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Abstract:

Oil spills pose serious threats to both the environment and public health, demanding fast and accurate
detection in all settings. Traditional detection methods are often slow, expensive, and ineffective across
diverse terrains. This highlights the urgent need for an efficient, automated solution capable of reliably
identifying oil contamination in real time. In this paper, we developed an aerial system using YOLOv10
detector to locate oil contamination on and off the Tigris River banks near Tikrit, Iraq, in real-time. We
collected and annotated a custom dataset comprising 700 UAV images, consisting of 470 water-based oil spill
images and 230 land-based oil spill images. The images underwent square cropping and normalization,
followed by a comprehensive augmentation pipeline that included mosaic mixing and class-aware sample
selection. Fine-tuning COCO-pre-trained YOLOvV10 weights using freeze-then-unfreeze strategies yielded
water-only mAPso results of 69.1 % and land-only 63.1 %. For the combined test set, the detector achieved
mAPso 79.7 %. These findings confirm the lightweight UAV platform and the single-stage detector are

suitable for extensive real-time environmental monitoring in deprived regions with limited resources.

1 INTRODUCTION

The use of oil and petroleum products greatly
increases the possibility of oil and petroleum spilling
into water bodies or land, which may adversely affect
the environment, natural resources, and public health.
It is crucial to detect oil infusion at an early stage in
order to prevent damage to sensitive watersheds and
industrial water bodies. Oil-centric monitoring
methods like satellite imagery, manual inspections
greatly lack in area coverage, time efficiency, and
safety during ground evaluations [1]. Unmanned
aerial vehicles (UAVs) or drones have garnered
attention for policy surveillance activities owing to
their altitude photography paired with autonomous
flight options [2]. Domestic drones, for instance the
DJI Mini 2, can achieve altitudes of 5 to 50 meters
and provide an incredible precision of less than one
meter ground sampling distances, which is ideal for
oil spill inspections. Oil-spill UAV- selfies taken
under diverse weather, light, and backdrop settings
can now be analyzed in real-time using deep-learning
object detection frameworks, ensuring timely
identification and evaluation of oil-contaminated
regions.
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The development of Artificial Intelligence (Al)
technology and its implementation in a variety of
domains has sparked innovation well past the scope
of environmental tracking. The use of machine
learning (ML) and deep learning (DL) technologies
oil spill detection processes has changed remarkably
due to the combination of various types of data and
improvements in the algorithms used. Some of the
initial efforts relied on traditional ML techniques like
Support Vector Machines (SVM) and Random
Forests (RF). Chen and Lu (2017) [3] incorporated
SVM with feature selection that was aware of the
subcategory in aerial image oil spill detection and
Tong and Chen (2019) [4] used RF on polarimetric
Synthetic aperture radar (SAR) data to strengthen
detection against noise. Ozigis et al. (2020) [5] also
evaluated RF versus Fuzzy Forest (FF) for mapping
oil-impacted vegetation and RF’s versatility with
multispectral and SAR data was emphasized. Feature
extraction was done with a machine learning
approach using biologically inspired methods of
processing with Artificial Neural Networks (ANNs).
Park et al. (2020) [6] proved the ability of ANNSs in
improving the reduction of sun glare in optical sea
images. Convolutional Neural Networks (CNNs),
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became specialists later as they were better at
recognizing spatial patterns. The use of CNNs for
characterizing oil slicks in SAR images was
pioneered by Guo et al. (2017) [7] while Nieto-
Hidalgo et al. (2018) [8] implemented multi-stage
CNNs s to classify oil spills, ships, and coastlines in
radar images. The use of CNNss to large scale oil spill
datasets has been reported by Das et al. (2023) [9]
which highlights the effectiveness of feature
propagation.

Recent advancements in CNN architectures have
significantly  improved oil spill  detection
performance in remote sensing applications. Yaohua
and Xudong (2019) [10] introduced a DenseNet-
based model for SAR image feature extraction and
classification using a Softmax layer, tested on ERS-2
SAR data. Wang and Coulson (2023) [11] leveraged
a pre-trained MobileNet model, demonstrating the
value of transfer learning for custom oil spill
detection,  particularly on  computationally
constrained platforms. Zeng and Wang [12] utilized a
VGG-16-based DCNN to classify SAR dark spots,
with data augmentation enhancing the model’s ability
to learn features over handcrafted methods. Ronci et
al. (2020) [13] extended the U-Net++ architecture by
adding a final convolutional layer and training on 839
SAR images from RADARSAT-2 and Sentinel-1.
Similarly, Chen et al. (2024) [14] implemented a U-
Net model with a lightweight MobileNetv3 backbone,
incorporating multi-scale feature fusion to improve
class-level feature learning. Krestenitis et al.
(2019) [15] explored various DCNNs for semantic

segmentation, identifying DeepLabv3+ as the top
performer in accuracy and inference speed on oil spill
datasets.

Few works combine high-speed detection with
UAYV mobility in resource-constrained regions. These
gaps motivated our use of YOLOv10 with drone
imagery to achieve fast, accurate detection across
diverse environments, which are listed in Table 1. In
this paper, we design and assess an oil spill detection
framework based on UAV imagery that processes the
YOLOv10 detector for real-time operation on
desktop GPUs as well as edge devices. We examine a
case study focused on the Tigris River region near
Tikrit, Iraq, where recent leaks from pipelines have
resulted into observable oil spills on the surface of
water as well as stained soil on the adjacent land. Our
contributions are:

= A custom dataset of 700 UAV images
containing water-only and land-only oil spills
with varying backgrounds, including complex
environmental conditions.

= A comprehensive preparatory pipeline that
includes normalization, augmentation using
mosaic mixing, photometric and geometric
transforms, as well as class-aware sampling
aimed at increasing model robustness.

= QOil spill detection-specific fine-tuning
strategies for YOLOV10 including freeze-then-
unfreeze and custom anchor estimation.

=  Comprehensive analysis measuring mean
Average Precision reported mAP@50 with
water-only, land-only, and combined test sets.

Table 1: Related work with different remote sensing images.

Ref. Data Method Remarks

[3] Sea water images SVM Data reliability is low

[4] SAR (Radarsat-2, UAVSAR) RF Accuracy up t0 92.99%

[5] Multifrequency SAR FF, RF Accuracy 75%

[6] Optical satellite (KOMPSAT-2) ANN Reliability is limited

[7] Polarimetric SAR CNNs Sea state variation affects accuracy
[8] Side-looking airborne radar images CNNs No major improvement in spill detection
[9] SAR images CNNs Depends on image quality

[10] SAR (ERS-2) DenseNet Oil-like films not considered

[11] Remote sensing images MobileNet Dataset lacks full spill variation
[12] SAR (dark patches) VGG16 Workload is heavy

[13] SAR (Radarsat-2, Sentinel-1) UNet Need better post-processing

[14] SAR (MKLab) U-Net + MobileNetv3 mloU >80%

[15] SAR images DeepLabv3+ mloU 65.06%

[16] SAR (Sentinel-1) YOLOv4 AP 68.69% but weak performance in new area
[17] SAR (DM4D dataset) YOLOv8 mloU 69.52%

[18] UAV imagery RF Accuracy 77%

[19] UAYV imagery CNN Accuracy 83.3%
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2 MATERIALS AND METHODS

The methodology involves collecting drone images of
oil-contaminated land and water, then performing
image enhancements and robust training of the
YOLOvV10 model. Its accuracy will be evaluated and
validated in a variety of environmental conditions.

2.1 Dataset Collection and Curation

The dataset was obtained while performing field
activities on two adjacent sections of Tigris River
near Tikrit Iraq. The first zone included riverine
segments with documented leaks from pipelines
affected by intermittent oil sheen and patchy slicks on
the water surface as shown in Figure 1. The second
zone included industrial lands located on the eastern
side of the river with contaminated soils near the
storage tanks and pipeline corridors as shown in
Figure 2.

Figure 1: Aerial drone imagery contrasting oil-polluted and
contaminated water zones.

Figure 2: Drone-acquired aerial views of terrestrial
landscapes.

A DJI Mini 2 quad-rotor outfitted with 12.0 MP
RGB camera captured images while hovering
between 5 meters and 50 meters AGL. Flights were
done under varying weather conditions such as:

=  Shadow illumination: full sun, partially cloudy,
over cast.

=  Water conditions: still, wind ripples, constant
changes in water clarity.

= Background terrains: sandy loam, clay, mixed
aggregates, shadowed, and non-shadowed from
adjacent structures.

The cameras were preset to 4K (3840x2160
pixels) and 24 fps which guarantee the absence of
noise at ISO 100. A total of 700 images were taken,
470 of which were oil contamination on the water
surface only, while the rest 230 were from the oil-
stained soil and debris on land. The dataset’s
geographic focus was necessary for controlled data
collection under known spill conditions, ensuring
annotation accuracy. While this limits diversity, the
model was trained with strong augmentations and
mixed scenarios to encourage broader generalization.

2.2 Ground Truth Annotation

Annotation of images took place on the RoboFlow
platform. Annotations were done in the YOLO
format, with water oil as (class 0) and land oil (class
1) as the two classes. Additionally, normalized center
coordinates along with the dimensions of the
bounding boxes were created for every image. Expert
annotators tightly defined the bounding boxes of the
following features:
=  Water-based oil. continuous sheens, discrete
patches, and emulsified areas as shown in
Figure 3.
= Land-based oil. stained soil, runoff streaks, and
oil-soaked debris as shown in Figures 3 and 4.

=X
o

Figure 3: Example of annotating a water-based oil image
using the platform.
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Figure 4: Example of annotating a land-based oil image
using the platform.

2.3 Data Splitting Strategy

Multiple data splitting scenarios were tested across
water, land, and combined (water-land) datasets to
identify optimal performance. After evaluating 66
parameter configurations, the best results were
achieved with the following splits:
=  Water Data. 75% training, 23% validation, and
2% testing.
= Land Data. 76% training, 22% validation, and
2% testing.
=  Water-Land Data. 84%
validation, and 1% testing.

training, 15%

The testing sets were intentionally kept small to
maximize training data availability, which is crucial
for learning in data-limited scenarios like
environmental monitoring. Our primary aim was to
improve model generalization through diverse
training and validation exposure while using held-out
test samples only for final benchmarking. The data
partitioning strategy was tailored to the unique
characteristics and sample sizes of each subset to
ensure sufficient representation of critical features
during training. For the combined water-land dataset,
a larger training proportion (84%) was necessary to
capture the increased complexity and variability
across domains. Although the splits differ slightly,
each configuration was optimized through empirical
testing to balance learning capacity and validation
reliability within the constraints of limited data.

2.4 Preprocessing and Augmentation

The following steps were taken for all images prior
to training:
= Quality filtering. Exclude images with drastic
motion blur, over-exposure, under-exposure, or
lens artifacts (<2% of data).

=  Uniform square cropping. Center-crop to
maintain a square aspect ratio.

= Resizing. Resizing to 640x640 was chosen to
ensure compatibility with YOLOv10 while
maintaining  processing efficiency and
consistent input dimensions across batches.
Although  domain-specific  augmentations
could further improve generalization, the
current pipeline prioritizes general-purpose
enhancements to retain dataset balance and
model scalability.

= Normalization. Adjust pixel values to [0,1]
range. Perform mean subtraction and standard
deviation normalization per channel using
ImageNet parameters.

An augmentation pipeline executed as follow:

= Geometric transforms. Horizontal and vertical
flips, rotation of +15°, scale from 0.8 to 1.2.

=  Photometric jitter. Change brightness and
contrast & 20, change saturation + 15, Gaussian
blur with o < 1.0.

=  Mosaic mixing. Four images per sample are
combined using box clipping and area-based
filtering.

= (Class-aware sampling. Guarantee every
minibatch (size 16) has a minimum of >3
water_oil images.

To address class imbalance, class-aware sampling
was implemented to ensure each training mini-batch
included at least three water-based samples.
Additionally, balanced data splits and augmentation
were applied to prevent model bias toward the
dominant aquatic class. This dataset along with the
described preprocessing steps provides a solid basis
for training and testing the YOLOvV1O detector in
aquatic and terrestrial spill scenarios.

2.5 Model Development

YOLOv10 is a state-of-the-art, real-time object
detection algorithm designed for fast and accurate
detection. It builds on previous YOLO versions by
improving backbone efficiency, multi-scale feature
fusion, and detection heads, enabling better
performance in detecting small and complex objects
in diverse environments. We adopted the YOLOv10
variant optimized for fast inference and balanced
detection accuracy, making it suitable for UAV-based
oil spill monitoring:
= The architecture begins with a CSP-Darknet
backbone, which extracts hierarchical features
while reducing computational burden.
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= This is followed by a Spatial Pyramid Pooling
(SPP) module that captures multi-scale spatial
context, critical for identifying variable oil spill
patterns.

= A PANet neck is then employed to enhance
feature fusion across scales, improving the
model’s ability to localize spills in both water
and land environments.

= Detection is performed using three output
heads operating at strides of 8, 16, and 32,
enabling accurate recognition of small to large
spill regions.

= The model is initialized with COCO-pretrained
weights, which help bootstrap training by
providing rich low-level features, thus
accelerating convergence and improving early-
stage performance on oil-specific imagery.

The training process was conducted on an
NVIDIA RTX 3090 GPU using the Adam optimizer.
The most important hyperparameters are:

=  Learning rate: Initial 0.001, decayed to 0.00001
using cosine annealing.

= Weight decay: 0.0005.

= Batch size: 16 images per iteration.

= Precision: In an effort to accelerate
computation and reduce memory usage, mixed-
precision training (fp16) was used.

A freeze-then-unfreeze strategy was employed,
where the first two backbone CSP stages were frozen
for the first 10 epochs to retain pre-trained features,
then all layers were unfrozen for the remaining 90
epochs. The strategy was adopted based on
established practices in transfer learning to retain
low-level features from COCO pretraining. It aimed
to stabilize early training and accelerate convergence
given limited domain-specific data. The composite
loss function consists of:

= Bounding box regression loss (CloU):
accuracy in localization is reasoned spatially.

= (Classification loss (CE): cross entropy loss for
two classes.

= DFL: Distribution Focal Loss — improves
bounding box estimates.

The combined use of CloU, CE, and DFL losses
was adopted based on established best practices to
improve localization and classification accuracy.

The development process includes evaluation of
training and validation losses (box, classification,
DFL) as well as mean Average Precision (mAP@50
and mAP@].5:.95]) with the validation set. The best
model checkpoint was selected based on the highest
mAP@)][.5:.95].Also, class-aware sampling was
implemented in such a way that at least three water

oilers were present in each mini-batch to reduce class
imbalance. The final assessment was performed on
three held-out test sets: Water-only set, Land-only set
and combined set.

The metrics reported include mAP@50,
mAP@][.5:.95] and average IoU for true positives.
Parameters such as learning rate schedules, weight
decay, and batch size were optimized via grid search
on validation set aimed to maximize mAP@ [.5:.95].
This training regimen was aimed for the YOLOv10
model to achieve high-speed and high-accuracy oil
spill detection across varying conditions.

3 RESULTS AND EVALUATION

The experimental evaluation of YOLOvVIO across
three test scenarios—Land-only, Water-only, and
Combined (Water + Land)—reveals distinct
performance trends, as summarized in Table 2. The
model achieved its highest mean Average Precision
(mAP@50) of 79.7% in the combined scenario,
demonstrating the advantages of training on diverse
datasets that incorporate both aquatic and terrestrial
environments. This suggests that exposure to varied
textures, such as oil sheens on water and irregular
patches on land, enhances the model’s ability to
generalize and reduces overfitting to domain-specific
noise. In contrast, the Water-only scenario yielded a
moderate mAP@50 of 69.1%, reflecting challenges
posed by dynamic water conditions like sun glint,
wave interference, and algae blooms, which often
mimic oil sheens and lead to false positives. The
Land-only scenario performed weakest at 63.1%,
underscoring the complexities of terrestrial
environments, where shadows, industrial debris, and
overlapping textures (e.g., wet soil or rust) complicate
spill detection, particularly for smaller spills (<Im?)
due to limited spatial resolution.

Table 2: Comparing the performance for the three
scenarios.

Scenario mAP@50 (%)
Land-only 63.1
Water-only 69.1
Combined (Water + Land) 79.7

3.1 Training Curve Analysis

We tracked key training and validation metrics over
100 epochs for each scenario:

= Land-only curves: The model exhibited rapid

convergence, with train/cls_loss falling from
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~25 to below 3 by epoch 10, and val/mAP@50
surpassing 0.85 around epoch 60. Training
precision approached 0.85 and recall neared
0.9, reflecting high detection consistency on
high-contrast land spills.

=  Water-only curves: Training and validation
box, classification, and DFL losses showed an
overall decrease, with the most cls loss
reduction occurring in the first ten epochs.
Precision improved from ~0.4 to over 0.8, and
recall improved from ~0.3 to ~0.7, suggesting
some useful feature learning was taking place
despite water reflection interference.

=  Combined curves: Loss curves decreased more
gradually and had occasional oscillations in
precision because of the heterogeneity in the
object appearance. By epoch 80, Val/mAP@50
reached ~0.7 and mAP@50-95 stabilized
around  0.28, demonstrating  learning
adaptability across both domains.

Across the board, the attention and tracking
disciplines mastered in synched training have cross-
domain applicability, as demonstrated by the close
spacing between the training and validation curves
across all scenarios. These patterns support the
effectiveness of the implemented freeze-unfreeze
method and augmentation pipeline. In summary, the
model performs well in the Water-Land scenario but
shows slightly reduced accuracy and more variability
in precision compared to the Water-only scenario.
These differences are expected due to the increased
complexity and diversity of the mixed environment,
which introduces additional challenges in object
detection.

3.2 Qualitative Analysis

By virtue of visually inspecting the document, two
overriding error modes can be noted as follows:
= Low water sheen contrast: Oil films on rippled
or turbid water sometimes resulted in missed
detections or low-confidence outputs using thin
water sheens.
= Background confusion: Some shadows dark on
soil or wet asphalt occasionally resulted in false
positives.

Due to logistical and environmental constraints,
external datasets were not available; thus, diverse
real-world conditions were simulated within the
existing dataset to encourage generalizability. The
split strategy ensured varied representation across
training and validation sets to approximate unseen
scenarios. Figure 5 show casing oil spill detection

using yolo10 on land data. Figure 6 showcasing oil
spill detection using Yolo10 on water data.

20ilSpill-MnCy 44%

Figure 6: Oil spill detection using yolo10 on water data.

Our study is closely related to SAM-OIL in [17],
which uses semantic segmentation based on SAR
images, but it surpasses it in several key areas. Unlike
SAM-OIL, which requires extensive pixel-level
annotations and a multi-stage process involving
YOLOv8, SAM, and OMF, our method uses
YOLOvV10 with simple bounding box annotations,
reducing annotation complexity and computational
overhead. Our model is optimized for real-time
deployment on UAVs using RGB imagery, making it
more practical and scalable. While SAM-OIL focuses
on fine-grained segmentation, our approach achieves
competitive detection accuracy with a streamlined
architecture. Moreover, by addressing diverse terrain
types and ensuring domain adaptability, our model
offers broader generalization and deployment
readiness.
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4 CONCLUSIONS

In this paper, we showed that real-time detection of
oil spills on water and land surfaces is possible using
a lightweight YOLOv10 model deployed on UAV
captured images. Our framework reached mAP@50
of 69.1% (water only), 63.1% (land only), and 79.7%
(combined) while achieving over 65 FPS on desktop
GPUs and 25 FPS on edge devices. These findings
support the notion that resource-limited detectors are
capable of providing usable accuracy value for real-
time environmental monitoring under in situ
conditions.

While our approach achieved strong results, a
number of challenges remain. First, detection
accuracy diminishes with thinner, low-contrast oil
sheen layers on highly reflective turbid water due to
missed detections. Dark shadows and visually
indistinguishable backgrounds on land can also create
false positives. Moreover, the focus of our study is
RGB data, which limits performance in more
sophisticated situations where other spectral data
would improve separation. To overcome these
limitations, further research should investigate:

=  The addition of near infrared, thermal or SAR
data to increase the discrimination value of oil
against the background and reduce misses and
false alarms.

=  Using video clips together with spatial and
temporal smoothing to stabilize detections and
reduce flicker during the subsequent
processing of videos captured by UAVs.

=  Semi-supervised and active learning:
Enhancing dataset creation by using strategies
such as pseudo-labeling, domain adaptation, or
human-in-the-loop, which help to improve
consistency across different scenarios,
requiring only minimal annotation effort.

= Instance segmentation extension: I ntegrating
segmentation models such as YOLO with SAM
to capture and define the exact spill boundaries
to achieve more precise area quantification.

As we made clear above, the UAV based
YOLOvVI10 pipeline we developed enables oil spill
monitoring in low resources setting with
unprecedented speed and at a fraction of the cost,
demonstrating remarkable flexibility and scalability.
Focusing on model efficiency and real-time execution
allows the framework to assist environmental
agencies and first responders with early detection and
mitigation strategies. Dedicated work in the
directions outlined above is expected to further
increase the confidence and widen the use of

detection across diverse ecological and industrial
environments.
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