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Zusammenfassung

Fortschritte bei der Hochdurchsatz-Genotypisierung und der Phanotypisierung haben die
datengestiitzte Weizenziichtung vorangebracht. Die daraus gewonnenen phéanotypischen
und genotypischen Daten lassen auf eine genauere Vorhersage vielversprechender Sorten-
kandidaten hoffen, wenn eine einheitliche Auswertung iiber Datensilos hinweg gelingt. In
dieser Arbeit wurden integrative Strategien fiir genomische Vorhersagen bei Weizenhybri-
den und Inzuchtlinien sowie fiir die genomweite Assoziationskartierung untersucht. Uber-
lappende Genotypen und gemeinsame Methoden in bestehenden Weizenzuchtprogram-
men erwiesen sich als vorteilhaft fiir die Integration. Es zeigte sich, dass sich bei genom-
weiten Assoziationsstudien weniger signifikante Assoziationen zwischen Markern und
Merkmalen finden lieBen als bei individuellen Datensatzen, welche aber eine hoherere Vor-
hersagekraft besaBen. Die Leistungsfahigkeit der genomischen Vorhersage nahm durch in-
tegrative Analyse deutlich zu, wobei mit zunehmender Datensatzgrof3e weitere Fortschritte
schwieriger wurden. Dies zeigt, dass die Kombination von Daten iiber Silos hinweg vorteil-
haft ist, aber auch weitere Faktoren verbleiben, die die Vorhersagekraft einschranken.
Moglicherweise wurden Wechselwirkungen zwischen Genotyp und Umgebung zu limitie-
renden Faktoren, die aufgrund der stark unausgewogenen Daten schwer zu erfassen waren.
Methodische Innovationen, wie balanced environmental sampling, konnen auf der

Grundlage erster Ergebnisse dieser Arbeit weiter erforscht werden.
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Abstract

Advancements in genotyping and phenotyping technologies have allowed for progress in
data-driven wheat breeding. Resulting phenotypic and genotypic data can improve the pre-
diction of promising variety candidates if a unified evaluation across data silos succeeds.
This thesis explores integrative strategies for genomic prediction in wheat hybrids and in-
bred lines, as well as for genome-wide association mapping. Common checks and method-
ology in existing wheat breeding programs proved beneficial for integration. Genome-wide
association studies were found to yield fewer significant marker-trait associations than for
individual data sets, albeit with higher predictive power. The predictive power of genomic
prediction increased markedly, showing decreasing additional benefits as dataset sizes
grew. This shows that combining data across silos is beneficial, but unresolved factors re-
main that limit the predictive power. This is potentially due to genotype-times-environ-
ment interactions, which are difficult to track due to the strongly imbalanced data. Meth-
odological innovations, like balanced environmental sampling, can be further explored

based on initial results from this work.
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INTRODUCTION

1 Introduction

1.1 Breeding for food security in a changing world

Wheat is one of the most important staple crops, providing about 19% of the world’s
demand in calories either directly as food or as livestock feed, with the relative shares
varying strongly between wealthy and poorer countries (Shiferaw et al., 2013). As
earth’s population is still growing and increasing wealth promises to reduce hunger,
the global food demand compared to 2005 is expected to increase by about 30 to 60
percent by 2050 (Tilman et al., 2011; Tian et al., 2021; Van Dijk et al., 2021) due to diet
diversification and a trend towards animal-based food. Since the 1960s wheat yields
have tripled and current yield gains are about 1.7 percent per year. The main drivers
behind this are changed farming practices, in particular much higher nitrogen input
and irrigation, and the improvement of wheat genetics by breeding, at about equal
shares (Fischer et al., 2022). Raising carbon dioxide concentrations and resulting tem-
perature increase will also further improve yields mostly in high-latitude regions, how-
ever, ramifications of climate change will have detrimental impacts on food security
overall by various means like increased droughts and floods, damage to pollinator pop-
ulations, spread of pests, and lower nutritional quality of the harvested food (Intergov-
ernmental Panel On Climate Change, 2022). Moreover, intensive agriculture trans-
gresses several other planetary boundaries besides the impact on the climate system,
like those of an intact biosphere and sufficient freshwater, so that the current projec-
tion is a ,Food for all but not forever” (Tian et al., 2021) world, and a safe livelihood of
humanity is endangered. Therefore, agriculture must perform a ,,U-turn“ towards a
balance of intensification and resource use (Gerten et al., 2020). Large shares of yield
gains since the green revolution have been achieved by increasing the resource usage
of agriculture. As those resources are becoming increasingly constrained due to their
associated planetary boundaries, breeding to improve the genetic performance of vari-

eties given restricted input gains importance.

In the 20th century, crop breeding has become a dedicated profession, as compared to
earlier-time on-farm selection. This has gone together with a steady refinement of
breeding methods. For example, breeders started to rely on targeted crosses of wheat
varieties, which are normally self-pollinated. This generates some progeny with more
extreme phenotypes than their parents (transgressive segregation), which can be se-

lected for to achieve breeding progress (Rasheed and Xia, 2019). Initially, wheat
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breeding was mainly driven by public institutions while nowadays the focus is shifting
more towards private breeding. Comparison of pedigree and genetic data suggests that
public institutions have put more emphasis on sharing genetic material across geo-
graphic regions, however, it is not clear whether more recent private programs reuse
more of the local elite material or whether pre-breeding using local landraces has par-

tially replaced crossing across geographic boundaries (Fradgley et al., 2019).

1.2 Molecular Breeding

The cycle of crossing, observation and selection has achieved significant progress dur-
ing the green revolution and afterwards. The most famous innovations among many
are a reduction in plant height, allowing for intensive fertilization without inducing
lodging, and introducing flowering that is independent of the photoperiod, which al-
lowed for cultivars that could be grown in a wide geographic range. These traits were
introduced based on observed phenotypes and later, the genetic basis for this was
found in mutated alleles of the Rht and Ppd gene families, respectively (Trethowan et
al., 2007). The elucidation of causal genes for these and many other traits and the ad-
vent of cost-effective genotyping technology have led to the development of molecular
breeding, which uses genetic data for more accurate selection. One of the first applica-
tions was marker-assisted backcrossing, where genetic markers are used to speed up
the introgression of desired novel genetic material into a pre-existing elite genetic
background, while avoiding introducing undesired properties via linkage drag. Other
methods include quality control of seed stocks, evaluation of heterotic groups for hy-
brid breeding and stacking multiple desired genes by pyramiding (Collard and Mackill,
2008). Especially for disease resistances and quality traits, several markers have been
developed that are linked to good performance in these respects or are even functional
markers which directly target causal genes (Liu et al., 2012; Hasan et al., 2021; Song et

al., 2023).

1.3 Genome-Wide Association Studies

The hunt for genome regions which influence traits of interest initially started with
crosses between two or multiple parents that show variation in that trait. In the segre-
gating offspring, linkage blocks of parent genetic material would appear in different
combinations. That allowed to determine genetic maps from the linkage disequilib-
rium of different genetic loci and to associate loci with phenotypes (reviewed by
Wiirschum, 2012). On the downside, the genetic diversity of the mapping population

was limited by the choice of the parents. To generate successful mapping populations,
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parents must be chosen a priori to possess variation in as many interesting genetic loci
as possible, even though those loci might not be known. Moreover, large amounts of
crosses are necessary to produce sufficient numbers of offspring, in particular when
producing more advanced mapping populations like MAGIC or nested association

mapping panels (Gage et al., 2020).

In addition to selection bias by parent choice, the lack of linkage between causal vari-
ants influencing traits of interest and the available genetic markers challenged map-
ping efforts, particularly as natural populations of higher genetic diversity were tar-
geted. This was because a higher diversity is associated with smaller linkage blocks, as
more meiotic events lie between individuals and their common ancestors than in de-
signed mapping populations (Hamblin et al., 2011). Thus, more diverse populations
allow for finer mapping, however the marker density must be sufficient to ensure most
linkage blocks are in linkage disequilibrium with some markers. With the availability
of dense genetic marker data because of cost-effective high-throughput genotyping
technology like DNA microarrays and the dramatic price drop of whole-genome rese-
quencing technologies (Wetterstrand, 2024), it became viable to screen large popula-
tions for associations of genomic loci and phenotypes in genome-wide association
studies (GWAS). This allowed to screen diversity panels, large numbers of diverse in-
dividuals that were available in the domain of interest, instead of self-generated map-

ping populations, for hitherto unknown marker-trait associations.

The greater potential of diversity panels to detect unknown genetic loci compared to
mapping populations comes at the cost of several potential sources of bias in the re-
sults. One is that the population structure is not controlled for in a diversity panel. This
can lead to spurious associations: Subpopulations can have specific alleles both at
causal and non-causal loci, which thereby can become confounded (Sul et al., 2018).
Several statistical approaches have been developed to reduce the influence of hetero-
genous genetic background, of which the mixed linear model approach is the most
widespread. This method explicitly models the correlation between trait phenotypes
because of their genetic background based on genomic relationship matrices (Yu et al.,
2006). Numerous researchers have improved upon this method for computational ef-
ficiency and power and have also provided alternative approaches (Tibbs Cortes et al.,
2021). In summary, a successful GWAS depends on a population that is diverse enough
to cover relevant genetic variation, not too structured to reduce synthetic and corre-
lated associations, covered by genetic markers densely enough to have high linkage

between markers and causal alleles, and sampled by enough individuals to determine
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effect sizes correctly. A further limiting factor is the heritability of the trait, which can
be reduced for example by strong genotype-times-environment interactions and qual-

ity or difficulty of the trait measurement.

1.4 Genomic prediction

Instead of detecting causative alleles for certain traits as a basis to predict genotype
performance, another approach is to use a training set of genotypes for which both
genotypic and phenotypic data is available to derive phenotype predictions for a test
set of individuals that are only genotyped. As such methods tend to use many or all of
the genomic loci for which data is available, rather than only those with proven influ-
ence, they are subsumed under the term genomic prediction. One of the first such mod-
els was Ridge Regression Best Linear Unbiased Prediction (RR-BLUP, Meuwissen et
al., 2001; Whittaker et al., 2000). It decomposes the observed phenotype into a sum of
estimated effects for all genetic loci. Moreover, it assumes that there is a very large
number of genetic loci influencing the trait but the influences are mostly small. Assum-
ing further that most of these loci are in strong linkage disequilibrium with at least one
of the available genetic markers, a linear mixed model is used with the phenotypes as
the independent variable and the marker effects as a random explanatory variable. The
variance of the random variable is commonly estimated using the iterative restricted
maximum likelihood (REML) procedure (Gilmour et al., 1995). The name of RR-BLUP
stems from its equivalence to a ridge regression of the phenotypes on the marker data
with the shrinkage parameter A being determined by the narrow-sense heritability h?

as A = 1/h? — 1 (De Vlaming and Groenen, 2015).

From the comparison to ridge regression it can be seen how genomic prediction ap-
proaches like RR-BLUP deal with the problem that the number of parameters normally
exceeds the sample size, also known as the p > n problem. Without restrictions on the
parameter estimates, there would be an infinite number of potential marker effect es-
timates that explain the observed phenotypes equally well. By introducing the precon-
dition of normally distributed marker effects (from a linear mixed model view) or a
penalization of large parameter estimates (from a ridge regression view), the model is
driven to prefer smaller parameter estimates, thereby resolving the ambiguity. This
also opens the door to numerous alternative model setups. For example, many authors
used Bayesian approaches and defined alternative prior probability distributions for
the marker effects to mimic more closely the genetic architecture of the traits under

study (Gianola, 2013).
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Another line of genomic prediction set off from the genetic theory of related individu-
als, in particular the correlations of the genetic trait components between relatives.
Henderson (1988) proposed to use a linear mixed model that decomposes the observed
phenotypes into a random additive genetic component (the breeding value), poten-
tially fixed additional group effects, and residual effects. The relatedness of individuals
was introduced as the covariance matrix of the additive genetic random variable, which
was set to the numerator relationship matrix (the matrix of consanguinity coefficients).
The model originated in animal breeding where pedigree records were available to de-
rive the numerator relationship matrix. It became applicable in plant breeding when it
became possible to derive estimates of relatedness from marker data (VanRaden,
2008; Hayes et al., 2009a) and became known as Genomic Best Linear Unbiased Pre-
diction (GBLUP). Further theoretical work on the correlation of dominance and epi-
static effects allowed extensions in the form of additional random variables represent-
ing those effects (Alvarez-Castro and Carlborg, 2007). Additionally, a reformulation
inspired by Kernel Ridge Regression that is also known as Reproducing Kernel Hilbert
Space Regression (RKHS, Jacquin et al., 2016) allowed to implicitly model multiple
levels of epistatic interactions (Gianola and van Kaam, 2008). As genomic prediction
lies at the confluence of genetics, frequentist and Bayesian statistics and machine
learning, multiple independently invented methods have been shown to be equivalent,
for example RR-BLUP and GBLUP given normally distributed marker effects (Hayes
et al., 2009b), or multiple Bayesian methods and their classical counterparts (De

Vlaming and Groenen, 2015; Jacquin et al., 2016).

There are many factors that influence the accuracy of genomic prediction and some can
be tuned to improve predictions. Firstly, the marker density must be sufficient to cap-
ture most linkage blocks in the population (Meuwissen, 2009). This means that more
diverse populations require more dense sampling of the genome by markers, however
an analysis of a large and diverse data set of wheat elite cultivars and land races found
that accuracy plateaus at about 5,000 markers (Zhao et al., 2021), which is easily
achievable by current technology. Furthermore, additive genetic relationship between
the test and the training set is an important foundation of successful Genomic Predic-
tion. This is because this method is not only based on physical linkage between indi-
vidual causative loci and genetic markers but also extracts information from the total
number of causative loci that have co-segregated between individuals in the test set
and training set, that is, the additive genetic relationship or pedigree (Gianola et al.,

2009; Habier et al., 2007, 2013). As not all of those loci are known, the total fraction
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of shared markers between a test and training individual serves at an estimate. There-
fore, training sets with individuals that are closely related to the test set individuals
confer a large boost in genomic prediction ability as the fraction of shared markers is
dominated by co-segregation and thus the estimation of additive genetic relationship

is near to reality.

1.5 Balancing sample size and heritability for accurate
genomic prediction poses a dilemma given breeding

experimental designs
Two further training set properties crucially influence the capabilities of genomic pre-
diction: Training set size and heritability of the trait (Meuwissen, 2009). The higher
the diversity of the population in question, the more individuals in the training set are
required for an accurate prediction. However, there are multiple approaches on how to
compute how large that number of required individuals is, and the resulting estimates
vary substantially (Brard and Ricard, 2015). The relationship between the trait herita-
bility and the genomic prediction accuracy is more straightforward, as a lower herita-
bility means that measured phenotypic values of the training set have a smaller genetic
component compared to other influencing factors, that are not genetic and thus non-
heritable. Beyond additive genetic effects, more complex genetic interactions and gen-
otype-by-environment interactions, could be tackled by more advanced genomic pre-
diction models, advances in phenotyping methodology, or specialized experimental de-
signs, as reviewed by for example Voss-Fels et al., (2019). However, especially for com-
plex traits, repeated observation in different environments lies at the heart of a robust

picture of a candidate’s performance.

These two requirements of genomic prediction, high sample size and high heritability,
turn out to be conflicting when considering the layout of a multi-generational and
multi-environmental plant breeding program. These programs evaluate a large num-
ber of progenies of initial crosses with large genetic diversity. Over multiple genera-
tions, favourable candidates are selected and their offspring (in wheat, by self-fertili-
zation) re-sown. As the number of candidates to test is high in early generations and is
reduced with every following generation, the remaining candidates can be tested in an
increasing number of environments (Figure 1A). This results in a higher heritability of
the observed phenotypes, as genetic performance becomes more clearly visible with
environment-specific effects averaging out. At the same time, the number of candidates

sharply declines over generations, so that across a program, for most individuals only
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low-heritability observations are available (Figure 1B). The merging of data sets is

therefore a promising strategy (Zhao et al., 2021).
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Figure 1: Potentials to form joint data sets across data silos. A: Schematic structure
of a variety breeding program. The progression of generations from crossing, over
multi-environmental field trials and selection, to variety application is shown from
top to bottom. The decline of population size and increase of heritability towards later
generations is sketched in the left and right margins. B: Concept of joining candidate
information across multiple data silos, for example public and private breeding
programs. Each program provides estimates of variable heritability due to its

internal experimental structure that allows to envision different merging strategies.
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1.6 Objectives

The field of potential strategies for merging data sets is large and it includes the case
studies of genomic prediction and GWAS on merged data sets, as well as explorations
of altered experimental designs that cater for evaluation pipelines based on genomic

prediction. In this thesis, my objectives were to

(1) find the best of several ways to sparsely distribute a fixed number of plots across
different environments to increase the accuracy of predicting hybrid perfor-

mance,

(2) compare several commonly used biometrical models for phenotypic data analy-
sis and identify the one that most accurately estimates the performance of the

candidates in such unbalanced trials,

(3) examine the impact of including a common set of genotypes across all environ-

ments,

(4) determine whether, integrating and re-evaluating breeding data sets improves
the detection power of GWAS,

(5) evaluate quality-control measures including a cross-validation using genomic

prediction,

(6) connect differences in the GWAS results between individual experimental series

and the combined data to the established theory,

(7) investigate whether it is possible to perform an integrated analyses of disparate
phenotypic and genotypic data sets and how to perform quality control of such

a task,

(8) examine what prediction abilities can be expected when using genomic predic-
tion beyond the confines of individual experimental series and how well multi-

ple series can be combined to form larger training sets for genomic prediction,

(9) test approaches to improve the training set by drawing subsets from the full

data, distilling the most reliable data and potentially increasing prediction abil-

ity.



PEER-REVIEWED SCIENTIFIC ARTICLES

2 Peer-reviewed scientific articles

2.1 Optimizing the setup of multienvironmental hybrid wheat

yield trials for boosting the selection capability

Published: In 2021, The Plant Genome 14(3):e20150.
DOI: 10.1002/tpg2.20150

Authors: Moritz Lell, Jochen Reif, Yusheng Zhao
Abstract:

The accuracy of genomic prediction increases with increasing heritability, and thus the
challenge of optimizing the design of multienvironment yield trials under a limited
budget arises. With this in mind, we aimed to find the best of several options to sparsely
distribute a fixed number of plots across different environments to increase the accu-
racy of hybrid performance prediction. We used a comprehensive published genomic
and phenotypic data set of 1,604 winter wheat (Triticum aestivum L.) hybrids and com-
pared several commonly used biometric models for phenotypic data analysis in a
resampling study to identify the one that most accurately estimated the hybrid perfor-
mance in different imbalanced trials. Our results showed that when using information
about genotypic relationships, genotypic values were more strongly associated with the
reference values than when this information was ignored. In addition, a balanced en-
vironmental sampling resulted in an adequate characterization of each environment
and increased the accuracy for estimating the hybrid performance. One promising de-
sign involved dividing the genotypes into equally sized subgroups that were tested in a
subset of environments, with the constraint that the subgroups overlapped with re-
spect to the environments. This scenario appears to be particularly appropriate, as it
provided both high accuracies in the estimates of genotypic values and had low varia-
bility resulting from the data sample used. Thus, we were able to clearly demonstrate
the utility for optimizing the design of multienvironment hybrid wheat yield trials in

times of genomic selection.
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Optimizing the setup of multienvironmental hybrid wheat yield
trials for boosting the selection capability

Moritz Lell | Jochen Reif | Yusheng Zhao

Leibniz Institute of Plant Genetics and Crop

Plant Research (IPK), Seeland D-06466, Abstract

Germany The accuracy of genomic prediction increases with increasing heritability, and thus

Correspondence the challenge of optimizing the design of multienvironment yield trials under a lim-

Jochen Reif, Leibniz Institute of Plant Genet- ited budget arises. With this in mind, we aimed to find the best of several options to

ZZ:;‘:\STE_E?:;?ES‘Mh(IPK)’ Seeland, sparsely distribute a fixed number of plots across different environments to increase

Email: reif @ipk-gatersleben.de the accuracy of hybrid performance prediction. We used a comprehensive pub-
lished genomic and phenotypic data set of 1,604 winter wheat (Triticum aestivum

nAeS;ig"Ed to Associate Editor Rajeev Varsh- L.) hybrids and compared several commonly used biometric models for phenotypic
data analysis in a resampling study to identify the one that most accurately esti-
mated the hybrid performance in different imbalanced trials. Our results showed that
when using information about genotypic relationships, genotypic values were more
strongly associated with the reference values than when this information was ignored.
In addition, a balanced environmental sampling resulted in an adequate characteri-
zation of each environment and increased the accuracy for estimating the hybrid per-
formance. One promising design involved dividing the genotypes into equally sized
subgroups that were tested in a subset of environments, with the constraint that the
subgroups overlapped with respect to the environments. This scenario appears to be
particularly appropriate, as it provided both high accuracies in the estimates of geno-
typic values and had low variability resulting from the data sample used. Thus, we
were able to clearly demonstrate the utility for optimizing the design of multienvi-
ronment hybrid wheat yield trials in times of genomic selection.

1 | INTRODUCTION
The use of genomic selection has led to several modifica-

Abbreviations: BLUE, best linear unbiased estimation; BLUP, best linear tions in wheat (Triticum aestivum L.) breeding programs. One

unbiased prediction; GBLUP, genomic best linear unbiased prediction; major change is the increase in the value of historical genomic

GCA, general combining ability; GEGV, genomically estimated genotypic and phenotypic data from previous breeding cycles, which are

value; PBLUP, pedlgree—based best lmea'r unbiased prediction; PlEGV, used in genomic selection to train the genome-wide predic-
phenotype-based estimate of the genotypic value; S-All, all hybrid

observations of data set; SCA, specific combining abilities; SNP, single tion mOdel.S (Storl}e & Charmet’ 2013). The use of hlSt(?rl'
nucleotide polymorphism. cal genomic data is not difficult as long as the genotyping

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
© 2021 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America
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platform remains largely unchanged or new developments are
compatible with those previously used. This was the case, for
example, when the 9k single nucleotide polymorphism (SNP)
array (Cavanagh et al., 2013) in wheat was updated by the
90k SNP array (Wang et al., 2014). In contrast, using histor-
ical phenotypic data to train genome-wide prediction models
can be challenging.

Historical phenotypic data are typically not orthogonal
across years (e.g., Storlie & Charmet, 2013) and come from
multistage selection programs in which extensive populations
are tested in a few environments and a selected fraction are
then evaluated in a large number of environments. On the one
hand, data from early selection cycles are valuable to train
the genome-wide prediction models because they have a large
phenotypic diversity (He et al., 2017); on the other hand, geno-
types in early selection cycles are tested in only a few envi-
ronments, which reduces the heritability and thus the accu-
racy of the genome-wide prediction models (He et al., 2017).
The optimal design of a wheat breeding program that uses
genome-wide predictions can lead to adjustments to increase
the number of environments used for yield testing in early
selection cycles as a function of the accuracy of genome-wide
predictions (Longin et al., 2015). Nevertheless, the number of
environments is limited by the moderate multiplication coef-
ficient in wheat, limiting the amount of seed available for the
next stage. This also hampers the implementation of pheno-
type imputation, where indirect traits are used to enable sparse
yield testing (e.g., Rutkoski et al., 2016; Ward et al., 2019).
An important side effect of a small number of environments
used in early yield tests is a potential underrepresentation of
the diversity of environments, which can lead to a bias in the
decomposition of phenotypic variance into effects of geno-
types, environments, and their interaction effects (Utz et al.,
2000).

Extensive research has been conducted to optimize the
design and biometric analyses of plant breeding trials (Cullis
et al., 2006; Patterson & Williams, 1976; Smith & Cullis,
2018; Yates, 1940). The use of relationship information has
become an important underpinning for crop candidate perfor-
mance evaluation, as observations of one genotype can inform
decisions about related genotypes. Estimations of genotypic
values that take known relationships into account can be mod-
eled using best linear unbiased prediction (BLUP). As the
genotypic value is therein modeled using one or more random
variables, relationship can enter the model in two ways: Either
explicit covariance structures for genotype-related random
variables are defined or related genotypes are defined to share
common effects. Details about both approaches can be found
for example in a review by Piepho et al. (2008). An example
of the first approach is the decomposition of the genotypic
effect into an additive and dominance component, for which
expected covariances result from quantitative genetic theory
or are approximated using genomic markers (Alvarez-Castro

Core Ideas

* In preliminary trials, evaluating candidates
sparsely in more environments improves accuracy.

* A prerequisite for that are biometric models that
consider candidate relatedness.

* Joint analysis of concurrent trials can improve
accuracy without logistic changes.

& Carlborg, 2006; VanRaden, 2008). The second approach is
suitable for evaluation of hybrids, where the genotypic effect
of a candidate is decomposed into the sum of the general com-
bining abilities (GCAs) of its two parents and the specific
combining ability (SCA) of the specific cross. The GCA of
potential parents and thus the most beneficial future crosses
are often predicted using crosses to some tester lines, but Seye
et al. (2020) recently pointed out that a sparse factorial cross-
ing of parent lines might be superior. This example shows
how GCA/SCA-based models incorporate relationship infor-
mation without defining a covariance structure of the individ-
ual effects. By use of relationship information, BLUP allows
an increased flexibility in breeding trial layout as some geno-
types can be phenotyped in fewer environments or even not at
all (Longin et al., 2015). Computationally, these models are
fitted by restricted maximum likelihood estimation (Gilmour
etal., 1995) or as a special case of reproducing kernel Hilbert
space regression (de los Campos et al., 2009).

The potential to increase the diversity of environments in
early yield trials in the context of genomic selection was sug-
gested in a pioneering resampling study using genomic and
phenotypic data from a biparental family for barley (Hordeum
vulgare L.) and maize (Zea mays L.; Endelman et al., 2014).
The authors observed that genome-wide prediction models
improved when genotypes were distributed across multiple
locations rather than testing all entries in one location and con-
cluded that genome-wide markers in such imbalanced designs
establish connectivity by modeling relatedness among entries.
Also, Jarquin et al. (2020) demonstrated in two sparse three-
environment maize testcrosses that the prediction accuracy of
genome-wide prediction models can benefit from connecting
the environments with common genotypes. However, an in-
depth study on the potential to optimize the design of mul-
tienvironmental yield trials in times of genomic selection in
diverse populations is lacking. This is very promising, for
example, in hybrid breeding with a pronounced degree of
relatedness resulting from factorial mating designs.

Our survey is based on a comprehensive published data set
of wheat hybrids comprising 1,604 single crosses and their
135 parental lines. We used a resampling strategy to investi-
gate the optimum allocation of resources in multienvironmen-
tal field trials assuming restricted budgets. In particular, our
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objectives were (a) to find the best of several ways to sparsely
distribute a fixed number of plots across different environ-
ments to increase the accuracy of predicting hybrid perfor-
mance, (b) to compare several commonly used biometrical
models for phenotypic data analysis and identify the one that
most accurately estimates the performance of the candidates
in such unbalanced trials, and (c) to examine the impact of
including a common set of genotypes across all environments.

2 | MATERIALS AND METHODS

All calculations have been performed using R 4.0.2 (R Core
Team, 2020).

2.1 | Phenotypic data

Our study is based on previously published phenotypic and
genomic data of an F hybrid population resulting from 1,604
out of 1,800 potential single crosses with sufficient seeds for
multienvironmental yield trials between 120 female and 15
male winter wheat elite lines that were bred for wheat growing
in central Europe (Jiang et al., 2017; Longin et al., 2013; Zhao
et al., 2015). Briefly, the hybrids, their parents, and 10 check
cultivars were phenotyped for grain yield in 2 year (2012 and
2013) and six locations (Supplemental Figure S4, 11 location-
year combinations in total). The genotypes were divided ran-
domly for each environment into three trials for reasons of
field management. The trial designs were partially replicated
alpha lattice designs that were connected by 10 replicated
check cultivars. The same seeding rate was used for lines and
hybrids. Grain yield was adjusted to a moisture concentration
of 140 g H,0 kg~!. Further environment details are shown
in Supplemental Tables S1 and S2. The parental lines were
fingerprinted using a 90K SNP array (Wiirschum et al., 2013;
Zhao, Gowda, et al., 2013). The SNP profiles of the hybrids
were derived from the information of the SNP profiles of
the parental lines. Our study is based on 16,937 polymorphic
SNPs. The phenotypic and genomic data was used in an in sil-
ico study to investigate the optimum allocation of resources in
multienvironmental field trials assuming restricted budgets.
The available hybrid observations of the data set are shown in
Supplemental Figure S3.

2.2 | Phenotypic values adjusted for
experimental design effects

As a first step, we analyzed the raw data using the following
linear mixed model:

Yijkim = 8+ €j + L+ Figg + bjg + € ey

12
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decomposing each observation y;;,, into a genotypic value g;
for each genotype i, an environment effect ¢; for each environ-
ment (year X location) j; a trial effect Lk for each trial k, nested
within the environment; a replication effect r;; for each repli-
cation /, nested within the trial; a block effect by, for each
block m, nested within the replication; and a residual error
term for each observation. The genotypic values g are mod-
eled as a fixed effect and all other effects as random; that is, x
~ N(0;Io,) foreachxine, t, r, b, e.

The model was fitted using AsReml (Gilmour et al., 2015).
The estimated design effects for t, r, b were then subtracted
from the raw data. The resulting data set y@, which has the
same size as y, was then used for further analysis. The cluster-
ing of environments was analyzed in detail in a previous study
(See Figure Supplementary Note f-2 in Zhao et al., 2015) and
the absence of distinct clusters was reported.

2.3 | Insilico scenarios of allocation of
multienvironmental field trials

As a reference, all hybrid observations of our data set (S-All)
were used to compare different schemes of allocating plots in
multienvironmental hybrid grain yield trials. We then defined
six in silico scenarios (S1-S6) that contained only 38% of the
observations of the S-All data set (Supplemental Methods).
The number of plots corresponds to grain yield assessment of
the whole population in about four environments. The yield
evaluations in four environments represents a typical scenario
for resource allocation for first multienvironmental yield trials
in Central European wheat breeding programs.

The first scenarios were designed for conceptual simplicity,
modifying as few aspects of the data set as possible at the same
time (Figure 1):

* S1: With this scenario we tested the influence of reduc-
ing the number of observations in a balanced fashion. It
was generated as a random sample from the data set and
included data of all 11 environments. The sampling was
constrained in that all environments had a similar number
of observations, and all genotypes were tested in a similar
number of environments.

» S2: With this scenario we tested the influence of a reduced
number of environments. It was generated as a balanced
data set that consisted of data from four environments ran-
domly selected from the full data set.

The remaining four scenarios were designed to resemble
field trials of potential practical relevance to breeders:

* S3: The set of genotypes was divided in five groups of
genotypes. Each group was tested in four environments.
The groups overlapped with respect to the environments.
In total, the scenario included 10 environments.
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* S4: One-fifth of the genotypes were tested in 10 environ-
ments. The remaining genotypes were clustered into four
groups that were evaluated in separate sets of environments.
This pattern may arise from combining trials from early and
late stages of two multistage selection programs that are
running concurrently, where one program has progressed
farther.

* S5: One-fifth of the genotypes were tested in 10 environ-
ments. The remaining genotypes were tested in up to three
environments. As for S4, this pattern may arise from com-
bining early- and late-stage trials.

* S6: Half of the genotypes were tested in 4 to 10 environ-
ments, the other half in 1 to 3 environments. This pattern
was repeated for the hybrid offspring of each female parent
so that for every female parent, some offspring were tested
in many and some were tested in few environments.

24 | Predicting and estimating reference
genotypic values

To have a benchmark for the different scenarios, we obtained
estimates or predictions of the performance of the hybrids
using the data set S-All applying two statistical models.

We obtained the best linear unbiased estimations (BLUEs),
fitting the following linear model:

(d)
y ijklm

=g+ ej + sijk[m ()
where y@ is the observations without design effects obtained
following Model 1. The estimated/predicted variables are g, a
vector of fixed genotype effects and e and €, vectors of random
environment and residual effects, respectively. As in Model 1,
the covariance structure of the random effects is the identity
matrix.

The model was fitted using AsReml 4 (Gilmour et al.,
2015). The BLUEs from the S-All data set can be inter-
preted as the purely phenotype-based estimates of the geno-
typic value (PEGV).

In a second approach, the following random linear model
was fitted that decomposes the effect of the genotype into
additive and dominance components. This model is referred
to as GBLUP (genomic best linear unbiased prediction) in the
following:

(d)

jkam = @i Hdi e+ €y (3)

Y

The estimated effects include the additive (a) and dominance

(d) genetic effects. The notation of the other effects is analo-
gous to Model 2.

The two genetic effects had covariance structures derived

from the SNP profile of the hybrids (a ~ N[0, K,c,] and (d

~ N[0, K46,]). The SNP status of the hybrids was calculated

as the mean of the respective parents’ SNP status. Then, the
covariance structure of the additive effect K, was calculated
according to VanRaden (2008, p. 4116, “first method”). The
dominance effect had a covariance structure K according to
Alvarez-Castro and Carlborg (2006).

We fitted this model using the R package BGLR (Pérez
& de los Campos, 2014) that solves mixed models as a spe-
cial case of reproducing kernel Hilbert space regression in a
Bayesian framework, using a Gibbs sampler. We used 5,000
iterations of which 900 iterations were treated as burn-in
phase. The performance of the Gibbs sampling was checked
by calculating the effective sample size of the resulting
Markov chains, which corrects the number of iterations with
the autocorrelation of the chain, as well as the Geweke (1992)
diagnostic, which checks whether the empirical distributions
of parameter values at the beginning and the end of the chain
are different. The effective sample sizes were high enough
to calculate the predicted values by taking the mean of the
iteration steps (Supplemental Figure S1A). For the major-
ity of model runs, the Geweke scores were within what was
expected from a standard normally distributed random vari-
able. This result conforms to the Markov chains converg-
ing to a stationary distribution and thus the burn-in phase
being long enough (Supplemental Figure S1B). We also man-
ually checked the Markov chain trace of the GBLUP of S-
All wherein the convergence to a stationary distribution well
within the burn-in phase can be seen (Supplemental Fig-
ure S2).

The obtained predictions, when done on the S-All data set,
can be interpreted as the genomically estimated genotypic
value (GEGV).

2.5 | Statistical models to predict genotypic
values from in silico scenarios

We obtained genotypic values from the data sets generated
according to the six in silico scenarios described above and
S-All. The statistical models used for this were BLUE (Model
2), GBLUP (Model 3) and two additional models that are
described in this section.

In the first model, we obtained the BLUP using the fol-
lowing model with two random terms assuming no specific
covariance structure between the genotypes:

(d)

im = 8i T €j T Eijam )

y
The model is similar to Model 2 and the same terms are used
with the only difference that g is a random variable with g ~
N, Io,).
In the second model, we decomposed the hybrid perfor-
mance into GCA and SCA effects by fitting the following ran-
dom effect model:
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FIGURE 1 Graphical illustration of how genotypes were assigned to different environments in the six in silico scenarios (S1-S6). A filled

square indicates that a genotype was evaluated in an environment. In S6, the female parent of the genotype is indicated by the color. The plot for S6

shows the offspring of the first 3 of the 120 female parents for a clear display of the scenario structure

yz_(';j\')[m = Foy + Mgy + Si + € + i ®)
As before, the term y@ is the observations without design
effects (Model 1). All factors are random without covariance
structure analogous to Model 1. The parental GCAs are f and
m that have one value for each parent genotype. The func-
tions p(i) and ¢(i) yield the female and male parent index for
the hybrid genotype i, respectively. The SCA is s, with one
entry for each hybrid genotype i. The remaining effects (envi-
ronment and residual) are defined similarly to the previous
models.

This model takes the pedigree of the hybrids into account
implicitly by estimating the influences of their common par-
ents. Thus, we call it pedigree-based BLUP (PBLUP) in this
text. Both Models 4 and 5 do not use SNP data. Neverthe-
less, Model 5 considers relatedness, as multiple hybrids share
the same parent and thus common effects. If Model 5 would
be constrained in that 6, and ©,, must be the same value, the
effects f and m could be coalesced to one random variable
whose covariance structure would be the matrix of coeffi-

14

cients of coancestry of the hybrids, assuming a population of
unrelated parental genotypes. The Models 4 and 5 were fitted
using AsReml 4 (Gilmour et al., 2015)

2.6 | Evaluating estimates of genotypic
values obtained from in silico scenarios

We evaluated the precision of the estimated/predicted geno-
typic values of the hybrids obtained by Models 2-5 in the
Scenarios S1-S6 by correlating these predictions to the ref-
erence values, the PEGVs and GEGVs. As each scenario was
realized 100 times (Supplemental Methods), for each scenario
and model 100 correlation values depending on the data sam-
ple result, from which the median and the quartiles were taken.

Moreover, we estimated the reliability with which the best
genotypes, according to their PEGV and GEGYV, respectively,
are found in the best genotypes of the in silico scenarios. We
considered for this the 10% best genotypes in terms of PEGV
and GEGYV, respectively. We then measured the percentage of
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realizations for each scenario and model in which these geno-
types were also among the top 10%. As an example, say 100
hybrid genotypes are studied. From selecting the 10% best by
their GEGVs and PEGVs, respectively, two sets of 10 geno-
types result. They represent the breeder’s choice if the full data
set would be available to them. Let us call these two sets G*
and P*. To judge a certain scenario and model against these
standards, for each of the 100 scenario realizations the best 10
genotypes are taken, resulting in a set of sets S with 100 ele-
ments and each element being a set of 10 genotypes. For every
genotype in G*, it is now calculated in how many elements of
S this genotype is present.

2.7 | Joint analysis of different series of trials
conducted in the same environments

In the Scenarios S4 and S5, not all genotype groups were
tested in the same number of environments. Rather, the first
four genotype groups were tested in two to three environments
while the fifth genotype group was tested in 10 environments.

This situation is similar to an environment in which breed-
ers test two trials where one trial is in a later stage than the
other. The late-stage trial is tested in more environments but
comprises fewer genotypes than the earlier trial. We explored
whether the accuracy of the early-stage trial can profit from
the inclusion of the concurrent late-stage trial into a joint anal-
ysis.

To answer this question, we split the genotypes of the Sce-
narios S4 and S5 in two groups, respectively. The genotypes
that were measured in two to three environments were desig-
nated as early-stage genotypes. When referring to the early-
stage genotype group of a specific scenario, we use the suf-
fix “e” (e.g., S4e and S5e). Similarly, the genotypes that were
measured in 10 environments were designated as late-stage
genotypes, with the suffix “1” (e.g., S41 and S51).

We focused on the correlations of the yield predictions of
the early-stage genotypes S4e and S5e to the PEGVs and the
GEGVs where the predictions were generated with the same
collection of models as in the previous section. The data avail-
able to the model were either the early-stage genotypes only,
or the early-stage plus the late-stage genotypes. Regardless
of the data available to the model, only the correlation of the
early-stage genotypes to the PEGVs/GEGVs was considered.

3 | RESULTS

3.1 | Definition of genotypic values used as
references

For the S-All data set, all biometric models yielded very
similar estimations/predictions of the hybrid performances

LELL ET AL.
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FIGURE 2
mates of different models using the S-All data set. The models are
shown on the plot borders. See the model equations in the Materials
and Methods section for their definitions: best linear unbiased
estimation (BLUE, Model 2), best linear unbiased prediction (BLUP,
Model 4), pedigree-based best linear unbiased estimation (PBLUP,
Model 5), genomic best linear unbiased prediction (GBLUP, Model 3).
The predictions/estimations of BLUE and GBLUP in this figure are the
phenotypically estimated genotypic values (PEGVs) and genomic
estimated genotypic values (GEGVs), respectively. The Pearson

Correlations of hybrid performance predictions/esti-

correlation coefficients are shown in each plot

(Figure 2). The PEGVs and GEGVs, estimations/predictions
resulting from the BLUE and GBLUP models, respectively,
correlated to each other with 0.88. The BLUPs correlated very
strongly to the PEGVs (>0.99). Moreover, PBLUP showed
correlations of 0.93 to 0.97 to the predictions from the other
models. Summarizing, the values from BLUE and GBLUP
form the two extremes of the studied predictions as their corre-
lations to each other was the lowest of all models. They there-
fore are complementary approaches to define the genotypic
values used as references for the in silico scenario predictions.
This is elaborated in more detail in the discussion.

Genotypic values obtained with the PBLUP and GBLUP
models were more strongly associated with the reference val-
ues than those of the BLUE and BLUP models

Unless otherwise stated, we focused on the median of corre-
lations between estimates/predictions and genotypic reference
values for comparisons below. Also, we refer to the genotypic
value predictions/estimations of a model from an in silico sce-
nario by writing the model name with an “s” appended (e.g.,
“BLUEs”).

Across all scenarios, the BLUEs never outperformed the
BLUPs. Depending on the choice of reference values and sce-
nario, the correlations for Scenarios S4 to S6 were 0.03 to 0.06

15
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genotypic values (PEGVs) and genomic estimated genotypic values (GEGVs) (colors). The models are shown above the plots. For the structure of

the scenarios, see Figure 1. Each plot shows the correlations resulting from one model in the different scenarios. Each box plot summarizes 100
realizations. BLUE, best linear unbiased estimation; BLUP, best linear unbiased prediction; PBLUP, pedigree-based best linear unbiased estimation;

GBLUP, genomic best linear unbiased prediction

TABLE 1 Median correlations of the hybrid performance predictions/estimations of the scenarios and models to the reference values (“Ref.”)

Ref. Scenario Model order

GEGV S1 BLUE = BLUP < PBLUP < GBLUP
GEGV S2 BLUE = BLUP < PBLUP < GBLUP
GEGV S3 BLUE = BLUP < PBLUP < GBLUP
GEGV S4 BLUE < BLUP < PBLUP < GBLUP
GEGV S5 BLUE < BLUP < PBLUP < GBLUP
GEGV S6 BLUE < BLUP < PBLUP < GBLUP
PEGV N BLUE = BLUP = GBLUP < PBLUP
PEGV S2 GBLUP = PBLUP < BLUE = BLUP
PEGV S3 BLUE = GBLUP = BLUP < PBLUP
PEGV S4 BLUE < BLUP < GBLUP < PBLUP
PEGV S5 BLUE < BLUP = GBLUP = PBLUP
PEGV S6 BLUE < BLUP < GBLUP < PBLUP

BLUE BLUP PBLUP GBLUP
0.70 0.70 0.92 0.95
0.72 0.72 0.88 0.91
0.70 0.71 0.91 0.94
0.65 0.68 0.92 0.94
0.64 0.68 0.89 0.91
0.63 0.69 0.92 0.95
0.79 0.80 0.83 0.81
0.81 0.82 0.77 0.76
0.80 0.81 0.83 0.80
0.72 0.77 0.81 0.80
0.73 0.77 0.78 0.77
0.72 0.78 0.82 0.80

Note. The column ,,Model order* summarizes which models lead to higher correlations for the same scenario. Any difference above 0.01 is denoted by “<”, smaller
differences by “=". BLUE, best linear unbiased estimation; BLUP, best linear unbiased prediction; PBLUP, pedigree-based best linear unbiased estimation; GBLUP,

genomic best linear unbiased prediction; GEGV, genomic estimated genotypic value; PEGV, phenotypically estimated genotypic value.

lower for the BLUEs than for the BLUPs and approximately
the same for Scenarios S1 to S3.

Within the scenarios, the predictions of the different bio-
metric models correlated more strongly with the reference val-
ues of the model to which they are conceptually most similar:
The BLUEs and BLUPs from the scenarios are stronger cor-
related to the PEGVs (0.72-0.82) than to the GEGVs (0.63—
0.70). Conversely, the PBLUPs and GBLUPs are more simi-
lar to the GEGVs (0.88-0.95) than to the PEGVs (0.76-0.83;
Figure 3 and Table 1).

16

Regardless, averaged across all scenarios, PBLUPs or
GBLUPs showed a higher correlation to the reference val-
ues PEGV and GEGV than BLUEs or BLUPs: the correla-
tion to the GEGVs is about 0.2 higher for the PBLUPs and
GBLUPs than for the BLUPs and BLUEs. The correlations
to the PEGVs, on the other hand, differed less as a function
of the model, but again, in most cases PBLUPs and GBLUPs
correlated equally well or stronger to the PEGV in most of the
cases than predictions by BLUE or BLUP (difference 0.00—
0.08) The only case where this model ranking was less clear
was in Scenario S2, in which BLUEs and BLUPs predictions
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correlated with the PEGVs with 0.81 on average, whereas
the PBLUPs and GBLUPs predictions correlated with 0.76
on average. Considering the GEGV correlation, however, the
GBLUPs or PBLUPs of Scenario S2 performed about 0.2
higher off than the other two models. In conclusion, in our
study, the genomic models PBLUP and GBLUP were at an
advantage against BLUE and BLUP.

3.2 | Balanced environmental sampling
boosts the accuracy of PBLUP and GBLUP

The choice of the genotypic reference value did not affect
which in silico scenario yielded the best correlations to the
reference values for a certain model (Figure 3). In contrast,
the choice of biometric model did impact the optimal choice
of scenarios. Here, the results of BLUE and BLUP were sim-
ilar, and the results of PBLUP and GBLUP were also similar.

The in silico Scenario S2 was, on average, the scenario with
the highest correlations of the BLUEs and BLUPs to the geno-
typic reference values. However, there was a high variation
among the individual realizations. The predictions for the Sce-
narios S1 and S3 had only slightly lower correlations (differ-
ences of the medians of 0.02 or less) but the variance among
realizations was much lower for these scenarios. The BLUPs
and BLUESs from the remaining Scenarios S4 to S6 were 0.01
to 0.10 lower than those from the other scenarios (Figure 3).

For the PBLUPs and GBLUPs, the Scenario S1 showed the
highest correlation for both reference values than the predic-
tions of the other scenarios (Figure 3). However, Scenarios
S3, S4, and S6 also nearly reached this level with differences
between the correlations of less than 0.02. The PBLUPs and
GBLUPs of the Scenarios S2 and S5 were less correlated with
the reference than the predictions from S1, S3, S4, and S6 with
differences ranging from 0.02 to 0.06.

In summary, the performance of the BLUE and BLUP ben-
efited when the genotypes were tested in a comparable num-
ber of environments (Scenarios S1, S2, and S3). In contrast,
the PBLUP and GBLUP benefited when each environment
had a comparable number of observations, adequately char-
acterizing each environment (Scenarios S1, S3, S4, and S6).

3.3 | Selection by PBLUPs or GBLUPs had
the highest average probability to recover the
top genotypes

Up to this point, we have evaluated the merits of the mod-
els and scenarios by looking at the entire population. How-
ever, breeders are more interested in finding the top or a pro-
portion of the best genotypes. For example, if we consider
the best 10% of genotypes, the following picture emerges. (a)
Taking PEGV as reference genotypic values, no large differ-

TABLE 2
of genotypes by PEGV or GEGYV, respectively, were ranked among the

Mean percentage of realizations in which the top 10%

top 10% of scenario (S) predictions

Reference Model S1 S2 S3 S4 S5 S6

PEGV BLUE 548 565 555 490 488 492
PEGV BLUP 555 569 56.1 534 531 557
PEGV PBLUP 604 529 594 594 556 59.8
PEGV GBLUP 564 519 547 559 532 562
GEGV BLUE 463 47.1 469 420 424 425
GEGV BLUP 46.8 48.0 477 452 450 464

GEGV PBLUP 73.0 654 712 722 668 725
GEGV GBLUP 780 685 756 766 70.5 76.6
Mean 589 559 584 567 544 574

Note. BLUE, best linear unbiased estimation; BLUP, best linear unbiased predic-
tion; PBLUP, pedigree-based best linear unbiased estimation; GBLUP, genomic
best linear unbiased prediction; GEGV, genomic estimated genotypic value;
PEGYV, phenotypically estimated genotypic value.

ences were found between the biometric models for finding
the best 10% genotypes. The values varied between 49 and
60% (Figure 4A and Table 2). Except for Scenario S2, PBLUP
had slight advantages of 3—5 percentage points compared with
BLUP. When the selection intensity was increased by, for
example, to the top 2%, 82-90% were identified on average
across the scenarios by PBLUP or GBLUP, but only 71-84%
by BLUP (see the moving window averages in Figure 4A). (b)
When considering the GEGV as reference values, the picture
was different, and the choice of the biometric model strongly
influenced the results. The recovery rate of the best 10% of
genotypes was 45-48% when analyzed with BLUP, whereas
the recovery rate was markedly higher with 65-78% for the
PBLUP and GBLUP models (Figure 4B and Table 2). Sum-
marizing, the PBLUP and GBLUP models were superior to
BLUP and BLUE in that they either yielded a higher rate of
recovered top 10% genotypes from the scenarios or, in cases
where this figure was similar between the models, the advan-
tage of the PBLUP and GBLUP models over BLUP increased
when the group of top genotypes was defined increasingly
smaller.

Comparing different in silico scenarios, which reflect dif-
ferent allocations of plots in a multienvironmental field trial,
the predictions from Scenarios S1 and S3 were the most con-
sistent, as they showed high proportions of recovered top
genotypes compared with the predictions of other scenarios
(Table 2). In Scenario S2, the aforementioned advantage of
GBLUP and PBLUP over BLUP and BLUE was the smallest.
In recovering the best PEGV genotype, BLUP outperformed
PBLUP by 4 percentage points in S2.

However, in summary, the choice of the scenario was less
important than the choice of the biometric model. The PBLUP
and GBLUP models were superior to the BLUE and BLUP

17

woyy

o1 10po Koyt

z
-
g
g
g
S
Z
Z
g
g
=
>z
zZ
|
z
g
2
2
>
z
=
o
3
g
=
=
5
zZ
£l
z
c
g
=
3
3
I3
4
5
g
H
2
3
-3

o Kopm

Sofnu 1o Areiqr duIpuQ oAy U0

5901 suowI0)) 2A1Ea1) quNdde Ay £q POUIAAOS A1 SO VO 208h Jo



PEER-REVIEWED SCIENTIFIC ARTICLES

LELL ET AL. The Plant Genome : 9of13
(@)
S1 S2 S3 S4 S5 S6
100
75
g 50D ) > ) ) O
500
Qo @
0\05 2 \ \ \\-«, \\_\ \\ \_\ 2
5% 25 1) ) > ) > 5 e
N
o= 100
89 75 3
'O-: 50 \\ E
$5 1) ) ) ) > Il =
S 100
o 75 \\‘\W g
50 \\ \\N £
25 1) ) > > ) 5 igfes
024681002468100246810024681002468100246810
Genotype rank by PEGV [top %]
(b)
S1 S2 S sS4 S5 S6
100
75 @
— 50 \"\-\, \,\\_ \\ e
= = i ) Y M s §
EU’ 100
c 75 =2}
D\O'S 2(5) \-"—\, \“"'\_ ‘\\"’“\« \ﬁ""\. \‘\‘"‘\_ \\""\. %
5% 2 ) ) ) ) )
Q_ﬁ 100
Ty 25 E
85 29 DMl SEE S O Sl ¢
S 100
£ \ \\ \ \ \ \ o)
1
c
259 d <) 9 Jd 1V S
024681002468100246810024681002468100246810
Genotype rank by GEGV [top %]
FIGURE 4 Fractions of realizations in which the top 10% genotypes by yield phenotypically estimated genotypic values (PEGV) (a) or

genomic estimated genotypic value (GEGV) (b) are found among the top 10% of the predictions from different scenarios and models (fraction of
realizations) as well. Each bar corresponds to one genotype, the circular bar in the plot corner shows the average amount of top 10% genotypes that
were recovered to be in the top 10% of scenario predictions. See Table 2 for numeric values. The black line shows the average within a moving

window of 2% (32 genotypes). BLUE, best linear unbiased estimation; BLUP, best linear unbiased prediction; PBLUP, pedigree-based best linear

unbiased estimation; GBLUP, genomic best linear unbiased prediction

in that they either yielded a higher rate of recovered top 10%
genotypes from the scenarios or, in cases where this figure was
similar between the models, the advantage of the PBLUP and
GBLUP models over BLUP increased when the top genotype
group was defined increasingly smaller.

3.4 | An early-stage trial can profit from
joint analysis with related, later-stage trials
The correlation of the predictions of the early-stage genotypes

S4e and S5e to the two reference values was higher when
the early- and late-stage genotypes were jointly analyzed than

18

when only the early-stage genotypes were used. This joint
analysis of early- and late-stage genotypes lead to higher cor-
relations to the reference values for S5e candidates (0.04—0.09
higher) than for the S4e candidates (0.00-0.04 higher, Fig-
ure 5C). Dissecting this trend further, the correlations to the
GEGVs increased for all cases except the S4e BLUPs, while
the correlation to the PEGVs increased only for S5e whereas
PEGYV correlations of S4e candidates remained unchanged.
However, jointly using early- and late-stage genotypes instead
of early-stage genotypes alone never led to inferior results,
so averaging across the two references, using early- and late-
stage genotypes jointly, was the safer choice to achieve high
correlations of early-stage genotypes to the reference values.
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performance. The horizontal plot axis lists the different sets of genotypes available to the model, detailed in (a) and (b)

4 | DISCUSSION
4.1 | The choice of proper reference values
for the genotypic values

We used two different reference values, PEGVs and GEGVs,
to compare different arrangements of field trials analyzed with
four popular biometric models. This raises the question of
which of the two reference values approximates the geno-
typic value more precisely and is therefore more informative
for a breeder. The model underlying PEGVs is also used by
the Federal Variety Office in Germany for candidate evalua-
tions, and therefore a formal argument is that the PEGVs are
of direct interest to breeders. The PEGVs reflect estimates
of the genotypic values based on only a few assumptions,
such as, for example, randomly distributed residual errors,
but disregard information on genetic relationships among can-
didates and implies that all genotypes have a homogeneous
genotypic variance and are independent. The latter is partic-
ularly important for hybrid wheat because factorial mating
designs (Bernardo, 2010, p. 123), as used, for example, in
our study to generate the hybrids, result in extensive half-sib
families.

In contrast to the PEGVs, the predictions of GEGVs con-
sider the relatedness between genotypes. Conceptually, the
hybrid performance is decomposed in the applied model into
a component of the breeding value and the dominance devi-
ation, assuming that epistatic and genotype X environment
effects do not play a role (Falconer, 1989, p. 125). The
GBLUP model is equivalent to ridge regression BLUP for
large numbers of SNPs (Habier et al., 2007), which means that
GEGVs assume equal contributions of all loci to the genetic
variance (Meuwissen et al., 2001) and effect size estimates are
shrinked stronger for markers with low minor allele frequency
(Gianola, 2013). A further assumption made in the decom-
position of the hybrid performance is that the two genetic
effects are orthogonally defined, which unfortunately is not
always the case due to linkage disequilibrium (Alvarez-Castro
& Carlborg, 2006). Furthermore, the prediction of the hybrid
performance uses variance components of the genetic effects
(Bernardo, 2010, p. 283). Estimations of variance compo-
nents, especially in small data sets, can be quite erroneous
(Huang & Mackay, 2016) and, thus, influence the prediction
of the hybrid performance. In summary, GEGVs use more
information compared with PEGVs, but they are also based on
numerous assumptions. Therefore, the superiority of GEGVs
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over PEGVs depends very much on whether the informa-
tion used is accurate and whether the assumptions can be
made. Thus, the question of superiority cannot be definitely
answered and, as a result, the comparison between different
arrangements of field trials analyzed with four different bio-
metric models was performed on both GEGV and PEGV.

4.2 | PBLUP and GBLUP outperform BLUE
and BLUP under most circumstances

Considering the ambiguity described above regarding the
optimal reference values, the PBLUP and GBLUP models
stand out as analysis models that provide stable and superior
results in terms of correlations in all tested scenarios except
S2 (Figure 3, Figure 4). For all other scenarios, the advantage
of PBLUP and GBLUP over BLUP and BLUE in predicting
the true genotypic values depends on where the true values
fall in the spectrum between PEGVs and GEGVs. Assuming
that the true values would be best captured by the PEGVs,
the only settings that outperform the “classical” approach, S2
analyzed with BLUP, are S1 and S3, analyzed by PBLUP. The
better the GEGV's capture the true genotypic values, the larger
the number of scenarios grows in which PBLUP and GBLUP
estimate the true values better than BLUP and BLUE.

Further refining the winner between PBLUP and GBLUP
is not possible in this study. The PBLUP prediction accura-
cies are influenced less by the reference value choice so that,
within a scenario, PBLUP outperforms GBLUP in terms of
PEGV correlation but is inferior in terms of GEGV correla-
tion. This pattern is essentially reflected when assessing the
fraction of top genotypes that are also recovered as such by the
scenario predictions (Figure 4). When comparing predictions
from these two models with respect to their GEGV correlation
one must consider that GBLUP is also the underlying model
of the GEGVs. However, the extent to which this influences
the result cannot be answered in this study.

4.3 | Scenario S3 represents an interesting
alternative to balanced testing of genotypes in a
subset of environments

Scenario S2 represents a current standard of a preliminary
yield trial for many breeding programs (Zhao, Zeng, et al.,
2013). It is interesting to note that for both reference val-
ues, one of the alternative scenarios (S1, S3, or S6) in which
the genotypes are distributed over more environments leads
to an improved prediction accuracy and, moreover, a signifi-
cantly reduced variability in the estimations or predictions of
the genotypic values (Figure 3). In this context, the advan-
tage of the above alternative scenarios over a classical bal-
anced experiment in a few environments (S2) becomes much

20

higher if one uses the GEGVs instead of the PEGVs as refer-
ence values. Therefore, our results indicate that wheat breed-
ers could improve their preliminary yield trials by changing
the design of preliminary yield trials. As an alternative design,
Scenario S3 seems to us to be particularly suitable, because it
provided both high accuracies in the estimations/predictions
and yet showed low variability resulting on the used data sam-
ple. Also, as the genotypes are not completely randomly dis-
tributed like in the case of Scenario S1, it might be easier to
implement from a logistic standpoint. Finally, if implementa-
tion of S3 is not possible, and the preliminary trials have to
be tested in the same few environments, some of the bene-
fits of pedigree-based or genomic modeling could still be har-
vested by including candidates that are related but tested in
different trials and environments in a joint phenotypic analysis
(Figure 5).

4.4 | Conclusions and Outlook

The final decision on the design of multienvironment hybrid
wheat yield trials also depends on cost scenarios where
increasing the number of locations could cause additional
costs besides the cost per plot. However, a breeder might have
infrastructure already present in many environments when
advanced trials are evaluated there. Therefore, implementing
sparse preliminary testing might not mean using additional
environments but redistributing plots of preliminary trials to
environments that are already in use, albeit only for advanced
and not preliminary trials. Our results clearly demonstrated
the utility for optimizing the design of multienvironment
hybrid wheat yield trials in times of genomic selection. How-
ever, our results are not limited to hybrid breeding programs
but are also of interest for line breeding. The study of Endel-
man et al. (2014) already pioneered extended environmental
sampling in a design similar to our Scenario S1. They tested
candidates from extensive biparental populations of maize
and barley in a sparse fashion in up to three environments.
In this case, genome-wide markers established the connectiv-
ity between full sibs and allowed better control for interaction
effects between genotypes and environment. In principle, this
is also expected for comprehensive diversity panels of wheat
inbred line breeding programs, as high prediction accuracies
have also been reported in such situations (He et al., 2016).
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Abstract:

Genome-wide association mapping studies (GWAS) based on Big Data are a potential
approach to improve marker-assisted selection in plant breeding. The number of avail-
able phenotypic and genomic data sets in which medium-sized populations of several
hundred individuals have been studied is rapidly increasing. Combining these data and
using them in GWAS could increase both the power of QTL discovery and the accuracy
of estimation of underlying genetic effects, but is hindered by data heterogeneity and
lack of interoperability. In this study, we used genomic and phenotypic data sets, fo-
cusing on Central European winter wheat populations evaluated for heading date. We
explored strategies for integrating these data and subsequently the resulting potential
for GWAS. Establishing interoperability between data sets was greatly aided by some
overlapping genotypes and a linear relationship between the different phenotyping
protocols, resulting in high quality integrated phenotypic data. In this context, genomic
prediction proved to be a suitable tool to study relevance of interactions between gen-
otypes and experimental series, which was low in our case. Contrary to expectations,
fewer associations between markers and traits were found in the larger combined data
than in the individual experimental series. However, the predictive power based on the
marker-trait associations of the integrated data set was higher across data sets. There-
fore, the results show that the integration of medium-sized to Big Data is an approach
to increase the power to detect QTL in GWAS. The results encourage further efforts to

standardize and share data in the plant breeding community.
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1. Introduction

Genome-wide association mapping studies (GWAS) based on Big Data are a potential approach to
improve marker-assisted selection in plant breeding. The number of available phenotypic and genomic
data sets in which medium-sized populations of several hundred individuals have been studied is rapidly
increasing. Combining these data and using them in GWAS could increase both the power of QTL discov-
ery and the accuracy of estimation of underlying genetic effects, but is hindered by data heterogeneity
and lack of interoperability. In this study, we used genomic and phenotypic data sets, focusing on
Central European winter wheat populations evaluated for heading date. We explored strategies for inte-
grating these data and subsequently the resulting potential for GWAS. Establishing interoperability
between data sets was greatly aided by some overlapping genotypes and a linear relationship between
the different phenotyping protocols, resulting in high quality integrated phenotypic data. In this context,
genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and
experimental series, which was low in our case. Contrary to expectations, fewer associations between
markers and traits were found in the larger combined data than in the individual experimental series.
However, the predictive power based on the marker-trait associations of the integrated data set was
higher across data sets. Therefore, the results show that the integration of medium-sized to Big Data is
an approach to increase the power to detect QTL in GWAS. The results encourage further efforts to stan-

dardize and share data in the plant breeding community.
© 2024 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Genomic prediction does not select important loci that shape
phenotypic variation, nor does it seek accurate estimates of the

Plant breeding is being transformed by the success and low-cost
availability of high-throughput genotyping techniques and the fast
pace of machine learning research [1]. As a result, data are becom-
ing an asset whose value outlives their original use-case, giving rise
to more systematic data retention and reuse [2]. A successful
example is the reuse of data by merging several medium-sized,
existing data sets for genomic best linear unbiased prediction
(GBLUP) in wheat, which doubled the prediction accuracy of hybrid
grain yield compared to the single data sets [2]. Genomic predic-
tion is suited for grain yield because in that case a large number
of small-effect genetic loci influence the trait of interest [3]. This
is also the assumption underlying GBLUP, which estimates genetic
values as random effects that are normally distributed as they are
influenced by many genetic loci whose effects are themselves nor-
mally distributed [4].

* Corresponding author.
E-mail address: reif@ipk-gatersleben.de (J.C. Reif).

https://doi.org/10.1016/j.cj.2024.03.005

effects of single genetic loci; instead, predictions of genetic values
often rely on relatedness between individuals [5]. Nevertheless,
identifying specific genetic loci that influence a trait is required
to answer a multitude of questions: Loci that correlate with a trait
are starting points for experimental approaches to elucidate the
biological mechanisms underlying the trait [6]. Furthermore, a trait
of interest may not follow the infinitesimal model of many small-
effect loci, but may be influenced by a few loci with large effects, in
which case the data do not fit the GBLUP assumptions well. When
individual loci of decent effect size are uncovered, they can be used
to identify candidates for pre-breeding based on genomic data,
even if the desired phenotype is masked by other traits or genetic
interactions [7]. Finally, they can be used in situations where insuf-
ficient data are available for genomic prediction, which depends on
a large training set of individuals with available genomic and phe-
notypic data [8]. To detect marker-trait associations (MTAs),
genome-wide association studies (GWAS) are performed to test
each marker in the data set to assess whether it correlates with

2214-5141/© 2024 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the phenotype of interest. A popular model used for this purpose is
the Q + K model [9] that reduces false-positives caused by subpop-
ulations because if distinct sub-populations with different trait
means exist, differences in the subpopulation’s respective genetic
backgrounds would be reported as MTAs. Therefore, effects of the
population structure are considered in the model as fixed effects
(Q), suitable for distinct categorization of genotypes, and a variance
structure (K), suitable for including relatedness matrices, e.g.,
numerator relationship matrices or estimates thereof. The success
of GWAS can be compromised by inadequate population size and/
or population structure, which can lead to spurious and off-target
reported hits due to linkage disequilibrium blocks prevailing in the
population. These problems are exacerbated if sought-for variants
are rare in the population [10].

In the past years, several medium-size data sets mostly of a few
hundred individuals have been published addressing heading date
in wheat [2,11]. Their integration enables studies on the potential
of Big Data approaches for GWAS. Combining diverse experimental
series, however, requires overcoming several hurdles in data cura-
tion: If genomic and phenotypic data for genotypes come from dif-
ferent sources, reconciling them can be challenging due to ad-hoc
data management practices in many research projects. Phenotyp-
ing and genotyping protocols can differ, requiring careful quality
control and possibly conversion of values to ensure interoperabil-
ity. Finally, population structure resulting from the combination
of multiple populations may pose challenges to the interpretation
of the results. In this study, we aim to determine whether, despite
the practical and theoretical challenges outlined above, integrating
and reevaluating those experimental series improves the detection
power of GWAS. In this process, we aim to evaluate quality-control
measures including a cross-validation using genomic prediction.
Finally, differences in the GWAS results between individual exper-
imental series and the combined data need to be connected to the
established theory.

2. Material and methods
2.1. Plant material, SNP genotyping, and field trials

Three data sets of elite winter wheat populations (further
referred to as experimental series) were used in our study
(Table S1): Two of them (H1 and H2) include multi-
environmental field trials with wheat hybrids, their parents, and
check varieties. The experimental series (L) includes multi-
environmental field trials with inbred lines. The inbred lines as
well as parents of the hybrids were genotyped using a 90K SNP
array [12] or subsets thereof. Lines from H1 were genotyped with
the full 90K array. Series H2 were genotyped using a reduced set of
15K markers. Of series L, 1699 lines were genotyped using the 90K
SNP array and the remaining 2934 lines based on the 15K array.
The fraction of missing values per experimental series ranged from
0.4% to 17.6%. After merging the genomic data, the final fraction of
missing values filled by imputation was 36.8%. The gaps were filled
by imputation (IMPUTE2, [13]). The resulting data had 18,566
high-quality SNPs. The SNP profiles of the hybrids were derived
based on the SNP profiles of their homozygous parental inbred
lines. Details on the genotyping and genomic data curation were
described in [2]. We used a slightly more stringent threshold to
define duplicate genotypes with pairwise Rogers’ distances below
0.025.

Experimental series H1 was based on 135 elite winter bread
wheat lines and their 1604 single-cross hybrid progenies. The com-
position of the hybrid population has been outlined in detail previ-
ously [2,11]. Briefly, the parental lines were selected to reflect a
diverse spectrum of genetic diversity present in Central Europe.
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The 135 lines were divided into a female pool of 120 lines and a
male pool of 15 lines, and seeds of 1604 single-cross hybrids were
produced (Table S1). The parental lines, hybrids, and 10 additional
checks were evaluated in 10 environments (6 locations in 2012 and
4 locations in 2013) in Germany for heading time. Heading time
was recorded as the number of days from 1st of January to the
day when half of the heads had emerged from flag leaves [14].
The genotypes were evaluated in a partially replicated alpha lattice
design (for details, see [11]).

Experimental series H2 was based on 224 elite winter bread
wheat lines and their 1812 single-cross hybrids [2]. Parental lines
were selected, as in experimental series set H1, to reflect a broad
spectrum of diversity present in Central Europe. Seeds for 1812
single-cross hybrids were generated based on 184 male lines and
40 female lines (Table S1). The parental lines, hybrids, and 11
checks were tested for heading time in 12 environments
(Table S2) with 6 locations in 2016 and 6 locations in 2017 in Ger-
many. Heading time was recorded as the number of days from 1st
of January to the day when half of the heads had emerged from flag
leaves [14]. The experimental design was a non-replicated alpha
lattice design.

Experimental series L was based on 4633 Central European elite
winter wheat lines of the breeding program of KWS LOCHOW
GmbH (Einbeck, Germany). The composition of the population
has been outlined in detail previously ([2], experimental series
VI). Briefly, the lines were evaluated in the routine breeding trials
in the years 2012 to 2015 for heading time in Germany. The exper-
imental design for each trial followed an alpha design with one to
three replications per site, with the number of entries per trial
ranging from 33 to 607. On average, a single line was tested in
3.5 environments (Table S2). Heading time was recorded as the
developmental stage (BBCH, see [15]) at that time when ears of
approximately half of the genotypes were fully visible. To merge
experimental series L with H1 and H2, we transformed the data
of experimental series L to flowering time in days since January
1st. The scales exhibit a linear relationship. Therefore, we esti-
mated parameters necessary for the transformation using linear
regression based on data from overlapping genotypes of L and
H1 or H2.

2.2. Genomic data analyses

All calculations of this study were performed on a Linux
machine with 4 Intel Xeon CPU E7-4890 v2 processors (120 logical
cores), using R4.0.4 [16] and AsReml 4.1.0 [17], and required about
200 GB of RAM.

The population structure was investigated by computing the
pairwise Rogers’ distances [18] between individuals. Principal
coordinate analyses were performed based on the matrix of pair-
wise Rogers’ distances [19]. In addition, we performed complete-
linkage hierarchical clustering. For each of the experimental series
the linkage disequilibrium was calculated as the squared correla-
tion between markers [20]. Effective population size was estimated
as Ne = k/(3(r> —n°1)) [21], where n is the sample size, k = 1 for
inbred lines and 2 for hybrids, and 12 is the linkage disequilibrium
between unlinked loci.

Linkage disequilibrium decay was calculated by determining
pairwise marker distances for each chromosome and fitting the
respective linkage disequilibrium values on the distances using Hill
and Weir’s formula [22] using nonlinear regression. The regression
was performed separately for each experimental series. When
grouping marker-trait-associations into quantitative trait loci
(QTL), the distance where linkage disequilibrium r? < 0.2 were
used as thresholds.
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2.3. Phenotypic data analyses

Linear mixed models were applied for data of every environ-
ment separately assuming genotypes as fixed effects and design
effects such as trials, replicates, or incomplete blocks as random
effects. All data were checked for outliers using method 4
“Bonferroni-Holm with rescaled standardized residuals of mean
absolute deviation” as previously suggested [23]. Outliers were
removed for further analyses. Best linear unbiased estimates
(BLUESs) of genotypes in each environment and each experimental
series were obtained and served as the input for the subsequent
analyses. Moreover, for individual replicated environments
repeatability was assessed as quality measure.

The across-environment BLUEs within H1, H2, and L but also
across experimental series (A) were obtained from the respective
set of per-environment BLUEs y;;, as:

)

where d; and g; are the effect of the it experimental series and the
j" genotype BLUEs, both fixed effects, and e, and &ij are the effect of
the k™ environment and residual effects, respectively, both random
effects. The effect of the experimental series d was omitted for the
analyses within H1, H2, and L. The broad-sense heritability was cal-
culated assuming genotypes as random effects in the above out-
lined model as:

H* = g%/ 24 %
s £ n
e

where 6§ is the genotypic variance and ¢? is the variance of the

residuals and n. is the average number of environments a genotype
is measured in.

Yiik :d,-+gj+ek+£,-jk

@)

2.4. Genomic prediction for quality control

The phenotype-genotype match was assessed by genome-wide
predictions combined with cross validations. As genome-wide pre-
diction model, we used Reproducing Kernel Hilbert Spaces Regres-
sion (RKHS) that was implemented in the BGLR R package [24]
with two kernels, one for the additive effects, where the covariance
between individuals is defined using the VanRaden matrix [25],
and one for the dominance effects, where the covariance is defined
using the matrix described by Alvarez-Castro et al. [26].

To estimate the prediction ability within the experimental ser-
ies, we applied a classical fivefold cross-validation strategy. More-
over, because in factorial mating designs the relatedness between
training and test set strongly influences the prediction ability, we
followed previous suggestions [11] and selected training sets con-
sisting of 80% of female and male lines. The hybrids were used to
form test sets with three successively decreasing degrees of relat-
edness to the training set. Test set T2, which was most closely
related to the training set, contained only hybrids descended from
the parents in the training set, whereas the less related test set T1
contained hybrids sharing a parent with the hybrids in the training
set, and the least related test set TO contained only hybrids with no
parents in common with the training set. We also assessed the pre-
diction ability across experimental series H1, H2, and L using one
of these series as training population to predict heading date of
genotypes evaluated in another series. The prediction ability was
calculated as the correlation of the predicted phenotypes to the
measured phenotypes of the test set.

2.5. Genome-wide association mapping

Association mapping was performed for each of the three indi-
vidual experimental series, the joint data set A, and for subsets of A
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containing inbred lines only (“Al”) or hybrids only (“Ah”). We
applied a filtering of minor allele count of at least 30 genotypes
and used the following linear mixed model [27]:

y=Xh+Sa+Sd+g+e 3)

Using the phenotypic data y € R, the model contains as fixed
effects the additive (a € R”) and dominance (d € RP) effects of the
SNPs, the overall intercept of hybrids and non-hybrids h € R? and
as random effects the genetic effects g and the residuals .4°(0, I,,).
X € R™? is a design matrix, assigning the status of an inbred or a
hybrid to each individual. S, € [-1;0;1]™? holds the SNP alleles
(coding: homozygous allele 1; heterozygous; homozygous allele
2) for each individual. S4 = 1 — |S,|, where |-| denotes the element-
wise absolute values of the matrix. SNPs of hybrid genotypes were
not measured directly by an SNP array, instead the mean of their
parents’ SNP codes were used. To correct for population structure,
the genetic effects were included in two fashions, depending on
whether a genotype is a hybrid or an inbred line. The genetic
effects of inbred lines were modelled using their Rogers’ distance;
those of hybrids were modelled using the Rogers’ distance of their
parents. Thus, formally, g can be defined as follows: For a total pop-
ulation of n, inbreds and n — n, hybrids that are derived from ny
female and n,, male parents,

=2, +Zif + Znm (4)

The random vectors 7 € R", f € RY and m € R"™ are mutually
independent and have a multivariate normal distribution
x N(0,2(1 —Ky)o?),(x =Lf,m), while K,, K;, and K, are the
Rogers’ distance matrices of inbreds, female and male parents,
respectively. Z, € {0;1}™™ is the design matrix for inbreds,
Z; € {0;1}™" and Z, € {0;1}™"™ are the design matrices for
female and male parents of hybrids, respectively. To save compu-
tation time, GWAS was performed using the P3D approach, which
estimates the genomic variance once and does not re-estimate it
for every marker [28]. Subsequently, this simplification was
removed for all resulting P values smaller than 0.01, using
AsReml-R to fit the mixed linear models (3) and (4). The p value
of a marker-trait association (MTA) was obtained by performing
a Wald test [29]. The significance level was determined using the
Benjamini-Hochberg procedure [30] to control the false discovery
rate (FDR) at 0.05 individually for each data set and effect type (ad-
ditive or dominance).

To group physically near markers into quantitative trait loci
(QTL), we employed single-linkage clustering based on the physical
distance of the markers. Within a series, the linkage disequilibrium
decay distance of that dataset (H1: 1.4 cM, H2: 1.41 cM, L: 1.07 cM,
Fig. S1) was used as cutoff for clustering. Between series, the aver-
age linkage disequilibrium decay distance of the two series was
used. For grouping with markers found in the joint data set A, we
used the average linkage disequilibrium decay distance of all three
experimental series.

We assessed the predictive value of the significant MTAs by cal-
culating their phenotypic variance explained and their prediction
ability in the three experimental series and the joint data set A.
The phenotypic variance explained was derived as the “Wherry-
1" [31] adjusted coefficient of determination

? =1- (1 - RZ) (n—1)/(n—p—1), given coefficient of determi-

nation R?, sample size n and number of predictors p from an anal-
ysis of variance (ANOVA) within each experimental series. We
chose as explanatory variables at first all markers that were
deemed significant in the GWAS using the same experimental ser-
ies. For comparison, we added the markers that were deemed as
significant using the joint data set A to the set of explanatory vari-
ables. For H1, H2, and A the hybrid/inbred status of the genotype
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was used as an additional predictor in the ANOVA but it was
excluded for the calculation of the adjusted coefficient of determi-
nation so that different heading date means of the hybrid and
inbred line groups do not inflate the measure. As adding the signif-
icant markers of data set A increases the number of explanatory
variables, we separately created negative controls where we added
a sample of random markers to the markers found significant in
the individual data sets. The sample size was equal to the number
of significant markers in A so that the number of explanatory vari-
ables in the negative control was equal to the number of explana-
tory variables of the experimental series plus A case. The sampling
was repeated 50 times to generate a variance estimate. The predic-
tion ability was calculated by first estimating within each experi-
mental series (H1, H2, L) and the joint dataset A the effect sizes
of the markers found significant in that series using a linear model
with the markers as predictors. Given these marker effect esti-
mates, we predicted heading dates of other experimental series
using respective genomic data. Prediction ability was defined as
the correlation of true versus predicted values.

We also tested for presence of digenic epistasis in the joint data
set A. The screen included epistatic interaction effects between all
markers that were found to be significant in any data set (a; and d;,
additive and dominance effects, respectively) and all other mark-
ers, referred to as background markers (a, and d,). We fitted a
mixed linear model in which the main effects of markers and their
interaction effects were modelled as fixed effects. The design
matrices Sq,,Sq,,Sq,,S4, for the main effects a;,dy,a,,d, are
denoted as in (3), while for the interaction effects
aaq, adyy, adyy, ddy,, the design matrices are the Hadamard product
“o” between the design matrices relevant to the main effects. To
correct for population structure, a random genotypic effect g was
included, defined in the same way as in the GWAS model (4).
The effects h and ¢ were also defined like in (3).

¥y =Xh+S, a1 +Sq,d1 + Sa,22 + Sa,da+
+ (55,5 ) aa + (53,5, )adia +
+ (5,50, )adz1 + (53,5, )d + g + €.

(&)

Because of the large number of effects to be estimated, as for
single-SNP effects, the P3D GWAS approach was used for the esti-
mation. The significance level that controls the FDR at 0.05 was
chosen.

2.6. Simulation study

Computer simulations were performed to assess the QTL detec-
tion rate using data from experimental series L. Three simulated
traits, QTL_minor, QTL_medium, and QTL_large, were defined to
be affected each by 5 markers so that each marker explains 2%
(QTL_minor), 5% (QTL_medium), or 10% (QTL_large) of the genetic
variance. The simulated phenotypic values were computed using
following model:

y=u+Xp+Vy+e (6)

The simulated phenotypic values are composed of a mean value
wof 95 (corresponding to the mean observed for experimental ser-
ies L), a vector of effects of the 5 QTL j, a vector of effects of 18,523
background markers y and a residual effect vector e. X and V refers
to the respective design matrices. The simulation was run 20 times,
and for each run, five random markers with minor allele frequen-
cies greater than 0.05 were designated as QTL in the simulated
data. The effects of the background marker were independently
drawn as y ~ ./7(0, 0.0016). The effects of the QTL  were deter-
mined using iterative optimization to achieve the specified
explained genetic variance for each QTL. Residual effects were
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drawn independently as e ~ .A"'(O, ga§>, where o7 is the simulated

genetic variance, with the goal of mimicking a trait with the aver-
age heritability of 0.69 that has been observed for experimental
series L. We examined two scenarios: First, we sampled from the
simulated populations 100, 200, 300, 400, 500, 1000, 2000, and
all 3404 individuals and performed P3D GWAS. The average rate
of simulated QTL that could be recovered at a false discovery rate
of 0.05 was counted for each population size and simulated trait.
Second, the population size was set at 300 individuals, but con-
trasting subpopulations (low N, and high N, ) were sampled aiming
to minimize or maximize the effective population size (N.). We
performed GWAS in these 100 subpopulations for both traits,
QTL_minor, QTL_medium and QTL_large, and recorded the average
rate of QTL detected for each subgroup.

3. Results

3.1. Genetic diversity of Series L surpasses H1 and H2, which share
some ancestry

We investigated the population structure the experimental ser-
ies H1 (1604 F; and their 135 parents) and H2 (1812 F; and their
244 parents), and L (4633 lines). We performed a principal coordi-
nate analysis of the inbred lines of the experimental series.
(Fig. 1A). With respect to the first three principal coordinates, it
can be seen that the parents of the hybrids have a lower genetic
diversity than the lines of the experimental series L (Fig. 1A). This
limited diversity was particularly pronounced in the parent lines
that were used as males in the hybrids. The limited diversity
resulted in a mean linkage disequilibrium between adjacent mark-
ers within a 10 cM windows that was 10%-16% higher in the exper-
imental series H1 and H2 than in the experimental series L
(Table S3; Figs. S2, S3). In addition, linkage disequilibrium between
markers on different chromosomes was 2-3 times higher in exper-
imental series H1 and H2 than in the L. In fact, hardly any marker
in experimental series L showed a linkage disequilibrium above
0.1, whereas this was the case for about 1% of the marker pairs
in the hybrid series (Figs. S4-S9). Consequently, the effective pop-
ulation size N,, which is a function of the linkage disequilibrium
between unlinked loci, was lower for H1 and H2 than for L
(Table S4).

The distribution of the eigenvalues of the principal coordinate
analyses within experimental series using inbred lines and/or
hybrids, which reflect the proportion of molecular variance
explained by the principal coordinates, revealed clear differences
in the degree of complexity of the population structure (Fig. 1B):
For experimental series H1 and H2, 99% of the genetic variance
can be explained by half as many eigenvalues as for L. Thus, the
population structure of H1 and H2 is much less complex than that
of L.

Inspecting in detail the relationship between the male parents
of the two hybrid experimental series in a cluster analysis
(Fig. 1C), it can be seen that there was a total of 4 overlapping lines
that were used as male parental lines in both H1 and H2. Further-
more, 2 clusters with a number of up to 9 genetically similar male
parental lines from H1 or H2 can be recognized. This relatedness
has to be considered when interpreting the results of genome-
wide predictions across experimental series.

3.2. Quality assessment demonstrates high quality of underlying data

For each of the three experimental series, various quantitative
genetic parameters were estimated to assess the quality of the
phenotypic information for heading date as well as the match with
the genomic data. At the lowest level of aggregation, repeatabilities
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Fig. 1. Population structure and diversity. (A) Principal coordinate analysis (PCoA) across the three experimental series based on pairwise Rogers’ distances. The parent lines
of experimental series H1 and H2 are highlighted separately in color for male and female parents. Inbred lines from experimental series L are shown in gray. Principal
coordinates (PC) are identified on the axis labels along with their explained molecular variances. (B) Cumulative genetic variance explained by the eigenvalues of the Rogers’
distance matrices. The experimental series are denoted by the colors, the suffix “_I” denotes the inbred lines of the respective series. The vertical lines indicate the number of
eigenvalues that make up for 99% of the total variance. (C) Cluster analysis of the parent and check genotypes of experimental series H1 and H2. Male parents used in H1, H2,
or both are colored. Female parents and checks are colored in gray. The dendextend R package [52] was used to generate this figure.

provide an indication of phenotypic data quality. Estimated
repeatability within individual environments averaged 87%
(Fig. 2A). Only 5 of the total 35 replicated environments displayed
repeatability estimates between 58% and 80%. In the other 30 envi-
ronments, the values were above 0.8, which impressively demon-
strates the high quality of the phenotypic data.

In a second step, the importance of genotypic variance for head-
ing date was evaluated in relation to the total phenotypic variance,
i.e., the heritability. Within each experimental series, heritability
always exceeded 90% (Fig. 2A), suggesting precise estimates of
the genotypic values for heading date. Nevertheless, due to the
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few overlapping genotypes between the three experimental series
(Fig. S10), special attention was paid to the quality assessment of
the estimated values for heading date. Interestingly, the overlap-
ping genotypes showed a wide distribution with respect to head-
ing date within all three experimental series (Fig. 2B). The
correlations of the overlapping genotypes between pairs of exper-
imental series were very high, with Pearson moment correlation
coefficients of r = 0.86 (P < 0.05) between H1 and H2, r = 0.95
(P < 0.05) between H1 and L, and r = 0.98 (P < 0.05) between H2
and L. Consequently, it is not surprising that the heritability in
the joint data set A was also very high at 89% (Fig. 2A). This clearly
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Fig. 2. Phenotypic data quality. (A) Repeatability (gray) and heritability estimates (black), corresponding to per-environment and across-environment analyses, respectively,
for experimental series H1, H2, and L as well as for the joint data set. (B) Heading dates of genotypes overlapping across experimental series compared to those of the joint
data set. The histograms show the distribution of heading date of the experimental series H1, H2, and L. The values of the overlapping genotypes are shown as dots below the

histograms.
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suggests that the non-orthogonal design of the experimental series
did not result in a systematic bias in the estimation of genotypic
effects.

To further elucidate the role of interaction effects between
genotypes and experimental series, we examined genome-wide
prediction abilities within and between different experimental ser-
ies. Within the experimental series H1 and H2, the relatedness
between training and test population played an important role:
With increasing relatedness, the prediction ability increased from
an average of 0.4 for the TO scenario to 0.8 for the T2 scenario
(Fig. 3A). The high prediction ability of on average 0.74 observed
for the T1 scenarios, in which hybrids of the training and test pop-
ulations contained overlapping females (T1_F), can be explained by
the low diversity in the male pool and the resulting high related-
ness between training and test populations for the T1_F scenario.
In comparison, the prediction ability within experimental series L
was 0.6 (Fig. 3B). The prediction ability between experimental ser-
ies H1 and H2 averaged 0.5, which is within the range of values
observed in the TO scenario in the chess-board like cross-
validations within experimental series H1 and H2. Using experi-
mental series L as the training population and H1 or H2 as the test
population, we also observed prediction abilities of on average 0.5.
Thus, the body of results clearly suggests that the lack of orthogo-
nality resulting from the pooling of experimental series H1, H2,
and L, does not cause a strong systematic bias in the estimation
of genotypic effects. The low prediction ability, with means of
0.25, observed when H1 or H2 were used as the training population
and L as the test population can be explained by the small number
of parental lines used to generate the hybrids.

3.3. Genome-wide association mapping revealed large discrepancies
between marker-trait associations between experimental series

The location and number of MTAs varied greatly between
experimental series H1 (1604 F; and their 135 parents), H2
(1812 F; and their 244 parents), and L (4633 lines) and overlapped
only slightly (Figs. 4, S12). A similar trend could be seen consider-
ing correlations between P values of different experimental series.
The —logoP values of additive effect MTAs of the three experimen-
tal series showed correlations below 0.1 (Fig. S11A). The overlaps
when markers that are closer to each other than the linkage decay
threshold were grouped into QTL are shown in Table 1, Fig. 4, and
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Fig. S12: In experimental series H1 and H2, 64 and 79 QTL were
found, respectively, but only 8 of them occurred in both experi-
mental series. In experimental series L, which included only inbred
lines, a total of 9 QTL were found, 3 of which were unique to that
series. The overlap of QTL between the two experimental series H1
or H2 and experimental series L was small, with only 1 QTL occur-
ring in both H1 and L, and 2 in both H2 and L. Of the QTL found in
H1 or H2, only a small fraction was also found in the combined
analysis across the three experimental series (Table 1): 4 of the
64 QTL in H1 and 10 of the 79 QTL in H2 were found in the joint
experimental series A. Of the experimental series L, 6 of 9 QTL were
detected in the joint data set. Conversely, of the 26 QTL found in
the combined experimental series, 16 were also detected in indi-
vidual experimental series, and 10 were found exclusively in the
combined analysis.

To investigate the influence of the combination of hybrids and
inbred lines on the GWAS result, we performed two additional
GWAS runs with inbred lines only (abbreviated “Al”) and hybrids
only (“Ah”), of the joint data set A and correlated the resulting
P values to those obtained from the data set A (Fig. S11B). We
observed a strong correlation (0.72) between the results of data
set Al and A for additive effects and similarly a strong correlation
(0.85) between the results of data set Ah and A for dominance
effects. The GWAS using data set Al resulted in one hit outside of
QTL that were also found by data set A whereas multiple QTL were
found using A only but not Al (Fig. S13). Using the hybrid-only
dataset Ah no additive MTAs were found. A few dominance MTAs
were detected using Ah that were not found using A, mainly on
chromosome 7B but also on 1B, 2D, and 3A. Conversely, there were
no dominance MTAs that were found only by A and not Ah.

Because inconsistencies between MTAs among different exper-
imental series may be caused by epistasis, we estimated interac-
tion effects between markers that were found to be significant in
one experimental series and all other loci as genetic background
(Fig. S14). The quantile-quantile plot shows no deviation from
the diagonal line, indicating that the resulting P values are what
is expected by chance. No P values are found to be significant at
an FDR of 5%.

In a further step, we examined the predictive value of MTAs
within experimental series by calculating the phenotypic variance
explained by the significant markers detected within the series
(Fig. 5A). We contrasted this scenario with one in which we added
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Fig. 3. Genomic prediction abilities. (A) Boxplot of genomic prediction abilities of the hybrid performance within experimental series H1 and H2. The relationship between
the training and test population is shown on the vertical axis: T2: Both male and female parents of the test set are included in the training set; T1_F: Female parents only are
related to the hybrids in the training set, male lines are unrelated; T1_M: Only male parents are related; TO: Lines in the training set are unrelated to the hybrids in the test
set. 100 rounds of cross-validation with 80% of the hybrids were performed. (B) Genome-wide prediction abilities between (diagonal values) and among experimental series

H1, H2, and L (off-diagonal values).
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Table 1
QTL per experimental series and QTL shared between experimental series (“Exp. Srs.”).

Exp. Srs. H1 H2 L A (only) Exp. Srs.

n

H1 64 8 1 4 53 H1+H2+L 0
H2 79 2 10 62 H2+L+A 2
L 9 6 3 H1+L+A 1
A 26 10 H1+H2+A 1
H1+H2+L+A 0

The left part of the table shows how many QTL are shared between two experimental series. On the diagonal the number of QTL found in a single series can be seen. The
column “(only)” shows how many QTL are found exclusively in the respective experimental series. Note that the off-diagonal values for a series do not add up to the diagonal
value because QTL that are found in more than two series are shown multiple times. The right part of the table shows how many QTL that are shared by three or all four
groups (“n”).
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Fig. 4. Chromosomal regions with significant marker-trait associations for heading date in experimental series H1, H2, and L as well as the total (A) data set. The wheat
chromosomes are arranged next to each other and denoted above the plot. For each chromosome, significant marker-trait associations found in the four data sets are shown
next to each other as colored marks, where the color distinguishes additive (add) from dominance (dom) effects. The gray horizontal bars indicate quantitative trait locus
(QTL) regions. Estimated locations of some well-known heading date-related genes (Table S5) are indicated with black letters: a = PPD-A1; b,c = PPD-B1; d = PPD-D1;
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Fig. 5. Explained variance and prediction ability of the significant markers. (A) Phenotypic variance explained by QTL (R?) with and without markers found significant
exclusively in the joint data set A. Blue indicates the explained variance using markers with significant marker-trait-associations as found using only data from the respective
experimental series (Exp. srs.). Yellow indicates the explained variance when considering in addition the markers found significant using the joint data set A. Gray is the
negative control, error bars show the standard deviation of 50 sampling runs. (B) Prediction ability of heading time using effect estimates of significant markers. The training
set (vertical axis) provides the marker estimates and the test data set (horizontal axis) genotypes are predicted. All significant markers of a data set are used for prediction.
The vertical axis shows the numbers of non-collinear markers.

to the MTAs within experimental series those discovered in the meaningful margin for series H1, H2 and L (Fig. 5A). The significant
joint data set A. While the adjusted explained variance increased MTAs of the joint data set A could exceed a negative control (equal
by this, it did not exceed the negative control (dataset-specific number of random markers). Next, we estimated the prediction
MTAs plus random markers instead of MTAs of data set A) by a ability of heading date between experimental series in the context
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of marker-assisted selection (Fig. 5B). On average, the largest
experimental series L showed almost twice the prediction ability
compared to H1 and H2. The prediction ability of the joint data
set A increased this further by a factor of 1.5.

3.4. Computer simulations revealed dependency between effective
population size and QTL detection rate

Based on the genomic data of experimental series L (4633 lines),
a simulation study was conducted to investigate the interplay
between population size, QTL effect size, and QTL detection rate
(Fig. 6A). The detection rate plateaued at a population size of
approximately 2000 lines for QTL explaining 5% (QTL_medium)
or 10% (QTL_large) of the phenotypic variation. Interestingly, the
plateau was observed for QTL_medium at around 75% detection
rate which was substantially lower than for the QTL_large, which
approached 100%. In contrast, the detection rate of QTL explaining
2% of the phenotypic variation (QTL_minor) did not reach a plateau
even when approaching a population size of 3404, the size of the
largest individual data set of the study. This clearly highlights the
benefits of combining medium-sized data into Big Data to detect
small-effect QTL.

In a further step, we fixed the sample size to 300 lines and
examined contrasting subpopulations with low (low N,) and large
effective population size (high N.). The low N, group included 50
subpopulations with effective population sizes ranging from 28.5
to 31.2 and a mean of 29.7. The high N, group comprised 50 sub-
populations with effective population sizes ranging from 58.8 to
61.2 and a mean of 59.3 (Fig. 6B). Interestingly, we observed a sig-
nificant difference in the distribution of QTL detection rates
between the two subpopulations (Fig. 6C): The detection rate
was significantly larger in the subpopulations with high compared
to low effective population size. The difference was more pro-
nounced for QTL_large compared to QTL_minor. The QTL detection
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rates for QTL_minor were close to 0 for both subpopulations as the
population size was not sufficient to detect QTL of that small scale
(Fig. 6A). Sampling two subpopulations that were larger but still
having substantially different N, proved infeasible with the avail-
able data.

4. Discussion

The potential of Big Data to boost the accuracy of genome-wide
predictions was recently documented in wheat [2]: Integrating
medium-sized data into Big Data doubled the accuracy to predict
grain yield of hybrid wheat. The study also showed that prediction
accuracy particularly benefits from increasing sample sizes when
diverse germplasm with a large effective population size N, is
involved. Published theoretical (e.g., [32,33]) and simulation stud-
ies (e.g., [34]) showed that a higher rate of QTL detection can also
be expected in genome-wide association mapping when the sam-
ple size is increased. In addition to this, several other factors affect
the QTL detection rate, such as population and family structure and
their relationship with the phenotypic diversity, minor allele fre-
quency, the extent of linkage disequilibrium, the precision of phe-
notyping, and the heritability of individual QTL [32-34]. Our small-
scale simulation study builds on genomic data observed in the
experimental series L and makes the simplifying assumption that
the causal SNPs are included. Interestingly, we found that the
increase in QTL detection rate scaled with the ratio N/N. of the
number of samples N to the effective population size N, (Fig. 6A),
which is the opposite trend than what is observed in genome-
wide predictions [2]. An important conclusion is that under a fixed
number of samples, maximizing diversity in the mapping popula-
tion increases QTL detection rates. Maximum diversity is for exam-
ple strived for when assembling core collections [35,36]. Moreover,
the simulation results showed that the QTL detection rate for loci
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Fig. 6. Power study of genome-wide association mapping using three simulated traits and subpopulations of experimental series L with differing characteristics: (A)
Detection rate of the QTL of three simulated traits by genome-wide association mapping (FDR = 5%). Each of the three traits (“QTL_minor”, “QTL_medium”, “QTL_large”) is
influenced by ten QTL where each QTL makes up for, depending on the trait, 2%, 5%, or 10% of the total phenotypic variance. The detection power is shown for different
population sizes. (B) Effective population sizes (N, ) of 100 populations with 300 genotypes each that were sampled from the genotypes of experimental series L with the aim
of achieving 50 population samples with high N. and 50 populations with low N.. (C) Detection rates in genome-wide association mapping (FDR = 5%) using populations with

low (“Low”) or high (“High") effective population size (N, see Fig. 6B).
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explaining 2% (QTL_minor) of the phenotypic variation is less than
50% (Fig. 6A). Thus, in order to map small effect QTL, the integra-
tion of medium-sized data into Big Data is a promising strategy.

4.1. Potential pitfalls when integrating medium-sized data into Big
Data

A major challenge in integrating data from different sources is
establishing interoperability. The experimental series used in our
study have been genotyped with different subsets of markers so
that imputation was required to fill in marker information. A pre-
vious study showed that this kind of imputation is possible with
high accuracy with a reference population of 300 genotypes [37].
As we have more than 1800 genotypes available as reference set
for imputation, we expect a higher imputation accuracy. Another
potential challenge for interoperability arises if experimental ser-
ies use different genotyping technologies. For instance, when inte-
grating data generated on different SNP array platforms,
integration can become more challenging, but is in principle possi-
ble, as shown in a recent study [38]. Interoperability can also be
established when combining different sequence-based genotyping
approaches such as genotyping-by-sequencing and DArTseq [39].
An increasing complexity is expected when data are mapped
against different versions of the reference genome or even when
varying reference sequences from pangenome approaches are
used. Establishing interoperability is even possible between SNP
arrays and sequence data [39]. Nevertheless, this requires detailed
meta-information about the underlying design of the SNP array. In
summary, establishing interoperability of genomic data from dis-
parate sources is possible and sometimes challenging, but should
not hinder Big Data approaches to deciphering genetic architecture
of important traits in crops.

Regarding phenotypic data, two requirements must be met to
establish interoperability between different sources: First, pheno-
typing protocols must be comparable, and second, overlapping
genotypes are needed to link the different experimental series.
The phenotyping protocols for heading date varied in our study:
Experimental series H1 and H2 used an alternative phenotyping
protocol than experimental series L. With up to 22 overlapping
genotypes, the relationship between the different phenotyping
protocols could be tested (Fig. S15). Fortunately, the relationship
was linear. The regression explained a large part of the variance
between the two pairs of comparisons H1 versus L and H2 versus
L, i.e., 91% and 95%, respectively. Thus, in our study, it was possible
to establish interoperability of the data from the different experi-
mental series without major limitations. Of course, this can be
much more challenging depending on the trait being studied. Here,
it is not only important to have good documentation of the meta-
data, e.g., according to the MIAPPE standards [40], but also to use
overlapping genotypes. This requires intensive discussion within
the crop communities to agree on representative standard geno-
types to be used in different studies. We consider the definition
of standard genotypes, which could be changing over years, to be
very fruitful for meta genome-wide association mapping studies.
To reduce complexity, agreeing on standard genotypes in similar
mega-environments would already be a great success.

Another challenge in integrating data generated in different
experimental series is to assess the role of interaction effects
between genotypes and experimental series. For example, in a pre-
vious study [2], although no systematic bias was observed for grain
yield, the moderate correlation between grain yield data of over-
lapping genotypes of each experimental series was a clear indica-
tion of interaction effects between genotypes and experimental
series. In contrast, in our study, the correlation between heading
dates of overlapping genotypes between experimental series was
very high with Pearson moment correlation coefficients above
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0.86 (Fig. S15). Therefore, analyses based on the combined heading
date data should not be affected by interaction effects between
genotypes and experimental series.

When only a very few genotypes link the experimental series or
when the overlapping genotypes cover only a narrow range of phe-
notypic values, potential bias and interaction effects between
genotypes and experimental series can only be investigated to a
limited extent using the approach presented above. Therefore,
we tested the potential of genome-wide predictions as a tool to
assess interaction effects between genotypes and experimental
series. The hypothesis to be tested is whether cross-validated pre-
diction abilities within experimental series differ greatly from
those between experimental series and, hence, point to substantial
interaction effects between genotypes and experimental series. As
outlined in detail in the results section, information on relatedness
between genotypes, population size, and diversity must be consid-
ered to interpret the predictions properly. In our study, the out-
comes of genome-wide predictions revealed that cross-validated
prediction abilities within experimental series could approach
those attained by across-experimental series genomic prediction,
given that the training set had a big enough sample size and diver-
sity (Fig. 3B, training set L). Thus, using genome-wide predictions is
a further tool to inspect the potential bias and interaction effects
between genotypes and experimental series but requires a very
detailed analysis. In summary, our study profited from docu-
mented phenotyping protocols that facilitated interoperability,
high (genomic) repeatabilities and heritabilities that were
achieved by intensive data curation, and common genotypes
between series that allowed to correct for series main effects.

4.2. Association mapping within the experimental series

The overlap of MTAs that we found in the original H1, H2 and L
experimental series was low (Fig. 4), which is surprising at first
glance because all lines originate from a similar genetic pool
(Fig. 1A). One explanation is that heading date is a complex quan-
titative trait when dealing with germplasm adapted to the Central
European target environment, and small effect earliness per se
genes are responsible for the phenotypic variation [41] but major
effect photoperiod [42-44] and vernalization response genes
[44-50] are rather fixed. Concordant to this model, we see almost
no association to known central photoperiod genes (Table S5 and
Supplementary Methods). Our simulation study highlights the
moderate QTL detection rate when they individually explain less
than 5% of the phenotypic variation. Thus, a complex genetic archi-
tecture of heading date could be the reason for the low overlap of
MTAs across experimental series.

One of the most striking features of the genome-wide associa-
tion mapping performed within the experimental series is that
the number of MTAs was higher for the experimental series H1
and H2 than for L and the joint data set A (Fig. 4). These differences
can be explained by a substantially lower Ni/N. ratio for experi-
mental series H1 and H2 compared with L and A (Table S4) and
the relationship between this ratio and the average QTL detection
rate (Fig. 6C). Moreover, the use of factorial mating designs leads to
a higher linkage disequilibrium between markers (Table S3) and
causative alleles in H1 and H2. Also, these series have shown a
much simpler population structure, which reduces the complexity
of resolving collinearity by population structure between other
markers and causative alleles (Fig. 1B) and can thus increase the
QTL detection rate.

Interestingly, the predictive ability of significant markers of L
was higher than that of the significant markers of H1 and H2,
despite significantly more MTAs were found for the latter two ser-
ies (Fig. 5B). A likely explanation is that the larger number of lines
in L compared to H1 and H2 allows for more precise estimates of
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marker effects and, hence, higher prediction accuracies favoring
Big Data approaches.

4.3. Association mapping in the integrated data set

Opposed to our expectation, using the larger joint data set A
lead to less MTAs being discovered than in the individual series
H1 and H2. One possible hypothesis is that this behavior is due
to genotypes being included that have potentially different genetic
backgrounds as some of the experimental series consist predomi-
nantly of hybrids while one has inbred lines only. However, we
did not see indications that would support this worry. Omitting
the hybrids from the joint dataset (Al) lead to only one additional
significant MTA being found while several others were lost. Using
hybrids alone for GWAS did yield several MTAs that were unseen
using A. However, using hybrids alone for GWAS might diminish
the accuracy of the dominance effect estimation, if only few geno-
types with the two homozygous states of the locus are in the pop-
ulation. In that case, dominance effects might be overfitted to
account for what could be explained by additive effects. We there-
fore do not have high confidence in those additional MTAs without
further study.

Another explanation for the decrease in the number of signifi-
cant MTAs when integrating multiple experimental series could
be based on higher extent of intrachromosomal linkage disequilib-
rium and a high persistence of haplotype phases within H1 or H2,
as discussed previously. Although it can be beneficial to identify
more QTL from H1 and H2, care must be taken when transitioning
predictions from within to across populations. QTL that are based
on extensive haplotype blocks that combine multiple causative
alleles are detrimental to predictions across populations where
that haplotype block is not preserved. This can lead to incorrect
decisions when prioritizing genes for cloning as their individual
effects will be different than that of the whole haplotype block.
This could be the reason why the significant MTAs derived from
the common data set A do not explain additional phenotypic vari-
ance beyond the series-specific MTAs (Fig. 5A), but perform much
better than the dataset-specific MTAs in cross-dataset prediction
despite their smaller number (Fig. 5B).

Comparing the joint data set A to the series L, a third factor
influencing the number of detected MTAs can be illustrated: More
MTAs were detected in A than in L that also had a higher prediction
ability. Compared to series L, the N, of A is higher, which goes
along with a lower degree of linkage disequilibrium, but the data
set A also has double the number of individuals than L. Considering
that in the simulation study both a higher N,, given a constant
sample size, and a higher sample size on its own were beneficial
for GWAS power, the joint data set A might strike a good balance
between sufficient linkage disequilibrium to link causative loci to
markers and diverse, independent population sampling to achieve
higher predictive ability beyond data set borders. Additionally, as
shown in the simulation study, the use of Big Data is beneficial
to identify small-size QTL and the results of genome-wide associa-
tion mapping studies based on Big Data therefore provide a
promising entry point for marker-assisted selection and dissecting
the genetic architecture of heading date in wheat.

4.4. Outlook

In our study, we integrated data from research projects with
data from breeding programs at the raw data level and were thus
able to increase the power of GWAS. For this purpose, we had all
the necessary information for the genomic and phenotypic data
and could successfully use this high-quality data for association
mapping. The bulk of data is collected in Central Europe as part
of private wheat breeding programs. In addition, there is also very
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deep data from variety trials as part of the official approval process.
The data of private breeding programs or official variety testing
have a sensitivity that can severely limit sharing of all the neces-
sary information (for example, details on the design of SNP arrays),
thus, hampering integrated analyses. As an alternative, methods in
the field of human genetics have been developed for this purpose.
Besides simple approaches to integrate data sets on the level of
summary statistics, there are advanced methods like sPLINK,
where privacy-aware GWAS are possible without having to share
critical information [51]. These approaches are promising to enable
Big Data approaches in plant breeding also for analyses across dif-
ferent competing breeding programs. Developing the necessary
data ecosystem with clear incentive schemes for data sharing is a
necessary prerequisite and deserves further efforts.
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Abstract:

Big Data, combined with artificial intelligence (AI) techniques, holds the potential to
significantly enhance the accuracy of genome-wide predictions. Motivated by the suc-
cess reported for wheat hybrids, we extended the scope to inbred lines by integrating
phenotypic and genotypic data from four commercial wheat breeding programs. Acting
as an academic data trustee, we merged these data with historical experimental series
from previous public-private partnerships. The integrated data spanned twelve years,
168 environments, and provided a genomic prediction training set of up to ~9,500 gen-
otypes for grain yield, plant height, and heading date. Despite the heterogenous phe-
notypic and genotypic data, we were able to obtain high-quality data by implementing
rigorous data curation, including SNP imputation. We utilized the data to compare ge-
nomic best linear unbiased predictions with convolutional neural network-based ge-
nomic prediction. Our analysis revealed that we could flexibly combine experimental
series for genomic prediction, with prediction ability steadily improving as the training
set sizes increased, peaking at around 4,000 genotypes. As training set sizes were fur-
ther increased, the gains in prediction ability decreased, approaching a plateau well
below the theoretical limit defined by the square root of the heritability. Potential ave-
nues, such as designed training sets or novel non-linear prediction approaches, could
overcome this plateau and help to more fully exploit the high-value big data generated

by breaking down data silos across companies.
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Summary

Big data, combined with artificial intelligence (Al) techniques, holds the potential to significantly
enhance the accuracy of genome-wide predictions. Motivated by the success reported for wheat
hybrids, we extended the scope to inbred lines by integrating phenotypic and genotypic data
from four commercial wheat breeding programs. Acting as an academic data trustee, we
merged these data with historical experimental series from previous public—private partnerships.
The integrated data spanned 12 years, 168 environments, and provided a genomic prediction
training set of up to ~9500 genotypes for grain yield, plant height and heading date. Despite the
heterogeneous phenotypic and genotypic data, we were able to obtain high-quality data by
implementing rigorous data curation, including SNP imputation. We utilized the data to compare
genomic best linear unbiased predictions with convolutional neural network-based genomic
prediction. Our analysis revealed that we could flexibly combine experimental series for genomic
prediction, with prediction ability steadily improving as the training set sizes increased, peaking
at around 4000 genotypes. As training set sizes were further increased, the gains in prediction
ability decreased, approaching a plateau well below the theoretical limit defined by the square
root of the heritability. Potential avenues, such as designed training sets or novel non-linear
prediction approaches, could overcome this plateau and help to more fully exploit the high-value
big data generated by breaking down data silos across companies.

Keywords: wheat, genomic
prediction, data integration, big data,
imputation.

Introduction

In the last decade, genome-wide prediction has revolutionized
plant breeding by providing an estimate of the genotypic value of
a new candidate variety from its genomic profile and phenotype
observations of related genotypes (Meuwissen et al., 2001). This
allows some of the expensive field trials to be omitted, as early
breeding trial stages with low observed heritability can be
replaced using genomic prediction (Riedelsheimer and Melchin-
ger, 2013). Thereby, the time required to select superior
genotypes can be shortened (Beyene et al., 2021), even for
complex traits controlled by many genes.

Given the large number of genes and their interactions that
influence most agronomic traits, feasible population sizes in
breeding programs do not allow us to infer the influence of each
individual locus and locus interactions. Modern statistical
techniques have been developed to address the shortcomings
of traditional linear models in capturing complex gene

interactions and genotype relationships, effectively reducing the
influence of large amounts of noisy data (Chafai et al., 2023).
The most practical and widely used methods are parametric or
semi-parametric models (Montesinos-Lopez et al., 2022). These
models generally introduce a priori assumptions about the genetic
effects, either by regularization of parameter estimates (de los
Campos et al., 2013) or by selecting informative prior distribu-
tions in a Bayesian framework (Gianola, 2013). Originally, the
parameters to be estimated were effects of genetic loci, as in
Ridge-Regression Best Linear Unbiased Prediction (rrBLUP, Meu-
wissen et al., 2001), but genetic effects of individuals can instead
be modelled directly by including the expected correlation of their
breeding values in the model. When pedigrees are unknown,
these relationships can be inferred from genomic data, giving rise
to Genomic BLUP (GBLUP, VanRaden, 2008). The resulting
genomic kinship matrix considers both the additive-genetic
relationship, that is, the pedigree of individuals, and shared
linkage groups, which link the tested Single Nucleotide
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Polymorphism (SNP) loci to causative loci (Habier et al., 2013). As
a consequence, a more diverse population may be a more difficult
target for genomic prediction, as more and smaller linkage
groups have to be accounted for (Daetwyler et al., 2013).

In recent years, deep learning approaches for genomic
predictions have gained attention (Ma et al, 2018
Montesinos-Lopez et al., 2021). In contrast to conventional
methods mentioned above, these do not use quantitative genetic
models but are based on flexible arrangements of many
non-linear transformations of the input data (neurons) to detect
(1) patterns in the input data, and (2) their relationship to the
phenotype. The parameters of those transformations are
optimized by supervised learning on a test set. This is expected
to provide advantages where crop traits are strongly influenced
by complex interaction effects that are not covered by the theory
behind one of the more classical models (Pérez-Enciso and
Zingaretti, 2019). Besides this, neural networks training has linear
time complexity with respect to sample size. This avoids the
computing time explosion that researchers face whenever kinship
matrices have to be inverted, like in the case of GBLUP (Pook
et al., 2020). While in the beginning, multilayer perceptrons have
been wused for genomic prediction, recently convolutional
networks have demonstrated their ability to capture linkage
patterns (Pook et al., 2020). However, the full potential of deep
learning has yet to be fully realized by providing much larger
training sets than are available to single institutions. As such, a
comprehensive evaluation of the advantages and limitations of
deep learning techniques when applied to large data sets is
urgently needed, particularly in the domain of plant breeding.

The prediction ability of genomic prediction, defined as the
correlation between true and predicted phenotype, is significantly
influenced by several characteristics of the training and test set,
such as (1) the size of the population, (2) the diversity and
relatedness between the genotypes, (3) the degree of linkage
disequilibrium (LD) and (4) the quality of the phenotypic and
genotypic data (Schopp et al., 2016). Increasing the training set is
a straightforward and promising strategy to achieve high levels of
prediction ability for diverse populations in hybrid wheat breeding
practice (Zhao et al., 2021). Several steps in this direction have
already been taken. For example, in a study including more than
8000 wheat landraces, prediction abilities of 0.68 for thousand
kernel weight within the population could be achieved (Crossa
et al., 2016). In another study, a massive data set of more than
10000 wheat lines was phenotyped in an unreplicated
single-year design, and prediction abilities close to one for grain
yield could be attained in a cross-validation (Norman et al., 2018).
These results are very encouraging but require either a large
investment of resources beyond the reach of most institutes and
companies or reduced phenotyping intensities that are below the
standards of commercial wheat breeding for variety development
in terms of numbers of environments and replications.

Multiple institutional and/or across-company collaborations for
mutual benefit are an attractive concept to increase the
populations for training genome-wide prediction models but
are hampered by heterogeneous and non-orthogonal (unbal-
anced) data. Commercial breeding trials are unbalanced in that
they screen a large number of genotypes and evaluate their
phenotypes in only a small number of environments. Selected
genotypes from the first breeding stages are then evaluated in
more environments in the next season. Therefore, as the reliability
of the estimate of a candidate’s performance rises, the number of
available candidates drops. Combining several of such trials

would produce a data set that includes a large number of
early-stage genotypes, but also late-stage data for a larger
number of candidates than what is feasible for each individual
actor. In an earlier study, on which we build here, combining
multiple historic wheat trials doubled the prediction ability for
grain yield for hybrids (Zhao et al., 2021). Combining different
data sets is therefore promising. In this study, we investigated the
impact on genomic prediction of combining such historical data
with routine breeding data from four companies. Our objectives
were (1) to investigate whether it is possible to perform an
integrated analysis of disparate phenotypic and genotypic data
sets and how to perform quality control of such a task, (2) to
examine what prediction abilities can be expected when using
genomic prediction beyond the confines of individual experimen-
tal series and how well multiple series can be combined to form
larger training sets for genomic prediction as well as to explore
the potential of deep learning models for enhancing this process
and (3) to test approaches to improve the training set by drawing
subsets from the full data, distilling the most reliable data and
potentially increasing prediction ability.

Results

Absence of genetically divergent subpopulations
revealed by accurately imputed genotypic data

Given the block-wise gaps in the SNP data resulting from the
integration of the heterogeneous SNP array platforms (Figures 1
and 2a), we conducted a validation of the imputation accuracy.
This was estimated by masking and imputing some SNP data in a
blocked and a random approach and then calculating the ratio of
correctly imputed SNP calls to the masked SNP calls. In the
blocked approach, almost all markers were imputed with
accuracies above 0.75 (95th percentile) and most (75th percen-
tile) even above 0.93 (Figure 2b). Imputation using the random
masking approach was possible with even higher accuracy. The
95% and 75%-percentiles of the imputation accuracy were 0.89
and 0.99, respectively.

The imputed SNP data covered most of the wheat genome
(Figure 3a). Markers satisfying the liberal missing value criterion
(at most 80% missing and imputed values) were found at
densities of about 1-100 markers per 10 Mbp (Figure 3a). The
smaller marker set resulting from the strict missing value criterion,
that is, with at most 30% missing and imputed values, covered
the genome at 1-30 markers per Mbp (Figure 3b). Coverage near
the chromosome centres was markedly weaker than near the
ends, and especially for the strict missing value criterion, large
gaps were present near the chromosome centres.

The principal coordinate analysis based on the Rogers’ distances
revealed added diversity by combining the series of the study
(Figure 4). Parts of some series were found in regions of the diversity
space that were only sparsely covered by other series. For example,
parts of series 6 and 7 were outside of the diversity space of series
1-3 but were quite similar to each other. Besides this tendency
towards complementarity, none of the series formed a clearly
distinct cluster separated from all other series.

Phenotypic data are of high quality and consistent with
genotypic data

We have integrated and curated phenotypic data generated in
105 000 grain yield plots as part of large public—private partner-
ships or wheat breeding programs in Central Europe. As a
measure of the quality of the phenotypic data, broad-sense
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Figure 1 Schematic overview of the data-processing steps.

heritability was estimated for three traits for each experimental
series (Figure 5a). Heritabilities ranging from 0.86 to almost 0.98
were obtained for heading date, from 0.81 to 0.99 for plant
height, and from 0.74 to 0.93 for grain yield. Thus, the quality of
the phenotypic data was excellent for all traits.

Within-series cross-validation showed moderate to high
prediction abilities. Medians across the 20 replications ranged
from 0.50 to 0.98, except for series 5 for heading date (0.26)
and series 3 for grain yield (0.36, Figure 5b). The latter can be
explained by the fact that series 3 consists of only 142 inbred
lines (Table 2). For series 5-8, which include data from
commercial wheat breeding programs, the prediction abilities
for heading date and plant height were lower than for the
historical series. This can be explained by the unbalanced nature
of these series. Due to economic efficiency constraints, these
traits were evaluated in fewer environments than grain yield; in
some cases, the average number of environments per genotype
was even <2 (Table 1). Under these circumstances, an impact on
the prediction ability is to be expected. Overall, the SNP data
provided good predictions of the phenotypic data, indicating a
successful data integration.

Convolutional neural networks become competitive
with larger training set sizes

Training set sizes greatly impacted performance achieved with
convolutional neural networks (CNN). For small training set sizes
of 10% (for yield: around 950 genotypes, Table 2), the CNN
showed lower prediction abilities by a margin of about 0.15
compared to GBLUP (difference of the medians, Figure 5c).
Interestingly, as the training set sizes increased to 80% (about
7.600 genotypes for yield), this margin narrowed and CNN

performed similarly to GBLUP, even exceeding it at a few
individual iterations (Figure 5c). The rate at which this gap closed
varied with the trait and for yield, where the largest training sets
were available, the gap closed earlier than others.

We also benchmarked the performance of the CNN against
GBLUP, with the data siloed into the individual experimental
series. The training set sizes for these predictions were 90% of
the genotype counts of the individual experimental series, which
were 128 to 3332 genotypes in the example of yield (Table 2).
High GBLUP prediction abilities for series were associated with a
strong CNN performance, leaving only a small difference between
CNN and GBLUP prediction abilities (Figure 5b): For example, for
yield, the series 2 and 4 lead to the most accurate GBLUP
predictions (0.85 and 0.69) and also the smallest gap (0.06 and
0.13) between GBLUP and CNN predictions. The picture was
reversed for series 3, with both the worst median GBLUP
prediction ability (0.36) and the largest gap to the median CNN
prediction ability (0.46). The only outlier to this pattern is the
experimental series 2 for heading date and plant height, where a
high GBLUP prediction ability coincides with a large gap to the
CNN performance.

We did not investigate the performance of the CNN in the
remainder of the study but used GBLUP because of the high
computational burden and the comparable or superior perfor-
mance of GBLUP.

Experimental series can be flexibly combined in genomic
prediction training sets, approaching a plateau in their
prediction ability

To test the ability of predicting unknown genotypes given the
collection of series in this study, we chose different combinations
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of the series as training sets and assigned all other series as test
sets. We then derived the genomic prediction ability by
comparing the predictions with the across-series BLUEs of the
test sets, calculating the prediction abilities separately for each
series in the test set. Cumulating different combinations and
numbers of series resulted in training sets of different sizes, by
which the prediction abilities were ordered (Figure 6a). As a
general trend, we observed an increase in prediction ability with
an increasing training set size, but this increase approached a
plateau beyond training set sizes of about 4000 individuals. For
many test sets, the prediction abilities approached those obtained
by using the series’ own data in the cross-validated genomic
prediction (Figure 6a, dashed lines) but did not come close to the
upper limit defined by the square root of the heritabilities (solid
lines).

The above scenarios are based on imputed marker data and
the liberal SNP filtering criterion (<80% of pre-imputation
missing values). Consistent with the high imputation accuracy
of the missing SNP data, we also observed a decrease in
prediction ability in genome-wide prediction on average across
the three traits when the same liberal filtering criterion was used
but no missing values were imputed, or when the strict SNP

filtering criterion (<30% of pre-imputation missing values) was
used (Figure 6b). Thus, liberal filtering combined with imputation
also appears to be the most successful strategy for the block-wise
missing marker data underlying the used data set.

We then investigated whether the number of series included in
the training set had a significant effect on prediction ability, given
an unchanged training set size. We generated training sets of 800
genotypes coming from either single or multiple experimental
series and compared the resulting prediction abilities: On average,
using a single series resulted in a lower prediction ability of 0.02
for heading date and below 0.01 for plant height and grain yield
(Figure S1). The standard deviations between replications were
much larger, ranging from 0.07 to 0.08. The differences in
standard deviation were below +0.01 for all traits. Thus, for a
medium-sized training set, the number of experimental series
included in the training set had no meaningful effect on the
prediction ability.

Most experimental series are compatible with each
other for prediction

Observing the increase in genomic prediction ability with
increasing training set size, we investigated whether the inclusion
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of individual series in the training set benefits the prediction
ability for all or some test sets. As a starting point for this analysis,
we derived the average increase of prediction ability with training
set size using an empirical model (Equation 5, Figure 6a). We
considered the residuals, which can be interpreted as the
performance of the genomic prediction runs, corrected for
training set size. We noticed that these deviations were small
compared to the effect of the training set size, with a standard
deviation of 0.09 for grain yield and heading date, and 0.05 for
plant height. This can also be seen visually, with the genomic
prediction abilities gathering closely around a common tendency
for most test sets (Figure 6a).

We then decomposed the deviations of the genomic prediction
runs into contributions of individual series in their training sets (6)
to find out whether certain experimental series caused prediction
runs to systematically over- or underperform. The influence of the
choice of series corrected for training set size was small compared
to the importance of increasing the training set size (Figure S2b).
The total variance attributable to individual series or their
combinations was higher for heading date (0.009) than for plant
height and grain yield (0.003). Judging from the relative sizes of
the variance components, the interaction effects of specific pairs
of experimental series (one being part of the training set, the
other being the test set) were the dominating factor. Main effects
of individual series being in the training set, representing
experimental series that improved or decreased prediction ability
for most test sets, played only a minor role (Figure S2b). Only a
few individual training set—test set combinations were unusually

beneficial or detrimental for prediction ability. The series 1 and 2
showed particularly high compatibility, improving prediction
ability by 0.1-0.3 above the values expected for the training set
size for all three studied traits (Figure S2a). Apart from this, the
combinations with the strongest deviations from the expectation
showed no particular pattern (Figure S2a), for example, series
5 — 7 (training set — test set), with a prediction ability of —0.09
compared to the expectation, or series 7 — 8 and vice versa for
heading date (+0.07/+0.09).

Assuring environmental diversity improves training set
performance

To test strategies that could further improve the performance of
training sets for genomic predictions, we chose training sets
encompassing defined numbers of environments or years, while
keeping the training set sizes constant. The moderate training set
sizes (300 and 600 for the first and second approach, respectively)
resulted from restrictions from the unbalanced nature of the data.
Following the first strategy, training sets backed by higher
numbers of environments tended to vyield better prediction
accuracies (Figure 7a). However, compared to a training set of
equal size sampled from the full data set without the environment
number restrictions, these selections were not or only marginally
better. For heading date and plant height, training sets backed by
at least six environments per genotype were sufficient to reach
the prediction ability of the random set. For grain vyield, the
prediction ability of the random set was reached with at least four
environments per genotype.
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Figure4 First three principal coordinates of the experimental series (Srs.), based on the Rogers’ distances between lines.

A higher number of years in the training set was associated
with a better prediction ability. For all years in the available data,
including five preceding years in the training set proved superior
to including 2 years in the training set at a constant training set
size of 600 genotypes (Figure 7b).

Discussion

Sufficient interoperability to ensure successful
integration of genotypic and phenotypic data

Previously, it has been shown that genotypic and phenotypic
data from different public-private partnership projects can be
successfully integrated, doubling the prediction ability of hybrid
performance in wheat (Zhao et al., 2021). In this study, we
extended these efforts to data from inbred lines generated in four
commercial breeding programs (series 5-8) and another published
data set (series 1, Gogna et al., 2022). The first question to address
is whether the new genotypic and phenotypic data are interoper-
able, which could be hampered either by differences of employed
methods and protocols or by biological reasons.

The genotyping platforms employed are a significant factor
influencing the interoperability of genomic data (Gogna
et al., 2022; Schulthess et al, 2022a). In this study, all
experimental series utilized SNP arrays, specifically the lllumina
90 k iSelect array (Wang et al., 2014). However, other genotyping
platforms used in wheat research may have limited or partial
overlap (Sun et al., 2020) and these platforms may be more
suitable for characterizing populations with smaller linkage
disequilibrium or distinct genetic substructures. As a result,
ensuring interoperability of genotyping data across platforms
may require additional efforts. Furthermore, the availability of
marker sequences is critical for imputation of genomic data in our
approach, although alternative methods exist that do not rely on
marker sequences, albeit with a trade-off in accuracy (He
et al., 2015). Genotyping-by-Sequencing (GBS) technologies,
which were not employed in this study, generate high-density
genotypic data and exhibit random patterns of missing values.
These gaps can be imputed with higher accuracy compared to
systematic gaps arising from the use of different marker
platforms, as demonstrated in this and previous studies (He
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Table 1 Numbers of genotypes (gt), environments, that is, location times year combinations (env), per-genotype average (avg) and total (tot), and
number of tested years (y) by the experimental series. The second column shows the calendar year ranges. For series that contain both hybrids (h.)
and inbred lines (i.) those two groups are shown on distinct rows

Heading date Plant height Grain yield
Series Years (20) gt env avg env tot y gt env avg env tot y gt env avg env tot y
1 09-10 380 8.0 8 2 380 8.0 8 380 8.0 8 2
2 (h) 16-19 3639 17.6 38 4 3639 18.3 39 5051 10.1 61 4
2 (i) 16-19 469 18.5 38 4 469 19.6 39 4 1099 9.6 61 4
3(h) 12-13 1604 11.0 11 2
3(.) 12-13 144 11.0 11 2
4 12-15 4958 39 30 4
5 20-21 781 1.3 7 1 1001 2.1 8 1 1911 4.4 26 2
6 20-21 1631 5.3 13 2 1631 5.6 15 2 1631 5.7 17 2
7 20-21 1707 4.1 9 2 1742 4.0 10 2 1742 4.4 12 2
8 20-21 3516 14 7 2 3512 1.6 7 2 3505 2.1 15 2
(all) 09-21 12096 8.1 81 8 12347 83 83 8 21891 6.2 168 12
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Table 2 Effective population sizes (Ne) and numbers of genotypes
(inbred lines only) available for prediction with both phenotypic and
SNP data available for each experimental series

Number of genotypes

Series Ne Heading date Plant height Grain yield (all)

1 34.5 371 371 371 371
2 51.6 467 467 1081 1081
3 49.1 0 0 142 142
4 58.0 0 0 3703 3703
5 61.9 214 418 641 641
6 55.0 1614 1614 1614 1614
7 29.7 1178 1213 1213 1213
8 40.7 848 848 848 848
(all) 79.4 4665 4904 9480 9480

et al., 2015; Torkamaneh and Belzile, 2015). Therefore, we are
optimistic about the integration of such data sources. When
working with diverse landrace populations, where linkage
disequilibrium is often reduced and/or genetically distinct sub-
populations are present (Schulthess et al., 2022b), dedicated
analytical approaches may be necessary to ensure the interoper-
ability of genotyping data.

Interoperability of phenotypic data also represents challenges
for data integration. There needs to be agreement on the
definition of the recorded traits. In our case, we benefited from
the fact that all data were focused on Germany, and thus the
methods used in the German official variety tests (Test of Value
for Cultivation and Use) served as a de facto standard of trait
evaluation. Similarly, for the same reason, farming regimes in our
study were similar, using intensive management practices to
assess grain yield potential. To go beyond this scope, common
method documentation standards need to be agreed, used and
improved, balancing the fine line between covering many use
cases and being understood and correctly employed by practi-
tioners (Darnala et al., 2023; Papoutsoglou et al., 2020; Selby
et al., 2019). Even then, objective phenotyping can be a
challenging task in a commercial breeding program considering
the trial network size, speed of plant development and restricted
staff size.

In order to enable interoperability between series, common
genotypes are essential to estimate environmental effects. The
experimental series of this study were mostly connected by more
than five genotypes, which is a standard also used in commercial
plant breeding. Some combinations of series fall below this
standard (Table S1), particularly for the historical series with the
traits heading date and plant height. Fortunately, the connectivity
of data sets can also be transitory, so that one experimental series
which is well connected to two other series can serve as a
common reference, relating them to each other even when they
are mutually only weakly connected. Declaring genotypes with a
Rogers’ distance below a certain threshold as equal (Zhao
et al., 2021) can further increase these numbers slightly (by on
average three individuals in our case) for pairwise comparisons.

Potentials and limitations of genome-wide prediction
across series

For predicting hybrid wheat performance, it was noticed that
across-population prediction profits from combining multiple
different experimental series into one training set (Zhao

et al., 2021): Prediction abilities of up to 0.4 were achieved.
Here, we focused on inbred lines and drastically increased the
number of available genotypes by cooperating with commercial
breeders. We confirmed also for inbred lines that
cross-population prediction profits from combining multiple
different experimental series into one training set and were
positively surprised by the flexibility with which the different
experimental series could be combined. The increases in
prediction ability were largely determined by the size of the
training set (Figure 6a), but which series were included in the
training set was less important (Figure S2b). An important factor
that contributes to this is the weak population structure in our
joint population (Figure 4). Other studies, in particular those
focusing on gene bank material like landraces, have found
populations that form more distinct clusters (Crossa et al., 2016;
Ramstein and Casler, 2019; Schulthess et al., 2022a). As the
relatedness between the genotypes in the test and the training
set drops, the prediction ability of GBLUP drops as well (Alemu
et al.,, 2023; Habier et al., 2010; Lorenz and Smith, 2015).
Therefore, when populations are found to diverge in their genetic
diversity, the power of across-population predictions will
decrease. However, Central European elite wheat breeding pools
seem to share large parts of genetic diversity. We conclude that in
such populations, combining data from multiple breeding
programs is a very promising strategy to improve genomic
prediction ability and shows a way for small to medium-size
breeding programs to achieve shared benefits through cooper-
ation. Experimental series 2 partly contains genetic resources
from the IPK gene bank, but the PCoA (Figure 4) does not show a
markedly larger genetic space covered by this series than by
the other. Reasons could be that this diversity, weighted by the
number of genotypes, is less prominent compared to the
distances between the individual data sets and thus is not shown
by the PCoA. Another reason could be the marker filtering before
the Roger’s distance was computed, which might have removed
rare alleles that contributed to that population’s diversity.
However, within- and across-prediction abilities are not lower
for this series (Figures 5b and 6a), indicating that there is no
strong effect of the removed markers on the measured traits.
Traits like disease resistances, which can show higher dependence
on individual loci, would require a more careful approach in this
respect.

Opportunities to further boost the prediction abilities

Expanding the training set beyond 4000 lines yielded diminishing
returns in prediction ability, with performance approaching a
plateau. However, it is worth noting that this plateau was
reached well below the heritability of the test set, which
represents the theoretical maximum (Figure 6a). The reasons for
this are not clear yet and warrant further studies. First, when
moving from within-series to across-series prediction, one loses
the additional prediction ability which GBLUP confers by
capturing co-segregation when training and test genotypes are
only a few generations apart (Habier et al., 2013). Another
possible cause could be that the increased diversity of the joint
data weakens the linkage between causative loci and the loci in
the SNP data (Meuwissen, 2009). In a previous study, in order to
quantify this effect in an applied setting, subsets of different
nominal and effective population sizes were drawn from
experimental series 4 and cross-validated prediction accuracies,
that is, prediction abilities divided by the square root of
heritability, were obtained (Zhao et al., 2021). Extrapolating this
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Figure 6 Across-experimental-series prediction abilities. (a) Prediction abilities using the large and imputed marker set (see ‘Methods’) and different
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relationship to the nominal and effective population sizes that
were seen in our study for the joint population (Table 2), an
expected prediction accuracy of about 0.75 would result. This
would account for a large part of the missing prediction
accuracies of the training sets in this study (Figure S3). According
to this theory, increasing the ratio of the nominal to the effective
population size should improve prediction ability. This could be
done by selecting subsets for the full training data that are highly
related to the test population. However, prior attempts to do this
have rarely succeeded in surpassing the prediction ability of
GBLUP using the full training data and mostly focused on
achieving comparable power with a smaller training set size

(Fernandez-Gonzéalez et al., 2024; Isidro y. Sanchez and
Akdemir, 2021; Lopez-Cruz and de los Campos, 2021).

A further avenue might be to test alternative genomic
prediction methods; for example, BayesB has been reported to
perform slightly better than GBLUP in estimating marker effects
based on LD to causative loci (Habier et al., 2010). In recent times,
attempts to use non-linear machine learning methods, such as
Random Forest, Support Vector Machine or Neural Networks to
predict genotype performance, have reached parity with GBLUP
and sometimes even achieve better results (Abdollahi-Arpanahi
et al., 2020; Montesinos-Lépez et al., 2024; Sandhu et al., 2021).
To connect to these findings, we have employed a Convolutional
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Neural Network (CNN) for genomic prediction and compared the
results to the GBLUP. We found that for our task, the CNN was
able to predict phenotypes equally well as the GBLUP, where
GBLUP provides high prediction abilities. Subpar GBLUP predic-
tion accuracies were associated with CNN performances that
were not only weaker in absolute terms but also showed a wider
performance gap to GBLUP. It seems that some factors that are
detrimental for GBLUP affect CNN disproportionately stronger.
The most likely factor is the training set size. For the across-series
predictions with small training sets (Figure 5¢) and within-series
predictions of small experimental series (Figure 5b), poor CNN
performance is to be expected. In order to fit a CNN, a high
number of parameters and hyper-parameters have to be
estimated. On the contrary, for GBLUP, only a mean and a
variance parameter have to be estimated, and predictions can
then be derived by means of quantitative genetic theory.
Therefore, small training sets are expected to be insufficient for
an adequate training of a CNN, and consequently, GBLUP
remains the preferred model for training set sizes smaller than
about 4.000 genotypes. An interesting exception to this trend is
experimental series 1, where both the CNN and the GBLUP attain
high prediction accuracies despite the small training set size.
The observed comparable prediction performances of GBLUP
and CNNs is consistent with examples from the literature
(Montesinos-Lopez et al., 2024, Sandhu et al., 2021). However,
those studies used only a fraction of the genotypes that were
available for this study. Therefore, it stands to reason that there
might be more factors than sample size that inhibit an even better
prediction ability and eventual superiority of neural
network-based predictions over linear methods like GBLUP.
Interestingly, there could be a counterpart for neural networks
to the above-mentioned hypothesis that the diminishing role of
additive-genetic relationships in multi-origin data sets might

hamper GBLUP predictions. The neural networks could strongly
base its predictions on additive-genetic relationship, neglecting
the effects and interactions of individual alleles. This phenomenon
of ‘shortcut learning’ was observed before for genomic prediction
with neural networks (Ubbens et al., 2021). Neural networks have
many properties that hold great promise for genomic prediction,
like a linear time complexity with increasing sample size, their
flexibility to incorporate many different data types like environ-
mental covariates (Washburn et al., 2021), and their flexibility in
cases where the additive genetic model falls short of describing
the genetic architecture (Pérez-Enciso and Zingaretti, 2019). The
more interoperable training data can be made available, possibly
by cooperation across institutional borders, the more of this
potential can be realized. In this study, the IPK has served as an
‘academic data trustee’. By providing a neutral and confidential
data deposit, commercial stakeholders could contribute data. The
results suggest that such a model could facilitate innovation in
breeding.

Besides the method, one could consider a more detailed
genomic picture by increasing the marker density. In theory, the
number of required markers for high genomic prediction abilities
rises with the effective population size of the data set because the
size of linkage blocks decreases (Meuwissen, 2009). However,
the benefits of increasing marker density have already been found
to diminish beyond about 5000 markers (Zhao et al., 2021), using
experimental series 2-4 of this study. As the effective population
size of this study remains at the same level, it seems unlikely that
using more than the 13000 markers used in this study would
hold much potential for improvement. A limiting factor when
comparing the effective population sizes of this study and that of
Zhao et al. (2021) is that as hybrids are not used for genomic
prediction in this study, the number of used markers differs and
imputed genomic data plays a larger role in our study. Another

© 2025 The Author(s). Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 1-16

45

ASUADIT suowwo)) aAanear)) a[qearidde ayy Aq pausaA0S are sa[NIR Y 1SN JO SA[NI 10§ AIRIqIT AuIUQ) AJ[IA\ UO (SUOTIPUOD-PUER-SULId)/ W0 K3[1m’ Areiqiauruo//:sdny) suonipuo)) pue sud ], ay) 228 [Sz707/H0/17] uo Areiqiy autuQ L[1A ‘S600L19d/1 1 11°01/10p/wod Kajim’Areiqiaurjuoy/:sdny woiy papeoumod ‘0 ‘zS9LL9b 1



PEER-REVIEWED SCIENTIFIC ARTICLES

approach to better model the correlation of genetic values for
GBLUP would be to create trait-specific correlation matrices.
Employing the genomic relationship matrix to this end is a
simplification which assumes that effective loci are very large in
number and pervade the whole genome evenly. Instead, genetic
correlation matrices could be computed, for example, from
results of Genome-Wide Association Studies (GWAS). To define
the genetic correlation, only markers would be considered that
are associated with the trait of interest, or by defining synthetic
markers that are associated with specific haploblocks (Jiang
et al., 2018; Weber et al., 2023).

Besides considering whether the training set data have
sufficient power to capture the genetic architecture of the trait,
one must also consider whether the genotypic values themselves
are measured accurately enough. In particular, genotype-times-
environment interactions could limit the prediction ability in this
study. Where many environments are sampled, the proportion of
genotype-times-environment interactions in the phenotypic
variance of grain yield has been found to be large, sometimes
even larger than the additive genetic effect (De Los Campos
et al., 2020; Jarquin et al., 2014, Lado et al., 2016). When fewer
environments are sampled, the impact of genotype-times-
environment interactions is estimated to be less important
(Montesinos-Lopez et al., 2024). Continuing this trend, where
only one environment is sampled, and thus the experimental
design confounds genotype-times-environment interactions with
the genotypic main effect, GBLUP can achieve grain vyield
prediction accuracies of up to one (Norman et al., 2018).
Interestingly, a larger number of sampled environments does
not necessarily require a larger number of plots to be tested. The
overlap between environments could also be improved by
performing preliminary grain yield tests using more environments
of a testing network, sparsely distributing candidates and thus
keeping the overall number of plots constant. This has been
shown to be advantageous in previous studies for hybrid series 2
and 3 (Lell et al., 2021; Zhao et al., 2021), as well as for biparental
populations of barley and maize (Endelman et al., 2014). In the
unbalanced breeding trials of this study, the largest share of the
data is made up of early-stage candidate varieties which are
tested in less than five environments, and almost no series test
genotypes in more than 10 environments per year (Table 1).
Moreover, the number of years per tested genotype is small.
Therefore, one can expect that the genotype-times-environment
interactions are partially confounded with the genetic main
effects in the across-environment BLUEs. This assumption is
supported by our observation that given an equal number of
training genotypes, increasing the number of years in the training
set improves the prediction results (Figure 7b). The across-series
predictions in this study use BLUEs of a single series in the test set.
Therefore, it is conceivable that the across-series genomic
prediction will yield breeding value estimates that are in fact less
affected by confounding genotype-times-environment interac-
tions than the single-series BLUEs to which they are compared.
The confounding genotype-times-environment interactions in the
test set BLUEs would therefore decrease the prediction ability. If
this effect proves to be relevant, across-series predictions would
also be of value to breeders whose data sets exceed the
aforementioned threshold of a training set size of about 4000
genotypes. Candidate varieties are tested in an extensive set of
environments during official registration procedures, which
exceeds the number of environments of the final breeding stage.
Therefore, benchmarking genomic prediction methods using the

Across-silos genome-wide predictions 11

final-stage genotypes of one’s own breeding program may give
overly optimistic results due to residuals confounding genotype-
times—environment interactions. Obtaining phenotypic and geno-
mic data from official variety tests would therefore be a gold
standard for assessing the impact of cross-series predictions on
prediction ability. This endeavour is easily hampered by legal
issues, but seems worthwhile.

Methods
Plant material and field trials

Eight different experimental series were assembled for this study.
The first four of them consist of historical data that have been
studied previously. In addition, four more were contributed by
breeding companies for this study. Within the experimental
series, the number of genotypes ranges from 380 to 5051 and
the number of environments (location — year combinations) from
8 to 61 (Table 1). The series are characterized in the following:

e Series 1: Orthogonal grain yield trials of 380 genotypes
representing a broad diversity of the European elite breeding
pool (Gogna et al., 2022).

e Series 2: Non-orthogonal grain yield trials of 1099 diverse
inbred lines including elite lines and plant genetic resources
along with 5051 hybrids (Zhao et al., 2021, Experimental series
Il to V).

e Series 3: Orthogonal grain yield trials of 135 elite parent lines,
their 1604 hybrids and 10 released varieties (Zhao et al., 2021,
Experimental Series |, and Zhao et al., 2015).

e Series 4: Non-orthogonal grain yield trials, generated in the
course of a commercial inbred line breeding program,
comprising 4958 genotypes (Zhao et al., 2021, Experimental
Series VI).

e Series 5-8: Four experimental series, provided by four breeding
companies. The series consisted of 781-3516 genotypes
tested in an average of 1.3-6.7 locations in 2 years (Table 1).
All four series were excerpts from the companies’ usual
breeding activities and were therefore non-orthogonal grain
yield trials in which lines were phenotyped and selected in up
to 3years. There are three sub-trials per series, reflecting the
breeding trial stages. The candidates were evaluated for grain
yield under intensive treatment and partially for heading date
and plant height. Connectivity between data from each series
was ensured by several common genotypes (Table S1).

Phenotypic data analysis

We applied a two-step approach to analyse the phenotypic data
as described previously (Lell et al.,, 2024) including outlier
correction following the method M5 from Bernal-Vasquez
et al. (2016). See Figure 1 for an overview. Best linear unbiased
estimator of the genotypes (BLUEs) within and across the
environments was obtained after outlier correction. The within-
environment BLUEs were generated using the following mixed
linear model:

Vi =1+ i + b + I + by + €, (1

where y is the plot-level grain yield data, p is the overall mean, g is
the genotypic effects, t, r and b are design effects for trials,
replications and blocks, ¢ are residual effects, and /, j, k and / are
indices for model effects. Depending on the experimental design,
only some or none of the effects t, r or b were estimated. When
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phenotyping was done in an unreplicated trial in an environment,
design effects were estimated and subtracted from the measure-
ments. The design effects were estimated as random effects, g
was estimated as a random effect to calculate BLUPs and estimate
the genetic variance and as a fixed effect to obtain BLUEs. All
random effects were identically and independently distributed.
The repeatability was estimated as r? =3/ (oé +o§/n>, where
rré is the estimated genotypic variance, o2 is the estimated
residual variance, and n is the average number of plots per
genotype. Environments that have a repeatability of <0.3, or that
show <0.1 correlation to all other environments on average were
discarded.

The across-environment BLUEs were obtained using the
following mixed model:

Yik=#+5i+ g+ e+ ej, (2)

where y are the within-environment genotype means, u is the
overall mean, s are the experimental series effects, g are
the genotypic effects, e are the environment (location x year)
effects, e are the residual effects, and /, j, and k are indices
for model effects. The effects s are estimated as fixed effects, e
are random effects, and g is fixed for BLUEs and random
for BLUPs. The broad-sense heritability was estimated as
H*=02/(6%+0c?/n), where n is the average number of
environments a genotype is measured in, and oé and ¢? are the
estimated genetic and residual variances, respectively. All
computations were performed using R 4.0.4 (R Core Team, 2021)
linked to OpenBLAS 0.2.20 (https:/Awww.openblas.net) and
AsReml-R 4.1.0.110 (Gilmour et al., 2015) on a Linux machine
with 4 Intel Xeon CPU E7-4890 v2 processors (120 logical cores)
and required about 500 GB of RAM.

Genotypic data analyses

All experimental series had SNP data available for varying
fractions of genotypes (Table 2). The SNP data were generated
according to each data provider's own processes and thus a
heterogeneous selection of SNP markers was available for the
different experimental series (Figure 2a). The SNP calls were
filtered individually for each genotyping batch according to the
following thresholds: Genotypes were discarded if they had more
than 30% missing values or more than 10% heterozygous calls.
Markers were discarded if they had more than 90% missing
values or more than 20% heterozygous calls. As the SNP data
were generated by different providers, we further checked and
corrected for consistency of strand designation using overlapping
genotypes before integrating data across experimental series. The
computational efficiency of this process was improved by
modelling SNP array overlaps as graphs and determining
maximum spanning trees (Markowski et al., 2021). Marker
positions were derived using BLAST (Camacho et al., 2009) and
the Chinese Spring Reference Sequence v.2.1 (Zhu et al., 2021),
removing markers whose sequences showed mismatches to the
reference sequence or mapped to more than one position. Of
the markers that showed variation for the population, a unique
physical position was found for 29970 markers and those
marker’s data were subsequently imputed. Imputation was
performed using BEAGLE 5.2 (Browning et al., 2018) without
the use of a reference panel for phasing information, with a
window size of 1000, an overlap size of 100, and 10 burn-in
iterations.

As the SNP data are heterogeneous in terms of marker density,
there are non-random gaps in the SNP data, so that large
numbers of markers are available for only a fraction of individuals.
To assess the accuracy of imputing those systematic gaps, we
chose a blocked masking approach: We divided the available
markers into a low-density set and a high-density set by the
fraction of genotypes that had data for the respective marker.
Markers for which more than 70% of genotypes had data were
grouped into a low-density set; all other markers formed the
high-density set (low-density set: 2582 markers, high-density set:
13604 markers). For a random 10% of genotypes that had data
for more than half of the high-density markers, the high-density
marker data were masked. The resulting data set was imputed
using the same BEAGLE parameters as described previously. For
each marker, the imputation accuracy was calculated as the sum
of masked SNP calls whose imputed data matched the original
calls divided by the total number of masked SNP calls. This
process was repeated 20 times. In an additional experiment, we
employed a random masking approach to mimic missing calls as
occurring, for example, in genotyping-by-sequencing approaches.
We masked 1% of all marker calls randomly throughout the
whole data set, imputed them, and calculated the imputation
accuracy per marker as described above. This process was also
repeated 20 times.

To visualize the population structure, we calculated the Rogers’
distance (Rogers, 1972) using the SNP data set before imputation
(Figure 2a). We filtered the data for a maximum missing value
rate of 80% per marker and a minimum minor allele frequency of
0.05. This retained 13720 markers of the initial data. Rogers’
distances were computed for each pair of genotypes based on
markers that were available for both. The Rogers’ distances were
then subjected to principal coordinate analysis using the R
function ‘cmdscale’.

Genomic predictions within and across experimental
series

Within each experimental series, the correspondence of pheno-
typic and genotypic data was assessed. For this, a random sample
of 90% of genotype means within each series were taken as
training set to predict the remaining 10%. This process was
repeated 20 times for each experimental series. To obtain the
genotype means within each series, model (2) was fitted on the
within-environment BLUEs without the series effect s. The
resulting genotypic effects (within-series BLUES) were then used
as measurements in a genomic BLUP (GBLUP) model:

Yi=p+gite (€)

where y were the within-series BLUES, u is the mean, ¢ are the
residual effects, and g are the genotypic effects that were
modelled to be correlated using the VanRaden (2008) genomic
relationship matrix K, so Cov(g):Kaé, where the variance oé
was estimated by the model. The SNP data used to compute K
were filtered to include only markers that have SNP calls for at
least 80% of that series’ genotypes and in addition a minor allele
frequency of at least 0.05. The prediction was performed using
the BGLR R package (Pérez and de los Campos, 2014).

We created many different training sets for genomic prediction
by choosing different combinations of experimental series as
training sets. From the large number of possible combinations,
we chose a subset which was numerically optimized for D-optimal
experimental design using Fedorov's algorithm (Wheeler, 2004),
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with 135-349 different series combinations as training sets,
depending on maximum training set size for the trait. We then
determined the prediction ability of experimental series that were
not included in the respective training sets.

To test the influence of quality-control steps during data
integration, we performed the predictions with four different
versions of the SNP data, which influenced the genomic
relationship matrix K: Markers were filtered using either a liberal
threshold of at most 80% missing values per marker or a strict
threshold of at most 30% missing values per marker. The data
resulting from the liberal threshold had 13692 markers. The
data resulting from the strict threshold had 5913 markers.
Furthermore, we used either the SNP data with or without
imputation by BEAGLE. In the unimputed case, gaps in the marker
data were filled by the respective marker means as described
above. For the VanRaden distance, which involves centring the
SNP data, this is equivalent to basing the pairwise distances only
on markers for which there is information in both involved
individuals. The resulting kinship matrices are used as covariance
matrices for a genomic BLUP using the following model:

Yi=pu+9gite, 4

where y, u, g and e were defined analogous to (3). Like for the
within-series cross-validations, the computation was performed
using the BGLR R package.

Subsequently, we focused on a more detailed analysis of the
influence of individual series on the prediction ability. We based
this on the prediction runs with the imputed SNP data with the
liberal missing value threshold. For each test seti (ie{1, ...,d},
where d =8, the number of series in this study), a model

Yip=aixp"") + 1 ©)

was fitted to approximate an average increase in prediction ability
with training set size, where y;, was the prediction ability of the
genomic prediction run of test set i that used the set of
experimental series p as training set. xj,, was the number
of genotypes in its training set, a; and B; were empirical
parameters, estimated separately for each test set, and rj, was
the deviation of the prediction run (i,p) from the empirical
average. Most of the genomic prediction runs had more than one
series as training set, which is why i is an index and p is a set of
indices.

We studied how individual experimental series being in the
training set influence the prediction ability of a particular test set
by fitting a linear mixed model on the vector r of deviations from
the empirical fit (5) for all training and test sets. In the following,
we denoted the deviation of a single genomic prediction run as
rip, indexed by the experimental series as test set / and the set p of
experimental series indices in the training set. Based on this, the
linear model was

d
Tip=H+n;+ Xjep(6) +&j) +€ip ©
j

with &, = (1 if x is true, else 0).

The model decomposes the deviations of the genomic
prediction runs into a mean u and three groups of random
effects: The main effects of the test sets () and training sets (6)
with d effects each, and the effect of each combination effects
of two experimental series as test set / and training set j. For each
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of 5, 8 and k, one variance parameter is estimated. As one run has
more than one training set, the term g, selects for each
measurement rj, the relevant parameters. The residuals are
denoted as e. The model was fitted using the BGLR R package as
Bayesian Ridge Regression (model setting ‘BRR’).

Convolutional neural network for genomic prediction

To compare with GBLUP, we used a Convolutional Neural
Network (CNN) to assess the prediction ability of both within-
series BLUEs (previous section) and across-series BLUEs. The
Python framework ‘Keras’ was used for model development.
The CNN operated on a one-dimensional sequence of marker
states, ordered by their mapping position in the genome. The two
homozygous states were coded as 0 and 2, and the heterozygous
state as 1. Both phenotypic and marker state vectors were
rescaled to a range of [0, 1].

For the training set, we selected random samples of 10%,
30%, 60% and 80% of the total data available for each trait. The
test set consisted of 100 genotypes that were not in the training
set, randomly chosen for each iteration. The process was
repeated for 20 runs for each trait and training set size. The
CNN was designed to allow a flexible network architecture for
each run, with neurons as edges in an acyclic directed graph,
organized into several layers to capture linkage and haplotype
structure, and genetic interactions, respectively.

The first set of layers focused on feature extraction, followed
by layers for pattern recognition. The specific network structure
was influenced by a variety of hyperparameters, whose values
were optimized using the Hyperband Tuner (Li et al., 2017). The
hyperparameter space for the feature extraction section included
(1) number of alternating convolution and average pooling layers
(three to five), (2) number of filters (ranging from 64 to 512 with
a step size of 64) and (3) kernel size (between three and 36 with a
step size of three) in the convolution layer. The pool size for the
pooling layer was also varied between two and 32 with a step size
of 4. The feature extraction output was flattened and relayed into
the pattern recognition section.

The hyperparameter space for the pattern recognition section
comprised (1) the number of alternating dense and dropout layers
(one to four), (2) the number of dense layer units (between 32
and 256 with a step size of 32) and (3) a dropout rate (between
0.1 and 0.5 with a step size of 0.01). Dropout was applied to
reduce overfitting by preventing the model from becoming too
reliant on specific neurons. The Rectified Linear Unit (ReLU)
function was used as the activation function for all layers except
the final prediction neuron. A single neuron with a hyperbolic
tangent (tanh) activation function performed trait prediction,
receiving input from all neurons in the final pattern recognition
layer.

For each set of hyperparameters chosen by the tuner, the
model was fitted with a batch size of 32 genotypes. The training
set was split into 90% to be used for this purpose and 10% that
were used exclusively to compare the prediction performances of
the trained models resulting from the hyperparameter choices
(validation set). The goal of the tuner was to minimize the mean
squared error between predicted and observed genotype means
in the validation set. Hyperparameter tuning stopped when the
error did not decrease by more than 0.01 over 5 or more
iterations. The resulting model was used for genomic prediction.

For comparison with GBLUP, the same across-series data as
used for the Neural Network was subjected to GBLUP following
Equation (4).
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Influence of number of experimental series,
environments and years in training set

We measured the effect of including a single versus multiple
experimental series into the training set, at a constant number of
800 genotypes in the training set and 100 genotypes in the test
set. Both sets were chosen randomly (25 replications). In the first
scenario, we choose all training genotypes from one random
experimental series only. Only the experimental series 6, 7 and 8
for heading date and plant height and series 2, 4, 6, 7 and 8 for
grain yield were large enough for this. In the second scenario, we
sampled the same number of genotypes randomly from all but
one series. The test set was sampled from the series that were not
in the training set.

We further investigated potential strategies to subset geno-
types based on data quality or number of phenotyping
environments to improve the predictions obtained from a large
integrated data set by restricting the training set to fulfil different
criteria. To test the influence on prediction ability of the number
of environments a training set is based on, we assigned all
genotypes to one of four environment groups: 1-3, 4-5, 6-9 and
10 or more environments. These were chosen based on the
available data to have groups as even in size as possible while still
including genotypes from multiple experimental series into one
environment group. The training set consisted of 300 genotypes
randomly chosen from the genotypes of an environment group.
The test set were 100 genotypes that were randomly drawn while
ensuring that genotypes from each experimental series were
included at equal shares in the test set. For each environment
group, 25 replications of the prediction were performed. For the
prediction, the GBLUP model (3) was used, and the kinship matrix
was based on the imputed SNP data using the liberal missing
value criterion (13 692 markers).

To test whether historic data were still useful for predictions,
we selected training sets that had the same number of
genotypes but differed in the number of years covered by the
training data. We chose 2-year ranges from which we sampled
600 training genotypes for each range: 1-2 years before the test
set and 1-5years before the year of the test set. Our data
covered 12 different years, so we could generate test sets for
7 years (year 6 to year 12). Analyses was only done for grain
yield because the available data for heading date and plant
height was missing for several environments. We also excluded
one test set (2020) because the preceding years did not allow for
a training set of adequate size. The test set encompassed 100
random genotypes that were measured in the respective year. As
mentioned before, we used the same set of pre-computed
across-environment BLUEs as data for the predictions, so
technically information from more than 1 year was included in
some of these BLUEs. However, the majority of genotypes in our
data were measured in 1 year only. We made sure that
genotypes that were included in the training set were not
included in the test set. The prediction was done using the
GBLUP model (3) and the kinship matrix was based on the
imputed large SNP data.
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3 General Discussion

3.1 Preparing for a Wheat Data Warehouse

This thesis lays the groundwork to incrementally collect and integrate pre-existing
wheat breeding data sets into an interconnected data source that allows to reuse those
data sets and obtain new knowledge from the combination of multiple data sets. The
disparate aims and institutions who have authored the individual data sets require uni-
fied yet flexible data structures that can provide a unified frame for a joint analysis.
Inspiration on best practices and future extensions are already available. As with sta-
tistical methods, the field of animal breeding has pioneered Big Data application in
breeding. Practices which are nowadays subsumed under this term, like automatized
data collection from routine work for decision support, have been common in dairy
farming since at least the 1950s (Newton et al., 2020), despite the used media being
punch cards instead of cloud databases at the time. Nowadays, many dairy farms are
connected by national or international Herd Testing Organizations that provide data-
backed decision aids to farmers and valuable large data sets about cow genomics and
phenotypes to researchers. Newton et al. (2020) have surveyed Big Data practices in
the Australian dairy industry and note that there is a strong integration of genomic and
phenotypic data collection and sharing in daily agricultural practice. Compared to that
track record, data integration in many plant breeding programs is a relatively young
field. One reason for this could be that in plant breeding, the variety registration pro-
cess stands like a barrier between breeding and farming activities. Information about
candidate varieties is not gathered from production agriculture but from evaluation
trials of breeding companies. Consequently, enterprises striving to facilitate data eval-
uation and data sharing in wheat breeding face a much smaller market, as they have to

target wheat breeders and not wheat farmers.
3.1.1 Integrating inconsistent data models and structures by

use of a data catalogue and automated integrity

checking

While in the Australian dairy sector 90% of participating farms use the same software
to analyse their phenotypic and genomic data (Newton et al., 2020), in wheat breeding
a diversity of in-house solutions of varying technical sophistication is adopted for trial

data. To integrate data coming from multiple plant breeding companies and academic
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research projects therefore means to struggle with a large diversity of ways how the
individual data sets are organized. This thesis is based on newly generated data (Lell et
al., 2025) which required for its curation several measures, both technical and organi-
zational, to ensure both data transfer and project coordination. Therefore, a guide was
required that could communicate the correct format data to data providers. Therefore,
the data transfer template that was developed in cooperation with the data providers
included a data catalogue, that is, descriptions for the fields that were to be filled by
data. Setting this explicit standard was beneficial for smooth and unified project com-

munication.

The data catalogue also proved valuable for the next quality control step, an automated
data constraint checking mechanism that provided feedback to data providers in short
time after the upload was completed. The fact that the data catalogue already contained
acceptable value ranges and example values proved useful in developing checks and
user messages of the checking mechanism. As the project progressed, the data cata-
logue turned out to be most useful where it intertwined documentation and software
logic, serving as a single source of truth for both humans and automated pipelines. This
highlights the benefits of striving for self-documenting data that is designed to be read-

able by humans and machines alike.

However, checks that ensured internal data consistency required developing a more
comprehensive data model of the relevant entities and their relationships (Figure 2).
An entity of the data model can be represented by a data table (so that an individual is
a row), or a single field of a table (so that an individual is a value). In addition to the
data catalogue, the data model defines the relationships between the entities, that is,
how entities have properties that reference other entities. For the relationships, a data
model defines the cardinalities, that is how many instances are part of a relationship
on either side. As an example, the data model used in this thesis specified that a trial is
conducted in exactly one environment, however, in the same environment an arbitrary
number of trials can be conducted (Figure 2). The data model was laid down in a de-
clarative programming style and encapsulated into an R package. This architecture
communicates the intent of the code and allows for future extensions, for example au-
tomated generation of an entity-relationship diagram like shown in Figure 2. Using
this model, adherence of the data to constraints was ensured. Such constraints are well
known from relational databases. As an example, a primary key constraint on a table
column enforces a unique and non-missing identifier for an instance (row) of the entity

(table). If the data model mandates a relationship to another entity, that relationship
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can be modelled by a foreign key constraint in the database. The fact that these con-
straints were checked automatically on data upload turned out to be instrumental for
error correction due to short feedback time for data uploaders. Data could be corrected

instantly as the notion of “correct data” could be tested automatically.

After the formal correctness of the data had been ensured, outlier corrections on mul-
tiple levels were employed, from the plot to the environment. This was implemented
to guard against systematic errors, be they small-scale like typos or large-scale like
wrong genotype labelling within an environment. In addition, where plot coordinates
were provided, the spatial distribution of measured values on the field was also a valu-
able check, underlining the importance of transmitting the grid coordinates of plots.

Outlier correction always carries the risk of erroneously discarding interesting
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Figure 2: Entity-relationship diagram of the data model underlying the data of the
Wheat BigData project (Lell et al., 2025). Each box represents a concept which was
represented in the data either as a table or a field. Relationships between the concepts
are shown using the crow-foot notation, indicating how many instances of a concept
are referenced by another concept (cardinality). Related concepts to be considered
for future extensions of the data model are marked with dashed lines and arrows.
Data about agricultural treatments and soil measurements were not available in

sufficient detail to be studied in this thesis.
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individuals, be it genotypes with rare genetics or environments with underrepresented
environmental conditions. This has to be weighed against the risk of including errone-

ous data.

After data upload and correction, second-degree statistics and heritability estimates
were reported back to the data uploaders. As with error correction a fast turn-around
time by an automated process was desirable, because data providers could compare
the results to their internal calculations and corrections could be discussed while
memory of scientists and technicians of the experiments was still fresh. However, this
endeavour entailed the challenge of automatically choosing an appropriate statistical
model for a given dataset to remove design effects and calculate entry means. This is
even more relevant when envisioning a future, larger and fully automated data curation
system. In this thesis, several steps in this direction were taken (Lell et al., 2025). To
specify appropriate ways of removing design effects and forming entry means, two dif-
ferent approaches are conceivable: One possibility is to ask the data providers for a
suitable statistical model for the data. As an experimental design is usually chosen with
a statistical evaluation in mind, the advantage of this approach is that it ensures that a
well-suited statistical evaluation is performed and a large variety of evaluations are
possible. On the flip side, the approach communicates the experimental design
metadata of the trial only indirectly, via the desired statistical model. Other context,
for example relating to the physical location of plots might be lost if it was not deemed
relevant for the analysis at upload time. If many data sets in a data warehouse followed
this standard, deviating from the originally desired statistical model for a reanalysis
would require a lot of dataset-specific manual work to infer or guess such missing con-
text. Therefore, another approach was taken in this thesis which stored the spatial po-
sitions and groupings in the field by design effect fields whose meaning was pre-de-
fined across all trials: The Series delineates trial parts that test disjoint sets of candi-
dates. The Replication delineates trial parts that test the same set of candidates. The
Block contains overlapping subsets of the candidates. All design effects are expected to
relate to spatial grouping of the contained plots, nested within each other in the above
order of mention. Using this data model, heterogeneity of experimental design can be

depicted by omitting certain design effects in a data set.

Enforcing such pre-defined semantics onto diverse phenotyping data can be too re-
strictive at times. This approach assumes that all relevant experimental designs esti-
mate the same kinds of design effects, an assumption which does not hold in general,

as can be shown by comparing for example an alpha-lattice and a partially replicated
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design. While the alpha-lattice design uses spatially separated replications, the par-
tially replicated design does not. Therefore, the term “Replication” can have different
meanings, depending on the experimental design. This can entail completely different
statistical treatment. To allow for such diverse experimental designs while still com-
municating the intention behind the design, the data model of a future wheat data
warehouse should include an object describing the experimental design. This will de-
termine which design effects must be specified for plots in a data upload, and provide
documentation about their meaning. Equally, it will determine how the observed phe-
notypes can be summarized. For example, for an experimental design involving hy-
brids, general and special combining abilities can be estimated instead of a per-envi-
ronment entry mean. For the historical data sets analysed in Lell et al. (2025), which
have more diverse experimental designs, the shortcomings of the data model were mit-
igated by custom analysis procedures and by integrating the data only at the within-
environment entry-mean level. In the future, a more standardized approach for such

data sets is desirable.

3.1.2 Separating different genotype identifiers by systematics

and usage

To merge breeding data from different origins, finding common genotypes is crucial.
Genomic data is one way to achieve this. For example, a threshold fraction of identical
SNPs can be defined above which two genotypes are treated as equal (Schulthess et al.,
2022b). This approach is indirect, which is dependent on sufficiently compatible ge-
nomic data to compare genotypes across data set borders. While imputation seems to
be suited to match low to high density SNP profiles (He et al., 2015; Lell et al., 2025)
and intersecting SNP with GBS data appears to be a viable option as well (Schulthess
et al., 2022a), the selection of compared genetic loci remains a factor influencing the
result. Moreover, identifying common genotypes via genomic data mandates that phe-
notypic and genomic data come from the same source and have identical genotype
identifiers. When approaching an automated data sharing regime involving early- and
late-stage trials and many sharing parties, more elaborate handling of genotype iden-

tifiers beyond a simple name or code is important.

In commercial variety breeding, a candidate will be given multiple names, which can
lead to same or related genotypes not being recognized as such in a later data analysis.
Worse, different genotypes could be mistaken for the same if they happen to get the

same name or code in different projects. This means that some genotype names must
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be valid across data sets in order to link the data sets, but many genotype names are
also dataset-specific and must not be matched across data set borders. Therefore, data
curation based on knowledge of different genotype identifiers must be performed. The
earliest names given to variety candidates are breeder’s references, codes that usually
follow a system, sometimes including pedigree information. In early breeding stages,
these are assigned anew each year, as the heterozygosity of early candidates will cause
offspring of self-fertilization to differ from the parents. Doubled haploids, F1-hybrids
and late-stage, highly homozygous candidates can retain their breeder’s reference code
due to their genetic stability. Upon application, some breeders confer an additional
code to their genotypes, an application code, in order to prevent others from conclud-
ing from the systematics of the breeder’s code to the logistics of the underlying breed-
ing program. Finally, upon application, the German Plant Variety Office assigns a nu-
meric application code and finally, if the variety accepted, it is marketed using a variety
name defined by the breeder and registered by the Plant Variety Office. German and
European variety protection laws require that variety names are distinct from each
other, however for example in the European Union, this does allow names to be reused
10 years after expiry of a variety (European Commission regulation No 637/2009 of 22
July 2009) or immediately if a variety application has been withdrawn. In addition to
these different genotype identifiers, projects might choose to assign project-specific

names to genotypes, for example to enumerate parents of hybrid trials.

If these many different kinds of identifiers are not separated and documented appro-
priately, data curation becomes very laborious and error-prone. Different naming sys-
tems require completely different approaches to match genotypes across different data
origins. For example, matching variety names to each other could be done using fuzzy
string matching, which allows for inexact matches in order to identify misspellings or
text encoding errors when non-ASCII letters are used in the name. This approach is
not viable for systematic names that involve monotonically rising numeric IDs. When
a naming scheme for F1 hybrids that involve the parent names is used, F1 hybrids from
one project could be identified as equal to an F1 hybrid from another project of the
same parents, given that the female and male role is assigned equally. However, this
cannot be done when matching 3-way hybrids from different experiments, which are

genetically different from each other despite originating from the same parents.

Given the multitude of different naming schemes, it is unlikely that a completely auto-
mated process of genotype matching is feasible. However, data structures and

metadata should communicate the used naming schemes and systematics to enable

57



GENERAL DISCUSSION

future data reuse. In the data underlying this thesis (Lell et al., 2025), the concept of a
“name class” was introduced (Figure 2), that states for each type of identifier from
which naming system it originates. For each name class, human-readable information
could be provided, which explains the creator of the name, its purpose, the domain
within it is meant to be unique, and its structure if it is composed of multiple parts or
systematically. By using internally-generated synthetic keys for genotypes during the
analysis, multiple names could be linked to the same genotype and for different data
curation steps only names of suitable classes could be used. However, this system,
while being superior to a single unqualified genotype name property, is still dependent
on the cooperation of the data providers, and must be supervised. The properties of the
name classes can provide a schema for orientation when describing genotype naming
systematics. However, objective criteria that those free-form descriptions have to fulfil

and that can be checked like data constraints are not yet attainable.

3.1.3 Comparison of the data model developed in the frame of
this thesis with other approaches highlights importance

of documented data semantics

There have been several prior attempts of to integrate breeding data. For example, Ger-
meier and Unger (2019) describe the data model underlying the structure of the crop
databases for oat and beet of the European Cooperative Programme for Plant Genetic
Resources (ECPGR). They are proponents of data models whose entities are as close as
possible to concepts known by domain experts. The data model is similar to that used
in this thesis (Lell et al., 2025), which is shown in Figure 2. Both approaches have in
their centre a description of a phenotypic observation, obtained from the field. In both
approaches, the spatial location of the plot in the experimental grid is determined by a
pair of dedicated properties of the plot. Germeier and Unger do not introduce specific
properties for other design effects like Series and Replication, in contrast to this thesis,
thereby circumventing the aforementioned complications arising from different exper-
imental designs. To model those design effects in the systematics of Germeier and Un-
ger, separate experiments at the same location could be defined, each representing one
Replication within one Series. Analysis routines would need to be informed separately
about the fact that some experiments are replications of each other, the data model
does not depict this fact. With regards to agricultural interventions like fertilization,
pathogen inoculation or pesticide application, the model of Germeier and Unger binds

those data to the plot level, allowing in theory for a different treatment regime for each
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plot. This is not the case in the model of this thesis, where interventions are expected
to apply to whole trials. This highlights that data models always carry a subjective com-
ponent and that documentation on the data structure is important to communicate
these assumptions. Finally, Germeier and Unger share with this thesis the notion that
computed summaries on observation data, like entry means, are a different entity than
the raw observations, and should be modelled by a dedicated data table with different

properties from the raw observations.

A very notable further instance of breeding data modelling is the Breeding Application
Programming Interface (BrAPI) project, which was initiated almost 10 years ago (Selby
et al., 2019). The project does not aim to form a single integrated database to harbour
all breeding data, but rather strives to establish a common interface for as many part-
ners as possible to enable their respective services to exchange data using queries that
follow a common format. Nevertheless, the project has established a data model to en-
able users to understand the structure in which queries have to be formed and the
meaning of the responses from the data sources. Owing to the diversity of the project
partners, the data model is significantly more complex than the one employed in this
thesis (Lell et al., 2025). It shows some interesting deviations, using slightly more ab-
stract terms. The project has started multiple efforts to convey the meaning of the en-
tities and their relations despite their complexity. These comprise of an entity-relation-
ship diagram, a glossary where terms related to the project are explained (Guignon and
Selby, 2023), and a declarative definition of the API calls in the OpenAPI format, which
is annotated by human-readable descriptions (Selby, 2022). The BrAPI project em-
ploys collaborative tools for development by its members, similarly to a wiki. This low-
ers the barrier to correct errors and propose improvements to the API and the docu-
mentation and highlights that data integration across different parties is not only a
technical question to be solved, but also a social question about means of collaboration

and participation.

The BrAPI data model unifies multiple concepts that are modelled differently by Ger-
meier and Unger (2019) and Lell et al. (2025). For example, the concepts of a field, a
block, or a plot are collated into the concept of an Observation Unit. The reasoning
behind this is that different projects use different observation units and nest them into
each other differently. In addition, it allows to link measurements not only to a plot,
but to any observation unit. For example, heritability estimates could refer to a field or
an environment rather than individual plots. Besides observational units, the BrAPI

data model considers observations and statistical computations as fundamentally
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similar and models both of them with the single entity “Observation”. Distinguishing
between raw and computed data is done within the same framework as distinguishing
observations of different traits. Via an entity called “ObservationVariable” trait and
method entities are linked, that describe what is observed and how it is done. The en-
tities regarding methods and traits can also be linked to ontologies like the Crop On-
tology (Matteis et al., 2013), which strives to unify meanings of plant trialling terms
and their relationships to each other across the whole scientific field. A similar ap-
proach is seen with Unger and Germeier (2019), however in Lell et al. (2025) such a

detailed model of traits and methods is still missing.

3.2 Population structure and its influence on genomic

prediction accuracy
Genomic prediction has revolutionized plant breeding by its broader applicability com-
pared to pedigree-based predictions. Its key innovation is replacing the numerator re-
lationship matrix, which is derived from the genotype pedigree, with a matrix of
marker states (Meuwissen et al., 2001) or the realized or genomic relationship matrix,
which is derived therefrom (VanRaden, 2008). This allows predictions to be based on
aricher source of data that also encodes the relatedness of the founding generation and
the influence of Mendelian sampling. This depicts relatedness in a more fine-grained
way than the model of additive genetic relationship in the numerator relationship ma-
trix. In Genomic Prediction, estimated effects of individual linkage blocks shared by
related genotypes were considered the basis for prediction, rather than the expected
global fraction of shared DNA that is the additive genetic relationship (Meuwissen et
al., 2001). Interestingly though, later it was recognized that the genotype pedigree and
additive genetic relationship re-emerge as a predictive factor in genomic prediction
“through the back door” as the number of common markers approximates the number
of unlinked causative alleles shared by chance between a pair of individuals. Therefore,
the marker states carry predictive value even if no linkage blocks would exist in a pop-
ulation (Habier et al., 2007). The power of genomic prediction therefore rests on both
the ability to indirectly estimate the effect of individual linkage blocks on the pheno-
type as well as to find related genotypes with known phenotype in the population to

use as predictors.

Consequently, the expected prediction accuracy is influenced by the degree of relation-
ship in the population as well as by the ratio of the number of observed genotypes to
the effective number of independent chromosome segments (linkage blocks) in the
population (Hayes et al., 2009b). This means that the number of genotypes that have
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to be observed grows with the population diversity. Moreover, the study of Hayes et
al. (2009b) lists heritability as another decisive factor for an accurate genomic predic-
tion. For complex traits, achieving high heritabilities in crop plants therefore requires
sampling many environments. This multiplies the work amount of observing a suffi-
cient number of genotypes and potentially goes beyond the reach of individual breed-
ing programs. The central task of this thesis therefore was to establish the potential
and limits of merging data that was obtained through the efforts of multiple individual
breeding programs. The most extensive data set was available in Lell et al. (2025),
where eight different sources of data were joined into a common training set. As a main
result, this merger proved feasible. Increasing the training set size improved the pre-
diction ability on average, while no single experimental series proved particularly good
or bad as training set, beyond its size. Deviations from this relationship were caused
by individual combinations of series that proved particularly useful or detrimental if
one was in the training set and the other was the test set, for example experimental
series 1 and 2. At the same time, the prediction ability plateaus off well below the the-
oretical limit of the heritability. Therefore, it might be worthwhile to search for factors
that pairs of experimental series share in order to identify potentials for further im-

proving prediction abilities.

One aspect to explore further is the amount of relationship between the individual data
sets. Given that several populations in the study share the same time range, it seems
likely that part of the crossing partners should be shared among them and some crosses
should even have been done in multiple breeding programs. Assuming no close rela-
tionship between the individual breeding programs, the observed prediction accuracies
are close to the expectation as modelled by Zhao, et al. (2021, see also Figure 3). For
families of genotypes where close relatives exist in other breeding programs it should
be able to achieve better prediction accuracies, leveraging the pedigree information en-
coded in the SNP data in addition to linkage-based prediction (De Roos et al., 2009;
Habier et al., 2007). Attempting to reconstruct the genealogy from the linkage blocks
observed in the data could be an interesting further study avenue (Fan et al., 2022) as
it could allow to directly identify offspring of crosses that were performed in multiple

experimental series.
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3.3 Benchmarking Big Data-based genomic prediction
approaches could be skewed by confounded genotype-

times-environment interactions
Grain yield is a complex trait that is a combination of multiple components. These can
be significantly influenced by the environment, particularly by extreme conditions dur-
ing short but critical time periods during grain development (Sabir et al., 2023). When
gathering multiple data sets for secondary use like it has been done in this work, inev-
itably unbalanced data sets result, as different studies evaluate different genotypes in
different environments. This problem is exacerbated by the internally unbalanced
character of many of the studied breeding data sets, which evaluate many candidates
in few environments in early stages and fewer candidates in more environments in later
stages. Therefore, especially in the early breeding stages, it has to be expected that gen-
otype-times-environment effects are confounded with the estimated main genotypic
effects. Including early-stage genotypes can therefore have conflicting influence on
prediction results: While the large number of diverse genotypes can improve training
set size and thus the prediction accuracy, the confounded genotype-times-environment
interactions can limit the accuracy of the estimate genetic values and thus lower the
trait heritability and prediction accuracy. The sensitivity of the merged data set to this
effect could be estimated in a future study by generating artificial phenotypic data, with

a known variance due to genotype-times-environment interactions, and testing the
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Figure 3: Relationship between prediction accuracy (background/contours),
population size (N) and effective population size (Ne). The data comes from Zhao, et
al. (2021, Fig. 4C). The white marker shows the nominal and effective population sizes
of the combined data from Lell, et al. (2025). As in Zhao, et al. (2021) the prediction
ability is shown, it is divided by the square root of the heritability (0.70, Zhao et al.,

2021, Table S1) to obtain the prediction accuracu of this figure.
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accuracy of the recovered genotypic values. The real genomic data can be used to pro-

vide a realistic population structure to the simulation.

The impact of genotype-times-environment interactions on genomic prediction could
be decreased by sparsely distributing the evaluation of early candidates onto more en-
vironments without increasing the total number of genotypes. This approach was
tested within this thesis for wheat hybrid breeding (Lell et al., 2021) and showed that
sparse environmental sampling can be performed in a way so that the resulting esti-
mates were at least on par with those derived from the classical balanced early-stage
trial with very few environments. When adding the assumption that the true breeding
values of the candidates were approximated better by GBLUP than by classical BLUE,
the environmental sampling approach was even superior. It is interesting to note that
the a priori decision whether breeding values estimated should be estimated with
(GBLUP) or without (BLUE) considering relatedness influenced which environmental
sampling strategy was found superior. This inconsistency might hint to the fact that
even as the candidates were evaluated in two years and eleven environments in a bal-
anced fashion, undetected genotype-times-environment interactions could have
caused deviations of the BLUEs from the genomic breeding values estimated by
GBLUP. It is therefore possible that the genotypic values estimated from the late-stage
commercial breeding trials in Lell, et al. (2025), that are tested in less environments
than the data of Lell, et al. (2021), might still contain an undetected genotype-times-
environment component and might not be ideal benchmarks to judge prediction efforts
against. A potential way to estimate the validity of either of the two estimation methods
could lie in predicting genotypes for which a larger and more diverse set of environ-
ments is available. This would reduce the confounding of genotype-times-environment

effects with genotypic main effects.

3.4 Big Data can help to obtain a fuller picture of marker-trait

associations in wheat
In order to detect even QTL with a small trait contribution via GWAS, sample sizes of
1000 genotypes could already provide enough statistical power (Sul et al., 2018).
However, this calculation assumes purely additive effects. Detecting dominance
effects requires only slightly higher sample sizes (Wang and Xu, 2019). However,
detecting epistatic interactions requires a massively higher number of tests as

combinations of markers have to be detected. Therefore, higher sample sizes are
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needed to elucidate such interactions. This can also be seen from the results of this
thesis, where additive and dominance effects with good predictive ability could be

detected but no epistatic interactions were found (Lell et al., 2024).

The higher genetic diversity that results from joining of many data sets from diverse
origins is an opportunity and a challenge at the same time. This thesis has shown how
a higher genetic diversity, manifesting in a larger effective population size, can
increase the detection power (Lell et al., 2024). At the same time, population
structure can introduce numerous confounding effects. For example, strong
population structure can introduce genetic bottlenecks into the data which can cause
false-positive synthetic marker-trait associations (Korte and Farlow, 2013). If
merging many data sources into one allows to fill the genetic voids between distinct
populations, the confounding effects of population structure could be weakened as it
becomes easier to discern the effects of individual loci. A recent study supports this
approach by extracting diverse core sets from a large data base of wheat genetic
resources (Berkner et al., 2024). The study shows higher GWAS power resulting from
a higher genetic diversity. A prerequisite is though that the marker density in the
individual data sets is sufficient such that most genome loci are in substantial linkage
disequilibrium to markers. This is especially important to detect rare variants, where
correlation to nearby markers is sensitive to different minor allele frequencies of
causal variant and marker in the population, which limits the power to detect them
(Korte and Farlow, 2013). Efforts to achieve denser genotype sampling by providing
haplotype maps for imputation are underway and could be used to improve pre-

existing marker data of historic data sets (Jordan et al., 2022; Nyine et al., 2019).

However, a larger and more diverse population could also cause a false-negative de-
ception of a kind that could be thought as converse to the false-positive synthetic asso-
ciation: Two different causative loci that occur in distinct sub-populations could mu-
tually weaken the detection power in a population-wide GWAS (Korte and Farlow,
2013). Using GWAS methods that estimate all marker effects simultaneously would

ameliorate this problem (Segura et al., 2012; Wen et al., 2018).

3.5 Outlook

It is an encouraging sign that in wheat, commercial breeding populations in Central
Europe seem to form no separated individual clusters but rather a large connected
space of genetic diversity (Lell et al., 2025). Therefore, a deeper integration of

individual breeding programs has the potential to further improve the power of
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genomic prediction. A pressing topic to elucidate on the way is the influence of
genotype-times-environment interactions on the prediction results and to ensure that
there is as little confounding as possible with main effect estimates. The architecture
of the data as it is used for this thesis has this confounding as an Achilles heel because
of its unbalanced nature. Many genotypes are observed in a low number of
environments and many environments are linked by a small number of genotypes. In
particular, environments from different breeding programmes often share only a
handful of genotypes. These are usually state-of-the-art varieties that breeders use as
check varieties in their experimental designs. The connectivity between environments
could be significantly improved by agreeing on a core set of genotypes to be evaluated
in a large number of environments across different breeding programs. Distributing
genotypes sparsely across multiple environments is another approach that can

improve the environment connectivity (Lell et al., 2021).

In order to provide data to serve as basis for these investigations, the data management
which has been begun in this work must be further formalized and expanded to include
environment metadata to enable envirotyping. In this endeavour, compatibility to the
BrAPI data model should be retained, however, the BrAPI itself does not specify a way
to represent environmental properties, like weather or soil information. Moreover,
more detailed trait descriptions must be included as the diversity of data sources in-
creases. Ontologies like the Crop Ontology are emerging to provide a unified set of
terms to be used by the community, however, term annotations in many cases are still
quite generic and not sufficient to reconstruct methodological differences among data
sets. Formalizing knowledge through ontologies can serve as a basis to draw insights
from heterogenous data, but only if the focus on human-readable term annotations is

not neglected.
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