a rapidly rising incidence of non-communicable diseases that pose major infrastructure contributing to poor outcomes (Umobong et al., 2025;

public-health challenges(Goswami, 2024; de-Graft Aikins et al., 2010). Boutayeb, 2006). The continent’s unique genetic diversity and
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environmental exposures shape distinct cancer susceptibilities and mo-
lecular signatures that remain underexplored.

Recent studies published highlights the growing application of bio-
informatics and mutational analysis tools to unravel the molecular un-
derpinnings of disease in African populations. A genomic study on
hypercholesterolemia conducted in children from Ghana demonstrated
the potential of variant annotation pipelines in detecting pathogenic
mutations (Opoku-Agyeman et al., 2025). Similarly, a different study in
Ghana highlighted how genomic tools can be used to identify clinically
significant variants relevant to gastric carcinogenesis through muta-
tional profiling of antimicrobial resistance genes in Helicobacter pylori
(Ofori et al., 2025). A further study on the use of integrative bioinfor-
matics analyses in Alzheimer’s disease demonstrated how disease
pathogenesis can be understood through pathway enrichment and
molecular-network mapping (Nguyen et al., 2024), while biomarker
discovery and informed targeted therapies in cancer can be driven
through the advances in computational approaches and mutational
profiling for precision oncology (Namini et al., 2025). In this context,
bioinformatics and mutational-analysis tools have an essential role in
addressing the African disease burden. They enable large-scale variant
calling, annotation of pathogenic versus benign variants, and the map-
ping of genomic mutations.

These studies illustrate that leveraging bioinformatics for mutational
analysis, whether in inherited non-communicable disease, infectious
resistance, or cancer genomics, offers a path to better understand the
unique genomic and disease-environment interplay in African pop-
ulations and make possible more effective, precision medicine strategies
that account for the continent’s genetic and epidemiological uniqueness.

As roughly 1 % of the human genome encodes protein-coding regions
(Pertea et al., 2018), misfunctioning (loss-of-function) or dysregulation
(gain-of-function) of critical proteins involved in homeostasis are often
the result of mutations introduced into these genes, frequently leading to
the development of cancer (Vestergaard et al., 2021), a disease char-
acterized by the accumulation of somatic mutations in several associated
genes (Futreal et al., 2004). Therefore the discovery and identification of
events that contribute to tumorigenesis are critical for our ongoing un-
derstanding of cancer as a disease (Dietlein et al., 2020).

Somatic mutations are acquired throughout the lifetime of an indi-
vidual and are distinguishable from germline mutations that are
inherited from parents and transmitted to offspring (Stratton et al.,
2009). Somatic mutations occur in healthy cells and in most cases do not
cause alterations to cell behaviour (Martincorena et al., 2017). However,
occasionally, key genes become altered in a manner that provides a
competitive advantage to the mutated cell, promoting the formation of
persistent mutant clones and initiating the process of tumour cell
transformation (Jaiswal et al., 2017; Anglesio et al., 2017).

With the advent of next-generation sequencing (NGS), insights into
the genome have provided meaningful knowledge into unravelling the
genetic conundrums of diseases such as cancer. NGS performs massively
parallel sequencing and generates vast amounts of data, posing a chal-
lenge to researchers in terms of the handling, interpretation, and anal-
ysis of the data. The subsequent development of a large number of
specialized bioinformatics tools, was aimed at navigating and handling
large quantities of raw data generated by NGS (Pereira et al., 2020).
However, several studies have shown that the application of different
tools often varies in consistency (Kumaran et al., 2019; Liu et al., 2013),
suggesting cautious interpretation as outputs could lead to spurious
results (Vestergaard et al., 2021). The two most prominent bioinfor-
matics analysis processes that have the potential to influence the
interpretation of the data are the tools used for alignment and variant
calling (Kumaran et al., 2019; Liu et al., 2013). Both of these processes
have numerous and diverse algorithms in their original design and
purpose. Challenges encountered with material artefacts, library prep-
aration sequencing technologies, and gene regions selected for
sequencing all further highlight the importance of selecting appropriate
tools for the downstream analysis of NGS data. NGS is a complex
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technology, and caution is advised when interpreting results that may be
influenced by the type of biological specimen; preanalytical treatment;
pseudogenes and repetitive regions; bioinformatic challenges dealing
with alignment and variant calling (Vestergaard et al., 2021).

One of the main advantages of DNA sequencing is the accurate
identification and annotation of mutations, including single nucleotide
variants (SNV), insertions/deletions (indels), copy number variants
(CNV), and structural variants (SV), with high sensitivity and specificity
(true positives and true negatives) (Vestergaard et al., 2021). Whole
Genome Sequencing (WGS) is often described as explorative given its
broader scope and lesser read depth (30-50x) (Bewicke-Copley et al.,
2019), but it is effective in identifying most germline mutations and
allowing for a comprehensive large-scale detection of the relevant var-
iants (Griffith et al., 2015). However, some reports suggest that WGS
may be insufficient in detecting rare somatic mutations that could
harbour cancer genomes (Vestergaard et al., 2021).

We used esophageal squamous cell carcinoma (ESCC) as a model to
explore the use of bioinformatics tools for downstream WGS analysis to
elucidate somatic mutations within patients. The objective of the study
was to compare the number of high and moderate impact mutations
detected in MUC3A and TP53 in our WGS study. The selection of these
two genes was made on the basis of their DNA structural differences,
with the former having extensive repetitive sequences composed of
tandem repeats and the latter having minimal or no repetitive sequences
(Gum et al., 1997; Pratt et al., 2000), together with our preliminary
results which identified multiple mutations in the MUC3A gene. It is well
established that extensive tandem repeats pose a significant challenge to
the accurate alignment of reads due to the potential for ambiguity
(Treangen and Salzberg, 2011). Short sequencing reads frequently align
well to multiple similar locations within the genome. This misalignment
of reads has a direct impact on the number of false positive variant calls.
The present study reports the number of high and moderate mutations
detected using Vardict and Mutect2+PON and the number discarded by
the PASS filter in Vardict and the PASS + PON filter in Mutect2.

This study identified numerous shortcomings and limitations asso-
ciated with a bioinformatics-only approach without laboratory confir-
mation. The mucin gene MUC3A is discussed as an example of the
complexities of genome sequencing and the caution required when
analysing data, considering false positives and spurious pipeline
outputs.

2. Methods and materials
2.1. Patient recruitment

Patients were recruited from Groote Schuur Hospital in Cape Town
(associated with the University of Cape Town) and Charlotte Maxeke
Johannesburg Academic Hospital (associated with the University of the
Witwatersrand). Patients presenting with histologically confirmed
esophageal squamous cell carcinoma (ESCC) were recruited through
informed consent. Matched normal and tumour biopsies and blood
samples were collected from each patient, processed, and stored as
previously described (Ferndale et al., 2022; Matejcic et al., 2019). Since
there are no early symptoms associated with ESCC, all patients pre-
sented with advanced stage 4 cancer, typically with lymph node me-
tastases. No early-stage cancers were present in the recruited patients.
Once patient biopsies and blood samples were processed, extracted DNA
was subjected to Whole Genome Sequencing (WGS) at the Wellcome
Sanger Institute in Cambridge in the United Kingdom. The total patient
cohort comprised twenty females and fifteen males with a mean patient
age of 62 years for females and 54 years for males. A breakdown ac-
cording to age, gender, % tumour cells, sequencing coverage, and
sequencing duplication factor is shown in Table 1. In WGS, the
sequencing coverage refers to the average number of times each base in
the genome is sequenced, and in this instance, it was set to >30x
coverage. The sequence duplication factor refers to the proportion of
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Table 1
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Patient cohort age and gender, where F represents females and M represents males. Patient DNA was subjected to whole genome sequencing as described in Materials
and Methods. Blinded histological testing was performed and the % tumour cells in the biopsy was determined as indicated below. Sequencing coverage for each
tumour (T) and normal (N) sample is shown, as well as the duplication factor (the fraction of mapped reads where any two reads share the same 5' and 3’ co-ordinates).
Patients recruited from the University of Cape Town, and the University of the Witwatersrand are indicated as UCT and WITS respectively.

UCT Patients

WITS Patients

Patient Age Sex % Tumour Cells  WGS Duplication  Patient Age Sex % Tumour Cells WGS Coverage T/N  Duplication Factor T/N
Number Coverage Factor Number

T/N T/N
PD39445 57 F n.d. 42.64/55.65 0.09/0.08 PD44691 70 F 39 33.77/41.83 0.06/0.08
PD39446 45 M n.d. 42.42/51.14  0.09/0.07 PD44692 54 M 47 31.48/39.89 0.06/0.08
PD39447 41 M 28 50.64/49.49  0.14/0.07 PD44693 59 M 54 42.6/38.02 0.07/0.08
PD39448 52 M 44 46.73/48.17 0.14/0.07 PD44694 54 F 21 40.01/38.1 0.07/0.08
PD39449 79 F 57 47.33/50.99  0.13/0.07 PD44695 63 F 64 41.5/42.37 0.07/0.09
PD39450 50 F 64 51.99/46.1 0.14/0.07 PD44696 54 F 69 34.86/39.44 0.06/0.08
PD39451 71 M 47 55.27/47.23  0.14/0.11 PD44697 38 M 29 36.02/37.06 0.07/0.07
PD39452 53 F 64 53.17/49.06  0.14/0.11 PD44698 45 F 70 38.59/37.61 0.07/0.08
PD39453 37 M 22 51.67/43.32  0.16/0.11 PD44699 81 F 61 34.13/42.24 0.07/0.09
PD39454 67 F n.d. 51.68/51.82  0.16/0.11 PD44700 71 F 43 34.85/35.76 0.06/0.07
PD39455 48 F 91 47.11/53.46  0.16/0.12 PD44701 69 F 13 35.49/36.71 0.06/0.07
PD39456 41 M 51 50.71/45.18  0.17/0.11 PD44702 65 F 46 36.33/40.62 0.06/0.07
PD39457 57 M 62 48.83/45.3 0.16/0.08 PD44703 78 M 38 37.12/36.23 0.06/0.07
PD39458 60 F 30 48.58/44.17  0.17/0.08 PD44704 56 M 30 34.21/39.34 0.06/0.07
PD39459 64 F 22 62.77/51.09  0.12/0.09
PD39460 56 M 66 48.05/47.45  0.10/0.09
PD50649 66 F 55 34.13/31.14 0.10/0.09
PD50650 60 F 22 37.02/37.83  0.09/0.09
PD50651 70 M 56 34.68/40.05  0.09/0.09
PD50653 57 F 48 29.09/33.14 0.09/0.09
PD51372 60 M 27 36.73/32.16  0.09/0.08

*n.d. = not determined.

reads that were found to be duplicates sharing the same 5 and 3’ co-
ordinates, often arising during library preparation or from sequencing
artefacts.

Ethical approval for the study was obtained from the UCT/Groote
Schuur Hospital Human Research Ethics Committee (Ethics number:
040/2005), and the Human Research Ethics Committee (Medical) at the
University of the Witwatersrand (Certificate number M170871).

2.2. DNA extraction

DNA was extracted from patient blood and biopsies using the Qiagen
AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, 80224, Hilden, Ger-
many) as per manufacturer’s instructions.

Following extraction, DNA integrity was determined by gel electro-
phoresis using a 1 % agarose gel (SeaKem®, Lonza, 50002, Rockland,
ME, USA) together with 1 pl Novel Juice (Bio-Helix, LD001-1000, Tai-
pei, Taiwan) detection dye. A suitable gene-ladder was loaded into the
gel (GeneRuler ™ 100bp Plus DNA Ladder (ThermoFisher, SM0321,
Vilnius, Lithuania)). This standard protocol is essentially as previously
described (Lee et al., 2012), with the amendment that Novel Juice
fluorescent reagent was added to the samples to provide an environ-
mentally safe, non-hazardous alternative to ethidium bromide for DNA
detection.

2.3. Whole Genome Sequencing

DNA isolated from paired blood samples and tumour biopsies were
subjected to WGS at the Wellcome Sanger Institute in Cambridge, UK.
Samples were genotyped for single nucleotide polymorphisms (SNP)
using a Fluidigm chip array to confirm that the tumour and normal
samples were patient matched. Samples were then sequenced on an
Mlumina HiseqX10 using 150 bp paired-end reads to a depth of >30x
coverage.

2.4. Bioinformatics analysis of WGS data

A variant-calling pipeline for small variants, including Single

Nucleotide Variants (SNV) and insertions and deletions (indels), was set
up utilizing the opensource software package bcbio-nextgen (Chapman
et al.). This software allows for the analysis of sequences through
specialized pipelines with further visualization and additional process-
ing made possible. The variant calling analysis pipeline aligns reads to
selected reference genomes, allowing for the identification of variants
within the query sequences (Guimera, 2011). In this way, calls were
compared against the common reference genome GRCh38 using the
BWA tool for alignment. Preparation and variant calling were incorpo-
rated into the pipeline to ensure an unbiased comparison of algorithms
(Chapman et al.). Once the setup was confirmed, configuration files
were constructed for each patient in the sample cohort following the
guidelines described in the software documentation (bcbio-nextgen 1).

All pipeline scripts used and query searches can be found in the
online repository at https://github.com/VictoriaPatten/phd-scripts/t
ree/main/bcbio-nextgen.

In setting up the configuration files, reads were aligned to the
GRCh38 human reference genome using the Burrows-Wheeler Aligner
(BWA 0.7.17), which maps low-divergent sequences against large
reference genomes (Li and Durbin, 2010). To select somatic and germ-
line calls, individual variant callers were specified for each.
Bcbio-nextgen carried out a single alignment for the normal sample first
and then split at the variant calling stage using the normal sample as a
baseline for germline and somatic calling. Freebayes v1.3.6 (Garrison
and Marth, 2012), a genetic variant detector designed to locate small
polymorphisms, specifically SNP’s and indels, was specified for germline
mutations and Vardict (Lai et al., 2016), an ultra-sensitive variant caller
that simultaneously calls SNV’s and indels, performing local re-
alignments for more accurate allele frequency estimation was stipulated
for somatic variant calling.

Variant Call Format (VCF) annotation was performed using the
SnpEff tool (Cingolani et al., 2012). The effects of variants in a genome
sequence are rapidly categorized and annotated based on their genomic
locations and prediction of coding effects. Structural and copy number
variants (CNV’s) were called using Lumpy v0.3.1 (Layer et al., 2014), a
probabilistic prediction framework for structural variant discovery.

A ‘Panel of Normals’ (PON) was incorporated into the bcbio-nextgen
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pipeline to eliminate false positives. Using a PON approach, a baseline
level for variant calling is determined from a combined a set of normal
samples typically derived from the same library preparation and
sequencing workflow used for tumour samples to allow for non-sample
specific ~ system level biases to be subtracted (Crea-
teSomaticPanelOfNormals). In this way, variant calling results are
improved as recurrent technical artefacts are removed. For short variant
calling, it is recommended that the PON should be created and run using
the variant caller Mutect2, which is a variant detector for SNPs and
indels and is part of the Genome Analysis Toolkit (GATK) (GATK). PON
files were created for each matched normal sample in the cohort and
combined into a single zipped VCF file. The original bcbio-nextgen
configuration files described above were edited to include Mutect2 as
the somatic variant caller instead of the previously used Vardict, and the
background: parameter was set to include the VCF PON file as a back-
ground of all 35 normal samples to be run against tumour samples.

Bcbio-nextgen pipelines were re-run for all 35 tumour-normal pairs,
and the resulting VCF files were filtered for HIGH impact MUC3A and
TP53 mutations.

2.5. Polymerase chain reaction (PCR) validation

DNA from patient biopsies was extracted in accordance with stan-
dard operating protocols previously described (Patten et al., 2023), and
was stored at —20 °C until needed. DNA was available for PCR ampli-
fication from the 16 UCT patients that made up part of the patient
sample cohort (Table 1). PCR primer design and optimisation is
described in Patten et al. (2023). Primers for different clusters of iden-
tified MUC3A mutations in exon 2 of the gene were designed and used
for PCR amplification of patient DNA. Post-PCR amplified products were
subjected to bi-directional Sanger sequencing. Chromatograms were
analysed using Chromas v2.6.6 (available at http://technelysium.com.
au/wp/chromas/) a free trace viewer for simple DNA sequencing pro-
jects that is free to download.

3. Results

3.1. Analysis of whole genome sequence data using bcbio-nextgen
software

Annotation of the output was performed using the SnpEff tool
(Cingolani et al., 2012). GEMINI v.0.20.1 (Paila et al., 2013) was then
used to create a database of the output to facilitate the query of the
annotated VCF files (from Vardict). GEMINI is a genome mining tool for
exploring human variations. Using the command line, the GEMINI
output database files were explored and filtered to search for particular
parameters of interest annotated within the variant/variant impacts
tables of the output database files.

The impact severity of the mutations can be described as the func-
tional consequence of a given variant, ranked as either HIGH, MED
(medium), or LOW) (GEMINI). A search was performed for all genes
presenting HIGH impact variants across all 35 patient genomes to
determine the top genes with the highest number of HIGH impact mu-
tations within the patient cohort.

Table 2 shows the GEMINI search results of the top 20 genes in the
cohort presenting with HIGH impact severity somatic mutations, indi-
cating the number of patients with these mutations, thus providing a
ranking of the genes. Fig. 1 shows the total number of variants detected
in several genes across the patient cohort.

The results shown in Table 2 were unexpected. At the top of the list,
with 30 out of 35 (86 %) patients presenting HIGH impact mutations,
was the MUC3A gene. Furthermore, 258 incidences of mutations of this
gene were detected across the patient cohort. These numbers far exceed
those for known cancer driver genes such as TP53, CDKN2A, and KMT2D
and were thus deemed ‘suspicious’ given the lack of literature reporting
similar results. It was, therefore, imperative to reanalyse the data using
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Table 2
Top 20 genes with the most HIGH impact severity variants detected using Var-
dict variant caller, in the 35 patient WGS cohort.

Gene Number of patients with mutations (% of Total)
MUC3A 30 (86 %)
TP53 18 (51 %)
HEATR9 14 (40 %)
VPS52 12 (34 %)
NCOR1 10 (29 %)
AHNAK 9 (26 %)
OR4D10 8 (23 %)
CDKN2A 8 (23 %)
FIGN 7 (20 %)
OR4D11 7 (20 %)
KMT2D 7 (20 %)
CST3 6 (17 %)
GRIN2A 6 (17 %)
DEF8 6 (17 %)
FGFR1 6 (17 %)
TBL1X 6 (17 %)
FAM135A 6 (17 %)
TDG 6 (17 %)
CST5 5 (14 %)
SLC4A3 5 (14 %)

an alternative approach incorporating the PON together with a different
variant caller, Mutect2, in place of Vardict.

After re-running the bcbio-nextgen pipeline for all tumour-normal
pairs incorporating Mutect2, an entirely new set of HIGH impact
MUC3A mutations was identified. The Mutect2 variant caller was
selected based on results reported in Bian et al. (2018) suggesting that
Mutect2 identified the lowest number of false positives in their com-
parison of variant callers. More than 400 incidences of MUC3A muta-
tions were now detected across all 35 samples in the cohort, with HIGH
impact severity status. Furthermore, all the mutations identified using
the Vardict variant caller were filtered out and were no longer present.
This strongly suggested that the mutations in the MUC3A gene using the
initial approach with the Vardict variant caller were false positives.
Fig. 2 shows the total number of MUC3A mutations identified per patient
using the Mutect2 and the PON approach.

From this second analysis using the Mutect2 variant caller, a much
larger number of MUC3A mutations were identified, all falling in the
second exon of the MUC3A gene and in 100 % of the patient cohort,
which again did not seem credible. Analysis of the data using an Inte-
grative Genome Viewer (IGV) representation of this gene (Fig. 3), shows
that in both tumour and normal samples, this genomic region is
extremely noisy, and it is very likely that most, if not all, of these pu-
tative mutations are not valid. All of the mutations previously identified
with Vardict were filtered out, suggesting they were false positives
(explaining why the presence of these mutations could not be verified
experimentally). In the new set of mutations, every patient in the cohort
was found to have MUC3A mutations, which is highly improbable. It is
likely that this revised data also suffers from false positives due to the
complex nature of the MUC3A genomic structure. To identify whether
spurious sequence reads may have played a role in these results, depth of
coverage for each read and each mutation was investigated and proved
computationally valid with high coverage.

Tables 3 and 4 were obtained by filtering the Vardict and Mutect2
outputs with and without restricting the mutation to the PASS filter. The
implementation of the filtering process involved the utilization of
GEMINI for Vardict and SnpSift for Mutect2-+PON, as the pipeline out-
puts involving the two callers are a GEMINI database and a VCF file,
respectively. When considering all identified mutations in MUC3A as
false positives, the numbers in the No PASS column for both callers
reveal that Mutect2 performed better in identifying false positives of
MEDIUM (MED) impact. However, Vardict demonstrated superiority in
HIGH impact, which are predominantly frameshifts. The application of a
PASS filter to the Vardict VCF queries led to a substantial reduction in


http://technelysium.com.au/wp/chromas/
http://technelysium.com.au/wp/chromas/

V.A. Patten et al.

Total Number of Mutations with Vardict

g

—0[<]
_.‘

AHNAK ™
CDKN2A "
CsT3
CST5 ™
DEF8
FAM135A7
FGFR1 "~
FIGN™
GRIN2A ™

Aspects of Molecular Medicine 6 (2025) 100097

258

56 55 55]

(21] [21] [21] (1o

—o[]
—e
—e

TDG™
P53
S

@ a < = o - o >
B o o o« - — 5 o
= [ 5] C (=} [=] < O
T = = =] = = 9 o
w b = > [ o = =
L - - o o «

Gene

Fig. 1. Lollipop plot indicating the distribution of somatic variants across the top 20 genes with the most HIGH impact severity variants detected using Vardict
variant caller with bcbio-nextgen pipeline. The MUC3A gene shows a vastly greater total number of mutations detected across the entire cohort compared to all

other genes.

the number of mutations that passed this filter, though a number did still
pass. Conversely, the PASS + PON approach employed in Mutect2
categorized all mutations as false positives, consequently deleting them
from the query outputs.

The number of mutations identified in TP53 was also investigated
(Table 4), and the results showed a far lower number of mutations
detected compared to those of MUC3A. However, similar trends can be
seen when comparing Vardict and Mutect2 variant callers. In this
instance, the No PASS filter was not needed for many of the patients as
the same number of mutations were detected in both cases. This suggests
that bioinformatic pipelines and tools should be tailored when investi-
gating different genes with different complexities.

3.2. Laboratory confirmation of bioinformatics data

Attempts were made to validate the initial MUC3A mutations iden-
tified through bioinformatic analysis using the Vardict variant caller by
PCR amplification of the relevant MUC3A regions from patient DNA.
Mutations fell into five cluster areas within the large second exon of the
MUC3A gene, and thus multiple primer sets were designed and opti-
mised. Table 5 shows the primers designed for the first cluster of mu-
tations, while Fig. 4 shows a representative agarose gel of amplified DNA
for cluster 1 mutations using patients PD39456 and PD39457 as exam-
ples. All optimised primers and PCR data are discussed in Patten et al.
(2023) and all primers and results can be found in the supplementary
materials. The limited samples present in this paper are merely to show
that laboratory confirmation was attempted.

Post-PCR bi-directional Sanger sequencing was performed on the
amplified PCR products after excision from the agarose gel, and

purification. Using sample PD39456 as an example, when analysing the
resulting chromatogram (Fig. 5) in conjunction with Table 6, it can be
seen that the expected MUC3A variants identified through bioinformatic
analysis, shown in the ‘Alt’ column of Table 6 were not confirmed in the
PCR product sequence. The variant positions have been indicated in the
reference sequence and on the chromatogram to show where the alter-
nate variants were expected, but the chromatogram sequences matched
the reference gene sequence exactly, showing no mutations (Fig. 5). The
clearly resolved peaks on the chromatogram show high confidence that
the DNA sequence is accurate, and that the PCR product matched the
reference sequence.

The PCR amplification and post-PCR sequencing was repeated for all
initial MUC3A mutations identified through bioinformatic analysis
using the Vardict variant caller in all relevant patient DNA samples. All
results can be found in the supplementary materials, showing no vali-
dation was possible for any of the initial mutations identified.

4. Discussion

NGS downstream analyses are multifactorial technologies, and
caution is crucial when analysing and interpreting the data. There are a
number of factors that could influence output and results, including the
type of biological specimen, pseudogenes and repetitive regions, and
numerous and complex bioinformatic tools, especially pertaining to
alignment and variant calling.

In the case of MUC3A gene, the investigations into the presence of
somatic mutations in the sample cohort proved to be a challenging
endeavour with conflicting results. The initial bioinformatic pipeline
setup and testing was a lengthy process requiring many reconfigurations
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Fig. 3. A representative IGV survey of the MUC3A gene on chromosome 7, showing excessive noise in both the A) tumour and B) matched normal sample,
concentrated over exon 2. Samples were aligned against the GRCh38 human reference genome.

and troubleshooting of the software packages before the installation and
setup ran without errors. When performing an extensive search of the
database and VCF output files to identify all genes through the cohort
where multiple instances of HIGH impact mutations were observed, the

results provided an interesting finding where MUC3A, a gene not pre-
viously described as associated with ESCC, appeared to be the most
highly mutated gene (with HIGH impact mutations) with 258 detected
mutations across the cohort, 96 % of which were frameshift variants.
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Table 3

Medium (MED) and High impact mutations identified in MUC3A using Vardict
and Mutect2 variant callers, with and without the Pass filter and PON,
respectively.

Patient Vardict (MED/HIGH) Mutect2 (MED/HIGH)
Number No Pass Filter PASS Filter No PASS Filter PON PASS Filter
PD39445 233/5 2/0 72/11 0/0
PD39446 248/0 1/0 19/6 0/0
PD39447 241/5 3/0 70/18 0/0
PD39448 248/18 6/0 58/13 0/0
PD39449 239/0 1/0 111/18 0/0
PD39450 239/0 2/0 89/18 0/0
PD39451 239/5 3/0 72/7 0/0
PD39452 251/10 3/0 182/42 0/0
PD39453 228/12 4/0 37/10 0/0
PD39454 265/6 10/0 88/7 0/0
PD39455 266/16 7/0 47/12 0/0
PD39456 264/17 4/0 69/4 0/0
PD39457 260/13 4/1 46/10 0/0
PD39458 256/7 8/0 61/14 0/0
PD39459 241/2 8/0 87/13 0/0
PD39460 258/7 4/0 90/15 0/0
PD44691 259/15 8/0 62/11 0/0
PD44692 253/1 4/1 54/10 0/0
PD44693 243/9 6/0 49/2 0/0
PD44694 268/0 3/0 41/4 0/0
PD44695 248/2 3/2 53/10 0/0
PD44696 262/11 5/0 61/16 0/0
PD44697 248/15 6/0 53/13 0/0
PD44698 254/7 4/0 48/9 0/0
PD44699 264/7 3/0 34/4 1/0
PD44700 254/6 4/1 70/14 0/0
PD44701 240/2 4/0 38/16 0/0
PD44702 243/6 6/0 139/24 0/0
PD44703 249/7 1/1 73/23 0/0
PD44704 257/8 7/0 74/16 0/0
PD50649 NA NA 32/2 0/0
PD50650 261/11 4/3 52/6 0/0
PD50651 NA NA 48/10 0/0
PD50653 NA NA 74/12 0/0
PD51372 NA NA 50/13 0/0

*NA = Data Not Available.

Mutations in the MUC3A gene far exceeded the numbers detected for
other more commonly mutated genes. This transmembrane mucin gene
has been found to be highly expressed in various epithelial cells of the
intestines (Kitamoto et al., 2010; Wang et al., 2020), whose protein
product is reported to be involved in cellular protection through barrier
function as well as in intracellular signal transduction pathways for
regulation of inflammation, cell adhesion, cellular differentiation, and
apoptosis (van et al., 2017). When investigating these findings in the
laboratory using PCR, none of the mutations could be confirmed. This
can be due to the nature of the MUC3A gene, which is notoriously
difficult to PCR amplify due to the very large number of tandem repeats
in the genomic sequence or due to false positives in the bioinformatic
data.

However, an IGV investigation of this gene and its genomic se-
quences confirmed a high degree of complexity of the gene at an indi-
vidual read level, (all samples showed a high level of background noise
and technical artefacts in both tumour and normal samples), casting
doubt on the validity of the MUC3A mutations. The likelihood of false
positives became apparent, and reanalysis using the PON approach and
Mutect2 variant caller was implemented. All mutations previously
identified using Vardict variant caller were subsequently filtered out,
and we were able to conclude that they had indeed been false positives.
However, a new set of MUC3A mutations was identified and further
questions and speculations around their validity arose given the
improbability of these mutations occurring in all patients of the cohorts,
as well as the fact that no previous studies have reported this gene as
playing any role in ESCC.

A study conducted by Bian et al. (2018) (Bian et al., 2018) sought to
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Table 4
Medium (MED) and High impact mutations identified in TP53 using Vardict and
Mutect2 variant callers, with and without the Pass filter and PON, respectively.

Patient Vardict (MED/HIGH) Mutect2 (MED/HIGH)
Number X ) . .
No Pass Filter PASS Filter No PASS Filter PON PASS Filter

PD39445 0/1 0/1 0/1 0/1
PD39446 0/1 0/0 0/1 0/1
PD39447 0/0 0/0 1/0 1/0
PD39448 1/0 0/0 0/0 0/0
PD39449 1/2 0/2 0/2 0/2
PD39450 1/1 0/1 0/1 0/1
PD39451 2/0 1/0 1/1 1/0
PD39452 2/0 1/0 1/0 1/0
PD39453 0/1 0/1 0/1 0/1
PD39454 0/1 0/1 0/1 0/1
PD39455 0/1 0/1 0/1 0/1
PD39456 0/1 0/1 0/1 0/1
PD39457 1/1 0/1 0/1 0/1
PD39458 2/0 1/0 1/0 1/0
PD39459 1/1 0/1 0/1 0/1
PD39460 0/0 0/0 0/1 0/0
PD44691 2/1 1/1 1/0 1/0
PD44692 0/1 0/1 0/1 0/1
PD44693 1/1 0/1 0/1 0/1
PD44694 1/1 0/1 0/1 0/0
PD44695 0/0 1/0 0/0 0/0
PD44696 1/1 0/1 0/1 0/1
PD44697 1/0 1/0 1/0 1/0
PD44698 2/0 1/0 1/0 1/0
PD44699 0/1 0/1 0/1 0/1
PD44700 3/0 2/0 2/0 2/0
PD44701 1/0 0/0 0/0 0/0
PD44702 0/1 0/1 0/1 0/1
PD44703 2/1 1/1 1/1 1/1
PD44704 0/0 0/0 0/0 0/0
PD50649 NA NA 1/0 1/0
PD50650 1/0 0/0 0/0 0/0
PD50651 NA NA 1/0 1/0
PD50653 NA NA 1/0 1/0
PD51372 NA NA 0/1 0/1

*NA = Data Not Available.

Table 5
Optimised conditions for the first cluster of MUC3A mutations in exon 2.
Primer Pair PCR Product
Conditions Size
Cluster 1 Forward: 95 °C: 4 min 889bp

5- TAA GTA CAC TCA GCA CTC CTA 95°C: 45 s 40
-3 60 °C: 45 s cycles

Cluster 1 Reverse: 72°C: 1 min
5'- GAG ATC ATG GAT GTA GAA GTT 72 °C: 7 min
ACC -3 4 °C: 7 min

compare the performance of a number of different variant callers,
including Vardict and Mutect2 with bcbio-nextgen software. They
questioned whether different callers might perform differently on
different parts of the genome and whether GC content might affect
analysis results. Their investigations showed that differences in true
positives between callers were small, but the number of false positives
varied greatly. Furthermore, callers experienced diminishing accuracy
when exposed to increasing levels of data complexity and that
sequencing properties such as read depth, read quality, strand bias, and
varying allele frequencies can challenge a given caller’s ability to
accurately detect mutations. Their results showed that Vardict produced
the highest number of true positives, but in a trade-off, also produced a
high number of false positives, while Mutect2 was among the
best-performing tools for detecting true positives and controlling for
false positives (Bian et al., 2018). When investigating our own results,
we found that depending on the impact of mutations, Vardict was found
to have fewer false positives for HIGH impact mutations, but much
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Fig. 4. Visualization of PCR products using primers for cluster 1 MUC3A mu-
tations in patients PD39456 and PD39457. Post-PCR, products were electro-
phoresed through a 1 % agarose gel for 35 min at 100V and visualised under UV
light for 20 s using Novel juice (Bio-Helix, LD001-1000, Taipei, Taiwan). Ex-
pected amplification size are bands shown in the region of 889bp. NTC in-
dicates no-template control.

higher false positives for MED impact mutations when compared to
Mutect2. This interesting finding suggests that when researchers are
looking for HIGH impact mutations without using the PON approach,
then the Vardict variant caller would be preferable.

100953674 CTCCCATCACTTCATCAGTCACTTCCACAAATACAGTGACTTCTATGACAACTACGACCT
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MUCS3A is a gene with a high degree of genomic complexity, espe-
cially within the second exon, which has subsequently led to difficulties
in variant calling of true positive variants, and is greatly affected by the
variant callers used. The value of NGS data is wholly dependent on valid
methods of interpretation and the accurate analysis and identification of
mutations. Eliminating the presence of false positives is imperative and,
in this instance, extensive further investigations would be needed to
conclude whether the new putative MUC3A mutations identified in the
reanalysis with the PON approach were indeed true positives. Biologi-
cally, it is improbable that all 35 patients in the cohort would have
mutations in this gene. Furthermore, the high volume of mutations
detected in MUC3A raises the question of why no previous ESCC studies
have identified and reported mutations in this gene. When we incor-
porated the PASS filter using both Vardict and Mutect2+PON ap-
proaches, all MUC3A mutations detected were false positives.

When attempting to validate the WGS MUC3A mutations using the
Mutect2 variant caller, all initial MUC3A mutations were filtered out,
and an entirely new set of mutations was identified. This indicates that
the initial mutations were in fact false positives. It is also highly likely
that most, if not all the new MUC3A mutations identified are also
spurious. In contrast to MUC3A, the operation of calling variants by both
Vardict and Mutect2 tools appears to be less complex and simpler for the
TP53 gene. In a substantial number of cases, both tools identified an
equivalent number of mutations, exhibiting only minor discrepancies.
For instance, patient PD39446 was reported as having a high-impact
mutation by both callers without filtering. However, following
filtering with PASS filter, Vardict discarded the mutation, while
Mutect2 + PON retained it. Given the high mutation prevalence of TP53
in esophageal cancer patients, which can reach up to 80 %, and the fact
that the patients in our study are all at an advanced stage, it is possible
that most of them have mutated TP53. Consequently, the mutation that
was retained may also be a true positive, although this requires further
laboratory validation to ascertain its validity. PD44691 has an opposite

100953733

100953734 CTCCTCCCACAACCACCAATTCTTTTACATCACTGACCAGTATGCCTCTGTCTTCTACAC 100953793
100953794 CTGTCCCAAGCACAGAAGTAGTCACCAGTGGCACCATAAACACAATCCCTCCATCTATCT 100953853

l____IIlI-- LEL LU LI DRI DL L L] ]
TACAGGAACAGGTC

CLIL L L]
CCAGCTC

LI L) NN
TACAG ACATTTCCTG

B TCAARCCAC TG CAGCRAC
290 300 310 320 330 340 350 370
EEEEEEEEEEEEEEEEEEENEEENEEEEEEEEEEE SN SE SN NSNS EEE SN EENEEEEEEEEEER III III EEEEEEEEEEEEE
CTGACATGTCCACAGAATCTCTCACA ACAGCCATGACTTCTCCTCCCRTCACTTLATLAGTCACTTCCAC AAR C TGACTTCTATGACAACTA
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Fig. 5. A) MUC3A reference sequence showing the locations of the cluster 1 mutations determined from bioinformatic data for patient PD39456 in red. B) Chro-
matogram of the PCR product sequence for patient PD39456 using the primer set for cluster 1 mutations. The annotated sequence is shown above each line of
corresponding peaks and the nucleotides indicated by arrows represent the positions where the identified variants should be located, as identified in Table 6. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 6

Aspects of Molecular Medicine 6 (2025) 100097

Cluster 1 variants identified in the MUC3A gene for patient PD39456 through bioinformatic analysis. Positions indicated correspond to reference genome GRCh38, and

Ref and Alt refer to the reference and alternate alleles respectively.

Patient Chromosome Position Gene Ref Alt Impact

PD39456 chr7 100953731 MUC3A CTC T Frameshift
chr7 100953737 MUC3A T TGG Frameshift
chr7 100953752 MUC3A T TA Frameshift
chr7 100953758 MUC3A TA T Frameshift
chr7 100953774 MUC3A AT A Frameshift
chr7 100953777 MUC3A C CA Frameshift

scenario than the previous patient (PD39446), where a high-impact
mutation was retained by Vardict PASS filter, but Mutect2+PON dis-
carded it. This mutation may also be a true positive, and as such, it
should not be disregarded. As demonstrated by the two aforementioned
scenarios, it is imperative to utilize multiple variant callers in order to
achieve more accurate results and potentially identify rare variants that
may be discarded by one variant caller but retained by another or other
callers. It is, therefore, recommended that these scenarios be tested in a
laboratory setting.

Improper alignment to the reference genome can also significantly
influence the discovery of false positives, although this discordance has
been improved over recent years. However, SNVs (in our case, frame-
shift mutations) still remain a challenge with NGS data, and various
tools clearly display divergent outcomes (Kumaran et al., 2019). In
recent years, tools specific for SNV detection have been developed yet
their underlying algorithms of error models and assumptions for iden-
tifying mutations frequently result in diverse variant calling across tools
(Xu et al., 2014). Short-read alignment tools are also commonly chal-
lenged by encountering reads that map to multiple locations in the
reference genome (Treangen and Salzberg, 2011). Thus, the tools and
methods one selects for analysis and variant calling on NGS data are
critically important, given their heavy influence on mutational calling
when the aim is for high sensitivity and specificity.

It is interesting to note that the detection of variants via bio-
informatic pipelines can only prioritize novel findings of mutations and
genes for functional testing. In this way, they can only identify muta-
tions as drivers of tumorigenesis, which, it is advised, need laboratory
confirmation (Gonzalez-Perez et al., 2013). Thus, researchers should
perceive bioinformatic tools as predictors rather than validation, and
laboratory confirmation should always be performed. Field (2022) re-
ported that an increasingly popular approach among bioinformatic re-
searchers is to run multiple calling tools and apply a consensus approach
to minimize potential biases within single tools. High-quality variant
data for specificity or sensitivity sets can be obtained using this approach
(Field, 2022).

For future investigations, it would be pertinent to investigate
different software packages and make use of different variant caller tools
in combination as the different structural nuances associated with each
of the four groups of genomic alterations (SNV, indels, CNV, SV) exclude
the possibility of using one single versatile bioinformatic tool for iden-
tifying all variants within all four groups (Jennings et al., 2017).

5. Conclusion

NGS technologies have revolutionized genetic studies, diagnostics,
and treatment strategies. However, the exponential increase in the
volume of data generated necessitates robust and reliable analytical
pipelines, particularly as reports in literature suggest variant calling
tools may vary in consistency.

Initial analysis of our dataset identified 258 somatic mutations in
MUC3A in 86 % of the sample cohort using Vardict variant caller, 98 %
of which were frameshift mutations. However, no experimental vali-
dation could confirm these mutations, and upon reanalysis incorpo-
rating the PON-based Mutect2 approach, more than 400 alternative
MUC3A variants were identified with the original Vardict mutations

filtered out completely. Given the known false-positive rate for variant
calling in repetitive genomic regions together with MUC3A’s complex
structure, we conclude these likely represent technical artefacts or false
positives rather than genuine somatic events.

Our findings demonstrate that the use of a single variant caller
approach can yield numerous false positives in structurally complex
genes. We recommend that future investigations should implement
multi-caller consensus approaches (minimum of 3 variant callers with
>2 caller concordance required), incorporate matched normal samples
with PON filtering, and include quantitative laboratory validation to
confirm computational findings. Without such rigorous pipeline set-up
and validation, somatic mutations cells in genomically complex re-
gions such as MUC3A should be interpreted with extreme caution.
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