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Abstract: This study introduces a novel and effective method for Speech Emotion Recognition (SER) that combines 

Spiking Neural Networks (SNNs), Temporal Attention, and Transformer encoders within a powerful hybrid 

model. SER is essential for improving human-computer interaction by enabling intelligent systems to 

effectively recognize emotions from speech.  Unlike traditional methods that typically rely on shallow 

classifiers and manually engineered features, our deep learning-based approach takes full advantage of the 

energy efficiency of SNNs, the selective focus provided by temporal attention, and the long-range temporal 

modeling capabilities of Transformer architectures.  We thoroughly evaluated the performance of this model 

on a comprehensive multi-dataset corpus, which included TESS, SAVEE, RAVDESS, and CREMA-D. The 

model achieved an impressive and consistent accuracy of 98% across all emotion classes. These strong results 

not only demonstrate the model’s superior effectiveness but also highlight its potential for use in real-time, 

resource-limited environments. Furthermore, this hybrid approach clearly surpasses existing state-of-the-art 

SER techniques and offers a reliable foundation for application in real-world affective computing scenarios. 

1 INTRODUCTION 

Speech Emotion Recognition (SER) plays a crucial 

role in human-computer interaction by enabling 

systems to identify and respond to users' emotions 

through their speech signals. The growing use of SER 

in applications such as virtual assistants, automated 

customer service, health monitoring, and intelligent 

entertainment highlights its vital role in improving 

user experience and enhancing system flexibility. 

Early SER systems primarily relied on manually 

crafted acoustic features, including pitch, energy, and 

spectral characteristics, which were trained using 

traditional machine learning methods like Support 

Vector Machines (SVMs) and Hidden Markov 

Models (HMMs). While these methods achieved 

significant early successes, they faced challenges in 

generalizing to new speakers and emotional styles 

and did not effectively utilize the temporal aspects of 

emotional expression. 

The advent of deep learning technologies, 

particularly through Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), 

transformed SER by facilitating the automatic 

extraction of features and hierarchical modeling of 

speech. Moreover, Transformer architectures and 

attention mechanisms advanced state-of-the-art 

achievements by capturing long-range dependencies 

and concentrating on emotionally significant 

segments of the input, leading to notable 

improvements in performance [1]. 

Nevertheless, many deep learning models demand 

substantial computational resources, which restrict 

their application in real-time environments, 

especially on edge devices. Moreover, several models 

tend to emphasize global patterns while overlooking 

local, sparse cues that may be critical for emotion 

detection. To tackle these issues, this paper introduces 

a hybrid model that merges the event-driven 

effectiveness of Spiking Neural Networks (SNNs), 

the dynamic attention provided by Temporal 

Attention, and the powerful sequential modeling 

capabilities of Transformer encoders [2]. 

This model was evaluated using four standard 

speech emotion recognition (SER) datasets: TESS, 

SAVEE, RAVDESS, and CREMA-D. These datasets 

included a wide range of emotional expressions and 

variations among speakers. The proposed system 

achieved an impressive classification performance 

with 98% accuracy on the test set, outperforming 

many conventional and contemporary SER methods. 
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Additionally, the model's computational efficiency 

and compact design make it highly suitable for real-

time emotion-aware applications in practical 

settings [3]. 

2 RELATED WORK 

Speech Emotion Recognition (SER) has been 

recently benefited from deep learning approaches that 

have significantly improved the performance of the 

models in terms of addressing timing and attention 

mechanisms. Current research is experimenting with 

hybrid models based on recurrent networks, 

convolutional layers, spiking neural networks, and 

Transformer encoders. The goal is to achieve high 

accuracy and computational efficiency for frequently 

used benchmark datasets, i.e., TESS, RAVDESS, 

SAVEE, and CREMA-D. The recent methods in 

Table 1 show the ongoing development of both the 

performance and the complexity of the models. 

This chapter pinpoints major contributions and 

contrasts performances with recent milestone 

productions. 

3 METHODOLOGY 

This study presents a novel Speech Emotion 

Recognition (SER) mechanism that utilizes Spiking 

Neural Networks (SNN), along with Temporal 

Attention and Transformer encoders. The goal is to 

create an efficient and accurate model capable of 

recognizing emotions from voice signal datasets. The 

working steps of this mechanism are clearly 

illustrated in Figure 1. The methodological pipeline is 

effectively displayed in the well-organized figure. 

3.1 Data Description and Importance 

High-quality and diverse datasets are crucial for 

developing effective Speech Emotion Recognition 

(SER) systems, especially for publication in Scopus-

indexed journals. This research uses a multi-dataset 

collection from Kaggle, combining four prominent 

public datasets: TESS, SAVEE, RAVDESS, and 

CREMA-D. These datasets include a variety of 

speakers, emotions, languages, and recording 

environments, covering both natural and acted 

emotions such as happiness, sadness, anger, fear, and 

neutrality. This diversity enhances the model's 

adaptability, reduces the risk of overfitting, and 

improves its real-world application effectiveness   [3]. 

In total, these datasets consist of around 12,162 

audio samples, divided as follows: 

▪ TESS (Toronto Emotional Speech Set): It

consists of 2,800 recordings of 2 female

speakers speaking 7 emotional states.

▪ SAVEE (Surrey Audio-Visual Expressed

Emotion): It consists of 480 audio recordings

of 4 male speakers, conveying 7 emotions.

▪ RAVDESS (Ryerson Audio-Visual Database

of Emotional Speech and Song): It consists of

1,440 audio recordings from 24 actors for 8

emotions.

▪ CREMA-D (Crowd-sourced Emotional

Multimodal Actors Dataset): It consists of

7,442 recordings from 91 actors, portraying 6

emotional categories.

All data sets were downloaded and consolidated 

from an open Kaggle repository for Speech Emotion 

Recognition [4] for preprocessed and uniform input 

to be appropriately evaluated. 

3.2 Signal Preprocessing 

Signal preprocessing plays a vital role in audio data 

analysis. Normalization of audio samples to a 16 kHz 

sample rate provides consistency with different 

sources. A 300 Hz and 3400 Hz cutoff Butterworth 

bandpass filter eliminates frequencies outside of the 

normal frequency of human speech, enhancing 

quality of the signal and emphasizing useful speech 

frequencies [2]. 

3.3 Feature Extraction 

Mel Frequency Cepstral Coefficients (MFCCs) are 

derived from an audio recording in order to model 

speech features. MFCCs are well-known for their 

ability to extract spectral and temporal speech signal 

features. 40 MFCCs are calculated for an audio 

frame, which model rich acoustic features. To achieve 

consistency in terms of size, all the audio samples are 

normalized to the same length; shorter samples are 

padded with trailing zeros, and longer samples are 

truncated to a maximum of 128 frames in total [5]. 

Figure 2 shows the vertical flow chart of the 

proposed Speech Emotion Recognition (SER) 

system, outlining the process from audio input to 

MFCC extraction and beyond. 

136 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), August 2020225  



Table 1: Summary of recent advances in speech emotion recognition.

No. Reference Technique and algorithm Dataset Accuracy 

1 Tan et al. (2021). [6] 

Spiking Neural Network 

Modeling (NeuCube SNN 

for EEG) 

DEAP, MAHNOB-

HCI EEG + Video 

67-79% 

(valence/arousal) 

2 Ezz-Eldin et al. (2021). [7] 

Hybrid Deep Learning: 

CNN, Feedforward DNN, 

BoAW + Classical ML 

(SVM, KNN, XGBoost) 

RAVDESS 84.5% (Hybrid Model) 

3 Alzhrani et al. (2021). [8] 

Brain-Inspired Spiking 

Neural Network (NeuCube 

with STDP and deSNN) 

DREAMER EEG 
94.83% (4 emotion 

classes) 

4 Wang et al. (2022). [9] 

Spiking Neural Networks 

for DVS Data (PLIF 

neuron model) 

Simulated DVS Video 

Data 

Improved energy 

efficiency; Accuracy 

N/A 

5 
Mountzouris et al. (2023). 

[10] 

CNN with Attention 

Mechanism 
SAVEE, RAVDESS 74-77% 

6 Uddin et al. (2023). [5] 
Hybrid Deep Learning: 

CNN + LSTM 
TESS Dataset 97.5% 

7 Ullah et al. (2023). [11] 

CNN + Multi-Head 

Convolutional Transformer 

(CTENet) 

RAVDESS, 

IEMOCAP 

82.31% (RAVDESS), 

79.42% (IEMOCAP) 

8 
Ayush Kumar et al. (2023). 

[12] 

CNN-LSTM and Vision 

Transformer (ViT) 
EMO-DB 

88.5% (CNN-LSTM), 

85.36% (ViT) 

9 Li et al. (2023). [13] 

Fractal Spiking Neural 

Network with Inverted 

Drop-Path Training 

DREAMER, DEAP, 

SEED-IV, MPED 

(EEG) 

68-78.5% (varies by 

dataset) 

10 Kim & Kwak (2024). [14] 

Transfer Learning CNN 

(VGGish, YAMNet) + 

Explainable AI (Grad 

CAM, LIME) 

CSU 2021, CSU 2022, 

AI-Hub (Korean 

speech) 

87% 

11 Tang et al. (2024). [15] 

CNN-Transformer with 

Multi-Dimensional 

Attention Mechanism 

IEMOCAP, Emo-DB 
Up to 90.65% (Emo-

DB) 

12 Wei et al. (2025). [16] 
CNN-Transformer Hybrid 

with Cross-Entropy Loss 

RAVDESS, SAVEE, 

TESS 
74.9% 

3.4 Hybrid Classification Architecture 

The foundation of the model is a hybrid structure that 

integrates:  

▪ Spiking Neural Networks (SNNs). The SNNs

make use of sparsity and events, which are

features of biological neurons, to handle

information in a very efficient way. Thus, for

the processing of speech emotion signals, the

SNNs significantly enhance performance [12];

▪ Temporal Attention Mechanism. It is a

mechanism that aids the selection process of

the emotionally significant frames by the

model for each input sentence in each time step.

In a nutshell, an nn.Linear (fully connected)

layer calculates attention via the weighting of

frames to minimize noise, thus revealing the

emotional context [15] ;

▪ Transformer Encoder. This encoder is based on

the architecture of the spherical panels as it has

several layers of self-attention and the

possibility of convolution. With the encoder,

the model is able to perceive different times of

the day that are most commonly recognized to

be accurate emotional or imaging sites. [1].

The architectural layout of the proposed hybrid 

model is illustrated in Figure 3. This figure showcases 

the integration of Spiking Neural Networks (SNNs), 

temporal attention, and Transformer encoders. 

Additionally, Table 2 presents a comprehensive 

ablation study along with various model 

configurations, highlighting the performance 

improvements achieved by combining these modules. 
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Table 2: Results of the ablation study highlighting the separate and collective effects of the SNN, temporal attention, and 

Transformer elements on classification performance. 

Model Variant SNN Attention Transformer Accuracy (%) Macro F1 Notes 

+ SNN only ✔ ✖ ✖ 91.0 0.895 

Spiking 

pattern 

modeling 

+ SNN +

Attention
✔ ✔ ✖ 93.1 0.914 

Temporal 

focus 

improved 

+ Transformer

only 
✖ ✖ ✔ 94.0 0.926 

Sequence 

modeling via 

self-attention 

+ Transformer

+ Attention
✖ ✔ ✔ 96.2 0.946 

Better 

contextual 

representation 

Full Model 

(SNN + 

Attention + 

Transformer) 

✔ ✔ ✔ 98.0 0.979 

Maximum 

performance 

with full 

hybrid 

synergy 

Figure 1: Architecture of the proposed hybrid model 

combining Spiking Neural Networks, temporal attention, 

and a Transformer encoder for speech emotion recognition. 

3.5 Training Details 

The model is trained for 100 epochs with the Adam 

optimizer and a learning rate of 0.001. The loss 

function used is Cross-Entropy Loss, which is 

appropriate for the multiclass characteristic of the 

speech emotion recognition (SER) problem. Figure 1 

shows the architecture of the proposed hybrid model, 

which combines Spiking Neural Networks (SNN), 

temporal attention, and a Transformer encoder for 

speech emotion recognition. The model processes 

input features of size 62 × 200 and outputs emotion 

probabilities using a softmax function.  Figure 2 

shows the final vertical flow diagram of the speech 

emotion recognition (SER) system, illustrating the 

preprocessing stages including audio input, bandpass 

filtering, MFCC extraction, and the classification 

path through a Transformer encoder and dense layers. 

Figure 2: Flow diagram of the SER system from audio input 

to classification. 

In the following Figure 3, which shows the 

diagram of the complete process for the suggested 

hybrid SNN–Attention–Transformer model, 
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depicting the steps of data preprocessing, assembly of 

model architecture, training, validation, testing, and 

visualization of the confusion matrix. 

Figure 3: Process diagram of the hybrid SNN-Attention–

Transformer model from preprocessing to evaluation. 

Optional techniques like early stopping and 

learning rate scheduling are also used to improve 

training effectiveness and reduce the impact of 

overfitting [3]. 

4 EXPERIMENTS AND RESULTS 

The proposed Speech Emotion Recognition (SER) 

model is evaluated using a diverse multi-dataset 

corpus that includes TESS, SAVEE, RAVDESS, and 

CREMA-D, which feature various speakers, 

emotions, and recording conditions. All datasets are 

publicly available on Kaggle. Initially, the data is 

divided into 80% for training and 20% for testing 

purposes. The training set is then further segmented 

into 80% for training and 20% for validation to 

enhance effective model tuning and generalization.

4.1 Performance Metrics 

Our approach combines spiking neural networks 

(SNNs), temporal attention, and transformer 

encoders, achieving an impressive accuracy of 98.0% 

on the evaluation dataset. This high level of accuracy 

demonstrates the effectiveness of our hybrid design in 

the task of speech emotion recognition, allowing the 

model to identify complex emotions across various 

voices and speeches. Other performance metrics are 

also strong, with a precision of 97.8%, a recall of 

98.1%, and an F1-score of 97.9%. Therefore, the 

model is reliable in terms of both sensitivity and 

specificity. 

4.2 Confusion Matrix 

The confusion matrix Figure 4 shows that the 

proposed Speech Emotion Recognition model 

performs well across all seven emotion categories. 

The model achieves very high precision and recall 

rates, resulting in an overall accuracy of 98.0%. 

Misclassifications, particularly between closely 

related emotional expressions such as "Happy" and 

"Pleasant-Surprised," are common and 

understandable, as distinguishing between such 

similar emotional states can be challenging. Despite 

these occasional errors, the model consistently 

delivers impressive results, with F1-scores of at least 

94% for the various emotions. This highlights the 

model's strong capability to accurately recognize a 

range of emotions in speech, demonstrating its 

potential application in real-world affective 

computing scenarios. 

Figure 4: Confusion matrix of the speech emotion 

recognition model . 

4.3 Benchmark Comparison 

Table 3 presents a comprehensive comparison of the 

proposed SER model with the latest state-of-the-art 

models, utilizing popular databases such as TESS, 

SAVEE, RAVDESS, and CREMA-D. The best-

performing model combines Spiking Neural 
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Networks (SNNs), Temporal Attention mechanisms, 

and Transformer encoders, achieving the highest 

accuracy of 98.0%. This performance surpasses that 

of all baseline models. 

Table 3: Detailed performance metrics per emotion 

category. 

Emotion 
Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

Angry 97.6 98.3 97.9 

Happy 96.5 95.2 95.8 

Sad 98.0 97.8 97.9 

Fear 97.4 98.0 97.7 

Neutral 97.9 98.4 98.1 

Pleasant-

Surprised 
95.0 94.3 94.6 

Disgust 98.2 98.0 98.1 

The model's performance on the confused 

matrices of different emotions is shown in Figure 4 

shows that the model is very effective at predicting 

even in the Happy and Pleasant-surprised categories. 

The model  outperforms  existing techniques in 

accuracy and robustness. This success comes from 

using Spiking Neural Networks (SNNs) combined 

with Temporal Attention and Transformer 

techniques, which can capture relevant temporal 

features. This method works well for real-world 

applications requiring accurate emotion 

classification. In the future, we think that looking at 

more diverse, acoustically complex  environments and 

using mixed-modal data will improve the detection of 

subtle emotions. 

5 DISCUSSION 

The proposed hybrid framework effectively 

combines Spiking Neural Networks (SNNs), 

Temporal Attention, and Transformer Encoders, with 

each component playing a crucial role in achieving 

exceptional classification results. The SNN 

component provides computational efficiency and 

sparsity through event-driven processing, making the 

model highly adaptable to real-time and resource-

constrained environments. Temporal Attention 

enables the model to focus dynamically on 

emotionally significant parts of speech sequences, 

thereby enhancing both interpretability and 

relevance. Meanwhile, the Transformer encoder 

captures long-range temporal dependencies, allowing 

the system to model intricate speech dynamics across 

different speakers and emotional states. 

With a precision of 97.8%, recall of 98.1%, F1-

score of 97.9%, and an accuracy of 98.0% achieved 

across all emotion categories in the testing dataset, the 

model demonstrates exceptional reliability and the 

ability to distinguish even subtle emotional 

variations. However, despite this impressive 

performance in a controlled laboratory setting, further 

efforts are needed to evaluate the model's robustness 

in noisy real-world situations. Factors such as 

spontaneous speech, overlapping dialogue, 

background noise, and fluctuating emotional intensity 

levels could present challenges that the current testing 

framework may not fully address. 

6 LIMITATIONS 

Although the model performed exceptionally well on 

standard datasets, it has some limitations. The 

datasets used are primarily clean and controlled, 

potentially failing to represent the complexities of 

real-world environments. Consequently, the model's 

ability to generalize to noisy settings, spontaneous 

speech, and various speaker groups needs to be 

validated. While edge deployment is feasible due to 

the energy efficiency of SNNs, it still requires 

optimization of architecture for memory, latency, and 

resource utilization. These limitations highlight the 

need for continued research to sustain performance in 

settings outside the laboratory. 

7 CONCLUSIONS 

This study presents a new hybrid model for Speech 

Emotion Recognition that combines Spiking Neural 

Networks, Temporal Attention mechanisms, and 

Transformer encoders. The model demonstrated 

impressive performance, achieving 98.0% accuracy, 

97.8% precision, 98.1% recall, and a 97.9% F1-score 

across all emotion categories in the test dataset. These 

results highlight the model's exceptional ability to 

detect subtle emotional signals in speech with high 

consistency and reliability. By integrating SNNs with 

attention mechanisms and Transformer-based 

temporal modeling, the architecture benefits from 

both computational efficiency and enhanced 

sequential representation capabilities, making it 

suitable for real-time and energy-limited applications. 

Despite these promising results in controlled 

experimental settings, there are several opportunities 

for future improvement. Additional testing should be 

conducted to evaluate the model's robustness in noisy, 
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uncontrolled environments, such as spontaneous 

speech and informal conversations. Incorporating 

multimodal data, such as facial expressions or 

physiological indicators, could enhance the model's 

capacity to recognize complex or mixed emotional 

states. Finally, optimizing the architecture for use on 

hardware-constrained edge devices would broaden its 

applicability in various real-world scenarios, 

including healthcare, customer service, and affective 

computing systems.  
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