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Abstract: Breast cancer is a prevalent and devastating disease and remains a major contributor to cancer-related
mortality among women worldwide. The increasing incidence and fatality rates are often associated with
changes in lifestyle and the influence of environmental factors. In response to these alarming trends, the
development and deployment of automated breast cancer diagnostic systems have become increasingly
important in modern healthcare. This study investigates the performance of several boosting algorithms -
CatBoost, LightGBM, XGBoost, AdaBoost, and Gradient Boosting - for breast cancer prediction using the
Wisconsin Diagnostic Breast Cancer (WDBC) dataset. The dataset is publicly available on Kaggle and
consists of 569 instances, including 357 benign and 212 malignant cases. The proposed framework
encompasses data preprocessing, feature selection, and classification stages. Model performance was
evaluated using multiple metrics to ensure robust analysis and objective assessment. The experimental results
demonstrate that LightGBM outperformed the other models, highlighting the effectiveness of boosting-based
approaches for breast cancer diagnosis and emphasizing the potential of these techniques for further
advancements in oncology research.

1 INTRODUCTION and increasing survival rates. Previous studies have

proposed various decision support systems for breast
cancer prediction; however, many of them do not
explicitly address time complexity or provide detailed
criteria for training and evaluation.

Furthermore, understanding training and
computational complexity is critical for assessing
malignancy in women, accounting for approximately algorithm. fe'flsi‘.bility, particularly in healthcare
one in four cancer diagnoses and one in six cancer- systems with limited CPU and memory resources. For
related deaths. It holds the highest incidence and example, in 2021, study [1] applied a range of
mortality rates in 159 and 110 countries, respectively. mac}']m.e legrmng. algorithms for breast cancer
Annually, over 2,000,000 new cases are reported, predlctlgn, including CatBoost, XGBoost, Linear
resulting in  approximately 685,000 deaths Regression  (LR), K-Nearest Ne]ghbors (KNN),
worldwide [5], [6]. Hormonal imbalances, genetic S“PP(?“ Vector Machine (SVM), Naive Bayes (NB),
predisposition, marital status, and reproductive Decision Trqe (DT), gnd Random Forest ,(RF)'
history are considered contributory factors in the CatBoost achieved the highest performance, with an
development of breast cancer [7]. accuracy 0f97.8% and an Area Under. the ROC Curve

Therefore, the implementation of automated (AUROC) of 0.983, outperforming the other

methodologies for breast cancer screening and algorithms.

diagnosis is essential. Early and accurate detection In 2022, study [8] employed twelve machine
plays a crucial role in improving patient outcomes learning techniques for breast cancer prediction. The

Breast cancer affects women more than any other
malignancy [1], [2]. It ranks fifth in terms of overall
cancer mortality worldwide [3] and is the second
leading cause of cancer-related death among women
[4]. Globally, breast cancer is the most prevalent
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Perceptron and SVM demonstrated superior
sensitivity and accuracy, while LR achieved the
highest precision and Fl-score. In contrast, DT
exhibited lower sensitivity and accuracy, and KNN
recorded reduced precision and F1-score. Overall, the
Perceptron and SVM emerged as the most effective
predictors, achieving an accuracy of 90% and
showing consistent performance across multiple
evaluation metrics.

In 2023, study [9] utilized several machine
learning classifiers and ensemble techniques on a
breast cancer dataset, reporting that DT and XGBoost
achieved the highest accuracy of 97%.

In 2024, study [3] trained seven machine learning
algorithms, including DT, SGD, RF, SVM, Logistic
Regression, and AdaBoost. The AdaBoost—Logistic
model achieved the highest accuracy of 99.12%,
outperforming the other approaches.

In 2025, study [10] proposed a hybrid deep
learning framework for predicting breast cancer
recurrence by combining deep learning and
traditional machine learning models, resulting in
sixteen predictive models. The BCR-HDL framework
not only predicted recurrence outcomes but also
provided recurrence time estimation. The hybrid
MLP+RF and XceptiontRF models achieved an
accuracy of 97% on the WDBC dataset, while the
MLP+RF model reached 78% prognostic accuracy on
the WPBC dataset. Additionally, the hybrid
ResNet+SVM and ResNet+RF models demonstrated
strong predictive performance, achieving an accuracy
0f 92%.

Despite these advancements, existing studies
predominantly focus on classification accuracy while
neglecting training time and prediction time, which
are essential for identifying the most efficient
algorithms from a practical perspective. Moreover,
there remains a noticeable gap in the comprehensive
application of boosting algorithms for breast cancer
classification. Boosting techniques offer several
advantages over conventional and deep learning
approaches, particularly in handling data imbalance,
missing values, and categorical features. By
combining multiple weak learners, boosting
algorithms enhance generalization capability and
reduce the risk of overfitting. Although boosting
methods have shown strong performance across
various domains, their potential in breast cancer
diagnosis has not been fully explored.

This study aims to develop predictive models for
breast cancer using comprehensive datasets,
advanced feature selection techniques, and five
widely wused boosting algorithms: CatBoost,
LightGBM, XGBoost, AdaBoost, and Gradient
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Boosting (GB). The primary objective is to improve
diagnostic accuracy and patient outcomes by
rigorously evaluating these algorithms using multiple
performance metrics. The evaluation criteria include
accuracy, precision, recall, Fl-score, confusion
matrix, AUROC, as well as computational time for
both training and prediction, ensuring a robust and
comprehensive assessment.

2 THEORETICAL BACKGROUND

2.1 Theoretical Rationale for Boosting

Algorithms in Medical Prediction

Boosting algorithms use ensemble learning with
weak learners (often decision trees) to create a strong
classifier. Boosting reduces bias and variance,
improving predictive accuracy on unseen data. In
medical datasets like breast cancer, boosting
algorithms address class imbalance, noisy features,
and complex relationships by focusing on
misclassified instances. Boosting helps handle
imbalanced data and prevents overfitting through
adaptive weighting and regularization. The ensemble
approach of boosting models improves generalization
on new patient data for clinical deployment [11].

2.2 Theoretical Motivation for Feature
Selection

Feature selection reduces dimensionality, eliminates
irrelevant  variables, and enhances model
interpretability using statistical measures like Pearson
correlation. This helps reduce overfitting, improve
computational efficiency, and enhance
interpretability for clinicians [12].

3 PRELIMINARY CONCEPTS

The subsequent subsections furnish a comprehensive
background pertinent to the classification algorithms
employed in the present study.

3.1 Categorical Boosting (CatBoost)

It is a formidable gradient-boosting library grounded
in open-source principles. It is nonlinear, tree-based,
and adept at handling intricate datasets. CatBoost
consistently ~ surpasses  alternative = boosting
methodologies, demonstrating marked enhancements
in both accuracy and performance. It achieves
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optimal results with remarkable speed, which is
invaluable for time-sensitive applications such as
fraud detection. CatBoost streamlines data
preparation by accommodating categorical features
without necessitating preprocessing. Its sophisticated
capabilities, user-friendly nature, and exceptional
performance render it a premier choice for machine
learning endeavors [13], [14].

3.2 [Extreme Gradient Boosting
(XGBoost)

It is a formidable machine learning algorithm
elucidated in numerous scholarly articles for a myriad
of applications. It has been employed for the detection
of breast cancer with remarkable precision and recall
rates. XGBoost distinguishes itself through its
capacity to tackle intricate challenges, attain elevated
predictive accuracy, and deliver efficiency across
diverse domains [15], [16].

3.3 Light Gradiant Boosting Machine
(LightGBM)

LightGBM stands out as a versatile and efficient tool
in the machine learning toolbox, providing robust
solutions for a wide range of predictive modeling
tasks. Its speed, scalability, and accuracy make it
popular among data scientists and machine learning
practitioners [17], [18].

3.4 Adaptive Boosting (AdaBoost)

To improve predictive accuracy, AdaBoost combines
multiple weak classifiers by placing greater emphasis
on instances that are misclassified. After each
iteration, the dataset is reweighted so that subsequent
weak classifiers focus more on these difficult cases.
When specific criteria are met, a new weak classifier
is introduced, initially assigning equal weight to all
input samples. The weights of misclassified instances
are then increased, while the weights of correctly
classified samples are decreased. This reweighted
dataset is used to train the next weak classifier.
Through this iterative process, all weak classifiers are
combined to form a single, strong classifier [19], [20].

3.5 Gradient Boosting (GB)

Boosting algorithms amalgamate weak learners to
construct a robust learner. Gradient Boosting (GB)
serves as a prominent exemplar in regression tasks. It
incrementally formulates a predictive model by
optimizing a loss function. Overfitting presents a
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significant  challenge when not adequately
regularized. Consider GB for the estimation of
housing prices; it commences with a rudimentary
model that encapsulates the data trend. In each
iteration, it rectifies the errors made by preceding
models. Regularization techniques are imperative to
mitigate overfitting. In the absence of such measures,
the model may become excessively sensitive to the
noise present in the training data, leading to
suboptimal generalization to unseen datasets.
Meticulous tuning of hyperparameters and
regularization parameters is essential. Achieving a
harmonious balance between model complexity and
generalization is pivotal for GB in the realm of
predictive modeling [21], [22].

4 PROPOSED MODEL

This model contains three stages: preprocessing,
feature selection, and classification, as shown below.
4.1 The Dataset

The dataset utilized was the Wisconsin breast cancer
dataset. It has 569 instances without missing values
across thirty-two columns in a CSV file. 30 columns
describe breast cancer physiological characteristics;
one is for ID numbers, and one is for cancer
categories. Features extracted from digital images of
breast mass fine-needle aspiration delineate cell
nuclei characteristics. Resource accessible online at
no cost. The dataset includes cases of women aged 29
to 89, categorized as "B," denotes benign tumors,
while "M" signifies malignant tumors.

Figure 1 illustrates a histogram depicting the
distribution of diagnoses, comprising 212 malignant
cases and 357 benign instances [3], [23].

Figure 1: The histogram of diagnoses in the dataset.
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4.2 Preprocessing Stage

Preprocessing is a critical component of the data
science workflow, serving to meticulously prepare
data for the construction of predictive models.
Without it, prediction quality can suffer.
Preprocessing is crucial for strong predictive models.
Invest time and effort in preprocessing for robust and
reliable models [24]. The preprocessing stage
involved three key steps:

1) Categorical data, such as diagnostic
classifications, was transmuted into numerical
representations (0 denoting benign and 1
signifying malignant).

Eliminating Non-Essential Features. Attributes
such as identification numbers were extricated
to streamline the dataset and mitigate the risk of
overfitting.

Balancing data prevents model bias toward the
majority class, avoiding favoritism. Balanced
models are less likely to suffer accuracy
paradox. Figure 2 shows the histogram of
diagnoses after 100% balancing using

2)

3)

resampling from the sklearn library in Python.
Both classes (benign and malignant) have 357
instances.

diagnosis

Figure 2: The histogram of diagnoses in the dataset after
100% balanceing.

4.3 Features Selection Stage

The myriad of diverse features complicate the
accuracy of predictions. It is imperative to extract key
features through a meticulous feature selection
process prior to the implementation of a machine
learning model. This approach not only mitigates the
presence of irrelevant variables but also curtails
associated costs and minimizes the risk of overfitting.
The judicious selection of significant features is
paramount for achieving successful predictive
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outcomes [25]. The correlation between features is
ascertained through the application of Pearson
correlation, facilitating the comprehension of
relationships and elucidating attribute
interdependence. Statistical indicators of variable
variability and linear association are subsequently
computed (1).

Px,y = Covx, e 0X0OYy, (D)

where x and y are standard deviations of x[n] and
y[n], while Covx,y represents the covariance.
Correlation coefficients, x and y, range from -1 to +1.
A value of zero signifies an absence of a linear
relationship. A robust positive correlation approaches
+1, whereas a pronounced negative correlation nears
-1 [26], [27].

Figure 3 illustrates the heatmap depicting the
correlation among various features.

The most important features for diagnosis were
chosen according to their correlation values (=0.5).
This threshold was meticulously selected to preserve
only the most pertinent features, mitigate extraneous
noise, and enhance both the interpretability and
efficacy of the model. 15 features were selected for
prediction from the original features. Figure 4 shows
the ranked features by Pearson correlation with the
diagnosis.

4.4 Classification Stage and
Performance Evaluation

The total number of features used in this study is 15.
Five boosting algorithms - CatBoost, XGBoost,
LightGBM, AdaBoost, and Gradient Boosting - were
employed for breast cancer prediction. All models
were implemented using the Python programming
language. The dataset was randomly divided into two
subsets, with 80% of the data used for training and
20% reserved for testing, ensuring that model
performance was evaluated on previously unseen
samples.

The classification performance was assessed
using several widely adopted evaluation metrics,
including  precision, recall, accuracy, and
Fl-score [28]. Precision reflects the proportion of
correctly identified positive cases among all predicted
positives, while recall measures the model’s ability to
correctly identify actual positive cases. Accuracy
indicates the overall correctness of the classification
results, and the F1-score provides a balanced measure
by combining precision and recall.
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In addition, a confusion matrix was utilized to
summarize the classification results by presenting the
counts of true positives, true negatives, false
positives, and false negatives in a structured manner.
This representation facilitates a clearer understanding
of model performance across different classes, as
illustrated in Table 1.

Table 1: Classification report for the algorithms used.

Boostin . F1- Class
algoritht%l Presition | Recall score Label
0.95 0.97 0.96 Bengin
CatBoost 0.95 0.90 0.93 | Malignant
0.95 Accuracy
0.96 0.97 0.97 Bengin
XGBoost 0.95 0.93 0.94 | Malignant
0.96 Accuracy
0.97 0.97 0.97 Bengin
LightGBM 0.95 0.95 0.95 | Malignant
0.97 Accuracy
0.96 0.97 0.97 Bengin
AdaBoost 0.95 0.93 0.94 | Malignant
0.96 Accuracy
0.96 0.97 0.97 Bengin
GB 0.95 0.93 0.94 | Malignant
0.96 Accuracy

Figures 5, 6, 7, 8, and 9 illustrate the confusion
matrices for Catboost, XGBoost, LightGBM,
AdaBoost, and Gradient Boosting, respectively.

Figure 10 shows AUROC for all the five boosting
algorithms used.

Figure 11 shows a training times between the five
algorithms used in this work.

Figure 12 shows the prediction times between the
five algorithms used in this work.
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Figure 10: The AUROC for the boosting algorithms used.

97



Proceedings of the 13th International Conference on Applied Innovations in IT (ICAIIT), August 2025

Maodel Training Times

0.010
_ 0.008
i
= 0.006
g
5
-y
£ ooos
=

0.002

000 I |

> & &
& & S
& & & & &
&
Madel
Figure 11: The comparison of training times.
Model Prediction Times

0.5
— 04
3
]
o
@
2 03
o
E
=
=
£ 02
h~
3
&

01

0.0

& 7
Model

Figure 12: The comparison of prediction times.

S DISCUSSIONS

Breast cancer is a significant health issue and a top
cause of death in women. Early detection remains a
key focus in medical research. This study elucidates
the considerable potential of boosting algorithms in
the realm of breast cancer prediction, with all five
examined  algorithms  (CatBoost, = XGBoost,
LightGBM, AdaBoost, and Gradient Boosting)
attaining exceptional performance metrics. The final
AUC scores surpassed 99% across all models.
Notably, LightGBM distinguished itself as the most
proficient, owing to its innovative leaf-wise tree
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growth strategy, which facilitates enhanced accuracy
and expedited convergence. Superior scalability and
lower memory usage make it suitable for large
datasets and real-time applications. It achieves
remarkable  performance, minimal prediction
durations, and a substantial reduction in false
negatives. This accomplishment is particularly
consequential in the clinical realm of breast cancer
diagnosis, where false negatives can precipitate
delayed treatment and potentially exacerbate patient
outcomes. By prioritizing recall metrics in
conjunction with conventional accuracy assessments,
our approach addresses a critical deficiency in
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numerous prior studies that predominantly
emphasized overall accuracy. Our research combines
five boosting algorithms for breast cancer prediction,
advancing the field significantly. The high accuracy,
AUC, and low false negative rates of boosting
algorithms (especially LightGBM) suggest they can
improve automated diagnostic systems for breast
cancer.

These models can aid clinicians in rendering
more precise and timely diagnoses, thereby
mitigating the risk of misdiagnosis and facilitating
enhanced patient management.

6 CONCLUSIONS

This study identifies LightGBM as the top-
performing boosting algorithm for accurate breast
cancer prediction, highlighting its potential for
integration into clinical decision-support systems. By
leveraging its speed, scalability, and high accuracy,
LightGBM demonstrates how advanced machine
learning can contribute to earlier and more reliable
breast cancer detection. The findings advance the
understanding of boosting algorithms in medical
machine learning and provide valuable insights for
healthcare practitioners aiming to improve diagnostic
workflows. Moreover, the research highlights the role
of such models in facilitating timely interventions,
which can be crucial for patient outcomes. For future
work, employing multi-institutional datasets would
improve the robustness and generalizability of the
proposed models, ensuring their applicability across
diverse populations and healthcare settings.
Additionally, integrating the predictive framework
with  multimodal data  sources such as
mammographic, ultrasound, and MRI attributes could
significantly enhance predictive power, providing a
more comprehensive and precise diagnostic tool for
clinicians and ultimately contributing to improved
patient care and treatment planning.
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