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Smart agriculture is a collection of techniques and technologies that aim to improve farming methods and
production and support sustainable agricultural practices. This work proposes a Machine Learning-based
Decision Support System (ML-DSS) for real-time decision support to farmers. The primary goal is to derive
crop yield predictions, pest detections, and resource management through supervised machine learning
models(es-implementation) using loT-based sensor data. The architecture supports several machine learning
techniques, including deep learning, ensemble models, and explainable Al frameworks, which can process
heterogeneous data sources related to soil quality, weather conditions, and plant health indicators. A cloud-
based platform is utilized for data collection, preprocessing, and predictive analytics. The experimental work
is validated using real-world datasets from precision farming applications. Experimental results demonstrate
significant overall prediction accuracy, improved decision-making speed, enhanced capacity for resource
allocation, and reduced greenhouse gas emissions. Because of the use of interpretable Al techniques, model
transparency has been facilitated, and trust from farmers is achieved. Finally, this research illustrates that the
ML-DSS has the potential to increase agricultural productivity, moderate costs in the farmers' operations, and
information-driven farming decisions for the future directions of adaptive learning.

1 INTRODUCTION

Agriculture plays an essential role in the global food
security, economic stability, and sustainable
development. Traditional farming is however facing
more and more challenges such as unexpected
weather changes, soil degradation, pest infestation,
and, quite importantly, rather inefficient utilization of
resources. Smart farming has addressed some of these
issues and has become an innovative method
Community Development which includes the
deployment of advanced technologies such as
Machine Learning (ML), Internet of Things (IoT),
and Artificial Intelligence (AI) to optimize those
agricultural systems around different fronts. Machine
Learning-based Decision support systems provide
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data-driven insights to farmers for real-time decision-
making toward improved productivity and
sustainability. With the analysis of different sets of
information-such as soil composition, temperature,
humidity, crop health, and weather forecasts-ML
algorithms are able to predict yield rates, identify
disease, and give optimal farming practice
suggestions. Smart systems enhance precision
agriculture through automated monitoring, early
detection of risk, and resource management. This
research investigates the advanced development of an
ML-DSS, shaped toward the smart farming sector, to
enhance decision-making accuracy with the help of
supervised learning and deep learning models. The
investigation will establish a strong argument to
prove that Al-driven solutions bring more efficiency
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to agriculture at lesser costs, operate with
environmentally sustainable farming, and improved
productivity.  Incorporating interpretable Al
techniques in building the proposed system provides
transparency, reliability, and trust to users.

2 LITERATURE SURVEY

There's been some fairly quick development in the
integration of machine-learning techniques into smart
agriculture in how far they have used this to improve
decision-making, optimize use of resources, and thus
increase crop yield. Many papers had developed an
application of machine-learning algorithms for
precision farming, disease detection, and yield
prediction. For example, [1] described an application
of deep learning-based systems to crop disease
detection, using CNNs to provide better accuracy
than traditional image processing techniques. [2]
Built an ML-based predictive modeling system for
crop yield estimation, considering soil properties,
weather conditions, and historical yield data toward
efficient allocation and use of resources. In addition,
IoT smart farming is in a favorable position of
allowing real-time updates to the organizations for
decision-making. For instance, Patel et al. [3]
demonstrated a machine learning approach for
precision irrigation using IoT data, effectively
optimizing water use. These findings collectively
underscore the effectiveness of integrating IoT and
ML for tasks like soil moisture monitoring, predicting
irrigation needs, and reducing water wastage. This
advancement underlines the promise of ML-based
decision support systems in extensive agricultural
practice. However, model interpretability, real-time
adaptability, and unavailability of data become each
other challenge emerging from further research.
Even after these years of the hospitality of
machine learning for the decision-support systems in
smart agriculture, some challenges remain
unanswered. Most of the state-of-the-art research is
bent towards improving the accuracy of predictions
but lacks interpretability, hence hindering the
application and acceptance by farmers to integrate
recommendations by Al systems [4]. Again, giant
machine learning models require a huge amount of
data of very high quality to train; however, field data
in agriculture tend to be heterogeneous, noisy, or
really small. Such limits in the data variable reduce
the generalizability and robustness of the predictive
models [5]. Moreover, whilst IoT-enabled smart
farming systems provide real-time data collection,
there is an inadequate number of studies that integrate

420

adaptive learning mechanisms that allow the model to
be dynamically updated based on the new agricultural
patterns. The absence of real-time adaptability
suppresses the practical realization of these systems
in the dynamic farming environment. Filling these
gaps by integrating Explainable Al, data
augmentation techniques, and real-time adaptive
learning would certainly enhance the working of ML-
based decision-support systems.

3 METHODOLOGY

3.1 Model Training

Machine learning proceeds with data collection from
extensive sources such as IoT sensors, drones,
satellite images, and publicly available agricultural
datasets all prepared for training; these provide a vital
information base on soil moisture, pH, temperature,
humidity, weather test, and crop health indicators.
Since raw agricultural data is often polluted by noisy
and incomplete information, preprocessing ensures
good data quality for robust model performance; in
this respect, methods really help in discerning the
right variables affecting crop yield pest outbreak, and
irrigation needs [6]. The model used to design the
decision support system consists of a mixture of
supervised learning and deep learning approaches.
These comprise Random Forest and XGBoost for
crop yield prediction and pest detection while leaf
images are analyzed using CNNs for identification of
diseases. Besides, prediction using LSTMs on the
time series data from different parameters over time
like weather variations as well as soil conditions and
pest infestations is performed. The training follows a
standard  procedure, which involves 80-20
training/testing. Generalization of the model for
unseen data is assured through a train-test split of
80% training and 20% validation, using cross-
validation (k-fold) to prevent overfitting and improve
robustness, and with experiment setting hyper-
parameters via Grid Search and Bayesian
Optimization until a satisfactory function is finally
established [7].

Once trained, models will be evaluated according
to standard performance metrics associated with the
prediction task; these include Mean Absolute
Error(MAE); Root Mean Squared Error -RMSE;
Precision; Recall; and Fl-score. To enable
transparency and foster the trust of farmers,
explainable-Al techniques will include
SHAP(SHapley = Additive  explanations) and
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LIME(Local Interpretable Model-Agnostic
Explanations).
These methods will foster understanding

concerning feature importance and decision-making
processes, which would make AI suggestions more
interpretable for users, hence better action will be
made. Following this step, the models would then be
deployed in a cloud-based decision support system
that would be able to process real-time data and
automate decision-making depending on real-time
updated information [8]. The final ML-DSS platform
incorporates a user-friendly mobile application and
web interface providing farmers with up-to-the-
minute recommendations on when to irrigate, the
control of pests, and what crops to grow. The system
will now operate in the cycle of active feedback,
meaning that the system will update its models based
on new agricultural patterns in order to sustain
scalability and continue effectiveness. By providing
data-driven  decision support, this approach
empowers farmers to boost agricultural production,
make optimal use of all resources, and adhere to
methods geared toward sustainable smart farming.

3.2 Performance Metrics

The evaluation of the performance of an ML-DSS in
Smart Agriculture is done using a host of evaluation
metrics in order to obtain accuracy, reliability, and
robustness in field applications. Regression models,
often involving prediction of crop yields and soil
conditions, are evaluated using measures of Mean
Absolute Error and Root Mean Squared Error values.
MAE states that the average of absolute differences
between the predicted and actual values indicates the
measurement that is intuitive and therefore
informative in the sense of providing a sense of
prediction accuracy. Whereas, the RMSE, because of
its distinction in the manner it attributes weights to
mispredictions, is of more concern when it assesses
the extreme mispredictions since really big errors
need to be discouraged. Combining RMSE and MAE
will provide a more comprehensive picture of the
model's performance, as RMSE gives more weight to
outliers, while MAE gives a more intelligible
overview of the prediction accuracy overall [9].

Classification tasks that are delineative of disease
detection and pest identification and use measures or
metrics such as Precision, Recall, and F1-score.
Precision measures the proportion of true positive
cases that were predicted out of all predicted positive
cases and makes sure that the number of false
positives is as low as possible. Recall, known as
sensitivity, means how the model works out with
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actually positive cases in order that fewer diseased
crops are missed. The F1 score is the harmonic mean
of precision and recall. It is a balanced metric in the
case when the false positives and the false negatives
are of equal importance. In the current literature, it
has been indicated that an increase in Precision is of
utmost importance in the classification of plant
disease, as false positives will prompt unneeded
application of pesticides while high Recall is the
essential quality for its early detection to forestall any
outbreak or disaster, and these metrics go hand in
glove in the endeavour to optimize the machine-
learning information decision support system by fine-
tuning the model to enhance the accuracy of
classifications under the different agricultural
scenarios it shall find itself in [10].

Such techniques enable stakeholders, from
farmers to agronomists, to see which features
influence predictions and thus improve trust and
adoption. The significance of interpretability in
agricultural Al models is not something that has been
absent to previous researchers, as they asserted that
transparency of the models allowed for better user
adoption and improved decision-making in
agricultural applications [11]. Thus, the evaluation
metrics integrated into the ML-DSS ensure high
performance, interpretability, and flexibility,
ensuring their reliability for this Smart Agriculture
application.

4 RESULTS AND ANALYSIS

In the study, Machine Learning-based Decision
Support Systems for smart agriculture are assessed by
implementing various models including Random
Forest, XGBoost, CNN and LSTM. Performance
assessment analyses precision, recall, F1 score and
RMSE offering a complete understanding of the
model efficiency-based process for different
agricultural tasks. Result tables compared with
accuracy assessments show that better performance is
achieved through feature selection and pre-
processing, thus indicating robust nature of the
system under various settings.

4.1 Model Performance Evaluation

Several regression and classification models were
employed to evaluate the machine learning-based
decision support system for smart agriculture. The
models were tested on a dataset containing soil
attributes, weather parameters and pest occurrence
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collected from IoT sensors,drones and satellite
images. Table 1 shows the model performance
comparsion

Table 1: Model performance evaluation.

Model Application Precision Accuracy
Random Crop Yield . R
Forest Prediction nil 92.3%
XGBoost | Crop Yield nil 90.7%
Prediction 170
CNN Disease o R
Classification 95.2% 93.5%
LST™M Weathe.r nil 01 2%
Forecasting

4.2 Efficiency of Feature Selection and
Data Processing

Before feeding the model, features were selected and
preprocessed via PCA and correlation analysis to
improve performance. Leaf texture, color variation,
and temperature change are considered the most
important indicators for disease categorization.
According to an analysis by SHAP (Shapley Additive
Explanations), soil moisture negatively (24.6%)
impacts crop yield prediction, followed by
temperature (19.4%) and levels of fertilizer (15.7%).
Table 2 shows the impact of data preprocessing on
model performance.

Table 2: Impact of data preprocessing.

Model RMSE | RMSE | Accuracy | Accuracy
(before) | (After) | (Before) (After)
Random | o5 | 123 | 8s5.6% | 92.3%
Forest
CNN nil nil 87.1% 93.5%
LSTM 2.75 1.57 83.2% 91.2%

4.3 Visual Representation of Model
Performance

The visualization of model performance showed the
applicability of ML-DSS through comparative
accuracy metrics, feature importance analysis, and
the effect of preprocessing. The graphs show CNN
achieving an accuracy of 93.5%, a random forest
improving RMSE from 2.05 to 1.23, and SHAP
analysis indicating a 24.6% impact of soil moisture
on predictions.
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4.3.1 Model Accuracy Comparison

Figure 1 shows the accuracy of the different machine
learning models used in smart agriculture Figure 1
illustrates the CNN model obtained the highest
accuracy of 93.5% for disease classification, followed
by the Random Forest and LSTM models with
accuracies of 92.3% and 91.2% for crop yield
prediction and weather forecasting, respectively.

Model Accuracy Comparnson

Accuracy ')

Randorn Farest

XGHoost

CNN
Models

Figure 1: Model accuracy comparison.
4.3.2 Feature Importance Analysis
Figure 2 represents the feature importance analysis
using SHAP values. Figure 2 shows that soil moisture
(24.6%) had the highest influence on crop yield
prediction, followed by temperature (19.4%) and

fertilizer levels (15.7%). This insight helps optimize
feature selection for better model performance.

Feature Importance Analysis Using SHAP

-y
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SHAP Importance (%

Figure 2: Feature importance analysis.

4.3.3 Improvement in Model Performance

Figure 3 tells a lot about preprocessing, which
improves the performance of a model by resulting in
areduced RMSE (Root Mean Squared Error) for crop
yield predictions done through Random Forest and
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weather predictions done through the LSTM model.
After it was processed, the change in RMSE made it
totally accurate and made the model more reliable.

Improvement in Model Performance After Preprocessing
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CNN
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Figure 3: Improvement in model performance after
preprocessing.

These results validate the feature selection,
preprocessing, and upscale methodologies employed
in the development of proficient Decision Support
Systems for Smart Agriculture.

S DISCUSSION

The results of this work indicate the potential of
machine learning-based decision-support systems in
precision agriculture, utilizing high-end supervised
learning and deep-learned models. Random Forest
and XGBoost models attained very high accuracy in
predicting crop yield, similarly, Convolutional
Neural Networks (CNNs) effectively diagnosed crop
diseases with an accuracy of a mere 93.5%.
Moreover, LSTM networks outperform in prediction
regarding weather variation using preprocessed data.
The reduced RMSE values and increased model
accuracy for feature selection techniques confirmed
that the recommendation systems could be used by
farmers to model and utilize recommendations in crop
management, irrigation, and control of diseases.

A major focus area of this research was the effect
of physical environmental factors on the performance
of models. SHAP-based feature importance analysis
shows that soil moisture, temperature, and fertilizer
levels are the most important parameters in
determining crop health and yield predictions. This
agrees with existing studies highlighting the necessity
of real-time data collection in precision agriculture.
While the accuracy of sensors is variable, weather
fluctuations have also obstructed the trustworthiness
of the predictions in dynamically changing farming
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environments. Future improvements can
accommodate hybrid models combining ensemble
learning and reinforcement learning techniques for
improved adaptability. Moreover, the integration of
external datasets that contain historical climate and
satellite imagery data can hone the precision of
decision-making for fairly accurate predictions.

6 CONCLUSIONS

This demonstrated some of the worth of Machine
Learning-Based Decision Support Systems in Smart
Agriculture and further reveals how advanced
machine learning models can improve decisions
aimed at crop management, disease detection, and
yield prediction. The trials of Random Forest,
XGBoost, CNN, and LSTM models have resulted in
high precision amongst some other forms of
agricultural applications. Data preprocessing and
feature selection remained the two most crucial steps
for improving performance for some applications.
The evaluation metrics precision, recall, RMSE, and
Fl-score proved the robustness of the proposed
system, establishing it as a very useful guide for
modern farming. Future endeavors must pay attention
to equipping such models with enhanced flexibility
by applying hybrid learning in a combination of
ensemble learning and reinforcement learning, thus
enabling the system to withstand changes brought
forth by the environment. Moreover, other sources of
data, such as satellite images, drone observations, and
past climatic data can be used to complete the
decision-making process. It should also be addressed
at the research level that the use of edge computing
would aid signal transmission for near real-time
processing across remote farming areas, hence
eliminating these latency issues for enhanced
decision-making.

Additionally, one future path is the coAl models
that leverage the federated learning, enabling multiple
farms to supply real-time data in an unintrusive
manner in terms of data privacy. Moreover, one
future direction is the collaborative Al models that
utilize the federated learning, allowing multiple farms
to upload real-time information without dipping into
data privacy. This would allow for creation of region-
specific models that are relevant to farming
conditions in the area. Furthermore, expanding the
ML-DSS into cloud-based agricultural advisory
system, available through mobile devices would
promote wider use among farmers. By periodically
improving these Al-driven approaches, ML-DSS
could have the ability to thoroughly change precision
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agriculture,  while increasing  sustainability,
production, and resource efficiency in the agricultural
field.
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