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Abstract

Background/Objectives: Predicting whether a compound is subject to active transport
is crucial in drug development. We propose a simple threshold for passive membrane
permeability (Pm), derived from the cell’s energy limitation, to identify compounds unlikely
to be actively effluxed. Results: By considering fundamental cellular energy constraints,
our approach provides a mechanistic rationale for why compounds with very high passive
permeability in combination with low applied concentration will not undergo active efflux.
This moves beyond the empirical observation (such as in previous systems that associate
fast-permeating, poorly soluble compounds with low transporter activity) by grounding
the prediction in the cell’s energetic limitations. For MDCK (Madin–Darby canine kidney)
cells, this threshold—normalized to the applied compound concentration (Cext)—was deter-
mined to be Pm×Cext = 10−1.7 cm/s×µM. Methods: To derive this threshold, we conducted
an extensive analysis of literature-reported efflux ratios (ERs) in MDCKII cells overexpress-
ing efflux transporters (MDR1, BCRP, MRP2; 294 datapoints across 136 unique compounds).
Concentration-dependent measurements for Amprenavir, Eletriptan, Loperamide, and
Quinidine—chosen because these borderline compounds exhibited the highest Pm×Cext

while still being actively effluxed—enabled the most accurate determination of the thresh-
old. Literature ER values were re-evaluated through the experimental determination of
reliable Pm values, as well as newly measured ER values with MDCK efflux assays. Conclu-
sions: The results of these assays and the re-evaluation allowed us to reclassify all but three
outliers (compounds with ER > 2.5 and log(Pm×Cext) > −1.7). In contrast, more than 60%
of the compounds analyzed without significant ER values (123 compounds) fell above the
threshold, in strong agreement with our theory of an energy limitation to active transport.
This permeability threshold thus provides a simple and broadly applicable criterion to
identify compounds for which active efflux is energetically not feasible and may serve as
a practical tool for early drug discovery and optimization, pending further validation in
practical applications.

Keywords: passive permeability; P-glycoprotein; active transport; efflux ratio; energy
limit; MDCK

1. Introduction
Transport across biological membranes significantly influences the pharmacokinetic

and toxicokinetic properties of drugs. Understanding active transport—especially efflux
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mechanisms—is essential, as these processes greatly impact a compound’s bioavailability,
toxicity, and therapeutic efficacy [1]. Active transport of molecules through cell mem-
branes functions in parallel with passive diffusion; however, instead of being driven by
concentration gradients, active transport is energy-dependent and can occur against such
gradients. As passive membrane permeability increases for more hydrophobic chemicals,
more energy is needed for their active transport to counteract their rate of passive diffusion.
Given that cells have a limited energy budget, this work sets out to prove the existence of a
membrane permeability threshold beyond which active transport of molecules is no longer
energetically viable.

Efflux proteins located in the apical membrane such as P-glycoprotein/multi-drug
resistant protein 1 (P-gp, MDR1), breast cancer resistance protein (BCRP) and multi-drug
resistance associated protein 2 (MRP2) actively pump out foreign substances from cells,
which may affect the efficacy of drug uptake [2,3]. Due to their role in decreasing the
intracellular concentration of chemotherapeutic agents, the over-expression of such efflux
proteins plays a significant role in the resistance of cancerous tissue to multiple drugs [4,5].
Given that P-gp overexpression is linked to multidrug-resistance (MDR)—which dimin-
ishes the efficacy of chemotherapeutics, antibiotics, and antivirals—there is a significant
need for cost-effective, rapid methods to detect P-gp substrates. These methods could
not only assist in predicting a compound’s toxicity, bioavailability, and drug–drug inter-
action potential [6] but also enable the early exclusion of problematic candidates, thereby
mitigating MDR-related challenges during drug discovery [7]. Therefore, it is of great
importance in the pharmaceutical industry to ascertain whether drugs are affected by such
efflux transporters. Traditionally, the passive membrane permeability (Pm) of a compound,
as well as the involvement of efflux transporters—quantified using a metric known as the
efflux ratio (ER)—is determined through bidirectional transport assays using epithelial cell
lines such as MDCK or Caco-2. These assays have also been utilized to gather information
on the chemical nature of efflux transporter substrates [8,9], in the hopes of enabling the
development of predictive in silico models linking physicochemical properties to carrier-
mediated efflux (i.e., QSAR models [10], machine learning [11,12]). However, the utility of
such models is hindered by their limited interpretability, narrow chemical coverage due to
limitation in the training datasets, as well as their reliance on inconsistent datasets.

Efforts have also been made to develop simple and fast interpretations of the molec-
ular characteristics that define efflux substrates [13–17]. These studies seek to establish
simple and broadly applicable “rules-of-thumb” for hit-to-lead optimization. It has been
proposed that such simple rules might have a more significant impact compared to com-
plex predictive models [6], although their limitations are well recognized, and the need
for mechanism-based approaches has been emphasized [18,19]. In this study, we propose
another simple and easily applicable, yet mechanistically based, rule-of-thumb: compounds
exceeding a certain passive membrane permeability threshold are less likely to exhibit sig-
nificant transporter-facilitated efflux. The objective of this work was to test this hypothesis
and determine whether it could be translated into a guideline for the rapid separation
of compounds that could exhibit significant transporter-facilitated efflux from those that
cannot, based on their membrane permeability. The permeability-based separation pro-
posed here does not differentiate between efflux substrates and non-substrates. Instead,
it differentiates compounds whose ADME characteristics can be significantly affected by
efflux transporters from those that cannot, irrespective of whether they are substrates.
Establishing a permeability-based separation guideline could prove valuable for drug
classification, or could assist in the rational direction of lead optimization towards desired
efflux effects. Since it was shown recently by Dahley et al. [20] that the biological Caco-
2/MDCK membrane permeability of drugs is well predicted by the solubility diffusion
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model (SDM), permeability-based separation can in most cases be performed without the
need for experimental assays. Furthermore, because this rule is based on a fundamental
physical principle (the energy limit of the cell) it is not limited to P-gp, but should also
apply to any efflux transporter that consumes ATP.

The aims of this study were to: (i) evaluate existing MDCKII ER data for MDR1, BCRP
and MRP2, and establish a crude membrane permeability cut-off above which compounds
appear to not be affected by active efflux. Compounds that seem to contradict this threshold
can then be flagged as outliers and subsequently examined. Secondly, it was aimed (ii)
to identify compounds located at or near the threshold for further investigation with
concentration-dependent monolayer efflux assays. The resulting data can then be used to
quantify the maximal flux rate (i.e., the maximum amount of compound that can be actively
effluxed per unit time) and the corresponding energy limit. Finally, we aimed (iii) to link
this energy limit with a specific Pm value and perform a sensitivity analysis to highlight
the caveats and limitations associated with defining a rule-of-thumb Pm threshold.

2. Theory
2.1. Transport Model

As compounds permeate from one compartment to another across a cell layer, they
encounter various resistances, both in series and in parallel. This includes aqueous bound-
ary layers (ABL), as well as the cell layer itself, consisting of the basolateral and apical
membranes, as well as the cytosol. The permeability (P) of each barrier is inversely pro-
portional to its resistance. As is evident in Figure 1, the unidirectional active transport
facilitated by P-gp (denoted as Pactive

pgp,app) and a basolateral uptake transporter (denoted as
Pactive

b,app ) occurs in parallel to the passive diffusion through the apical membrane (Pm,a) and
the basolateral membrane (Pm,b), respectively. The in vitro situation during MDCK/Caco-2
assays is comparable to the in vivo scenario, save for the presence of a permeable filter on
which cells are grown, as well as thicker unstirred water layers. A detailed description
of the conceptual model used, as well as the various resistances and how they can be
quantified, can be found in Kotze et al. [21].

Figure 1. Schematic representation of permeation barriers in vivo and in vitro. In vivo (left),
well-mixed donor and acceptor compartments are separated by the apical ABL, the cell monolayer,
and the basolateral ABL. The in vitro system (right) additionally includes a filter layer and exhibits
a thicker ABL (not to scale). Reproduced from Kotze et al. [21], licensed under CC BY 4.0. In the
case of in vivo transport in intestinal cells for example, the apical compartment is the lumen of the
gastrointestinal tract (GIT), and the basolateral compartment is the blood.
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The total permeability through all barriers (as measured by transport assays) is referred
to as the apparent permeability (Papp). Consequently, Papp, as a function of all individual
permeabilities, can be broken down into the contributions from each component, enabling
the separate evaluation and quantification of permeability through each layer (see Equations
(S1) to (S8) in the Supplementary Materials S1 (Section S1) for modeled permeabilities and
local compound concentrations as described in detail in Kotze et al. [21]).

2.2. Maximal Active Transport Flux and Borderline Compounds

It is crucial to distinguish between the two different threshold values discussed in
this work: the maximal flux and the associated maximal passive membrane permeability.
The maximal flux, or Jpgp,active, refers to the maximum moles of compound that can be
actively transported by any transporter per unit area and time (µmol/cm2/s) assuming
the cell has limits to the energy it can invest in its transporters. The energy limit thus
corresponds to the maximal Jpgp,active possible given limited energy production of the cell.
Both the value for the active efflux permeability Pactive

pgp,app (cm/s) facilitated by P-gp from the
apical membrane as well as the actively transported flux Jpgp,active at a given apical freely
dissolved concentration can be extracted from model fits of experimental MDCK data. It is
important to consider only the freely dissolved concentration because only this fraction can
permeate the membrane. A theoretical calculation of the maximal possible Jpgp,active based
on the cell’s ATP turnover can also be performed to compare with the empirical value as
a plausibility check; see Supplementary Materials S1 (Section S2). However, Jpgp,active is
an impractical metric, since it is complex to determine and not meaningful for the average
scientist. Thus, we aimed to ultimately link it with passive membrane permeability, Pm,
which is usually readily available, or easily determinable if not. The Pm threshold is thus
the specific passive membrane permeability value where the rate of passive influx of a
chemical would require an active efflux rate that exceeds the cell’s maximal Jpgp,active.

As such, chemicals with a Pm value above the threshold would be unlikely to show
significant efflux, since their high permeability would impose an unsustainable energy
demand on the cell. The link between Jpgp,active and Pm arises from the assumption that
almost all the compound passively diffusing into the cells is actively effluxed, which is
a valid approximation for high efflux ratios. If membrane permeability poses the main
passive resistance, passive influx corresponds to Pm×Cext. For significant ER values, the
energy limit can thus be approximated by the applied concentration-corrected membrane
permeability, Pm×Cext. Although concentrations in MDCK/Caco-2 efflux assays typically
vary only within a narrow range (1–100 µM), therapeutic plasma concentrations span more
than six orders of magnitude [22]. It is therefore essential to take Cext into account when
defining the threshold.

Since Jpgp,active depends on several factors, the resultant Pm×Cext threshold would
not be a definite cut-off line. Rather, one could expect the existence of a transitional range
of permeability values that separate compounds that cannot be effectively effluxed from
those that can. For compounds that have a Pm×Cext value within this window (which we
designate as “borderline compounds”) concentration plays a particularly pivotal role. For
such borderline compounds, we observed concentration-dependent saturation of active
transport. The rationale is that at low concentrations, compounds can be efficiently effluxed
without substantially straining the cell’s energy budget. However, as the concentration
increases, a larger quantity of the compound enters the cell, which brings the increased
efflux closer to reaching the energy limit. Finally, at a certain higher concentration and
beyond, the rate of passive permeation into the cell far exceeds the rate at which it can be
effluxed, due to the depletion of the energy budget.
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3. Material and Methods
3.1. Determination of Passive Membrane Permeability Pm

To determine the energy limit, a reliable Pm is needed. Pm can be determined experi-
mentally, or predicted with in silico methods. The pH-partition hypothesis dictates that
only the neutral fraction (fn) of a chemical can traverse membranes by passive diffusion,
because the permeability of the ionic fraction is negligible in comparison [23]. The Pm of
ionizable chemicals is therefore dependent on pH, or the neutral fraction fn:

Pm = P0 × fn (1)

The interconversion between the intrinsic permeability P0 and Pm is straightforward
when the neutral fraction is known. For all compounds in this study, pKa values were used
to determine fn at pH 7.4 according to Escher et al. [24]. Experimental pKa values were
preferred; however, where no experimental pKa could be sourced, pKa values were instead
determined using the software ACD/pKa GALAS from ACD/Percepta (version 2020.1.2,
Advanced Chemistry Development, Inc. (ACD/Labs), Toronto, ON, Canada, www.acdlabs.
com, accessed on 1 September 2025) [25]. For zwitterions, only the non-charged neutral
species was assumed to permeate the membrane, and the respective fraction was calculated
according to Ebert and Dahley [26]. See Tables S1–S3 in the Supplementary Materials S2
for details.

For epithelial cells such as the MDCK line used in this study, it is crucial to note
that microvilli are created by the folded apical membrane. Consequently, it is believed
to have a greater surface area compared to the basolateral membrane. If a difference in
surface area indeed exists between the apical and basolateral membrane, it is suspected
to have a significant effect on the resulting energy limit of this work. In our previous
study we speculated that the factor of 24 [27] we routinely implemented to account for the
greater apical membrane surface area was likely excessive [21]. As such, in the main text of
this study we used a more conservative apical membrane surface area factor (SA) of 7.5
(determined specifically for MDCKII cells as the average value of these cells cultivated on
different filters [28]), and compared this to the two other proposed factors of 24 and 1 on the
extreme ends of the probable range in the Supplementary Materials S1 (Sections S9–S16).
The factor of 1 naturally indicates that the surface areas between apical and basolateral
membranes are identical.

3.1.1. In Silico Prediction of Pm Using UFZ-LSERD/COSMO-RS

Experimental Pm values are the most reliable, so for this work such values were
preferred when available for a given compound. When no reliably extracted experimental
P0 value was available for the calculation of Pm, P0 was estimated based on the solubility-
diffusion model (SDM) by utilizing hexadecane as a model for the hydrocarbon core of the
membrane [20,29]:

P0,SDM =
Dhex × Khex/w

xm
(2)

where Khex/w is the hexadecane–water partition coefficient of the compound, Dhex is the
diffusion coefficient of the compound in hexadecane, and xm refers to the thickness of
the hexadecane-like hydrocarbon core of the cell membrane. It is assumed that Dhex

is one-tenth of Dw [29], and thus it was calculated based on the molecular weight of
the compound, adjusted for the temperature of 37 ◦C (see Supplementary Materials S1
(Section S1)). The Khex/w was obtained from the LSER database [30]. Khex/w values
determined from experimental descriptors were given precedence and duly categorized.
In cases where experimental descriptors were not available, Khex/w values derived from
calculated descriptors were utilized instead. For comparative purposes, Khex/w values

www.acdlabs.com
www.acdlabs.com
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were also generated for all compounds using the quantum chemically based software
COSMOtherm (version C30, release 18, COSMOlogic GmbH & Co. KG, Leverkusen,
Germany, www.cosmologic.de, accessed on 30 September 2021) [31]. COSMOtherm values
were only used for zwitterions, and compounds with a molecular weight > 1000 g/mol.
The P0 of the MDCK cell membrane P0,MDCK was subsequently calculated from P0,SDM

based on the empirical correlation established by Dahley et al. [20]:

P0,MDCK = 0.84 logP0,SDM − 1.85 (3)

3.1.2. Experimental Determination of Pm with Bidirectional MDCK Assays

Membrane permeability Pm and the resultant P0 values can also be determined with
in vitro bidirectional assays. In this study, P0 values for all compounds were preferentially
sourced from our own experiments and from Ebert et al. [32], who extracted P0 values
from experimental Caco-2/MDCK Papp data from several sources while accounting for the
many pitfalls associated with P0 determination. Consequently, they are regarded as the
most dependable P0 values available.

3.1.3. Experimental Determination of Pm with PAMPA and SDM

Using hexadecane as the membrane in HDM-PAMPA (Parallel Artificial Membrane
Permeability Assay) has been shown an effective way to determine reliable experimental
Khex/w [33]. These Khex/w values could subsequently be applied via Equations (2) and (3)
to calculate a Pm for MDCK cells that is more reliable than those generated from predicted
Khex/w values [20]. For this work, HDM-PAMPA assays were performed for some com-
pounds at suitable pH values. Detailed descriptions of the methodology used can be found
in an accompanying study by Dahley et al. [33]. Further details about the experiments
first reported in Dahley et al. [33] that are relevant to this study (including the chemicals
and reagents used, the experimental conditions, the experimentally obtained Papp, P0 and
Khex/w values, as well as the resultant Pm values calculated from it, etc.) can be found in
the Supplementary Materials S1 (Sections S3 and S4) and S2 (Tables S5 and S6).

3.2. Analysis of ER Data
3.2.1. Evaluation of ER Data from Literature

Three distinct datasets of ER values were compiled for substrates of P-gp, BCRP and
MRP2, as these are the three most clinically relevant apically located efflux transporters. A
literature search was conducted to identify compounds with an ER ≥ 2.5 [34], measured
using bidirectional MDCK transport assays. For compounds with ER values reported by
multiple sources, all values were included in the analyses, even if some sources reported
conflicting ER values below the threshold. A total of 294 datapoints were collected, repre-
senting 136 unique compounds, with the majority of the data coming from MDCKII-MDR1
assays, since assays for MDCK-BCRP and MRP2 are considerably less common. We note
that this compilation is not exhaustive. MDCKII-MDR1 assay data from 24 different sources
were used [34–57]. The dataset included 227 data points (i.e., ER values) from 107 distinct
compounds. MDCK-BCRP assay data was obtained from 12 different sources [56,58–68].
The dataset contained 52 data points from 33 distinct compounds. MDCK-MRP2 assay
data was obtained from 8 different sources [69–76]. The dataset contained 15 data points
from 11 distinct compounds. A fourth, separate dataset was also curated for compounds
with insignificant ER values below the cut-off line. For this, data was obtained from
4 sources [36,38–40]. This dataset comprised 125 datapoints representing 123 compounds.
For all datasets, compounds with a permanent charge were excluded from subsequent
analyses because they lack a neutral fraction capable of passively permeating through the
hydrophobic core of the membrane.

www.cosmologic.de
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The Pm for each compound was then calculated using Equation (1) and the correspond-
ing applied concentrations used by the respective studies were noted and used to calculate
the concentration-corrected Pm values (Pm×Cext). The MDCK ER values from the studies
of all three transporters and the Pm×Cext values determined for each respective compound
are depicted in Figure 2. Tabulated values of Pgp/MDR1, BCRP and MRP2 substrates along
with their chemical properties can be found in the Supplementary Materials 2 (Tables S1,
S2 and S3, respectively), along with the concentration-corrected Pm values (Table S4).

Figure 2. ER and log(Pm×C) values of compounds shown to have significant (>2.5) ER values as
determined with MDCK assays. All ER values sourced from literature for MDCKII-MDR1, -BCRP
and -MRP2 bidirectional assays. Experimental Pm values sourced from Ebert et al. [32] and Ebert and
Dahley [26] were preferred. If no experimental Pm values were available, Pm was calculated with the
Solubility Diffusion Model (SDM) using Khex/w values determined preferably from experimental
descriptors if available, and calculated descriptors if not. For zwitterions and compounds with
MW > 1000 g/mol, COSMOtherm was used to calculate Pm.

3.2.2. Re-Determining the ER of Outlier Compounds with Bidirectional MDCK Assays
Chemicals and Reagents

All chemicals and reagents can be found in the Supplementary Materials S1 (Section S3).

Cells and Cell Culture

MDCKII-MDR1 cells were obtained from The Netherlands Cancer Institute (Amster-
dam, The Netherlands). The cell medium was Dulbecco’s modified Eagle medium (DMEM)
(1X) + GlutaMAX™-I supplemented with 10% fetal bovine serum (FBS), 100 U/mL peni-
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cillin and 100 µg/mL streptomycin. Cells were maintained at 37 ◦C in an atmosphere of 5%
CO2 and passaged twice a week.

Bidirectional MDCK Assays

MDCK bidirectional transport assays were performed as described in Kotze et al. [21,77].
MDCKII-MDR1 cells (passages 20–40) were seeded at a density of 1.5 × 105 cells/insert
onto 12-well transwell inserts (CellQART, Northeim, Germany; pore size: 0.4 µm; filter
thickness: 11.5 µm, porosity: 100 × 106 pores/cm2). After seeding, cells were maintained
as outlined in Cells and Cell Culture Section and grown for 4 days. The day prior to the ex-
periment, the cell medium was refreshed. The transport buffer was HBSS and HEPES with
a pH of 7.4. Stock solutions were prepared in the transport buffer. Prior to the experiment,
the pH of the stock solutions and buffer was controlled with a Rapid_pH™ Automated
pH Meter (Hudson Robotics, Inc., Springfield, NJ, USA), as was the pH of all samples after
the conclusion of the experiment. Inserts were placed in 12-well plates from TPP Techno
Plastic Products AG (Trasadingen, Switzerland). Sampling was conducted at 3 to 4 time
intervals, with the duration tailored specifically for each compound and measurement
direction to guarantee sink conditions. In between sampling steps, plates were placed
in a Titramax and Inkubator 1000 orbital shaking incubator from Heidolph Instruments
GmbH & Co. (Schwabach, Germany) at 450 rpm and 37 ◦C. At the final sampling step,
the donor compartment was sampled for mass balance calculations. For each insert, the
trans-epithelial electrical resistance (TEER) across the cell monolayer was measured at
37 ◦C using an EVOM epithelial tissue volt/ohmmeter (World Precision Instruments Inc.,
Sarasota, FL, USA) before and after the experiment to ensure that cell monolayer remained
intact throughout the experiment. Lucifer yellow (LY) was utilized as a paracellular marker
to further confirm the integrity of the cell monolayer. For this, the LY permeability of
each insert was assessed post-experiment by measuring the fluorescence intensity (exci-
tation: 485 nm, emission: 538 nm) in samples from the basolateral compartment using
a SpectraMAX Gemini EM spectrophotometer (Molecular Devices LLC., San Jose, CA,
USA). Inserts that demonstrated a LY permeability greater than the pre-defined threshold
of 1.5 × 106 cm/s were excluded [78], unless their Papp results were qualitatively consistent
with those of replicate inserts that fell within the LY threshold.

Samples were analyzed with an Infinity II 1260 LC system coupled with a 6420 triple
quadrupole 145 with ESI source (Agilent Technologies Inc., Santa Clara, CA, USA). Either a
Kinetex® F5 (2.6 µm; 100 Å; 50 × 3.0 mm) or C18 (2.6 µm; 100 Å; 50 × 3.0 mm) LC column
was used (Phenomenex Inc., Torrance, CA, USA). Papp was calculated from acceptor
compartment concentrations as described in Kotze et al. [21]. Papp values at each time point
were corrected using the calculated recovery, as done by Neuhoff [79]. The data is shown
as the mean of the recovery-corrected Papp ± standard deviation from at least two samples
from each replicate. To account for lag time [80] the first time point in the A −→ B direction
was excluded. The ER was determined as the ratio of the mean Papp values in the B −→ A
direction and A −→ B direction according to:

ER ≡ JB−→A
JA−→B

≡
Papp,B−→A

Papp,A−→B
(4)

3.2.3. Concentration-Dependent MDCK Assays for Borderline Compounds

Bidirectional MDCK-MDR1 assays were performed as described in Bidirectional
MDCK Assays Section and Kotze et al. [21] to determine Papp values as well as the ER
using stock solutions with varying concentrations. Concentrations were selected to cover
the range of viable concentrations within the boundaries of the experimental protocol and
LC-MS quantification. When DMSO was necessary for solubility, the total concentration
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was maintained at a maximum of 0.1%, and the transport buffer was supplemented with
the same concentration to avoid the creation of a DMSO gradient across compartments.
MDCK assays conducted for this section were performed in triplicate, with sampling
occurring at four consistent time intervals. The data from these assays are presented as the
mean of the recovery-corrected Papp ± standard deviation from at least three samples from
each replicate.

3.2.4. Determination of Pactive
pgp,app and Maximal Flux Jpgp,active

The recovery-corrected A −→ B and B −→ A permeabilities determined for each
concentration of the assays in Section 3.2.3 were used in the evaluation of the saturation
experiments. The thickness of the apical and basolateral ABL, along with the thickness of
the filter and its effective surface area, as well as the P0, Dw, Dcyt and pKa values for each
compound were used to determine the permeability through the individual resistances
(ABLs, membranes, cytosol and filter). The paracellular permeability was determined
as described by Bittermann and Goss [29], with a factor of 0.1 applied to ensure that its
final value matches the paracellular permeabilities generally observed for our MDCKII-
MDR1 cell set-up [21]. Based on the compound’s pKa values and the external pH, the
external neutral fraction was calculated according to Escher et al. [24]. After determining
the cytosolic pH as a function of the external pH according to Dahley et al. [20], the neutral
fraction in the cytosol was similarly calculated

The experimental Papp and known P0 values were subsequently utilized to fit the
apparent permeabilities facilitated by P-gp (Pactive

pgp,app) and the basolateral uptake transporter(
Pactive

b,app

)
. The fitting of Papp A−→B (see Equation (S3)) was done for each concentration us-

ing the Excel SOLVER function which minimized the difference between the calculated and
experimental apparent permeability by varying Pactive

pgp,app. Using the starting concentrations
(µmol L−1), as well as the extracted Pactive

pgp,app, it was possible to calculate the concentration
of the compound adjacent to the apical membrane in the cytosol (Ccyt,a) (see Equation (S6)).
The flux of actively transported compound, Jpgp,active, was then derived from the product of
Pactive

pgp,app and Ccyt,a in µmol cm−2 s−1. Ideally, a sequential calculation would have been per-
formed: First, for the basolateral transporter Pactive

b,app , by fitting the B −→ A permeability (see
Equation (S4)) assuming that the apical membrane does not pose a significant resistance in
this transport direction. Subsequently Pactive

pgp,app would be determined by fitting the A −→ B
permeability. However, due to unexpected experimental effects, only A −→ B permeability
could be fitted to determine PSactive

pgp,app, under the assumption of insignificant basolateral
active transport. This is elaborated upon and justified in the Supplementary Materials S1
(Section S7).

3.2.5. Linking the Maximal Flux Value with a Membrane Permeability Threshold

For the compounds that exhibited saturation effects in the concentration-dependent
MDCK assays and therefore evidently reached the maximum flux plateau, classic non-linear
Michaelis–Menten fits for extracted Jpgp,active depending on Ccyt,a were conducted with
IGOR Pro 7 (WaveMetrics Inc., Lake Oswego, OR, USA) in order to ascertain the maximal
Jpgp,active. The maximal Jpgp,active was then used to calculate the corresponding threshold
Pm value depending on ER (i.e., the highest passive membrane permeability a compound
can have in order to potentially be subject to active efflux), again using the Excel solver
function to optimize Pm for various Pactive

pgp,app, minimizing Jpgp,active,max − Pactive
pgp,app × Ccyt,a.

ER and Ccyt,a were calculated using Equations (S5) and (S6), respectively. In contrast to our
earlier assumption that nearly all compounds passively diffusing into the membrane are
subsequently effluxed, this approach also allows determination of Pm for low ER values,
where that assumption is not valid. In essence, Pm was back-calculated based on P-gp
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activity, and in so doing, it was established what Pm value is possible for P-gp activity to
equal the maximal flux value. Compound concentrations, paracellular transport and the
apical membrane surface area were varied for the sensitivity analysis of the Pm threshold.

4. Results and Discussion
4.1. First Estimation of Pm×Cext Limit

To validate our assumption of a Pm×Cext limit for active transport, the efflux ra-
tios for P-gp, BCRP and MRP2 substrates were extracted from literature as described in
Section 3.2.1. Figure 2 shows the Pm×Cext plotted against the reported efflux ratios for a
total of 286 datapoints, representing 132 unique compounds (after exclusions, see details in
Section 4.3). Different colors indicate the source of each Pm value, which in turn reflects the
reliability of the experimental or predicted data.

A rough approximation for the cut-off value of compound permeability was defined
to guide the initial investigations. This cut-off Pm×Cext value was identified by evaluating
the distribution of the data (Figure 2). Data points which had Pm×Cext values based on
the reliable P0 values extracted by Ebert et al. [32] and Ebert and Dahley [26] were given
particular weight. As a result, a preliminary threshold of log(Pm×Cext) = −2 was set
as an initial approximation of where the energy threshold (and therefore the associated
membrane permeability threshold) could lie, as it can be observed that none of the reliable
experimental Pm×Cext values reported by Ebert et al. [32] exceed this value.

4.2. Identification and Investigation of Outliers

All 59 datapoints (41 compounds) with an ER ≥ 2.5 and with a log(Pm×Cext) > −2
were thus identified as tentative outliers to our hypothesis, see Table S6. Owing to the
specific threshold selection, all outliers had Pm values predicted from Khex/w values
determined either with experimental or calculated descriptors. Khex/w values obtained
from experimental descriptors are typically considered as quite reliable, suggesting that it
was more likely that the reported ER values for these outliers were incorrect. Therefore,
MDCK assays were conducted to determine the ER independently in an effort to replicate
the findings of the original study. Only MDCKII-MDR1 assays were performed since only
the MDR1 dataset had outliers in this category. In contrast, Khex/w values from calculated
descriptors are deemed less reliable, so for the corresponding outliers it was assumed that
the calculated Pm was false. HDM-PAMPA experiments were preferentially performed to
obtain more reliable Khex/w values as already described in Section 3.1.3. Figure 3 presents
a schematic summarizing the process used to determine how each outlier compound was
probed. These assumptions served as a general guideline; however, for some compounds,
both MDCK as well as HDM-PAMPA were eventually performed.

4.3. Outlier Reclassification

Figure 4 represents the collection, analysis and reclassification of the data. Five out-
lier compounds (gefitinib, lopinavir, ritonavir, zotepine and dasatinib) were excluded for
exhibiting stability and solubility issues that precluded reliable PAMPA/MDCK assays.
Notably, two-thirds of the MDR1 outlier compounds originated from just three of the
22 sources. Data obtained from Wager et al. [34] accounted for over 30% of the outliers. Fur-
thermore, with the exception of one compound, every outlier reported by Wager et al. [34]
was categorized under “Experimental Descriptors”, suggesting that the ER values (rather
than the Pm) for these outliers are likely questionable. Significant ER values reported by
Wager et al. as well as two other sources overrepresented in the outlier data—Obradovic
et al. [43] and Wang et al. [81]—were frequently contradicted by other sources that reported
no significant ER. As such, the values from these sources were approached with caution.



Pharmaceutics 2025, 17, 1455 11 of 26

Accordingly, the 22 outliers from these sources were reclassified based on the contradictory
non-significant ER values obtained from our own MDCK assays and/or from other sources.
Two outliers were reclassified as non-outliers based on newly determined Pm values from
PAMPA experiments. Ten outliers were reclassified as borderline compounds based on
Pm values—often newly determined with PAMPA—that placed their log(Pm×C) values
between −2 and −1. The outliers, their reclassification and the basis for it can be found in
Table S6 of the Supplementary Materials. The results of the MDCK and PAMPA assays can
be found in the Supplementary Materials S1 (Sections S4 and S5) as well as S2 (Table S5).

Figure 3. Schematic depicting the methodical experimental investigation of outlier compounds
based on the assumed reliability of Pm values. All outlier compounds had Pm values determined
from predicted Khex/w values. If the Khex/w was determined from experimental descriptors (reliable
Pm values), MDCK assays would preferentially be performed to confirm the reported ER. If the
Khex/w was determined from calculated descriptors (unreliable Pm values), HDM-PAMPA was
preferentially performed to determine a reliable Pm based on experimental Khex/w values.

After evaluation, there are three remaining outliers: dextrorphan, mequitazine and
terfenadine. Both dextrorphan and mequitazine have reported ER values (2.6 and 2.8,
respectively) that barely surpass the significance threshold and are thus not very convincing
outliers. For terfenadine, our own MDCK assays did find a significant, albeit also very low
ER value of 2.8. Furthermore, a newly determined PAMPA Khex/w value for terfenadine
confirmed a log(Pm×Cext) value above the threshold, at 0.08. However, this compound
exhibits very low recovery in the MDCK assays, which likely would have been the situation
in assays from other sources as well. These low recovery rates may very well lead to a
false ER.
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Figure 4. Diagram illustrating the categorization and analysis of 294 efflux ratios (136 distinct
compounds) derived from MDR1, BCRP, and MRP2 transporter datasets. Certain chemicals were
excluded for having a permanent charge, or for exhibiting solubility stability issues. Outliers were
identified and investigated with MDCK or HDM-PAMPA assays, or by alternative methods. As is
evident, the vast majority of outliers were reclassified and found to conform to the energy limitation
theory, as 90% of the data supports the existence of a membrane permeability cut-off for compounds
exhibiting significant efflux.

4.4. Concentration-Dependent Investigation of Borderline Compounds

Figure 5 shows the results of the concentration-dependence assays for a borderline
compound (amprenavir) compared to a low Pm compound (acebutolol). The top pan-
els show ER values as a function of applied assay concentration. The bottom panels
show the Jpgp,active values (µmol/cm2/s) calculated from the Papp,A−→B values at each
concentration (Section 3.2.4). Similar graphs for all compounds tested can be found in the
Supplementary Materials S1 (Sections S6, S10–S12), along with tabulated Papp, recovery
and ER values at each concentration.

For the low Pm compound acebutolol, P-gp has not reached saturation, and there is
no change in ER values even at very high concentrations. In contrast, for the borderline
compound amprenavir, the decline in ER values is attributed to classic saturation effects
of the P-gp transporter. This supports our theory that there is concentration-dependent
saturation of active transport for compounds near the maximal flux limit. The decline in ER
can be attributed to classic saturation effects of the P-gp transporter. At lower concentrations
of the compound, the P-gp transporter is not saturated, leading to high transport rates and
consequently high ER values. At higher compound concentrations, the transporter has
likely reached saturation, and active transport does not further increase with concentration,
meaning Pactive

pgp,app decreases. Therefore, passive permeation (permeability × concentration)
becomes more dominant as it increases proportionally to concentration, since Pm is expected
to remain constant.
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Figure 5. ER vs. external concentration for the borderline compound amprenavir (top), compared
to the low Pm compound acebutolol (bottom). For borderline compounds, the ER decreases with
increasing concentration. For the low Pm compound, the ER stays constant even at high exter-
nal concentrations.

The observed saturation effects coinciding with the energy plateau are unlikely to
be coincidental. Both phenomena result in the same outcome: no further increase in
transporter activity with increasing concentration beyond a certain maximum flux value.
As such, the energy limit imposed by physical principles is enforced by the cell through
the mechanism of saturation. While transporter saturation and its effect on transporter-
facilitated efflux have been described previously [82–84], this research is, to our knowledge,
the first to associate it with an energy threshold. It is important to note that this does not
imply that every observed saturation effect is caused by an energetic limitation; rather, a
saturation effect is always observed before the energetic limit is reached, which is plausible
from an evolutionary perspective, as it avoids the energy depletion of the cell. It is unclear
how exactly the saturation effect would be linked to the energy limit. One hypothesis is
that ATP binding kinetics may become rate-limiting at high active transport rates; however,
this potential relationship is beyond the scope of the present study.

Tachibana et al. [85] previously applied a sophisticated model to extract Jpgp,active,max

(referred to as Vmax in their work) from concentration-dependent measurements reported
by Shirasaka et al. [86] for verapamil, vinblastine, and quinidine. Their model accounted
for passive permeation into and out of the cell on both the apical and basolateral sides of the
membrane, as well as unidirectional P-gp transport. While our model for obtaining the Km

value differs from theirs, both approaches use the intracellular Km parameter relevant for
transporter saturation rather than the extracellular one. The main difference between their
approach and ours is that we also included paracellular transport and ABL resistance. It
should be emphasized that ABL resistance cannot simply be lumped together with passive
permeability; only passive permeability runs in parallel with active transport, whereas the
ABL does not. Moreover, paracellular transport can strongly influence Papp, since Papp will
not fall below Ppara, even when Ptrans is negligibly low because of active efflux.
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Unfortunately, re-analyzing their published data with our model did not yield reliable
results, see Supplementary Materials S1 (Section S7). A fourth compound, digoxin, was
included in the study by Shirasaka et al. [86]. It showed no signs of saturation across
the tested concentration range (up to 26 µM). With a P0 of 4.14 [32], corresponding to a
log Pm×Cext of –2.72, this completely neutral compound lies well below our permeability
threshold—fully consistent with our model. Finally, the Vmax of 5.7 × 10−6 µmol/cm2/s for
quinidine, obtained by Heikkinen et al. [84] using a five-compartment model that accounted
for ABL effects, is in good agreement with our own Jpgp,active,max of 9.7 × 10−6 µmol/cm2/s
(for SA = 1) derived from our quinidine experiments.

Therefore, it is worth reiterating that the conditions under which the experiments
are conducted are critical for obtaining meaningful results in MDCK efflux assays. We
have previously demonstrated that ER values can change based on the pH [21], which
means that pH can play a role in the misclassification of compounds. In this work we show
that using concentrations that are too high can also result in the erroneous conclusion that
compounds are not P-gp substrates.

4.5. Empirical Determination of the Energy Limit

Four out of the six compounds suspected to be borderline compounds (for which
concentration-dependent assays were performed) exhibited the expected plateau when
the transport of these compounds started reaching the maximal Jpgp,active. Due to the
observation of saturation effects with these compounds which evidently reached the maxi-
mal flux plateau, Michaelis–Menten fits were conducted as described in Section 3.2.5, the
results of which are depicted in Figure 6. The final Jpgp,active,max value was determined
from the average of the individual maximum flux values determined for the four com-
pounds depicted in Figure 6. Analogous fits for the same compounds using the other
apical membrane surface area factors of 1 and 24 as well as the resultant mean Jpgp,active

values in these cases can be found in the Supplementary Materials S1 (Sections S13–S15).
The mean (N = 4) Jpgp,active determined for the case considered as most plausible (apical
membrane surface area factor of 7.5) was determined to be 1.6 × 10−4 µmol/cm2/s (range:
8.7 × 10−6 to 4.4 × 10−4 µmol/cm2/s). This value is quite similar to a rough estimate
of 7.4 × 10−5 µmol/cm2/s obtained from mechanistic energy constraint considerations
outlined in S1 (Section S2).

Since the maximal flux value is based on cellular energy constraints, we expect that
all borderline compounds should plateau at the same maximal Jpgp,active. As is evident
from Figure 6, this is not quite the case. This is easily explained when one considers
the influence of P0 values in determining Jpgp,active. P0 values always come with some
threshold of error, and the source of the P0 is the biggest determining factor of the level of
error. Quinidine has a very reliable experimental P0 value determined from MDCK assays,
whereas amprenavir and eletriptan both also have experimental (PAMPA-SDM) P0 values.
The results for loperamide, in contrast, are considered less precise because of uncertainty in
predicted P0 values. The P0 for loperamide could not be determined via MDCK or PAMPA
assays and, as such, is based on a SDM prediction. Although SDM predictions based on
experimental descriptors can be fairly accurate, experimental P0 are more reliable. The
uncertainty in the P0 prediction for loperamide consequently leads to greater uncertainty
in its fitted Jpgp,active,max values. Though experimental P0 values are generally reliable,
they are still subject to error. The experimental P0 values for quinidine, amprenavir and
eletriptan could still result in an estimation that is off by one order of magnitude. Thus, the
maximal Jpgp,active determined from these fits are fairly consistent within the inextricable
error that comes with P0 values.
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Figure 6. Non-linear Michaelis–Menten fits for borderline compounds exhibiting the maximal flux
(Jpgp,active) plateau, for (A) amprenavir, (B) loperamide, (C) quinidine and (D) eletriptan. Markers
represent the concentration-dependent calculated Jpgp,active values, which are derived from fitted
P-gp activity values obtained from MDCK assays. For the compound quinidine (C), the unfilled
marker was not included in the fit.

This maximum Jpgp,active of 1.6 × 10−4 µmol/cm2/s obtained from the Michaelis–
Menten fits for four borderline compounds represents the energy threshold for efflux
transport determined for the MDCKII-MDR1 cells utilized in this work. Essentially: it
is unlikely that highly membrane-permeable compounds with greater flux demands for
its effective efflux would be affected by any efflux transporter. As previously mentioned,
compounds that are located within the borderline window of membrane permeability may
exhibit efflux, depending on their concentration.

4.6. Linking a Passive Membrane Permeability Threshold to the Energy Limit

While the Jpgp,active value is interesting, it must be linked with a more accessible metric
such as membrane permeability to be useful in practice. As described earlier, for high
ER Jpgp,active ≈ Jpassive,in, meaning almost all compound passively diffusing into the cell is
actively transported out again. If the membrane poses the main resistance, Jpassive,in corre-
sponds to Pm×Cext. However, this assumption is not valid for low ER values, or if other
transport resistances are dominant. We thus used our model to calculate the maximum Pm

that would lead to a specific ER assuming a maximal Jpgp,active of 1.6 × 10−4 µmol/cm2/s
as described in Section 3.2.5, see also Supplementary Materials S1 (Section S16).

As is evident from Figure 7, the Pm×Cext threshold stays constant across all ER values,
except in the lower ranges. To appreciate why this is, it must be considered that at low ER
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values where P-gp activity is diminished, the passive backflow of the compound from the
cytosol is significant. This does not apply for compounds exhibiting high ER values where
P-gp is more active, see Supplementary Materials S1 (Section S17). However, this affects
only a small fraction of the significant efflux ratios in our database, specifically those that
just exceed the significance threshold. Therefore, the plateau remains the most interesting
value. However, this sharp increase in the Pm×Cext limit for low ER values might explain
the few remaining outliers that did indeed show low ER values (2.6–2.8). Especially when
one considers that low recovery may also have resulted in an overestimation of ER.

 
Figure 7. The Pm×Cext threshold associated with the maximal Jpgp,active value of
1.6 × 10−4 µmol/cm2/s as a function of ER values. The threshold lies at a value of log(Pm×Cext) = −1.7.

4.7. Sensitivity Analysis of Pm Threshold

Although the energy threshold should remain static among different compounds and
concentrations, the conversion of Jpgp,active into a Pm value is influenced by several factors.
Firstly, the apical membrane surface area factor SA is expected to be quite consequential,
as this directly affects the maximal Jpgp,active value (see Figures S11–S13). Fortunately,
SA does not affect the extracted Pm threshold if we consider the maximal Jpgp,active that
corresponds with the respective SA. For example, if the SA is increased by 3.2 (as is the case
with 7.5 vs. 24), the extracted Jpgp,active is also increased by a factor of 3.2, but the extracted
Pm×Cext threshold is not affected (see Figure S10). Regardless of which surface area is
assumed, saturation always occurs for the same set of permeable compounds at the same
concentration, so the limiting value of permeability × concentration remains constant. The
empirical determination of the Pm×Cext threshold specific to our cells is thus not affected
by the uncertainty of the SA factor. However, if a fixed maximal Jpgp,active is used to extract
Pm, the resulting values will scale directly with SA (see Figure S11), which is of relevance
if the threshold is determined by theoretical deliberations on the energy limit, and not
empirically. This becomes critical when the energy limit is determined independently
(e.g., from ATP-turnover rates, see Supplementary Materials S1 (Section S2)) because SA
variability would then introduce a major source of uncertainty.

Secondly, as stated in the preceding section, the maximal Jpgp,active presented in this
work was determined specifically for MDCK-MDR1 cells. The maximum flux value can
vary among different cell types. Since the energy needs of MDCK cells are higher than that
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of other, less active cells (see Supplementary Materials S1 (Section S2)), they likely have a
higher energy limit than the average cell. Therefore, it is essential to note that variations will
exist between different cell types. Cells with increased energy demands/production are
likely to exhibit a higher maximum flux value. For example, in cancer cells an upregulation
of mitochondrial respiration has been reported [87], which would also suggest an increased
Jpgp,active,max. The observation that inhibition of the electron transport chain restored the
cells’ drug sensitivity [87] is fully consistent with our assumption of an energy limitation.

The energy limit of the cells, and thus their maximal Jpgp,active, was found to be directly
proportional to the corresponding Pm threshold. The observed variability in maximal
Jpgp,active (range 8.7 × 10−6 to 4.4 × 10−4 µmol/cm2/s) thus directly translates to a range
of the log(Pm×Cext) threshold of −2.94 to −1.23. An increase in maximum flux shifts the
logPm threshold higher by the same factor. Therefore, it is important to reiterate that the Pm

threshold provided here is not a universal figure, as it was established for the MDCK-MDR1
cells available to us. Consequently, the same Pm cut-off cannot be applied uniformly across
all cell types. For instance, cells in the blood–brain barrier (BBB) exhibit greater activity
compared to Caco-2 cells because they have high expression of various efflux transporters
to tightly regulate brain access [88]. Thus, if BBB cells demonstrate a greater maximum flux
value, it stands to reason that this would enable the effective efflux of compounds with
increased passive membrane permeability. The higher density of mitochondria in the blood–
brain barrier [89] may result in a higher energetic limit (and thus higher Pm×Cext threshold).
This—together with the typically lower compound concentrations in blood compared to
the intestine—may explain why certain compounds exhibit high bioavailability but low
brain uptake, if they are not actively effluxed in the gut but are in the brain (even though
passive membrane permeability is similar in the gut and the brain [90]).

Finally, the importance of concentration for the Pm threshold was very apparent. As
expected it was found that the Pm threshold is indirectly proportional to the concentration,
since their product determines the passive diffusive flux rate through the membrane
that counteracts active transport. As the concentration of the compound decreases, the
threshold rises (and the opposite is true for increasing concentrations). This is why the
metric proposed for the threshold is not simply Pm, but rather the Pm-concentration product,
Pm×Cext (µM cm/s).

The effect of paracellular transport, compound charge, as well as basolateral up-
take on the Pm×Cext threshold was also evaluated, but was found to be inconsequen-
tial (Figures S12–S14). Thus, the final log(Pm×Cext) threshold for our MDCK-MDR1 cell
system— determined empirically with borderline compounds—was found to lie at −1.7.
This is slightly higher than the threshold considered initially for the identification of out-
liers, and as such did not result in the re-identification of more outliers not previously
considered.

4.8. Re-Evaluation of Literature Data

294 significant ER values from MDCK assays were gathered from 46 different sources
in the literature. Based on the spread of the starting experimental data, it was ini-
tially hypothesized that for MDCK cells, compounds with a Pm×Cext value exceeding
1 × 10−2 cm/s would be too membrane-permeable for the cell to maintain effective efflux
against their high rates of passive diffusion. Two-thirds of the data did not contradict
this hypothesis from the outset. In other words, these compounds were confirmed efflux
substrates with a Pm×Cext lower than 1 × 10−2 cm/s. Figure 8 shows the distribution of
the data of all three transporters after re-evaluation of the outliers, along with the final
Pm×Cext threshold line of 2.2 × 10−2 cm/s (and borderline area) that was determined
empirically in this study.
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Figure 8. log(Pm×Cext) vs. ER of re-evaluated data from all transporter (P-gp, BCRP and MRP2)
datasets. The log(Pm ×Cext) threshold for the MDCKII-MDR1 cells was determined to be −1.7.
With the exception of the three indicated outlier compounds, no compounds with Pm ×Cext above
2.2 × 10−2 cm/s×µM showed significant efflux. The efflux of borderline compounds is highly
dependent on concentration. Experimental Pm values sourced from Ebert et al. [32] and Ebert and
Dahley [26].

The depicted Pm×Cext threshold is based on the Jpgp,active,max of 1.6 × 10−4 µmol/cm2/s
determined for our MDCK-MDR1 cells. Due to normalization of the threshold Pm to
external concentration, it is independent of assay concentration used.

It is remarkable that among all compounds analyzed here and documented in the
literature as being substrates of one of the three primary efflux transporters associated with
MDR, all have Pm×Cext values either below the threshold, or they fall in the borderline
window and exhibit only concentration-dependent efflux. This supports the theory that
there is indeed a Pm limit for active efflux—and due to it being based on the fundamental
principle of cellular energy constraints, that it is universal for three different transporters.
Ultimately, there are only three unconvincing, low ER compounds which have a Pm×Cext

value exceeding the threshold and its corresponding borderline window. This is notable as
there is no shortage of pharmaceutical compounds with log(Pm×Cext) values above the
threshold. As described in Section 3.2.1, 123 compounds with non-significant ER values
were also evaluated. Figure 9 depicts the Pm×Cext values for these compounds with ER
values less than 2.5 in red, and as is evident about 60% of them fall above the threshold.
Compounds below the threshold may potentially be affected by efflux transport, and
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in vitro transwell assays for these compounds are warranted. However, compounds above
the threshold are not expected to be affected by efflux transporters, and assays to check for
an ER value would be unnecessary.

 

Figure 9. log(Pm×Cext) vs. ER of re-evaluated data from all transporter (P-gp, BCRP and MRP2)
datasets, along with non-transported compounds in red. Experimental Pm values sourced from
Ebert et al. [32] and Ebert and Dahley [26].

Our results align with the Biopharmaceutics Drug Disposition Classification System
(BDDCS), which categorizes drugs into four classes according to solubility and intestinal
permeability. According to Benet et al. [91], efflux transport should be considered for Class
II compounds (low solubility, high passive permeability), whereas membrane transporters—
both uptake and efflux—play a critical role for Class III (high solubility, low permeability)
and Class IV (low solubility, low permeability) drugs. In contrast, for Class I drugs (high
solubility, high permeability), active transport is generally not relevant. This is fully
consistent with our defined Pm×Cext threshold, since we would not anticipate active
transport under conditions of high permeability combined with high concentrations.

5. Conclusions
In this study, we propose an energy limit for active efflux, which can be translated

into a membrane permeability threshold to simplify identification of compounds that may
exhibit significant efflux. We collected nearly 300 ER values from the MDCK assays of three
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transporters (P-gp, BCRP and MRP2) from the existing literature to investigate this premise.
After establishing a preliminary threshold, a systematic analysis of outliers (compounds
with ER values > 2.5 and log(Pm×Cext) values > −2) led to the reclassification of most
outliers as conformers. Concentration-dependent transwell assays for borderline com-
pounds enabled the more precise identification of the maximal flux value (Jpgp,active,max) of
1.6 × 10−4 µmol/cm2/s for our MDCK-MDR1 cell systems. It was found that the energy
limit seems to be enforced by the cell through the mechanism of saturation. The maximal
Jpgp,active was then translated into a more accessible threshold Pm value. The threshold
Pm was normalized to external concentration for a concentration-independent Pm×Cext

threshold. This Pm×Cext threshold falls within the mid-range of typical hydrophobic-
ity/lipophilicity values for most chemicals of interest, making it relevant across a broad
spectrum of compounds.

Our results confirm that passive membrane permeability (Pm×Cext) can be used as a
filtering metric to determine whether the pharmacokinetics of pharmaceutical compounds
can be affected by efflux. However, accurate Pm values are critical for this determination.
The model should be applicable to other cell lines or tissues, as the underlying principle—
that active transport must counteract passive permeation and that energy consumption is
inherently limited—is universal to all cells. However, the specific threshold will need to be
determined for each cell type, as different cells have different energy budgets. One approach
could be to estimate the threshold directly from the energy budget of the considered cell
types, although parameters such as surface area, stoichiometry, and ATP turnover introduce
additional uncertainties, and the practicability of this approach will need to be evaluated in
future studies. A more direct and robust alternative is to determine the precise Pm×Cext

threshold experimentally using borderline compounds on the cell line of interest, as we did
in this study, which minimizes uncertainties related the above-mentioned factors.

The new approach would reduce the need for time- and resource-intensive transport
assays for compounds above the threshold and would assist with the design of in vitro
experiments that avoid saturation effects, thereby minimizing false negatives. In addition, it
can aid rational lead optimization by allowing drugs of interest to be engineered for desired
transporter interactions through adjustments in passive membrane permeability. A key
practical limitation—shared with in vitro assays—is that the freely dissolved concentration
(e.g., in the gut for oral absorption studies or in blood for blood–brain barrier studies)
must be known, as it directly influences the threshold. We recognize that in physiological
scenarios, multiple transporters may act synergistically, cellular energy may fluctuate under
pathological conditions, and genetic polymorphisms can alter transporter activity. Our
model assumes constant stoichiometry for ATP-dependent efflux transporters; under this
assumption, synergistic transport by different transporter types does not change the total
energy required to transport a given number of molecules. Nevertheless, variations in
stoichiometry, energy limitation, or polymorphisms could alter the effective threshold,
representing important limitations and avenues for future investigation. In the future, our
quantitative framework may provide a basis for refining strategies to prevent active efflux
through induced intracellular ATP depletion [92–95], although such applications remain
to be explored. Overall, this novel mechanistic approach, grounded in cellular energy
constraints, offers a promising way to predict when active efflux is unlikely solely from the
chemical structure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics17111455/s1. Figure S1: Physiological and cellular
approaches towards calculating theoretical maximal flux values; Figure S2: Apparent permeability
and efflux ratios as a function of concentration for the compounds acebutolol, amprenavir, loperamide,
eletriptan, nelfinavir, prazosin and quinidine; Figure S3: Three-compartment model simulations
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of the concentration over time in the different compartments in the B → A direction; Figure S4:
P-gp facilitated flux fit values versus concentration for seven compounds with S = 1; Figure S5:
P-gp facilitated flux fit values versus concentration for seven compounds with S = 7.5; Figure S6:
P-gp facilitated flux fit values versus concentration for seven compounds with S = 24; Figure S7:
Michaelis-Menten fits of Jpgp,active values for apical surface membrane factor = 1 and mean maximal
Jpgp,active values; Figure S8: Michaelis-Menten fits of Jpgp,active values for apical surface membrane
factor = 7.5 and mean maximal Jpgp,active values; Figure S9: Michaelis-Menten fits of Jpgp,active values
for apical surface membrane factor = 24 and mean maximal Jpgp,active values; Figure S10: The
Pm×Cext threshold as a function of ER values extracted from our experiments assuming different
SA, as indicated; Figure S11: The Pm×Cext threshold associated with a fixed maximal Jpgp,active value
of 1.6 × 10−4 µmol/cm2/s as a function of ER values for different SA; Figure S12: The Pm×Cext

threshold associated with a fixed maximal Jpgp,active value of 1.6 × 10−4 µmol/cm2/s as a function of
ER values based on magnitude of basolateral uptake transporter activity; Figure S13: The Pm×Cext

threshold associated with a fixed maximal Jpgp,active value of 1.6 × 10−4 µmol/cm2/s as a function
of ER values based on the whether the compound is charged or neutral; Figure S14: The Pm×Cext

threshold associated with a fixed maximal Jpgp,active value of 1.6 × 10−4 µmol/cm2/s as a function
of ER values based on the magnitude of paracellular transport; Table S1: Pgp dataset: Chemical
properties and Pm values; Table S2 BCRP dataset: Chemical properties and calculated Pm values;
Table S3 MRP2 dataset: Chemical properties and calculated Pm value; Table S4 Concentration-
corrected Pm values for all transporters; Table S5 Pm values calculated from PAMPA Khex/w values;
Table S6 Outliers analysis; Table S7 Compounds with insignificant ER values: Chemical properties
and Pm values; Table S8 Concentration-corrected Pm values for compounds with insignificant ER
values. References [96–115] are only cited in the Supplementary Materials.
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