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* Corresponding author at: Department of Radiotherapy, University Hospital Leipzig, Stephanstraße 9a, Leipzig, Germany.
E-mail address: franziska.naegler@medizin.uni-leipzig.de (F. Nägler). 
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A B S T R A C T

Background and purpose: The importance of metastasis-directed radiotherapy is increasing in the management of 
oligometastatic prostate cancer. We evaluated different target volume and dose concepts for stereotactic body 
radiotherapy (SBRT) of spine bone metastases (BoM) from prostate cancer in a large European cohort.
Material and methods: Data of prostate cancer patients receiving SBRT for spine BoM between 2010 and 2024 at 
19 European cancer centers were retrospectively collected. Treatment volumes and dose concepts were analyzed 
regarding their impact on overall survival (OS), freedom from local recurrence (FFLR), biochemical recurrence- 
free survival (BRFS), and progression-free survival (PFS).
Results: With a median follow-up of 25.1 months (range: 1.4–77.2), 213 patients with 283 spine BoM were 
evaluated. 1-/3-year PFS with simultaneously integrated boost (SIB) were 85.7 %/73.9 % (BED4 [Biologically 
effective dose with α/β-ratio = 4 Gy] ≥ 100 Gy) and for non-SIB concepts 81.2 %/45.5 % (BED4 ≥ 100 Gy), 
respectively. 1-/3-year BRFS for SIB-treated BoM amounted to 81.7 %/68.4 % (BED4 ≥ 100 Gy) and for non-SIB 
78.3 %/43.6 % (BED4 ≥ 100 Gy). OS was not significantly different for the evaluated dose and target volume 
concepts. For FFLR a significant difference was observed favoring BED4 ≥ 100 Gy. In multivariable analysis, 
following factors were positively associated with both PFS and BRFS: BED4 for GTVmean dose and SIB concept. 
Adverse events were very low, with fracture rates of 2.2 %.
Conclusion: This multicenter cohort analysis showed that SBRT of spine BoM from prostate cancer is an effective 
and well-tolerated treatment. Both BED and usage of a SIB concept were associated with improved PFS and BRFS. 
Prospective studies are needed to confirm these findings and further standardize SBRT concepts.

Introduction

Globally, prostate cancer ranks as the second most prevalent cancer 
among men [1]. The increasing detection of metastatic disease at 
diagnosis is primarily attributable to the enhanced efficacy of screening 
and imaging [2]. Prostate cancer metastases have a predilection for the 
skeletal system, mainly presenting as osteoblastic lesions [3]. Bone 
metastases (BoM) are a significant cause of skeletal-related events 
(SREs), with approximately one-third of them being complicated lesions, 
resulting in pain, pathological fractures, and neurological impairments 
[4]. In addition to systemic treatments, palliative radiotherapy consti
tutes a guideline-recommended treatment for symptomatic BoM, with 
effective pain relief and stabilization [5,6]. Recent clinical trials 
revealed the clinical benefit of stereotactic body radiotherapy (SBRT) 
regarding local control, progression-free (PFS) and overall survival (OS), 
in selected cases also for oligometastatic disease [7–11]. These findings 
led to the publication of practice guidelines for bone SBRT [12–14]. 
Analysis of the STOMP/ORIOLE trials indicated a benefit of metastasis- 
directed therapy (MDT) over observation for patients with oligometa
static prostate carcinoma (OMPC) [15]. A recent meta-analysis revealed 
encouraging improvements in PFS by adding SBRT to systemic therapy 
for different OMPC states, with no excessive toxicities observed. How
ever, the level of evidence was considered low or moderate, and OS 
comparisons remain inconclusive [16]. Also, the findings of the EXTEND 
and PCS 9 trials indicated a higher degree of efficacy for the combina
tion of SBRT and androgen deprivation therapy (ADT)-/systemic treat
ment in comparison to either systemic treatment alone or, as reported in 
the RADIOSA trial, SBRT alone [17–20]. The recent WOLVERINE meta- 
analysis demonstrated a borderline benefit even for OS [21].

SBRT enables the delivery of ablative doses to metastatic lesions with 
high precision, achieving superior and more durable pain control 
compared to conventional radiotherapy [22–24]. Nevertheless, signifi
cant uncertainties concerning the most appropriate choice between 
locally ablative and palliative bone radiotherapy, as well as treatment 
volume and dose concepts remain [12,25–28].

Target volume definition in spine SBRT is critical for treatment 
planning. Approaches range from contouring only the metastatic gross 
tumor volume (GTV) with small margins to account for setup un
certainties (expanded GTV concept), to encompassing adjacent osseous 
compartments or the entire involved vertebral body as a clinical target 
volume (CTV) [29–33]. There are two different concepts for compart
mental treatments, either high-dose volumes for the BoM including the 
adjacent compartments (compartment concept), or high-dose volume 
covering only the BoM, with the entire vertebral body receiving a lower, 

homogeneous dose as part of a simultaneous integrated boost (SIB 
concept) [34,35]. In Fig. 1, schematic dose distributions are presented to 
illustrate the aforementioned different target volume concepts. How
ever, in clinical practice, considerable variability in treatment patterns is 
observed [36–38].

This heterogeneity extends to dose-fractionation regimes as well. 
International consensus guidelines recommend a prescribed dose 
exceeding BED10 = 50 Gy for local ablative SBRT of spine metastases, 
with variable fractionation schedules [12].

As SBRT becomes increasingly integrated into the multidisciplinary 
management of OMPC, continued efforts are needed to harmonize 
practice patterns with the best available evidence.

Thus, the objective of our European multicenter cohort study on 
SBRT for spine BoM from prostate cancer was to evaluate routinely used 
SBRT concepts regarding oncological outcomes and safety, depending 
on applied dose and target volume concepts.

Material and methods

Patient selection

As a project of the working group on radiosurgery and stereotactic 
radiotherapy of the German Society for Radiation Oncology (DEGRO), 
we performed a retrospective multicenter cohort analysis on SBRT of 
BoM. Individual clinical and treatment data of patients with OMPC 
receiving SBRT for spine BoM between 2010 and 2024 at 19 European 
cancer centers in Germany, Austria, Switzerland, and the Czech Re
public were retrospectively collected and evaluated. The diagnosis of 
BoM was determined on the basis of radiographic findings revealed by 
computed tomography (CT), magnetic resonance imaging (MRI), 
prostate-specific membrane antigen positron emission tomography 
(PSMA PET/CT), or bone scintigraphy. According to the established 
European consensus criteria, the initial classification of oligometastatic 
disease was followed by further subclassification [39]. SBRT parame
ters, including target volumes, doses, and plan parameters according to 
the International Commission on Radiation Units and Measurements 
(ICRU) report 91, were analyzed [40–42]. Previous treatments, 
concomitant/sequential systemic therapies, and necessary salvage 
therapies after SBRT were recorded. Biologically effective dose (BED) 
was calculated with the formula BED = n × d×(1 + d/(α/β)) with n =
number of fractions, d = dose per fraction, based on an α/β = 10 Gy 
(BED10) as commonly used for tumor tissue and α/β = 4 Gy (BED4) for 
prostate cancer, assuming that BoM occur more frequently in high-grade 
prostate carcinomas [43]. BED10 of at least 48 Gy for the target volume 
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in a maximum of 10 fractions was requested as the minimal dose for 
bone SBRT.

This study was approved by the institutional ethics board (127/24- 
ek) and followed the STROBE guidelines for reporting observational 
studies (Supplementary Data 2) [44].

Response assessment

OS was calculated from the end of SBRT until death from any cause. 
PFS was defined as the time interval from completion of SBRT until 
death or the development of any type of imaging-confirmed cancer 
progression. Findings of routinely administered pre- and post-SBRT 
imaging examinations were analyzed retrospectively regarding local 
recurrence, and fractures, with local recurrence specified as imaging- 
confirmed progression. When patients received SBRT for multiple 
BoM, freedom from local recurrence (FFLR) analysis was conducted 
independently for each lesion. To calculate FFLR following SBRT, the 
occurrence of lesions was considered to be censored at the time of the 
most recent imaging. Given that imaging was not routinely performed 
during follow-up for OMPC with stable prostate-specific antigen (PSA) 
levels, participating centers conducted a secondary assessment of rising 
PSA levels after SBRT to determine biochemical recurrence and thus 
calculate biochemical recurrence-free survival (BRFS). Both acute (≤90 
days post SBRT) and chronic (>90 days post SBRT) treatment-related 
adverse events were documented according to Common Terminology 
Criteria for Adverse Events (CTCAE) version 5.0 [45].

Statistical analysis

All analyses were performed in Python 3.12.7 using custom scripts. 
Data preparation and preprocessing relied on pandas (v2.2.3) and 
NumPy (v2.2.1); statistical inference and survival modeling used SciPy 
(v1.14.1) and lifelines (v0.30.0); visualization was carried out with 
Matplotlib (v3.10.0). Descriptive analyses of patient demographics and 
clinical characteristics were performed. Median values were given as 
either the 95 % range or the range of the provided values, where 
applicable. Subgroup analyses compared cohorts defined by treatment 
technique and mean BED4/BED10 delivered to the GTV. The BED4/ 
BED10 threshold for subgrouping was explored iteratively by increasing 
the cutoff in 1 Gy steps and recording log-rank test p-values for PFS. 

Time-to-event outcomes were analyzed with Kaplan–Meier estimators 
and multivariable Cox proportional hazards models. Patient age, target 
volume concept, GTVmean BED4, and tumor volume were preselected as 
covariates in the Cox proportional hazards model. The proportional 
hazards assumption test was non-significant. Multivariable models were 
fitted on complete cases only. Model assumptions were assessed at α =
0.05. Kaplan–Meier curves were compared across subgroups using log- 
rank tests, and survival probabilities at prespecified time points were 
interpolated and reported with 95 %-confidence intervals (95 %-CI).

Results

Data of 283 lesions from 213 patients treated with bone SBRT for 
spine BoM from OMPC were included. Detailed patient characteristics 
are presented in Table 1.

Target volume definition was based on multimodal imaging with 
PET-CT (235/283; 83 %) and/or MRI (94/283; 33 %) according to 
institutional standards of each center and national recommendations 
[46].

Target volumes were predominantly defined with the SIB concept 
(135/260 evaluable lesions; 51.9 %). The expanded GTV concept (BoM 
plus safety margins) was used in 38.5 % (100/260) of spine lesions. The 
minority of 25/260 spine BoM (9.6 %) was delineated as the metastasis 
plus adjacent osseous compartments and a small safety margin to PTV 
(compartment concept).

Prescribed dose for the SIB (high-dose PTV) was median 44.0 Gy 
(range: 35.0 Gy–48.5 Gy) in median 10 (range: 3–10) fractions, and for 
the expanded GTV concept 35.0 Gy (range: 18.0 Gy–40.0 Gy) in median 
5 (range: 1–10) fractions, and for the compartment concept 27.0 Gy 
(range: 22.5 Gy–34.0 Gy) in median 3 (range: 3–5) fractions. Dose- 
volume parameters for the target volume and treatment parameters 
are shown in Table 2.

Concomitant/sequential ADT was administered in 167 of 283 lesions 
(59 %), whereas 101 of 283 lesions (36 %) received no additional 
therapy. ADT was evenly distributed among SIB (ADT: 83/283 lesions; 
29.3 %; no ADT: 49/283; 17.3 %) and non-SIB (ADT: 84/283; 29.7 %; no 
ADT: 52/283; 18.4 %) groups.

Median follow-up time was 25.1 months (range: 1.4–77.2). A total of 
30 patients died, and 19 local recurrences were reported during the 
follow-up period.

Fig. 1. Schematic dose distributions for the three different target volume concepts A) Simultaneous integrated boost (SIB) with isodoses. GTV (red) includes the 
metastasis plus a 2 mm margin for the high-dose planning target volume (PTVSIB in pink color), and the conventional-dose PTV (outer pink contour) covers the entire 
affected vertebral body (CTV in orange) with a small setup safety margin in the same treatment plan. PTVSIB: 5x7Gy prescribed to 80 % (inner yellow isodose), 
PTVconventional dose: 5x4Gy (inner green isodose). B) Compartment concept. GTV (red) includes the metastasis, CTV (orange) encompassing adjacent osseous com
partments plus small safety margin to the PTV (pink). PTV: 5x7Gy prescribed to 80 % (inner yellow isodose). C) Expanded GTV concept. GTV (red) includes the 
metastasis, CTV (orange) includes GTV with margin (2–5 mm) plus small safety margin to the PTV (pink). PTV: 5x7Gy prescribed to 80 % (inner yellow isodose). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Oncological outcomes were analyzed across subgroups by target 
volume concept (SIB vs. non-SIB) and dose concept based on BED4/ 
BED10 for GTVmean dose.

Stratification of FFLR by target volume concept revealed no signifi
cant difference in patients treated with SIB or non-SIB. Patients 
receiving BED4 ≥ 100 Gy had significantly improved FFLR compared 

with those treated with BED4 < 100 Gy (p = 0.02). In patients with BED4 
≥ 100 Gy, 1-/3-year FFLR was 97.8 % (95 %-CI: 85.3 %-99.7 %)/90.3 % 
(95 %-CI: 60.5 %-97.9 %) for SIB and 97.7 % (95 %-CI: 84.6 %-99.7 
%)/93.8 % (95 %-CI: 76.3 %-98.5 %) for non-SIB (supplementary figure 
1).

PFS was positively associated with using a SIB concept compared to 
non-SIB concepts (p < 0.002). Stratification by BED revealed that BED4 
≥ 100 Gy as well as BED10 ≥ 61 Gy were significantly associated with 
improved PFS compared to lower BED (p < 0.001). In the BED4 ≥ 100 Gy 
group, a SIB concept was linked to improved PFS compared to non-SIB 
(p = 0.012). The SIB concept reached 1-/3-year PFS of 85.7 % (95 
%-CI: 70.7 %-93.3 %)/73.9 % (95 %-CI: 56.5 %-85.2 %) compared to 
81.2 % (95 %-CI: 67.0 %-89.8 %)/45.5 % (95 %-CI: 29.1 %-60.5 %) for 
non-SIB (Figs. 2 and 3, supplementary Fig. 2).

For patients with BED4 < 100 Gy, BRFS was 73.7 % at 1 year (95 
%-CI: 44.1 %-89.2 %) for SIB and 53.7 % (95 %-CI: 35.0 %-69.2 %) for 
non-SIB. The 3-year BRFS in this group decreased to 54.6 % (95 %-CI: 
23.8 %-77.4 %) and 0 % (95 %-CI: 0 %-0%). BED4 ≥ 100 Gy led to a 1-/ 
3-year BRFS of 81.7 % (95 %-CI: 65.1 %-90.9 %)/68.4 % (95 %-CI: 49.7 
%-81.3 %) in the SIB group and 78.3 % (95 %-CI: 63.3 %-87.7 %)/43.6 
% (95 %-CI: 23.0 %-62.5 %) in the non-SIB group, respectively. 
Considering only the administered dose, a significantly better BRFS was 
shown for BED4 ≥ 100 Gy compared to BED4 < 100 Gy (p < 0.001). In 
patients treated with BED4 < 100 Gy, SIB resulted in improved BRFS 
compared to non-SIB (p = 0.001) (Figs. 2 and 3, supplementary Fig. 2). 
Due to the small sample size of some subgroups, wide confidence in
tervals were evident, notably in Fig. 3.

Regarding additional ADT, we observed a positive effect on BRFS. 
Especially in patients with a lower BED4 < 100 Gy administration of 
ADT was positively associated with BRFS (p = 0.01), while no significant 
difference was detected for BED4 ≥ 100 Gy (supplementary Fig. 3).

There was no significant difference for OS, depending on BED or 
target volume concept. For BED4 < 100 Gy, 1-/3-year OS reached 100 % 

Table 1 
Patient characteristics.

Variable

Patients (n = total) 213
Bone metastases spine (n = total) 283
Age ​
Median in years (range) 72 (48–87)
Karnofsky-Index before SBRT ​
Median in % (95 % range) 100 (80–100)

Initial therapy primary tumor
(multiple treatment modalities possible)
Surgery 125 (58.7 %)
Radiotherapy 59 (27.7 %)
Systemic Therapy 32 (15.0 %)
Other 20 (9.4 %)
No information available 47 (16.6 %)

Bone metastases
Time between initial diagnosis and bone metastasis, median 

(months)
53.6 
(− 4.4–177.2)

Synchronous treatment 56
Metachronous treatment 223
Classification according ESTRO/EORTC [39] ​

Metachronous oligoprogression 65
Metachronous oligorecurrence 93
Repeat oligoprogression 16
Repeat oligorecurrence 9
Induced oligoprogression 9
Induced oligorecurrence 2
No information available

89

Characteristics of bone metastases
Radiological osteolytic 45
Radiological osteoblastic 157
Mixed osteolytic/ osteoblastic 10
Soft tissue infiltration yes / no 6 / 233
Spinal canal infiltration yes / no 0 / 226
Symptomatic before SBRT yes / no 33 / 100
PSA before SBRT in ng/ml (95 % range) 7.27 (0.24–87.22)

Systemic therapy
ADT concomitant / sequential 89 / 78
Cytotoxic chemotherapy 0
No systemic therapy 101
No information available 15

Imaging before treatment planning:
Diagnostic CT 18
MRI 94
PET (including PSMA-PET) 235
Scintigraphy 26
No information available 9
Number of treated bone metastases per patient median (range) 1 (1–8)

Treatment technique
LINAC (Photon FF / FFF / unknown) 106 / 112 / 43
Robotic radiosurgery (CyberKnife) 22

Abbreviations: CT: Computed Tomography, MRI: Magnetic Resonance Imaging, 
PET: Positron Emission Tomography, PSMA: Prostate-Specific Membrane Anti
gen, LINAC: Linear Accelerator, FF(F): Flattening-Filter(− Free), SBRT: Stereo
tactic Body Radiotherapy, PSA: Prostate-Specific Antigen, ADT: androgen 
deprivation therapy.

Table 2 
Dose volume parameters according to ICRU91 Parameters presented ac
cording to the three treatment concepts.

SIB 
concept

Expanded GTV 
concept

Compartment 
concept

Number of treatments 135 100 25
Mean target volume 

(GTV) in cc (range)
2.9 (0.4–17.8) 2.5 (0.5–27.0) 3.9 (0.7–13.7) 

Prescribed dose PTV, 
median in Gy (range)

44.0 
(35.0–48.5)

35.0 
(18.0–40.0)

27.0 (22.5–34.0)

Number of fractions, 
median (range)

10 (3–10) 5 (1–10) 3 (3–5)

Median BED4 PTV 
(prescribed dose) in 
Gy (range)

107.3 
(80.0–120.0)

96.2 
(71.8–120.0)

87.8 (64.7–96.2)

Median BED10 PTV 
(prescribed dose) in 
Gy (range)

72.0 
(56.0–72.0)

59.5 
(42.6–72.0)

51.3 (39.4–59.5)

Median PTV D98% 

in Gy (range)
39.5 
(29.0–47.8)

30.0 
(15.9–39.9)

25.7 (21.5–30.1)

Median PTV D2% 

in Gy (range)
49.4 
(35.8–57.1)

36.0 
(22.0–49.9)

32.2 (27.3–42.6)

Median GTVmean in Gy 
(range)

46.7 
(34.8–53.4)

34.6 
(22.0–49.2)

29.1 (25.7–41.3)

Median BED4 GTVmean 

in Gy (range)
107.4 
(80.0–152.6)

104.6 
(71.7–171.3) 

99.7 
(80.9–128.1)

Median BED10 GTVmean 

in Gy (range)
72.0 
(55.8–91.1) 

60.1 
(46.3–89.8)

57.4 (47.8–75.6)

Median BED4 PTV D2% 

in Gy (range)
114.2 
(82.7–170.7)

112.2 
(75.4–174.3)

118.6 
(89.5–136.5)

Median BED10 PTV D2% 

in Gy (range)
75.7 
(57.6–97.8)

64.3 
(48.2–99.6)

66.8 (52.2–79.7)

Abbreviations: SIB: Simultaneous Integrated Boost, GTV: Gross Tumor Volume, 
PTV: Planning Target Volume, BED: Biological Effective Dose.
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(95 %-CI: 100.0 %-100.0 %)/81.5 % (95 %-CI: 43.5 %-95.1 %) for SIB 
and 94.9 % (95 %-CI: 80.9 %-98.7 %)/91.8 % (95 %-CI: 76.5 %-97.3 %) 
for non-SIB, respectively. For BED4 ≥ 100 Gy, 1-year OS was 96.1 % (95 
%-CI: 85.2 %-99.0 %) for SIB and 98.1 % (95 %-CI: 87.6 %-99.7 %) for 
non-SIB, whereas 3-year OS amounted to 79.1 % (95 %-CI: 59.6 %-90.0 
%) for SIB and 87.8 % (95 %-CI: 68.3 %-95.7 %) for non-SIB 
(supplementary Fig. 4).

In multivariable analysis, higher age was associated with worse OS 
(HR [hazard ratio] 1.09; 95 %-CI, 1.02–1.17; p = 0.01). A higher BED4 
GTVmean was associated with improved PFS (HR 0.99; 95 %-CI: 
0.98–0.99, p < 0.01) and BRFS (HR 0.98; 95 %-CI: 0.97–0.99, p <
0.001). Usage of a SIB concept was linked to improved PFS (HR 0.42; 95 
%-CI: 0.26–0.69, p < 0.001). Additional administration of ADT was 
associated with improved BRFS (HR 0.51; 95 %-CI: 0.31–0.83, p < 0.01). 
Details are shown in Table 3.

The overall rate of adverse events was low (20.8 %, 59/283), pre
dominantly grade 1–2 events, with fatigue grade 1 being most frequent 
(8.1 %, 23/283). Only 0.8 % grade 3 adverse events (2/283, 1x pain and 
1x dysphagia) and no grade 4 or 5 adverse events were reported 
(supplementary Table 1). Fracture rates related to SBRT, without tumor 
progression, were 0.4 % (1/283, SIB concept) for acute and 1.8 % (5/ 

283: 3x compartment concept, 2x expanded GTV concept) for delayed 
fractures.

Discussion

To the best of our knowledge, this is the first large multicenter real- 
world cohort analysis investigating the impact of different treatment 
concepts of SBRT for spine BoM in patients with prostate cancer with a 
particular focus on the efficacy and safety of commonly used European 
practice patterns.

We found that escalation of GTVmean dose to a BED4 ≥ 100 Gy was 
associated with significantly improved PFS and BRFS. Additionally, our 
data suggest that SIB concept in our retrospective cohort had an impact 
on PFS and BRFS. No dependency was observed regarding OS, irre
spective of target volume or dose concept. The high efficacy was 
accompanied by excellent tolerability and favorable safety profile with 
especially low fracture rates.

These findings underline the importance of high BED even for SBRT 
of spine BoM of prostate carcinoma, as has already been demonstrated 
for other metastases and primary tumors [47–51]. Our results also 
augment the mounting evidence that treating metastatic lesions with 

Fig. 2. Oncological outcome depending on treatment concept for SBRT of spine bone metastasis A) Comparison of PFS for simultaneously integrated boost (SIB) 
concept vs. non-SIB concepts B) Comparison of PFS depending on the BED4 (α/β = 4 Gy) in gross tumor volume (GTVmean) C) Comparison of BRFS for SIB vs. non-SIB 
concepts D) Comparison of BRFS depending on the BED4 in GTVmean.
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SBRT results in a prolonged PFS in patients with OMPC [16,52,53]. A 
recent systematic review in OMPC reported pooled OS rates of 90.6 % 
and 80.1 %, and pooled PFS rates of 52.7 % and 28.4 % at 2 and 4 years, 
respectively [54]. In our retrospective cohort, higher BED4 ≥ 100 Gy 
was associated with improved PFS, and within this high-dose-group, SIB 
was significantly associated with an improvement of PFS (1-/3-year: 
85.7 %/ 73.9 %). PFS was worse in patients treated with BED4 < 100 Gy, 
whereas the target volume concept itself did not influence PFS within 
this subgroup. However, underreporting of local recurrence or distant 
progression is a concern, as patients with OMPC often do not undergo 
regular imaging in the absence of PSA elevation.

Although FFLR was excellent, PFS and BRFS decreased during 
follow-up period, underlining the systemic nature of metastatic disease, 
and the need for systemic therapies [19,55]. Approximately 60 % of 
BoM in our cohort were treated with additional ADT, which was asso
ciated with an improvement in BRFS in the multivariable analysis. In 
patients who had been treated with a lower BED4 < 100 Gy, the addition 
of ADT was associated with a positive effect on BRFS. At a BED4 ≥ 100 
Gy, no significant difference was observed with ADT in terms of either 
PFS or BRFS. In the PCS 9 trial, the addition of MDT to standard systemic 
therapy (ADT and enzalutamide) for patients with OMPC also improved 
PFS and prolonged the interval to the next line of systemic therapy [20]. 
As demonstrated by the EXTEND trial, the combination of MDT and ADT 

improves PFS and even causes stronger activation of the systemic im
mune system, represented by T-cell receptor expansion and contraction 
[19]. This might also partly contribute to the positive effect observed in 
our study regarding the SIB concept with two different dose levels and 
the combination with systemic therapies, thus emphasizing the need for 
further improvements of systemic therapies as well as integration of 
standardized SBRT concepts within multimodal treatments.

The optimal dose for SBRT of spinal BoM is still not clearly defined 
and may depend on treatment indication as well as localization and 
underlying histology. Also, it has been indicated by a recent meta- 
analysis that higher SBRT doses should be used for (non)-spinal BoM to 
improve local control. An increase of 1 Gy in BED10 was associated with 
a 1 % decrease in the risk of local failure [56]. According to the Euro
pean Society for Radiotherapy and Oncology (ESTRO) clinical practice 
guideline for spinal SBRT, for de novo spine metastases, high dose SBRT 
practice includes 1x20-24 Gy, 2x12Gy, 3x10Gy, and 5x7Gy (BED10 ≥ 50 
Gy10) [12]. We observed a clear dose dependency for BoM of prostate 
cancer, demonstrating that an escalation of GTVmean dose up to BED4 ≥

100 Gy was associated with improved PFS, BRFS, and FFLR. For FFLR, 
this could not be confirmed in the multivariable analysis, suggesting that 
the required dose value could also be even higher. In another retro
spective single-institution series for SBRT (24–28 Gy in 2 fractions) of 
spine metastases from prostate cancer with quarterly radiographic 

Fig. 3. Comparison of oncological outcome depending on BED4 for different target volume concepts A) PFS for SIB vs non-SIB concept for BED4 < 100 Gy and B) for 
BED4 ≥ 100 Gy C) BRFS for SIB vs non-SIB concept for BED4 < 100 Gy and D) for BED4 ≥ 100 Gy.
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follow-up, local 2-year control rates up to 95 % were reported with a 
cumulative fracture risk of 10 % [57].

Little is known about the correlation of target volume concept and 
oncological outcome of patients with spine BoM. In our large multi
center cohort, SIB concept seems to improve control rates, especially in 
high-BED settings. It allows dose escalation within the metastatic bone 
lesion, comparable to the expanded GTV concept. At the same time, it 
enables additional irradiation of potentially microscopic disease within 
the whole affected vertebra with a conventional dose, accompanied by 
reducing risk for skeletal-related events [34,35]. In a recent analysis of 
SIB concepts for spinal BoM, local control appeared to be influenced by 
histology. Prostate cancer metastases responded particularly well, 
which is consistent with the radiosensitivity of prostate lesions and the 
longer life expectancy of these patients [58]. Multivariable analysis of a 
further study indicated that non-prostate histologies were associated 
with higher hazard of local failure and additionally, baseline osteopo
rosis significantly increased the hazard of post-SBRT fractures [35]. 
Histology may also have influenced the excellent outcome parameters in 
our study.

The low fracture rate of 2.2 % observed in our cohort may be 
explained by the fact that BoM from prostate cancer are mainly osteo
blastic and hence less susceptible to fractures [59]. Hypofractionation 
with median 5 (non-SIB) or 10 (SIB) fractions in our cohort, as well as 
the median patient age of 72 years, which is younger compared to 
previous studies, could be other possible reasons for the low rate of 
vertebral fractures. A large meta-analysis, combining data on spinal BoM 
from different primary cancers, found 9 % total vertebral fracture rate, 
with 1.7 % requiring surgical stabilization [60]. Chan et al. recently 
described a vertebral fracture rate of 8.4 % and 12.3 % at one and two 
years, respectively, for spine SBRT of BoM from different primary sites. 
Multivariable analysis revealed that a greater BED, baseline fracture, 
and increasing age were associated with a higher risk of fracture [61].

Due to its retrospective design, the current study has some limita
tions. The substantial number of 19 participating centers resulted in an 
increased number of cases and, consequently, an enhancement in the 
informative value of the analysis. However, this also led to greater 
variability in SBRT protocols and significant heterogeneity in follow-up 
procedures across institutions. The retrospective analysis was based on 

chart review and clinician reports, which may have caused under- 
reporting of events and missing data. In consideration of these poten
tial limitations, this study focused on a specific subgroup characterized 
by a distinct primary diagnosis and metastasis location in the spine. This 
methodological decision was made with the objective of averting any 
potential distortion that might be occasioned by the heterogeneity of 
histological characteristics of different primary tumors. Nonetheless, 
discrepancies emerged with regard to treatment techniques, encom
passing methodologies such as linear accelerator or robotic radio
surgery, dose prescription, and target or margin definition. Additionally, 
the reliance on radiological reports for the assessment of local recur
rence and the variability in post-SBRT imaging frequency, as this is often 
guided by PSA kinetics rather than systematic imaging, could have led to 
a possible underestimation of local recurrences.

Notwithstanding these limitations of a retrospective study with 
corresponding heterogeneity, our large real-world cohort shows that 
SBRT of spine BoM from prostate cancer was an effective and well- 
tolerated treatment. Higher BED was associated with an improvement 
of PFS and BRFS. Additionally, our data suggest that the target volume 
concept could influence PFS and BRFS as well. Further prospective 
studies are needed to confirm these results and determine standardized 
SBRT concepts and clarify its impact on long-term clinical outcomes 
such as local control, adverse events, quality of life, and survival.
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Table 3 
Uni- and multivariable Cox proportional hazard regression analysis for overall survival, progression-free survival, biochemical recurrence-free survival and freedom 
from local recurrence.

Univariable OS PFS BRFS FFLR

Variable p HR (95 %CI) p HR (95 %CI) p HR (95 %CI) p HR (95 %CI)

Age 0.08 1.03 
(1.00–1.07)

0.80 1.00 
(0.98–1.03)

0.07 1.03 
(1.00–1.06)

0.26 1.04 
(0.97–1.11)

GTV volume 0.56 1.01 
(0.98–1.04)

0.17 1.01 
(1.00–1.03)

0.65 1.00 
(0.97–1.02)

0.33 1.02 
(0.98–1.05)

BED4 GTVMean <0.01 0.98 
(0.97–0.99)

<0.001 0.99 
(0.98–0.99)

<0.001 0.98 
(0.97–0.99)

0.22 0.98 
(0.95–1.01)

SIB concept 0.78 0.91 
(0.52–1.64)

<0.001 0.51 
(0.35–0.75)

0.01 0.59 
(0.40–0.88)

0.66 0.81 
(0.31–2.11)

ADT 0.80 0.93 
(0.52–1.65)

0.18 0.79 
(0.55–1.12)

<0.01 0.50 
(0.33–0.77)

0.86 1.08 
(0.43–2.74)

Multivariable
Age 0.01 1.09 

(1.02–1.17)
0.77 1.00 

(0.98–1.03)
0.11 1.02 

(0.99–1.05)
0.29 1.04 

(0.97–1.12)
GTV volume 0.72 1.01 

(0.97–1.04)
0.57 1.00 

(0.99–1.02)
0.32 0.99 

(0.97–1.01)
0.47 1.01 

(0.98–1.04)
BED4 GTVMean 0.12 0.99 

(0.97–1.00)
<0.01 0.99 

(0.98–0.99)
<0.001 0.98 

(0.97–0.99)
0.36 0.98 

(0.95–1.02)
SIB concept 0.71 1.16 

(0.52–2.60)
<0.001 0.42 

(0.26–0.69)
0.02 0.60 

(0.39–0.94)
0.72 1.23 

(0.39–3.80)
ADT 0.73 1.21 

(0.42–3.42)
0.25 0.77 

(0.50–1.20)
<0.01 0.51 

(0.31–0.83)
0.81 0.87 

(0.30–2.56)

Abbreviations: OS: overall survival, PFS: progression-free survival, BRFS: biochemical recurrence-free survival, and FFLR: freedom from local recurrence, HR: hazard 
ratio, CI: confidence interval, BED: Biological Effective Dose, SIB: Simultaneous Integrated Boost, GTV: Gross Tumor Volume, ADT: androgen deprivation therapy.
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radiotherapy in lung cancer: a contemporary review. Pathol Oncol Res 2024;30: 
1611709. https://doi.org/10.3389/pore.2024.1611709.
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