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Abstract

The principle of bulk-boundary correspondence states that the topological properties
of a material’s bulk determine the existence and nature of the edge or surface states.
In this thesis, I investigate the nature of these edge states in two distinct topological
materials: a topological crystalline insulator (TCI) and a topological superconduc-
tor. Since these edge states are localized at the boundary, detecting them requires
surface-sensitive techniques with high spatial resolution. To this, low-temperature
high-resolution scanning tunneling microscopy and spectroscopy (STM/STS) tech-
niques are ideal, as they offer the surface sensitivity and spatial resolution necessary
to visualize these localized edge states.

In the first part of this thesis, I investigate correlated electronic states arising
from one-dimensional flat bands at a step edge of a TCI Pb0.7Sn0.3Se. Using the
STM/STS techniques, I demonstrate that the half-unit cell step edge of Pb0.7Sn0.3Se
features one-dimensional edge modes. These edge modes have a flat-band-like dis-
persion, which manifests as a peak in the local density of states at the energy of
the Dirac point (E = 125 meV). Since the flat band at the step edge is located
far above the Fermi level, electron-electron interactions are weak since the kinetic
energy scale is predominant. However, it is possible to enhance these interactions by
positioning the energy of the 1D flat band close to the Fermi level. The key idea is
that, as the kinetic energy is quenched, electron correlations can become the dom-
inant energy scale. To shift the Dirac point to the Fermi level, I use an approach
of surface doping, where small amounts of 3d transition elements are doped on the
surface of the Pb0.7Sn0.3Se crystal. I observe that as the Dirac point is tuned to the
Fermi level, the single peak of the 1D flat band, which also shifts coherently, splits
into multiple components and opens a gap in the local density of states at the Fermi
level. Theoretical modeling, supported by Hartree-Fock analysis, rationalizes these
experimental results in terms of electron-electron interactions that are significantly
enhanced since the 1D flat band is energetically localized close to the Fermi level.
These interactions cause a splitting of the peak associated with the flat band, re-
sulting in up to four states that spontaneously break time-reversal symmetry and
stabilize a flat band Stoner ferromagnetism at the step edge.

In the second part, I use STM/STS to probe an unconventional topological
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superconducting phase at the interface between a monolayer ferromagnet, CrCl3,
and a superconductor, NbSe2. The high-resolution STS measurements reveal a fully
gapped interfacial superconducting state in the CrCl3/NbSe2 heterostructure that
remains resilient under strong out-of-plane magnetic fields, contrary to conventional
expectations for a ferromagnet-superconductor hybrid. Furthermore, I observe an en-
hancement in the local density of states at the Fermi energy along the boundaries
of the CrCl3 islands, suggesting the presence of edge modes. Theoretical analysis
attributes these features to an intrinsic helical p-wave superconducting state at the
CrCl3/NbSe2 interface, stabilized by interfacial Rashba spin-orbit coupling, which
explains both the anomalous magnetic field resilience and the emergence of topolog-
ical edge excitations.

Together, these findings demonstrate how strategic material engineering, from
the surface modifications in topological crystalline insulators to precisely assembled
van der Waals heterostructures, can create and control exotic quantum states. The
one-dimensional correlated states in Pb0.7Sn0.3Se offer a new platform for study-
ing interaction-driven topology, while the unconventional interfacial topological su-
perconductivity in the CrCl3/NbSe2 heterostructure provides a unique system for
exploring non-Abelian anyons and their potential applications in quantum comput-
ing.
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Part I

Introduction
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1 Introduction and Scope of

Thesis

The concept of topology stems from mathematics, where it is used to describe the

property of a geometric object that is preserved under continuous deformations

such as twisting, bending, and stretching, the straightforward example being the

transformation of a doughnut into a coffee cup. Over the years, this concept has

also emerged as a powerful tool for understanding diverse phenomena in condensed

matter physics. The discovery of the Quantum Hall Effect (QHE) by Klaus von Kl-

itzing (Nobel Prize 1985) marked the first observation of a topological state in this

field. Klaus von Klitzing, through his pioneering work, demonstrated that electrons

confined in a two-dimensional (2D) geometry under the influence of strong perpen-

dicular magnetic fields exhibit quantized Hall conductance, a unique topological

state characterized by an insulating bulk and chiral edge states. Motivated by this

experimental work, Thouless et al. [1] in 1982 introduced the TKNN invariant (n), a

topological index distinguishing the QHE state (n = 1) from a conventional insulator

(n = 0). Of significant interest are the chiral edge states in the QHE, which lead to

one-dimensional (1D) edge currents that are dissipationless, and robust against scat-

tering by impurities and therefore hold promises toward technological applications

in low-power electronics, novel spintronic devices, topological quantum computing,

etc. However, such 1D conducting edge currents are not exclusive to the QHE. Kane

and Mele [2] as well as Bernevig et al. [3] theoretically proposed the Quantum Spin

Hall Effect (QSHE), which exhibits 1D conducting channels even in the absence of

any external field. This effect was attributed to the spin-orbit coupling (SOC), which
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replaces the role of the magnetic field, causing a spin-dependent force to act on the

electrons moving through the lattice. Unlike the QHE, the edge states in the QSHE

are spin-momentum-locked. The propagation of such spin-momentum-locked elec-

trons leads to helical currents at the edges. The QSHE was predicted in HgTe/CdTe

quantum wells [4], followed by the experimental realization by Koenig et al. in non-

local transport measurements [5], marking the discovery of the first 2D Z2 TI. The

2D Z2 TI was predicted alongside the QSHE by Kane and Mele [6], where the role of

SOC and time-reversal (T ) symmetry was highlighted. As the name suggests, this

class of materials is insulating in the bulk with T symmetry-protected gapless edge

states located inside the bulk gap. The initial 2D Z2 TIs involved QSH materials,

which were mostly semiconducting heterostructures. However, experiments on these

systems had a major drawback in the sense that there was a lack of direct evidence

of the 1D topological edge states. This motivated the search for novel experimen-

tal systems and the implementation of high-resolution spatial detection techniques,

such as scanning tunneling microscopy, which would allow for direct spatial visual-

ization of these 1D edge states. This technique was subsequently used to visualize

1D topological edge states in various 2D TIs, such as bilayer-Bismuth [7, 8], ZrTe5

[9, 10], Ta2Pd3Te5 [11], Bi/SiC(0001) [12], etc.

The concept of a 2D Z2 TI was later extended to three dimensions, with the

theoretical prediction of three-dimensional (3D) TIs, arising from the generalization

of the QSHE, which was a 2D phenomenon, to the 3D case. This breakthrough was

independently proposed by three research groups, establishing the foundation for 3D

TIs [13–15]. While the 2D TIs host 1D gapless edge states, the 3D TIs exhibit 2D

surface states (SSs) with a Dirac-Cone-like dispersion. These SS are protected by T

symmetry. Such Dirac-cone-like SSs were demonstrated experimentally for the first

time in the 3D semiconducting alloy Bi1−xSbx using angle-resolved photoemission

spectroscopy (ARPES) [16]. Shortly thereafter, extensive efforts were devoted to

realizing the 3D TI phase in the chalcogenide compounds namely, Bi2Te3 [17], Bi2Se3

[18] and Sb2Te3 [19].

3



The topological materials discovered until the late 2000s involved the 2D and

3D TIs, where the major symmetry, protecting the edge states and SSs was the T

symmetry. However, in 2011, Liang Fu predicted a new 3D topological class that

featured SSs protected by crystal point group symmetries. This new 3D class was

termed “Topological Crystalline Insulator” (TCI) [20]. This class of materials was

theoretically predicted to host multiple spin-polarized SS, which are protected by

crystalline symmetries. The initial theoretical prediction of this topological phase

was made in the mirror-symmetric alloy SnTe [21], with subsequent experimental

confirmation achieved through ARPES [22]. To distinguish this 3D TCI phase in

SnTe, Hsieh et al. further introduced a topological invariant, the mirror Chern num-

ber: nM = -2. The family of 3D TCIs grew with the identification of this phase

in Pb1−xSnxTe [23] and Pb1−xSnxSe [24], further expanding the class of materials

exhibiting this topological state. Following the experimental confirmation of the 3D

TCI phase in these materials, extensive STM studies were conducted, revealing Dirac

surface states [25, 26], Landau quantization [27], quasiparticle interference patterns

[28, 29], one-dimensional edge states [26, 30] etc. Particularly noteworthy was the

observation of robust one-dimensional spin-polarized edge states exhibiting a flat-

band dispersion at half-unit-cell step edges of Pb1−xSnxSe (001). In Part II (Chapter

4) of this thesis, the evolution of the electronic properties of this 1D flat band re-

siding at the step edges of Pb1−xSnxTe is investigated under surface doping with

3d transition metals by employing high-resolution STM/STS. In conventional 3D

TIs, the Coulomb interactions are too weak to spontaneously break T symmetry in

the 2D SSs [31], and in Pb1−xSnxSe, electron correlation effects are usually ignored

due to its large dielectric constant [32], which screens electron-electron interactions.

However, in the present case, since the bands are flat, they are characterized by a

large DOS, making them susceptible to Stoner ferromagnetism. The spectroscopic

measurements presented in this work reveal that the single peak of the 1D flat band

splits into multiple peaks once the 1D flat band is shifted to the Fermi level, ac-

companied by an opening of a gap in the electronic spectrum near the Fermi level.
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These experimental findings are interpreted as signatures of enhanced electron cor-

relations, attributed to the spatially localized 1D flat band residing in the vicinity

of the Fermi level. Depending on the strength of the interactions, defined as the

ratio of the Coulomb energy and the kinetic energy, the single peak splits into a

maximum of four peaks, which spontaneously break T symmetry and stabilize a

Stoner ferromagnetic state in the 1D flat band along the half-unit cell step edge.

In parallel with developments in TCIs, the late 2000s saw fundamental advances

in understanding topological superconductors through the seminal works of Kitaev

[33], Schnyder et al. [34], and Qi et al. [35], who established the classification schemes

for superconducting systems. Topological superconductors represent a class of quan-

tum materials that combine topological electronic structure with superconductivity,

offering significant potential for both fundamental research and quantum technolo-

gies. While conventional s-wave superconductors, described by BCS theory, emerge

from the condensation of spin-singlet Cooper pairs with opposite momenta, topologi-

cal superconductors arise from a complex interplay of SOC, electronic band topology,

and proximity effects. These systems develop a superconducting gap characterized

by a non-trivial topological invariant, which governs both the bulk electronic prop-

erties and the emergence of gapless boundary states [36–38]. In the past decade,

substantial efforts have focused on identifying material platforms capable of host-

ing these topological superconducting states, motivated by their potential to harbor

Majorana fermions. These exotic quasiparticles, first predicted by Ettore Majorana,

are characterized by their self-conjugate nature (acting as their own antiparticles)

and non-Abelian exchange statistics [38–40]. Such remarkable properties make them

potential candidates for fault-tolerant topological quantum computing.

Multiple experimental routes to realize topological superconductors have been

established in recent years [36]. A particularly successful approach has been the

proximity-induced superconductivity method, where Cooper pairs from a conven-

tional s-wave superconductor are induced into the topological SSs of an adjacent

3D TI [41–43]. This hybrid system creates an effective 2D p + ip topological super-
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conducting state capable of hosting Majorana-bound states (MBS) within vortex

cores [41–43]. Experimental signatures of these MBSs were detected in STM mea-

surements, appearing as a zero-bias conductance peak localized at the vortex cores

in Bi2Se3/NbSe2 heterostructures [44–46]. This 2D paradigm was subsequently ex-

tended to 1D systems, where topological superconductivity (TSC) was realized in

semiconductor nanowires with strong SOC proximitized to conventional supercon-

ductors [47]. Here, rather than vortex-confined states, the MBS manifests as robust

zero-energy states localized at the end of the nanowire. Electrical transport measure-

ments on InSb nanowires coupled to NbTiN superconducting electrodes revealed

zero-bias conductance peaks consistent with Majorana zero modes (MZM) [48].

A foundational theoretical framework for 1D topological superconductors was

proposed by Alexei Kitaev, who considered a model for a 1D chain of spinless

fermions coupled to an s-wave superconductor with strong SOC [49]. This model

predicts that the pairing symmetry due to the interaction between the 1D chain

and the superconductor acquires an effective p-wave character, which facilitates the

emergence of Majorana fermions at opposite ends of the chain. The experimental

realization of this model was first achieved in the seminal work of Nadj-Perge et

al., who observed localized MZMs at both ends of a ferromagnetic Fe atomic chain

grown on a superconducting Pb substrate [50]. This breakthrough sparked extensive

research into 1D magnetic chains coupled with various superconductors to engineer

1D topological superconductors hosting 0D MZMs [51–54]. From these experimental

and theoretical studies [38, 55], three essential ingredients were identified for creat-

ing a 1D topological superconductor with effective p-wave pairing: (i) out-of-plane

magnetism, (ii) superconductivity, and (iii) strong Rashba SOC. This framework

was also later extended to 2D systems, where magnetic islands coupled to super-

conductors were shown to host 1D chiral propagating Majorana edge modes along

the boundary of the islands. In contrast to 0D MZMs, which have a flat energy-

momentum dispersion, these 1D Majorana edge modes are characterized by a linear

energy-momentum dispersion located within the topological superconducting gap.
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One such experimental evidence of these 1D chiral Majorana edge modes was found

in a 2D topological superconductor composed of a monolayer (ML) Pb film deposited

on magnetic Co-Si islands fabricated on a Si(111) surface, where the 1D Majorana

edge mode is localized around the edge of the Co-Si islands [56].

More recently, van der Waals (vdW) heterostructures, combining 2D ferromag-

nets with 2D superconductors, have evolved as a potential platform for 2D p+ip TSC,

capable of harboring 1D chiral Majorana edge modes. TSC has been demonstrated

in the vdW heterostructure comprising a ML out-of-plane ferromagnet, CrBr3, on

top of the superconductor, NbSe2. The study revealed 1D chiral Majorana edge

modes propagating along the boundary of the CrBr3 islands [57]. A critical finding

across these studies is that establishing a TSC state requires the ferromagnetic ex-

change coupling (J) to dominate both the Rashba SOC and the superconducting

gap (∆). In contrast to the above, in Chapter 6 of this thesis, an unconventional

p-wave Rashba TSC, which does not have the stringent requirement of a J > ∆, has

been demonstrated in the heterostructure combining MLs of an in-plane 2D vdW

ferromagnet, CrCl3, on top of NbSe2. Specifically, the interface of the CrCl3/NbSe2

heterostructure exhibits a superconducting gap, which remains resilient even un-

der an out-of-plane magnetic field. This is a surprising observation, since magnetic

fields typically suppress superconductivity. Moreover, the boundary between the

ML CrCl3 island and the NbSe2 substrate features an enhancement in the local

density of states (LDOS) at the Fermi energy (EF), strongly suggesting the pres-

ence of topological edge states. Although the observed edge states resemble those

previously reported in CrBr3/NbSe2 heterostructures [57], the conventional TSC

framework fails to account for their emergence in the CrCl3/NbSe2 system. In con-

ventional TSC, while magnetization is typically essential, the exceptionally weak

exchange coupling in CrCl3 (J < ∆) renders the magnetization irrelevant. Theoret-

ical calculations indicate that the fully gapped superconducting state observed at

the CrCl3/NbSe2 interface, along with its gapless edge modes, can be attributed to

a topological p-wave Rashba superconducting phase, which hosts helical edge states.
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This discovery paves the way for designing topological p-wave superconductors with

robust Rashba SOC, offering exciting prospects for topological quantum computing

and cryogenic spintronics applications.

Scope of thesis
This thesis investigates two distinct topological systems, so it has been divided into

parts. Part II, which includes chapter 2, details the experimental techniques em-

ployed throughout this work. Part III (comprising Chapters 3 and 4) investigates in-

teraction effects in a TCI. Chapter 3 establishes the theoretical framework of TCIs by

tracing their conceptual evolution from fundamental discoveries, including the QHE,

QSHE, Z2 TIs, and 3D TIs, with specific attention given to the TCI, Pb1−xSnxSe.

Building on this foundation, Chapter 4 presents experimental and theoretical studies

of interaction effects in a 1D flat band at the step edges of Pb1−xSnxSe, beginning

with the experimental demonstration of edge states and the associated 1D flat band,

followed by the realization of interaction effects within these confined electronic sys-

tems, and concluding with theoretical modeling that reconciles the experimental

observations. Part IV (Chapters 5 and 6) explores an unconventional TSC in the

vdW heterostructure CrCl3/NbSe2. Chapter 5 outlines the theoretical foundations

relevant to this work, beginning with conventional BCS superconductivity and pro-

gressing to p-wave superconductivity, including a mathematical description and an

example gap function to introduce the concept of TSC. The chapter concludes with

a brief overview of Rashba SOC and 2D vdW materials. Chapter 6 investigates the

vdW heterostructure composed of CrCl3 and NbSe2, focusing on the edge states and

the helical p-wave pairing at the interface. It begins with a structural characteriza-

tion of the heterostructure, followed by a detailed examination of the observed edge

states using the STS technique. The chapter then explores the robust superconduc-

tivity exhibited by the interface between CrCl3 and NbSe2 under an out-of-plane

magnetic field. A theoretical framework is presented to explain the nature of the

edge states and the pairing symmetry of the superconducting gap at the interface

of the CrCl3/NbSe2 heterostructure. Finally, the key findings of this chapter are
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summarized in the conclusion. Chapter 7 concludes this thesis by summarizing the

work presented here and providing future research directions.
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Part II

Experimental Methods
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2 Experimental Methods

2.1 Scanning Tunneling Microscope

The scanning tunneling microscope was first realized in 1981 through the ground-

breaking work of Gerd Binnig and Heinrich Rohrer at IBM Zurich Research Lab-

oratory. Their pioneering experiment successfully demonstrated vacuum tunneling

between a sharp tungsten tip and a platinum surface, marking the first direct obser-

vation of electron tunneling in a controllable, spatially resolved manner [58]. This

groundbreaking discovery represented a monumental advancement in scientific in-

strumentation, enabling unprecedented atomic-scale probing of conductive materials.

In recognition of its profound impact, Binnig and Rohrer were awarded the Nobel

Prize in Physics in 1986, just five years after their seminal discovery. The scientific

community’s fascination with STM has grown exponentially due to its remarkable

versatility, enabling atomic-scale visualization of material surfaces, surface defects,

electronic standing wave patterns, magnetic spin textures such as skyrmions, etc.

Furthermore, STM’s unparalleled capacity for atomic manipulation has opened new

frontiers in nanoscience, enabling the precise positioning of individual atoms to con-

struct artificial nanostructures, including 2D atomic lattices and quantum corrals,

that reveal fundamental quantum phenomena. Beyond conventional imaging, the

technique’s spectroscopic applications, ranging from LDOS measurements to inelas-

tic electron tunneling spectroscopy, provide unprecedented insights into electronic

and vibrational properties, complemented by emerging time-resolved studies of dy-

namic surface processes. Unlike conventional microscopes, which rely on classical

wave optics or particle scattering, the operation of STM is fundamentally rooted
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2.1. Scanning Tunneling Microscope

in quantum mechanics. The STM, while conceptually straightforward in principle,

presents formidable experimental challenges that demand cutting-edge instrumen-

tation. Achieving atomic-resolution imaging and spectroscopy requires maintaining

atomically clean surfaces under ultra-high vacuum conditions while simultaneously

implementing sophisticated vibration isolation systems to ensure sub-picometer sta-

bility. The technique’s extraordinary sensitivity relies on ultra-low-noise electronics

capable of detecting faint tunneling currents on the order of femtoamperes, cou-

pled with advanced cryogenic systems that reach millikelvin temperatures to achieve

ultra-high energy resolution. Over the years, with technological advancement, STMs

have achieved unprecedented performance approaching fundamental quantum lim-

its. State-of-the-art systems now operate down to mK temperatures and under high

magnetic fields, while maintaining exceptional stability. These advanced instruments

combine ultra-low electrical noise with sub-microelectronvolt energy resolution, en-

abling the investigation of delicate quantum phenomena that were previously inac-

cessible. While STM has its roots in condensed matter physics, the technique has

successfully crossed into biological and molecular research. It now enables scientists

to visualize conjugated organic molecules and observe self-assembly processes in

action. Furthermore, modern STM applications can track atomic-scale transforma-

tions during actual chemical processes - from catalytic reactions to electrochemical

changes at surfaces - providing exciting views of dynamic molecular behavior.

2.1.1 Tunneling Current

Tunneling is one of the most striking manifestations of quantum mechanics, where

particles traverse classically forbidden barriers. While often illustrated by macro-

scopic analogies—such as objects passing through walls—this phenomenon is strictly

confined to the quantum realm, governing the behavior of electrons. Unlike classi-

cal particles, electrons are described by a wave function Ψ(r), with their spatial

probability distribution given by |Ψ(r)|2. Near a metal surface, electrons at the EF

encounter a potential barrier defined by the material’s work function (Φ), which

would classically prevent their escape. However, their wavefunctions extend into the
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2.1. Scanning Tunneling Microscope
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Figure 2.1: Schematic of the tunneling junction. A positive bias voltage Vb is
applied between the tip and the sample which shifts down the Fermi level of the
sample with respect to that of the tip causing electrons to tunnel from the occupied
states of the tip to the unoccupied states of the sample across a vaccum barrier of
width z. The DOS of the tip and the sample are denoted by ρt and ρs, respectively,
which are filled up to the Fermi level. The electrons tunnel within an energy window
defined by the Fermi-Dirac distribution f(ε) through the vacuum barrier Evac.

vacuum with an exponential decay. Interestingly, when a second conducting surface,

which is the STM tip, is brought within nanometers of the sample, the tail of the

electron’s wavefunction overlaps with available electronic states in the tip. If a bias

voltage (Vb) is applied, electrons can tunnel elastically across the gap without ever

truly occupying the vacuum—effectively, transitioning directly from the energy band

of one solid to another. This process generates a measurable tunneling current (It),

despite the absence of physical contact. The tunneling current is governed by three

key factors: (i) Exponential Distance Dependence: It decays exponentially with

the tip-sample separation (z), as the overlap of the electronic wave functions of the

tip and the sample diminishes rapidly. (ii) Energy window of tunneling: Only
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2.1. Scanning Tunneling Microscope

electrons within an energy range defined by EF and EF + eVb, contribute to the

tunneling process, requiring occupied states on one side and vacant states on the

other. (iii) Density of states: The number of accessible electronic states in the tip

(ρt(ε)) and the sample (ρs(ε)) at the relevant energies (ε = E − EF) governs the

tunneling current. A generalized schematic of the tunneling junction is illustrated

in figure 2.1, where the tip and sample possess uniform and non-uniform DOS, re-

spectively. For the rest of the discussion, the suffixes in Vb and It will be dropped

and referred to as just V and I respectively. An expression for the tunneling current

can be obtained using the first-order time-dependent perturbation theory [59]. A

brief derivation of the tunneling current is as follows: first, one needs to consider the

individual contribution to the tunneling current from the tip to the sample and vice

versa at an energy ε:

itip→sample = −2e
2π

h̄
|M |2(ρt(ε− eV ) · f(ε− eV )) · (ρs(ε)[1− f(ε)]) (2.1)

isample→tip = −2e
2π

h̄
|M |2(ρs(ε) · f(ε)) · (ρt(ε− eV )[1− f(ε− eV )]) (2.2)

where ρs(ε) and ρt(ε) are the DOS of the sample and tip respectively, f(ε) =

1
1+exp( ε

kBT
)

is the Fermi-Dirac distribution function. At T = 0 K, f(ε) = 1, for

ε < 0, implying that all states below EF are occupied, while f(ε) = 0, for ε > 0,

implying that all states above EF are empty. However, for finite T, there is a smear-

ing of the Fermi-Dirac distribution function, causing some states above EF to be

occupied and vice versa. The tunneling matrix or the transfer function M consid-

ers the quantum mechanical coupling between the tip and the sample, introducing

several non-trivial dependencies. The matrix element modulates the tunneling prob-

ability across the energy window defined by the bias voltage, effectively acting as

a transmission filter. While the overall current decays as e−2κz, M further refines

this dependence by accounting for subtle variations in wave function overlap. The

atomic-scale morphology of the tip and sample, along with the spatial symmetry

of their respective wavefunctions, critically influence M . For instance, a sharp tip
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2.1. Scanning Tunneling Microscope

with d-orbital character may enhance tunneling to specific sample states compared

to a tip with an s-type orbital. Having defined the essential factors affecting the

tunneling current, one can write down the expression for the current measured by

the STM, which is given by the sum of the above equations and integrated over all

energies:

I =
4πe

h̄

∫ ∞

−∞
|M |2ρs(ε)ρt(ε− eV )

(
f(ε− eV )− f(ε)

)
dε (2.3)

For measurements conducted at cryogenic temperatures, T ∼ 1.8 K, the thermal

broadening is minimal, reducing the integral to:

I ≈ 4πe

h̄

∫ eV

0

|M |2ρs(ε)ρt(ε− eV )dε (2.4)

For small applied biases, the electron wavefunctions, and thus the tunneling ma-

trix element |M |2, remain essentially constant across the narrow energy window. In

this regime, the tunneling current reflects the convolution of the sample’s and tip’s

LDOS:

I ≈ 4πe

h̄
|M |2

∫ eV

0

ρs(ε)ρt(ε− eV )dε (2.5)

Standard STM configurations typically employ tungsten (W) or platinum-iridium

(PtIr) alloy tips, which exhibit a nearly constant DOS near the Fermi level. This

characteristic is routinely verified through high-bias field-emission spectroscopy on

noble metal surfaces (e.g., Ag or Cu(111)), where current-voltage (I-V) measure-

ments should not yield any unexpected features apart from the surface states. Un-

der these conditions, the tip’s DOS ρt(ε–eV ) becomes effectively energy-independent,

simplifying to ρt(0). Hence, I can be written as:

I ≈ 4πe

h̄
ρt(0)|M |2

∫ eV

0

ρs(ε)dε (2.6)

As mentioned previously, the matrix |M |2 has a very complex form, which would

depend on the particularities of the system. For a square potential barrier between

the tip and the sample, the matrix element can be approximated by the WKB
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2.1. Scanning Tunneling Microscope

approximation:

|M |2 ≈ e−2 z
h̄

√
2mφ (2.7)

where m is the effective electron mass, z is the width of the potential barrier, φ is

the effective local barrier height, given as φ = Φs+Φt− (2ε− eV ). Substituting the

form |M |2 in eq. 2.6, I reduces to:

I ≈ 4πe

h̄
e
−z

√
8mφ

h̄
2 ρt(0)

∫ eV

0

ρs(ε)dε (2.8)

This expression for the tunneling current I describes the measured signal in STM

experiments under applied bias V , revealing that I is directly proportional to the

integral of the DOS of the sample from the Fermi energy to eV . Moreover, this

expression also correctly captures the exponential decay of the current with the

width of the vacuum barrier.

2.1.2 Types of STM measurements

2.1.2.1 STM topography

A foundational principle underpinning STM’s extraordinary ability to map surfaces

at the atomic scale is the pronounced sensitivity of the tunneling current to the tip-

sample separation z, mathematically expressed as I ∝ e−κz (where κ is a constant).

This exponential relationship dictates that even a minuscule vertical displacement

of the tip, of the order of an Å, can induce a tenfold change in the tunneling current

for typical metallic work functions. This translates into a vertical resolution of the

order of a few picometres, enabling a sharp tip, as it traverses a sample surface,

to effortlessly resolve the atomic steps and the individual atoms in the lattice. To

precisely move the tip across the surface, it’s attached to a piezotube that uses the

piezoelectric effect. This means applying a voltage makes the tube expand or shrink

in a controlled way. By using three separate high-voltage controls, the tip can be

translated in the x, y, and z directions with extremely high precision. To detect

a measurable tunneling current (of the order of pA), the scanning probe must be
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Figure 2.2: (a) Schematic illustration of the core components of an STM. A voltage
Vb is applied between a sharp tip and a sample. The motion of the tip on the xy
plane, as well as the vertical z motion, is precisely controlled by a 3D piezoelectric
scanner using a feedback loop. The image shown is a 3D constant current topography
of a SnTe sample. (b) Computer-generated image of a 2D matrix containing the z
values acquired over a 120 x 120 nm region on Ag(111), revealing monoatomic steps.
Friedel oscillations are also visible, which are correlated to the electronic structure.

positioned extremely close to the sample surface (∼ 10 Å). This controlled approach

involves a coarse motor that moves the entire tube scanner in discrete steps smaller

than the scanner’s total z-range. In most of the STM systems, this coarse motion is

achieved using piezoelectric stacks operating in a “slip-stick” mode. After each coarse

step, the scanner performs a fine sweep across its full z-range before the coarse motor

advances again. This iterative process continues until a tunneling current is detected.

To stabilize the z-position of the tip, a rapid electronic feedback loop dynamically

adjusts the z-scanner voltage, ensuring that the tunneling current remains locked at

a user-defined setpoint.

Surface topography is typically visualized using a technique known as “constant

current operation”. Here, the x and y piezo voltages drive the tip in a raster pat-

tern across the sample surface, scanning a 2D area line by line along the fast scan

direction (at speeds around �50 nm s−1). Simultaneously, the feedback system con-

tinuously adjusts the tip height z to maintain the tunneling current It at the desired

setpoint (Iset). The STM topography is generated by the z-trajectory of the tip,
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2.1. Scanning Tunneling Microscope

which effectively maps the surface contour. The STM topography in the schematic

in figure 2.2a is a constant-current scan of a SnTe sample. It is critical to select ap-

propriate operating parameters, as excessively high scan speeds can overwhelm the

feedback system’s response time, potentially leading to unintended mechanical con-

tact between the tip and the sample. It is important to note that for a sample with

homogeneous DOS, the recorded variations in the tip’s z-position directly mirror the

surface’s topographic structure; however, the spatial inhomogeneity of the DOS in

most materials implies that the STM topographic images of such materials reflect

a combination of both surface geometry and electronic structure. For instance, the

scattering of surface state quasiparticles at the step edges and defects on a Ag(111)

surface gives rise to characteristic Friedel oscillations, as exemplified in figure 2.2b.

2.1.2.2 Spectroscopy

Beyond its renowned capability for atomic-scale topographic imaging, STM serves

as a powerful spectroscopic tool that can reveal the electronic DOS across an energy

range spanning several electron volts, encompassing both occupied and unoccupied

states. This spectroscopic measurement is performed by first stabilizing the tip at a

fixed height above the surface (by disabling the feedback loop) and then sweeping

the applied bias voltage while recording the resulting tunneling current I(V ). The

fundamental relationship between the tunneling current and electronic structure

becomes apparent when one considers eq. 2.8. By numerically differentiating the I,

one can extract the sample’s DOS at a specific energy eV :

dI

dV
∝ ρs(eV ) (2.9)

However, in practice, direct numerical differentiation of experimental I(V) data in-

troduces significant noise that often obscures the relevant spectroscopic features.

To overcome this limitation, a lock-in detection technique is usually employed that

provides much cleaner spectroscopic data with a high signal-to-noise ratio. This

method involves superimposing a small AC modulation Vmod (typically a few µV
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Figure 2.3: (a) A typical dI/dV spectrum on a superconductor featuring a gap in
the DOS. (b) A dI/dV map on a superconductor showing a variation in the DOS
at a particular bias.

to mV ) at a frequency fmod on the DC bias voltage and measuring the change in

the tunneling current dI, to obtain dI/dV . However, the successful implementation

of the lock-in technique requires careful attention to two critical experimental pa-

rameters. Firstly, the STM junction’s capacitive coupling and stray capacitances

in the wiring introduce phase-shifted artifacts at the modulation frequency fmod.

Precise phase matching is therefore essential to isolate the actual tunneling current

response from these spurious capacitive contributions. Secondly, the amplitude of

the bias modulation sets a lower limit for the energy resolution given by ≈ eVmod,

therefore, the chosen Vmod must be significantly smaller than V (Vmod << V ). This

ensures that the modulation acts as a differential probe rather than averaging over

finite energy ranges. Figure 2.3b shows a typical dI/dV spectrum on the surface of

a NbSe2 crystal, revealing the superconducting gap in the DOS.

Utilizing the lock-in technique during topographic scans allows mapping the

LDOS in real space at a specific energy, U = eV , providing insights into the spatial

distribution of the DOS. These maps are commonly referred to as dI/dU maps.

Furthermore, a dI/dU map can be obtained from a densely packed grid of points

over a line or an area, allowing for the visualization of the DOS in 1D or 2D. Figure
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2.1. Scanning Tunneling Microscope

Figure 2.4: On the left is the schematic of the He3 STM system in the labora-
tory. The cryostat, STM chamber, and preparation chamber, along with all the
components, are indicated in the figure. The STM system is enclosed within an
acoustic isolation housing and installed on a dedicated vibration-damped platform.
For enhanced mechanical decoupling, the entire assembly is supported by pneumatic
vibration isolation legs that can be actively pressurized to float the system, protect-
ing against mechanical vibrations. The right side of the figure shows photographs of
the Oxford cryostat, the STM head, and the UHV chambers in the lab.

2.3b shows a typical dI/dV map acquired at a particular bias, revealing magnetic

vortices on the surface of a superconductor NbSe2.

All the spectroscopic data presented in this work will be accompanied by the

relevant experimental parameters, It, Vb, and Vmod to enable proper interpretation.

The spectroscopic data (dI/dU)has been plotted as a function of the energy w.r.t

the Fermi energy (E-EF).

2.1.3 3He STM system

The experimental results presented in this thesis have been obtained using a low-

temperature ultra-high vacuum (UHV) STM. Figure 2.4 shows a schematic of the

He3 STM system in the laboratory. The system features a Scienta Omicron “Tribus”

STM head integrated with an Oxford Instruments bath cryostat. The cryogenic sys-

tem comprises a 70 L liquid N2 jacket, a 100 L 4He reservoir, a 1K pot, and a 3He

refrigerator [60, 61], that enables ∼6 days of continuous operation at a base tem-

perature 1.8 K and ∼24 hrs at 550 mK in a single-shot 3He mode (see figure 2.5).
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Figure 2.5: Schematic of the 3He cryostat system containing a 100L LHe tank
which supplies LHe to the 1 K pot (connected to the STM shield) and the UHV
sock (in contact with the inner wall of the cryostat) which are pumped to cool down
below 4K. A tank of LN2 acts as a thermal shield against radiation from the bottom
and sides of the cryostat. The magnified version of the variable temperature insert is
shown in the red dotted box, consisting of the 1 K pot fixed to the STM shield, the
sorption pump, the 3He pot fixed to the STM head, and the 3He bellow. The 3He
in the dump vessel condenses into the 3He pot, which is cooled by the 1K pot via
the STM shield. The sorption pump is maintained at 40 K by heating to keep the
pressure in the 3He pot high so that the bellow remains extended, providing sufficient
thermal contact between the cone (attached to the 3He pot) and the counter-cone
on the STM shield which allows the STM head to cold down to 1.8 K. On switching
the heater of the sorption pump, the pressure in the bellow reduces so it contracts,
which decouples the 3He pot from the shields, causing the 3He to evaporate, thereby
cooling the pot to 550 mK.

Superconducting solenoids embedded in the helium tank enable application of both

in-plane (Bx,y ≤ 1.2 T) and out-of-plane (Bz ≤ 6 T) magnetic fields. The cryostat is

coupled to the STM chamber (see figure 2.4). The STM head is fixed to a variable

temperature insert, which can be accessed using the motorized vertical manipulator

that lowers the insert into the STM chamber, where the thermal shields encompass-

ing the STM head are opened, for sample and tip exchange. The STM chamber is

equipped with a wobble stick that facilitates tip and sample exchange. The STM

chamber is additionally equipped with two electron-beam evaporators aligned to-

21



2.2. Tip preparation

ward the sample stage, allowing for in situ material/atom deposition directly onto

the sample stage. The preparation chamber, connected to the STM chamber via

a gate valve, facilitates sample cleaning through argon ion sputtering, e-beam an-

nealing, as well as resistive annealing. To maintain pristine conditions, the system

employs turbo-molecular, ion getter, and titanium sublimation pumps, sustaining

pressures of 1.8 x 10−10 mbar in both the STM chamber and preparation chamber.

The linear travel range was optimized by colleagues to minimize degassing during

sample transfer. The volume of the inner bore of the cryostat where the STM insert

is located is additionally pumped by a small ion-getter pump. At the bottom of

the cryostat are gate flaps that act as a radiation shield for the inner bore of the

cryostat. The cryostat’s inner wall is thermally coupled to the specialized UHV sock

assembly. This UHV shock functions as an efficient cryopump when cooled below

4 K by pumping on liquid helium circulation, creating an ultra-clean measurement

environment inside the inner bore of the cryostat. This results in a local pressure

near the tip-sample junction, substantially lower than the base chamber pressure,

enabling stable measurements of highly reactive samples for extended durations with

minimal adsorbate accumulation.

The STM is operated using the Nanonis control system (SPECS Zurich), which

integrates dedicated electronics with a comprehensive software package for mea-

surement automation and data acquisition. All experimental data presented in this

work were processed and analyzed using a combination of WSxM software [62] for

topographic image analysis and MATLAB for advanced numerical processing and

visualization.

2.2 Tip preparation

The preparation of atomically sharp tips made of different materials, such as Tung-

sten, Platinum-Iridium, Chromium, etc., is important for achieving high spatial res-

olution, which ultimately allows the clear visualization of different atomic species in

the STM topographic images. An atomically sharp (ideal case) STM tip is expected
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to have just one atom at the tip apex which is primarily responsible for the tunneling

phenomena, however this is not the case most of the time as there could be more

than one atom or a cluster of atoms at the tip apex, implying varying asperities at

the tip apex which can affect the spatial resolution. There are, in principle, two steps

to tip preparation: the first one is the ex-situ method, followed by in-situ treatment.

Different methods of ex-situ tip preparation have been proposed in the past, the

most popular of which are electrochemical etching [63, 64] and mechanical etching

techniques, and the more sophisticated ones involve electron beam deposition [65,

66], focused ion milling (FIM) techniques [67, 68], and others. The electrochemical

tip-etching and mechanical tip-etching techniques are easily feasible in lab experi-

ments, are cost-effective, and are known to produce tips of desirable quality. The

STM measurements presented in this thesis are performed with tips made by the

electrochemical etching and mechanical etching methods hence, the discussion will

be limited to just those two techniques. At first, the electrochemical etching tech-

nique will be discussed. Electrochemical etching can be performed in two ways: the

direct current (DC) etching in solution and the DC etching using the lamella method.

The subsections below provide detailed descriptions of these methods.

2.2.1 DC etching in solution

Figure 2.6 shows a schematic illustration of the DC etching in solution technique

used for preparing W tips. As can be seen, the main components are a DC biasing

circuit combined with a cut-off circuit, a 5-8 % NaOH solution, a vertically control-

lable tip holder, a polycrystalline W rod acting as the anode, and a ring-shaped

electrode made out of Copper/Gold which acts as the cathode. The initial step in-

volves preparing a 5-8 % NaOH solution by dissolving 5-8 gm of NaOH pellets in 100

mL deionized (DI) water and leaving it overnight for the pellets to be dissolved com-

pletely. Once the NaOH solution is prepared, it is poured into a small beaker where

the etching occurs. A 10-15 mm long W wire having a diameter of 0.35 mm is fixed

to the tip micropositioner. The tip holder, which acts as the anode, is connected

to the positive terminal of the bias setup. A 1 mm thick gold wire is shaped into
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Figure 2.6: (a) DC etching in solution with the W wire submerged in the NaOH
solution. The situation shown here is after the etching process has been completed.
(b) DC etching using the lamella method. (c) Gradual etching of the tip close to the
meniscus formed around the W rod. Part (c) adapted from ref. [69].

a ring as demonstrated in the schematic in figure 2.6, submerged into the solution,

and connected to the negative terminal acting as the cathode. In the next step, the

W wire is lowered into the solution through the center of the gold wire ring and ex-

tended 3-4 mm underneath the plane of the ring. Once the voltage bias is switched

on, the etching process is initiated. An Omicron tip etching toolkit performs the

entire tip etching process controllably, allowing one to change the voltage and set

a threshold value of the current below which the etching circuit is broken. A high-

magnification tabletop optical microscope monitors the etching process. The OH−

ions produced at the cathode due to the dissociation of NaOH into Na+ and OH−,

flow towards the electrolyte-air interface where the etching begins. The OH− reacts

with the W rod, causing its oxidation and forming WO2
−

4 , which flows downwards
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from the electrolyte-air interface and collects near the bottom part of the submerged

rod, forming a thick layer around it. At the beginning of the etching process, the

rate is initially higher close to the electrolyte-air interface, causing a necking of the

W rod just below the interface, as shown in figure 2.6c. As the necking happens, the

amount of W available for etching is substantially reduced leading to a reduction in

the etching rate. Simultaneously, the bottom part of the submerged wire gets heav-

ier due to the deposition of WO2
−

4 . At a certain point, the weight of the submerged

part acts against the thin neck formed due to the etching, and the bottom part of

the wire drops into the solution, leaving a cone-shaped tip (see figure2.6a). Figure

2.6c demonstrates this step-wise necking and breaking process of the W wire. The

etching toolkit measures the current flowing, which has now fallen below the thresh-

old value, and switches off the circuit. The top part of the wire with a cone-shaped

apex is removed from the micropositioner and cleaned with DI water to remove the

oxide layer at the apex of the tip. It should be noted that the shape of the tip formed

depends mainly on the meniscus formed by the NaOH solution around the W rod

[64]. In an extensive thesis on the preparation of tips by different methods [69], it

has been demonstrated that, depending on different bias voltages, the length of the

cone and the aspect ratio of the tip can be controlled [69].

The as-prepared tips are unsuitable for STM measurements since the apex of

the tip would still be very blunt and might have multiple asperities. Therefore,

further in-situ treatment of the as-prepared tips is required. Several methods of

in-situ tip preparation have been proposed, such as e-beam heating, sputtering-

annealing cycles, field emission against the surface of a noble metal, etc. In the

present thesis, the as-prepared tips have been prepared by mostly treating them on

a freshly prepared Ag(111) crystal surface (refer to sec. 2.3.2). The quality of a tip

can be judged by performing topographic scans and looking at any defects, adatoms,

or step edges. To achieve reasonably sharp tips, small voltage pulses in the range of

±5 V are applied. During the pulsing, the tip might drop contaminants loosely bound

to the tip apex or pick up a cluster of Ag atoms from the Ag surface. This pick-up
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Figure 2.7: (a) Atomically sharp tip can image the Cr atoms on the Ag(111)
substrate, (b) Scanning the Ag(111) surface with a blunt tip causes the step edges
to appear blunt, (c) Scanning the Ag(111) with a sharp tip due to which step edges
appear sharp.

or drop manifests as a change in the tip height. Following the application of voltage

pulses, STM topographic scans are acquired to judge the quality of the tips. This

procedure of pulsing is repeated several times until reasonably sharp features can

be seen in the topographic images (defects and adatoms usually appear spherically

symmetric in shape, and the step edges appear pretty sharp). Even after several

pulsing cycles, if the tip remains blunt, the tip is gently drawn 0.5-1 nm into the

sample, keeping the feedback off. This method is called poking which sometimes

helps in shaping the tip apex to yield sharp tips. Another method of in-situ tip

preparation that can also be applied is deep crashing the tip against the Ag(111)

surface using the z-coarse motion. This involves dipping a few nanometres into the

surface of Ag(111). The heat generated during the hard crash between the tip and

sample helps to shape the tip apex. This method was seen to work robustly and

usually produces extremely sharp tips. It is to be noted that although it is commonly

mentioned that W tips are used for STM measurements, generally the tip apex

will have a cluster of Ag atoms because it is conditioned on the Ag(111) surface.

Figure 2.7 demonstrates STM topographic images acquired using sharp and blunt

tips. Figure 2.7(a) shows that scanning with an atomically sharp tip allows the

visualization of Cr atoms on the surface of Ag(111). As shown in figure 2.7b, scanning

the Ag(111) surface with a blunt tip i.e., a tip with a cluster of atoms, can obscure

the sharpness of the step edges. However, the advantage of scanning with a sharp tip

is apparent from figure 2.7c, which shows sharp step edges on the Ag(111) surface.
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Figure 2.8: Spin polarized dI/dU map acquired on Fe double layer on W(110)
using a bulk Cr tip at zero magnetic field demonstrating the spin spiral state.

2.2.2 DC etching using the lamella technique

The DC etching using the lamella method involves utilizing a lamella of the NaOH

solution to perform the etching. Unlike the etching in solution technique, in this

case, the ring made out of the gold wire acting as the cathode is not submerged

in the solution. It remains 5-7 mm above the solution as shown in figure 2.6b. For

the etching process, the same components as those mentioned in the previous sub-

section are used. The first step is to lower the metal wire to be etched using the

micropositioner so that it passes 3-4 mm below the center of the ring. In the next

step, a lamella of the solution is formed in the ring by lifting the beaker of NaOH

solution until the ring is submerged into the solution and then brought down. A

real image of a lamella during tip preparation is depicted in figure 2.6b. Once a

lamella his prepared, the bias voltage is applied using the Omicron tip preparation

kit, and the etching process commences. In this method, the chemical reactions in-

volved in the etching and the necking of the wire are similar to those mentioned

in the previous subsection. The etching occurs at the air-electrolyte interface, and

the lamella’s meniscus plays an important role in shaping the tip (the length of the

cone and the aspect ratio). Although this method is known to yield tips of similar
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quality to the previous approach, it is significantly more time-consuming. This is

because the lamella breaks several times during the etching process, so it has to be

reprepared from time to time. This also implies that constant monitoring is required

till the end of the etching process. However, this process is beneficial for preparing

spin-polarized tips out of Chromium rods, which tend to etch from the bulk instead

of the surface. As a test, the method in the previous section was applied to prepare

Cr tips, and it could be seen visually that the end of the tip was blunt. Following

the etching of the tips, they are cleaned using DI water followed by the in-situ treat-

ment discussed in the previous section. Figure 2.8 shows a spin-polarized dI/dU

map acquired on Fe bilayer on W(110) showing a spin spiral state, obtained using

a bulk antiferromagnetic Cr tip prepared by the lamella method. The red and sky

blue stripes depict the spin spiral state as demonstrated by Meckler et al. [70].

2.3 Sample preparation
STM is a highly surface-sensitive technique demanding an atomically smooth surface

to obtain the best results. Since the quantum phenomena of quasiparticle tunneling

from the tip to the sample and vice versa occur on a length scale of a few angstroms,

any surface roughness of a similar scale arising from poor sample preparation or

contaminants on the surface could be extremely detrimental to scanning and spec-

troscopy. Therefore, it is important to prepare atomically flat and contaminant-free

surfaces. The following subsections present an overview of the different sample prepa-

ration methods employed to obtain high-quality samples.

2.3.1 Cleaving of Pb1−xSnxSe single crystals

The Pb1−xSnxSe single crystals used in our experiments were provided by collab-

orators from the Institute of Physics and International Research Centre MagTop,

Institute of Physics, Polish Academy of Sciences. The samples obtained are air-

exposed so they are heavily contaminated, hence unsuitable for scanning in their

as-obtained form with surface-sensitive techniques like STM, which demands ultra-

clean and atomically flat surfaces to achieve the best results. To successfully perform
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STM measurements on these crystals, a fresh contaminant-free surface needs to be

exposed in the ultrahigh-vacuum environment. To accomplish this the single crystal

of Pb1−xSnxSe was fixed with low-temperature compatible silver paste (EPO-TEK

H20E Electrical Conducting Adhesive Two-part) on the Omicron sample plate. In

the next step, a 7 mm long stainless steel rod was fixed on the top of the crystal

(a) (b)

Figure 2.9: (a) Rod fixed to a sample on an Omicron-style sample plate. (b) After
cleaving the sample using a tweezer, the shiny surface of the crystal is visible.

with a vacuum-compatible resin (Torr Seal low vapor pressure resin sealant). After

this, the sample was inserted into the load lock and pumped for several hours until

the pressure reached the 10−10 mbar range. Then the sample was transferred to the

sample storage of the STM chamber, where the sample, along with the cleaving rod,

faces downwards. At this point, the cleaving step was performed at room tempera-

ture with the help of the wobble stick. Firstly, the rod was grabbed with the pincer

grip and pushed against the closed end of the sample garage with sufficient force

till the rod was knocked off the sample. By doing this, a fresh surface free from

contaminants, with optically visible flat sample regions, was exposed. The optically

flat sample regions are important for the safe approach of the STM tip and for per-

forming the measurements smoothly. The sample was immediately inserted into the

STM to cool down and perform subsequent measurements. It is worth mentioning

that, since Pb1−xSnxSe single crystals are 3D in nature, several trials of cleaving

were required before a reasonably flat surface could be identified using the optical

camera installed in the STM chamber.
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Figure 2.10: (a) Schematic of the sputtering setup. (b) Topography of an Ag(111)
surface just after sputtering, revealing numerous steps separated by narrow terraces.

2.3.2 Sputtering and Annealing

It is well known that the surface of noble metals like Au(111), Ag(111), and Cu(111)

can be prepared by bombarding the surface with Argon ions, followed by a subse-

quent annealing step. The process of bombarding the surface with argon ions to

remove contaminants such as C, CH, O, etc. is known as sputtering. This method

has been applied to prepare the Ag(111) surface for tip conditioning. Additionally,

this method can be applied to prepare the surface of certain single crystals to in-

vestigate the electronic properties by performing quasiparticle interference (QPI)

measurements. This section provides a brief overview of the sputtering-annealing

process. In sputtering, the vacuum chamber is initially filled with Ar gas from a bot-

tle of compressed gas (Westfalen UN 1950 aerosol Argon 5.0) via a DN16CF flange

until its partial pressure reaches pArgon = 3 × 10−6 mbar. Next, the Ar atoms in the

chamber are ionized by a commercial sputter gun from SPECS (IQE 11/35). The

sputter gun contains a Yttrium-coated Iridium filament that emits electrons, which

are accelerated by a high voltage (up to 3kV) anode cage. These electrons ionize the

Ar atoms, which go on to bombard the metal surface due to their kinetic energy.

The sample position is adjusted a priori to ensure the direct impact of the ion beam

on the sample. The sample must be grounded during the process of sputtering to

prevent it from getting charged, which, if not done, results in ineffective sputtering.

Figure 2.10a shows a schematic illustration of the sputtering setup. The sputter-
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Figure 2.11: (a) STM topography of PdGa(001) single crystal, left panel: after 2
cycles of sputtering and annealing showing a rough and contaminated surface, right
panel: after 15 cycles of sputtering and annealing depicting a clean surface with
step edges and terraces. Inset shows an atomically resolved image acquired on the
terrace. (b) STM topography of a RhSi(001) single crystal, left panel: after few cycles
of sputtering and annealing showing a contaminated surface, right panel: after 60
hours of sputtering and annealing revealing a clean surface with flat terraces and
step edges.

ing process on metal surfaces is usually carried out for 40 minutes - 1 hr, however,

depending on the type of crystal, the duration needs to be optimized. Figure 2.6

depicts the topography of an Ag(111) surface post-sputtering. As evident from the

topographic image, the sputtering removes the contaminants from the surface. This

surface polishing effect creates a series of steps on the surface separated by small

terraces. It is possible to enlarge the terraces by annealing the sample at a certain

temperature post-sputtering. Annealing the sample causes the step edges to merge,

thereby causing the terraces to become wider and flatter. For preparing the Ag(111)

surface, the crystal was annealed at T = 300 ◦C for 20-30 minutes. Post-annealing

flat and clean terraces are obtained, similar to the ones shown in figure 2.7b,c. This

sputtering-annealing procedure was also used to prepare single crystals of semimet-
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als such as PdGa(001) and RhSi(001). Figure 2.11 demonstrates the effectiveness of

this surface preparation method. The left panel of figure 2.11a shows the STM topog-

raphy of a PdGa(001) single crystal after a few sputtering-annealing cycles. As can

be seen, the surface is rough and covered by contaminants (blood-orange patches).

The right panel of figure 2.11a displays the PdGa(001) topography after 15 cycles of

sputtering-annealing, demonstrating a substantially cleaner surface exhibiting flat

terraces and step edges. The same holds for the RhSi(001) single crystals, which also

reveal step edges and contaminant-free terraces after numerous sputtering-annealing

cycles (see figure 2.11b).

2.3.3 Molecular Beam Epitaxy

Molecular Beam Epitaxy (MBE) is a highly versatile and precise technique for grow-

ing epitaxial thin films and heterostructures of different materials, including semicon-

ductors, metals, insulators, 2D ferromagnetic semiconductors, 2D superconductors,

and even organic molecules, with atomic layer control [71]. This growth technique

plays a crucial role in materials science and nanotechnology, enabling the fabrication

of high-quality materials for a wide range of applications, from microelectronics and

optoelectronics to spintronics and quantum computing [72].

Figure 2.12a shows a schematic illustration of the MBE setup with all its essen-

tial components such as a vacuum chamber, a rotatable sample stage with a heater

for heating the substrate, effusion cells for evaporating the materials, RHEED gun

and a fluorescent screen, a mass spectrometer to detect the different gases as well

as molecular species, an ion gauge to determine the pressure in the chamber and

cryo panels which function as cold traps to adsorb the residual gases and unwanted

molecules to prevent them from re-evaporating and contaminating the growth cham-

ber. MBE works typically at a base pressure of <10−10 mbar, which helps to reduce

contaminants and ensures the growth of high-purity samples. The growth process

involves the deposition of elements or molecular species evaporated from an effusion

cell or an e-beam evaporator, forming atomic or molecular beams that impinge on a

pre-heated substrate. As this beam arrives at the surface of the substrate, it migrates

32



2.3. Sample preparation

Effusion cells

Hea�ng coils

RHEED Gun
M

as
s 

Sp
ec

tr
o

m
et

er

Rota�ng stage
Substrate (green)
Heater (yellow)

ion gauge

Sn
Te

Pb
Te

Te

C
rC

l3

RHEED Screen

Flux monitor

Cryo panels

buffer
chamber

(a) (b)

Omnivac MBE system

Figure 2.12: (a) Schematic illustration of a MBE setup highlighting the different
components. (b) In-house MBE setup from Omnivac used to grow the CrCl3/NbSe2
samples.

across it and forms atomic layers, leading to highly crystalline thin films. The term

“epitaxial” suggests that materials grow on the substrate strictly following the lattice

ordering of the substrate. MBE also allows for real-time control of the growth pro-

cess using an in-situ surface diagnostic tool called Reflection high-energy electron

diffraction (RHEED). The RHEED works on the principle of electron diffraction,

forming streaky diffraction patterns on a fluorescent screen, which provides infor-

mation on the surface structure, growth mode, and film quality. From the RHEED

oscillations, one can also control the thickness of films down to a ML. The growth

process in MBE can occur via different modes depending on how the deposited ma-

terial and the substrate interact. The different modes are: the Frank-Van der Merwe,

Stranski-Krastanov, and the Volmer-Weber [73]. The Frank-Van der Merwe growth

mode involves the layer-by-layer growth of MLs, induced by the strong affinity of

the adatoms to bond with the substrate. However, in the Volmer-Weber method, the

adatoms have a strong affinity to one another, causing them to merge and form 3D

islands directly on the substrate surface. In the Stranski-Krastanov growth mode,

initially, layer-by-layer growth takes place until a transition to the formation of
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3D islands occurs since the strain energy due to the lattice mismatch between the

substrate and thin film becomes significant.

The CrCl3/NbSe2 samples investigated in chapter 6 were grown using a multiple

source MBE chamber from OMNIVAC. An image of this chamber is shown in figure

2.12b. Initially, a NbSe2 single crystal was cleaved in situ in the load lock of the

MBE chamber at a base pressure of 5 x 10−10 mbar using the method described in

the subsection 2.3.1 and immediately inserted into the main chamber. In the next

step, the substrate was degassed slowly by switching on the heater while monitoring

the pressure simultaneously, ensuring that the pressure remained within permissible

limits. It has been observed that during degassing, the silver paste used to fix the

substrate also degasses substantially, making it necessary to wait longer for the

pressure to recover. The pressure in the growth chamber was mostly maintained in

the low 10−9 mbar range during the degassing procedure. Once the substrate was

degassed till 350 ◦C, the temperature was reduced to the growth temperature, 300
◦C (previously optimized). For the deposition of CrCl3, the anhydrous powder of

CrCl3 was loaded into a Knudsen cell (K-cell) and previously degassed. While the

substrate temperature stabilized, the Knudsen cell was heated using a temperature

controller to 380 ◦C at a rate of 19 ◦C/min. Once the substrate and the source

temperature are stabilized, the growth is initiated by opening the shutter of the

K-cell. The growth rate was previously calibrated by growing CrCl3 on n-doped

6H-SiC(0001) substrate [74]. The calculated deposition time for ML CrCl3 was 12

minutes, so the K-cell was switched off accordingly, and the substrate was cooled

to room temperature. No post-growth annealing was required. Once the sample

cooled down to room temperature, it was immediately transferred using an ultra-

high vacuum suitcase to the low-temperature STM chamber to avoid any surface

contamination.
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Part III

Probing interaction effects in a

Topological Crystalline Insulator
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3 Pathway to Topological

Crystalline Insulator

This chapter establishes the theoretical framework for topological crystalline insula-

tors (TCIs) by tracing their conceptual development from fundamental discoveries

– including the quantum Hall effect (QHE), quantum spin Hall effect (QSHE), Z2

topological insulators, and 3D topological insulators – with particular emphasis on

the TCI system Pb1−xSnxSe.

3.1 Quantum Hall Effect

The band theory of solids acts as an effective tool to distinguish between different

types of insulators based on their electronic band structure. Ordinary insulators,

for example, are characterized by a bulk band gap separating the conduction and

valence bands. However, tuning the band structure, for example, by introducing

strong SOC can lead to the emergence of different types of insulators. More than a

decade ago, it was proposed by Kane and Mele [2] that the incorporation of spin-

orbit interactions in a single layer of graphene generates a topologically distinct state

from its 2D semimetallic state. The duo considered a model developed by Haldane

[75] in graphene, that breaks T symmetry under the application of a magnetic field

which has a net zero flux through the unit cell of the graphene lattice. This resultant

state was intriguingly gapped in the bulk but featured the transport of charge and

spin currents along the sample’s edges, whose directionality was locked to the spin.

The formulation of such edge currents was previously theoretically carried out by

Halperin [76] in the early 1980s, however unlike Haldane, Halperin considered a
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Figure 3.1: Schematic illustration of the (a) Hall Effect, (b) Quantum Hall Effect,
(c) Quantum Spin Hall effect.

strong magnetic field perpendicular to the 2D surface.

Considering the case of the ordinary Hall effect, when a small perpendicular

magnetic field is applied to a sample carrying current along the x direction (Ixx), the

electrons are deflected to one side of the sample due to the Lorentz force. Due to this,

the electrons get collected at the side of the sample, causing a charge accumulation

that leads to a potential difference Vxy across the sample termed as Hall voltage,

as shown in figure 3.1a. According to the formulation of classical mechanics, these

electrons at the edges of the sample are static . The dynamics of these edge electrons

was accounted for, in the phenomenal discovery of the Noble prize-winning QHE by

Klaus von Klitzing [77] (figure 3.1b) in 1980, where he discovered that a 2D electron

gas when subjected to extreme quantum conditions i.e., a high magnetic field and

low temperature, exhibits quantized Hall resistance given by σxy = e2/h. The QHE,

the quantum counterpart of the classical hall effect (as shown in figure 3.1a) was

described as electrons moving in quantized circular orbits at a cyclotron frequency

ωc = eB
m

in the presence of a perpendicular magnetic field. The quantization of

the electron’s orbits forms quantized energy levels, known as Landau levels with

an energy ϵl = h̄ωc(l +
1
2
). As the magnetic field is tuned, due to the quantization,

some of the Landau levels are filled while the rest are empty. These Landau levels

can be interpreted as filled and unfilled bands of a band insulator with a gap in

the spectrum separating the filled ones from the empty ones. Unlike an ordinary

insulator, the gapped quantum hall state (QHS) is characterized by the emergence

of gapless conducting states localized at the edges of the sample. The emergence

of this gapless conducting state can be understood in the following manner: due to
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Figure 3.2: Geometry to realize the QHE considering (a) a semi-infinite strip with
skipping electron orbits along the edge. (b) A single-edge state with a distinct chi-
rality connects the bulk bands.

the magnetic field while the electrons at the center of the sample form closed orbits

(figure 3.1b), the electrons near the edges bounce off, forming skipping orbits (figure

3.2a). These electrons at the edge, which propagate in a skipping orbit give rise

to a continuous flow of edge currents as depicted in figure 3.1b. These edge states

have a particular chirality that is determined by the direction of the applied field.

Intriguingly, these chiral edge states are insensitive to disorder, since there are no

available states for the electrons to backscatter.

It has been proposed in Haldane’s model [75], that one can theoretically obtain

the chiral edge states by solving a particular model for the case of graphene that

considers a semi-infinite geometry similar to the one shown in figure 3.2a. The figure

shows an edge at y = 0. The fundamental idea is centered around crossing a phase

boundary, which in this scenario implies transitioning from the sample’s central

region, through its edge, and into the insulating vacuum, as illustrated in figure

3.2a. While the center of the sample is in the QHS, the vacuum behaves like an

insulator. In 1982, Thouless, Kohmoto, Nightingale, and den Nijs [1] demonstrated

that each of these gapped phases can be characterized by a distinct topological

invariant known as the TKNN invariant (or Chern number), denoted by the integer

n. This invariant is defined as the integral of the Berry curvature [78] across the
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Brillouin zone, which for the model Hamiltonian H(k⃗) = h⃗(k) · σ⃗ defined for the case

of Graphene, can be rewritten as [79] :

n =
1

4π

∫
d2k(∂kxĥ× ∂ky ĥ) · ĥ (3.1)

since for the above Hamiltonian, the Berry flux is related to the solid angle subtended

by ĥ = h⃗/|⃗h|. The observation of the edge modes is closely linked to the change in

the TKNN invariant going from the n = 1 (QHS) to the n = 0 (insulating state),

where the edge demarcates the two different regions. It is important to note that

this Chern number transition is only possible if the contributions from the edge are

accounted for. This leads us to the next question: How can the edge contribute? The

edge contributes by closing the gap across this Chern number transition, manifesting

as low-energy excitations within the bulk gap. These are the often-mentioned edge

states in the QHE. One such edge state is sketched in figure 3.2b connecting the

bulk conduction and valence band.

Bulk-Boundary Correspondence
From the preceding discussion, it becomes clear that the existence of these metallic

edge states is intrinsically linked to the topological properties of the non-trivial bulk

material. In essence, these robust SSs are a consequence of the bulk’s topological

order. Furthermore, while modifications to the Hamiltonian describing the surface

can indeed alter the details of the edge state band dispersion and even lead to the

emergence of multiple edge states [79], a fundamental constraint remains. Specifi-

cally, if one considers the number of edge modes propagating in opposite directions

– say, nR moving right and nL moving left – their difference, ∆n = nR - nL is not

arbitrary. Instead, ∆n is a fixed integer quantity that is fundamentally determined

by a topological invariant characterizing the bulk material. This deep connection be-

tween the properties of the boundary and the topological characteristics of the bulk

is a central theme in the field of topological physics, known as the bulk-boundary

correspondence. It signifies that the edge states are not independent entities but
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rather are guaranteed to exist and possess specific properties due to the underlying

topological nature of the bulk. One cannot describe the edge properties in isolation

without considering the topological invariants that define the bulk phase. The pres-

ence and characteristics of the boundary states serve as a “fingerprint” of the bulk’s

topological order. For instance, a non-zero value of ∆n directly indicates a topologi-

cally non-trivial bulk phase, and the magnitude of ∆n often corresponds to the value

of a specific bulk topological invariant (the Chern number). This correspondence is

a powerful tool, allowing one to predict the existence and some properties of SSs

simply by analyzing the topological invariants of the bulk material.

3.2 Quantum Spin Hall Effect

As discussed in the previous section, Haldane’s model formulated the QHE consider-

ing a single layer of graphene with just broken T symmetry but, Kane and Mele [2]

based their model on a single layer of graphene in the presence of T symmetry and

additionally incorporated spin-orbit interaction where the spin-orbit term is given

by the Hamiltonian HSO:

HSO = ∆SOΨ†σzτzszΨ (3.2)

where ∆SO determines the strength of the interaction, sz is the Pauli matrix de-

scribing the electron spin, σz and τz describe the states at the graphene sublattice

and the K points, respectively. As discussed in the literature [2], this model is equiv-

alent to considering two identical entities of the Haldane model that interact via

the spin-orbit term. The resultant effect is electrons with both up and down spins

flowing in opposite directions along the boundary of the sample as shown in figure

3.1c. These spin entities come in time-reversed pairs (Kramers doublet), which pro-

tects them from back scattering as long as T symmetry is unbroken. In the presence

of an electric field, since the Hall currents due to the up and down spin flow in

opposite directions, the net Hall conductivity, σxy is zero, but there is a non-zero

flow of quantized spin current given by, J↑
x − J↓

x = σs
xyEy, where σs

xy = e/2π is the
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Figure 3.3: Geometry to realize the QSHE considering (a) a semi-infinite strip with
electrons of both spin types flowing in opposite directions. (b) Linearly dispersing
edge states of opposite chirality connecting the conduction and valence band.

hallmark QSHE. Like the QHS, the QSH state hosts gapless metallic edge states.

Importantly, just like the QHE, the existence of these edge states in the QSHE is fun-

damentally tied to the nontrivial topology of its bulk electronic structure. Given that

the topological invariant must also transition from a non-zero value (n=1 in the QSH

state) to zero (in the insulating state), this change can only occur if the energy gap

closes. This gap closing then manifests physically as low-energy excitations, which

are precisely the gapless edge modes. Figure 3.3a depicts this schematically, showing

counterpropagating edge states in a semi-infinite geometry, emulating the case of

graphene [79]. Figure 3.3b shows the corresponding edge state dispersion with edge

states of opposite chirality connecting the bulk bands. Notably, the discussion of the

edge states in the QSHE involved only up and down spin electrons corresponding

to the z component of the spin Sz, the quantity conserved here. Building upon the

understanding of topological invariants and their connection to edge states, Kane

and Mele further demonstrated in subsequent work [6] that the edge states in the

QSHE possess remarkable robustness, even when spin conservation is not strictly

enforced. This resilience arises due to the presence of T symmetry. A key character-

istic of these QSH edge states is their helical nature: electrons with opposite spin

orientations propagate in opposite directions along the edge. This spin-momentum
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locking, or helicity, ensures that backscattering is strongly suppressed, mirroring the

situation in the QHE where chiral edge states are not allowed to backscatter. More-

over, through the application of symmetry arguments, Kane and Mele also showed

that these helical QSH edge states are topologically protected against localization,

even in the presence of significant non-magnetic disorder [2]. This protection stems

from the fundamental topological properties of the bulk material, reinforcing the

concept of bulk-boundary correspondence.

The QSHE was first experimentally demonstrated in HgTe/CdTe quantum wells

by König et al. [5], marking a significant advancement in topological materials. This

work confirmed theoretical predictions that strong SOC could drive a band inver-

sion, producing helical edge states protected by T symmetry. The observation of

a quantized conductance plateau (2e2/h) at zero magnetic field, unaffected by non-

magnetic disorder, provided definitive evidence of the QSH state. These results fur-

ther established HgTe as the first 2D Z2 TI, laying the foundation for exploring T

symmetry-protected topology in broader material systems.

3.3 Z2 Topological Insulators

The discussion of the QSHE motivates a deeper examination of T symmetry for

spin-1/2 particles, which underpins the Z2 classification of TIs. The Z2 invariant—

taking values 0 (trivial) or 1 (nontrivial), distinguishes these phases by counting the

number of Kramers pairs of edge states modulo 2. For such systems, the time-reversal

operator Θ satisfies Θ2 = −1, a signature property of fermionic systems with half-

integer spin [80]. This constraint enforces Kramers’ degeneracy: every eigenstate of a

T -symmetric Bloch Hamiltonian H(k) must have a degenerate partner at T invariant

momenta. The Hamiltonian obeys ΘH(k)Θ−1 = H(-k), leading to a topological

classification where phases with the same Z2 invariant can be adiabatically connected

without closing the bulk gap. For a 2D insulator protected by T symmetry, the

existence of edge states depends on the Hamiltonian’s boundary conditions [79].
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Figure 3.4: Schematic illustration of the electronic dispersion between two bound-
ary Kramers degenerate points Γa = 0 and Γb = π/a. In (a) the number of SS
crossing the EF is even, whereas in (b) it is odd. An odd number of crossings leads
to topologically protected metallic boundary states. Figure adapted from ref. [79].

However, when present, Kramers’ theorem guarantees that these edge states appear

in degenerate pairs at T invariant momenta, kx = 0 and kx = π/a as depicted

in figure 3.4. The figure displays one half of the Brillouin zone(0 < kx <π/a); the

other half (-π/a < kx <0) is related by T symmetry. While the edge states remain

degenerate at T invariant momenta points, SOC lifts this degeneracy elsewhere in

the Brillouin zone. This leads to two distinct scenarios depending on how the edge

states at Γa = 0 and Γb = π/a connect. As shown in figure 3.4a, they can connect

in pairs, thereby obliterating the edge states by pushing the bound states outside

the gap. In this case, the bands cross the EF between kx = 0 and kx = π/a, an

even number of times which is the case of a trivial insulator. In the other case as

shown in figure 3.4b, the edge states connect in a sawtooth-like trajectory between

the two boundary kramers degenerate points, crossing the EF an odd number of

times, corresponding to the case of the 2D Z2 TI.

Following the pioneering observation of the QSHE effect in HgTe/CdTe quan-

tum wells, which provided the first experimental confirmation of a 2D Z2 TI phase,

subsequent studies have identified this topological state in several other material

systems. These include InAs/GaSb quantum wells [81], bismuthene monolayers on
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SiC substrates [12], and more recently in the van der Waals compound β-BiBr [82],

significantly expanding the family of 2D Z2 TIs.

3.4 3D Topological Insulators

The QSH insulator features edge states in the 2D limit characterized by a single Z2

invariant that distinguishes the trivial insulator (n = 0) phase from the QSH insu-

lator (n = 1) phase. This concept naturally extends to three dimensions through

four Z2 invariants (ν0; ν1, ν2, ν3), which collectively distinguish between trivial insu-

lators, weak topological insulators, and strong topological insulators. The theoretical

foundation for this classification was established in 2006 through independent work

by several groups [13–15, 83]. In 3D, the topological insulating phases are charac-

terized by metallic SSs. These SSs can be represented in the momentum space by

2D crystal momentum. Contrary to a 2D Z2 TI, the 3D TI features 4 T invariant

momenta on the surface Brillouin zone labelled as Γ1,Γ2,Γ3,Γ4 (as shown in fig-

ure 3.5a and b). As illustrated in figure 3.5a,b, if a surface state is located at any

of these points, it will be doubly degenerate (marked by the pink dots), obeying

Kramers’ theorem. Interestingly, these surface state crossings form 2D Dirac cones

at the Kramers’ degenerate points. As one moves away from these special points,

the spin-orbit interaction splits the degeneracy, similar to the 2D Z2 TI case.

Qualitatively, the 3D TI can be viewed as a three-dimensional extension of the

QSH insulator, constructed by stacking multiple layers of the 2D QSH insulator.

This results in the spin-momentum locked edge states in the QSH insulator evolving

into 2D SSs. Going back to the discussion on weak 3D TIs, figure 3.5a shows one

possible surface Fermi contour corresponding to a weak 3D TI. As can be seen, a

single surface band intercepts the EF between the T invariant momenta Γ1 and

Γ2, and Γ3 and Γ4. This is equivalent to the scenario of a Z2 TI, where a single

topological edge state crosses the EF between Γa and Γb as illustrated in figure 3.4b.

A 3D representation of this would be the weak TI characterized by the Z2 invariant
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Figure 3.5: Schematic illustration of the Fermi circles in the surface Brillouin zone
for (a) a weak topological insulator and (b) a strong topological insulator. (c) A
single Dirac cone where the Fermi surface encloses the single Dirac point ED, the
simplest case of a strong topological insulator. Figure adapted from ref. [79].

ν0 = 0. The term weak stems from the fact that, unlike the 2D helical edge states

in the QSH insulator, the SSs here are not protected by T symmetry [13]. However,

the strong TI phase characterized by ν0 = 1 is not just a simple extrapolation of

the 2D QSH to the 3D space. The topological invariant ν0 plays an important role

here as it counts the number of Karmers degenerate points enclosed by the Fermi

surface. For the strong TI, as shown in figures 3.5b and 3.5c, an odd number (one in

the case shown here)of Kramers degenerate Dirac points is enclosed by the surface

Fermi circle. It has been shown that the Hamiltonian corresponding to a massless

Dirac fermion on the 2D surface can be written as [37]:

Hsurface = −ih̄vFσ.∇ (3.3)

where σ is the Pauli spin matrices and vF is the Fermi velocity. In contrast to a

conventional metal, where every point of the Fermi surface consists of a degenerate

distribution of both up and down spins, the SSs of a 3D TI are non-degenerate, dis-

playing a helical spin-momentum locking. As illustrated in figure 3.5b, the electron

spins are locked perpendicular to their momentum, resulting in a particular spin tex-

ture that winds around the Fermi surface. This spin texture is a direct consequence

of strong SOC and T symmetry protection, distinguishing 3D TI SSs from ordinary
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Figure 3.6: Schematic illustration of the band structure of Bi1−xSbx as it transforms
from the (a) semimetallic state for pure Bi, to the (b) semiconducting state for 0.07
< x < 0.22 and back to the (c) semimetallic state for x > 0.22. Figure adapted from
ref. [79].

metallic states. Similar to the QSH insulator, the SSs in the 3D TI are also pretty

robust to disorder and protected from backscattering. It has been shown by Nomura

et al. [84] that these SSs resist localization even under the strongest of perturbations

as long as the bulk band gap remains intact, which is ensured by the π Berry phase

acquired by the massless Dirac fermions as they encircle the Dirac point. It has

been shown that this π Berry phase leads to a negation of the localization effects,

causing a logarithmic increase in the conductivity [85], however, the SS transport

differs fundamentally from the ballistic edge channels of 2D TIs, exhibiting instead

a diffusive regime.

Experimental Discovery of 3D TIs
The first 3D TI phase was discovered in a semiconducting alloy, Bi1−xSbx in angle-

resolved photoemission spectroscopy (ARPES) experiments. Bi is a semimetal and

a material with large SOC, which is believed to have an indirect negative band gap

[86]. Figure 3.6a shows a schematic of the band structure of pure Bi, where the va-

lence and conduction band emanating from the antisymmetric (La) and symmetric

(Ls) orbitals features a small band gap ∆. It has been shown that near the L points

the bands mimic a linear dispersion characterized by a (3+1)-dimensional Dirac

equation [87]. However, at a critical concentration of Sn doping (x ∼ 0.4), the band

structure can be manipulated so that the band gap ∆ at the L points closes, giving

rise to a massless 3D Dirac fermion. As shown in figure 3.6b, with a gradual increase

46



3.4. 3D Topological Insulators

Figure 3.7: (a)Second derivative of the intensity describing the surface state disper-
sion of Bi0.9Sb0.1 along the Γ̄M̄. The red dotted lines indicate the SS that intersect
the Fermi surface. The yellow circles indicate the Fermi crossings of the SSs. Here,
the number of SSs crossing the Fermi surface between Γ̄ and M̄ is five. The odd
number of crossings is a signature of the topologically non-trivial nature of the SSs.
(b) Fermi surface contour featuring a vortex-like spin texture around the Γ point.
Experimental evidence of the π Berry phase was obtained from Fermi-surface data.
Reprinted parts (a) and (b) from ref. [16], Springer Nature Limited.

in the the Sn concentration i.e., x > 0.07, the parity of the orbitals at the L points

are reversed, and the valence band at the T point lowers below the conduction band

at the L point, turning the material into an insulator. As the concentration of Sn

increases further, at x ∼ 0.09, the valence band at T goes below the valence band

at L, forcing the material to feature a direct band gap with massive Dirac-like bulk

bands. At higher Sn concentrations, x > 0.22, the valence band at a different high

symmetry point shoots above the conduction band minima at the L point, restor-

ing the semimetallic nature. Hsieh et al. [16] first demonstrated the 3D TI phase

in Bi0.9Sb0.1 which is an insulator in the bulk. In figure 3.7a, the second-derivative

of the intensity describing the surface state dispersion has been depicted, which

shows 5 SSs (red dashed line) crossing the Fermi surface (yellow circles) between

the high-symmetry points Γ̄ and M̄. This odd number of band crossings that is re-

lated to the Z2 topological invariant (as discussed in section 3.3) indicates that the

gapless SSs are topologically non-trivial. These observations established Bi0.9Sb0.1

as a strong spin-orbit coupled topological insulator with ν0 = 1, featuring an odd

number of Dirac cones. Following the experimental discovery of the 3D TI phase, the

spin texture of the SSs was also measured using ARPES. Hsieh et al. [88] measured
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Figure 3.8: (a) Observation of Dirac cone from APRES measurement for (a) Bi2Te3,
(b) Bi2Se3 and time-resolved ARPES for (c) Sb2Te3. Part (a) reprinted with permis-
sion from AAAS ref. [17]. Parts (b) reprinted from ref. [18], Springer Nature Limited.
Part (c) adapted from ref. [89].

the spin polarization of the SSs, which strongly ascertains their spin-polarized and

nondegenerate nature. As illustrated in figure 3.7b, the spin texture of the SS shows

the spins rotating by 2π around the center Fermi surface, providing the first experi-

mental evidence of the π Berry phase as theoretically predicted. Another important

aspect of the SS of a 3D TI i.e. protection from backscattering was also established

in Bi0.92Sb0.08 by combining STM/STS and ARPES techniques [90]. The successful

demonstration of the 3D TI phase in Bi1−xSbx was extended to the chalcogenide

family, including Bi2Se3 (figure 3.8b), Bi2Te3 (figure 3.8a) and Sb2Te3 (figure 3.8c).

Unlike Bi1−xSbx, the this family of 3D TIs was shown to possess a single Dirac cone

located at the Γ̄ point of the surface Brillouin zone with a rotating spin polariza-

tion around the Fermi-surface [17–19, 91]. Additionally, from the reports mentioned

above, it was ascertained that the topological nature of these materials is associated

with a band inversion induced by strong SOC at the Γ point of the bulk Brillouin

zone. In the case of Bi2Te3, which possesses a smaller band gap (0.15 eV) as com-

pared to Bi2Se3 (0.3 eV), it has been shown that the surface behaves differently from

a conventional 3D TI. Both ARPES and STM/STS measurements have revealed a

hexagonal warping of the SSs attributed to the low band gap and a strong trigonal

potential [17, 92, 93].
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3.5 Topological Crystalline Insulators

The previous sections dealt with topological edge or SSs in 2D and 3D TIs protected

by T symmetry. It is important to note that the different symmetries play a crucial

role in generating new topological states of matter. Hence the discovery of the topo-

logical insulating state and the role of the T symmetry cultivated the interest in

exploring other symmetries like the particle-hole symmetry [94–96], known to give

rise to the topological superconducting phase [34, 97] or the translation symmetry

of spins giving rise to the magnetic topological insulating phase [98, 99]. In 2011,

Liang Fu proposed that incorporating crystal symmetries, such as the mirror or ro-

tational symmetry, could lead to a completely different topological class. He termed

this new topological class as a topological crystalline insulator (TCI) [20] where the

crystalline symmetries offer topological protection to the SSs. Unlike the TI, the

TCI surface state can be easily destroyed if the crystal is distorted or has low sym-

metry, since the topology relies solely on the crystallographic symmetries. This also

means that a TCI cannot be adiabatically connected to an atomic insulator solely

by preserving the T symmetry because gradually removing atoms from a crystal to

form an atomic insulator would mean breaking the crystalline order. Therefore, to

understand the role of crystalline symmetries, initial theoretical works focused on

the study of 3D model systems with 4-fold (C4) or 6-fold (C6) rotational symmetry

[20]. Using the tight-binding formalism, the energy bands of electrons occupying the

p- and d-orbital were derived for a tetragonal lattice with a unit cell consisting of

two unique sites A and B (figure 3.9). It followed from the tight binding calculations

[20] that the (001) surface, which preserves C4 symmetry features doubly degenerate

metallic surface states as depicted in figure 3.10b. The double degeneracy follows

from the contributions arising from both the px and py orbitals at the high symme-

try point M. The initial model used by Liang Fu did not consider SOC, however, the

prediction of the TCI phase was done in a particular crystal with high SOC, which

is discussed later in this section. In the model adopted by Fu [20], the presence of
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Figure 3.9: (a) Tetragonal lattice consisting of two unique lattice points A and
B in the unit cell along the c-axis, (b) Brillouin zone corresponding to the lattice
along with the high symmetry points at which the SSs are predicted to exist. Figure
adapted from ref. [20].

T symmetry combined with C4 symmetry renders these doubly degenerate SSs on

the (001) surface to be topologically protected. Therefore, these SSs between two

high symmetry points can connect in two possible ways, crossing the EF either an

even or an odd number of times. This follows from a similar discussion of weak and

strong 3D TIs in the previous section. An even number of band crossings of the SSs

suggests they are weakly protected as they can be easily pushed outside the bulk

band gap by tuning the surface chemical potential. However, the same is not possible

when the SS intercepts the EF an odd number of times. As previously shown in the

schematic in figure 3.5b,c the surface Fermi circle encloses an odd number of Dirac

points. For the 3D TIs, these corresponded to the case of a strong TI. In the present

case of a TCI, the odd number of SS crossings itself implies that they are topologi-

cally protected. The presence of these two types of crossing of the SSs corresponds

to two topologically distinct phases, under the class of T invariant insulators with

C4 symmetry. Similar to the 2D and 3D TI characterized by a Z2 invariant, it was

shown that the 3D T invariant insulators with C4 symmetry can be defined by the

topological invariant ν0 and the gapless SSs on the (001) surface of these 3D band
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Figure 3.10: Schematic illustration (a) of the bulk bands derived from tight binding
calculations along high symmetry directions corresponding to the tetrahedral lattice,
(b) of the SSs (blue curves) on the (001) surface touching one another in a quadratic
fashion. Figure adapted from ref. [20].

insulators have ν0 = 1.

Development of the TCI material class
Shortly after the discovery of the TCI phase for a generalized 3D tetrahedral lattice

with T and C4 symmetry, Hsieh et al. theoretically proposed the TCI phase in

the semiconductor tin-telluride (SnTe) [21]. SnTe has a rocksalt structure with an

interpenetrating lattice of Sn and Te as shown in figure 3.11a. It is an intermixing of a

face-centered and body-centered cubic lattice. The 3D Brillouin zone corresponding

to the SnTe lattice is sketched in figure 3.11b, resembling a truncated octahedron

with 6 square faces and 8 hexagonal faces. It is a narrow band gap semiconductor

where the band gap occurs at the center of the 8 hexagonal faces of the bulk Brillouin

zone, which are the L valleys in the bulk Brillouin zone [100]. This implies that the

conduction band minima and the valence band maxima occur at these L points. Since

the SnTe crystal has inversion symmetry, each L point and its diagonally opposite L

point are equivalent, leaving 4 unique L point momenta as depicted in figure 3.11b.

Similar to conventional semiconductors, since Sn is more electropositive than Te, it is

expected that the p-orbitals of Sn would contribute to the conduction band, whereas

the p-orbitals of Te atoms contribute to the valence band, however, as demonstrated

by electronic band structure calculations [21], the orbital nature of the cations and

anions are reversed due to a band inversion at the conduction and valence band
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Figure 3.11: (a)Face-centered cubic structure of SnTe with Sn and Te atoms
marked in red and blue, respectively. The plane shown in shamrock green corre-
sponds to the (11̄0) mirror plane. (b) Schematic illustration of the bulk Brillouin
zone of the SnTe crystal structure along with its projections onto the (001), (111),
and (110) surface Brillouin zones. L1, L2, L3, and L4 denote points in the bulk Bril-
louin zone at which the bulk semiconducting gap is located. For the (001) surface,
the L1 and L2 are projected onto the X1 point located at the edge of the surface
Brillouin zone, while points L3 and L4 are projected onto the X2 point. For the
(111) surface, L1 point is projected onto the Γ point while the L2, L3, and L4 points
are projected onto 3 different M points. For the (110) plane, L1 and L2 points are
projected onto the X point while L3 and L4 points are projected onto the R point.
The shaded blue planes are the mirror planes in momentum space for the respective
surface terminations. Part (b) adapted from ref. [101].

edge [100]. A similar semiconductor in the same group, PbTe, possessing the same

crystal structure as that of SnTe, is known to exhibit a normal band ordering where

cationic orbitals from Pb contribute to the conduction band while the anionic ones

from Te contribute to the valence band [102]. A schematic illustration of the above

as obtained from first-principle electronic calculations has been sketched in figure

3.12, where it can be seen that on going from PbTe to SnTe, there is a parity reversal

at the L point [21]. This also means that the band inversion occurs at all 4 unique

L points in SnTe, indicating an even number of band inversions.

In the previous section on 3D TIs, it was emphasized that an odd number of band

inversions driven by spin-orbit interactions is an essential factor for establishing the

Z2 topological phase which means that in the present case, SnTe with an even
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Figure 3.12: Schematic illustration of the electronic band structure of (a) PbTe
exhibiting a normal ordering of the band structure where the L− and L+ states
contribute to the conduction and valence band respectively, (b) SnTe where the
shaded portion in grey indicates the region of the band inversion shown as a reversal
of the role of the electronic states at the L point (L+ ⇌ L−). Figure adapted from
ref. [21].

number of band inversions is not expected to be a Z2 TI in nature. However, it has

been shown by Hsieh et al. that by invoking crystalline symmetries, which in this case

is the mirror symmetry of SnTe’s face-centered cubic lattice, an even number of band

inversions can drive the system into the topological phase. It has been suggested that

the set of {110} mirror planes in the real space (illustrated in shamrock green in

figure 3.11a) has an important role to play here for there exists a plane ΓL1L2 (figure

3.11b) in the momentum space defined by the high symmetry points Γ, L1 and L2

on which the crystal momenta are invariant under reflection about the set of {110}

mirror planes [21, 101, 103]. This establishes ΓL1L2 plane as the momentum space

mirror invariant plane1. Previously, it has been demonstrated by Teo et al. [104] that

for mirror symmetry invariant systems a characteristic invariant could be defined i.e.

the Chern invariant n±i. Under the mirror operation denoted by M where obeys the

condition, M2 = -1 corresponding to spin 1/2 electrons, the Bloch wave functions on

the mirror-invariant plane can be defined by the eigenvalues of M = ±i namely, Ψ+i

and Ψ−i. It is then possible to associate each wave function with the Chern invariant,

n±i. The difference of this Chern invariant defines a new topological invariant, which

1By similar arguments ΓL3L4 plane is another momentum space mirror invariant plane
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defines the mirror-invariant topological class, known as the mirror Chern number,

nM = n+i − n−i. The quantity nM carries the same weightage as that of the Z2

invariant in 2D or 3D TIs. Just like the non-zero Z2 invariant gaurantees that any

T invariant system is in the 2D or 3D TI phase, similarly a non-zero nM ensures

that any system characterized by mirror symmetry is in the topological crystalline

insulating phase. To determine the mirror Chern number and establish that SnTe is

a TCI, Hsieh et al. [21] and others [101, 103] solved the k.p Hamiltonian below:

H = mσz + v(k1s2 − k2s1)σx + v3k3σy (3.4)

which has previously been established to determine the band structure of a crystal at

the L point [105]. Here k1, k2, k3 are a set of orthogonal coordinates in the momentum

space where k1 is perpendicular to the 110 mirror plane and k3 is along the line

joining the Γ and L point; v denotes the group velocity of the quasi-particles, σz =

±1 represents the p-orbitals from the cation (Pb or Sn) and anion (Te respectively)

that contribute to the band and s3 is the total angular momentum along the ΓL line.

s1 and s2 are the angular momentum in the direction orthogonal to the ΓL line. The

factorm in the Hamiltonian determines the ordering of the bands, where a positivem

corresponds to normal band ordering, while a negative m corresponds to a switching

of the cation and anion character at the conduction and valence band, indicating a

band inversion. Solving the Hamiltonian above for the mirror invariant plane ΓL1L2

corresponding to k1 = 0, revealed that the mirror Chern number changes by 1 due

to the band inversion at one of the L points in the mirror-invariant plane. A second

L point within the ΓL1L2 plane, where another band inversion occurs, contributes

an additional change of 1 to the mirror Chern number. Therefore, for the ΓL1L2

plane, the net contribution to the change in the Chern number from both L1 and

L2 points is 2 in this case. Additionally, it has been demonstrated by Teo et al. that

the sign of the Chern number is negative, which establishes that nM = -2 for SnTe.

Furthermore, from first-principle calculations [21] it was also shown that the band

gap of SnTe varies monotonically with the lattice constant, where with decreasing
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lattice constant the band gap undergoes a transition from positive to negative values,

passing through a zero band-gap point. The zero point crossing indicates that the

band structure of SnTe undergoes a topological phase transition where the negative

band gap region corresponds to the topologically non-trivial phase and establishes

SnTe as a TCI with nM = -2. As mentioned before, PbTe with a normal band

ordering (m>0) being a trivial band-gap insulator has nM = 0, hence proving that

PbTe and both SnTe belong to unique topological classes.

The non-zero nM of SnTe can have a significant impact on its electronic properties

depending on the different surface terminations as theoretically demonstrated first

by Hsieh et al. [21] and later by Liu et al. [101] and Wang et al. [103]. This motivated

the theoretical study of the electronic properties of different surface terminations of

SnTe that are expected to exhibit topological SSs owing to the non-zero nM , provided

these surfaces are mirror-invariant about the {110} mirror plane. An inspection of

the face-centered cubic structure of SnTe reveals that there exists 3 such surface

terminations that respect the mirror symmetry about the {110} mirror planes: the

(001) surface termination which is mirror symmetric about two of the {110} planes

(plane shown in shamrock green in figure 3.11a and the plane perpendicular to it);

the (110) surface which is mirror symmetric about the {11̄0} mirror plane, and the

(111) surface which is symmetric about three identical {11̄0} mirror planes [21, 101].

Depending on the surface terminations, the different L points in the bulk Brillouin

zone are projected to different or same T invariant surface momenta, namely, Γ, M,

R and X. A description of these projections corresponding to the different surface

terminations of SnTe is as follows: according to the schematic illustration of the SnTe

Brillouin zone in figure 3.11b, it can be observed that for the (001) surface, the L1

and L2 points on the hexagonal face of the bulk Brillouin zone are projected onto the

same T invariant surface momenta, X1 point of the surface Brillouin zone. Similarly

the L3 and L4 points are projected onto the same surface momenta X2 which is

related to X1 by C4 rotation about the (001) surface normal. For the (110) surface,

the L1 and L2 points are projected onto the same T invariant surface momenta,
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X point of the surface Brillouin zone, while L3 and L4 points are projected onto

the surface momenta R. For the (111) surface, the L1 point is projected to the T

invariant Γ point while L2, L3 and L4 points are projected to 3 different T invariant

M points [21, 101, 106]. Liu et al. classified the SSs on the (111) surface as type-I

and those on the (001) and (110) as type-II [101]. It was shown that the type-I

SSs on the (111) surface can be obtained by simply solving the Hamiltonian in eq.

3.4 [101, 106]. This yields 4 Dirac cones on the (111) surface, located at unique

surface momenta which are the surface projection of the 4 L points. In this case,

the L valleys do not interact as the Dirac cones are projected to different surface

momenta, and the in-plane translation symmetry prohibits them from doing so. On

the other hand, for the type-II SSs on the (001) or (110) surfaces where the L points

are projected onto the same in-plane surface momenta, it can be shown that one

needs to consider interactions at the lattice scale between the different L valleys

which can be accounted for by adding extra terms to the k.p Hamiltonian in eq.

3.4. In the context of the experimental results presented in the next chapter, only

a qualitative derivation of the SSs on the (001) surface is outlined here. Detailed

analyses of the (111) and (110) surfaces, which are outside the scope of this work,

can be found in ref. [101, 106, 107].

Considering the invariance of the X point on the (001) surface, under three

point group operations, Mx (x → -x), My (y → -y) and C2 (two-fold rotation

about the surface normal) and the T operation Θ, it is possible to deduce the

terms that describe the interaction between the L valleys at the lattice scale [101,

103]. On incorporating these terms in the k.p Hamiltonian in eq. 3.4, the resultant

Hamiltonian describing the electronic structure at the X for the (001) surface can

be rewritten as:

H = (vxkxsy − vykysx) +mτx + δsxτy (3.5)

where the terms m and δ account for the interaction between the L valleys at the

atomic scale. Before going on to describe the results of the Hamiltonian it is worthy
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Figure 3.13: (a)Schematic illustration of the band structure for the case where the
parent Dirac cones do not interact. They intersect one another over an elliptical
contour on the surface Brillouin zone, where the entire region within the elliptical
region remains gapless. (b) Schematic illustration of the electronic band structure
for the (001) surface depicting the low-energy child Dirac cones located at Λ1 and
Λ2 on the surface Brillouin zone along the mirror line, formed out of the interaction
between two high energy parent Dirac cones. Two saddle points S1 and S2 are also
visible, located between the 2 child Dirac cones at energies close to the gap edge. (c)
Energy dispersion showing one of the Dirac cones along Γ-X while along X-M the
saddle points can be seen. The right side shows a plot of the DOS corresponding to
the energy dispersion on the left, where at the energy of the child Dirac cone, there
is a dip, and the saddle points lead to a Van Hove singularity on either side of the
dip, which appear as kinks in the DOS. Parts (a) and (b,c) adapted from ref. [103]
and ref. [101] respectively.
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mentioning that the mirror plane in momentum space ΓL1L2 (or ΓL3L4) is projected

on the (001) surface Brillouin zone along the Γ-X1 (or Γ-X2) direction. For simplicity,

the X1 and X2 will be replaced by the generalized T invariant momentum X. The

line along the Γ-X, termed as the mirror line has a significant consequence since any

set of Dirac cones that is present on this line is topologically protected by the mirror

symmetry [21, 101, 103]. Therefore, on solving the Hamiltonian above, it was shown

that there exists a pair of coaxial spin-polarized Dirac cones on the (001) surface

along the mirror line Γ-X originating from the crossing of two pairs of mirror SSs

which are protected by the mirror symmetry and symmetrically separated about the

X point as schematically illustrated in figure 3.13b. It is interesting to note that the

crossing of the mirror SSs giving rise to the child Dirac cones originate from the

interplay between two parent Dirac cones (located at the bulk L1 and L2 points)

centered at the surface momenta X and separated in energy owing to their different

band characters which are derived from either the Sn or Te atoms as sketched in

figure 3.13b. In fact, it has been theoretically shown by Wang et al. that out of

these two parent Dirac cones, the one with the Dirac point lower in energy has a

Sn-like nature while the one higher in energy has a more Te-like character [103].

However, one should note that there exist two possibilities here, out of which only

one is expected to capture the child Dirac surface bands: the first one, in which

there is no interaction between the parent Dirac cones, and the other, in which the

parent Dirac cones interact. First of all, when there are no interactions between

the parent Dirac cones (δ = 0), as shown in figure 3.13a, both the parent Dirac

cones interpenetrate and cross one another over an elliptical contour in the surface

Brillouin zone enclosing the X point and cutting the mirror line along Γ-X only

at two points located on either side of the X point. Between the two intersection

points of the mirror line, the SSs are gapless in the entire elliptical region along

the mirror line. It is therefore evident that in this case, the surface Dirac cones on

the (001) surface cannot be obtained unless a gap opens over the elliptical contour.

Consequently, it becomes important to consider the interactions between the parent
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Figure 3.14: (a)Schematic illustration of the evolution of the constant energy con-
tours undergoing a Lifshitz transition leading to a crossover from two disconnected
energy pockets to a large hole pocket and a small electron pocket. Figure adapted
from ref. [103].

Dirac cones (δ = 1). As a result of the interactions, the SSs in the elliptical region

where the two parent Dirac cones overlap become gapped, except at two points along

the mirror line where the mirror symmetry prohibits the gap opening. These two

points namely Λ1 and Λ2 host the mirror-symmetry protected child Dirac cones on

the (001) surface as schematically illustrated in figure 3.13b. Figure 3.13c shows the

energy dispersion of the (001) SnTe surface, where along the Γ-X line one of the

child Dirac cones can be observed with the two aforementioned, parent Dirac cones

located at the X point. Since there are two X points related to one another by C4

symmetry, by solving the Hamiltonian and using similar arguments for the other,

the X2 point, it can be shown that there exists another pair of Dirac cones on the

mirror line, Γ-X2 and symmetrically shifted about the X2 point on the (001) surface

of SnTe. This gives a total of 4 Dirac cones on the (001) surface of SnTe, which was

an important discovery since, the even number of Dirac cones combined with the

mirror symmetry of the (001) surface established that SnTe is a TCI with a non-zero

mirror Chern number (nM = −2).

Besides the discovery of the 4 Dirac cones on the (001) surface of SnTe, the

theory also provided useful insights into the topology of the energy contours which

were shown to evolve peculiarly as one goes away from the surface Dirac points

towards higher and lower energies [21, 101, 103]. As sketched in figure 3.14, close
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to the EF, the Fermi surface consists of two disconnected anisotropic Fermi pockets

outside the X point and centered about the Λ1 and Λ2 point. At energies lower

than the EF, the constant energy contour evolves, changing from two disconnected

pockets to one large hole pocket and a small electron pocket centered at the X point.

This transition in the topology of the constant energy contours occurs via a Lifshitz

transition where the disconnected pockets hybridize with one another leading to the

saddle points S1 and S2 in the band dispersion. These saddle points occur along the

X-M where the surface band is gapped, leading to a divergence in the DOS at these

points popularly known as Van Hove singularity as pictorially represented in figure

3.13c. which are known to play an important role in giving rise to interaction effects

[108–110].

Based on the electronic band structure calculations, Wang et al. calculated the

associated spin texture of the (001) surface Dirac cones [103]. For these calculations,

the spin polarization of the different surface bands having a Sn or Te-like orbital

nature was considered as qualitatively described below. Considering the upper cone

region (conduction bands), it was shown that for the surface bands on the mirror

line along Γ-X close to X point, have a Te-like nature with spins rotating in a

counterclockwise fashion. The region outside the X point i.e. near the Λ1 and Λ2

point, the upper Dirac cones which have an Sn-like orbital nature, have spins rotating

in a clockwise fashion. This leads to the scenario where the spin texture around the

surface Dirac cones on the conduction band side is clockwise. On the valence band

side of these surface Dirac cones, near the X point, the orbital nature of the lower

Dirac cones is Sn-like with a clockwise rotation of the spins while outside the X

point where the lower Dirac cones have a Te-like orbital nature, the spins rotate in

a counterclockwise fashion. Consequently, both the lower surface Dirac cones in the

valence band region have a counterclockwise spin texture. A schematic illustration

of the preceding discussion showing the spin texture of the surface bands crossing

at the Λ1 and Λ2 point is depicted in figure 3.15a. The discussion of the spin texture

of the surface Dirac cones provides insight into the chirality of the Dirac cones. For

60



3.5. Topological Crystalline Insulators

EF

Sn-like
Te-like

Sn-like

Te-likeTe-like

Sn-like

(a) (b)

Figure 3.15: (a) Illustration of the spin-texture of the Sn and Te-like surface Dirac
cones along the Γ-X-Γ direction displaying clockwise and counterclockwise rotation
in the upper and lower Dirac cones, respectively. (b) Schematic of the spin texture
for the lower Dirac cone showing a counterclockwise rotation corresponding to a
mirror Chern number of −2. Figure adapted from ref. [103].

the (001) surface of SnTe, which features two pairs of Dirac cones, the spin texture

reveals a counterclockwise rotation of the spins for all 4 Dirac cones, demonstrating

a key point that all 4 Dirac cones on a TCI surface have the same chirality.

The theoretical prediction of the TCI phase by Hsieh et al. with an even number

of Dirac cones on the (001) surface of SnTe was a phenomenal discovery, where com-

bining topology with crystalline symmetries gave birth to this new topological state.

However, it becomes much more captivating to observe these SSs in experiments and

to be able to manipulate them, which could potentially lead to more practical appli-

cations. The first experimental realization of the TCI phase on the (001) surface of

SnTe was performed by Tanaka et al. who synthesized SnTe single crystals and subse-

quently carried out ARPES measurements [22]. In their experiments, single crystals

of SnTe were cleaved in situ exposing the (001) surface of SnTe and subsequent

ARPES measurements revealed the existence of gapless SS crossings, mimicking a

Dirac cone which was shifted from the edge of the surface Brillouin zone (referring

to the Λ point). Furthermore, for comparison, ARPES measurements were also car-

ried out on the trivial insulator PbTe, revealing the absence of any such gapless SSs,

thereby providing strong experimental evidence of the well-established theoretical

prediction that both SnTe and PbTe belong to two distinct classes. It is interesting
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to note that prior to the work by Tanaka et al., photoemission studies on SnTe have

been incapable of observing the surface Dirac surface bands owing to the formation

of Sn vacancies on the surface, leading to a heavy p-doped nature of SnTe crystals

[111]. As a result, the chemical potential was pinned deep inside the valence band,

thereby not cutting across the SSs. This would imply that the potential SSs would be

unoccupied, making them inaccessible for photoemission-based experiments, which

heavily rely on the occupied electronic states. As mentioned in the study by Tanaka

et al., the Dirac SSs were closely aligned with the chemical potential, and, addition-

ally, cleaving the sample led to Te vacancies causing a downward band bending,

thereby making the Dirac SSs accessible. The type-I SSs on the (111) surface of

SnTe were also experimentally demonstrated in ARPES measurements [112].

The theory by Hsieh et al. elegantly demonstrated the TCI phase and predicted

mirror-symmetry-protected SSs in SnTe. Furthermore, it explored the impact of

perturbations on the topological SSs, including strain or electric fields that break C4

and mirror symmetries of the (001) surface. This would cause a structural distortion

since the atoms would be displaced from their original positions. It has been shown

that this distortion affects the surface Dirac cones inducing a gap opening in these

gapless SS along one of the mirror lines while they remain intact along the other one

and this would depend directly on the direction along which the distortion is applied

[21, 113]. The opening up of a gap has been associated with the acquisition of a mass

in the massless surface Dirac cones [21, 114]. Besides, SnTe is also known to readily

undergo a rhombohedral distortion at low temperatures, exhibiting a ferroelectric

behavior that has been demonstrated both theoretically and experimentally [21, 115,

116]. It has also been proposed that this gap opening in the presence of an applied

magnetic field induces the Quantum Hall state in the SSs [21, 114]. From the above

discussion, it is evident that there exist different ways in which the Dirac SSs can be

tuned to realize novel phases suggesting the implementation of SnTe for device-based

applications [117].
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Figure 3.16: Evolution of the band gap for the substitutional alloy Pb1−xSnxSe
at different temperatures. The white side is the region of the positive band gap or
normal band ordering corresponding to the trivial insulator, like PbSe or PbTe. On
the other hand, the region marked in yellow is the negative band gap region with a
band inversion corresponding to a TCI. The lower right side of the diagram, with
lines drawn across the yellow region, shows the composition range and temperature
at which Pb1−xSnxSe is a TCI at ambient pressure. Figure reprinted from ref. [24],
Springer Nature Limited.

Concurrent with the experimental discovery of SnTe as a TCI, broadening the

TCI material class and addressing SnTe’s heavy p-doping and ferroelectric transition

(caused by structural distortion) were equally crucial. This demanded engineering

new materials where the chemical potential can be easily tuned so that the Dirac SSs

are occupied and the material is more resilient to structural distortion. It has long

before been established that the ternary alloy formed by combining Pb, Sn, and Te

(Se) yields the compound Pb1−xSnxTe (or Pb1−xSnxSe) which is a narrow-gap band
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semiconductor with an inverted band gap at the L points [118–122]. These alloys

are formed via a substitutional doping of Sn on the lattice sites of Pb in the trivial

insulator PbTe (or PbSe), gradually replacing the Pb atoms as the concentration

of Sn is progressively increased. The resultant compound comprises two sublattices

i.e. Pb/Sn and Te (Se). Engineering the band gap by tuning the Pb/Sn ratio makes

the inverted band gap phase accessible. This was shown using infrared absorption

and p-n junction laser studies at different temperatures by A.J. Strauss [123]. This

evolution of the band gap from the trivial to the TCI phase for Pb1−xSnxSe is

shown in figure 3.16 which highlights two regions one with a positive band gap

(white) and the other with a negative band gap (yellow). It can be seen that at

a lower composition of Sn, the alloy possesses a trivial band gap with a normal

band ordering until the composition of the Sn reaches a critical value (xc) at which

the band gap closes and then reopens on further increasing the Sn concentration,

inducing an inversion of the symmetry of the bands at the L point. Additionally, the

study revealed that within a Sn concentration ranging between x = 0.18 and x = 0.3,

the transition to the band inverted phase is driven by lowering the temperature from

300 K down to 4 K [24, 123]. It is important to note that below a Sn content of x< 0.4,

both Pb1−xSnxTe and Pb1−xSnxSe crystallize in the rock salt structure. Additionally,

tuning the concentration to have an excess Pb content circumvents the problem of

heavy p-doping in SnTe, shifting the chemical potential close to the conduction band

minima so that the SSs are occupied. Band structure calculations performed on

Pb1−xSnxTe for different concentrations of Sn reveal a critical concentration of xc =

0.381 [24] to access the topological regime. For concentrations of Sn lower than xc, the

direct band gap was retrieved with a normal band ordering. In contrast, for x > x c,

the inverted band gap is obtained, which is expected to feature gapless states within

the bulk bandgap along the mirror line Γ-X. To experimentally demonstrate the

presence of the topological SSs, Dziawa et al. synthesized Pb0.77Sn0.23Se (x = 0.23)

crystals and investigated the electronic properties of the (001) surface by ARPES

at different temperatures [24]. Their photoemission measurements revealed both

64



3.5. Topological Crystalline Insulators

gapped and gapless SSs starting from T = 300 K down to T = 9 K. It was observed

that the SSs transform from a gapped state to a Dirac cone-like SSs at temperatures

below 100 K. This Dirac cone-like state associated with the child Dirac cones as

previously discussed, became more prominent at T = 9 K. These Dirac cones were

found to lie on the mirror line along Γ-X, slightly shifted from the X point whereas

along any other direction, the SSs were found to be gapped at all temperatures.

Xu et al. demonstrated the TCI state by ARPES in the alloy, Pb0.6Sn0.4Te (x

= 0.4), providing a comparison with the alloy Pb0.8Sn0.2Se [23]. For Pb0.8Sn0.2Se,

it was observed that the bands are gapped at EF and there are no surface-state

crossings at EF. This implies that with a higher Pb content, Pb0.8Sn0.2Se has a

normal band ordering with a band structure similar to that of the trivial insulator

PbTe. However, for the alloy Pb0.6Sn0.4Te, photoemission measurements at different

photon energies were able to capture the SSs , which are symmetrically shifted from

the X point. Additionally, from their constant energy contour maps close to EF

they could image the first Brillouin zone which revealed 4 energy pockets, which

is in line with the band inversion at the 4 L points in Pb1−x SnxTe. From the

spectroscopic mapping at different energies, they could experimentally demonstrate

how the constant energy contours evolve from two disconnected energy pockets to

a large and small energy pocket consistent with the theoretical prediction, as well

as experimentally observed Lifshitz transition in the parent compound SnTe [21, 22,

101, 103]. Using spin-resolved ARPES measurements, it was shown that the SSs

along the mirror line are spin-momentum locked with the spins polarized along the

in-plane direction. In the out-of-plane direction, there was no spin polarization. This

was found to be consistent with previous theoretical work on SnTe [103]. Additional

comparison with the TI GeBi2Te4, established the difference between the Z2 TI and

TCI phase, where for the TI as expected, one single Dirac cone was located at the

T invariant momenta Γ due to a single (odd number in general) band inversion as

opposed to Pb0.6Sn0.4Se where there is an even number of Dirac cones due to an

even number of band inversions at the L points shifted away from the T invariant
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momenta X. Hence for the TI, the Fermi surface encloses the Γ point whereas for the

TCI, it does not enclose any T momenta thereby also proving the insignificance of

the T symmetry in the case of TCI where the surface state crossings are protected

by the mirror symmetry. This provides additional evidence as to why the topological

invariant for the Z2 TI does not act as a good Chern number, therefore demanding

the invocation of the mirror Chern number as obtained from, theoretical predictions

[21] and experimental demonstrations [19, 104].

The discovery of the TCI state in Pb1−xSnxTe and Pb1−xSnxSe opened a plethora

of possibilities that were yet to be explored. Unlike ARPES, which requires precise

alignment of the chemical potential with the Dirac SSs, STM, a surface-sensitive

technique capable of probing both occupied and unoccupied states, does not rely

on the electron occupation of the Dirac SSs. One such example is the study of

quasiparticle scattering from the (001) SSs of p-doped SnTe nanoplates [124]. In

these samples, the Dirac surface state was located 350 meV above the EF, which

could be directly observed in the LDOS measurements. LDOS mapping at different

energies above and below the Dirac point energy revealed certain scattering patterns.

The features observed in the fast-Fourier transform of these LDOS maps, which is

a method to study QPI, were interpreted as arising from the scattering of the SSs

among the Fermi pockets in the first Brillouin zone. Similar research work focused

on investigating the QPI of the SSs of Pb0.77Sn0.23Se also exists in the literature

[28]. A more detailed study employing QPI maps provided further insights into

the orbital texture of Pb1−xSnxSe and allowed the visualization of the theoretically

predicted Lifshitz transition [29]. The influence of strain on the band structure of

SnTe has also been investigated using STM/STS, and it has been shown that it is

important to consider the orbital nature of the conduction and valence bands to

account for the experimental features [125]. It is quite well known that strain can

also break the mirror symmetry of a crystal and this was also shown in the case

of Pb1−xSnxSe where both massless Dirac SSs as well as symmetry broken mass

acquired gap opening leading to massive Dirac SSs was experimentally observed
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[25]. Apart from the above reports, there have been STM studies investigating the

step edges on the (001) surface of Pb1−xSnxSe [26, 30, 126]. For instance, in 2016,

Sessi et al. demonstrated for the first time the presence of spin-polarized edge states

in the half-unit cell step edges of Pb1−xSnxSe [26]. The signature of the edge mode

was a distinct peak at the step edge, coinciding with the Dirac point energy in

dI/dU measurements. Later, other works focused on the interaction between these

topological edge modes, when two half-unit cell step edges are located close to one

another [126]. Their experiments revealed the splitting of the one peak at the Dirac

point energy into two peaks, the origin of which was attributed to the interplay

of the Se px and py orbitals at the step edge. The next chapter will focus on the

investigation of strong electron correlations at the unique step edges of Pb1−xSnxSe.

3.5.1 Strong Electron-Electron Correlations

The motivation for departing from the general discussion of topological materials to

focus on strong electron correlations arises from the experimental results on a TCI

that are presented in the next chapter. Electron-electron correlations play a vital

role in condensed matter physics. It involves the competition between two conditions:

one in which an electron is localized at a position in space and feels the Coulomb

repulsion due to the conduction electrons present in the system, and the other case

where due to the hybridization between the atomic orbitals, the electrons are delo-

calized in space, behaving as free electrons similar to Fermi gas. The delocalization

of the electrons causes the lattice sites to be populated and depopulated, as the

electrons are free to jump on and off that site, leading to charge fluctuation that can

be minimized by a uniform distribution of the electrons across all the sites. However,

the hopping of the electrons across different sites causes an increase in the Coulomb

repulsion, which is energetically unfavorable [127]. These two conditions mentioned

above can be characterized by two competing energy scales determining whether

the electron correlations are strong or weak. To simplify the discussion, instead of

considering a whole ensemble of electrons, let us consider only two electrons and
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try to understand how the interactions between them can modulate from strong to

weak. The on-site energy of an electron due to Coulomb repulsion can be defined as

V = e2/r, where r is the separation between the two electrons. On the other hand,

the hybridization between the orbitals can be described by the hopping element t,

which describes the nearest-neighbor hopping between the lattice sites. So the ratio

V /t allows us to determine whether the electron correlations are strong or weak. If

V /t >> 1, the long-range Coulomb repulsion becomes significant, as the tendency

of the electrons to hop across lattice sites diminishes, thereby reducing the charge

fluctuations at the lattice sites. This condition, where electrons are localized, corre-

sponds to the case of strong electron correlations. On the other hand, when V /t <<

1, the onsite energy term is small while the hopping term is dominant, due to which

there is an extensive overlap of the orbitals, allowing the electrons to move around

freely across different sites. This can be better understood by considering the case of

alkali atoms like Potassium, in which the strong overlap between s-orbitals, which

are extended in space, implies that t is large and V is substantially small, hence

electrons are weakly correlated [128]. This strong electron correlation facilitates the

emergence of novel quantum states of matter which has been observed across many

different systems such as Kondo systems [129–134], Heavy Fermion systems [135–

137], Re-entrant superconductors [138, 139], Non-Fermi Liquid systems [140–143]

etc.
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edges of Pb1−xSnxSe
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Following the introduction of the crys-

talline symmetry-protected topological

class, the nature of the edge states in the

TCI, Pb1−xSnxSe will be explored. The

presence of unique steps on the (001)

surface of Pb0.7Sn0.6Se is demonstrated,

followed by a discussion of the electronic

properties of these step edges. It is shown that edge modes with a flat dispersion are

exhibited by a particular type of step edge, providing a foundation for investigating

novel correlated states. The emergence of these states will be demonstrated using

STM/STS measurements. Theoretical modeling and analysis will elucidate the un-

derlying physics, revealing a 1D flat band Stoner ferromagnetism at a specific step

edge.

The results presented in this chapter have been published in ACS Nano Letters

[144].
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4.1. Experimental demonstration of edge states in Pb1−xSnxSe

4.1 Experimental demonstration of edge states in

Pb1−xSnxSe

In the previous chapter, it was discussed that the 2D TIs are characterized by spin-

momentum locked edge states, which are protected by the T symmetry. These edge

states form dissipationless conducting channels that run along the edges of the sam-

ple. Using STM/STS measurements, the spatial detection of these edge modes has

been realized in many topological systems [7, 8, 10, 145–147]. While these systems

exhibiting the edge states are 2D TIs or the QSH insulators protected by T sym-

metry, it has also been demonstrated that such edge states exist in mirror symme-

try protected 3D TCI Pb1−xSnxSe. In 2016, Sessi et al. first demonstrated these

spin-polarized edge states at the atomic step edges of Pb0.67Sn0.33Se [26]. The exper-

iments detailed in this chapter are fundamentally related to the edge states. Thus,

a significant portion of the experimental work involved detecting these states using

low-temperature STM and STS, which are discussed in this section.

The experiments were performed on crystals that are within the topological

regime (0.18 < x < 3; refer to phase diagram in figure 3.16). Single crystals of

Pb0.7Sn0.3Se were cleaved in situ at room temperature under ultrahigh vacuum con-

ditions using the procedure mentioned in section 2.3.1 and inserted into the STM

head to cool it down. Once the sample is cooled down to the base temperature of the

STM i.e. T= 1.8 K, topographic scans were performed on the freshly cleaved sur-

face of Pb0.7Sn0.3Se single crystals. The cleaving process involves breaking the bonds

on the surface to remove a few layers of atoms from the top surface of the crystal.

Figure 4.1a shows a constant-current topographic image acquired on a 450 nm x

450 nm sample region, revealing the (001) surface of Pb0.7Sn0.3Se, the termination

that is easily procured when cleaving the bulk single crystals [26, 30, 126]. Figure

4.1b shows a 3D view of the 2D topographic image on the left. The inset in figure

4.1a shows an atomically resolved image with the Pb/Sn or Se atoms occupying the
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Figure 4.1: (a) Constant-current topographic image of the (001) surface of
Pb0.7Sn0.3Se. Scanning parameters: It = 50 pA Vb = 700 mV. The inset shows
an atomically resolved image acquired on a terrace. The in-plane atomic lattice has
been laid on the top for a visual aid to the eye. Scanning parameters: It = 100 pA,
Vb = 300 mV. (b) 3D view of the STM topography in (a). (c) Line profile acquired
across the dashed line in (a) showing steps of different heights, corresponding to the
integer and half-integer steps.

square lattice. The (001) surface lattice with Pb/Sn (red) and the Se (blue) atoms

is laid on top of the atomically resolved image for a visual aid to the eye. However,

it is to be noted that it is difficult to comment on the exact species of the atoms

since STM is not chemically sensitive. There are some reports in the literature on

the parent compound SnTe, claiming that when scanning at high positive bias volt-

ages, since electrons tunnel from the occupied states of the tip to the unoccupied
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4.1. Experimental demonstration of edge states in Pb1−xSnxSe

states or conduction band of SnTe, the Sn sublattice is better resolved and the same

region when scanned at negative bias, the electrons tunnel from the occupied states

of SnTe to the unoccupied states of the tip so the Te sublattice is revealed in the

STM topography [124]. Gyeis et al. on the other hand demonstrated that at low

negative bias (Vb = -50 mV), both the Pb/Sn and Se sublattices could be distinctly

resolved in the Pb0.77Sn0.23Se crystal where the Sn atoms were identified as small

light dots in the topographic images [28]. The observed phenomenon was attributed

to two factors: contrast reversal occurring at specific scanning biases and the pres-

ence of tip artifacts. Since, in the present case the atomically resolved image, in the

inset, was acquired at a bias voltage of 300 mV, it can only be speculated that the

Pb/Sn sublattice is resolved in the images, however, a more careful analysis would

be required to assert firmly the chemical nature of the atoms observed. The white

arrows indicate the high symmetry directions on the plane of the sample, obtained

by analyzing the atomically resolved image.

As shown in figure 4.1a,b, the (001) surface of Pb0.7Sn0.3Se hosts steps charac-

terized by different heights, separated by atomically flat terraces. The ones running

straight like a “highway” are oriented along the [100] direction of the face-centered

cubic lattice. However, the presence of randomly oriented steps is also visible, like

the ones marked with brown arrows on the topographic image in figure 4.1a. The

fact that the steps are of unique height becomes more evident in the height profile

shown in figure 4.1c, obtained along the blue dashed line on the topographic image.

The experimentally measured step height of the larger step is ∼ 6.3 Å, which corre-

sponds to the lattice constant of the Pb0.7Sn0.3Se (a ≈ 6.3 Å). These steps embody

an even number of atomic layers resulting in a height that is an integer times the

lattice constant, i.e. n.a, where n is an integer. The line profile further reveals a set

of steps whose height is half the height of the unit cell step i.e. 0.32 Å. These steps,

consisting of an odd number of atomic layers, can be categorized under the class of

steps whose height is half-integer times the lattice constant ([n+1
2
].a). An inspection

of the surface lattice in figure 4.2 reveals that the integer and the half-integer step
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Figure 4.2: Top: Arrangement of atoms mimicking the side view of a unit-cell and
a half-unit cell step separated by a terrace (after cleaving). Bottom: Top view of
the cleaved surface demonstrates that the surface lattice’s translation symmetry is
maintained for the integer step while for the half-integer steps, it is broken due to
the switching of the orbitals of Pb/Sn and Se.

edges are unique in the arrangement of the atoms across the step. Figure 4.2 shows

a cartoon of the top view and the side view of an arrangement of atoms mimicking

an integer step and a half-integer step separated by a terrace. On the terrace, the

Pb/Sn (red) and Se (blue) atoms alternate accordingly in the lattice, maintaining

the surface lattice symmetry. Similar behavior is observed while navigating across

the integer step where the orbitals of Pb/Sn and Se are preserved, indicating the con-

servation of translation symmetry. Intriguingly, at the half-integer step, the orbital

nature of Pb/Sn and Se are exchanged, thereby disrupting the translation symmetry

of the surface lattice. From the cartoon in figure 4.2, the symmetry breaking of the

surface lattice is significantly apparent, indicating a structural π shift across the half-

integer step. This significantly impacts the electronic properties of the half-integer
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Figure 4.3: (a) STM topography of the (001) surface of Pb1−xSnxSe comprising a
unit-cell step, a terrace, and a half-unit cell step. Scanning parameters: It = 50 pA,
Vb= 700 meV. (b) Height profile across the dashed line in (a) shows the height of
the unit-cell step and the half-unit cell step. (c) dI/dU spectrum acquired on the
terrace (left), unit-cell step (middle), and half-unit cell step (right). Stabilization
parameters for c: It = 250 pA, Vb = 250 mV, Vmod = 5 mV.

step, which forms the basis for the subsequent discussion of edge states.

The uniqueness of the (001) surface of Pb0.7Sn0.3Se featuring atomically flat

terraces, as well as steps of different heights characterized by unique surface lattice

symmetry, motivates a meticulous examination of their electronic properties. To do

so, a 300 nm x 100 nm topographic scan was acquired in a region marked by the

dashed black rectangle in the overview image in figure 4.1a. The corresponding STM

topography is shown in figure 4.3 , which includes a unit-cell step (left), a terrace

(center), and a half-unit cell step (right). The line profile in figure 4.3b, obtained

along the dashed blue line in the STM topography, reveals the height of even and

odd steps. To probe the electronic properties of this sample region, dI/dU spectra

were acquired at these unique locations indicated by the numbers 1, 2, and 3. The

tip was stabilized at the following locations: middle of the terrace, at the unit-cell

step edge, and the half-unit cell step edge, at a bias voltage Vb = 250 meV and a

set point current, It = 250 pA and the feedback was subsequently switched off to
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Figure 4.4: (a) dI/dU map acquired at the energy position of the Dirac point (E
= 125 meV) on the topography in figure 4.3a. On the right, the 3D view of the
dI/dU map shows a strong intensity distributed uniformly along the 1D step edge.
Scanning parameters: It = 250 pA, Vb = 125 mV. (b) Intensity profile across the
dashed line in (a) shows a peak at the location of the half-unit cell step.

acquire the spectra. As shown in the left panel of figure 4.3c, the dI/dU spectrum

acquired on the terrace reveals a dip at E-EF = 125 meV corresponding to the energy

position of the Dirac point located near the T invariant momenta X. Additionally,

the spectrum reveals a pair of kinks straddling the Dirac point, marked as EvHs- = 75

meV and EvHs+ = 170 meV, which corresponds to the Van Hove singularities (VHSs)

arising from the saddle points above and below the Dirac point (refer to figure 3.13c).

Having obtained the dI/dU spectrum on the terrace, the tip was navigated to the

unit-cell step edge. The middle panel in figure 4.3 shows the LDOS at the unit-cell

step edge exhibiting spectral features, reminiscent of the dI/dU spectrum obtained

on the terrace, with the Dirac point locked at ED = E-EF = 125 meV. While the local

LDOS at the terrace and the unit-cell step edge exhibit remarkable similarities, it is

interesting to note that the dI/dU spectrum at the half-unit cell step edge features
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4.1. Experimental demonstration of edge states in Pb1−xSnxSe

a peak in the DOS at the energy position of the Dirac point (right panel of figure

4.3c). It can be seen that the emergence of the peak in the LDOS is closely linked to

the redistribution of the spectral features associated with the LDOS of the terrace

(or the unit-cell step edge) over a broad energy spectrum. This is apparent from the

vanishing of the kinks associated with the VHSs. As shown in figure 4.4a spatial

mapping of the DOS at the energy of the Dirac point (ED = 125 meV) acquired over

the topographic region in figure 4.3a reveals an intense feature along the entire 1D

half-unit cell step edge, which corresponds to the edge modes. From the 3D image

in figure 4.4a, it can be inferred that this intensity remains constant along the entire

length of the 1D channel and is evenly distributed on either side of the step, i.e. on

the top and bottom of the step. The spatial width of the edge mode can be calculated

from the intensity profile in figure 4.4b, acquired along the dashed line in the LDOS

map, exhibiting a peak at the location of the half-unit cell step. A calculation of the

FWHM of this peak allows extracting the spatial width of the edge modes, which is

≈ 9 nm. As evident from the intensity profile, the terrace and unit-cell step exhibit

no such strong feature in LDOS mapping except for some spatial fluctuation of the

DOS on the terrace, which could probably be related to the formation of charge

puddles(bright patches). The differential conductance maps in figure 4.5 acquired

close to the energy position of the van Hove singularities (EvHs- = 75 meV and EvHs+

= 175 meV) show no such intensity features. Similarly, dI/dU maps acquired at

energies (E = 100 meV, 150 meV; see figure 4.5) away from the energy of the edge

mode (ED = 125 meV) indicates the absence of any strong intensity feature along

the half-unit cell step thereby reinforcing the correlation between the edge mode

and the peak at ED in the LDOS (see right panel of figure 4.3). The dI/dU map

at ED facilitates the extraction of additional information related to the electronic

properties of the edge modes, such as the scattering of quasiparticles of the step edges.

Firstly, the dI/dU map in figure 4.4a, does not feature any interference pattern like

standing waves. Furthermore, the 2D fast-Fourier transform (FFT) of the LDOS

map displayed in figure 4.6a does not reveal any features associated (e.g., standing
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Figure 4.5: dI/dU maps acquired at energies below and above the Dirac point
energy including the energies close to the saddle points (EVHS- and EVHS+) indicating
the absence of any edge modes. Scanning parameters: It = 250 pA, Vb = 75 mV.

waves) with the formation of interference patterns due to the scattering from the

defects or step edges. Such features are expected to manifest as peaks at discrete

momenta in the Fourier space. The intensity profile of the Fourier transform of the

DOS along the direction of the step edge is shown in figure 4.6b, providing a robust

verification of the same, showing a monotonically decaying response with increasing

wave vector, a signature consistent with the absence of QPI due to scattering. In the
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Figure 4.6: (a) 2D-FFT of the LDOS map at the energy of the edge modes. (b)
The intensity profile of the 2D-FFT of the dI/dU signal along the half-unit cell step
indicates a monotonic intensity decay with an increasing wave vector.

previous paragraph, it was pointed out that the unit-cell and half-unit-cell steps have

different arrangements of atoms across the step. The translation symmetry of the

surface lattice is maintained across the terrace as well as the unit-cell steps, so the

LDOS is a replica of one another, however, the same is broken across the half-unit cell

step, thereby inducing additional electronic states at the Dirac point, manifesting as

a peak in the LDOS, giving rise to the 1D edge modes. In a more detailed study by

Sessi et al., it has been demonstrated that the appearance of the 1D edge states is

strongly linked to the non-trivial electronic properties of the bulk [26]. In their report,

DOS mapping was performed on crystals with varying concentrations of Sn so that

the electronic properties of the entire phase diagram, ranging from the trivial to the

inverted band gap region, could be mapped. It was demonstrated that the trivial

insulator PbSe does not exhibit any edge states like feature as evident from their

dI/dU maps. STS measurements were also performed on crystals having a critical

concentration of Sn (xc = 0.24 ) where the bands undergo a transition from the trivial

to the inverted band phase. The measurements revealed a weak enhancement at ED

in the dI/dU signal at the half-integer step, indicating the onset of the edge modes.

In contrast, no edge modes were detected at the integer steps. Interestingly, above
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4.2. Tuning interactions in the 1D flat band by surface doping

the critical concentration of Sn (x = 0.33), which corresponds to the inverted band

gap phase, a strong enhancement of the dI/dU signal along the half-integer steps was

detected, similar to those shown in figure 4.4a. This set of measurements established

a one-to-one correspondence between the edge and the bulk, where the edge modes

only appear when the bulk is topologically non-trivial. Additional measurements

were performed to test the robustness of the 1D edge states to external perturbations.

It was shown that even under an out-of-plane field of 11 T, the edge modes continue

to exist, indicating the robustness of the mirror symmetry-protected edge state to

T symmetry-breaking perturbations. Even at higher temperatures (T = 80 K), the

edge states were captured in STM measurements, indicating their robustness against

thermal fluctuations. The absence of scattering and the robustness of the edge states

to external perturbations provide compelling evidence of the topological nature of

the edge states. Section 4.3 will demonstrate, using a toy model, that the edge modes

have a flat dispersion strictly localized along the 1D half-unit cell step edge. From

now on, the peak at the half-unit cell step edge will be referred to as a 1D flat band

for ease of discussion.

4.2 Tuning interactions in the 1D flat band by

surface doping

In the previous section, the presence of intriguing features in the electronic band

structure of the TCI, Pb0.7Sn0.3Se, such as the VHS flanking the Dirac point and

the flat band at the half-unit cell step edge, was demonstrated. The presence of

VHS or flat bands in many systems, such as graphene, its twisted counterparts,

heavy fermionic systems, kagome superconductors, are known to amplify electron-

electron interactions [108–110, 135–137, 148–151]. These amplified interactions lead

to electronic instabilities giving rise to a diverse array of quantum states such as

unconventional superconductivity, Mott insulating phases, ferromagnetism, quan-

tum spin liquids, etc. However, the VHS or the flat bands must be positioned close

79



4.2. Tuning interactions in the 1D flat band by surface doping

to the Fermi level for such novel effects to emerge, because when the flat band is

proximitized to the Fermi level, the kinetic energy (bandwidth) is quenched, and the

Coulomb interactions become dominant, thereby leading to strong electron-electron

correlations which can cause instability in the flat bands giving rise to these novel

quantum states. In conventional 3D TIs such as Bi2Te3, Bi2Se3, or Sb2Te3, Coulomb

interactions are negligible, so electron-electron interactions are usually ignored. In

the present case of a 3D TCI, it is known that this material possesses a large dielec-

tric constant [32] which implies that Coulomb interactions are irrelevant, however

non-trivial band topology combined with the presence of VHS and flat bands might

enhance electron-electron interactions leading to electronic instabilities in the bands

and giving rise to correlated states. The realization of correlated effects necessitates

the positioning of the Fermi level within the flat band, a condition that serves as

the basis for the ensuing discussion.

As observed in the previous section on edge states, due to the p-doped nature

of the Pb0.7Sn0.3Se crystals, the 1D flat band at the step edge is located at ED =

125 meV, which is above the Fermi level. As a first step, it is therefore necessary

to align the energy position of the 1D flat band with the Fermi level to observe

how the 1D flat band gets affected. Different experimental possibilities exist for

tuning the energy of these bands, such as electric gating, chemical gating, surface

doping, etc. Here, an approach of surface doping was adopted since it was convenient

to implement in the STM setup in which the experiments were performed. Small

amounts of 3d transition elements were progressively dosed onto the crystal surface,

with the crystal held at cryogenic temperatures (T = 12 K). This procedure is

known to cause an n-type effect i.e., a downward band bending implying a rigid

shift towards negative energies. The idea behind depositing the atoms under cold

conditions was to prevent the atoms from diffusing into the bulk, thereby preserving

the effect of band bending on the SS. Furthermore, when the crystal is cold, the

atoms do not agglomerate, preventing the formation of large clusters on the surface,

which might cause instability in the STM tip during scanning. Here, 4 different
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Figure 4.7: (a) dI/dU spectrum on the, left: terrace, middle: half-unit cell step,
right: unit-cell step after the 1st step of Cr doping. The Dirac point along with the flat
band is shifted to ED ∼ 65 meV. (c) dI/dU map acquired over the STM topography
in (b) showing the edge modes at the half-unit cell step. Scanning parameters: It
= 150 pA, Vb = 40 mV. (d) Intensity profile along the dashed blue line in (c)
demonstrates the presence of intense features only at the location of the half-unit
cell step which corresponds to the edge modes. Here a.u. refers to arbitrary units.
Stabilization parameters for a: It = 250 pA, Vb = 175 mV, Vmod = 5 mV.

transition elements, namely Chromium, Manganese, Iron, and Copper, have been

used as surface dopants to tune the Dirac point to the Fermi level. As the effects of

Cr doping were investigated in detail, these results are presented first, followed by

an examination of the effects of other transition metal dopants. It should be noted

that while the influence of surface doping with Cr and Mn on the 1D flat band was

studied as part of this thesis, the data for Fe and Cu were provided by collaborators

from the University of Würzburg.

Figure 4.7b shows an STM topographic image of a similar region as in figure 4.3

but having more step edges, after the deposition of the Cr atoms onto the surface.
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4.2. Tuning interactions in the 1D flat band by surface doping

The Cr atoms can be visualized in the inset image, appearing as bright protrusions

on the flat surface. Following the deposition of the Cr atoms, STS measurements are

acquired at the 3 important locations. The dI/dU spectrum, acquired on the terrace

as shown in figure 4.7a indicates a shift of the Dirac point to a lower energy (ED ∼ 65

meV) , demonstrating a successful implementation of the surface doping technique.

The dI/dU spectrum at the unit-cell step mirrors the spectra on the terrace with
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Figure 4.8: Spatial mapping of the DOS mapping at energies in the close vicinity
(E = 50 meV and E = 75 meV) as well as far away (E = 40 meV and E = 90 meV)
from the energy of the 1D flat band. Scanning parameters: It = 150 pA.

minor differences in the spectral weight at energies far away from the Dirac point.

The middle panel in figure 4.7a shows that as the Dirac point shifts with doping, so

does the 1D flat band, which is also positioned at ED. DOS mapping performed at

the energy of the flat band is reported in figure 4.7c, showing a strong intensity at

all the half-unit cell steps, indicating a close resemblance of the features associated

82
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with the pristine (undoped) samples. This further confirms the sustainability of the

edge modes even in the Cr-doped samples, indicating the robustness of the edge

modes to the magnetic dopants. An intensity profile extracted along the dashed line

in figure 4.7b, is shown in figure 4.7c, indicating enhanced conductance manifesting

as peaks exclusively at the half-unit cell steps. Figure 4.8 shows DOS mapping at

energies in the close vicinity of the 1D flat band (E =50 meV and E =75 meV)

revealing a substantial decay in the edge state intensity as expected. For energies

far away from the flat band, the intensity of the edge modes is drastically suppressed

(see DOS map at E = 40 meV and E = 90 meV in figure 4.8)

Following the 1st surface doping step, a 2nd doping step was performed to check

the possibility of bringing the Dirac point even closer to the Fermi level. The STS

results corresponding to this doping step will be presented now. As shown in the

leftmost panel of figure 4.9a, the dI/dU spectrum on the terrace shows a further

shift of the Dirac point towards the Fermi level. The Dirac point is positioned at

ED ∼ 30 meV. A similar shift is also observed in the case of the unit-cell step,

however, the Dirac point is positioned close to ED ∼ 40 meV. This difference in the

energy of the Dirac point at the two locations possibly arises due to the fluctuation in

chemical potential caused by either the intrinsic inhomogeneities in the crystal or the

disorder created by the random distribution of dopants. Despite a slight difference

in the energy of the Dirac point, it is important to note that the overall shape of the

spectra is the same at both locations. While the dI/dU spectra at the terrace and

the unit cell step are comparable for the 1st and 2nd Cr deposition step, notably as

the flat band approaches closer to the Fermi level, the single peak of the 1D flat band

splits into two peaks. This splitting is significant because it suggests the emergence

of additional states. The DOS mapping corresponding to the 2 peaks at E ∼ 30

meV and E ∼ 45 meV and at the dip (E ∼ 35 meV) are presented in figure 4.9b.

Analysis of the dI/dU maps reveals that the edge states persist at the half-unit cell

step across the energies of the peak and dip, however, a spatial fluctuation of the

edge state energy is visible. This is captured by the intensity profile in figure 4.9c
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Figure 4.9: dI/dU spectrum on the left: terrace, middle: half-unit cell step, right:
unit-cell step after the 2nd step of Cr doping. The Dirac point is shifted to ED ∼ 30
meV. Single peak of the 1D flat band splits into two peaks. (b) dI/dU map acquired
over the STM topography in figure 4.7b at energy of the dip (E ∼ 35 meV) and
the two peaks (E ∼ 30meV and E ∼ 45 meV). Scanning parameters: It = 150 pA.
(c) Line profile acquired over the dashed lines in the dI/dU maps in (b) showing a
variation of the intensity of edge modes at the same half-unit cell step at different
energies. Stabilization parameters for a: It = 250 pA, Vb = 150 mV, Vmod = 5 mV.

acquired along the same line in the dI/dU maps at the 3 different energies in figure

4.9b. For example, the series of half-unit cell step edges on the left and the ones to

the right of the dI/dU maps reveal a spatial fluctuation of the intensity along the

step edge. An energy-dependent intensity change can also be detected when focusing

on a particular region (regions enclosed by the ellipse). As mentioned previously, the

spatial fluctuation and the energy fluctuation of the energy of the edge states could
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Figure 4.10: (a)dI/dU spectrum on the, left: terrace, middle: half-unit cell step,
right: unit-cell step after the 3rd step of Cr doping. The Dirac point is shifted to
the immediate vicinity of EF. Splitting of the flat band into a double peak structure
persists. (c) Spatially resolved STS acquired at distinct points (blue line in b) along
the structural π shift. Scanning parameters: It = 50 pA, Vb = 200 mV. Stabilization
parameters for a: It = 250 pA, Vb = 50 mV, Vmod = 5 mV. Stabilization parameters
for c: It = 250 pA, Vb = 15mV, Vmod = 1.5 mV.

be attributed to the disorder caused by the random distribution of Cr dopants as the

doping is progressively increased. It is important to note that although the surface

doping technique provides a means to tune the energy of the 1D flat band, it also
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4.2. Tuning interactions in the 1D flat band by surface doping

introduces the major challenge of increasing disorder on the crystal surface with

an increase in the concentration of the dopants. Given that the disorder increases

with progressive doping, another doping step was still performed to adjust the Dirac

point position even closer to the Fermi level by further increasing the concentration

of Cr dopants. The effect of this doping step is presented in figure 4.10. As shown

in the leftmost panel of figure 4.10a, this doping step allows shifting the Dirac point

to the immediate vicinity of the Fermi level (ED ∼ 2 meV). Similar to the previous

two doping steps, the dI/dU spectrum on the terrace and unit cell step replicate

one another due to the conserved translation symmetry of the surface lattice as well

as the unit cell step. However, the two peaks still remain around EF as shown in the

middle panel of figure 4.10a. The STS further reveals suppression of the LDOS close

to the Fermi level, indicating the onset of an instability in the 1D flat band. The

energy position of the peaks was obtained by fitting them using a Gaussian profile.

The peaks are positioned at E1 ∼ -5 meV and E2 ∼ 8.3meV respectively (see middle

panel of figure 4.10a), yielding an energy splitting of ∆E = 12.74 ± 0.02 meV. It is

crucial to emphasize that this surface doping method results in spatial fluctuations

of the Dirac point, as shown in Figure 4.10c. This figure presents a spatially resolved

STS acquired at distinct points along the half-unit cell step (indicated by the blue

line). Even though these data reveal the existence of different broadening of the

peaks and variations of the peak intensity, the splitting of the peaks and the dip

at the Fermi level remain clearly distinguishable. Since the spectral shape observed

on the unit-cell step after every Cr deposition step bears a close resemblance to

the spectral shape observed in the pristine sample, it can be unequivocally affirmed

that the splitting of the peak associated with the 1D flat band is related to the

evolution of the electronic properties of the 1D flat band as a function of the doping.

To examine how the splitting of the 1D flat band gets affected on doping below the

Fermi level, the surface dopant concentration was further increased. Unexpectedly,

as depicted in Figure 4.11, the peak splitting disappears, revealing the characteristic

single peak associated with the 1D flat band. This suggests that the emergence of
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Figure 4.11: dI/dU spectrum on the half unit-cell step after shifting the Dirac
point below the Fermi level, reveals the recovery of the single peak associated with
the 1D flat band. Stabilization parameters: It = 100 pA, Vb = 50 mV, Vmod = 5 mV.

new states is closely linked to the proximity of the 1D flat band to the Fermi level,

which disappears once the 1D flat band is shifted below the Fermi level.

The following discussion examines the effect of doping with other 3d transition

elements (Mn, Fe, Cu) on the flat bands. An experimental approach similar to that

of doping with Cr atoms was implemented to dope the pristine samples with Mn.

Starting with the Dirac point and the 1D flat band located at ED = 125 meV, the

pristine samples were progressively doped till the Dirac point was aligned close to

the Fermi level. Figure 4.12b presents an STM topography where the Mn adatoms

appear as bright protrusions. As demonstrated in figure 4.12a, analogous to the

Cr doping, as the 1D flat band is tuned close to the Fermi level by doping Mn

atoms onto the surface, the single peak of the 1D flat bands splits into a double

peak structure. The inset provides a magnified view of the splitting. In this case,

the energy splitting was obtained as, ∆E = 5.85 ± 0.12 meV. Following the trend

observed for Cr doping, as the split flat band is doped below the Fermi level, the

single peak of the 1D flat band is recovered.

Now, the results for doping the pristine samples with Fe will be presented. Fig-

ure 4.13b presents an STM topography where the Fe adatoms appear as bright

protrusions. Following the trend observed for Cr and Mn doping, tuning the flat
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Figure 4.12: (a) STS spectra acquired at the half-unit cell step as a function
of Mn doping. Close to EF, the single peak of the 1D flat band splits into two
peaks. The inset shows a magnified view of the splitting. As the Dirac point is
shifted below the Fermi level , the splitting vanishes, and the single peak of the flat
band is recovered. (b) STM topography illustrating the Mn adatoms on the surface.
Scanning parameters: It = 30 pA, Vb = 650 mV. Stabilization parameters for a: It
= 150 pA, Vb = 200 mV, 150 mV, 75 mV, 25 mV, Vmod = 5 mV.

band close to the Fermi level leads to the splitting of the single peak into a doublet

as depicted in figure 4.13a. The inset provides a close-up view of the splitting within

a narrower energy range. The energy splitting obtained in this case was ∆E = 6.01

± 0.07 meV. This splitting disappears once the flat band is tuned below the Fermi

level, indicating a revival of the original 1D flat band state. The same effect is ob-

served when the pristine samples are doped with Cu. Figure 4.14b shows an STM

topography of the Cu adatoms on the Pb0.7Sn0.3Se surface. As shown in figure 4.14a,

a splitting of the 1D flat band into two distinct peaks occurs as it approaches the

Fermi level with an energy splitting given by ∆E = 4.15 ± 0.09 meV. Adhering to

the previous trends, once the flat band is shifted below the Fermi level, the splitting

disappears.

Several control experiments were simultaneously conducted to ensure the ob-

served phenomena’s reliability against any potential artifacts. For example, to rule

out any effect caused by the spatial inhomogeneities in the TCI surface, the same
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Figure 4.13: (a) STS spectra acquired at the half-unit cell step reveal the evolution
of the 1D flat band structure as Fe doping increases. Near the Fermi level, a single
peak splits into two distinct peaks. The inset shows a magnified view of the splitting.
As the Dirac point is shifted below the Fermi level, the splitting vanishes, and the
single peak of the flat band is recovered. (b) STM topography illustrating the Fe
adatoms on the surface. Scanning parameters: It = 10 pA, Vb = 1 V. Stabilization
parameters for a: It = 150 pA, Vb = 200 mV, 150 mV, 100 mV, 100 mV, Vmod = 2.5
mV.
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Figure 4.14: (a) STS spectra acquired at the half-unit cell step, evidencing a clear
splitting of the 1D flat band as Cu doping increases. Two distinct peaks are visible
close to EF. As the Dirac point is tuned below the Fermi level, the double peak
structure collapses into a single peak, indicating the recovery of the original 1D
flat band state. (b) STM topography illustrating the Cu adatoms on the surface.
Scanning parameters: It = 10 pA, Vb = 500 mV. Stabilization parameters for a: It
= 150 pA, Vb = 200 mV, 150 mV, 100 mV, -40 mV, Vmod = 2.5 mV.
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4.2. Tuning interactions in the 1D flat band by surface doping

region of the sample was measured before and after the deposition of the atoms

by following the defects as a guide to the eye (see figure 4.3a and 4.7b). As dis-

cussed above, it is evident that the splitting phenomenon of the 1D flat band into

two distinct peaks exists for doping the pristine Pb1−xSnxSe crystals with magnetic

elements that have a high as well as a low magnetic moment (µCr > µMn > µFe

> µCu). Figure 4.15a shows a distribution of the energy splitting as a function of

the different magnetic dopants. The multiple data points for Cr correspond to the

different experimental attempts indicating a distribution of the splitting magnitude,

which is not associated with a particular element but can be ascribed to the in-

trinsic inhomogeneities in the sample as well as due to the disorder created by the

random distribution of the dopants. This indicates that the splitting magnitude is

not influenced by the magnetic moment of the dopant atoms. Figure 4.15b shows a

comparison of the splitting magnitude for samples characterized by a varying con-

centration of Cr dopants. The inset highlights the STM topography of the regions

where the respective dI/dU spectra were acquired. An inverse scaling relation of

the splitting magnitude with doping concentration (or disorder) is observed. For a

doping concentration of two atoms per 20 nm2 area (right panel of figure4.15b), the

splitting magnitude significantly reduces to ∆E ∼ 3 meV, as compared to the case

of just one atom within the same area (left panel of figure 4.15b). This data provides

evidence that an increasing surface disorder has a detrimental effect on the splitting.

It is important to note that under doping with alkali or non-magnetic atoms, which

are also known to create a downward band bending, the splitting of the 1D flat band

close to the Fermi level should be observed. The above discussion universally sup-

ports the previously drawn conclusion for doping with Cr atoms, that the evolution

of the electronic properties of the 1D flat band close to the Fermi level, primarily

drives the splitting of the peak associated with the 1D flat band.

While the splitting of the peak associated with the 1D flat band into a double

peak structure was predominantly observed, frequently it was seen that each peak

of this doublet was further split into another set of peaks, resulting in a total of
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Figure 4.15: (a) Magnitude of the energy splitting as a function of the doping with
Cr atoms. The peak positions are obtained by a Gaussian fitting of the dI/dU peaks.
(b) Comparison of the splitting magnitude for a surface characterized by a varying
concentration of surface dopants. A higher surface dopant concentration leads to a
reduced splitting magnitude. Stabilization parameters for b: It = 150 pA, Vb = 40
mV, 20 mV, Vmod = 1.5 mV

four peaks. This is shown in figure 4.16, which reports STS spectra acquired at

the different half-unit cell steps of the same as well as different samples, revealing

the splitting of each peak into a doublet characterized by varying intensities. In-

terestingly, the spectra also feature a suppression of the LDOS at the Fermi level,

potentially suggesting the previous speculation that it might be a correlation-driven

instability. However, it is to be noted that while suppression of the LDOS at the
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Figure 4.16: Splitting of each of the two peaks into a doublet resulting in a total of
4 peaks. The spectra are obtained at the different half-unit cell step edges of the same
sample as well as different samples demonstrating peaks characterized by different
intensities accompanied by a suppression of the LDOS at the Fermi. Stabilization
parameters for a, b and c: It = 150 pA, Vb = 15 mV, Vmod = 1.5 mV.

Fermi level is always observed, the splitting of each of the two peaks into a doublet is

a subtle phenomenon that can easily be hindered due to Fermi broadening, intrinsic

inhomogeneities in the crystal (bandwidth of the 1D flat band) as well as extrin-

sic ones such as the disorder induced by the random distribution of the dopants,

which was shown to have a detrimental effect on the splitting. This explains the

more frequent observation of the 2-peak scenario. However under ideal conditions

i.e., zero disorder, and absolute zero temperatures, the splitting of the 1D flat band

into 4 peaks should always be detectable in the experiments. The following section

will present a theoretical interpretation of the splitting of the 1D flat band into the

2-peak and 4-peak structure.

4.3 Theoretical interpretation of the 1D flat band

splitting

This section begins by modeling the edge states through a toy model, followed by a

theoretical explanation, supported by Hartree-Fock calculations, of how the 1D flat

band’s single peak splits into a multi-peak structure. These theoretical developments

were conducted in collaboration with researchers from the University of Zurich and

Julius-Maximilians-Universität Würzburg.
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4.3. Theoretical interpretation of the 1D flat band splitting

4.3.1 Theoretical understanding of the edge modes

The origin of the peak-like feature in the LDOS leading to the edge modes at the

half-unit cell step can be explained by considering a toy model. In the introductory

section, it was shown that the 4 Dirac cones on the (001) surface of Pb1−xSnxSe can

be derived by solving the perturbation Hamiltonian in eq. 3.4. The toy model em-

ployed here to explain the accumulation of the edge modes at the half-unit cell step

incorporates the 4 Dirac cones in a way as illustrated in figure 4.17. The Hamiltonian

corresponding to the toy model is as given below:

H = vF [(py − κy)σx − (px − κx)σy] (4.1)

where pj = −i∂j and σj are the Pauli spin matrices, vF is the Fermi velocity and kx

is wave vector along the step edge. The valleys are labeled by the two pseudospin

degrees of freedom τj and ηj. As was shown in ref. [152], the effect of the half-unit

cell step was accounted for by the translation operator −τz. It has been previously

shown that the effect of the operation of −τz on the Hamiltonian (−τzH−τz) is to

transform to a separate Hamiltonian that describes a terrace that is separated from

another terrace by a single atomic step (half-unit cell step) [152], thereby defining

two domains (terraces) separated by the domain wall (step edge). The distinction

of the Hamiltonian on the terraces is accounted for by the term “m” which has an

opposite sign on either domain as schematically shown in the schematic of a single

atomic step on the right of figure 4.17. Here, a similar approach is undertaken where

the exchange of valleys accounts for the sign of the “m” term as explained below.

The toy model used here to explain the formation of the edge states considers that

the two Dirac cones from the two valleys are shifted by k along the direction parallel

to the step edge, i.e. kx, characterized by τ values of opposite sign (red and blue color

are used to distinguish the Dirac cones in the two valleys). This shift is considered to

be opposite for the region y < 0 (terrace A) and y < 0 (terrace B) as schematically

illustrated in figure 4.17. This implies that the valleys are exchanged across the y =
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Figure 4.17: Schematic of the toy model corresponding to eq 4.1, showing the 4
Dirac cones shifted by an amount k along the x-axis. The shift is taken to be opposite
for y< 0 and y> 0; in this way, the edge mode is obtained at y=0. The schematic
of two terraces separated by an atomic step is illustrated on the right.

0 plane, thereby manifesting as a step edge at y = 0: (κx, κy) = κ(τzsign(y), ηz). The

eigenstates of the Hamiltonian are defined by the eigenvalues σz, τz and ηz labeled

as σ , τ and η. Solving the Hamiltonian yields two pairs of zero energy modes (zero

energy here corresponds to the Dirac point [30]) with a very flat dispersion localized

around y = 0 with opposite spin polarization in either valley, represented by the

wave functions below:

Ψkxτη
≡ eikxxukxτη(y) = eikxx+iκηy


e−|kx−τκ|y, y > 0.

e|kx+τκ|y, y < 0.

(4.2)

The above model predicts that the bands are completely flat, however, in ref. [26] and

[30] it has been shown using a three-dimensional microscopic model, that breaking

the particle-hole symmetry, causes a finite dispersion (∼ a bandwidth of 100 meV)

and shifts the bands away from zero energy, thereby motivating the following model
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Figure 4.18: Schematic representation of the 4 edge modes with opposite spin
polarization in the two valleys connecting the 2 Dirac states.

for the dispersion for a more realistic description of the edge modes:

ϵkxτη = Wη

(
τcos

πkx
2κ

+
1

5
sin

πkx
κ

)
(4.3)

where W is the bandwidth. The inclusion of the dispersion term can be further

substantiated by following the peak in the experimental LDOS, which is not very

flat (a broadening can be observed) and has an effective bandwidth, W ∼ 18.29

± 0.49 meV. After adding the dispersion term, the band structure reflects the one

shown in the schematic illustration in figure 4.18 featuring the two pairs of narrow

dispersing edge modes connecting the surface Dirac cones. These low-dispersing

bands connecting the two Dirac SS account for a significant portion of the spectral

weight at the half-unit cell step edge (see right panel of figure 4.3c). Within each

valley, each of these bands is spin-polarized, however, the other valley contains its

T counterpart, hence the net magnetization is zero. It is speculated that only one

of the VHSs appears as a peak in the edge LDOS since the other VHS occurs where

the flat band and the Dirac cone merge. Comparing the theoretical toy model for

the narrow dispersing bands with the experimentally observed peak in the LDOS, it

can be safely concluded that the half-unit cell step edge embodies flat bands running

along the entire 1D channel.
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4.3.2 1D flat-band Stoner ferromagnetism

The edge modes in the present system are very similar to those observed in zigzag

graphene nanoribbons. In the case of graphene nanoribbons, it was initially theo-

retically predicted that the zigzag edge of graphene features edge states having a

flat dispersion at the Fermi level [153, 154]. From the theoretical analysis of the

charge density distribution, it was observed that the electron wave function was pre-

dominantly localized along the zigzag edge [155]. These localized states at the edge

manifest as a sharp peak at zero bias in the DOS. The presence of the flat band at

the edge, coupled with its proximity to EF facilitates electron-electron interactions,

potentially leading to a magnetic ground state. Fujita et al. utilized the Hubbard

model for the zigzag edge of graphene and solved for the magnetic structure us-

ing the Hartree-Fock (HF) approximation, which is known to uncover the magnetic

structure of a system [153]. The model revealed a ferromagnetic intra-edge coupling

and an antiferromagnetic inter-edge coupling. While the intra-edge ferromagnetic

coupling was attributed to the exchange interactions arising from the electron spins

of the same sublattice, the inter-edge antiferromagnetic coupling was attributed to

the magnetization arising from two different sublattices at either edge. Similarly, it

was also demonstrated in mean-field approximations that the edge of nodal d-wave

superconductors exhibits Majorana flat bands which are unstable in the presence of

interactions due to their diverging DOS, leading to a ferromagnetic state along the

edge which manifests as a splitting of the flat band [156].

Tao et al. experimentally demonstrated the presence of spin-polarized edge states

in chiral (8,1) graphene nanoribbons using low-temperature STM/STS measure-

ments [157]. These edge states were exclusively observed along the zigzag edge,

manifesting as two energy-split peaks straddling the EF in the STS measurements

instead of a single peak. Theoretical calculations revealed that electron-electron in-

teractions are responsible for driving a ferromagnetic coupling along the zigzag edge

leading to a spin-polarization of the edge modes, and a subsequent splitting of the
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single peak associated with the flat band into a set of VHS at the graphene nanorib-

bon edge, indicating an instability at the Fermi level. The two peaks observed in

the experiments near the Fermi level were identified with the pair of lowest-energy

VHS flanking the Fermi level obtained from the theory. STM studies by Song et

al. also demonstrated such splitting of peaks under an applied magnetic field in

epitaxial Graphene by studying the Landau level spectra. It was shown that when

the Fermi level lies within the four-fold degenerate N = 1 Landau level, strong

electron-electron interactions lead to a significantly increased valley and electron

spin splitting depending upon the filling factor (ν) of the bands [158].

Given the close resemblance between the observed edge states in Pb1−xSnxSe and

those found in the zigzag edge of chiral graphene nanoribbons, a similar theoretical

approach was undertaken to account for the splitting of the 1D flat band. How-

ever, it is to be noted that there are a couple of differences between graphene and

the TCI under investigation here. Firstly, the number of flat bands in the present

case is double that of graphene nanoribbons i.e. four instead of two, and secondly,

Pb1−xSnxSe exhibits a strong SOC, so unlike graphene, the edges modes here are

not spin-degenerate. It should also be noted that theoretical calculations [21] and

experimental demonstrations [25] have revealed that under an external magnetic

field, the SS of Pb1−xSnxSe are driven into the integer QHS, exhibiting Landau level

peaks. Therefore, the edge states under examination here share similar characteris-

tics to those observed in Quantum Hall systems but without any applied magnetic

field. This suggests that the Landau gauge orbitals of the form in eq. (4.4) can be

used for the analysis.

ψkxτη
(x, y) ≡ 1√

Lx

eikxxukxτη(y) =
1√
Lx

eikxx+iκηy


e−|kx−τκ|y, y > 0

e|kx+τκ|y, y < 0

(4.4)

Here −κ < kx < κ and Lx is the length of the system in the x-direction. The

97



4.3. Theoretical interpretation of the 1D flat band splitting

Hamiltonian of the form

HHF = Hkin +Hint,HF (4.5)

can be defined. The derivation of each term following the HF formalism in ref. [144]

is provided below. The system has time-reversal and mirror symmetries and the

effect of their operation on ψkxτη
is provided below:

T : ψ−kxτ̄ η̄
(x, y) = ψ∗

kxτη
(x, y) (4.6)

My : ψkxτ̄ η̄
(x, y) = ψkxτη

(x,−y) (4.7)

Mx : ψkxτ̄η
(x, y) = ψ−kxτη

(−x, y) (4.8)

P : ψkxτ η̄
(x, y) = ψ−kxτη

(−x,−y) (4.9)

It is to be noted that T operator flips both spin τ and valley η and changes kx → −kx.

The goal is to project the Coulomb interaction onto the Hilbert space of these edge

states or the 1D flat bands. The interaction term accounting for the electron-electron

interaction is as given below:

Hint =
1

2
Vαβγδc

†
αc

†
βcδcγ, (4.10)

where the short-hand label α = (kαx , τ
α, ηα) has been used, and the matrix elements

obtained from the projection of the Coulomb interaction onto the flat bands (see eq.

(4.2) and figure 4.18) are,

Vαβγδ = ⟨ψαψβ|V̂ |ψδψγ⟩

=

∫
r⃗,r⃗

′
ψ∗
α(r⃗)ψ

∗
β(r⃗

′)V (r⃗ − r⃗′)ψδ(r⃗)ψγ(r⃗
′)

=
1

L2
x

∑
qx

∫
qy

∫
r⃗,r⃗

′
e−ik

α
xx−ik

β
xx

′
+ik

δ
xx+ik

γ
xx

′
+iqx(x−x

′
)+iqy(y−y

′
)Vq ×

u∗kαx τ
α
η
α(y)u∗

k
β
xτ

β
η
β(y

′)u
k
δ
xτ

δ
η
δ(y)ukγxτ

γ
η
γ (y′),

(4.11)
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where Vq = 2π
Lx

e
2

2ϵ0q
. The (unnormalized) form factors are defined as:

λ̃αδ(k
α
x , k

δ
x, qy) =

∫
y

u∗kαx τ
α
η
α(y)u

k
δ
xτ

δ
η
δ(y)eiqyy. (4.12)

The form factors can be derived analytically by using eq. (4.4) and they are obtained

as given below:

λ̃αδ(k
α
x , k

δ
x, qy) =

iκ(ηα − ηδ) + iqy + |kαx − τακ|+ |kδx − τ δκ|
(κ(ηα − ηδ) + qy)

2 + (|kαx − τακ|+ |kδx − τ δκ|)2

+
−iκ(ηα − ηδ)− iqy + |kαx + τακ|+ |kδx + τ δκ|
(κ(ηα − ηδ) + qy)

2 + (|kαx + τακ|+ |kδx + τ δκ|)2
. (4.13)

It is to be noted that the wave functions in eq. (4.4) are not normalized so the

normalized form factors need to be calculated using

λαδ(k
α
x , k

δ
x, qy) =

λ̃αδ(k
α
x , k

δ
x, qy)√

λ̃αα(k
α
x , k

α
x , 0)λ̃δδ(k

δ
x, k

δ
x, 0)

. (4.14)

The form factors have the form

λ(kαx , k
δ
x, qy) = (Λ0(kαx , k

δ
x, qy)τ

0 + Λ0(−kαx , kδx, qy)τx)η0

+ (Λ×(kαx , k
δ
x, qy)τ

0 + Λ×(−kαx , kδx, qy)τx)ηx. (4.15)

This transforms the matrix elements into,

Vαβγδ =
∑
qx

∫
qy

δ
qx−k

α
x+k

δ
x,0
δ−qx−k

β
x+k

γ
x ,0
λαδ(k

α
x , k

δ
x, qy)λ

∗
γβ(k

γ
x, k

β
x , qy)V (qx, qy) (4.16)

= δ
k
α
x+k

β
x=k

γ
x+k

δ
x

∫
qy

λαδ(k
α
x , k

δ
x, qy)λ

∗
γβ(k

γ
x, k

β
x , qy)V (kαx − kδx, qy), (4.17)

where the Kronecker delta in the last line ensures the conservation of momentum in

the x-direction. Next, a mean-field decoupling of the Hamiltonian below is performed

Hint,HF = Vαβγδ(c
†
αcδ⟨c†βcγ⟩ − c†αcγ⟨c†βcδ⟩). (4.18)
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4.3. Theoretical interpretation of the 1D flat band splitting

A projector Pαβ = ⟨c†αcβ⟩ defines a Slater determinant. Considering the translational

invariance along the x-direction, Pαβ can be obtained as,

Pαβ(k
α
x , k

β
x) = ⟨c†α(kαx )cβ(kβx)⟩ = δ

k
α
x ,k

β
x
⟨c†α(kαx )cβ(kαx )⟩ ≡ δ

k
α
x ,k

β
x
Pαβ(k

α
x ). (4.19)

Considering the above simplification, the HF Hamiltonian reduces to

Hint,HF = Vαβγδ(c
†
α(k

α
x )cδ(k

α
x )Pβγ(k

β
x)δkβx ,k

γ
x
− c†α(k

α
x )cγ(k

α
x )Pβδ(k

β
x)δkβx ,k

δ
x
) (4.20)

= V D
αβγδ(k

α
x , k

β
x)Pβγ(k

β
x)c

†
α(k

α
x )cδ(k

α
x )− V E

αβγδ(k
α
x , k

β
x)Pβδ(k

β
x)c

†
α(k

α
x )cγ(k

α
x ),

(4.21)

where the momentum-conserving Kronecker delta has been used. This allows for

defining the direct and exchange matrix elements as given below:

V D
αβγδ(k

α
x , k

β
x) =

∫
qy

λαδ(k
α
x , k

α
x , qy)λ

∗
γβ(k

β
x , k

β
x , qy)V (0, qy), (4.22)

V E
αβγδ(k

α
x , k

β
x) =

∫
qy

λαδ(k
α
x , k

β
x , qy)λ

∗
γβ(k

α
x , k

β
x , qy)V (kαx − kβx , qy). (4.23)

To this interaction Hamiltonian, the kinetic component can be added

Hkin = ϵα(kx)c
†
α(kx)cα(kx) (4.24)

with the phenomenological band structure given by eq. (4.3) (modeled after the key

features of the bandstructure found in [26]). Next, a mean-field approximation of

the Hamiltonian (eq. (4.5)) was employed to narrow down the many-body problem

into a single-body problem, and the HF calculations were performed to solve HHF

self-consistently. For details on the theory, refer to [144].

Given that, the observed electronic effects are confined to the surface, a 2D

model is appropriate for describing the system, so the 2D Coulomb interaction term,

V = e
2

2ϵ0q
can be used here. Consideration of the 3D bulk would merely lead to a

re-normalization of the dielectric constant. Based on the discussion above, the entire
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Figure 4.19: Results obtained from the Hartree-Fock calculations for varying
strength of interaction quantified by the phenomenological parameter Rs. (a) Rs
= 0.05 corresponds to weak interactions causing a splitting of the 1D flat band into
2 main peaks. (b) Rs = 0.35 corresponds to moderately strong interactions leading
to a splitting of the 1D flat band into 4 peaks the separation of which is given by the
interaction term V . (c) Rs = 5 corresponds to strong Coulomb interactions which
cause complete hybridization between all the 4 bands with opposite spin, leading to
4 peaks in the DOS which are well separated in energy.

problem can be solved by considering the interplay between two energy scales, the

kinetic energy scale related to the bandwidth W and the Coulomb energy scale, V

= e
2
κ

2ϵ0
. This incorporates two dimensionless parameters in the model, κ = κa, and

Rs =V /W , where the phenomenological parameter Rs denotes the strength of the

interactions. Here, the role of κ is minimal, so it will not affect the results qualita-

tively, hence κ is fixed to 0.5 in line with ref. [26]. Therefore, the HF analysis results
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Figure 4.20: Continuous evolution of the splitting of the 1D flat band as a function
of increasing interaction strength.

would depend solely on Rs. To solve the Hamiltonian, the filling factor is considered

to be half. Now, the theoretical results will be presented for different values of Rs.

As depicted in the energy dispersion in figure 4.19a, when the kinetic energy scale

dominates i.e. Rs ≪ 1, the valence band (η = -1) subspace is entirely filled and

Coulomb interactions cause a weak hybridization between the two bands with oppo-

site spin polarization at the band crossings in both the valleys. This hybridization,

although weak, spontaneously breaks T symmetry, causing the splitting of the 1D

flat into two peaks, as depicted in the calculated DOS in figure 4.19b, where the

peak-to-peak separation is given by W. When the kinetic energy and Coulomb en-

ergy scales are comparable i.e., Rs ∼ 1, the separation between the conduction and

valence band persists (∼W). However, the interactions being slightly stronger, the

opposite spin bands in the conduction and valence bands are now fully hybridized,

creating bonding and anti-bonding orbitals, separated by an amount V , leading to

eventually 4 peaks in the DOS. The energy dispersion and the corresponding DOS

are shown in figure 4.19c and d. Now, the final case will be discussed, where the

Coulomb energy scale dominates and the kinetic energy scale is insignificant. As

shown in figure 4.19e, when Rs ≫ 1, the large interactions lead to a complete inter-
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4.3. Theoretical interpretation of the 1D flat band splitting

mixing between all four bands forming bonding and anti-bonding orbitals. However,

due to the presence of spin and valley degrees of freedom, these bonding and anti-

bonding orbitals can be formed in both cases, leading to the formation of 4 peaks

in the DOS as depicted in figure 4.19, where the splitting is given by V. Figure 4.20

shows the gradual splitting of the peak with increasing strength of the interactions.

When interactions are small, the peaks are positioned pretty close in energy, so it

is challenging to detect them in the experiments due to the finite energy resolution,

which explains the observation of two peaks frequently in the experiments. However,

the increasing strength of interactions causes the peaks to be split far apart in en-

ergy, which makes their detection in the experiments easier, hence, the 4 peaks can

be observed in the experimental LDOS.

Both experimental observation and theoretical calculations indicate that the

bands in the vicinity of EF have a flat dispersion, thereby characterized by a diverg-

ing DOS (D(EF )). The localization of these bands close to the Fermi level makes

them highly susceptible to electron-electron correlations. This is why, when the in-

teractions (Rs) are invoked, the Stoner criteria D(EF )Rs>1 is satisfied. According

to the model developed by E. Stoner [159], the dispersion relation for spin-up and

spin-down electrons can be written as,

E↑(k) = ϵ(k)−Rs

n↑ − n↓

n
,E↓(k) = ϵ(k) + Rs

n↑ − n↓

n
(4.25)

where ϵ(k) corresponds to the dispersion of the spinless electrons without interac-

tions, Rs is the interaction strength, n↑ and n↓ correspond to the number of up-spin

and spin-down electrons in the entire system, and the total number of electrons is

given by n = n↑ + n↓. The second term in the above equation corresponds to the

exchange energy term. With the total number of electrons in the system fixed, it is

possible to calculate the net energy of the system using eq. (4.25), as a function of

the spin polarization given by, Ps=
n↑−n↓

n
. In the event of a ground state with Ps =

0, a paramagnetic state will be favored, however as Rs becomes large, the condition
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D(EF )Rs > 1 is fulfilled, leading to a transition to a spin-polarized ground state

even when Ps = 0. Therefore, the exchange energy term plays a crucial role, splitting

the different spin states, resulting in spin-polarized states at the Fermi level. This

spin polarization driven by the Stoner criterion eventually leads to a 1D flat band

Stoner ferromagnetism along the half-unit cell 1D step edge of Pb1−xSnxSe.

4.4 Conclusion

Using a combination of low-temperature STM and STS, the step edges on the (001)

surface of Pb0.7Sn0.3Se were investigated. The STS measurements reveal that the

half-unit cell step edges embody 1D flat bands, manifesting as a peak in the LDOS

at ED = 125 meV, above the Fermi level. By utilizing the surface doping technique,

the single peak of the 1D flat band was shown to split into 2 or 4 peaks once the

1D flat band is tuned to the Fermi level, accompanied by the opening of a gap in

the electronic spectrum at the Fermi level. A theoretical model was developed to

describe the 1D edge modes hosting the 1D flat bands, and Hartree-Fock analysis

was performed to investigate the effect of the interactions. From the theory, it was

unveiled that the interactions act as symmetry-breaking perturbations. Since the

bands are flat, this indicates a large DOS localized in a narrow energy window of

EF, which significantly strengthens electron-electron interactions. Depending on the

strength of these interactions, defined as the ratio of the Coulomb energy and the

kinetic energy, the single peak of the 1D flat band is split up to a maximum of 4

peaks due to the hybridization between the spin-polarized flat bands. These 4 states

spontaneously break T symmetry, leadiong to a flat band Stoner ferromagnetism

along the 1D edge, which also opens up additional correlation gaps as observed in

the STM measurements.
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Part IV

Unconventional topological

superconductivity in a van der

Waals heterostructure
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5 Superconductivity and

Magnetism

This chapter lays a theoretical groundwork starting with a historical context of super-

conductivity, followed by an introduction to conventional BCS theory and a progres-

sion towards p-wave superconductivity. A mathematical treatment, incorporating a

gap function example, is presented to briefly introduce p-wave TSC. The distinc-

tion between chiral and helical p-wave superconducting phases is subsequently dis-

cussed. Finally, it concludes with a brief exploration of 2D van der Waals materials,

ISCISC

Persistent flow of supercurrents in a
superconducting ring

establishing a foundation for the exper-

imental findings presented in the next

chapter.
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5.1. Overview of Superconductivity

5.1 Overview of Superconductivity

More than 100 years ago, the successful liquefaction of Helium by Kammerling Onnes

and his sleepy young trainee established a novel research direction in condensed mat-

ter physics, which to date remains one of the most extensively studied research fields.

Having achieved the means to liquefy Helium, which would allow reaching low tem-

peratures of the order of a few Kelvin, opened up the possibility of exploring the

resistivity of different solids as a function of temperature. In the early days, Onnes

was highly interested in finding out the electrical response of metals when cooled

down to absolute zero temperature. In his experiment, conducted on 8th April 1911,

it was revealed that the resistivity of Mercury drops to “practically zero” (as in-

scribed in Onnes’s lab notebook) when the temperature drops below 4.2 K, which

was the first report of this quantum transition from a metallic state to a super-

conducting state [160]. Such a transition was also discovered around that time, in

Pb and Sn. This quantum transition of vanishing resistivity at such temperatures

had further implications. It was demonstrated that if a magnetically induced cur-

rent is driven into a Pb coil cooled below its superconducting temperature, it can

continue to flow without the external current source for many years. This current,

termed “persistent current”, was the first defining characteristic of superconductiv-

ity. Furthermore, this vanishing of resistivity was accompanied by an exclusion of

a magnetic field by the superconducting host, implying a diamagnetic nature. This

phenomenon of the expulsion of magnetic flux in the superconductor is popularly

known as the Meissner effect [161] (see figure 5.1a). This magnetic flux expulsion

occurs as the sample is cooled below its superconducting transition temperature

(Tc). This suggests that above a certain critical value of the magnetic field (Hc),

the flux lines would penetrate through the superconducting host, destroying its su-

perconducting state. The transition from the normal to the superconducting state

without a magnetic field is thermodynamically associated with condensation energy,

which measures the energy saved on transitioning from the former to the latter. As
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Hc1

Figure 5.1: (a) Repulsion of magnetic field by a superconductor. The magnetic field
penetrates up to a few nms within the edge of the superconductor. (b) Parabolic
dependence of the critical field as a function of temperature characteristic to type-I
superconductors.

shown in ref. [162], a scaling relation of Hc with temperature can be obtained by

equating the condensation energy with the energy per unit volume associated with

stabilizing a magnetic field given by H2
c

8π
. This yields,

H2
c(T)

8π
= Fn(T)− Fs(T) (5.1)

where Fn and Fs are the free energies of the system in the normal and superconduct-

ing state, respectively. It has been shown that Hc follows a parabolic dependence on

the temperature of the system,

Hc(T) = Hc(0)[1− (
T
Tc

)2] (5.2)

The parabolic dependence of the critical field as a function of the temperature is

schematically illustrated in figure 5.1b.

5.1.1 London penetration depth

In 1935, following the discovery of the Meissner effect (1933), Fritz and Heinz Lon-

don formulated the London equations to describe the electromagnetic response of

superconductors [163]. Their work introduced a phenomenological description that

later found justification in quantum mechanics. The Londons’ approach began by
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5.1. Overview of Superconductivity

considering the canonical momentum of superconducting electrons, p = (mvs +
eA
c

),

where m is the electron mass, vs is the superfluid velocity, e is the electron charge,

and A is the magnetic vector potential. In the absence of external fields, the average

momentum vanishes ⟨p⟩, leading to ⟨vs⟩ = −eA
mc

. The supercurrent density Js is the

given by: Js = nse⟨vs⟩ = -nse
2

mc
A = −A

Λc
, where ns is the superfluid density and Λ =

m

nse
2 is the London parameter.

The Londons drew an analogy to the Drude model but assumed a diverging

mean free path. Their first equation describes the acceleration of superconducting

electrons in an electric field E:
∂Js

∂t
=

E
Λ

(5.3)

which in the steady state, ∂Js
∂t

= 0, implying a vanishing E inside the superconduc-

tor, consistent with perfect conductivity. The second London equation relates the

supercurrent to the magnetic field h:

c∇× (ΛJs) = −h (5.4)

By taking curl of the Maxwell’s equation: ∇ × h = (4π/c)J and using the equa-

tion above, yields ∇2h = h
λ
2 where λ2 = mc

2

4πnse
2 is the London penetration depth.

This equation predicts that the magnetic field decays over a characteristic length λ,

providing the first mathematical formulation of the Meissner effect.

For the derivation of the London equations, only the local effects of the electro-

magnetic fields were considered, i.e. the superconducting current density at a point

was obtained by considering the field only at that particular point. Nevertheless,

A.B. Pippard highlighted the importance of considering the non-local effects of elec-

tromagnetic fields through his discovery of the superconducting coherence length

ξ0. The necessity of considering non-local effects of the field arose while predict-

ing an estimate for the maximum number of superconducting electrons possible in

a system. It appeared that this number would be related to the total number of
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5.1. Overview of Superconductivity

conduction electrons in a system in the extreme case of T → 0. In that case, an

estimate of nmax could be obtained from London penetration depth at T = 0 given

as: λL(0) = ( mc
2

4πne
2 )

1/2. It is evident that as the system’s temperature approaches Tc,

ns would diminish causing λ(Tc) to diverge. However, experimental observations re-

vealed a larger penetration depth for radio frequency fields in the superconducting

state compared to the normal state, which challenged the conclusions derived by

the London brothers. This excess penetration depth was accounted for by consid-

ering the non-local effects of the electromagnetic fields leading to the discovery of

Pippard’s coherence length.

5.1.2 Pippard’s coherence length

In 1953 Pippard modified the London equation to solve the dilemma for increased

field penetration in the superconducting state compared to the normal state by

drawing an analogy from the generalized Ohm’s law, J(r) = σE(r) where he demon-

strated that the supercurrent density Js(r) at a point r in space would depend on

the magnetic vector potential A(r′) enclosed by a sphere of radius r0 about the

point r [164]. Pippard asserted that similar to normal electrons, the superconduct-

ing electrons can also be described by a wave function ψs with a wave packet of size

ξ0. These superconducting electrons that reside within kBTc of EF contribute to

the intriguing physics that comes into play close to Tc. Combining this along with

Heisenberg’s uncertainty principle ∆x∆p ≥ h̄, an estimate for the wave packet’s

size could be determined as follows: ξ0 = a h̄vF
kBTc

. The introduction of the term ξ0,

which was termed the coherence length, has similarities with the characteristic mean

free path of charge carriers, ‘l’. It was emphasized that the variation of the vector

potential over ξ0 (≈ r0) needs to be considered to obtain the correct supercurrent

density, which ensures that the calculated λ is aligned with experimental observa-

tions [162]. This meant that any change of A(r′) over a length scale ξ0, would affect

Js(r). Taking into account the above, it was proposed that Js can be replaced by:
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5.1. Overview of Superconductivity

Js(r) = − 3

4πξ0Λc

∫ R[R · A(r′)]
R4 e−R/ξdr′ (5.5)

where ξ is the coherence length of the superconducting carriers in the presence of

scattering, R is the distance between the points at which Js and A(r′) are measured.

A formal expression for the coherence length ξ in the presence of scattering centers

was also formulated:
1

ξ
=

1

ξ0
+

1

l
(5.6)

Eq. (5.5) solved the dilemma of increased London penetration depth for the radio-

frequency field in the superconducting state compared to the normal state. From

experiments on superconductors like tin and aluminum, it was observed that λ ≫

λL(0), since A(r′) does remain not constant over the entire ξ0 rather it decreases

over λ ≪ ξ0 which further leads to a reduction in supercurrent density Js(r) as

evidenced by eq (5.5), hence an increased penetration depth for the field inside the

superconductor.

5.1.3 The Ginzburg-Landau theory

Even though the phenomenon of superconductivity was understood, Ginzburg and

Landau proposed the first phenomenological macroscopic model for superconductors

in 1950. The theory developed by Ginzburg and Landau (GL theory) specifically con-

centrated on the description of the spatially varying superconducting carrier density

close to the phase transition (Tc). Ginzburg and Landau proposed that the supercon-

ducting wave function ψs is an order parameter that describes the superconducting

state. This order parameter was found to be related to the density of superconduct-

ing charge carriers as ns = |Ψs(r)|2. By applying a variational method, an expression

similar to the Schrödinger equation in quantum mechanics was formulated for ψs:

1

2m∗

(
h̄

i
∇− e∗

c
A

)
ψ + β|ψ|2ψ = −α(T )ψ (5.7)
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Figure 5.2: Schematic illustration of the intermediate state where the supercon-
ducting and normal phases coexist.

Following the analogy of the probability current J for a free particle in non-

relativistic quantum mechanics, the corresponding supercurrent Js was formulated:

Js =
e∗h̄

2im∗ (ψ
∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
|ψ|2A (5.8)

where e∗ and m∗ are the effective charge (corresponding to 2e as discussed in sec-

tion 5.1.4) and mass of the superconducting carriers respectively. One of the major

successes of the theory was that it accounted for the non-local effects of electromag-

netic fields (a modification of the equations proposed by London), similar to what

Pippard’s non-local electrodynamics proposed. The theory also proposed that the

superconducting carrier density ns would spatially vary in response to sufficiently

strong fields (ref. to (5.7) and (5.8)). This inherently implies that the quantity ψs is

not constant in space but exhibits spatial variations. A typical scenario would be the

coexistence of a normal and superconducting state with an interface separating the

two states as depicted in figure 5.2 which shows the superconducting state decaying

over a coherence length ξ(T), while the magnetic field h(r) exhibits spatial variation

over the penetration depth λ(T) and increases to a constant value of Hc in the normal

state. A variation of ψs also suggests a spatial modulation of the superconducting

gap, thereby challenging the notion of a spatially independent superconducting gap

as postulated by the BCS theory (see following subsection). Subsequently, Gor’kov
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Figure 5.3: Schematic illustration of the variation of ψ and h for the case of: (a)
κ ≪ 1 corresponding to a type-I superconductor, (b) κ ≫ 1 corresponding to a
type-II superconductor.

in 1959 established that the GL theory represents a limiting case of BCS theory

in the vicinity of Tc with ψs directly corresponding to the spatially dependent gap

function ∆(r) and valid only for a gradually varying ψs and electromagnetic fields

[165]. The GL theory also defined a characteristic length scale over which ψs can

vary without any energy cost:

ξ(T ) =
h̄

|2m∗α(T )|1/2
(5.9)

which in the literature of superconductivity is known as GL “coherence length”. It

was demonstrated that the GL “coherence length” is a generalized version of Pip-

pard’s coherence length for the cases of T ≪ Tc and T → Tc [162]. A corresponding

parameter called the GL parameter was defined, κ = λ(T )
ξ(T )

. The quantity κ was used

to distinguish between “pure” and “dirty” superconductors. For κ≪ 1, one is within

the limit of “pure” superconductors. As shown in figure 5.3a, this is also the case

for type-I superconductors, where the magnetic field strength beyond Hc kills the

superconducting state due to the full field penetration (see figure 5.1b), however for

smaller field strength there exists a region, ξ − λ where besides the restriction of

the field penetration, the superconducting order parameter does not recover to its

full value i.e. ψ ̸= ψ∞, thereby implying that the full condensation into the super-

conducting state does not occur leaving a portion of the sample in the normal state.

This stabilizes a superconducting and normal state mixture with a positive surface

energy, with a domain wall separating the two. The type-I superconductors mainly
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Figure 5.4: (a) Dependence of the critical field as a function of temperature in a
type-II superconductor. (b) Vortex lattice on the type-II superconductor, NbSe2.

include metals such as Lead (Pb), Tin (Sn), Zirconium (Zr), Aluminum (Al), etc.

While the type-I or “pure” superconductors with ξ ≫ λ were well understood

back then, the idea of a “dirty” superconductor with κ≫ 1 was unknown. This was

brought to attention in 1957 when Alexie Abrikosov questioned what would happen

if the penetration depth was larger compared to the GL coherence length i.e. κ≫ 1.

This is schematically illustrated in figure 5.3b. It was suggested in the GL theory that,

beyond the lower critical field value Hc1, the superconducting state fails to maintain

its perfect diamagnetic nature, leading to the formation of a mixed state where a

superposition of the superconducting and normal regions coexist. This phenomenon

is caused by the gradual increase of the magnetic flux up to a limiting value, the

upper critical field Hc2 =
√
2κHc, that penetrates the sample forming an arrange-

ment of regions, the core of which favors a metallic or “quasinormal” state [166].

Abrikosov termed this array of regions as vortices and showed that the flux through

these regions was quantized: Φ0 =
hc
2e

= 2.07×10−7G−cm−2. The intermediate state,

characterized by the coexistence of superconducting and normal regions, occurs in

type-II superconductors when the applied magnetic field exceeds the lower critical

field Hc1 but is less than the upper critical field Hc2 (see figure 5.4a). STM measure-

ments at low temperatures allow direct visualization of these vortex patterns, where

the vortices stabilize into ground-state configurations, typically forming lattices of
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different symmetry. Figure 5.4b shows a vortex lattice on the type-II superconductor

NbSe2 which follows the six-fold symmetry of the lattice. Some examples of elemen-

tal type-II superconductors are Niobium (Nb), Vanadium (V), Technetium (Te), and

the more recent 2D ones involve Bi2Sr2CaCu2O8+x (Bi2212), NbSe2, PdTe2, etc.

5.1.4 The BCS theory

Until 1953, although many features, characteristic of the phenomena of superconduc-

tivity were known, the microscopic mechanism or the nature of the superconducting

charge carriers remained elusive. While extracting the coherence length ξ0 of these

superconducting carriers, it was emphasized that the energy scale associated with

the phenomena of superconductivity is expected to lie within kBTc of EF [162, 167].

In 1955, John Bardeen in an attempt to provide a mathematical description of the

Meissner effect suggested that an energy of similar order, kBTc would be required

to destabilize the superconducting electrons from the Fermi sea causing them to

behave like “normal”electrons, but in an excited state [168]. This would imply that

the superconducting state drives an instability of the Fermi surface. Bardeen argued

that an energy scale was associated with the Fermi surface instability, manifesting

as an energy gap defining the superconducting condensate’s ground state (see figure

5.5). The first experimental evidence of an energy gap was found in the specific

heat measurements on the elemental superconductor Vanadium [169] where below

Tc, the specific heat decayed exponentially following the relation: Ces ≈ γTcae
−bTc/T

where a and b are numerical constants. This exponential dependence on b ∼ 1.5

was related to the energy required to excite a quasiparticle, which was ∼ 1.5 kBTc.

Some other experimental techniques also revealed an energy gap of 3 to 4 times kB

Tc suggesting the possibility of paired excitation [170, 171]. In 1956, Leon Cooper

cleared all these dilemmas by theoretically demonstrating that electrons can exist as

bound pairs due to non-trivial correlations and condense into a stable ground state

with finite energy, not necessarily zero [172]. This was counterintuitive to the general

notion that the Coulomb repulsion would oppose such pair formation between simi-
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EF

kBTC << EF

Eg=

S=0

Figure 5.5: Instability of the Fermi surface manifests as an excitation gap given by
Eg = ∆(T ).

larly charged entities. Cooper showed that such an attraction between the electrons

would typically exist on a length scale much larger than the atomic scale, typically

of the order of a few 100 nanometres. The presence of an attractive interaction be-

tween electrons was supported by the fact that the attraction between electrons was

mediated by the crystal lattice vibrations commonly known as phonons. Following

these arguments, in 1957, Bardeen and Cooper, together with Schrieffer, presented

their seminal work on the “Theory of Superconductivity” which would unravel many

of the mysteries of the superconducting state [167]. This groundbreaking theory,

commonly known as the Bardeen-Cooper-Schrieffer (BCS) theory, was awarded the

Nobel Prize in 1972. This theoretical framework successfully explained the isotope

effect in superconductors, first experimentally observed by Maxwell and Reynolds

in 1950 [173]. Their measurements revealed an inverse relationship between the su-

perconducting transition temperature Tc and the square root of the isotopic mass

(Tc ∝
√
M), consistent with the phonon-mediated pairing mechanism of the BCS

theory where an inverse scaling relation between the Tc and mass of the isotope was

found. The remainder of this section provides a brief theoretical and mathematical

overview of BCS theory. For detailed information on the BCS theory, see references
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Figure 5.6: Schematic illustration of the pairing mechanism of electrons in a BCS
superconductor mediated by the crystal lattice vibrations.

[167] and [162].

The BCS theory demonstrated that despite strong Coulomb repulsions, an effec-

tive attractive interaction between electrons can emerge through electron-phonon

coupling. This enables electrons near the Fermi surface to form bound pairs with

opposite momenta (k↑, -k↓) and antiparallel spins (S = 0). The phonon-mediated

pairing interaction destabilizes the normal-state Fermi surface, creating an excita-

tion gap with magnitude Eg(0) = 2∆(0) ≈ 3.53 kBTc at T ≪ Tc, where where ∆(0)

is the superconducting gap at absolute zero temperature. This gap vanishes as T →

Tc. These paired quasiparticles, known as Cooper pairs, serve as the charge carriers

in the superconducting state. These Cooper pairs are spatially correlated over a

characteristic length scale ξ = h̄vF
π∆(0)

, called the BCS coherence length.

Qualitatively, the mechanism of Cooper pair formation can be understood by

considering the interaction between the electron and the lattice. As illustrated in

figure 5.6, when an electron moves through the lattice, it attracts nearby positive

ions, creating a localized lattice distortion. This distortion generates a region of
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enhanced positive charge density that persists long enough to attract a second elec-

tron, provided the resulting electron-phonon attraction overcomes Coulomb repul-

sion. The two electrons then form a correlated pair that ultimately condenses into

the superconducting ground state. While this picture describes a single pair, the

superconducting state actually consists of a macroscopic phase-coherent condensate

of such pairs. This collective nature makes the superconducting state robust against

lattice vibrations (already suppressed at low temperatures) due to the finite energy

required to break pairs. The Cooper pairs flow inside the superconductor without

dissipation, giving rise to a supercurrent Is.

In conventional s-wave superconductors described by BCS theory, the Cooper

pairs form with a spin-singlet configuration (S = 0) and zero orbital angular mo-

mentum (L = 0), resulting in a spherically symmetric wavefunction. The orbital

angular momentum fundamentally influences the superconducting properties. Un-

like isotropic s-wave pairing, non-zero angular momentum states show directional

dependence in their gap structures. In superconductors, the orbital angular momen-

tum of Cooper pairs plays a role analogous to the orbital angular momentum in

atomic systems, determining the spatial structure of the Cooper pair wavefunction

(similar to how atomic orbitals define electron probability distributions). In fact,

alternative pairing mechanisms can generate superconducting states with non-zero

orbital angular momentum. p-wave superconductors exhibit L = 1 pairing with odd-

parity wavefunctions and typically form spin-triplet states (S = 1), as proposed in

systems like Sr2RuO4 [174]. In contrast, d-wave superconductors with L = 2 pairing

maintain spin-singlet configurations but develop nodal gap structures, as observed

in cuprate superconductors where the superconducting gap follows the symmetry

[175]. The pairing symmetry (s-, p-, d-, or f-wave) reflects the quantized orbital an-

gular momentum (L = 0, 1, 2, 3), which governs the nodal structure and anisotropy

of the superconducting gap (see section 5.2). This chapter will address the topic of

p-wave superconductivity in section 5.3.
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5.1.4.1 Mathematical formalism of the BCS theory

In an attempt to determine the quasiparticle spectrum, the attractive interaction

between electrons with opposite spin and zero momenta, which was the key finding

of the BCS theory was described by the second-quantized Hamiltonian [162, 176],

H =
∑
k⃗,s

ξk⃗c
†
k⃗,s
ck⃗,s + g

∑
k⃗,⃗k

′
,q⃗

c†
k⃗+q⃗,↑

c†
k⃗
′−q⃗,↓

ck⃗′,↓ck⃗,↑ (5.10)

where c†
k⃗,s

(ck⃗,s) is the creation (annihilation) operator corresponding to an electron

with spin s and momentum k⃗. The first term corresponds to the kinetic energy, which

captures the parabolic band dispersion of a normal metal where ξk⃗= h̄
2

2m

(
k⃗2 − k2F

)
,

measured w.r.t the chemical potential. The second term represents the attractive

potential between the 2 spin-1
2

fermions. The term g is a random scattering matrix

element related to the attractive potential U(r⃗− r⃗′) as follows: U(r⃗− r⃗′) = gδ(r⃗− r⃗′)

(g < 0). In k-space, the interaction term Vk⃗,⃗k′ can be obtained by a Fourier transform

of U(r⃗): Vk⃗,⃗k′ = V (q⃗ = k⃗ − k⃗′) =
∫
d3rU(r⃗) = g. The Hamltionian in eq. (5.10) can

be simplified by considering only those terms in the scattering matrix g for which the

electron pairing has L = 0, corresponding to the set of Bloch states |⃗k, ↑⟩ ⊗ | − k⃗, ↓⟩|.

The simplified Hamiltonian is therefore given by,

H =
∑
k⃗,s

ξk⃗c
†
k⃗,s
ck⃗,s + g

∑
k⃗,⃗k

′

c†
k⃗↑
c†
−k⃗↓

c−k⃗
′↓ck⃗′↑ (5.11)

The originally proposed BCS wave function representing the ground state of the

Cooper pairs was given as:

|ΦBCS⟩ =
∏
k⃗

{
uk⃗ + vk⃗c

†
k⃗↑
c†
−k⃗↓

}
|vac⟩ (5.12)

where |vac⟩ denotes the electrons in the normal state and uk⃗ and νk⃗ are numerical co-

efficients satisfying the relation |uk⃗|
2+ |νk⃗|

2 = 1 [162]. This mathematical constraint

implies that the probability of occupation of a Cooper pair (k ↑,−k ↓) is |νk⃗|
2, while
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E

k

hole-like branch

electron-like branch hole-like

E

DOS (N(E))
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electron-like

Figure 5.7: Schematic illustration of the (a) of the energy dispersion of the quasi-
particles demonstrating the emergence of an energy gap around the Fermi energy
(EF) originating due to the hybridization of an electron-like (solid blue line) and
hole-like branch (solid red line). The dashed lines correspond to the case of a nor-
mal metal which has ∆ = 0. (b) DOS features a pair of coherent electron-hole peaks
separated by the excitation gap 2∆. Panel (a) adapted from ref. [176].

the probability that it is empty is |uk⃗|
2 = 1 − |νk⃗|

2. The variational method em-

ployed in the original work by BCS [167] is mathematically pretty rigorous, so a

more convenient approach to obtain the quasiparticle dispersion relation was pro-

posed, which was the mean-field theoretical approach. This approach mitigates the

complexity caused by the many-body interaction term in the Hamiltonian. For this,

the off-diagonal term below in the mean-field matrix was proposed [176]:

bk⃗ =
〈
c−k⃗↓ck⃗↑

〉
(5.13)

where bk⃗ relates states where the fermionic occupation differs by 2. The bk⃗ can be

interpreted as the momentum space wave function of the Cooper pairs. Using the

mathematical jiggling, c−k⃗↓ck⃗↑ = bk⃗+
{
c−k⃗↓ck⃗↑− bk⃗

}
in eq (5.11) and ignoring higher

order terms, the model Hamiltonian can be written as:
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H =
∑
k⃗,s

ξk⃗c
†
k⃗,s
ck⃗,s + g

∑
k⃗,⃗k

′

b∗
k⃗
′c−k⃗↓ck⃗↑ + bk⃗′c

†
k⃗↑
c†
−k⃗↓

− b∗
k⃗
bk⃗′ (5.14)

=
∑
k⃗,s

ξk⃗c
†
k⃗,s
ck⃗,s −

∑
k⃗

(
∆∗c−k⃗↓ck⃗↑ +∆c†

k⃗↑
c†
−k⃗↓

)
−∆∗bk⃗ (5.15)

where ∆ = −g
∑

k⃗ bk⃗′ is the superconducting gap equation. In the next step, a new

fermionic operator γk⃗s was introduced which had the form γ̇ k⃗,s = i[Hmf ,γ
†
k⃗s
] =

Ek⃗γ
†
k⃗,s

. To determine the quasiparticle dispersion, the Hamiltonian needs to be diag-

onalized, which was achieved using the following transformation, as independently

proposed by Nikolai Bogoliubov [177] and John Valatin [178]:

ck⃗↑ = u∗
k⃗
γk⃗1 + νk⃗γ

†
k⃗2

and c−k⃗↓ = −ν∗
k⃗
γk⃗1 + uk⃗γ

†
k⃗2

(5.16)

where uk⃗ and νk⃗ are the same indices in the variational ground state in eq (5.12)

satisfying the condition |uk⃗|
2 + |νk⃗|

2 = 1 and the subscripts 1 and 2 correspond to

electron-like and hole-like quasiparticles. Making the above substitution, the diago-

nalized Hamiltonian becomes,

Hmf =
∑
k⃗

[ξk⃗ − Ek⃗ +∆bk⃗] +
∑
k⃗

Ek⃗(γ
†
k⃗1
γk⃗1 + γk⃗2γk⃗1) (5.17)

where Ek⃗ =
√
ξ2
k⃗
+∆2 is the energy of the Bogoliubov quasiparticles. The quasipar-

ticle dispersion corresponding to Hmf consists of two branches originating from a

normal metal’s electron-like and hole-like parabolic bands. As shown in figure 5.7a,

close to the Fermi energy, the attractive interaction g causes an instability mani-

festing as a gap of magnitude 2∆. From the figure, it can be further inferred that

the emergence of the gap is linked to the hybridization of the electron and hole-like

branches, implying that the quasiparticles bear a mixed nature. The superconduct-

ing gap can be detected in STM measurements in the LDOS measurements. The

BCS DOS, which is the number of quasiparticle states within a given energy interval,
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can be written as:

NBCS(ξ) =


N0

|ξ|√
ξ
2−∆

2
|ξ| ≥ ∆

0 |ξ| < ∆

(5.18)

where N0 is the DOS in the normal state. A typical DOS of a superconductor is

illustrated in figure 5.7b.

Theoretically, the magnitude of this gap ∆ can be obtained from the “gap equa-

tion”:

∆ = −g
∑
k⃗

bk⃗ = −g
∑
k⃗

u∗
k⃗
νk⃗[1− f(Ek⃗)] = −g

∑
k⃗

∆

2Ek⃗

tanh
(
Ek⃗

kBT

)
(5.19)

where f(E) = 1/(1+ eE/kBT ) is the fermi-Dirac distribution. It is important to note

that this gap is solely temperature-dependent. In the limiting case of ∆ → 0, the

critical temperature Tc at which the gap vanishes can be obtained as follows,

∆ = −g∆
∑
k⃗

1

2Ek⃗

tanh
(
Ek⃗

kBT

)
⇒ 1 = −g

∫
dξ
N(ξ)

2ξ
tanh

(
ξ

kBTc

)
(5.20)

where N(ξ) represents the density of available electronic states at energy ξ. Since

ξ → ±∞, it is necessary to define a cutoff energy εc so that the integral does not

diverge. This quantity εc must be much smaller than the bandwidth and should

be defined around a small energy window around EF within which the attractive

interaction persists. Mathematically, this would imply −εc ≤ V ep

k⃗,⃗k
′ ≤ εc. Within this

energy range, the electron density of states is expected to be constant, therefore, the

integral can be written as:

1 = −gN0

∫ +εc

−εc

dξ)

2ξ
tanh

(
ξ

kBTc

)
= −gN0 ln 1.14εc

kBTc
(5.21)

from which the expression for Tc can be extracted: kBTc = 1.14εce
−1/|g|N0 . By using
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the above integral, the energy gap at T = 0 can also be obtained:

1 = −gN0

∫ εc

0

dξ√
ξ2 +∆2

= −gN0 sinh−1 εc
∆

(5.22)

which yields ∆(T = 0) ≈ 2εce
−1/|g|N0 =1.764 kBTc. Finally, the condensation energy

at T = 0 can be obtained, corresponding to the energy gain associated with gap

opening resulting from a modification of the quasiparticle states close to EF. The

condensation energy Econd is therefore obtained as:

Econd =
∑
k⃗

[ξk⃗ − Ek⃗ +∆bk⃗] ≈ −1

2
N0|∆|2 (5.23)

The equation above demonstrates a clear dependence of the condensation energy on

the density of states at the Fermi surface. A more comprehensive analysis of the

BCS theory can be found in ref. [162].

5.2 The gap function for different pairing states

The gap function, defined as ∆k = −g
∑

k⃗ bk⃗ is a key parameter that determines the

specific characteristics of the superconducting gap. The form of ∆k is linked to the

wave function of the Cooper pairs [167, 176]. It provides crucial information about

the symmetry of the gap, revealing whether it is isotropic (independent of direction),

anisotropic (varies with direction), or exhibits nodes (points or lines where the gap

vanishes) for different pairing states. To gain a deeper insight into the gap structure,

the wave function of the Cooper pairs bk⃗,s1s2 can be written as a product of an orbital

part and a spin part:

bk⃗,s1s2 = ϕ(k⃗)χs1s2
(5.24)

where ϕ(k⃗) is the orbital part and χs1s2
is the spin part corresponding to two electrons

with spin angular momentum s1 and s2. Considering only the spin part of the Cooper

pairs, composed of 2 spin-1
2

fermions, two spin states are possible depending on

whether the total spin is S = 0 or S = 1. The S = 0 is the spin-singlet state,
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Spin Total

Singlet (odd) Even

Odd

Triplet (even) Odd

Odd

s d

p f

Orbital

Figure 5.8: Classification of superconducting correlation following from the Pauli
principle. With the spin part being antisymmetric (odd), the orbital part is symmet-
ric (even), leading to an s-wave (L = 0) or d-wave (L = 2) orbital character. When
the spin part is symmetric, the orbital part must be antisymmetric, resulting in a
p-wave ( L = 1) or f-wave (L = 3) orbital character.

described by the wave function:

χs1s2
=

1√
2
(|↑↓⟩ − |↓↑⟩) (5.25)

which is antisymmetric under particle exchange. For the spin-triplet state corre-

sponding to S = 1, three different states are possible depending on the spin projec-

tions (Sz= -1, 0, +1), which are described by the wave function:

χs1s2
=


|↑↑⟩

1√
2
(|↑↓⟩+ |↓↑⟩)

|↓↓⟩

(5.26)

This wave function is symmetric under particle exchange. Since the Pauli exclusion

principle demands that the total fermionic wave function of the Cooper pairs, bk⃗,s1s2 ,

be antisymmetric under the exchange of two identical fermions, two distinct possi-

bilities arise depending on whether the spin state is a singlet or a triplet. For the
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Pairing type Gap func�on k

s-wave

p-wave

d-wave

f-wave

(sin kx + i sin ky)

(cos kx- cos ky)

sin 2

(constant)

Figure 5.9: Examples of the form of the gap function for different pairing types. The
s-wave superconductors exhibit an isotropic gap, while the p-wave superconductors
can exhibit a nodal gap. The same is the case for d-wave superconductors, which
can also exhibit a nodal gap. The f-wave superconductors are rare but have been
proposed in some heavy fermion systems. Here the lattice constant has been set to
a = 1 for simplicity (kxa = kx).

spin-singlet case, the Pauli exclusion principle demands that the orbital part have

an even parity (ϕ(k) = ϕ(−k)), while for the spin-triplet case, the orbital part must

have an odd parity ((ϕ(k) = −ϕ(−k)). This constraint on bk⃗,s1s2 also extends to the

gap function ∆k⃗,s1s2
[176] in the following manner:

∆k⃗,s1s2
= −∆−k⃗,s2s1

=


∆−k⃗,s1s2

= −∆k⃗,s2s1
even orbital − odd spin

−∆−k⃗,s1s2
= ∆k⃗,s2s1

odd orbital − even spin
(5.27)

In cases where the Cooper pair’s orbital wave function possesses even parity and the

spin configuration is a singlet, the superconducting state exhibits either s-wave or

d-wave symmetry. Conversely, when the orbital parity is odd and the spin state is

a triplet (the inverse scenario), the superconducting pairing is characterized as a p-

wave or f-wave. Figure 5.8 provides a schematic representation of these correlations.

This naming convention draws inspiration from the spatial shapes of atomic orbitals,

reflecting a similar momentum dependence in the superconducting gap function.

Examples of the gap functions of the different pairing symmetries are shown in

figure 5.9 [167, 175, 179–182].

In the spin basis, the gap function can be represented in the form of a matrix
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[162, 176]:

∆̂k⃗ =

∆k⃗,↑↑ ∆k⃗,↑↓

∆k⃗,↓↑ ∆k⃗,↓↓

 (5.28)

Taking into account the equation above, the gap function matrix for the spin singlet

can be expressed by just using the scalar function ψ(k⃗) (ψ(k⃗) = ψ(−k⃗)) since the

spatial part is symmetric. Substituting this into eq. 5.28 yields:

∆̂k⃗ =

 0 ψ(k⃗)

−ψ(k⃗) 0

 = iσ̂yψ(k⃗) (5.29)

where σ̂y is the y-component of the Pauli spin matrices. On the other hand, to

represent the gap matrix for the odd parity case with spin-triplet pairing, a vector

quantity with 3 components d⃗(k⃗) = dx(k⃗)x̂ + dy(k⃗)ŷ + dz(k⃗)ẑ needs to be defined

[176] allowing ∆̂k⃗ to be written as:

∆̂k⃗ =

−dx(k⃗) + idy(k⃗) dz(k⃗)

dz(k⃗) dx(k⃗) + idy(k⃗)

 = i(d⃗(k⃗) · ˆ⃗σ)σ̂y (5.30)

where d⃗(k⃗) = −d⃗(−k⃗) has an odd parity. From the gap matrices discussed above, it is

possible to calculate a quantity defined as: ∆̂†
k⃗
∆̂k⃗, the trace of which is proportional

to the square of the gap function (|∆k⃗|2)[176]:

∆̂†
k⃗
∆̂k⃗ =


|ψ(k⃗)|2σ̂0 spin singlet

|d⃗|2σ̂0 + i(d⃗× d⃗∗).ˆ⃗σ spin triplet
(5.31)

The corresponding gap function, which yields the quasiparticle spectrum, is therefore

given by the equation below:

|∆k⃗|
2 =

1

2
tr(∆̂†

k⃗
∆̂k⃗) (5.32)

The nature of the superconducting gap function is dependent on the symme-
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try operations governing the spin-singlet and spin-triplet configurations, hence, it

requires reviewing these symmetry operations. In the case of a s-wave superconduc-

tor or a conventional BCS superconductor, since the spins in a Cooper pair are

paired with opposite spins (singlet pairing) and are located at opposite momenta,

the crucial symmetry is the T̂ symmetry [183]. This can be understood as follows:

when the T̂ operator is applied on a state |k, ↑⟩, the corresponding T̂ counterpart

| − k, ↓⟩ is obtained which is the partner state that together forms the Cooper pairs.

Mathematically, this can be expressed as:

T |k, ↑⟩ = | − k, ↓⟩ (5.33)

However, for the spin-triplet pairing characteristic to p-wave superconductors, be-

sides the T̂ symmetry, the inversion symmetry (Î) also needs to be invoked to

generate the different spin-triplet configurations. When the Î and T̂ operators are

applied to the electronic state |k, ↑⟩, the resulting partner state can be obtained as

follows:

Î|k, ↑⟩ = | − k, ↑⟩, T̂ |k, ↑⟩ = | − k, ↓⟩, ÎT̂ |k, ↑⟩ = |k, ↓⟩ (5.34)

In general, to investigate the effect of T̂ and Î operator on ∆̂k⃗, one needs to examine

their effect on the fermionic creation and annihilation operators. In the case of T̂

symmetry defined as T̂ = −iσ̂yĈ with Ĉ being a complex-conjugate operator, the

effect of T̂ operator on ck⃗,s and ∆̂k⃗ can be given by the following equations:

T̂ ck⃗,s =
∑
s
′

(−iσ̂y)ss′c
†
−k⃗,s

′ ⇒ T̂ ∆̂k⃗ = σ̂y∆̂∗
k⃗
σ̂y (5.35)

In a similar way the effect of Î operator on ck⃗,s and ∆̂k⃗ can be given by the following

set of equations [176]:

Îck⃗,s = c−k⃗,s ⇒ Î∆̂k⃗ = ∆̂−k⃗ =


+∆̂k⃗, spin − singlet

−∆̂k⃗, spin − triplet
(5.36)
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Besides the symmetries mentioned above, the effect of other symmetries on the

|∆k⃗|, namely rotations in real and spin space and U1-gauge symmetries, has also

been examined[176]. For e.g., under spin rotation defined by the operator g, the

singlet configuration remains unaffected since the net spin is 0, however the vector d⃗

in the spin-triplet case transforms under rotation according to the relation gd⃗(k⃗) =

R̃S(g)d⃗(k⃗), where R̃S denotes the rotation in the three-dimensional space. This leads

to the following modification of the gap function in the spin space accordingly as a

spin directed along d⃗(k⃗): dx{−| ↑↑⟩+ ↓↓⟩} − idy{| ↑↑⟩+ | ↓↓⟩}+ dz{| ↑↓⟩+ | ↓↑⟩}.

Having thoroughly discussed the symmetries that constrain the form of the su-

perconducting gap function, the specific form of the gap for s-wave and p-wave

superconductors, such as its symmetry properties and nodal structure, can be inves-

tigated. For the spin-singlet state with L = 0 (s-wave) and protected byT symmetry,

the gap function transforms to:

∆k⃗ = ∆0 = ψ(k⃗) (5.37)

This implies that the gap function is a scalar quantity with an isotropic gap all along

the Fermi surface, thereby establishing a single superconducting gap for the s-wave

superconductors (ref. to figure 5.5 and 5.9). For the spin-triplet-pairing state, the

gap structure is complex since its specific form is governed by the vector-d⃗. E.g., the

gap function for the chiral p-wave state defined as d⃗(k⃗) = ∆0

kF
(kx± iky) (discussed in

the subsection 5.3.1) takes the following form [176]:

|∆k⃗|
2 = |∆0|2

k2x + k2y

k2F
(5.38)

This state is known to have nodes in the superconducting gap for k⃗ || (0,0,±1) and

has a net out-of-plane orbital angular momentum, Lz = ±1. In some cases, like

for tetragonal crystals, the px and py gap functions are degenerate so one can form

combinations of the type px ± ipy, the square of the modulus of which is isotropic.

In the case of a cylindrical Fermi surface, this state exhibits no nodes, resulting in
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5.3. p-wave superconductivity

an optimized condensation energy for p-wave pairing [184].

5.3 p-wave superconductivity

Following the discovery of the BCS theory, the pairing mechanism for most of the

superconductors in the early 1970s could be explained by the electron-phonon inter-

action, which leads to the formation of Cooper pairs with a singlet spin configuration

and a net zero angular momentum. As mentioned previously, these superconductors

were termed as s-wave or BCS superconductors. However, the discovery of superflu-

idity in 3He in 1971 spurred extensive research into the possibility of a pairing state

with non-zero angular momentum. Unlike the conventional s-wave superconductors,

the Cooper pairs in 3He possess a net angular momentum of L = 1 and a triplet-like

spin configuration [176, 185]. As shown in the previous section, a net orbital angu-

lar momentum of 1 warrants their classification as p-wave superconductors. It was

proposed that such a pairing with non-zero angular momentum would result from

electron-electron interactions, which, despite being repulsive at short distances, are

overall attractive. This would induce the formation of Cooper pairs with non-zero an-

gular momentum. This implies that the conventional electron-phonon coupling could

not explain the formation of non-zero momentum Cooper pairs. In the case of 3He,

the microscopic pairing mechanism was attributed to electron-paramagnon coupling

(related to spin fluctuation mechanisms) or effects related to vdW origin [180, 186].

Due to the unconventional non-BCS-like pairing nature, the p-wave superconductors

are also termed “unconventional superconductors”. The p-wave superconductors can

be further classified into chiral p-wave and helical p-wave, depending on whether T

is present or absent, which will be briefly discussed in the subsequent sections.

5.3.1 Mathematical formalism for a p-wave gap function

In the case of the s-wave superconductors, the gap function is a constant quantity,

however for the case of a p-wave superconductor, the gap function can, for e.g., take
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5.3. p-wave superconductivity

the form ∆(k⃗) = ∆0 (sin kxa +i sin kya) = ∆0 (sin kx +i sin ky) (for a = 1) ,

which for k → 0, reduces to ∆(k⃗) = ∆0(kx + iky). Substituting the form of this gap

function into the BCS Hamiltonian, the Bogoliubov-de-Gennes (BdG) Hamiltonian

[177, 187] corresponding to the p-wave state can be written as:

HBdG =

 k
2

2m
− µ ∆0(kx + iky)

∆0(kx − iky)
k
2

2m
− µ

 (5.39)

where µ corresponds to the chemical potential. The energy eigenvalues of HBdG can

be obtained by solving the determinant (HBdG(k)− EI) = 0:

E2 =

(
k2

2m
− µ

)2

+ |∆(k)|2 =

(
k2

2m
− µ

)2

+∆2
0(k

2
x + k2y). (5.40)

From the above equation, it is evident that a gap-closing condition (E = 0) occurs

when:
k2

2m
= µ and kx = ky = 0 (5.41)

thereby suggesting that a topological phase transition occurs at µ = 0. Notably, for

both µ < 0 and µ > 0, the system is gapped, however, one of them is potentially

topological while the other is trivial, which can be shown by calculating the Chern

number corresponding to HBdG. For this, HBdG can be written as the product of the

spin-triplet vector, d⃗(k) and the Pauli matrices [4]:

HBdG(k) = d⃗(k).σ⃗, (5.42)

where d⃗(k) =
(
∆0kx,∆0ky,

k
2

2m
− µ

)
and σ⃗ = (σx, σy, σz) is the Pauli spin matrices.

The Chern number corresponding to the HBdG is defined as:

C =
1

4π

∫
BZ

d2k(∂kx d̂× ∂ky d̂) · d̂, (5.43)
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where d̂ = d⃗

|d⃗|
is the unit vector. On solving the integral, it can be obtained that

C = sgn(µ), for µ > 0. Notably for µ > 0, C = 1. As previously discussed in

sec. 3.1, a non-zero Chern number corresponds to non-trivial topology [1], hence

µ > 0, corresponds to the topologically non-trivial case, implying a topological p-

wave pairing state. On the other hand, for µ < 0, C = 0, corresponding to the case

of an insulator. A key physical manifestation of the topologically non-trivial state

(with Chern number C = 1) is the emergence of robust edge states at the boundary,

as dictated by the bulk-boundary correspondence.

In the subsequent subsection, the discussion turns to the two variants of topo-

logical p-wave superconductivity: the chiral and helical p-wave state.

5.3.2 Chiral p-wave vs. Helical p-wave superconductors

The chiral p-wave superconducting state emerges when spin-triplet Cooper pairs

with equal spins form, spontaneously breaking T symmetry. As the name implies,

it shares key characteristics with the QHE described in section 3.1. Both systems

support chiral edge modes, however, in the case of chiral p-wave superconductors,

the chiral edge modes are formed by spin-polarized Cooper pairs, specifically the

spin-triplet state |↑↑⟩ or |↓↓⟩. A schematic illustration of the chiral p-wave pairing

is shown in figure 5.10a, where a Cooper pair with equal down spins rotates in an

anticlockwise direction around the Fermi surface with a net Cooper pair orbital

angular momentum indicated by the large arrow at the center. Notably, the chiral

superconductors are topologically non-trivial [34], as evident from their intriguing

non-BCS-like behavior; they are known to support features reminiscent of the topo-

logical character, such as the edge modes. The most common are the dispersive edge

states crossing the Fermi energy and located inside the non-trivial gap of the chiral

p-wave superconducting state. These states pinned at the Fermi energy are the zero

energy states, occupied by the Majorana fermions [41, 184]. These zero-energy Ma-

jorana fermions propagate along the boundary of the superconductors in real space,
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(a) (b)Chiral p-wave pairing Helical p-wave pairing

Figure 5.10: Schematic illustration of the (a) chiral p-wave pairing state showing
pairing between two down spin electrons moving in the anticlockwise direction with
a net relative angular momentum Lz = +1, (b) helical p-wave pairing state where
one chirality involves pairing between two down spin electrons moving in the anti-
clockwise direction carrying a net out-of-plane orbital angular momentum of +1
while the other chirality carries two up spin electrons in the clockwise direction with
a net out-of-plane orbital angular momentum of -1, resulting in no net chirality.

leading to chiral edge currents. It is also known that chiral edge states combined with

their non-trivial topology can give rise to quantized Hall conductance [41, 184, 188].

Another particularly intriguing aspect of chiral spin-triplet superconductors is the

emergence of half-quantized vortices, each of which possesses a single localized Ma-

jorana zero-energy mode at its center [41, 180]. Given the unique properties of chiral

p-wave superconductors, particularly the presence of robust Majorana zero modes,

it can be concluded that these offer a promising foundation for the development of

topological quantum computers, however, it is worth noting that the only firmly

established chiral p-wave superconductor to date is 3He. Other materials, that have

proven to be promising candidates for chiral p-wave superconductivity and have

been under extensive research, are UPt3 [189–191] and Sr2RuO4 [192–194]. More

recently, an STM study has also demonstrated chiral p-wave superconductivity in

the heavy fermion candidate UTe2 [195]. There also exist other ferromagnetic heavy

fermion compounds such as UCoGe and UGe, which are promising candidates for

chiral p-wave superconductors [190, 196, 197].

Besides the chiral p-wave state, there also exists the helical p-wave state, which

was 1st observed in the B-phase of superfluid 3He [186]. The symmetry of the gap

function for the helical state is given by the following d⃗ vector: d⃗ = kxx̂ + kyŷ. In
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the helical state, the up (↑) spins possess a positive chirality denoted as kx − iky,

while the down (↓) spins are in a state of negative chirality denoted as −(kx + iky)

[184]. Qualitatively, the helical p-wave state can be viewed as two identical copies of

the chiral p-wave state with opposite chiralities, resulting in no net chirality. Figure

5.10b shows a schematic illustration for a special case of the helical p-wave pairing

state consisting of two opposite chiralities: in one case the down spin electrons pair

up and move in an anticlockwise direction with an out-of-plane angular momentum

of +1, while the other chirality involves pairing between two up spin electrons moving

in a clockwise direction with a net out-of-plane angular momentum of -1. Similar

to the chiral p-wave state, the helical p-wave state is also topologically non-trivial

[34], but this state does not preserve T symmetry. Helical p-wave superconductivity

was proposed in the compound BiH, where the Rashba SOC has been shown to

drive the system from the chiral to the helical phase [198]. Theoretical studies have

suggested a mixed helical p-wave pairing state in the mysterious unconventional

superconductor Sr2RuO4 to account for the observation of polar Kerr effect. In this

case, it was shown that this state would comprise two copies of the chiral p-wave

but with different pairing amplitudes.

The discussion of helical p-wave superconductivity is motivated by the exper-

imental results presented in Chapter 6, which will reveal a potentially intrinsic

helical p-wave pairing state at the interface between a ferromagnetic insulator and

a conventional s-wave superconductor. As will be demonstrated through combined

experimental and theoretical analysis, this system exhibits a striking coexistence of

two distinct pairing states: while the interface hosts a helical p-wave superconducting

phase, the bulk regions away from the ferromagnetic interface maintain their s-wave

character. Crucially, the boundary separating these topologically distinct phases

gives rise to topologically protected helical edge states – a direct manifestation of

the bulk-boundary correspondence principle in topological superconductors.
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5.4 Rashba Spin-Orbit-Coupling

The Rashba spin-orbit coupling (SOC) is a relativistic quantum mechanical effect

that arises in systems with structural inversion asymmetry, where an electric field

gradient induces a momentum-dependent splitting of spin states. This phenomenon,

first theoretically predicted by Emmanuel Rashba in 1960, has since become a cor-

nerstone in the study of spin-dependent electronic properties in low-dimensional

systems. The Rashba effect is characterized by a Hamiltonian of the form:

HRashba = αR(k × σ⃗) · ẑ, (5.44)

where αR is the Rashba parameter, k is the electron momentum, σ⃗ represents the

Pauli spin matrices, and ẑ is the direction of the electric field gradient. This coupling

between spin and momentum has profound implications for spintronics, topological

materials, and superconductivity. The Rashba effect plays a pivotal role in the emer-

gence of topological states of matter, such as topological insulators and topological

superconductors. In topological insulators, the combination of Rashba SOC and

time-reversal symmetry leads to the formation of robust surface states with spin-

momentum locking [2, 19, 79, 88]. Similarly, in superconducting heterostructures,

Rashba SOC can induce unconventional pairing symmetries, such as p-wave super-

conductivity, which are essential for realizing TSC and MBS, which will be the topic

of discussion in the subsequent chapter.

5.5 2D van der Waals materials

The successful separation of graphene from bulk graphite constituted a significant

milestone towards the development of 2D materials [199]. Since then, the field of

2D materials has expanded rapidly, leading to the discovery of a larger variety of

materials with diverse properties, from insulators and semiconductors to metals,

TIs, and superconductors [200–202]. The fascination with 2D materials arises from
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their unique properties which differ significantly from their 3D counterparts. The

simplest example being graphene, a zero band gap semiconductor, on the contrary,

graphite, its 3D counterpart, is a semimetal with overlapping bands. Within each

atomic layer of a 2D material, the atoms are covalently bonded and free from any

dangling bonds. On the contrary, the neighbouring layers are weakly bonded by the

vdW interaction. This makes it feasible to precisely tune the electronic properties,

including band-gap engineering through layer variation. The last decade has seen

this method of layer variation being applied to the case of graphene, where different

layers of graphene were twisted and combined to unravel novel quantum phenomena

such as unconventional superconductivity [203–205], Hofstader butterfly effects [206,

207], interaction-driven ferromagnetism [208], etc.

Among the diverse 2D materials discovered [200, 209, 210], the 2D transition-

metal dichalcogenides (TMDCs) have garnered significant attention owing to their

rich variety of chemical composition and structural phases. This diversity results in

a wide range of electronic properties, including the emergence of correlated phases

such as superconductivity [210–218], charge density wave (CDW) [219–224], pair

density wave (PDW) [225, 226] and spin density wave [227, 228]. The TMDCs are

formed from the transition metals (group IV to group IX of the periodic table)

bonded to elements of the chalcogen group such as that of Se, Te, and S. Different

structural phases of TMDCs exist depending on the coordination of the transition

metal atoms with the chalcogen atoms. The most common phases are the 2H phase,

where the transition metal atoms are coordinated with six chalcogen atoms in a

trigonal prismatic geometry, and the 1T phase, where the transition metal atoms

are coordinated with six chalcogen atoms in an octahedral geometry. The family

of 2D TMDCs is rapidly expanding, with numerous materials discovered, such as

MoS2, NbSe2, TaS2, TiSe2, NbS2, WTe2, UTe2, etc. The list is still growing with the

ongoing advancement in materials research.

Beyond the above-mentioned discoveries in 2D materials, 2D magnetism has
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emerged as a particularly fascinating area. While 3D materials with Heisenberg-type

spin are readily known to exhibit long-range magnetic ordering at a finite tempera-

ture, the magnetism for 2D materials is more complex, as the theory dictates that

the magnetic ordering for Heisenberg- and Ising-type spins exists only above 2D

and 1D, respectively [229–231]. Contrary to theoretical expectation, recent experi-

mental evidence indicates that magneto-crystalline anisotropy [232–234], interfacial

spin-orbit interactions [235], and magnetostatic dipole-dipole interactions [236] can

indeed stabilize ferromagnetic or antiferromagnetic order in 2D materials. Early ef-

forts to create 2D magnets initiated with the exfoliation of thin layers from the bulk

single crystals of FePS3, NiPS3, and CrSiTe3, however, the detection of magnetism

relied on indirect techniques such as Raman Spectroscopy. The first direct experi-

mental evidence of ferromagnetic ordering was found in atomically thin exfoliated

layers of CrI3 [233] and Fe3GeTe2 [232]. Since then, the range of 2D materials has

expanded exhibiting different magnetic ground states such as ferromagnetism [232–

234, 237–240], antiferromagnetism [241–243], 2D XY [74] and helimagnetism [124,

244].

In light of the experimental results presented in Chapter 6, the following subsec-

tions will explore the properties of the 2D in-plane ferromagnet CrCl3 and the 2D

vdW superconductor NbSe2.

5.5.1 CrCl3: a 2D in-plane van der Waals ferromagnet

CrCl3 is a magnetic insulator which, in its bulk form, crystallizes in the layered

rhombohedral structure with R3 symmetry at low-temperature. The side view of

the unit cell of CrCl3 as shown in figure 5.11a is composed of covalently bonded Cl-

Cr-Cl triple layers (dashed box in figure 5.11). The individual Cl-Cr-Cl triple layer

forms the unit cell of a ML, where the layer of Cr atoms is sandwiched between

two layers of Cl above and below it. Within each ML unit cell, the Cr atoms are

octahedrally coordinated to 6 Cl atoms, 3 from the layer above and 3 from the layer
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Figure 5.11: (a) Side view of the unit-cell of CrCl3 composed of Cl-Cr-Cl triple
layers. (b) The top view of the crystal structure illustrates the hexagonal lattice of
Cr atoms.

below. These individual MLs within the unit cell of CrCl3 are held together via the

weak vdW interaction. Figure 5.11b shows the top view of the crystal structure,

revealing a hexagonal arrangement of the Cr atoms. Bulk CrCl3 is known to be

an in-plane antiferromagnet with a Néel temperature of TN ∼ 14 K [245, 246].

This antiferromagnetic ordering results from the alternating magnetization of the

individual MLs, which exhibit ferromagnetic ordering within the plane. Previous

experimental investigations had successfully confirmed the presence of interlayer

antiferromagnetic ordering in CrCl3 down to the bilayer limit [245]. However, direct

experimental evidence of in-plane ferromagnetism in CrCl3 MLs remained elusive.

This challenge stemmed from two primary factors: the difficulty in obtaining isolated

MLs through exfoliation techniques and the inherent weakness of the magnetic signal

in these MLs, which made it challenging to detect using conventional laboratory

measurement techniques such as vibration sample magnetometry or superconducting

quantum interference devices. Amilcar et al. has recently addressed these challenges

by growing MLs of CrCl3 on graphene/6H-SiC(0001) using MBE and performing x-

ray magnetic circular dichroism (XMCD) measurements to demonstrate an in-plane

ferromagnetic ordering with a 2D XY-like scaling behavior [74]. This behaviour in

the CrCl3 ML is unique as compared to other trihalide MLs, such as those of CrBr3

and CrI3, which favor an out-of-plane alignment of the magnetization [233, 247].
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Figure 5.12: (a) Side view of the unit cell of NbSe2. (b) Top view of the crystal
structure showing a hexagonal arrangement of the Nb and Se atoms.

5.5.2 NbSe2: a 2D van der Waals superconductor

NbSe2 is a layered 2D TMDC that has garnered interest for its ability to exhibit mul-

tiple electronic phases. It is known to be metallic at room temperature and becomes

superconducting below a certain critical temperature (Tc = 7.2 K). Furthermore,

there exist different reports that suggest a multiband superconductivity in NbSe2,

revealing a two-gap feature in the DOS [233, 248, 249]. NbSe2 also undergoes a tran-

sition to the CDW state at T = 33 K, preceding the superconducting state. One of

the most intriguing aspects of NbSe2 is the observed coexistence of charge density

wave (CDW) and superconducting states at low temperatures, which has sparked

considerable debate regarding its underlying cause.

Bulk NbSe2 has a hexagonal crystal structure, with each unit cell composed of

Se-Nb-Se MLs (as depicted by the dashed red box in figure 5.12a). The individual

MLs are bonded to one another by the weak vdW interaction. Within a ML, the

Nb atoms are coordinated to the Se atoms in a trigonal prismatic manner. The top

view of the NbSe2 lattice is illustrated in figure 5.12b, showing a hexagonal arrange-

ment of the Nb and Se atoms. The electronic band structure of bulk NbSe2 was

initially studied using density functional theory (DFT) [250, 251] followed by suc-

cessful demonstrations using ARPES [248]. The electronic band structure is derived

from the Nb 4d atomic orbitals, which are subject to a crystal field splitting into

three distinct groups due to the trigonal symmetry: d
z
2 , [d

x
2−y

2 , dxy], and [dxz, dyz]
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(b)(a)
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Bulk NbSe2 ML NbSe2
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Figure 5.13: (a) (Top) Calculated band structure of bulk NbSe2 showing 3 bands
that cross the Fermi surface. (Bottom) Fermi surface of bulk NbSe2 showing 3 pock-
ets around the Γ point. (b) The Fermi surface of monolayer NbSe2 illustrates electron
pairing within one of the spin-split Fermi surfaces around the K and K′ points, with
spins locked to the out-of-plane direction due to the effective magnetic field HSOC .
Parts (a) and (b) reprinted from ref. [253] and [254], respectively, Springer Nature
Limited.

[252]. Figure 5.13a shows the bulk band structure of NbSe2 where 3 bands cross

the Fermi energy, 2 of which are derived from the Nb 4d orbitals and one from

the Se pz orbitals. The corresponding Fermi surface shows Fermi pockets around

the Γ point and the inequivalent K and K′ points. The superconductivity in NbSe2

arises from either intervalley pairing between electrons located at K and K′ points

or intrapocket pairing at the Γ point.

Unlike bulk NbSe2, which has a centrosymmetric crystal structure, ML NbSe2

possesses out-of-plane mirror symmetry and lacks inversion symmetry, as illustrated

in its crystal structure (see figure 5.12a). This structural asymmetry confines the

crystal electric field (E) to the in-plane direction, as depicted in figure 5.13b. It is

well-established that in crystals without inversion symmetry, an asymmetric form of

spin-orbit coupling (SOC) is permitted [255]. This SOC generates an effective out-

of-plane magnetic field, HSOC(k) ∝ k× E, which acts on electrons moving within

the 2D plane. Consequently, the electron spins align out-of-plane, with opposite

spins for opposite momenta. This spin-momentum locking leads to the formation of

Cooper pairs between an electron at the K point and its time-reversed counterpart

with opposite spin and momentum at the K′ point. Such pairing, where the electron

spins are locked to their momentum and oriented out-of-plane, is referred to as Ising-
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type pairing. In monolayer NbSe2, this pairing mechanism significantly influences

the superconducting states, enabling in-plane critical fields that exceed the Pauli

paramagnetic limit [224, 254].
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6 Helical edge states in a van der

Waals heterostructure

This chapter presents experimental evidence for the emergence of interfacial un-

conventional TSC in heterostructures formed by ML ferromagnetic CrCl3 on super-

conducting NbSe2� bulk crystals. Through high-resolution STM measurements, two

Topological edge states at the boundary
between a s-wave and p-wave supercon-
ductor

remarkable phenomena have been

demonstrated: (1) an enhanced ro-

bustness of the superconducting gap

at the CrCl3/NbSe2� interface com-

pared to bare NbSe2 under out-

of-plane magnetic fields, and (2)

spatially localized enhancement of

the zero-bias LDOS along CrCl3 is-

land edges. These observations, sup-

ported by theoretical calculations,

provide strong evidence for the formation of an unconventional TSC state at the

interface.

The research outlined in this chapter is presently in the review process.
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6.1. STM topography of the vdW heterostructure CrCl3/NbSe2
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Figure 6.1: (a) STM topographic image of the CrCl3/NbSe2 heterostructure. Scan-
ning parameters: It = 15 pA, Vb = 1 V. (b) Line profile acquired along the dashed
purple line in (a) corresponds to the thickness of a ML island (d = 0.36 nm). (c)
Atomically resolved STM topographic image on a CrCl3 island where the bright
protrusions are the z contrast from a trimer of Cl atoms indicated by the light green
triangle on the overlaid crystal structure. The green parallelogram denotes the unit
cell of the CrCl3 lattice. Scanning parameters: It = 25 pA, Vb = 1.5 V. (d) Line
profile along the dashed line in (c) shows the atomic corrugation. The measured
in-plane lattice constant of the CrCl3 ML is d = 0.63 nm.

6.1 STM topography of the vdW heterostructure

CrCl3/NbSe2

Building upon the discussion of the individual 2D materials CrCl3 and NbSe2 in the

previous chapter, the discussion now turns to their combined vdW heterostructure.

This section provides a comprehensive investigation of the structural properties of

the heterostructure formed when ML flakes of the in-plane ferromagnetic insulator
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CrCl3 are integrated with the 2D superconductor NbSe2. The CrCl3/NbSe2 het-

erostructures are grown by MBE following the procedure discussed in sec. 2.3.3

and are probed using a low-temperature STM working at T= 1.8 K. Figure 6.1a

displays a STM topographic image of the CrCl3/NbSe2 heterostructure, featuring

triangularly-shaped CrCl3 islands, where the triangular shape indicates the inherent

three-fold R3 symmetry of the underlying lattice. The line profile across a CrCl3

island (dashed purple line in figure 6.1a) as shown in figure 6.1b indicates the height

of the ML island, which is d = 0.36 nm at the measured bias voltage of 1V. In STM,

the apparent height is influenced by the LDOS, meaning that varying the bias volt-

age can result in different measured heights for the same ML. For instance, when

the same ML island was measured at a bias voltage of 1.5 V, the observed height

increased to 0.55 nm. The atomically resolved image acquired on a CrCl3 island is

shown in figure 6.1c, where the round protrusions appearing as individual atoms

reveal the combined z-contrast from 3 Cl atoms that form a trimer. The crystal

structure is overlaid on the atomically resolved image to indicate the same (light

green triangles connecting the 3 Cl atoms). Similar topographic effects have been

observed in Cr-trihalides grown on different substrates [57, 256]. The green paral-

lelogram depicts the unit cell of the CrCl3 lattice. The atomic corrugation of the

CrCl3 lattice is depicted in Figure 6.1d, from which an in-plane lattice constant of

a = 0.63 nm was deduced.

Having examined the structural properties of the CrCl3 ML, the structural prop-

erties of the NbSe2 surface will be discussed now. On the right of figure 6.2a, an

atomically resolved image of the NbSe2 surface is shown. The image reveals bright

protrusions in a hexagonal arrangement that corresponds to the Se lattice with

a lattice constant of aSe ∼ 3.6 Å. In addition to the atomic modulation, a peri-

odic modulation of bright triangular (red circle) and round protrusions (grey circle)

is observed, consistent with an incommensurate CDW, with a lattice constant of

aCDW > 3aSe. The atomic corrugation acquired along the dashed line in figure 6.2a

is elucidated in figure 6.2c, revealing the lattice periodicity of the CDW and the
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6.1. STM topography of the vdW heterostructure CrCl3/NbSe2
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Figure 6.2: (a) (left) Top view of the crystal structure highlighting the two CDW
centers: the chalcogen-centered (CC) and the hollow-centered (HC). (right) Atomi-
cally resolved STM topographic image of the NbSe2 surface showing the Se lattice
and the 2 types of CDW modulation. Scanning parameters: It = 250 pA, Vb = 40
mV. (b) 2D-FFT corresponding to the topographic image in (a) showing hexagonal
spots of different order originating from the Se lattice (red circles) and the CDW
(green circles). (c) Atomic corrugation of the NbSe2 surface acquired along the pur-
ple dashed line in (a).

Se atoms. The green parallelogram denotes the unit cell of the CDW lattice. The

bright triangular protrusions arise when the CDW maxima are centered at the hol-

low site enclosed by 3 Se atoms, while the round protrusions are a result of the

CDW maxima centered on the chalcogen atom. This is schematically illustrated in

the left panel of figure 6.2a which shows a top view of the NbSe2 lattice, where

the chalcogen-centered (CC) and hollow-centered (HC) CDW maxima are indicated.

The 2D-FFT corresponding to the topography in figure 6.2a is presented in figure
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Figure 6.3: (a) Raw dI/dU spectra on the NbSe2 substrate (green), on the CrCl3
island (blue) and at the edge of the CrCl3 island (yellow) in the low energy range ac-
quired at the respective locations marked by colored circles on the STM topographic
map of a ML CrCl3 island in (b). (c) Spatially resolved dI/dU map at zero bias,
corresponding to the STM topographic map shown in (b), revealing the presence
of edge modes. Scanning parameters for b: It = 25 pA, Vb = 1.5 V; Stabilization
parameters for a and c: It = 100 pA, Vb = -5 mV, Vmod = 0.15 mV.

6.2c, revealing two sets of diffraction spots, where the inner (green circles) hexagonal

diffraction spots reflect the CDW’s 6-fold symmetry and the outer spots (red circles)

correspond to the 6-fold symmetry of the Se lattice.

6.2 Edge states in the CrCl3/NbSe2 heterostruc-

ture

Following an introduction to the topographic features of the CrCl3/NbSe2 het-

erostructure, the electronic properties will be investigated now. The electronic prop-

erties of the heterostructure are examined using the STS technique. Figure 6.3a

presents typical STS spectra obtained at various locations, as indicated by the col-

ored circles in the STM topographic image in figure 6.3b. The dI/dU spectrum

acquired on the bare NbSe2 substrate (green in figure 6.3a) features a characteristic

superconducting gap in the LDOS, indicative of s-wave superconductivity, evidenced
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Figure 6.4: (a) STM topographic image of a section of a CrCl3 island revealing
many defects at the island edges, appearing as bright objects. Scanning parameters:
It = 20 pA, Vb = 1 V (b) dI/dU spectra acquired on the defects marked by colored
circles in (a) show a zero-bias peak. Away from the defect, the dip-like feature of
the superconducting DOS (dark green curve) is recovered. Stabilization parameters
for (b): It = 200 pA, Vb = -5 mV, Vmod = 0.1 mV.

by a dip at EF. Notably, the dI/dU spectrum measured at the center of the CrCl3

island (blue in figure 6.3a) also exhibits a superconducting gap, despite CrCl3 being

a magnetic insulator. While the spectra from NbSe2 and the CrCl3 island appear

qualitatively similar, with only subtle variations, the spectra obtained at the edge

of the CrCl3 island reveal an enhancement in the spectral weight in the LDOS near

EF (yellow in 6.3a). This spectral feature indicates the presence of edge modes at

the boundary of the CrCl3 islands. In contrast to zero-dimensional (0D) Majorana

modes, which are localized at the ends of 1D topological superconductors and mani-

fest as a zero-bias anomaly, 2D topological superconductors are expected to host 1D

propagating Majorana edge modes [50, 54, 56, 57]. These propagating modes, which

can be either helical or chiral depending on the presence or absence of time-reversal

symmetry, are characterized by a linear energy-momentum dispersion relation and a

uniform DOS near EF, resulting in a flat spectral weight within the superconducting

energy gap [54]. It is important to note that the observation of an enhanced LDOS

at EF in the present case is different from what has been previously reported on a
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6.2. Edge states in the CrCl3/NbSe2 heterostructure

similar heterostructure consisting of CrBr3 on top of NbSe2 [57], where a zero-bias

peak was observed at the edge of the CrBr3 islands, which was attributed to MZM.

Such a zero-bias peak likely arises from a localized bound state rather than a prop-

agating edge state as has been shown in recent reports on the same heterostructure

[257]. Indeed, zero-bias peaks have also been observed in the dI/dU spectra at cer-

tain positions along the edge of the CrCl3 islands as shown in figure 6.4, which can

be attributed to the presence of defect states located near the island edges. To inves-

tigate the spatially localized nature of the edge states, spectroscopic mapping was

performed across a grid of 600 points on the topography in figure 6.3b. The resultant

dI/dU map at zero energy as shown in figure 6.3c reveals a strong intensity along the

boundary of the CrCl3 island, which corresponds to the edge modes. Interestingly,

the edge modes in the case of the CrCl3/NbSe2 heterostructure are continuous and

connected, unlike the ones in the CrBr3/NbSe2 heterostructure, which are isolated

and disconnected, thereby providing evidence of propagating 1D edge modes.
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Figure 6.5: BCS fit using Dynes function, ρDynes
s (E,Γ)= Re

[
|E|+iΓ√

(|E|+iΓ)
2−∆

2

]
where

Γ is the broadening parameter associated with the lifetime of the quasiparticles and
the finite experimental resolution. This is proportional to the dI/dU at zero temper-
ature. The experimental dI/dU spectra were fitted using the following expression,
dI
dU

= Gn
d
dU

∫∞
−∞ ρDynes

s (E,Γ)[f(E) − f(E − eV )]dE, where Gn is the normal state
conductance and f(E) is the Fermi function. The corresponding fit yields a gap
magnitude of a, 2∆NbSe2 = 2.10 meV on the NbSe2 substrate and b, 2∆CrCl3 = 2.28
meV on the CrCl3 island.
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Figure 6.6: (a) STM topographic image of a section of a CrCl3 ML. Scanning
parameters: It = 25 pA, Vb =1.5 V. (b) dI/dU line spectroscopy acquired along the
dashed line in (a) as a function of energy and tip position, under an out-of-plane
magnetic field of 1T. (c) Normalized dI/dU spectra on the NbSe2 substrate and the
CrCl3 island at an out-of-plane field of 1T showing a faster gap reduction in the
former. Stabilization parameters for b and c: It = 100 pA, Vb = -5 mV, Vmod = 0.15
mV.

6.3 Robust interfacial superconductivity under an

out-of-plane field

To study the nature of the interfacial superconductivity, the dI/dU spectra on NbSe2

and the CrCl3 island in figure 6.3 are fitted using the BCS-based Dynes function

and the respective superconducting gaps have been extracted. The corresponding

fits and the estimated superconducting gap size are shown in figure 6.5. The fitting

unexpectedly reveals that the superconducting gap on the CrCl3 island (2∆CrCl3=

2.28 meV) is slightly larger (∼ 8%) as compared to that of the NbSe2 substrate

(2∆NbSe2= 2.10 meV). Contrary to popular belief, this is unusual, given that CrCl3

is a magnetic insulator that should lead to a reduction of the superconducting energy

gap. An even more intriguing aspect is how the superconducting gap evolves under

an out-of-plane magnetic field. Figure 6.6b shows a dI/dU line spectroscopy along

the dashed line in the topography in figure 6.6a as a function of energy and tip
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6.3. Robust interfacial superconductivity under an out-of-plane field

position under an out-of-plane magnetic field of 1 T. The resultant 2D color map,

which displays the spatial distribution of the superconducting gap reveals that the

gap on the NbSe2 substrate decreases faster than that observed on the CrCl3 island.

Figure 6.6c further elucidates this behavior, which shows the spectra from the CrCl3

island and the NbSe2 substrate, normalized by the intensity of the coherence peaks,

revealing a faster gap closure on the NbSe2 substrate than that within the CrCl3

island. These observed behaviors confirm the robustness of the superconducting

gap on the CrCl3 island as compared to that of the NbSe2 substrate under an

out-of-plane magnetic field. It should be noted, however, that the observed faster
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Figure 6.7: (a) Spectroscopic mapping along the arrow in the topographic image
shows the evolution of the superconducting gap across a vortex nucleated on the
NbSe2 substrate under an applied out-of-plane field of 1 T. Colored circles denote
the positions from the vortex core to the edge. (b) Corresponding dI/dU spectra
extracted from the spectroscopic map in (a) at the points marked by colored circles
showing a progression from a zero-bias-peak at the core to a dip at the edge, demon-
strating a significant spectral change within a length scale of ∼ 20 nm. Scanning
parameter for (a): It = 20 pA, Vb = 1.5 V; Stabilization parameters for (a) and (b):
It = 150 pA, Vb = -5 mV, Vmod = 0.1 mV.

gap reduction on the NbSe2 substrate may not be solely intrinsic, and could arise

from extrinsic effects such as vortex nucleation or trapped vortices [258]. Additional

experiments were conducted on several islands to rule out such possible extrinsic

origins, confirming that this enhancement is not due to vortices. For instance, an
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Figure 6.8: (a) Spectroscopic mapping along the arrow in the topographic image
shows the evolution of the superconducting gap across a vortex nucleated in the
vicinity of the edge of a CrCl3 island under an applied out-of-plane field of 1 T. Col-
ored circles denote the positions from the vortex core to the edge. (b) Corresponding
dI/dU spectra extracted from the spectroscopic map in (a) at the points marked by
colored circles showing a progression from a zero-bias-peak at the core to a dip at
the edge, demonstrating a substantial change in the spectral shape within a length
scale of ∼ 8 nm. Scanning parameter for (a): It = 20 pA, Vb = 1.5 V; Stabilization
parameters for (a) and (b): It = 150 pA, Vb = -5 mV, Vmod = 0.1 mV.

out-of-plane magnetic field of 1T was applied to generate a vortex on the NbSe2

substrate. This is elucidated in figure 6.7a, which shows a dI/dU spectroscopic

mapping performed along the arrow in the topography (top panel of figure 6.7a),

revealing a substantial modulation of the superconducting gap, as expected, as the

tip traverses the entire length of 30 nm. The individual spectra acquired at the points

marked by colored circles in the map are shown in figure 6.7b, which demonstrates

that the spectral nature substantially changes from a zero-bias-peak close to the

vortex core to a dip-like structure at the vortex edge. Notably, this change happens

over a length scale of ∼ 20 nm. Similarly, a vortex was also nucleated on the CrCl3

island as shown in figure 6.8a which shows a spectroscopic map acquired along the

arrow in the topographic image (top panel in figure 6.8a) revealing a modulating

superconducting gap on the CrCl3 island as well as the edge. A critical observation

from these measurements is that far away from the edge, on the NbSe2 substrate, the
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6.3. Robust interfacial superconductivity under an out-of-plane field

gap becomes constant. The individual spectra extracted from the points indicated

by the colored circles in the map are presented in figure 6.8b. Close to the vortex

core located on the CrCl3 island, the dI/dUspectrum exhibits a zero-bias peak

in the LDOS, while a dip-like feature is observed close to the edge of the CrCl3

island, corresponding to the vortex edge. The peak-to-dip-like transformation of the

spectral shape occurs across a length scale of 8 nm. Unlike the spatial variation of

the superconducting gap across a vortex, the gap remains constant across the NbSe2

substrate and CrCl3 island at comparable length scales, as previously evidenced by

the spectroscopic map in Figure 6.6a. Specifically, the spectra exhibit a sharp step-

like feature at the edge of the CrCl3 island, which is not observed when vortices

are formed (as shown in figure 6.7a and 6.8a). This feature above confirms that the

rapid gap closure observed on the NbSe2 substrate is primarily attributed to the

spin Zeeman effect of the applied field, rather than orbital effects such as vortex

formation.
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Figure 6.9: (a) η plotted along the 1D line cut in the topographic image in figure
6.6a. The dashed line acts as a guide to the eye, indicating a step-like feature. (b) η
plotted as a function of the field, highlighting a progressive increase in the difference
between η at the CrCl3 island and the NbSe2 substrate.

To ascertain the degree of relative robustness of the superconducting gap, a

parameter η was defined:

η =
[
1− (dI/dU)min

]
(6.1)

where (dI/dU)min is the minima of the spectra near EF indicated by the green
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6.4. XMCD measurements on the CrCl3/NbSe2 heterostructure

and blue arrows in figure 6.6b. The magnitude of this parameter correlates with

superconducting robustness; a larger value indicates enhanced superconductivity

robustness. Figure 6.9a shows a variation of the η along the dashed line in 6.6a,

demonstrating robustness of the superconductivity at the CrCl3/NbSe2 interface as

compared to that of the bare NbSe2 substrate. Furthermore, the dashed line acting

as a guide to the eye indicates a step jump in the value of η at the edge. Additionally,

it was observed that on increasing the field, the difference between η at the CrCl3

island and the NbSe2 substrate increases progressively. From these experiments, it

can be concluded that the superconductivity in CrCl3 is resilient to out-of-plane

magnetic fields as compared to that of NbSe2.
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Figure 6.10: (a) Schematic of the XMCD setup. (b) Magnetic hysteresis loops
under an in-plane (teal) and out-of-plane (purple) field.

6.4 XMCD measurements on the CrCl3/NbSe2

heterostructure

It has been previously shown that for CrCl3 grown on graphene, the magnetization is

oriented in the plane. To determine the magnetic anisotropy of CrCl3 on the NbSe2

substrate, XMCD measurements were performed at 1.5 K. Figure 6.10a presents a

schematic representation of the XMCD experimental setup, depicting an x-ray beam

with two opposite helicities directed onto the sample in the presence of an applied
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6.5. Theory of the edge states and the superconducting gap in the
CrCl3/NbSe2 heterostructure

magnetic field. As shown in figure 6.10b, the in-plane and out-of-plane hysteresis

loops were obtained by performing XMCD measurements on the Cr L2,3 edge at

grazing and normal incidence, respectively. From the hysteresis loops, it is evident

that CrCl3 on NbSe2 exhibits an in-plane magnetization below the superconducting

critical temperature of NbSe2.

6.5 Theory of the edge states and the supercon-

ducting gap in the CrCl3/NbSe2 heterostruc-

ture

To provide a more comprehensive understanding of the preceding experimental re-

sults, this section presents theoretical modeling and calculations performed in collab-

oration with the theoretical research group of Prof. Marcel Franz at the University

of British Columbia, including Benjamin Zhou and Niclas Heinsdorf.

The origin of the observed edge modes and the full superconducting gap in

the bulk of the CrCl3/NbSe2 heterostructure is discussed now. Conventional TSC,

which involves s-wave pairing and Rashba SOC, dictates that the magnetization

M of the ferromagnet must be oriented out-of-plane to open a Zeeman gap at the

Rashba-induced band crossing. In this case, TSC arises when the chemical potential

lies within the Zeeman gap [40, 55–57, 259]. On the contrary, when M is in the

plane, the normal-state-spectrum is known to remain gapless with the Rashba band

crossing shifted in momentum space. In this case, the superconducting state does

not allow a fully gapped TSC phase with an s-wave pairing [259]. In the present

case, since CrCl3 on NbSe2 exhibits an in-plane magnetization, the observed fully

gapped superconducting phase with gapless edge modes cannot be attributed to the

conventional s-wave pairing-based TSC mechanism. However, it is essential to note

that an in-plane M can also drive an s-wave superconductor into the chiral TSC

phase if the Rashba and Dresselhaus SOCs (of the form HD = λDkxσz) are carefully
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tuned as demonstrated in the case of [110] quantum wells [259]. But in the present

case, the three-fold symmetry of the CrCl3/NbSe2 heterostructure does not allow

the above form of the HD.

Furthermore, for the s-wave based TSC to occur, the exchange coupling J in

the ferromagnetic layer must exceed the superconducting pairing gap (∆). From

the fit of the superconducting gap on the NbSe2 substrate, ∆ = 1.05 meV, thereby

necessitating J > 1.05 meV to enter the topological regime. However, first principle

studies suggest that the exchange coupling between neighboring Cr atoms within

a CrCl3 ML is just of the order of, JCr−Cr ∼ 1 meV [260, 261] while estimated

values obtained from the spatial dependence of the interlayer exchange coupling

[262] between the Cr and the Nb atoms in the topmost layer of the NbSe2 substrate

is of the order of, JCr−Nb ∼ 0.1 meV. Since J ≃ 0.1∆, is significantly smaller than

∆, the necessary criterion for TSC, J > ∆ is not met. Consequently, the observed

topological edge modes in the CrCl3/NbSe2 heterostructure are very unlikely to

originate from the conventional s-wave mechanism. The small exchange coupling

between CrCl3 and NbSe2 also explains the remarkable resemblance exhibited by

the experimental results presented here for the CrCl3/NbSe2 heterostructure with

an in-plane M to those previously observed on the CrBr3/NbSe2 heterostructure

with an out-of-plane M. This indicates that the orientation of M becomes irrelevant

when J is negligible. The hypothesis of a negligible J is also confirmed by another

independent STM research on the CrBr3/NbSe2 heterostructure, which reported

negligible interaction between the ferromagnet and the superconductor [257]. This

study reported the formation of discontinuous edge states, with the zero-bias peak

split in segments along the edges of the CrBr3 island. Due to the discrepancy between

these observations and the expected signatures of chiral Majorana edge modes, the

observed edge features were attributed to non-topological Yu-Shiba-Rusinov (YSR)

states caused by atomic lattice reconstructions near the edges. In the case of the

CrCl3/NbSe2 heterostructure, no such atomic reconstruction was observed and the

edge states remain continuous in real space.
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Figure 6.11: (a) Schematic of the Fermi pockets in multilayer NbSe2 with the Ising
SOC alternating between the layers and pinning the electron at the opposite K points
in the opposite out-of-plane direction. Rashba SOC is predominantly observed near
the Γ point of the valence band formed by Nb d

z
2 orbitals. (b) Exponential decay of

the modified electrostatic potential Φ(z) in NbSe2 thin films due to Thomas-Fermi
screening. The existence of the potential gradient only within the first layer since
the screening length ls = 0.5 Å is much smaller than the inter-layer distance of 10
Å.

Based on the preceding analysis, it can be concluded that the observed TSC

phenomena at the CrCl3/NbSe2 interface originate from an unconventional pairing

state possessing non-trivial bulk topology, which is independent of the orientation of

M. As will be substantiated in the following discussion, these findings are most con-

sistently explained by a Rashba spin-orbit-coupled helical p-wave pairing state. This

topological superconducting phase provides a unified framework for understanding

all the observed interfacial characteristics.

It is proposed that the CrCl3 ML modifies the electrostatic potential at the in-

terface Φ(z), inducing local perpendicular electric fields and enhancing interfacial

Rashba SOC (of the form HR = αRgk · σ) in the topmost NbSe2 layer (see figure

6.11a). Figure 6.11a schematically illustrates the Fermi pockets of multilayer NbSe2.

The Ising SOC which is predominant at the K point, alternates between the layers,

pinning the electron spins at the opposite K points in the opposite out-of-plane direc-

tion. Since the NbSe2 thin films in the normal state are metallic, Φ(z) is subjected
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to screening and is expected to decay exponentially away from the CrCl3/NbSe2

interface into the bulk as shown in figure 6.11b. By applying the Thomas-Fermi

approximation to a realistic lattice model for NbSe2 thin films, a screening length

of ls ≈ 0.5 Å was obtained along the direction perpendicular to the CrCl3/NbSe2

stack, which is much smaller than the distance between the individual NbSe2 layers

(c = 12 Å). This implies that the modified potential and the Rashba effects are

significant only within the topmost NbSe2 layer adjacent to the CrCl3 ML.
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(d) (e)

(f)
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b

Figure 6.12: (a-b) The symmetric stack of CrCl3 and NbSe2 constructed to perform
the DFT calculations. The Cr atoms are aligned with the Nb atoms. The interfacial
distance was obtained as dz = 3.15 Å. (c) Plot of the ground state energies of the
unit cell as a function of varying dz. The minimum is obtained at dz = 3.15 Å. (d)
The local potential averaged over the plane of the sample (ab-plane) as a function
of z. The red curve corresponds to the potential of the heterostructure Φht shown
in (a-b), while the blue curve (ΦNbSe2 + ΦCrCl3) is the sum of the local potentials
of only CrCl3 and NbSe2. The potentials at the center Nb (left) and the interface
Nb (right) are highlighted in the inset. In the bulk of the structure, the potential
difference (∆Φ) is 0, but at the interface ∆Φ = 0.25eV. (e) Plot of ∆Φ as a function
of z. The green dashed lines indicates the position of the Nb atoms. (f) Numerical
differentiation of ∆Φ (light blue) and the same data smoothened with a Savitzky-
Golay filter. At the three Nb in the bulk of the slab, the effective electric field is
approximately 0, but at the Nb closest to the interface ∂z∆Φ ≈ 0.0125 ev/Å.

To estimate the strength of the Rashba parameter αR, electronic band structure

calculations were performed using density-functional theory (DFT). The details of

the DFT calculations will be skipped, and only the results will be presented here
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for clarity. As shown in figure 6.12a,b, for the DFT computation, a slab structure

was constructed consisting of a symmetric interface, with a ML CrCl3 on the top

and bottom of a 5-layer stack of NbSe2 (a = 3.44 Å and c = 31.47 Å) such that the

Cr atom is positioned on top of the Nb atom. For this, the ML CrCl3 was stretched

to fit the lattice parameter of the NbSe2 supercell since there is a 12 % mismatch

between the ML and the supercell. To find the equilibrium distance dz between NbSe2

and CrCl3, defined as the z-coordinate difference between the outermost Se and

innermost Cl atoms, ground state energies were computed for a range of dz values,

and a minimum was observed for dz ≈ 3.15 Å. This is demonstrated in figure 6.12c.

To calculate the interface-induced potential gradient, the potential of the interfaced

slab (Φht) was compared with that of the sum of the individual potentials of the

CrCl3 ML (ΦCrCl3) and the NbSe2 stack (ΦNbSe2). The local potentials are averaged

over the ab plane of the crystal structure and the difference of the obtained potentials

are defined as, ∆Φ = Φht − (ΦNbSe2 +ΦCrCl3). Figure 6.12d show a combined plot of

Φht and ΦNbSe2 +ΦCrCl3 as a function of the distance from the top of the stack. The

inset shows a zoom-in of the vanishing potential difference for the Nb at the center

as compared to the Nb at the interface with ∆Φ ≈ 0.275 eV. Finally, the potential

gradient along the stack, defined as ∂z∆Φ is calculated as elucidated in figure 6.12f.

The potential gradient leads to an effective electric field, ∂z∆Φ ≈ 0.0125 eV/Å, at

the z value where the interfacial Nb is located. This manifests as a sharp peak in

the plot in figure 6.12f (marked by a red inverted ellipse). With the assumption

that NbSe2 must exhibit comparable electric-field dependence of the Rashba SOC

as other TMDCs such as MoS2 or WSe2 [263], the Rashba parameter was estimated

as αR ≈ 0.01-0.025 eV Å, which is approximately an order of magnitude larger than

J and ∆. These calculations support the hypothesis of a strong Rashba coupling

at the interface, rather than proximity-induced coupling J , possibly leading to an

unconventional TSC state in the CrCl3/NbSe2 heterostructure.

Proceeding with the discussion of a strong Rashba coupling at the interface, DFT

calculations have previously shown that, in TMDCs, Rashba SOC is substantial
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Table 6.1: All possible fully-gapped superconducting order parameters for Γ-pocket
(dominated by Nb d

z
2-orbitals in the topmost layer of NbSe2), classified according

to the irreducible representations (IRs) of the C3v point group. The conventional
d-vector notation has been employed with ∆(k) = [ψs(k) + dt(k) · σ]iσy where
ψs stands for the spin-singlet order parameter, while dt is the spin-triplet vector.
Only leading-order terms up to quadratic functions in k are considered. Shorthand
notation k± ≡ kx ± iky is used.

only for states near the Γ-point, which are primarily composed of d
z
2-orbitals [263].

Conversely, Rashba SOC is negligible at the inequivalent K and K
′

points, where

high-angular-momentum d
x
2−y

2 ± idxy orbitals dominate and Ising SOC can be as

strong as 100 meV [217, 264]. It is to be noted that superconductivity in NbSe2 arises

out of the intervalley pairing of electrons located at the inequivalent K-pockets as

well as intravalley pairing within the Γ point. It is theoretically proposed here that

the intervalley Ising SOC, which has been consistently observed in atomically thin

films, is not influenced by the Rashba SOC. Consequently, since the Ising SOC

is considered to be topologically trivial, the non-trivial topological properties are

bound to arise from a novel form of unconventional pairing within the Γ pocket,

where the Rashba SOC in d
z
2 orbitals plays a critical role. It has been previously

established that the Rashba SOC defined by the SOC vector gk = αR(ky,−kx, 0)

can play an essential role in enhancing the pairing instability in the spin-triplet

channel, provided the spin-triplet d-vector is aligned with the SOC vector: dk ||

gk [198, 255, 265, 266]. This type of spin-triplet d-vector indicates a helical p-wave

pairing phase, with (px− ipy)-wave pairing for spin-up electrons and (px+ ipy)-wave

pairing for spin-down electrons (see schematic in figure 5.10). This type of helical

p-wave phase exhibits a full superconducting gap, supports helical Majorana edge

modes, and does not allow spontaneous out-of-plane magnetization, agreeing with

the experimental results presented in the previous sections. Notably, the symmetry
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of the CrCl3/NbSe2 heterostructure which lies in the C3v point group allows both the

helical p-wave and s-wave pairing phases to coexist in the topmost layer, since they

belong to the same A1 (trivial) irreducible representation of the C3v point group

(see Table 6.1). The topologically distinct nature of the two phases in the presence

of T symmetry accounts for the observed gapless edge states at the boundary of the

CrCl3 islands.

To validate that the helical p-wave pairing in the d
z
2-governed Γ pocket supports

a fully gapped TSC phase as observed in the experimental results, a tight binding

model of NbSe2 thin films was adopted with Rashba SOC and helical p-wave pair-

ing induced in the d
z
2 orbitals of the topmost layer (the one neaest to the CrCl3

islands). The corresponding results are presented in the figure 6.13a,b, which shows

Figure 6.13: (a) The energy bands of a 20-layer NbSe2 flake using a realistic tight-
binding model, incorporating a potential offset and Rashba SOC on the first layer.
The color bar displays the weight, |Ψ2|, of the wave functions originating from the
first layer. (b) The calculated bulk BdG spectrum for 20-layer thick NbSe2 flakes with
helical p-wave pairing in the d

z
2 orbitals in the first layer. A full superconducting

gap is exhibited by the spectrum.

the calculated Bogoliubov-de Gennes quasi-particle spectrum, revealing a full super-

conducting gap, consistent with the LDOS measurements in the STM experiments

(see figure 6.3a). The topological nature of the helical p-wave state was further con-
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Figure 6.14: (a-b) Calculated edge state spectrum of multilayer NbSe2 in a slab
geometry with p-wave pairing at the interface and s-wave pairing on the rest of the
system revealing helical edge states (a) without exchange coupling and (b) a small
exchange J ≃ 0.1∆, arising from the neighboring ferromagnet.

firmed by conducting simulations on multilayer NbSe2, revealing the presence of

helical edge state in the excitation spectrum (see figure 6.14a). The T symmetry

protects the crossing between the counter-propagating edge states. If a small ex-

change coupling J ≃ 0.1∆, arising from the neighboring ferromagnet, is added, the

T symmetry is broken, leading to a small splitting, but the fundamental features of

the edge state remain unaltered.

Alternatively, the observed TSC phase could be explained by the exotic spinless

chiral (px ± ipy) or (d
x
2−y

2 ± idxy) pairing, as has been previously discussed in su-

perconducting TMDCs [267, 268]. These fully gapped phases require spontaneous T

symmetry breaking, selecting one chiral component from the C3v E-representation

(Table 6.1). However, this typically involves spontaneous out-of-plane magnetic or-

der, which would have been revealed by the XMCD measurement. However, the

lack of any such signals that would indicate an out-of-plane magnetic order in the

XMCD measurements supports a non-magnetic TSC phase. This implies that the

signatures of the TSC phase observed in the experiments presented above are very

unlikely to originate from the exotic T -broken TSC phase.
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6.6 Conclusion

In summary, this chapter has unveiled compelling signatures of an unconventional

superconducting phase emerging at the interface between ML ferromagnetic CrCl3

islands and superconducting NbSe2 substrate. Using the experimental approach, cen-

tered on high-resolution STM and STS, two striking characteristics of this ferromag-

net/superconductor hybrid system was revealed: first, the interfacial superconduct-

ing state demonstrates unprecedented stability under strong magnetic fields, defying

conventional expectations for such systems; second, a spatially localized pronounced

zero-bias enhancement in the LDOS was detected at boundaries of the ferromagnetic

island, strongly indicative of topologically protected edge states. Theoretical insights

into these observations point towards a fascinating mechanism: interfacial Rashba

SOC appears to stabilize a helical p-wave order parameter. This not only accounts

for the system’s exceptional resilience to magnetic perturbations but also naturally

explains the emergence of helical edge modes.
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7 Conclusion and Outlook

This thesis has unveiled fundamental aspects of topological quantum phenomena,

specifically through the identification of novel edge states arising from non-trivial

band topology. Two key findings stand out: (1) the emergence of interaction-driven

flat-band Stoner ferromagnetism in the topological edge states of Pb0.7Sn0.3Se, and

(2) the realization of an unconventional TSC phase in the CrCl3/NbSe2 heterostruc-

ture, exhibiting both magnetic field resilience and signatures of topologically pro-

tected edge modes.

The edge modes arising at a step edge on the surface of the TCI Pb0.7Sn0.3Se

were investigated through a combination of high-resolution STM/STS and theoret-

ical calculations. STM/STS measurements revealed the presence of edge modes at

the half-unit cell step edge of Pb0.7Sn0.3Se. These edge modes manifest as a peak in

the LDOS at the Dirac point, which is located above the Fermi level at 125 meV.

Theoretical modeling suggests that this peak corresponds to four spin-polarized flat

bands degenerate in energy, strictly localized at the 1D step edge. To study the

effect of doping on the 1D flat band, different 3d transition elements were doped on

the surface of the sample. It was observed that once the 1D flat band is energetically

localized close to the Fermi level, the single peak splits into either 2 or 4 peaks. Ad-

ditionally, the splitting of the peaks is accompanied by a suppression of the LDOS

at the Fermi energy, indicating a gap opening in the spectrum. A continuum model

description of these edge states was developed, and Hartree-Fock calculations were

performed to examine the effects of electron-electron interactions in the flat bands.

Depending on the strength of the interactions, the single peak associated with the
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1D flat band splits into 2 or 4 peaks due to the hybridization between the spin-

polarized flat bands. These new states spontaneously break T symmetry and lead

to a 1D flat band Stoner ferromagnetism at the 1D half-unit cell step edge, which

further induces correlation gaps, as observed in the STM measurements when the

1D flat band is doped to the Fermi energy. As a future outlook, it will be interest-

ing to perform spin-resolved STM measurements at the half-unit cell step edges of

Pb0.7Sn0.3Se to validate the symmetry-breaking patterns predicted by Hartree-Fock

calculations, which depend on the interaction strength. Furthermore, these step-

edge flat bands exhibit similarities to the edge states in zigzag-terminated graphene

nanoribbons, where it is known that the intra-edge coupling is ferromagnetic and the

inter-edge coupling is antiferromagnetic [153, 154, 157]. While previous studies have

demonstrated that two adjacent step-edges in a TCI can hybridize to form bonding

and anti-bonding orbitals [126], the nature of magnetic coupling in such configura-

tions remains an open question, which therefore warrants further investigation using

spin-polarized STM measurements.

Employing the STM/STS technique, a unique material system was then explored:

a 2D vdW heterostructure formed by a ML ferromagnetic insulator, CrCl3, and a 2D

superconductor, NbSe2. Notably, a complete superconducting gap was detected at

the CrCl3/NbSe2 interface. This gap exhibits resilience to an out-of-plane magnetic

field, unlike the gap in the conventional s-wave superconductor NbSe2, challenging

the prevalent notion that ferromagnetism suppresses superconductivity. Addition-

ally, DOS mapping reveals edge modes at the Fermi energy localized along the 1D

boundary of the CrCl3 islands. Theoretical modeling suggests that the CrCl3/NbSe2

interface develops an unconventional TSC state characterized by a helical p-wave

pairing, stabilized by an interfacial Rashba SOC. This helical p-wave state is pre-

dicted to host a pair of counterpropagating edge modes, consistent with the observed

zero-energy edge modes at the boundary of the CrCl3 islands. However, it is crucial

to acknowledge that interpreting the experimental observations through the lens of

the p-wave hypothesis represents one potential explanation, since the pairing at the
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interface could be attributed to other pairing mechanisms as well. The STM/STS

measurements presented here alone cannot definitively ascertain the precise pairing

symmetry of this unconventional superconducting phase. Consequently, these find-

ings necessitate in-depth theoretical analyses and further STM measurements using

superconducting as well as spin-polarized tips to conclusively determine the nature

of the observed unconventional TSC phase in the CrCl3/NbSe2 heterostructure.

Beyond the fundamental significance of the results presented in this thesis, these

findings establish novel methodologies for quantum material design. The demon-

strated ability to create, stabilize, and probe topological states through material

engineering—whether via surface modifications or heterostructure assembly—opens

exciting possibilities for future research on correlated topology and topological quan-

tum computation. As the field progresses, the approaches developed here may prove

instrumental in realizing more complex topological phases and ultimately harnessing

their unique properties for quantum technologies.
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