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Abstract: Smart agriculture is a collection of techniques and technologies that aim to improve farming methods and 

production and support sustainable agricultural practices. This work proposes a Machine Learning-based 

Decision Support System (ML-DSS) for real-time decision support to farmers. The primary goal is to derive 

crop yield predictions, pest detections, and resource management through supervised machine learning 

models(es-implementation) using IoT-based sensor data. The architecture supports several machine learning 

techniques, including deep learning, ensemble models, and explainable AI frameworks, which can process 

heterogeneous data sources related to soil quality, weather conditions, and plant health indicators. A cloud-

based platform is utilized for data collection, preprocessing, and predictive analytics. The experimental work 

is validated using real-world datasets from precision farming applications. Experimental results demonstrate 

significant overall prediction accuracy, improved decision-making speed, enhanced capacity for resource 

allocation, and reduced greenhouse gas emissions. Because of the use of interpretable AI techniques, model 

transparency has been facilitated, and trust from farmers is achieved. Finally, this research illustrates that the 

ML-DSS has the potential to increase agricultural productivity, moderate costs in the farmers' operations, and

information-driven farming decisions for the future directions of adaptive learning.

1 INTRODUCTION 

Agriculture plays an essential role in the global food 

security, economic stability, and sustainable 

development. Traditional farming is however facing 

more and more challenges such as unexpected 

weather changes, soil degradation, pest infestation, 

and, quite importantly, rather inefficient utilization of 

resources. Smart farming has addressed some of these 

issues and has become an innovative method 

Community Development which includes the 

deployment of advanced technologies such as 

Machine Learning (ML), Internet of Things (IoT), 

and Artificial Intelligence (AI) to optimize those 

agricultural systems around different fronts. Machine 

Learning-based Decision support systems provide 

data-driven insights to farmers for real-time decision-

making toward improved productivity and 

sustainability. With the analysis of different sets of 

information-such as soil composition, temperature, 

humidity, crop health, and weather forecasts-ML 

algorithms are able to predict yield rates, identify 

disease, and give optimal farming practice 

suggestions. Smart systems enhance precision 

agriculture through automated monitoring, early 

detection of risk, and resource management. This 

research investigates the advanced development of an 

ML-DSS, shaped toward the smart farming sector, to

enhance decision-making accuracy with the help of

supervised learning and deep learning models. The

investigation will establish a strong argument to

prove that AI-driven solutions bring more efficiency

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), August 2020225  

419



to agriculture at lesser costs, operate with 

environmentally sustainable farming, and improved 

productivity. Incorporating interpretable AI 

techniques in building the proposed system provides 

transparency, reliability, and trust to users. 

2 LITERATURE SURVEY 

There's been some fairly quick development in the 

integration of machine-learning techniques into smart 

agriculture in how far they have used this to improve 

decision-making, optimize use of resources, and thus 

increase crop yield. Many papers had developed an 

application of machine-learning algorithms for 

precision farming, disease detection, and yield 

prediction. For example, [1] described an application 

of deep learning-based systems to crop disease 

detection, using CNNs to provide better accuracy 

than traditional image processing techniques. [2] 

Built an ML-based predictive modeling system for 

crop yield estimation, considering soil properties, 

weather conditions, and historical yield data toward 

efficient allocation and use of resources. In addition, 

IoT smart farming is in a favorable position of 

allowing real-time updates to the organizations for 

decision-making. For instance, Patel et al. [3] 

demonstrated a machine learning approach for 

precision irrigation using IoT data, effectively 

optimizing water use. These findings collectively 

underscore the effectiveness of integrating IoT and 

ML for tasks like soil moisture monitoring, predicting 

irrigation needs, and reducing water wastage. This 

advancement underlines the promise of ML-based 

decision support systems in extensive agricultural 

practice. However, model interpretability, real-time 

adaptability, and unavailability of data become each 

other challenge emerging from further research.  

Even after these years of the hospitality of 

machine learning for the decision-support systems in 

smart agriculture, some challenges remain 

unanswered. Most of the state-of-the-art research is 

bent towards improving the accuracy of predictions 

but lacks interpretability, hence hindering the 

application and acceptance by farmers to integrate 

recommendations by AI systems [4]. Again, giant 

machine learning models require a huge amount of 

data of very high quality to train; however, field data 

in agriculture tend to be heterogeneous, noisy, or 

really small. Such limits in the data variable reduce 

the generalizability and robustness of the predictive 

models [5]. Moreover, whilst IoT-enabled smart 

farming systems provide real-time data collection, 

there is an inadequate number of studies that integrate 

adaptive learning mechanisms that allow the model to 

be dynamically updated based on the new agricultural 

patterns. The absence of real-time adaptability 

suppresses the practical realization of these systems 

in the dynamic farming environment. Filling these 

gaps by integrating Explainable AI, data 

augmentation techniques, and real-time adaptive 

learning would certainly enhance the working of ML-

based decision-support systems. 

3 METHODOLOGY 

3.1 Model Training 

Machine learning proceeds with data collection from 

extensive sources such as IoT sensors, drones, 

satellite images, and publicly available agricultural 

datasets all prepared for training; these provide a vital 

information base on soil moisture, pH, temperature, 

humidity, weather test, and crop health indicators. 

Since raw agricultural data is often polluted by noisy 

and incomplete information, preprocessing ensures 

good data quality for robust model performance; in 

this respect, methods really help in discerning the 

right variables affecting crop yield pest outbreak, and 

irrigation needs [6]. The model used to design the 

decision support system consists of a mixture of 

supervised learning and deep learning approaches. 

These comprise Random Forest and XGBoost for 

crop yield prediction and pest detection while leaf 

images are analyzed using CNNs for identification of 

diseases. Besides, prediction using LSTMs on the 

time series data from different parameters over time 

like weather variations as well as soil conditions and 

pest infestations is performed. The training follows a 

standard procedure, which involves 80-20 

training/testing. Generalization of the model for 

unseen data is assured through a train-test split of 

80% training and 20% validation, using cross-

validation (k-fold) to prevent overfitting and improve 

robustness, and with experiment setting hyper-

parameters via Grid Search and Bayesian 

Optimization until a satisfactory function is finally 

established [7].  

Once trained, models will be evaluated according 

to standard performance metrics associated with the 

prediction task; these include Mean Absolute 

Error(MAE); Root Mean Squared Error -RMSE; 

Precision; Recall; and F1-score. To enable 

transparency and foster the trust of farmers, 

explainable-AI techniques will include 

SHAP(SHapley Additive explanations) and 
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LIME(Local Interpretable Model-Agnostic 

Explanations).  

These methods will foster understanding 

concerning feature importance and decision-making 

processes, which would make AI suggestions more 

interpretable for users, hence better action will be 

made. Following this step, the models would then be 

deployed in a cloud-based decision support system 

that would be able to process real-time data and 

automate decision-making depending on real-time 

updated information [8]. The final ML-DSS platform 

incorporates a user-friendly mobile application and 

web interface providing farmers with up-to-the-

minute recommendations on when to irrigate, the 

control of pests, and what crops to grow. The system 

will now operate in the cycle of active feedback, 

meaning that the system will update its models based 

on new agricultural patterns in order to sustain 

scalability and continue effectiveness. By providing 

data-driven decision support, this approach 

empowers farmers to boost agricultural production, 

make optimal use of all resources, and adhere to 

methods geared toward sustainable smart farming. 

3.2 Performance Metrics 

The evaluation of the performance of an ML-DSS in 

Smart Agriculture is done using a host of evaluation 

metrics in order to obtain accuracy, reliability, and 

robustness in field applications. Regression models, 

often involving prediction of crop yields and soil 

conditions, are evaluated using measures of Mean 

Absolute Error and Root Mean Squared Error values. 

MAE states that the average of absolute differences 

between the predicted and actual values indicates the 

measurement that is intuitive and therefore 

informative in the sense of providing a sense of 

prediction accuracy. Whereas, the RMSE, because of 

its distinction in the manner it attributes weights to 

mispredictions, is of more concern when it assesses 

the extreme mispredictions since really big errors 

need to be discouraged. Combining RMSE and MAE 

will provide a more comprehensive picture of the 

model's performance, as RMSE gives more weight to 

outliers, while MAE gives a more intelligible 

overview of the prediction accuracy overall [9].  

Classification tasks that are delineative of disease 

detection and pest identification and use measures or 

metrics such as Precision, Recall, and F1-score. 

Precision measures the proportion of true positive 

cases that were predicted out of all predicted positive 

cases and makes sure that the number of false 

positives is as low as possible. Recall, known as 

sensitivity, means how the model works out with 

actually positive cases in order that fewer diseased 

crops are missed. The F1 score is the harmonic mean 

of precision and recall. It is a balanced metric in the 

case when the false positives and the false negatives 

are of equal importance. In the current literature, it 

has been indicated that an increase in Precision is of 

utmost importance in the classification of plant 

disease, as false positives will prompt unneeded 

application of pesticides while high Recall is the 

essential quality for its early detection to forestall any 

outbreak or disaster, and these metrics go hand in 

glove in the endeavour to optimize the machine-

learning information decision support system by fine-

tuning the model to enhance the accuracy of 

classifications under the different agricultural 

scenarios it shall find itself in [10].  

Such techniques enable stakeholders, from 

farmers to agronomists, to see which features 

influence predictions and thus improve trust and 

adoption. The significance of interpretability in 

agricultural AI models is not something that has been 

absent to previous researchers, as they asserted that 

transparency of the models allowed for better user 

adoption and improved decision-making in 

agricultural applications [11]. Thus, the evaluation 

metrics integrated into the ML-DSS ensure high 

performance, interpretability, and flexibility, 

ensuring their reliability for this Smart Agriculture 

application.  

4 RESULTS AND ANALYSIS 

In the study, Machine Learning-based Decision 

Support Systems for smart agriculture are assessed by 

implementing various models including Random 

Forest, XGBoost, CNN and LSTM. Performance 

assessment analyses precision, recall, F1 score and 

RMSE offering a complete understanding of the 

model efficiency-based process for different 

agricultural tasks. Result tables compared with 

accuracy assessments show that better performance is 

achieved through feature selection and pre-

processing, thus indicating robust nature of the 

system under various settings.  

4.1 Model Performance Evaluation 

Several regression and classification models were 

employed to evaluate the machine learning-based 

decision support system for smart agriculture. The 

models were tested on a dataset containing soil 

attributes, weather parameters and pest occurrence 
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collected from IoT sensors,drones and satellite 

images. Table 1 shows the model performance 

comparsion 

Table 1: Model performance evaluation. 

Model Application Precision Accuracy 

Random 

Forest 

Crop Yield 

Prediction 
nil 92.3% 

XGBoost Crop Yield 

Prediction 
nil 90.7% 

CNN Disease 

Classification 
95.2% 93.5% 

LSTM Weather 

Forecasting 
nil 91.2% 

4.2 Efficiency of Feature Selection and 

Data Processing 

Before feeding the model, features were selected and 

preprocessed via PCA and correlation analysis to 

improve performance. Leaf texture, color variation, 

and temperature change are considered the most 

important indicators for disease categorization. 

According to an analysis by SHAP (Shapley Additive 

Explanations), soil moisture negatively (24.6%) 

impacts crop yield prediction, followed by 

temperature (19.4%) and levels of fertilizer (15.7%). 

Table 2 shows the impact of data preprocessing on 

model performance. 

Table 2: Impact of data preprocessing. 

Model RMSE 

(before) 

RMSE 

(After) 

Accuracy 

(Before) 

Accuracy 

(After) 

Random 

Forest 
2.05 1.23 85.6% 92.3% 

CNN nil nil 87.1% 93.5% 

LSTM 2.75 1.57 83.2% 91.2% 

4.3 Visual Representation of Model 

Performance 

The visualization of model performance showed the 

applicability of ML-DSS through comparative 

accuracy metrics, feature importance analysis, and 

the effect of preprocessing. The graphs show CNN 

achieving an accuracy of 93.5%, a random forest 

improving RMSE from 2.05 to 1.23, and SHAP 

analysis indicating a 24.6% impact of soil moisture 

on predictions. 

4.3.1 Model Accuracy Comparison 

Figure 1 shows the accuracy of the different machine 

learning models used in smart agriculture Figure 1 

illustrates the CNN model obtained the highest 

accuracy of 93.5% for disease classification, followed 

by the Random Forest and LSTM models with 

accuracies of 92.3% and 91.2% for crop yield 

prediction and weather forecasting, respectively.  

Figure 1: Model accuracy comparison. 

4.3.2 Feature Importance Analysis 

Figure 2 represents the feature importance analysis 

using SHAP values. Figure 2 shows that soil moisture 

(24.6%) had the highest influence on crop yield 

prediction, followed by temperature (19.4%) and 

fertilizer levels (15.7%). This insight helps optimize 

feature selection for better model performance. 

Figure 2: Feature importance analysis. 

4.3.3 Improvement in Model Performance 

Figure 3 tells a lot about preprocessing, which 

improves the performance of a model by resulting in 

a reduced RMSE (Root Mean Squared Error) for crop 

yield predictions done through Random Forest and 
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weather predictions done through the LSTM model. 

After it was processed, the change in RMSE made it 

totally accurate and made the model more reliable. 

Figure 3: Improvement in model performance after 

preprocessing. 

These results validate the feature selection, 

preprocessing, and upscale methodologies employed 

in the development of proficient Decision Support 

Systems for Smart Agriculture.  

5 DISCUSSION 

The results of this work indicate the potential of 

machine learning-based decision-support systems in 

precision agriculture, utilizing high-end supervised 

learning and deep-learned models. Random Forest 

and XGBoost models attained very high accuracy in 

predicting crop yield, similarly, Convolutional 

Neural Networks (CNNs) effectively diagnosed crop 

diseases with an accuracy of a mere 93.5%. 

Moreover, LSTM networks outperform in prediction 

regarding weather variation using preprocessed data. 

The reduced RMSE values and increased model 

accuracy for feature selection techniques confirmed 

that the recommendation systems could be used by 

farmers to model and utilize recommendations in crop 

management, irrigation, and control of diseases.  

A major focus area of this research was the effect 

of physical environmental factors on the performance 

of models. SHAP-based feature importance analysis 

shows that soil moisture, temperature, and fertilizer 

levels are the most important parameters in 

determining crop health and yield predictions. This 

agrees with existing studies highlighting the necessity 

of real-time data collection in precision agriculture. 

While the accuracy of sensors is variable, weather 

fluctuations have also obstructed the trustworthiness 

of the predictions in dynamically changing farming 

environments. Future improvements can 

accommodate hybrid models combining ensemble 

learning and reinforcement learning techniques for 

improved adaptability. Moreover, the integration of 

external datasets that contain historical climate and 

satellite imagery data can hone the precision of 

decision-making for fairly accurate predictions.  

6 CONCLUSIONS 

This demonstrated some of the worth of Machine 

Learning-Based Decision Support Systems in Smart 

Agriculture and further reveals how advanced 

machine learning models can improve decisions 

aimed at crop management, disease detection, and 

yield prediction. The trials of Random Forest, 

XGBoost, CNN, and LSTM models have resulted in 

high precision amongst some other forms of 

agricultural applications. Data preprocessing and 

feature selection remained the two most crucial steps 

for improving performance for some applications. 

The evaluation metrics precision, recall, RMSE, and 

F1-score proved the robustness of the proposed 

system, establishing it as a very useful guide for 

modern farming. Future endeavors must pay attention 

to equipping such models with enhanced flexibility 

by applying hybrid learning in a combination of 

ensemble learning and reinforcement learning, thus 

enabling the system to withstand changes brought 

forth by the environment. Moreover, other sources of 

data, such as satellite images, drone observations, and 

past climatic data can be used to complete the 

decision-making process. It should also be addressed 

at the research level that the use of edge computing 

would aid signal transmission for near real-time 

processing across remote farming areas, hence 

eliminating these latency issues for enhanced 

decision-making. 

Additionally, one future path is the coAI models 

that leverage the federated learning, enabling multiple 

farms to supply real-time data in an unintrusive 

manner in terms of data privacy. Moreover, one 

future direction is the collaborative AI models that 

utilize the federated learning, allowing multiple farms 

to upload real-time information without dipping into 

data privacy. This would allow for creation of region-

specific models that are relevant to farming 

conditions in the area. Furthermore, expanding the 

ML-DSS into cloud-based agricultural advisory

system, available through mobile devices would

promote wider use among farmers. By periodically

improving these AI-driven approaches, ML-DSS

could have the ability to thoroughly change precision
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agriculture, while increasing sustainability, 

production, and resource efficiency in the agricultural 

field. 
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