
Efficiency of a PID-based Congestion Control for High-speed
IP-networks

Nikolai Mareev1, Dmitry Kachan1, Kirill Karpov1, Dmytro Syzov1,
Eduard Siemens1 and Yurii Babich2

1Department of Electrical, Mechanical and Industrial Engineering,
Anhalt University of Applied Sciences, Bernburger Str. 55, 06366 Köthen, Germany,

2Department of Telecommunication Networks,
Odessa National O.S. Popov Academy of Telecommunications, Odessa, Ukraine

nikolai.mareev@student.hs-anhalt.de, {dmitry.kachan, kirill.karpov, dmytro.syzov, eduard.siemens}@hs-anhalt.de,
y.babich@onat.edu.ua

Keywords: Congestion Control, Transport Protocol, Ip Networks, Pid Control, Rmdt, High-Speed Networks

Abstract: The current situation in IP networks shows the need for new congestion control algorithms that can be flexible,
scalable, and capable of avoiding additional queue delays caused by loading the bottleneck buffers. Most
common internet flows use loss-based congestion controls, which can achieve high bottleneck bandwidth
utilization and fair resource sharing but cause overload bottleneck buffers. In this paper we present an
investigation of the performance of a PID-based congestion control solution for high-speed IP networks. It
uses measurements of a round trip time and receiver delivery rate to reach and keep maximum available
bottleneck performance and constant node buffer load caused by bottleneck queue on some low level. This
algorithm can be effective in high-speed IP networks and delay-sensitive applications. It is designed to be
flexible and scalable for different connectivity cases. This algorithm then is investigated on the example of
RMDT.

1 INTRODUCTION

Network congestion occurs, when a receiving node is
receiving more data than it can handle or forward to
an output interface. It leads to a significant
performance degradation: additional delays and
massive packet losses. Congestion control algorithms
are aimed to solve such problems. This is an
automatic control of a sender’s parameters, which
describe performance of data send process,
adaptability for different connection cases and the
ability to share link resources fairly with other
connections.

The aim of this paper is to present an investigation
on PID-based congestion control in terms of
CloudBDT and BitBooster projects. These projects
use the Reliable Multi-Destination Transport
protocol RMDT [1][2], where the results of the
present work may be used.

The idea behind the usage of PID (Proportional –
Integral – Derivative) control in congestion control
algorithm lies in the fact that this type of control can
be very flexible, scalable and adaptive. It can be
easily extended by additional modules like auto tune
loop or artificial neural network.

The main challenges for modern congestion
control are: high bottleneck bandwidth utilization,
low bottleneck queue delays, automatic scalability to
different channel conditions (different bandwidth and
different delays) [3], adaptation for sudden changes
over connection like rerouting, applicability in
wireless networks and resource sharing.

The rest of this paper is organized as follows: In
section 2 a short overview of modern congestion
control solutions and their main disadvantages is
presented. Section 3 describes main states of PID-
based congestion control solution and its principles.
The experimental setup is presented in Section 4. Test
results and evaluations are given in Section 5. Section

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

129

6 includes conclusions based on the evaluation
results, further work and describes benefits of such
solutions.

2 RELATED WORK

In [4] various approaches to TCP host-to-host
congestion control algorithms and its evolution due to
modern network sharing issues have been reviewed.

Loss based congestion control algorithms (Reno,
Cubic) interprets packet losses as an indicator of a
congestion. TCP Cubic [5] (which is the default
congestion control in Linux kernels 2.6.19 and
above.) can be very effective - with high bottleneck
capacity utilization and fair resource sharing.
However, they cause significant bottleneck queue
delays and performance degradation in cases with
tiny bottleneck queue buffers. Moreover, packet
losses can be caused not only by a congestion in a
network, but also by a link itself as well (e.g. wireless
connections).

Another important solution is a delay-based
congestion control, like TCP Vegas described in [6]
and its future improvements. It is a proactive
algorithm that uses bottleneck queue delay and packet
losses as congestion indicator. Such strategy allows
to predict a congestion before losses occur, caused by
bottleneck buffer overload happen and also to keep
queue delays on the levels, lower than the loss-based
algorithms. Anyway, those algorithms have no aim to
keep bottleneck buffer load at a low level, they keep
it at some constant level. The most significant
disadvantage of such algorithms is an unfair network
resource sharing – especially with loss-based
congestion control algorithms [7]. In addition, use of
packet losses as a secondary congestion indicator can
lead to the same problem of non-congestion caused
losses as with pure loss-based algorithms.

BBR [8] algorithm (Bottleneck Bandwidth and
Round-trip propagation time) is a new solution in
congestion control. It uses round trip time and
bottleneck bandwidth probing cycle to keep
bottleneck queue load on a low level along with
queueing delays and tries to reach effective
bottleneck capacity utilization. Such technique under
some conditions leads to a higher performance in
comparison to loss-based or “delay-loss-based”
algorithms. However, the probing cycle leads to data
rate decrease and in some cases to unfair resource
sharing [9].

3 PID-BASED CONGESTION
CONTROL

A PID controller is a widely used control loop
feedback mechanism, it continuously calculates an
error value as a difference between a desired level of
a controlled value (Setpoint, SP) and a measured
process value (PV). It applies a correction based on
proportional, integral and derivative terms. In case of
this congestion control solution, the process value is
round trip time. The correction can be done by
changing the send data rate.

The first state of an algorithm is a “Gain” state
(see figure 1), used to quickly estimate bottleneck
bandwidth (BBW). PID congestion control requires
presets of main parameters such as round trip time SP
and factors for send data rate correction. To estimate
that the algorithm has a second state named
“Manage” state. The third, “Control” state is a PID-
controller itself. Figure 1 illustrates main states of
PID-based congestion control.

Figure 1: Main states of a PID-based congestion control.

3.1 Gain

Algorithm enters the Gain state at the very beginning
of the transmission. It tracks the delivered data rate
(DDR) and rapidly increases the send data rate. When
last three reports show that there is no significant
growth of delivered data rate, then congestion control
switches to Manage state. Gain state enables the
algorithm to quickly reach a bottleneck bandwidth
limit and to make delay measurements for future
processing.

3.2 Manage

Manage state tries to get the minimal round trip time
(RTT) of a transmission by omitting the bottleneck
queue buffer. It is achieved by decreasing data rate by
half for 50 ms. It allows to set an acceptable round
trip time setpoint (SP). For the current
implementation, the acceptable setpoint is:

SP = max (minRTT +α; 1.25 minRTT), (1)

where α is the minimal growth of SP.
Minimal level value of SP (10 ms in this work) is

caused by some instability of RTT measurements in
the current solution. Otherwise, it can be even lower.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

130

This state is also useful for resetting a setpoint if
sudden rerouting is detected (RTT significantly
dropped/raised). The third role of Manage state is
fairndwidth sharing. For PID based congestion
control, fair share is possible if chosen SPs of both
links are almost equal.

3.3 Control

In the Control state, a modified PID digital controller
tracks the delivery data rate and round trip time and
tries to keep RTT near a setpoint by changing send
data rate. If SP is not reachable for the last 10 packets
or DDR has suddenly dropped down (more than 20%
DDR drop), algorithm goes to Manage state to
estimate a new RTT setpoint.

4 EXPERIMENTAL SETUP

Figure 2 shows testbed network topology. All tests
have been performed in 40 GE Laboratory of Future
Internet Lab Anhalt [10] (FILA).

The core element here is the WAN emulator
Netropy 40G [11] that can be used to create an
emulation of WAN links up to 40 Gbps throughput
and up to 106 ms delay. Sender and receiver both run
in Ubuntu 16.04 (kernel: GNU/Linux 4.13.0-17-
generic x86_64) and are equipped with Intel(R)
Xeon(R) CPU E5-2643 v4 3.40GHz, 64GB of RAM
and 40000baseSR4/Full supported link modes on
Emulex Corporation OneConnect NIC.

Figure 2: Testbed network topology.

5 EXPERIMENTAL RESULTS

Tests have been performed in next scenarios: single
flow test with BBW 10 Gbps and {10, 50, 100, 150,
200}ms RTT; resource sharing test with two flows,
bottleneck bandwidth 5 Gbps and 50 ms RTT. Queue
management is set to drop-tail in all test. Figures from
3 to 7 demonstrate experimental results of congestion
control: high bottleneck bandwidth utilization and
queue load level control in high speed IP network
with different base RTT (one way delay is one half of
RTT). The fair resource sharing of proposed
congestion control method is shown in Figure 8. All

statistics are collected by WAN Emulator. It can
collect only per-second mean statistics, which leads
to unclear view of bottleneck buffer load level in the
different states on some plots.

Results of first experiment with 10Gbps
bottleneck bandwidth and 10 ms RTT are presented
in figure 3. Such bottleneck buffer load level
deviations (highlighted zones) are caused by the
current RTT measurement solution in RMDT ver.
0.97 alpha, however this issue has no significant
effect on bottleneck bandwidth utilization or
performance of the control itself. 10 Gbps data rate
was achieved with 6 Mbytes bottleneck buffer load in
the Control state.

Second experiment with 10 Gbps bottleneck
bandwidth and 50 ms RTT is shown in figure 4. The
highlighted zone shows here the bottleneck buffer
load during the Gain state (rapid growth of send data
rate and bottleneck bandwidth estimation). It allows
to make measurements of maxRTT and congestion
reporting. 10 Gbps data rate was achieved with
13 Mbytes bottleneck buffer load in the Control state.

As shown in figure 5, in terms of next experiment
with 10 Gbps bottleneck bandwidth and 100 ms RTT.

Figure 3: Test 1: BBW 10 Gbps, base RTT 10 ms,
single flow.

Figure 4: Test 2: BBW 10 Gbps, base RTT 50 ms,
single flow.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

131

10 Gbps data rate was achieved with 30 Mbytes
bottleneck buffer load in the Control state.

Figure 6 demonstrate single flow experiment with
10 Gbps bottleneck bandwidth and 150 ms RTT. IP

network is a system with high transport delays,
however PID-based congestion control acts quite
effective even

 in high speed networks with large RTT.
However, various RTT/ BBW cases require

different presets done by Manage state for PID-
controller. Higher RTT require more bottleneck
buffer memory in a relatively current realization of an
algorithm (figures 3-7). 10 Gbps data rate was
achieved with 43 Mbytes bottleneck buffer load in the
Control state.

Last single flow experiment with 10 Gbps
bottleneck bandwidth and 200 ms RTT is presented
in figure 7. Highlighted zone shows the transition
from Manage state (drop data rate and omitting
bottleneck buffer) to Control state (growth of buffer
load to SP). 10 Gbps data rate was achieved with
59 Mbytes bottleneck buffer load in the Control state.

Figure 8 shows fair network resource sharing test
by two PID-based congestion control flows, with

5 Gbps bottleneck bandwidth and 50 ms RTT.
Highlighted zone shows overload of bottleneck
buffers in the Gain state of flow 2. After Gain state
cross-interference, both flows come to such SP‘s, that
result in low bottleneck buffer load. 2.53 Gbps rate
was achieved in sharing by flow 1 and 2.46 Gbps by
flow 2 (5 Gbps in total). Bottleneck buffer load before
interaction is near 14 Mbytes by only flow 1 and
17 Mbytes in sharing by two flows.

Figure 7: Test 5: BBW 10 Gbps, base RTT 200
ms, single flow.

Figure 8: Test 6: BBW 5 Gbps, base RTT 50 ms, two
flows in one link.

6 CONCLUSION & FURTHER
WORK

This article presents the results of the investigation of
a PID-based congestion control solution. Basic tests
with UDP-based transport protocol show that
proposed so

lution has following features: it is scalable, keeps
bottleneck buffer load on some low level and
achieves high throughput with minimal losses. Fair
resource sharing is achieved by dynamically

changing the RTT setpoint within the Manage state of
the proposed algorithm. For long fat networks a PID-
based congestion control is also can be used, but it
requires additional RTT setpoint fitness algorithm,

Figure 5: Test 3: BBW 10 Gbps, base RTT 100
ms, single flow.

Figure 6: Test 4: BBW 10 Gbps, base RTT 150
ms, single flow.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

132

for keeping bottleneck buffers on lower level. It is
under active development; next steps include
additional auto tune loop for more precise scalability
to any bandwidth and any delays; more intelligent
setpoint management; fairness with TCP congestion
control algorithms; boost performance in wireless
networks.

ACKNOWLEDGMENT

This work has been funded by Volkswagen
Foundation for trilateral partnership between scholars
and scientists from Ukraine, Russia and Germany
within the project CloudBDT: Algorithms and
Methods for Big Data Transport in Cloud
Environments.

REFERENCES

[1] E. Siemens, D. Syzov and D. Kachan, “High-speed
UDP Data Transmission with Multithreading and
Automatic Resource Allocation” Proc. of: the 4th
International Conference on Applied Innovations in
IT, (ICAIIT 2016), pp. 51-56, Koethen, 2016

[2] S. Maksymov, D. Kachan and E. Siemens,
“Connection Establishment Algorithm for Multi-
destination Protocol” Proc. of: the 4th International
Conference on Applied Innovations in IT, (ICAIIT
2014), pp. 57-60, Koethen, 2016

[3] Eduard Siemens, Ralf Einhorn, Andreas Aust, Lars
Fuerst, "Multi-Gigabit Challenges: Similarities
between Scientific Environments and Media
Production" Proc. of: The IASTED International
Conference on Automation, Control, and Information
Technology (ACIT-ICT 2010), Novosibirsk, Russia.

[4] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock,
“Host-to-Host Congestion Control for TCP,”
Communications Surveys Tutorials, IEEE, vol. 12, no.
3, pp. 304–342, Third 2010.

[5] I. Rhee and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” Proc. of PFLDnet 2005,
February 2005, Lyon, France.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson,
“TCP Vegas: New Techniques for Congestion
Detection and Avoidance,” in SIGCOMM ’94.
Techniques for Congestion Detection and Avoidance,”
in SIGCOMM ’94.

[7] M. Hock, R. Bless, and M. Zitterbart, “Toward
Coexistence of Different Congestion Control
Mechanisms,” in 2016 IEEE 41st Conference on Local
Computer Networks, November 2016, pp. 567–570.

[8] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh,
and V. Jacobson, “BBR: Congestion-Based
Congestion Control,” ACM Queue, vol. 14, no. 5, pp.
50:20–50:53, Oct. 2016.

[9] M. Hock, R. Bless and M. Zitterbart, “Experimental
Evaluation of BBR Congestion Control,” in 2017

IEEE 25th International Conference on Network
Protocols (ICNP), Oct 2017.

[10] FILA. Future Internet Lab Anhalt [Online]. Available
from: https://fila-lab.de. 2017.11.12

[11] Apposite. Apposite Technologies: Linktropy and
Netropy Comparison. [Online]. Available from:
http://www.apposite-tech.com/products/index.html.
2017.11.12

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

133

