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Respiratory disease, such as COVID-19 and pneumonia, are among the leading global causes of morbidity

and mortality. Inexpensive yet universally applied chest X-ray (CXR) imaging is still difficult to interpret
due to overlapping radiographic findings between diseases. In this paper, we propose an improved deep
learning framework based on the EfficientNet-B3 architecture, aided by transfer learning, Grad-CAM
visualizations, and data augmentation for autonomous diagnosis of respiratory diseases from CXR images.
Two publicly available datasets were merged, cleaned, and balanced to create a heterogeneous training corpus
of four classes of diagnostic conditions: COVID-19, bacterial pneumonia, viral pneumonia, and normal
conditions. The proposed model was achieved accurate in test set 98.69% and high macro-averaged precision,
recall, and Fl-scores. The use of Grad-CAM visualizations enhanced the concentration of the model on
clinically relevant lung regions, making it more explainable. These findings suggest the model's viability as
a reliable clinical decision support system, especially in resource-limited settings, and are an advancement
towards explainable Al in medical diagnosis.

1 INTRODUCTION

Respiratory disease is among the most common
diseases on the planet [1]. For example, chronic
respiratory diseases affected over 454 million people
and were the third leading cause of death worldwide,
causing approximately 4 million deaths annually [2]
Pneumonia and COVID-19 are common types of such
diseases [3]. Pneumonia, for instance, infects
approximately 450 million individuals yearly and
kills approximately 4 million, mostly children below
the age of five and the elderly [4]. As much as
COVID-19 is concerned, it has caused more than 770
million confirmed cases and over 7 million confirmed
deaths worldwide since the start of the pandemic, as
indicated by the World Health Organization
in 2024 [5]. This raises the need for timely
intervention using modern technologies.

The lungs are the body's second most crucial
organs, and a key part plays in the all-important
oxygen process needed for survival [6]. However, due
to their fragile nature, they are prone to a lot of
respiratory illnesses such as pneumonia and COVID-
19 [7]. Both these diseases are some of the most
commonly reported respiratory health hazards
worldwide, primarily due to their sheer prevalence
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and sheer impact on the pulmonary system [2].
Moreover, the high level of similarity between
clinical presentation and radiographic features of the
two tends to generally complicate correct and prompt
diagnosis [8].

Pneumonia is bacterial, viral, or fungal infection
of the alveoli, which causes fever, cough, and
shortness of breath [9], [10]. Whereas, COVID-19,
caused by the novel coronavirus (SARS-CoV-2),
directly affects the lungs and can range from mild
symptoms to pneumonia, which has the same
presentation as pneumonia [11]. That similarity
makes it difficult and complicated to distinguish
between the two by the conventional methods [12]
The virus detection furthermore relies primarily on
the RT-PCR test, which is highly specific. Even
though its low sensitivity renders it susceptible to
false negatives, which degrade the effectiveness of
early detection [13]. On the other hand, computed
tomography (CT) has been helpful in the
determination of pulmonary changes due to COVID-
19, particularly those presenting as "ground-glass
opacities" in the periphery of the lungs [14]. Although
this type of imaging is precise, the wide use of it is
hampered by limitations such as it being costly and
entails radiation exposure [15].
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In contrast, chest x-ray (CXR) is also less costly
and easily available and can be found commonly in
hospitals and general practitioner centers [16]. Chest
X-rays are considered a first-line, cost-effective
diagnostic tool that can assist in identifying lung
infections, chronic lung diseases, and other thoracic
conditions [4], [5]. CXR images of COVID-19-
infected patients show some characteristic patterns
such as bilateral congestions and peripheral opacities,
especially in the lower zones of the lungs [12]. But
the sensitivity of this kind of imaging is less
compared to CT, thus complicating the diagnosis,
particularly in the initial stages of the disease [13]
.The early and accurate detection of those illnesses
through chest X-ray (CXR) imaging remains a critical
clinical priority [17].

In this context, there has been increasing reliance
on Al-based computer-aided diagnosis (CADx)
systems to improve diagnostic accuracy and analyze
medical images more efficiently[18]-[22].Among Al
techniques, convolutional neural networks (CNNs)
have proven highly effective in classifying lung
diseases using CXR and CT images [23]. This
research focuses on developing an intelligent
diagnostic system capable of distinguishing between
COVID-19 cases, pneumonia (both bacterial and
viral), and healthy cases, based on chest x-ray images
and CNN models

This is how the rest of the paper is structured.
Related work is presented in Section 2. The materials
and procedures are described in full in Section 3.
Section 4 presents the comprehensive experimental
setup. In Section 5, the experimental results are
described in full. The conclusion in Section 6 follows
this.

2 RELATED WORKS

Over the past few years, there has been considerable
work in utilizing deep learning techniques for the
detection of COVID-19 and pneumonia based on
chest X-ray (CXR) images. The utilized models have
varied from pre-trained deep networks to
sophisticated segmentation and image enhancement
techniques, but most have been faced with challenges
of data balancing, accuracy in discriminating among
the various forms of pneumonia, and limited
generalizability of results.

For instance, In a recent study, by Sharma and
Guleria [24] proposed VGGI16-based model to
classify pneumonia from CXR images. The model
achieved accuracy of 95.4% on the second dataset
used. While the model surpassed baseline classifiers
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such as SVM and Random Forest, it can be
compromised by the imbalance of the dataset,
especially considering the higher proportion of
pneumonia cases with the rise in the pneumonia
image data compared to both normal cases as well as
to COVID-19. The failure to differentiate between
viral pneumonia and bacterial also compromises its
usability at a clinical level.

Similarly, Zhang [25] used a CAAD model based
on EfficientNet-BO to detect viral pneumonia with
acceptable AUC results (87.57% for X-VIRAL and
83.61% for X-COVID). Their application of anomaly
detection instead of direct classification, however,
limited the potential of the model to distinguish
between disease types.

In another approach, Goyal and Singh [26] were
also proposed a technique that involves image
enhancement and region-of-interest extraction, along
with deep classifiers RNN and LSTM. The model
accuracy was reported to be 94.31% for the CXIP
dataset and 95.04% for the C19RD dataset, although
the data taken into account was unbalanced,
particularly in terms of the number of COVID-19
images and other cases, which can affect the
performance of the model in real-life situations.

Furthermore, Hamdi [27] utilized the VGG-16
architecture to differentiate between COVID-19, viral
pneumonia, and normal cases with 92.72% accuracy
following the application of data augmentation
techniques. Bacterial pneumonia was not considered
in the study, making the model diagnostically
incomplete.

In a similar vein, Hasan and et al. [28]also utilized
a VGG-16 model and transfer learning to identify
cases as COVID-19, pneumonia, and normal cases
with accuracy of 91.69%. While these have been
achieved results, discrimination among bacterial and
viral infections, a critical aspect to correct diagnosis,
was not targeted by the research.

Additionally, Militante, Dionisio [29] relied on
VGG-16 to classify 20,000 CXR images including
COVID-19, pneumonia, and normal cases, achieving
95% accuracy. However, distinguishing between
bacterial and viral infections remained challenging
due to the similarity in radiographic patterns,
indicating the need to develop more specialized
architectures or integrate other techniques to improve
discrimination.

Moreover, Hammoudi [30] used the DenseNet169
model and achieved 95.72% accuracy. However, the
model did not take COVID-19 as a separate class, but
as a viral pneumonia, which can lead to
discrimination errors. Besides, the dataset of COVID-
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19 was limited (only 145 images), which
compromises the validity of the findings.

In contrast, Khan and Bhat [31] proposed the
CoroNet model, which is based on the Xception
architecture, to identify normal cases, COVID-19,
and pneumonia (variants). The model had a high
recall for COVID-19 instances (98.2%) and an
overall accuracy of 89.6%. However, the limited
sample size, especially COVID-19 images, may
impact the generalisability of the model.

Likewise, Manickam, Jiang [32] employed pre-
trained models such as ResNet50 and InceptionV3 to
classify pneumonia images as normal and abnormal
(bacterial and viral) through transfer learning. Despite
the study achieving 93.06% accuracy, it had no data
on COVID-19, which reduces the comprehensiveness
of the results.

Finally, Ieracitano, Mammone [33] suggested a
model called CovNNet that integrated fuzzy logic
techniques for edge detection with CNN structure to
improve COVID-19 and pneumonia diagnosis from
portable x-ray images. The model achieved an
accuracy of 81% with great capacity to handle low-
quality images. Nevertheless, the lack of
discrimination between pneumonia types and the
small sample size were study limitations.

In spite of dramatic advances in the application of
deep learning methods in identifying COVID-19 and
pneumonia from X-rays, some common challenges
and constraints remain shared in  most
abovementioned works. Most research works have
performed binary or ternary classification tasks,
without sufficiently differentiating viral and bacterial

pneumonia, which is essential in medical
environments for prescribing proper treatment
measures.

Besides, relying on imbalanced datasets — where
COVID-19 images are outnumbered with regard to
other classes — can bias model outputs and diminish
their generalizability in real-world applications.
While architectures such as VGG16, DenseNet, and
Xception have exhibited remarkable performance,
few works have explored the full potential of more
scalable and efficient models such as EfficientNet,
particularly under a multi-class classification setting
comprising COVID-19, bacterial pneumonia, viral
pneumonia, and healthy controls.

Also, the restricted interpretability of model
output and lack of focus on clarifying predictive
decision-making undermine physicians' confidence in
such systems and impede effective implementation in
clinical practice.

Thus, a definite research gap is identified: the
need to develop a robust, interpretable, and data-
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balanced diagnostic model that can efficiently
distinguish COVID-19 from other types of
pneumonia based on CXR images. Bridging this gap
— utilizing efficient architectures, transfer learning
techniques, attention mechanisms, and explainable
Al methods — is the primary motivation for this
research.

3 MATERIALS AND METHODS

This section presents the evaluation and interpretation
of the proposed predictive model. It also outlines the
dataset, experimental parameters, and the
performance metrics employed.

3.1 Dataset Description

In this study, a combined dataset was constructed by
integrating two publicly available chest X-ray (CXR)
datasets to support a robust multiclass classification
framework. The first source was the COVID-19
Radiography Database [34] and its expanded version,
the COVID-QU-Ex Dataset, developed
collaboratively by Qatar University, the University of
Dhaka, and their medical partners. This dataset is
composed of frontal CXR images which are marked
as COVID-19 (11,956 images), non-COVID
pneumonia 11,263 images, and normal lungs (10,701
images). Lung segmentation masks are part of this
dataset but were not used in this work.

The second dataset was gathered from paediatric
cohorts (ages 1-5) at the Guangzhou Women and
Children's Medical Centre in China and is known as
Chest X-Ray Images (Pneumonia) [35], The dataset
contains 5,863 anterior-posterior (AP) X-ray images
of two classes: pneumonia and normal. Expert
radiologists assessed and validated all the scans in
terms of diagnostic performance and image quality.
From those two datasets, a highly balanced and
curated dataset was created with approximately
32,900 images, divided into four diagnostic classes:
COVID-19, bacterial pneumonia, viral pneumonia,
and normal. Figure 1: shows representative samples
from each of the four diagnostic categories.

3.2 Performance Metrics

This study employed a set of widely used benchmark
evaluation metrics to assess the effectiveness of the
proposed prediction model, including sensitivity
(recall), specificity, precision, Fl-score, accuracy,
and the confusion matrix. These metrics are standard
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in medical image -classification and diagnostic
decision-support systems, where both false positives
and false negatives may have serious clinical
implications [44], [45].
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Figure 1: Sample images: a) COVID19 images; b) Normal

images; c¢) Bacterial pneumonia images; d) Viral
pneumonia images.

In addition, micro- and macro-averaged scores
were reported to provide a comprehensive assessment
of the model’s performance across all diagnostic
classes. Such averaging strategies are commonly
adopted in multi-class medical classification tasks,
especially when class imbalance is present [44].

Sensitivity (also referred to as recall) reflects the
model’s ability to correctly identify positive cases,
which is critical in medical screening applications to
reduce the risk of missed diagnoses. Specificity
measures the model’s capability to correctly identify
negative cases and is essential for minimizing false
alarms and unnecessary clinical follow-up
procedures. Accuracy provides an overall measure of
correct predictions across both positive and negative
classes, while precision evaluates the reliability of
positive predictions. The Fl-score combines
precision and recall into a single metric, offering a
balanced evaluation that accounts for both false
positives and false negatives. These metrics are
widely recognized and extensively applied in medical
imaging and machine learning-based diagnostic
studies [44], [45].

For multi-class classification scenarios, macro
averaging computes evaluation metrics
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independently for each class and then averages them
equally, ensuring that all classes contribute uniformly
to the final score. This approach is particularly useful
for assessing the model’s ability to handle each
diagnostic category independently. In contrast, micro
averaging aggregates true positives, false positives,
and false negatives across all classes before
computing the metrics, providing a global
performance perspective that is especially beneficial
for imbalanced datasets [44].

Both macro- and micro-averaged metrics were
included in this study to ensure a balanced and
holistic evaluation of the model’s classification
performance.

The confusion matrix was used to provide a
detailed summary of the model’s predictions for each
class, including true positives, true negatives, false
positives, and false negatives. In the context of this
work, the confusion matrix facilitated an in-depth
analysis of the model’s ability to distinguish among
four diagnostic categories: COVID-19, bacterial
pneumonia, viral pneumonia, and normal cases.
Correct classifications are represented along the
diagonal of the matrix, where higher values indicate
stronger classification performance.

3.3 Experiment

The experiment work for this study was carried out in
two main stages on different computing platforms.
Development, debugging, and early testing were done
locally using Jupyter Notebook from the Anaconda
package on an individual notebook laptop with a 2.5
GHz Intel Core i7 processor and 12 GB of RAM
under Windows 10. Implementation was under the
Python computer programming language. For end-to-
end model training and performance evaluation, the
experiments were subsequently migrated to Kaggle
cloud platform, which supports powerful GPU setup.
The models were trained on an NVIDIA Tesla P100
GPU in Kaggle's hosted Jupyter Notebook platform.
The software stack used Python 3.10 and
PyTorch 2.0.

As outlined in Section 3.2, multiple evaluation
criteria were used to measure predictive performance
of model under proposal. In addition to conventional
accuracy and loss criteria, confusion matrix statistics
were computed to gain more insight into
classification performance and uncover patterns of
misclassification.

To evaluate the model’s generalization
performance, the dataset was assembled by
integrating two publicly available chest X-ray (CXR)
datasets. Initially, the data were divided into training,
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validation, and testing subsets using an approximate
70%, 10%, and 20% split, respectively. At this stage,
the training set comprised 23,687 images across four
diagnostic ~ categories: = COVID-19,  Dbacterial
pneumonia, viral pneumonia, and normal. Due to
significant class imbalance, data augmentation
techniques were applied to the training set to equalize
class representation, resulting in a balanced set of
43,028 images. Combined with the validation (2,635
images) and testing (6,578 images) subsets, the total
dataset used in this study consisted of 52,241 chest X-
ray images.

Key performance indicators — including accuracy,
sensitivity, and specificity — were calculated to assess
the effectiveness of the predictive model. These
metrics provided a comprehensive understanding of
the model’s ability to distinguish between the targeted
pulmonary conditions.

4 THE PROPOSED MODEL

This section illustrates the proposed model for the
prediction of the Ilung disease (COVID or
Pneumonia). The proposed deep learning-based
classification framework is divided into several
stages: dataset preparation, preprocessing and
augmentation, feature extraction, model training,
evaluation, and explainability analysis using Grad-
CAM, as shown in Figure 2. Preprocessing operations
were carried out before training to make the data
uniform and improve the generalization performance
of the model. Since the original images were of
varying sizes, all images were resized to 300%300
pixels to ensure consistency in input dimensions
across the model. Also, the images were saved in
PNG format to maintain visual integrity and prevent
compression artifacts of lossy formats like JPEG [36]

Preprocessing operations were carried out before
training to make the data uniform and improve the
generalization performance of the model. Since the
original images were of varying sizes, all images were
resized to 300x300 pixels to ensure consistency in
input dimensions across the model. Also, the images
were saved in PNG format to maintain visual integrity
and prevent compression artifacts of lossy formats
like JPEG [36] .To enhance model robustness and
avoid overfitting, And to fight the class imbalance
issue, we applied data augmentation to the training set
to obtain a perfectly balanced set with exactly 10,757
images in each class (COVID, bacterial pneumonia,
viral pneumonia, and normal) for a total of 43,028
images. The validation and test sets were kept
unbalanced to keep realistic evaluation as well as to
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avoid leakage therefore were not augmented. The
final balance of images in each split is presented in
Table 1.

[ Dataset Preparation ]

l

Preprocessing and
Augmentation

|

[ Feature Extraction

!

[ Model Training

)
)

|
[ e )
)

l

Explainability Analysis
(Grad-CAM)

Figure 2: A flowchart illustrating the proposed deep
learning-based classification pipeline.

Table 1: Final distribution of images per class in each
dataset split.
Class Train Validation | Test
(Balanced)
BACTERIAL
PNEUMONIA 10,757 670 1,672
VIRAL _
PNEUMONIA 10,757 479 1,195
NORMAL 10,757 1,196 2,988
COVID 10,757 290 723
Total 43,028 2,635 6,578

Data augmentation techniques were applied to the
training set like random rotation, horizontal flip,
brightness, and translation. These augmentations
simulate real-world variability and help the model
learn invariant features [37].

The training set was fully balanced via
augmentation, ensuring equal representation of each
class. This balancing approach kept the model from
being biased toward any specific class during
training, whereas the unbalanced validation and test
sets provided a more realistic real-world performance
estimate. The training set was employed for tuning
model parameters, and the validation set was utilized
for observing training progress and model selection.
To avoid overfitting and increase generalization, two
regularization techniques were applied: early
stopping and Stochastic Weight Averaging (SWA).
Early stopping was employed to terminate training
once the optimal validation performance ceased to
improve, thus preventing it from learning noise or
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spurious patterns in the training dataset[38]. In
contrast, SWA is employed to average model weights
over multiple epochs close to convergence, yielding a
flatter and stable solution that enhances the model's
robustness and generalization performance. In the
same vein, the test set was held strictly aside for final
evaluation, in order to have an unbiased assessment
of how well the model generalizes to new data[39].

For feature extraction and classification, the
EfficientNet-B3 model was employed. The model
was initialized with ImageNet-pretrained weights,
leveraging transfer learning to retain low-level visual
features while adapting the final layers to the target
task. The final classification head was modified to
include a dropout layer (p=0.4) and a fully connected
linear layer with four output neurons, corresponding
to the four diagnostic classes. The EfficientNet-B3
model was chosen due to its balance between
computational efficiency and high accuracy[40, 41].
Transfer learning was also used, leveraging weights
pre-trained on large datasets such as ImageNet, to
improve the model's generalization ability[40]. To
increase the transparency of interpretation and
understand the areas affecting the prediction process,
Grad-CAM (Gradient-weighted Class Activation
Mapping) technology were combined into the
methodology[42]. This approach aims to address the
challenges associated with the similarity of visual
features across different diseases, as well as the
limited diversity of available training data[43].

The model was trained with the AdamW
optimizer, a learning rate of 3e-4, and cross-entropy
loss with label smoothing (0.05). To enhance training
stability and performance,
CosineAnnealingWarmRestarts was used as a
learning rate scheduler, along with early stopping and
Stochastic Weight Averaging (SWA). Upon training
completion, the model’s performance was assessed
using the unseen test dataset.

S RESULT AND DISCUSSION

As shown in Table 2, the performance of the proposed
deep learning model was thoroughly assessed in this
section using a number of important classification
metrics, such as accuracy, precision, recall,
specificity, Fl-score, and macro average. These
metrics provide a thorough grasp of the diagnostic
capabilities of the model for each of the four target
classes: Normal, bacterial, viral, and COVID-19
pneumonia [44] .

Given the clinical significance of minimizing
misdiagnoses (especially for COVID-19 and
pneumonia cases), these complementary metrics are
critical to evaluating the model's robustness. In this
study, after training over 30 epochs, the model across
the entire test dataset achieved 98.69% accuracy,
0.987 macro-averaged precision, 0.982 recall, 0.985
Fl-score, 0.995 specificity, and 0.99 AUC,
demonstrating robust classification across the four
diagnostic classes. Detailed per-class results are
reported in Table 2, and illustrated by the confusion
matrix in Figure 3. These results demonstrate
consistently high precision, recall, Specificity, and
Fl-score across all categories, highlighting the
robustness of the model [45] .

Grad-CAM Visualization Results: Figure 4 shows
Grad-CAM (Gradient-weighted Class Activation
Mapping) visualizations of example chest X-ray
(CXR) images from each of the four diagnostic
classes: Viral Pneumonia, Normal, Bacterial
Pneumonia, and COVID-19. Each row shows the
original CXR image (left), the exaggerated Grad-
CAM heatmap (center), and the overlay of the
heatmap on the original image (right).

These visualizations provide a sense of the
regions of the lungs that the EfficientNet-B3 model is
paying attention to in order to make its predictions:

Table 2: Illustrates the model’s performance.

Class Precision (Sei:ii?\lili ) Specificity F1-Score AUC Support
BACTERIAL PNEUMONIA 0.990 0.985 0.995 0.990 — 1672
COVID 0.990 0.968 0.999 0.980 — 723
NORMAL 0.990 0.996 0.991 0.990 — 2988
VIRAL PNEUMONIA 0.980 0.978 0.994 0.980 — 1195
Macro Average 0.987 0.982 0.995 0.985 0.99 6578
Micro Average 0.986 0.986 — 0.986 - 6578
Overall Accuracy — — — 0.987 — 6578
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In Viral Pneumonia, the model is highlighting
bilateral mid-to-lower lung fields, in keeping with the
clinical presentation of viral infiltration. In Normal
cases, attention is diffusely distributed without any
notable areas of activation, in keeping with the
absence of abnormal radiographic findings. For
Bacterial Pneumonia, the model highlights focal areas
intensely, mirroring the lobar consolidation patterns
of bacterial infections. For COVID-19, the model
emphasizes peripheral and basal lung regions,
consistent with known radiological features of
COVID-19 such as ground-glass opacities. These
Grad-CAM visualizations confirm that the model's
predictions are grounded in clinically sound features,
rendering the model more interpretable and more
reliable for medical diagnosis.

The model was optimized with several methods
including advanced augmentation techniques, label
smoothing, AdamW  optimizer, SWA, and
GradScaler mixed precision training .Early stopping
were also employed to boost performance and prevent
overfitting.

Loss over Epochs

—— Train Loss
- Validation Loss

0.45

5 035
0.30 .
025 \/\ \/\
[ 2 4 6 8 10 12
Epoch
Figure 5: Training and validation loss.
Accuracy over Epochs
100
./
0.98 /\/ / ’J\/
0.96 -
0.94
fry
g
g 0.92
0.90
0.88
Train Accuracy
0.86 validation Accuracy
o 2 a 6 8 10 12

Epoch
Figure 6: Training and validation accuracy.
A detailed breakdown by class is shown in

Table 2, and the confusion matrix is visualized in
Figure 3, clearly illustrating the model’s exceptional
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ability to differentiate between four categories:
COVID, Bacterial Pneumonia, Viral Pneumonia,
and Normal.

In Figures 5 and 6. The left panel illustrates the
loss curves, where both validation and training loss
decrease consistently, indicating good convergence
with no harsh overfitting. The right panel illustrates
the accuracy curves, where both validation and
training accuracy increase consistently across epochs.
The relatively narrow gap between the two curves
guarantees that the model is generalizing well and is
stable while learning.

Compared to the traditional models like VGG16-
based classifiers (i.e., VGG16+SVM, VGG16+KNN,
NB, or RF), our new EfficientNet-B3 model
significantly outperformed in terms of accuracy,
stability, and interpretability. Unlike these models,
our method did not require external handcrafted
feature engineering but enjoyed end-to-end feature
extraction with fewer parameters and higher
efficiency. Therefore, the proposed approach attains
state-of-the-art performance in multiclass pneumonia
detection and can find application as a reliable
diagnostic assistant in clinical environments.

6 CONCLUSIONS

Early and correct detection of pneumonia, COVID-19
and other respiratory tract infections, plays a crucial
role in improving the outcome of the treatment. The
current article described a top-ranked deep learning
algorithm using EfficientNet-B3 for diagnosing chest
X-ray images into four disease classes. Data
augmentation, transfer learning, and visualization
techniques like Grad-CAM helped the algorithm
achieve remarkable accuracy and interpretability. In
the future, we plan to extend this work with more
diverse datasets from different institutions and
incorporating clinical metadata to further improve the
model's generalization capability. The model was
trained and evaluated on merged, preprocessed
datasets: the COVID-19 Radiography Database and
the Chest X-Ray Images (Pneumonia) dataset. Images
were split into 70% train, 10% validation, and 20%
test sets to allow for solid and balanced evaluation.
Large-scale experiments confirm that the proposed
EfficientNet-B3 model has attained a strong test
accuracy of 98.69%, with macro-averaged precision,
recall, and Fl-scores of 0.987, 0.983, and 0.985,
respectively, for every class. Moreover, Grad-CAM
visualizations confirmed that the model was paying
attention to significant pulmonary regions, and this
added extra interpretability and clinical confidence to
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the predictions Compared to previous models such as
VGG16-based CNNs, SVM, KNN, Naive Bayes, and
Random Forest, which achieved test accuracies
typically ranging from 92% to 95% and often
struggled to distinguish between pneumonia
subtypes, our EfficientNet-B3 model achieved a
higher accuracy of 98.69% with robust performance
across all four classes. This demonstrates clear
superiority in multiclass discrimination and clinical
reliability.

This demonstrates its ability to be employed as a
reliable tool for helping radiologists discriminate
COVID-19 and other forms of pneumonia from
normal CXR images. In the future, we intend to
increase the model's generalizability by merging
heterogeneous,  cross-center  data,  exploring
multimodal learning through imaging integration
with clinical or genomic data, and deploying the
model in real-time clinical settings with explainable
Al interfaces for clinician feedback and validation.
These developments may facilitate more transparent,
scalable, and accurate Al-assisted diagnostic systems
in routine clinical workflows.
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