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Abstract: At present oil companies are forced to continually decrease electric power inputs. However, energy 
efficiency of oil well equipment decreases in time. Well re-equipment enables to stop energy efficiency loss 
but it requires large additional inputs. The possible solution of this problem is development of the energy 
efficiency growth strategy that does not include equipment replacement. To do this the oil well model that is 
able to precisely estimate energy efficiency of every element in electric power system needs to be 
constructed. Oil well technological and mechanical parameters, determining production efficiency, are 
strongly connected to the electric parameters of equipment. Therefore, they need to be included in the 
model. Models used in oil companies for energy efficiency estimation reflect dependencies between 
described parameters but they do not consider instant changes of electric parameters caused by changing of 
electric power system regime. Mathematical models of electric power systems that consider instant changes 
of electrical parameters are based on differential equations which have complicated solutions. The paper 
considers a method for instant changes analysis in power consumption profiles of oil well equipment that is 
based on dynamic time warping algorithm. It is demonstrated that instant changes of electrical parameters at 
the short time period caused only by electric power system regime changes and are independent from well 
production conditions. Based on this thesis it is proposed to study instant changes of electrical parameters in 
wells with similar production conditions. The comparison of two modifications of dynamic time warping 
algorithm is presented. Investigation of the properties of given modifications when applying to power 
consumption profiles exposes limitations of using the method. However, the study of other algorithm 
modifications allows to find possible ways of overcoming the restrictions. 

1 INTRODUCTION 

When operating oil field, two processes occur: on 
the one hand, depleting of the oil reserves causes 
changing of extraction conditions, on the other hand, 
ageing of well equipment causes increase of 
electrical energy loss in elements of electric power 
systems (EPS) and hydraulic loss in tubing strings. 
These factors lead to increase of the operation and 
maintenance expenses of the oil wells. 

To ensure a stable profit, oil companies are 
forced to yearly increase the oil extraction while 
reducing the cost of operation and maintenance of 
oil fields. Unreasonable selection and misuse of well 
electrical equipment causes inefficient EPS 
operating regimes (e.g. underload and overload) and 

also leads to an increase of the electrical power 
inputs due to losses. 

When operating the well, it is necessary to 
maintain parameters of the technological process 
that ensure maximal flow rate to the well under 
given geological, climatic and technological 
conditions.  

The technological parameters restrict operating 
of mechanical and electrical equipment of the well. 

Since full-scale experiments in oil fields are not 
allowed, the methods of studying the well are based 
on mathematical modeling [1], simulation [2][3] and 
time series analysis and prediction [4][5]. 

At present, different technological, hydraulic and 
electrical models of oil well are developed. These 
models allow to make decisions on rational choice 
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and effective operation of well equipment. However, 
they are based on theoretical equations and do not 
completely meet real operational conditions. 

Moreover, to increase precision of these models 
the object parameters identification needs to be 
done. It requires obtaining of internal parameters of 
equipment (e.g. motor flux linkage, rotor and stator 
resistances and others) that is impossible in real 
conditions. 

In these conditions, the task of evaluating the 
equipment parameters subject to its operation 
features under the conditions of uncertainty and data 
incompleteness becomes important. To solve this, 
oil field statistical model can be constructed. This 
model makes possible to analyze the object by 
indirect method based on statistical data representing 
changes in electrical, mechanical, and technological 
parameters. 

Since the well production conditions and the 
operating practice vary depending on many factors, 
it is necessary to understand the nature of these 
changes and the leverage of various factors on them. 
Based on this information it is possible to make a 
data clustering for identification of typical regimes. 

The main indicator that determines the economic 
efficiency of the oil well is the specific power 
consumption. This is the ratio of the amount of 
electrical power, consumed by oil extraction 
equipment, to the mass of the produced oil or the 
volume of the liquid produced. Consumption level 
depends on electrical equipment type, EPS regime 
parameters and control algorithm applied to the 
pump electrical drive. The volume of extracted 
liquid depends on geological, climatic and 
technological parameters. The mass of produced 
petroleum is determined by chemical composition of 
the formation fluid and the content of water and gas 
in it. 

The paper considers questions of analysis of 
changes in well parameters under different 
operational conditions. 

The aim of the research is studying of power 
consumption changes when changing electrical 
parameters of well equipment and pump control 
parameters under different fixed values of 
technological and mechanical parameters. 

The degree of relationship between available 
electrical, mechanical and technological parameters 
and the intensity of their changes is studied in the 
research. Based on these data, the analysis of 
changes in power consumption profiles will be 
carried out. 

2 OIL FIELD PARAMETERS 

Oil well is a vertical, inclined or horizontal bore 
connecting surface with reservoir. 

When productive formation keeps shut in, the 
reservoir pressure is equal at every point and liquid 
does not flow. When formation exposing the 
pressure at the wellbore becomes less than reservoir 
pressure and liquid starts flowing to the well [6]. 
Flowing continues until the difference between 
reservoir and wellbore pressures becomes less than 
the sum of hydraulic resistances in a tubing string. 

The main operational characteristics of oil well 
are production condition and lifting type. 

Production conditions define energy sources that 
provide maintenance of reservoir pressure sufficient 
for lifting liquid to the surface. The study assumes 
production conditions are given by oil field 
operating practice. 

Lift type defines tools used for lifting the liquid. 
This study considers wells with pumping based on 
electrical submersible pumps (ESP) with induction 
motors (IM) placed inside the well. 

Production rate (measured in barrels per day 
(BPD)) determines volume of liquid potentially 
being extracted from the well at a given time period. 
BPD depends on well inflow and determines total 
company profit obtaining from the well. 

Well operational expenses depend on different 
parameters. When pumping, the most expenses are 
electrical energy costs (up to 40% of total costs). 
Therefore, well operational efficiency is measured 
by specific power consumption described above. In 
these conditions, increase of operational efficiency 
can be obtained either by BPD increasing or by 
decreasing energy consumption. This paper 
considers abilities of energy consumption decreasing 
when fixed BPD values. 

The next subsections describe main well 
parameters and their dependencies. 

2.1 Technological parameters 

The main technological parameter that determines 
liquid extraction efficiency is well inflow. It can be 
obtained using Darcy equation [1, 6]. The general 
solution of this is complex; therefore in practice the 
specific solution is used. It holds when the following 
assumptions:  

- flowing is radial around the well; 
- reservoir characteristics and liquid composition 

do not change in sufficiently long time period. 
When following above assumptions, geological 

parameters of the productive formation do not 
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significantly change in a short time period. In these 
conditions, the pressure drawdown (calculated as the 
difference between reservoir and bottomhole 
pressures) determines well inflow. The value of it 
has to be maintained a constant in accordance with 
technological process. 

2.2 Mechanical Parameters 

The subject of this study is well equipped with 
electrical submersible pumps with induction motors 
(ESP). The ESP provides lifting of the reservoir 
liquid to the wellhead and maintaining wellhead 
pressure sufficient for moving liquid to the booster 
pumps. 

Main parameters of ESP are head (h) and flow 
rate (q). Head is the height of vertical column of 
liquid generating at the discharge of the pump. 

Flow rate defines liquid volume that pump is 
able to lift to the height equal to h under given 
hydrodynamic parameters of tubing string. It 
depends on pipe diameter, flow velocity and pipe 
hydraulic resistance. 

When head is given, flow rate can be obtained 
using H-Q curve. This curve is presented in ESP 
manuals. 

ESP converts kinetic energy of shaft rotation into 
pressure energy. The following equations describe 
connections between pump parameters and 
rotational speed of the motor: 
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In the above formulas h1, h2 are pump heads, q1, 

q2 are flow rates, BHP1, BHP2 are pump break 
horsepowers, and n1, n2 are rotational speeds in two 
different operational conditions respectively. 

When substituting nominal values of 
corresponding parameters to the (1-3), pump 
characteristics for any given rotational speed can be 
obtained. 

2.2 Electrical Parameters 

ESP is driven by induction motor that installed in 
one shaft with a pump stages. Therefore, it can be 

assumed that motor torque is equal to the pump 
torque: 

rτ τ=  , (4) 
where τ is a motor torque, τr is a pump torque. 

IM consumes power of two types: active power 
(P) that is spent on the shaft rotation and reactive 
power (Q) that is spent on electric field generation. 
Reactive power is usually compensated by special 
equipment, therefore this study considers only active 
power consumption. 

The frequency converters are usually used to 
control IM in oil wells. They change the rotational 
speed of the model by changing both mains 
frequency and voltage. The equation (5) describes 
dependency between synchronous speed of the 
motor and AC power frequency. 

120
synch

poles

fn
p

⋅
=  , (5) 

where nsynch is synchronous speed, f is frequency of 
AC power, ppoles is number of poles in stator. 

Active power of the IM is calculated by the 
following formula: 

r m pP τ ω η η= ⋅ ⋅ ⋅  , (6) 
where ω is angular velocity, τr is pump torque, ηm is 
motor efficiency, ηp is pump efficiency. 

Synchronous speed and angular velocity of IM is 
connected by the following expression: 

30
synch

synch

nπ
ω

⋅
=   (7) 

The shaft rotation speed of the induction motor is 
less than synchronous rotation speed of magnetic 
field by the value of Δω depending on the slip value: 

synchslip
ω ω

ω
−

=  , (8) 

where ωsynch is synchronous IM speed, ω is IM shaft 
speed. 

The slip value depends on the torque developed 
by the engine, however, under given conditions, the 
slip can be assumed constant and equal to the 
nominal value. The bases of this assumption are 
given below. 

Dependencies between the IM torque and the 
pump torque and induction motor rotational speed 
when different values of voltage and frequency are 
shown in Figure 1. 
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Figure 1: Motor and pump torque curves under different 
frequency values. 

The figure shows that for the given load type, the 
IM torque required to rotate the pump shaft is 
significantly less than the critical torque at the entire 
frequency range. Under operating conditions, the 
frequency control range is sufficiently small (30-60 
Hz), and the torque developed by the motor does not 
change without changing the frequency. The 
intersections of the IM and pump torque curves are 
at the segment where the torque curve has 
sufficiently slight slope. Thus, the slip in the whole 
control range has insignificant changes in 
comparison with the nominal value. In this case, it is 
possible to not consider slip changes when change 
the motor torque. 

Formulas considered in the section, describe 
dependencies between main parameters of oil well 
but the typical models based on them are robust and 
do not allow to study tiny changes in power 
consumption profiles of wells [2][6][7]. 

3 STATISTICAL MODEL OF OIL 
FIELD 

For estimating power consumption changes in oil 
fields the average consumption values are used (in 
energy units, kWh). 

Standard averaging intervals are day, month, 
quarter, and year. Energy efficiency is estimated in a 
whole field and is determined by average annual 
integrated consumption index. For increasing energy 
efficiency, energy consumption of a field is yearly 
decreasing on fixed value. 

The expected values of the well energy 
consumption are calculated based on the formulas 
described in the section above. Calculated 
parameters are averaging then by the whole field. 

Current and expected power consumption are 
calculated based on actual volume of produced oil 
and expected values of production rates. The annual 
electricity consumption reduction is determined by 
these parameters. 

This technology has the following shortcomings: 
the potential optimizing abilities of a single well are 
not considered; averaging over long periods does not 
allow to determine the cause of ineffective operating 
regimes of the well electric equipment. Ineffective 
regimes are both regimes with high power 
consumption and emergency regimes. 

The average energy consumption is used as the 
main parameter for energy efficiency estimation. To 
determine the optimal averaging interval of this 
parameter, 32 wells placed in two fields with 
different geological characteristics and lifecycle 
stages were analyzed. The profiles of well energy 
consumption were built with the averaging intervals 
of month, day, hour, minute and second. When 
analyzing profiles with shorter averaging intervals, 
the average values of power consumption over the 
previous interval were used as a template for 
comparing. The study showed that the optimal 
averaging interval is an hour. 

Table 1: Oil Well Parameters. 

Parameter (Symbol) Units 
Active power (P) kW 
Frequency (f) Hz 
Motor Rotational Speed (n) RPM 
Motor temperature (T) °С 
Intake pressure (pin) bar 
Wellhead pressure (pwh) bar 
Head (h) ft. 
Liquid production rate (q) BPH 

 
During preliminary study changes intensity 

analysis as well as correlation analysis of given 
parameters were carried out. It was found that 
electrical parameters are changed intensively while 
other parameters are subject to weak changes. 
Correlation analysis showed that all electrical 
parameters and motor temperature have strong 
relations with correlation coefficients of 0.7 
(Spearman correlation) and 0.9 (Pearson 
correlation). Technological and electrical parameters 
as well as mechanical parameters have weak 
correlation (with correlation coefficients of about 
0.02 for both methods). Based on obtained data it 
was concluded that the volume of information is 
insufficient for determining statistical dependencies 
between electrical and non-electrical parameters of 
oil well. The preliminary study showed that energy 
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consumption changes in a single well are not caused 
by changes of geological, technological and 
mechanical processes in a short time period. The 
changes come from internal electrical and thermal 
processes in equipment and external parameters of 
EPS regimes. 

On the ground of above analysis it was suggested 
to divide full energy consumption profile into two 
parts. The first part is caused by technological 
process. It is relatively stable for a single well in a 
short time period. The second part is caused by 
external changes of EPS regimes and internal 
changes in equipment. This part has significant 
changes even in a short time period. Minimizing of 
energy consumption can be obtained by reducing 
them. To do this the variable part of the signal is to 
be extracted from the whole profile. The extraction 
is based on comparative analysis of test energy 
consumption profile and reference one. Profiles with 
known production conditions and EPS regimes were 
selected as reference signals. 

At the main research phase the deviation analysis 
of power consumption profiles from the template 
profile was carried out. The profiles that 
demonstrate consumption of oil well in the known 
production regimes and under the same operating 
conditions as the investigated wells were selected as 
template profiles. 

To study the changes in electricity consumption, 
eight identical samples were generated for four wells 
(two samples per well on October and March, 
respectively). This choice was made based on the 
results of enterprise inspection that showed the most 
unfavorable changes in electricity consumption in 
the autumn and spring. Selected wells were in 
operation during the given time intervals and the 
biggest amount of data was obtained from them. 

Each sample consists of 30 columns 
corresponding to the day of month. Each column has 
24 rows where average hour consumption values are 
placed. The day consumption change graphs were 
built using the samples. These graphs were used 
both as reference and as test signals in the analysis 
procedure described in the next section. 

4 ENERGY CONSUMPTION 
ANALYSIS 

Dynamic time warping algorithm (DTW) was 
originally introduced as a tool for similarity 
measurement of complex signals [8] but it is also 
possible to use it for measuring differences between 

test signal and given template [9]. Algorithm 
transforms test signal into template by stretching and 
shrinking different segments of time axis. Algorithm 
accuracy depends on similarity of test signal and 
template after warping. When warping, optimal 
warping path is constructed. Optimal path is a matrix 
that contains minimal amount of transformations 
providing maximal similarity of warped signals. Full 
description of the DTW and its features is given in 
[8] – [13]. 

Warping path is defining points of signals being 
shifted when warping and the shifting distances. To 
do this optimally, the weighting matrix is used. 
Weighting matrix constrains possible ways of points 
shifting and maximal shifting distances. Weighting 
matrix influences the accuracy of algorithm and its 
ability to give right similarity measures. Different 
types of weighting matrices are considered in [14] –
[16]. 

In the study two different weighting matrices are 
used (9) and (10). Below expressions describe 
possible shifting ways and distances for classical and 
modified DTW respectively. 

1
1 1
1

m n
m n
m n

− 
 − − 
 − 

 , (9) 

1
1 2
1 1
2 1
1

m n
m n
m n
m n
m n

− 
 − − 
 − −
 − − 
 − 

 , (10) 

 
To estimate the deviation of signals by the shape 

of the optimal path curve, the method of analyzing 
the deviations of the path from the diagonal, 
proposed in [9], was used. 

During the analysis, the following parameters of 
the algorithm were evaluated: the matching accuracy 
of the test reference signals after warping, the 
distribution of the matched points of the test and 
reference signals, distribution of distances between 
warping path curve and diagonal. The following 
graphs were built: signals before and after warping, 
matching diagrams, warping path diagrams along 
with diagonal and lines showing distances between 
path and diagonal. 

The study results for the classical DTW when the 
test power consumption profile corresponding to the 
stationary regime with small deviations are showed 
in Figures 2-5. 
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Figure 2: Power consumption profile of oil well. Dotted 
line - reference signal, solid line - test one. 

 

Figure 3: Warping diagrams for classical DTW. Left graph 
– signals before warping, right graph – signals after 
warping. 

The graph of signals after warping shows that the 
curves of the test and reference signals are close to 
each other. It indicates sufficiently high accuracy of 
the algorithm for this type of curves. 

 

Figure 4: Matching diagram for classical DTW. Reference 
signal is green, test signal is red. Blue lines show shifting 
distances of points. 

Matching diagram has multiple matching points. 
There are the points of a signal where more than one 
matching lines come (in the figure matching lines 
are blue). The multiple matching points reduce the 
accuracy of the algorithm and the information 
capability of the warping path curve. They produce 
long straight sections on the warping path. 

 

Figure 5: Warping patch along with diagonal for classical 
DTW. Lines show distances between path and diagonal. 

Deviations of the warping path from the diagonal 
show the discrepancy between the reference and test 
signals at each point. The better the signals match 
each other after warping, the more accurately 
changes are reflected in the warping path. If a 
certain optimal power consumption profile is used as 
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a reference signal (e. g., obtained by mathematical 
model), the discrepancy can be used to find the 
points where potential problems exist. These 
problems, then, need to be investigated by other 
methods. Thus, the algorithm can be used to find the 
sections of power consumption profiles to be 
optimized. 

Figures 6-8 illustrate the warping results with 
modified weighting matrix (10). 

 

Figure 6: Warping diagrams for modified DTW. Left 
graph – signals before warping, right graph – signals after 
warping. 

 

Figure 7: Matching diagram for modified DTW. Reference 
signal is green, test signal is red. Blue lines show shifting 
distances of points. 

The matching diagram of the modified algorithm has 
fewer multiple matching points, but it also has 
unconnected points that can lead to the loss of 
significant points. 

 

Figure 8: Warping patch along with diagonal for modified 
DTW. Lines show distances between path and diagonal. 

The study showed that the algorithm with a 
modified weight matrix is more accurate than the 
classical one. In addition, this algorithm has nearly 
no cases of multiple matching, but there are points at 
the matching diagram that do not have connections. 
This gives potential ability for skipping these points. 
If the skipped point is significant (e.g. it 
demonstrates a significant decrease of power 
consumption), skipping the point leads to incorrect 
interpretation of the warping path curve. 

Further studies showed that if the discrepancy of 
signals increases, both the number of multiple 
matching cases in the classical algorithm and the 
number of missing points in the modified algorithm 
increase (Figures 9-13). 

 

Figure 9: Example of a profile with a big deviation. Dotted 
line - reference signal, solid line - test one. 
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Figure 10: Warping diagrams for classical DTW. Left 
graph – signals before warping, right graph – signals after 
warping. 

 

Figure 11: Matching diagram for classical DTW. 
Reference signal is green, test signal is red. Blue lines 
show shifting distances of points. 

 

Figure 12: Warping diagrams for modified DTW. Left 
graph – signals before warping, right graph – signals after 
warping. 

 

Figure 13: Matching diagram for modified DTW. Blue 
lines show shifting distances of points. 

The accuracy of both algorithms decreases. 
As a limiting case, the transient process of an 

emergency motor shutdown was considered (Figure 
14). 
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Figure 14: Example of profile with zero-valued segment. 
Dotted line - reference signal, solid line - test one. 

The specified signal in this case becomes zero. 
The accuracy of both algorithms decreases 
significantly in this case (Figures 14-15). In 
addition, at the zero-valued segment of the test 
signal, the warping path curve in classical DTW 
algorithm matches with the diagonal (Figure 16), 
which makes it uninformative. 

 

Figure 15: Warping diagrams for classical DTW. Left 
graph – signals before warping, right graph – signals after 
warping. 

 

Figure 16: Warping diagrams for modified DTW. Left 
graph – signals before warping, right graph – signals after 
warping. 

An additional study showed that classical DTW 
is not appropriate for comparing signals with straight 
lines. Modified algorithm in this case gives 
unreliable results and is also not able to be used. 

The effects described appear because only the 
time axis is warped, so the algorithm recognizes 
properly the horizontal changes in the signal, but 
vertical changes are not recognized well. One 
possible solution of this problem is warping the 
whole plane [17] that allows to transform both time 
and value axes. The accuracy of the modified 
algorithm exceeds the accuracy of the classical one. 
When difference between signals is not significant, 
the modified DTW has more correct results but this 
algorithm allows unconnected points that can lead to 
significant change loss. 

5 CONCLUSIONS 

The study showed that parameters of the 
technological process and mechanical pump 
characteristics have weak influence to the instant 
changes of well equipment electric parameters. 
These changes caused only by changing EPS 
operational regime. It corresponds to theoretical 
statements described in [1][6]. 

Cross-sectional analysis of signals obtained from 
wells with similar production conditions was carried 
out to study instant changes patterns in electric 
power consumption profiles. Two modifications of 
DTW algorithm with different weighting matrices 
were used for the analysis. The methodic based on 
measuring distances between warping path and 
diagonal was used for DTW results interpretation. 
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Study allowed to define restrictions of described 
algorithm modifications on precision of changes 
detection when recognizing signal differences. 
When analyzing tiny magnitude changes in signals 
both modifications of the algorithm had precise 
results. This fact corresponded to the conclusions 
given in [9], [10]. However, none of these 
modifications was able to correctly recognize large 
magnitude changes between signals. In addition, 
when studying signals with large straight sections 
(both zero-valued and not), presence of which is a 
feature of considered profiles, results interpretation 
is impossible due to incorrect form of warping 
curve. 

The study showed that classical DTW algorithm 
recognized changes with less precision then 
modified one. This problem also considers in [14] 
[16]. Nevertheless, when using modified algorithm, 
mismatching points appears. This may cause 
significant decreasing of recognition precision when 
mismatched point corresponds to significant regime 
change. Although in several works [8][10] – [13] 
these effects are not consider, they constrain use of 
this algorithm for described task.  

Experiments showed that algorithm better 
recognizes changes in width of signals (shifting 
points along the time axis) than in magnitude. The 
possible solution for this problem is use of two-
dimensional warping algorithm [17]. Moreover, this 
algorithm has variety of modifications [14] – [17] 
eliminating some negative effects when analyzing 
signals with different specific features. 

The research highlighted features of DTW 
algorithm that restricted its use for analyzing 
changes in power consumption profiles. It also 
depicted basic features of the power consumption 
profiles themselves. Obtained results will be the 
basis for further investigations that will conform the 
algorithm to specific features of studied signals. 
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