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Mechanised egg-collection systems require vision models that are both accurate and light enough to run on

embedded hardware. We built and evaluated an end-to-end pipeline that couples YOLOVS object-detection
variants with Google’s Coral Edge TPU for real-time recognition of white and brown chicken eggs. A bespoke
dataset of 971 images (640 x 480 px) was captured under diverse backgrounds and lighting, annotated in
YOLO format, and split 70 %/20 %/10 % for training, validation and testing. Five YOLOv8 models
(n, s, m, 1, x) were trained for 100 epochs with a batch size of 16. All models achieved very high accuracy
(mAP50=0.98), but YOLOVSs produced the best F1—confidence pairing (F1=0.98 at 0.703 confidence),
while YOLOvVS8n offered the lowest computational load. Converting the networks to TensorFlow-Lite and
compiling them for the Edge TPU boosted inference speed dramatically: YOLOv8n jumped from 2.4 FPS on
Raspberry Pi5 (PyTorch) to 13.8 FPS on Edge TPU, and YOLOVSs rose from 1.0 FPS to 4.1 FPS, with only
marginal accuracy loss. Precision and recall remained > 0.96 across all variants. These results demonstrate
that lightweight YOLOvV8 models, particularly the n-variant, are suitable for embedded, robotics-grade
egg-collection systems that demand real-time performance without sacrificing detection quality. Future work
will expand the class set to include damaged eggs and integrate the detector into a closed-loop robotic gripper
to enable fully autonomous on-farm operation.

1 INTRODUCTION

The field of computer vision has experienced
remarkable progress, particularly in object detection.
Among the most influential approaches, YOLO (You
Only Look Once) models have emerged as leading
solutions. Owing to their real-time processing
capability, YOLO-based models have gained
widespread popularity, especially for applications
that require rapid decision-making. Among the
various versions, YOLOVS represents one of the most
powerful and versatile architectures, achieving state-
of-the-art accuracy and efficiency in a wide range of
object recognition tasks [1].

The evolution from earlier YOLO versions to
YOLOvV10 demonstrates a continuous improvement
in speed, precision, and flexibility. These
advancements address previous limitations, such as
reduced visibility under harsh weather conditions and
difficulties in detecting small or partially occluded
objects [2]. Such improvements make YOLO models
particularly suitable for deployment in edge
computing scenarios, where computational resources
are limited and real-time performance is essential [1].
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In  many application domains, including
agriculture, food processing, and quality control,
accurate and real-time egg classification has become
increasingly important [3]. Traditional egg detection
and identification methods are often manual, labor-
intensive, and prone to error, making them unsuitable
for large-scale deployment. In contrast, edge-
accelerated real-time object recognition significantly
enhances production efficiency and ensures
consistent quality control. This approach minimizes
irregular inspections at critical stages and enables
organizations to meet both visual and industrial
standards without incurring additional labor costs or
processing delays [4].

Edge computing, which processes data closer to
the source, offers several advantages over cloud-
based solutions. It reduces latency, improves
bandwidth efficiency, and enhances data privacy by
minimizing data transmission over networks. These
characteristics make edge computing particularly
suitable for environments with limited or unreliable
network connectivity.

This paper is structured as follows. Section 2
presents the literature review. Section 3 describes the
materials and methodology, including the stages of



Proceedings of the 13th International Conference on Applied Innovations in IT (ICAIIT), August 2025

egg detection models, data collection, data
preprocessing, model training, deployment, real-time
detection, and performance evaluation metrics.
Section 4 discusses the experimental results, and the
final section concludes the study.

2 LITERATURE REVIEW

This study provides a comprehensive review of the
literature on real-time egg recognition at the edge
using YOLOv8, focusing on applications in computer
vision and machine learning, particularly for egg
detection using deep learning technologies. Research
in this domain can be examined through several key
studies that have shaped the direction of current
investigations.

First, researchers in [5] developed a practical
method for counting egg production in free-range
chicken environments using an loT-based camera
system. Their work emphasized the importance of
accurate object detection and species identification,
both of which are essential for monitoring individual
egg production. This foundational study highlighted
the need for precise detection thresholds and
established a basis for further research into automated
agricultural data collection.

This research direction was further extended by
studies focusing on edge-accelerated recognition
within the broader context of IloT, real-time
processing, and local computation [6]. These works
highlighted the importance of edge data processing in
achieving near real-time performance on embedded
devices using convolutional neural networks. They
also demonstrated the diversity of edge hardware
capabilities and the necessity of considering these
constraints when evaluating detection algorithms,
thereby laying the groundwork for subsequent real-
time edge computing studies.

In the same period, the framework EdgeLens was
proposed in [7], integrating deep learning with fog
and cloud computing environments to improve
service quality for object detection and monitoring.
This study illustrated the growing demand for
efficient processing solutions in data-intensive
applications such as agriculture and reinforced the
importance of real-time performance in such
environments.

The benefits of edge-based image processing were
further demonstrated in [8], particularly for tasks such
as dietary intake assessment using food recognition.
Khosla et al. focused on mobile applications,
emphasizing not only acceleration of recognition
processes but also the practical deployment of
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computer vision models on resource-constrained
devices.

Additionally, the feasibility of deploying deep
learning applications on edge-enabled drones was
demonstrated in [9], highlighting the applicability of
real-time computing in dynamic environments such
as agricultural fields. This work showed that edge
computing can effectively support deep learning tasks
in scenarios where mobility and rapid decision-
making are critical.

At the same time, the capabilities of edge
computing were further expanded in [10], where
hardware accelerators were identified as key
contributors to reduced latency and improved
computational efficiency. The authors emphasized
that, as the volume of data generated at the edge
continues to grow, tasks such as egg identification
become increasingly critical for real-time processing.

An improved YOLO-based algorithm for remote
sensing applications was presented in [11],
demonstrating how advances in deep learning can
enhance detection performance under challenging
conditions. This study highlighted the necessity for
real-time detection systems to balance both accuracy
and speed - an essential requirement for egg
recognition tasks.

A distributed processing strategy for smart
vehicles within the Internet of Things was proposed
in [12], emphasizing the importance of real-time
application control for high-efficiency computational
tasks. This work contributes to ongoing research on
optimizing edge computing strategies to improve
object detection performance.

According to [13], YOLO-based technologies
have proven to be highly effective for fast object
recognition, offering significant speed advantages.
Such characteristics are especially important for
applications requiring immediate feedback, including
real-time egg classification systems.

A comprehensive review of major edge machine
learning techniques was presented in [14], identifying
open research challenges and future directions. The
findings provide a detailed overview of edge-enabled
machine learning solutions, particularly in the context
of agricultural applications.

Optimized edge video analytics was explored
in [15], where cooperative processing among
distributed nodes was proposed. This approach has
the potential to improve the efficiency of real-time
egg recognition systems that currently rely on
centralized computation.

More recently, [16] examined real-time object
detection systems based on YOLOv8 and its
predecessors, emphasizing the trade-off between
detection accuracy and computational cost. Although
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significant improvements were achieved, the study
noted that challenges remain in deploying fully
effective egg recognition systems in real-world
environments.

Finally, [17] focused specifically on improving
YOLOVS8 for pigeon egg detection, addressing both
theoretical and practical challenges. This work
successfully improved egg counting accuracy in
complex environments and provided benchmark
results for future robotic and automated monitoring
systems.

In summary, this literature review highlights
significant advances in edge-accelerated real-time
egg recognition, emphasizing the strong interaction
between technological innovation and practical
agricultural applications. Collectively, these studies
demonstrate how decentralized processing and deep
learning techniques can fundamentally transform
traditional egg monitoring, sorting, and surveillance
systems.

3 MATERIALS AND
METHODOLOGY

This section involves six stages to approach the
objective of the study:

3.1 Egg Detection Model Stages

Figure 1 shows essential checkpoints per step along
with a path summary describing the egg detection
model deployment process. This involves a three-
phase approach:

1) Data Preparation. The first phase of the project
where egg images are collected, preprocessed,
filtered, and annotated in order to create the
dataset to train, validate and test the YOLO
model.

Model Implementation. In this phase, selected
a deep learning model, trained using the
training, validation and test datasets, and
subsequently evaluated and assessed on the test
dataset.

Model Inference. The final step entails
applying the detection model to new egg
images to verify the effectiveness of the
developed model.

2)

3)

3.2 Data Collection

The dataset was obtained by photographing a group
of chicken eggs in a studio box, on various grass or
dirt surfaces, at different distances from the lens, and
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in different positions and orientations to simulate all
the possibilities that the images to be used for object
detection might present in real-time applications. The
dataset consists of 971 JPG images with a resolution
of 640 x 480 pixels, divided into 473 images of brown
eggs, 488 images of white eggs, and 10 images
containing both types. Figure 2 shows examples of
the images used.

3.3 Data Pre-Processing

The dataset was filtered, annotated, and classified.
The process of filtering and labeling the data includes
the following steps:

1) Exclude blurry images and images that do not
clearly contain potential objects.
Our work is divided into two classes, white and
brown chicken eggs. Images containing eggs of
other birds have been excluded.
It has been manually labeled, rectangle
annotation is applied on the object, the
rectangle covers all the exterior borders of the
object.
Label studio software is used for annotation,
the annotated data is exported in YOLO format.
The final dataset is divided into train,
validation and test folders according to the ratio
with is mentioned in Figure 1.

2)

3)

4)

5)

3.4 Model Training

Python 3.11 was used in the model’s development.
Google Colab was used to train and validate the
algorithms. The deep learning approach used the deep
convolutional neural network (CNN) model to train,
detect, and classify the eggs as shown in Figure 3.

In this study, it was employed the YOLOvVS8
architecture for efficient object detection. This
architecture partitions an image into a grid system,
with each grid module responsible for detecting
objects within its boundaries. A total of 100 epochs
and batch size 16 have been performed to test each
version. The eggs dataset is divided into three groups
and was randomly split into an internal training set
(70 %), validation set (20 %), and test set (10 %).

3.5 Model Deployment and Real-Time
Detection

The trained model is compiled into TensorFlow lite
format, in order to be compatible with the edge
computing device, which is Coral Edge TPU device.
The Coral Edge TPU device is a device produced by
Google to accelerate the artificial intelligence
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operations in micro devices, like Raspberry Pi.
Raspberry Pi 5 is used to run the real-time egg
detection. The real-time object detection is performed
by reading a video stream from a live camera as
shown in the Figure 4. The model was tested with
samples taken in a simulated poultry farm
environment, including images of eggs on dirt, grass,
and among bunches of hay, due to the lack of access
to real poultry farms during the study. The results
obtained were within the range obtained in the initial
test.

3.6 Model Performance Evaluation
Metrices

The detection performance of the proposed model
was evaluated using standard and widely accepted
object detection metrics, commonly employed in

YOLO-based frameworks. These include precision,
recall, F1-score, Intersection over Union (loU), mean
Average Precision (mAP), as well as training and
validation losses (box loss, object loss, and class
loss).

Precision measures the proportion of correctly
detected objects among all detections made by the
model at a given confidence threshold, reflecting the
model’s ability to avoid false positives.

Recall evaluates the model’s ability to correctly
detect all relevant objects, indicating how effectively
the network identifies true targets within an image.

The F1-score provides a single, comprehensive
indicator of detection performance by harmonically
balancing precision and recall. This metric is
particularly useful for summarizing overall model
effectiveness, especially in scenarios where class
imbalance may be present.
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Figure 1: Methodological framework for the egg detection.
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Figure 2: Eggs dataset samples.
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Figure 4: a): Live stream object detection using trained YOLOv8n model; b) : Live stream object detection used a TFLite
model converted from YOLOv8n model, with Edge TPU.
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Figure 5: Results of Egg detection YOLOv8n model.

The Intersection over Union (loU) is defined as
the ratio of the overlapping area between the
predicted bounding box and the ground-truth
bounding box to the total area covered by both. It
quantifies the spatial accuracy of object localization
and the model’s ability to distinguish objects from the
background.

Average Precision (AP) and its aggregate form,
mean Average Precision (mAP), are standard
benchmarks for evaluating object detection models.
These metrics summarize detection accuracy across
different confidence thresholds and loU levels,
providing a robust measure of overall model
performance.

All evaluation metrics were computed based on
the conventional confusion matrix components [1]:

= TP (True Positive). The number of instances
that were correctly predicted as positive.

= TN (True Negative). The number of instances
that were correctly predicted as negative.

= FP (False Positive). The number of instances
that were incorrectly predicted as positive.

= FN (False Negative). The number of instances
that were incorrectly predicted as negative.

4 RESULTS

This section presents the results of the egg detection
model using YOLOvVS8. Several YOLOv8 model
variants were evaluated, including (a) YOLOv8n, (b)
YOLOVSs, (c) YOLOv8m, (d) YOLOvSI, and (e)
YOLOvV8x.The result of these models is shown in
Figure 6. More details are described in the following
subsections: The YOLOv8 model incorporates box
losses in its object detection algorithm to enhance the
accuracy of object detection and classification within
an image. The goal during training is to minimize the
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losses to the lowest possible value in the meantime
maintain the detection time as less as possible. The
precision and recall values approached unity,
indicating excellent performance. The mean average
precision, the most commonly used statistic, also met
expectations. Figure 5 shows the training box loss of
the dataset.

A confusion matrix for each YOLOv8 model is
used to analyze the accuracy of the collected data in
detection and classification of eggs.

The top left cell represents the number of sample
of the true predicted brown eggs (True positives),
while the middle cell represents the true predicted
white eggs (True positives). The cells in the first row
except the first cell represent the brown egg labels
those incorrectly classified as other labels (white eggs
or background), these cells are recognized as (False
negative). The first column cells except the first cell
are represent the non-brown egg labels those are
predicted as brown eggs, this is called (False
positive). The rest of the cells represent the non-
brown labels those are predicted as non-brown eggs
(True negative).

The confusion matrix of the white eggs are
described as the following: The middle cell the
percentage of the true predicted white eggs (True
positives). The cells in the second row except the
middle cell represent the white egg labels those
incorrectly classified as other labels (brown eggs or
background), these cells are recognized as (False
negative). The second column cells except the middle
cell are represent the non-white egg labels those are
predicted as white eggs, this is called (False positive).
The rest of the cells represent the non-white labels
those are predicted as non-white eggs (True
negative).

The highest score achieved by the eggs detection
model is 0.98, with best confidence level of 0.703 in
YOLOvV8s model, Table 1 shows the F1-confidence
scores of each YOLOv8 model.

Table 1: F1 score-confidence of YOLOv8 models.

Model F1 score Confidence
YOLOvV8n 0.98 0.615
YOLOvVS8s 0.98 0.703
YOLOvV8m 0.97 0.737
YOLOVSI 0.97 0.389
YOLOvV8x 0.97 0.726

A confidence level greater than 0.788 indicates
satisfactory precision in the scores which is
considered good for the developed eggs detection
model using YOLOv8n model. Table 2 shows the
Precision-confidence values of each YOLOv8 model.
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Table 2: Precision-confidence values of the trained
YOLOvV8 models.

Model Confidence
YOLOv8n 0.788
YOLOv8s 0.788
YOLOv8m 0.836
YOLOvSI 0.890
YOLOvV8x 0.858

Table 3 shows a comparison of the eggs detection
results between YOLOV8 models.

Table 3: The computational time of YOLOv8 models
training.

Models mAP Precision Recall F1-
0.5 score
YOLOv8n 0.98 0.98 0.97 0.98
YOLOVS8s 0.98 0.99 0.97 0.98
YOLOv8m | 0.98 0.99 0.95 0.97
YOLOvSI 0.98 0.96 0.98 0.97
YOLOv8x 0.98 0.98 0.95 0.97

Using the edge computation have made a
significant different in FPS (Frame per second) of the
live stream, which effects on the speed of detection.
This matter could be a critical factor if the detection
used in robotics or in dynamic based applications.
Table 4 shows a comparison in FPS values of each
YOLOvV8 model and the corresponding tensorFlow
lite model.

Table 4: FPS values for each YOLOv8 and TFlite models.

Model YOLOv8 FPS | TFLite FPS
YOLOv&n 24 13.77
YOLOv8s 1 4.07
YOLOv8m 0.4 0.69
YOLOvSI 0.2 0.87
YOLOv8x 0.1 0.65

S CONCLUSIONS

This study shows that coupling state-of-the-art
one-stage detectors with edge accelerators can
eliminate the long-standing trade-off between speed
and accuracy in agricultural machine-vision tasks.
Training five YOLOvV8 variants on a purpose-built
two-class egg dataset yielded uniformly high mAP50
(0.98) and F1 scores (=0.97). When deployed on a
Raspberry Pi 5 alone, inference rates were inadequate
for mobile platforms; however, compiling to
TensorFlow-Lite and off-loading computations to the
Coral Edge TPU delivered up to a 5.7 X throughput
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increase, achieving real-time (> 13 FPS) performance
with the YOLOv8n model. The acceleration came
with  negligible  precision-recall ~ degradation,
confirming that the wider YOLOvV8 design -
especially the atomic-layered n-variant-matches the
resource envelope of embedded poultry robots.
Consequently, commercial egg-gathering systems
can now exploit inexpensive edge hardware to
monitor laying patterns  continuously  while
minimising breakage and labour. Future directions
include enlarging the dataset to cover occlusions and
soiled shells, testing multi-class damage grading, and
integrating tracking to support cooperative fleets of
robotic collectors.

As a future work, it’s highly recommended to
expand dataset and test robustness, by enlarging the
image corpus beyond clean white and brown shells to
include cracked, soiled and partially occluded eggs,
other kinds of poultry birds like geese, ducks and
quails, and embedding the detection model in a
micro-controller that runs robotic features like arms,
grippers and navigation materials, to maximize the
benefit of the study.
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