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Abstract: Mechanised egg‑collection systems require vision models that are both accurate and light enough to run on 

embedded hardware. We built and evaluated an end‑to‑end pipeline that couples YOLOv8 object‑detection 

variants with Google’s Coral Edge TPU for real‑time recognition of white and brown chicken eggs. A bespoke 

dataset of 971 images (640 × 480 px) was captured under diverse backgrounds and lighting, annotated in 

YOLO format, and split 70 %/20 %/10 % for training, validation and testing. Five YOLOv8 models 

(n, s, m, l, x) were trained for 100 epochs with a batch size of 16. All models achieved very high accuracy 

(mAP50 = 0.98), but YOLOv8s produced the best F1–confidence pairing (F1 = 0.98 at 0.703 confidence), 

while YOLOv8n offered the lowest computational load. Converting the networks to TensorFlow‑Lite and 

compiling them for the Edge TPU boosted inference speed dramatically: YOLOv8n jumped from 2.4 FPS on 

Raspberry Pi 5 (PyTorch) to 13.8 FPS on Edge TPU, and YOLOv8s rose from 1.0 FPS to 4.1 FPS, with only 

marginal accuracy loss. Precision and recall remained ≥ 0.96 across all variants. These results demonstrate 

that lightweight YOLOv8 models, particularly the n‑variant, are suitable for embedded, robotics‑grade 

egg‑collection systems that demand real‑time performance without sacrificing detection quality. Future work 

will expand the class set to include damaged eggs and integrate the detector into a closed‑loop robotic gripper 

to enable fully autonomous on‑farm operation.

1 INTRODUCTION 

The field of computer vision has experienced 

remarkable progress, particularly in object detection. 

Among the most influential approaches, YOLO (You 

Only Look Once) models have emerged as leading 

solutions. Owing to their real-time processing 

capability, YOLO-based models have gained 

widespread popularity, especially for applications 

that require rapid decision-making. Among the 

various versions, YOLOv8 represents one of the most 

powerful and versatile architectures, achieving state-

of-the-art accuracy and efficiency in a wide range of 

object recognition tasks [1]. 

The evolution from earlier YOLO versions to 

YOLOv10 demonstrates a continuous improvement 

in speed, precision, and flexibility. These 

advancements address previous limitations, such as 

reduced visibility under harsh weather conditions and 

difficulties in detecting small or partially occluded 

objects [2]. Such improvements make YOLO models 

particularly suitable for deployment in edge 

computing scenarios, where computational resources 

are limited and real-time performance is essential [1]. 

In many application domains, including 

agriculture, food processing, and quality control, 

accurate and real-time egg classification has become 

increasingly important [3]. Traditional egg detection 

and identification methods are often manual, labor-

intensive, and prone to error, making them unsuitable 

for large-scale deployment. In contrast, edge-

accelerated real-time object recognition significantly 

enhances production efficiency and ensures 

consistent quality control. This approach minimizes 

irregular inspections at critical stages and enables 

organizations to meet both visual and industrial 

standards without incurring additional labor costs or 

processing delays [4]. 

Edge computing, which processes data closer to 

the source, offers several advantages over cloud-

based solutions. It reduces latency, improves 

bandwidth efficiency, and enhances data privacy by 

minimizing data transmission over networks. These 

characteristics make edge computing particularly 

suitable for environments with limited or unreliable 

network connectivity. 

This paper is structured as follows. Section 2 

presents the literature review. Section 3 describes the 

materials and methodology, including the stages of 
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egg detection models, data collection, data 

preprocessing, model training, deployment, real-time 

detection, and performance evaluation metrics. 

Section 4 discusses the experimental results, and the 

final section concludes the study. 

2 LITERATURE REVIEW 

This study provides a comprehensive review of the 

literature on real-time egg recognition at the edge 

using YOLOv8, focusing on applications in computer 

vision and machine learning, particularly for egg 

detection using deep learning technologies. Research 

in this domain can be examined through several key 

studies that have shaped the direction of current 

investigations. 

First, researchers in [5] developed a practical 

method for counting egg production in free-range 

chicken environments using an IoT-based camera 

system. Their work emphasized the importance of 

accurate object detection and species identification, 

both of which are essential for monitoring individual 

egg production. This foundational study highlighted 

the need for precise detection thresholds and 

established a basis for further research into automated 

agricultural data collection. 

This research direction was further extended by 

studies focusing on edge-accelerated recognition 

within the broader context of IoT, real-time 

processing, and local computation [6]. These works 

highlighted the importance of edge data processing in 

achieving near real-time performance on embedded 

devices using convolutional neural networks. They 

also demonstrated the diversity of edge hardware 

capabilities and the necessity of considering these 

constraints when evaluating detection algorithms, 

thereby laying the groundwork for subsequent real-

time edge computing studies. 

In the same period, the framework EdgeLens was 

proposed in [7], integrating deep learning with fog 

and cloud computing environments to improve 

service quality for object detection and monitoring. 

This study illustrated the growing demand for 

efficient processing solutions in data-intensive 

applications such as agriculture and reinforced the 

importance of real-time performance in such 

environments. 

The benefits of edge-based image processing were 

further demonstrated in [8], particularly for tasks such 

as dietary intake assessment using food recognition. 

Khosla et al. focused on mobile applications, 

emphasizing not only acceleration of recognition 

processes but also the practical deployment of 

computer vision models on resource-constrained 

devices. 

Additionally, the feasibility of deploying deep 

learning applications on edge-enabled drones was 

demonstrated in [9], highlighting the applicability of 

real-time computing in dynamic environments such 

as agricultural fields. This work showed that edge 

computing can effectively support deep learning tasks 

in scenarios where mobility and rapid decision-

making are critical. 

At the same time, the capabilities of edge 

computing were further expanded in [10], where 

hardware accelerators were identified as key 

contributors to reduced latency and improved 

computational efficiency. The authors emphasized 

that, as the volume of data generated at the edge 

continues to grow, tasks such as egg identification 

become increasingly critical for real-time processing. 

An improved YOLO-based algorithm for remote 

sensing applications was presented in [11], 

demonstrating how advances in deep learning can 

enhance detection performance under challenging 

conditions. This study highlighted the necessity for 

real-time detection systems to balance both accuracy 

and speed - an essential requirement for egg 

recognition tasks. 

A distributed processing strategy for smart 

vehicles within the Internet of Things was proposed 

in [12], emphasizing the importance of real-time 

application control for high-efficiency computational 

tasks. This work contributes to ongoing research on 

optimizing edge computing strategies to improve 

object detection performance. 

According to [13], YOLO-based technologies 

have proven to be highly effective for fast object 

recognition, offering significant speed advantages. 

Such characteristics are especially important for 

applications requiring immediate feedback, including 

real-time egg classification systems. 

A comprehensive review of major edge machine 

learning techniques was presented in [14], identifying 

open research challenges and future directions. The 

findings provide a detailed overview of edge-enabled 

machine learning solutions, particularly in the context 

of agricultural applications. 

Optimized edge video analytics was explored 

in [15], where cooperative processing among 

distributed nodes was proposed. This approach has 

the potential to improve the efficiency of real-time 

egg recognition systems that currently rely on 

centralized computation. 

More recently, [16] examined real-time object 

detection systems based on YOLOv8 and its 

predecessors, emphasizing the trade-off between 

detection accuracy and computational cost. Although 
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significant improvements were achieved, the study 

noted that challenges remain in deploying fully 

effective egg recognition systems in real-world 

environments. 

Finally, [17] focused specifically on improving 

YOLOv8 for pigeon egg detection, addressing both 

theoretical and practical challenges. This work 

successfully improved egg counting accuracy in 

complex environments and provided benchmark 

results for future robotic and automated monitoring 

systems. 

In summary, this literature review highlights 

significant advances in edge-accelerated real-time 

egg recognition, emphasizing the strong interaction 

between technological innovation and practical 

agricultural applications. Collectively, these studies 

demonstrate how decentralized processing and deep 

learning techniques can fundamentally transform 

traditional egg monitoring, sorting, and surveillance 

systems. 

3 MATERIALS AND 

METHODOLOGY 

This section involves six stages to approach the 

objective of the study:

3.1 Egg Detection Model Stages 

Figure 1 shows essential checkpoints per step along 

with a path summary describing the egg detection 

model deployment process. This involves a three-

phase approach: 

1) Data Preparation. The first phase of the project

where egg images are collected, preprocessed,

filtered, and annotated in order to create the

dataset to train, validate and test the YOLO

model.

2) Model Implementation. In this phase, selected

a deep learning model, trained using the

training, validation and test datasets, and

subsequently evaluated and assessed on the test

dataset.

3) Model Inference. The final step entails

applying the detection model to new egg

images to verify the effectiveness of the

developed model.

3.2 Data Collection 

The dataset was obtained by photographing a group 

of chicken eggs in a studio box, on various grass or 

dirt surfaces, at different distances from the lens, and 

in different positions and orientations to simulate all 

the possibilities that the images to be used for object 

detection might present in real-time applications. The 

dataset consists of 971 JPG images with a resolution 

of 640 x 480 pixels, divided into 473 images of brown 

eggs, 488 images of white eggs, and 10 images 

containing both types. Figure 2 shows examples of 

the images used. 

3.3 Data Pre-Processing 

The dataset was filtered, annotated, and classified. 

The process of filtering and labeling the data includes 

the following steps: 

1) Exclude blurry images and images that do not

clearly contain potential objects.

2) Our work is divided into two classes, white and

brown chicken eggs. Images containing eggs of

other birds have been excluded.

3) It has been manually labeled, rectangle

annotation is applied on the object, the

rectangle covers all the exterior borders of the

object.

4) Label studio software is used for annotation,

the annotated data is exported in YOLO format.

5) The final dataset is divided into train,

validation and test folders according to the ratio

with is mentioned in Figure 1.

3.4 Model Training 

Python 3.11 was used in the model’s development. 

Google Colab was used to train and validate the 

algorithms. The deep learning approach used the deep 

convolutional neural network (CNN) model to train, 

detect, and classify the eggs as shown in Figure 3. 

In this study, it was employed the YOLOv8 

architecture for efficient object detection. This 

architecture partitions an image into a grid system, 

with each grid module responsible for detecting 

objects within its boundaries. A total of 100 epochs 

and batch size 16 have been performed to test each 

version. The eggs dataset is divided into three groups 

and was randomly split into an internal training set 

(70 %), validation set (20 %), and test set (10 %). 

3.5 Model Deployment and Real-Time 
Detection 

The trained model is compiled into TensorFlow lite 

format, in order to be compatible with the edge 

computing device, which is Coral Edge TPU device. 

The Coral Edge TPU device is a device produced by 

Google to accelerate the artificial intelligence 
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operations in micro devices, like Raspberry Pi. 

Raspberry Pi 5 is used to run the real-time egg 

detection. The real-time object detection is performed 

by reading a video stream from a live camera as 

shown in the Figure 4. The model was tested with 

samples taken in a simulated poultry farm 

environment, including images of eggs on dirt, grass, 

and among bunches of hay, due to the lack of access 

to real poultry farms during the study. The results 

obtained were within the range obtained in the initial 

test. 

3.6 Model Performance Evaluation 
Metrices 

The detection performance of the proposed model 

was evaluated using standard and widely accepted 

object detection metrics, commonly employed in 

YOLO-based frameworks. These include precision, 

recall, F1-score, Intersection over Union (IoU), mean 

Average Precision (mAP), as well as training and 

validation losses (box loss, object loss, and class 

loss). 

Precision measures the proportion of correctly 

detected objects among all detections made by the 

model at a given confidence threshold, reflecting the 

model’s ability to avoid false positives. 

Recall evaluates the model’s ability to correctly 

detect all relevant objects, indicating how effectively 

the network identifies true targets within an image. 

The F1-score provides a single, comprehensive 

indicator of detection performance by harmonically 

balancing precision and recall. This metric is 

particularly useful for summarizing overall model 

effectiveness, especially in scenarios where class 

imbalance may be present. 

Figure 1: Methodological framework for the egg detection. 
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Figure 2: Eggs dataset samples. 

Figure 3: The architecture of the deep learning model employed a CNN. 

(a) (b) 

Figure 4: a): Live stream object detection using trained YOLOv8n model; b) : Live stream object detection used a TFLite 

model converted from YOLOv8n model, with Edge TPU. 

85 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), August 2020225  



Figure 5: Results of Egg detection YOLOv8n model. 

The Intersection over Union (IoU) is defined as 

the ratio of the overlapping area between the 

predicted bounding box and the ground-truth 

bounding box to the total area covered by both. It 

quantifies the spatial accuracy of object localization 

and the model’s ability to distinguish objects from the 

background. 

Average Precision (AP) and its aggregate form, 

mean Average Precision (mAP), are standard 

benchmarks for evaluating object detection models. 

These metrics summarize detection accuracy across 

different confidence thresholds and IoU levels, 

providing a robust measure of overall model 

performance. 

All evaluation metrics were computed based on 

the conventional confusion matrix components [1]: 

▪ TP (True Positive). The number of instances

that were correctly predicted as positive.

▪ TN (True Negative). The number of instances

that were correctly predicted as negative.

▪ FP (False Positive). The number of instances

that were incorrectly predicted as positive.

▪ FN (False Negative). The number of instances

that were incorrectly predicted as negative.

4 RESULTS 

This section presents the results of the egg detection 

model using YOLOv8. Several YOLOv8 model 

variants were evaluated, including (a) YOLOv8n, (b) 

YOLOv8s, (c) YOLOv8m, (d) YOLOv8l, and (e) 

YOLOv8x.The result of these models is shown in 

Figure 6. More details are described in the following 

subsections: The YOLOv8 model incorporates box 

losses in its object detection algorithm to enhance the 

accuracy of object detection and classification within 

an image. The goal during training is to minimize the 

losses to the lowest possible value in the meantime 

maintain the detection time as less as possible. The 

precision and recall values approached unity, 

indicating excellent performance. The mean average 

precision, the most commonly used statistic, also met 

expectations. Figure 5 shows the training box loss of 

the dataset. 

A confusion matrix for each YOLOv8 model is 

used to analyze the accuracy of the collected data in 

detection and classification of eggs. 

The top left cell represents the number of sample 

of the true predicted brown eggs (True positives), 

while the middle cell represents the true predicted 

white eggs (True positives). The cells in the first row 

except the first cell represent the brown egg labels 

those incorrectly classified as other labels (white eggs 

or background), these cells are recognized as (False 

negative). The first column cells except the first cell 

are represent the non-brown egg labels those are 

predicted as brown eggs, this is called (False 

positive). The rest of the cells represent the non-

brown labels those are predicted as non-brown eggs 

(True negative). 

The confusion matrix of the white eggs are 

described as the following: The middle cell the 

percentage of the true predicted white eggs (True 

positives). The cells in the second row except the 

middle cell represent the white egg labels those 

incorrectly classified as other labels (brown eggs or 

background), these cells are recognized as (False 

negative). The second column cells except the middle 

cell are represent the non-white egg labels those are 

predicted as white eggs, this is called (False positive). 

The rest of the cells represent the non-white labels 

those are predicted as non-white eggs (True 

negative).  

The highest score achieved by the eggs detection 

model is 0.98, with best confidence level of 0.703 in 

YOLOv8s model, Table 1 shows the F1-confidence 

scores of each YOLOv8 model. 

Table 1: F1 score-confidence of YOLOv8 models. 

Model F1 score Confidence 

YOLOv8n 0.98 0.615 

YOLOv8s 0.98 0.703 

YOLOv8m 0.97 0.737 

YOLOv8l 0.97 0.389 

YOLOv8x 0.97 0.726 

A confidence level greater than 0.788 indicates 

satisfactory precision in the scores which is 

considered good for the developed eggs detection 

model using YOLOv8n model. Table 2 shows the 

Precision-confidence values of each YOLOv8 model. 
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Figure 6: Performance training analysis with YOLOv8n model. 

Figure 7: The confusion matrix of YOLOv8n model. 
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Table 2: Precision-confidence values of the trained 

YOLOv8 models. 

Model Confidence 

YOLOv8n 0.788 

YOLOv8s 0.788 

YOLOv8m 0.836 

YOLOv8l 0.890 

YOLOv8x 0.858 

Table 3 shows a comparison of the eggs detection 

results between YOLOv8 models. 

Table 3: The computational time of YOLOv8 models 

training. 

Models mAP 

0.5 

Precision Recall F1-

score 

YOLOv8n 0.98 0.98 0.97 0.98 

YOLOv8s 0.98 0.99 0.97 0.98 

YOLOv8m 0.98 0.99 0.95 0.97 

YOLOv8l 0.98 0.96 0.98 0.97 

YOLOv8x 0.98 0.98 0.95 0.97 

Using the edge computation have made a 

significant different in FPS (Frame per second) of the 

live stream, which effects on the speed of detection. 

This matter could be a critical factor if the detection 

used in robotics or in dynamic based applications. 

Table 4 shows a comparison in FPS values of each 

YOLOv8 model and the corresponding tensorFlow 

lite model. 

Table 4: FPS values for each YOLOv8 and TFlite models. 

Model YOLOv8 FPS TFLite FPS 

YOLOv8n 2.4 13.77 

YOLOv8s 1 4.07 

YOLOv8m 0.4 0.69 

YOLOv8l 0.2 0.87 

YOLOv8x 0.1 0.65 

5 CONCLUSIONS 

This study shows that coupling state‑of‑the‑art 

one‑stage detectors with edge accelerators can 

eliminate the long‑standing trade‑off between speed 

and accuracy in agricultural machine‑vision tasks. 

Training five YOLOv8 variants on a purpose‑built 

two‑class egg dataset yielded uniformly high mAP50 

(0.98) and F1 scores (≥ 0.97). When deployed on a 

Raspberry Pi 5 alone, inference rates were inadequate 

for mobile platforms; however, compiling to 

TensorFlow‑Lite and off‑loading computations to the 

Coral Edge TPU delivered up to a 5.7 × throughput 

increase, achieving real‑time (≥ 13 FPS) performance 

with the YOLOv8n model. The acceleration came 

with negligible precision–recall degradation, 

confirming that the wider YOLOv8 design - 

especially the atomic‑layered n‑variant-matches the 

resource envelope of embedded poultry robots. 

Consequently, commercial egg‑gathering systems 

can now exploit inexpensive edge hardware to 

monitor laying patterns continuously while 

minimising breakage and labour. Future directions 

include enlarging the dataset to cover occlusions and 

soiled shells, testing multi‑class damage grading, and 

integrating tracking to support cooperative fleets of 

robotic collectors. 

As a future work, it’s highly recommended to 

expand dataset and test robustness, by enlarging the 

image corpus beyond clean white and brown shells to 

include cracked, soiled and partially occluded eggs, 

other kinds of poultry birds like geese, ducks and 

quails, and embedding the detection model in a 

micro-controller that runs robotic features like arms, 

grippers and navigation materials, to maximize the 

benefit of the study. 
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