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A B S T R A C T

Human-Robot Interaction (HRI) enables the integration of human expertise
into robot control, allowing systems to adapt to dynamic and complex en-
vironments. This requires intuitive and efficient user interfaces, with hand
gesture interaction emerging as a promising approach. Additionally, the inte-
gration of Extended Reality (XR) has shown potential to support HRI. However,
several challenges remain that must be addressed to ensure efficient HRI.

First, accurate interaction and the integration of XR into robotic workspaces
require a spatial registration between the robot and the corresponding in-
teraction or virtual coordinate frames. Therefore, the first part of this thesis
explores XR-to-robot registration techniques, demonstrating that point-based
methods enable efficient registration. Further analysis revealed that registra-
tion accuracy can be significantly improved by carefully selecting the tracking
method and point characteristics. Registration accuracy can be further en-
hanced by employing a proposed refinement approach, which integrates
points recorded between registration points.

The second part addresses interaction-specific challenges. Hand gestures
inherently lack haptic feedback, which can complicate contact-intensive tasks.
Two approaches are explored to mitigate this: partial automation and sensory
substitution. Results indicate that both strategies improve performance while
partial automation also reduces operator workload. Another challenge arising
is fatigue caused by the sustained hand posture. To address this, different
control modes and sensor placements are explored. It is found that position
control outperforms rate control, and that while robot-mounted sensors
enable precise control, environment-mounted sensors can reduce fatigue.

Human-centered investigations require extensive user studies, which are
often constrained by the cost and limited availability of physical robotic
setups. XR environments offer a promising alternative by simulating such
setups. To evaluate the validity of results from user studies conducted in XR

environments, this thesis compares two degrees of virtualization across three
tasks. The findings indicate that while performance in precision tasks is setup-
dependent, XR-based studies can produce valid results for broader tasks. A
follow-up study on force assistance techniques in both XR and physical setups
extends these findings, showing that even when absolute performance differs,
relative trends remain consistent across environments.

By addressing three key factors - registration, interaction design, and evalu-
ation setup - this work is an important step towards efficient HRI. The findings
provide evidence-based recommendations for registration techniques, force
assistance strategies, interaction design, and the use of XR in user studies,
contributing to more intuitive and accessible HRI.
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Z U S A M M E N FA S S U N G

Die Mensch-Roboter-Interaktion (HRI) ermöglicht die Integration menschli-
cher Expertise in die Robotersteuerung, wodurch sich Robotersysteme an
dynamische und komplexe Umgebungen anpassen können. Ein vielverspre-
chender Ansatz für die dafür erforderliche intuitive und effiziente Steuerung
ist die Interaktion mittels Handgesten. Darüber hinaus hat sich die Inte-
gration von Extended Reality (XR) als unterstützend für die HRI erwiesen.
Dennoch bestehen weiterhin Herausforderungen, deren Bewältigung eine
Voraussetzung für eine effiziente Steuerung darstellt.

Zunächst erfordern die präzise Interaktion und Integration von XR in
Arbeitsbereiche von Robotern eine räumliche Registrierung zwischen dem
Roboter und den entsprechenden Interaktions- oder virtuellen Koordina-
tensystemen. Daher untersucht der erste Teil dieser Arbeit XR-zu-Roboter-
Registrierungstechniken und zeigt, dass punktbasierte Methoden eine effi-
ziente Registrierung ermöglichen. Weitere Analysen verdeutlichen, dass die
Registrierungsgenauigkeit durch die gezielte Auswahl der Trackingmethode
und der Eigenschaften der verwendeten Punkte signifikant verbessert werden
kann. Die Registrierungsgenauigkeit kann weiter erhöht werden, indem ein
Verfeinerungsansatz angewendet wird, der Punkte einbezieht, die zwischen
den Registrierungspunkten erfasst wurden.

Der zweite Teil der Arbeit befasst sich mit interaktionsspezifischen Her-
ausforderungen. Freihandgesten bieten definitionsgemäß kein haptisches
Feedback, wodurch kontaktintensive Aufgaben erschwert werden. Um dies
zu kompensieren, werden zwei Ansätze untersucht: Teilautomatisierung und
sensorische Substitution. Die Ergebnisse zeigen, dass beide Strategien die
Leistung verbessern können, wobei die Teilautomatisierung zusätzlich die
Arbeitsbelastung der Benutzer*innen reduziert. Eine weitere Herausforde-
rung ist die Muskelermüdung durch die andauernde Handhaltung. Um
dem entgegenzuwirken, werden verschiedene Steuerungsmodi und Sensor-
platzierungen evaluiert. Dabei zeigte sich, dass die Positionssteuerung der
Geschwindigkeitssteuerung überlegen ist und dass am Roboter befestigte
Sensoren zwar eine präzise Steuerung ermöglichen, in der Roboterumgebung
platzierte Sensoren, jedoch die Ermüdung verringern können.

Da menschenzentrierte Untersuchungen umfangreiche Nutzerstudien erfor-
dern, diese jedoch häufig durch Kosten und begrenzten Zugang zu physischer
Hardware eingeschränkt sind, bieten XR-Umgebungen eine vielversprechende
Alternative, indem Testumgebungen simuliert werden. Zur Bewertung ihrer
Validität vergleicht diese Arbeit zwei Virtualisierungsgrade anhand dreier
Aufgaben. Die Ergebnisse zeigen, dass die Leistung bei Präzisionsaufgaben
zwar von der Studienumgebung abhängt, XR-basierte Studien für gröbere
Aufgaben jedoch valide Ergebnisse liefern können. Eine ergänzende Studie
zu Kraftunterstützungstechniken in XR- und physischen Umgebungen erwei-
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tert diese Ergebnisse und zeigt, dass selbst bei unterschiedlichen absolute
Ergebnissen, relative Trends über die Umgebungen hinweg vergleichbar sind.

Durch die Analyse der drei zentralen Einflussfaktoren - Registrierung, In-
teraktionsdesign und Evaluierungsumgebung - leistet die vorliegende Arbeit
einen wichtigen Beitrag zur Entwicklung effizienter HRI. Aus den Ergebnis-
sen lassen sich evidenzbasierte Empfehlungen für Registrierungstechniken,
Strategien zur Kraftunterstützung, das Interaktionsdesign sowie den Einsatz
von XR in Nutzerstudien ableiten. Diese tragen zu einer intuitiveren und
zugänglicheren HRI bei.

v





acknowledgments

The research reported in this thesis was conducted at Otto von Guericke
University Magdeburg and the Research Campus STIMULATE in Magde-
burg, Germany. It was partially funded by the Federal Ministry of Research,
Technology and Space under grant number 13GW0473A.

vii





C O N T E N T S

1 introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 preliminaries 7

2.1 Technical Background . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Methodology Preliminaries . . . . . . . . . . . . . . . . . . . . . 21

2.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 27

i xr-to-robot registration

3 introduction 37

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 investigation on registration methods 41

4.1 Technical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 investigations on registration parameters 52

5.1 Technical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 summary 67

ii hand gesture-based human-robot interaction

7 introduction 71

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 force assistance 75

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Investigation on Partial Automation . . . . . . . . . . . . . . . . 80

8.3 Investigation on Sensory Substitution . . . . . . . . . . . . . . . 93

9 sensor placement and control modes 111

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.2 Technical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.3 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 117

ix



9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10 summary 127

iii xr prototyping for hri evaluations

11 introduction 131

11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.3 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12 investigation on xrp virtualization levels 135

12.1 Technical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 138

12.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

12.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

13 investigation on xrp for force assistance 148

13.1 Technical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 148

13.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 151

13.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

13.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

14 summary 165

closing

15 conclusion 168

15.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

15.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

15.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . 171

15.4 General Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 174

a appendix 175

a.1 Supplementary Results . . . . . . . . . . . . . . . . . . . . . . . . 175

publications 183

bibliography 185

x



L I S T O F F I G U R E S

Figure 1.1 Schematic overview of thesis structure. . . . . . . . . . 6

Figure 2.1 Overview of the robot’s reference frames. . . . . . . . . 8

Figure 2.2 Taxonomy of gestures for HRI. . . . . . . . . . . . . . . . 11

Figure 2.3 Overview of different views on reality formats. . . . . . 13

Figure 2.4 Visualization of tip calibration. . . . . . . . . . . . . . . 17

Figure 2.5 Overview of different motions required for US imaging. 20

Figure 2.6 Overview of statistical tests. . . . . . . . . . . . . . . . . 26

Figure 2.7 Descriptive classification for interpreting BF. . . . . . . 27

Figure 2.8 Setup of robot for the experiments. . . . . . . . . . . . . 28

Figure 2.9 Employed interaction modalities for robot control. . . . 28

Figure 2.10 Visual feedback during interaction. . . . . . . . . . . . . 29

Figure 2.11 Setup for robotic US. . . . . . . . . . . . . . . . . . . . . 32

Figure 4.1 Coordinate systems used in registration. . . . . . . . . . 42

Figure 4.2 Overview of UIs. . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.3 Violin Plots of experimental results. . . . . . . . . . . . 49

Figure 5.1 Markers used for tracking. . . . . . . . . . . . . . . . . . 53

Figure 5.2 Point distributions investigated in the experiment. . . . 55

Figure 5.3 TRE for tracking techniques in baseline condition. . . . 57

Figure 5.4 TRE dependence on viewing angles. . . . . . . . . . . . 58

Figure 5.5 TRE dependence on viewing distances. . . . . . . . . . . 58

Figure 5.6 TRE dependence on marker sizes. . . . . . . . . . . . . . 59

Figure 5.7 TRE dependence on point distances. . . . . . . . . . . . 59

Figure 5.8 TRE dependence on point distributions. . . . . . . . . . 60

Figure 5.9 TRE dependence on point quantities. . . . . . . . . . . . 61

Figure 5.10 TRE dependence on refinement approaches. . . . . . . . 61

Figure 8.1 Interaction techniques investigated. . . . . . . . . . . . . 81

Figure 8.2 Control architecture for robot control. . . . . . . . . . . 82

Figure 8.3 Tasks investigated during user study. . . . . . . . . . . 83

Figure 8.4 Experimental apparatus for the user study. . . . . . . . 85

Figure 8.5 TCT results of acoustic window task. . . . . . . . . . . . 88

Figure 8.6 TLX results of acoustic window task. . . . . . . . . . . . 88

Figure 8.7 TCT results of needle tip task. . . . . . . . . . . . . . . . 89

Figure 8.8 TLX results of needle tip task. . . . . . . . . . . . . . . . 90

Figure 8.9 Overview of sensory substitution concepts. . . . . . . . 94

Figure 8.10 Overview of force visualization types and placements. 95

Figure 8.11 Overview of visualization placements. . . . . . . . . . . 95

Figure 8.12 Objective measures across feedback modalities. . . . . . 103

Figure 8.13 Subjective measures across feedback modalities. . . . . 104

Figure 8.14 Main effects of Type factor. . . . . . . . . . . . . . . . . . 104

Figure 8.15 Main effects of Position factor. . . . . . . . . . . . . . . . 105

Figure 8.16 Three-way interaction effect for AMax. . . . . . . . . . . 106

Figure 9.1 Overview of sensor placements . . . . . . . . . . . . . . 114

xi



Figure 9.2 Setup for different sensor placements. . . . . . . . . . . 116

Figure 9.3 UI during study task. . . . . . . . . . . . . . . . . . . . . 118

Figure 9.4 Sensor placement main effects. . . . . . . . . . . . . . . . 123

Figure 9.5 Significant control mode main effects. . . . . . . . . . . . 124

Figure 12.1 Schematic overview of tasks investigated. . . . . . . . . 136

Figure 12.2 Overview of virtualization levels and tasks. . . . . . . . 137

Figure 12.3 Plot of the similarity scores. . . . . . . . . . . . . . . . . 141

Figure 12.4 Violin Plots of experimental results. . . . . . . . . . . . 144

Figure 13.1 Overview of prototypes explored in the study. . . . . . 149

Figure 13.2 Design and placement of the visual force feedback. . . 150

Figure 13.3 Force automation loop diagram. . . . . . . . . . . . . . 150

Figure 13.4 Setup of phantom used in user study. . . . . . . . . . . 151

Figure 13.5 Descriptive results of the dependent variables. . . . . . 156

Figure 13.6 Force automation main effects on TCT. . . . . . . . . . . . 156

Figure 13.7 Main effects on AAD. . . . . . . . . . . . . . . . . . . . . 157

Figure 13.8 Two-way interaction effects on AAD. . . . . . . . . . . . 157

Figure 13.9 Environment and force automation main effects on TLX. . 157

Figure 13.10 Environment and force automation main effects on trust. 158

Figure A.1 Additional descriptive results. . . . . . . . . . . . . . . . 178

Figure A.2 Descriptive results of the dependent variables. . . . . . 180

L I S T O F TA B L E S

Table 2.1 LORA and associated responsibilities. . . . . . . . . . . . 9

Table 2.2 Evidence categories for effect sizes. . . . . . . . . . . . . 26

Table 3.1 Overview of related work on XR-to-robot registration. 39

Table 4.1 Summary of descriptive results. . . . . . . . . . . . . . . 47

Table 4.2 Summary of robust ANOVA test results. . . . . . . . . 47

Table 4.3 Summary of semi-structured interview results. . . . . . 48

Table 5.1 Registration accuracy values from related work. . . . . 62

Table 7.1 Overview of related work on gesture-based HRI. . . . . 73

Table 8.1 Overview of related work on visual force feedback. . . 77

Table 8.2 Summary of robust ANOVA results. . . . . . . . . . . . 86

Table 8.3 Summary of descriptive results. . . . . . . . . . . . . . . 87

Table 8.4 Summary of semi-structured interview results. . . . . . 87

Table 8.5 Summary of semi-structured interview results. . . . . . 102

Table 9.1 Summary of descriptive results. . . . . . . . . . . . . . . 120

Table 9.2 Summary of the robust ANOVAs’ results. . . . . . . . . 121

Table 9.3 Summary of semi-structured interview results. . . . . . 122

Table 11.1 Overview of related work on XRP in HRI. . . . . . . . . . 132

Table 12.1 Summary of descriptive results. . . . . . . . . . . . . . . 142

Table 12.2 Summary of robust ANOVAs results. . . . . . . . . . . 142

Table 12.3 Summary of semi-structured interview results. . . . . . 143

xii



Table 13.1 Summary of Bayes factor analyses results. . . . . . . . . 158

Table 13.2 Summary of semi-structured interview results. . . . . . 159

Table A.1 Summary of descriptive results. . . . . . . . . . . . . . . 175

Table A.2 Summary of the ANOVAs’ results. . . . . . . . . . . . . 176

Table A.3 Summary of descriptive results. . . . . . . . . . . . . . . 177

Table A.4 Summary of all statistical analyses. . . . . . . . . . . . . 179

Table A.5 Summary of descriptive results. . . . . . . . . . . . . . . 181

Table A.6 Summary of all statistical analyses. . . . . . . . . . . . . 181

xiii



A C R O N Y M S

AAD Average Absolute Deviation

AMax Average Maximal Applied Force

AR Augmented Reality

AV Augmented Virtuality

AW Acoustic Window Task

BF Bayes Factor

CT Computed Tomography

DOF Degree of Freedom

FA Force Automation

FLE Fiducial Localization Error

FOV Field of View

FRE Fiducial Registration Error

H0 Null Hypothesis

H1 Alternative Hypothesis

HCI Human-Computer Interaction

HG Hand-Guiding

HI Hand Gesture Interaction

HRI Human-Robot Interaction

HRC Human-Robot Collaboration

IQR Interquartile Range

IMU Inertial Measurement Unit

HMD Head-Mounted Display

ICP Iterative Closest Point Algorithm

LORA Levels of Robot Autonomy

M Mean

MR Mixed Reality

NUI Natural User Interface

NT Needle Tip Task

RANSAC Random Sample Consensus

RE Real Environment

RQ Research Question

SA Simulated Annealing

SD Standard Deviation

xiv



SEQ Single Ease Question

TCP Tool-Center Point

TCT Task Completion Time

TLX Task Load Index

TRE Target Registration Error

UI User Interface

US Ultrasound

UWP Universal Windows Platform

VR Virtual Reality

VE Virtual Environment

XR Extended Reality

XRP Extended Reality Prototyping

xv





1 I N T R O D U C T I O N

1.1 motivation

Robotics is emerging as a prominent field not only in industrial settings
but also across diverse domains such as medicine, service, and assistive
technologies [230]. While robot manipulators have traditionally been used
to automate tasks that are dirty, dull, or dangerous [313], modern applications
often involve unstructured environments, complex decision-making, and
dynamic interactions that exceed the current capabilities of fully autonomous
systems [91]. As a result, Human-Robot Collaboration (HRC) is gaining impor-
tance, enabling the integration of operators’ perceptual abilities and expertise
into robotic workflows [301, 360]. However, this collaboration leads to the
performance of robotic systems being dependent on the capability of the
operator to comprehend and operate the robot, highlighting the need for
efficient user interfaces allowing accurate and fast control while minimizing
the user’s workload [136, 270].

Human-Robot Interaction (HRI) is commonly facilitated through hand-
guiding, where the operator physically manipulates the robot, or through
external controllers such as joysticks or control panels. However, these meth-
ods can be associated with high physical and cognitive workloads [183]. To
overcome these limitations, hand gestures have emerged as a natural and
intuitive interaction modality [356, 373]. Leveraging the inherent human
ability to communicate and manipulate through gesticulation, mid-air hand
gesture control offers an intuitive, direct, and flexible means of conveying
commands without the need for physical devices [331]. To further enhance
this interaction, Extended Reality (XR) technologies offer novel opportunities
enabling more intuitive interaction and providing effective feedback [311]. XR

has demonstrated potential to simplify robot programming [113], real-time
control [357], visualize task-relevant information [175], communicate robot
intent [202], and improve workspace awareness [240].

Despite these advances, critical challenges remain that require further
research to enable efficient robot control [270]. Both hand gesture interac-
tion and XR integration depend on precise spatial alignment between the
coordinate reference frames of the robot and those of the interaction or aug-
mentation. This alignment, commonly referred to as registration, is essential
for correctly mapping hand gestures to robot motion and for placing virtual
content in the intended spatial context. However, registration is often over-
looked, highlighting the need for further research into how to efficiently and
accurately align these coordinate systems. Moreover, utilizing hand gestures
for robot control presents several challenges. First, the interaction is typi-
cally unilateral: it transfers the hand’s pose to the robot but lacks feedback
channels to convey critical information, such as haptic feedback [235, 8, 373].
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2 introduction

Second, maintaining the hand in a mid-air position for extended periods can
be physically demanding and lead to fatigue [140, 373].

To address these challenges, research through user studies is essential.
However, conducting user studies in physical robotic workspaces tends to be
costly, complex, and often inaccessible, as they involve expensive hardware
and safety protocols [252, 338]. Extended Reality Prototyping (XRP) offers a
promising alternative to physical evaluation environments by partially simu-
lating user study setups using XR. Through interactive virtual representations
of the robot or test setup, prototypes can be evaluated without the need for
physical hardware. While XRP has the potential to reduce experimental costs
and accelerate research and development [120, 251], the transferability of re-
sults obtained through XR-based studies still requires thorough investigation.

Motivated by these challenges, this thesis investigates key factors essential
for the development of gesture-based HRI with robot manipulators, with the
goal of enhancing overall HRI efficiency. It focuses on designing interactive
registration methods to improve XR-robot alignment, developing hand gesture
interaction techniques that enable efficient control, and evaluating the validity
of XR-based prototyping approaches for HRI.

1.2 research focus

Building on the identified challenges and goals, this thesis focuses on three
key research areas essential for the development of hand gesture-based HRI

to investigate the main Research Question (RQ): How can efficiency be improved
in HRI?

1.2.1 XR-to-Robot Registration

Adequate registration is required to align the interaction and the robotic space
for efficient HRI. This is also essential for integrating XR components into
the robotic workspace. While most current research focuses on the design
of interaction concepts and XR elements, the registration process itself is
underexplored. Therefore, the first part of this thesis focuses on investigating
registration techniques for XR-to-robot alignment. This leads to the first RQ:

RQ1 | How can efficient and accurate XR-to-robot registration
be achieved?

1.2.2 Hand Gesture-Based HRI

Efficient HRI further relies on well-designed interaction concepts. Previous
work has highlighted that hand gestures are a promising interaction tech-
nique, enabling natural [373], intuitive [183], and flexible [62] interactions.
However, despite these advantages, previous studies have also identified
remaining challenges, such as missing visual or sensory feedback [183, 8]
and fatigue [44, 282, 373]. Therefore, the second part of this thesis explores



1.2 research focus 3

how to address these challenges and thereby enhance performance in HRI.
This leads to the following RQ:

RQ2 | How can efficient mid-air gesture-based HRI be designed?

To address this, two specific areas of focus are considered. The first concerns
force perception. Due to the indirect interaction with the environment in
HRI, users often have limited awareness of contact forces at the robotic end
effector. Therefore, the first sub-question investigates whether force assistance
approaches, which are designed to address issues caused by the lack of haptic
feedback, can support users in contact-intensive tasks where force perception
is essential.

RQ2.1 | Can force assistance improve efficiency in HRI?

The second sub-question focuses on the design of the hand gesture in-
teraction itself. The efficiency of this interaction approach is influenced by
design parameters such as the control mode and sensor placement. A specific
challenge that arises during hand gesture interaction is fatigue, caused by
prolonged hand postures. To address this, the second sub-question investi-
gates how hand gesture interaction techniques can be designed to support
efficient robot control while minimizing fatigue.

RQ2.2 | How can fatigue be reduced in hand gesture-based HRI?

1.2.3 XR Prototyping for HRI Evaluation

To address RQ2, human-centered research is required, typically implemented
through user studies. However, conducting such studies with physical robotic
arms can be costly, and access to the necessary hardware may be limited.
As a result, the use of simulated environments in XR has become a common
approach in the literature. Despite the growing popularity of XRP for HRI, few
studies have investigated whether results obtained in simulated environments
are valid, specifically, whether their results can be reliably transferred to real-
world scenarios. This leads to the final RQ of this thesis:

RQ3 | Can XRP produce transferable results for HRI research?

1.2.4 Use Case: Robotic Ultrasound

For addressing RQ2 and RQ3, a representative use case is required to in-
vestigate HRI approaches and the applicability of XRP systematically. RQ2.1
investigates strategies to mitigate challenges arising from limited haptic
perception, which is especially relevant in robotic tasks that involve direct
physical interaction with the environment. These contact-intensive tasks
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include industrial applications like grinding [187, 371] and polishing [82],
as well as medical tasks such as suturing [314], palpation [24, 122], and
ultrasound imaging [234, 308].

In robotic ultrasound, accurate force application is particularly critical. A
consistent contact force between the probe and the tissue is essential to ensure
effective acoustic coupling. Variations in this force can deform tissue, com-
promise image quality, and reduce measurement repeatability [53, 117, 350].
Studies have shown that maintaining a stable contact force improves imag-
ing reliability and reduces measurement errors, resulting in more accurate
and reproducible outcomes [165]. Given the importance of controlled force
application, robotic ultrasound is a meaningful use case for contact-intensive
robotic tasks. It will thus serve as an exemplary use case for addressing RQ2

and RQ3.

1.3 contribution

By investigating registration, interaction, and evaluation, this thesis con-
tributes to enhancing the overall efficiency of HRI. It is based on seven experi-
ments, whose findings are presented in seven peer-reviewed publications [1–
7]. The results of these studies informed the formulation of empirically based
guidelines for the design and implementation of more efficient HRI systems.

The scientific contribution of this work, including the conceptualization,
development of methodology, and implementation, was carried out by the
author of this thesis. In addition, the author of this thesis conducted the
literature review, designed and executed the experiments, and led the writing
of the original manuscripts. Coauthors contributed through discussions,
feedback, assistance with statistical analysis, and support in photographic
documentation. For two publications [1, 2], one coauthor explicitly assisted
with the implementation of the ultrasound simulation.

1.4 thesis structure

The structure of this thesis is outlined as follows. Additionally, figure 1.1
provides an overview.

Part I: XR-to-Robot Registration
The first part focuses on aligning the XR coordinate space, which is used for
content visualization and hand gesture tracking, with the robotic workspace.
Related work is presented, and two experiments are described:

Chapter 4: Investigation of Registration Methods
This chapter compares three registration approaches: a manual interac-
tive method and two point-based techniques. The point-based methods
rely either on physically defined registration points or on directly track-
ing the robotic end effector to establish mid-air points. A comparative
user study and its results are presented.
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Chapter 5: Investigation of Registration Parameters
To improve the accuracy of point-based methods, this chapter investi-
gates several influencing factors, including tracking method, marker size,
registration point characteristics, and XR device placement. Addition-
ally, a surface-based refinement approach is explored that uses points
captured between the main registration points to improve accuracy.

Part II: Hand Gesture-Based Human-Robot Interaction
The second part addresses the efficiency of hand gesture-based HRI. By pre-
senting related work, two key challenges associated with this interaction
method are identified: the missing haptic feedback and fatigue. These chal-
lenges are then addressed through three experiments:

Chapter 8: Force Assistance
This chapter investigates two assistance approaches to compensate for
missing haptic feedback. First, related work is described, followed by
two experiments. In Section 8.2, contact force automation is presented
as a method that autonomously regulates movement in one Degree of
Freedom (DOF) to maintain the desired contact force. An experiment
evaluates this approach on two practical tasks, comparing it to a state-
of-the-art hand-guiding technique. In Section 8.3, sensory substitution
is explored by mapping force feedback onto visual and vibrotactile
modalities. A user study compares these feedback types and investigates
factors affecting visual force feedback, such as design and placement.

Chapter 9: Sensor Placement and Control Modes
This chapter addresses fatigue caused by hand gesture interaction by first
presenting related work, followed by a user study. In this experiment,
different sensor placements and control modes are investigated.

Part III: XR Prototyping for HRI Evaluations
The third part explores the potential of XR to simulate user study setups for
HRI research. To this end, two experiments are presented.

Chapter 12: Investigation of XRP Virtualization Levels
This chapter describes the development of different XRP prototypes,
including different levels of virtualization, such as using a physical robot
with a simulated task or a fully simulated scenario. An experiment
is presented that evaluates how results transfer across these levels of
virtualization in three practical tasks.

Chapter 13: Investigation of XRP for Force Assistance
This chapter presents the second experiment on XRP for HRI, focused on
contact-intensive tasks. A user study is described that evaluates the force
assistance approaches from Chapter 8 in both a physical and a simulated
XRP setup.
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Chapter 15: Closing
The final chapter summarizes the key findings and addresses the research
questions introduced at the beginning of the thesis. Additionally, limitations
are discussed, and directions for future work are proposed.

Registration
Methods

Registration
Parameters

RQ1

Part I
XR-to-Robot
Registration

Force
Automation

Sensory
Substitution

RQ2.1

Sensor Placement
& Control Modes

RQ2.2

Part II
Hand Gesture-Based

Human-Robot Interaction

Virtualization
Levels

XRP for Contact-
Intensive Tasks

RQ3

Part III
XRP for

HRI Evaluation

Figure 1.1: Schematic overview of thesis structure.



2 P R E L I M I N A R I E S

2.1 technical background

This section provides an overview of the technical foundations relevant to this
thesis, with a focus on robotics, gesture-based interaction, XR, registration,
and the use case of robotic ultrasound.

2.1.1 Robotics

According to the Robotics Institute of America (RIA), "A robot is a repro-
grammable multifunctional manipulator designed to move material, parts,
tools, or specialized devices through variable programmed motions for the
performance of a variety of tasks" [71]. Robots can generally be classified
into two categories: those with a fixed base (robot manipulators) and those
with a mobile base (mobile robots) [304, p. 1]. This work focuses on robot
manipulators, which typically consist of the manipulator (an arm composed
of links and joints that enable movement) and an end effector (attached to
the last joint) [154, pp. 2-8]. The end effector can be equipped with different
tools, enabling interaction with the environment to fulfill different tasks. The
area that can be reached by the end effector is called robotic workspace.

This section introduces key concepts in robot control, including kinemat-
ics and control modes, followed by an overview of autonomy levels and
principles of HRI relevant to this thesis.

2.1.1.1 Robot Control

kinematics For robot control, both the robot’s posture and control com-
mands can be described using different coordinate frames [230] (see Fig-
ure 2.1). The Robot Reference Frame (also referred to as the World Reference
Frame) defines positions in Cartesian space and provides a fixed global refer-
ence for specifying the position and orientation of the end effector. In contrast,
the Tool Reference Frame is attached to the end effector, and its orientation
depends on the end effector’s pose, allowing for the specification of positions
relative to the end effector itself. Finally, the Joint Reference Frame describes the
robot’s configuration in terms of the individual angles of each joint, rather
than Cartesian positions.

These coordinate frames are fundamental because desired motions are
typically specified as trajectories in Cartesian space, while the robot’s control
system requires commands in joint space [99]. The analytical relationship be-
tween joint angles and the end effector’s position and orientation is described
by kinematics [304, p. 30]. Forward kinematics derives the Cartesian pose of the
end effector in the robot reference frame from given joint angles. Conversely,

7
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(a) Robot Reference Frame (b) Tool Reference Frame (c) Joint Reference Frame

Figure 2.1: Overview of the robot’s reference frames.

inverse kinematics calculates the joint angles required to achieve a desired end
effector pose, enabling control in Cartesian space [303, p. 27].

In redundant robotic systems, the number of joints exceeds the DOFs re-
quired to define end effector poses. Therefore, a single Cartesian end effector
position can correspond to multiple joint configurations. Movements of the
joint angles that do not affect the end effector’s position or orientation are
referred to as nullspace motion [304, p. 122].

motion control Motion control of the robot can be realized through
position control, where trajectories are defined by specifying either joint angles
or Cartesian end effector positions [200]. The resulting end effector movement
is achieved by minimizing the error between the current and desired joint
angles. However, some tasks require not only movement along a trajectory,
but also physical interaction between the end effector and the environment.
Such interactions result in contact forces, which, if excessive, can cause stress
or damage to both the robot and its surroundings [304, p. 363].

In position control, avoiding excessive contact forces requires accurate
modeling of both the manipulator and the environment. This can be particu-
larly challenging, as detailed models of the environment are often difficult to
obtain [304, p. 364]. As an alternative, force control incorporates measured con-
tact forces directly into the control loop [200]. Force control approaches can
be broadly categorized into indirect and direct methods [303, pp. 161-164].

In indirect force control, such as impedance control, the robot is modeled as
a virtual mass-spring-damper system with adjustable stiffness and damping
parameters. The contact force arises from deviations between the actual and
desired end effector motions, modulated by these parameters, enabling com-
pliant behavior during interaction. In contrast, direct force control requires
explicit specification of both the desired motion and the desired contact
force. This is often implemented through hybrid position/force control, which
decomposes the task space into two mutually independent subspaces. By
allowing position control in some DOFs while controlling force in others, it
enables the coordinated control of motion and interaction forces.

2.1.1.2 Levels of Autonomy

Robot manipulators can be controlled under different Levels of Robot Au-
tonomy (LORA), ranging from teleoperation to fully autonomous systems.
To determine a robot’s LORA, Beer et al. [30] proposed a framework that
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classifies autonomy based on the functional allocation of sensing, planning,
and acting (see Table 2.1). In manual teleoperation, the human is responsible
for all tasks, including sensing the environment, planning the control actions,
and executing the robot’s movements. As the LORA increases, these respon-
sibilities are progressively delegated to the robot, shifting the human’s role
from direct control to supervision. The autonomy level of a robotic system
directly influences the nature and extent of HRI required [147]. While higher
levels of LORA may reduce the frequency of interaction, they require more
sophisticated or higher-level forms of HRI.

Table 2.1: LORA and associated responsibilities for sensing, planning, and acting
(Robot: , Human: ), adapted from [30].

LORA Sense Plan Act

Manual Teleoperation
Action Support / /
Assisted Teleoperation / /
Batch Processing /
Decision Support / /
Shared Control Human Initiative / /
Shared Control Robot Initiative / /
Supervisory Control /
Executive Control ( )/
Full Autonomy

While LORA is a useful framework for classifying the autonomy of robotic
systems, it is important to note that the level of autonomy may vary depend-
ing on the task, environment, or system state [298]. Therefore, LORA should
be understood as a spectrum rather than a set of discrete levels. Different
subtasks within a system may be associated with different levels of autonomy,
which can be combined as needed.

This thesis focuses on the lower levels of LORA, where the human operator’s
perception is used to sense the environment, plan motion, and directly control
the robot. However, the insights are also relevant to more general systems
in which some subtasks may be performed at higher levels of autonomy,
using sensor data to plan and control the robot autonomously, while manual
control remains essential for others.

2.1.1.3 Human-Robot Interaction

HRI can be classified into three categories: coexistence, cooperation, and
collaboration [136]. In Human-Robot Coexistence, robots and humans share a
dynamic workspace without working on a common task, where the main
objective is mutual avoidance. In Human-Robot Cooperation, humans and robots
work towards the same overall goal, but perform separate, clearly divided
subtasks. In Human-Robot Collaboration (HRC), there is direct interaction
between humans and robots to solve a complex task collaboratively, enabling
the strengths of both human operators and robots to be effectively combined.
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The human operator assumes a specific role in these different categories,
which can be classified as supervisor, operator, collaborator, cooperator, or
bystander [237]. The supervisor monitors the robot and provides instructions,
a role that is especially relevant at higher LORA. In contrast, the operator
corresponds to lower LORA, where the human directly controls the robot and
maintains a higher level of authority. Aligning with the interaction categories
described above, the collaborator works closely with the robot to achieve
a shared goal, while the cooperator pursues the same goal independently,
without requiring direct coordination. Finally, the bystander does not interact
with the robot but shares the same workspace.

This thesis focuses on the human role of the operator, where interaction
involves directly controlling the robot. This approach enables the integration
of human expertise into robot control [266]. Such interaction is particularly
valuable for teaching robots new tasks, for handling tasks that cannot be fully
automated due to complex or unstructured environments, or in situations
where the risk of harm is high [266, 301, 361]. As robots are increasingly
deployed in diverse domains, operators may not always possess robotics
expertise. Therefore, intuitive interfaces that can be used by untrained users
are essential [136, 266]. The HRI can be characterized by interaction interfaces
and interaction paradigms.

interaction interfaces Robot control can be realized either through
direct physical contact or via indirect methods [136]. In physical interaction,
force/torque sensors are used to detect external forces, allowing the robot
to be guided compliantly by the user. In contrast, indirect interaction can
be achieved through user interfaces or sensory input devices [176]. User
interfaces include teach pendants (handheld devices including a screen and
buttons), joysticks, haptic input devices, game controllers, or applications
on smartphones and desktop computers. Sensory input employs external
sensors to enable control through, for example, hand gestures, speech, or
brain-machine interfaces [176].

control paradigms When user input is used to continuously control
a robot’s pose, different control paradigms can be applied. The two most
common approaches are position control and rate control [169]. It is worth
noting that the term position control is used in the literature to refer to both the
control paradigm and the motion control principle (see Section 2.1.1.1), which
are distinct and unrelated concepts. In the position control paradigm, changes
in user input, such as movement of a controller or gesture, are directly
mapped to Cartesian position changes of the robotic end effector [365]. The
input may be applied either scaled or unscaled, and typically across multiple
DOFs. In contrast, rate control interprets the user’s positional or orientational
input as a command for velocity, mapping it to continuous motion of the
robotic end effector at a corresponding speed and direction [169]. The end
effector continues to move as long as the input is held, stopping only when
the input returns to a neutral position.
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2.1.2 Gesture-Based Interaction

As described in Section 2.1.1.3, different interfaces can be used to enable HRI.
One approach explored in the broader field of human-machine interaction is
the use of Natural User Interfaces (NUIs), which provide intuitive and direct
interfaces that draw on natural, everyday behavior [256, p. 472]. The goal is to
create interactions that feel natural to both novice and expert users by using
context-based metaphors [346, p. 13]. Gesture-based interaction is a core
element of NUIs, offering an intuitive way to control systems through physical
movement [256, p. 507]. Gestures are defined as "expressive, meaningful body
motions involving physical movements of the fingers, hands, arms, head,
face, or body" [222]. In HRI, hand gestures are of particular interest as they are
commonly used to manipulate and point at objects, making them a natural
and intuitive means of controlling robots in 3D space [335].

To provide a structured understanding of hand gesture interaction in
the context of HRI, the following subsections cover common gesture styles,
hand tracking technologies, and the integration of gestures with other input
modalities through multimodal interaction.

2.1.2.1 Gesture Styles

Gestures can be categorized into deictic, manipulative, semaphoric, gesticula-
tion, and language gestures [163]. These gestures enable different interaction
tasks such as selection and manipulation, navigation, system control, and
symbolic input [47, p. 135]. In HRI, key tasks include manipulation for robot
control, selection, and system control. Therefore, deictic, manipulative, and
semaphoric gestures are particularly relevant (see Figure 2.2).

Gestures

Unintended Intended

Communicative

Deictic Semaphoric

Manipulative

Translation Rotation

Figure 2.2: Taxonomy of gestures for HRI (adapted from [245, 332]).

• Deictic Gestures involve pointing to indicate or select spatial locations [163].
A well-known example is Bolt’s "Put-That-There" system [42], in which
pointing gestures are used to select and manipulate objects. In robot
control, deictic gestures can specify local reference points to specify
objects to interact with or define target positions [335].

• Semaphoric Gestures, also referred to as symbolic gestures, rely on a
predefined set of static or dynamic gestures mapped to discrete com-
mands [256, p. 499]. This enables gesture-based activation of specific
functions. In robot control, such gestures can be employed to allow for
explicit or implicit commands, e.g., for system control [332].
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• Manipulative Gestures aim to directly control an object through a close
mapping between user motion and system response [261]. In robot
control, these gestures allow continuous mapping of hand movements to
robotic end effector motion [332]. The degree of control can vary across
one or more DOFs, including separate manipulation of translational or
rotational components, or full 6-DOF control [369].

2.1.2.2 Hand Tracking

Accurate hand tracking is essential for gesture-based HRI, as it determines
how reliably user intent can be recognized and translated into robot behavior.
Two main approaches are commonly used to detect hand motion: device-
based tracking and optical tracking [256, pp. 530-533].

Device-based approaches involve holding sensors in the hand or attaching
them to the body. To track hand motion, handheld controllers [334] or inertial
sensors attached to the wrist or arm [192] can be employed. However, these
approaches are only capable of tracking the general position and orientation
of the hands, rather than the position of individual fingers. This constrains
communicative gestures and therefore limits the naturalness of the interaction.
This limitation can be addressed by using data gloves, which enable finger
tracking through different types of sensors, such as strain gauges [256, p. 297].
While they enable accurate tracking, the setup process can be time-consuming
and may lead to reduced comfort [256, pp. 530-531]. Another approach
involves myoelectric sensors that detect hand gestures based on biopotential
changes in muscle tissue [192]. However, these sensors are primarily suited
for recognizing static and dynamic hand gestures, rather than capturing
detailed manipulative hand movements [153].

Optical tracking methods rely on cameras or other vision-based sensors to
detect and interpret hand movements using computer vision methods. The
employed cameras include RGB, depth, time-of-flight, thermal, infrared, and
stereo cameras [242]. These systems enable "come as you are" interaction, as
they do not require users to wear or hold any devices [256, p. 524].

2.1.2.3 Multimodality

Interaction can be facilitated through multimodal techniques, which combine
multiple input modalities to enhance expressiveness and flexibility [47, p. 268].
The key idea of multimodality is to overcome the weaknesses of individual
input methods by combining them with the strengths of others [286, p. 305].
This is especially important in complex environments, requiring interaction
across different tasks [243]. Hand gestures are inherently spatial and thus
suited for spatial referencing. However, they might be less suited for complex
system control. While semaphoric gestures can be used to create a "gesture
alphabet", assigning different functions to distinct, characteristic gestures [256,
p. 498], only a limited number of gestures should be used to ensure they
are easy to remember and robustly detectable [256, p. 524]. Therefore, it
can be useful to supplement gesture input with additional modalities. For
example, voice, head, or foot gestures, or button inputs can be employed
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to handle more descriptive tasks, such as parameter settings or issuing
specific commands [286, pp. 304-306]. Furthermore, secondary modalities can
function as clutching mechanisms to activate or deactivate gesture recognition,
helping to prevent unintended gestures from triggering actions [76].

2.1.3 Extended Reality

As previously mentioned, XR holds potential by providing additional informa-
tion in the robotic workspace and supporting rapid HRI prototyping [311]. To
provide a technical foundation for its application in this context, this section
introduces key aspects of XR, beginning with an overview of XR taxonomy,
followed by common display techniques.

2.1.3.1 Taxonomy

HRI can be extended beyond interactions in purely physical environments
by incorporating virtual elements or by creating fully virtual replicas of the
environment [311, 351]. Systems that modify or extend reality are commonly
categorized using the terms Augmented Reality (AR), Augmented Virtuality
(AV), Virtual Reality (VR), Mixed Reality (MR), and XR. Following Rauschnabel
et al. [269], there are four main approaches to defining and grouping these
terms (see Figure 2.3):

• MR-dominant view: The widely adopted taxonomy by Milgram et al. [219]
introduces a continuum between Real Environments (REs) ("consisting
solely of real objects") and Virtual Environments (VEs) ("consisting solely
of virtual objects"). Any environment combining both real and virtual
content is considered MR, including AR and AV [307].

• VR-dominant view: This perspective considers VR as the overarching
category, with AR and MR viewed as subsets or intermediate forms [25].

• MR-centered view: In contrast to the MR-dominant view, this approach
positions MR between AR and AV, emphasizing the conceptual spectrum
between what is "real" and what is "possible" [101].

• XR-view: In this view, XR is introduced as the umbrella term encompass-
ing AR and VR [80, pp. 5-6]. It may also incorporate the MR-dominant
perspective, in which case XR includes VR and MR, with MR itself com-
prising both AR and AV [88, p. 21].

RE
AR AV

VE

MR

(a) MR-dominant

VR

AR MR

(b) VR-dominant

RE
AR MR AV

VE

(c) MR-centered

XR

MR

AVAR VR

(d) XR-view

Figure 2.3: Schematic overview of different views on reality formats (adapted
from [88, p. 21, 269]).
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This thesis adopts the view proposed by Dörner et al. [88, p. 21], which
combines the XR-view and the MR-dominant view (see Figure 2.3d). Accord-
ingly, XR is used as an umbrella term encompassing VR, MR, AR, and AV. In VR,
the user’s perception of the real environment is entirely replaced by a virtual
one, whereas in MR, the real environment is enriched with virtual content [88,
pp. 10-21]. MR itself is considered a continuum; depending on the relative
proportions of real and virtual elements, it can be further distinguished as
AR (predominantly real) or AV (predominantly virtual) [220].

2.1.3.2 Display Techniques

Since human perception is inherently multimodal, XR output devices can
engage different sensory modalities such as visual, auditory, haptic, olfactory,
and gustatory senses [47, p. 250]. However, this thesis focuses on visual
perception. For visual output, displays are used to present the augmented
or virtual world [88, p. 151]. MR displays, which combine real and virtual
content, can be categorized into three types [87, pp. 248-249]:

• Video see-through: The RE is captured by a video camera, digitally super-
imposed with virtual elements, and then displayed to the user.

• Optical see-through: The user perceives the RE directly through a semi-
transparent display, with optically overlaid virtual content.

• Spatial projection: The virtual content is projected directly onto surfaces
in the RE, augmenting them without the need for explicit screens.

Based on these principles, different display technologies can be employed.
These can be classified according to their distance from the eye, including
head-attached, handheld, stationary, and projected displays [286, p. 59].

head-attached displays There are three main types of displays worn
on the user’s head: retinal displays, Head-Mounted Displays (HMDs), and
head-mounted projectors. Retinal displays project images directly onto the
retina of the eye. HMDs use screens placed in front of the user’s eyes, while
head-mounted projectors use miniature projectors to cast images onto sur-
faces in the RE [28, pp. 72-73]. The most common head-attached displays are
HMDs [286, p. 59]. HMDs can be either semi-transparent, enabling optical see-
through, or fully enclosed, as in VR headsets. By integrating cameras whose
images are shown on the displays of fully enclosed HMDs, video see-through
can be enabled [319, p. 23].

handheld displays Video see-through can also be enabled by handheld
displays such as tablet computers and smartphones. By utilizing their rear-
facing cameras, the RE can be captured and displayed. These cameras can also
be used for optical tracking, which, in combination with integrated sensors,
allows the position of the device to be determined [87, p. 271]. However, due
to the different viewpoints of the user and the camera, the displayed image
is not perspectively correct for the user [88, p. 307], and the displays are
relatively small [57].
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stationary displays Stationary displays consist of one or more large
monitors or projection screens that can be oriented vertically or horizon-
tally [88, p. 173]. The user’s head is usually tracked to enable perspectively
correct rendering. Stationary VR displays may consist of screens or projections
arranged in different configurations, such as L-shapes, curved screens, or
CAVE systems [78], to display the VE [87, pp. 132-133]. In MR, stationary
displays are either combined with cameras to enable video see-through or vir-
tual mirrors, or they consist of semi-transparent displays, such as Fogscreens,
for optical see-through [286, pp. 72-77].

projected displays Projectors can be used to enable MR without explicit
displays by projecting directly onto the RE [28, p. 87]. The goal is to illuminate
real objects to alter their perceived appearance [88, pp. 308-309]. This requires
knowledge of the position and orientation of the projector relative to the
projection surface, as well as models of the projected objects to ensure accurate
alignment. Projected displays can be combined with active shutter glasses to
enable 3D virtual objects [286, p. 79].

2.1.4 Tracking, Calibration, and Registration

To enable HRI through hand gestures and to integrate XR into robotic work-
spaces, three key concepts are essential: tracking, calibration, and registra-
tion [286, pp. 87-88]. Tracking refers to the continuous, dynamic sensing of
objects within the workspace to determine their pose. In the context of HRI,
tracking is essential to determine the position and orientation of the user,
their hands for interaction, their heads for correct XR display, and the robotic
end effector for robot control. Calibration involves the offline adjustment of
measurements by comparing readings from two different devices [286, p. 87].
Calibration is required to ensure that tracking systems deliver measurements
on a known scale. For example, when different tracking systems with distinct
reference points are used to track the same object or the robot itself, calibra-
tion is necessary to determine the required offsets [37]. Registration describes
the "alignment of coordinate systems" [286, p. 87]. In the context of HRI, this
alignment is required to establish a common reference frame between sensors
used for interaction, the XR coordinate frame, and the robotic workspace.

The following subsections will detail tracking, calibration, and registration
approaches relevant to this thesis. For more comprehensive discussions on
additional tracking methods or calibration techniques like camera calibration,
refer to the works of Schmalstieg and Höllerer [286, pp. 85-120], Tönnis [319,
pp. 43-95], or Doerner et al. [88, pp. 113-135].

2.1.4.1 Tracking

In the context of HRI and XR, tracking refers to the three-dimensional tracking
of objects, including all six DOFs, which consist of an object’s position and
orientation. Different tracking systems exist to determine an object’s pose,
each based on different physical principles [319, p. 44].
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optical tracking In optical tracking, a camera is used to determine
the relative pose of an object with respect to the camera [87, p. 104]. These
methods can be divided into marker-based approaches, which use easily recog-
nizable markers in the camera image, and markerless approaches. Additionally,
tracking systems can be categorized as outside-in, where cameras are posi-
tioned externally and observe the object, or inside-out, where the camera is
mounted on the object itself and captures the surrounding environment.

Marker-based tracking introduces artificial landmarks, also known as fidu-
cials, in the environment [312]. These approaches primarily rely on either RGB
or infrared cameras [87, pp. 104–106]. When using RGB cameras, so-called
image markers are employed. These are two-dimensional patterns without
rotational symmetry [319, pp. 47–48]. The position and orientation of these
typically rectangular markers can be derived by extracting edges from the
camera image through image processing. When using infrared cameras, the
markers are either passive retro-reflective markers or active markers that
emit light. These markers appear as bright points in the video stream. To
determine the pose of a marker, triangulation is performed using two or more
infrared cameras [87, p. 106]. While a single marker is sufficient to determine
the 3D position, a so-called marker shield, consisting of at least three markers,
is required to estimate the full 6-DOF pose.

Markerless approaches omit the use of artificial markers by relying on
natural features, such as edges and interest points, extracted from the en-
vironment [286, p. 112]. These features can be extracted from RGB images,
or RGB-D cameras can be employed, projecting infrared patterns or using
time-of-flight technology for depth estimation [87, p. 107].

mechanical tracking Mechanical tracking determines the pose through
rigid mechanical connections attached to the tracked object. Using forward
kinematics (see Section 2.1.1.1). The position at the end of an articulated
arm can be derived from the known lengths of the limbs and angular mea-
surements [286, p. 96]. The required angles can be measured using gears,
potentiometers, and bend sensors [38, p. 47]. This approach is not only used
in robotics, but also for interaction using mechanical input devices [87, p. 110]
or to track body movements through wearable sensors [38, p. 47].

inertial tracking In contrast to optical and mechanical tracking, where
an object’s pose is measured relative to a fixed origin, inertial tracking mea-
sures relative poses with respect to a starting position [319, pp. 52–53]. This
is achieved using inertial sensors that measure linear and angular accelera-
tion, deriving the position and orientation through a twofold integration [88,
pp. 114–115]. By incorporating three linear and three angular acceleration
sensors arranged orthogonally in so-called Inertial Measurement Units (IMUs),
the six DOFs pose can be tracked [38, p. 35].
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2.1.4.2 Calibration

The aforementioned tracking techniques enable the estimation of the pose
of objects or markers. For this tracking to be spatially accurate, several
components must be calibrated. These include calibration of the tracking
system, the displays, and the tracked objects [286, p. 194].

In optical tracking, this involves calibrating the camera by determining
intrinsic parameters and correcting lens distortions [81, pp. 668-675]. For
mechanical tracking, calibration involves aligning sensor readings with actual
end effector positions [274]. In the case of inertial tracking, calibration assesses
systematic errors such as bias, scale factor, and misalignment [253].

Additionally, to ensure correct spatial rendering of the tracking data, the
displays must be calibrated, including eye and head calibration [286, pp. 183-
187]. Finally, the tracked objects themselves often require calibration. This is
especially important when the tracking system, for example through markers,
is at a static offset from the actual point of interest, such as a tool tip.

tip calibration Tip calibration determines the position of a rigidly
attached point relative to a tracking target [226, pp. 213-214]. While this
method is commonly used for calibrating surgical or industrial tools, it is
also relevant in HRI, as it enables accurate tracking of a robotic end effector.

When using optical tracking, markers can be attached to the end effector.
However, placing them directly at the Tool-Center Point (TCP) is often not fea-
sible. Since the TCP serves as the reference point for robot control, its accurate
localization is crucial. Therefore, the static offset between the tracking marker
and the TCP must be determined. This can be achieved using a method known
as pivot calibration. In pivot calibration, a marker is rotated around a fixed
point, resulting in a spherical trajectory [319, p. 64] (see Figure 2.4). The offset
tp = [xp, yp, zp]T between the marker and the tip can then be estimated using
approaches based on the least-squares method [363]. Common techniques in-
clude sphere fitting [13], an algebraic one-step method [203], and an algebraic
two-step formulation [166].

tp

tp

Figure 2.4: Visualization of tip calibration, with a marker attached to the robot.
The robot rotates around the TCP, and the marker’s position is recorded
during the motion.
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2.1.4.3 Registration

Calibrated tracking enables the determination of the pose of physical objects
within their own local coordinate frame. However, tracking information is
often required relative to other coordinate systems as well. For example, to
map hand motion accurately to robot movement, the relative transformation
between the hand tracking sensor and the robot coordinate frame must be
known. Similarly, when XR is used to display information directly within
the robotic workspace, registration between XR and the robotic workspace is
necessary to ensure the correct placement of virtual content [286, p. 87].

The transformation between different coordinate systems can be derived
through registration. Following Bernhardt et al. [32], there are four main
approaches: manual, point-based, surface-based, and volume-based registra-
tion. Since volume-based registration requires volumetric data, it is primarily
employed in medical image registration using image voxel intensities [276]
and will therefore not be considered further. This thesis will instead focus
on the three most common registration methods for XR registration: manual,
point-based, and surface-based registration [46, p. 173].

manual registration In manual registration, the alignment between
the physical and virtual coordinate spaces is achieved interactively by man-
ually adjusting up to nine DOFs [32]. The number of DOFs that need to be
adjusted can be reduced by combining manual registration with point-based
approaches, for example, obtaining the translation through an interactively
selected landmark and then only adjusting the rotation manually [255].

point-based registration In point-based registration, also known as
paired-point registration, a set of corresponding 3D points pi and p′i in both
coordinate systems is used to determine the transformation between the
coordinate spaces [362, pp. 161-163]. By recording three or more non-collinear
points, the translation t and rotation R between the coordinate frames can
be calculated. To this end, the least-squares method can be employed, which
minimizes the square error Σ2 described in Equation 2.1 [23].

Σ2 =
N

∑
i=1

∥∥p′i − (Rpi + t)
∥∥2 (2.1)

surface-based registration Instead of utilizing corresponding points
for alignment, surface-based registration relies on surfaces, which are often
represented as point clouds [276, p. 141]. This type of registration is therefore
often referred to as point cloud registration. Similar to point-based registration,
the transformation is calculated by minimizing the distance between the point
clouds. However, since point correspondences are not explicitly provided,
they must be estimated as part of the registration process.

One commonly employed approach is the Iterative Closest Point Algo-
rithm (ICP) introduced by Besl and McKay [33], which is an iterative, two-
stage algorithm. In the first stage, for each point in one point set, the closest
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point in the other set is identified to form corresponding pairs. The second
stage computes the transformation that minimizes the distance between those
points, for example, using the point-based technique discussed earlier. In
the next iteration, the point correspondences are then updated, and a new
transformation is calculated. This process is repeated until convergence [139].
Since ICP converges only locally, an appropriate initial transformation is nec-
essary to prevent convergence to suboptimal local minima [362, p. 166]. This
initial estimate can be obtained through manual or point-based registration
methods.

2.1.4.4 Noise Filtering and Outlier Rejection

During tracking, calibration, and registration, measurement errors can lead to
noisy or inconsistent tracking data, which can negatively affect the accuracy
and stability of pose estimation. To address this, methods that reduce the
influence of noise and reject erroneous data points can be applied. This section
presents two widely used approaches for this purpose: the Kalman filter for
recursive state estimation, and the Random Sample Consensus (RANSAC)
algorithm for robust model fitting and outlier rejection.

kalman filter To address jitter in sensor data, filtering techniques can
be applied to smooth the signal. One commonly used method is the Kalman
filter [162]. This filter operates under the assumption that the error follows
a normal distribution and that the error can be minimized by computing a
linear combination of the current state and the measurement [286, p. 193]. The
Kalman filter consists of two main steps: a time update and a measurement
update [340]. In the time update, the current state estimate and its associated
uncertainty are used to predict the state at the next time step. In the mea-
surement update, new sensor measurements are incorporated to correct the
prediction, thereby improving the overall estimate.

ransac The RANSAC algorithm, proposed by Fischler and Bolles [105],
addresses the challenge of large numbers of outliers in data by generating
candidate solutions using the smallest possible subset of data points required
to estimate the model parameters. In each iteration, RANSAC randomly selects
a minimal subset of data points, computes a model based on them, and then
evaluates how many points from the full dataset are consistent with this
model. These inliers form the consensus set. If the size of the consensus set
exceeds a predefined threshold, the model parameters are re-estimated using
all inliers; otherwise, the process is repeated with a new random subset [84].

RANSAC can be effectively applied to problems such as pivot calibration or
point-based registration. Both are based on least-squares estimation and are
therefore highly sensitive to erroneous data points. Using RANSAC in these
contexts can improve robustness by reducing the influence of outliers [363].
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2.1.5 Use Case: Robotic Ultrasound

As outlined in Section 1.2.4, robotic ultrasound represents a meaningful
use case for investigating HRI approaches, particularly due to its contact-
intensive nature. This section, therefore, provides the necessary foundations
on ultrasound imaging and its integration with robotic systems.

2.1.5.1 Ultrasound Imaging

Medical Ultrasound (US) imaging, also referred to as sonography or echography,
uses the physical properties of sound waves in tissue for diagnostic and
therapeutic imaging purposes [123, p. 97]. By generating and emitting US

waves in different directions and receiving the returning echoes, 2D slice
images of internal structures can be obtained [10]. Since different tissues
have characteristic acoustic impedances (i.e., resistance to the propagation
of sound), interactions such as absorption, reflection, and dispersion result
in distinct attenuations of the US waves [260]. While US provides good soft
tissue contrast, it is limited in regions where bone or air obstructs wave
propagation [123, p. 97]. Areas that allow imaging of the region of interest,
as there is no obstruction through bones or gas, are termed acoustic window.
Effective US imaging requires different probe movements, including rocking
(in-plane rotation), fanning (out-of-plane rotation), rotating, compressing,
sliding, and sweeping [51, pp. 38-41](see Figure 2.5).

(a) Rocking (b) Fanning (c) Rotating (d) Pressing (e) Sliding (f) Sweeping

Figure 2.5: Overview of different motions required for US imaging.

US imaging is widely used in clinical practice as it relies on non-ionizing
radiation, is less expensive than other imaging modalities such as Computed
Tomography (CT) or Magnetic Resonance Imaging, provides real-time imag-
ing, and is portable [302]. Its applications span different medical disciplines,
including abdominal, breast, gynecological, and cardiovascular imaging [260].

However, high-quality US imaging depends heavily on the skill and ex-
perience of the operator, as image quality is strongly influenced by correct
probe placement [296] and the application of appropriate contact force [53,
117]. This results in variability in image quality, even among experienced
practitioners [172]. Additionally, maintaining steady probe pressure while
interpreting images and adjusting settings imposes not only a high cognitive
workload but also a high physical workload, contributing to musculoskeletal
disorders [98, 129].
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2.1.5.2 Robotic Ultrasound

To address these challenges, robotic US has emerged as a promising solution,
where a US probe is attached to the end effector of a robot manipulator [156].
Robotic US has been explored for applications such as diagnostic imaging,
needle-based interventions, and intraoperative imaging [257]. These systems
can be categorized based on their LORA.

Robotic US systems at low LORA are often referred to as teleoperation, where
the probe is controlled manually by a remote or co-located practitioner [133].
This approach enables remote imaging in areas lacking trained experts and
reduces the physical strain associated with holding the probe in manual US.

Collaborative assistance, corresponding to LORA levels 3 and 4, aims to
support clinicians by enabling faster, more precise, and reproducible imaging
through shared autonomy [133]. This can include partial automation features
such as motion compensation or force regulation [188, 297].

At higher LORA, autonomous robotic US systems are capable of autonomous
task planning and execution. Key enabling technologies include force control,
orientation optimization, and path planning, supporting features such as
motion awareness, deformation compensation, and visual servoing [156].

As described in Section 2.1.1.2, this thesis focuses on lower LORA, where
the operator directly controls the robot. While progress toward autonomous
robotic US systems is being made [133], manual control remains essential to
initiate such systems [64, 196, 297, 368], and real-time adjustments are re-
quired to incorporate the operator’s expertise during interventions, enhancing
adaptability and safety [179, 358].

2.2 methodology preliminaries

In HRI research, two main methodological approaches are commonly dis-
tinguished: human-centered and robot-centered [279]. The human-centered ap-
proach emphasizes user studies to evaluate the design and usability (ef-
fectiveness, efficiency, and satisfaction) of HRI interfaces. In contrast, the
robot-centered approach focuses on developing control methods and im-
plementation technologies to enhance robot performance [168]. While the
term human-centered is often associated with Human-Centered Design, which
ISO 9241-210:2019 defines as an "approach to systems design and develop-
ment that aims to make interactive systems more usable by focusing on the
use of the system and applying human factors, ergonomics, and usability
knowledge and techniques" [150], its use in this thesis refers to a broader
research orientation rather than a specific design process. Although technical
development plays a key role in this work, it is driven by the goal of opti-
mizing interfaces for users, reducing their workload, rather than evaluating
isolated robot performance metrics. As Rea et al. observe, HRI research often
prioritizes technical solutions, yet human-centered methods remain crucial
for enabling operators to "take full advantage of the hardware and algorithms
being developed" [270].
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To support this perspective, the following section outlines the method-
ological preliminaries of this work. It introduces the evaluation framework
used to assess human-centered efficiency and explains the statistical methods
employed to analyze the significance and strength of observed effects.

2.2.1 Evaluation Measures

As outlined in the RQs formulated in Section 1.2, the goal of this thesis is to
enable efficient HRI through human-centered investigations. To achieve this,
the concept of efficiency must first be clearly defined. Adamides et al. [11]
state that "In HRI, efficiency is measured in terms of the time required to
complete a task; effectiveness is measured in terms of how well a task is
completed". However, this definition reduces efficiency solely to one mea-
sure, which is insufficient for capturing the broader implications of the HRI

methods under investigation [34]. According to the ISO 9000:2005 standard,
efficiency is defined as the "relationship between the result achieved and
the resources used" [149]. This more comprehensive definition implies that
multiple measures must be considered to assess both the results and the
resources involved. The results can be quantified using objective metrics, such
as binary measures of success (e.g., task success) or more nuanced indicators
like accuracy [318, p. 65]. The resources used can include both objective
measures, such as task completion time, and subjective measures, such as
perceived mental or physical workload. To operationalize this definition
of efficiency, the following subsections will describe relevant objective and
subjective indicators that can be used to assess the results achieved and the
resources used in HRI.

2.2.1.1 Objective Measures

Objective measures provide qualitative or quantitative data that can be used to
assess the performance of methods in HRI [20]. Since performance is influenced
by the human factors of the system, such measures are essential for a human-
centered evaluation. This section presents two commonly used objective
quantitative indicators: task completion time and accuracy. In addition, as
this thesis investigates registration methods, measures relevant for assessing
registration accuracy are also introduced.

duration Task Completion Time (TCT), also referred to as time on task, is
typically measured as the time elapsed between the start and completion of
a task [318, pp. 74-75]. It is one of the most commonly evaluated factors for
assessing performance in HRI [20]. Other temporal measures include time in
mode, which quantifies the duration of specific functions, actions, or pauses,
and time until event, which measures durations such as reaction time [144].

accuracy Accuracy is a measure used to quantify the error with which
users complete a task [144]. This can include error rates, spatial accuracy, and
precision. Error rates quantify the number of incorrect actions during task
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completion and are applicable when user actions can be clearly categorized
as correct or incorrect. Spatial accuracy is used to measure the distance from
a predefined target, including translation errors (e.g., Euclidean distance)
and rotation errors (e.g., the smallest angle between the actual and target
orientation) [210]. In HRI, such measures are particularly relevant for steering
or positioning tasks. Precision describes the ratio of correct information to all
retrieved information and is, therefore, more relevant in HRI for information
retrieval tasks (e.g., sensor data) than as a direct measure of user performance.

Error rates, spatial accuracy, and precision primarily quantify the outcome
or final result of a task. However, in many HRI scenarios, it is also important
to monitor relevant data continuously. For example, tracking the distance
to a desired trajectory [20] or observing contact force [82] offers insights
into user behavior and interaction quality beyond final task outcomes. These
continuous measures can be quantified by sampling data at regular intervals
and reporting average values or maximum deviations [27, 82].

One important factor when considering both time and accuracy is the
time-accuracy trade-off (also referred to as the speed-accuracy trade-off), which
describes how these two measures influence each other [173, p.24]. In practice,
this means that accuracy can often be improved by spending more time on
a task, while prioritizing speed may lead to decreased accuracy. To account
for this trade-off, it is important to include both measures to gain a more
comprehensive understanding of user performance [201].

registration measures To assess registration quality, different ac-
curacy metrics have been introduced, including the Fiducial Localization
Error (FLE), Target Registration Error (TRE), and Fiducial Registration Er-
ror (FRE) [124, pp. 120-124]. The FLE represents the distance between the
true positions and the measured positions at the registration points (also
referred to as fiducials). While the FLE, caused by sensor noise, calibration
errors, or tracking inaccuracies, contributes to registration errors, a more
relevant metric is the TRE. The TRE utilizes target points that were not used
for registration, quantifying the distance between corresponding points after
registration. It is defined as the distance between a point p after applying the
transformation T and its corresponding point p′:

TRE = ||T(p)− p′|| (2.2)

In contrast, the FRE describes the distance between corresponding registra-
tion points after registration. While the FRE is easy to measure, it has been
shown to be uncorrelated with the TRE and therefore is not a reliable predictor
of registration accuracy [108].

2.2.1.2 Subjective Measures

Subjective measures can be described as measures "that rely on human
experience, judgment, perception, or cognition" [345, p. 33]. They may take
the form of qualitative data, such as descriptions or quotes, or quantitative
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data, such as numerical ratings [300, p. 327]. This subsection provides an
overview of subjective measures relevant to this thesis.

interviews According to Fontana and Frey [109], there are four main
types of interviews: open-ended, structured, semi-structured, and group
interviews. While all the first three can be employed for user studies with
individuals, the interviewing approach selected for a study depends on
the purpose of the interview. Unstructured interviews are exploratory, al-
lowing for the generation of rich data, while structured interviews enable
quicker assessment of specific questions [300, pp. 285-286]. Semi-structured
interviews are the most common approach in HRI studies [326]. Especially
in hypothesis-driven studies, semi-structured interviews are employed to
provide explanatory data that supports the recorded quantitative results.
Therefore, in this thesis, semi-structured interviews are employed, combining
closed and open questions.

questionnaires Similar to interviews, questionnaires can include both
closed and open questions [300, p. 194-197]. While they can be used to
acquire data such as participant demographics, rating scales can be employed
to compare specific answers across respondents. Likert items are commonly
used here, providing a gradual scale with verbal anchors that allow for
capturing respondents’ attitudes towards a topic.

perceived workload The NASA Task Load Index (TLX) is a question-
naire designed to assess workload across six dimensions, as presented by
Hart and Staveland [131]. These dimensions encompass mental demand,
physical demand, temporal demand, performance, effort, and frustration.
The original questionnaire consists of two parts: the first involves rating
the different dimensions on a scale from 0 to 20, while the second applies
a weighting scheme. However, the most common modification eliminates
the weighting part, making the questionnaire simpler to apply [130]. This
modified version, known as the raw TLX, will be used in this thesis, as it
allows for an initial assessment of perceived workload.

physical exertion To assess physical exertion, the Borg CR10 scale [43]
is commonly used. This scale measures perceived exertion through values
ranging from 0 to 10, with 0 representing "Nothing at All" and 10 indicating
"Very, Very Hard (Maximal)". The Borg CR10 has demonstrated strong corre-
lations with EMG-based metrics [247, 317]. Additionally, it has been shown
that Borg CR10 scores can be more reliable at low levels of physical exertion,
where EMG measurements may become unreliable [233].

perceived task ease The Single Ease Question (SEQ) assesses how diffi-
cult or easy a task is perceived by asking participants to rate the statement
"Overall, this task was:" on a single seven-point scale ranging from "Very Easy"
to "Very Difficult" [284, p. 186]. Compared to other single-item questionnaires,
it has been shown to be more sensitive than the ratio-scaled Usability Magni-
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tude Estimation and easier to administer than the interval-scaled Subjective
Mental Effort Questionnaire [283].

human-robot trust Schaefer [285] introduced the Trust Perception Scale-
HRI, a 40-item scale using 10 equidistant percentage-based response options
to assess how often a robot is perceived to exhibit certain characteristics
(e.g., "What percentage of the time will this robot (be)..."). To enable quicker
assessment, especially when comparing multiple conditions, a 14-item short
form was proposed. Eilers et al. [92] modified the questionnaire by adopting
a 5-point Likert item to rate the items, making it easier to administer than
the original percentage-based format. This thesis applies the 14-item subscale
with responses on a 5-point Likert item to enable efficient assessment.

2.2.2 Statistical Measures of Evidence

To evaluate the quantitative measures described above, different statistical
measures of evidence can be employed. These measures support the assess-
ment of the effects of independent variables, which define the experimental
factors under investigation, on dependent variables, which correspond to the
measured outcomes. To this end, statistical hypotheses are formulated. In
a two-sided test, the Null Hypothesis (H0) assumes no effect, while the
Alternative Hypothesis (H1) assumes the presence of an effect [104, p. 28].

To assess the strength and nature of the evidence collected, several statistical
indicators are commonly used. Among the most important are the p-value,
which evaluates the likelihood of the observed data under the null hypothesis;
the effect size, which quantifies the magnitude of an observed effect; and the
Bayes factor, which offers a probabilistic comparison of competing hypotheses.
The following subsections describe each of these measures in detail.

2.2.2.1 p-Value

To determine whether observed effects in user studies are statistically signif-
icant, null hypothesis significance testing is employed. As statistical methods
cannot directly prove H1, the focus lies on testing whether H0 can be re-
jected [104, p. 28]. If the data provide sufficient evidence to reject H0, support
is inferred for H1. Central to this approach is the p-value, which indicates the
probability of obtaining a result as extreme as the observed one, assuming
H0 is true [342]. A level of significance (typically 0.05 [106, p. 44]) serves as
threshold, with p-values lower suggesting statistically significant effects [342].

The choice of statistical method for obtaining p-values depends on the
experimental design, the types of variables involved, and whether certain
assumptions are met. A key distinction lies in the study design: in within-
subjects designs, repeated measurements are acquired from the same par-
ticipants under multiple conditions. In contrast, between-subjects designs
use different participants for each condition [79, pp. 114-115]. As this thesis
focuses on within-subjects evaluations, tests for repeated measures data are
primarily relevant, with further distinctions illustrated in Figure 2.6.
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Numerical Repeated Measures Data

Two Levels

Parametric
Paired t-Test

Non-Parametric
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Figure 2.6: Overview of statistical tests for null hypothesis significance testing for
numerical repeated measures data (adapted from [134]).

One such distinction concerns the number of factor levels, as comparing
two levels differs from comparing more than two levels. A final consideration
is whether the assumptions for the tests are satisfied. The main assumptions
are normality (e.g., assessed using the Shapiro-Wilk test) and homogeneity
of variances (e.g., tested with Levene’s test) [134]. When these are met,
parametric tests are used; otherwise, non-parametric alternatives are applied.

2.2.2.2 Effect Size

While the p-value indicates whether an effect is statistically significant, it
does not convey whether the effect is practically meaningful [104, p. 57]. This
limitation can be addressed by reporting the effect size, which quantifies
the magnitude of an effect and measures the deviation from the data or
distribution that would be expected under the assumption of H0 [342]. The
type of effect size reported depends on the statistical test employed: for t-tests,
it typically is Cohen’s d; for ANOVAs, η2; for robust ANOVAs, δt; for the
Friedman test, Kendall’s W; and for Wilcoxon tests, the effect size r. Verbal
anchors for interpreting these effect sizes were introduced in the behavioral
sciences [70]. The corresponding thresholds are summarized in Table 2.2.

Table 2.2: Evidence categories for effect sizes d, η2, δt, W, and r [16, 70].

d η2 δt W r

Small 0.2-0.5 0.01-0.06 |0.2|-|0.5| 0.1-0.3 0.1-0.3
Medium 0.5-0.8 0.06-0.14 |0.5|-|0.8| 0.3-0.5 0.3-0.5
Large >0.8 >0.14 >|0.8| >0.5 >0.5

2.2.2.3 Bayes Factor

One further limitation of null hypothesis significance testing is that it does not
permit strong conclusions in favor of the null hypothesis [69]. This limitation
can be overcome by the Bayes Factor Analysis, which quantifies the evidence
supporting both the alternative and the null hypothesis [287]. The Bayes
Factor (BF) represents the ratio of the marginal likelihoods of two hypotheses,
with the marginal likelihood describing how well the data support each
hypothesis [142, p. 60]. For the observed data y and the marginal likelihood
m(y|Ht), the BF is thus defined as:
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BF10 =
m(y|H1)

m(y|H0)
(2.3)

BF Analysis typically yields values ranging from 0.01 to 100, which are com-
monly interpreted using descriptive categories [184, p. 105] (see Figure 2.7).
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Figure 2.7: Descriptive classification for interpreting BF based on Lee and Wagen-
maker [184, p. 105] (adapted from [262]).

2.3 implementation details

This section outlines the approaches for robot control, gesture-based inter-
action, XR, registration, and robotic US implemented in this thesis. Since the
underlying implementation framework is consistent across the projects, it is
treated as background information. However, some studies specifically exam-
ine aspects of this basic setup, introducing variations. When such variations
occur, they will be explicitly noted in the corresponding sections.

2.3.1 Robot Control

For the investigations, a robot manipulator, namely the KUKA LBR iiwa
(KUKA AG, Germany), was employed. This is a lightweight robot manipu-
lator with seven axes, equipped with integrated force-torque sensors, and
specifically designed as a collaborative robot (also commonly referred to
as a cobot). The KUKA LBR iiwa was chosen as a representative robot, as
it is commonly used in industrial [213] and medical applications [156]. It
was mounted on an elevated frame, with a desk positioned in front of it
to provide a working surface (see Figure 2.8). The robot control was imple-
mented using KUKA Sunrise.OS and the KUKA Sunrise.SmartServo library.
Movement commands were issued as relative Cartesian positions, with in-
verse kinematics and trajectory planning handled by KUKA Sunrise.OS. The
motion was executed using impedance control with a stiffness of 800 N/m,
enabling precise robot movement when no external forces are present. For
force measurements, the robot’s force/torque sensors are utilized.

To increase safety during interaction, a maximum safety threshold of
Fmax = 30 N was applied. When the external forces exceeded Fmax, the inter-
action was stopped, and the end effector was moved 10 mm in the opposite
direction of the force. Additionally, to avoid singularities and prevent the
robot from reaching its joint limits, Cartesian boundaries were applied to
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KUKA LBR iiwa

Foot Pedal

FusionTrack 500

Desk

Figure 2.8: Setup of robot for the experiments conducted in this thesis.

reduce the effective workspace. Furthermore, a maximum linear velocity of
150 mm/s and an angular velocity of 0.75 rad/s were set to increase safety.

The robotic end effector was equipped with the Media Flange Touch Electrical
(KUKA AG, Germany), which includes two programmable buttons and an
LED strip. The LED strip was used to indicate the control status of the
robot: green light signaled active interaction, red light indicated that Fmax

was exceeded, and blue light marked the reaching of workspace boundaries.

2.3.2 Gesture-Based Interaction

In this thesis, hand gestures are employed for robot control, as they have
been shown to be a natural [373], intuitive [183, 199, 356], flexible [61], and
fast [183, 282] interaction method. For robot control using hand gestures,
different types of input are required (see Figure 2.9). In this work, the position
and orientation of the end effector are controlled through manipulative
gestures. Using position control, relative hand movements are mapped onto
corresponding relative end effector motions. In the initial studies of this thesis,
an unscaled mapping was used, based on previous work [183, 9]. Following
an evaluation of different mapping strategies, later studies adopted a 1:1
mapping for translation and a 2:1 scaled mapping for rotation.

Robot Control

Communicative

Separation of DOF
Foot pedal

Clutching
Pinch gesture

Manipulative
Relative hand

movement

Figure 2.9: Employed interaction modalities for robot control.

As semaphoric gestures are well-suited for clutching when using manipu-
lative hand gestures [8], a pinch gesture is implemented to pause interaction
and prevent unintended input. Following prior findings that holding a ges-
ture is preferable to toggling the interaction state for clutching [294], the
system activates interaction while the pinch gesture is held.
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Furthermore, prior research has demonstrated that separating the DOFs

manipulated during interaction can improve performance by reducing unin-
tended transformations [216]. Therefore, the system supports manipulation
of rotation and translation either independently or simultaneously. A foot
pedal (Docooler (Tomptop Technology Co., China)) is used to switch between
rotation, translation, and full 6-DOF control. The foot pedal was chosen based
on previous work indicating that semaphoric gestures may be perceived as
too similar, and that voice commands can reduce perceived responsiveness [9].
Feedback about the active mode is provided in AR by highlighting a button
in the upper center of the Field of View (FOV) (see Figure 2.10)

FOV

Figure 2.10: Visual feedback on active DOFs during interaction. Active DOFs have a
dark blue background, while inactive DOFs appear transparent.

Optical hand tracking has been shown to offer greater usability and more
natural, unconstrained interaction compared to wearable sensors such as data
gloves or controllers [83, 354]. Additionally, optical systems typically provide
lower cost, faster setup, and higher three-dimensional tracking accuracy than
glove-based approaches [75]. Because optical tracking supports natural inter-
action by enabling both communicative and manipulative gesture recognition,
this approach is employed in this thesis. In the initial projects of this thesis,
hand tracking is performed using the HoloLens 2 (Microsoft Corporation,
USA), which utilizes a depth camera based on time-of-flight technology [321].
This device was selected in the early stages, as it supports both hand tracking
and XR capabilities, thereby simplifying prototyping and development. In
later studies, the Leap Motion Controller 2 (Ultraleap, USA) is used. This sensor,
using two infrared cameras to derive hand pose from raw sensor data [121],
was selected for its flexibility in sensor placement.

2.3.3 Extended Reality

In robotics, XR is commonly implemented through HMDs, handheld devices,
spatial screens, displays mounted on the robot, or projectors. These can be
head-worn, hand-held, stationary, or robot-mounted [311]. While earlier XR

systems primarily relied on standard monitors, the current trend favors the
use of HMDs as they support natural interaction and integrate sensors that
enable hand and marker tracking [205]. Among these devices, the HoloLens
2 (Microsoft Corporation, USA) is a widely adopted optical see-through
headset [72, 112]. Therefore, the HoloLens 2 is used for XR in this thesis.
Applications for the HoloLens are developed in Unity (Unity Software Inc.,
USA) using the Mixed Reality Toolkit (Microsoft Corporation, USA).
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2.3.4 Tracking, Calibration, and Registration

tracking For implementing the different prototypes in this thesis, track-
ing is required for both component registration and the localization of the
end effector and task-relevant elements. Specifically, it enables the registration
process by allowing the robotic end effector to be tracked in both the robot
and the XR coordinate frames. The tracking in the robot coordinate frame
is achieved via mechanical tracking and forward kinematics. For tracking
in the XR coordinate frame, an image marker is attached to the end effector
and tracked using the Vuforia SDK (PTC Inc., USA). Since an HMD is used
as the XR device, accurate world pose estimation of the marker requires not
only marker tracking but also continuous tracking of the HMD itself. On
the HoloLens 2, this is accomplished through inside-out tracking using four
cameras combined with an IMU [88, pp. 132-133]. To track task elements, for
example, to assess successful task completion or to provide ground truth for
registration accuracy, an Atracsys FusionTrack 500 (Atracsys LLM, Switzerland)
infrared tracking system is employed.

calibration For pivot calibration of the marker attached to the robot, the
end effector is automatically pivoted around its TCP, and the corresponding
marker positions are recorded. To ensure variation in the recorded poses
and reduce redundancy, a new pose is only stored when the current marker
pose differs from the previous one by more than a predefined threshold. To
compute the offset between the marker and the TCP, the algebraic two-step
method is employed, as algebraic methods have been shown to provide higher
accuracy than sphere fitting [363]. This method relies on the relationship
shown in Equation 2.4, which holds for any pair of marker positions t and
orientations R during pivoting. The offset tp between marker and TCP can
then be computed by solving the overdetermined linear system described in
Equation 2.5.

Ritp + ti = Rjtp + tj (2.4) R1 − R2
...

Rm−1 − Rm

 tp =

 t2 − t1
...

tm − tm−1

 (2.5)

To reduce the impact of outliers on the calibration results, the RANSAC

algorithm is employed, resampling the recorded points to calculate the cali-
bration.

registration Registration is conducted by measuring corresponding
points in both the robot and the XR coordinate frames, as described above.
However, since the points recorded in the XR coordinate frame follow a left-
handed coordinate system (as defined by Unity), and the robot points follow
a right-handed coordinate system (as defined by KUKA Sunrise.OS), the XR

points must be transformed prior to registration. This is done by negating
the z-values to ensure consistency.
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The resulting point sets are then aligned using the Kabsch algorithm [23],
minimizing the squared error between corresponding points. This algorithm
solves for rotation and translation separately and consists of three main steps:

1. Computing the centroids p and p′ of both point sets (see Equation 2.6),
and recentering them at the origin

p =
1
N

N

∑
i=1

pi and p′ =
1
N

N

∑
i=1

p′i (2.6)

2. Finding the optimal rotation R that minimizes Equation 2.7, e.g., through
Singular Value Decomposition

Σ2 =
N

∑
i=1

∥∥p′i − (Rpi)
∥∥2 (2.7)

3. Determining the translation t by solving Equation 2.8

t = p′ − Rp (2.8)

While solving the registration provides the transformation between coor-
dinate frames, reliable orientation conversion requires accounting for the
differing rotation conventions of the XR and robot systems. The robot system
uses an intrinsic Z-Y’-X” rotation order, whereas the XR-system (Unity) ap-
plies an extrinsic Z-X-Y order. As a result, Euler angles cannot be directly
transferred between the two.

However, since Unity primarily uses quaternions to represent rotations,
transformations between coordinate frames can be handled consistently in
quaternion space. The conversion from Euler angles to quaternions is straight-
forward in Unity, as the transformation from axis-angle representation to
quaternions is built into the Unity API. Each individual axis rotation (around
X, Y, and Z) can be converted into a quaternion, and these quaternions are
then multiplied in the specified rotation order to produce the final orientation.
To extract Z-Y’-X” Euler angles from a quaternion, the angles ϕ (rotation
around the x-axis), χ (y-axis), and ψ (z-axis) can be calculated using the
discriminant ∆ = qrqy − qxqz, as shown in Equation 2.9 [40].

ϕ
χ
ψ

 =


tan−1

(
2(qrqz + qxqy)

1 − 2(q2
y + q2

z)

)
sin−1 (2∆)

tan−1

(
2(qrqx + qyqz)

1 − 2(q2
x + q2

y)

)


(2.9)

2.3.5 Robotic Ultrasound

For robotic US, a Clarius CR HD3 probe (Clarius Mobile Health, Canada) is
attached to the robotic end effector using a 3D-printed mount. The US images
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are streamed wirelessly and displayed on an iPad Air 2 (Apple Inc., USA)
using the Clarius Ultrasound App (see Figure 2.11).

To enable controlled experimentation and repeatable testing, customized
US phantoms were developed. These phantoms were made from agar-agar, a
commercially available gelling agent that is low-cost and allows for the simple
construction of echogenic volumes [372] (concentration 30 g agar-agar/500 ml
water). Target structures were embedded within the phantoms, created either
from geometric rubber shapes or from agar-agar with a higher concentration
(100 g agar-agar/500 ml water) to provide distinct contrast in the US image.
In cases where rubber shapes were used, food coloring was added to the
agar-agar to obscure the target structures from view. To precisely position
these target structures within the phantom, brackets were 3D printed with
dedicated seats for placing the structures. The brackets also included a marker
shield protruding from the phantom, enabling its localization.

Figure 2.11: Setup for robotic US with phantom made of agar-agar and embedded
agar-agar sphere visualized in US image.

2.3.6 System Architecture

Communication is required between the components described above. To
summarize, the presented system consists of three main components:

• Robot Control: Runs on the robot controller, managing robot motion and
sensor data, including data on robot pose and external forces.

• XR Device: Responsible for visual feedback, display of virtual compo-
nents, registration, and both marker and hand tracking.

• Tracking System: Includes an external hand tracking sensor for increased
flexibility, and an optical tracking camera for tracking task elements
and supporting spatial registration.

External tracking and coordination are implemented in Unity and are
running on a desktop PC. Communication between the three components is
established using a UDP connection.
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2.3.7 Ethical Considerations

All studies were carried out in accordance with the principles of the Decla-
ration of Helsinki [353]. Prior to their involvement, participants were fully
briefed on the study goals and procedures, and written informed consent
was obtained. Participant privacy was preserved through the anonymization
of all collected data, in accordance with local data protection regulations
(DSGVO). The study procedures were designed to minimize any potential
risk or discomfort to participants, ensure voluntary participation, and allow
participants to withdraw from the study at any time.





Part I

X R - T O - R O B O T R E G I S T R AT I O N

Synopsis: This part focuses on the alignment of XR within robotic
workspaces. It describes two experiments investigating different
aspects of XR-to-robot registration. The first experiment is an em-
pirical user study examining the efficiency of three interactive
registration methods. The second experiment is a technical evalu-
ation of parameters influencing point-based registration accuracy.



This part contains material adapted from the following publications:

Tonia Mielke, Fabian Joeres, Danny Schott, and Christian Hansen. “Interactive
Registration Methods for Augmented Reality in Robotics: A Comparative
Evaluation.” In: 2023 IEEE International Symposium on Mixed and Augmented
Reality Adjunct (ISMAR-Adjunct). IEEE. 2023, pp. 501–506. doi: 10.1109/
ISMAR-Adjunct60411.2023.00109 [7]. © 2023 IEEE.

Tonia Mielke, Florian Heinrich, and Christian Hansen. “Enhancing AR-to-
Robot Registration Accuracy: A Comparative Study of Marker Detection
Algorithms and Registration Parameters.” In: 2025 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, pp. 19–23. doi: 10.1109/
ICRA55743.2025.11128039 [4]. © 2025 IEEE.

https://doi.org/10.1109/ISMAR-Adjunct60411.2023.00109
https://doi.org/10.1109/ISMAR-Adjunct60411.2023.00109
https://doi.org/10.1109/ICRA55743.2025.11128039
https://doi.org/10.1109/ICRA55743.2025.11128039


3 I N T R O D U C T I O N

3.1 motivation

For HRI, the transformation between different coordinate systems is of key
interest. As detailed in Section 2.1.1.1, the robot is operated within its own
coordinate frame and computes joint angles through inverse kinematics.
However, movement commands may originate from other coordinate frames,
such as the sensor or input device frames. Accurate mapping of these move-
ment commands to robot motion requires knowledge of the transformations
between coordinate frames, which can be derived through registration [61].

Beyond transformation of robot control commands, registration is also
essential for integrating AR into robotic workspaces. AR can be employed
to support programming and control by visualizing targets, waypoints, or
paths [59, 114, 263], to enhance perception through visual cues [22], to im-
prove safety by displaying workspace information [280, 311, 329], and to
communicate robot intent in robotic systems with higher LORA [19, 119].

Although registration is a defining characteristic of AR, as established
in Azuma’s widely adopted definition [25], it is equally relevant in other
domains grouped under the umbrella term XR. AV can be used to maintain
the real robot in the loop while embedding it in virtual contexts, such as
simulated environments for safe interaction testing [63] or real-scene overlays
to improve user acceptance [309]. Similar to AR, employing AV requires
registration to establish the spatial relationship between real and virtual
elements. In contrast, VR is typically used for immersive teleoperation in fully
virtual environments [351]. Thus, VR does not require aligning virtual with
real-world objects. However, HRI in VR settings still depends on registration,
as user input has to be aligned for enabling robot control.

In summary, rigid registration is essential to align both the interaction
space and virtual content with the robotic workspace. In this thesis, mid-air
hand gestures are used for HRI, a method also commonly employed in XR

environments. As hand-tracking sensors are often integrated into devices
such as HMDs [268], both interaction and integration of virtual components
can be mediated through XR systems. Consequently, a unified registration
approach can enable their spatial alignment with the robot. In this thesis,
this alignment process is referred to as XR-to-robot registration. While prior
work has explored hand gesture-based HRI and XR applications in robotics,
the challenge of precise spatial alignment has received limited attention. To
address this gap, this chapter investigates registration methods to answer the
following RQ:

RQ1 | How can efficient and accurate XR-to-robot registration
be achieved?

37
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3.2 related work

Although many commercial industrial robots provide tools to define external
coordinate systems [159, 322], these processes do not provide interfaces for
seamless integration with XR systems. Therefore, alternative approaches are
required. This section provides an overview of related work on manual,
point-based, and surface-based registration methods for robotic workspaces,
as well as studies on parameters affecting point-based registration.

3.2.1 Registration Methods

As research on XR-to-robot registration is still limited, this section reviews
both studies specific to XR-to-robot registration and broader approaches to
robot-workspace registration. The registration methods can be categorized as
manual, point-based, and surface-based registration (see Table 3.1).

In manual registration, the robotic workspace and the XR environment
are interactively aligned. Therefore, a life-size virtual model of the robot is
holographically displayed and aligned with the physical robot using inter-
action techniques [110, 263, 273]. Another approach is to manually position
a tracked image marker in the environment at a known distance relative to
the robot, typically performed by referencing the known location of the robot
base and measuring the distance to the marker [41, 54, 178].

Point-based registration relies on defining corresponding points in both
the XR and robot coordinate frames. Since the position of the robotic end
effector in the robotic frame can be computed through forward kinematics,
the challenge lies in determining the corresponding points in the XR frame.
One approach is to define these points visually by either displaying them in
XR [116] or defining them in relation to tracked image markers [141, 229], and
then moving the robotic end effector to those positions. However, guiding the
robot to visually defined points may be affected by perceptual inaccuracies,
introducing an FLE that can negatively impact registration accuracy [107].
To mitigate this, the registration points can be physically defined by using
fixtures at known positions in the environment. By utilizing a matching
flange, the robotic end effector can be precisely positioned at the registration
points [211, 225, 232, 325]. An alternative to predefined registration points
is to track the robotic end effector within the XR coordinate frame, enabling
registration at mid-air positions. The localization of the end effector can be
achieved by attaching a tracking marker to the end effector of the robot [185,
228] or by moving a tracked device (e.g., a handheld tracker) to the location
of the robotic end effector [246].

The third type of registration is surface-based registration, where point
clouds of the robotic workspace are used for alignment. For XR-to-robot
registration, this method can rely on depth point clouds acquired by the
depth cameras integrated into HMDs [61, 241, 258].
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Table 3.1: Overview of related work on XR-to-robot registration.

Method Details Evaluation

Manual

[273]
Manually aligning robot

None
[110] Duration & accuracy
[263] None

[178]
Manually placing marker

Accuracy
[54] Tracking accuracy
[41] None

Point-based

[116] Projected points None

[229] Points relative to marker None
[141] None

[246] Tracked by controller None

Surface-based
[61]

ICP with depth point cloud
None

[241] Accuracy & runtime
[258] Accuracy

3.2.2 Point-Based Registration Parameters

The second experiment in this part of the thesis focuses specifically on point-
based registration, as this method shows potential for efficient XR-to-robot
registration. However, previous work has indicated that its accuracy depends
on the characteristics of the registration points. Early investigations into these
point characteristics originated in the domain of image-guided surgery, where
point-based registration is commonly applied. West et al. [341] examined the
impact of registration point placement. They observed that registration errors
can often be reduced by using a greater number of well-distributed points,
avoiding near-collinear configurations, and positioning the centroid of the
registration points close to the target volume. These findings were confirmed
and expanded by Hamming et al. [126], who emphasized the importance
of a well-configured registration point layout over simply increasing the
number of fiducials. Ershad et al. [96] further highlighted the impact of FLE

on registration accuracy.
Although these insights are valuable, their application to XR-to-robot regis-

tration must be done carefully. Robotic systems introduce additional sources
of error, including sensor inaccuracies and kinematic uncertainties [211].
While some findings are consistent across domains, such as the benefit of
increasing the distance between points [211, 325] and using a higher number
of points [211], Nguyen et al. [228] found that larger distances between points
can actually decrease registration accuracy in robotic workspace registration
during optical tracking. This suggests that the impact of point placement
depends on the specific tracking technology used.

This issue is especially relevant for XR-to-robot registration scenarios, where
marker-based tracking is often used with the cameras integrated in HMDs [74].
Prior work has shown that marker detection is influenced by factors such
as marker size, viewing angle, and viewing distance [161]. Furthermore,
different tracking algorithms perform differently under these conditions [74].
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Therefore, in point-based registration between XR devices and robots, both the
configuration of the registration points and the spatial relationship between
the XR device and the robot might play a critical role in registration accuracy.

3.3 research gap

As summarized in Table 3.1, registration methods for XR-to-robot alignment
are often merely presented, typically as part of works focusing on augmen-
tation techniques, rather than systematically evaluated. In studies where
registration methods are evaluated, the emphasis is primarily on accuracy [54,
110, 178, 241, 258], with only limited attention given to registration dura-
tion [110]. Additionally, none of the reviewed works consider the user’s
workload during the registration. However, investigations that go beyond
accuracy, including both duration and user workload, are essential to gain
more comprehensive insights into the efficiency of different methods for
XR-to-robot registration.

Furthermore, regarding point-based registration, the importance of reg-
istration point characteristics has been highlighted in prior work on image
registration and general robot-workspace registration [96, 126, 341], and the
dependence of optimal parameters on the tracking technology has been ex-
plored [211, 228, 325]. However, these influencing factors have not yet been
systematically investigated for XR-to-robot registration.

Consequently, two gaps remain. The first concerns the lack of research on
the efficiency of registration methods, particularly with respect to factors
beyond accuracy, such as duration and user workload. The second concerns
the unexplored impact of specific registration parameters, such as point place-
ment and configuration, on registration accuracy in XR-to-robot registration.

3.4 contribution

To address these gaps, this part of the thesis aims to enable more efficient
XR-to-robot registration by providing the following contributions:

Investigation on registration methods. Chapter 4 systematically evaluates
three registration methods, offering insights into the suitability of manual
and point-based techniques for achieving efficient alignment in HRI.

Investigation on registration parameters. To improve the accuracy of point-
based XR-to-robot registration further, Chapter 5 explores the influence of
different registration point characteristics, tracking techniques, and XR de-
vice placement. Additionally, a refinement approach is presented that uses
additional recorded points for surface-based registration improvement.
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As previously described, related work has proposed manual, point-based, and
surface-based registration methods for XR-to-robot alignment. However, these
registration approaches are typically presented only as a means to enable
XR integration into robotic workspaces, without a systematic evaluation of
the methods themselves. In particular, aspects such as accuracy, duration,
and user workload are often not investigated, even though they are essential
for assessing the practical applicability of each method. To address this gap,
this chapter presents a comparative evaluation of registration approaches,
building on methods proposed in related work on XR-to-robot registration as
well as more general approaches to robot-workspace registration.

Parts of this chapter were previously published in: Tonia Mielke, Fabian Jo-
eres, Danny Schott, and Christian Hansen. “Interactive Registration Methods
for Augmented Reality in Robotics: A Comparative Evaluation.” In: 2023
IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct). IEEE. 2023, pp. 501–506. doi: 10.1109/ISMAR-Adjunct60411.2023.
00109 [7] © 2023 IEEE.

4.1 technical methods

Supplementary
video

This section introduces and describes the development and implementa-
tion of three registration methods for aligning XR content within the robotic
workspace. The goal of this chapter is to identify registration methods that
are not only efficient in use but also easy to implement, enabling developers
to integrate them seamlessly into their frameworks. Therefore, this chapter fo-
cuses on registration approaches that leverage commonly built-in capabilities
of HMDs, such as content visualization, spatial mapping, and hand tracking.

Surface-based registration methods require the acquisition of point clouds
that represent the robotic workspace. However, while HMDs commonly in-
clude depth cameras, access to raw depth data is often restricted or non-trivial.
Additionally, the registration is computationally intensive, requiring an ex-
ternal PC to receive the point cloud data and perform the registration [258].
In contrast, manual and point-based methods do not necessitate external
hardware, and the required input, such as hand tracking data or marker and
object tracking, can be more easily integrated into existing systems. Therefore,
this chapter focuses on manual and point-based registration approaches.

In Manual Registration, the alignment is performed entirely manually using
either tracked real [41, 54, 178] or virtual objects [110, 263, 273], placing them
within the robotic workspace. Placing tracked real objects, such as markers,
at known positions requires workspace setups where the robot base location
is precisely known. Since this setup can be restrictive and dependent on
the physical environment, this chapter adopts the more flexible approach of
interactively aligning virtual models with their real-world counterparts.
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In point-based approaches, corresponding points are determined in both
the robotic and the XR coordinate space by steering the end effector to differ-
ent registration points. Obtaining registration points in the robot reference
frame is straightforward, as the end effector position can be derived through
forward kinematics. However, different strategies exist for determining the
corresponding points in the XR coordinate space. Two common approaches
are: defining registration points at known positions to which the end effector
is moved, or directly tracking the end effector in the XR space for flexible point
acquisition. When registration points are predefined, they can be specified
either visually [116, 141, 229] or physically [211, 225, 232, 325]. Since visually
defined registration points may introduce FLE, this chapter focuses on the
physical definition of registration points using a board (board registration).
The second approach instead aims to visually track image markers affixed to
the robot, allowing mid-air point acquisition (mid-air registration) [185, 229].
Figure 4.1 provides a visual representation of the components involved in
the registration process and the relevant transformations.

XR

B

E

M

R

Figure 4.1: Visualization of coordinate systems used in registration: dashed lines
depict transformations automatically derived from mechanical or optical
tracking, while solid lines represent transformations obtained through
the registration process. Reprinted from [7], © 2023 IEEE.

4.1.1 Manual Registration

In manual registration, the goal is to interactively align a virtual object as
closely as possible with its real-world counterpart. As the position of the
robot reference frame in relation to the robot itself is known, a virtual model
of the robot is used for alignment. The registration begins with a life-sized
virtual robot placed at a random orientation in fixed distance in front of the
user. The holographic visualization is semi-transparent with opaque outlines
(see Figure 4.2a). To manipulate the placement of the virtual robot, it can
be grasped using the pinch gesture. The translational and rotational DOFs

can then be adjusted either independently or simultaneously by performing
manipulative hand gestures, which map the relative movement of the hand
1:1 to corresponding transformations of the virtual robot. Activation of the
manipulation modes is controlled via virtual buttons.
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(a) Manual Registration (b) Board Registration (c) Mid-Air Registration

Figure 4.2: Overview of UIs during registration. Reprinted from [7], © 2023 IEEE.

4.1.2 Board Registration

The board registration utilizes a 3D-printed board with four seats and a
matching flange attached to the robotic end effector (see Figure 4.2b). The
transformation between the XR and the robot coordinate frame TR

XR is derived
by guiding the end effector to the seats on the board. The position of the end
effector, and thus the registration points in the robot coordinate frame, TE

R , is
determined by robot kinematics. In the XR coordinate frame, the registration
point positions are determined by tracking the board TB

XR through object
tracking and deriving the individual registration point positions based on
their relative locations, which are known from the board’s geometry.

The initial step of the registration process involves localizing the board
using object tracking and fixing its position using a virtual button. This
approach aims at improving performance by eliminating the need for contin-
uously tracking the board’s static position. The second step of the registration
process consists of subsequently localizing the four registration points in the
robot coordinate system, by hand-guiding the robot to the seats. To this end,
one seat at a time is highlighted in XR, indicating which point should be
recorded. Once the end effector is positioned at the desired location, a virtual
button has to be pressed to save the coordinates. After all points have been
captured, the transformation between the resulting sets of corresponding
points is calculated using the least-squares method (see Section 2.3.4).

4.1.3 Mid-Air Registration

To obtain the registration using the mid-air method, an image marker is
attached to the robotic end effector. A cylindrical marker is used to ensure
the marker’s recognizability from different orientations (see Figure 4.2c). The
transformation TR

XR between XR and the robot is obtained by moving the end
effector E to four arbitrary positions, which are then simultaneously recorded
in both the robot coordinate system R and the XR coordinate system. As only
the position of the marker M in the XR coordinate system TM

XR is known, but
the position of E is required, the transformation TE

M has to be calculated.
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Hence, the initial stage of the registration process involves obtaining TE
M

by a pivot calibration, where the end effector (and consequently the marker)
is rotated around the TCP. To this end, an automated rotation routine is
implemented, which starts upon marker recognition and enables continuous
recording of the marker’s position and orientation as the robot autonomously
rotates. Once a sufficient number of points is recorded, the rotation stops,
and TE

M is calculated using the Algebraic Two-Step method [363]. A RANSAC

framework [105] is implemented to increase stability and robustness by
reducing the potential impact of outliers on the calibration results.

Once the pivot calibration process is completed, the end effector can be
moved to arbitrary positions to record calibration points. Similar to the
board registration method, the robot can be hand-guided, and the points
are recorded by pressing a virtual button. Manually guiding the robot to
the registration points allows interactive point selection, ensuring sufficient
tracking quality and avoiding obstacles in the workspace. After recording four
points, the transformation TR

XR is calculated using the least-squares method.

4.1.4 Implementation

The prototype was implemented as described in Section 2.3. To enable inter-
active elements such as buttons, pop-ups, hand tracking, and object manip-
ulation, the Mixed Reality Toolkit was used. The Vuforia SDK was employed
for cylindrical image marker tracking (to track the end effector) and object
tracking (to track the board and the multimodal ground truth marker). To
steer the end effector, hand-guiding was implemented using impedance con-
trol with minimal stiffness (1 N/m and 1 N/rad) and high nullspace stiffness
(100 N/rad), allowing the robotic arm to respond to external forces.

4.2 evaluation methods

To comparatively evaluate the described interactive registration approaches, a
user study was conducted. This study followed a within-subject, one-factorial
design, which is described in the following section.

4.2.1 Tasks

Participants performed XR-to-robot registration using each of the three tech-
niques: manual, board, and mid-air registration. Thus, the tasks included:

• Manual Registration: Interactively aligning the virtual and real robots
through hand gestures and confirming the alignment once satisfied.

• Board Registration: Locating the board within the HMD FOV, confirming
accurate tracking, and recording four calibration points.

• Mid-Air Registration: Conducting a pivot calibration followed by the
recording of four mid-air calibration points.
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4.2.2 Variables

independent variables The independent variable was the registration
technique, with three levels: manual, board, and mid-air. Each participant per-
formed all three methods, with the order counterbalanced across participants.

dependent variables To assess registration performance and user
experience, three dependent variables were evaluated: registration accuracy,
duration, and perceived workload.

Registration accuracy was assessed using the TRE, which requires known
corresponding points in both coordinate frames. For point-based registration,
this would be straightforward, as specific target points can be tracked in both
coordinate spaces and transformed using the registration results, allowing
the Euclidean distance between them to be calculated. However, manual
registration does not provide explicit point correspondences, making the
computation of TRE less trivial. To address this, an alternative TRE assessment
method was employed for all three registration approaches. A ground truth
was established using an optical tracking system. By performing a point-
based registration with a pivot-calibrated retro-reflective marker shield, the
transformation TR

optical , representing the relationship between the robot and
the optical tracking system, was determined. To compare this ground truth
with the registration results, the transformation Toptical

XR between the XR system
and the optical tracking system had to be computed. This was done using a
multimodal marker serving as a shared reference between the two systems,
enabling the computation of this transformation.

T optical
XR = T optical

reference · T reference
XR (4.1)

To calculate the TRE, four target points located at the boundaries of the
reachable and trackable workspace were selected. These points were trans-
formed from the XR to the robot coordinate frame using both the ground
truth transformation and the registration result. The TRE was then computed
as the Euclidean distance between these projections:

TRE = ||TgroundTruth(p)− Tregistration(p)|| (4.2)

The duration of the registration process was assessed as TCT, measured
from the initiation of registration to its confirmed completion. Perceived
workload user feedback was evaluated using the raw NASA TLX [131].

4.2.3 Hypotheses

The conducted study was exploratory, making no a priori assumptions about
the outcomes. Therefore, two-sided hypotheses were investigated. The null
and alternative hypotheses considered were:
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H0.x The mean x is equal for all registration methods.
H1.x The mean x differs for at least one registration

method.
x ∈

 1-TRE
2-TCT
3-TLX

4.2.4 Sample Design

As the study investigated general characteristics of XR-to-robot registration,
participants with a technical background were recruited from the local uni-
versity via online polls. Participants received a compensation of 15e.

4.2.5 Procedure

At the beginning of the experiment, participants were given a brief explana-
tion of the research objectives, technical principles, and experimental proce-
dures. Then, participants were asked to complete a demographic question-
naire and sign an informed consent form. As there were no prerequisites for
participation in the study in terms of experience with XR and HRI, a brief
training session was performed. The training consisted of two tasks: the
first task involved interacting with virtual objects in XR, while the second
task focused on hand-guiding the robot to positions displayed in XR. After
completing the training, an experimental block was conducted for each regis-
tration method. At the beginning of each block, participants were given an
overview of the method, followed by step-by-step instructions for the first
trial. A second training trial was conducted, during which participants could
ask any remaining questions. Finally, a final test trial was conducted in which
the dependent variables were recorded. Upon completion of the registration,
participants were asked to complete the NASA TLX questionnaire. After fin-
ishing all three registration blocks, a brief semi-structured interview was
conducted. The experiment took an average of 45 minutes.

4.2.6 Statistical Analysis

For each dependent variable (TRE, TCT, raw TLX) and registration method
(board, mid-air, manual), data were tested for normality and homogeneity using
the Shapiro-Wilk and Levene’s tests. As these assumptions were violated
for all dependent variables, robust repeated measures ANOVAs for within-
subjects designs based on trimmed means were calculated (see [348]). Effect
sizes were reported using the δt estimate proposed by Algina et al. [16].
In cases of significant effects, pairwise post hoc paired-sample Yuen’s tests
based on trimmed means with Holm corrections for multiple testing were
conducted. All statistical analyses were conducted using R (version 4.4.0).
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4.3 results

This section summarizes and interprets the findings of the user study, includ-
ing both quantitative and qualitative results.

4.3.1 Data exclusion

The Interquartile Range (IQR) Method was employed to detect extreme out-
liers. The results of one participant showed an inexplicably high TRE of
142 mm for the mid-air registration technique, which exceeded the range
defined by the upper quartile (Q3) plus three times the IQR. Consequently,
this participant’s data were excluded from the analysis. No other instances of
extreme outliers were identified.

4.3.2 Participants

The 20 participants whose data were used for the analysis had a technical
background (11 male, 7 female, and 2 diverse). They were aged between
23 and 31 years (Mean (M)=26.00, Standard Deviation (SD)=2.62) and were
students (14), PhD students (4), or engineers (2) in the areas of Computer
Science and Medical Engineering. Regarding the task-relevant experience,
participants provided the following ratings on a scale from 1 (no experience)
to 5 (very experienced): AR (M=2.75, SD=1.21), VR (M=3.20, SD=1.28), HRI

(M=2.10, SD=1.12), and gaming experience (M=3.85, SD=1.27).

4.3.3 Quantitative Results

The descriptive results are summarized in Table 4.1, and the statistical re-
sults are outlined in Table 4.2. Descriptive statistics and significant post hoc
comparisons are also visualized in Figure 4.3.

Table 4.1: Summary of descriptive results for all dependent variables (n=20). Entries
are in the format: mean value [standard deviation].

Variable TRE (mm) TCT (s) TLX

Manual 43.23 [17.22] 106.71 [50.91] 8.54 [3.48]
Board 12.13 [6.42] 59.09 [15.33] 4.32 [2.33]
Mid-Air 14.86 [4.28] 85.26 [36.28] 4.63 [2.29]

Table 4.2: Summary of robust ANOVAs test results (α < .05) reporting test statistic F
and effect size δt.

Variable F p Sig. δt Effect Fig.

TRE 9.23 0.009 ∗ 1.24 Large 4.3a
TCT 80.60 <0.001 ∗ 3.08 Large 4.3b
TLX 27.20 <0.001 ∗ 1.64 Large 4.3c
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4.3.4 Qualitative Results

For the analysis of qualitative feedback, statements collected during the semi-
structured interview were paraphrased and clustered. Only statements that
were made by at least two participants were included. A total of 171 individual
statements were recorded, of which 133 occurred at least twice, leading to
the formulation of 33 summarizing statements, presented in Table 4.3.

Table 4.3: Summary and frequency of statements (#) received during the semi-
structured interview. Adapted from [7], © 2023 IEEE.

General Board Registration

+ Robot control through hand-guiding is
intuitive (2) and easy (2)

- Interaction with the virtual buttons
sometimes challenging (5)

- Inaccuracies in object tracking (4) and
image marker tracking (4)

+ Interaction easy (8) and intuitive (6)
+ Feeling confident during interaction (8)
+ Predefined registration points (6) and

haptic feedback (5) helpful
+ Registration expected to be precise (5)
- Problems with occlusion by AR (3)

Manual Registration Mid-Air Registration

+ Seeing registration results helpful (4)
+ Interaction feels controlled (3), is intu-

itive (2), and effective (2)
- Interaction requires training (3)
- Registration takes time (2)
- Issues with Hand-tracking (4) and dif-

ficulty grabbing the virtual robot when
occluded by the physical one (4)

- Difficulties in manipulation of virtual
robot (3), especially for rotation (6)

- Difficulties due to depth perception (2)
• Interaction would be easier if manipula-

tion restricted to certain axes (3)

+ Interaction easy (4) and intuitive (3)
+ Feeling like can do nothing wrong (2)
- Problems with robot joint limits during

hand-guiding (6)
- Enabling the tracking of the marker re-

quires maintaining an uncomfortable
body posture (5)

- Feeling insecure during registration (8)
- Uncertainty about criteria for accurate

registration (4)
• Selecting registration points would be

easier with broad placement sugges-
tions from the system (3)

4.3.5 Interpretation of Results

Significant main effects of the registration method were found for TRE, TCT,
and NASA TLX. Consequently, the null hypotheses H0.1–H0.3 were rejected
in favor of the respective alternative hypotheses H1.1–H1.3. Post hoc pairwise
comparisons revealed that manual registration was significantly outperformed
by both point-based methods in terms of accuracy, duration, and perceived
workload (see Figure 4.3). The lower accuracy may be due to difficulties
with depth perception and interacting with the virtual model, as well as
technical issues with hand tracking, as reported in the qualitative feedback.
These challenges likely also contributed to the higher TCT and perceived
workload, despite participants describing the interaction as intuitive and
reporting a sense of control. One participant noted that "the physical robot is
easier to move than the virtual model", highlighting the advantages of robot
hand-guiding, which was seen as intuitive and easy compared to the more
demanding XR interaction. Although manual registration performed worse
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quantitatively, it offered valuable insights, with participants appreciating the
direct visibility of results and the sense of control.

While participants reported high perceived accuracy with board registra-
tion, no significant differences in accuracy were found between board and
mid-air registration. This suggests that, despite users feeling uncertain about
point placement during mid-air registration, the flexibility in positioning did
not negatively impact accuracy. However, this lack of confidence should be
addressed, especially since participants reportedly felt more confident using
the board method. One possible solution is to visualize suggested registra-
tion points or regions in XR. As point placement can affect accuracy [341],
providing such guidance may improve both accuracy and user confidence.
Another challenge with mid-air registration was the robot exceeding its joint
limits, causing abrupt stops and requiring system restarts. Visualizing vir-
tual registration points within the robot’s safe workspace and adding visual
boundaries could help users avoid these issues.

The study findings also show that board registration results in significantly
lower TCT compared to the other two methods. The longer duration of mid-air
registration may be due to the time needed for pivot calibration. This could
be reduced by placing the marker at a predefined distance from the TCP,
eliminating the need for separate calibration. Alternatively, a distinctively
shaped end effector could be designed for direct object tracking.
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Figure 4.3: Violin Plots of experimental results of all dependent variables. Brackets
indicate statistically significant post hoc pairwise comparison results.
Means are indicated by . Adapted from [7], © 2023 IEEE.

4.4 discussion

The findings of the described study show that the efficiency and effectiveness
of XR-to-robot alignment significantly depend on the registration method
employed. This section discusses the results, outlines the study’s limitations,
and formulates design implications based on the findings.

manual registration As previously described, the lower accuracy and
higher duration and perceived workload for the manual registration method
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might be attributed to difficulties in depth perception and manipulation of
the virtual robot model. Problems regarding spatial understanding could
possibly be alleviated by sophisticated approaches such as the virtual mirrors
presented by Martin-Gomez et al. [209]. Since participants were not required
to have previous experience in XR and expressed the need for training to learn
the interaction, future work should analyze the learning curve and explore
how more experience or longer training impacts the registration results.

point-based registration Even for the point-based approaches, the
TREs observed in this study remained relatively high (board registration:
12.13 ± 6.42 mm; mid-air registration: 14.86 ± 17.22 mm). While this level of
accuracy may suffice for coarse registration tasks, such as aligning the interac-
tion space for relative movements or providing visual feedback in the robotic
workspace, more precise applications like defining or visualizing specific
target locations in the robot’s reference frame may require higher accuracy.

Tracking errors might have introduced an FLE, resulting in the performance
of the point-based approaches being dependent on image and object tracking
accuracy. For instance, Allen et al. [17] reported tracking errors of up to
10 mm for cylindrical markers using Vuforia on the HoloLens 2, suggesting
that tracking inaccuracies likely affected the registration process. As a result,
the observed TREs may reflect not only user performance but also technical
limitations. Additionally, the accuracy may have been influenced by the
selection and distribution of registration points [325, 341]. However, these
parameters were not systematically investigated in this study.

general When interpreting the accuracy results, it is important to con-
sider how the TRE was calculated. The ground truth may have included errors,
as it was itself established through registration, and the object tracking used
to define the shared reference between ground truth and registration results
may have introduced additional inaccuracies. Furthermore, since the TRE

was calculated using points at the outer boundaries of the workspace, any
rotational registration errors would have had a stronger impact.

4.4.1 Limitations

One limitation of this study is that it focused solely on interactive manual
and point-based registration methods, motivated by the goal of implementing
techniques that can be easily integrated into existing HRI setups. However,
registration accuracy could potentially be improved by incorporating surface-
based registration methods. For example, adding a refinement step using
point clouds of the robotic workspace may enhance accuracy [258]. Fur-
thermore, the mid-air registration could be automated, pre-programming
motion to registration points. This would eliminate the uncertainties in point
placement and mitigate issues related to robot boundary constraints.

Another limitation arises from the use of only one specific hardware
setup, which restricts the generalizability of the findings. Although general
insights regarding registration techniques and interaction are believed to be
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transferable, technical factors may have influenced the results. For instance,
other XR devices might offer different marker tracking or hand tracking
performance, which could affect registration outcomes. To support broader
applicability, future work should investigate the performance of the methods
across different devices and robotic platforms.

4.4.2 Implications

In conclusion, based on the study results, the following design implications
are proposed to support efficient XR-to-robot registration in HRI setups:

Employ point-based registration. The findings suggest that point-based
registration methods enable significantly more accurate registration while re-
ducing perceived workload. Participants found it easier to control the physical
robot for registration than to adjust the virtual model’s DOFs manually.

Provide guidance for registration points. A key advantage of board registra-
tion over mid-air registration was that predefined registration points increased
participants’ confidence. When using mid-air registration, visual guidance for
point placement should be provided to improve both user confidence and
the quality of registration points.

Provide visual feedback. Participants appreciated the ability to see the
registration result during manual registration. This highlights the value of
visual feedback not only for assessing registration accuracy. Additional visual
feedback should be incorporated to help visualize the workspace and robot
limits, thereby supporting robot control during registration.

4.5 conclusion

In this chapter, three registration methods were implemented and evaluated
for enabling XR-to-robot registration. A manual registration method was
developed, where XR content was aligned with the robot through hand inter-
actions. Additionally, two point-based approaches were implemented: one
defining registration points using a 3D-printed board, and another employing
a marker attached to the robot for tracking. These techniques were empirically
evaluated in a user study involving 21 participants, focusing on performance
and user workload. The results indicate that manual registration was out-
performed by the two point-based methods in terms of accuracy, duration,
and perceived workload. Using a physical board for registration additionally
enabled significantly faster registration than the other two methods.

By identifying point-based registration as an efficient and user-friendly
method, this chapter establishes a foundation for practical XR-to-robot reg-
istration. However, since the achieved accuracy may still be insufficient for
high-precision applications, it also motivates the investigation presented
in the next chapter, which explores factors that may influence point-based
registration accuracy.
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Chapter 4 showed that point-based registration methods have potential for
enabling efficient XR-to-robot registration for HRI. However, the registration
accuracies achieved might not be sufficient for high-precision applications.

In image-guided surgery, prior research has found that registration accu-
racy heavily depends on the quality of registration points, including factors
such as their number, distribution, and spacing [96, 126, 341]. Similar find-
ings have been reported for robot-workspace registration, where increasing
both the number and distance between physically defined points improves
accuracy [211, 325]. However, in contrast, robot-camera registration studies
have indicated that greater distances between points can reduce accuracy,
as they may exceed the sensor’s optimal range [228]. This suggests that
registration accuracy depends not only on the configuration of the points
but also on the sensors involved, implying that findings from other domains
may not fully transfer to XR-to-robot registration. Furthermore, marker de-
tection performance has been shown to depend on factors such as XR device
placement [161] and tracking technique [74].

While related domains offer important guidance, their findings might not
be directly applicable to XR-to-robot registration, as specific tracking charac-
teristics, spatial setup, and point properties may interact in this context. As
such, a systematic investigation is needed to understand the key influencing
factors specific to XR-to-robot alignment. Therefore, this chapter aims to
address this gap by conducting a series of experiments investigating the
effects of tracking techniques, registration point characteristics, and XR device
placement on registration accuracy, with the goal of improving point-based
registration accuracy for XR-to-robot alignment.

Parts of this chapter were previously published in: Tonia Mielke, Florian
Heinrich, and Christian Hansen. “Enhancing AR-to-Robot Registration Accu-
racy: A Comparative Study of Marker Detection Algorithms and Registration
Parameters.” In: 2025 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, pp. 19–23. doi: 10.1109/ICRA55743.2025.11128039 [4]
© 2025 IEEE.

5.1 technical methods

To investigate factors influencing XR-to-robot registration accuracy, a point-
based registration method using an image marker attached to the robotic
end effector was implemented. While Chapter 4 indicated that utilizing a
3D-printed board to define registration points offers advantages in registra-
tion duration, defining points mid-air allows greater flexibility in exploring
different registration point configurations. Therefore, the mid-air registration
approach described previously is used as the registration method in this
chapter, with the technical details outlined in the following section.

52
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5.1.1 Tracking Techniques

Mid-air registration relies on establishing corresponding points in the XR and
robot coordinate frames by attaching a marker to the robotic end effector.
To investigate the impact of different tracking techniques on XR-to-robot
registration performance, four publicly available optical tracking approaches
were implemented. These tracking algorithms include three square fiducial
image markers and one approach that integrates a marker shield with retro-
reflective spheres (see Figure 5.1). These tracking approaches were selected as
they support the Universal Windows Platform (UWP), ensuring compatibility
with the HoloLens 2, which is used as XR device in this thesis. The investigated
tracking techniques were:

1. ARToolKit [259]: Integration of ARToolKit (v5.3.2) with UWP, available
at: https://github.com/qian256/HoloLensARToolKit

2. ArUco [90]: Integration of ArUco Marker Detection with HoloLens 2
from OpenCV available at: https://github.com/doughtmw/display-
calibration-hololens

3. Vuforia: A widely used AR platform supporting image and object
recognition, available at: https://developer.vuforia.com/

4. Retro-Reflective Marker Tracking [208]: Tracking of custom retro-
reflective marker shields using the HoloLens 2 Research Mode, available
at: https://github.com/andreaskeller96/HoloLens2-IRTracking

Windows Mixed Reality QR Code tracking was initially considered for
inclusion. However, preliminary experiments showed that its reliance on
stereo cameras with limited FOV and low resolution made it unsuitable for
accurate registration.

(a) ARToolKit (b) ArUco (c) Vuforia (d) Retro-Reflective

Figure 5.1: Markers used for tracking for XR-to-robot registration. Reprinted from [4],
© 2025 IEEE.

5.1.2 Registration

The registration is conducted as described in Section 2.1.4.3. First, the offset
between the marker and the robot’s TCP is determined through pivot cali-
bration using the Algebraic Two-Step method [363], employing a RANSAC

framework [105]. The registration is then performed by automatically mov-
ing the end effector to pre-programmed registration points, recording the
positions in the robot and XR coordinate frames, and calculating the transfor-
mation using the least-squares method [23]. To ensure point correspondence

https://github.com/qian256/HoloLensARToolKit
https://github.com/doughtmw/display-calibration-hololens
https://github.com/doughtmw/display-calibration-hololens
https://developer.vuforia.com/
https://github.com/andreaskeller96/HoloLens2-IRTracking
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and reduce the impact of latency during automated registration point acqui-
sition, the registration point is recorded only when the change in position is
below an empirically tuned threshold of 1 mm/s.

5.1.3 Refinement Approach

While pausing the robot’s movement until optical tracking convergence
ensures accurate point correspondences, it increases the time required to
measure each point, thus limiting the practical number of points that can be
recorded. An alternative approach would be to continuously record points
in both coordinate systems during movement and use those path points for
point-based registration. However, tracking latency may reduce the reliability
of point correspondences. To mitigate this, correspondences could be esti-
mated by defining them based on the closest points between the two point
sets. To improve accuracy further, these correspondences can be recalculated
iteratively after applying the transformation, followed by recalculating the
transformation itself. This method corresponds to the ICP algorithm, com-
monly used for surface-based registration [33]. As the ICP requires an initial
transformation, path points will be used for registration refinement. First,
point-based registration is conducted, followed by refinement using the ICP

applied to points recorded along the paths between registration points.

5.1.4 Implementation

The implementation followed the approach described in Section 2.3. All
tracking techniques used in this experiment were adapted for Unity version
2022.3.16. Since Vuforia does not support adjustment of camera intrinsics, the
intrinsics used here were integrated into the other methods. The robot was
controlled using high-stiffness Cartesian impedance control to ensure precise
motion.

5.2 evaluation methods

To investigate the influence of different parameters on point-based XR-to-robot
registration accuracy, a technical evaluation consisting of eight independent
experiments was conducted. The first experiment evaluated a baseline condi-
tion with predefined registration characteristics, using a one-factorial design
to assess the accuracy of the tracking techniques. This baseline configuration
was retained as the reference in each of the following seven experiments,
where a single characteristic was varied while all other parameters remained
at baseline. For each characteristic, registration was performed using all
tracking techniques, resulting in a two-factorial design.
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5.2.1 Variables

independent variables In the first experiment, a one-factorial design
was employed to investigate the tracking technique, including ARToolKit,
ArUco, Retro-Reflective, and Vuforia. The remaining experiments used a
two-factorial design, examining the tracking technique and one additional
registration characteristic. The investigated registration characteristics included:

Experiment 2: Viewing Angle 0◦, 15◦, or 30◦.
Experiment 3: Viewing Distance 0.66 m, 5 m, 1.33 m
Experiment 4: Marker Size 5 cm, 10 cm, or 15 cm
Experiment 5: Point Distance 7.5 cm, 15 cm, or 30 cm
Experiment 6: Point Distribution equidistant, coplanar, or random
Experiment 7: Amount of Registration Points 4 or 8 points
Experiment 8: Refinements no refinement, path points, or path points+ICP

These parameters were individually varied, with all other characteristics
kept at the baseline configuration. The baseline parameters are indicated in
italics above. Regarding point distributions: Equidistant setup consisted of a
set of four evenly spaced points, with the set rotated across all axes to cover
a spherical region. Coplanar setup rotated a coplanar point set within the
three principal planes, constraining points to coplanar sections. In random
setup, the points were randomly distributed across the spherical region (see
Figure 5.2).

Figure 5.2: Point distributions investigated, with one exemplary point set high-
lighted in red. From left to right: equidistant, coplanar, random. Reprinted
from [4], © 2025 IEEE.

dependent variables As detailed in Section 2.2, the most important
measure for assessing registration accuracy is the TRE, which quantifies the
error of target points not used during registration. To determine the TRE,
the positions of four target points were measured in both the robot and
XR coordinate systems. After registration, the resulting transformation was
applied to the robot coordinate points, and the Euclidean distance to the
corresponding XR coordinate points was calculated.

While the TRE provides insight into registration accuracy, it is also influ-
enced by the tracking accuracy during measurement of the target points. To
increase the reliability of the TRE, more target points could be used; however,
this would slow down data acquisition and reduce practicality. Alternatively,



56 investigations on registration parameters

reliability can be improved by carefully selecting robust target points prior to
the experiment. To identify points with high tracking accuracy, different can-
didate points were measured using the robot, the XR device, and an external
tracking camera. By comparing the distances between these points across the
three systems, those with minimal distortion, i.e., points whose distances are
consistent in all tracking systems, were identified and used as target points.

5.2.2 Hypothesis

As the experiments were exploratory, no a priori assumptions were made
about the outcomes. Therefore, two-sided hypotheses were investigated. The
null and alternative hypotheses considered were:

Hy
0 The mean TRE is equal for all

levels of y.
Hy

1 The mean TRE differs for at
least one level of y.

y ∈



1-Tracking Technique
2-Viewing Angle
3-Viewing Distance
4-Marker Size
5-Point Distance
6-Point Distribution
7-Point Amount
8-Refinement

5.2.3 Procedure

For data acquisition, the HoloLens was mounted on a tripod and positioned in
front of the robot with the height fixed at 1.70 m throughout the experiment.
The end effector was then moved to the four target points, followed by the
registration points, with constant orientation. For each tracking method and
investigated characteristic, 27 different point sets were considered. The use
of 27 point sets was based on the coplanar point distribution, where four
equidistant points were placed on one of the three principal planes. To uni-
formly cover possible orientations within each plane, this base configuration
was rotated in 10◦ increments, resulting in 9 variations per plane. Across the
three principal planes, this yielded a total of 27 distinct point sets.

5.2.4 Statistical Analysis

To evaluate the effects of the one-factorial first experiment, the data were
analyzed using a repeated-measures ANOVA via the aov_ez() function from
the afex package. Paired t-tests with Bonferroni corrections for multiple
comparisons were conducted as post hoc tests.

For all other experiments, the data were analyzed using a two-way repeated-
measures ANOVA to assess the interaction between tracking techniques
and the respective registration parameter. Paired t-tests with Bonferroni
corrections were again conducted as post hoc tests in cases of significant
ANOVA results. For significant interaction effects, contrasts were computed
within each tracking method cell using the emmeans package. For the viewing
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distance analysis, a missing factor-level combination required fitting a linear
mixed-effects model using the lmer() function from the lme4 package. To
evaluate the significance of fixed effects, a Type III Wald chi-square test was
conducted using the Anova() function from the car package.

Greenhouse-Geisser corrections were applied in all repeated-measures anal-
yses if a violation of sphericity was detected via Mauchly’s test. All statistical
analyses of measured TRE values were performed in R (version 4.4.0).

5.3 results

The following section presents the results for the experiments investigating
the different registration characteristics. An overview of all descriptive results
is provided in Table A.1, and a summary of the statistical analyses can be
found in Table A.2. Pairwise comparison results are illustrated in the plots.

5.3.1 Tracking Accuracy

A significant main effect for tracking accuracy was found (test statistic
F = 259, p < 0.01, effect size η2 = 0.882). Significant pairwise comparison re-
sults for tracking accuracy are shown in Figure 5.3. TRE results across tracking
methods for the baseline condition indicated that ARToolKit (2.15 ± 0.64 mm)
yielded significantly lower TREs compared to ArUco (27.71 ± 7.77 mm), Vufo-
ria (3.23 ± 1.20 mm), and retro-reflective tracking (3.87 ± 1.19 mm). Thus, H1

0
can be rejected in favor of the respective alternative hypothesis H1

1 . ArUco
tracking produced significantly worse TRE than all other methods. Given
its substantially higher TRE (almost ten times greater), ArUco tracking was
excluded from further analysis.
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Figure 5.3: TRE for tracking techniques in baseline condition. Bars represent means.
Error bars represent standard errors. Brackets indicate statistically signifi-
cant post hoc pairwise comparisons. Adapted from [4], © 2025 IEEE.

The significant differences between the tracking techniques are also re-
flected by significant main effects of the tracking techniques on TRE in all
subsequent two-way analyses. However, since the relationship between the
methods remains consistent and the focus is on registration characteristics,
these main effects will not be further discussed.
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5.3.2 Viewing Angle

No significant viewing angle main effects (F = 3.43, p = 0.068) or interaction
effects (F = 3.30, p = 0.057) on the TRE were observed. The null hypothesis
H2

0 could not be rejected. Descriptively, TRE was generally lower at 0◦ com-
pared to 30◦ across all tracking algorithms. At 15◦, ARToolKit’s accuracy was
intermediate, Vuforia showed a notably lower TRE compared to 0◦ and 30◦,
while retro-reflective tracking exhibited higher TRE (see Figure 5.4).
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Figure 5.4: TRE dependence on viewing angles (left: non-significant viewing angle
main effect; right: non-significant interaction effect). Bars represent means.
Error bars represent standard errors. Adapted from [4], © 2025 IEEE.

5.3.3 Viewing Distance

As the retro-reflective tracking failed at the greatest distance (1.33 m), only the
TREs for the remaining two distances were analyzed for this tracking method.
There were no significant viewing distance main effects (χ2 = 0.012, p =

0.994) or interaction effects (χ2 = 6.49, p = 0.09) on the registration accuracy.
Thus, null hypothesis H3

0 could not be rejected. Descriptively, ARToolKit’s
registration accuracy was consistent across distances, whereas Vuforia’s TRE

increased with distance. Retro-reflective tracking deteriorated at closer ranges
and failed at greater distances (see Figure 5.5).
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Figure 5.5: TRE dependence on viewing distances (left: non-significant viewing distance
main effect; right: non-significant interaction effect). Bars represent means.
Error bars represent standard errors. Adapted from [4], © 2025 IEEE.
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5.3.4 Marker Size

A significant main effect of marker size on TRE was found (F = 14.49, p <

0.001, η2 = 0.109), while there was no significant interaction effect (F = 3.21,
p = 0.081). The main effect is depicted on the left of Figure 5.6. Post hoc
pairwise comparisons showed that the smallest marker size (5 cm) resulted
in significantly higher TRE values compared to both the medium (10 cm) and
large (15 cm) markers. Therefore, the null hypothesis H4

0 can be rejected in
favor of the alternative hypothesis H4

1 .
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Figure 5.6: TRE dependence on marker sizes (left: marker size main effect; right: non-
significant interaction effect). Bars represent means. Error bars represent
standard errors. Brackets indicate statistically significant post hoc pair-
wise comparisons. Adapted from [4], © 2025 IEEE.

5.3.5 Point Distance

A significant main effect of point distance (F = 62.43, p < 0.001, η2 = 0.338)
and an interaction effect between point distance and tracking technique (F =

62.38, p < 0.001, η2 = 0.514) on TRE were observed (see Figure 5.7). Therefore,
H5

0 can be rejected in favor of the corresponding alternative hypothesis H5
1 .
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Figure 5.7: TRE dependence on point distances (left: point distance main effect; right:
interaction effect). Bars represent means. Error bars represent standard
errors. Brackets indicate statistically significant post hoc pairwise com-
parisons. Adapted from [4], © 2025 IEEE.

Pairwise comparisons for the main effect indicate that a point distance of
15 cm yielded significantly lower TRE than the other two distances, while a
point distance of 30 cm resulted in significantly higher TRE than the others.
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However, the significant interaction effect suggests a dependency on the
tracking technique, challenging the isolated interpretation of the main effect.

For ARToolKit, the TRE was significantly higher at a point distance of
30 cm compared to 15 cm. Similarly, retro-reflective tracking performed worst
at 30 cm, with 7.5 cm also resulting in higher TRE than 15 cm. In contrast,
Vuforia showed the opposite trend, achieving significantly better registration
accuracy at 30 cm than at 15 cm

5.3.6 Point Distribution

Significant point distribution main effects (F = 16.63, p < 0.001, η2 = 0.106)
and interaction effects (F = 12.72, p < 0.001, η2 = 0.196) were found on
registration accuracy (see Figure 5.8). Therefore, H6

0 can be rejected in favor
of the respective alternative hypothesis H6

1 .
Regarding the main effect, pairwise comparisons revealed significantly

higher TRE for the random distribution compared to the other two. However,
the presence of a significant interaction effect again highlights a synergy
between point distribution and tracking method.

For ARToolKit, coplanar point distribution yielded significantly lower
TREs compared to equidistant and random point placements. Retro-reflective
tracking showed significantly higher TREs for random point placement than
both equidistant and coplanar setups. No significant pairwise differences
were observed for Vuforia.
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Figure 5.8: TRE dependence on point distributions (left: point distribution main effect;
right: interaction effect). Bars represent means. Error bars represent stan-
dard errors. Brackets indicate statistically significant post hoc pairwise
comparisons. Adapted from [4], © 2025 IEEE.

5.3.7 Amount of Points

While there was no significant main effect of the number of points (F = 0.51,
p = 0.43), significant interaction effects (F = 7.16, p = 0.007, η2 = 0.087) were
found on TRE. Thus, H7

0 can be rejected in favor of the respective alternative
hypothesis H7

1 . For ARToolKit, the TRE was significantly lower with 8 regis-
tration points. While Vuforia showed a lower mean TRE with 8 points, it also
produced more outliers, and the difference was not statistically significant.
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Retro-reflective tracking, on the other hand, exhibited a significantly higher
TRE with 8 points compared to 4.
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Figure 5.9: TRE dependence on point quantities (left: non-significant amount of points
main effect; right: interaction effect). Bars represent means. Error bars
represent standard errors. Brackets indicate statistically significant post
hoc pairwise comparisons. Adapted from [4], © 2025 IEEE.

5.3.8 Refinement Approaches

To refine the point-based registration results, the use of additional points
recorded during robot movement as paired points or as point clouds for ICP

was analyzed as described in Section 5.1.3. Significant registration approach
main effects (F = 23.84, p < 0.001, η2 = 0.046) were found (see Figure 5.10).
Thus, H8

0 can be rejected in favor of the respective alternative hypothesis
H8

1 . Using ICP significantly improved TRE compared to both using only four
registration points and incorporating additional points as paired points. No
significant interaction effects were found (F = 1.25, p = 0.297).
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Figure 5.10: TRE dependence on refinement approaches (left: refinement approach main
effect; right: non-significant interaction effect; PB: point-based registra-
tion with four points; PB /w PP: point-based with four points and path
points; PB + PP ICP: point-based with four points refined by ICP using
path points). Bars represent means. Error bars represent standard errors.
Brackets indicate statistically significant post hoc pairwise comparisons.
Adapted from [4], © 2025 IEEE.
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5.4 discussion

In this section, findings are analyzed and compared with related work,
summarized in Table 5.1. While different measures for registration accuracy
are employed, these previous results can be used as general reference.

Table 5.1: Reported registration accuracy values from related work (italics indicate the
accuracy metric used; accuracy reported as M ± SD; NR = not reported).
Reprinted from [4], © 2025 IEEE.

Source Accuracy Registration Method

X
R

-t
o-

ro
bo

t
R

eg
is

tr
at

io
n

this 1.76 ±0.40 mm Point-based using 4 points with refinement

TRE using optical tracking and multimodal marker

[Ch. 4]
43.23 ± 14.22 mm Manual alignment of virtual robot
12.13 ± 6.42 mm Point-based using 4 points (physical points)
14.86 ± 17.22 mm Point-based using 4 points (Vuforia)

RMSE of three points on real/virtual robot

[110] 30.2 ± 23.9 mm Manual alignment of virtual robot
16.5 ± 11.0 mm Manual alignment + Reflective AR display

Manually placed virtual objects as ground truth
[178] 30.0 ± 9.3 mm Manually placed Vuforia marker
[94] 10 ± NR mm Point-based, tracked HoloLens

RMSE between closest points of point clouds

[258] 27.53 ± 44.51 mm Manual alignment of cube with robot base
4.91 ± 1.39 mm ICP with depth point cloud

Translational error compared to ground truth
[241] 9 ± NR mm ICP with depth point cloud

W
or

ks
pa

ce
R

eg
is

tr
at

io
n

TRE using optical tracking

[211]

8.82 ± 4.85 mm Point-based using 3 points (150 mm, Robot 1)
4.64 ± 1.23 mm Point-based using 3 points (150 mm, Robot 2)
11.48 ± 6.24 mm Point-based using 3 points (300 mm, Robot 1)
2.71 ± 0.94 mm Point-based using 3 points (300 mm, Robot 2)

TRE using physically defined points

[325]

1.01 ± 0.20 mm Point-based using 3 points (250 × 175 mm2)
0.70 ± 0.11 mm Point-based using 3 points (750 × 525 mm2)
0.59 ± 0.09 mm Point-based using 5 points (750 × 525 mm2)
0.44 ± 0.05 mm SA, Point-based using 3 points (250 × 175 mm2)
0.41 ± 0.35 mm SA, Point-based using 3 points (750 × 525 mm2)
0.38 ± 0.03 mm SA, Point-based using 5 points (750 × 525 mm2)
0.42 ± 0.02 mm Clustering

Se
ns

or

TRE for 97 evenly sampled points

[228]
1.72 ± NR mm Point-based using 3 points (camera left)
2.13 ± NR mm Point-based using 3 points (camera centered)
1.76 ± NR mm Point-based using 3 points (camera right)

TRE using commanded and reached robot position

[185]
21.4 ± 12.3 mm DART [288] using depth camera
28.2 ± 24.1 mm Point-based using 10 points (ArUco marker)
27.4 ± 4.70 mm Single RGB camera image

tracking method Comparing the results of this experiment with those
reported for manual registration [110, 178, 258] reveals that point-based
methods enable more accurate registration. This aligns with the findings
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in Chapter 4. Although ArUco tracking performed significantly worse than
the other methods in this study, the resulting TRE is comparable to manual
approaches and consistent with the point-based accuracy reported for ArUco
by Lee et al. [185]. Notably, point-based registration using the other tracking
techniques achieved accuracies comparable to, or even exceeding, those
reported for point-based registration with infrared cameras [228], as well as
surface-based methods using depth [185, 258] and RGB cameras [185].

viewing angle Previous research on infrared tracking cameras for sen-
sor registration suggested that an angled view of the robotic workspace can
improve registration accuracy [228]. This finding is attributed to the view-
ing angle altering the distance of the measured points, thereby influencing
whether the points fall within the optimal tracking range. In contrast, studies
on tracking accuracy with Vuforia and ARToolKit have shown that tracking
accuracy depends not only on distance but also significantly on the viewing
angle itself [74], indicating that image marker tracking may be affected by
factors beyond just distance. However, unlike previous findings, this study
did not reveal significant statistical effects of viewing angle on TRE. However,
since descriptive differences were observed, future research should consider
a broader range of data, incorporating both varying distances and angles
simultaneously, to obtain more comprehensive results.

viewing distance and marker size The viewing distance and marker
size are related, as changes in viewing distance alter the apparent size of
the marker. The results show that larger markers enable more accurate
registration, consistent with research linking reduced tracking error to shorter
HoloLens-marker distances [74]. However, this effect does not translate to the
analysis of viewing distance. This suggests that other factors might mitigate
the observed effects. One explanation is the location of the marker within
the FOV. When the marker is positioned closer to the XR device, it appears
larger but may also lie near the edges of the FOV, where tracking accuracy
tends to decrease if the intrinsic calibration does not fully compensate for
lens distortion [319, pp. 60–61]. This may lead to increased FLE, which could
negatively impact overall registration accuracy.

point distance Related work on image-guided surgery [126, 341] and
robot-to-workspace registration using 3D-printed seats [325] suggests that
increasing the distance between registration points can improve registration
accuracy. In this experiment, this holds true only for changes in distance
between 15 cm and 30 cm for Vuforia, and between 7.5 cm and 15 cm for
retro-reflective tracking. In contrast, for both ARToolKit and retro-reflective
tracking, decreasing the distance from 30 cm to 15 cm improves tracking
accuracy. This may again be attributed to tracking inaccuracies at the edges
of the HoloLens’s FOV, or to reduced tracking performance of the robotic
arm when operating in extended positions [324]. This aligns with previous
findings that reported decreased registration accuracy for points located
farther from the robot base [228].
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point distribution The main effect and the interaction effect for AR-
ToolKit and Vuforia indicated that random point distribution resulted in a
significantly higher TRE compared to coplanar and equidistant placements.
Random placement is the only method where the centroid of the registration
points does not necessarily coincide with the centroid of the target points
used to calculate TRE. This finding aligns with previous research suggesting
that positioning the centroid of the registration points close to the centroid of
the target points improves accuracy [126, 341].

amount of points The results for ARToolKit indicate that increasing the
amount of registration points reduces TRE, consistent with related work [126,
325, 341]. However, previous studies have also highlighted that increasing the
number of points can introduce outliers [96, 126]. For retro-reflective tracking,
increasing the number of points increased TRE, suggesting that outliers may
have negatively affected the accuracy.

refinement approaches To refine registration results, path points, which
are recorded during the movement between registration points, were inte-
grated. Unlike static registration points, where the robot halted until tracking
converged to a stable state to mitigate latency effects, the path points were col-
lected continuously. While including path points in point-based registration
did not significantly improve registration, using them for an ICP-based refine-
ment after point-based registration with the registration points significantly
enhanced accuracy. This suggests that iteratively updating the correspon-
dence of path points improves registration outcomes by mitigating the effects
of incorrect correspondences due to latency and outliers.

comparison to Chapter 4 As shown in Table 5.1, the TRE of the point-
based registrations presented in Chapter 4 was significantly higher than
the TRE reported in this chapter. This improvement might be attributed to
the optimization of the registration parameters. In Chapter 4, participants
were free to place registration points as they wished, which may have led
to suboptimal parameter choices. However, it is worth noting that even the
worst parameter configurations presented in this chapter resulted in lower
TRE values than those in Chapter 4. One possible reason for this difference in
registration accuracy could be tracking inaccuracies in Chapter 4, caused by
the use of cylindrical markers and object tracking instead of planar image
markers, or by relying on manual confirmation of tracking accuracy rather
than automatic detection of tracking convergence. Another contributing factor
may be the difference in how TRE was calculated in the two experiments. In
the first experiment, a ground truth was established to project target points,
whereas in the second experiment, target points were directly measured.
Therefore, tracking errors affecting the placement of the ground truth, as well
as the selection of target points at the edges of the workspace, might have
amplified registration errors in the first experiment.

Nevertheless, applying the findings of this chapter to the interactive regis-
tration methods presented in Chapter 4 is expected to significantly improve
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registration results. To this end, ARToolKit could be employed instead of
Vuforia, and the refinement using path points could be incorporated. Addi-
tionally, the findings on registration point placement could be used to either
enable automatic movement to registration points or provide visual guidance
for manual placement.

5.4.1 Limitations

The main limitation of this experiment lies in using only one specific robot
and XR device. While this approach allowed for a detailed and controlled
investigation of XR-to-robot registration, it should be acknowledged that
the results may be influenced by the characteristics and limitations of this
setup. Future research should explore a broader range of devices to assess the
generalizability of presented findings and the effects of different hardware.

This experiment focused on commonly used, publicly available tracking
approaches. However, registration accuracy could potentially be enhanced
by incorporating refinement techniques such as improved marker tracking
through corner or edge refinement [161], machine learning [325], bias correc-
tion [111], or the inclusion of orientation vectors [221]. Although the proposed
point-based method performs well compared to depth-based point cloud
approaches [258] and deep learning methods based on RGB images [185], the
latter techniques offer the advantage of requiring only a single image, which
can accelerate the registration process. Therefore, future research should
explore deep learning approaches [160, 185] to improve efficiency further.

Another limitation arises from the experimental design: separating the
characteristics under investigation into individual experiments allowed for
a more controlled analysis of each factor. However, this approach does not
provide insight into potential interactions between characteristics, such as
simultaneous changes in viewing distance and viewing angle. Future work
should investigate these combined effects.

Finally, it should be noted that this experiment’s error assessment did
not account for pivot calibration errors, as the end effector was maintained
in a consistent orientation during both the registration and target point
acquisition. This isolated the registration accuracy, allowing the results to
reflect the performance of the registration method itself rather than errors in
pivot calibration. While this makes the presented results valid for scenarios
where the transformation between the marker and TCP is known (e.g., through
end effector geometry), future work should evaluate the accuracy of pivot
calibration for different tracking techniques.

5.4.2 Implications

Based on the findings reported in this chapter, several general recommenda-
tions for improving XR-to-robot registration accuracy can be proposed:
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Use ARToolKit for marker tracking. This study revealed significantly higher
registration accuracy when using ARToolKit compared to Vuforia, ArUco, and
retro-reflective marker tracking. ArUco, in particular, showed substantially
worse accuracy than the other methods.

Employ larger markers. The results indicate that marker sizes of 5 cm led to
lower accuracy compared to markers of 10 cm and 15 cm.

Use path points for refinement. Registration accuracy improved significantly
when additional points were recorded during movement between registration
targets and surface-based refinement techniques were applied.

In addition, the conducted experiments revealed that some factors are de-
pendent on the tracking algorithm used. This leads to the following method-
specific recommendations. As previously noted, ArUco was excluded from
further analysis due to its substantially higher registration errors.

ARToolKit. To enhance registration accuracy, the viewing angle should be
below 30◦, the point distance should be approximately 15 cm, and the reg-
istration points should be arranged coplanar. Additionally, increasing the
number of registration points significantly improves accuracy.

Vuforia. Vuforia is less sensitive to point distribution and quantity. However,
the distance between the XR device and the registration points should be
minimized, and point distances should be kept below 30 cm.

Retro-reflective markers. The viewing distance should be kept short, as this
approach performs poorly at larger distances. Registration point spacing
should be around 15 cm, and the centroid of the registration points should
align with the centroid of the target points. Additionally, using four registra-
tion points instead of eight resulted in better performance.

5.5 conclusion

In this chapter, an extensive investigation on the impact of different tracking
techniques and registration parameters on the accuracy of XR-to-robot regis-
tration was presented. Overall, the best registration accuracy was achieved
using ARToolKit tracking. While no significant effects of viewing angle and
distance on registration accuracy were observed, larger markers and placing
the centroid of the registration points near the centroid of the targets con-
sistently led to more accurate results. The influence of other factors, such
as point distance, amount, and distribution, was highly dependent on the
tracking method used. The experimental results also demonstrated that a
simple yet effective refinement approach, i.e., collecting points along the
paths between registration points and using them for registration refinement
via point cloud registration, significantly improved registration accuracy.
While future work is needed to assess the transferability of the findings to
other XR devices and robots, these results can serve as general guidelines for
XR-to-robot registration.
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The first part of this thesis comprised two investigations into XR-to-robot regis-
tration, a crucial step for enabling both hand gesture interaction and seamless
XR integration within robotic workspaces. In Chapter 4, three registration
methods with potential for enabling efficient registration were identified
based on related work. These manual and point-based methods were evalu-
ated regarding accuracy, duration, and perceived workload in a comparative
user study. The results indicated that point-based approaches could achieve
more accurate registration while reducing user workload.

However, the accuracy achieved by point-based approaches in that study
was not sufficient for high-precision scenarios. Therefore, Chapter 5 presented
a follow-up technical investigation into parameters that may influence reg-
istration accuracy. By evaluating four commonly used tracking techniques
and varying parameters such as viewing angle and distance, marker size,
point distance, distribution, and number of points, several influential factors
were identified and distilled into practical guidelines. In addition, a sim-
ple yet effective refinement approach was proposed, which utilized points
recorded during movement between registration points for an additional
refinement step based on point cloud registration. This refinement strategy,
combined with careful parameter optimization, led to significantly improved
accuracy compared to the initial experiment. Moreover, the achieved registra-
tion accuracies were higher than those reported in related work for manual,
point-based, and surface-based XR-to-robot registration.

By first identifying point-based registration as a more accurate approach
with lower user workload than manual registration, and subsequently im-
proving its accuracy through a technical evaluation, the findings of the first
part of this thesis contribute to more efficient XR-to-robot registration. As the
implemented registration methods can be readily integrated into existing
frameworks, the results can support practitioners in accurately leveraging
XR for both visualization and intuitive input within robotic workspaces,
representing an important step towards more efficient HRI.
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Part II

H A N D G E S T U R E - B A S E D H U M A N - R O B O T
I N T E R A C T I O N

Synopsis: This part addresses two challenges associated with
hand gesture-based HRI through three experiments. The first two
experiments focus on compensating for the lack of haptic feedback
by employing force automation and sensory substitution. The
third experiment investigates sensor placement and control modes
to alleviate fatigue during hand gesture-based HRI.
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7 I N T R O D U C T I O N

7.1 introduction

With advancements in artificial intelligence, machine learning, and sensing
technologies, robots are increasingly capable of sensing, planning, and acting
autonomously [194]. This raises the question: Why do we still need HRI? Can’t
tasks simply be automated? According to Sherwani et al. [301], the answer
to this question is that we need HRI because "the strengths of humans are
the weakness of robots and the other way around". While robots excel at
repeatability and physical strength, they still often lack the flexibility and
adaptability required in dynamic work environments [93]. HRI can bridge this
gap by enabling humans to teach robots new tasks or take manual control
when tasks are too complex or risky to be fully automated [266, 301, 361].
This includes handling failure situations [52], as well as providing control
during risk-prone scenarios such as in medicine [361] or space robotics [125].

To enable such HRI, traditional robot control methods employ physical
controllers or direct hand-guiding of the robot [35, 306]. However, more
recently, NUIs have gained attention in HRI (see Section 2.1.2) [44, 183]. NUIs

rely on interaction approaches familiar from everyday life, enabling intuitive
and direct communication between humans and robots [256, p.472]. This
includes modalities such as hand gestures, head movements, speech, and
gaze [334]. In particular, hand gestures have shown potential for enabling ef-
ficient interaction in other application areas, such as interaction with medical
images [137, 138], large displays [21], and XR applications [192, 364].

While the general use of hand gestures for robot control has been explored
in related work, several challenges remain. Therefore, this chapter builds
on prior research to systematically address gaps in hand gesture-based HRI.
Specific challenges associated with this control method are identified and
addressed to answer RQ2.

RQ2 | How can efficient mid-air gesture-based HRI be designed?

7.2 related work

Comparative studies have been conducted across different application do-
mains to assess the efficiency of hand gesture interaction for HRI (see Ta-
ble 7.1). For instance, Lee et al. [183] investigated hand gestures for robotic
arm control in comparison to teach pendants and physical hand-guiding.
Their findings indicated that hand gesture interaction allowed for faster
task completion and was associated with lower perceived workload. Wu et
al. [356] compared whole-body teleoperation, including hand gestures, with

71
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joystick-based control in a remote interaction scenario. Their results found
better performance for the whole body interface.

While these works highlight the potential advantages of robot control
through hand gestures, other works highlight existing challenges. Zhou et
al. [373] investigated different interaction methods for robotic surgery. In a
first experiment, they compared hand gestures with upper body movement,
keyboard input, a haptic device, and a handheld controller across multiple
tasks, finding that the methods performed comparably. In a second exper-
iment focused on a more complex task, they compared hand gestures to a
haptic device, finding that the haptic device yielded superior performance.
Similarly, Saren et al. [282] evaluated robot control using eye gaze, hand ges-
tures, and voice commands, compared to a touchpad, in a pick-and-place task
under both single-task and dual-task conditions. While touchpad and hand
gesture interactions generally enabled faster task execution than the other
methods, the perceived workload depended on the presence of a secondary
task. Whitney et al. [343] compared hand-guiding to control via keyboard
and mouse, as well as hand gestures. Their results indicate that while hand
gesture control was faster and associated with lower workload than keyboard
control, hand-guiding resulted in the lowest task duration and workload. In
the context of surgical robotics, Borgioli et al. [44] and Chen et al. [61] both
compared hand gesture-based interaction with standard controller-based
control for the da Vinci surgical system. Borgioli et al. found that while
hand gestures enabled intuitive and precise interaction, the traditional con-
troller still outperformed them. In contrast, Chen et al. reported comparable
performance between the two modalities.

Furthermore, the general feasibility of hand gesture control was investi-
gated in two co-authored publications [8, 9]. In the first work [9], hand gesture
control for robotic ultrasound was qualitatively evaluated. The findings sug-
gested that while the interaction was intuitive and precise, challenges remain
regarding the interaction space, fatigue, haptic perception, and involuntary
vertical motion. In the second work [8], hand-guiding, haptic teleoperation,
and hand gesture control were compared for an abstract robotic ultrasound
task. It was found that hand-guiding enabled more accurate and faster ma-
nipulation, while haptic input offered slightly better usability and lower
workload. Again, challenges regarding haptic perception and workload for
hand gesture interaction were identified.

As summarized in Table 7.1, existing studies indicate that gesture-based
interaction holds promise, reporting benefits such as naturalness [373], intu-
itiveness [183, 199, 356], flexibility [61], speed [183, 282], and the advantage of
requiring less bulky and expensive hardware [44]. However, several studies
also highlight remaining challenges that impact the performance of hand
gesture-based control. These include issues such as user fatigue [44, 282,
373], missing visual or sensory feedback [183, 8], involuntary vertical hand
movement leading to higher contact forces [9, 373], and limited tracking
space [373]. These findings therefore motivate further research into the design
and usability of hand gesture-based interfaces for HRI.
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Table 7.1: Overview of studies on hand gesture-based robot control across different
robotic application domains.

Application Benefits Challenges

Pick-and-Place [183] • Fast task completion
• Low workload
• Intuitive and easy

• Missing visual and sensory
feedback

[343] • Faster & lower workload
than keyboard control

• Higher duration & workload
than hand-guiding

[282] • Fast • Physically Demanding

Object
Manipulation

[356] • Precise & Intuitive
• Not mentally demanding
• Fast task completion

none reported

Surgery [373] • Comparable performance
for simple tasks

• Natural

• Involuntary interaction in-
creases contact force

• Leads to fatigue
• Limited interaction space

[44] • Intuitive & precise
• Less expensive and bulky

• Fatigue due to arm posture

[61] • Comparable performance to
controllers

• High Flexibility

none reported

Ultrasound [9] • Intuitive
• Precise
• Easy to learn

• Involuntary vertical move-
ment causing contact force

• Interaction space
• Contact force
• Fatigue

[8] none reported • Missing sensory feedback
• High workload

7.3 contribution

To address the issues associated with hand gesture interaction for robot
control, this part of the thesis focuses on the two major challenges identified
above: the lack of haptic feedback and user fatigue. In this context, it inves-
tigates RQ2 through the following contributions, based on three conducted
experiments:

Investigation of Partial Automation. Section 8.2 explores an approach in
which contact force is autonomously regulated while the remaining DOFs

are manually controlled. This setup is used to study the potential of partial
automation in easing HRI.

Assessment of Hand Gesture for Robot Control. Through a comparison
between hand gesture-based robot control and the state-of-the-art method of
hand-guiding, Section 8.2 comparatively evaluates the potential of gesture-
based interaction across tasks requiring different levels of precision.
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Evaluation of Sensory Substitution Modalities. Section 8.3 examines dif-
ferent sensory substitution modalities in XR, investigating the suitability of
visual and vibrotactile feedback for conveying force information.

Investigation on Visual Feedback Design. To further investigate the char-
acteristics of visual feedback, Section 8.3 explores different visual feedback
designs and XR placements for sensory substitution of force information.

Analysis of Sensor Placement. Aiming to reduce fatigue during hand gesture-
based HRI, Chapter 9 investigates different sensor placements for tracking
hand gestures for robot control.

Investigation of Control Modes. Additionally, Chapter 9 explores different
control modes for mapping hand gestures onto robot motion, focusing on
position and rate control, and evaluates their efficiency for HRI.



8 F O R C E A S S I S TA N C E

8.1 introduction

As previously described, the loss of direct haptic perception poses a challenge
in HRI [235, 9]. Integrating haptic feedback has proven to be a valuable tool
for enhancing situational awareness by providing tactile cues [95]. While
haptic input devices can deliver direct feedback by mimicking the robot’s
sensory responses, such solutions are not always feasible due to task-specific
constraints such as spatial limitations or high associated costs [214, 235].

As a result, alternative approaches have emerged, one of which is the
automation of contact force regulation. This involves detecting external forces
and automatically adapting the probe’s position accordingly. As this only
requires the translation in one DOF, the force and position control can be
decomposed, allowing users to control the remaining DOFs manually [267,
370]. This method has been shown to improve contact force consistency and
enable safe interaction [100, 370].

Another approach is sensory substitution, in which tactile perception is
mapped onto other sensory modalities. Force perception can be conveyed
through auditory [157], vibrotactile [60], visual [308], or multimodal [145]
stimuli. Unlike direct force feedback, sensory substitution allows small forces
to be perceived at high stimulation levels without interfering with the opera-
tor’s movements, thereby maintaining system stability [212]. Sensory substi-
tution has been shown to reduce overall applied force [122], help maintain
consistent contact force [314], and improve both stability and precision [374],
even when used alongside haptic feedback.

Although both contact force automation and sensory substitution have
demonstrated benefits for robot control during contact-intensive tasks, their
potential has not been assessed in the context of hand gesture-based robot
control. To address this gap, this chapter investigates the suitability of these
two force assistance approaches for supporting users during contact-intensive
tasks in HRI using hand gestures, aiming to answer RQ2.1.

RQ2.1 | Can force assistance improve efficiency in HRI?

8.1.1 Related Work

This section provides an overview of previous work on force assistance
approaches. Specifically, it presents research on contact force automation in
general HRI. Since sensory substitution of contact force is also relevant in
areas beyond robot control, such as XR and surgical settings like laparoscopy,
related work in these fields is also discussed.

75
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8.1.1.1 Contact Force Automation

To integrate contact force automation with interactive control, Raina et
al. [267] and Zhao et al. [370] proposed hybrid position-force control ap-
proaches that automatically regulate contact force while allowing interactive
control of the remaining DOFs via a haptic input device. These approaches
were reported to have high user acceptance [267] and to offer safer, more
convenient, and more reliable control compared to fully teleoperated sys-
tems [370]. Seitz et al. [297] investigated the remote control of robotic ultra-
sound using a joystick while maintaining stable contact pressure. Although
they hypothesized that force automation improves interaction intuitiveness,
they did not conduct a human-centered evaluation. Fang et al. [100] intro-
duced different control regimes using admittance control to amplify user-
applied forces, assist in smoothly reaching desired forces, and restrict motion
when excessive forces are applied. Their evaluation compared four condi-
tions: freehand ultrasound scanning, freehand scanning with visual contact
force feedback, robot-assisted scanning without maximum force constraints,
and robot-assisted scanning with maximum force constraints. The results
showed that the robotic system effectively reduces human-applied force,
while the maximum force constraint simplifies interaction, enhances contact
force stability, and improves ultrasound image quality.

8.1.1.2 Sensory Substitution for Force Perception

The design of sensory substitution for force perception involves several key
factors, which are discussed in the following subsections. The first is the
modality used to convey force information. For visual feedback specifically,
two additional aspects are critical: the design of the feedback representation
and its placement.

sensory substitution modalities Several comparative studies on
multimodal and unimodal approaches to assess the suitability of different
modalities for sensory substitution conveying force information have been
conducted. Jonetzko et al. [157] compared three methods of force visualiza-
tion with auditory feedback for grasping tasks. While all feedback modalities
reduced grasping force, no performance differences were found across condi-
tions. Moreover, although users preferred multimodal, redundant feedback,
it appeared to be less efficient. Kitagawa et al. [171] compared visual force
feedback with discrete auditory feedback for a robotic suturing task. Their
results indicated that visual outperformed auditory feedback in terms of
force consistency. Haruna et al. [132] investigated visual, auditory, and vi-
brotactile feedback to signal excessive force during a grasping task. Their
results revealed that visual feedback was the most effective in reducing
grasping force without increasing cognitive load. Chan et al. [60] explored
force augmentation for robot trajectory planning using visual and vibrotactile
feedback. Their findings suggested that unimodal vibrotactile sensory substi-
tution resulted in smaller force errors than visual or multimodal feedback.
In contrast, Howard and Szewczyk [145] observed that visual feedback had
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overall better performance when compared to different vibrotactile feedback
types for force representation in laparoscopy. Additionally, they found that
multimodal feedback enhanced task precision compared to visual and tactile
feedback alone.

visualization concepts Different designs of visual sensory substitu-
tion to facilitate force perception have been explored not only in HRI but also
in domains such as minimally invasive surgery and remote collaboration.
Visualization concepts include highlighted areas, bars, arrows, numerical
displays, heat maps, and force gauges. These visualizations convey force
information through color, size, numbers, and directional indicators. An
overview of the different approaches found in related work is provided in
Table 8.1.

Table 8.1: Overview of visual sensory substitution concepts for conveying force
information in related work.

Type Characteristic Application

Highlighted Areas Color [14, 24, 271] Robotic Surgery
[39, 167] Remote Collaboration

[157] Robot Teleoperation

Size [118] Surgery

Bars Size [145] Laparoscopy
[167] Remote Collaboration

[290, 367] Robot Teleoperation

Size and color [24, 171, 314] Robotic Surgery
[39] Remote Collaboration

[308] Robotic Ultrasound
[122, 224] Robot Teleoperation

Size, color,
and direction

[374] Robot Teleoperation

Arrows Size [60, 157] Robot Control

Size and color [82] Robot Control

[308] Robotic Ultrasound
Size and direction [143] Laparoscopy

Numerical Displays Number [82, 157] Robot Control

Heat Maps Color [24] Robotic Surgery
[308] Robotic Ultrasound

Force Gauges Pointer [117] Robotic Ultrasound

To compare different visual feedback designs, Black et al. [39] compared
two force visualizations in a remote ultrasound collaboration task: continuous
color changes of a virtual probe and an error bar that adjusted its size and
color based on force offset. Their study found the error bar to be superior,
with all participants preferring it due to its clear, intuitive representation.
Similarly, Kim et al. [167] compared two approaches for sharing hand force in
remote collaboration and found that a size-changing bar was more effective
than a superimposed colored mesh on the remote collaborator’s hands. Aviles-
Rivero et al. [24] compared a colored circle, heatmap, bar, and traffic light
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for robotic surgery applications, and derived several design implications:
avoid overlapping the visualization with the region of interest or cluttering
the display with excessive text; place small visualizations close to the region
of interest; use intuitive color coding and simple geometric shapes; and
provide multimodal cues, such as combining position and color, to enhance
information conveyance. Recently, Song et al. [308] presented an experiment
comparing four XR visual feedback designs for robotic ultrasound: a vector
arrow, a squeezable arrow, a linear gauge, and a force heatmap. They found
that the linear gauge, which represented contact force through both height
and color change, was the most effective and user-friendly.

visualization placement The placement of XR content to enhance
situational awareness has been shown to impact reaction time and comprehen-
sion [352]. According to Billinghurst et al. [36], information can be displayed
in a world-stabilized, head-stabilized, or body-stabilized manner. In the con-
text of HRI, this can be extended to include robot-stabilized information
display [311].

World-Stabilized Placement. Given that most existing literature on force visual-
izations focuses on robotic surgery [238], the region of interest is typically
visible through the endoscopic image displayed on a screen. Thus, a common
approach is world-stabilized placement, presenting the force feedback, either
adjacent to the image [24, 143, 171, 290, 314] or directly overlaid onto the
image at the position of the instruments [14, 24, 118, 122, 145, 271]. Similarly,
Yusof et al. [367] and Moortgat-Pick et al. [224] investigated teleoperation for
grasping tasks, displaying the remote area on a monitor and integrating force
feedback alongside the video stream. Gilbertson and Anthony [117] stud-
ied the impact of force visualization in freehand ultrasound examinations,
displaying a force gauge beside the ultrasound image on an external monitor.

Robot-Stabilized Placement. In contrast to these screen-stabilized approaches,
Jonetzko et al. [157] and Chan and Quintero et al. [60] investigated robot-
stabilized placement of visual sensory substitution. They utilized the Microsoft
HoloLens to display force visualizations directly at the position of the robotic
end effector. De Franco et al. [82] compared screen- and robot-stabilized
visual force feedback for a polishing task. While the former displayed real-
time force plots on a desktop monitor, the latter utilized a holographic
arrow rendered via the HoloLens. Results indicated that the robot-stabilized
interface allowed for more consistent force maintenance, while participants
encountered difficulties focusing on the task with the desktop feedback.

Head- and Body-Stabilized Placement. While both screen- and robot-stabilized
visualization placements anchor the information at world positions, either
in the direct or remote environment, Plabst et al. [250] expanded their study
beyond world-stabilized positions, investigating the impact of head-, body-,
and world-stabilized placements for notification visualization. They found
wrist-mounted (body-stabilized) notifications promising for high-interaction
scenarios, while world-stabilized notifications were better suited for stationary
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tasks. Fixed notifications in the user’s FOV were preferred for tasks involving
frequent attention shifts. Rzayev et al. [277] found that while head-stabilized
information reduced response times, it increased distraction compared to
world- and body-stabilized displays. Similarly, Li et al. [193] showed that
object-stabilization improved user experience by minimizing visual interfer-
ence. Chua et al. [65] identified the center-right FOV position as optimal for
balancing performance and usability in head-stabilized interfaces. Lee and
Woo [181, 182] also found that displaying notifications in the middle-right
FOV reduced response time and task load. Nunez Sardinha et al. [231] inves-
tigated the placement of User Interfaces (UIs) for robot control. They found
that robot-stabilized and environment-stabilized placements resulted in lower
workload and higher performance compared to interfaces placed within a
head-stabilized placement.

8.1.2 Research Gap

Previous work has thus demonstrated the general feasibility of both partial au-
tomation and sensory substitution to assist users in HRI for contact-intensive
tasks. However, there remain several open questions:

Regarding force automation, prior studies have shown its potential for
robot control using haptic input devices [267, 370], joysticks [297], and hand-
guiding [100]. However, the application of force automation in hand gesture
interaction has not yet been explored. This is particularly relevant because
hand gesture interaction results in the loss of haptic perception, which has
been shown to introduce challenges in robot control [9].

In the context of sensory substitution, previous studies have provided
comparative evaluations of different techniques, indicating that visual and vi-
brotactile modalities are suitable for force display [60, 132, 145]. Furthermore,
other works suggest that the efficiency of force visualization may depend on
both the design [24] and the spatial placement of the visualization [82, 250].
However, these studies do not consider how variations in design and posi-
tioning influence the need for multimodal sensory substitution. Since these
factors may interact and affect the effectiveness of different modalities, a gap
remains in the multifactorial evaluation of sensory substitution approaches.
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8.2 investigation on partial automation

The first approach to force assistance investigated in this thesis is partial
automation. In this approach, the contact force is regulated by using sensors
to detect external forces and adjusting the end effector’s position accordingly.
Since only the autonomous control of a single DOF is required to achieve the
desired contact force, the remaining DOFs can be manually controlled.

As previously described, this approach has not yet been investigated for
hand gesture interaction, despite the reported challenges in force perception
inherent to this control method [9]. Therefore, this section aims to examine
the potential of partial automation for HRI using hand gestures. To contex-
tualize the results, hand-guiding is included as a baseline, enabling a direct
comparison with a state-of-the-art interaction technique. To analyze both
interaction methods and the impact of partial automation on them, two types
of HRI tasks with different precision demands are investigated.

Parts of this section are published in: Tonia Mielke, Marilena Georgiades,
Oliver S. Großer, Maciej Pech, Christian Hansen, and Florian Heinrich. “En-
hancing Gesture-Based Human-Robot Interaction: Investigating the Role
of Force Automation.” In: Proceedings of the 21st ACM IEEE International
Conference on Human-Robot Interaction (HRI ’26). Edinburgh, Scotland, UK:
Association for Computing Machinery, 2026, pp. 1–10. doi: 10.1145/3757279.
3785568 [3].

8.2.1 Technical Methods

Supplementary
video

The benefits of force automation have been demonstrated for different inter-
action methods in robotic ultrasound [100, 267, 370]. Given that hand gesture
control has also been identified as a promising approach in this domain [9],
robotic ultrasound is selected as the exemplary use case (see Section 1.2.4).
This section describes the technical methods used to investigate whether
the reported positive effects of partial automation in HRI also apply to hand
gesture interaction.

8.2.1.1 Interaction Techniques

To contextualize the performance of hand gesture-based robot control, hand-
guiding is employed as a baseline. Hand-guiding is selected as it is commonly
integrated into commercial robot control systems [327], and it is the predomi-
nant interaction method in robotic ultrasound [64, 196, 297, 368]. To enable
the separation of DOFs during robot control, a foot pedal with two switches is
used, allowing the user to toggle between translational and rotational DOFs.

hand gesture interaction The Hand Gesture Interaction (HI) tech-
nique is implemented as described in Section 2.3.2. An earlier version of
this technique was presented in the co-authored publication by Schreiter et
al. [9]. That version used position control to map hand movement to end
effector translation and rate control to map forearm rotation to end effector

https://doi.org/10.1145/3757279.3785568
https://doi.org/10.1145/3757279.3785568
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rotation. Since this method did not allow simultaneous manipulation of all
DOFs, this thesis incorporates an improved version of the hand gesture-based
robot control, utilizing position control for both hand position and rotation
to directly map hand movement onto robot motion. As additional visual
feedback, a virtual dummy probe is employed. This holographic visualization
of a probe is placed in the operator’s hand during interaction (see Figure 8.1a).
Depending on the active mode, the virtual probe either translates or rotates in
response to the user’s hand movements. To achieve movement to commanded
positions without reacting to external forces, impedance control with high
stiffness (1000 N/m, 200 N/rad) is used. Hand motion is tracked using an
HMD, which is registered with the robot as described in Section 2.3.4.

hand-guiding In Hand-Guiding (HG), the compliant robotic arm is
moved under gravity compensation. While prior research suggests the po-
tential of using more sensitive sensors [66], hand-guiding using the robot’s
built-in force/torque sensors remains the standard interaction technique, as it
is already integrated into commercial robot control systems [327]. Therefore,
the robot’s torque sensors are used to implement impedance control with
minimal stiffness (1 N/m, 1 N/rad) and high nullspace stiffness (100 N/rad),
ensuring that the robotic end effector follows external forces.

(a) Hand gesture interaction (b) Hand-guiding

Figure 8.1: Interaction techniques investigated. Reprinted from [3].

8.2.1.2 Force Control

The objective of the Force Automation (FA) is to autonomously maintain a
predefined contact force Fd. This is achieved through hybrid position/force
control, which decouples the positioning and force laws. Force control is
realized using impedance control to establish a mass-damper-spring relation-
ship that balances the Cartesian end effector position and external force Fext,
measured through the robot’s joint torque sensors. Consequently, the vertical
position is autonomously adjusted to reach Fd, while the remaining degrees
of freedom are controlled using the aforementioned interaction methods (see
Figure 8.2). The force values are defined in alignment with Dhyani et al. [85]
for abdominal examinations, setting Fd = 10 N and Fmax = 30 N.
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Figure 8.2: Control architecture of HRI for robot control ■ without and ■ with force
automation. Adapted from [3].

8.2.1.3 Implementation

The prototype was implemented as described in Section 2.3, with an ultra-
sound probe attached to the robot using a 3D-printed mount. Hand tracking
was facilitated by the sensors of the HoloLens 2.

8.2.2 Evaluation Methods

A user study was conducted to evaluate the impact of force automation on
hand gesture HRI and compare it to the baseline of hand-guiding. This study
employed a within-subjects design, described in the following section.

8.2.2.1 Tasks

Related work has shown that the effectiveness of interaction techniques in
HRI is task-dependent [282, 373]. To gain deeper insights into hand gestures
for HRI and the effect of partial automation, this study investigates two dif-
ferent tasks that vary in the precision they require. In the context of robotic
ultrasound, broad exploratory movements are used to initiate autonomous
procedures, while smaller, precise motions are required to visualize tar-
get structures or correct autonomous behavior. One clinical scenario that
combines both types of movements is needle-based interventions, includ-
ing procedures such as central venous access, biopsies, and more complex
interventions like brachytherapy and thermal ablation [257]. In these cases,
broad exploratory movements help identify an appropriate acoustic window,
while fine, precise control is necessary to accurately visualize the needle tip.
Therefore, needle-based interventions are selected as an exemplary use case
to investigate the suitability of different interaction techniques, as well as
the role of force assistance in enhancing their performance. The tasks were
identified and defined in collaboration with radiologists.
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acoustic window task The initial task in the intervention involves
identifying an acoustic window that facilitates imaging of the target region.
This step is crucial for either initiating autonomous procedures [64, 196, 297,
368] or during teleoperation. In this study, the Acoustic Window Task (AW)
involves maneuvering the transducer from a standardized starting position
across the surface of a phantom, with the goal of visualizing a target structure
embedded within it (see Figure 8.3a).

needle tip task After initial probe positioning, the imaging focuses on
visualizing the needle tip. While this could involve autonomous tracking
of the needle, operators may need to correct offsets or adjust the visualiza-
tion post-needle advancement. Therefore, the second task of this study is
the Needle Tip Task (NT). This involves visualizing the needle tip of pre-
positioned needles, with the transducer automatically positioned to require
only minor adjustments for needle tip visualization (see Figure 8.3b). Al-
though the needles are static in the experimental setup, during an actual
intervention, this task would coincide with needle advancement. Therefore,
participants are instructed to hold the needle in their dominant hand and
control the robot using only their non-dominant hand.

(a) Acoustic Window Task (b) Needle Tip Task

Figure 8.3: Tasks investigated during user study. Reprinted from [3].

8.2.2.2 Variables

independent variables The independent variables of the two-factorial
study design were the interaction technique (HI, HG) and the force automation
(presence or absence of FA).

dependent variables As dependent variables TCT and perceived work-
load were measured. TCT was calculated from the moment the robot reached
its starting position until participants indicated satisfaction with their results.
Task completion was then verified by the study conductor through visual
inspection, ensuring adequate visibility of the target structure. Adequate
visibility was defined as the visibility of approximately 75% of the sphere’s
outlines for AW or clear visibility of the needle tip for NT by confirming it
was the last point along the needle. This method, performed by a trained
researcher, was chosen for its practicality, efficiency, and ability to minimize
task setup complexity. Perceived workload ratings were obtained using the
NASA TLX questionnaire [131].
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8.2.2.3 Hypotheses

No prior assumptions regarding the outcomes were made. Thus, two-sided
hypotheses were examined. Based on the variables described above, the
following null and alternative hypotheses were investigated.

Hy
0 .x The mean x is equal for all levels of y.

Hy
1 .x The mean x differs for at least one level

of y.

x ∈
{

1-TCT
2-TLX

y ∈
{

1-Technique
2-Automation

The resulting null and alternative hypotheses are each investigated across
the two different experimental tasks (NT, AW).

8.2.2.4 Sample Design

As the task involved interacting with the robot to conduct ultrasound imaging,
basic knowledge of ultrasound imaging was required. Therefore, medical
students from the local university were recruited to participate in the user
study through online polls. They were compensated with 30e for their
participation.

8.2.2.5 Apparatus

The study utilized a custom-made phantom, developed to emulate realistic
ultrasound properties and simulate acoustic shadowing caused by bones. As
needle guidance was chosen as use case, the phantom, consisting of agar-agar,
included a 3D-printed partial rib cage employing the CT-derived segmented
model by De Jong et al. [158] as well as rubber spheres representing target
regions (see Figure 8.4a). To account for the challenge of localizing target
regions with ultrasound, four rubber spheres were strategically placed at
varying accessibility levels (see Figure 8.4b).

At the beginning of the tasks, the robot was automatically positioned at
a start position. To ensure consistent starting positions of the ultrasound
probe on the phantom, a marker shield was affixed to the partial rib cage,
facilitating the localization of the phantom. A second phantom, mirroring the
layout of the first, contained one pre-positioned needle within each rubber
sphere. An 18-gauge echogenic needle, commonly used for liver and kidney
biopsies, was used. To support orientation during the study and provide
pre-interventional insight into the phantom’s internal structure, CT images
were acquired beforehand. These were made available to participants via a
standard DICOM viewer on an external screen.

8.2.2.6 Procedure

After collecting informed consent and demographic data, participants un-
derwent a training session to freely explore the phantom using manual
ultrasound, familiarizing themselves with the structures. Subsequently, for
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(a) CAD Model of 3D printed ribcage with
rubber spheres and marker shield

Needle Tip

Rubber Sphere

(b) Ultrasound image of phantom showing
rubber sphere and needle tip

Figure 8.4: Experimental apparatus for the user study. Reprinted from [3].

all four combinations of control methods (HG, HI, both with and without
FA), the two tasks (AW and NT) were conducted. The order of tasks and
control methods was counterbalanced across participants. Before each task,
participants were able to train under the current experimental condition
until they felt confident enough to proceed. They then performed the task
for each of the four rubber spheres or needles, respectively. After each task,
participants completed the NASA TLX questionnaire. Following all trials, a
semi-structured interview was conducted to obtain more in-depth feedback.
The study duration was approximately 60 minutes per participant.

8.2.2.7 Statistical Analysis

Since the task involved localizing four target structures, TCT values were aver-
aged across trials with identical experimental conditions for each participant.
For statistical analysis, the data were first checked for homogeneity with
Levene’s tests and for normality using Shapiro-Wilk tests. For each depen-
dent measure, at least one experimental condition violated these assumptions.
Thus, robust two-way ANOVAs for within-subjects designs based on trimmed
means were calculated to evaluate main and interaction effects (also see [348]).
The δt estimate, as proposed by Algina et al. [16], was calculated as effect
size for the main effects. To investigate identified interaction effects, robust
Yuen’s trimmed means tests were conducted, with p-value adjustments using
Hochberg’s method, for post hoc pairwise comparisons [348]. All statistical
analyses were conducted using R (version 4.1.1).
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8.2.3 Results

This section presents and interprets both the quantitative and qualitative
results of the conducted user study.

8.2.3.1 Participants

Twenty-eight (28) medical students (19 female, 9 male) participated in the
study. Their ages ranged from 22 to 37 years (M=27.25, SD=3.74), and they were
between their 3

rd and 12
th semesters of university studies (M=8.70, SD=1.71).

Participants self-reported their familiarity with ultrasound (M=3.18, SD=0.72)
and HRI (M=1.79, SD=0.83) on a 5-point Likert item, where 1 indicated no
experience and 5 a high level of familiarity. They also reported their technical
affinity (M=3.46, SD=0.88) on the same scale (1=low, 5=high).

8.2.3.2 Quantitative Results

The descriptive results are summarized in Table 8.3, and the statistical effects
are reported in Table 8.2. Although no interaction effects were detected for
the TCT in the NT task, the descriptive data revealed notable trends, prompt-
ing further pairwise comparisons. The results are visualized in Figure 8.5,
Figure 8.6, Figure 8.7, and Figure 8.8, with the post hoc pairwise comparison
results shown in the plots.

Table 8.2: Summary of robust ANOVA results for TCT and TLX (α < .05) in AW and
NT tasks across Techniques (hand-guiding and hand gesture interaction)
and Automation (with or without force automation). Test statistic Q and
effect size δt are reported. Adapted from [3].

Effect type Factor Q p Sig. δt Effect Fig.

TCT - AW

Main Technique 16.682 <0.001 ∗ -0.682 Medium 8.5a
Automation 7.773 0.005 ∗ -0.436 Small 8.5b

Interaction Technique × Automation 19.804 <0.001 ∗ - - 8.5c

TLX - AW

Main Technique 30.176 <0.001 ∗ -0.844 Large 8.6a
Automation 41.059 <0.001 ∗ -0.661 Medium 8.6b

Interaction Technique × Automation 13.241 <0.001 ∗ - - 8.6c

TCT - NT

Main Technique 2.722 0.099 0.240 - 8.7a
Automation 8.017 0.005 ∗ -0.607 Medium 8.7b

Interaction Technique × Automation 3.298 0.070 - - 8.7c

TLX - NT

Main Technique 3.155 0.076 -0.156 - 8.8a
Automation 16.71 <0.001 ∗ -0.421 Small 8.8b

Interaction Technique × Automation 7.48 0.006 ∗ - - 8.8c
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Table 8.3: Summary of descriptive results for all dependent variables (n = 28) for
AWs and NTs tasks. All entries are in the format: mean value [standard
deviation]. In the ’accumulated’ row, values for HI and HG are combined
to evaluate the main effects of force automation. Adapted from [3].

Variable TCT - AW [s] TLX - AW TCT - NT [s] TLX - NT

Accumulated 26.90 [9.36] 30.30 [18.37] 20.33 [7.21] 30.77 [17.61]
Without Automation 29.06 [10.48] 36.06 [19.63] 22.01 [7.46] 33.91 [17.83]
With Automation 24.74 [7.59] 24.54 [15.10] 18.65 [6.60] 27.62 [16.95]

Gesture Interaction 29.62 [9.65] 36.41 [19.01] 19.27 [6.36] 32.71 [19.51]
Without Automation 34.30 [8.36] 46.55 [15.22] 22.29 [6.89] 39.67 [20.42]
With Automation 24.94 [8.63] 26.28 [17.08] 16.25 [4.02] 25.74 [16.07]

Hand-Guiding 24.18 [8.28] 24.18 [15.59] 21.38 [7.88] 28.82 [15.40]
Without Automation 23.82 [9.83] 25.57 [18.03] 21.73 [8.11] 28.15 [12.74]
With Automation 24.53 [6.53] 22.80 [12.90] 21.04 [7.79] 29.49 [17.88]

8.2.3.3 Qualitative Results

During the semi-structured interviews, 295 individual statements were col-
lected. To analyze the data, duplicate statements from the same participants
were removed. Statements made by more than two participants were clus-
tered and summarized, resulting in 203 statements being condensed into 40

key points (see Table 8.4).

Table 8.4: Summary and frequency of statements (#) received during the interview.
Adapted from [3].

Hand-Guiding Hand Gesture Interaction

A
dv

an
ta

ge
s

+ Haptic feedback helpful (5)
+ Sensation of holding something (5)
+ Feels controlled (4), easy (3), familiar (3),

precise (3)

+ Sensitive (10), rotation works well (6)
+ Good responsiveness (5)
+ Virtual probe helpful (4)
+ Quick to learn (4), precise (4), not exhaust-

ing (3), intuitive (2)

D
is

ad
va

nt
ag

es

- Physically exhausting (8)
- Tilt (8) and rotation (6) challenging
- Occasionally jerky (4)
- Interaction with non-dominant hand

challenging (4)
- Uncertainty where to grab robot (4)
• Adding handle (4)
• More sensitive sensors (3)

- Assessing contact force difficult (10)
- Easy to make unwanted movements (7)
- High cognitive load (6), unfamiliar (5)
- Need to look at robot (4)
- Moving hand in plane difficult (3)
- Hand in FOV distracting (3)
- Hard (3), Lacking resistance (2)
- Coarse movements difficult (2)

FA

↓ Force automation makes no difference (15)
↓ Force automation helpful (6)
↓ Force automation disturbing (4)

↓ Force automation helpful (20)

General

- Coordinating pressing the pedals for control mode activation difficult (4)
- Pressing pedal causes involuntary arm movement (3)
↓ The option to adjust Fd for FA would be necessary in real-world scenarios (3)
↓ Force automation improves imaging quality (2)
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8.2.3.4 Interpretation of Results

This section interprets the quantitative and qualitative results obtained from
the acoustic window and the needle tip tasks.

acoustic window task Significant main and interaction effects of the
interaction technique and force automation on TCT were found (see Figure 8.5).
Accordingly, H1

0 .1 and H1
0 .2 were both rejected in favor of their respective

alternative hypotheses, H1
1 .1 and H1

1 .2. Further analysis revealed that these
main effects were primarily driven by significant interaction effects, with post
hoc pairwise comparisons revealing that the TCT was significantly higher for
hand gesture interaction without force automation compared to the other
methods (see Figure 8.5).
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(c) Technique×Automation interaction

Figure 8.5: TCT results of the acoustic window task. Means are indicated by . Statis-
tically significant pairwise comparison results are indicated by brackets.
Adapted from [3].

A similar pattern emerged for the NASA TLX results, where significant
main and interaction effects were also observed. Post hoc comparisons indi-
cated that hand gesture interaction without force automation resulted in a
significantly higher perceived workload than any of the three other methods
(see Figure 8.6). Therefore, H2

0 .1 and H2
0 .2 were both rejected in favor of their

respective alternative hypotheses, H2
1 .1 and H2

1 .2.
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(c) Technique×Automation interaction

Figure 8.6: TLX results of the acoustic window task. Means are indicated by . Statis-
tically significant pairwise comparison results are indicated by brackets.
Adapted from [3].
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These findings, showing that hand gesture interaction without force au-
tomation performed significantly worse than all other methods, align with
the qualitative feedback. Participants identified the primary challenge as the
lack of haptic feedback, which made it difficult to accurately estimate and
apply the optimal force required for good image quality without exceeding
the force threshold. However, force automation appeared to mitigate this
issue, significantly reducing both perceived workload and task duration.

In contrast, no significant difference was found between the force au-
tomation conditions during hand-guiding. This, too, aligns with qualitative
feedback: most participants did not notice a difference, some found the au-
tomation helpful, while others considered it disruptive. This may be due
to the haptic perception already present in hand-guiding, which reportedly
made the interaction feel familiar and provided a greater sense of control.

As no significant differences in TCT and TLX were found between hand
gesture interaction and hand-guiding with force automation, further post
hoc analysis using Bayes factor analysis was conducted to examine the
support for the null hypothesis. Bayes factors were calculated using Bayesian t-
tests [142]. Moderate evidence supporting the null hypothesis was found (TCT:
BF10 = 0.20, TLX: BF10 = 0.27). These results suggest that, despite participants
expressing a preference for direct haptic feedback during hand-guiding, the
reportedly intuitive, fast-reacting, and understandable interaction offered
by hand gesture interaction with force automation produced comparable
outcomes in terms of perceived workload and TCT.

needle tip task In the needle tip visualization task, significant main ef-
fects of force automation on the TCT were observed (see Figure 8.7). Therefore,
H1

0 .1 and H1
0 .2 were both rejected in favor of their respective alternative hy-

potheses, H1
1 .1 and H1

1 .2. While no interaction effects were identified, pairwise
comparisons revealed that hand gesture interaction with force automation
exhibited a significantly lower TCT compared to the other methods.
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(c) Technique×Automation interaction

Figure 8.7: TCT results of the needle tip task. Means are indicated by . Statisti-
cally significant pairwise comparison results are indicated by brackets.
Adapted from [3].

This is also reflected in the qualitative feedback, where hand gesture in-
teraction was described as sensitive and precise, while hand-guiding was
perceived as physically exhausting and jerky. Moreover, participants de-
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scribed difficulties in rotating the transducer during hand-guiding due to
high resistance when grasping the robot by the probe. Attempting to alleviate
this issue by grasping farther up the robotic arm resulted in a longer lever,
which eased interaction but also led to less naturalness. This challenge posed
by probe rotation, particularly affecting TCT for needle tip visualization, can
be attributed to the frequent use of fanning motions for tracking the needle
tip, in contrast to the predominantly translational movements employed
during the acoustic window task.

The perceived workload results for the needle tip task showed significant
main and interaction effects for both interaction technique and force automa-
tion (see Figure 8.8). Therefore, H2

0 .1 and H2
0 .2 were both rejected in favor of

their respective alternative hypotheses, H2
1 .1 and H2

1 .2. Similar to the results
from the acoustic window task, pairwise comparisons revealed that perceived
workload was significantly higher for hand gesture interaction without force
automation compared to all other methods. This may again be attributed to
the lack of haptic feedback, which likely required a higher mental workload
to control the robot effectively.
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(c) Technique×Automation interaction

Figure 8.8: TLX results of the needle tip task. Means are indicated by . Statisti-
cally significant pairwise comparison results are indicated by brackets.
Adapted from [3].

8.2.4 Discussion

This work investigated the potential of force automation to mitigate the miss-
ing haptic feedback during HRI using hand gestures. This section discusses
findings, describes limitations, and presents resulting design implications.

force automation Regarding force automation, the results indicate that
for hand gesture interaction, automation significantly improved workload
and interaction duration. This demonstrates that force automation helps users
compensate for the lack of haptic feedback and enables more efficient robot
control. This aligns with previous findings showing that contact force automa-
tion eases interaction [267, 370]. However, for hand-guiding, force automation
did not yield significant improvements, suggesting that the effectiveness of
force automation depends on the interaction method, as force perception
during hand-guiding may reduce the need for assistance.
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It should be noted that the force automation was constrained by a spe-
cific force level. As patient-specific adjustments to the constant force or the
temporary application of a higher force may be necessary to ensure imaging
quality, future work should include possible manual adjustments or more
sophisticated control schemes.

interaction techniques The results additionally indicate that the suit-
ability of interaction methods is task-dependent. For broad acoustic window
tasks, hand gesture interaction with force automation performed compara-
bly to hand-guiding, while it outperformed hand-guiding for precise tasks.
This context-dependency aligns with prior research [282, 373], highlighting
the need for task-specific evaluation of interaction methods. Regarding the
implemented hand-guiding, participants reported jerky robot behavior and
perceptible resistance. This may be attributed to gripping the robot near the
end effector, resulting in a shorter lever, as well as the use of force/torque
sensors, which are prone to noise at low force levels. Although more sen-
sitive sensors, such as those used by Cirillo et al. [66], could address these
issues, employing the integrated sensors reflects the manufacturer-provided
interaction method and is thus considered a valid baseline.

In contrast to earlier work, which indicates worse performance for touchless
hand gesture interaction than for touch-based methods like hand-guiding
and haptic devices [293, 373], this study demonstrates that hand gesture
interaction can match or even surpass these methods when the lack of haptic
perception is compensated. Therefore, the findings highlight the potential
of hand gesture interaction for HRI, motivating further investigation of this
interaction modality throughout the remainder of this thesis.

8.2.4.1 Limitations

While the results provide valuable insights into the task-specific suitability
of different control methods for HRI, it is important to note some limitations.
Firstly, the efficiency assessment was focused on TCT as an objective measure.
Given the nature of the tasks, where the primary goal was to achieve suffi-
cient visualization for successful navigation during intervention rather than
precise alignment, it was chosen to measure only the duration of task com-
pletion rather than accuracy metrics, assuming that participants performed
comparably across techniques, which was also validated by the experimenter.
While it was aimed to capture nuances in efficiency demands by assessing
two tasks with varying complexity, incorporating additional tasks as well
as assessing accuracy measurements could enhance the understanding of
interaction technique performance and speed-accuracy trade-off.

In this study, medical students with initial ultrasound experience were
selected as subjects. While the training provided ensured that they had no
difficulty with imaging, experienced medical professionals may be better at
identifying factors such as contact force from the ultrasound image. However,
it is believed that the results are primarily dependent on the interaction
technique rather than medical expertise, as feedback indicated that robot
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handling was the key factor in the differences between control approaches.
While it is believed the results are therefore generalizable, future work should
include medical professionals for more in-depth feedback.

The final limitation arises from the study’s specificity. Robotic ultrasound
was selected as an exemplary use case, with tasks chosen to reflect scenarios
relevant to needle-based interventions. As a result, the findings are task-
dependent and influenced by the particular characteristics of the selected
procedure. However, considering the task characteristics, specifically the vary-
ing levels of required precision, it is believed that the general findings may
be transferable to other use cases. In particular, the result that hand ges-
ture interaction shows potential for precise tasks, and that force automation
can compensate for missing haptic feedback, may be applicable in contexts
beyond robotic ultrasound. Future research could explore these interaction
methods further and examine their applicability in broader domains.

8.2.4.2 Implications

The study’s findings lead to the following implications:

Automate contact force during hand gesture interaction. Contact force
automation significantly reduced TCT and perceived workload during hand
gesture interaction, helping to overcome challenges related to the absence of
haptic feedback.

Employ hand-guiding or hand gesture interaction with force automation for
broad tasks. The results for the acoustic window task show that hand gesture
interaction performs comparably to hand-guiding when contact force is
automated. This suggests that both approaches are suitable for broad control,
which is essential for exploratory movements or for initializing autonomous
procedures that require coarse pre-positioning.

Use hand gesture interaction for precise tasks. In the needle tip task, hand
gesture interaction with force automation outperformed hand-guiding in
terms of task completion time. This demonstrates the potential of hand
gesture interaction for high-precision tasks, such as fine-tuning autonomous
motions or performing precise tasks like grinding or polishing.

8.2.5 Conclusion

In summary, this study investigated different control methods and the ef-
fects of autonomous adjustment of contact force for robotic ultrasound. The
results emphasize the importance of force automation in hand gesture in-
teraction, which results in reduced task duration and perceived workload
while compensating for the lack of haptic feedback. In addition, assisted
hand gesture control showed comparable performance to hand-guidance in
coarse movements and outperformed it in precision tasks such as needle tip
visualization. These findings highlight the potential of using hand gestures
for robot control and the need for additional support to address the absence
of haptic feedback.
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8.3 investigation on sensory substitution

Besides contact force automation, a widely used approach for addressing the
challenges caused by the absence of haptic feedback is sensory substitution.
In this approach, haptic sensations are mapped onto alternative sensory
modalities, such as auditory [157], vibrotactile [60], visual [224], or multi-
modal feedback [145]. Prior work has demonstrated distinct advantages for
visual [132, 171], vibrotactile [60], and multimodal [145] feedback. Visual
feedback, in particular, can be implemented using XR, which allows for flex-
ible placement of feedback elements, with this spatial location influencing
perceptibility [82]. While different sensory substitution strategies have been
explored in previous studies (see Section 8.1.1.2), interactions between visu-
alization placement, design, and multimodality have not been thoroughly
investigated. Additionally, these approaches were not studied in the context
of hand gesture-based HRI. Therefore, this section focuses on the targeted
design of sensory substitution for force representation in HRI.

Parts of this chapter were previously published in: Tonia Mielke, Florian
Heinrich, and Christian Hansen. “SensARy Substitution: Augmented Reality
Techniques to Enhance Force Perception in Touchless Robot Control.” In:
Transactions on Visualization and Computer Graphics (TVCG) 31.5 (Mar. 2025),
pp. 3235–3244. doi: 10.1109/TVCG.2025.3549856 [6].

8.3.1 Technical Methods

Supplementary
video

To investigate different sensory substitution approaches, robotic ultrasound
was again selected as a representative use case. In this context, it is essential
not only to avoid excessive force to ensure patient safety but also to maintain a
consistent force to achieve stable tissue deformation. Accordingly, the sensory
substitution methods implemented in this study do not convey absolute force
values but instead represent the applied force along the axial direction of the
probe, expressed relative to a desired force Fd.

Based on the previous work presented in Section 8.1.1.2, two common
visual concepts were implemented, one 2D and one 3D, each encoding relative
force deviations through changes in shape and color. In addition, a vibrotactile
feedback concept was developed to communicate force information using
variations in patterns and frequencies (see Figure 8.9). To explore different
visualization placements, an HMD was used. The use of an HMD enabled
flexible prototyping of feedback positions while maintaining consistent visual
properties, thereby providing a controlled environment for evaluating the
influence of visualization placement on user performance.

8.3.1.1 Visual Feedback Concepts

Related work has highlighted the potential of redundant cues such as color
and shape changes for force visualization [24, 39]. Therefore, this section
investigates two common feedback designs for force display: a bar and an
arrow, both conveying force information through changes in color and shape.

https://doi.org/10.1109/TVCG.2025.3549856
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Figure 8.9: Overview of sensory substitution concepts. From top to bottom: bar,
arrow, and vibrotactile feedback design. Reprinted from [6].

bar The first visualization features stacked bars (see top visualization in
Figure 8.9 and top row of Figure 8.10). The height of the 2D bar continuously
indicates the currently applied force F, while discrete color coding indicates
its relation to Fd. The color scheme is defined as follows:

colorBar =

 blue F < Fd − 1 N
red F > Fd + 1 N
green else

Additionally, a white line marks the goal force Fd. The threshold of 1 N
above or below Fd was empirically tuned, aiming to provide users with precise
feedback to distinguish small deviations in applied force. The visualization’s
orientation is continuously adjusted to be facing towards the observer.

arrow Instead of mapping the visualization’s size to the absolute force
magnitude, a common alternative is to represent the relative force deviation
from Fd. In this case, the visualization shrinks as the applied force approaches
the target and disappears when the desired force is reached. This method is
often implemented using an arrow, which can also convey force direction.

To this end, a 3D arrow was implemented that varies in height, color,
and orientation (see bottom row in Figure 8.10). The arrow’s orientation
reflects the direction of the applied force. For forces smaller than Fd, the
arrow points in the direction of the applied force, with the color interpolated
between blue and green. For forces larger than Fd, the arrow points in the
opposite direction, with the color interpolated between green and red. Thus,
the pointing direction always indicates the movement direction required to
reach Fd. Both the length and the color transitions are scaled linearly (see
middle visualization in Figure 8.9).

8.3.1.2 Visual Feedback Placement

To investigate the impact of visualization placement, three distinct positions
were examined. As previously described, XR content in HRI can be classified as
head-stabilized, body-stabilized, world-stabilized, or robot-stabilized [36, 311].
For visualizing force information, world-stabilized placement is commonly
used, anchoring the visualization at task-relevant locations in the environ-
ment, such as a screen [24, 117, 367]. Similarly, in HRI, the robotic end effector
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Figure 8.10: Overview of force visualization types and placements. The top row
shows bar visualizations, and the bottom row shows arrow visualiza-
tions, both at different force levels (left to right: too low, appropriate, and
too high). The left column shows placement on the screen displaying
the sonographic image, the middle column shows placement on the
ultrasound probe in contact with the phantom, and the right column
shows placement anchored to the user’s FOV. Reprinted from [6].

is often used to anchor information at task-relevant positions [60, 82, 157].
Therefore, world-stabilized and robot-stabilized placements were selected for
investigation. Regarding body- and head-stabilized placements, prior work
has shown that head-stabilized content supports attention shifts [250] and
reduces response times [277]. Consequently, the third placement examined
was a fixed position within the user’s FOV. An overview of these placements
is provided in Figure 8.11.

Figure 8.11: Overview of visualization placements. Reprinted from [6].

Since the investigated task is robotic ultrasound, in which the ultrasound
image is displayed on a screen, this screen serves as the anchor for the world-
stabilized placement (screen position). The screen’s location is determined
using image markers attached to its corners, which are detected once and
then fixed in position. Based on the findings of Lee and Woo [181, 182] as
well as Chua et al. [65], the virtual content is positioned in the center-right,
adjacent to the ultrasound image.
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For robot-stabilized placement, the feedback is located at the robotic end
effector. Since the ultrasound probe is mounted to the end effector, this
placement is referred to as the probe position and is chosen based on its
frequent use in the literature. In this setup, virtual content is superimposed
on the ultrasound probe, with its position continuously tracked via robot
forward kinematics and transformed through an initial registration at the
start of the interaction. As the intervention focuses on the general position of
the probe and its contact point on the body, placing the visualization at the
upper part of the probe is assumed not to obstruct the view.

The third position aims to explore head-stabilized information by anchoring
the visualization within the user’s FOV (FOV position). Analogous to the
screen position, the visualization is placed in the center right. Specifically, the
virtual content is placed 1 m from the user, vertically centered, and positioned
within the right quarter of the FOV.

8.3.1.3 Vibrotactile Feedback Concept

Based on the findings reported by Howard and Szewczyk [145], which suggest
that pulsed vibrotactile feedback performs better than continuous feedback
with varying amplitudes, this study adopts a pulsed approach. The vibrotac-
tile feedback utilizes vibration pulses with varying pause lengths to convey
deviation from Fd. Following the work of Chan et al. [60], different vibration
patterns are used to indicate forces that are higher or lower than Fd. Specifi-
cally, forces smaller than Fd are represented as a double pulse with a pause
of 10 ms between the pulses, while forces higher than Fd are represented as
a single pulse. To enhance the detectability of differences in forces closer to
Fd and facilitate faster detection, a scaling approach similar to that used by
Marquard et al. [207], as described by Equation 8.1, is employed. Tp is scaled
to be between the minimal pause length Tmin = 10 ms at Fd and the maximal
pause length Tmax = 100 ms at the maximal allowable force Fmax using the
relative force Frel.

Frel = min
{

1,
F − Fd

Fmax − Fd

}
Tp =

√
2Frel − (Frel)2 · (Tmax − Tmin) + Tmin

(8.1)

This approach was selected because it adapts a widely known logic used
in car parking systems: as the desired force is approached, the pause length
Tp decreases, creating a faster vibration pattern that becomes most rapid at
Fd. Using the highest vibration pulse frequency near Fd, rather than increas-
ing the frequency proportional to the force (as suggested by Howard and
Szewczyk [145]), was chosen to provide the highest information density close
to Fd, making deviations easily detectable. While this contrasts with the linear
scaling used for the visual force representations, the information density is
assumed to be comparable across modalities, since the visualizations present
multiple channels of information through shape and color changes, making
small changes around Fd easily perceptible.
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The vibrotactile feedback is delivered through a vibrotactile wristband
worn on the dominant hand, with the patterns transmitted via an auditory
signal. Therefore, Equation 8.1 is utilized to scale Tp between simple inaudible
sounds with a duration of 100 ms at a frequency of 100 Hz created using the
Windows Beep function.

8.3.1.4 Force Data

The force data were derived from the joint torque sensors of the robot ma-
nipulator. Analogous to Section 8.2, the force thresholds followed the values
reported by Dhyani et al. [86] for abdominal examinations in patients with
a high BMI, with Fd = 10 N and Fmax = 30 N. Due to the relatively low
forces involved and the minimal load introduced by the ultrasound probe,
the Cartesian force estimation was susceptible to digital noise. To mitigate
this, a Kalman filter [340] was applied.

8.3.1.5 Robot Control

The robot was controlled as described in Section 2.3.2, using hand gestures
to manipulate the translation and rotation of the robotic end effector. As
additional visual feedback, a virtual dummy probe was employed, displayed
as a hologram in the user’s hand during interaction. The interaction mode
(separate or simultaneous translation and rotation) was toggled using one
foot pedal, while another pedal was used for clutching.

8.3.1.6 Implementation

The setup consisted of the components described in Section 2.3. Hand tracking
for robot control was facilitated by the sensors of the HoloLens 2. Vibrotactile
feedback was provided by a Lofelt Basslet (Lofelt, Germany) bracelet, which is
a haptic wristband featuring a high-bandwidth vibration actuator driven by
auditory signals transmitted via Bluetooth.

The system consisted of two Unity applications. The first ran on the
HoloLens and handled robot registration, determined the ultrasound screen
position using the Vuforia SDK, visualized force feedback, and mapped hand
gestures to robot movements. The second application ran on an external PC,
managed communication between the HoloLens and the robot, filtered force
data, and, for the vibrotactile condition, converted force values into inaudible
auditory signals sent to the bracelet. For temporal alignment, both feedback
modalities were updated at the same frame rate.

8.3.2 Evaluation Methods

To comparatively evaluate the sensory substitution techniques, a three-
factorial within-subjects design user study was conducted. This section de-
scribes the study design, task, and experimental procedure.
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8.3.2.1 Task

To evaluate the different sensory substitution concepts, a task requiring
motion while maintaining a specific contact force was necessary. Therefore,
an exploratory task was chosen in which the ultrasound probe had to be
navigated to identify geometric shapes within a phantom. To this end, a
homemade agar-agar phantom was constructed, containing three distinct
geometric shapes (a sphere, a pyramid, and a cube) made of rubber.

To require both translational and rotational movement, the phantom was
designed in the shape of a semi-sphere. Its lateral curvature necessitated
probe rotation to maintain image quality. Figure 8.10 shows the appearance
of the phantom alongside corresponding sonographic images.

Participants were instructed to successively visualize the three target struc-
tures while maintaining a constant force as close as possible to Fd. To achieve
this, the robot was first moved from its mid-air starting position to the surface.
Participants then maneuvered the probe along the phantom’s surface to locate
an acoustic window where the outline of each structure was clearly visible
before moving on to the next target.

To prevent minor initial forces during surface contact from influencing the
results, participants were instructed to press the probe against the surface
until Fd was reached at the start of each task. Upon reaching Fd, a blue LED
on the robot blinked, signaling the beginning of force recording.

8.3.2.2 Variables

independent variables The independent variable was the force dis-
play technique, which was composed of the factors of visualization type,
visualization position, and vibrotactile feedback. The different factors include:

• Type: Bar and Arrow force visualization concepts
• Position: Placement at screen, probe, and FOV

• Vibrotactile: Presence or absence of vibrotactile feedback

Additionally, the study investigated two baseline conditions for investi-
gating the sensory substitution modality. In one condition, the visualization
type and position, as well as the vibrotactile factors, were set to "none," repre-
senting no sensory substitution (technique: none). In the other condition, only
vibrotactile feedback was active (technique: tactile). The combination of these
factor levels resulted in 14 prototypes (2 types × 3 positions × 2 vibrotactile + 2

baseline).

dependent variables As dependent variables, both objective and sub-
jective variables were measured. The first dependent variable was the TCT,
which was measured from the moment participants first reached Fd until
the completion of the task. Task completion involved visualizing the three
geometries, with the study conductor confirming adequate visibility through
visual inspection. The other two objective variables concerned the applied
force, which was continuously recorded and paused when no interaction was
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active to prevent constant force exertion during static robot positions from
influencing results. To maintain a consistent sampling rate across trials and
participants, the force data were interpolated to an equidistant sampling at
a sampling rate of 1 kHz. The two dependent variables were the Average
Absolute Deviation (AAD), calculated as the average absolute deviation from
Fd at each time point, and Average Maximal Applied Force (AMax), computed
by averaging the force of local maxima. Local maxima were filtered to include
only those with a prominence of 1 N to mitigate the influence of jitter on
results. Additionally, participants were asked to rate two questions on a
6-point Likert item (with verbal anchors ranging from "strongly disagree"
to "strongly agree"). The questions regarded the perceived difficulty ("The cur-
rently applied force was difficult to estimate.") and the perceived continuity ("I
was continuously aware of the magnitude of the applied force.").

8.3.2.3 Hypotheses

No a priori assumptions regarding the outcomes were made, as this was
an exploratory study. Thus, two-sided hypotheses were examined. Based on
the three-factorial design and the baseline conditions described above, the
following null and alternative hypotheses were considered:

Hy
0 .x The mean x is equal for all levels of y.

Hy
1 .x The mean x differs for at least one level

of y.

x ∈


1-TCT
2-AAD
3-AMax
4-Difficulty
5-Continuity

y ∈

 1-Type
2-Position
3-Modality

8.3.2.4 Sample Design

As robotic ultrasound served as an exemplary use case, a basic understanding
of sonographic images was necessary. However, due to the abstract nature
of the task, no specific clinical expertise was required. Therefore, medical
students from the local university were invited to participate via online polls
and received 30e as compensation.

8.3.2.5 Procedure

The study began with participants completing a consent form and a demo-
graphic questionnaire upon arrival. They then received a brief introduction to
the study objectives and the system. This was followed by a training session
during which participants practiced freehand ultrasound imaging on the
phantom, familiarized themselves with the positioning of the target structures,
and practiced interacting with the robot. Once participants reported feeling
comfortable with the imaging procedure and the HRI, they performed one
trial for each sensory substitution technique, resulting in a total of 14 trials. To
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reduce potential order effects, the sequence of techniques was counterbalanced
across participants using a 14 × 14 Latin square. For each trial, participants
had the opportunity to practice under the current conditions until they felt
confident to proceed. They then performed the experimental trial, in which
they guided the robot to each geometric structure once. After completing
each trial, participants provided subjective ratings on perceived difficulty and
continuity. Finally, after completing each trial, a semi-structured interview
was conducted. The experiment lasted approximately 60 minutes on average.

8.3.2.6 Statistical Analysis

To evaluate effects of the three investigated factors on the observed measures
and their respective interaction, the data of the objective variables TCT, AAD,
and AMax were first checked for normality using Shapiro-Wilk tests and
for homogeneity using the Lavene’s tests. Three-way repeated measures
ANOVA was conducted in case this assumption was met. Otherwise, robust
three-way ANOVAs for within-subjects designs based on trimmed means
were calculated (also see [348]). For ordinal data of the Likert-item variables
perceived difficulty and perceived continuity, Wilcoxon signed-rank tests for
paired samples were conducted to evaluate main effects of factors with two
factor levels, i.e., type and vibrotactile, and Friedman tests were calculated for
main effects with more than two factor levels, i.e., position. The existence of
potential interaction effects was evaluated using robust three-way ANOVAs.
For standard ANOVAs, the test statistic F and the effect size η2 were reported.
In the case of robust ANOVAs, the test statistic Q was reported. Effect sizes
for main effects in robust analyses were estimated using δt, as proposed by
Algina et al. [16], while interaction effects were reported using the more
conventional η2.

These investigations did not consider data from the two baseline conditions,
none and tactile. To assess them, data from the remaining conditions were
aggregated into two points per participant: visual, representing the mean
for all visual-only conditions, and multimodal, representing the mean for all
visual and vibrotactile conditions. The resulting data formed a one-factor
repeated measures design with four levels. This modality factor was then
evaluated as described earlier. Normality was checked, followed by repeated
measures ANOVAs or robust ANOVAs if violated. Subjective items were
analyzed with Friedman tests.

Furthermore, post hoc pairwise comparisons were conducted for all sig-
nificant main effects involving more than two factor levels. Pairwise paired
t-tests with Bonferroni corrections were conducted for normally distributed
objective variables. Robust Yuen’s trimmed means tests with p-value adjust-
ments using Hochberg’s method were used for non-normal objective data.
Pairwise Durbin-Conover tests with Bonferroni corrections were calculated
for the subjective measures. All statistical analyses were conducted using R
(version 4.4.0).
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8.3.3 Results

This section presents the results of the conducted user study and interprets
the findings. The descriptive results are summarized in Table A.3.

8.3.3.1 Participants

In total, twenty-one (21) medical students participated in the study (15

female, 6 male) with ages ranging from 22 to 32 years (M =26.14, SD= 3.23).
They were in their 3rd to 5th year of university (M=4.41, SD=0.70). None of
the participants reported any form of color vision deficiency. Participants
reported their familiarity with ultrasound (M=3.48, SD=0.68) and HRI (M=2.00,
SD=0.95) on a five-point Likert item, where 5 indicates high familiarity. Their
self-reported technical affinity ranged from two to five (M=3.29, SD=0.72) on
the same scale.

8.3.3.2 Quantitative Results

The following outlines the results of the conducted statistical tests. Emphasis
is placed on significant findings. More details on the results of the statistical
test can be found in Table A.4. Additional plots illustrating descriptive results
can be found in Figure A.1.

Regarding the tests evaluating the three-factorial design, TCT and AAD mea-
sures were not normally distributed. Hence, robust ANOVAs were conducted.
The tests revealed a significant vibrotactile main effect on TCT (test statistic
Q=8.869, p-value p=0.003, effect size δt=−0.28) and a significant type main
effect on AAD (Q=8.068, p=0.005, δt=−0.35). All other main effects showed
no statistical significance. Also, neither significant two-way nor significant
three-way interaction effects were found.

The AMax variable was normally distributed. The repeated measures
ANOVA revealed a significant three-way interaction effect between all three
factors (test statistic F = 3.902, p-value p = 0.028, effect size η2 = 0.03). No
significant main and two-way interaction effects were found on this variable.

The subjective measures (perceived difficulty and continuity) were not
affected by interaction effects. Friedman tests showed significant position
main effects on subjective difficulty (test statistic χ2=6.237, p-value p=0.044,
effect size W=0.15) and subjective continuity (χ2=7.629, p=0.022, W=0.18).

Regarding the analyses of the modality factor, the TCT data were not nor-
mally distributed. Hence, a robust repeated measures ANOVA was conducted.
This test revealed a significant effect (F = 4.804, p = 0.016, δt =−0.09). The
respective AAD and AMax data were normally distributed. A repeated mea-
sures ANOVA showed a significant effect of the modality factor on AAD

(F=7.362, p<0.001, η2=0.20). Friedman tests were conducted on subjective
difficulty and subjective continuity. These tests also revealed significant effects
of the modality factor (perceived difficulty: χ2 = 30.429, p < 0.001, W = 0.48;
perceived continuity: χ2=40.215, p<0.001, W=0.64).
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8.3.3.3 Qualitative Results

For the qualitative feedback analysis, the statements made by the participants
during the semi-structured interview were paraphrased and clustered. Clus-
tering focused on statements consistent between at least two participants,
with duplicates within participants removed. In total, 251 individual state-
ments were recorded based on participants’ verbal feedback. Of these, 206

were expressed by at least two participants. These statements were condensed
into 43 summarizing statements, presented in Table 8.5.

Table 8.5: Summary and frequency of statements (#) received during the semi-
structured interview. Adapted from [6].

Type

Bar
+ easy to read (2)
+ correct force precisely recognizable (2)
+ intuitive proportions (2)
- too sensitive due to small green area (4)
- sensitivity causes overestimation (4)

Arrow
+ intuitive (11), continuous (6), precise (2)
+ visualization of direction helpful (9)
+ peripheral changes perceptible (8)
+ continuous color scale striking (2)
- force direction confusing (3)

Position

Screen
+ helpful when observing

US image (17)
- outside of view when

looking at probe (2)

Probe
+ helpful when looking at

probe to estimate robot
movement (6)

- out of view when looking
at screen (11)

FOV
+ helpful for viewing both

screen and probe (3)
- requires looking at addi-

tional position (6), is not
in focus (6), confusing (3),
disturbing (2)

Vibrotactile

+ intuitive pattern (7), helpful(6), correct force easily recognizable (2), pleasant (2)
+ draws attention to changes (6), helpful when visualization out of view (4), supports

visual feedback (4), extra sensory channel alongside visual input (4)
- pattern ambiguous (9) and needs concentration (6), requires training (6)
- more focus on visualization, if present (6), ignored with habituation (3)
- leads to information overload (3), not helpful (2), disturbing (2), and stressful (2),

information delivery too slow (2), difficult as sole feedback modality (2)
• preferable as alarm for Fmax (6), pattern should increase frequency with force (2)

8.3.3.4 Interpretation of Results

This section aims to interpret the quantitative and qualitative results obtained
for each of the investigated factors.

modality The significant results from pairwise comparisons of objective
measures across the feedback modalities are depicted in Figure 8.12. The
TCT results show significant differences across feedback modalities, with
visual feedback leading to higher TCT than the baseline, indicating that vi-
sual feedback slows down interaction (see Figure 8.12a). Therefore, the null
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hypothesis H3
0 .1 was rejected in favor of the corresponding alternative hypoth-

esis H3
1 .1. This could be attributed to the additional cognitive load induced

by processing visual information, particularly in conjunction with analyzing
sonographic images for navigation. Furthermore, TCT was significantly higher
with multimodal feedback than without or with visual feedback alone, as
indicated by both a significant effect in the analysis of the modality factor
and a significant main effect of the vibrotactile factor in the three-factorial
design. Multimodal feedback resulting in even slower performance may be
attributed to information overload and the heightened concentration required
to process the combined feedback, as reported by participants during the
semi-structured interviews.

In terms of AAD, the results indicate a significantly higher force deviation
for tactile feedback alone compared to multimodal and visual feedback (see
Figure 8.12b). Thus, the null hypothesis H3

0 .2 was rejected in favor of the
corresponding alternative hypothesis H3

1 .2. This discrepancy may originate
from the slower perception of information during tactile feedback, particularly
evident when manipulating the probe, where force changes take longer to be
perceived relative to the movement speed. Moreover, participants reported
difficulties in recognizing the pattern of tactile feedback, potentially leading
to confusion between patterns representing forces that are too high or too low.
This confusion might have resulted in participants inadvertently adjusting
the force in the wrong direction. Notably, there was no significant difference
in AAD between the multimodal and visual feedback conditions, suggesting a
tendency among participants to disregard vibrotactile feedback when visual
feedback was present. This is consistent with feedback during the interview.
As no significant effects of the modality on AMax were found, H3

0 .3 could not
be rejected.
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Figure 8.12: Objective measures across feedback modalities. indicate means. Statis-

tically significant pairwise comparison results are indicated by brackets.
Adapted from [6].

Significant effects of modality on both subjective measures were found (see
Figure 8.13). Thus, the null hypotheses H3

0 .4 and H3
0 .5 were rejected in favor

of the corresponding alternative hypotheses H3
1 .4 and H3

1 .5. The subjective
measures reveal improvements in perceived difficulty and continuity for all
feedback conditions compared to the baseline no-feedback condition. More-
over, results indicate that both visual and multimodal feedback significantly
reduce perceived difficulty and enhance perceived continuity compared to
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vibrotactile feedback alone. These findings align with the results for AAD and
suggest that ambiguities regarding the vibration pattern may contribute to
lower user satisfaction with vibrotactile feedback. In contrast, visual feedback
might provide a more direct and clearer information representation, lead-
ing to enhanced performance and higher user satisfaction. Notably, while
multimodal and visual feedback significantly increase completion time, they
reduce perceived difficulty. This apparent discrepancy may be explained by
the fact that providing feedback reduces perceived difficulty by increasing
participants’ ability to assess the force applied. However, this may also slow
down the interaction as participants need to respond to the feedback to adjust
their force application.
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Figure 8.13: Subjective measures across feedback modalities. indicate means. Statis-

tically significant pairwise comparison results are indicated by brackets.
Adapted from [6].

visualization type Significant main effects regarding visualization type
are depicted in Figure 8.14. Therefore, the null hypothesis H1

0 .2 was rejected
in favor of the corresponding alternative hypothesis H1

1 .2.
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Figure 8.14: Main effects of Type factor. Means are indicated by . Adapted from [6].

The pairwise comparison indicates that the bar visualization resulted in
significantly lower AAD than the arrow. This could be due to the discrete
coloring and subdivision, which effectively highlights Fd. The lower force
deviation for the bar is consistent with user feedback describing the bar
as precise and sensitive. Despite participants’ reported preference for the
arrow’s gradual changes in size and color, this feature may have contributed
to a less accurate perception of small force deviations. Especially as the arrow
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becomes increasingly smaller as the currently applied force approaches Fd,
making subtle changes more difficult to identify. As no other significant main
effects for visualization type were found, the null hypotheses H1

0 .1, H1
0 .3,

H1
0 .4, and H2

0 .5 could not be rejected.

visualization position For the visualization position, significant main
effects were found for perceived difficulty and perceived continuity (see Fig-
ure 8.15). Thus, the null hypotheses H2

0 .4 and H2
0 .5 were rejected in favor of

the corresponding alternative hypotheses H2
1 .4 and H2

1 .5. The pairwise com-
parison revealed that the screen position had a significantly lower perceived
difficulty in maintaining Fd and a significantly more continuous feedback
perception compared to the probe position. This could be explained by the
statements given during the semi-structured interview, where although some
participants reported looking at the probe to observe the robot’s movements,
the majority stated mainly looking at the sonographic image on the screen
and therefore preferring the feedback on the screen. Regarding FOV posi-
tioning, pairwise comparisons showed significantly less continuous feedback
perception compared to screen placement. Despite the visualization being
always within the FOV due to its body-stabilized position, participants found
it out of focus, requiring a conscious gaze shift. This might be attributed to
perceptual issues, as the visual feedback was positioned at a different depth
than the task-relevant content, making it harder to perceive. Participants
also reported confusion with the dynamic positioning, which likely further
reduced the perceived continuity of force perception. No other significant
main effects were found; thus, H2

0 .1-H2
0 .3 could not be rejected.
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Figure 8.15: Main effects of Position factor. Means are indicated by . Statistically sig-

nificant pairwise comparison results are indicated by brackets. Adapted
from [6].

interactions between factors In addition, a three-way interaction
was observed for AMax (see Figure 8.16). The effect descriptively suggests
that without vibrotactile feedback, particularly the bar visualization on the
screen, performs worse than the other combinations of type and position. This
finding seems to be in contrast to the subjective feedback, where a preference
for screen position was described. However, a possible explanation could be
that although the screen display enables continuous perception, it primarily



106 force assistance

engages peripheral vision. Since the bar visualization employs a discrete
color scheme, changes leading to maxima may not be immediately perceived
if the focus is not directly on the visualization, potentially resulting in higher
maxima. Other visualization placements may require a more deliberate shift
in focus, leading to a more accurate perception of changes.

When vibrotactile feedback is available, this trend shifts, with the bar visu-
alization at the screen position performing better than at the probe position.
This aligns with the results for perceived difficulty, where recognizing the
applied force at the probe position is rated as more challenging. Vibrotactile
feedback, therefore, appears to enhance the perception of the bar visualiza-
tion on the screen by potentially alerting participants to changes and guiding
their attention to deliberately shift towards the visualization. The influence
of vibrotactile feedback and visualization position on AMax for arrow visu-
alization appears to be less pronounced. This may be attributed to changes
in size and color being easily perceived even when only peripherally visible,
making AMax relatively independent of other factors for arrow visualization.
This is consistent with participants’ feedback, which described the arrow’s
changes as perceptible peripherally and noted the striking color scale.
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Figure 8.16: Three-way interaction effect for AMax. Means are indicated by . Black
outlines represent the arrow and gray outlines the bar visualization.
Adapted from [6].

8.3.4 Discussion

This section discusses the study findings, contextualizes them within related
work, addresses the study’s limitations, and summarizes the results into
design implications.

modality The study results indicate that while participants found vibro-
tactile feedback intuitive and helpful, force error, perceived difficulty, and
continuity were primarily dependent on the presence of visual feedback. This
indicates a tendency for participants to prioritize visual over vibrotactile
sensory substitution, which aligns with the qualitative feedback indicating
neglect of vibrotactile cues. These results are consistent with previous re-
search by Howard et al. [145], reporting superior performance with visual
compared to vibrotactile feedback. Additionally, in line with Jonetzko et
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al. [157], a reduced efficiency with multimodal feedback was observed, indi-
cating information overload. A major limitation of this study is employing
only one type of vibrotactile feedback. The scaling approach was selected
based on literature highlighting its suitability for vibrotactile feedback and
its assumed comparability to the information density of visual feedback.
However, discrepancies between visual and vibrotactile scaling may have
influenced force perception. Additionally, previous work suggests that while
non-linear scaling can improve accuracy, it may increase perceived difficulty
and completion time [135]. Therefore, further investigation is needed into the
scaling and the alignment of different scaling methods and their impact on
task performance. Unlike the employed relative force magnitude vibrotactile
pattern, Chan et al. [60] employed constant patterns to indicate force direction
alone, achieving superior performance compared to visual feedback. Given
that participants expressed a preference for constant vibration for excessive
force feedback, or increasing frequency with increasing force, exploring these
alternatives could yield different results.

visualization type Similar force visualizations were compared in the
recent work of Song et al. [308]1. Although their arrow implementation
differed, using discrete rather than continuous coloring and representing
absolute force through arrow length, their linear gauge concept shared simi-
larities with the bar concept investigated in this section. They found that the
linear gauge improved task ease, workload, and completion time compared
to the arrow designs, which they attributed to clear boundary markings
and low visual complexity. While the study reported in this section found
significant effects only on force deviation rather than on subjective factors, the
general findings align with those of Song et al., highlighting the effectiveness
of visual feedback that conveys force through height and color changes.

Differences in results between this section’s study and that by Song et al.
may stem from variations in specific design elements. These design choices
also influenced overall outcomes, such as the bar visualization supporting
more accurate force application, while participants reported better peripheral
perceptibility with the arrow visualization. However, comparing two distinct
approaches, including different characteristics such as 2D versus 3D and
discrete versus continuous color and shape changes, makes it difficult to
isolate the effects of individual variables. Future research could therefore
focus on these specific aspects to gain more targeted insights.

The visualizations additionally differed in the information displayed, with
the arrow indicating the force direction. Although the participants described
the directional display as helpful, it did not significantly impact quantita-
tive measurements, likely due to task simplicity. Future studies with more
complexity may yield different outcomes.

While the study results indicate that the bar visualization allowed for
smaller deviations from Fd to be perceived, some participants noted that the
threshold for the green area was too small, making the bar feel overly sensi-

1 The work of Song et al. [308] was published online on November 28, 2024, while the content
of this section was submitted to IEEE VR on September 11, 2024.
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tive. Although the threshold was designed to enhance precise perception of
changes around the desired force, the rapid changes in indicator color could
lead to difficulties in force interpretation. Therefore, future work could evalu-
ate the impact of increasing the size of the visualization threshold on both
the accuracy of force application and user feedback, to determine whether
user satisfaction can be improved without compromising accuracy. Future
work could additionally explore scaling approaches, such as logarithmic and
linear scaling as done in Heinrich et al. [135], to assess their impact on task
performance.

visualization position Results indicate that the suitability of visu-
alization placement is dependent on the operator’s focus during the task.
While some participants reported looking at the probe during interaction
to perceive the robot’s reaction, the majority indicated looking at the probe
for initial orientation but then focusing primarily on the screen. This aligns
with previous findings regarding feedback placement, which found that force
visualization at task-relevant locations can enhance force perception [82].
Beyond placement alone, the results also suggest that guiding the user’s
attention towards the visualization may further improve effectiveness. This
could be achieved through vibrotactile cues or, alternatively, by using visual
attention guidance in XR [295].

general While the sensory substitution technique design is based on lit-
erature findings, qualitative feedback suggests possible design flaws that may
have influenced study results. However, since the main feedback primarily
concerns the nature of the techniques rather than specific design decisions,
it is believed that these flaws do not diminish the overall significance of the
findings. Some of these findings, such as the risk of tactile clutter reduc-
ing comprehension and sensory overload with vibrotactile feedback, have
been previously investigated in studies focusing on multimodal feedback
design [323]. Nevertheless, this study provides valuable insights by offering
empirical evidence, replication, and validation for a new context.

The presented study employed an optical see-through HMD for feedback
visualization, which has a high implementation cost. This was chosen to
ensure consistent visual properties across different visualization placements,
allowing comparability. However, based on the study’s results showing the
benefits of placing the visual feedback adjacent to the ultrasound image, this
feedback could be implemented more cost-effectively by integrating it into
the display. While the HMD in this study also supported hand tracking and
interaction, alternative feedback visualization approaches may be more viable
in scenarios where different input methods are used for robot control.

To compare unimodal and multimodal feedback, two baseline conditions
were included. However, more data were available for the other conditions
than for the baseline, leading to an unbalanced design. To ensure a balanced
sample for the statistical tests, the data were aggregated. Since no interaction
effects were found for TCT, AAD, perceived difficulty, and continuity, it is
believed that this aggregation did not result in information loss, and the
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results remain valid. Notably, only 21 participants were included in the
study. While the repeated measures per factor level increase the power of the
analysis due to the factorial design, the interaction effects have lower power,
and additional participants are required to examine these effects robustly.

8.3.4.1 Limitations

The main limitation of this study lies in its specificity to robotic ultrasound,
which may restrict the generalizability of findings to other HRI contexts. How-
ever, several insights may extend to scenarios where direct force perception
is limited, such as laparoscopy or industrial robotic tasks like polishing and
grasping. While some adaptation may be required, the core findings on feed-
back modality, visualization design, and placement are likely transferable.

To apply the visual feedback to different contexts, alternative scaling strate-
gies might be needed to represent subtle force fluctuations near target values
accurately. For instance, applications involving higher forces (e.g., industrial
settings) or requiring greater precision (e.g., surgical tasks) could benefit from
nonlinear scaling near the target force. In tasks where achieving a specific
force is not the goal, such as robotic grasping, where absolute force levels are
more important, the feedback could be adjusted by setting Fd = 0, allowing it
to reflect absolute forces directly.

Regarding visualization placement, the importance of a screen in co-located
interaction is specific to robotic ultrasound. While probe- and screen-based
placements are application-dependent, generalizable insights can be drawn
from world- and head-stabilized sensory substitution techniques. Overall,
although the strategies developed here are believed to have broader relevance,
further research is needed to validate their effectiveness in other domains.

8.3.4.2 Implications

In summary, based on the study results, the following design implications
are proposed for integrating sensory substitution to enhance force perception
during HRI, which can be generalized beyond robotic ultrasound:

Employ visual sensory substitution to enhance force perception. Study find-
ings suggest that any form of sensory substitution significantly reduces force
perception difficulty compared to no feedback. Additionally, the presence
of visual feedback was shown to be particularly effective in lowering force
errors and difficulty while enabling continuous perception of applied force.
Regarding multimodality, care should be taken in feedback design, as the
combination of multiple modalities can reduce task efficiency by increasing
task duration. However, incorporating discrete vibrotactile feedback to com-
plement visual feedback by providing alerts for changes may be beneficial in
optimizing performance.

Utilize bar visualizations to accurately depict force. The study results indi-
cate that representing force magnitude with a bar visualization, where the
size is proportional to force magnitude and the deviation from a desired
force is indicated by discrete coloring, offers a clear representation and helps
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minimize force errors. However, if the visualization needs to be peripherally
perceivable, mapping force error onto size and incorporating gradual color
changes could enhance perceptibility.

Employ world-stabilized placement of virtual content near task-relevant
locations. The findings suggest that placing virtual content on the screen
displaying ultrasound data reduces the perceived difficulty and enhances
continuous perceptibility. Qualitative feedback indicates a user preference
for world-stabilized visualization placement. In contrast, head-stabilized
placement moves with the user’s head, causing the visualization to shift
within the environment and fall outside the direct line of sight, requiring a
conscious gaze shift and impairing perception.

8.3.5 Conclusion

In this study, different XR concepts for sensory substitution to enhance force
perception during HRI were investigated. These concepts differed in modal-
ity, visualization design, and placement. The suitability of unimodal and
multimodal visual and vibrotactile approaches was investigated through a
user study assessing task completion time, average maximal applied force,
average force error, and subjective feedback for the exemplary use case of
robotic ultrasound. The results indicate that any form of feedback improves
force perception, with visual feedback being particularly effective in reducing
force errors and being preferred by users. Specifically, a 2D bar visualization,
changing height and color, was found to be better at reducing force errors
compared to a 3D arrow visualization displaying relative force through grad-
ual color, direction, and size changes. Moreover, users subjectively preferred
the display of feedback on the screen displaying the sonographic image over
positioning it in their FOV or at the ultrasound probe. These results guided
the formulation of guidelines for sensory substitution in HRI and are an
important step towards improved force perception in HRI.
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9.1 introduction

As described in Section 7.2, previous work has identified fatigue during hand
gesture interaction for HRI as a key challenge [44, 373]. This effect is commonly
referred to as the gorilla arm effect, which describes the fatigue experienced
in users’ arms during prolonged use [45]. This issue is also relevant in hand
gesture interaction within XR. In this context, researchers have found that
fatigue is influenced by the interaction space, i.e., the range of motion and the
specific area in which the hand must move during interaction [140].

When using optical sensors for hand tracking, spatially fixed sensors de-
fine specific interaction spaces in which hands can be reliably tracked and
gestures performed. While hand interaction can also be facilitated using
handheld motion-tracking controllers [183, 236, 316], which allow for more
flexible input spaces, vision-based approaches enable touchless, "come as
you are" interaction. By removing the need for users to be equipped with
additional hardware, these approaches support more spontaneous and acces-
sible interaction [256, p. 524]. Different sensor placements have been explored
for HRI, including head-mounted cameras [61], sensors placed in the robot’s
environment [29, 62, 174], sensors mounted on the robot itself [15], wrist-
mounted devices [328], and handheld controllers [183, 236, 316]. However,
the impact of these sensor placements on fatigue and interaction efficiency
has not yet been systematically investigated.

Beyond sensor placement, the interaction space also depends on the re-
quired range of motion, which is influenced by the control mode. Different
control mappings, such as position and rate control, and gesture designs, can
result in varying ranges of motion, potentially affecting user fatigue. While
comparisons of control modes have been conducted in the context of haptic
input devices [169, 336] and head gestures [275], no direct comparison has
yet been made for hand gesture interaction.

To address this gap, this chapter investigates the influence of sensor place-
ment and control mode on interaction efficiency and user fatigue in gesture-
based HRI, thereby addressing RQ2.2.

RQ2.2 | How can fatigue be reduced in hand gesture-based HRI?

Parts of this chapter were published in: Tonia Mielke, Florian Heinrich, and
Christian Hansen. “Gesturing Towards Efficient Robot Control: Exploring
Sensor Placement and Control Modes for Mid-Air Human-Robot Interaction.”
In: 2025 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
pp. 19–23. doi: 10.1109/ICRA55743.2025.11127519 [5], © 2025 IEEE.
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9.1.1 Related Work

In the literature, different interaction spaces and control methods have been
proposed. However, prior work specifically addressing these aspects in the
context of gesture-based robot control remains limited. Therefore, this section
reviews relevant studies on interaction spaces for hand gesture interaction
and control modes in application areas beyond manipulative robot control
using hand gestures.

9.1.1.1 Interaction Spaces

Different strategies have been proposed to optimize gesture poses within the
FOV of HMDs. Hincapié-Ramos et al. [140] developed a metric to quantify arm
fatigue in hand gesture interaction, evaluating factors such as plane location,
arm extension, plane size, and selection method. Building on this, Belo et
al. [97] introduced a visualization toolkit to help creators design ergonomic
UIs by highlighting the ergonomic costs of different interaction zones. Schön
et al. [289] extended this research to complex rotation tasks, finding that
placing XR content closer to the user’s body increased comfort. Feuchtner and
Müller [103] explored integrating an additional sensor to the HMD, enabling
users to interact at waist level for prolonged interaction while their virtual
hand remained visible in an overhead position.

Beyond optimizing interactions within the FOV, other approaches have
explored alternative sensor placements. Siddhpuria et al. [305] investigated
gesture input at the user’s side, using a hands-down posture enabled by a
smartwatch. Their study reported high user satisfaction, low fatigue, and
strong memorability when interacting with large displays. Similarly, Liu et
al. [197] explored bimanual interaction at a hands-down position using sen-
sors on both thighs, demonstrating the technical feasibility of this approach.
Brasier et al. [49] expanded these findings, comparing different hands-down
sensor placements, such as wrist, waist, or leg, for 2D cursor control. They
found that indirect input, remapping hand movements from off-screen planes,
achieved similar performance to direct input while reducing fatigue.

9.1.1.2 Control Methods

In the context of gesture-based robot control, related work can be broadly
categorized into two types of interaction: discrete and continuous gestures.
Discrete gestures are symbolic or command-based, triggering distinct actions
such as selecting an object or initiating a robot behavior. These gestures can
include, for example, pointing gestures used to define discrete end effector
goal positions [56, 148, 264], to indicate movement directions for the robot [31,
102], or a set of gestures representing different commands [265].

In contrast, continuous gestures involve real-time control of the robot’s
motion based on ongoing hand movements. These include techniques such
as position control and rate control (see Section 2.1.1.3). In position control,
hand gestures are directly mapped to the motion of the robot, either at the
joint level [316, 357] or the end effector level [61, 170, 174, 183]. In contrast,



9.1 introduction 113

rate control maps changes in hand position and orientation to corresponding
end effector velocities rather than absolute positions [73, 236, 310, 328].

Outside of hand gesture interaction, previous work has compared position
control and rate control for HRI across different input modalities. Kim et
al. [169] investigated these modes in a pick-and-place scenario using joy-
sticks, reporting that position control outperformed rate control in terms
of performance. However, they noted the potential benefits of rate control
for broader movement tasks. Wang et al. [336] demonstrated that position
control led to faster and more accurate needle insertions in robotic needle
steering, while also reducing cognitive load. Similarly, Rudigkeit et al. [275]
compared position and rate control using head gestures. They found that
position control enabled faster and more intuitive interaction, whereas rate
control improved accuracy, which could enhance operational safety. Mick
et al. [218] compared rate and position control using an isometric input
device in a 3D target-reaching task. Their results showed that rate control
outperformed position control in terms of task performance.

Beyond robotics, position and rate control have also been compared for
2D input tasks. For example, Crossan et al. [77] evaluated control modes for
head gestures in mobile applications and found position control to be faster
and more accurate than rate control. Similarly, Dougherty et al. [89] found
position control to be more efficient than rate control for foot gestures in a
2D positioning task. Teather et al. [315] compared position and rate control
for 2D pointing using tilt interaction and likewise found that position control
offered faster and more accurate performance.

9.1.2 Research Gap

Previous studies have demonstrated the benefits of indirect interaction spaces
in reducing user fatigue during hand gesture interactions. However, these
studies focused on 2D interfaces [49, 140]. Therefore, the applicability of
these techniques for 3D robot manipulation tasks remains unexplored. In
addition, hand tracking can be performed close to the robot by placing sensors
directly on the robot itself. Although this approach has proven effective for
recognizing deictic gestures in HRI [15], its potential for enabling direct robot
control through hand gestures has not been evaluated.

Moreover, related work explored the suitability of position and rate control
for robot operation using external input devices [169, 218, 336] and head
gestures [275]. However, these control paradigms have not yet been systemat-
ically investigated in the context of hand gestures, particularly with respect
to their impact on fatigue.

Together, these gaps highlight the need to investigate how different interac-
tion spaces and position and rate control can be applied to hand gesture-based
control for three-dimensional robot manipulation, and especially how these
factors influence fatigue during HRI.
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9.2 technical methods

Supplementary
video

To investigate the influence of different interaction spaces on the efficiency
of hand gesture-based HRI, this section examines two key factors: sensor
placement and control mode. The technical methods used to implement these
aspects are described in the following.

9.2.1 Sensor Placements

The most common sensor placements in the literature involve placing the
sensor in the environment (e.g., on a desk) [29, 62, 174] or on the head (e.g.,
using an HMD) [61]. These two placements are used as benchmarks in this
study. In addition, two alternative body-mounted placements are explored.
The first is on the user’s leg, which has been shown to be effective for display
interactions [197, 305]. This placement allows users to interact with their
hands at their sides while maintaining a relaxed, arms-down posture. The
second is at the waist, another promising approach that facilitates interaction
while keeping the arms low [49]. Finally, placing the sensor directly on the
robot is considered, a method that has proven effective for robot control using
deictic gestures [15]. An overview of the different placements is shown in
Figure 9.1 and Figure 9.2.

Figure 9.1: Overview of sensor placements. Reprinted from [5], © 2025 IEEE.

9.2.2 Registration

To enable flexible interaction spaces, an external hand-tracking sensor is
employed, which can be positioned at the previously described placements.
To correctly map tracked hand motion to robot movement, the sensor and
the robot’s coordinate frames must be aligned. Part I demonstrated that
point-based registration can accurately establish this alignment. However, it
requires the robotic end effector to be localizable in both coordinate spaces.
As the hand-tracking sensor does not support marker tracking to determine
the end effector position, an HMD is employed to mediate the registration.
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The transformation TR
HMD between the HMD and the robot R is calculated

using a pivot-calibrated image marker attached to the robotic end effector
and a point-based registration approach (see Section 2.3.4). Then, the trans-
formation THMD

S between the sensor S and the HMD is derived using the
hand-tracking capabilities of both devices. By positioning the hand within
the FOV of both devices, its position can be simultaneously recorded in each
coordinate frame, allowing four corresponding points to be collected for
point-based registration. Based on TR

HMD and THMD
S , the transformation TR

S
between the sensor and the robot can then be computed.

TR
S = TR

HMD · THMD
S (9.1)

The relationship between the sensor and the robot coordinate frames is
dynamic for certain sensor placements. For example, body-mounted sensors
are affected by user movement, while robot-mounted sensors are influenced
by end effector motion. Therefore, continuously updating the sensor’s relative
position and orientation is essential. Since the sensor itself has no inside-
out tracking capabilities, the fixed relative position between the sensor and
its mounting point, either the user or the robotic end effector, is used as a
reference. For body-mounted sensors, the HMD’s inside-out tracking provides
real-time updates of the user’s position relative to the robot. In robot-mounted
configurations, the sensor’s motion is tracked using the robot’s kinematic
model. These real-time position updates are used to continuously adjust the
registration between the sensor and the robot coordinate frame, ensuring
accurate alignment throughout the interaction.

9.2.3 Robot Control

The robot control is implemented as described in Section 2.3.2, using a pinch
gesture to activate the interaction and enabling switching between translation,
rotation, or full 6-DOF control via a foot pedal. Two different mappings
between the manipulative hand gesture and robot motion are investigated:
position control and rate control.

9.2.3.1 Position Control

In position control, changes in hand position and orientation are directly
mapped, scaled by a factor k, to the robotic end effector movements. The
target end effector position PE

n and rotation RE
n are therefore calculated using

the robot’s initial position PE
0 and rotation RE

0 , along with the change in
hand position between mode activation PH

0 and the current frame PH
n , and

the relative rotation between mode activation RH
0 and the current frame RH

n ,
denoted as a quaternion (see Equation 9.2 and Equation 9.3).

PE
n = PE

0 + k · (PH
n − PH

0 ) (9.2)

RE
n = k · (RH

n · (RH
n−1)

−1) · RE
0 (9.3)
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9.2.3.2 Rate Control

In rate control, relative hand positions and orientations are mapped to end
effector velocities using a transfer function. To prevent small hand move-
ments from causing involuntary interactions, a threshold ∆Xmin is employed.
Beyond this threshold, the relative position/orientation ∆X to the start posi-
tion/orientation is linearly scaled to velocities until a maximum value ∆Xmax

is reached (see Equation 9.4).

s(∆X) = smax ·


0 , ∆X ≤ ∆Xmin
1 , ∆X ≥ ∆Xmax

∆Xn − ∆Xmin

∆Xmax − ∆Xmin
, else

(9.4)

Using this equation, the current hand displacement ∆PH = PH
n − PH

0 can be
used to calculate the end effector’s goal position PE

n (see Equation 9.5). Simi-
larly, the rotation ∆RH = RH

n − RH
0 is used to scale the angular displacement,

with the rotation R(angle, axis) being applied around the axis A defined by
∆RH (see Equation 9.6).

PE
n = PE

n−1 + sn(∆PH) · ∆PH

||∆PH || (9.5)

RE
n = R(sn(∆RH), A) · RE

n−1 (9.6)

9.2.4 Implementation

The implementation was realized as described in Section 2.3. Hand track-
ing was enabled using a Leap Motion Controller 2. Sensor placements were
managed using 3D-printed mounts and Velcro fasteners for the waist and
leg (see Figure 9.2). For additional input, a foot pedal with two switches was
used: one to toggle the robot control mode and the other to confirm task
completion. The application for hand tracking, registration, and gesture-to-
robot control was developed in Unity and ran on a desktop PC. A HoloLens
2 was used for interface display, task visualization, and registration, with
a Unity-based application that utilized Vuforia for marker tracking. Robot
motion was executed using a high-stiffness impedance control scheme for
precise Cartesian movements.

(a) Desk (b) Head (c) Leg (d) Waist (e) Robot

Figure 9.2: Setup for different sensor placements. Reprinted from [5], © 2025 IEEE.
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9.3 evaluation methods

To assess the suitability of different sensor placements and control methods
for the hand gesture-based control of a robotic arm, a within-subjects user
study with repeated measures was conducted. Each participant tested every
combination of sensor placement and control method across four repetitions
of the evaluation tasks, resulting in 32 trials per person (4 placements × 2

control methods × 4 tasks). Additionally, a preliminary study was conducted
to determine relevant parameters for the robot control.

9.3.1 Preliminary Study

To optimize the robot control modes, a preliminary pilot study was conducted
with 5 participants (2 female, 1 diverse, 2 male), all of whom had a technical
background. The goal was to determine optimal parameters for both position
control and rate control. For position control, parameters included the map-
ping ratio of hand translation and rotation to end effector movement. For rate
control, the range of hand motion was examined.

For position control tuning, participants were presented with three different
mappings (1:1, 1:0.75, and 1:0.5) for translation and rotation. They were then
asked to rank these mappings based on their experience. For rate control,
participants were asked to move their hands from an individually defined
resting position in each Cartesian direction and to rotate them around each
individual axis, returning to the resting position after each movement. The
transfer function values were then defined by determining the minimum of
the range values and the maximum deviation from the resting position for
each participant, and averaging these values across participants.

In terms of position control scaling, participants preferred 1:1 scaling for
translation and 1:0.5 scaling for rotation. They found that unscaled translation
provided a more efficient and natural interaction, while scaled-down rotation
made the robot’s behavior feel more predictable and easier to control. The
latter preference was likely since small end effector rotations cause larger
movements in the robot’s joints, making unscaled rotation perceived as
too fast. These optimized scalings, along with motion ranges for different
sensor placements, were applied in the final study. When evaluating sensor
placements, the waist position had significantly limited rotational freedom,
likely due to the sensor’s difficulty detecting the hand unless the palm faced
it. Consequently, rotation becomes uncomfortable, restricting the range of
motion and impacting the feasibility of this placement. Therefore, the waist
placement was excluded from further investigation. It is worth noting that
using different sensors capable of recognizing hands in different orientations
could potentially mitigate this issue, making waist placement a more viable
option in future studies.
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9.3.2 Tasks

To evaluate the suitability of the different control methods, a precision task
was used, as precision has been shown to cause a high level of fatigue in
HRI [195]. To additionally require both translation and rotation, an alignment
task was chosen, where participants aligned the robotic end effector with
a target position. Therefore, a 3D-printed flange with a specific geometric
shape was employed, and the target position and rotation were displayed as
a hologram of the end effector in AR (see Figure 9.3).

Figure 9.3: UI during study task displaying target hologram and feedback about
active mode and hand visibility. Reprinted from [5], © 2025 IEEE.

9.3.3 Variables

independent variables The independent variables of the two-factorial
study design were the sensor placement (desk, head, leg, robot) and the control
mode (rate control, position control).

dependent variables To assess performance and user perception, both
objective and subjective measures were collected. For performance measures,
the TCT was recorded, starting from the first detected gesture to participants
confirming task completion via a foot pedal press. In the final position, the
translation error was measured as the Euclidean distance, and the rotation
error was assessed as the shortest angle in degrees between the two rotations.
Workload was assessed using the NASA TLX [131], and fatigue was assessed
using the Borg CR10 [43] questionnaire.

9.3.4 Hypotheses

The study was exploratory in nature, with no prior assumptions made re-
garding the outcomes. As a result, two-sided hypotheses were examined.
Based on the variables described above, the following null and alternative
hypotheses were considered:
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Hy
0 .x The mean x is equal for all levels of y.

Hy
1 .x The mean x differs for at least one level

of y.

x ∈


1-TCT
2-Translation Error
3-Rotation Error
4-TLX
5-Borg CR10

y ∈
{

1-Control Methods
2-Sensor Placement

9.3.5 Sample Design

As this user study investigated a general precision task, no prior task-specific
knowledge was required. Therefore, participants with a technical background
were recruited from the local university through online polls. Each participant
received a compensation of 15e.

9.3.6 Procedure

Upon arrival, participants were asked to complete a written informed consent
form and provide demographic information. They were then given a brief
introduction to the general purpose of the study and the task to be performed.
The study began with the first trial for the first sensor position and control
method. The order of sensor positions and control methods was counterbal-
anced, with each participant performing both control methods for the same
placement sequentially in a fixed order. Each trial consisted of a training and
an evaluation block separated by a short break. During each of the blocks,
participants were presented with four target positions and were instructed
to align the end effector with the virtual targets. During the training block,
the method was explained, and questions could be asked. Following each
trial, participants completed the NASA TLX and Borg CR10 questionnaires. A
short break followed each trial until participants felt comfortable to continue,
to minimize the carry-over effects of effort. After completing all eight trials
(4 sensor positions × 2 control methods), a semi-structured interview was
conducted. The study took an average of 60 minutes.

9.3.7 Statistical Analysis

First, Shapiro-Wilk and Levene’s tests were performed for each measure to as-
sess normality and homogeneity assumptions, respectively. Across variables,
these assumptions were not met. Therefore, robust two-way ANOVAs for
within-subjects designs based on trimmed means were calculated (see [348]).
The δt estimate proposed by Algina et al. [16] was employed for effect sizes.
Post hoc paired sample Yuen’s tests based on trimmed means with Holm
corrections for multiple testing were conducted as pairwise comparisons
between the sensor placement factor levels. All statistical analyses were
conducted using R (version 4.4.0).
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9.4 results

This section outlines both the quantitative and qualitative results obtained
from the user study.

9.4.1 Participants

A total of 29 participants (19 male, 7 female, 3 non-binary) took part in
the study. Participants’ ages ranged from 20 to 39 years (M=27.38, SD=4.02),
and their heights ranged from 162 cm to 197 cm (median: 174 cm). The
sample consisted of undergraduate students (17), graduate students (6), and
engineers (5). To standardize the study setup, only right-handed participants
were recruited. Participants were asked to self-assess their technical affinity,
motor skills, and task-relevant experience on a 5-point Likert item, where 5

indicates a high level of affinity, skill, or experience. Participants reported their
technical affinity (M=4.31, SD=0.60), motor skills (M=3.93, SD=0.65), experience
in HRI (M=2.62, SD=0.94), experience in XR (M=3.10, SD=1.42), and experience
in hand gesture interaction (M=2.38, SD=1.32).

9.4.2 Quantitative Results

The statistical analyses revealed significant main effects of sensor placement
and control mode across multiple variables. The only exception was the
control mode factor on translation error, which did not yield significant dif-
ferences. Additionally, no statistically significant interactions were observed.
Therefore, only descriptive results for each individual factor condition are
reported in Table 9.1. Additional illustrations of all descriptive results are
shown in Figure A.2, and a summary of all statistical outcomes is presented
in Table 9.2. Pairwise comparison results are illustrated in the plots (see
Figure 9.4 and Figure 9.5).

Table 9.1: Summary of descriptive results for all dependent variables (n=29). Entries
are in the format: mean value [standard deviation].

Variable TCT (s)
Translation

Error
Rotation

Error
TLX Borg CR10

Placement

Desk 51.72 [18.68] 20.52 [8.02] 9.50 [3.96] 28.03 [17.11] 1.88 [1.82]
Head 52.96 [20.83] 25.37 [15.20] 9.94 [3.87] 29.35 [17.20] 2.09 [1.93]
Leg 69.12 [24.41] 24.18 [11.57] 11.85 [6.77] 37.36 [20.84] 2.07 [1.95]
Robot 53.23 [17.69] 18.73 [8.76] 8.96 [3.25] 32.00 [20.17] 2.77 [2.16]

Control Mode

Position Control 49.07 [17.57] 21.60 [11.83] 9.78 [4.86] 27.11 [17.46] 1.91 [1.68]
Rate Control 64.44 [22.67] 22.81 [11.16] 10.34 [4.67] 36.26 [19.69] 2.49 [2.22]
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Table 9.2: Summary of the robust ANOVAs’ results (α < .05). Test statistic Q and
effect size δt are reported. Adapted from [5], © 2025 IEEE.

Effect type Factor Q p Sig. δt Effect Fig.

TCT

Main Sensor Placement 6.32 <0.001 ∗ -0.054 Small 9.4a
Control Mode 65.92 <0.001 ∗ -0.786 Medium 9.5a

Interaction Placement × Mode 0.47 0.699 - - A.2

Translation Error

Main Sensor Placement 5.30 0.001 ∗ -0.392 Small 9.4b
Control Mode 0.88 0.347 - -

Interaction Placement × Mode 0.59 0.618 - - A.2

Rotation Error

Main Sensor Placement 4.12 0.006 ∗ -0.210 Small 9.4c
Control Mode 6.83 0.009 ∗ -0.180 Small 9.5b

Interaction Placement × Mode 1.06 0.363 - - A.2

NASA TLX

Main Sensor Placement 3.20 0.023 ∗ -0.106 Small 9.4d
Control Mode 29.91 <0.001 ∗ -0.416 Small 9.5c

Interaction Placement × Mode 1.49 0.216 - - A.2

Borg CR10

Main Sensor Placement 3.71 0.011 ∗ -0.112 Small 9.4e
Control Mode 9.47 0.002 ∗ -0.233 Small 9.5d

Interaction Placement × Mode 1.98 0.116 - - A.2

9.4.3 Qualitative Results

For the qualitative feedback analysis, participant statements from the semi-
structured interviews were paraphrased and grouped. The clustering process
emphasized statements shared by at least two participants. Out of 347 indi-
vidual statements collected, 244 were mentioned by at least two participants.
These were then condensed into 54 summarizing statements (see Table 9.2).

9.4.4 Interpretation of Results

The analysis revealed no interaction effects between the two independent
variables. This indicates that control mode and sensor placement do not
influence each other. Thus, the effects of control mode and sensor placement
can be interpreted separately.

sensor placement Statistically significant main effects across all de-
pendent variables between sensor placements were found (see Figure 9.4).
Therefore, the null hypotheses H2

0 .1-H2
0 .5 were rejected in favor of their re-

spective alternative hypotheses H2
1 .1-H2

1 .5.
Sensor placement at the robot resulted in significantly lower translation

errors compared to leg and head placements (see Figure 9.4b), likely due



122 sensor placement and control modes

Table 9.3: Summary and frequency of statements (#) received during the semi-
structured interview. Adapted from [5], © 2025 IEEE.

Sensor Placement

Desk Head
+ Comfortable (5), intuitive (4), natural (2)
+ Large FOV (3)
- Static FOV lacks flexibility (5)
- Outstretched arm tiring (2)
- Issues with hand tracking (2)

+ FOV obvious (5) and feels unrestricted (2)
+ Intuitive (4), familiar (2), natural (2)
- Tiring (9)
- Hand in line of sight distracting (7)
- Sensor weight is uncomfortable (2)

Leg Robot
+ Effortless (9), intuitive (2)
+ Hand not in line of sight (2)
- Rotation (8) and hand visibility issues (7)
- FOV small (5) and unclear (2)
- Requires training (5), imprecise (2), unnat-

ural (3), unclear mapping (2)
- Issues with gesture recognition (3), main-

taining distance to sensor (2)
- Registration off due to leg movement (2)

+ Intuitive (13), easy (2), natural (2)
+ Flexible FOV (5)
- (In rate control:) hand leaves sensor FOV

due to robot movement (7)
- Uncomfortable hand position (7)
- Unclear FOV (3)
- Hand tracking issues (3)
- Rotation difficult (2)

Control Mode

Position Control Rate Control
+ Intuitive (14), direct (6), easy (6)
+ Precise (6), fast (5)
+ Familiar (2), natural (2)
- Frequent need to re-grab (2)

+ Effective for small spaces (9) and large
movements (5)

+ Precise (9), more comfortable (2)
- Difficult to return to start position (5)
- Overshooting desired position (4)
- Not intuitive (2), tiring (2)

to the reportedly intuitive interaction, where participants felt as if they
were directly grasping the robot, making the interaction natural and easy.
However, this method also led to significantly higher Borg CR10 scores than
head and desk placements (see Figure 9.4e), possibly due to uncomfortable
hand positions requiring arm extension to stay within the sensor’s FOV.
As described in Table 9.3, some participants found the sensor’s flexible
FOV advantageous, while others faced difficulties with gesture recognition,
especially during rotation, as their hands occasionally moved out of view.

Desk and robot placements showed no significant difference in accuracy,
but desk placement significantly reduced perceived exertion. This suggests
desk placement could be a viable option for long-term interactions where
exertion is a priority, provided the workspace allows it. However, robot-
mounted sensors remain preferable for short-term, precise tasks or when
desk placement is impractical.

Sensor placement at the leg resulted in significantly higher TCT compared
to the other placements (see Figure 9.4a). Participants reported that while the
interaction felt less intuitive and harder to learn due to reduced hand-eye
coordination, the relaxed arm position was effortless. However, this described
effortlessness did not reduce Borg CR10 scores or perceived physical demand
in the NASA TLX. This may be due to gesture recognition errors when hands
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were too close to the sensor, forcing participants to hold their hands in an
unnatural position, potentially increasing physical workload.

While significant main effects of sensor placement were found for both
TLX scores and rotation errors, post hoc pairwise comparisons did not reveal
significant differences between specific placements. This suggests that while
there is a general difference between placements, their exact nature remains
unclear. Larger sample sizes may clarify this. Descriptively, the leg placement
trended towards higher rotation error and TLX scores compared to other
placements. This aligns with participant-reported challenges, particularly
difficulties in understanding the mapping of hand movements to robot rota-
tions, which potentially increased rotation errors and contributed to a higher
perceived workload.
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Figure 9.4: Significant sensor placement main effects. Means are indicated by . Signifi-
cant post hoc pairwise comparisons are indicated with brackets. Adapted
from [5], © 2025 IEEE.

robot control method Statistically significant effects of control mode
on TCT, rotation error, NASA TLX scores, and Borg CR10 scores were found,
with significantly longer task duration, higher rotation error, greater perceived
workload, and higher perceived exertion for rate control compared to position
control (see Figure 9.5). Thus, the null hypotheses H1

0 .1, H1
0 .3, H1

0 .4, and H1
0 .5

were rejected in favor of their respective alternative hypotheses. These results
align with feedback from participant interviews, where position control
was described as intuitive, easy, and accurate. Although some participants
found rate control to be precise, they also reported overshooting the target
and struggling to return to the neutral position, which may have reduced
rotational accuracy and increased task duration. Holding their hands in
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static, uncomfortable positions may have further contributed to the increased
physical exertion, as reflected in the Borg CR10 scores.

No significant effect of control mode on translation accuracy was found,
so the null hypothesis H1

0 .2 could not be rejected. This is consistent with
participant feedback, as both control modes were described as precise. How-
ever, as noted above, despite the reported sense of precision, rotational error
was significantly higher for rate control compared to position control. This
suggests that difficulties with rate control, such as returning to the neutral
position or overshooting, may have affected rotation more than translation.
One explanation could be that translation is a more familiar interaction,
making it easier to correct errors.
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Figure 9.5: Significant control mode main effects. Means are indicated by . Adapted
from [5], © 2025 IEEE.

9.5 discussion

In this section, the results are discussed in the context of related work,
limitations are outlined, and design implications based on the study’s findings
are presented.

sensor placement The findings suggest that placing the sensor on the
robot significantly improves translation accuracy, though it comes at the cost
of higher perceived exertion. In contrast, alternative placements that offset the
hand from the interaction site reduce fatigue, consistent with XR interaction
research [152]. While previous XR research shows that interacting farther
from the body reduces comfort but maintains rotational accuracy [289], this
chapter expands on these insights by demonstrating that robot-mounted
sensors improve translation precision and seem to have a positive effect on ro-
tation accuracy, likely due to the reported intuitiveness. The results highlight
challenges with leg placement, which increased TCT and perceived workload.
This aligns with previous findings on 2D XR input [49], where leg-mounted
sensors led to higher mental load due to difficulties in understanding the
interaction mapping. Participants reported challenges related to the hand be-
ing out of sight. Providing feedback on the state of interaction could mitigate
this issue and should be explored in future work.
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control modes The study results indicate position control being more
efficient than rate control for gesture-based interaction, consistent with pre-
vious findings for haptic input devices [169, 336] and head gestures [275].
However, prior research also suggests that rate control may be advantageous
for slow systems and tasks involving large workspaces [169], an argument
supported by participants’ feedback. While this study chose a precision
task requiring only small translations and rotations, because of its associa-
tion with higher fatigue, a broader range of tasks may have provided more
comprehensive insights.

9.5.1 Limitations

The main limitation of the study is the specificity of the task used. Addi-
tionally, to the aforementioned limitation regarding the workspace size, the
task allowed participants to remain stationary, whereas tasks requiring more
flexibility in operator movement might have highlighted the advantages of
body-worn or robot-mounted sensor placements. Therefore, future work
should consider using a wider range of tasks, including those requiring
greater motion or different viewpoints.

This study aimed to assess the impact of different sensor placements and
control modes on user fatigue. However, physical exertion was measured only
during short interaction tasks with a duration of approximately one minute.
This design choice was motivated by the intended use case of gesture-based
interaction as a complement to autonomous robot control, specifically for the
manual execution of isolated subtasks rather than full procedural interven-
tions. As a result, the perceived exertion levels may have been lower than
in prolonged interaction scenarios, potentially underestimating the extent of
fatigue effects. Future studies could extend task duration to better capture
cumulative fatigue and its influence on user performance and comfort.

Another limitation of this study relates to the demographics of the partici-
pants. The gender distribution was not uniform due to the random sampling
method. Additionally, the study was designed for right-handed use, and
as a result, only right-handed participants were invited to participate. This
limitation may affect the generalizability of the results. Future studies should
aim to include a more diverse sample of participants, both in terms of gender
and handedness, to increase the applicability of the results.

9.5.2 Implications

In summary, based on the study results, the following design implications
for hand gesture-based HRI are proposed:

Utilize robot-mounted sensors for short-term precision. Findings show
that placing the sensor on the robot results in intuitive and accurate control.
However, this sensor placement increases physical demand and is therefore
best suited for shorter interactions.
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Place sensor in the environment for extended interaction. The results in-
dicate that the sensor placement on the desk offers a balanced approach. It
provides good accuracy while minimizing physical strain, making it ideal for
prolonged use.

Employ position control for efficient interaction. Study results suggest that
position control provides faster, more precise, and more intuitive control than
rate control; however, rate control may be a suitable alternative for tasks that
require larger movements within a limited interaction space.

9.6 conclusion

This chapter explored different sensor placements and control methods for
hand gesture-based HRI, with the goal of identifying the most effective con-
figurations for interaction accuracy, efficiency, and user comfort. The findings
indicate that among the sensor placements, robot-mounted sensors offered
precise and intuitive control but were physically demanding. In contrast,
desk-mounted sensors provided a balanced trade-off between accuracy and
exertion. Leg-mounted sensors, though allowing for a relaxed posture, faced
challenges with hand-eye coordination, leading to reduced efficiency. Addi-
tionally, position control was found to be more intuitive and precise than
rate control, while reducing perceived workload and fatigue. Based on these
results, implications were proposed to optimize hand gesture-based HRI.
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The second part of this thesis aimed to address specific challenges in hand
gesture-based HRI to enhance the overall efficiency of this interaction modality.
Based on related work, two major limitations were selected as the focus: the
lack of haptic feedback and the issue of user fatigue during interaction.

To address the challenge of missing haptic feedback, two force assistance
strategies were investigated. The first experiment examined the effects of force
automation. Results showed that automating the contact force can compensate
for the absence of haptic feedback in gesture-based robot control. In fact,
for general tasks, it enabled hand gesture control to perform comparably to
the established hand-guiding method, and even to outperform it in more
precise tasks. A second experiment explored sensory substitution through
vibrotactile and visual feedback. By also examining feedback design and
placement, this study demonstrated that visual feedback, implemented as a
color and shape-changing bar in a world-stabilized placement, is effective in
conveying force information.

The second identified challenge, user fatigue during interaction, was ad-
dressed by exploring the influence of different sensor placements and control
modes. Findings from the user study indicated that while robot-mounted
sensors improved precision, desk-mounted sensors significantly reduced
perceived exertion. Additionally, position control was found to be both more
efficient and physically less demanding than rate control.

As the first experiment demonstrated, hand gesture-based robot control
has the potential to be comparable or even surpass state-of-the-art interaction
methods when its core limitations are mitigated. Given the flexibility and
intuitiveness of this input method, improving hand gesture interaction repre-
sents a promising path towards enhancing overall HRI efficiency. Therefore,
this part of the thesis represents a meaningful step towards more efficient HRI

by providing validated strategies to reduce both the impact of missing haptic
feedback and the fatigue associated with hand gesture-based interaction.
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Part III

X R P R O T O T Y P I N G F O R H R I E VA L UAT I O N S

Synopsis: This part investigates the validity of XRP for simulating
HRI user study setups. To this end, two experiments are presented.
The first experiment examines the transferability of user study
results across different degrees of virtualization for different tasks.
The second experiment further explores the transferability of
findings from a study on force assistance techniques, conducted
in both a real and an XR-based user study setup.



This part contains material adapted from the following publications:
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11.1 motivation

The previous chapters of this thesis employed user studies as a tool for
human-centered HRI research. This process of prototyping and evaluating HRI

systems is essential to enable more intuitive and efficient user interfaces [270].
However, setting up real-world user studies is often costly [223, 248], with
robot locations not always being accessible [67, 252], and technical issues or
user misconduct potentially causing physical harm [186]. To address these
challenges, XR has emerged as a valuable tool for prototyping HRI interfaces
by simulating real-world conditions. In particular, XRP supports early-stage
development by reducing experimental costs [223, 249, 338], minimizing risks
during physical interaction [63, 244], improving workspace accessibility [252,
316], and accelerating research and development [120]. Using a virtual robot
and task also enables the simulation of factors such as object recognition
and task environments while offering a robust and consistent experimental
setting [349]. Instead of virtualizing the entire system, some approaches
incorporate hardware-in-the-loop simulation, embedding a real robot within a
virtual environment. This hybrid method allows for fast prototyping, reduced
collision risk [63], and more accurate performance assessments [61].

Despite these benefits, the transferability of study results obtained through
XRP to real-world scenarios remains a concern. In other areas, such as public
displays [206], authentication systems [215], and assembly tasks [254, 337],
virtual replicas of real environments have led to similar behavior and objective
measures, highlighting the potential of XR as a test bed for human-centered
evaluation of real-world scenarios. However, other studies report perceptual
differences across varying levels of virtualization [330], which highlights the
need to validate the transferability of findings obtained through XRP.

While prior work has investigated perceptual similarities between virtual
and physical robots [68, 127, 339] and introduced novel interaction concepts
within XR [227, 343], limited attention has been given to the validity of
XR-based user studies in HRI, especially for direct robot control.

To address this gap, this part of the thesis aims to answer RQ3:

RQ3 | Can XRP produce transferable results for HRI research?

11.2 related work

According to Plümer and Tatzgern [251], validation of XRP as a performance
evaluation tool can follow two main approaches. The bottom-up approach iso-
lates specific influencing factors such as display fidelity [48], latency [180], or
visual realism [291]. In contrast, the top-down approach involves conducting
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full user studies in XR and comparing them with their real-world counter-
parts [204, 215, 254, 330, 337].

In robotic research, the top-down approach has been the more prevalent
method. Early top-down studies compared physical and video representa-
tions of robots. These works showed that physically present robots often
led to more positive interactions than simulated representations [26, 164,
189], with participants displaying higher engagement levels towards real
robots [299]. However, Liu et al. [198] found that XR simulations led to better
performance compared to traditional on-screen simulations, suggesting po-
tential advantages of XR. To further explore the suitability of XR for simulation
in HRI, previous work has examined the perception of simulated robots and
the use of XR environments for interactive robot control (see Table 11.1).

Table 11.1: Overview of related work on XRP in HRI. ≈ indicates similar findings
across prototype environments, and ̸= indicates different findings.

Interaction Task Environment Findings

Perception
[127] Robot gestures AR/Real robot

+ AR/Real task
≈ Perception

[278] Robot gestures VR vs. Real robot ≈ Perception

Proexemics
[191] Approaching VR vs. Real robot ̸= Perception
[151] Co-presence VR vs. Real robot ≈ Perception
[339] Co-presence VR vs. Real robot ̸= Physical measures

Collaboration [146] Handover VR vs. Real robot ≈ Performance
[68] Handover AR vs. Real robot ̸= Safety zone preference

Social behavior [347] Secret keeping VR vs. Real robot ̸= Perception

Robot Control

[227] Pick-and-place VR vs. Real robot ̸= Performance1

[344] Manipulation VR vs. Real robot ≈ Performance1

[251] Drone steering AR vs. Real robot ̸= Performance, workload
[252] Steering AR vs. Real robot ̸= Performance, workload
[63] Screw removal VR vs. Real robot

+ AR task
̸= Performance

[343] Stacking VR vs. Real robot ̸= Usability
1 Different interaction techniques used in virtual and real conditions.

11.2.1 XRP for Robot Perception

Han et al. [127] evaluated the comprehensibility of robotic deictic gestures
across real, virtual, and hybrid conditions and found no significant differences.
Sadka et al. [278] similarly observed consistent interpretations of gestures
between real and virtual robots.

Another line of work focuses on the perception of robot proxemics. Li
et al. [191] reported that users preferred closer distances with real robots,
while virtual robots caused more discomfort. In contrast, Inoue et al. [151]
and Weistroffer et al. [339] found similar perceptions and co-presence ratings
between physical and virtual robots, although physiological responses like
heart rate and skin conductance were higher with real robots. Hsieh and
Lu [146] reported no significant performance differences in handover tasks
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between real and virtual robots. Cogurcu et al. [68] found that visualization
preferences for robotic safety zones varied depending on whether the robot
was real or virtual. Wijnen et al. [347] replicated a secret-keeping study in XR

and found discrepancies in outcomes, indicating challenges in using XR for
some types of HRI studies.

While these works offer insights into robot perception and proxemics, they
largely focus on passive observation or perception rather than interactive
control of robots. Consequently, they provide limited evidence on how HRI is
influenced by the virtualization of the robot or its environment.

11.2.2 XRP for Robot Control

To explore interactive HRI across real and XR settings, Nenna et al. [227]
compared pick-and-place tasks in XR and real environments, finding shorter
operation times and lower workload in XR, especially for high-precision
tasks. Similarly, Whitney et al. [344] compared different manipulation tasks
performed with a physical robot and an XR-simulated robot. They found
that physical robots enabled faster task completion, while virtual robots
made complex positioning tasks easier. However, both studies employed
different control interfaces for the XR and physical settings, which limited the
comparability and transferability of interaction methods.

Plümer and Tatzgern [251] investigated XR validity in drone steering tasks
using video see-through displays. They identified multiple confounding
factors, such as altered depth perception and perceived risk, that affect
the absolute validity of XRP. In their follow-up work [252], they assessed
visualization techniques for reducing perceived latency. They found that while
absolute performance differed between real and simulated environments, the
relative ranking of techniques remained consistent, supporting the notion
of relative validity. Whitney et al. [343] compared robot control using a
physical robot, viewed on a screen, with control of a virtual robot perceived
in VR during a stacking task. Their results indicated similar task duration
and workload across conditions. However, the XR setup resulted in higher
perceived usability. Chen et al. [63] explored not only robot virtualization but
also task virtualization, comparing a real robot with a virtual task against
an entirely virtual setup. They found that participants perceived the partly
simulated condition as more realistic and suitable for producing reliable
results. However, task completion was faster in the entirely virtual simulation,
suggesting greater caution when interacting with real hardware.

11.3 research gap

As summarized in Table 11.1, previous research has investigated the per-
ceptual similarity between virtual and real robot scenarios [127, 339] and
introduced novel interaction concepts in XR [227, 343]. However, limited atten-
tion has been given to assessing the validity of XR user studies in interactive
scenarios, particularly for direct robot control. In the context of HRI, efforts
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have been made to compare entirely physical setups with XR-based setups
for tasks such as robot steering [251, 252] and pick-and-place operations [68,
343]. Other studies have investigated real robots with simulated tasks in XR,
for example, in screw removal tasks [63].

However, these works each focus on a single task, which limits the under-
standing of which factors influence the transferability of XR study results.
Furthermore, a systematic comparison across different levels of virtualization
is still missing. This includes setups that use only simulated tasks and those
that combine simulated tasks with simulated robots. Addressing this gap is
important as perceptual differences between real and simulated robots [68,
339] might affect various task types differently. These effects might be reduced
by keeping the real robot in the loop while virtualizing only the task.

Additionally, previous studies primarily focus on tasks involving little to
no physical contact between the robot and the environment. In contrast, there
is a lack of research on contact-intensive tasks, where the robotic end effector
directly interacts with the environment. Understanding how XR translates
to such tasks is particularly important, as previous studies have shown that
stiffness and force perception can differ significantly in XR [115, 355].

11.4 contribution

This part of the thesis investigates the transferability of XRP for HRI user
studies, providing the following contributions.

Investigation of Task-Specific XRP Transferability. Chapter 12 explores the
transferability of XRP study results across three distinct tasks that vary in
required precision and complexity.

Investigation of Different Levels of Virtualization. To examine how the
degree of virtualization affects study outcomes, Chapter 12 compares physical
test setups with XRP environments that include a virtual task with a real robot
and an entirely simulated setup.

Investigation of XRP for Contact-Intensive Tasks. To further explore the
suitability of XRP for simulating contact-intensive tasks, Chapter 13 presents
a more focused investigation into the transferability of XRP user studies in
such scenarios by evaluating different force assistance approaches.

Since the investigation of contact-intensive tasks also includes the comparative
evaluation of force assistance strategies, this part additionally contributes to
understanding force assistance concepts through the following:

Comparative Evaluation of Force Assistance Approaches. While Chapter 8

introduced two force assistance concepts, namely partial automation and
sensory substitution, these have not yet been evaluated comparatively. As
a result, their relative performance and synergistic effects remain unclear.
Chapter 13 addresses this gap by jointly investigating partial automation as
presented in Section 8.2 and sensory substitution based on the findings from
Section 8.3.



1 2 I N V E S T I G AT I O N O N X R P V I RT UA L I Z AT I O N L E V E L S

As previously described, prior work has indicated that perceptual differences
between real and simulated robots might arise [68, 339]. While some studies
have examined whether such differences affect the transferability of XRP

user study results to real-world scenarios, a broader understanding of how
varying levels of virtualization influence user perception and behavior is
still needed. To date, comparisons have primarily focused on fully physical
setups with physical robots performing simulated tasks [63], or entirely
simulated environments [251, 252]. However, a gap remains in evaluating the
transferability across different levels of virtualization.

Addressing this gap is important, as perceptual differences might be re-
duced when the real robot is kept in the loop while only the task is virtualized.
In addition, previous work has focused on specific use cases without analyz-
ing how task characteristics influence transferability. Therefore, this section
investigates the transferability of results between three conditions: virtual
robots, real robots in virtual tasks, and entirely physical setups, using three
practical tasks.

Parts of this section were previously published in Tonia Mielke, Mareen All-
gaier, Danny Schott, Christian Hansen, and Florian Heinrich. “Virtual Studies,
Real Results? Assessing the Impact of Virtualization on Human-Robot Inter-
action.” In: Proceedings of the Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems. New York, NY, USA: Association for Computing
Machinery, Apr. 2025, pp. 1–8. doi: 10.1145/3706599.3719724 [2].

12.1 technical methods

Supplementary
video

This section assesses the transferability of user study results in HRI across
different levels of virtualization. Therefore, three tasks were implemented,
each evaluated under three levels of virtualization: a real robot with a real
task (real), a real robot with a virtual task (mixed), and a virtual robot with a
virtual task (virtual).

12.1.1 Task Design

To assess varying ranges of motion, precision, and task complexity, the two
most common HRI task domains were explored: pick-and-place and assembly,
i.e., peg-in-hole [272]. In addition, robotic ultrasound was investigated as a
higher-level cognitive task [133]. While the first two tasks were selected for
their general relevance and widespread use, robotic ultrasound was chosen
as a specific, practical example, representing a contact-intensive task. An
overview of the tasks is illustrated in Figure 12.1.
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pick-and-place In this task, a cube is picked up from a start location
and placed in a target location. To simplify interaction, a magnetic setup was
used instead of a gripper, with magnets on the flange and object for pickup
and additional magnets underneath for release onto a magnetic surface. Pick-
and-Place was chosen as a task to require broad robotic arm movements,
further encouraged by obstacles in the workspace.

peg-in-hole Here, a cylindrical peg attached to the robot must be inserted
into different holes. To require both translational and rotational movements,
the holes are angled in different directions. This assembly task was chosen
for its demand for precise alignment and rotational movement.

ultrasound In robotic ultrasound, an ultrasound probe is attached to
the robot, enabling imaging through robot control. The task involves imaging
a phantom with spheres of varying sizes and assessing their dimensions.
Robotic ultrasound was chosen as it is an emerging field requiring HRI to
complement autonomous control [292, 359] and to contrast with the two other
industrial tasks. Additionally, it requires users to focus on both the robot and
the sonographic images, adding cognitive complexity, in contrast to the other
tasks that mainly address motor skills.

(a) Pick-and-Place (b) Peg-in-Hole (c) Ultrasound

Figure 12.1: Schematic overview of tasks investigated.

12.1.2 Real Environment

The real environment (see top row Figure 12.2) was implemented as described
in Section 2.3. Task components, such as the cubes for the pick-and-place task,
the holes for the peg-in-hole task, and the corresponding mounts on the robot,
were 3D printed. For the ultrasound task, a Clarius probe was used, and the
phantom and spheres, made of agar-agar with varying concentrations, were
custom-built to exhibit different imaging properties (see Section 2.3.5).

12.1.3 Simulated Environment

Since the mixed condition requires perception of the real robot, AR was used
to visualize the virtual components within the simulated environment. To
minimize confounding factors caused by mediated views through video see-
through HMDs [251], an optical see-through HMD enabling direct view of the
real environment, the HoloLens 2, was employed. The simulated environment,
including 3D models of the robot and tasks, was also developed in Unity.
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Figure 12.2: Overview of virtualization levels (rows: real, mixed, virtual) and tasks
(columns: pick-and-place, peg-in-hole, robotic ultrasound). Reprinted
from [2].

Robot simulation was realized with ROS (Open Source Robotics Foundation,
USA) using the Unity Robotics Hub. To replicate the movement sounds of the
physical robot, a humming sound, changing pitch and volume depending on
the movement velocity, was included. The sound was played by a speaker
positioned underneath the robot for accurate spatial sound.

Since a standalone HMD was used for the simulated environment, per-
formance was the primary limiting factor for the ultrasound simulation.
Consequently, a fast texture-based approach similar to that of Allgaier et
al. [18] was chosen. The simulation used 3D surface meshes as input, which
were converted into a 3D render texture using ray casting. To enable this, a
CAD model of the real phantom was created, consisting of three material
types: the base material, the embedded spheres, and the bracket structure
holding the spheres. Each material was assigned an echogenicity value to
mimic its appearance in real ultrasound images. The render textures were
then used for real-time ultrasound simulation. Custom shaders, based on
the method by Allgaier et al. [18], were applied to generate ultrasound-like
cross-sections and simulate typical ultrasound characteristics such as attenua-
tion, reflection, blur, and noise. These parameters were empirically tuned to
closely resemble real-world imaging. Registration between the virtual and
physical environments was performed as described in Section 2.3.4.

12.1.4 Implementation

The robot control was implemented as described in Section 2.3, using a Leap
Motion Controller 2 positioned in front of the user. A pinch gesture activated
control, causing the robot’s movements to follow the user’s hand while the
gesture was maintained. Translational motion was mapped at a 1:1 ratio,
while rotational motion was scaled down at a 2:1 ratio. A foot pedal was
used to toggle between translation, rotation, or simultaneous translation and
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rotation modes. The robot control interface was developed in Unity and ran
on a desktop PC, sending movement commands via UDP to the physical
robot controller or via ROS TCP to the simulated robot controller. Inverse
kinematics for the commanded robot movements were calculated using the
built-in functions of KUKA Sunrise for the physical robot and the Orocos KDL
plugin in MoveIt for the simulated robot.

12.2 evaluation methods

To assess the transferability of XRP for user studies, a within-subjects study
was conducted. Each participant completed all three tasks in each of the
three prototype environments, resulting in nine trials per person (3 prototype
environments × 3 tasks). Additionally, a preliminary study was conducted
to evaluate the simulation fidelity and identify areas for improvement.

12.2.1 Preliminary Study for Improvement of Fidelity

The preliminary study involved five participants who experienced the dif-
ferent prototype environments and tasks, providing qualitative feedback on
the simulation fidelity. While participants generally found the XR and real
versions to be similar, some specific necessary improvements were identified.
Additional sounds, such as the clicking of magnets during pick-and-place
and scraping sounds for robot movements on surfaces, were incorporated.
Moreover, static lighting conditions were adjusted to better mimic real-world
lighting. While the benefits of dynamic shadows were identified, they were
not implemented due to computational constraints on the HoloLens.

independent variables The independent variable of the one-factorial
investigation was the degree of virtualization (real, mixed, virtual). Each of the
three tasks (Pick-and-Place, Peg-in-Hole, Ultrasound) was performed under
each of the virtualization levels.

dependent variables Commonly used objective and subjective mea-
sures for product performance assessment [251] were utilized as dependent
variables. The first variable was TCT, measured from the start of the user’s
interaction to the robot’s final movement before task completion was con-
firmed. A foot pedal press confirmed task completion for all tasks. Task
completion for the pick-and-place task involved placing three cubes onto
designated metal plates. In the peg-in-hole task, participants had to insert
a peg into three holes, with a sound indicating successful insertion. For the
ultrasound task, completion was defined by confirming the order of three
spheres, ranging from 25 mm to 30 mm in size, by pressing a corresponding
pedal when each sphere was visible. To ensure consistent task completion
across virtualization levels, such as triggering the sound during peg-in-hole
at the same insertion depth or confirming sphere visibility in the ultrasound
task, the physical tasks were optically tracked using a FusionTrack 500 tracking
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camera. As a subjective measure, perceived workload was assessed using the
raw NASA TLX questionnaire, while subjective task difficulty was measured
with the SEQ. Participants were further asked to rate the similarity between
virtualization stages for each task using a five-point Likert item (1=very
similar; 5=very different).

12.2.2 Hypotheses

The study was exploratory, with no prior assumptions made regarding the
expected outcomes. Consequently, two-sided hypotheses were examined. The
null and alternative hypotheses considered were as follows:

H0.x The mean x is equal for all virtualization levels.
H1.x The mean x differs for at least one virtualization

level.
x ∈

 1-TRE
2-TCT
3-TLX

12.2.3 Sample Design

As this study investigated two general HRI tasks and included a training
session to familiarize participants with the ultrasound task, no task-specific
prior knowledge was required for participation. Therefore, participants with
a technical background were recruited from the local university via online
polls. Each participant received compensation of 15e.

12.2.4 Procedure

At the beginning of the study, participants received a brief introduction on
the purpose of the study and completed a written consent form. They were
then introduced to the robot control through a short training session. The
first task block followed, starting with an explanation of the task and its goal.
The order of tasks was counterbalanced using a Latin square. In each task
block, the three levels of virtualization were presented in a counterbalanced
order. Each combination of task and virtualization level was performed
twice: once for training and once for evaluation. Training sessions were
included to familiarize participants with the task. After each evaluation trial,
participants completed the NASA TLX and SEQ. Upon completing each task
block, they answered the similarity question and participated in a short semi-
structured interview. After all three tasks, a final semi-structured interview
was conducted to gather general feedback. Study completion took an average
of 60 minutes per participant.

12.2.5 Statistical Analysis

Several statistical analyses were conducted using R (version 4.4.0) to assess the
respective null and alternative hypotheses of the virtualization levels for each
dependent measure. The data for the three tasks were analyzed separately.
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First, Shapiro-Wilk and Levene’s tests were conducted to assess normality and
homogeneity assumptions on TCT measures. These assumptions were violated.
Hence, robust repeated measures ANOVAs for within-subjects designs based
on trimmed means were calculated (see [348]) for TCT data. In addition,
robust repeated measures ANOVAs were also conducted on the TLX scale
data and the ordinal SEQ data. Post hoc paired sample Yuen’s tests based on
trimmed means with Holm corrections for multiple testing were conducted as
pairwise comparisons in case of significant ANOVA outcomes. For significant
effects, effect sizes were calculated using the δt estimate proposed by Algina
et al. [16]. For non-significant effects, Bayes factors were calculated using
Bayes ANOVAs for repeated measures to further interpret statistical results
by estimating how well the null hypotheses could be supported [142].

12.2.6 Simulation Fidelity

For identifying and accounting for confounding factors prior to the experi-
ment, the XRP validation framework introduced by Plümer and Tatzgern [251]
was followed to assess differences between the real and simulated versions.

Visual Fidelity. In the XR conditions, participants wore an optical see-through
HMD, allowing them to directly perceive the RE, eliminating the need for a
virtual representation of the user’s hand or environment. To create accurate
representations of the task and robot for the virtualized conditions, publicly
available mesh files for the robot1 were used, along with 3D models of the
printed components and custom-made CAD models for other task parts.

Haptic Fidelity. Since the same touchless control method was used for the robot
in all conditions, and no direct contact with the environment was required,
the haptic fidelity remained identical across all conditions.

Audio Fidelity. To replicate the sounds of the physical robot during movement,
a velocity-dependent humming sound was generated for the virtual robot. In
the preliminary study, additional sounds were identified for the interaction
between the virtual flange and task. These included the magnet clicking when
picking up and placing the cube, as well as scratching noises when the flange
collided with surfaces.

Interaction Fidelity. All conditions used the same interaction technique, hard-
ware, and setup, ensuring consistent interaction fidelity across conditions.

Functional Fidelity. The physical and simulated robots were set to have the
same maximum velocity and acceleration, as well as similar stiffness behavior.
The magnets for the pick-and-place tasks were also tuned to match the real
ones’ reaching distance. The movement of the robot and its interaction with
the environment were validated by simultaneously moving the virtual and
real robot. For the ultrasound image, a rendering approach shown to produce
realistic images [18] was used, with the visual properties of the imaged
structures tuned to mimic the real components.

1 https://github.com/ros-industrial/kuka_experimental

https://github.com/ros-industrial/kuka_experimental
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Data Fidelity. Objective and subjective data were collected identically across
all approaches, as the same automated data collection and questionnaires
were used. To ensure consistent measures of task completion across the
virtualization stages, the components in the physical setup were optically
tracked, allowing the relative position of the task to the robot to be known.

Simulation Overhead. During the real conditions, participants did not have to
wear the HMD to allow for a realistic assessment of the comparability between
the real and virtual conditions, as a study with the real robot would not
involve wearing an HMD.

12.3 results

This section outlines and interprets the quantitative and qualitative results
obtained from the user study.

12.3.1 Participants

In total, 31 participants (13 female, 15 male, 3 diverse) took part in the user
study, aged between 20 and 36 years (M=25.94, SD=3.60). Among them, 26

were right-handed, and 5 were left-handed. The group comprised 18 uni-
versity students, 9 PhD students, 3 engineers, and 1 postdoctoral researcher.
Participants reported an average familiarity with HRI of 2.77 (SD=1.23) and XR

of 3.10 (SD=1.35) on a 5-point Likert item, where 5 indicates high familiarity.
They self-reported an average technical affinity of 4.19 (SD=0.65) and motor
skills of 3.81 (SD=0.54) on the same scale.

12.3.2 Quantitative Results

The descriptive results are summarized in Table 12.1, and the statistical
results are presented in Table 12.2. Significant pairwise comparisons are
illustrated in Figure 12.4. The descriptive results of the similarity scores are
shown in Figure 12.3. These scores indicate task-dependent differences across
virtualization levels. While the virtualization levels are generally perceived
as similar for the pick-and-place and ultrasound tasks, noticeable differences
are perceived between the real and virtual scenarios in the peg-in-hole task.

Ultrasound

Peg−in−Hole

Pick−and−Place

0% 25% 50% 75% 100%

Mixed & Virtual
Real & Virtual
Real & Mixed

Mixed & Virtual
Real & Virtual
Real & Mixed

Mixed & Virtual
Real & Virtual
Real & Mixed

very similar similar neutral different very different

Figure 12.3: Plot of the similarity scores. Adapted from [2].



142 investigation on xrp virtualization levels

Table 12.1: Summary of descriptive results for all dependent variables (n=31). Entries
are in the format: mean value [standard deviation].

Variable TCT (s) TLX SEQ

Pick-and-Place 84.50 [29.72] 24.53 [14.61] 5.68 [0.99]
Real 88.34 [34.09] 25.40 [16.35] 5.48 [1.21]
Mixed 83.22 [27.22] 25.99 [15.61] 5.61 [0.92]
Virtual 81.93 [27.95] 22.20 [11.61] 5.94 [0.77]

Peg-in-Hole 75.35 [32.46] 36.94 [18.99] 4.63 [1.27]
Real 54.43 [23.02] 26.99 [16.31] 5.48 [0.96]
Mixed 85.52 [34.29] 41.64 [19.37] 4.26 [1.15]
Virtual 86.12 [29.10] 42.18 [17.66] 4.16 [1.24]

Ultrasound 61.78 [22.43] 27.05 [14.41] 5.58 [1.06]
Real 65.05 [25.41] 27.55 [14.72] 5.55 [0.96]
Mixed 60.78 [22.40] 26.75 [13.68] 5.68 [1.08]
Virtual 59.50 [19.44] 26.85 [15.25] 5.52 [1.15]

Table 12.2: Summary of robust ANOVAs results (α < .05), reporting the test statistic
F and Bayes factor BF10 for non-significant effects, and effect size δt for
statistically significant effects.

Variable F p Sig. BF10 δt Interpretation Fig.

Pick-and-Place
TCT 1.09 0.348 0.51 - Anecdotal 12.4a
TLX 1.12 0.332 1.41 - Anecdotal 12.4b
SEQ 2.73 0.079 1.56 - Anecdotal 12.4c

Peg-in-Hole
TCT 25.36 <0.001 ∗ - -1.02 Large 12.4a
TLX 25.93 <0.001 ∗ - -0.75 Medium 12.4b
SEQ 20.94 <0.001 ∗ - 1.03 Large 12.4c

Ultrasound
TCT 1.81 0.181 0.34 - Anecdotal 12.4a
TLX 0.23 0.770 0.11 - Moderate 12.4b
SEQ 0.04 0.951 0.16 - Moderate 12.4c

12.3.3 Qualitative Results

During the semi-structured interviews conducted in the study, a total of 349

individual statements were recorded. After summarizing statements within
participants, 203 statements were identified that were stated by at least two
participants. These were then consolidated into the 34 statements presented
in Table 12.3.

12.3.4 Interpretation of Results

This section interprets the quantitative results for the three different tasks
and contextualizes them with the qualitative feedback obtained.
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Table 12.3: Summary and frequency of statements (#) received during the semi-
structured interview. Adapted from [2].

General Pick-and-Place

• Precision in virtualized difficult (4)
• Perceived dissonance in mixed (4)
• FOV of HoloLens too small (3)
• FOV of HoloLens sufficient (3)
• Sounds in mixed and virtual helpful (3)
• One has to get used to the HoloLens (3)
• Looking at real more comfortable (2)

• More scared about collisions (13) and
careful in real (7)

•Virtualization levels very similar (12)
•Task felt easier in virtual and mixed (5)
• Depth perception challenging in virtual

and mixed (2)
• Sounds were helpful (2)

Peg-in-Hole Ultrasound

• Perception of depth (16), peg orienta-
tion (16), hole orientation (7), and dis-
tances (4) harder in virtualized settings,
affecting precision (11)

•Task perceived easier in real (10)
• Perception mixed easier than virtual (4)
• Mixed and virtual felt similar (3)
•Virtualization levels (5), broad move-

ments (2), and control (3) similar
• Mixed felt confusing (3)
• More fear of collisions in real (2)

•Virtualization levels similar (16)
• Contact force perception harder in mixed

and virtual (9), attributed to phantom
deformation missing (8)

• More afraid of applying excessive con-
tact force in real (9)

•Task easier in mixed and virtual (4)
• FOV of HoloLens too small for simulta-

neous view of robot and US image (3)
•Task easier in real (3)
• Friction in virtualized realistic (2)

pick-and-place No significant main effects were observed on TCT, TLX,
or SEQ for the pick-and-place task. Thus, the null hypotheses H0.1-H0.3 for the
pick-and-place task could not be rejected. Similarity scores suggest that most
participants perceived the task as similar across conditions, and Bayes factor
analysis provided anecdotal evidence supporting the null hypothesis for TCT,
indicating no effect. However, while again no significant effects were found for
TLX and SEQ, Bayes factor analysis provided anecdotal evidence supporting
the alternative hypotheses. This may be attributed to differences reported
during interviews, where 13 participants noted a greater fear of collision
in the real scenario, and seven described being more cautious. Participants
emphasized that virtualizing the task was the primary factor in reducing
perceived risk.

peg-in-hole For the peg-in-hole task, significant main effects were ob-
served on TCT, TLX, and SEQ, with effect sizes δt indicating medium to large
effects. Consequently, the null hypotheses H0.1-H0.3 were rejected in favor of
the respective alternative hypotheses H1.1-H1.3 for the peg-in-hole task. Post
hoc comparisons showed significantly higher TCT and TLX scores, and lower
SEQ scores, in the mixed and virtual conditions compared to the real condition.
These differences likely stem from perceptual challenges in the virtual tasks.
Sixteen participants reported difficulties with the perception of depth and the
peg’s rotation, which made aligning the peg with the hole more challenging.
Consequently, eleven participants described achieving precise motions as
difficult. Although four participants described the perception of the real robot
in the mixed condition as helpful, this did not result in significant differences
between the mixed and virtual conditions, which was also reflected in the high
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perceived similarity between the mixed and virtual conditions. This suggests
that the use of a virtual task is the primary factor contributing to perceptual
differences that result in increased task difficulty, longer completion times,
increased workload, and decreased task ease.

ultrasound The results for the ultrasound task show no significant main
effects of the virtualization approach on all measures. Therefore, the null
hypotheses H0.1-H0.3 for the ultrasound task could not be rejected. Post hoc
Bayes analysis indicates anecdotal evidence supporting the absence of an
effect for TCT and moderate evidence for TLX and SEQ. Differences between
virtualization approaches may stem from variations in the ultrasound images,
with 11 participants noting that the real image had more noise. Additionally,
nine participants reported that contact was harder to perceive in the mixed
and virtual scenarios, with eight attributing this to less complex feedback,
such as reduced deformation of the phantom. Conversely, nine participants
noted being afraid of applying too much contact force in the real scenario.
Similarity scores emphasize the resemblance between the mixed and virtual
scenarios.
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Figure 12.4: Violin Plots of experimental results of dependent variables. Means
are indicated by . Brackets indicate statistically significant post hoc
pairwise comparison results. Adapted from [2].

12.4 discussion

This section discusses the findings related to virtualization level and task
dependency, outlines the study’s limitations, and summarizes the results into
design implications.
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virtualization level Previous research indicates that participants are
more cautious with real robots due to collision concerns, while virtual robots
are associated with lower perceived risk [63, 68, 251, 252]. This work confirms
and extends these findings by highlighting the role of task virtualization.
Specifically, it was found that the fear of collision is reduced even when only
the task is virtual, while still using a real robot. This highlights the impor-
tance of both the robot’s and the obstacles’ virtuality. Additional perceptual
differences were reported during the contact-intensive ultrasound task, where
participants noted difficulty perceiving contact force between the end effector
and the environment.

task dependency However, despite participants’ subjective feedback
reporting perceptual differences, no significant impact was observed on the
recorded measures for the pick-and-place and the ultrasound task. In contrast,
for the peg-in-hole task, the real condition resulted in the best TCT, TLX, and
SEQ. This suggests that the slower pace, potentially linked to more cautious
behavior, was overshadowed by other confounding factors. Participant feed-
back suggested that perception, especially depth perception, played a crucial
role, aligning with previous findings [251]. While perceptual challenges in
XR are a relevant topic with ongoing research efforts to address them [12,
177], the findings highlight the task dependence of this limitation. As no
significant differences were found between virtualizations for broader tasks,
and they were perceived as similar, the employed fidelity seems sufficient for
these tasks. However, for precise tasks in virtual settings, special attention
should be given to visual fidelity.

general In this study, AR was used to facilitate XRP by integrating vir-
tual components into the RE. Thus, in both the mixed and virtual conditions,
everything except the task-relevant components remained real, including
the testing environment and the user’s hands. However, as discussed in
Section 11.2, XRP can also be realized using VR, which simulates the entire en-
vironment. Utilizing VR enables the simulation of environmental factors that
may influence task performance. While the current experiment investigated
isolated tasks without considering external factors, VR offers potential for
exploring more embedded tasks. Especially since previous work has shown
that HCI experiments conducted in AR, VR, lab settings, and in situ can yield
differing results [330], future research should examine virtualization levels
more comprehensively, including VR and in situ environments.

12.4.1 Limitations

One limitation of this study is the use of a single fidelity level, which limits the
ability to isolate specific factors influencing transferability between conditions.
Although the implementation achieved a promising fidelity level based on the
taxonomy by Plümer and Tatzgern [251], the use of the HoloLens constrained
visual fidelity. While participants described the limited FOV as sufficient,
potential concerns remain regarding shadowing and lighting effects. Previous
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research suggests that certain performance measures may be independent of
visual fidelity [291]. However, future studies should investigate the impact of
varying fidelity levels on the transferability of performance between real and
virtual tasks.

Another limitation stems from the study design itself, focusing solely on
absolute validity, assessing whether the real and virtualized use cases yielded
equivalent performance. However, related work suggests that even when
absolute validity is not achieved, relative order effects may still align [252].
However, assessing such relative validity, i.e., whether the comparative out-
comes between conditions remain consistent across environments, requires a
study design that includes multiple factor levels. Therefore, future research
should investigate transferability in comparative studies, examining whether
relative validity holds, especially for precision tasks where absolute validity
could not be achieved. In addition, the participant sample consisted primarily
of individuals with an academic background, which may limit the gener-
alizability of the findings. Future studies should consider including target
user groups relevant to the tasks, such as industry professionals or medical
practitioners, to identify challenges across different user groups and improve
the external validity of the findings.

12.4.2 Implications

The findings of this study can be condensed into the following implications
for XRP in HRI:

The transferability of XRP results is task-dependent. The results of the user
study indicate that, while no significant differences were found between
XRP environments for coarse tasks such as pick-and-place and ultrasound,
significant differences did emerge for the more precise peg-in-hole task. This
suggests that when employing XRP, it is essential to consider whether the
specific task investigated is suitable for virtualization.

Perceptual differences must be accounted for in all tasks. Qualitative feed-
back revealed that perceptual differences were noted across all tasks, includ-
ing reduced perception of depth, risk, and contact forces. These limitations
should be taken into account when designing XRP studies, particularly those
investigating perception or user experience.

The primary factor influencing transferability is task virtualization. The
study results show that the level of task virtualization is the main factor
influencing transferability, with no significant differences observed between
entirely virtualized setups and those involving a real robot. This implies
that, for tasks suitable for virtualization, entirely virtual setups can be used
confidently for prototyping and experimentation, reducing the need for
physical hardware and enabling more accessible and scalable research.
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12.5 conclusion

The goal of this work was to assess the transferability of HRI study results
between real and XR setups. The results highlight that the XRP validity de-
pends on the task being investigated. For broader movement tasks, such as
the pick-and-place task, and complex tasks such as robotic ultrasound, evi-
dence suggests that conducting the task in a real versus partially virtualized
setting yields comparable results. However, significant differences between
the real and the XR setups were found for the peg-in-hole task, which re-
quires higher precision. The primary factor behind this difference seems to
be task virtualization, as using a real robot with a virtual task still resulted in
significantly different outcomes, with this setup being rated similarly to the
virtual robot condition. This suggests that partial simulation of study setups
in HRI research can yield valid results regardless of the level of virtualiza-
tion, though perceptual challenges must be considered, particularly for tasks
requiring precise perception and interaction. However, this study focused
solely on absolute validity. For comparative user studies, relative validity, i.e.,
consistent comparative effects across environments, may also be relevant. To
examine this in more detail, the next chapter will investigate a specific task,
analyzing comparative effects more thoroughly.
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While Chapter 12 demonstrated the potential of XRP for yielding transferable
HRI user study outcomes, qualitative feedback revealed perceptual differences,
such as difficulties in assessing contact force and variations in perceived risk
between real and simulated environments. Notably, the reported differences
in force perception align with previous findings that stiffness and force cues
can vary in XR [115, 355]. However, since prior work on XRP transferability
has primarily examined tasks involving little to no contact [251], it remains
unclear how differences in force perception between real and virtual environ-
ments affect transferability. To address this, the following section investigates
XRP transferability in more detail for contact-intensive tasks, focusing on the
robotic ultrasound task introduced in Chapter 12. Specifically, it examines
not only absolute validity but also relative validity by applying the force
assistance approaches introduced in Chapter 8 to determine whether the ef-
fects of partial automation and sensory substitution remain consistent across
different prototype environments.

By comparatively evaluating both the prototype environments and the
force assistance approaches, this chapter also contributes to RQ2.1 Can force
assistance improve efficiency in HRI?. While Chapter 8 introduced partial au-
tomation and sensory substitution as techniques for assisting force perception,
it did not compare them directly. This chapter fills that gap by assessing their
relative performance and potential synergistic effects, thereby supporting a
deeper understanding of force assistance techniques.

Parts this section were previously published in Tonia Mielke, Mareen
Allgaier, Christian Hansen, and Florian Heinrich. “Extended Reality Check:
Evaluating XR Prototyping for Human-Robot Interaction in Contact-Intensive
Tasks.” In: Transactions on Visualization and Computer Graphics (TVCG) 31.11

(Oct. 2025), pp. 10035–10044. doi: 10.1109/TVCG.2025.3616753 [1].

13.1 technical methods

Supplementary
video

This section outlines the technical implementation used to evaluate the trans-
ferability of XRP for contact-intensive tasks. Building on the force assistance
concepts introduced in Chapter 8, it describes the two prototype environments
and the implementation of partial automation and sensory substitution.

13.1.1 Prototype Environments

As the results presented in Chapter 12 indicated that no significant differences
arise between virtualized setups that include the real robot and those that
are entirely virtual, this chapter focuses on two extremes: an entirely real
environment and one where the robot and the task are simulated.

148
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(a) Real Prototype Environment (b) Simulated Prototype Environment

Figure 13.1: Overview of prototypes explored in the study. A bar for visual force feed-
back is displayed adjacent to the ultrasound image. Reprinted from [1].

13.1.1.1 Real Environment

The real environment consisted of the components described in Section 2.3.
A custom-built cuboid made of agar-agar was used as a phantom (for more
details, see Section 2.3.5). It contained a 3D-printed bracket on which three
spheres, made of agar-agar with a higher concentration, were placed. The
visual force feedback, as well as visual feedback about the active interaction
mode, was displayed beside the ultrasound screen (see Figure 13.1a).

13.1.1.2 Simulated Environment

The simulated environment is implemented as described in Section 12.1.3.
It was developed in Unity and displayed using a HoloLens 2 as an optical
see-through display, allowing the physical surroundings to remain visible
while augmenting the task-relevant components (see Figure 13.1b). The robot,
ultrasound probe, phantom, and screen were visualized using previously de-
scribed 3D models (Section 12.1.3). The robot simulation and ultrasound ren-
dering methods followed the same principles and performance considerations
outlined earlier. Alignment between virtual and physical components was
again ensured through the registration approach described in Section 2.3.4.

13.1.1.3 Robot Control

The robot control was implemented as described in Section 12.1.4, using the
same architecture based on a Leap Motion Controller 2 for gesture input. As
before, translation was mapped 1:1 and rotation at a 2:1 scale, with a foot
pedal used to toggle between control modes. The Unity-based interface com-
municated with either the physical or simulated robot controller, and inverse
kinematics were handled using the same pipeline described previously.

13.1.2 Force Assistance Concepts

In this section, the force assistance concepts previously investigated in Chap-
ter 8, namely sensory substitution and partial automation, are employed.
The specific implementation of the force assistance approaches used in this
section is detailed below.
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13.1.2.1 Visual Force Feedback

As shown in Section 8.3, a bar visualization allows for more precise perception
of contact force compared to an arrow visualization. Therefore, a bar is
implemented that conveys force information through changes in height and
color. The visualization follows the implementation described in Section 8.3,
representing the absolute force applied along the probe’s vertical axis. The
color indicates the relation to the optimal force Fd: blue signals insufficient
force, which may compromise acoustic coupling and image quality; red
indicates excessive force, posing a risk of tissue deformation or injury; and
green represents forces within the optimal range, defined as Fd ± 2.5 N (see
Figure 13.2). In line with earlier results, the bar is positioned next to the
sonographic image, as this placement has been shown to reduce perceived
difficulty and support continuous perception.

The force data is again measured using the robot’s force/torque sensors.
As the forces involved are relatively small, the measurements are sensitive to
digital noise, which is reduced using an empirically tuned Kalman filter.

Fmax

Fd

F0

Screen

US
Image

Figure 13.2: Design and placement of the visual force feedback. Reprinted from [1].

13.1.2.2 Contact Force Automation

To automate contact force, the hybrid position/force control approach pre-
viously described in Section 8.2 is employed. This decouples the interactive
position control from force regulation by controlling only the motion along
the force direction using force control. The commanded joint torques, τ, are
thus determined through a combination of 5 DOF controlled by position con-
trol during interaction and 1 DOF controlled by force control (see Figure 13.3).
An impedance control scheme is implemented to balance the external force,
Fext, with the desired force, Fd.

Mapping Position
Control

Force
Control

Fd

5 DOF

1 DOF

τ

Fext

Figure 13.3: Loop diagram on force automation. Reprinted from [1].
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13.2 evaluation methods

To evaluate the differences between force assistance methods in both real
and simulated environments, a three-factorial within-subjects user study was
conducted.

13.2.1 Task

For the evaluation, a task necessitating exploratory movement of the robotic
end effector on a surface was required. Therefore, an ultrasound inspection
task was selected. To facilitate this, an ultrasound phantom with three em-
bedded spheres was developed. The task was to localize the three spheres
and identify the one that differed in size from the others. To this end, spheres
varying in size between 25 mm and 30 mm were embedded in the phantom.
To minimize the influence of differing path lengths on study outcomes, the
spheres were always placed in fixed positions (see Figure 13.4). Participants
were instructed to maintain a force level as close as possible to the desired
force Fd = 10 N during movement. To minimize learning effects, three phan-
toms were provided for both the real and simulated environments. The
phantom size, sphere dimensions, and sphere placement were identical in
both the real and simulated environments to ensure consistent task difficulty.

Figure 13.4: Setup of the phantom used in the user study. Three spheres are mounted
on a bracket connected to a marker shield extending from the phantom
to enable tracking.

13.2.2 Variables

independent variables The independent variables of the three-
factorial study were the environment (real vs. simulated), the visual feedback
(with or without visual force feedback), and the force automation (manual
control vs. partial automation).

dependent variables The general purpose of this study was to assess
the validity of XRP in evaluating force assistance techniques for HRI in contact-
intensive tasks. To this end, commonly used objective and subjective measures
for performance assessment were employed. The first objective variable was
the TCT. To prevent the duration of moving the probe to the phantom from
affecting this time, measurement started upon first reaching Fd, indicated
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by the LED ring on the robot blinking blue. The time recording stopped
when participants confirmed task completion by pressing a foot pedal. To
quantify the consistency of the applied force, the second variable was the
Average Absolute Deviation (AAD), calculated as the mean absolute difference
between the applied contact force and Fd at each time point.

AAD =
1
N

N

∑
i=1

|Fi − Fd| (13.1)

The force was continuously recorded during interaction, excluding periods
of inactivity, when the pinch gesture was not held, to prevent static probe
positions from influencing the results. Data points for the applied force were
acquired every 50 ms. A Kalman filter was employed to reduce measurement
noise. To mitigate the effects of latency in force measurements and ensure
uniform sampling across devices, the data were interpolated to an equidistant
sampling rate of 1 kHz. Additionally, the perceived workload was assessed as a
subjective measure, using the standardized raw NASA TLX.

As previous work has found differing perceptions of simulated robots
compared to their real-world counterparts [191, 339], as well as the potential
impact of partial automation on attitudes towards robots [217], trust was
additionally assessed to identify differences in how participants perceive the
robot across prototype environments and assistance approaches. Trust was
measured using the 14-item version of the trust scale introduced by Schäfer
et al. [285]. Following Eilers et al. [92], responses were recorded on a 5-point
Likert item instead of using percentages.

13.2.3 Hypotheses

While the other studies described in this thesis were exploratory, with no
prior assumptions about the expected outcomes, this study builds on the
experiments reported in Chapter 8 and Chapter 12. The insights from those
earlier investigations allowed for the formulation of specific hypotheses (H)
regarding the influence of visual force feedback, force automation, and proto-
type environment.

H1. Previous work has found that visual feedback enables consistent force
application [314]. Accordingly, it is hypothesized that force deviation will
be reduced by visual feedback (H1.1). Since visual feedback, particularly in
automated scenarios, has been associated with improved transparency that
can foster trust [239], it is hypothesized that trust will be increased by visual
feedback (H1.2). As prior studies have shown that task duration tends to
increase when visual feedback is provided (see Section 8.3), task completion
time is expected to increase with visual feedback (H1.3). This increase in
duration is also expected to lead to greater perceived workload when visual
feedback is available (H1.4).

H2. In related work, force automation has been shown to improve force
stability [100, 370]. Based on these findings, it is hypothesized that force
deviation will be decreased by force automation (H2.1). Related studies [267]
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and Section 8.2 have also reported reductions in task completion time through
force automation, so it is expected that task completion time will be reduced
by force automation (H2.2). Additionally, perceived workload is expected
to be reduced by force automation (H2.3), as indicated in prior work [267]
and Section 8.2. Since automation has been found to decrease the sense of
agency [320], which may in turn reduce trust [366], it is anticipated that trust
will be reduced by force automation (H2.4).

H3. Prior studies have reported that stiffness and force perception can dif-
fer significantly between simulated and physical environments [115, 355].
These perceptual differences may influence task performance. Therefore, it
is hypothesized that force deviation (H3.1), task completion time (H3.2),
and perceived workload (H3.3) will be higher in the simulated environment
compared to the physical environment. Since earlier work has found that
people tend to respond differently to simulated robots [191, 339], it is also
expected that trust will be lower in the simulated environment (H3.4).

H4. Previous research has shown that even when absolute measurements
differ between real and simulated environments, relative trends may remain
consistent [251, 252]. Therefore, despite the differences anticipated in H3,
relative validity is expected, meaning that the general trends associated with
force visualization and automation, as described in H1 and H2, are expected
to be consistent in both the real and the simulated environment.

13.2.4 Sample Design

As outlined in Chapter 12, involving domain experts in user studies can
provide more nuanced insights. Since the task in this study was robotic ultra-
sound, participants with knowledge of ultrasound imaging were required.
Since no procedural expertise was necessary, medical students were consid-
ered suitable. Participants were recruited from the local university via online
polls and were compensated with 30e.

13.2.5 Procedure

Upon arrival, participants were given a brief introduction to the study’s
objectives. They were then asked to complete a written consent form and a
demographic questionnaire. Next, they received an explanation of the robot
control method and its safety features, including limitations on reach and
velocity, as well as automatic stopping when force limits were exceeded.
Participants then began the first block in the first environment, with the order
of environments counterbalanced across participants. Each block consisted
of four trials, one for each force assistance approach (none, visual feedback,
force automation, and visual feedback + force automation). The order of these
approaches was counterbalanced across participants using a Latin Square. For
each force assistance approach, the trial began with an explanation of the as-
sistance method, followed by a training trial in which participants performed
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the task on a phantom. This training was intended to increase participants’
proficiency in robot control and ensure they could successfully complete the
task regardless of prior experience. Once they confirmed they were ready to
proceed, two evaluation trials followed, conducted on different phantoms
selected randomly. After completing the evaluation trials, participants were
asked to complete the NASA TLX and Trust questionnaires. After each envi-
ronment block, a short semi-structured interview was conducted to gather
in-depth feedback on the force assistance concepts. Upon completing both
blocks, a final semi-structured interview was conducted to explore potential
differences between the real and simulated environments. The study took an
average of 60 minutes.

13.2.6 Statistical Analysis

Since two trials were conducted for each combination of the three factors
(environment, visual feedback, and force automation), TCT and AAD were averaged
across identical experimental conditions for each participant. To evaluate the
effects of the three investigated factors, the data for the dependent variables
(TCT, AAD, TLX, and Trust) were tested for normality using the Shapiro-Wilk
test and for homogeneity using Levene’s test. If the assumptions were met,
three-way repeated measures ANOVAs were conducted. When they were
violated, robust three-way ANOVAs for within-subjects designs based on
trimmed means were used (see [348]). For ANOVAs, the test statistic F
and effect size η2 were reported. For robust ANOVAs, test statistic Q was
reported, and effect sizes for main effects were estimated using δt, as proposed
by Algina et al. [16]. For interaction effects, the more conventional effect size
η2 was used. Additionally, Bayes Factor analysis between the environment
factor levels for all combinations of visual feedback and force automation
was performed using Bayes paired t-tests [142]. All statistical analyses were
conducted using R (version 4.4.0).

13.2.7 Simulation Fidelity

As in Section 12.2.6, the XRP validation framework proposed by Plümer and
Tatzgern [251] was used to assess and correct potential confounding factors
prior to the experiment.

Visual Fidelity. Since the simulated setup included the same virtual robot
and ultrasound task as described in Chapter 12, and participants reported
perceiving the real and the simulated environments for the ultrasound tasks
as similar, the visual fidelity can be considered sufficient.

Haptic Fidelity. No direct physical contact with the robot or the environment
was required for task completion. Therefore, haptic fidelity was identical
across environment conditions.

Audio Fidelity. The primary audio source during the task was the sound
of the robot, which was replicated in the simulated environment using a
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velocity-dependent humming sound played through a speaker positioned
beneath the real robot.

Interaction Fidelity. The same gesture-based interaction technique, using the
same sensors, was employed in both the real and simulated conditions,
resulting in consistent interaction fidelity.

Functional Fidelity. As in Section 12.2.6 consistent behavior between the phys-
ical and simulated robot was ensured by configuring both with the same
maximum velocity, acceleration, and stiffness. The stiffness of the ultrasound
phantom, as well as the interaction between the robot and phantom, were
determined through palpation. To verify similar behavior between the real
and simulated robot, they were again moved simultaneously, with the simu-
lated robot overlapping the real one to identify potential offsets and enable
empirical fine-tuning.

Data Fidelity. The same automated approaches and questionnaires were used
for data collection, ensuring data fidelity.

Simulation Overhead. Since the HMD was necessary for force visualization and
to eliminate simulation overhead caused by wearing it, participants were
required to wear the HMD in all conditions.

13.3 results

This section presents the user study results and their interpretation.

13.3.1 Participants

In total, 26 medical students participated (18 identified as female, 8 as male),
aged between 20 and 33 years (M=24.73, SD=4.08), and in their second to sixth
year of study (M=4.00, SD=1.61). 13 participants reported no visual impairment
and 13 reported having corrected-to-normal vision. They conducted the study
with their dominant hand, with 24 being right-handed and two left-handed.
Participants rated their task-relevant skills using a 5-point Likert item, where
1 indicated low and 5 indicated high. They reported their technical affinity as
(M=3.27, SD=0.87) and their motor skills as (M=3.77, SD=0.71). Additionally,
they rated their task-relevant experience on a scale from 1 (no familiarity)
to 5 (high familiarity) for HRI (M=2.12, SD=0.99), MR (M=2.08, SD=0.82), and
ultrasound (M=3.00, SD=1.06).

13.3.2 Quantitative Results

The following section outlines the results of the statistical tests, with a focus
on significant findings. For a more detailed overview of the descriptive results
and statistics, refer to Table A.5 and Table A.6. The descriptive results are
presented in Figure 13.5, and the results of the Bayes factor analysis are
shown in Table 13.1.
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Figure 13.5: Descriptive results of the dependent variables. ■ & ■ show ’manual’,
while ■ & ■ show ’automated’ force automation levels. Lighter colors
represent the absence, while darker colors show the presence of visual
feedback. Means are indicated by . Adapted from [1].

Since TCT results were not normally distributed, a robust ANOVA was
conducted. The test revealed a significant main effect of force automation on
TCT (Q = 19.31, p < 0.001, δt = 0.561 (medium), see Figure 13.6). All other
main effects were not statistically significant, and no significant two-way or
three-way interactions were found.
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Figure 13.6: Force automation main effects on TCT. Means are indicated by . Adapted
from [1].

The force deviation results were also not normally distributed. Therefore,
again, a robust ANOVA was conducted. Significant main effects of environment
(Q = 25.13, p < 0.001, δt = −0.063 (small)), visual feedback (Q = 56.94,
p < 0.001, δt = −0.168 (small)) and force automation (Q = 1364.48, p < 0.001,
δt = 4.896 (large)) were found (see Figure 13.7). Additionally, significant
two-way interaction for environment × force automation (Q = 17.78, p < 0.001,
η2 = 0.003 (small)) and visual feedback × force automation (Q = 62.24, p < 0.01,
η2 = 0.02 (small)) were found (see Figure 13.8). No significant three-way
interaction effects were observed.
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Figure 13.7: Environment, visual feedback, and force automation main effects on AAD.
Means are indicated by . Adapted from [1].
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Figure 13.8: Two-way interaction effects on AAD. Bars represent means. Error bars
represent standard errors. Adapted from [1].

The NASA TLX results were normally distributed; therefore, a repeated
measures ANOVA was conducted. The test revealed significant main effects
of environment (F = 7.04, p = 0.014, η2 = 0.01 (small)) and force automation
(F = 59.71, p < 0.001, η2 = 0.025 (large), see Figure 13.9). No other main
effects were found, and no significant two-way or three-way interactions were
observed.
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Figure 13.9: Environment and force automation main effects on TLX. Means are indi-
cated by . Adapted from [1].

As trust results were normally distributed, repeated measures ANOVA was
conducted, revealing significant environment (F = 10.54, p = 0.003, η2 = 0.06
(medium)) and force automation (F = 6.44, p = 0.017, η2 = 0.009 (small)) main
effects (see Figure 13.10). No other main effects or significant two-way or
three-way interactions were found.
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Figure 13.10: Environment and force automation main effects on trust. Means are
indicated by . Adapted from [1].

Table 13.1: Summary of Bayes factor analyses results between Environment levels. For
each measure, BF10 is listed. Color Legend: ■ Moderate evidence for
H0, ■ Anecdotal evidence for H0, ■ Anecdotal evidence for H1, ■ Strong
evidence for H1, ■ Very strong evidence for H1, ■ Extreme evidence for
H1. Adapted from [1].

Visual
Feedback

Force
Automation

TCT AAD TLX Trust

Absence Manual 0.43 2.23 1.86 668.90

Absence Automated 0.32 47.77 0.22 2.33

Presence Manual 0.35 1.52 0.68 0.55

Presence Automated 0.31 16.43 1.37 0.56

13.3.3 Qualitative Results

The qualitative feedback provided by participants during the semi-structured
interview was paraphrased and clustered. Statements that were consistent
across at least two participants were considered for clustering. In total, 239

individual statements were recorded, of which 168 were repeated by at least
two participants. These repeated statements were then clustered into 37

summarizing categories. The clustered statements are presented in Table 13.2.

13.3.4 Interpretation of Results

H1. An interaction effect was observed regarding force deviation, indicating
that force deviation is independent of visual force feedback when contact force
is automated, since during force automation the applied force is independent
of user input. However, for manual control, the presence of visual force
feedback was found to improve force deviation, as hypothesized in H1.1. This
finding is consistent with previous work [314], and as participant feedback
suggests, the result may be explained by the general difficulty in perceiving
contact force. The visual feedback was reportedly perceived as helpful for
assessing and applying the desired contact force more accurately.

An increase in trust was additionally expected as a result of visual feed-
back (H1.2). However, no significant effects of visual feedback on trust were
observed. One possible explanation is that the overall performance of the



13.3 results 159

Table 13.2: Clustered feedback of participants during the semi-structured interview
with the frequency (#). Adapted from [1].

Force Assistance Prototype Environment

Visual Force Feedback:
+ Visualization helpful in manual force

control (9) and in general (6)
+ Without visual feedback, assessing contact

force is difficult (2)
- Distracting (5), induces insecurity (4),

requires concentration (4), and is overall not
helpful (3) and overwhelming (2)

- Interpreting visual feedback difficult (3)
- LED provides sufficient feedback (3)

Contact Force Automation:
+ Automation helpful (11), eases interaction (7),

and requires less concentration (7)
+ Manually controlling force more difficult (2)
+ Automation makes interaction faster (3) and

less stressful (2)
- Feeling less in control (5)

Combination Feedback and Automation:
+ Using visualization to verify autonomous

control (3)
- Giving no attention to the visualization

when force automated (13)

• Prototype environments similar (11).
• Perception of contact force (9) and depth (6)

more difficult in the simulated environment
• Visual feedback especially helpful in the

simulated environment (6)
• Robot behavior perceived as similar in both

environments (4)
• Less fear of causing damage (3) and lower

perceived risk (2) in simulated environment
• Real US easier to read (4) and clearer (2)
• Simulated US image easier to read (3)
• More feedback from the surroundings in the

real environment (4)
• Real environment feels more familiar (2)
• Interaction more difficult in the simulated

environment (2)
• Sounds in simulated environment helpful (2)
• Autonomous control more helpful in the

simulated environment (2)
• Perception of the robot is easier in the real

environment (2)
• Feeling of control stronger with real robot (2)

robot, which has been identified as a major factor influencing human-robot
trust [128], remained similar across all conditions. As a result, the visual
feedback may not have produced a distinct impact. Furthermore, some par-
ticipants indicated that the feedback provided when exceeding the force
threshold was sufficient, suggesting that additional visual feedback was not
perceived as necessary to enhance trust further.

A negative effect of visual feedback on task completion time (H1.3) and
perceived workload (H1.4) had also been hypothesized. However, no signifi-
cant effects on either measure were observed. This outcome suggests that the
advantages of the visual feedback in supporting force perception may have
outweighed its cognitive demands. Although some participants mentioned
that the feedback was distracting, required increased concentration, or felt
overwhelming, these negative aspects appeared to have been mitigated by the
overall usefulness of the visual force feedback in improving task performance.
Thus, H1.1 is accepted, while H1.2–H1.4 are rejected.

H2. In previous work, positive effects of contact force automation on force
stability [100, 370], task completion time [267], and perceived workload [267]
were reported. In line with these findings and as hypothesized, force automa-
tion was found to improve force deviation (H2.1), task completion time (H2.2),
and perceived workload (H2.3), regardless of the prototype environment and
the presence of visual feedback. Participant feedback further supports these
results, with several participants describing the automation as helpful and
noting that it eased the interaction.

A reduction in trust caused by automation was also hypothesized (H2.4).
Although some participants reported feeling less in control during partial au-
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tomation, significantly higher trust was observed in the automated condition
compared to manual control. This result may be attributed to system perfor-
mance influencing trust [128], particularly in automated systems, where better
performance has been shown to increase trust [217]. Therefore, H2.1–H2.3
are accepted, while H2.4 is rejected.

H3. It was hypothesized that force deviation (H3.1) and perceived work-
load (H3.3) would be higher in the simulated environment. The data sup-
ported these hypotheses. An interaction effect showed that force deviation
was unaffected by the prototype environment when force was automated,
but during manual control, significantly higher deviation was observed in
the simulated environment. In addition, a higher perceived workload was
reported in the simulated environment. Qualitative feedback further supports
these results, with participants indicating greater difficulty in perceiving both
contact force and depth in the simulated version.

An increase in task completion time was also expected (H3.2), but no
significant main effects of the environment factor on task completion time
were found. Bayes factor analysis revealed anecdotal to moderate evidence in
favor of the null hypothesis. A possible explanation could be a time-accuracy
trade-off: although more effort was required to achieve adequate contact force
due to perceptual challenges, this effort was reflected more in differences in
force accuracy than in the time taken to complete the task.

As expected, trust was significantly lower in the simulated environ-
ment (H3.4). Bayes factor analysis between environment conditions revealed
extreme evidence for the alternative hypothesis in the manual control con-
dition without visual feedback, indicating that trust significantly differed
between the simulated and real settings. This outcome may be attributed to
the limited visual fidelity of the simulated robot, which might have reduced
participants’ perception of the robot and its interaction with the environment.
However, this effect appears to have been mitigated by force assistance, par-
ticularly by visual feedback. When visual feedback was present, the results
provided anecdotal evidence for the null hypothesis, suggesting no significant
difference in trust between the real and simulated conditions. This indicates
that visual feedback may help overcome perceptual differences and enhance
trust in simulated environments. Based on these findings, H3.1, H3.3, and
H3.4 are accepted, while H3.2 is rejected.

H4. As demonstrated in H3, most independent variables differed between
environments. However, the concept of relative validity suggests that while
absolute measures may differ, relative trends in comparative studies tend
to remain consistent [251, 252]. In this context, no interaction effects involv-
ing the environment factor were found for task completion time, perceived
workload, or trust. This indicates that the general trends observed for the
force assistance concepts described in H1 and H2 were consistent across both
physical and simulated environments.

For average absolute deviation, an interaction effect involving the envi-
ronment factor was found. However, a closer examination of the descriptive
results revealed that this effect stemmed from a difference in average abso-
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lute deviation during manual control, which was eliminated when partial
automation was applied. Despite this, the relative difference between the
presence and absence of automation, namely that automation improves aver-
age absolute deviation, remained consistent across both environments. Based
on this, H4 is accepted.

13.4 discussion

In the following, the results of the conducted studies are discussed, the
limitations are addressed, and implications are outlined.

xrp validity While this study demonstrated that conducting a user
study in a simulated environment using XR can yield transferable compara-
tive results, significant absolute differences between the real and simulated
environments were observed. One factor contributing to the lack of absolute
validity could be visual fidelity. Participants reported difficulties in assessing
contact force and issues with depth perception in the simulated scenario. The
visual realism was constrained by the HoloLens 2 as hardware, which has
computational limitations. This restricted the use of features like shadows
or deformations that could have aided in conveying contact force and depth.
However, since this study only explored one level of realism, identifying the
specific factors influencing perception was not possible. Future work could
explore varying levels of fidelity, as demonstrated by Schott et al. [291], to
identify visual factors that enhance task performance and help achieve abso-
lute validity. In addition to examining how visual fidelity affects performance
measures, future research should investigate how it influences participants’
attitudes towards simulated robots. The results, particularly the differences in
trust and qualitative feedback, suggest varying perceptions between the real
and simulated robots. Investigating whether these factors can be mitigated by
improving visual fidelity could be a crucial step towards achieving absolute
XR study validity.

force assistance approaches The force assistance approaches were
previously investigated individually in Chapter 8. The experiment in Sec-
tion 8.2 revealed that automating the contact force significantly reduces task
duration and perceived workload. The present study expands these findings
by showing that force automation also significantly improves force deviation
and trust, two measures not evaluated before.

Regarding sensory substitution via visual feedback, the experiment pre-
sented in Section 8.3 found that visual feedback improved subjective measures
such as perceived difficulty and perceived continuity but increased task dura-
tion. In contrast, the experiment in this chapter did not find such negative
effect. Instead, it showed that the presence of visual feedback decreased force
deviation. The absence of negative effects on completion time, combined with
the improvement in force deviation, may be attributed to this study’s use of
the optimal visual feedback design and placement identified in Section 8.3.
The comparison of visual feedback to the baseline with no feedback in the pre-
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vious study included aggregated values across all visual feedback conditions.
Therefore, this study extends the findings of Section 8.3 by demonstrating
that optimizing visual feedback design and placement can mitigate negative
effects such as prolonged task duration, while achieving positive effects such
as reduced force deviation.

This study also enabled a direct comparison between the force assistance
approaches. The results show that force automation reduces force deviation
more than visual feedback and additionally shortens completion time, lowers
workload, and increases trust. Finally, this study examined the potential syn-
ergy between the two methods. However, the results indicate that combining
them does not yield any specific advantages. Together, these findings indicate
that employing partial automation alone is the most effective way to enhance
efficiency in HRI for contact-intensive tasks.

13.4.1 Limitations

One limitation of this study lies in the simplicity of the force assistance
approaches employed. Both techniques were limited to visualizing and au-
tomating a force in one single direction. This was based on related work
showing the effectiveness of one-dimensional force automation [155, 190] and
the utility of visualizations without directional cues [308]. While the probe
could be both translated and rotated during the study, the task itself did not
require substantial tilting. Tasks involving more pronounced tilt and other
use cases, such as those involving irregular surface geometries or varying
stiffness, may require more sophisticated assistance strategies. For example,
this could include multidimensional visualizations or automation of both
translational and rotational movements [370]. Nevertheless, even with these
basic assistance approaches, these findings suggest that XR simulation can
effectively investigate the comparative performance of assistance strategies.
When functional fidelity is controlled, similar performance benefits of au-
tomation and visualization were observed in both the real and simulated
environments, which highlights the potential of XRP for force assistance
approaches in contact-intensive tasks.

Another limitation of this study arises from its specific context. The exem-
plary use case of robotic ultrasound was investigated, which is unique in
that, besides observing the end effector, the ultrasound image is also used
to assess contact force and to navigate. Participants noted differences in the
ultrasound images between the real and simulated environments, which may
have influenced the study results. While this task presents unique challenges
and benefits, it is believed that the findings could be transferable to other
contact-intensive robotic tasks, such as polishing, grinding, or medical pro-
cedures. This is because such tasks share key characteristics with robotic
ultrasound, including the need for precise contact control and continuous
surface interaction. The overall conclusion that XR setups, even with per-
ceptual challenges, can yield valid comparative findings on force assistance
techniques is, therefore, likely generalizable to similar contact-intensive tasks.
The force assistance techniques themselves are also believed to be applicable
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beyond robotic ultrasound. For visual force feedback, adjustments to the
visualization placement and the scaling of the bar may be necessary. As for
automation, more sophisticated approaches may be required for complex sce-
narios, but it is assumed that the findings on the utility of force assistance are
transferable, provided the methods are adjusted for the specific application.

Using a medical task for the study additionally influenced the choice
of study population, with medical students selected as participants. Since
medical students might be less familiar with robotics compared to individuals
in engineering fields, differences might arise. For example, prior experience
with robots has been shown to influence trust [281]. Furthermore, the study
population consisted primarily of relatively young individuals who reported
some familiarity with HRI and MR, which may not fully represent the typical
user population in medical settings. The gender distribution in the study
was not uniform, with a higher proportion of female participants. This
imbalance resulted from the random sampling approach, which recruited
medical students without gender-specific criteria. Therefore, future research
should include a more diverse population, with participants from different
backgrounds and a more balanced gender distribution, to improve external
validity and ensure inclusion and diversity.

13.4.2 Implications

The insights on XRP for HRI in contact-intensive tasks, as well as on force
assistance through visual force feedback and force automation, gained from
this user study can be summarized in the following implications:

Simulated user studies can yield valid comparative results for contact-
intensive tasks. The results show that while absolute measures (e.g., task
completion time or force deviation) may differ between real and simulated
environments, the relative differences between conditions, such as the effects
of automation or visualization, are consistent. This supports and extends the
concept of relative validity proposed in prior work [251, 252], and demon-
strates that it also applies to more complex tasks involving physical contact,
in which perception may be affected by reduced visual fidelity.

Visual force feedback can enhance force perception during manual robot
control. It was found that visualizing contact force reduces force deviation
during manual control. Since no further significant effects on task duration or
perceived workload were observed, it can be concluded that visual feedback
meaningfully enhances performance by improving force perception.

Partial automation can improve performance in contact-intensive tasks.
Consistent with previous work [100, 267, 370], it was found that partial
automation, specifically, the automation of contact force, results in improved
force accuracy, reduced task completion time, and lower perceived workload.
These findings are expanded by the additional observation of increased trust
when contact force was automated. As a result, support is provided for the
use of partial automation in tasks that require physical interaction.
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Partial automation alone is sufficient for improving efficiency. The findings
further indicate that partial automation reduces force deviation more than
visual feedback, while also providing other benefits such as reduced comple-
tion time, lower perceived workload, and increased trust. Additionally, no
synergistic effects between the two force assistance approaches were found,
indicating that force automation alone is sufficient to support users efficiently.

13.5 conclusion

In this work, the validity of XRP for user studies in contact-intensive robotic
tasks was investigated. To this end, a comparative study on force assistance
techniques was conducted using the exemplary use case of robotic ultrasound.
By evaluating both visual force feedback and contact force automation, the
aim was to gain insights into the transferability of simulated user studies in
XR to their real-world counterparts. The results indicate that even in complex
robotic scenarios, relative validity can be achieved, despite absolute differ-
ences between real and simulated environments. Absolute differences include
variations in force deviation, perceived workload, and trust. Regarding force
assistance techniques, visual force feedback was found to reduce force de-
viation during manual robot control, while contact force automation led to
improvements in task completion time, force deviation, perceived workload,
and user trust. This study highlights the potential of XR-based simulations to
provide valid comparative results, even for tasks where the robot interacts
physically with its environment.



1 4 S U M M A RY

The final part of this thesis focused on exploring XRP as a tool for conducting
HRI user studies. The goal was to investigate how well results from user
studies performed in partially simulated XR test environments transfer to
real-world settings. To this end, two experiments were conducted.

The first experiment examined the task-specific transferability of XRP across
different levels of virtualization and a range of HRI tasks. With regard to the
level of virtualization, no significant differences were found between setups
that included a virtual task with a physical robot and those that were entirely
virtual. This suggests that the main factor influencing transferability is the
virtualization of the task itself. The results also showed that transferability
is task-dependent. While precise applications, such as peg-in-hole, revealed
significant differences between real and virtual setups, broader movements,
such as pick-and-place, and more complex procedures, such as ultrasound,
showed no significant differences. Nonetheless, qualitative feedback high-
lighted perceptual differences that affected interaction across all scenarios.

To further investigate these perceptual differences, especially regarding the
perception of contact forces between the robotic end effector and the environ-
ment, a second experiment was conducted. This experiment investigated the
transferability of XRP for contact-intensive tasks by comparing the two force
assistance approaches introduced in Chapter 8 in both a real prototype and
a simulated XR environment. The findings indicate that although absolute
performance differed, relative validity was achieved. Both prototype environ-
ments produced consistent comparative results between the force assistance
methods, highlighting the potential of XRP for comparative evaluations.

Together, these findings contribute to a more systematic understanding
of how XR can be applied as an evaluation tool in HRI research. The results
show that the transferability of XRP study outcomes is task-dependent and
primarily influenced by the virtualization of the task rather than the presence
of a physical robot. Furthermore, even in contact-intensive scenarios where
absolute validity may be limited due to perceptual differences, relative valid-
ity can still be achieved. These insights lay the groundwork for developing
practical implications for the use of XRP in HRI, supporting its role as a reliable
and efficient tool for early-stage prototyping and evaluation. This, in turn,
can enable more accessible, scalable, and cost-effective HRI research.
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1 5 C O N C L U S I O N

15.1 thesis summary

The general objective of this thesis was to investigate different factors influ-
encing the efficiency of HRI for robot control. To address this, three main
research questions were formulated.

RQ1 | How can efficient and accurate XR-to-robot registration
be achieved?

This question was motivated by the need for accurate alignment of the
coordinate spaces of the interaction and the robotic workspace. To this end,
two experiments were conducted. The first aimed to identify accurate and effi-
cient registration methods by comparing manual and point-based approaches.
While point-based registration was found to be more efficient than manual
alignment, the resulting registration accuracy was not sufficient for tasks
requiring high precision. To address this, a technical evaluation of different
influencing factors, including tracking method, XR device placement, and
registration point configuration, was conducted. Additionally, a refinement
approach was investigated, using points recorded between the registration
points to perform point cloud registration. Results indicate that registration
accuracy can be significantly improved by carefully selecting the tracking
technique, marker size, and registration point characteristics, and employing
the proposed refinement approach. These findings demonstrate the potential
of point-based registration for efficient and precise alignment.

RQ2 | How can efficient mid-air gesture-based HRI be designed?

Previous work on hand gesture-based robot control has identified two key
challenges: the lack of haptic perception and the fatigue caused by mid-air
interaction. Therefore, the second RQ was addressed by formulating two
sub-questions:

RQ2.1 | Can force assistance improve efficiency in HRI?

This investigation into methods assisting the force perception during HRI

included three experiments. The first experiment aimed to evaluate partial
automation as a support mechanism. In a user study, the impact of hy-
brid position-force control, automating contact force, was compared across
hand-guiding and hand gesture interaction for two distinct tasks. The results
indicate that hand gesture interaction without automation is outperformed
by the other methods. However, partial automation can mitigate the nega-
tive effects of missing haptic feedback, enabling gesture-based interaction
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with automation to perform comparably to hand-guiding for broad tasks.
Furthermore, it was shown that for tasks requiring precision, gesture-based
control with automation can result in faster interaction than hand-guiding,
highlighting the potential of hand gestures for precise robot control.

A second experiment investigated sensory substitution as an alternative
strategy to address the lack of haptic feedback. Focusing on visual and
vibrotactile feedback as modalities and design variables, a user study revealed
the potential of visual feedback and identified important factors, including
feedback design and placement, for effective force assistance in HRI.

The third experiment, conducted as part of the investigation into the trans-
ferability of XRP, comparatively evaluated the two previously described force
assistance techniques. The results showed that while sensory substitution
improves force deviation, automation reduces force deviation even further
and additionally improves task duration, perceived workload, and trust.

RQ2.2 | How can fatigue be reduced in hand gesture-based HRI?

The second sub-question addressed the design of hand gesture control itself,
particularly concerning fatigue caused by mid-air interaction. Therefore, both
position and rate control were investigated, as well as five different sensor
placements for hand tracking. The results indicate that position control is
more suitable for precise, efficient interactions than rate control. While placing
the sensor on the robot enabled intuitive and accurate control, this setup
led to physical strain. In contrast, placing the sensor on a desk offered a
more balanced solution, enabling good accuracy while significantly reducing
fatigue.

RQ3 | Can XRP produce transferable results for HRI research?

The final research question aimed to assess the use of XR as a prototyping
environment for HRI, motivated by XR’s potential to enable inexpensive, rapid,
and accessible development. To evaluate whether user studies conducted in
simulated XR setups produce valid results, two experiments were carried out.
The first experiment explored the impact of different levels of virtualization,
including simulating only the task and simulating the entire setup, as well
as the influence of task type. The study found no significant differences
between using partially or fully simulated setups. However, the validity of the
simulated environments compared to the real setup was task-dependent. For
broader or more complex tasks, no significant differences were found between
real and XR setups. In contrast, for tasks requiring high precision, results
differed significantly between conditions. Participant feedback indicated
noticeable perceptual differences between the real and simulated setups,
particularly regarding depth perception, perceived risk, and contact force.
These findings suggest the need for further investigation, especially for
evaluations where the perception of contact force is essential.

As a result, a second experiment was conducted to assess the transferability
of user studies for contact-intensive tasks. Leveraging the force assistance con-
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cepts developed in RQ2, this experiment examined whether the effectiveness
of these assistance approaches is transferable between real and simulated
setups. The results indicate that although absolute validity (i.e., identical
performance and user experience) was not achieved, relative validity was
observed. This suggests that while outcomes differ across environments, com-
parative trends remain consistent. Therefore, XR setups may offer a promising
path for efficient comparative evaluations, even in contact-intensive scenarios.

15.2 contribution

By answering the three posed research questions, this work represents an
important step toward enabling efficient HRI. It establishes the following
design implications, specifically relevant to scenarios comparable to those
investigated in this work.

How can efficient XR-to-robot registration be enabled?
To enable efficient registration, point-based registration should be employed.
The tracking method and marker size should be carefully selected to achieve
optimal registration accuracy. Additionally, choosing appropriate registration
point characteristics in alignment with the selected tracking technique can
further improve accuracy. Finally, refinement using point cloud registration,
based on points recorded while moving between registration points, should
be applied.

How can efficient mid-air gesture-based HRI be designed?
To address the absence of haptic feedback, automation of contact force should
be applied. If this is not feasible, sensory substitution through visual feedback
can improve force perception. To translate gestures into robot motion, position
control should be used, as it is more intuitive and efficient than rate control.
Sensor placement should also be optimized depending on the use case.
Sensors mounted on the robot allow for intuitive control but may increase
physical strain. In contrast, placing sensors in front of the user offers a
balanced trade-off between accuracy and physical comfort.

Can XRP produce transferable results for HRI research?
The transferability of XRP depends on the specific task. For precise tasks,
perceptual differences may lead to variation between results obtained in
physical and virtual setups. However, even though such differences can
influence absolute performance outcomes, it was shown that XRP can still
provide valid comparative results. Therefore, while perceptual differences
should be taken into account, XRP has potential for generating transferable
comparative findings.
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Use Case: Robotic Ultrasound
As outlined in Section 1.2.4 the research in this thesis was partially centered on
the specific use case of robotic ultrasound. Hence, the resulting guidelines and
implications primarily apply to this task. However, to support transferability
to other use cases, several parts of the work deliberately addressed a range
of tasks: broad and precise tasks in Section 8.2, a general precision task
in Chapter 9, and different practical tasks in Chapter 12. Consequently,
the findings are believed to be applicable beyond the presented use case.
In particular, the research on XR-to-robot registration is relevant for any
application integrating XR into robotic workspaces with robot manipulators.

15.3 limitations and future work

The findings of this thesis are subject to several limitations. While the limi-
tations of each study are discussed in their respective sections, this section
summarizes the main technical and methodological limitations of the thesis
as a whole.

15.3.1 Technical Limitations

One major limitation of this thesis is that each RQ was investigated using only
a single hardware setup. As a result, the findings might have been influenced
by the specific devices used in the individual experiments.

For example, the tracking accuracy of the KUKA LBR iiwa and the HoloLens
may have influenced the registration results discussed in Part I. The intrinsic
sensors of the KUKA LBR iiwa may have impacted the hand-guiding baseline
condition in Section 8.2. The characteristics of the Leap Motion sensor could
have affected the evaluation of different sensor placements in Chapter 9,
while the visual fidelity of the HoloLens influenced the realism of the XR

prototyping approaches in Part III. In addition, this thesis focused on HMDs

as the XR device of choice, based on their widespread use in the field [205].
However, other XR devices, such as projectors or handheld displays, can also
be used to augment robotic workspaces [311].

While these limitations may have influenced absolute performance out-
comes, the relative trends observed across conditions may be platform-
independent. For example, the comparative effectiveness of different reg-
istration methods or force assistance techniques, as well as the relative va-
lidity of XRP, may not depend on specific hardware. Thus, the core findings
of this thesis are expected to generalize beyond the particular hardware
used. Nonetheless, future work should validate these results using different
robotic platforms and XR devices, including projectors or handheld displays,
to confirm their broader applicability.
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15.3.2 Methodological Limitations

In addition to technical limitations, the findings are also shaped by method-
ological constraints related to the study tasks, selected variables, participant
sample, the focus on hand gestures, and the isolation of specific variables.

tasks The studies conducted in this thesis focused on isolated tasks in
controlled laboratory environments. As a result, task durations were relatively
short, which may have limited the ability to observe effects, such as fatigue.
This design choice was based on the assumption that hand gesture-based
HRI would be used to supplement autonomous control, for example, by
correcting or guiding individual subtasks. However, future work should
integrate the investigated approaches into full workflows to assess how
real-world conditions, such as multitasking or environmental distractions,
influence the results.

In the studies related to force perception, robotic ultrasound was selected
as a representative use case for contact-intensive tasks. While maintaining a
continuous contact force is a requirement shared with industrial tasks, such
as polishing or grinding, ultrasound imaging includes a secondary task that
involves interpreting the ultrasound image for navigation. This additional
component may have influenced specific outcomes, such as the placement
of visual feedback. Although the general principles of HRI explored here are
expected to be transferable, future research should examine their relevance
across different domains and task contexts.

variables The choice of independent and dependent variables shaped
the scope of this thesis. Each study investigated different independent vari-
ables, which were made up of several aspects. For example, feedback designs
in Section 8.3 and control methods in Chapter 9 each included different char-
acteristics. While this approach reveals general trends, examining individual
characteristics in more detail could provide deeper insights.

While this thesis included semi-structured interviews to gather qualitative
feedback, the core definition of efficiency relied primarily on quantitative
measures, such as task duration, accuracy, and workload. As a result, other
important aspects, such as usability, learnability, or user satisfaction, were
not explicitly evaluated. This limits the scope of the findings to task-based
efficiency and may overlook broader dimensions of interaction quality. Future
work should incorporate established usability metrics and user experience
evaluations to provide a more holistic assessment of interaction methods.

study sample The sample sizes in the individual experiments were
relatively small, primarily due to challenges in recruiting suitable participants.
Larger sample sizes could have increased the statistical power of the analyses,
thereby reducing the likelihood of missing true effects. However, the sample
sizes used in this thesis are comparable to those reported in related studies
in the field of HRI [20] and, more broadly, HCI [55], and are thus consistent
with established research practices.
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The participants in the studies were primarily students with engineering
or medical backgrounds, depending on the task domain. While their exper-
tise was considered sufficient to complete the study tasks and yield valid
results, they do not fully represent the intended user groups, such as medical
professionals for robotic ultrasound or industrial workers for manufacturing
tasks. Including domain experts could offer deeper insights into the practical
integration of the methods into real-world workflows. Future studies should
therefore involve professionals from the relevant fields.

focus on hand gestures While the main RQ of this thesis concerns gen-
eral efficiency in HRI, the experiments focused specifically on hand gestures
as the primary interaction modality. This choice was motivated by promising
findings in related literature highlighting the potential of hand gestures for
intuitive robot control. However, other input modalities or multimodal ap-
proaches may also support efficient HRI. Section 8.2 compares hand gestures
combined with contact force automation to a state-of-the-art hand-guiding
approach and shows promising results, but further alternatives should be
explored. Although such alternatives were examined in a co-authored publi-
cation by Schreiter et al. [9], this investigation falls outside the scope of the
present thesis. Future work should systematically explore different interaction
modalities, including multimodal input, to further identify effective strategies
for enhancing HRI.

isolation of different factors In this thesis, key aspects of HRI

were isolated and optimized. For example, while registration efficiency was
improved, the practical benefits of increased registration accuracy were not
evaluated in the broader context of HRI. Similarly, although different ele-
ments of hand gesture-based interaction were enhanced individually, the
fully optimized prototype was not compared against alternative interaction
methods. Future work should therefore embed the findings of this thesis
within a broader range of HRI approaches to assess their general applicability
and practical impact.

15.3.3 Future Work

This thesis focused on HRI for the direct control of robot manipulators. While
the control of robot manipulators is essential in industrial and medical
robotics, future work could explore the transferability of the findings to other
HRI task domains. In particular, this includes investigating the applicability
of the interaction designs and the findings on XRP to other types of robots,
such as mobile or social robots, as well as to the control of drones. Testing
applicability in these contexts would also require identifying missing or
platform-specific functionalities, since different robot types may necessitate
additional or adapted capabilities or interaction mechanisms [50, 58].

Additionally, future work could explore HRI tasks beyond the direct control
of the robot’s DOF. This task domain was selected because it is meaning-
ful to teach robots new tasks or to control them in situations that are too
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risky or too complex for autonomous operation. However, especially in HRC,
interaction could benefit from more implicit forms of communication, un-
derstanding the human collaborator’s verbal and non-verbal behavior, and
adjusting the robot’s control accordingly, without requiring direct movement
commands [333]. While such interaction at higher LORA might still benefit
from this thesis’s findings regarding registration and XRP, future work could
further explore interaction concepts for higher-level HRI.

15.4 general contribution

The goal of this thesis was to explore the main RQ: How can efficiency be
improved in HRI? To answer this question, the thesis investigated three key
research areas: registration, the design of the interaction, and the use of XRP

for evaluation. Based on seven experiments, evidence-based recommendations
were developed for registration methods and parameters, strategies to address
missing haptic feedback and physical fatigue, and the use of XRP in user
studies for HRI.

With these findings, this thesis contributes to enabling more efficient HRI for
robot control. The proposed registration methods support accurate alignment
of XR and robotic workspaces. The insights on hand gesture-based interaction
design offer guidance on how to integrate human expertise into robot control
efficiently. Finally, the findings on XRP demonstrate its potential as a more
accessible and valid approach for conducting HRI research. Overall, the results
support the development of more human-centered HRI by providing practical
tools to assist users during interaction with robot manipulators.
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a.1 supplementary results

a.1.1 Investigation on Registration Parameters

Table A.1: Summary of descriptive results reporting the TRE in mm for each com-
bination of Tracking Method and Condition. All values are reported as
mean [standard deviation].

Variable ARToolKit Retroreflective Vuforia

Viewing Angle

0◦ 2.14 [0.64] 3.87 [1.19] 3.23 [1.20]
15◦ 2.30 [0.48] 4.62 [1.93] 2.57 [0.69]
30◦ 4.46 [6.16] 3.94 [1.47] 3.76 [1.92]

Viewing Distance

66 cm 2.26 [0.63] 4.41 [1.74] 1.82 [0.48]
100 cm 2.14 [0.64] 3.87 [1.19] 3.23[1.20]
133 cm 2.22 [0.64] - 5.37 [10.8]

Marker Size

50 mm 3.04 [1.36] 14.49 [6.07] 11.18 [24.6]
75 mm 2.14 [0.64] 3.87 [1.19] 3.23 [1.20]
100 mm 2.65 [1.17] 6.39 [2.28] 2.07 [0.69]

Point Distance

3.75 cm 2.86 [1.21] 6.2 [1.50] 3.37 [2.57]
7.5 cm 2.14 [0.64] 3.87 [1.19] 3.23[1.20]
15 cm 3.79 [1.65] 19.58 [8.97] 1.85 [0.64]

Point Distribution

Equidistant 2.14 [0.64] 3.87 [1.19] 3.23 [1.20]
Planar 1.26 [0.45] 4.9 [1.84] 3.13 [1.18]
Random 1.98 [1.08] 6.88 [1.72] 3.16 [1.53]

Amount of Points

4 2.14 [0.64] 3.87 [1.19] 3.23 [1.20]
8 1.37 [0.26] 5.23 [1.33] 3.04 [2.86]

Refinement Approaches

Point-based 2.14 [0.64] 3.87 [1.19] 3.23 [1.20]
Point-based + Path Points 2.06 [0.44] 3.57 [1.11] 3.12 [0.87]
ICP + Path Points 1.76 [0.40] 3.2 [1.23] 2.82 [0.86]
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Table A.2: Summary of the ANOVAs’ results (α < .05). Test statistic F and effect size
η2 are reported. For the factor Viewing Distance the test statistic χ2 and the
effect size R2 is reported.

Effect type Factor F p Sig. η2 Effect Fig.

Tracking Accuracy

Main Tracking 259 <0.001 ∗ -0.054 Medium 5.3

Viewing Angle

Main Tracking 6.33 <0.001 ∗ 0.045 Small
Angle 3.43 0.068 - - 5.4

Interaction Tracking × Angle 3.30 0.057 - - 5.4

Viewing Distance

Main Tracking 6.71 0.034 ∗ 0.085 Small
Distance 0.01 0.994 - - 5.5

Interaction Tracking × Distance 6.49 0.090 - - 5.5

Marker Size

Main Tracking 8.60 0.004 ∗ 0.081 Medium 5.6
Size 14.49 <0.001 ∗ 0.109 Medium 5.6

Interaction Tracking × Size 3.21 0.081 - -

Point Distance

Main Tracking 114.60 <0.001 ∗ 0.513 Big
Distance 62.43 <0.001 ∗ 0.338 Big 5.7

Interaction Tracking × Distance 62.38 <0.001 ∗ 0.514 Big 5.7

Point Distribution

Main Tracking 144.20 <0.001 ∗ 0.557 Big
Distribution 16.63 <0.001 ∗ 0.106 Medium 5.8

Interaction Tracking × Distribution 12.72 <0.001 ∗ 0.196 Big 5.8
Amount of Points

Main Tracking 51.26 <0.001 ∗ 0.379 Big
Amount 0.51 0.483 - - 5.9

Interaction Tracking × Amount 7.16 0.007 ∗ 0.087 Medium 5.9

Refinement Approaches

Main Tracking 22.66 <0.001 ∗ 0.3224 Big 5.10

Refinement 23.84 <0.001 ∗ 0.046 Small 5.10

Interaction Tracking × Refinement 1.25 0.297 -
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a.1.2 Investigations on Sensory Substitution

Table A.3: Summary of descriptive results for all dependent variables (n = 21). All
techniques are composed of: Type, Position and Vibrotactile. All entries
are in the format: mean value [standard deviation]. Adapted from [6].

Technique TCT [s] AMax [N] AAD [N]
Perceived
Difficulty

Perceived
Continuity

Arrow FOV Absent 33.34 [16.90] 13.26 [2.80] 4.66 [1.52] 1.71 [1.35] 2.86 [1.59]
Arrow FOV Present 33.62 [19.52] 13.39 [2.52] 4.43 [1.23] 1.52 [1.25] 3.43 [1.47]
Arrow Probe Absent 31.61 [14.32] 13.99 [1.92] 4.59 [1.15] 1.90 [1.09] 2.95 [1.50]
Arrow Probe Present 34.21 [22.33] 13.19 [3.28] 4.50 [1.05] 1.62 [1.32] 3.00 [1.41]
Arrow Screen Absent 26.28 [11.67] 14.09 [3.12] 4.21 [1.24] 1.29 [1.01] 3.57 [1.16]
Arrow Screen Present 36.83 [23.76] 14.32 [2.45] 4.96 [1.44] 1.43 [0.93] 3.90 [0.83]
Bar FOV Absent 32.86 [16.60] 13.11 [2.30] 4.05 [1.05] 2.14 [1.11] 2.52 [1.21]
Bar FOV Present 34.39 [18.76] 13.31 [2.06] 4.32 [1.47] 1.81 [1.12] 2.90 [1.41]
Bar Probe Absent 32.91 [11.99] 13.47 [2.83] 4.16 [1.22] 2.24 [1.14] 2.76 [1.04]
Bar Probe Present 36.73 [17.13] 14.24 [2.92] 4.39 [1.40] 2.29 [1.23] 2.90 [1.26]
Bar Screen Absent 31.49 [16.54] 15.08 [2.47] 4.43 [1.60] 1.57 [1.08] 3.62 [1.16]
Bar Screen Present 36.54 [12.24] 12.54 [2.64] 4.02 [1.35] 1.43 [1.12] 3.48 [1.12]
None None Present 29.09 [13.89] 14.45 [3.33] 5.68 [1.34] 2.81 [1.63] 2.24 [1.64]
None None Absent 28.54 [15.82] 14.11 [4.02] 5.44 [1.62] 4.24 [1.00] 0.76 [0.83]
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Figure A.1: Additional descriptive results. Means are indicated by . Black outlines
represent the arrow visualization and gray outlines the bar visualization.
Adapted from [6].
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Table A.4: Summary of all statistical analyses (α < .05). For repeated measures
ANOVAs (AoV), test statistic F and effect size η2 are reported. For robust
repeated measures ANOVAs (RAoV), test statistic Q and effect size δt are
given. χ2 and Kendall’s W are reported for Friedman tests (Frie) and V
and r are given for Wilcoxon tests (Wilc), respectively. Adapted from [6].

Variable /
Effect type

Factor Test
Test
Statistic

p Sig.
Effect
Size

TCT
Main effects Type RAoV 2.995 0.084 0.180

Position RAoV 0.009 0.991 0.022

Vibrotactile RAoV 8.869 0.003 ∗ -0.275

Two-way Type × Position RAoV 0.195 0.823 -
Type × Vibrotactile RAoV 0.053 0.818 -
Position × Vibrotactile RAoV 1.682 0.186 -

Three-way RAoV 0.015 0.985 -
Baseline Modality RAoV 4.804 0.016 ∗ -0.090

AMax
Main effects Type AoV 0.054 0.819 0.000

Position AoV 2.479 0.097 0.014

Vibrotactile AoV 1.461 0.241 0.004

Two-way Type × Position AoV 0.339 0.647 0.003

Type × Vibrotactile AoV 0.263 0.614 0.001

Position × Vibrotactile AoV 2.455 0.099 0.013

Three-way AoV 3.902 0.028 ∗ 0.030

Baseline Modality AoV 0.605 0.614 0.016

AAD
Main effects Type RAoV 8.068 0.005 ∗ -0.348

Position RAoV 0.128 0.880 -0.079

Vibrotactile RAoV 0.162 0.688 -0.055

Two-way Type × Position RAoV 0.028 0.972 -
Type × Vibrotactile RAoV 0.761 0.383 -
Position × Vibrotactile RAoV 0.124 0.883 -

Three-way RAoV 2.287 0.102 -
Baseline Modality AoV 7.362 <0.001 ∗ 0.197

Perceived Difficulty
Main effects Type Wilc 143.500 0.053 0.452

Position Frie 6.237 0.044 ∗ 0.148

Vibrotactile Wilc 115.000 0.432 0.175

Two-way Type × Position RAoV 0.418 0.658 -
Type × Vibrotactile RAoV 0.048 0.826 -
Position × Vibrotactile RAoV 0.214 0.807 -

Three-way RAoV 0.747 0.474 -
Baseline Modality Frie 30.429 <0.001 ∗ 0.483

Perceived Continuity
Main effects Type Wilc 63.500 0.073 0.395

Position Frie 7.630 0.022 ∗ 0.182

Vibrotactile Wilc 50.500 0.226 0.305

Two-way Type × Position RAoV 0.166 0.847 -
Type × Vibrotactile RAoV 1.032 0.310 -
Position × Vibrotactile RAoV 0.929 0.395 -

Three-way RAoV 0.112 0.894 -
Baseline Modality Frie 40.215 <0.001 ∗ 0.638
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a.1.3 Investigation on Sensor Placement and Control Modes
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Figure A.2: Descriptive results of the dependent variables. ■ show position control,
while ■ show rate control. Means are indicated by .
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a.1.4 Investigations on XRP for Contact Intensive Tasks

Table A.5: Summary of descriptive results for all dependent variables. Adapted
from [1].

Environ-
ment

Visual
Feedback

Force
Automation

TCT [s] AAD [N] TLX Trust

Physical Absent Manual 27.75 [7.32] 5.62 [1.05] 35.48 [14.57] 3.87 [0.38]
Physical Absent Automated 25.40 [10.36] 0.24 [0.09] 23.43 [13.23] 3.93 [0.51]
Physical Present Manual 28.90 [8.54] 4.44 [1.10] 39.13 [16.99] 3.84 [0.60]
Physical Present Automated 24.41 [7.06] 0.26 [0.11] 21.67 [12.23] 3.91 [0.65]
Simulated Absent Manual 30.35 [11.50] 6.46 [1.36] 42.60 [18.05] 3.42 [0.69]
Simulated Absent Automated 23.83 [8.01] 0.32 [0.03] 24.26 [13.28] 3.67 [0.65]
Simulated Present Manual 31.11 [11.66] 4.92 [1.34] 44.29 [15.38] 3.64 [0.46]
Simulated Present Automated 25.57 [7.95] 0.33 [0.04] 24.87 [12.38] 3.70 [0.61]

Table A.6: Summary of all statistical analyses (α < .05). For repeated measures
ANOVAs (AoV), test statistic F and effect size η2 are reported. For robust
repeated measures ANOVAs (RAoV), test statistic Q and effect size δt are
given. Adapted from [1].

Variable /
Effect type

Factor H Test
Test
Statistic

p Sig.
Effect
Size

TCT

Main Environment 3.2 RAoV 1.945 0.163 -
Feedback 1.3 RAoV 0.980 0.323 -
Automation 2.2 RAoV 19.309 <0.001 * 0.561

Two-way Environment × Feedback RAoV 0.150 0.699 -
Environment × Automation RAoV 0.625 0.431 -
Feedback × Automation RAoV 0.010 0.921 -

Three-way RAoV 0.015 0.796 -

AAD

Main Environment 3.1 RAoV 25.126 <0.001 * -0.063

Feedback 1.1 RAoV 56.943 <0.001 * -0.168

Automation 2.1 RAoV 1364.489 <0.001 * 4.896

Two-way Environment × Feedback RAoV 2.571 0.109 -
Environment × Automation RAoV 17.775 <0.001 * 0.003

Feedback × Automation RAoV 62.236 <0.001 * 0.02

Three-way RAoV 2.822 0.093 -
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Table A.6 (continued): Summary of all statistical analyses (α < .05). For repeated
measures ANOVAs (AoV), test statistic F and effect size η2 are reported. For robust
repeated measures ANOVAs (RAoV), test statistic Q and effect size δt are given.
Adapted from [1].

Variable /
Effect type

Factor H Test
Test
Statistic

p Sig.
Effect
Size

TLX

Main Environment 3.3 AoV 7.036 0.014 ∗ 0.01

Feedback 1.4 AoV 0.822 0.373 -
Automation 2.3 AoV 59.71 <0.001 ∗ 0.25

Two-way Environment × Feedback AoV 0.007 0.932 -
Environment × Automation AoV 2.279 0.144 -
Feedback × Automation AoV 2.035 0.166 -

Three-way AoV 1.005 0.326 -

Trust
Main Environment 3.4 AoV 10.538 0.003 ∗ 0.06

Feedback 1.2 AoV 0.556 0.463 -
Automation 2.4 AoV 6.445 0.018 ∗ 0.009

Two-way Environment × Feedback AoV 3.137 0.089 -
Environment × Automation AoV 0.55 0.465 -
Feedback × Automation AoV 0.917 0.347 -

Three-way AoV 1.876 0.183 -
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