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This study proposes and validates a robust Bayesian model based on a Dirichlet process mixture of normals
(DMNM) for probability density estimation and missing data imputation in multivariate datasets. The primary
focus is on addressing the challenge of incomplete data by providing a flexible and accurate estimation of
their underlying probability density function. To fit the model, three Bayesian estimation algorithms are
implemented and compared: the Expectation-Maximization (EM) algorithm, the Markov Chain Monte Carlo
(MCMC) method, and a Traditional Bayesian (TB) algorithm. The framework is applied to real-world climatic
data (temperature, humidity, wind speed, and evaporation) obtained from the Meteorological Service in Basra,
Iraq, with artificially introduced missing values at rates of 10%, 20%, and 40%. Model performance is
evaluated using two key metrics: the Mean Squared Error (MSE) for imputation accuracy and computational
execution time. The results demonstrate that the EM algorithm achieves the highest estimation accuracy
(lowest MSE), while the TB method is the most computationally efficient. This work provides a practical
toolkit for the statistical analysis of incomplete multivariate data in fields such as environmental modeling,

hydrology, and agriculture.

1 INTRODUCTION

The rapid development of data in the field of
statistical analysis in recent decades has led to a
significant increase in complexity, particularly in
multivariate data, due to the overlapping influence of
multiple variables simultaneously. Therefore, there is
a real need for sophisticated statistical models such as
Bayesian models, given that we are dealing with
incomplete data.

The use of advanced, efficient, and highly
accurate probabilistic models characterized by great
flexibility to model multivariate data, such as
Dirichlet mixture normal models, is an effective tool
in many economic, environmental, medical,
educational, and agricultural fields. It is essential to
employ advanced strategic techniques to correct and
address the problem of missing values in data. The
unique features of DMNM are a tool for addressing
these challenges.

The challenges posed by missing data in
nonparametric models were highlighted when the
journal Econometrics published this in 2023 [1].

367

There are many studies and researches that have
addressed Dirichlet models. Among them, T. S.
Ferguson (1973) discussed nonparametric methods
and their importance for estimating probability
distributions, where he was able to clarify the concept
of the Dirichlet process. In 2017, an analytical study
of traffic accident data was published by researcher S.
Heydari, who was able to employ mixed Dirichlet
process models to analyze these accidents in a unique
way that helps us understand them. In recent years,
specifically in 2024, a group of researchers (P.
Cardoso and other) used Dirichlet processes mixture
normal on data containing missing values. The model
was used to select the best treatment for patients with
type 2 diabetes, and this model was distinguished by
its efficiency and capabilities [2], [3], [4].

The improvement in Bayesian analysis methods
introduced in this study, when dealing with
incomplete data, represents an important addition to
scientific research to address all practical challenges.
Consequently, this paper provides a new perspective
on climate and evaporation studies using three
comparative methods: the Markov chain Monte Carlo
method, the traditional Bayesian method, and the
expectation-maximization method.
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Based on the above, this research aims to present
an advanced Bayesian statistical framework based on
mixed Dirichlet models for normal distributions,
incorporating mechanisms to handle missing values
and achieve robust multivariate probability density
estimation. The research also seeks to demonstrate
the effectiveness of this model in analyzing the
impact of climate variables on evaporation, by
comparing its performance with traditional and
modern estimation methods. A list of the symbols and
abbreviations used throughout the paper is provided
in Appendix (Table A.1).

2 MATERIALS AND METHODS
2.1 Dirichlet Distribution

Used in Bayesian models, this distribution is a
generalization of the beta distribution for more than
two parameters, and is considered a continuous
distribution.

The Dirichlet distribution is a multivariate
probability distribution for vectors X = (x1, x2,..., Xs)
where 5_; X, = 1 and Xr>0 for all r.

The probability density function of the Dirichlet
distribution is defined as follows [5]:

f(X/T)=F(ZT=O Tr) Hi:l XrTT_I’

1
[T () ( )

where:-
T, : shape parameters (concentration coefficient)
I'(-) : Gamma function
The shape of the Dirichlet distribution can be
illustrated by generating 1000 points in the R program
that were created from a Dirichlet distribution with
three shape parameters 13 = (,,7,,73), Where “Tau”
(7) is the Dirichlet’s concentration (shape) parameter
vector, and 74, T, T3 are the shape parameters with the
following values [6]:
= 7, Tau value = (1,1,1): then the dirichlet
distribution becomes a uniform distribution.
= 7,Tau value = (30,30,30) and (8,16,32): then
values tend to be X centrered.
= 73Tau value = (0.2,0.2,0.2): then value tend to
be broder centric.

Figure 1 shows the Dirichlet distribution, where 1000
points were generated using R software, and Table 1 shows
the Dirichlet distribution.
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Ternary Plot of Dirichlet Distribution
Alpha values: (0.2,0.2,0.2), (1,1,1), (30,30,30), (8,16,32)
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100

Figure 1: Dirichlet distribution generated from 1,000
sample points using R software.

Table 1: Some properties of the Dirichlet distribution.

Mean E[Xr]=:—r =12, ...s
[1]
Variance _ Ir(To=7r) -
Var[X:] 2 (zgt1) r=1,2,...s
Covariance | Cov(Xr, Xo)= 2 1,g=1.2, ... s
matrix To(To+1)
and (r # q)

2.2 Dirichlet Process

It is a stochastic process used in nonparametric
Bayesian models, especially in Dirichlet mixture
models. The Dirichlet process is a nonparametric
generalization of the Dirichlet distribution, where it is
not a fixed probability distribution over a finite
number of classes, but rather is defined over the space
of probability distributions that is, it is a probability
distribution over the probability distributions
themselves. Mathematically, it can be stated as
follows [7]:

Let K ~ DP(7,Ko) and X ~ K. 2

Where:

1) K: It is the distribution resulting from the
Dirichlet process;

2) Ko: It is the basic distribution (the distribution
around which the resulting distributions are
centered);

3) t: It is the Dirichlet parameter or concentration
coefficient:
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= If 7 is small, the resulting distribution is
more concentrated around specific values.

= If 7 is large, the resulting distribution is
closer to the underlying distribution.

2.2.1 The Basic Property of the Dirichlet
Process

The Dirichlet process has a fundamental property
known as the distributional consistency property. If
we have a Dirichlet process (K) defined by a
concentration parameter (7) and a basic distribution
(KO0), then any subdivision of the probability space
{B1,B2,....Bs} of X produces a Dirichlet
distribution [8]:
[K(B]),K(Bz),..,K(BS)] ~ Dir [‘L’ Ko (B[), T Ko
(B2),.., T Ko (Bs)], 3)
where:
= K(A)): It is the probability mass that K assigns
to the region Ai of the probability space (the
probability value of the class B;).
= 1Ko (B:): Weight assigned to category Br based
on primary distribution.

The mean distribution and its variance are
respectively given by

E[K(B)] = Ko(B) and Var[K(B)] = w

2.3 Dirichlet Mixture Normal Model

It is a non-parametric statistical model used to
identify an unlimited number of components in the
data. When Dirichlet processes are combined with the
normal distribution as a basic component, the model
can adapt to data that follow a normal distribution
flexibly and dynamically (the model's ability to adapt
to changes in the data or requirements). Model
formula [9]:

1
g(X 19, 0)=Xp-1 Opllr=1 - @«

xr—Mrp

“4)

)>

where:
= 9 (T, T);
" 0:(04,..., Og);
= @(*) : Density function of the standard normal
distribution of a random variable;
= 9 p: Mixture weights determined by Dirichlet
operations.

Mrp,r=1,...,s ,p=1,...c: Mr=(mrl,mr2,... ,mrc)' are
the ¢ knote of variable Xr. We pice the knots for X1
first, MI=(mll,ml12,...,mlc)' is where
ml1=min(X1), mlc=max(X1), and mlqg=X1(uq) ,
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q=2,...,c-1, which is the index of the ordered value
for variable X1 ,uq:[gv].

The parameters of each component in the mixture
(02) are generated from the underlying distribution

KO (representing the distribution of parameters) by
the following:

(09)= U,
(0f) ~KO,
KO0=Inv-Gamma(a2 | a0,b0).
then:
9 ~ Dirichlet (91,...,9¢),
KO0=Inv-Gamma(a2 | a0,b0).

2.4 Robust Bayesian Estimation

Bayesian analysis is named after Thomas Bayes, who
introduced the concept of conditional probability as a
basis for understanding how probabilities change
when additional information becomes available. It is
a statistical technique based on the principle of
updating prior knowledge in light of new data. This
type of analysis combines what we already know (i.e.,
prior information) with what we obtain from
observations to arrive at more accurate and realistic
conclusions. Bayesian analysis is characterized by its
great flexibility in dealing with uncertainty, making it
suitable in cases where data are incomplete or
constantly changing [10] - [14].

Robust Bayesian estimation is an advanced
statistical approach that aims to achieve accurate and
reliable Bayesian inference even in the presence of
data affected by confounding or outlier values and
deviations from the underlying assumptions of the
model. When studying the effect of climate factors on
evaporation, this method is crucial due to the complex
nature of the data, which often contains missing
values [15] - [18].

In this research, we used three main techniques
based on flexible probability distributions that can
reduce the impact of extreme values [19] - [22].

2.4.1 Typical Bayesian Method (TB)

It is a traditional Bayesian algorithm based on normal
Dirichlet models, and uses Gibbs sampling to update
mixture weights and band sizes alternately until a
numerical result for the prior Bayesian distribution is
reached from which density properties can be inferred
and missing values can be estimated when needed.

Algorithm 1. Typical Bayesian Mixture Density
Estimation (TBMDE).
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Suppose we have s dimensional

complete data x1, .xv, g(x1|9,0)
:Z§=1l9pgp(x|a')-

9 ~ Dir(tl, ..., 1C), OF~
InverseGamma (ar , br), r =1, ..., s
and 09,

{or}1<r<s are independent.

Initialize 9@ = (%;%;...;%) and o2,

for iteration u =1, 2, do.

Sample 9™ ~ 9|0®@ Dusing I
Sample 2@ ~ ¢2|9® ysing II

end for

I= (Sample ¥ given o)

9 ~ Dir(tl, ..., Tc) and o is fixed.
Initialize 9@ = (%5%5...5%) .

for iteration u =1, 2, do

19;(774_1)917()67' |U)

— e — 1 =p).forr=
2{,:1191(7 )9y (%r]0) br=p)-f

sample Pr(u)~
1.2..v.
sample 19(”)~Dir(v1 (P(”)) + Ty UC(P(“)) + rc).
where v,(P™) = X, 1(P™ = p).for p =

1.---,c.

end for.

II= (Sample o given )

02~ InverseGamma (ar , br), r=1, ...,
s, {or}1<r<s are independent. and 9 1is
fixed.

Initialize o2©®

for iteration u = 1, 2, do.

@ __ gp(r|o @V _ _
sample P, ~2§,=1ﬁpg,,(xr|a(u‘1)) I(p, =p).forr =
1.2.--.v.

sample arz . InverseGamma
v 2
<§ N 2<+>+ br),

forr=1.-.s.
where xq, denotes the rt" variable of Xq
end for

2.4.2 Markov Chain Monte Carlo Method
(MCMO)

2.4.2.1 General Framework of MCMC

The MCMC method is a type of stochastic simulation.
It is a method that allows approximation of complex
and multi-dimensional integrals by using random
sampling procedures from probability distributions.
The MCMC method consists of two components, the
Markov chain and the Monte Carlo integration. The
importance of the Markov chain is to draw a series of
samples from the target probability distribution to
obtain balance or stability, due to the difficulty of
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obtaining random samples directly, and the greater
the number of steps, the greater the convergence
between the sample distribution and the actual
distribution, then the second component, which is the
Monte Carlo integration, is used to approximate the
complex integration. There are many methods and
algorithms used in MCMC, but in this research we
used Gibbs Sampling (GS) algorithm [23].

2.4.2.2Gibbs Sampling (GS) Algorithm

One important Bayesian algorithm estimates data
density and compensates for missing values within a
mixture of normal Dirichlet models. As shown below:

Algorithm 2. Gibbs Mixture Data Imputation
(GMDI).

Same step (i) in the first algorithm

Initialize 9@ = (Zic.....2) and o2@,

for iteration u =1, 2, do.

for r =1, ..., v do.

for g € Cr (Missing value index set
of xr) do.

Sample stm“~ s(xrq,miss, g € Cr |9
(u-1) , xrqg,obs, g /€ Cr).

end for.

end for.

Sample (9 (u) ,0 2(u) ) ~ ©I,0 2
)\Xobs,X&is using Algorithm 1.

end for.

2.4.3 Expectation Maximization Method
(EM)

It is an iterative algorithm that transforms parameter
estimates in the presence of hidden variables into a
series of simple updates until stable estimates are
reached. Therefore, it is an expectation-maximization
algorithm applied to a mixture of normal Dirichlet
models. It is used to find maximum-likelihood
estimates (MLEs) of the model parameters 9
(component weights) and ¢ (band sizes). The working
mechanism of this algorithm can be explained as
follows [24].

Algorithm 3. (EM).
As in step (i) of Algorithm 1
Tnitialize 9@ = (Zioc....3) and o2®.
for iteration u 0,1, 2, do.
E-step: for each r=1,.,v and p=1,..,cC
(compute responsibilities Ar,p)
let obsr<{l,.., s}

(W)
Xy g—Mgq.
ﬁr(;u) Hqubsr (1‘u.)¢( 4 (u)qp)
AW _ %q %q
i (W) 1 xsu)—mq-p '
§=119p quobsr (u)w( 4 w) )
oq oq
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Imputation: Fill in missing entries, For
each sample r and each missing dimension

g€missr:
c

W _ W)
Xpgq = Z Ar.pmq.p.

p=1
end for.
end for.
M-step (update ¥ and o) for each p=1,..,c

and g=1,..,s

v

1
(u+1)
9 =— E A
P v

r=1

w
rp

1 [P
(07) (u+l) = XTI Npo A, (g —
u+1
)2, o = [(@)n
end for.
end for.
Convergence check
Stop when parameter changes

19 (u+1) -9 (u) I and llo (u+l) -0 (u)ll are below
a preset threshold.
end for.

3 APPLICATION

In this section, a Bayesian estimation model was used
to analyze the effect of temperature, humidity, and
wind on evaporation. To obtain accurate estimates of
the data probability density and address the missing
data problem, we relied on three estimation methods:
EM, MCMC, and TBMDE. When analyzing the data
using missing ratios, a comprehensive comparison
was conducted, allowing for a more accurate and
specific assessment of the impact of climate factors.
The applied results obtained by the model are
considered important tools that can be utilized by the
Meteorological Authority, the Water Resources
Directorate, and the Agriculture Directorate to
develop effective strategies for irrigation and
agricultural systems to address the challenges posed
by climate change, as well as when preparing
academic research and studies.

3.1 Data Description

The data in this research were obtained from the
Ministry of Transport/General Authority of
Meteorology in Basra Governorate, Iraq. For the
period 1/10/2023 to 24/4/2024. The research sample
includes four variables: evaporation (X1) as a
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dependent variable, and temperature (X2), humidity
(X3), and wind speed (X4) as independent variables.
It consists of 207 observations. Random missingness
values (0.1, 0.2, 0.4) were used in the data to analyze
the effect of missing values on Bayesian models.

3.2 Results and Discussion

The analysis of the models was implemented using
the R programming language, a leading tool for
statistical computing, chosen for its efficiency in
processing complex datasets. To evaluate the
robustness of the Bayesian estimation methods — EM,
GMDI, and TBMDE - against data incompleteness,
their performance was tested on the original complete
dataset after introducing three different rates of
random missing values (0.1, 0.2, and 0.4). The
evaluation was based on two primary criteria:
estimation accuracy, measured by Mean Squared
Error (MSE), and computational efficiency, assessed
by execution time.
The following results were obtained as shown in
Table 2.
The following Mean Squared Error (MSE) results
are obtained based on the experimental results:
= MSE for variable X; at 0.1, 0.2, and 0.4.
Whereas the best estimation method is EM.
= MSE for variable X, at 0.1. Whereas the best
estimation method is TBMDE, at 0.2, and 0.4.
Whereas the best estimation method is EM.
= MSE for variable X3 at 0.1, 0.2, and 0.4.
Whereas the best estimation method is EM.
= MSE for variable X4 at 0.1, 0.2, and 0.4.
Whereas the best estimation method is EM.

Figure 2 illustrates the influence of the climatic
factors (X2, Xs, and X4) on Xi, highlighting how
variations in these factors are associated with changes
in Xi. Time (sec) = SD: The fastest method in terms
of execution time is TBMDE At 0.1, 0.2, and 0.4 ,
whereas the most efficient and accurate method is EM
as shown in Table 3.

Figure 3 presents the density estimation results
under varying missing data rates, comparing the
performance of three methods: Expectation-
Maximization (EM), Gaussian Mixture Density
Imputation (GMDI), and Tree-Based Missing Data
Estimation (TBMDE). The figure illustrates how each
method responds to different levels of missingness,
highlighting their relative accuracy and robustness in
density estimation.
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Table 2: MSE values for each variable on real data. Bold values indicate the best (lowest) MSE in each column/row.

r Methods X1 X2 X3 X4

0.1 TBMDE 0.2940 0.0387 0.0523 0.0252
GMDI 0.8294 0.1057 0.1317 0.0460

EM 0.1763 0.0396 0.0473 0.0202

0.2 TBMDE 0.2349 0.0414 0.0425 0.0223
GMDI 0.6531 0.0880 0.0865 0.0569

EM 0.1606 0.0413 0.0422 0.02226

0.4 TBMDE 0.1515 0.0478 0.0653 0.02174
GMDI 0.3779 0.0983 0.1099 0.0437

EM 0.1457 0.04646 0.04647 0.02167

Table 3: Comparison of the execution rate of each estimation method in seconds and the standard deviation of (r = 0.1, 0.2,

and 0.4).
r Methods Time (sec) = SD
0.1 TBMDE 0.0076 +0.0022
GMDI 0.0147 +0.0064
EM 0.0422 +0.0109
0.2 TBMDE 0.0071 +0.0029
GMDI 0.0122 +0.0042
EM 0.0326 +0.0085
0.4 TBMDE 0.0065 +0.0013
GMDI 0.0082 +0.0026
EM 0.0244 +0.0076

Effect of Temperature (X2) on Evaporation

2.0

[
wn

=
o
=
=]

Evaporation (X1)
Evaporation (X1)

0.5 0.5}

0.0 0.0

Effect of Humidity (X3) on Evaporation

Effect of Wind Speed (X4) on Evaporation

2.0

=
n

=
=)
&

Evaporation (X1)

0.5

0.0

2.8 3.0 3.2 34 36 0.8 1.0 12
Temperature (X2}

Humidity (X3)

14 16 18 06 07 08 09 10 11 12 13
Wind Speed (X4)

Figure 2: The effect of climatic factors (X2, X3, X4) on (X1).

The results indicate a clear positive linear
relationship between temperature (X2) and
evaporation (X1), with an increase in temperature
leading to higher evaporation rates. In contrast,
humidity (X3) shows the opposite effect, with
evaporation values decreasing with increasing
humidity. Wind (X4) also had a positive effect, but it
was relatively weaker compared to the effect of
temperature.

The graphs compare the probability density
functions of the studied variables after introducing
different missingness ratios (10%, 20%, and 40%)

and using three methods to estimate the missing
values. The EM method showed strong performance
in preserving the distributional properties, while
GMDI showed increasing sensitivity with higher
missingness ratios, especially in the tails. TBMDE
provided a conservative estimate centered around the
mean, with partial loss of distributional properties in
the tails. The results indicate that varying missingness
ratios clearly affect the accuracy of the estimation,
highlighting the importance of choosing the most
appropriate method based on the nature of the data
and the level of missingness.
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Density Estimation under Different Missing Rates using EM, GMDI, and TBMDE
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Figure 3: Density estimation under different missing rates using EM, GMDI and TBMDE.

4 CONCLUSIONS

This research seeks to present an integrated Bayesian
framework for estimating probability density for
multivariate data with missing data, using mixture
models of normal distributions and three estimation
methods: EM, GMDI, and TBMDE. The key points
are as follows. The best estimation method that has
shown high efficiency in estimation is EM. The
method that is characterized by its rapid
implementation is TBMDE, which is useful for
researchers, especially if the sample size is very large.
Regarding the effect of climatic factors (X2, X3, X4)
on evaporation (X1), the most influential climatic
factor on evaporation is maximum temperature,
followed by minimum relative humidity (but with the
opposite effect), and then wind speed, which is a
lesser contributing factor. These graphs provide an
important visual input that supports the construction
of interpretive or predictive statistical models of
evaporation rates, highlighting the importance of
studying these wvariables within more complex
analytical frameworks such as multivariate or
Bayesian models. Based on the results, it is clear that
the EM method is used to achieve high accuracy,
while the TBMDE method is preferred if the goal is
speedy implementation.
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APPENDIX

Table A.1: The key symbols and abbreviations.

Symbol Meaning
X1 Evaporation rate (mm/day)
X2 Maximum daily temperature (C)
X3 Minimum daily humidity (%)
X4 Wind speed (m/s)
DP Dirichlet process
DMNM Dirichlet mixture Normal model
TB Typical Bayesian
TBMDE Typical Bayesian Mixture Density
Estimation
GMDI Gibbs Mixture Data Imputation
MCMC Markov Chain Monte Carlo
EM Expectation Maximization
GS Gibbs Sampling






