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Abstract: Respiratory disease, such as COVID-19 and pneumonia, are among the leading global causes of morbidity 

and mortality. Inexpensive yet universally applied chest X-ray (CXR) imaging is still difficult to interpret 

due to overlapping radiographic findings between diseases. In this paper, we propose an improved deep 

learning framework based on the EfficientNet-B3 architecture, aided by transfer learning, Grad-CAM 

visualizations, and data augmentation for autonomous diagnosis of respiratory diseases from CXR images. 

Two publicly available datasets were merged, cleaned, and balanced to create a heterogeneous training corpus 

of four classes of diagnostic conditions: COVID-19, bacterial pneumonia, viral pneumonia, and normal 

conditions. The proposed model was achieved accurate in test set  98.69% and high macro-averaged precision, 

recall, and F1-scores. The use of Grad-CAM visualizations enhanced the concentration of the model on 

clinically relevant lung regions, making it more explainable. These findings suggest the model's viability as 

a reliable clinical decision support system, especially in resource-limited settings, and are an advancement 

towards explainable AI in medical diagnosis. 

1 INTRODUCTION 

Respiratory disease is among the most common 

diseases on the planet [1]. For example, chronic 

respiratory diseases affected over 454 million people 

and were the third leading cause of death worldwide, 

causing approximately 4 million deaths annually [2] 

Pneumonia and COVID-19 are common types of such 

diseases [3].  Pneumonia, for instance, infects 

approximately 450 million individuals yearly and 

kills approximately 4 million, mostly children below 

the age of five and the elderly [4]. As much as 

COVID-19 is concerned, it has caused more than 770 

million confirmed cases and over 7 million confirmed 

deaths worldwide since the start of the pandemic, as 

indicated by the World Health Organization 

in 2024 [5].  This raises the need for timely 

intervention using modern technologies. 

The lungs are the body's second most crucial 

organs, and a key part plays in the all-important 

oxygen process needed for survival [6]. However, due 

to their fragile nature, they are prone to a lot of 

respiratory illnesses such as pneumonia and COVID-

19 [7]. Both these diseases are some of the most 

commonly reported respiratory health hazards 

worldwide, primarily due to their sheer prevalence 

and sheer impact on the pulmonary system [2]. 

Moreover, the high level of similarity between 

clinical presentation and radiographic features of the 

two tends to generally complicate correct and prompt 

diagnosis [8]. 

Pneumonia is bacterial, viral, or fungal infection 

of the alveoli, which causes fever, cough, and 

shortness of breath [9], [10]. Whereas, COVID-19, 

caused by the novel coronavirus (SARS-CoV-2), 

directly affects the lungs and can range from mild 

symptoms to pneumonia, which has the same 

presentation as pneumonia [11]. That similarity 

makes it difficult and complicated to distinguish 

between the two by the conventional methods [12] 

The virus detection furthermore relies primarily on 

the RT-PCR test, which is highly specific. Even 

though its low sensitivity renders it susceptible to 

false negatives, which degrade the effectiveness of 

early detection [13]. On the other hand, computed 

tomography (CT) has been helpful in the 

determination of pulmonary changes due to COVID-

19, particularly those presenting as "ground-glass 

opacities" in the periphery of the lungs [14]. Although 

this type of imaging is precise, the wide use of it is 

hampered by limitations such as it being costly and 

entails radiation exposure [15]. 
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In contrast, chest x-ray (CXR) is also less costly 

and easily available and can be found commonly in 

hospitals and general practitioner centers [16]. Chest 

X-rays are considered a first-line, cost-effective

diagnostic tool that can assist in identifying lung

infections, chronic lung diseases, and other thoracic

conditions [4], [5]. CXR images of COVID-19-

infected patients show some characteristic patterns

such as bilateral congestions and peripheral opacities,

especially in the lower zones of the lungs [12]. But

the sensitivity of this kind of imaging is less

compared to CT, thus complicating the diagnosis,

particularly in the initial stages of the disease [13]

.The early and accurate detection of those illnesses

through chest X-ray (CXR) imaging remains a critical

clinical priority [17].

In this context, there has been increasing reliance 

on AI-based computer-aided diagnosis (CADx) 

systems to improve diagnostic accuracy and analyze 

medical images more efficiently[18]-[22].Among AI 

techniques, convolutional neural networks (CNNs) 

have proven highly effective in classifying lung 

diseases using CXR and CT images [23].  This 

research focuses on developing an intelligent 

diagnostic system capable of distinguishing between 

COVID-19 cases, pneumonia (both bacterial and 

viral), and healthy cases, based on chest x-ray images 

and CNN models  

This is how the rest of the paper is structured. 

Related work is presented in Section 2.  The materials 

and procedures are described in full in Section 3. 

Section 4 presents the comprehensive experimental 

setup.  In Section 5, the experimental results are 

described in full.  The conclusion in Section 6 follows 

this. 

2 RELATED WORKS 

Over the past few years, there has been considerable 

work in utilizing deep learning techniques for the 

detection of COVID-19 and pneumonia based on 

chest X-ray (CXR) images. The utilized models have 

varied from pre-trained deep networks to 

sophisticated segmentation and image enhancement 

techniques, but most have been faced with challenges 

of data balancing, accuracy in discriminating among 

the various forms of pneumonia, and limited 

generalizability of results. 

For instance,  In a recent study, by Sharma and 

Guleria [24] proposed VGG16-based model to 

classify pneumonia from CXR images. The model 

achieved accuracy of 95.4% on the second dataset 

used. While the model surpassed baseline classifiers 

such as SVM and Random Forest, it can be 

compromised by the imbalance of the dataset, 

especially considering the higher proportion of 

pneumonia cases with the rise in the pneumonia 

image data compared to both normal cases as well as 

to COVID-19. The failure to differentiate between 

viral pneumonia and bacterial also compromises its 

usability at a clinical level. 

Similarly, Zhang [25] used a CAAD model based 

on EfficientNet-B0 to detect viral pneumonia with 

acceptable AUC results (87.57% for X-VIRAL and 

83.61% for X-COVID). Their application of anomaly 

detection instead of direct classification, however, 

limited the potential of the model to distinguish 

between disease types. 

In another approach, Goyal and Singh [26] were 

also proposed a technique that involves image 

enhancement and region-of-interest extraction, along 

with deep classifiers RNN and LSTM. The model 

accuracy was reported to be 94.31% for the CXIP 

dataset and 95.04% for the C19RD dataset, although 

the data taken into account was unbalanced, 

particularly in terms of the number of COVID-19 

images and other cases, which can affect the 

performance of the model in real-life situations. 

Furthermore, Hamdi [27] utilized the VGG-16 

architecture to differentiate between COVID-19, viral 

pneumonia, and normal cases with 92.72% accuracy 

following the application of data augmentation 

techniques. Bacterial pneumonia was not considered 

in the study, making the model diagnostically 

incomplete. 

In a similar vein, Hasan and et al. [28]also utilized 

a VGG-16 model and transfer learning to identify 

cases as COVID-19, pneumonia, and normal cases 

with accuracy of 91.69%. While these have been 

achieved results, discrimination among bacterial and 

viral infections, a critical aspect to correct diagnosis, 

was not targeted by the research. 

Additionally, Militante, Dionisio [29] relied on 

VGG-16 to classify 20,000 CXR images including 

COVID-19, pneumonia, and normal cases, achieving 

95% accuracy. However, distinguishing between 

bacterial and viral infections remained challenging 

due to the similarity in radiographic patterns, 

indicating the need to develop more specialized 

architectures or integrate other techniques to improve 

discrimination. 

Moreover, Hammoudi [30] used the DenseNet169 

model and achieved 95.72% accuracy. However, the 

model did not take COVID-19 as a separate class, but 

as a viral pneumonia, which can lead to 

discrimination errors. Besides, the dataset of COVID-
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19 was limited (only 145 images), which 

compromises the validity of the findings. 

In contrast, Khan and Bhat [31] proposed the 

CoroNet model, which is based on the Xception 

architecture, to identify normal cases, COVID-19, 

and pneumonia (variants).  The model had a high 

recall for COVID-19 instances (98.2%) and an 

overall accuracy of 89.6%.  However, the limited 

sample size, especially COVID-19 images, may 

impact the generalisability of the model. 

Likewise, Manickam, Jiang [32] employed pre-

trained models such as ResNet50 and InceptionV3 to 

classify pneumonia images as normal and abnormal 

(bacterial and viral) through transfer learning. Despite 

the study achieving 93.06% accuracy, it had no data 

on COVID-19, which reduces the comprehensiveness 

of the results. 

Finally, Ieracitano, Mammone [33] suggested a 

model called CovNNet that integrated fuzzy logic 

techniques for edge detection with CNN structure to 

improve COVID-19 and pneumonia diagnosis from 

portable x-ray images. The model achieved an 

accuracy of 81% with great capacity to handle low-

quality images. Nevertheless, the lack of 

discrimination between pneumonia types and the 

small sample size were study limitations. 

In spite of dramatic advances in the application of 

deep learning methods in identifying COVID-19 and 

pneumonia from X-rays, some common challenges 

and constraints remain shared in most 

abovementioned works. Most research works have 

performed binary or ternary classification tasks, 

without sufficiently differentiating viral and bacterial 

pneumonia, which is essential in medical 

environments for prescribing proper treatment 

measures. 

Besides, relying on imbalanced datasets – where 

COVID-19 images are outnumbered with regard to 

other classes – can bias model outputs and diminish 

their generalizability in real-world applications. 

While architectures such as VGG16, DenseNet, and 

Xception have exhibited remarkable performance, 

few works have explored the full potential of more 

scalable and efficient models such as EfficientNet, 

particularly under a multi-class classification setting 

comprising COVID-19, bacterial pneumonia, viral 

pneumonia, and healthy controls. 

Also, the restricted interpretability of model 

output and lack of focus on clarifying predictive 

decision-making undermine physicians' confidence in 

such systems and impede effective implementation in 

clinical practice. 

Thus, a definite research gap is identified: the 

need to develop a robust, interpretable, and data-

balanced diagnostic model that can efficiently 

distinguish COVID-19 from other types of 

pneumonia based on CXR images. Bridging this gap 

– utilizing efficient architectures, transfer learning

techniques, attention mechanisms, and explainable

AI methods – is the primary motivation for this

research.

3 MATERIALS AND METHODS 

This section presents the evaluation and interpretation 

of the proposed predictive model. It also outlines the 

dataset, experimental parameters, and the 

performance metrics employed. 

3.1 Dataset Description 

In this study, a combined dataset was constructed by 

integrating two publicly available chest X-ray (CXR) 

datasets to support a robust multiclass classification 

framework. The first source was the COVID-19 

Radiography Database  [34] and its expanded version, 

the COVID-QU-Ex Dataset, developed 

collaboratively by Qatar University, the University of 

Dhaka, and their medical partners. This dataset is 

composed of frontal CXR images which are marked 

as COVID-19 (11,956 images), non-COVID 

pneumonia 11,263 images, and normal lungs (10,701 

images). Lung segmentation masks are part of this 

dataset but were not used in this work. 

The second dataset was gathered from paediatric 

cohorts (ages 1–5) at the Guangzhou Women and 

Children's Medical Centre in China and is known as 

Chest X-Ray Images (Pneumonia)  [35], The dataset 

contains 5,863 anterior-posterior (AP) X-ray images 

of two classes: pneumonia and normal. Expert 

radiologists assessed and validated all the scans in 

terms of diagnostic performance and image quality. 

From those two datasets, a highly balanced and 

curated dataset was created with approximately 

32,900  images, divided into four diagnostic classes: 

COVID-19, bacterial pneumonia, viral pneumonia, 

and normal. Figure 1: shows representative samples 

from each of the four diagnostic categories. 

3.2 Performance Metrics 

This study employed a set of widely used benchmark 

evaluation metrics to assess the effectiveness of the 

proposed prediction model, including sensitivity 

(recall), specificity, precision, F1-score, accuracy, 

and the confusion matrix. These metrics are standard 
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in medical image classification and diagnostic 

decision-support systems, where both false positives 

and false negatives may have serious clinical 

implications [44], [45]. 

)a) (b) 

(c) (d) 

Figure 1: Sample images: a) COVID19 images; b) Normal 

images; c)  Bacterial pneumonia images; d) Viral 

pneumonia images.

In addition, micro- and macro-averaged scores 

were reported to provide a comprehensive assessment 

of the model’s performance across all diagnostic 

classes. Such averaging strategies are commonly 

adopted in multi-class medical classification tasks, 

especially when class imbalance is present [44]. 

Sensitivity (also referred to as recall) reflects the 

model’s ability to correctly identify positive cases, 

which is critical in medical screening applications to 

reduce the risk of missed diagnoses. Specificity 

measures the model’s capability to correctly identify 

negative cases and is essential for minimizing false 

alarms and unnecessary clinical follow-up 

procedures. Accuracy provides an overall measure of 

correct predictions across both positive and negative 

classes, while precision evaluates the reliability of 

positive predictions. The F1-score combines 

precision and recall into a single metric, offering a 

balanced evaluation that accounts for both false 

positives and false negatives. These metrics are 

widely recognized and extensively applied in medical 

imaging and machine learning-based diagnostic 

studies [44], [45]. 

For multi-class classification scenarios, macro 

averaging computes evaluation metrics 

independently for each class and then averages them 

equally, ensuring that all classes contribute uniformly 

to the final score. This approach is particularly useful 

for assessing the model’s ability to handle each 

diagnostic category independently. In contrast, micro 

averaging aggregates true positives, false positives, 

and false negatives across all classes before 

computing the metrics, providing a global 

performance perspective that is especially beneficial 

for imbalanced datasets [44]. 

Both macro- and micro-averaged metrics were 

included in this study to ensure a balanced and 

holistic evaluation of the model’s classification 

performance. 

The confusion matrix was used to provide a 

detailed summary of the model’s predictions for each 

class, including true positives, true negatives, false 

positives, and false negatives. In the context of this 

work, the confusion matrix facilitated an in-depth 

analysis of the model’s ability to distinguish among 

four diagnostic categories: COVID-19, bacterial 

pneumonia, viral pneumonia, and normal cases. 

Correct classifications are represented along the 

diagonal of the matrix, where higher values indicate 

stronger classification performance. 

3.3 Experiment 

The experiment work for this study was carried out in 

two main stages on different computing platforms. 

Development, debugging, and early testing were done 

locally using Jupyter Notebook from the Anaconda 

package on an individual notebook laptop with a 2.5 

GHz Intel Core i7 processor and 12 GB of RAM 

under Windows 10. Implementation was under the 

Python computer programming language. For end-to-

end model training and performance evaluation, the 

experiments were subsequently migrated to Kaggle 

cloud platform, which supports powerful GPU setup. 

The models were trained on an NVIDIA Tesla P100 

GPU in Kaggle's hosted Jupyter Notebook platform. 

The software stack used Python 3.10 and 

PyTorch 2.0. 

As outlined in Section 3.2, multiple evaluation 

criteria were used to measure predictive performance 

of model under proposal. In addition to conventional 

accuracy and loss criteria, confusion matrix statistics 

were computed to gain more insight into 

classification performance and uncover patterns of 

misclassification. 

To evaluate the model’s generalization 

performance, the dataset was assembled by 

integrating two publicly available chest X-ray (CXR) 

datasets. Initially, the data were divided into training, 
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validation, and testing subsets using an approximate 

70%, 10%, and 20% split, respectively. At this stage, 

the training set comprised 23,687 images across four 

diagnostic categories: COVID-19, bacterial 

pneumonia, viral pneumonia, and normal. Due to 

significant class imbalance, data augmentation 

techniques were applied to the training set to equalize 

class representation, resulting in a balanced set of 

43,028 images. Combined with the validation (2,635 

images) and testing (6,578 images) subsets, the total 

dataset used in this study consisted of 52,241 chest X-

ray images. 

Key performance indicators – including accuracy, 

sensitivity, and specificity – were calculated to assess 

the effectiveness of the predictive model. These 

metrics provided a comprehensive understanding of 

the model’s ability to distinguish between the targeted 

pulmonary conditions. 

4 THE PROPOSED MODEL 

This section illustrates the proposed model for the 

prediction of the lung disease (COVID or 

Pneumonia). The proposed deep learning-based 

classification framework is divided into several 

stages: dataset preparation, preprocessing and 

augmentation, feature extraction, model training, 

evaluation, and explainability analysis using Grad-

CAM, as shown in Figure 2. Preprocessing operations 

were carried out before training to make the data 

uniform and improve the generalization performance 

of the model. Since the original images were of 

varying sizes, all images were resized to 300×300 

pixels to ensure consistency in input dimensions 

across the model. Also, the images were saved in 

PNG format to maintain visual integrity and  prevent 

compression artifacts of lossy formats like JPEG [36] 

Preprocessing operations were carried out before 

training to make the data uniform and improve the 

generalization performance of the model. Since the 

original images were of varying sizes, all images were 

resized to 300×300 pixels to ensure consistency in 

input dimensions across the model. Also, the images 

were saved in PNG format to maintain visual integrity 

and prevent compression artifacts of lossy formats 

like JPEG [36] .To enhance model robustness and 

avoid overfitting, And to fight the class imbalance 

issue, we applied data augmentation to the training set 

to obtain a perfectly balanced set with exactly 10,757 

images in each class (COVID, bacterial_pneumonia, 

viral_pneumonia, and normal) for a total of 43,028 

images. The validation and test sets were kept 

unbalanced to keep realistic evaluation  as well as to 

avoid leakage therefore were not augmented. The 

final balance of images in each split is presented in 

Table 1.  

Figure 2: A flowchart illustrating the proposed deep 

learning-based classification pipeline.

Table 1: Final distribution of images per class in each 

dataset split. 

Class 
Train 

(Balanced) 
Validation Test 

BACTERIAL_

PNEUMONIA 
10,757 670 1,672 

VIRAL_ 

PNEUMONIA 
10,757 479 1,195 

NORMAL 10,757 1,196 2,988 

COVID 10,757 290 723 

Total 43,028 2,635 6,578 

Data augmentation techniques were applied to the 

training set like random rotation, horizontal flip, 

brightness, and translation. These augmentations 

simulate real-world variability and help the model 

learn invariant features [37]. 

The training set was fully balanced via 

augmentation, ensuring equal representation of each 

class. This balancing approach kept the model from 

being biased toward any specific class during 

training, whereas the unbalanced validation and test 

sets provided a more realistic real-world performance 

estimate. The training set was employed for tuning 

model parameters, and the validation set was utilized 

for observing training progress and model selection. 

To avoid overfitting and increase generalization, two 

regularization techniques were applied: early 

stopping and Stochastic Weight Averaging (SWA). 

Early stopping was employed to terminate training 

once the optimal validation performance ceased to 

improve, thus preventing it from learning noise or 
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spurious patterns in the training dataset[38]. In 

contrast, SWA is employed to average model weights 

over multiple epochs close to convergence, yielding a 

flatter and stable solution that enhances the model's 

robustness and generalization performance.  In the 

same vein, the test set was held strictly aside for final 

evaluation, in order to have an unbiased assessment 

of how well the model generalizes to new data[39]. 

For feature extraction and classification, the 

EfficientNet-B3 model was employed. The model 

was initialized with ImageNet-pretrained weights, 

leveraging transfer learning to retain low-level visual 

features while adapting the final layers to the target 

task. The final classification head was modified to 

include a dropout layer (p=0.4) and a fully connected 

linear layer with four output neurons, corresponding 

to the four diagnostic classes. The EfficientNet-B3 

model was chosen due to its balance between 

computational efficiency and high accuracy[40, 41]. 

Transfer learning was also used, leveraging weights 

pre-trained on large datasets such as ImageNet, to 

improve the model's generalization ability[40]. To 

increase the transparency of interpretation and 

understand the areas affecting the prediction process, 

Grad-CAM  (Gradient-weighted Class Activation 

Mapping) technology were combined into the 

methodology[42]. This approach aims to address the 

challenges associated with the similarity of visual 

features across different diseases, as well as the 

limited diversity of available training data[43].  

The model was trained with the AdamW 

optimizer, a learning rate of 3e-4, and cross-entropy 

loss with label smoothing (0.05). To enhance training 

stability and performance, 

CosineAnnealingWarmRestarts was used as a 

learning rate scheduler, along with early stopping and 

Stochastic Weight Averaging (SWA). Upon training 

completion, the model’s performance was assessed 

using the unseen test dataset. 

5 RESULT AND DISCUSSION 

As shown in Table 2, the performance of the proposed 

deep learning model was thoroughly assessed in this 

section using a number of important classification 

metrics, such as accuracy, precision, recall, 

specificity, F1-score, and macro average. These 

metrics provide a thorough grasp of the diagnostic 

capabilities of the model for each of the four target 

classes: Normal, bacterial, viral, and COVID-19 

pneumonia [44] . 

Given the clinical significance of minimizing 

misdiagnoses (especially for COVID-19 and 

pneumonia cases), these complementary metrics are 

critical to evaluating the model's robustness. In this 

study, after training over 30 epochs, the model across 

the entire test dataset achieved 98.69% accuracy, 

0.987 macro-averaged precision, 0.982 recall, 0.985 

F1-score, 0.995 specificity, and 0.99 AUC, 

demonstrating robust classification across the four 

diagnostic classes. Detailed per-class results are 

reported in Table 2, and illustrated by the confusion 

matrix in Figure 3. These results demonstrate 

consistently high precision, recall, Specificity, and 

F1-score across all categories, highlighting the 

robustness of the model [45] . 

Grad-CAM Visualization Results: Figure 4 shows 

Grad-CAM (Gradient-weighted Class Activation 

Mapping) visualizations of example chest X-ray 

(CXR) images from each of the four diagnostic 

classes: Viral Pneumonia, Normal, Bacterial 

Pneumonia, and COVID-19. Each row shows the 

original CXR image (left), the exaggerated Grad-

CAM heatmap (center), and the overlay of the 

heatmap on the original image (right). 

These visualizations provide a sense of the 

regions of the lungs that the EfficientNet-B3 model is 

paying attention to in order to make its predictions: 

Table 2: Illustrates the model’s performance. 

Class Precision 
Recall 

(Sensitivity) 
Specificity F1-Score AUC Support 

BACTERIAL_PNEUMONIA 0.990 0.985 0.995 0.990  – 1672 

COVID 0.990 0.968 0.999 0.980  – 723 

NORMAL 0.990 0.996 0.991 0.990  – 2988 

VIRAL_PNEUMONIA 0.980 0.978 0.994 0.980  – 1195 

Macro Average 0.987 0.982 0.995 0.985 0.99 6578 

Micro Average 0.986 0.986  – 0.986  – 6578 

Overall Accuracy  – –  – 0.987  – 6578 
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Figure 3: Confusion matrix showing the true vs. predicted labels for each class. 

Figures 4: Illustrate Grad-CAM visualizations for each class with the Correct prediction. 
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In Viral Pneumonia, the model is highlighting 

bilateral mid-to-lower lung fields, in keeping with the 

clinical presentation of viral infiltration. In Normal 

cases, attention is diffusely distributed without any 

notable areas of activation, in keeping with the 

absence of abnormal radiographic findings. For 

Bacterial Pneumonia, the model highlights focal areas 

intensely, mirroring the lobar consolidation patterns 

of bacterial infections. For COVID-19, the model 

emphasizes peripheral and basal lung regions, 

consistent with known radiological features of 

COVID-19 such as ground-glass opacities. These 

Grad-CAM visualizations confirm that the model's 

predictions are grounded in clinically sound features, 

rendering the model more interpretable and more 

reliable for medical diagnosis.  

The model was optimized with several methods 

including advanced augmentation techniques, label 

smoothing, AdamW optimizer, SWA, and 

GradScaler mixed precision training  .Early stopping 

were also employed to boost performance and prevent 

overfitting. 

Figure 5: Training and validation loss. 

Figure 6: Training and validation accuracy. 

A detailed breakdown by class is shown in 

Table 2, and the confusion matrix is visualized in 

Figure 3, clearly illustrating the model’s exceptional 

ability to differentiate between four categories: 

COVID, Bacterial_Pneumonia, Viral_Pneumonia, 

and Normal. 

In Figures 5 and 6. The left panel illustrates the 

loss curves, where both validation and training loss 

decrease consistently, indicating good convergence 

with no harsh overfitting. The right panel illustrates 

the accuracy curves, where both validation and 

training accuracy increase consistently across epochs. 

The relatively narrow gap between the two curves 

guarantees that the model is generalizing well and is 

stable while learning. 

Compared to the traditional models like VGG16-

based classifiers (i.e., VGG16+SVM, VGG16+KNN, 

NB, or RF), our new EfficientNet-B3 model 

significantly outperformed in terms of accuracy, 

stability, and interpretability. Unlike these models, 

our method did not require external handcrafted 

feature engineering but enjoyed end-to-end feature 

extraction with fewer parameters and higher 

efficiency. Therefore, the proposed approach attains 

state-of-the-art performance in multiclass pneumonia 

detection and can find application as a reliable 

diagnostic assistant in clinical environments. 

6 CONCLUSIONS

Early and correct detection of pneumonia, COVID-19 

and other respiratory tract infections, plays a crucial 

role in improving the outcome of the treatment. The 

current article described a top-ranked deep learning 

algorithm using EfficientNet-B3 for diagnosing chest 

X-ray images into four disease classes. Data

augmentation, transfer learning, and visualization

techniques like Grad-CAM helped the algorithm

achieve remarkable accuracy and interpretability. In

the future, we plan to extend this work with more

diverse datasets from different institutions and

incorporating clinical metadata to further improve the

model's generalization capability. The model was

trained and evaluated on merged, preprocessed

datasets: the COVID-19 Radiography Database and

the Chest X-Ray Images (Pneumonia) dataset. Images

were split into 70% train, 10% validation, and 20%

test sets to allow for solid and balanced evaluation.

Large-scale experiments confirm that the proposed

EfficientNet-B3 model has attained a strong test

accuracy of 98.69%, with macro-averaged precision,

recall, and F1-scores of 0.987, 0.983, and 0.985,

respectively, for every class. Moreover, Grad-CAM

visualizations confirmed that the model was paying

attention to significant pulmonary regions, and this

added extra interpretability and clinical confidence to
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the predictions Compared to previous models such as 

VGG16-based CNNs, SVM, KNN, Naïve Bayes, and 

Random Forest, which achieved test accuracies 

typically ranging from 92% to 95% and often 

struggled to distinguish between pneumonia 

subtypes, our EfficientNet-B3 model achieved a 

higher accuracy of 98.69% with robust performance 

across all four classes. This demonstrates clear 

superiority in multiclass discrimination and clinical 

reliability. 

This demonstrates its ability to be employed as a 

reliable tool for helping radiologists discriminate 

COVID-19 and other forms of pneumonia from 

normal CXR images. In the future, we intend to 

increase the model's generalizability by merging 

heterogeneous, cross-center data, exploring 

multimodal learning through imaging integration 

with clinical or genomic data, and deploying the 

model in real-time clinical settings with explainable 

AI interfaces for clinician feedback and validation. 

These developments may facilitate more transparent, 

scalable, and accurate AI-assisted diagnostic systems 

in routine clinical workflows. 
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