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A B S T R A C T

Variant calling in complex genomic regions remains a critical challenge in cancer genomics, yet systematic 
evaluations of false positive rates in such regions are rarely reported. This investigative study examined somatic 
mutations in esophageal squamous cell carcinoma (ESCC) using Whole Genome Sequencing (WGS) data, that 
identified a high frequency of putative mutations in MUC3A, a gene with an inherently complex sequence ar
chitecture. Quantitative laboratory validation attempts failed to confirm any of these computationally predicted 
mutations, prompting systematic re-analysis. By assessing multiple variant calling algorithms and implementing 
a Panel of Normals (PON) filtering strategy, we demonstrate that standard bioinformatics pipelines generated 
extensive false positive calls in MUC3A, with false positive rates approaching 100 % for this gene. While previous 
studies have acknowledged limitations in variant calling for repetitive or homologous regions, our work provides 
evidence of complete analytical failure in the MUC3A gene, and establishes a reproducible framework for 
identifying such artefacts. These findings address a critical research gap by quantifying the magnitude of false 
discovery in complex genomic contexts and demonstrating that multi-tool consensus approaches combined with 
PON filtering are insufficient without accompanied experimental validation. We recommend mandatory quan
titative confirmation for variants identified in sequence-complex genes and advocate for transparent reporting of 
validation rates in cancer genomic studies to prevent propagation of spurious findings in literature. This paper 
provides a cautionary warning to future research to take into consideration the limitations of alignment and 
variant calling tools and to employ a combination of tools to obtain robust and reliable results.

1. Introduction

Africa faces a substantial and growing complex burden of disease 
characterized by the dual challenge of persistent infectious diseases and 
a rapidly rising incidence of non-communicable diseases that pose major 
public-health challenges(Goswami, 2024; de-Graft Aikins et al., 2010). 

While conditions such as HIV/AIDS, malaria and tuberculosis remain 
major public health concerns, cancer has emerged as a significant and 
critical health challenge with late-stage diagnoses, limited access to 
molecular diagnostics and targeted therapies, and inadequate oncology 
infrastructure contributing to poor outcomes (Umobong et al., 2025; 
Boutayeb, 2006). The continent’s unique genetic diversity and 
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environmental exposures shape distinct cancer susceptibilities and mo
lecular signatures that remain underexplored.

Recent studies published highlights the growing application of bio
informatics and mutational analysis tools to unravel the molecular un
derpinnings of disease in African populations. A genomic study on 
hypercholesterolemia conducted in children from Ghana demonstrated 
the potential of variant annotation pipelines in detecting pathogenic 
mutations (Opoku-Agyeman et al., 2025). Similarly, a different study in 
Ghana highlighted how genomic tools can be used to identify clinically 
significant variants relevant to gastric carcinogenesis through muta
tional profiling of antimicrobial resistance genes in Helicobacter pylori 
(Ofori et al., 2025). A further study on the use of integrative bioinfor
matics analyses in Alzheimer’s disease demonstrated how disease 
pathogenesis can be understood through pathway enrichment and 
molecular-network mapping (Nguyen et al., 2024), while biomarker 
discovery and informed targeted therapies in cancer can be driven 
through the advances in computational approaches and mutational 
profiling for precision oncology (Namini et al., 2025). In this context, 
bioinformatics and mutational-analysis tools have an essential role in 
addressing the African disease burden. They enable large-scale variant 
calling, annotation of pathogenic versus benign variants, and the map
ping of genomic mutations.

These studies illustrate that leveraging bioinformatics for mutational 
analysis, whether in inherited non-communicable disease, infectious 
resistance, or cancer genomics, offers a path to better understand the 
unique genomic and disease-environment interplay in African pop
ulations and make possible more effective, precision medicine strategies 
that account for the continent’s genetic and epidemiological uniqueness.

As roughly 1 % of the human genome encodes protein-coding regions 
(Pertea et al., 2018), misfunctioning (loss-of-function) or dysregulation 
(gain-of-function) of critical proteins involved in homeostasis are often 
the result of mutations introduced into these genes, frequently leading to 
the development of cancer (Vestergaard et al., 2021), a disease char
acterized by the accumulation of somatic mutations in several associated 
genes (Futreal et al., 2004). Therefore the discovery and identification of 
events that contribute to tumorigenesis are critical for our ongoing un
derstanding of cancer as a disease (Dietlein et al., 2020).

Somatic mutations are acquired throughout the lifetime of an indi
vidual and are distinguishable from germline mutations that are 
inherited from parents and transmitted to offspring (Stratton et al., 
2009). Somatic mutations occur in healthy cells and in most cases do not 
cause alterations to cell behaviour (Martincorena et al., 2017). However, 
occasionally, key genes become altered in a manner that provides a 
competitive advantage to the mutated cell, promoting the formation of 
persistent mutant clones and initiating the process of tumour cell 
transformation (Jaiswal et al., 2017; Anglesio et al., 2017).

With the advent of next-generation sequencing (NGS), insights into 
the genome have provided meaningful knowledge into unravelling the 
genetic conundrums of diseases such as cancer. NGS performs massively 
parallel sequencing and generates vast amounts of data, posing a chal
lenge to researchers in terms of the handling, interpretation, and anal
ysis of the data. The subsequent development of a large number of 
specialized bioinformatics tools, was aimed at navigating and handling 
large quantities of raw data generated by NGS (Pereira et al., 2020). 
However, several studies have shown that the application of different 
tools often varies in consistency (Kumaran et al., 2019; Liu et al., 2013), 
suggesting cautious interpretation as outputs could lead to spurious 
results (Vestergaard et al., 2021). The two most prominent bioinfor
matics analysis processes that have the potential to influence the 
interpretation of the data are the tools used for alignment and variant 
calling (Kumaran et al., 2019; Liu et al., 2013). Both of these processes 
have numerous and diverse algorithms in their original design and 
purpose. Challenges encountered with material artefacts, library prep
aration sequencing technologies, and gene regions selected for 
sequencing all further highlight the importance of selecting appropriate 
tools for the downstream analysis of NGS data. NGS is a complex 

technology, and caution is advised when interpreting results that may be 
influenced by the type of biological specimen; preanalytical treatment; 
pseudogenes and repetitive regions; bioinformatic challenges dealing 
with alignment and variant calling (Vestergaard et al., 2021).

One of the main advantages of DNA sequencing is the accurate 
identification and annotation of mutations, including single nucleotide 
variants (SNV), insertions/deletions (indels), copy number variants 
(CNV), and structural variants (SV), with high sensitivity and specificity 
(true positives and true negatives) (Vestergaard et al., 2021). Whole 
Genome Sequencing (WGS) is often described as explorative given its 
broader scope and lesser read depth (30-50x) (Bewicke-Copley et al., 
2019), but it is effective in identifying most germline mutations and 
allowing for a comprehensive large-scale detection of the relevant var
iants (Griffith et al., 2015). However, some reports suggest that WGS 
may be insufficient in detecting rare somatic mutations that could 
harbour cancer genomes (Vestergaard et al., 2021).

We used esophageal squamous cell carcinoma (ESCC) as a model to 
explore the use of bioinformatics tools for downstream WGS analysis to 
elucidate somatic mutations within patients. The objective of the study 
was to compare the number of high and moderate impact mutations 
detected in MUC3A and TP53 in our WGS study. The selection of these 
two genes was made on the basis of their DNA structural differences, 
with the former having extensive repetitive sequences composed of 
tandem repeats and the latter having minimal or no repetitive sequences 
(Gum et al., 1997; Pratt et al., 2000), together with our preliminary 
results which identified multiple mutations in the MUC3A gene. It is well 
established that extensive tandem repeats pose a significant challenge to 
the accurate alignment of reads due to the potential for ambiguity 
(Treangen and Salzberg, 2011). Short sequencing reads frequently align 
well to multiple similar locations within the genome. This misalignment 
of reads has a direct impact on the number of false positive variant calls. 
The present study reports the number of high and moderate mutations 
detected using Vardict and Mutect2+PON and the number discarded by 
the PASS filter in Vardict and the PASS + PON filter in Mutect2.

This study identified numerous shortcomings and limitations asso
ciated with a bioinformatics-only approach without laboratory confir
mation. The mucin gene MUC3A is discussed as an example of the 
complexities of genome sequencing and the caution required when 
analysing data, considering false positives and spurious pipeline 
outputs.

2. Methods and materials

2.1. Patient recruitment

Patients were recruited from Groote Schuur Hospital in Cape Town 
(associated with the University of Cape Town) and Charlotte Maxeke 
Johannesburg Academic Hospital (associated with the University of the 
Witwatersrand). Patients presenting with histologically confirmed 
esophageal squamous cell carcinoma (ESCC) were recruited through 
informed consent. Matched normal and tumour biopsies and blood 
samples were collected from each patient, processed, and stored as 
previously described (Ferndale et al., 2022; Matejcic et al., 2019). Since 
there are no early symptoms associated with ESCC, all patients pre
sented with advanced stage 4 cancer, typically with lymph node me
tastases. No early-stage cancers were present in the recruited patients. 
Once patient biopsies and blood samples were processed, extracted DNA 
was subjected to Whole Genome Sequencing (WGS) at the Wellcome 
Sanger Institute in Cambridge in the United Kingdom. The total patient 
cohort comprised twenty females and fifteen males with a mean patient 
age of 62 years for females and 54 years for males. A breakdown ac
cording to age, gender, % tumour cells, sequencing coverage, and 
sequencing duplication factor is shown in Table 1. In WGS, the 
sequencing coverage refers to the average number of times each base in 
the genome is sequenced, and in this instance, it was set to >30x 
coverage. The sequence duplication factor refers to the proportion of 
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reads that were found to be duplicates sharing the same 5′ and 3’ co
ordinates, often arising during library preparation or from sequencing 
artefacts.

Ethical approval for the study was obtained from the UCT/Groote 
Schuur Hospital Human Research Ethics Committee (Ethics number: 
040/2005), and the Human Research Ethics Committee (Medical) at the 
University of the Witwatersrand (Certificate number M170871).

2.2. DNA extraction

DNA was extracted from patient blood and biopsies using the Qiagen 
AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, 80224, Hilden, Ger
many) as per manufacturer’s instructions.

Following extraction, DNA integrity was determined by gel electro
phoresis using a 1 % agarose gel (SeaKem®, Lonza, 50002, Rockland, 
ME, USA) together with 1 μl Novel Juice (Bio-Helix, LD001-1000, Tai
pei, Taiwan) detection dye. A suitable gene-ladder was loaded into the 
gel (GeneRuler ™ 100bp Plus DNA Ladder (ThermoFisher, SM0321, 
Vilnius, Lithuania)). This standard protocol is essentially as previously 
described (Lee et al., 2012), with the amendment that Novel Juice 
fluorescent reagent was added to the samples to provide an environ
mentally safe, non-hazardous alternative to ethidium bromide for DNA 
detection.

2.3. Whole Genome Sequencing

DNA isolated from paired blood samples and tumour biopsies were 
subjected to WGS at the Wellcome Sanger Institute in Cambridge, UK. 
Samples were genotyped for single nucleotide polymorphisms (SNP) 
using a Fluidigm chip array to confirm that the tumour and normal 
samples were patient matched. Samples were then sequenced on an 
Illumina HiseqX10 using 150 bp paired-end reads to a depth of >30x 
coverage.

2.4. Bioinformatics analysis of WGS data

A variant-calling pipeline for small variants, including Single 

Nucleotide Variants (SNV) and insertions and deletions (indels), was set 
up utilizing the opensource software package bcbio-nextgen (Chapman 
et al.). This software allows for the analysis of sequences through 
specialized pipelines with further visualization and additional process
ing made possible. The variant calling analysis pipeline aligns reads to 
selected reference genomes, allowing for the identification of variants 
within the query sequences (Guimera, 2011). In this way, calls were 
compared against the common reference genome GRCh38 using the 
BWA tool for alignment. Preparation and variant calling were incorpo
rated into the pipeline to ensure an unbiased comparison of algorithms 
(Chapman et al.). Once the setup was confirmed, configuration files 
were constructed for each patient in the sample cohort following the 
guidelines described in the software documentation (bcbio-nextgen 1).

All pipeline scripts used and query searches can be found in the 
online repository at https://github.com/VictoriaPatten/phd-scripts/t 
ree/main/bcbio-nextgen.

In setting up the configuration files, reads were aligned to the 
GRCh38 human reference genome using the Burrows-Wheeler Aligner 
(BWA 0.7.17), which maps low-divergent sequences against large 
reference genomes (Li and Durbin, 2010). To select somatic and germ
line calls, individual variant callers were specified for each. 
Bcbio-nextgen carried out a single alignment for the normal sample first 
and then split at the variant calling stage using the normal sample as a 
baseline for germline and somatic calling. Freebayes v1.3.6 (Garrison 
and Marth, 2012), a genetic variant detector designed to locate small 
polymorphisms, specifically SNP’s and indels, was specified for germline 
mutations and Vardict (Lai et al., 2016), an ultra-sensitive variant caller 
that simultaneously calls SNV’s and indels, performing local re
alignments for more accurate allele frequency estimation was stipulated 
for somatic variant calling.

Variant Call Format (VCF) annotation was performed using the 
SnpEff tool (Cingolani et al., 2012). The effects of variants in a genome 
sequence are rapidly categorized and annotated based on their genomic 
locations and prediction of coding effects. Structural and copy number 
variants (CNV’s) were called using Lumpy v0.3.1 (Layer et al., 2014), a 
probabilistic prediction framework for structural variant discovery.

A ‘Panel of Normals’ (PON) was incorporated into the bcbio-nextgen 

Table 1 
Patient cohort age and gender, where F represents females and M represents males. Patient DNA was subjected to whole genome sequencing as described in Materials 
and Methods. Blinded histological testing was performed and the % tumour cells in the biopsy was determined as indicated below. Sequencing coverage for each 
tumour (T) and normal (N) sample is shown, as well as the duplication factor (the fraction of mapped reads where any two reads share the same 5′ and 3’ co-ordinates). 
Patients recruited from the University of Cape Town, and the University of the Witwatersrand are indicated as UCT and WITS respectively.

UCT Patients WITS Patients

Patient 
Number

Age Sex % Tumour Cells WGS 
Coverage 
T/N

Duplication 
Factor 
T/N

Patient 
Number

Age Sex % Tumour Cells WGS Coverage T/N Duplication Factor T/N

PD39445 57 F n.d. 42.64/55.65 0.09/0.08 PD44691 70 F 39 33.77/41.83 0.06/0.08
PD39446 45 M n.d. 42.42/51.14 0.09/0.07 PD44692 54 M 47 31.48/39.89 0.06/0.08
PD39447 41 M 28 50.64/49.49 0.14/0.07 PD44693 59 M 54 42.6/38.02 0.07/0.08
PD39448 52 M 44 46.73/48.17 0.14/0.07 PD44694 54 F 21 40.01/38.1 0.07/0.08
PD39449 79 F 57 47.33/50.99 0.13/0.07 PD44695 63 F 64 41.5/42.37 0.07/0.09
PD39450 50 F 64 51.99/46.1 0.14/0.07 PD44696 54 F 69 34.86/39.44 0.06/0.08
PD39451 71 M 47 55.27/47.23 0.14/0.11 PD44697 38 M 29 36.02/37.06 0.07/0.07
PD39452 53 F 64 53.17/49.06 0.14/0.11 PD44698 45 F 70 38.59/37.61 0.07/0.08
PD39453 37 M 22 51.67/43.32 0.16/0.11 PD44699 81 F 61 34.13/42.24 0.07/0.09
PD39454 67 F n.d. 51.68/51.82 0.16/0.11 PD44700 71 F 43 34.85/35.76 0.06/0.07
PD39455 48 F 91 47.11/53.46 0.16/0.12 PD44701 69 F 13 35.49/36.71 0.06/0.07
PD39456 41 M 51 50.71/45.18 0.17/0.11 PD44702 65 F 46 36.33/40.62 0.06/0.07
PD39457 57 M 62 48.83/45.3 0.16/0.08 PD44703 78 M 38 37.12/36.23 0.06/0.07
PD39458 60 F 30 48.58/44.17 0.17/0.08 PD44704 56 M 30 34.21/39.34 0.06/0.07
PD39459 64 F 22 62.77/51.09 0.12/0.09 ​ ​ ​ ​ ​ ​
PD39460 56 M 66 48.05/47.45 0.10/0.09 ​ ​ ​ ​ ​ ​
PD50649 66 F 55 34.13/31.14 0.10/0.09 ​ ​ ​ ​ ​ ​
PD50650 60 F 22 37.02/37.83 0.09/0.09 ​ ​ ​ ​ ​ ​
PD50651 70 M 56 34.68/40.05 0.09/0.09 ​ ​ ​ ​ ​ ​
PD50653 57 F 48 29.09/33.14 0.09/0.09 ​ ​ ​ ​ ​ ​
PD51372 60 M 27 36.73/32.16 0.09/0.08

*n.d. = not determined.
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pipeline to eliminate false positives. Using a PON approach, a baseline 
level for variant calling is determined from a combined a set of normal 
samples typically derived from the same library preparation and 
sequencing workflow used for tumour samples to allow for non-sample 
specific system level biases to be subtracted (Crea
teSomaticPanelOfNormals). In this way, variant calling results are 
improved as recurrent technical artefacts are removed. For short variant 
calling, it is recommended that the PON should be created and run using 
the variant caller Mutect2, which is a variant detector for SNPs and 
indels and is part of the Genome Analysis Toolkit (GATK) (GATK). PON 
files were created for each matched normal sample in the cohort and 
combined into a single zipped VCF file. The original bcbio-nextgen 
configuration files described above were edited to include Mutect2 as 
the somatic variant caller instead of the previously used Vardict, and the 
background: parameter was set to include the VCF PON file as a back
ground of all 35 normal samples to be run against tumour samples.

Bcbio-nextgen pipelines were re-run for all 35 tumour-normal pairs, 
and the resulting VCF files were filtered for HIGH impact MUC3A and 
TP53 mutations.

2.5. Polymerase chain reaction (PCR) validation

DNA from patient biopsies was extracted in accordance with stan
dard operating protocols previously described (Patten et al., 2023), and 
was stored at − 20 ◦C until needed. DNA was available for PCR ampli
fication from the 16 UCT patients that made up part of the patient 
sample cohort (Table 1). PCR primer design and optimisation is 
described in Patten et al. (2023). Primers for different clusters of iden
tified MUC3A mutations in exon 2 of the gene were designed and used 
for PCR amplification of patient DNA. Post-PCR amplified products were 
subjected to bi-directional Sanger sequencing. Chromatograms were 
analysed using Chromas v2.6.6 (available at http://technelysium.com. 
au/wp/chromas/) a free trace viewer for simple DNA sequencing pro
jects that is free to download.

3. Results

3.1. Analysis of whole genome sequence data using bcbio-nextgen 
software

Annotation of the output was performed using the SnpEff tool 
(Cingolani et al., 2012). GEMINI v.0.20.1 (Paila et al., 2013) was then 
used to create a database of the output to facilitate the query of the 
annotated VCF files (from Vardict). GEMINI is a genome mining tool for 
exploring human variations. Using the command line, the GEMINI 
output database files were explored and filtered to search for particular 
parameters of interest annotated within the variant/variant_impacts 
tables of the output database files.

The impact severity of the mutations can be described as the func
tional consequence of a given variant, ranked as either HIGH, MED 
(medium), or LOW) (GEMINI). A search was performed for all genes 
presenting HIGH impact variants across all 35 patient genomes to 
determine the top genes with the highest number of HIGH impact mu
tations within the patient cohort.

Table 2 shows the GEMINI search results of the top 20 genes in the 
cohort presenting with HIGH impact severity somatic mutations, indi
cating the number of patients with these mutations, thus providing a 
ranking of the genes. Fig. 1 shows the total number of variants detected 
in several genes across the patient cohort.

The results shown in Table 2 were unexpected. At the top of the list, 
with 30 out of 35 (86 %) patients presenting HIGH impact mutations, 
was the MUC3A gene. Furthermore, 258 incidences of mutations of this 
gene were detected across the patient cohort. These numbers far exceed 
those for known cancer driver genes such as TP53, CDKN2A, and KMT2D 
and were thus deemed ‘suspicious’ given the lack of literature reporting 
similar results. It was, therefore, imperative to reanalyse the data using 

an alternative approach incorporating the PON together with a different 
variant caller, Mutect2, in place of Vardict.

After re-running the bcbio-nextgen pipeline for all tumour-normal 
pairs incorporating Mutect2, an entirely new set of HIGH impact 
MUC3A mutations was identified. The Mutect2 variant caller was 
selected based on results reported in Bian et al. (2018) suggesting that 
Mutect2 identified the lowest number of false positives in their com
parison of variant callers. More than 400 incidences of MUC3A muta
tions were now detected across all 35 samples in the cohort, with HIGH 
impact severity status. Furthermore, all the mutations identified using 
the Vardict variant caller were filtered out and were no longer present. 
This strongly suggested that the mutations in the MUC3A gene using the 
initial approach with the Vardict variant caller were false positives. 
Fig. 2 shows the total number of MUC3A mutations identified per patient 
using the Mutect2 and the PON approach.

From this second analysis using the Mutect2 variant caller, a much 
larger number of MUC3A mutations were identified, all falling in the 
second exon of the MUC3A gene and in 100 % of the patient cohort, 
which again did not seem credible. Analysis of the data using an Inte
grative Genome Viewer (IGV) representation of this gene (Fig. 3), shows 
that in both tumour and normal samples, this genomic region is 
extremely noisy, and it is very likely that most, if not all, of these pu
tative mutations are not valid. All of the mutations previously identified 
with Vardict were filtered out, suggesting they were false positives 
(explaining why the presence of these mutations could not be verified 
experimentally). In the new set of mutations, every patient in the cohort 
was found to have MUC3A mutations, which is highly improbable. It is 
likely that this revised data also suffers from false positives due to the 
complex nature of the MUC3A genomic structure. To identify whether 
spurious sequence reads may have played a role in these results, depth of 
coverage for each read and each mutation was investigated and proved 
computationally valid with high coverage.

Tables 3 and 4 were obtained by filtering the Vardict and Mutect2 
outputs with and without restricting the mutation to the PASS filter. The 
implementation of the filtering process involved the utilization of 
GEMINI for Vardict and SnpSift for Mutect2+PON, as the pipeline out
puts involving the two callers are a GEMINI database and a VCF file, 
respectively. When considering all identified mutations in MUC3A as 
false positives, the numbers in the No PASS column for both callers 
reveal that Mutect2 performed better in identifying false positives of 
MEDIUM (MED) impact. However, Vardict demonstrated superiority in 
HIGH impact, which are predominantly frameshifts. The application of a 
PASS filter to the Vardict VCF queries led to a substantial reduction in 

Table 2 
Top 20 genes with the most HIGH impact severity variants detected using Var
dict variant caller, in the 35 patient WGS cohort.

Gene Number of patients with mutations (% of Total)

MUC3A 30 (86 %)
TP53 18 (51 %)
HEATR9 14 (40 %)
VPS52 12 (34 %)
NCOR1 10 (29 %)
AHNAK 9 (26 %)
OR4D10 8 (23 %)
CDKN2A 8 (23 %)
FIGN 7 (20 %)
OR4D11 7 (20 %)
KMT2D 7 (20 %)
CST3 6 (17 %)
GRIN2A 6 (17 %)
DEF8 6 (17 %)
FGFR1 6 (17 %)
TBL1X 6 (17 %)
FAM135A 6 (17 %)
TDG 6 (17 %)
CST5 5 (14 %)
SLC4A3 5 (14 %)
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the number of mutations that passed this filter, though a number did still 
pass. Conversely, the PASS + PON approach employed in Mutect2 
categorized all mutations as false positives, consequently deleting them 
from the query outputs.

The number of mutations identified in TP53 was also investigated 
(Table 4), and the results showed a far lower number of mutations 
detected compared to those of MUC3A. However, similar trends can be 
seen when comparing Vardict and Mutect2 variant callers. In this 
instance, the No PASS filter was not needed for many of the patients as 
the same number of mutations were detected in both cases. This suggests 
that bioinformatic pipelines and tools should be tailored when investi
gating different genes with different complexities.

3.2. Laboratory confirmation of bioinformatics data

Attempts were made to validate the initial MUC3A mutations iden
tified through bioinformatic analysis using the Vardict variant caller by 
PCR amplification of the relevant MUC3A regions from patient DNA. 
Mutations fell into five cluster areas within the large second exon of the 
MUC3A gene, and thus multiple primer sets were designed and opti
mised. Table 5 shows the primers designed for the first cluster of mu
tations, while Fig. 4 shows a representative agarose gel of amplified DNA 
for cluster 1 mutations using patients PD39456 and PD39457 as exam
ples. All optimised primers and PCR data are discussed in Patten et al. 
(2023) and all primers and results can be found in the supplementary 
materials. The limited samples present in this paper are merely to show 
that laboratory confirmation was attempted.

Post-PCR bi-directional Sanger sequencing was performed on the 
amplified PCR products after excision from the agarose gel, and 

purification. Using sample PD39456 as an example, when analysing the 
resulting chromatogram (Fig. 5) in conjunction with Table 6, it can be 
seen that the expected MUC3A variants identified through bioinformatic 
analysis, shown in the ‘Alt’ column of Table 6 were not confirmed in the 
PCR product sequence. The variant positions have been indicated in the 
reference sequence and on the chromatogram to show where the alter
nate variants were expected, but the chromatogram sequences matched 
the reference gene sequence exactly, showing no mutations (Fig. 5). The 
clearly resolved peaks on the chromatogram show high confidence that 
the DNA sequence is accurate, and that the PCR product matched the 
reference sequence.

The PCR amplification and post-PCR sequencing was repeated for all 
initial MUC3A mutations identified through bioinformatic analysis 
using the Vardict variant caller in all relevant patient DNA samples. All 
results can be found in the supplementary materials, showing no vali
dation was possible for any of the initial mutations identified.

4. Discussion

NGS downstream analyses are multifactorial technologies, and 
caution is crucial when analysing and interpreting the data. There are a 
number of factors that could influence output and results, including the 
type of biological specimen, pseudogenes and repetitive regions, and 
numerous and complex bioinformatic tools, especially pertaining to 
alignment and variant calling.

In the case of MUC3A gene, the investigations into the presence of 
somatic mutations in the sample cohort proved to be a challenging 
endeavour with conflicting results. The initial bioinformatic pipeline 
setup and testing was a lengthy process requiring many reconfigurations 

Fig. 1. Lollipop plot indicating the distribution of somatic variants across the top 20 genes with the most HIGH impact severity variants detected using Vardict 
variant caller with bcbio-nextgen pipeline. The MUC3A gene shows a vastly greater total number of mutations detected across the entire cohort compared to all 
other genes.
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and troubleshooting of the software packages before the installation and 
setup ran without errors. When performing an extensive search of the 
database and VCF output files to identify all genes through the cohort 
where multiple instances of HIGH impact mutations were observed, the 

results provided an interesting finding where MUC3A, a gene not pre
viously described as associated with ESCC, appeared to be the most 
highly mutated gene (with HIGH impact mutations) with 258 detected 
mutations across the cohort, 96 % of which were frameshift variants.

Fig. 2. Lollipop plot of the number of MUC3A mutations per patient, detected using Mutect2 with bcbio-nextgen pipeline.

Fig. 3. A representative IGV survey of the MUC3A gene on chromosome 7, showing excessive noise in both the A) tumour and B) matched normal sample, 
concentrated over exon 2. Samples were aligned against the GRCh38 human reference genome.
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Mutations in the MUC3A gene far exceeded the numbers detected for 
other more commonly mutated genes. This transmembrane mucin gene 
has been found to be highly expressed in various epithelial cells of the 
intestines (Kitamoto et al., 2010; Wang et al., 2020), whose protein 
product is reported to be involved in cellular protection through barrier 
function as well as in intracellular signal transduction pathways for 
regulation of inflammation, cell adhesion, cellular differentiation, and 
apoptosis (van et al., 2017). When investigating these findings in the 
laboratory using PCR, none of the mutations could be confirmed. This 
can be due to the nature of the MUC3A gene, which is notoriously 
difficult to PCR amplify due to the very large number of tandem repeats 
in the genomic sequence or due to false positives in the bioinformatic 
data.

However, an IGV investigation of this gene and its genomic se
quences confirmed a high degree of complexity of the gene at an indi
vidual read level, (all samples showed a high level of background noise 
and technical artefacts in both tumour and normal samples), casting 
doubt on the validity of the MUC3A mutations. The likelihood of false 
positives became apparent, and reanalysis using the PON approach and 
Mutect2 variant caller was implemented. All mutations previously 
identified using Vardict variant caller were subsequently filtered out, 
and we were able to conclude that they had indeed been false positives. 
However, a new set of MUC3A mutations was identified and further 
questions and speculations around their validity arose given the 
improbability of these mutations occurring in all patients of the cohorts, 
as well as the fact that no previous studies have reported this gene as 
playing any role in ESCC.

A study conducted by Bian et al. (2018) (Bian et al., 2018) sought to 

compare the performance of a number of different variant callers, 
including Vardict and Mutect2 with bcbio-nextgen software. They 
questioned whether different callers might perform differently on 
different parts of the genome and whether GC content might affect 
analysis results. Their investigations showed that differences in true 
positives between callers were small, but the number of false positives 
varied greatly. Furthermore, callers experienced diminishing accuracy 
when exposed to increasing levels of data complexity and that 
sequencing properties such as read depth, read quality, strand bias, and 
varying allele frequencies can challenge a given caller’s ability to 
accurately detect mutations. Their results showed that Vardict produced 
the highest number of true positives, but in a trade-off, also produced a 
high number of false positives, while Mutect2 was among the 
best-performing tools for detecting true positives and controlling for 
false positives (Bian et al., 2018). When investigating our own results, 
we found that depending on the impact of mutations, Vardict was found 
to have fewer false positives for HIGH impact mutations, but much 

Table 3 
Medium (MED) and High impact mutations identified in MUC3A using Vardict 
and Mutect2 variant callers, with and without the Pass filter and PON, 
respectively.

Patient 
Number

Vardict (MED/HIGH) Mutect2 (MED/HIGH)

No Pass Filter PASS Filter No PASS Filter PON PASS Filter

PD39445 233/5 2/0 72/11 0/0
PD39446 248/0 1/0 19/6 0/0
PD39447 241/5 3/0 70/18 0/0
PD39448 248/18 6/0 58/13 0/0
PD39449 239/0 1/0 111/18 0/0
PD39450 239/0 2/0 89/18 0/0
PD39451 239/5 3/0 72/7 0/0
PD39452 251/10 3/0 182/42 0/0
PD39453 228/12 4/0 37/10 0/0
PD39454 265/6 10/0 88/7 0/0
PD39455 266/16 7/0 47/12 0/0
PD39456 264/17 4/0 69/4 0/0
PD39457 260/13 4/1 46/10 0/0
PD39458 256/7 8/0 61/14 0/0
PD39459 241/2 8/0 87/13 0/0
PD39460 258/7 4/0 90/15 0/0
PD44691 259/15 8/0 62/11 0/0
PD44692 253/1 4/1 54/10 0/0
PD44693 243/9 6/0 49/2 0/0
PD44694 268/0 3/0 41/4 0/0
PD44695 248/2 3/2 53/10 0/0
PD44696 262/11 5/0 61/16 0/0
PD44697 248/15 6/0 53/13 0/0
PD44698 254/7 4/0 48/9 0/0
PD44699 264/7 3/0 34/4 1/0
PD44700 254/6 4/1 70/14 0/0
PD44701 240/2 4/0 38/16 0/0
PD44702 243/6 6/0 139/24 0/0
PD44703 249/7 1/1 73/23 0/0
PD44704 257/8 7/0 74/16 0/0
PD50649 NA NA 32/2 0/0
PD50650 261/11 4/3 52/6 0/0
PD50651 NA NA 48/10 0/0
PD50653 NA NA 74/12 0/0
PD51372 NA NA 50/13 0/0

*NA = Data Not Available.

Table 4 
Medium (MED) and High impact mutations identified in TP53 using Vardict and 
Mutect2 variant callers, with and without the Pass filter and PON, respectively.

Patient 
Number

Vardict (MED/HIGH) Mutect2 (MED/HIGH)

No Pass Filter PASS Filter No PASS Filter PON PASS Filter

PD39445 0/1 0/1 0/1 0/1
PD39446 0/1 0/0 0/1 0/1
PD39447 0/0 0/0 1/0 1/0
PD39448 1/0 0/0 0/0 0/0
PD39449 1/2 0/2 0/2 0/2
PD39450 1/1 0/1 0/1 0/1
PD39451 2/0 1/0 1/1 1/0
PD39452 2/0 1/0 1/0 1/0
PD39453 0/1 0/1 0/1 0/1
PD39454 0/1 0/1 0/1 0/1
PD39455 0/1 0/1 0/1 0/1
PD39456 0/1 0/1 0/1 0/1
PD39457 1/1 0/1 0/1 0/1
PD39458 2/0 1/0 1/0 1/0
PD39459 1/1 0/1 0/1 0/1
PD39460 0/0 0/0 0/1 0/0
PD44691 2/1 1/1 1/0 1/0
PD44692 0/1 0/1 0/1 0/1
PD44693 1/1 0/1 0/1 0/1
PD44694 1/1 0/1 0/1 0/0
PD44695 0/0 1/0 0/0 0/0
PD44696 1/1 0/1 0/1 0/1
PD44697 1/0 1/0 1/0 1/0
PD44698 2/0 1/0 1/0 1/0
PD44699 0/1 0/1 0/1 0/1
PD44700 3/0 2/0 2/0 2/0
PD44701 1/0 0/0 0/0 0/0
PD44702 0/1 0/1 0/1 0/1
PD44703 2/1 1/1 1/1 1/1
PD44704 0/0 0/0 0/0 0/0
PD50649 NA NA 1/0 1/0
PD50650 1/0 0/0 0/0 0/0
PD50651 NA NA 1/0 1/0
PD50653 NA NA 1/0 1/0
PD51372 NA NA 0/1 0/1

*NA = Data Not Available.

Table 5 
Optimised conditions for the first cluster of MUC3A mutations in exon 2.

Primer Pair PCR 
Conditions

Product 
Size

Cluster 1 Forward: 95 ◦C: 4 min ​ 889bp
5′- TAA GTA CAC TCA GCA CTC CTA 

-3′
95 ◦C: 45 s 40 

cycles60 ◦C: 45 s
Cluster 1 Reverse: 72 ◦C: 1 min
5′- GAG ATC ATG GAT GTA GAA GTT 

ACC -3′
72 ◦C: 7 min ​
4 ◦C: 7 min ​
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higher false positives for MED impact mutations when compared to 
Mutect2. This interesting finding suggests that when researchers are 
looking for HIGH impact mutations without using the PON approach, 
then the Vardict variant caller would be preferable.

MUC3A is a gene with a high degree of genomic complexity, espe
cially within the second exon, which has subsequently led to difficulties 
in variant calling of true positive variants, and is greatly affected by the 
variant callers used. The value of NGS data is wholly dependent on valid 
methods of interpretation and the accurate analysis and identification of 
mutations. Eliminating the presence of false positives is imperative and, 
in this instance, extensive further investigations would be needed to 
conclude whether the new putative MUC3A mutations identified in the 
reanalysis with the PON approach were indeed true positives. Biologi
cally, it is improbable that all 35 patients in the cohort would have 
mutations in this gene. Furthermore, the high volume of mutations 
detected in MUC3A raises the question of why no previous ESCC studies 
have identified and reported mutations in this gene. When we incor
porated the PASS filter using both Vardict and Mutect2+PON ap
proaches, all MUC3A mutations detected were false positives.

When attempting to validate the WGS MUC3A mutations using the 
Mutect2 variant caller, all initial MUC3A mutations were filtered out, 
and an entirely new set of mutations was identified. This indicates that 
the initial mutations were in fact false positives. It is also highly likely 
that most, if not all the new MUC3A mutations identified are also 
spurious. In contrast to MUC3A, the operation of calling variants by both 
Vardict and Mutect2 tools appears to be less complex and simpler for the 
TP53 gene. In a substantial number of cases, both tools identified an 
equivalent number of mutations, exhibiting only minor discrepancies. 
For instance, patient PD39446 was reported as having a high-impact 
mutation by both callers without filtering. However, following 
filtering with PASS filter, Vardict discarded the mutation, while 
Mutect2 + PON retained it. Given the high mutation prevalence of TP53 
in esophageal cancer patients, which can reach up to 80 %, and the fact 
that the patients in our study are all at an advanced stage, it is possible 
that most of them have mutated TP53. Consequently, the mutation that 
was retained may also be a true positive, although this requires further 
laboratory validation to ascertain its validity. PD44691 has an opposite 

Fig. 4. Visualization of PCR products using primers for cluster 1 MUC3A mu
tations in patients PD39456 and PD39457. Post-PCR, products were electro
phoresed through a 1 % agarose gel for 35 min at 100V and visualised under UV 
light for 20 s using Novel juice (Bio-Helix, LD001-1000, Taipei, Taiwan). Ex
pected amplification size are bands shown in the region of 889bp. NTC in
dicates no-template control.

Fig. 5. A) MUC3A reference sequence showing the locations of the cluster 1 mutations determined from bioinformatic data for patient PD39456 in red. B) Chro
matogram of the PCR product sequence for patient PD39456 using the primer set for cluster 1 mutations. The annotated sequence is shown above each line of 
corresponding peaks and the nucleotides indicated by arrows represent the positions where the identified variants should be located, as identified in Table 6. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

V.A. Patten et al.                                                                                                                                                                                                                                Aspects of Molecular Medicine 6 (2025) 100097 

8 



scenario than the previous patient (PD39446), where a high-impact 
mutation was retained by Vardict PASS filter, but Mutect2+PON dis
carded it. This mutation may also be a true positive, and as such, it 
should not be disregarded. As demonstrated by the two aforementioned 
scenarios, it is imperative to utilize multiple variant callers in order to 
achieve more accurate results and potentially identify rare variants that 
may be discarded by one variant caller but retained by another or other 
callers. It is, therefore, recommended that these scenarios be tested in a 
laboratory setting.

Improper alignment to the reference genome can also significantly 
influence the discovery of false positives, although this discordance has 
been improved over recent years. However, SNVs (in our case, frame
shift mutations) still remain a challenge with NGS data, and various 
tools clearly display divergent outcomes (Kumaran et al., 2019). In 
recent years, tools specific for SNV detection have been developed yet 
their underlying algorithms of error models and assumptions for iden
tifying mutations frequently result in diverse variant calling across tools 
(Xu et al., 2014). Short-read alignment tools are also commonly chal
lenged by encountering reads that map to multiple locations in the 
reference genome (Treangen and Salzberg, 2011). Thus, the tools and 
methods one selects for analysis and variant calling on NGS data are 
critically important, given their heavy influence on mutational calling 
when the aim is for high sensitivity and specificity.

It is interesting to note that the detection of variants via bio
informatic pipelines can only prioritize novel findings of mutations and 
genes for functional testing. In this way, they can only identify muta
tions as drivers of tumorigenesis, which, it is advised, need laboratory 
confirmation (Gonzalez-Perez et al., 2013). Thus, researchers should 
perceive bioinformatic tools as predictors rather than validation, and 
laboratory confirmation should always be performed. Field (2022) re
ported that an increasingly popular approach among bioinformatic re
searchers is to run multiple calling tools and apply a consensus approach 
to minimize potential biases within single tools. High-quality variant 
data for specificity or sensitivity sets can be obtained using this approach 
(Field, 2022).

For future investigations, it would be pertinent to investigate 
different software packages and make use of different variant caller tools 
in combination as the different structural nuances associated with each 
of the four groups of genomic alterations (SNV, indels, CNV, SV) exclude 
the possibility of using one single versatile bioinformatic tool for iden
tifying all variants within all four groups (Jennings et al., 2017).

5. Conclusion

NGS technologies have revolutionized genetic studies, diagnostics, 
and treatment strategies. However, the exponential increase in the 
volume of data generated necessitates robust and reliable analytical 
pipelines, particularly as reports in literature suggest variant calling 
tools may vary in consistency.

Initial analysis of our dataset identified 258 somatic mutations in 
MUC3A in 86 % of the sample cohort using Vardict variant caller, 98 % 
of which were frameshift mutations. However, no experimental vali
dation could confirm these mutations, and upon reanalysis incorpo
rating the PON-based Mutect2 approach, more than 400 alternative 
MUC3A variants were identified with the original Vardict mutations 

filtered out completely. Given the known false-positive rate for variant 
calling in repetitive genomic regions together with MUC3A’s complex 
structure, we conclude these likely represent technical artefacts or false 
positives rather than genuine somatic events.

Our findings demonstrate that the use of a single variant caller 
approach can yield numerous false positives in structurally complex 
genes. We recommend that future investigations should implement 
multi-caller consensus approaches (minimum of 3 variant callers with 
≥2 caller concordance required), incorporate matched normal samples 
with PON filtering, and include quantitative laboratory validation to 
confirm computational findings. Without such rigorous pipeline set-up 
and validation, somatic mutations cells in genomically complex re
gions such as MUC3A should be interpreted with extreme caution.
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