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This study introduces a novel and effective method for Speech Emotion Recognition (SER) that combines
Spiking Neural Networks (SNNs), Temporal Attention, and Transformer encoders within a powerful hybrid
model. SER is essential for improving human-computer interaction by enabling intelligent systems to
effectively recognize emotions from speech. Unlike traditional methods that typically rely on shallow
classifiers and manually engineered features, our deep learning-based approach takes full advantage of the
energy efficiency of SNNs, the selective focus provided by temporal attention, and the long-range temporal
modeling capabilities of Transformer architectures. We thoroughly evaluated the performance of this model
on a comprehensive multi-dataset corpus, which included TESS, SAVEE, RAVDESS, and CREMA-D. The
model achieved an impressive and consistent accuracy of 98% across all emotion classes. These strong results
not only demonstrate the model’s superior effectiveness but also highlight its potential for use in real-time,
resource-limited environments. Furthermore, this hybrid approach clearly surpasses existing state-of-the-art

SER techniques and offers a reliable foundation for application in real-world affective computing scenarios.

1 INTRODUCTION

Speech Emotion Recognition (SER) plays a crucial
role in human-computer interaction by enabling
systems to identify and respond to users' emotions
through their speech signals. The growing use of SER
in applications such as virtual assistants, automated
customer service, health monitoring, and intelligent
entertainment highlights its vital role in improving
user experience and enhancing system flexibility.

Early SER systems primarily relied on manually
crafted acoustic features, including pitch, energy, and
spectral characteristics, which were trained using
traditional machine learning methods like Support
Vector Machines (SVMs) and Hidden Markov
Models (HMMs). While these methods achieved
significant early successes, they faced challenges in
generalizing to new speakers and emotional styles
and did not effectively utilize the temporal aspects of
emotional expression.

The advent of deep learning technologies,
particularly through Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs),
transformed SER by facilitating the automatic
extraction of features and hierarchical modeling of

speech. Moreover, Transformer architectures and
attention mechanisms advanced state-of-the-art
achievements by capturing long-range dependencies
and concentrating on emotionally significant
segments of the input, leading to notable
improvements in performance [1].

Nevertheless, many deep learning models demand
substantial computational resources, which restrict
their application in real-time environments,
especially on edge devices. Moreover, several models
tend to emphasize global patterns while overlooking
local, sparse cues that may be critical for emotion
detection. To tackle these issues, this paper introduces
a hybrid model that merges the event-driven
effectiveness of Spiking Neural Networks (SNNs),
the dynamic attention provided by Temporal
Attention, and the powerful sequential modeling
capabilities of Transformer encoders [2].

This model was evaluated using four standard
speech emotion recognition (SER) datasets: TESS,
SAVEE, RAVDESS, and CREMA-D. These datasets
included a wide range of emotional expressions and
variations among speakers. The proposed system
achieved an impressive classification performance
with 98% accuracy on the test set, outperforming
many conventional and contemporary SER methods.
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Additionally, the model's computational efficiency
and compact design make it highly suitable for real-
time emotion-aware applications in practical
settings [3].

2 RELATED WORK

Speech Emotion Recognition (SER) has been
recently benefited from deep learning approaches that
have significantly improved the performance of the
models in terms of addressing timing and attention
mechanisms. Current research is experimenting with
hybrid models based on recurrent networks,
convolutional layers, spiking neural networks, and
Transformer encoders. The goal is to achieve high
accuracy and computational efficiency for frequently
used benchmark datasets, i.e., TESS, RAVDESS,
SAVEE, and CREMA-D. The recent methods in
Table 1 show the ongoing development of both the
performance and the complexity of the models.

This chapter pinpoints major contributions and
contrasts performances with recent milestone
productions.

3 METHODOLOGY

This study presents a novel Speech Emotion
Recognition (SER) mechanism that utilizes Spiking
Neural Networks (SNN), along with Temporal
Attention and Transformer encoders. The goal is to
create an efficient and accurate model capable of
recognizing emotions from voice signal datasets. The
working steps of this mechanism are clearly
illustrated in Figure 1. The methodological pipeline is
effectively displayed in the well-organized figure.

3.1 Data Description and Importance

High-quality and diverse datasets are crucial for
developing effective Speech Emotion Recognition
(SER) systems, especially for publication in Scopus-
indexed journals. This research uses a multi-dataset
collection from Kaggle, combining four prominent
public datasets: TESS, SAVEE, RAVDESS, and
CREMA-D. These datasets include a variety of
speakers, emotions, languages, and recording
environments, covering both natural and acted
emotions such as happiness, sadness, anger, fear, and
neutrality. This diversity enhances the model's

adaptability, reduces the risk of overfitting, and
improves its real-world application effectiveness [3].
In total, these datasets consist of around 12,162
audio samples, divided as follows:
= TESS (Toronto Emotional Speech Set): It
consists of 2,800 recordings of 2 female
speakers speaking 7 emotional states.
= SAVEE (Surrey Audio-Visual Expressed
Emotion): It consists of 480 audio recordings
of 4 male speakers, conveying 7 emotions.
= RAVDESS (Ryerson Audio-Visual Database
of Emotional Speech and Song): It consists of
1,440 audio recordings from 24 actors for 8
emotions.
= CREMA-D (Crowd-sourced  Emotional
Multimodal Actors Dataset): It consists of
7,442 recordings from 91 actors, portraying 6
emotional categories.

All data sets were downloaded and consolidated
from an open Kaggle repository for Speech Emotion
Recognition [4] for preprocessed and uniform input
to be appropriately evaluated.

3.2 Signal Preprocessing

Signal preprocessing plays a vital role in audio data
analysis. Normalization of audio samples to a 16 kHz
sample rate provides consistency with different
sources. A 300 Hz and 3400 Hz cutoff Butterworth
bandpass filter eliminates frequencies outside of the
normal frequency of human speech, enhancing
quality of the signal and emphasizing useful speech
frequencies [2].

3.3 Feature Extraction

Mel Frequency Cepstral Coefficients (MFCCs) are
derived from an audio recording in order to model
speech features. MFCCs are well-known for their
ability to extract spectral and temporal speech signal
features. 40 MFCCs are calculated for an audio
frame, which model rich acoustic features. To achieve
consistency in terms of size, all the audio samples are
normalized to the same length; shorter samples are
padded with trailing zeros, and longer samples are
truncated to a maximum of 128 frames in total [5].

Figure 2 shows the vertical flow chart of the
proposed Speech Emotion Recognition (SER)
system, outlining the process from audio input to
MFCC extraction and beyond.
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Table 1: Summary of recent advances in speech emotion recognition.

No. Reference Technique and algorithm Dataset Accuracy
Spiking Neural Network
. DEAP, MAHNOB- 67-79%
1 Tan et al. (2021). [6] Modeling (NeuCube SNN HCI EEG + Video (valence/arousal)
for EEG)
Hybrid Deep Learning:
. CNN, Feedforward DNN, N .
2 Ezz-Eldin et al. (2021). [7] BoAW + Classical ML RAVDESS 84.5% (Hybrid Model)
(SVM, KNN, XGBoost)
Brain-Inspired Spiking o .
3 Alzhrani et al. (2021). [8] | Neural Network (NeuCube DREAMER EEG 94.83 c/‘l’a(s‘i::;mon
with STDP and deSNN)
Spiking Neural Networks . . Improved energy
4 Wang et al. (2022). [9] for DVS Data (PLIF Simulated DVS Video | g ciency; Accuracy
Data
neuron model) N/A
5 Mountzouris et al. (2023). CNN with Attentlon SAVEE, RAVDESS 74-77%
[10] Mechanism
. Hybrid Deep Learning: o
6 Uddin et al. (2023). [5] CNN + LSTM TESS Dataset 97.5%
7 Ullah et al. (2023). [11] ConSoNlllii-grﬁu"}};;Hset%iner RAVDESS, 82.31% (RAVDESS),
’ ’ IEMOCAP 79.42% (IEMOCAP)
(CTENet)
8 Ayush Kumar et al. (2023). CNN-LSTM and Vision EMO-DB 88.5% (CNN-LSTM),
[12] Transformer (ViT) 85.36% (ViT)
Fractal Spiking Neural DREAMER, DEAP, o .
9 Li et al. (2023). [13] Network with Inverted SEED-IV, MPED 68'78'(51 a/t"ag:‘)“es by
Drop-Path Training (EEG)
T&‘;‘gﬁif@fﬁigﬁ CSU 2021, CSU 2022,
10 Kim & Kwak (2024). [14] o AI-Hub (Korean 87%
Explainable Al (Grad speech)
CAM, LIME) P
CNN-Transformer with o
11 Tang et al. (2024). [15] Multi-Dimensional IEMOCAP, Emo-DB |  UP 10 90:65% (Emo-
: : DB)
Attention Mechanism
. CNN-Transformer Hybrid RAVDESS, SAVEE, o
12 Wei et al. (2025). [16] with Cross-Entropy Loss TESS 74.9%
3.4 Hybrid Classification Architecture Transformer Encoder. This encoder is based on

The foundation of the model is a hybrid structure that
integrates:

Spiking Neural Networks (SNNs). The SNNs
make use of sparsity and events, which are
features of biological neurons, to handle
information in a very efficient way. Thus, for
the processing of speech emotion signals, the
SNNs significantly enhance performance [12];
Temporal Attention Mechanism. It is a
mechanism that aids the selection process of
the emotionally significant frames by the
model for each input sentence in each time step.
In a nutshell, an nn.Linear (fully connected)
layer calculates attention via the weighting of
frames to minimize noise, thus revealing the
emotional context [15] ;

the architecture of the spherical panels as it has
several layers of self-attention and the
possibility of convolution. With the encoder,
the model is able to perceive different times of
the day that are most commonly recognized to
be accurate emotional or imaging sites. [1].

The architectural layout of the proposed hybrid

model is illustrated in Figure 3. This figure showcases
the integration of Spiking Neural Networks (SNNs),

temporal

attention, and Transformer encoders.

Additionally, Table 2 presents a comprehensive

ablation
configurations,

study along with various model

highlighting  the performance

improvements achieved by combining these modules.
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Table 2: Results of the ablation study highlighting the separate and collective effects of the SNN, temporal attention, and

Transformer elements on classification performance.

Model Variant SNN Attention Transformer Accuracy (%) Macro F1 Notes
Spiking
+ SNN only v X X 91.0 0.895 pattern
modeling
Temporal
+ +
SNN v v X 93.1 0914 focus
Attention .
improved
Sequence
" Traé’lflf"rmer X X v 94.0 0.926 modeling via
Y self-attention
Better
+
ransformer X v v 96.2 0.946 contextual
Attention .
representation
Full Model pﬁf?:;g:rﬁe
(SNN + v v v 98.0 0.979 with full
Attention + .
hybrid
Transformer)
synergy

Using SNN with Attention
and Transformer

[ Load Required Libraries ]
]
[ Download and Extract Speech Emotion Dataset]

Speech Emotion Recoguition |

[ Preprocess Audio (Bandpass Filter + MFCC) ]

)
[ Prepare Data (Files and Labels) ]

[ Build Dataset Object with PyTorch ]
v

[ Split Data into Train/Validation/Test }
v

Evaluate the
Model on Test D
Compute Accuracy

and Display Confusion
Matrix

Figure 1: Architecture of the proposed hybrid model
combining Spiking Neural Networks, temporal attention,
and a Transformer encoder for speech emotion recognition.

Yes

3.5 Training Details

The model is trained for 100 epochs with the Adam
optimizer and a learning rate of 0.001. The loss
function used is Cross-Entropy Loss, which is
appropriate for the multiclass characteristic of the
speech emotion recognition (SER) problem. Figure 1
shows the architecture of the proposed hybrid model,

which combines Spiking Neural Networks (SNN),
temporal attention, and a Transformer encoder for
speech emotion recognition. The model processes
input features of size 62 x 200 and outputs emotion
probabilities using a softmax function. Figure 2
shows the final vertical flow diagram of the speech
emotion recognition (SER) system, illustrating the
preprocessing stages including audio input, bandpass
filtering, MFCC extraction, and the classification
path through a Transformer encoder and dense layers.

Proposed SER System - Final
Vertical Flow Diagram

Audio Input
(16kHz Speech)
l

Bandpass Filtering
(300-3400 Hz)

1
MFCC Feature Extraction
(40 Coefficients)

!

Transformer Encoder

{
Fully Connected Layers

L

Emotion Classification

Figure 2: Flow diagram of the SER system from audio input
to classification.

In the following Figure 3, which shows the
diagram of the complete process for the suggested
hybrid SNN-Attention—Transformer model,
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depicting the steps of data preprocessing, assembly of
model architecture, training, validation, testing, and
visualization of the confusion matrix.

SNN
Linearlog

Temporal
Attention

Transformer

Transformer

bORLY Encoder

Integrate-anl-
Fire LIF L

Feature
ConviD

62 %200

Figure 3: Process diagram of the hybrid SNN-Attention—
Transformer model from preprocessing to evaluation.

Optional techniques like early stopping and
learning rate scheduling are also used to improve
training effectiveness and reduce the impact of
overfitting [3].

4 EXPERIMENTS AND RESULTS

The proposed Speech Emotion Recognition (SER)
model is evaluated using a diverse multi-dataset
corpus that includes TESS, SAVEE, RAVDESS, and
CREMA-D, which feature various speakers,
emotions, and recording conditions. All datasets are
publicly available on Kaggle. Initially, the data is
divided into 80% for training and 20% for testing
purposes. The training set is then further segmented
into 80% for training and 20% for validation to
enhance effective model tuning and generalization.

4.1 Performance Metrics

Our approach combines spiking neural networks
(SNNs), temporal attention, and transformer
encoders, achieving an impressive accuracy of 98.0%
on the evaluation dataset. This high level of accuracy
demonstrates the effectiveness of our hybrid design in
the task of speech emotion recognition, allowing the
model to identify complex emotions across various
voices and speeches. Other performance metrics are
also strong, with a precision of 97.8%, a recall of
98.1%, and an Fl-score of 97.9%. Therefore, the
model is reliable in terms of both sensitivity and
specificity.

4.2 Confusion Matrix

The confusion matrix Figure 4 shows that the
proposed Speech Emotion Recognition model
performs well across all seven emotion categories.
The model achieves very high precision and recall
rates, resulting in an overall accuracy of 98.0%.
Misclassifications, particularly between closely
related emotional expressions such as "Happy" and
"Pleasant-Surprised," are common and
understandable, as distinguishing between such
similar emotional states can be challenging. Despite
these occasional errors, the model consistently
delivers impressive results, with F1-scores of at least
94% for the various emotions. This highlights the
model's strong capability to accurately recognize a
range of emotions in speech, demonstrating its
potential application in real-world affective
computing scenarios.

Confusion Matrix for Speech Emotion Recognition Model

Angry B} 0.3 0.3 0.3 0.3 0.3 0.3

80
Happy -0.8 EEW4 0.8 0.8 0.8 0.8 0.8
sad -0.4 0.4 Eyi:] 0.4 0.4 04 0.4
60
=
S
E fFear -0.3 0.3 0.3 EENY 0.3 0.3 0.3
K]
(]
=40
Neutral =0.3 0.3 0.3 0.3 ELE 0.3
Pleasant-Surprised ~1.0 1.0 1.0 1.0 1.0 [EE¥e] 220

Disgust -0.3 0.3 0.3 0.3 0.3 0.3 By

Predicted Emotion

Figure 4: Confusion matrix of the speech emotion
recognition model.

4.3 Benchmark Comparison

Table 3 presents a comprehensive comparison of the
proposed SER model with the latest state-of-the-art
models, utilizing popular databases such as TESS,
SAVEE, RAVDESS, and CREMA-D. The best-
performing model combines Spiking Neural
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Networks (SNNs), Temporal Attention mechanisms,
and Transformer encoders, achieving the highest
accuracy of 98.0%. This performance surpasses that
of all baseline models.

Table 3: Detailed performance metrics per emotion
category.

Emotion Pre(?)}:)l on Recall (%) Fl1 EE/:)O e
Angry 97.6 98.3 97.9
Happy 96.5 95.2 95.8

Sad 98.0 97.8 97.9
Fear 97.4 98.0 97.7

Neutral 97.9 98.4 98.1

Pleasant- 95.0 943 94.6

Surprised
Disgust 98.2 98.0 98.1

The model's performance on the confused
matrices of different emotions is shown in Figure 4
shows that the model is very effective at predicting
even in the Happy and Pleasant-surprised categories.
The model outperforms existing techniques in
accuracy and robustness. This success comes from
using Spiking Neural Networks (SNNs) combined
with  Temporal Attention and Transformer
techniques, which can capture relevant temporal
features. This method works well for real-world
applications requiring accurate emotion
classification. In the future, we think that looking at
more diverse, acoustically complex environments and
using mixed-modal data will improve the detection of
subtle emotions.

S DISCUSSION

The proposed hybrid framework effectively
combines Spiking Neural Networks (SNNs),
Temporal Attention, and Transformer Encoders, with
each component playing a crucial role in achieving
exceptional classification results. The SNN
component provides computational efficiency and
sparsity through event-driven processing, making the
model highly adaptable to real-time and resource-
constrained environments. Temporal Attention
enables the model to focus dynamically on
emotionally significant parts of speech sequences,
thereby enhancing both interpretability and
relevance. Meanwhile, the Transformer encoder
captures long-range temporal dependencies, allowing
the system to model intricate speech dynamics across
different speakers and emotional states.

With a precision of 97.8%, recall of 98.1%, F1-
score of 97.9%, and an accuracy of 98.0% achieved
across all emotion categories in the testing dataset, the
model demonstrates exceptional reliability and the
ability to distinguish even subtle emotional
variations. However, despite this impressive
performance in a controlled laboratory setting, further
efforts are needed to evaluate the model's robustness
in noisy real-world situations. Factors such as
spontancous  speech,  overlapping  dialogue,
background noise, and fluctuating emotional intensity
levels could present challenges that the current testing
framework may not fully address.

6 LIMITATIONS

Although the model performed exceptionally well on
standard datasets, it has some limitations. The
datasets used are primarily clean and controlled,
potentially failing to represent the complexities of
real-world environments. Consequently, the model's
ability to generalize to noisy settings, spontaneous
speech, and various speaker groups needs to be
validated. While edge deployment is feasible due to
the energy efficiency of SNNs, it still requires
optimization of architecture for memory, latency, and
resource utilization. These limitations highlight the
need for continued research to sustain performance in
settings outside the laboratory.

7 CONCLUSIONS

This study presents a new hybrid model for Speech
Emotion Recognition that combines Spiking Neural
Networks, Temporal Attention mechanisms, and
Transformer encoders. The model demonstrated
impressive performance, achieving 98.0% accuracy,
97.8% precision, 98.1% recall, and a 97.9% F1-score
across all emotion categories in the test dataset. These
results highlight the model's exceptional ability to
detect subtle emotional signals in speech with high
consistency and reliability. By integrating SNNs with
attention mechanisms and Transformer-based
temporal modeling, the architecture benefits from
both computational efficiency and enhanced
sequential representation capabilities, making it
suitable for real-time and energy-limited applications.

Despite these promising results in controlled
experimental settings, there are several opportunities
for future improvement. Additional testing should be
conducted to evaluate the model's robustness in noisy,
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uncontrolled environments, such as spontaneous
speech and informal conversations. Incorporating
multimodal data, such as facial expressions or
physiological indicators, could enhance the model's
capacity to recognize complex or mixed emotional
states. Finally, optimizing the architecture for use on
hardware-constrained edge devices would broaden its
applicability in various real-world scenarios,
including healthcare, customer service, and affective
computing systems.
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