
Integrating Feature Selection and Machine Learning Boosting for 

Accurate Breast Cancer Prediction 

Wisal Hashim Abdulsalam1, Ruma Kareem K. Ajeena1,2 and Mohammed Ayad Saad3,4 
1Department of Computer, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, 

10071 Baghdad, Iraq 
2Scientists Foundation for Development, 10053 Baghdad, Iraq

3Department of Medical Instrumentations Technique Engineering, Al-Kitab University, 36001 Kirkuk, Iraq 
4Department of Medical Instrumentations Technique Engineering, Al-Idrisi University College, 31001 Ramadi, Iraq 

wisal.h@ihcoedu.uobaghdad.edu.iq, ruma.k.kh@ihcoedu.uobaghdad.edu.iq, P106139@siswa.ukm.edu.my 

Keywords: Breast Cancer, CatBoost, XGBoost, LightGBM, AdaBoost, Gradiant Boosting. 

Abstract: Breast cancer is a prevalent and devastating disease and remains a major contributor to cancer-related 

mortality among women worldwide. The increasing incidence and fatality rates are often associated with 

changes in lifestyle and the influence of environmental factors. In response to these alarming trends, the 

development and deployment of automated breast cancer diagnostic systems have become increasingly 

important in modern healthcare. This study investigates the performance of several boosting algorithms - 

CatBoost, LightGBM, XGBoost, AdaBoost, and Gradient Boosting - for breast cancer prediction using the 

Wisconsin Diagnostic Breast Cancer (WDBC) dataset. The dataset is publicly available on Kaggle and 

consists of 569 instances, including 357 benign and 212 malignant cases. The proposed framework 

encompasses data preprocessing, feature selection, and classification stages. Model performance was 

evaluated using multiple metrics to ensure robust analysis and objective assessment. The experimental results 

demonstrate that LightGBM outperformed the other models, highlighting the effectiveness of boosting-based 

approaches for breast cancer diagnosis and emphasizing the potential of these techniques for further 

advancements in oncology research.  

1 INTRODUCTION 

Breast cancer affects women more than any other 

malignancy [1], [2]. It ranks fifth in terms of overall 

cancer mortality worldwide [3] and is the second 

leading cause of cancer-related death among women 

[4]. Globally, breast cancer is the most prevalent 

malignancy in women, accounting for approximately 

one in four cancer diagnoses and one in six cancer-

related deaths. It holds the highest incidence and 

mortality rates in 159 and 110 countries, respectively. 

Annually, over 2,000,000 new cases are reported, 

resulting in approximately 685,000 deaths    

worldwide [5], [6]. Hormonal imbalances, genetic 

predisposition, marital status, and reproductive 

history are considered contributory factors in the 

development of breast cancer [7]. 

Therefore, the implementation of automated 

methodologies for breast cancer screening and 

diagnosis is essential. Early and accurate detection 

plays a crucial role in improving patient outcomes 

and increasing survival rates. Previous studies have 

proposed various decision support systems for breast 

cancer prediction; however, many of them do not 

explicitly address time complexity or provide detailed 

criteria for training and evaluation. 

Furthermore, understanding training and 

computational complexity is critical for assessing 

algorithm feasibility, particularly in healthcare 

systems with limited CPU and memory resources. For 

example, in 2021, study [1] applied a range of 

machine learning algorithms for breast cancer 

prediction, including CatBoost, XGBoost, Linear 

Regression (LR), K-Nearest Neighbors (KNN), 

Support Vector Machine (SVM), Naïve Bayes (NB), 

Decision Tree (DT), and Random Forest (RF). 

CatBoost achieved the highest performance, with an 

accuracy of 97.8% and an Area Under the ROC Curve 

(AUROC) of 0.983, outperforming the other 

algorithms. 

In 2022, study [8] employed twelve machine 

learning techniques for breast cancer prediction. The 
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Perceptron and SVM demonstrated superior 

sensitivity and accuracy, while LR achieved the 

highest precision and F1-score. In contrast, DT 

exhibited lower sensitivity and accuracy, and KNN 

recorded reduced precision and F1-score. Overall, the 

Perceptron and SVM emerged as the most effective 

predictors, achieving an accuracy of 90% and 

showing consistent performance across multiple 

evaluation metrics. 

In 2023, study [9] utilized several machine 

learning classifiers and ensemble techniques on a 

breast cancer dataset, reporting that DT and XGBoost 

achieved the highest accuracy of 97%. 

In 2024, study [3] trained seven machine learning 

algorithms, including DT, SGD, RF, SVM, Logistic 

Regression, and AdaBoost. The AdaBoost–Logistic 

model achieved the highest accuracy of 99.12%, 

outperforming the other approaches. 

In 2025, study [10] proposed a hybrid deep 

learning framework for predicting breast cancer 

recurrence by combining deep learning and 

traditional machine learning models, resulting in 

sixteen predictive models. The BCR-HDL framework 

not only predicted recurrence outcomes but also 

provided recurrence time estimation. The hybrid 

MLP+RF and Xception+RF models achieved an 

accuracy of 97% on the WDBC dataset, while the 

MLP+RF model reached 78% prognostic accuracy on 

the WPBC dataset. Additionally, the hybrid 

ResNet+SVM and ResNet+RF models demonstrated 

strong predictive performance, achieving an accuracy 

of 92%. 

Despite these advancements, existing studies 

predominantly focus on classification accuracy while 

neglecting training time and prediction time, which 

are essential for identifying the most efficient 

algorithms from a practical perspective. Moreover, 

there remains a noticeable gap in the comprehensive 

application of boosting algorithms for breast cancer 

classification. Boosting techniques offer several 

advantages over conventional and deep learning 

approaches, particularly in handling data imbalance, 

missing values, and categorical features. By 

combining multiple weak learners, boosting 

algorithms enhance generalization capability and 

reduce the risk of overfitting. Although boosting 

methods have shown strong performance across 

various domains, their potential in breast cancer 

diagnosis has not been fully explored. 

This study aims to develop predictive models for 

breast cancer using comprehensive datasets, 

advanced feature selection techniques, and five 

widely used boosting algorithms: CatBoost, 

LightGBM, XGBoost, AdaBoost, and Gradient 

Boosting (GB). The primary objective is to improve 

diagnostic accuracy and patient outcomes by 

rigorously evaluating these algorithms using multiple 

performance metrics. The evaluation criteria include 

accuracy, precision, recall, F1-score, confusion 

matrix, AUROC, as well as computational time for 

both training and prediction, ensuring a robust and 

comprehensive assessment. 

2 THEORETICAL BACKGROUND 

2.1 Theoretical Rationale for Boosting 
Algorithms in Medical Prediction 

Boosting algorithms use ensemble learning with 

weak learners (often decision trees) to create a strong 

classifier. Boosting reduces bias and variance, 

improving predictive accuracy on unseen data. In 

medical datasets like breast cancer, boosting 

algorithms address class imbalance, noisy features, 

and complex relationships by focusing on 
misclassified instances. Boosting helps handle 
imbalanced data and prevents overfitting through 

adaptive weighting and regularization. The ensemble 

approach of boosting models improves generalization 

on new patient data for clinical deployment [11]. 

2.2 Theoretical Motivation for Feature 
Selection 

Feature selection reduces dimensionality, eliminates 

irrelevant variables, and enhances model 

interpretability using statistical measures like Pearson 

correlation. This helps reduce overfitting, improve 

computational efficiency, and enhance 

interpretability for clinicians [12]. 

3 PRELIMINARY CONCEPTS 

The subsequent subsections furnish a comprehensive 

background pertinent to the classification algorithms 

employed in the present study. 

3.1 Categorical Boosting (CatBoost) 

It is a formidable gradient-boosting library grounded 

in open-source principles. It is nonlinear, tree-based, 

and adept at handling intricate datasets. CatBoost 

consistently surpasses alternative boosting 

methodologies, demonstrating marked enhancements 

in both accuracy and performance. It achieves 
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optimal results with remarkable speed, which is 

invaluable for time-sensitive applications such as 

fraud detection. CatBoost streamlines data 

preparation by accommodating categorical features 

without necessitating preprocessing. Its sophisticated 

capabilities, user-friendly nature, and exceptional 

performance render it a premier choice for machine 

learning endeavors [13], [14]. 

3.2 Extreme Gradient Boosting 
(XGBoost) 

It is a formidable machine learning algorithm 

elucidated in numerous scholarly articles for a myriad 

of applications. It has been employed for the detection 

of breast cancer with remarkable precision and recall 

rates. XGBoost distinguishes itself through its 

capacity to tackle intricate challenges, attain elevated 

predictive accuracy, and deliver efficiency across 

diverse domains [15], [16]. 

3.3 Light Gradiant Boosting Machine 
(LightGBM) 

LightGBM stands out as a versatile and efficient tool 

in the machine learning toolbox, providing robust 

solutions for a wide range of predictive modeling 

tasks. Its speed, scalability, and accuracy make it 

popular among data scientists and machine learning 

practitioners [17], [18]. 

3.4 Adaptive Boosting (AdaBoost) 

To improve predictive accuracy, AdaBoost combines 

multiple weak classifiers by placing greater emphasis 

on instances that are misclassified. After each 

iteration, the dataset is reweighted so that subsequent 

weak classifiers focus more on these difficult cases. 

When specific criteria are met, a new weak classifier 

is introduced, initially assigning equal weight to all 

input samples. The weights of misclassified instances 

are then increased, while the weights of correctly 

classified samples are decreased. This reweighted 

dataset is used to train the next weak classifier. 

Through this iterative process, all weak classifiers are 

combined to form a single, strong classifier [19], [20]. 

3.5 Gradient Boosting (GB) 

Boosting algorithms amalgamate weak learners to 

construct a robust learner. Gradient Boosting (GB) 

serves as a prominent exemplar in regression tasks. It 

incrementally formulates a predictive model by 

optimizing a loss function. Overfitting presents a 

significant challenge when not adequately 

regularized. Consider GB for the estimation of 

housing prices; it commences with a rudimentary 

model that encapsulates the data trend. In each 

iteration, it rectifies the errors made by preceding 

models. Regularization techniques are imperative to 

mitigate overfitting. In the absence of such measures, 

the model may become excessively sensitive to the 

noise present in the training data, leading to 

suboptimal generalization to unseen datasets. 

Meticulous tuning of hyperparameters and 

regularization parameters is essential. Achieving a 

harmonious balance between model complexity and 

generalization is pivotal for GB in the realm of 

predictive modeling [21], [22]. 

4 PROPOSED MODEL 

This model contains three stages: preprocessing, 

feature selection, and classification, as shown below. 

4.1 The Dataset 

The dataset utilized was the Wisconsin breast cancer 

dataset. It has 569 instances without missing values 

across thirty-two columns in a CSV file. 30 columns 

describe breast cancer physiological characteristics; 

one is for ID numbers, and one is for cancer 

categories. Features extracted from digital images of 

breast mass fine-needle aspiration delineate cell 

nuclei characteristics. Resource accessible online at 

no cost. The dataset includes cases of women aged 29 

to 89, categorized as "B," denotes benign tumors, 

while "M" signifies malignant tumors. 

Figure 1 illustrates a histogram depicting the 

distribution of diagnoses, comprising 212 malignant 

cases and 357 benign instances [3], [23]. 

Figure 1: The histogram of diagnoses in the dataset. 

93 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), August 2020225  



4.2 Preprocessing Stage 

Preprocessing is a critical component of the data 

science workflow, serving to meticulously prepare 

data for the construction of predictive models. 

Without it, prediction quality can suffer. 

Preprocessing is crucial for strong predictive models. 

Invest time and effort in preprocessing for robust and 

reliable models [24]. The preprocessing stage 

involved three key steps: 

1) Categorical data, such as diagnostic

classifications, was transmuted into numerical

representations (0 denoting benign and 1

signifying malignant).

2) Eliminating Non-Essential Features. Attributes

such as identification numbers were extricated

to streamline the dataset and mitigate the risk of

overfitting.

3) Balancing data prevents model bias toward the

majority class, avoiding favoritism. Balanced

models are less likely to suffer accuracy

paradox. Figure 2 shows the histogram of

diagnoses after 100% balancing using

resampling from the sklearn library in Python.

Both classes (benign and malignant) have 357

instances.

Figure 2: The histogram of diagnoses in the dataset after 

100% balanceing. 

4.3 Features Selection Stage 

The myriad of diverse features complicate the 

accuracy of predictions. It is imperative to extract key 

features through a meticulous feature selection 

process prior to the implementation of a machine 

learning model. This approach not only mitigates the 

presence of irrelevant variables but also curtails 

associated costs and minimizes the risk of overfitting. 

The judicious selection of significant features is 

paramount for achieving successful predictive 

outcomes [25]. The correlation between features is 

ascertained through the application of Pearson 

correlation, facilitating the comprehension of 

relationships and elucidating attribute 

interdependence. Statistical indicators of variable 

variability and linear association are subsequently 

computed (1). 

Px, y =  Covx,
y

σxσy, (1) 

where x and y are standard deviations of x[n] and 

y[n], while Covx,y represents the covariance. 

Correlation coefficients, x and y, range from -1 to +1. 

A value of zero signifies an absence of a linear 

relationship. A robust positive correlation approaches 

+1, whereas a pronounced negative correlation nears

-1 [26], [27].

Figure 3 illustrates the heatmap depicting the

correlation among various features.

The most important features for diagnosis were 

chosen according to their correlation values (≥0.5). 

This threshold was meticulously selected to preserve 

only the most pertinent features, mitigate extraneous 

noise, and enhance both the interpretability and 

efficacy of the model. 15 features were selected for 

prediction from the original features. Figure 4 shows 

the ranked features by Pearson correlation with the 

diagnosis. 

4.4 Classification Stage and 

Performance Evaluation  

The total number of features used in this study is 15. 

Five boosting algorithms - CatBoost, XGBoost, 

LightGBM, AdaBoost, and Gradient Boosting - were 

employed for breast cancer prediction. All models 

were implemented using the Python programming 

language. The dataset was randomly divided into two 

subsets, with 80% of the data used for training and 

20% reserved for testing, ensuring that model 

performance was evaluated on previously unseen 

samples. 

The classification performance was assessed 

using several widely adopted evaluation metrics, 

including precision, recall, accuracy, and 

F1-score [28]. Precision reflects the proportion of 

correctly identified positive cases among all predicted 

positives, while recall measures the model’s ability to 

correctly identify actual positive cases. Accuracy 

indicates the overall correctness of the classification 

results, and the F1-score provides a balanced measure 

by combining precision and recall. 
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Figure 3: The correlation between features. 

Figure 4: Ranked features by Pearson correlation with diagnosis. 
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In addition, a confusion matrix was utilized to 

summarize the classification results by presenting the 

counts of true positives, true negatives, false 

positives, and false negatives in a structured manner. 

This representation facilitates a clearer understanding 

of model performance across different classes, as 

illustrated in Table 1. 

Table 1: Classification report for the algorithms used. 

Boosting 

algorithm 
Presition Recall 

F1-

score 

Class 

Label 

CatBoost 

0.95 0.97 0.96 Bengin 

0.95 0.90 0.93 Malignant 

0.95 Accuracy 

XGBoost 

0.96 0.97 0.97 Bengin 

0.95 0.93 0.94 Malignant 

0.96 Accuracy 

LightGBM 

0.97 0.97 0.97 Bengin 

0.95 0.95 0.95 Malignant 

0.97 Accuracy 

AdaBoost 

0.96 0.97 0.97 Bengin 

0.95 0.93 0.94 Malignant 

0.96 Accuracy 

GB 

0.96 0.97 0.97 Bengin 

0.95 0.93 0.94 Malignant 

0.96 Accuracy 

Figures 5, 6, 7, 8, and 9 illustrate the confusion 

matrices for Catboost, XGBoost, LightGBM, 

AdaBoost, and Gradient Boosting, respectively. 

Figure 10 shows AUROC for all the five boosting 

algorithms used. 

Figure 11 shows a training times between the five 

algorithms used in this work. 

Figure 12 shows the prediction times between the 

five algorithms used in this work. 

Figure 5: CatBoost. Model Confusion Matrix 

Figure 6: XGBoost Model Confusion matrix. 

Figure 7: LightGBM Model Confusion matrix 

Figure 8: AdaBoost Model Confusion matrix 
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Figure 9: GB. Model Confusion Matrix 

Figure 10: The AUROC for the boosting algorithms used. 
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Figure 11: The comparison of training times. 

Figure 12: The comparison of prediction times. 

5 DISCUSSIONS 

Breast cancer is a significant health issue and a top 

cause of death in women. Early detection remains a 

key focus in medical research. This study elucidates 

the considerable potential of boosting algorithms in 

the realm of breast cancer prediction, with all five 

examined algorithms (CatBoost, XGBoost, 

LightGBM, AdaBoost, and Gradient Boosting) 

attaining exceptional performance metrics. The final 

AUC scores surpassed 99% across all models. 

Notably, LightGBM distinguished itself as the most 

proficient, owing to its innovative leaf-wise tree 

growth strategy, which facilitates enhanced accuracy 

and expedited convergence. Superior scalability and 

lower memory usage make it suitable for large 

datasets and real-time applications. It achieves 

remarkable performance, minimal prediction 

durations, and a substantial reduction in false 

negatives. This accomplishment is particularly 

consequential in the clinical realm of breast cancer 

diagnosis, where false negatives can precipitate 

delayed treatment and potentially exacerbate patient 

outcomes. By prioritizing recall metrics in 

conjunction with conventional accuracy assessments, 

our approach addresses a critical deficiency in 

98 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), August 2020225  



numerous prior studies that predominantly 

emphasized overall accuracy. Our research combines 

five boosting algorithms for breast cancer prediction, 

advancing the field significantly. The high accuracy, 

AUC, and low false negative rates of boosting 

algorithms (especially LightGBM) suggest they can 

improve automated diagnostic systems for breast 

cancer. 

These models can aid clinicians in rendering 

more precise and timely diagnoses, thereby 

mitigating the risk of misdiagnosis and facilitating 

enhanced patient management. 

6 CONCLUSIONS 

This study identifies LightGBM as the top-

performing boosting algorithm for accurate breast 

cancer prediction, highlighting its potential for 

integration into clinical decision-support systems. By 

leveraging its speed, scalability, and high accuracy, 

LightGBM demonstrates how advanced machine 

learning can contribute to earlier and more reliable 

breast cancer detection. The findings advance the 

understanding of boosting algorithms in medical 

machine learning and provide valuable insights for 

healthcare practitioners aiming to improve diagnostic 

workflows. Moreover, the research highlights the role 

of such models in facilitating timely interventions, 

which can be crucial for patient outcomes. For future 

work, employing multi-institutional datasets would 

improve the robustness and generalizability of the 

proposed models, ensuring their applicability across 

diverse populations and healthcare settings. 

Additionally, integrating the predictive framework 

with multimodal data sources such as 

mammographic, ultrasound, and MRI attributes could 

significantly enhance predictive power, providing a 

more comprehensive and precise diagnostic tool for 

clinicians and ultimately contributing to improved 

patient care and treatment planning. 
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