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Abstract: Oil spills pose serious threats to both the environment and public health, demanding fast and accurate 

detection in all settings. Traditional detection methods are often slow, expensive, and ineffective across 

diverse terrains. This highlights the urgent need for an efficient, automated solution capable of reliably 

identifying oil contamination in real time. In this paper, we developed an aerial system using YOLOv10 

detector to locate oil contamination on and off the Tigris River banks near Tikrit, Iraq, in real-time. We 

collected and annotated a custom dataset comprising 700 UAV images, consisting of 470 water-based oil spill 

images and 230 land-based oil spill images. The images underwent square cropping and normalization, 

followed by a comprehensive augmentation pipeline that included mosaic mixing and class-aware sample 

selection. Fine-tuning COCO-pre-trained YOLOv10 weights using freeze-then-unfreeze strategies yielded 

water-only mAP₅₀ results of 69.1 % and land-only 63.1 %. For the combined test set, the detector achieved 

mAP₅₀ 79.7 %. These findings confirm the lightweight UAV platform and the single-stage detector are 

suitable for extensive real-time environmental monitoring in deprived regions with limited resources. 

1 INTRODUCTION 

The use of oil and petroleum products greatly 

increases the possibility of oil and petroleum spilling 

into water bodies or land, which may adversely affect 

the environment, natural resources, and public health. 

It is crucial to detect oil infusion at an early stage in 

order to prevent damage to sensitive watersheds and 

industrial water bodies. Oil-centric monitoring 

methods like satellite imagery, manual inspections 

greatly lack in area coverage, time efficiency, and 

safety during ground evaluations [1]. Unmanned 

aerial vehicles (UAVs) or drones have garnered 

attention for policy surveillance activities owing to 

their altitude photography paired with autonomous 

flight options [2]. Domestic drones, for instance the 

DJI Mini 2, can achieve altitudes of 5 to 50 meters 

and provide an incredible precision of less than one 

meter ground sampling distances, which is ideal for 

oil spill inspections. Oil-spill UAV- selfies taken 

under diverse weather, light, and backdrop settings 

can now be analyzed in real-time using deep-learning 

object detection frameworks, ensuring timely 

identification and evaluation of oil-contaminated 

regions. 

The development of Artificial Intelligence (AI) 

technology and its implementation in a variety of 

domains has sparked innovation well past the scope 

of environmental tracking. The use of machine 

learning (ML) and deep learning (DL) technologies 

oil spill detection processes has changed remarkably 

due to the combination of various types of data and 

improvements in the algorithms used. Some of the 

initial efforts relied on traditional ML techniques like 

Support Vector Machines (SVM) and Random 

Forests (RF). Chen and Lu (2017) [3] incorporated 

SVM with feature selection that was aware of the 

subcategory in aerial image oil spill detection and 

Tong and Chen (2019) [4] used RF on polarimetric 

Synthetic aperture radar (SAR) data to strengthen 

detection against noise. Ozigis et al. (2020) [5] also 

evaluated RF versus Fuzzy Forest (FF) for mapping 

oil-impacted vegetation and RF’s versatility with 

multispectral and SAR data was emphasized. Feature 

extraction was done with a machine learning 

approach using biologically inspired methods of 

processing with Artificial Neural Networks (ANNs). 

Park et al. (2020) [6] proved the ability of ANNs in 

improving the reduction of sun glare in optical sea 

images. Convolutional Neural Networks (CNNs), 
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became specialists later as they were better at 

recognizing spatial patterns. The use of CNNs for 

characterizing oil slicks in SAR images was 

pioneered by Guo et al. (2017) [7] while Nieto-

Hidalgo et al. (2018) [8] implemented multi-stage 

CNNs to classify oil spills, ships, and coastlines in 

radar images. The use of CNNs to large scale oil spill 

datasets has been reported by Das et al. (2023) [9] 

which highlights the effectiveness of feature 

propagation. 

Recent advancements in CNN architectures have 

significantly improved oil spill detection 

performance in remote sensing applications. Yaohua 

and Xudong (2019) [10] introduced a DenseNet-

based model for SAR image feature extraction and 

classification using a Softmax layer, tested on ERS-2 

SAR data. Wang and Coulson (2023) [11] leveraged 

a pre-trained MobileNet model, demonstrating the 

value of transfer learning for custom oil spill 

detection, particularly on computationally 

constrained platforms. Zeng and Wang [12] utilized a 

VGG-16-based DCNN to classify SAR dark spots, 

with data augmentation enhancing the model’s ability 

to learn features over handcrafted methods. Ronci et 

al. (2020) [13] extended the U-Net++ architecture by 

adding a final convolutional layer and training on 839 

SAR images from RADARSAT-2 and Sentinel-1. 

Similarly, Chen et al. (2024) [14] implemented a U-

Net model with a lightweight MobileNetv3 backbone, 

incorporating multi-scale feature fusion to improve 

class-level feature learning. Krestenitis et al. 

(2019) [15] explored various DCNNs for semantic 

segmentation, identifying DeepLabv3+ as the top 

performer in accuracy and inference speed on oil spill 

datasets.  

Few works combine high-speed detection with 

UAV mobility in resource-constrained regions. These 

gaps motivated our use of YOLOv10 with drone 

imagery to achieve fast, accurate detection across 

diverse environments, which are listed in Table 1. In 

this paper, we design and assess an oil spill detection 

framework based on UAV imagery that processes the 

YOLOv10 detector for real-time operation on 

desktop GPUs as well as edge devices. We examine a 

case study focused on the Tigris River region near 

Tikrit, Iraq, where recent leaks from pipelines have 

resulted into observable oil spills on the surface of 

water as well as stained soil on the adjacent land. Our 

contributions are: 

▪ A custom dataset of 700 UAV images

containing water-only and land-only oil spills

with varying backgrounds, including complex

environmental conditions.

▪ A comprehensive preparatory pipeline that

includes normalization, augmentation using

mosaic mixing, photometric and geometric

transforms, as well as class-aware sampling

aimed at increasing model robustness.

▪ Oil spill detection-specific fine-tuning

strategies for YOLOv10 including freeze-then-

unfreeze and custom anchor estimation.

▪ Comprehensive analysis measuring mean

Average Precision reported mAP@50 with

water-only, land-only, and combined test sets.

Table 1: Related work with different remote sensing images. 

Ref. Data Method Remarks 

[3] Sea water images SVM Data reliability is low 

[4] SAR (Radarsat-2, UAVSAR) RF Accuracy up to 92.99% 

[5] Multifrequency SAR FF, RF Accuracy 75% 

[6] Optical satellite (KOMPSAT-2) ANN Reliability is limited 

[7] Polarimetric SAR CNNs Sea state variation affects accuracy 

[8] Side-looking airborne radar images CNNs No major improvement in spill detection 

[9] SAR images CNNs Depends on image quality 

[10] SAR (ERS-2) DenseNet Oil-like films not considered 

[11] Remote sensing images MobileNet Dataset lacks full spill variation 

[12] SAR (dark patches) VGG16 Workload is heavy 

[13] SAR (Radarsat-2, Sentinel-1) UNet Need better post-processing 

[14] SAR (MKLab) U-Net + MobileNetv3 mIoU >80% 

[15] SAR images DeepLabv3+ mIoU 65.06% 

[16] SAR (Sentinel-1) YOLOv4 AP 68.69% but weak performance in new area 

[17] SAR (DM4D dataset) YOLOv8 mIoU 69.52% 

[18] UAV imagery RF Accuracy 77% 

[19] UAV imagery CNN Accuracy 83.3% 
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2 MATERIALS AND METHODS 

The methodology involves collecting drone images of 

oil-contaminated land and water, then performing 

image enhancements and robust training of the 

YOLOv10 model. Its accuracy will be evaluated and 

validated in a variety of environmental conditions. 

2.1 Dataset Collection and Curation 

The dataset was obtained while performing field 

activities on two adjacent sections of Tigris River 

near Tikrit Iraq. The first zone included riverine 

segments with documented leaks from pipelines 

affected by intermittent oil sheen and patchy slicks on 

the water surface as shown in Figure 1. The second 

zone included industrial lands located on the eastern 

side of the river with contaminated soils near the 

storage tanks and pipeline corridors as shown in 

Figure 2. 

Figure 1: Aerial drone imagery contrasting oil-polluted and 

contaminated water zones. 

Figure 2: Drone-acquired aerial views of terrestrial 

landscapes. 

A DJI Mini 2 quad-rotor outfitted with 12.0 MP 

RGB camera captured images while hovering 

between 5 meters and 50 meters AGL. Flights were 

done under varying weather conditions such as: 

▪ Shadow illumination: full sun, partially cloudy,

over cast.

▪ Water conditions: still, wind ripples, constant

changes in water clarity.

▪ Background terrains: sandy loam, clay, mixed

aggregates, shadowed, and non-shadowed from

adjacent structures.

The cameras were preset to 4K (3840×2160 

pixels) and 24 fps which guarantee the absence of 

noise at ISO 100. A total of 700 images were taken, 

470 of which were oil contamination on the water 

surface only, while the rest 230 were from the oil-

stained soil and debris on land. The dataset’s 

geographic focus was necessary for controlled data 

collection under known spill conditions, ensuring 

annotation accuracy. While this limits diversity, the 

model was trained with strong augmentations and 

mixed scenarios to encourage broader generalization. 

2.2 Ground Truth Annotation 

Annotation of images took place on the RoboFlow 

platform. Annotations were done in the YOLO 

format, with water oil as (class 0) and land oil (class 

1) as the two classes. Additionally, normalized center

coordinates along with the dimensions of the

bounding boxes were created for every image. Expert

annotators tightly defined the bounding boxes of the

following features:

▪ Water-based oil. continuous sheens, discrete

patches, and emulsified areas as shown in

Figure 3.

▪ Land-based oil. stained soil, runoff streaks, and

oil-soaked debris as shown in Figures 3 and 4.

Figure 3: Example of annotating a water-based oil image 

using the platform. 
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Figure 4: Example of annotating a land-based oil image 

using the platform. 

2.3 Data Splitting Strategy 

Multiple data splitting scenarios were tested across 

water, land, and combined (water-land) datasets to 

identify optimal performance. After evaluating 66 

parameter configurations, the best results were 

achieved with the following splits: 

▪ Water Data. 75% training, 23% validation, and

2% testing.

▪ Land Data. 76% training, 22% validation, and

2% testing.

▪ Water-Land Data. 84% training, 15%

validation, and 1% testing.

The testing sets were intentionally kept small to 

maximize training data availability, which is crucial 

for learning in data-limited scenarios like 

environmental monitoring. Our primary aim was to 

improve model generalization through diverse 

training and validation exposure while using held-out 

test samples only for final benchmarking. The data 

partitioning strategy was tailored to the unique 

characteristics and sample sizes of each subset to 

ensure sufficient representation of critical features 

during training. For the combined water-land dataset, 

a larger training proportion (84%) was necessary to 

capture the increased complexity and variability 

across domains. Although the splits differ slightly, 

each configuration was optimized through empirical 

testing to balance learning capacity and validation 

reliability within the constraints of limited data. 

2.4 Preprocessing and Augmentation 

The following steps were taken for all images prior 

to training: 

▪ Quality filtering. Exclude images with drastic

motion blur, over-exposure, under-exposure, or

lens artifacts (<2% of data).

▪ Uniform square cropping. Center-crop to

maintain a square aspect ratio.

▪ Resizing. Resizing to 640×640 was chosen to

ensure compatibility with YOLOv10 while

maintaining processing efficiency and

consistent input dimensions across batches.

Although domain-specific augmentations

could further improve generalization, the

current pipeline prioritizes general-purpose

enhancements to retain dataset balance and

model scalability.

▪ Normalization. Adjust pixel values to [0,1]

range. Perform mean subtraction and standard

deviation normalization per channel using

ImageNet parameters.

An augmentation pipeline executed as follow: 

▪ Geometric transforms. Horizontal and vertical

flips, rotation of ±15°, scale from 0.8 to 1.2.

▪ Photometric jitter. Change brightness and

contrast ± 20, change saturation ± 15, Gaussian

blur with σ ≤ 1.0.

▪ Mosaic mixing. Four images per sample are

combined using box clipping and area-based

filtering.

▪ Class-aware sampling. Guarantee every

minibatch (size 16) has a minimum of >3

water_oil images.

To address class imbalance, class-aware sampling 

was implemented to ensure each training mini-batch 

included at least three water-based samples. 

Additionally, balanced data splits and augmentation 

were applied to prevent model bias toward the 

dominant aquatic class. This dataset along with the 

described preprocessing steps provides a solid basis 

for training and testing the YOLOv10 detector in 

aquatic and terrestrial spill scenarios. 

2.5 Model Development 

YOLOv10 is a state-of-the-art, real-time object 

detection algorithm designed for fast and accurate 

detection. It builds on previous YOLO versions by 

improving backbone efficiency, multi-scale feature 

fusion, and detection heads, enabling better 

performance in detecting small and complex objects 

in diverse environments. We adopted the YOLOv10 

variant optimized for fast inference and balanced 

detection accuracy, making it suitable for UAV-based 

oil spill monitoring:  

▪ The architecture begins with a CSP-Darknet

backbone, which extracts hierarchical features

while reducing computational burden.

104 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), August 2020225  



▪ This is followed by a Spatial Pyramid Pooling

(SPP) module that captures multi-scale spatial

context, critical for identifying variable oil spill

patterns.

▪ A PANet neck is then employed to enhance

feature fusion across scales, improving the

model’s ability to localize spills in both water

and land environments.

▪ Detection is performed using three output

heads operating at strides of 8, 16, and 32,

enabling accurate recognition of small to large

spill regions.

▪ The model is initialized with COCO-pretrained

weights, which help bootstrap training by

providing rich low-level features, thus

accelerating convergence and improving early-

stage performance on oil-specific imagery.

The training process was conducted on an 

NVIDIA RTX 3090 GPU using the Adam optimizer. 

The most important hyperparameters are: 

▪ Learning rate: Initial 0.001, decayed to 0.00001

using cosine annealing.

▪ Weight decay: 0.0005.

▪ Batch size: 16 images per iteration.

▪ Precision: In an effort to accelerate

computation and reduce memory usage, mixed-

precision training (fp16) was used.

A freeze-then-unfreeze strategy was employed, 

where the first two backbone CSP stages were frozen 

for the first 10 epochs to retain pre-trained features, 

then all layers were unfrozen for the remaining 90 

epochs. The strategy was adopted based on 

established practices in transfer learning to retain 

low-level features from COCO pretraining. It aimed 

to stabilize early training and accelerate convergence 

given limited domain-specific data. The composite 

loss function consists of: 

▪ Bounding box regression loss (CIoU):

accuracy in localization is reasoned spatially.

▪ Classification loss (CE): cross entropy loss for

two classes.

▪ DFL: Distribution Focal Loss – improves

bounding box estimates.

The combined use of CIoU, CE, and DFL losses 

was adopted based on established best practices to 

improve localization and classification accuracy. 

The development process includes evaluation of 

training and validation losses (box, classification, 

DFL) as well as mean Average Precision (mAP@50 

and mAP@[.5:.95]) with the validation set. The best 

model checkpoint was selected based on the highest 

mAP@[.5:.95].Also, class-aware sampling was 

implemented in such a way that at least three water 

oilers were present in each mini-batch to reduce class 

imbalance. The final assessment was performed on 

three held-out test sets: Water-only set, Land-only set 

and combined set. 

The metrics reported include mAP@50, 

mAP@[.5:.95] and average IoU for true positives. 

Parameters such as learning rate schedules, weight 

decay, and batch size were optimized via grid search 

on validation set aimed to maximize mAP@ [.5:.95]. 

This training regimen was aimed for the YOLOv10 

model to achieve high-speed and high-accuracy oil 

spill detection across varying conditions. 

3 RESULTS AND EVALUATION 

The experimental evaluation of YOLOv10 across 

three test scenarios—Land-only, Water-only, and 

Combined (Water + Land)—reveals distinct 

performance trends, as summarized in Table 2. The 

model achieved its highest mean Average Precision 

(mAP@50) of 79.7% in the combined scenario, 

demonstrating the advantages of training on diverse 

datasets that incorporate both aquatic and terrestrial 

environments. This suggests that exposure to varied 

textures, such as oil sheens on water and irregular 

patches on land, enhances the model’s ability to 

generalize and reduces overfitting to domain-specific 

noise. In contrast, the Water-only scenario yielded a 

moderate mAP@50 of 69.1%, reflecting challenges 

posed by dynamic water conditions like sun glint, 

wave interference, and algae blooms, which often 

mimic oil sheens and lead to false positives. The 

Land-only scenario performed weakest at 63.1%, 

underscoring the complexities of terrestrial 

environments, where shadows, industrial debris, and 

overlapping textures (e.g., wet soil or rust) complicate 

spill detection, particularly for smaller spills (<1m²) 

due to limited spatial resolution. 

Table 2: Comparing the performance for the three 

scenarios. 

Scenario mAP@50 (%) 

Land-only 63.1 

Water-only 69.1 

Combined (Water + Land) 79.7 

3.1 Training Curve Analysis 

We tracked key training and validation metrics over 

100 epochs for each scenario: 

▪ Land-only curves: The model exhibited rapid

convergence, with train/cls_loss falling from
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~25 to below 3 by epoch 10, and val/mAP@50 

surpassing 0.85 around epoch 60. Training 

precision approached 0.85 and recall neared 

0.9, reflecting high detection consistency on 

high-contrast land spills. 

▪ Water-only curves: Training and validation

box, classification, and DFL losses showed an

overall decrease, with the most cls_loss

reduction occurring in the first ten epochs.

Precision improved from ~0.4 to over 0.8, and

recall improved from ~0.3 to ~0.7, suggesting

some useful feature learning was taking place

despite water reflection interference.

▪ Combined curves: Loss curves decreased more

gradually and had occasional oscillations in

precision because of the heterogeneity in the

object appearance. By epoch 80, Val/mAP@50

reached ~0.7 and mAP@50-95 stabilized

around 0.28, demonstrating learning

adaptability across both domains.

Across the board, the attention and tracking 

disciplines mastered in synched training have cross-

domain applicability, as demonstrated by the close 

spacing between the training and validation curves 

across all scenarios. These patterns support the 

effectiveness of the implemented freeze-unfreeze 

method and augmentation pipeline. In summary, the 

model performs well in the Water-Land scenario but 

shows slightly reduced accuracy and more variability 

in precision compared to the Water-only scenario. 

These differences are expected due to the increased 

complexity and diversity of the mixed environment, 

which introduces additional challenges in object 

detection. 

3.2 Qualitative Analysis 

By virtue of visually inspecting the document, two 

overriding error modes can be noted as follows: 

▪ Low water sheen contrast: Oil films on rippled

or turbid water sometimes resulted in missed

detections or low-confidence outputs using thin

water sheens.

▪ Background confusion: Some shadows dark on

soil or wet asphalt occasionally resulted in false

positives.

Due to logistical and environmental constraints, 

external datasets were not available; thus, diverse 

real-world conditions were simulated within the 

existing dataset to encourage generalizability. The 

split strategy ensured varied representation across 

training and validation sets to approximate unseen 

scenarios. Figure 5 show casing oil spill detection 

using yolo10 on land data. Figure 6 showcasing oil 

spill detection using Yolo10 on water data.  

Figure 5: Oil spill detection using yolo10 on land data. 

Figure 6: Oil spill detection using yolo10 on water data. 

Our study is closely related to SAM-OIL in [17], 

which uses semantic segmentation based on SAR 

images, but it surpasses it in several key areas. Unlike 

SAM-OIL, which requires extensive pixel-level 

annotations and a multi-stage process involving 

YOLOv8, SAM, and OMF, our method uses 

YOLOv10 with simple bounding box annotations, 

reducing annotation complexity and computational 

overhead. Our model is optimized for real-time 

deployment on UAVs using RGB imagery, making it 

more practical and scalable. While SAM-OIL focuses 

on fine-grained segmentation, our approach achieves 

competitive detection accuracy with a streamlined 

architecture. Moreover, by addressing diverse terrain 

types and ensuring domain adaptability, our model 

offers broader generalization and deployment 

readiness. 
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4 CONCLUSIONS 

In this paper, we showed that real-time detection of 

oil spills on water and land surfaces is possible using 

a lightweight YOLOv10 model deployed on UAV 

captured images. Our framework reached mAP@50 

of 69.1% (water only), 63.1% (land only), and 79.7% 

(combined) while achieving over 65 FPS on desktop 

GPUs and 25 FPS on edge devices. These findings 

support the notion that resource-limited detectors are 

capable of providing usable accuracy value for real-

time environmental monitoring under in situ 

conditions.  

While our approach achieved strong results, a 

number of challenges remain. First, detection 

accuracy diminishes with thinner, low-contrast oil 

sheen layers on highly reflective turbid water due to 

missed detections. Dark shadows and visually 

indistinguishable backgrounds on land can also create 

false positives. Moreover, the focus of our study is 

RGB data, which limits performance in more 

sophisticated situations where other spectral data 

would improve separation. To overcome these 

limitations, further research should investigate:

▪ The addition of near infrared, thermal or SAR

data to increase the discrimination value of oil

against the background and reduce misses and

false alarms.

▪ Using video clips together with spatial and

temporal smoothing to stabilize detections and

reduce flicker during the subsequent

processing of videos captured by UAVs.

▪ Semi-supervised and active learning:

Enhancing dataset creation by using strategies

such as pseudo-labeling, domain adaptation, or

human-in-the-loop, which help to improve

consistency across different scenarios,

requiring only minimal annotation effort.

▪ Instance segmentation extension: I ntegrating

segmentation models such as YOLO with SAM

to capture and define the exact spill boundaries

to achieve more precise area quantification.

As we made clear above, the UAV based 

YOLOv10 pipeline we developed enables oil spill 

monitoring in low resources setting with 

unprecedented speed and at a fraction of the cost, 

demonstrating remarkable flexibility and scalability. 

Focusing on model efficiency and real-time execution 

allows the framework to assist environmental 

agencies and first responders with early detection and 

mitigation strategies. Dedicated work in the 

directions outlined above is expected to further 

increase the confidence and widen the use of 

detection across diverse ecological and industrial 

environments. 
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