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Abstract: This study proposes and validates a robust Bayesian model based on a Dirichlet process mixture of normals 

(DMNM) for probability density estimation and missing data imputation in multivariate datasets. The primary 

focus is on addressing the challenge of incomplete data by providing a flexible and accurate estimation of 

their underlying probability density function. To fit the model, three Bayesian estimation algorithms are 

implemented and compared: the Expectation-Maximization (EM) algorithm, the Markov Chain Monte Carlo 

(MCMC) method, and a Traditional Bayesian (TB) algorithm. The framework is applied to real-world climatic

data (temperature, humidity, wind speed, and evaporation) obtained from the Meteorological Service in Basra,

Iraq, with artificially introduced missing values at rates of 10%, 20%, and 40%. Model performance is

evaluated using two key metrics: the Mean Squared Error (MSE) for imputation accuracy and computational

execution time. The results demonstrate that the EM algorithm achieves the highest estimation accuracy

(lowest MSE), while the TB method is the most computationally efficient. This work provides a practical

toolkit for the statistical analysis of incomplete multivariate data in fields such as environmental modeling,

hydrology, and agriculture.

1 INTRODUCTION 

The rapid development of data in the field of 

statistical analysis in recent decades has led to a 

significant increase in complexity, particularly in 

multivariate data, due to the overlapping influence of 

multiple variables simultaneously. Therefore, there is 

a real need for sophisticated statistical models such as 

Bayesian models, given that we are dealing with 

incomplete data. 

The use of advanced, efficient, and highly 

accurate probabilistic models characterized by great 

flexibility to model multivariate data, such as 

Dirichlet mixture normal models, is an effective tool 

in many economic, environmental, medical, 

educational, and agricultural fields. It is essential to 

employ advanced strategic techniques to correct and 

address the problem of missing values in data. The 

unique features of DMNM are a tool for addressing 

these challenges. 

The challenges posed by missing data in 

nonparametric models were highlighted when the 

journal Econometrics published this in 2023 [1]. 

There are many studies and researches that have 

addressed Dirichlet models. Among them, T. S. 

Ferguson (1973) discussed nonparametric methods 

and their importance for estimating probability 

distributions, where he was able to clarify the concept 

of the Dirichlet process. In 2017, an analytical study 

of traffic accident data was published by researcher S. 

Heydari, who was able to employ mixed Dirichlet 

process models to analyze these accidents in a unique 

way that helps us understand them. In recent years, 

specifically in 2024, a group of researchers (P. 

Cardoso and other) used Dirichlet processes mixture 

normal on data containing missing values. The model 

was used to select the best treatment for patients with 

type 2 diabetes, and this model was distinguished by 

its efficiency and capabilities [2], [3], [4].  

The improvement in Bayesian analysis methods 

introduced in this study, when dealing with 

incomplete data, represents an important addition to 

scientific research to address all practical challenges. 

Consequently, this paper provides a new perspective 

on climate and evaporation studies using three 

comparative methods: the Markov chain Monte Carlo 

method, the traditional Bayesian method, and the 

expectation-maximization method. 
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Based on the above, this research aims to present 

an advanced Bayesian statistical framework based on 

mixed Dirichlet models for normal distributions, 

incorporating mechanisms to handle missing values 

and achieve robust multivariate probability density 

estimation. The research also seeks to demonstrate 

the effectiveness of this model in analyzing the 

impact of climate variables on evaporation, by 

comparing its performance with traditional and 

modern estimation methods. A list of the symbols and 

abbreviations used throughout the paper is provided 

in Appendix (Table A.1).  

2 MATERIALS AND METHODS 

2.1 Dirichlet Distribution 

Used in Bayesian models, this distribution is a 

generalization of the beta distribution for more than 

two parameters, and is considered a continuous 

distribution. 

The Dirichlet distribution is a multivariate 

probability distribution for vectors X = (x1, x2,…, xs) 

where ∑ 𝑋𝑟 = 1𝑠
𝑟=1  and Xr ≥ 0 for all r.

The probability density function of the Dirichlet 

distribution is defined as follows [5]:  

f(X/𝜏)=
Γ(∑ 𝜏𝑟)𝑠

𝑟=0

∏Γ(𝜏𝑟)
∏𝑟=1

𝑠 X𝑟
𝜏𝑟−1 ,  (1) 

where:- 

𝜏𝑟 : shape parameters (concentration coefficient)

Γ(∙) : Gamma function 

The shape of the Dirichlet distribution can be 

illustrated by generating 1000 points in the R program 

that were created from a Dirichlet distribution with 

three shape parameters   𝜏3 = (𝜏1,𝜏2,𝜏3), where “Tau”

(τ) is the Dirichlet’s concentration (shape) parameter 

vector, and 𝜏1, 𝜏2,𝜏3 are the shape parameters with the

following values [6]:  

▪ 𝜏1 Tau value = (1,1,1): then the dirichlet

distribution becomes a uniform distribution.

▪ 𝜏2Tau value = (30,30,30) and (8,16,32): then

values tend to be Xr centrered.

▪ 𝜏3Tau value = (0.2,0.2,0.2): then value tend to

be broder centric.

Figure 1 shows the Dirichlet distribution, where 1000 

points were generated using R software, and Table 1 shows 

the Dirichlet distribution.   

Figure 1:  Dirichlet distribution generated from 1,000 

sample points using R software. 

Table 1: Some properties of the Dirichlet distribution. 

Mean Ε[Xr]= 
𝜏𝑟

𝜏0
  r=1,2, … s 

Variance Var[Xr]= 
𝜏𝑟(𝜏0−𝜏𝑟)

𝜏0
2(𝜏0+1)

  r=1,2, … s 

Covariance 

matrix 
Cov(Xr, Xq)= 

−𝜏𝑟𝜏𝑞

𝜏0
2(𝜏0+1)

  r,q=1,2, … s 

𝑎𝑛𝑑 (𝑟 ≠ 𝑞) 

2.2 Dirichlet Process 

It is a stochastic process used in nonparametric 

Bayesian models, especially in Dirichlet mixture 

models. The Dirichlet process is a nonparametric 

generalization of the Dirichlet distribution, where it is 

not a fixed probability distribution over a finite 

number of classes, but rather is defined over the space 

of probability distributions that is, it is a probability 

distribution over the probability distributions 

themselves. Mathematically, it can be stated as 

follows [7]:  

Let K ~ DP(𝜏,K0) and X ~ K0.    (2) 

Where: 

1) K: It is the distribution resulting from the

Dirichlet process;

2) K0: It is the basic distribution (the distribution

around which the resulting distributions are

centered);

3) 𝜏: It is the Dirichlet parameter or concentration

coefficient:
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▪ If 𝜏  is small, the resulting distribution is

more concentrated around specific values.

▪ If 𝜏  is large, the resulting distribution is

closer to the underlying distribution. 

2.2.1 The Basic Property of the Dirichlet 
Process 

The Dirichlet process has a fundamental property 

known as the distributional consistency property. If 

we have a Dirichlet process (K) defined by a 

concentration parameter (𝜏) and a basic distribution 

(K0), then any subdivision of the probability space 

{B1,B2,…,Bs} of X produces a Dirichlet 

distribution [8]: 

[K(B1),K(B2),..,K(Bs)] ~ Dir [𝜏 K0 (B1), 𝜏 K0 

(B2),.., 𝜏 K0 (Bs)],                                                    (3) 

where: 

▪ K(Ar): It is the probability mass that K assigns

to the region Ai of the probability space (the

probability value of the class Br).

▪ 𝜏 K0 (Br): Weight assigned to category Br based

on primary distribution.

The mean distribution and its variance are 

respectively given by 

Ε[K(B)] = K0(B) and Var[K(B)] = 
K0(B)(1 − τK0(𝐵))

(τ + 1)
. 

2.3 Dirichlet Mixture Normal Model 

It is a non-parametric statistical model used to 

identify an unlimited number of components in the 

data. When Dirichlet processes are combined with the 

normal distribution as a basic component, the model 

can adapt to data that follow a normal distribution 

flexibly and dynamically (the model's ability to adapt 

to changes in the data or requirements). Model 

formula [9]: 

gc(X ǀ 𝜗 , σ )=∑ 𝜗𝑐
𝑝=1 p∏

1

𝜎𝑟

𝑠
𝑟=1 𝜑(

𝑥𝑟−𝑀𝑟𝑝

𝜎𝑟
),     (4) 

where: 

▪ 𝜗 : (𝜏1,…,𝜏𝑚);

▪ σ : (σ1,…, σs);

▪ 𝜑(∙) : Density function of the standard normal

distribution of a random variable;

▪ 𝜗 p: Mixture weights determined by Dirichlet

operations.

Mrp,r=1,…,s ,p=1,..,c: Mr=(mr1,mr2,…,mrc)' are 

the c knote of variable Xr. We pice the knots for X1 

first, M1=(m11,m12,…,m1c)' is where 

m11=min(X1), m1c=max(X1), and m1q=X1(uq) , 

q=2,…,c-1, which is the index of the ordered value 

for variable X1,uq=[
𝑞−1

𝑐−1
v].

The parameters of each component in the mixture 

(σ𝑠
2) are generated from the underlying distribution

K0 (representing the distribution of parameters) by 

the following: 

(𝜎𝑠
2)  =  𝜗𝑝,

(σs
2)     ~ K0,

K0=Inv-Gamma(𝜎2 ǀ a0,b0). 

then: 

𝜗 ~ Dirichlet (𝜗1,…,𝜗c), 

K0=Inv-Gamma(𝜎2 ǀ a0,b0). 

2.4 Robust Bayesian Estimation 

Bayesian analysis is named after Thomas Bayes, who 

introduced the concept of conditional probability as a 

basis for understanding how probabilities change 

when additional information becomes available. It is 

a statistical technique based on the principle of 

updating prior knowledge in light of new data. This 

type of analysis combines what we already know (i.e., 

prior information) with what we obtain from 

observations to arrive at more accurate and realistic 

conclusions. Bayesian analysis is characterized by its 

great flexibility in dealing with uncertainty, making it 

suitable in cases where data are incomplete or 

constantly changing [10] - [14]. 

Robust Bayesian estimation is an advanced 

statistical approach that aims to achieve accurate and 

reliable Bayesian inference even in the presence of 

data affected by confounding or outlier values and 

deviations from the underlying assumptions of the 

model. When studying the effect of climate factors on 

evaporation, this method is crucial due to the complex 

nature of the data, which often contains missing 

values [15] - [18]. 

In this research, we used three main techniques 

based on flexible probability distributions that can 

reduce the impact of extreme values [19] - [22]. 

2.4.1 Typical Bayesian Method (TB) 

It is a traditional Bayesian algorithm based on normal 

Dirichlet models, and uses Gibbs sampling to update 

mixture weights and band sizes alternately until a 

numerical result for the prior Bayesian distribution is 

reached from which density properties can be inferred 

and missing values can be estimated when needed. 

Algorithm 1. Typical Bayesian Mixture Density 

Estimation (TBMDE). 
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Suppose we have s dimensional 

complete data x1, ...xv, g(x|𝜗,𝜎) 

=∑ 𝜗𝑝𝑔𝑝(𝑥|𝜎)𝑐
𝑝=1 . 

𝜗 ∼ Dir(𝜏1, ..., 𝜏c), 𝜎𝑟
2∼

InverseGamma(ar , br), r = 1, ..., s 

and 𝜗, 
{𝜎r}1≤r≤s are independent. 

Initialize 𝜗(0) = (
1

𝑐
،

1

𝑐
،...،

1

𝑐
) and σ2(0).

for iteration u = 1, 2, ... do. 

Sample 𝜗(𝑢) ∼ 𝜗|𝜎(𝑢−1)using I

Sample 𝜎2(𝑢) ∼ 𝜎2|𝜗(𝑢) using II

end for 

I= (Sample 𝝑 given 𝝈) 

𝜗 ∼ Dir(𝜏1, ..., 𝜏c) and 𝜎 is fixed. 

Initialize 𝜗(0) = (
1

𝑐
،

1

𝑐
،...،

1

𝑐
) .

for iteration u = 1, 2, ... do. 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑃𝑟
(𝑢)

~
𝜗𝑝

(𝑢−1)
𝑔𝑝(𝑥𝑟|𝜎)

∑ 𝜗𝑝
(𝑢−1)

𝑔𝑝(𝑥𝑟|𝜎)𝑐
𝑝=1

𝐼(𝑝𝑟 = 𝑝). 𝑓𝑜𝑟 𝑟 =

1.2. ⋯ . 𝑣. 

𝑠𝑎𝑚𝑝𝑙𝑒 𝜗(𝑢)~𝐷𝑖𝑟(𝑣1(𝑃(𝑢)) + 𝜏1. ⋯ . 𝑣𝑐(𝑃(𝑢)) + 𝜏𝑐).

𝑤ℎ𝑒𝑟𝑒 𝑣𝑝(𝑃(𝑢)) = ∑ 𝐼(𝑣
𝑖=1 𝑃𝑟

(𝑢)
= 𝑝). 𝑓𝑜𝑟 𝑝 =

1.∙∙∙,c. 

𝑒𝑛𝑑 𝑓𝑜𝑟. 

II= (Sample 𝝈 given 𝝑) 

𝜎𝑟
2∼ InverseGamma(ar , br), r = 1, ...,

s,{𝜎r}1≤r≤s are independent. and 𝜗 is 
fixed. 

Initialize σ2(0)

for iteration u = 1, 2, ... do. 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑃𝑟
(𝑢)

~
𝜗𝑝

 𝑔𝑝(𝑥𝑟|𝜎 
(𝑢−1)

)

∑ 𝜗𝑝
 𝑔𝑝(𝑥𝑟|𝜎 

(𝑢−1)
)𝑐

𝑝=1

𝐼(𝑝𝑟 = 𝑝). 𝑓𝑜𝑟 𝑟 =

1.2. ⋯ . 𝑣. 

𝑠𝑎𝑚𝑝𝑙𝑒 𝜎𝑟
2(𝑢)

~𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎

(
𝑣

2
+ 𝑎𝑟 .

∑ (𝑥𝑞𝑟−𝑚𝑟𝑝𝑞)2𝑣
𝑞=1

2
+ 𝑏𝑟).

𝑓𝑜𝑟 𝑟 = 1. ⋯ . 𝑠. 
𝑤ℎ𝑒𝑟𝑒 𝑥𝑞𝑟  𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑟𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑥𝑞

end for 

2.4.2 Markov Chain Monte Carlo Method 
(MCMC) 

2.4.2.1 General Framework of MCMC 

The MCMC method is a type of stochastic simulation. 

It is a method that allows approximation of complex 

and multi-dimensional integrals by using random 

sampling procedures from probability distributions. 

The MCMC method consists of two components, the 

Markov chain and the Monte Carlo integration. The 

importance of the Markov chain is to draw a series of 

samples from the target probability distribution to 

obtain balance or stability, due to the difficulty of 

obtaining random samples directly, and the greater 

the number of steps, the greater the convergence 

between the sample distribution and the actual 

distribution, then the second component, which is the 

Monte Carlo integration, is used to approximate the 

complex integration. There are many methods and 

algorithms used in MCMC, but in this research we 

used Gibbs Sampling (GS) algorithm [23]. 

2.4.2.2 Gibbs Sampling (GS) Algorithm 

One important Bayesian algorithm estimates data 

density and compensates for missing values within a 

mixture of normal Dirichlet models. As shown below: 

Algorithm 2. Gibbs Mixture Data Imputation 

(GMDI). 
Same step (i) in the first algorithm 

Initialize 𝜗(0) = (
1

𝑐
،

1

𝑐
،...،

1

𝑐
) and σ2(0).

for iteration u = 1, 2, ... do. 

for r = 1, ..., v do. 

for q ∈ Cr (Missing value index set 
of xr) do. 

Sample 𝑋𝑟𝑞.𝑚𝑖𝑠𝑠
(𝑢)

∼ s(xrq,miss, q ∈ Cr |𝜗

(u−1) , xrq,obs, q /∈ Cr). 
end for. 

end for. 

Sample (𝜗 (u) , σ 2(u) ) ∼ (𝜗, σ 2 

)|Xobs,X𝑚𝑖𝑠𝑠
(𝑢)

 using Algorithm 1. 

end for. 

2.4.3 Expectation Maximization Method 
(EM) 

It is an iterative algorithm that transforms parameter 

estimates in the presence of hidden variables into a 

series of simple updates until stable estimates are 

reached. Therefore, it is an expectation-maximization 

algorithm applied to a mixture of normal Dirichlet 

models. It is used to find maximum-likelihood 

estimates (MLEs) of the model parameters ϑ 

(component weights) and σ (band sizes). The working 

mechanism of this algorithm can be explained as 

follows [24]. 

Algorithm 3. (EM). 
As in step (i) of Algorithm 1 

Initialize 𝜗(0) = (
1

𝑐
،

1

𝑐
،...،

1

𝑐
) and σ2(0).

for iteration u = 0,1, 2, ... do. 

E-step: for each r=1,…,v and p=1,…,c

(compute responsibilities Ar,p)

let obsr⊆{1,…,s} 

𝐴𝑟𝑝
(𝑢)
 = 

𝜗𝑝
(𝑢)

∏
1

𝜎𝑞
(𝑢)𝜑(

𝑥𝑟.𝑞
(𝑢)

−𝑚𝑞.𝑝

𝜎𝑞
(𝑢) )𝑞∈𝑜𝑏𝑠𝑟

∑ 𝜗𝑝
(𝑢)𝑐

𝑝=1 ∏
1

𝜎𝑞
(𝑢)∅(

𝑥𝑟.𝑞
(𝑢)

−𝑚𝑞.𝑝

𝜎𝑞
(𝑢) )𝑞∈𝑜𝑏𝑠𝑟

. 
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Imputation: Fill in missing entries, For 

each sample r and each missing dimension 

q∈missr: 

𝑥𝑟.𝑞
(𝑢)

= ∑ 𝐴𝑟.𝑝
(𝑢)

𝑚𝑞.𝑝

𝑐

𝑝=1

. 

end for. 

end for. 

M-step (update 𝜗 and 𝜎) for each p=1,…,c
and q=1,…,s

𝜗𝑝
(𝑢+1)

=
1

𝑣
∑ 𝐴𝑟.𝑝

(𝑢)
.

𝑣

𝑟=1

(𝜎𝑞
2)(u+1) = 

1

𝑣
∑ ∑ 𝐴𝑟.𝑝

(𝑢)
(𝑥𝑟.𝑞

(𝑢)
−𝑐

𝑝=1
𝑣
𝑟=1

𝑐𝑞.𝑘)2,  𝜎𝑞
(𝑢+1)

= √(𝜎𝑞
2)(𝑢+1)

end for. 

end for. 

Convergence check  

Stop when parameter changes 

∥𝜗(u+1)−𝜗(u)∥ and ∥𝜎(u+1)−𝜎(u)∥ are below 
a preset threshold. 

end for. 

3 APPLICATION 

In this section, a Bayesian estimation model was used 

to analyze the effect of temperature, humidity, and 

wind on evaporation. To obtain accurate estimates of 

the data probability density and address the missing 

data problem, we relied on three estimation methods: 

EM, MCMC, and TBMDE. When analyzing the data 

using missing ratios, a comprehensive comparison 

was conducted, allowing for a more accurate and 

specific assessment of the impact of climate factors. 

The applied results obtained by the model are 

considered important tools that can be utilized by the 

Meteorological Authority, the Water Resources 

Directorate, and the Agriculture Directorate to 

develop effective strategies for irrigation and 

agricultural systems to address the challenges posed 

by climate change, as well as when preparing 

academic research and studies. 

3.1 Data Description 

The data in this research were obtained from the 

Ministry of Transport/General Authority of 

Meteorology in Basra Governorate, Iraq. For the 

period 1/10/2023 to 24/4/2024. The research sample 

includes four variables: evaporation (X1) as a 

dependent variable, and temperature (X2), humidity 

(X3), and wind speed (X4) as independent variables. 

It consists of 207 observations. Random missingness 

values (0.1, 0.2, 0.4) were used in the data to analyze 

the effect of missing values on Bayesian models. 

3.2 Results and Discussion 

The analysis of the models was implemented using 

the R programming language, a leading tool for 

statistical computing, chosen for its efficiency in 

processing complex datasets. To evaluate the 

robustness of the Bayesian estimation methods – EM, 

GMDI, and TBMDE – against data incompleteness, 

their performance was tested on the original complete 

dataset after introducing three different rates of 

random missing values (0.1, 0.2, and 0.4). The 

evaluation was based on two primary criteria: 

estimation accuracy, measured by Mean Squared 

Error (MSE), and computational efficiency, assessed 

by execution time. 

The following results were obtained as shown in 

Table 2. 

The following Mean Squared Error (MSE) results 

are obtained based on the experimental results:  

▪ MSE for variable X1 at 0.1, 0.2, and 0.4.

Whereas the best estimation method is EM.

▪ MSE for variable X2 at 0.1. Whereas the best

estimation method is TBMDE, at 0.2, and 0.4.

Whereas the best estimation method is EM.

▪ MSE for variable X3 at 0.1, 0.2, and 0.4.

Whereas the best estimation method is EM.

▪ MSE for variable X4 at 0.1, 0.2, and 0.4.

Whereas the best estimation method is EM.

Figure 2 illustrates the influence of the climatic 

factors (X₂, X₃, and X₄) on X₁, highlighting how 

variations in these factors are associated with changes 

in X₁. Time (sec) ± SD: The fastest method in terms 

of execution time is TBMDE At 0.1, 0.2, and 0.4 , 

whereas the most efficient and accurate method is EM 

as shown in Table 3. 

Figure 3 presents the density estimation results 

under varying missing data rates, comparing the 

performance of three methods: Expectation-

Maximization (EM), Gaussian Mixture Density 

Imputation (GMDI), and Tree-Based Missing Data 

Estimation (TBMDE). The figure illustrates how each 

method responds to different levels of missingness, 

highlighting their relative accuracy and robustness in 

density estimation. 
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Table 2: MSE values for each variable on real data. Bold values indicate the best (lowest) MSE in each column/row. 

r Methods X1 X2 X3 X4 

0.1 TBMDE 0.2940 0.0387 0.0523 0.0252 

GMDI 0.8294 0.1057 0.1317 0.0460 

EM 0.1763 0.0396 0.0473 0.0202 

0.2 TBMDE 0.2349 0.0414 0.0425 0.0223 

GMDI 0.6531 0.0880 0.0865 0.0569 

EM 0.1606 0.0413 0.0422 0.02226 

0.4 TBMDE 0.1515 0.0478 0.0653 0.02174 

GMDI 0.3779 0.0983 0.1099 0.0437 

EM 0.1457 0.04646 0.04647 0.02167 

Table 3: Comparison of the execution rate of each estimation method in seconds and the standard deviation of (r = 0.1, 0.2, 

and 0.4). 

r Methods Time (sec) ± SD 

0.1 TBMDE 0.0076 ± 0.0022 

GMDI 0.0147 ± 0.0064 

EM 0.0422 ± 0.0109 

0.2 TBMDE 0.0071 ± 0.0029 

GMDI 0.0122 ± 0.0042 

EM 0.0326 ± 0.0085 

0.4 TBMDE 0.0065 ± 0.0013 

GMDI 0.0082 ± 0.0026 

EM 0.0244 ± 0.0076 

Figure 2: The effect of climatic factors (X2, X3, X4) on (X1). 

The results indicate a clear positive linear 

relationship between temperature (X2) and 

evaporation (X1), with an increase in temperature 

leading to higher evaporation rates. In contrast, 

humidity (X3) shows the opposite effect, with 

evaporation values decreasing with increasing 

humidity. Wind (X4) also had a positive effect, but it 

was relatively weaker compared to the effect of 

temperature. 

The graphs compare the probability density 

functions of the studied variables after introducing 

different missingness ratios (10%, 20%, and 40%) 

and using three methods to estimate the missing 

values. The EM method showed strong performance 

in preserving the distributional properties, while 

GMDI showed increasing sensitivity with higher 

missingness ratios, especially in the tails. TBMDE 

provided a conservative estimate centered around the 

mean, with partial loss of distributional properties in 

the tails. The results indicate that varying missingness 

ratios clearly affect the accuracy of the estimation, 

highlighting the importance of choosing the most 

appropriate method based on the nature of the data 

and the level of missingness. 
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Figure 3: Density estimation under different missing rates using EM, GMDI and TBMDE. 

4 CONCLUSIONS 

This research seeks to present an integrated Bayesian 

framework for estimating probability density for 

multivariate data with missing data, using mixture 

models of normal distributions and three estimation 

methods: EM, GMDI, and TBMDE. The key points 

are as follows. The best estimation method that has 

shown high efficiency in estimation is EM. The 

method that is characterized by its rapid 

implementation is TBMDE, which is useful for 

researchers, especially if the sample size is very large. 

Regarding the effect of climatic factors (X2, X3, X4) 

on evaporation (X1), the most influential climatic 

factor on evaporation is maximum temperature, 

followed by minimum relative humidity (but with the 

opposite effect), and then wind speed, which is a 

lesser contributing factor. These graphs provide an 

important visual input that supports the construction 

of interpretive or predictive statistical models of 

evaporation rates, highlighting the importance of 

studying these variables within more complex 

analytical frameworks such as multivariate or 

Bayesian models. Based on the results, it is clear that 

the EM method is used to achieve high accuracy, 

while the TBMDE method is preferred if the goal is 

speedy implementation. 
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APPENDIX 

Table A.1: The key symbols and abbreviations. 

Symbol Meaning 

X1 Evaporation rate (mm/day) 

X2 Maximum daily temperature (C) 

X3 Minimum daily humidity (%) 

X4 Wind speed (m/s) 

DP Dirichlet process 

DMNM Dirichlet mixture Normal model 

TB Typical Bayesian 

TBMDE Typical Bayesian Mixture Density 

Estimation 

GMDI Gibbs Mixture Data Imputation 

MCMC Markov Chain Monte Carlo 

EM Expectation Maximization 

GS Gibbs Sampling 
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