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Abstract

O
NE of the most prevalent signs of integrated human-machine living is the
wide array of available personal computer devices and their use as assi-

stance systems. Over time this developed from fairly limited virtual notepads to
smart-home integrated control and coordination tools adapted for their individual
users. While this development increased both the value of the provided assistance,
as well as the ease of accessibility for the individual user, with their speci�c needs
and idiosyncrasies, it also developed towards speci�c limits hindering potential
future developments and possible improvements. Given the current designs, the
main area of research is concentrated on the optimization of human-machine in-
teraction through easier and more robust voice control schemes to the detriment
of true systematic improvements.
The original idea behind assistive technology ranges from the currently employed
human-machine interfaces to much more integrated systems, which can be de-
scribed as technical assistants, companions or even peers. All these expressions
are intended to describe continuously closer approximations to human-like capa-
bilities and responsibilities. The overarching topic of this thesis is an exploration
of the di�erent aspects of such an advanced assistive system, speci�cally how it
connects with my research and how potential further research might be necessary
for the ful�lment of this goal of a human-like technical assistant system.
The structural organisation of this thesis follows a potential information proces-
sing pipeline, as it could be used in such an assistance system, where the external
inputs need to be extracted, categorised and interpreted depending on the cur-
rent situation for a system to provide the necessary and adequate reactions, as
required by the user. An important aspect of this will be the change from a pure-
ly user controlled reactive system, as usual nowadays, into a more independently
deciding and acting system which is approximating human decision processes.
The di�erent areas of my research in relation to this pipeline are as follows:
The �rst area is the external feature layer. While this includes the whole technical
aspect of interfacing the real world environment with the following technical sy-
stem, in conjunction with my research it primarily contains examinations of the
feature extraction and optimisation process. This is necessary, as a reasonably
extensive and advanced system would work on a wide variety of information and
input signals, leading to a fast approaching overload of most available personal
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computer systems. A sensible pre-processing step can reduce the computational
load and improve the results of the following calculations.

The second layer described is the categorisation layer of the system, practically
where the purely technical feature values are categorised into assistance relevant
information or classes. As a technical system possesses no human understanding
or empathy, such abilities need to be approximated through other means. This
part of my research deals with solutions using machine learning architectures
as a base. Given the complexity and variability of human expressions, which
can be strongly in�uenced by a high degree of individuality and dependency on
the situation, a purely rule-based approach would reach its limits fast. Using
self-learning methods, which employ human annotated examples instead, allows
for a much easier implementation of non-directly measurable information into a
system. Special attention is given to the e�ect of constantly increasing complex
architectures and their requirements for equally increasing example data sets. A
secondary topic examined here will be the search for alternatives to this paradigm
of development through the use of less complex architectures without lowering
the capabilities.

The third and last layer examined will be the decision making aspect, which
proposes, based on the information from the former layers, a sensible action to
follow. This part of the thesis will consist of two parallel examinations: First of
a practical implementation of a semi-reactive method for working under uncer-
tain situations, and second an examination into the theoretical implications of
a cognitive architecture as full alternative for a control mechanism. This second
example is a potential way into a human peer-like system architecture, which
closely resembles the human decision making process and would allow an even
closer integration into the human-machine environment than alternative current
architectures.
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Zusammenfassung

E
INES der am weitesten verbreiteten Anzeichen des integrierten Mensch-
Maschine-Lebens ist die breite Palette verfügbarer Personal-Computer

Geräte und deren Einsatz als Assistenzsysteme. Im Laufe der Zeit hat sich
dies von relativ begrenzten virtuellen Notizblöcken zu Smart-Home integrier-
ten Steuerungs- und Koordinationstools entwickelt, die an die jeweiligen Benut-
zer angepasst sind. Während diese Entwicklung sowohl den Gegenwert der be-
reitgestellten Hilfestellungen als auch die Verfügbarkeit für den Einzelnen, mit
jeweils spezi�schen Bedürfnissen und Eigenheiten, steigerte, entwickelte es sich
auch in die Richtung spezi�scher Grenzen die weitere potenzielle Entwicklungen
und mögliche Verbesserungen verhindern. Angesichts der aktuellen Designs ist
der Hauptforschungsbereich die Optimierung der Mensch-Maschinen-Interaktion
durch einfachere und robustere Sprachsteuerungsmethoden, was zu Lasten echter
systematischer Verbesserungen geht.
Die ursprüngliche Idee hinter Assistenztechnologien reicht von den derzeit ver-
wendeten Mensch-Maschine-Schnittstellen bis hin zu viel stärker integrierten Sy-
stemen die mit Begri�en wie technischen Assistenten, Companions oder sogar
Peers beschrieben werden können. All diese Ausdrücke sollen eine immer stärkere
Annäherung an menschliche Fähigkeiten und Verantwortlichkeiten beschreiben.
Das übergreifende Thema dieser Dissertation sind die Untersuchungen der ver-
schiedenen Aspekte eines solchen fortschrittlichen Assistenzsystemes, speziell in
Verbindung mit der von mir betriebenen Forschung. Potentielle weitere Entwick-
lungen werden diskutiert, um dieses Ziel eines menschenähnlichen technischen
Assistenzsystems zu erreichen.
Die strukturelle Aufteilung in dieser Arbeit folgt einer Informationsverarbeitungs-
pipeline, wie sie in einem solchen potentiellen Assistenzsystem verwendet werden
könnte, wobei die externen Eingaben je nach aktueller Situation extrahiert, klas-
si�ziert und interpretiert werden müssen, damit ein System das Notwendige und
angemessenen Reaktionen, wie vom Benutzer gefordert, bereitstellen kann. Ein
wichtiger Aspekt ist dabei der Wandel von einem rein benutzergesteuerten reak-
tiven System, wie es standardisiert üblich ist, zu einem eigenständiger entschei-
denden und handelnden System, das sich menschlichen Entscheidungsprozessen
annähert. Die verschiedenen Forschungsbereiche, die ich in Bezug auf diese Pipe-
line durchgeführt habe, sind wie folgt:
Der erste Bereich ist die externe Feature-Schicht. Diese umfasst übergreifend den
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gesamten technischen Aspekt der Anbindung der realen Umgebung an die folgen-
den technischen Systeme, in Verbindung mit meiner Forschung aber vor allem
Untersuchungen zu Merkmalsextraktionen und Optimierungsprozessen. Dies ist
notwendig, da ein einigermaÿen umfangreiches und fortschrittliches System mit
einer Vielzahl von Informationen und Eingangssignalen arbeiten müsste, was zu
einer raschen Überlastung der meisten verfügbaren persönlichen Computer Sy-
steme führen würde. Ein sinnvoller Vorverarbeitungsschritt kann die Rechenlast
verringern und die Ergebnisse der nachfolgenden Berechnungen verbessern.

Die zweite beschriebene Schicht ist die Interpretationsschicht des Systems, im
praktischen dazu da, die rein technischen Merkmale in assistenzrelevante Infor-
mationen umzuwandeln. Da technische Systeme kein menschliches Verständnis
oder Einfühlungsvermögen besitzen, müssen solche Fähigkeiten auf andere Wei-
se erzeugt werden. In Anbetracht meines Forschungsgebiets befasst sich dieser
Abschnitt mit Lösungen, die maschinelles Lernen als Grundlage verwenden. An-
gesichts der Komplexität und Variabilität der menschlichen Ausdrucksweise, spe-
ziell wenn beein�usst durch ein hohes Maÿ an individuellen sprachlichen Ge-
wohnheiten, sind selbst bei thematisch ähnlichen Äuÿerungen hohe Unterschiede
festzustellen. Daher wird ein rein regelbasierter Ansatz schnell an seine techni-
schen Grenzen stoÿen müssen. Stattdessen können selbstlernende Methoden ver-
wendet werden, die von Menschen annotierte Beispiele verwenden, damit nicht
direkt messbare Informationen viel einfacher in ein System implementiert werden
können. Besonderes Augenmerk wird dabei auf die Auswirkung immer komple-
xer werdender Systeme und deren Anforderungen an ebenso wachsende Beispiel-
datenmengen gelegt. Ein sekundäres Thema dieser Arbeit wird die Suche nach
Alternativen zu diesem Entwicklungsparadigma durch die Verwendung weniger
komplexer Architekturen ohne Verringerung der Fähigkeiten sein.

Die dritte und letzte untersuchte Ebene ist die Entscheidungsebene, die auf der
Grundlage der Informationen aus den vorherigen Ebenen eine sinnvolle Maÿnah-
me vorschlägt und befolgt. Dieser Teil besteht aus zwei parallelen Untersuchun-
gen in dieser Arbeit. Erstens einer praktischen Umsetzung einer semi-reaktiven
Methode für das Arbeiten in unsicheren Situationen und zweitens eine Untersu-
chung, die sich mit den theoretischen Implikationen einer kognitiven Architektur
als ein Kontrollmechanismus befasst. Dieser zweite Punkt ist ein möglicher Weg in
eine menschenähnliche Systemarchitektur, die dem menschlichen Entscheidungs-
�ndungsprozess sehr ähnlich ist und eine noch engere Integration in die Mensch-
Maschine-Umgebung ermöglichen würde als andere alternative Architekturen.
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Chapter 1

Introduction

Contents
1.1 True Assistance Systems . . . . . . . . . . . . . . . . . . . 2

1.2 Peerlike Information Processing Pipeline . . . . . . . . . 5

1.2.1 Peerlike Awareness . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Peerlike Understanding . . . . . . . . . . . . . . . . . . . 8

1.2.3 Peerlike Decision . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . 12

A
ssistance Systems are an increasingly prevalent aspect of current Human-
Machine Environments. The idea behind this technology is to introduce the

wide array of technical possibilities into the everyday life of a human user and to
improve through this the e�ciency, safety and ease of use of all possible computer
assisted activities. This concept of technological assistance can be followed from
the �rst development of the personal computer systems till the current day use
of mobile personal digital assistants. Through these ongoing developments, the
general capabilities and integration of technical assistance systems were improved
over time and became commercially easily available to greater parts of the popu-
lation. At the same time, the variety of assistive capabilities from these systems
became more constrained by the standardised designs which were implemented.

In this Thesis, I will explore the possibility of expanding the current approach
for Human-Machine Interaction (HMI) based assistance systems. This proposed
approach should be capable of processing a wide variety of real world information,
as well as interpreting these based on collected human experiences through the use
of machine learning architectures and �nally be able to proceed with human-like
reactions and decision making capabilities. These three aspects will be examined
in greater detail in the following chapters, with connection to the exemplary



2 1. Introduction

research done by me for the di�erent stages. The main part in this work will
mainly examine acoustic and speech based input sources, based on the research
done by me.

In this �rst chapter, the general structure and motivation of the thesis will be
presented in detail. Speci�cally, in Section 1.1 the motivation for the proposed
changes in the assistance system approach will be expounded. Section 1.2 goes
then through each step of the general information pipeline, which is also the
basis for the general structure of this work. This will describe the �ow from the
real world information gathering process into the technical system based decision
making process and which problems occur along the way. In Section 1.3 these
approaches and their problems will be connected speci�cally with the performed
experiments done by me and then summarised with the aims and general re-
search questions they impose. Finally, in Section 1.4 the internal structure of the
thesis will be presented concerning the chapters and their functions in the overall
examination of my research.

1.1 True Assistance Systems

The current level of assistance provided by technical systems, which are desig-
nated as personal assistance devices, is primarily the provision of mobile and easy
access to technical systems. This includes database access, application control or
similar technical interface functions. With these typical use cases for assistance
systems, the focus of current development is mainly set on further optimisation
of the accessibility and the implementation of additional applications and sys-
tems. Meanwhile the main functionality, as an easy HMI option is solved in most
contemporary solutions through a form of voice control. These ongoing devel-
opments generally lack the potential to achieve a technical companion system,
which should more closely resemble a human caretaker or colleague than a simple
interface controller [Honold et al. 2014; Biundo & Wendemuth 2017].

To come closer to the proposed idea of an accompanying and helpful assistant,
instead of the current HMI, one needs to examine the meaning of assistance or
help in the context of a technical system. While a virtual assistant, as usual
today, helps the user to access other applications, it is primarily designed as a
reactive support. The user speci�cally declares which tasks are to be performed
and then the system coordinates the necessary functions on this condition. The
advantage of this is that all tasks are performed by the same overhead system,
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with a faster access compared to using the di�erent applications individually by
the user. The ideal assistant, as originally proposed, should instead perform the
assistance proactively, in the sense of recognizing problems and solving them for
the user as soon as possible, equal to a human assistant.

One of the main problems leading to this current state, which constricts most
systems from performing as a real assistant and instead rely on direct user con-
trol, is the lack of understanding for the human condition. As a technical system
has no underlying empathy behind their actions, it needs the human initiation
to recognise a problem to solve. Without possessing a similar sense of self, as
could only be achieved through currently futuristic solutions, such as true ar-
ti�cial intelligence, contemporary systems rely on rule-based approximations to
control their reactions [Alty & Guida 1985]. A system possessing such a level
of true human and emotional intelligence would most likely not be used as a
personal assistance tool at all, because of the complex implications. But even
then, a system would need to recognise inner human states, such as emotions or
dispositions, to react with an appropriate action.

A result of this constraint is the inability of most systems to overcome their
rule-based information processing structure. This allows most technical systems
to only function in their prede�ned and preprogramed boundaries, in contrast
to a real assistant, which would be able to adapt to new situations and occur-
rences [Müller 2011; Borst et al. 2022]. Even from the most advanced assistance
system available, the underlying structure would require the system to wait for in-
structions from the user, as it would otherwise act in a non-planned and unknown
way.

The aim of this thesis is to provide several di�erent solutions for problems
found in the current approach for an integrated human-machine environment, as
well as possible optimisations to be done along the way. Finally, it will present an
alternative overhead system approach, which would allow for a system to function
in a more natural and proactive way compared to the usual reactive behaviour
found in most of the currently available implementations, simulating a human-
like behaviour without requiring true human intelligence from the system. The
research done by me in this regard will be mainly focused on acoustic input and
machine learning solutions to solve the problems mentioned.

The plan is to provide the basis for a system capable of approximating the hu-
man understanding and behaviour. For this the di�erent parts of the information
�ow have to be approached separately. At �rst, it is necessary to improve the
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ability of the system to process the real world information gathered from the en-
vironment. While the amount and detail of available information can be increased
by more and better sensors, it can lead to a so called �curse of dimensionality�
problem, where the computational requirements increase exponentially with the
available data [Bellman & Kalaba 1959]. Similar to human perception, where the
concentration is aimed towards relevant changes, while most of the irrelevant data
is ignored at least unconsciously, a system should be able to distinguish which
received features contain the relevant aspects of information. Using this, the
overarching �ow of information can be increased without overloading the system
with unnecessary noise.

Secondly, following this information gathering phase, the interpretation of the
information is also an important area of potential improvement. Necessitating
the interpretation of complex human mental and dispositional states, without
natural human empathy, requires a classi�er capable of inferring user states from
externally measurable features. One solution for this kind of complex categor-
isation is the use of machine learning architectures. These can learn the correct
correlations of features and states, based on annotated examples done by human
experts on exemplary data. In this thesis, several improvements to the available
methods will be explored, together with an examination of the advantages and
disadvantages given by the available data sizes for di�erent problems.

The third and �nal aspect is one of the biggest presented di�erences between a
human-like system and a contemporary system, which is the di�erence between
a proactive and a purely reactive user engagement. As a technical system cannot
simply develop a sense of empathy but only an approximation, it also requires
rules for engaging a user independently from direct inputs based commands. For
this, the thesis provides an outlook on how to adapt a given system with a more
proactive or at least semi-active mode, where the system may engage the user
without direct former input required.

A closely connected aspect of this, which is examined in this thesis, is an
overview on how to implement a human-like decision making structure on top
of the information processing pipeline. This is also an important step towards
a true assistance system, close to a technical companion, as it also includes the
ability to produce its own set of directives and solutions during new and changing
occurrences. This approach is labelled �peer-like� in my work, in the sense of a
true peer during an interaction, similar or even equal to a human peer. In this
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thesis the �rst step towards this design will be examined theoretically as a possible
implementation of a cognitive architecture based HMI.

The next section will closely examine these mentioned aspects of the research,
which will also follow the general form of the overarching information �ow struc-
ture going from the feature extraction stage, through the machine-learning based
categorisation stage into the proactive and human-like decision making stage.

1.2 Peerlike Information Processing Pipeline

The general architecture of an assistance system can be understood as an elabor-
ate information processing pipeline. Information need to be gathered, processed,
interpreted and then reacted to by a control mechanism. Even a more advanced,
proactive, system primarily reacts to a lack of information, which could not be
gathered beforehand in the pipeline in conjunction of generating its own inter-
pretations, similar to a human intelligence. This general structure is also the
basis for the chapters in this thesis, with the separate layers of the process lead-
ing to the di�erent topics and experiments for my research. As a short overview,
this will be the data recording, feature extraction and pre-processing steps, which
can be combined into one aspect of data gathering, followed by a larger topic of
interpretation and categorisation of information in the middle layer and �nally
the controlling and reaction part at the top of the structure. This all can be
seen in Figure 1.1. This structure can be seen as an amalgamation or improve-
ment of the structure of a Driver Assistance System (DAS), which are exemplary
for a close HMI environment, and the knowledge processing of companion sys-
tems. Speci�cally the typical perception/data- and decision/analytics- layers of
DAS can be seen as ful�lling similar functions to the Sensor- and Interpreting�
Layers respectively [Rezaei & Sabzevari 2009; Kohl et al. 2024], while the Cog-
nitive Layer of my architecture more closely follows the knowledge processing
of the companion architecture [Biundo & Wendemuth 2017]. Ideally this would
mend the highly integrated nature of the one system, with the adaptability and
versatility of the other one.

1.2.1 Peerlike Awareness

The �rst aspect of the described pipeline is the awareness. In the context of
this thesis, and as part of a peer-like system, it primarily concerns itself with the
ability of the system to process outside, i.e. real-world information into a machine
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Sensor- Interpreting- Cognitive-
Layer

BehaviourInteractionInterface

ANN

SVM

CNN

UI
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Figure 1.1: The fully extended data pipeline of the proposed peer-like Companion
or Assistance System. Information from the real world gets transferred from the
available sensors, after getting optimised, into the interpreting phase, using machine
learning systems, in the second layer. The interpretations from there allow the �nal
cognitive layer to choose the optimal actions based on former and newly generated
knowledge, which is then communicated through the Behaviour control towards a
User Interface back in the real world. The abbreviations in the Interpreting-Layer
stand for di�erent machine learning architectures.

interpretable format and to recognise signi�cant and relevant changes for later
classi�cation tasks. Based on the presented structure before, this includes also
the interface with which a user can interact with the system itself.

A great part of an aware system is the ability to discern environmental in-
formation. These contain primarily non-user dependent topics, such as outside
in�uences. They can come from a wide range of available sensor information, like
acoustic, visual or temperature sensors. In a typical system, these are employed
as required by the primary function of the system, such as a temperature sensor
for a smart-home heating application. In a peer-like system, which generates its
context by correlating occurrence, even on the �rst view unrelated information
can be important, leading to a more generalised information gathering approach.
For a human-like generation of context, it is logical to provide sensory input based
on the human senses. Vision and acoustic inputs are particularly important part
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in this context, both as an environmental, as well as an interpersonal source of
information.

The other important part is the awareness for the state of the user, both their
interest and their disposition. Using the aforementioned inputs these can often
be determined by a technical system through direct statements by the user. For
the currently typical approach, this is often straightforward, as the user actively
explains their intention, requiring no further insight on side of the system. The
current trend of wearable sensors, such as smart watches, would allow a technical
system even further awareness beyond the typical human range, such as through
bio-signals.

The combination of both environmental and user state awareness would allow
a peer-like system to achieve situational understanding similar to a human, if
it can achieve the correct conjunctions from them. While the interpretations
and conclusions are part of the later aspects of the pipeline, the groundwork for
this ability is taken from the available information gathered during this early
stage. An important aspect is the required ability to not only discern the current
information but also the dynamical changes happening over a certain time to
recognize the �ow from one situation to another.

The possible research in this area, speci�cally when concentrating on the digital
part of this data �ow, is the search for the most relevant aspects of the available
data and the most signi�cant features to reduce both the processing and storage
requirements without limiting the learning capabilities of the system. The em-
ployed sensor systems in the real world are beyond the scope of this work, but
would also allow for optimisation steps on this stage of the architecture.

With the resulting amount of available data most systems will sooner or later
develop problems during the processing stage. While greater amounts of data
principally correlate with better results during classi�cation and decision making,
the system has to be capable of ignoring super�uous features. While certain
architectures and statistical procedures exist to assign di�erent features with an
evaluation of their information impact, it is often part of the design process from
the human developer to �nd prior knowledge or empirical tests and to pre-choose
the relevant features from the whole available dataset. Especially an independent
architecture which is fully integrated into the life of their users will need to select
its features and data sources carefully.

Generally this block remains close to the typical design of current assistance
systems and follows the trend, that more available information generally improves
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the capabilities of the system itself, while at the same time decreases applicability
with the available hardware.

1.2.2 Peerlike Understanding

The second aspect of the information pipeline is the information categorisation
or classi�cation step, which provides a technical system with context and under-
standing not directly extractable or measurable from the raw data. This is an
important part of human to human communication, which is traditionally hard
for a technical system to approach as it happens on a subconscious level not avail-
able to machines. Instead of a true arti�cial intelligence, which would provide
for human-like sensibilities and understanding, the approximation is traditionally
done through rule-based systems and typical user state classi�cations. These are
often capable of working on emotion recognition tasks, through correlating sensor
information with the otherwise hidden inner user states [Fragopanagos & Taylor
2005; Sapra et al. 2013].

In the context of human emotion or disposition, this can be done through a vari-
ety of multimodal inputs. Important indicators for a human partner for example
are changes in paralinguistic features, facial features or gesture measurements
of the interaction partner. The practical implication is, that certain measurable
physical values, such as speech frequency, pitch or volume are in�uenced through
the inner state of the speaker [Kappas et al. 1991; Dellaert et al. 1996]. Similarly,
visual cues such as movement of the hands or changes in the facial features ful�l
a similar indicator in the visual space [Reed et al. 2020]. Contrary to the hidden
inner user states, these indicators can be comparably easily gathered by sensor
arrays, such as microphones or cameras. The complex task is then to generate a
correlation between these extracted features and the user state, without requiring
pre-existing full discrete knowledge about the speci�c causes for the expression
of the feature. The employed solution for this in this thesis is the use of machine
learning architectures, which create categorisation spaces, correlating between
features and user states. This is done by letting the system learn on real world
examples of both features and user states. This self-learning is preferable in such
complex and feature interdependent problem spaces where a purely manually
described rule-based approach would not be practically feasible. It additionally
provides the ability for the system to be future proofed, as the system may simply
add new examples, either improving the capabilities of the system or adding new
possible results or situations to the system as a whole. Typical inner user states
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are often exempli�ed by emotions, such as happiness or sadness, but can also
include a wide variety of other states, like physical or mental exhaustion level
or dispositions, like interest or dissatisfaction. With these indicators a technical
system is then later capable of reacting much more personal to the user than
simply on their measurable action.

In the area of machine learning methods, there is a wide variety of possible
approaches, such as statistical methods, architectures based on Arti�cial Neural
Network (ANN), and the current state-of-the-art of Deep Neural Network (DNN).
While some of these provide a better incentive for small datasets, others require
comparably big example sets to even function satisfactory but provide better
generalisation results over these great amounts of data. Alternatively, other ar-
chitectures allow for the addition of examples over time without losing the trained
information beforehand or are speci�cally adapted for certain tasks or data forms.
While the current trend follows a continuously increasing size of datasets, this
often foregoes an adaption towards the speci�c user and forces rather a good �t
for a large set of di�erent users. As these measured expressions are often very
individualistic for each di�erent person, this can lead to accumulating errors in
classi�cation results, especially during continuous use of the assistance systems.

1.2.3 Peerlike Decision

The last aspect examined is the technical solution for a decision and behaviour
control mechanism. As mentioned before, the general solution to approximate a
human-like behaviour is to employ typically rule-based mechanisms. These use
interaction relevant features, similar to the ones used during human to human
interactions, as an indicator for which rule to choose i.e. which action to per-
form. This is of course still constrained by the ability of the system designer to
predict and pre-plan all possible situations. In case of a true assistance system,
which is designed to apply to a wide variety of situations, ideally even some not
encountered before, a more robust solution is needed, which is also capable of
inferring certain actions without prior knowledge.

One of the main problems which arise in the current state-of-the-art, and which
inhibits more natural human-like behaviour by the system, is the lack of proactiv-
ity from the technical side towards the user. Most technical solutions require the
direct input of the human partner to activate functions or to perform even simple
tasks. A peer-like design on the other hand would, similar to a human assist-



10 1. Introduction

ant, perform certain actions before a problem appears, or even try to function
prophylactically and reduce the possible impact of yet occurring problems.

A �t for these requirements are the so called cognitive architectures, which
are brie�y summarised in Section 2.3.2. These architectures are designed based
on typical neurological processes and reasoning, such as memory functions, pat-
tern recognition and experimental potential solution searching. This would allow
a system to react in an understandable manner, similar to a learning human.
Furthermore these are also designed on a modular basis, which would allow an
incremental inclusion of new information or applications.

Part of this change is on how the internal processing of information is done
by the system, also in�uencing the way the user recognizes the behaviour of a
technical system in turn. While the former aspect is mainly concentrated on the
abilities and assistive functions of the system itself, and how their implementation
can be improved during ongoing HMI the later aspect is important for the user
to be satis�ed with the usage of the system and not feeling like the interaction is
exploitative, one sided or unsatisfactory. As such the behaviour control aspect of
this last functional block is not only there to increase the learning and in�uence
e�orts of the assistive function but also reduces unwanted encroachment on the
self-determination of the user. This is a continuous e�ort between two opposing
objectives, which need to be weighted depending on the speci�c situation. This
also requires a much greater appreciation of the technical system for the human
condition which goes beyond the current typical framework of reactive behaviour.

1.3 Research Aims

In this thesis several research questions will be answered. While the main struc-
ture and design, which will be examined, is based on a technical or virtual as-
sistant system, or alternatively an integrated human-machine environment, this
is only the primary application possible from this research direction, which could
easily be expanded to other HMI systems. The individual experiments and topics
are closed in themselves and present directly implementable results. The follow-
ing section will describe the partial aspects and the overarching connection to the
primary research aims of each and follows the architecture as presented in Figure
1.1.

The �rst layer of the overarching structure is the so called awareness layer,
which concerns itself with all the available real world data, which has to be
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transferred into a technical readable format for further processing and interpret-
ation. While this can take a variety of forms, it is concentrated in this thesis on
the necessary steps to feed into a functioning machine learning solution in the
second layer. Beyond the scope of this thesis is the technical implementation of
sensor systems and interaction interfaces, as this would be primarily a hardware
solution.

The research performed in this stage of the thesis is instead concentrated on
the number and type of extractable features. Features in this case describe the
measurable information which can, through the use of sensor arrays, be extracted
directly from the real world and the environment in which the system is imple-
mented. With the type of experiments mainly performed on acoustic and speech
processing tasks, this includes the type of information taken from microphones,
such as frequency and loudness. Similar experiments are possible in the area
of visual information, both as sources but also as internal data representation,
which are included in a less prevalent form.

The second layer of the architecture is the designated understanding layer,
which is functionally implemented to interpret the information from the �rst
layer, speci�cally in the context of a human-machine interaction. This includes
understanding the inner human state, which cannot be measured but needs to
be inferred. In practice other information can also be inferred in this layer, such
as environmental situations, or meaning from speech-to-text recordings. These
speci�c adaptions are beyond the scope of this thesis, but can easily be imple-
mented by current o�-the-shelf solutions or by slight changes to the presented
solutions here. The main tool applied and examined in this area is the use and
improvement of machine learning solutions and their implementation for complex
technical classi�cation tasks.

The research produced for this aspect applies to a wide variety of speci�c
applications, with the common usage being the mentioned acoustic based systems.
The �rst aspect is the implementation of the currently relevant deep learning
approach in di�erent formats, with an examination of the requirements connected
with its application. The use of a continuously learning system as alternative
to a fully pre-trained system is also part of this examination. A continuation
from this is the area of convolutional neural networks, speci�cally in the case
of acoustic based classi�cations, together with a more general examination on
how visual representation of acoustic information may in�uence the technical
interpretability. The last aspect is the direct application of the presented methods
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in the area of human user state detection or interpretation as a non-measurable
size for technical sensors.

The last layer, the decision and control stage, is �nally there to examine how
the presented tools and methodologies may be implemented by the system itself
to provide a more human-like assistive or interaction function. This includes
the general interaction and engagement control, as well as a change from a pre-
designed rule-based system into a self-adapting and acting system based on cog-
nitive architectures, as mentioned before in section 1.2.3.

The research here consists of a practical implementation for a more proactively
engaging system which actively tries to resolve situations of uncertainty instead
of ignoring it, as in contemporary systems, as well as a theoretical examination
of di�erent engagement levels possible between a purely passive computer in-
terface and a true active arti�cial intelligence, with the presented system here
falling below the requirement for a system to possess true understanding but
approximating it adequately for a human interaction partner.

1.4 Structure of Thesis

This thesis is generally structured around the basic information pipeline described
before, the di�erent aspects of the pipeline will be reduced to their constituent
parts and examined in greater detail through relevant experiments improving and
advancing their respective areas. This chapter provided the general introduction
and motivation for the following thesis.

In Chapters 2 and 3 the basic terms and used datasets will be described. As
the proposed structure and architectures are based on current state-of-the-art
machine learning systems and several aspects of data preparation, these will be
described in detail in Chapter 2, speci�cally concerning their general abilities
and their applicability in this work. Equally important for the design of most
machine learning systems are the available datasets and their use for the training
and learning of the systems. In Chapter 3 these used datasets are listed with
short introductions and explanations of their special properties.

The �rst researched aspect, when following the information pipeline, is the
concept of feature extraction and data pre-processing as part of the overarch-
ing technical information gathering and processing phase. This is examined in
Chapters 4 and 5, with the �rst one primarily dealing with the problem of feature
selection, such as using alternative modalities as features and the reduction of
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features to the most relevant ones for speci�c tasks. In Chapter 5 feature optim-
isation and processing is examined as integrated part of a complete architecture
and when this is the preferable option to pre-processing of the available data.

Chapters 6 and 7 focus on the second aspect of the information pipeline,
which concerns itself with classifying tasks and systems capable of generating
self-learned solutions. Chapter 6 examines the use of deep learning architectures
and their advantages and disadvantages, speci�cally in the context of tasks with
di�erent dataset sizes available. In Chapter 7 the classifying capabilities itself are
part of the examination, with special concentration on the recognition of inner
user states and dispositions, as they are a primary part of a user-centric assistance
system.

The �nal aspect of the pipeline, the control and decision making layer is presen-
ted in Chapters 8 and 9. Chapter 8 observes the implementation of a more pro-
active design for user engagement, based on the available information level, as
well as possible adaptions for a multimodal technical agent environment. Chapter
9 �nally explains the novel peer-like decision level, employable in an advanced
assistance system and examines both the general architecture and the possible
implementation of a behaviour control to optimise continuous interaction.

The �nal Chapter of this thesis, 10, is the conclusion and outro of the work,
combining the examined aspects into an encompassing structure and ending with
a short outlook for further research and implementation possibilities.
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I
n this thesis the focus lies on the implementation of an advanced assistant sys-
tem. This system utilises a range of di�erent tools and methods to improve

capabilities compared to typical current models. The main use of state-of-the-art
tools was in the area of machine learning applications. These were employed to
solve a variety of complex tasks which otherwise would require a wide array of spe-
cialised pre-knowledge and highly complex rule-based programming, which can
be solved easier through machine learning alternatives. Another area was the
general approach of an assistant system and how the underlying requirements
change with the type of assistance required. This also resulted in a di�erent style
of decision architectures employed. This chapter will present the general base of
current state-of-the-art research at the time of the writing of this thesis, which
will be employed for the following research tasks. In Section 2.1 the general
data pipeline for machine learning and decision capable technical systems will
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be presented. This is followed by the examination of machine learning solutions
and applications in Section 2.2. Finally, in Section 2.3 the general level of assist-
ance and autonomy in an assistance system will be discussed, combined with an
explanation of the area of cognitive architectures and their in�uence in natural
decision making by technical systems.

2.1 Data Preparation

Data Preparation describes roughly the �rst step of the aforementioned Data
Pipeline, which describes the way information has to take from the real world
environment into the technical system. This needs to be done in such a way that
it can be processed further by other applications, such as classi�ers, predictors
or similar functional units. The general steps follow the route of �nding and
recording the data, which then needs to be digitalised and further pre-processed
again to improve their interpretability. This is an integral part for the technical
interpretation, as most systems are otherwise overloaded by the amount and
complexity of the extractable data from the physical world.

2.1.1 Data Preprocessing

The �rst step is the search for and the extraction of the data. Because of the high
amount of possible data, this would impose problems on most machine learning
systems. An important tool, which is employed to reduce the computational load
on such architectures, is the use of pre-designed feature-sets to choose the most
relevant and impactful real world measurements for the following processing steps.
These feature-sets are often chosen based on the type of problem most likely to
be encountered by the system. In case of my research, where most experiments
were based around emotion and a�ect recognitions, and under the constraint
of using audio recordings of speech and voice as indicators, this leads to the
use of typical sets like Opensmile's emobase (emobase) or Opensmile's emolarge
(emolarge), which consist of pre-selected acoustic features which are proven to
work in comparable applications [Eyben et al. 2010]. For these two examples,
this still would still include between 988 and 6.552 individual features, such that
further optimisations can be necessary, as was done in my research.
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Valuation of Data

The basis for current machine learning applications is the interpretation of pat-
terns which occur in natural data [Koza et al. 1996]. In this case most systems
employ a general data pipeline which is comparable between all di�erent kinds of
systems, independent of the type of employed data and interpretations tasks. The
employed data depends primarily on the available sensory appliances available,
which are often employed to mirror human awareness as a basis, both because
of the pre-existing knowledge of human emotion recognition, but also because of
the resulting interpretability and comparability of the technical results. It can
build the base for the recognition of a wide variety of technical states, as well
as an important indicator of human states in inter-human communications [Luo
et al. 2016]. This basic knowledge of known correlations between features and
emotions is often easily transferable into human-machine interactions.

Another widely available mainstay of information is the use of acoustic data, as
a mirror of the human sense of hearing. This acoustic information also provides
a wide array of proven correlation between the acoustic features and the internal
state of the users, especially on human internal states such as emotions, a�ects
and similar expressions [Espinosa et al. 2017].

Further data, either based in the other human senses or even further tech-
nological data is also available for a plethora of machine learning applications,
including the area of Human-Machine Interaction (HMI). An important example
is the increasing usage of �wearables� such as smart watches or similar appliances
with bio-monitoring abilities, allowing technical systems a good insight into the
internal biological situations of their human counterpart during an interaction.

When employing data as described for correlation, ideally former knowledge
of causation is ideal, but even the employment of machine learning in �black-
box� applications is possible, where the basis for the observable correlation is not
known [Koza et al. 1996]. Independently from the lacking underlying knowledge,
a machine learning system primarily only needs a distinctively unique pattern of
features, which is similar to examples from the dataset. Depending on the type
and source of data, each recorded example will contain the necessary information
overlapped by di�erent levels of noise or distracting information coming from
technical and natural sources, such as background chatter or machine operations.
To assure a reproducible classi�cation, this requires a wide base of examples to
reduce the in�uence of the noise, as well as to reduce potential bias and erroneous
correlations based on these potential biased examples.



18 2. Employed Methods and State of the Art

A prudent way to ensure the applicability of the available data is the use of
mathematical proofs to assure that features and training data are connected on
some level. One example, which was also employed in Section 4.1, is the Pearson
Correlation Coe�cient (PCC) [Pearson 1901].

r(xj, xk) =
cov(xj, xk)
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The PCC is calculated by comparing two features xj and xk over an amount of
m samples, where σ is their standard deviation and µ is their mean value. With
these values one can determine the probability that both features correlate in
some capacity with each other. The result of r can vary between 1 for a perfect
probability of linear correlation, 0 for no probable correlation, and -1 for a perfect
linear anticorrelation. A distinction needs to be made that this is not a causal
proof that two values are connected, but it can indicate a high probability for
further research and applicability in a self-learning system. Conversingly, if there
exist a causal correlation, then the Pearson correlation coe�cient measures it.

Feature Extraction

The successful implementation of machine learning solutions not only requires the
availability of su�ciently informative datasets but also their optimal presentation
for the system to latch unto contained patterns [Masmoudi et al. 2021]. The �rst
step for this is the transfer from real world occurrences into technical readable
format. Most state-of-the-art sensor arrays work on an electrical transmission
and are easily compatible with typical computer architectures, which are also
employed as the base for machine learning architectures. An important aspect of
this kind of transfer is the error from an analogue to a digital system, given the
high resolution possible with most data formats and the already given aspect of
noise in relation to that, it is oftentimes negligible for the later pattern detection.

With the data in a digital format the system often prefers the processing into
features instead of most typical recording formats. While formats such as .mp3
or .wav are e�cient for the reduction of necessary space on the memory, they
are less expressive on how the original information was perceived. Features,
especially when used for machine learning applications, present the data in an
easily interpretable form [Blum & Langley 1997]. Typical examples for acoustic
recordings are the emobase features [Eyben et al. 2010], representing a set of
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typical extractable values usable for a wide variety of speech and sound based
classi�cations. The return to an easily playable sound �le is often not possible
from a pure feature state. The search for an optimal feature set is a research
aspect by itself, as shown in Section 4.2, as it concerns the computational and
processable requirements of the general system. Typical features, for example,
contain wavelets, Linear Predictive Coding (LPC) and Mel-Frequency Cepstral
Coe�cient (MFCC) [Vlasenko et al. 2008].

Using the emobase feature set as an example, the full collection consists of
988 di�erent features, which are taken from a wide variety of sound features.
A Low-Level Descriptor (LLD) in this case can stand for features like Intensity,
Loudness, coe�cients for 12 mel-frequency cepstrums, the pitch and envelope
for the fundamental frequency, the voicing probability, the eight line spectral
frequencies and the zero-crossing rate. It furthermore contains the derivative
over time for these values. These are supported by features taken from a full
recording such as, minimum and maximum values, position indices, the range of
the LLD's, their mean value, up to two linear regression coe�cients, the linear
and the quadratic error, standard deviation, skewness, kurtosis, the quartile and
the inter-quartile ranges. [Schuller et al. 2009].

2.1.2 Data Preparation

Data Preparation is the step after deciding which data is to use. As most systems
and tasks require data from a multitude of sources, it is necessary to normalise and
process them to a better and more equal form of representation. As the general
architecture of machine learning systems does not distinguish between di�erent
features based on their type of origin, it is often more e�ective to normalise, i.e.
limit, the value of potential input features into a speci�c range. Other aspects
falling under this topic are the necessary annotation of training data for machine
learning or the augmentation of data after their recording.

Data Normalisation

An important aspect of real world recorded features is, that they most often
have strongly di�erent values and dimensions depending on the used sensors
and methods. While these di�erences may contain important information, most
machine learning applications are not able to process such strong variations within
the same process and with the same precision. Practically, this leads to high
values receiving a higher weighting, even when the base of the feature itself is
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di�erent. To equalise the impact from di�erent features on the same scale, it
is often preferable to normalise the values before processing them further in the
system [Masmoudi et al. 2021]. This is done by mapping all values on a scale from
zero to one, which requires a pre-existing knowledge of the general minimum and
maximum values which may possibly occur. The solution for this is to examine
a su�ciently great example set to determine the most likely extent of values,
with small derivations from this norm having only a small impact on the later
training. Alternatively a more complex standardisation can be performed with
the following method:

sji =
xji − µ(xj)

σ(xj)
(2.2)

With this equation, where xi are the individual values, µ their mean values and
σ their standard deviation taken from the whole dataset j, a standardised value
s can be calculated, which instead of limiting the possible values, uses the devi-
ations from a measured mean as an input for the system.

Data Annotation

While the basis for all machine learning applications is the aforementioned abil-
ity to detect patterns inside of data, creating correlations between information
and generating a conclusion on these points, this does not imply any kind of
understanding from the side of the machine. Speci�cally the �black-box� nature
of such systems, resulting in the lack of comprehension for the generated results
and the inability to determine the correctness of the created solutions is an often
mentioned disadvantage. To assure that a system correctly determines its res-
ults, especially in areas where there is no easily de�nable ground truth by only
technical means, human experts have to �ll in the necessary information [Russo
et al. 2021].

The most apparent aspect of this is the initial annotation and preparation of
the data. As mentioned before the data is generally transformed into features
which are often based on human perception and understanding of the underlying,
human, classi�cation process. This ideally leads to a technical process which
mirrors the human mental processes to a high degree, allowing the observer to
measure the correctness of the approach on this merit.

On top of that, the process of annotation itself is necessary for all systems,
as it allows the classi�cation of topics such as emotions, mental loads or a�ects
which are not based on physical but on psychological grounds and as such are not
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directly measurable. In this case every example has to be declared as belonging
to a speci�c class or a set of classes. As this is directly a result of the decision of a
human expert, this can easily lead to biases and skewing of the dataset [Pandey
et al. 2019]. This e�ect is increased further when a great amount of di�ering
individual experts work on di�erent parts of the same datasets, something which
is often necessary for datasets of greater size as it is required for more complex
architectures.

Di�erent methods can be employed to reduce this bias, such as consensus of
experts with overlapping data points or internal control and rating of the expert
panel to measure the con�dence and correctness of the given annotations. While
this does not remove the possibility of bias, the aggregated methods reduce the
inner contradictions of the dataset, which improves the training possibilities.

Another method to ensure the annotation of large datasets and the involvement
of only few annotators is by employing automatic or semi-automatic annotations.
For this an inertial classi�er sorts the examples pre-emptively in groups, as well
as giving a score of con�dence while the human experts only declare the correct
name of any group and judges the examples with a low con�dence. Such methods
are especially useful for current big-data solutions, which otherwise are di�cult
or impossible to process with a sensible e�ort.

Data Augmentation

The training and continuous improvements of the classi�cation results are primar-
ily dependent on the quality and quantity of the available examples. With exem-
plary recordings, such as the ones presented in Chapter 3, this is often done on a
certain subset of examples or sources, such as speci�c speakers. These are ideally
taken from a variety of backgrounds to ensure that the generated datasets and
the resulting pattern based classi�er are prepared for all the possible occurrences
when the system is employed in a real environment.

In case of acoustic speaker information, the expression changes based on biolo-
gical and psychological backgrounds of the speaker signi�cantly. In�uences range
from age, sex, weight to conscious and subconscious behaviour [Gross et al. 1997;
Pisanski et al. 2016]. All this leads to variances in the extractable features, which
then provide the basis for the latter classi�cation. Faulty or too small observa-
tions in turn lead to falsely trained patterns.

As no training set can encompass all possible varieties of occurrence, the ex-
tracted examples often get further modi�ed. Practically, by adding noise or
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variations to the original examples further training examples get generated. The
important aspect of this is the realistic base which ensures the similarity with
other non-recorded examples. This method is called data augmentation and is
especially important for tasks where data is di�cult to acquire or for complex
machine learning architectures which require a great amount of examples to solve
the problems of latching and over�tting [Janiesch et al. 2021].

An even more advanced version of data augmentation employs the pattern
�nding capabilities of the architectures themselves to create new examples which
are more abundant and at the same time more realistic than the simple addition
of noise or the variation of the original values. These are the so called Generative
Adversarial Network (GAN) [Goodfellow et al. 2020]. These employ architectures
like the Convolutional Neural Network (CNN) from Section 2.2.1, in a twofold way
by creating and distinguishing the data at the same time. The creator improves
its abilities congruent to the classi�er. This method still requires original data to
ensure the authenticity of the generated sets, but otherwise provides imitations
which are also hard for human experts to distinguish.

Krusckal Wallis

A method employed to measure if two sets of features belong to a di�erent oc-
currence is the Krusckal-Wallis Test. Speci�cally it gives a measurable rating if
samples are taken from the same distribution, through an applied one-way ana-
lysis of variance. For this it applies a null hypothesis that all samples are from
an equal set, while the signi�cance on how strong this hypothesis is disproven is
then a value for the di�erence. The advantage of this method compared to similar
approaches is that it potentially allows for more than two sample sets, and that
the original set does not need to be a normal distribution for the method to work.

H =
12

N(N + 1)

g∑
i=1

nir̄
2
i − 3(N + 1) (2.3)

In here, N is the number of all observations, g is the number of groups, ni is
the number of observations in the speci�c group and r̄i is the average rank for
all observations in this group. With the results from this equation it can then
be compared to the general H for the whole distribution, should the H for the
subsample be higher, the null hypothesis is disproven.
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2.2 Applied Machine Learning

Machine Learning is an area with a wide range of applications. It also represents
a state of the art approach to solve complex classi�cation and interpretation tasks
without requiring a full and in-depth understanding of all possible causations in
a topic. Both the used architectures itself and their application are continu-
ously expanding in their capabilities. This section examines �rst the di�erent
architectures used in this thesis, followed by the possible applications.

2.2.1 Machine Learning Methods

The machine learning methods employed in this thesis present only a partial rep-
resentation of the full available set of possibilities. They are presented roughly in
order of complexity and advancement. Because of their di�erent priorities in their
design they allow for di�erent applications to a variable degree. Important for
the correct choice of machine learning applications for di�erent kinds of classi�c-
ations tasks are the speci�c situations around it. Depending on the amount and
type of available data, certain architectures are more or less capable of processing
information. Speci�cally the complexity of a feature space, the multi-dimensional
space build from the extracted feature values, needs to be separated during any
classi�cation task. Less complex tasks which use less features and can be sep-
arated linearly between classes also require less computational processing power,
while other problems require the use of kernels to transfer the feature space from
one representation to another. A connected problem of more complex architec-
tures is the added requirement of greater data size to �ll the feature space with
examples. The necessity for the system or its designer is to choose the optimal
options from the available options.

The ability of a system to provide the best solution itself depends on the chosen
evaluation method, as can be seen in the Table 2.1 there is a wide variety of
methods [Powers 2011]. Depending on the task, precision or recall can be more
important, especially in cases where false positive classi�cations may lead to
further problems or increased risks. As most datasets are not equally distributed
in their composition, an unweighted or weighted approach may be necessary to
account for this. The weighting of the measures is necessary when the distribution
of the tested samples is skewed towards speci�c classes, as otherwise the resulting
positive and negative cases are also skewed.
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Table 2.1: The ability of a system to provide the best solution itself depends on the
chosen evaluation method, as can be seen there is a variety of methods. Depending
on the task, precision or recall can be more important as either false positives or
false negatives impact the evaluation more.

Name Equation
Recall R = TruePositive

TruePositive+FalseNegative

Precision P = TruePositive
TruePositive+FalsePositive

F1 F1 = 2 P∗R
P+R

Unweighted Average Recall UARn =
∑n
i=1 Ri
n

Unweighted Average Precision UAPn =
∑n
i=1 Pi
n

Unweighted Average F-Measure UAFn =
∑n
i=1 Fi
n

Statistical Methods

The �rst topical group of machine learning architectures works on the statistical
approach [Lee et al. 2002]. As basis for the structure pre-determined expert
knowledge can be used, but the currently more topical training with examples
and supervision is also easily implementable. Besides other methods such as
Bayesian networks [Pearl 1985] which work on probabilistic solution where each
result is assigned a probable connection to each possible class, other statistical
methods such as the Hidden Markov Model (HMM) [Huang et al. 1990], assign
only the most likely result. The method with the highest relevance in my work
is the Support Vector Machine (SVM), which is one of the traditional machine
learning architectures [Cortes & Vapnik 1995].

This method works by separating the original feature, or problem, space into
separate areas of classes. The so called support vectors in this methodology
�support� the partitioning faces between these areas and are re�ned through
training steps. Every example the system receives allows the SVM to further
move the support vector, in an e�ort to maximise the distance between each
example of di�erent class and the partition face.

Further re�nements of the process also allow for the use of kernels, used to
change the representation of the problem space into a di�erent arrangement,
which is necessary to allow for non�linear separations, which are relevant for
many complex problems but are not possible with the original (linear) SVM
architecture by itself [Shadeed et al. 2018].
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Because of their general capabilities and the wide variety of possible applica-
tions, a SVM is often employed as baseline application and source for comparison
results when using other machine learning solutions [Schuller et al. 2009]. As seen
for a variety of di�erent applications, it often shows above average results while
also being comparably undemanding on the required computational power com-
pared to most current designs of deep learning architectures. Importantly, it also
is easily scalable to di�erent data sizes and feature numbers.

An important aspect of this architecture is the relatively easy implementable
ability to continuously adapt the generated result, as used in Section 5.3, for
this the generated separator slowly changes its location and orientation, in the
same way as during the original training stage [Xing et al. 2015]. This can
generally work in two ways, either by remembering the original examples and
adding the new examples, ensuring both a continuously high classi�cation rate,
but also an increasing storage and processing requirement, alternatively only the
last examples will be applied. With this approach the training time remains
constant, but it may increase the potential bias contained in the new examples
by �forgetting� the original information when both sets diverge.

An alternative to these methods is the use of Random Forest (RF) as a classi�er
system [Breiman 2001]. With these a decision task is separated into several
accumulative decision steps leading through the feature space. While this method
proves adequate for most tasks it has fewer options for optimisations concerning
speci�c datasets.

While both methods prove quite capable of solving classi�cation tasks, both
have their weaknesses especially in higher complexity tasks. RF for example tend
to over�t on training data. With kernels SVM are capable of providing classi-
�cation results even in complex feature spaces, the computational requirements
tend to increase exponentially due to their complexity.

Neural Nets

The most frequently employed methods in this work are based on the Arti�cial
Neural Network (ANN) [McCulloch & Pitts 1943]. In contrast to the formerly
mentioned methods ANNs are not based on a purely statistical approach but on a
technological interpretation of the biological neural structure. Not only does this
possess a unique insight into the underlying neurological processes as happening
in the human brain, it also allows for much more variety and options in the area
of learning and training of patterns and correlations. The underlying structural
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unit is a singular neuron, consisting of input, core and output, with the ability to
change weight of the input connections and the activation inside the core can be
adjusted. This relatively simple processes allows for variable levels of complexity
by connecting and layering the singular neurons into full architectures.

The relevant aspect of all arti�cial neural networks is their depth and their
width, as the processing and pattern recognition capabilities are directly related
to these values. A singular neuron is practically capable of separating a feature
space linearly into two, interestingly capable of mirroring simple logic gates [Yel-
lamraju 2013]. As a rough rule each further layer allows for greater complexity
of the separation, while the width of each layer allows more parallel processing
pathways to generate. As such the simplest structure of an arti�cial neural net-
work consist of an input depending on the number of available features, an output
depending on the number of classes while the hidden layers in between can be
adjusted depending on the general complexity of the problem at hand.

The training of such networks is based on the principle of supervised or un-
supervised learning. The most relevant method in this work is the supervised
approach, in which the system receives correctly annotated examples of the ob-
served problem. Based on the perceived error between the correct network results
and the ones currently produced by the architecture, the backpropagation allows
to assign the in�uence of each weight in the network on the �nal error of the
system. Based on this the system can then change this weight to close the gap
with the projected result [Li et al. 2012].

This mathematical approach is also the base for the problem of over�tting
which occurs when the generated process is only applicable for the applied ex-
amples, while ideally the generated process should be applicable to all similar
occurrences.

The alternative approach of unsupervised training is applicable for a problem
which does not have an annotation and instead reverses the process. Similarities
and patterns get grouped into the same class, which is also called clustering [Du
2010]. The underlying formula for all neurons is the simple equation:

netj =
n∑

i=1

xiwij (2.4)

where net is the sum of all the inputs xi multiplied by their trained weights wij.
This training process is controlled by the learning rate α and the error between
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the correct solution of the network yi and the currently calculated output oi over
all examples n given.

wi = wi − α× ∂E

∂wi

E =
1

2

n∑
i=1

(yi − oi)
2 (2.5)

In contrast to other classi�cation methods the computational complexity in ANN
is relatively low as each neuron only performs one multiplication over all their in-
put values. Important in this examination is that the amount of neurons necessary
to classify complex task increases continuously, and the comparably more com-
plex training phase. As backpropagation requires error calculation back through
the whole network to the input values, training takes exceedingly more time than
the forward passes.

Recurrent Methods

A problem connected with the described typical neural network is the static
de�nition of the input size before the system is initiated. Based on the way
patterns are processed, a system would ideally always receive the value from a
speci�c feature on a speci�c input. This is practically impossible when processing
input of a variable length, such as word recordings or similar dynamic occurrences.
A technical similar problem, even when not immediately perceivable, is the ability
of a system to remember previous occurrences or dynamic changes during a single
recording. With a static input size adjacent time steps may be ordered in a
certain static way, but for a dynamic method the system itself would need to
remember the change happening at the moment and how it may in�uence the
�nal classi�cation. As a result the development of Recurrent Neural Network
(RNN) was done to solve this problem of a remembering system, or more precisely
a system capable of �recurring� former information over several time steps [Elman
1990; Chen & Chaudhari 2009].

The important part of this method is that the output of certain neurons is fed
back into them, alternatively the input of the full network, for each time step.
This allows not only the remembering of the information of the input itself, but of
already processed information which has less space requirements in comparison.
When training such a system, the backpropagation method not only retraces the
error quotient through all layers, also called trough space, but also through all the
time steps which have happened before, this is called through time. The result
of this method is a continuously smaller input of the former data on the result of
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the network after each iteration, as the in�uence of the former information loses
its value over time. Speci�cally, with this architecture the result is not the same
as an input layer where the full information is applied at one time, but the time
sequence itself in�uences the impact of information on the system.

An important disadvantage of this method, compared to the preselected input
width, is the increased complexity, when the normal training is done for a weight,
the passed-on errors require the calculation to be done for each weight times
each time step [Williams & Zipser 1995]. This means a further increase with any
further duration the information is retained inside the system. This is not the only
drawback, as the mathematical recurrent factor reduces itself to an insigni�cant
part which is practically ignored by the system.

Regarding the computational complexity for the forward calculation, this is
similar to the regular architecture, as only the last result is added to the input
values. The training in contrast is much more complex as the errors are not only
calculated back to the input but also through former time steps for each input
which was given the system before.

Long Short Term Memory

As shown with the recurrent neural networks, remembering with ANN is pos-
sible but poses a variety of problem both in capabilities and performance wise.
An alternative, which is more recent, is the implementation of LSTM and their
variants [Hochreiter & Schmidhuber 1997; Wöllmer et al. 2009]. This architec-
ture employs normal arti�cial neurons in a speci�c arrangement mirroring in its
function a memory cell. Instead of using recurrent connections, the memory is
concentrated in a so called core which returns its information inde�nitely inside,
instead of the continuously vanishing gradient which otherwise occurs after sev-
eral time steps. To control the content and achieve better speci�c adaptions for a
task, the cell is controlled by so called gates which allow the outside of the memory
to either write, delete or read from this cell, these gates are also arti�cial neurons
and trainable, the general architecture can be seen in Figure 2.1. An important
distinction is that the error from former inputs is not propagated through time
but only till it reaches this memory core, as such it is only propagated through
space.

Not only does this architecture achieve better results for a variety of applic-
ations compared to the recurrent architecture, it also is much less complex in
its computational requirements, especially for larger architectures. As mentioned
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Figure 2.1: A Long-Short Term Memory (LSTM) module, the di�erent parts are often
regular neurons. The gates are as follows, act is the activation gate interpreting all
incoming values, i is the input gate regulating the in�ux of information into the
memory core, C and f are the core and the forget gate respectively which allows
the system to reset. The output is then controlled by a �nal activation neuron and
output gate. All of the gates access the whole input features.

each required time step increases the load exponentially in recurrent architec-
tures, while the increase in complexity for LSTM architectures remains linearly
for each increase in functional units. As a singular LSTM cell consists of much
more neurons than a recurrent unit this advantage increases with the size of the
network and the amount of time steps which are processed.

Based on the general idea of the LSTM architecture, a wide variety of variants
and improvements have been developed. Speci�cally the complexity of a singular
cell, consisting of core, gates, in- and output is comparable high, both in compu-
tation and implementation. To solve this, simpler alternatives which aggregate
gates over several cells or less complex activation functions are in use. These
methods often retain the capabilities of the original structure while requiring less
computational power.

Convolutional Neural Networks

Based on the general trend towards high data sizes and increased complexity
in the processed tasks, typical standard neural networks are often not capable
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enough. Instead with the rise of big data applications the current state of the
art shifted to the so called Convolutional Neural Network (CNN) which provides
a much more complex approach, both in the applicable level of the problem
but also in the computational requirements during the processing of information.
The most important aspect of this architecture is the method of convolution,
which describes a form of processing areas of input into a di�erent more e�cient
representation [Krizhevsky et al. 2017]. The primary form of input is per design
an image or image-like representation, partially based on the biological model
it was based on, the visual cortex of mammalians. In turn the convolution is
especially useful to process information in 2- or even 3-dimensional formats. The
functional process of the convolution uses a moving kernel, similar to a �lter,
over the input and generates, also similar to a �lter, a correlation or pattern
from this kernel. In case of visual input this can lead to e�ects similar to edge
detectors or comparable visual �lters, with the bene�t that this is self-learned by
the system [Krizhevsky et al. 2017].

When using large and complex datasets, CNN are potentially able to perform
self-trained pre-processing steps which otherwise would need to be done manually
by human experts. An interesting aspect of this convolution is the e�ect, that
while the size of the feature �eld reduces with each convolutional layer, the depth
increases signi�cantly, as indicated in Figure 2.2. As each kernel produces a
di�erent convolutional result per layer, this increases the amount of informative
values per layer roughly at the same rate as the number of applied kernels.

To reduce the computational requirements of the system, the preferred activ-
ation function for CNNs is the Recti�ed Linear Unit (ReLU) which is easier to
compute, and while also lacking certain e�ects in comparison to the usual ones,
tends to generate better results in the typical application �elds of CNN [Agarap
2018].

Another e�ect typical for CNN architectures is the frequently occurring over-
�tting, as the learning capabilities, speci�cally the retaining of patterns, is very
high it often leads to the perfect classi�cation of all training examples as they
are practically saved as trained in the system. To avoid these e�ects, greater
amounts of training data are required. In case of enough examples, it leads to
the currently top achiever of robustness and accuracy [Rahman et al. 2019]. Al-
ternatives when using smaller sets require the implementation of e�ective data
augmentation methods, as well as drop-out layers, which allow the system to
develop into a more robust classi�er.
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A disadvantage of the method concerning its high classi�cation results is its
general low retraceability during the creation of the classi�cation result. A widely
known example of this is the case where a system was supposed to distinguish
between housedogs and wild wolves [Nguyen et al. 2020]. While the system
provided good results, a later analysis showed that the main distinguishing factor
was the background consisting of either both woodland and snow or house gar-
dens. Without closer analyses of the training results such errors are hard to
detect.

One possibility to solve this problem is the method of deep dreaming [Spratt
2018]. This method describes the possibility to rerun the training process in re-
verse where the generated convolutions picture the extracted patterns onto an
image. With this method the training process can be made visible and certain
errors during the training process can be solved before they impact the �nal-
ised system. Compared with other ANN based systems, the CNN is of similar
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Figure 2.2: A typical CNN network, an important distinction from the other networks
is the use of �depth� in the hidden layers. With each new layer of the network
the architecture allows for further reaching patterns in the original input values to
emerge.

computational complexity. Its separate neurons still only process a simple mul-
tiplication, of input values, but in case of the speci�c architecture the amount of
neurons increases exponentially with each layer and the number of kernels applied
in each of these layers.
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2.2.2 Application of Machine Learning

The reasons for the usage of machine learning solutions in the recognition of
human emotion are plentiful. Primarily the self-training capabilities of a ANN
allow for even correct classi�cations when the underlying correlations are either
not known in detail or when their description for a truly rule-based approach
would be too complicated to implement. Human emotions as such are di�cult to
declare easily because of their great interdependence of the available features, as
well as the high diversity between the expressions of di�erent humans. Addition-
ally, it is an aspect which is fully strange to a technical system as it depends more
on psychological expressiveness than purely logical causations. As such emotions
by themselves are not directly measurable, they have to be decided based on
alternate feature values per correlation. Indicators for such expression can be
loudness, word frequency or similar speech variations.

Emotional Classi�cation

As there is no objective measurement of emotion the classi�cation itself has to
be decided based on subjective criteria. Using the psychological area of research
as groundwork, several di�erent description models can be declared, which con-
centrate on di�erent objectives [Scherer 2005; Ho�mann et al. 2012; Moors et
al. 2013]. The relatively easiest method assigns di�erent names to a speci�c
range of expression, such as general happiness or sadness, but also fear and bore-
dom can then be declared as an emotional group. The advantage of the clear
de�nition is the ease to interpret the result, with a happy user distinctively dif-
ferent from a sad one. The main disadvantage is the high subjectivity, both of
the annotating experts but also during the decision which expression constitutes
an emotion, or vice versa which emotion contains which expression. As such the
number of discrete emotional classes range from the typical �basic emotion� seven
class grouping, which is often employed as baseline [Davidson 1994; Ekman 2005;
Schuller et al. 2009], to more detailed representations. These are often happy,
angry, anxious, fearful, bored, disgusted as well as neutral, with variations of
singular emotions in some case. This is but one possible separation among many
for the distinction of emotions, with the advantage that it allows for a wide
variety of distinctions without going excessively into the psychology of human
emotions, which may prohibit otherwise an easy technical classi�cation [Plutchik
2001]. Another approach using even less classes is the valence-arousal axis which
reduces emotions on either high or low expression of valence and arousal [Mauss
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& Robinson 2009]. Theoretically, all possible distinct emotion classes could be
located on the space which is created by the two axes. Corresponding diagrams
have been proposed, amongst others, as Circumplex models [Russell 1980] and,
with additional strength dimension, as Geneva emotion wheel [Scherer 2005].
This allows for both better training prospects, as well as a more granular result.
This in turn is also a disadvantage for the annotator who has to be capable to
objectively distinguish valence and arousal from audio recordings.

A�ect Classi�cation

While emotions are not only a signi�cant part of paralingual interactions, they
are as well highly indicative of the state and the reaction to any given situation.
For this they are not the only aspect which would be useful for a technical sys-
tem to extract during an interaction. Parallel, and partially overlapping, to the
idea of pure emotion recognition is the wider aspect of a�ect recognition [Picard
2003]. While this usually includes user states or a�ects such as happiness, or sim-
ilar emotional classes, it additionally includes a variety of other user states and
expressions. For example tiredness or attentiveness are expressions of a�ect but
commonly not included in traditional emotion recognition. The psychological
de�nition for a�ect includes, besides emotion, the general feeling or the mood
of a person [Davidson 1994]. Especially when designing interactive agents such
knowledge about the user a�ect would be highly important, which is the reason
they are included here.

For interaction control, an important aspect which follows from this is a�ect
recognition. This is the ability to discern interest and general trend of an inter-
action from the user, practically employing cues to predict further developments
before it happens. In conjunction with more advanced personal pro�le projections
generated by observing former interactions by the user, this allows for systems
which can predict whole interactions and interests, optimising the reaction times
and the accuracy of the provided assistance.

2.3 Human Machine Integration

Given the former aspects of the user state identi�cations and user intent inter-
pretation, it is a logical conclusion to possibly provide speci�c assistance based on
this information. The general idea combining the requirements of a human user
and the capabilities of a technical system are even older, practically beginning
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with the idea of a personal computer. In this section we examine the increasing
trend for better technical assistance and the possibility to provide a human-like
technical system.

An important distinction to be made is that the following examinations focus
on one-to-one interactions between one user and one technical system, speci�c-
ally multiparty scenarios with multiple agents (human or technical) are not part
of this or only mentioned as potential addition. It is furthermore not speci�ed
in which form the user interface of the system has to be designed, with poten-
tial scenarios ranging from simulated (e.g. on a screen) to embedded (e.g. as
ubiquitous supports with vanishing interfaces) implementations.

2.3.1 Assistance Systems

The general idea of assistants' systems changed during the ongoing development,
both in its capabilities and requirements. One of the original examples was
the simple technical assistant in the form of handheld devices or as applications
of personal computers which provided simple assistance functions. These �rst
systems provided similar functions as usual calendar, notepads or similar text
databases. The assistance e�ect is achieved by the ease of transfer of the data and
the transportability of the system itself. With these the databases access is purely
done through the manual activation by the user. Compared to later approaches,
the assistive capabilities are rather low, as the system itself is not providing any
supporting work beyond the easy collection of di�erent applications and the fast
access to the saved data. Simple additions allow the further possibility of alarm
functions or similar pre-programmed reactivity on the inputted information.

This development was parallel to the idea of HMI systems itself [Karray et
al. 2008], as these changed over time to provide better and easier access than
other manual methods. In this �rst stage the main focus was the improvement
of interface technologies, going from keyboards to ubiquitous implementation of
voice control [Preece et al. 2015].

Personal Assistant

Built upon this �rst idea of assistant systems is the current approach for technical
or virtual assistant systems. This also presents the main form of commercially
available products, such as Amazon Alexa or Microsoft Siri. The improvements
compared to the former approach are signi�cant in their architecture and the
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resulting capabilities of the system, while the underlying requirement what an
assistant system is remains the same. One of the main improvements is the area
of interaction, which is particularly far developed for voice control and interac-
tion [Dekate et al. 2016]. The idea of natural interactions, similar to the ones
between two human agents, is the main reason for this development. Further
additions to this interaction process allow for mimic or gesture control, as well
as the use of gaze. With more integrated environment and the current increase
in wearable technology bio-signals themselves become a viable avenue of control.

The assistive capabilities of the system remain in contrast close to the former
abilities, with a further ease of database access and control operations. The main
functions in a mobile application are still the access of database information,
either external such as lexical knowledge, or internal in the form of e.g. calendar
information. The observable trend towards assistance controlled applications
follows these general capabilities, where most applications either provide access to
specialised databases or provide a speci�c function for the personal information.
This includes the access of radio stations or music streaming, as well as the control
of alarm functions based on time and date [Lopatovska et al. 2018].

A development based on the current stronger integration of these assistance
systems in the stationary system, as well as the combined development of tech-
nical home appliances which leads to the idea of a integrated smart home [Elsholz
et al. 2009; Kameas et al. 2009]. Smart home system, additionally to the men-
tioned aspects, allows the user also to control the appliances in the household,
either by the ease of access given by the voice control or by pre-determined date
and time control. This is often designed in such a way, that the individual ap-
pliances are all controlled trough one central system, which is easier to access
and implement than several systems working in parallel to each other. This also
allows for an easier communication between the di�erent systems in case of inter-
dependency such as temperature dependent heating units or the control of lamps
depended on the remaining daylight.

An important aspect of this current development is the increased integration of
the systems into the lifestyle of the users, which by design are invited to depend
and trust the system with information and control. This mirrors the general
request for true assistant systems, which are much more integrated into the life
of their users.
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Companion System

The idealised approach to an assistant system goes far beyond the necessity of
a voice controlled database access. This approach particularly is also called a
companion, as in a continuous coexisting assistant and supporter besides the
user [Wilks 2005; Biundo & Wendemuth 2017]. Alternative descriptions can be
of a caretaker or an overseer of the users actions and life [Merten et al. 2012;
Dojchinovski et al. 2019]. Compared with the current usual approach it requires
a full separation between the user control and the system control, while there is
an overlap, speci�cally when the user describes their own priorities and objectives
to the system in detail. The solution and processing of these tasks is dependent
on the capabilities of the system itself, as it has to proceed based on its range of
actions to solve these tasks. Alternatively, the system may continuously follow
the actions of the user and may engage to help and support in opportune times,
speci�cally when the user is in distress or undecided on how to proceed.

The idea of a companion as such goes beyond the aspect of controlled assistance
systems, as these only provide an easy and fast access, while the companion is a
true attendant to occurring needs during the lifestyle of the user. While this may
appear either as a silent observer, when no assistance is needed, or as an active
engaging support, when the user is approaching a problem, or when the user and
the system cooperatively engage a task on their own.

Generally, the level and approach of the assistance is changed from a reactive to
a semi-active paradigm, in this the activation is still primarily dependent on the
user input, but the decisions' �nding and the provided support is actively chosen
and provided based on the current capabilities of the system and the most likely
necessary requirements of the user based on in-depth user pro�ling. Additionally,
such a system is generally already described as a virtual agent [Traum et al. 2012]
as it provides a form of actor in the human-machine environment.

Peer System

The last level of assistance system lies even beyond a companion [Weiÿkirchen
et al. 2020a], which requires generally a more independent approach. While
the companion prioritises the immediacy of continuous support, and retains the
general improvements of easy access, through voice or similar interfaces, it is still
highly dependent on the user instructions. The peer level of approach instead
puts a system not only on a similar but an equal level to the user [Weiÿkirchen
et al. 2020a]. This is also part of the development into the active approach of
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assistance tasks. This is only possible through the implementation of system
internal objectives and priorities instead of relying on the user instructions. An
additional aspect is the change for a system to approach understanding of certain
situations, requiring the use of cognitive architectures instead of the rule-based
solutions in purely reactive systems [Lew et al. 2007].

Without the instruction by the user, the responsibilities of the system have to
be pre-decided, before engaging the system, to assure the safe usage of such a
system [Weiÿkirchen et al. 2020a]. As it is not required to query its user before
engaging an action, it also retains all responsibility for potential errors. This
allows for actions before the user is aware of the potential problem, but may
at the same time in�uence and impair the user with problems which otherwise
would not have occurred. Depending on the accuracy of the system it may be
searching problems, and decides to have found them, when this is not the case.
In such a situation the system may impose its own biases onto the user.

The base for such a system is a truly independent agent, which would po-
tentially proceed even without user interface in a closed environment. In its
architecture as an assistance system this takes the form of several baseline ob-
jectives to assist, while the precise implementation of these assistive functions
would be decided during runtime. This kind of indirect planning is directly con-
nected with the idea of cognitive architectures which no longer require a speci�c
task but instead mirror a human decision process.

The only remaining level of improvement would be a true Arti�cial intelligence
in the strong sense, which would decide on its own free will to support a human
peer. This is far beyond the scope of this work and the current technical level.

2.3.2 Cognitive Architecture

The solution for a more interactive system is to change the decision making pro-
cess of the architectures from a rule-based approach to one more closely mirroring
the human way of thinking. While the learning capabilities are already close to
human abilities and directly in�uenced by them, most systems controls depend on
the typical if-then causal programming. Most available applications and services
employed in assistance systems also employ this typical paradigm for processing
information and control database access. Contrary to this approach human be-
haviour is normally more faceted and based on wide variety of outside in�uences,
prior experiences and explorative randomisation. To simulate this kind of be-
haviour di�erent architectures are required. The examples which are directly
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based on the human cognitive process are mostly under the overarching topic of
(technical) cognitive architectures. Similar to the fuzzy logic of machine learn-
ing applications, cognitive architectures also employ probabilities and relation
between situations and reactions [Anderson 2007].

The advantage of the human approach is that such a system does not need to
be fully programmed for all situations before the implementation. Instead such
a system is capable of generating new solutions based on the knowledge of prior
possible solutions applied to the current scenario [Anderson 2007]. This allows
continuous work under uncertainty, approaching similar or new problems during
the run-time and practically applying the learning e�ect to internal decisions.
Several di�erent architectures exist which employ this kind of process. For ex-
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Figure 2.3: A variant of the modules and bu�ers of the Adaptive Control of
Thought�Rational (ACT-R) architecture, similar to the requirement for the pro-
jected assistance system. Figure based of [Anderson 2007].

ample State, Operator Apply Result (SOAR) [Laird 2012] or Adaptive Control
of Thought�Rational (ACT-R) [Anderson 2007], but also BDI [Rao & George�
1991] architectures fall under this moniker. As ACT-R is one of the examined
systems in this work, its architecture can be seen in greater detail in Figure 2.3.
The speci�c design of ACT-R employs an array of di�erent memories containing
all the information about the situation and the applicable solutions, as well as
a situationally dependent task selector. The range of the system goes from a
purely database based system to a plethora of available interfaces into the real
world, such as sensor and motor functions. While this kind of system is primar-
ily employed for psychological comparison studies and virtual assisted teaching
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assignments, the underlying principle is applicable for most typical interactive
systems [Anderson 2007].

2.4 Summary of the Chapter

In this chapter the general methods and topics were examined and described,
as well as the state-of-the-art during the writing of this thesis was established.
Speci�cally the methods concerning the data preparation and machine learning
architectures were presented, as they build the basis for later research without
being a direct result from my research, even when certain adaptions of these
mentioned methods were done as shown in the later chapters. Beside the men-
tioned processes and tools, other methods were employed which did not warrant
inclusion in this chapter as they consist of typical tools of the trade. Before the
implementation and the research into this topics will be concluded in Chapters
4 to 9, the used datasets and databases will be presented in greater detail in the
next chapter �rst. The research itself is similarly ordered to the presentation in
this chapter for easier comparison, both based on the general information pipeline
found in the presented assistance architecture.
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I
n this chapter the used datasets for this thesis will be presented and shortly
examined. As most experiments were done on acoustic emotion and user state

detections, this is re�ected in the chosen datasets employed. Given the nature
of machine learning solutions, the chosen datasets also signi�cantly impacted the
possible results and approaches which were chosen. A dataset, as used during my
research, normally consists of audio �le recordings taken from di�erent speakers,
as well as annotation tables describing the contents of the recording. Together
this can be used as a ground truth for training the used machine learning imple-
mentations.

All used sets can roughly be separated into two groups. The �rst group will
be described as acted data and is examined in Section 3.1. This group consists
of emotions and user states which are consciously performed, or acted, by the
participants, and as such are very expressive and idealised in their form. The
other group contains the naturalistic datasets, and is examined in Section 3.2.
These consist of data which was either recorded during real world situations,
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prohibiting a conscious acting on side of the participant, or by inducing certain
user states during an experiment, and as such more natural. These are more
complex in their generation, but resemble more closely the type of data occurring
in real world applications than the acted ones. As a result they are often also
more complex to classify, due to their realistic properties [Vogt & André 2005].
This is followed by a summary of the chapter in Section 3.3.

3.1 Acted Datasets

Acted datasets often provide a variety of advantages over the naturalistic kind.
Foremost it allows for greater control over the recorded state, as well as a prede-
termined annotation in the form of an acting script. Distribution of examples can
be easier equalised for each provided class, allowing generally for a more robust
and easier training approach. As acted datasets are also often recorded in pre-
pared environments, and in some cases by trained actors, they also easily provide
a very high quality of recordings. Practically, this translates into less background
noise and normalised recording parameters between the speakers, such as similar
volume, echo and etc. for all recordings. The provided examples for these kind
of datasets consist of the Berlin Emotional Speech Database (EmoDB) and eN-
TERFACE'05 (eNTERFACE) corpora, as well as the Speech Under Simulated
and Actual Stress (SUSAS) corpus. Both of the �rst two are examples of datasets
with emotion classes and are also good examples for datasets utilized in bench-
mark comparison experiments. The latter is an example of a recording on how
stress a�ects the voice of a speaker.

3.1.1 Berlin Emotional Speech Database

One of the most frequently used datasets in my work is the one called
EmoDB [Burkhardt et al. 2005]. It is a typical example of an acted, non-induced
emotional database, and based on its clarity, consistency and age is often used as
a baseline comparison set for di�erent architectures and methods. A speciality
of this data is the original reason for the creation of it, which was the basis for a
speech synthesis method with contained emotional paralinguistic aspects. In its
use as a baseline dataset it is employed in a variety of benchmark research for
machine learning applications and similar classi�cation methods [Schuller et al.
2009].
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Table 3.1: Distribution of di�erent emotion classes in the EmoDB corpus. Even though
the original experiment was designed for an equalised distribution, the set as cleared
by human experts consisted only of the ones which provided a clear expression.

Emotions Samples Rel. Samples in % Time Rel. Time in %
Anger 127 25,8 5:34:77 24,1

Boredom 79 16,0 5:39.97 24,3
Disgust 38 7,7 2:08:73 9,2
Fear 55 11,2 2:03:70 8,8
Joy 64 13,8 2:43:89 12,1

Neutral 78 15,8 3:04:32 13,2
Sadness 52 10.5 3:27:43 15,4
Total 493 100 22:42:81 100%

The corpus consists of 493 spoken utterance recordings, which are all annotated
and based on a script repeated by each speaker. All of these recorded utterances
were taken from a set of ten di�erent sentences, where all were designed to have no
textual indication of the contained emotion. The speakers themselves are equally
distributed with �ve female and �ve male speakers, all in the age range from 21
to 35 years. The speakers are all trained actors and as such comparably similar
in their strong and clear expression of emotions. Contrary to other datasets the
emotional classes were chosen before the recording took place instead of being
decided by the annotators. The recorded utterances were rated by annotators
for emotional expressiveness and examples which were not recognisable by the
annotators were removed from the dataset before publication. Speci�cally the
recordings were rated on naturalness and recognisability, with a level of 60%
and 80% being chosen as limit before being discarded respectively. This reduced
an original set of 800 examples to the 493 mentioned. The used emotions were
taken from the seven basic emotion classes of [Davidson 1994]. An exemplary
listing of the recordings can be seen in Table 3.1. The high quality of the data
is also due to its lab recording setup, instead of an in-the-wild method, and
the technical high quality of the speaker expression for the di�erent emotional
classes, which is repetitive between di�erent samples. These advantages allow
for a clear observable correlation between extracted features and the annotated
classes. Contrary to this, naturalistic speakers and open-microphone situations
may lead to distracting outside in�uences.

For an alternative approach where this set can also be utilised as a two problem
classi�er, the emotions are mapped in this case to valence and arousal, allowing
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for an easy transfer of the classi�cation setup. This is done in lieu of an expert
annotation for these classes. While the recording setup was equally distributed,
both the method of talking and the discarding of bad examples led to a skewed
representation of training samples. This appears both on the discrete number of
examples, but also in the cumulative time of for each example. In Table 3.1 it
can be seen that disgust and sadness are considerably less present than anger.
This can in turn lead to a bias in the achievable classi�cation results.

3.1.2 eNTERFACE

Another example for acted emotions is the eNTERFACE corpus used in my
research [Martin et al. 2006]. In comparison with the EmoDB set, the group of
recorded speakers were all students instead of professional actors. At the same
time the acting still enforces a similar style of expression, as well as an easier
method of annotating the examples instead of interpreting naturalistic data.

Several other di�erences also distinguish the eNTERFACE from the EmoDB
corpus, leading to di�erent applications in my research. The dataset itself is
multimodal in nature, speci�cally consisting of audio and video recordings of
the participants, allowing the potential implementation of facial expressions as
an indicator of the contained emotion. The sample size is greater compared
to EmoDB, with 34 male and 8 female participants, 42 in total with a clear
skewing towards the male speaker group. Compared to EmoDB the speakers
are also more diverse in their expression, comprising of international students
with di�erent accents and mother-tongues. In EmoDB all speakers were native
in the German language. As a method to build a baseline for the recording, all
speakers were ordered to react in English, leading often to expressions in a non-
native language for the participants. Similar to the EmoDB corpus the script
again employed a variation of the seven basic emotion classes model with a slight
adaption, speci�cally that neutral expression was removed from the set.

The biggest contrast is the induction of the emotion through a short story
instead of a simple acting command through a script. Induction should ideally
lead to a more naturalistic reaction, while still retaining the conscious aspect
of the participant as they are aware of the recording and the knowledge that
emotion is induced in them. The human experts in this case again measured the
expressiveness and whether the given reaction was clearly part of the induced
emotions or if the given recording was lacking a clear a�liation to a class. The
recording itself was again taken in a lab environment, providing a standardised
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Table 3.2: Distribution of di�erent emotion classes in the eNTERFACE corpus, after
the annotators removed all examples which lacked the necessary clear expression.

Emotions Samples Rel. Samples in % Time Rel. Time in %
Anger 200 17,1 10:51:56 23,7

Happiness 205 17,5 8:36:32 18,3
Disgust 189 16,2 8:44:16 18,8
Fear 189 16,2 8:47:28 18,8

Surprise 192 16,4 8:22:00 18,3
Sadness 195 16,7 9:56:20 21,5
Total 1170 100 46:30:24 100

setup for the speaker and the sensor equipment. The full set consists in this case
of 1.170 recordings, with only the spoken part employed in my research. As can
be seen in Table 3.2 there is still a certain skewing and bias in the number and
duration of recordings between the di�erent emotions, but this is comparably low
when compared to EmoDB. Generally it presents a slight increase in complexity
and naturalness of classi�cation to EmoDB and allows for better measurement
of the capabilities of a classi�er than the former dataset for natural situations.

3.1.3 Speech Under Simulated and Actual Stress

The SUSAS dataset presents an intermediate transfer from the purely acted to-
wards the naturalistic expression examples [Hansen & Bou-Ghazale 1997]. In
contrast to the other datasets in this section, the SUSAS corpus is not one singu-
lar block of data but a collection of several di�erent experiments and recordings.
As it consists of both acted and non-acted parts it allows for training speci�cally
these aspects which are similar between these parts. The main objective of the
corpus is, as the name implies, the expression of stress through acoustic examples,
speci�cally speech. The type of stress is in this case either workload stress, sim-
ilar to the load experienced in the later Integrated Health and Fitness Corpus
(iGF)-dataset in Section 3.2.1, but also so called situational stress such as fear or
anger. The full set contains 32 speakers from which 13 are female and 19 male.
The age of the participants is in the range from 22 years to 76 years which is
comparably wide for datasets, providing in turn a wide variety of speaker styles.
In sum there are 16.000 utterances in the whole set, which are itself divided into
�ve individual sub datasets, an overview can be seen in Table 3.3. The general in-
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Table 3.3: The di�erent subsets were generated while the participants performed
di�erent task, speci�cally changing their speaking styles, performing single and
dual tracking tasks, performing motion fear tasks and �nally a simulated psychiatric
examination of the participants. In the experiments performed, the chosen subset
consisted from 3.593 segments all taken form the most natural part of the experiment
where stress was induced though the movement of the rollercoaster.

Recordings Number
High Stress 1202

Medium Stress 1276
Neutral 701

Screaming 414

duction was performed through tasks inspired by aircraft control situation under
di�cult situations, which were simulated on a rollercoaster.

3.2 Naturalistic Datasets

An alternative to the acted datasets presented in the last section is the use of
naturalistic recordings. As the name implies the focus for this kind of data is
that the expression of emotions, a�ects and user states is naturally generated,
as similar as possible to a real world situation. As such, open-microphones and
user recordings also fall into this category. While the focus on the acted data is
its robustness of similar generated expressions and the clarity of the recordings,
naturalistic data is comparably more diverse in its composition. As expressions
change due to personal characteristics, as well as the strength and source for the
expression of a�ect or emotion, the recorded examples also vary in volume and
length. Additionally, the recordings are often no longer in a lab environment,
which increases the in�uence of noise and irregular speaker behaviour, making
the classi�cation more di�cult as a result [Dhall et al. 2016].

The examples for this type of dataset are the Integrated Health and Fitness
Corpus (iGF), the Talk Run Speech Database (TalkR) and Munich Biovoice
Corpus (MBC) and �nally the SmartKom Database (SmartKom) and Restaurant
Booking Corpus (RBC). Additional to the emotional examinations, these sets
were also used for more indirectly measurable user states such as physical load
or exertion.
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Table 3.4: The iGF dataset information sheet as taken from [Tornow et al. 2016].

Subjects 65
Gender 20 Male / 45 Femal

Total Recorded Data 105h 48min
Mean Duration 97 min

Age Min 50; Max 80; Mean 66
Language German
Annotation Events, System Speech

3.2.1 Integrated Health and Fitness

The iGF dataset is di�erent in many ways to the previously presented
sets [Tornow et al. 2016]. Contrary to a pure acted emotional set, the prior-
ity here was the naturalistic depiction of human mental states. The corpus was
designed as a multimodal recording, containing audio recordings of utterances
but also video recordings and bio-signals obtained by wearable equipment. For
the research done by me, only the audio part was of importance. While the induc-
tion and expression of the user states was naturalistic, the recording of the audio
samples was strictly controlled to remain similar between di�erent participants
and recordings.

There were 65 participants, with a composition of 45 female and 20 male parti-
cipants, presenting a skewing towards the female speaker group. Contrary to the
former datasets, the general age of the participants was also considerably higher
with all speakers being between 50 and 80 years old, with an average of 66 years.
A summary of the dataset can be seen in Table 3.4. Another important di�er-
ence of the dataset was the implementation of both a Wizard-of-Oz [Kelley 1984]
experiment and a cover story. The Wizard-of-Oz aspect was implemented by
simulating a technical user interface for the participants to interact with, which
in truth was externally controlled by a human researcher. The cover story in turn
was a physical examination which induced di�erent kinds of mental loads on the
participants, which were not expecting a biased system with an agenda, but only
an objective automated examination system. This complex implementation of
the experiment allowed for a much higher naturalistic quality of the recorded
reactions compared to acted or consciously induced states. This in turn allows
for much more natural reactions from the participants. The induced user states
were generated by requiring the user to create a physical test course which they
had to ful�l, followed by an assessment by the system. The di�erent states of
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mental load were then induced by (faulty) assessments and continuously more
complex requirements in the planning process, which led to both increased stress
and concentration from the participants. After each stage of the test the parti-
cipants were relaxed both by a cool-down period and a relaxing musical induction,
allowing the participants to start from an approximately neutral condition. Ad-
ditionally, the level of mental load was continuously heightened, such that even
an overlapping of the inductions would still follow the script of the experiments.

3.2.2 Talk Run Speech Database and Munich Biovoice Cor-

pus

Two di�erent sets were employed for the work with physical load detection
through human speech, the TalkR [Truong et al. 2015] and the MBC [Schuller et
al. 2014a]. Both sets consisted of examples which contain participants perform-
ing real physical tasks to induce physical load. As physical stress is otherwise
hard to simulate, this is necessary for a sensible classi�cation task. The TalkR
set was taken from 21 participants, which are separated into 15 female and 6
male participants respectively. The age of them ranged from 20 to 31 years of
age. The primary aspect of this corpus was that the recorded utterances were
full sets of sentences, which were recited during a physically demanding task. As
to establish a ground truth, all speakers had to display a heart rate of 172 to
198 BPM during the recital. As the set contained both recording in English and
Dutch as examples, the probability of a context sensitive interpretation of the
system is comparably low. The full set was comprised of 250 separate recordings
with a length of roughly 85 minutes for the full set.

The comparison and extension set for the experiment, the MBC consists of only
19 participants with a separation in 4 female and 15 male speakers. Contrary to
the �rst examples, the speakers were only instructed to intonate singular vocals
during the experiment and one exemplary sentence taken from the former TalkR
set. The length of this set is nonetheless higher, with the full set consisting of 74
utterances, and 630 recorded vowel expressions. This increase appeared because
the recordings were done before and after a set of physical exercises, with a
designated minimal heartrate of 90 BPM.
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Table 3.5: The frequency and distribution of User States in the SmartKom corpus
taken from [Steininger et al. 2002]. The modi�ed column depict the data as used in
experiments presented in Section 6.3, where the data was recut into more equalised
durations.

User-State N % Number % Duration Modi�ed
Neutral 1253 43.7 71.6 2179

Pondering 689 24.0 14.0 643
Joy 370 12.9 7.2 284

Anger 205 7.1 2.8 220
Helplessness 182 6.3 3.3 161
Surprise 99 3.4 0.6 70

Unidenti�able 72 2.5 0.6 266
Total 2870 100 100 -

3.2.3 Smartkom

The SmartKom multi-modal corpus [Steininger et al. 2002; Wahlster 2006] con-
tains naturalistic a�ects within a Human-Machine Interaction (HMI) environ-
ment. The system responses were generated by a Wizard-of-Oz setup, recorded
under studio conditions. The database contains multiple audio channels and two
video channels (face and body in pro�le posture). The primary aim of this corpus
was the empirical study of HMI in a number of di�erent tasks. It is structured
into several sessions. Each session contains one conversation and is approximately
4.5 minutes long.

The background story for this dataset was the use of a technical interaction
prototype, which was in truth controlled by human operators. The participants
were given a range of di�erent tasks, which they had to accomplish using this
system. As such it allows for a (perceived) natural HMIto take place. As the
external instruction were minimal, the participants were allowed to develop their
emotional reactions naturally during the interaction, while the lab-like environ-
ment lead to a high technical quality of the recordings. The distribution can be
seen in Table 3.5. The data was labelled by three instances of independent human
annotators to ensure a correct allocation of the user states, further ensuring a
high quality of the generated data.
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Table 3.6: The RBC dataset information sheet as taken from [Siegert et al. 2019].

Subjects 30
Language German
Gender 10 Male, 20 Female
Age Min 18; Max 31; Mean 23.97

Recorded Data 5h 37 min
Mean Duration 193.6 sec
Utterances 4835

Annotation
Utterances, Transcriptions,

Context

3.2.4 Restaurant Booking Corpus

The RBC is a dataset consisting of acoustic recordings between human speakers
and two di�erent technical assistant systems and a human interaction partner,
where the human speakers attempt to book a place at a restaurant under certain
constrictions, with the aim to distinguish the directedness of the speakers either
towards a human or a machine, based on the voice. The dataset was recorded from
30 German speaking students, and consists of 10 male and 20 female speakers.
They provided 90 dialogues with di�erent levels of constraints, such as di�erent
times, accessibility or food choice. All dialogues were annotated by humans to
ensure the textual similarity between the device-directed and the human-directed
speech. An overview can be seen in Table 3.6. As the experiment was done in a
Wizard-of-Oz setup with a cover story, the naturalness of the generated recording
is high. The recorded data was then evaluated by human annotators, which
showed an Unweighted Average Recall (UAR) of around 60% for German speaking
and around 54% for non-German speaking annotators to correctly identify the
directedness of the speakers.

3.3 Summary of the Chapter

In this chapter I presented the used datasets in my thesis, with the main attention
on the baseline and benchmark examples for the respective categories. Both acted
and non-acted or naturalistic data provide necessary aspects for the training of
machine learned classi�ers presented in the next chapters. As the achievable
results, such as accuracy and robustness, are closely dependent on the chosen
dataset, it is equally important to ensure su�cient and qualitative data for the
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system. Together with the last chapter this concludes the presentation of the
employed tools in this thesis. Beginning with the next chapter these will be used
in my original research in the applicability of a more advanced level of assistance
system.
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T
he �rst relevant part of a Human-Machine Interaction (HMI) capable system,
such as the conceptualised assistant system presented in this thesis, is the

implementation of an interface between the external and internal space of the
machine [Gong 2009]. As seen in the concept illustration in Section 1.2, this
equates functionally with the �rst two layers of the assistant system. In this
chapter, the speci�c transfer between the real (outer) world and the technical
(inner) world is treated in greater detail.

During the process of converting between these two frames of representation,
especially in the case of an advanced and complex technical system employing
machine learning solutions, traditionally a great amount of data needs to be
gathered and processed [Adadi 2021]. This amount of data can counterintu-
itively lead to decreased performances in machine learning applications, when
processed without further considerations [Bellman & Kalaba 1959]. Generally it
also leads to higher computational loads, or slower processing times. To reduce
these negative e�ects, pre-selection and pre-optimisation of the data is helpful
and sometimes necessary, which made it into one of my �rst greater areas of
research.

This chapter speci�cally concentrates on the possible and novel methods em-
ployed in my research to reduce this negative in�uence of raw data collecting by
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employing feature selection and optimisation methods. This was necessary, as
in the speech based experiments performed by me, these e�ects were ampli�ed
by the highly individualised data sources, as speech styles vary greatly between
di�erent speakers [Siegert et al. 2013].

The topical structure for this chapter here is as follows, beginning with the
typical applied methods and their problems, which are shortly explained in Sec-
tion 4.1. This is followed by a novel approach to �nd and employ the most sig-
ni�cant numerical features, as measured by their in�uence and impact on a later
classi�cation tasks, speci�cally in case when examples are hard to distinguish due
to overlapping feature spaces, in Section 4.2. A further experimental approach is
a novel form of visual feature selection applied on transformed acoustic data and
its speci�c advantages, as examined in Section 4.3. In Section 4.4 the results of
this chapter are summarised and presented in context of the overarching work.

The research cited here are mainly based on the publications of my colleagues
and myself in [Weiÿkirchen et al. 2017; Weiÿkirchen et al. 2018; Weiÿkirchen &
Böck 2018; Egorow et al. 2019] and [Weiÿkirchen et al. 2020b].

4.1 General Feature Pipeline

The �rst step for a functional HMI system, speci�cally one based on machine
learning, is an e�ective feature selection and feature reduction. This is primarily
done to achieve better results for the following classi�cation tasks [Chen et al.
2020], but also to achieve su�cient results in a sensible timespan [Sevilla et al.
2022]. Parallel to the work examined in this thesis, this interface architecture con-
sists of the whole pipeline which transforms real world information into machine
interpretable data. While in this thesis the main attention is on sound based
information, such as user generated speech and the research on the pipeline is
generally constrained on data representation, this speci�c section is designed to
give a small outlook beyond this scope. When examining the full process, one
has to look at the environment, in which the system operates, or speci�cally the
real world data which represents the area of application for the system. As shown
in Chapter 3, the datasets which are used for training of technical systems can
often be distinguished between real world recordings and acted situations. This
not only in�uences the way in which the data is constituted itself, but also has
a technical in�uence on the quality and amount of information [Jürgens et al.
2011]. While training is often done on acted data, the requirement is often that
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a transfer of abilities into the real-world is possible. Environments where both
humans and HMI-capable systems coexist and work together in this real world
are in turn often called a �Smart� environment, such as smart homes or smart
factories [Asadullah & Raza 2016], declaring the general complexity of establish-
ing such an application.

In such an environment there are not only a variety of technically controlled
appliances and the overarching control system, as presented by the assistance
system, but very importantly also a wide array of sensors. These sensor arrays
provide the �rst technical step of the environmental awareness and, in turn, the
generation of usable features. The scope of possible research into sensors and
their application is consequentially wide and variant [Braun et al. 2014], but as
in the proposed architecture the main priority lies in voice based interactions and
sound based information extractions, the typical exemplary implementation is
that of microphones. Further sensors which are usual in home-like environments
are of the visual and/or general movement detecting kind, while more personally
integrated systems often also comprise of bio-signals, which are detectable by
systems like �smart watches� or further wearable implements [Jat & Grønli 2022].
This not only allows for an easier integration in the typical HMI process, most
often used in the current state-of-the-art as seen in Section 2.3.1, but also reduces
the level of conceived intrusion into the lives of the users [Hayashi & Ruggiero
2020], which are in turn an important aspect for the subjective quality of life.

Beyond the necessary step of changing the available analogue information into
digital representations, such information has also to be pre-processed further to
improve its expressivity. This takes the form of feature extraction (such as the
di�erent audio feature sets, seen in Section 2.1) or the normalisation of data into
certain value ranges to stabilise the output of di�erent sensors against outlier
results [Knight et al. 2019].

A system integrated into the typical lifestyle of a user would require a great
number of such sensors, as these directly in�uence the awareness level the sys-
tem can generate from its user and their direct environment. This also leads
directly into the main topic of this chapter, the feature selection processes them-
selves. Without, intelligently, reducing the amount of interpretable raw data into
a smaller size, while at the same time not losing relevant information, technical
systems are either overwhelmed on a computational level or even lose capabilities
by introducing too much information in the training process [Ying 2019]. Such
e�ects are explained in greater detail in Section 2.2, especially their e�ect on clas-
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si�cation tasks, which are often a signi�cant reduction of the achievable results.
This e�ect is also explained under the term �Curse of Dimensionality�, and as
such is important during the implementation of a complex system [Bellman &
Kalaba 1959].

The general choice of which features to use, speci�cally for voice based tasks, is
traditionally to be using features which are designated by experts to contain the
relevant information, or which are proven to work in similar natural interactions.
In case of voice based systems, this primarily in�uences the choice of the feature
sets, as presented in Section 2.1, such as Opensmile's emobase (emobase) or
Opensmile's emolarge (emolarge) [Eyben et al. 2010]. While these are still of
a great size, they are a much more e�cient representation of the information
contained in the voice than the simple digital audio recording format by itself,
which are not that accessible for machine learning systems to process [Natsiou &
O'Leary 2021]. Worth mentioning here, are the so called Mel-Frequency Cepstral
Coe�cient (MFCC) features which are digital representations of the way human
listener receive sound signals, instead of the way a microphone would record a
signal [Zheng et al. 2001; Dumouchel et al. 2009], and which provide an often
used standard input for classi�cation tasks because of its closeness to the human
perception.

The usage of feature selection is done traditionally in a variety of ways, which
includes mathematical methods, which are also examined on a basic level in
Section 2.2.1. For completeness, they will be mentioned only shortly here as
well, in as much as they were used in my research where the regular approach
was su�cient. Also shortly mentioned is the closely connected idea of dimension
reduction, which also reduces the amount of processed features, by combining
them into a more information rich representation.

These methods are usually variants of the Analysis of Variance (AN-
OVA) [Girden 1992], which measures the probability that a certain variance of a
variable is part of a certain group representation. This represents the basic idea
behind a feature selection, where only the variables are used which are relevant to
distinguish between several classes. In the case of my research these were often
used in classi�cations tasks, with the groups representing the di�erent classes
which need to be separated automatically.

A classic example for the employed dimension reduction is the Principal Com-
ponent Analysis (PCA) [Pearson 1901]. This method aims to reduce the dimen-
sionality of the data, and in turn the amount of input features necessary, by
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mapping the data points onto the primary components, which maximises the
variance inside the data set as a whole. With that the machine learning methods
can easier separate the feature space for the di�erent classes. This method was
used for example in [Egorow et al. 2019].

4.2 Overlapping Feature Identi�cation

A typical approach in classifying speech information with machine learning meth-
ods is the use of numerical values, representing the di�erent information features
collected [Schuller et al. 2004; Böck et al. 2010; Sezgin et al. 2012]. This is a result
of the kind of features used, which can often be easily represented and quanti�ed
such as the recorded tone frequency or the loudness in decibel [Ververidis & Ko-
tropoulos 2006]. As explained generally in Sections 2.1 and 4.1 before, this data
collection may easily encompass such an amount of data that the fully trained
solution from the learning algorithm is worse than it would have been with less
available data or with some possible features missing, which is a known problem
in this �eld [Vinciarelli et al. 2009]. The main question for this section follows
as such, how can a technical system decide which data is the most relevant for
a given recognition task? Additionally, are there alternatives when the available
data is more complex in its composition than in comparable situations?

The general applied solution in this case, which is possible when using numer-
ical inputs, is the use of statistical pre-selection methods, such as the mentioned
ANOVA [Girden 1992], to assign which input features have a greater in�uence on
the �nal classi�cation result. A speci�c problem, such as the use of paralinguistic
features to recognise the current emotional or mental state of the user would
reduce the potentially necessary amount of data considerable, using these meth-
ods. As mentioned in Section 2.1 the amount of features normally extracted from
sound, speci�cally voice, can easily be in excess of 6.373 or even 6.552 functionally
di�erent features when using Interspeech ComParE 2013 (ComParE) or emolarge
feature sets respectively, as an example [Schuller et al. 2016; Eyben et al. 2010].
These already present a specialised and reduced feature set for sound and voice
data. It is also known that the used amount of data can be signi�cantly reduced
for speci�c tasks [Böck et al. 2010; Xu et al. 2014] even while retaining similar
results, as the relevant information varies based on the application.

Other experiments [Xu et al. 2014] have also shown, that the optimal feature
set is often quite di�erent depending on the appointed task, which in turn makes
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the generation of one optimal feature set for all voice related tasks improbable,
even though there are some features which provide important information for
a variety of tasks, such as the mentioned MFCCs [Zheng et al. 2001; Tahon &
Devillers 2016].

An additional aspect of this problem is a result of the high individuality of
expression in di�erent speakers. This individuality, which results from the bio-
logical and social background of the individual speaker, in�uences the way of
talking and vocal expressiveness immensely [Brown et al. 1991; Resseguier et al.
2016]. This leads to a high complexity for a technical system, as typical statistical
examinations over all available speakers would show no singular group of features
which adequately maps all or even most of the speakers to a speci�c result. As
the regular ANOVA requires a weighted distribution, a su�cient application of
such a method becomes less probable. This results in an e�ect we called �over-
lap� in our research [Weiÿkirchen et al. 2018], which describes the e�ect, that
one speaker with a certain user state sounds, more precisely measures, similar to
another speaker with a di�erent user state. The resulting question now is:

Is there a possibility to designate relevant features even when the
overlap inhibits the usual methods, and �nally if the found features
can be useful for later machine learning tasks?

An example for this is an experiment, which will be explained in greater detail in
Chapter 6, and concerns itself with the classi�cation of the mental load state of a
user. These states, which are not easily distinguishable in the feature space, are
in turn also hard to distinguish by machine learning methods. As such, a simple
statistical feature selection can lead to either mediocre results (close to the ran-
dom guessing) or necessitating greater amounts of training data, more complex
architectures and more training time for good results. The idea behind this ex-
periment was then to recognise alternative forms of recurring patterns between
these di�erent states, which can then be used to design speci�c extractable fea-
tures instead of relying on typical speech features which hinders the classi�cation
process due to their overlapping nature.

An examination was done by us [Weiÿkirchen et al. 2018], concerning this
speci�c problem of mental load in the sense of high stress during HMI, which led
to the realisation that even with this high individuality of the speakers, the feature
changes for the individual speaker between the mental load states designated by
us (high and low) were similar. As such, even a few features were su�cient for
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deciding the mental state of a singular speaker, while at the same time proved
inadequate for a general application.

Recognising this di�erence between a general applicable feature and a feature
which is important for a speci�c speaker, or generally a speci�c situation, is
one of the basics behind the idea of a (personal) adapted system, as shown in
Section 5.3. To solve this problem, we designed a di�erent approach to designate
important features as an extension to the regular statistical methods.

Our research was done on the Integrated Health and Fitness Corpus (iGF)-
Corpus [Tornow et al. 2016], which induced di�erent states of mental load on
the participants by a mixture of timed planning tasks with either positive of
negative assessment by an (assumed) observing technical system. An important
distinction has to be made at this place, while the current terminology often
describes �mental load� in the context of gender speci�c stress during housework,
in our research it described the gender independent level of mental stress when
solving complex tasks under time constraints, the other meaning was not apparent
to us at the time of the original research.

The available (audio-) recordings provided examples for the participants be-
ing in di�erent levels of mental load and engagement, from which we used the
two stages with the most �extreme� induction of either �Underload� (very slow
decision making required with general positive assessment) and �Overload� (fast
decision making required with general negative and confrontational assessment),
as explained in Section 3.2.1 with further information on this dataset in particu-
lar. The dataset and task were chosen especially because of its comparably high
complexity of connecting a highly subjective expression of the inner user state
with the recorded speech during a HMI.

When examining all individual occurrences, in this case of the 65 di�erent
speakers, instead of �nding the statistical most important features based on the
whole group, the aim is to �nd the features which most signi�cantly change
between the classi�able results for each singular speaker. The full set of avail-
able features were then taken from the emobase feature set, as presented in Sec-
tion 3.1.1, which contains, among others, MFCC and Linear Spectral Pair (LSP)
as well as their derivatives values with 988 features in total.

Additionally, instead of taking the values as such, we observed only the changes
between both states of the mental load, eliminating the underlying individuality
of the speaker dependent baseline for each feature, e.g. a speaker with a natural
higher or lower voice. The resulting change value of the features is a very potent
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feature by itself, but as the measurement requires pre-knowledge of the baseline
value before the change, which is fully based on the individual speaker, it is
nothing a technical system could extrapolate easily on its own, without also
knowing the speaker beforehand.

To assure that no random or biased conclusions are drawn, we employ the
Kruskal-Wallis test [Kruskal &Wallis 1952] over the measured di�erences to assert
if they are part of inherent behaviour due to mental load or random occurrences.
This method by itself is used to determine if several samples belong to di�erent
distributions, in this speci�c case if the change of a feature belongs to di�erent
occurrences of a speaker. The idea behind it is to prove the opposite, speci�cally
that a change of the feature is inherent to the change of the mental state.

The features can then be sorted by �signi�cance�-level, speci�cally the scienti�c
meaning of the term. For this the resulting p-value of the test has breakpoints
below the probability of p<0.05 of being a signi�cant feature if it would only
change randomly for all the speakers, with a p<0.01 to be highly signi�cant
occurrence and p<0.001 to be a most signi�cant random occurrence, which in
turn very strongly implies a non-random change of the feature. Resulting from
this examination, a ranking of the features can be done, such as seen in the Table
4.1, which shows the counted occurrence of the di�erent levels of signi�cance over
all the examined speakers.

As the results are added over all the speakers, changes which appear for all
or most speakers prove the importance of the feature itself. But while these fea-
tures are highly relevant in the distinction of the user state of all the speakers
individually, they are, as mentioned, not su�cient for a general classi�er over all
subjects at the same time (or by the same classi�er). To use this relevant aspect
of information for a solution, my colleagues and I propose a layered classi�er
in [Weiÿkirchen & Böck 2018]. There, the problematic task of using the over-
lapping features is separated into smaller and easier classi�cation tasks, roughly
forming an equivalent to a deep learning architecture by layering functional steps
in its design. The system would thereby solve two or more separate decisions,
with a comparatively higher level of accuracy and recall, while needing much less
data and computational time for each, compared to when the whole task would
be done in a singular classi�er.

This is done, by �nding smaller groups of speakers which share their charac-
teristics more closely with each other than with the rest of the group. In the
speci�c case this was examined for biological sex and rough age groupings, as
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Table 4.1: A list of the features with the most signi�cant di�erence for the meas-
urement of mental load, taken from [Weiÿkirchen et al. 2018]. The aggregate was
done over all 65 speakers on how often the di�erence between low and high mental
load were in the �eld of most, highly and regular signi�cant di�erences. All 933
features of emobase were available, and only the presented ones were necessary for
a adequate classi�cation. For further explanations of the feature names, see Section
3.1.1.

Signi�cance Most Sig. Highly Sig. Sig.
pcm_intensity_sma_de_amean 50 57 59
pcm_loudness_sma_de_amean 48 52 57

pcm_intensity_sma_de_linhregc1 47 51 56
lspFreq_sma2_range 47 53 56
lspFreq_sma1_range 47 54 55
mfcc_sma_de1_range 45 53 59

lspFreq_sma_de0_maxPos 44 52 56
pcm_zcr_sma_de_maxPos 43 52 58
pcm_zcr_sma_de_range 43 49 58
pcm_zcr_sma_range 42 51 59

lspFreq_sma_de5_amean 41 52 57
pcm_loudness_sma_de_amean 41 53 57

lspFreq_sma7_maxPos 40 49 55
lspFreq_sma_de7_range 39 47 50
voiceProb_sma_maxPos 39 45 51

mfcc_sma2_range 39 48 54

both characteristics strongly in�uence the general way voice is created by the
body [Sidorov et al. 2016; Pisanski et al. 2016; Taylor et al. 2020]. As can be
seen in Table 4.2, this changes strongly within and across groups. In compar-
ison, the correlation for the full feature set between all speakers is 30%, which
improves by ca. 1% when only compared within a group of speakers with the
same sex. The answers which can be taken from the research and its examination
are as follows: There exist features of high relevance, even beyond the scope of
which can be found by a typical ANOVA, but these are hard to integrate into a
machine learning approach. To alleviate this, a problem can ideally be separated
into smaller but overall easier problems, often allowing the inclusion of former
and expert knowledge. Additionally, as the singular tasks gets smaller and easier
observable, the decision making process and location of potential errors become
easier to trace. This is especially important, when compared to the otherwise
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Table 4.2: Presentation on how features correlate for di�erent age groups in the des-
ignation of mental load, taken from [Weiÿkirchen et al. 2018]. The age groups only
present rough grouping of ca. 10 years range, as the dataset included only elderly
subjects. Higher correlation presents that changes in the features for the speakers
was similar. Low correlation shows changes in di�erent features and di�erent values
occured.

Men Both Women
"Young" "Middle" "Old" All Ages All Ages "Young" "Middle" "Old"

Men
"Young 1.00 0.82 0.93 0.92 0.93 0.93 0.74 0.98 1.0
"Middle 0.82 0.72 0.87 0.79 0.78 0.77 0.67 0.81 0.82
"Old" 0.93 0.79 0.87 0.87 0.86 0.86 0.69 0.91 0.93

All Ages 0.92 0.79 0.87 0.89 0.87 0.87 0.69 0.91 0.92
Both 0.93 0.78 0.86 0.87 0.87 0.87 0.70 0.92 0.93

Women

All Ages 0.93 0.77 0.86 0.87 0.87 0.87 0.70 0.92 0.93
"Young" 0.93 0.67 0.69 0.70 0.70 0.70 0.59 0.73 0.74
"Middle" 0.98 0.81 0.97 0.91 0.92 0.92 0.73 0.97 0.99
"Old" 1.0 0.82 0.93 0.92 0.93 0.93 0.74 0.99 1.00

unknown �blackbox� process which is often a concern for machine learning ap-
plications, as explained in Section 2.2.1.

4.3 Visualistic Features

When using the more complex classi�cation methods, such as Convolutional
Neural Network (CNN) architectures or similar specialised solutions, some of the
typical feature selection methods are no longer applicable or at least less e�cient.
Speci�cally, some of these advanced architectures are optimised to use visual in-
put formats, typically in the form of colour images, practically three-dimensional
value arrays or tensors. The technical most relevant di�erence in that case is,
that information is not only contained in the value of a feature but also its loc-
ation in relation to other features [Islam et al. 2020]. The strength of CNNs for
visual input information is explained in greater technical detail in Section 2.2.1.
Following this trend of advancing research, CNN systems also present one of
the most capable currently available implementations, concerning the ability to
classify even complex task, as well as providing unique methods of supervising
and understanding the training process. A complex assistant system employing
machine learning methods in an open, real world environment could bene�t from
these strengths and the further developments emerging from them. As such the
main questions in this section will be what general approaches are possible to
employ these methods in the area of mainly speech based applications, if there
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are any objective indications, based on the available features, which level of com-
plexity the system should employ, and if there are further advantages in the usage
of visual representation of data beside the use in CNN or similar architectures.

4.3.1 General Visual Features

The usage of visual representations for acoustic signals, or in general of non-
visual signals, allows for the employment of di�erent methods to identify the
signi�cant input features besides the mentioned ANOVA ones. Instead of simply
measuring the occurrence of values of each input feature, which is done for the
typical statistical methods, the location and relation of the values inside the input
array to each other are also important, as the convolutional process of a CNN
processes these inputs through its �kernel� architecture [Krizhevsky et al. 2017].
This allows for objects and patterns in an image, for example eyes, nose or mouth
to contribute to an overarching face detection task, as an example [Paul et al.
2014]. When changing the data representation into such a form, employing these
new possibilities could potentially be bene�cial also to other classi�cation tasks.

The simplest method with images to measure the in�uence of certain parts on
a classi�cation task, is by occluding information from the input and examine the
changes in the classi�cation result [Zeiler & Fergus 2014]. This is especially con-
clusive for real images as the areas can ideally be directly identi�ed, for example
the in�uence of the eyes on a face detector [Izhar et al. 2023]. Such a method
can remove the possibilities of learning the false object or area, when this would
otherwise inhibit the generalisation process during machine learning. See Section
2.2.1 for an example of a situation where a system learned the background instead
of the relevant object, leading to good classi�cation results, while at the same
time not providing a good classi�er. This is particularly useful to deduce biases
in the training data, as it can happen when the training data was all taken from
the same source, such as in [Yu & Eng 2020], while the test data is coming from
another source. As a negative point of this method, it is only helpful in situations
where the information is grouped in close proximity to each other, such that the
occlusion may obstruct the faulty pattern fully in one step. Unfortunately, by
employing this method to more unusual data types, such as spectrograms of
voice or other more dimensional representations of originally arrays, this is not
as conclusive.

Another, more complex, method, employs the layered architecture of CNN to
its full e�ect. As the convolutional process is not only applied on the �rst (image)
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level, further information may be grouped over bigger distances in the applied
input. As an example from an (idealized) real application, as seen in [Krizhevsky
et al. 2017], this can lead to edge detection in the �rst step, eye detection in the
second and face detection in the third. An occlusion experiment would only work
su�ciently in the �rst, at most in the second stage.

The idea instead was to use the training method in a reverse application; as
such the system tries to recreate an original image, matching or generating a
perfect representation of the chosen class at the end. The method resembles the
deep dreaming approach [Szegedy et al. 2014a] also presented in a more technical
detail in Section 2.2.1, but with a stronger emphasis on the speci�c classes. This
method has the advantage of producing potentially full images containing all
the information already trained for a speci�c class instead of only one partial
aspect of the image. An example of this can be seen in Figure 4.1 as applied to a
spectrogram which was used to train an emotional classi�er. The appearing image
develops into an amalgamation of the used spectrograms during the training of
the speci�c class, where frequently occurring patterns appear stronger on the �nal
image. A caveat of this is, that the resulting image also includes all other aspects
of the spectrogram which were employed during the training and may represent
unwanted biases occurring from the chosen training sets.

Figure 4.1: Examples of the Deep Dreaming like method to induce the relevant fea-
tures into an image. The image on the left is the �seed� picture necessary to start
the process, potentially the system should work on any noisy image, but this would
need a greater amounts of training data, as well as a longer time to develop. The
images on the right were taken after each 100 iterations, with the emotion �anger�
as target. One can see that the areas �rst overlap, and then enhance certain visual
structures on the original image. Images taken from [Weiÿkirchen et al. 2017].

4.3.2 Comparing Visual to Numerical Features

Given that a switch from the acoustic representation to a visual is possible and,
as mentioned, also allows for some computational bene�ts, like the use of CNN or
data augmentation, the decision has to be made by the system designer as to when
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this change is useful. While a purely visual input allows for the generation of �heat
maps� of relevance and are easier to comprehend trough visualisation, purely
numerical feature methods employ the generally more proven and established
ANOVA based approaches, as presented in Section 4.3.3. The occurring question
here is, can the availability and type of features themselves in�uence whether the
transformation into a visual representation is useful?

An experiment where both approaches were employed was done by my col-
leagues and myself in [Egorow et al. 2019]. There the same datasets were classi-
�ed using either a numerical input with feature reduction, as well as a comparable
experiment employing spectrograms and a CNN classi�er. The experiment itself
was done on the Talk Run Speech Database (TalkR) [Truong et al. 2015] and
the Munich Biovoice Corpus (MBC) [Schuller et al. 2014a] sets of data, which
contains recordings of subjects under either low or high physical load, with either
21 or 19 subjects respectively. The aim of the experiment was to classify which
state the subject had, based on the recorded voice. Further information of the
datasets can be found in Section 3.2.2, while the classifying results are discussed
more in-depth in Chapter 6.

The data was prepared in two di�erent ways, the �rst was based on the typical
numerical value input, which we employed with a Feedforward Neural Network
(FFNN) architecture of machine learning. For this, the extracted features were
taken based on the Interspeech 2011 Speaker Challenge [Schuller et al. 2011],
which proposed a set of 3.396 features based on their ability to recognise the user
state of a speaker. These included energy and spectral related features, and were
also used in the speci�c Physical Load challenge from 2014 [Schuller et al. 2014b]
where physical load was the relevant user state.

The second method was using the capabilities of a CNN system as explained in
Section 2.2.1. The chosen input format was to use a grayscale spectrogram, which
instead of using three channels for colour employed the other available channels
as the �rst and second derivate over time for the values of the grayscale image.
As mentioned in Section 2.2.1, a CNN system is originally designed for visual
input, but can theoretically work on other inputs as well, with the architecture
itself being designed to work with input matrices'.

The �rst method processed the data with the help of a bottleneck network,
similar in idea and implementation to a sparse auto-encoder [Schmidhuber 2015].
Such an approach reduces the number of available transmittable values, while at
the same time retaining the general information level between each step. This
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ideally removes redundancy in the available data and generates a more e�ective
representation of the original information.

As a short by-way explanation, autoencoders ensure the completeness of the
transferred information by reconstructing the original input signal. In the case of
our bottleneck approach these reconstruction steps were cut o� after successful
training of the autoencoder. The remaining net was then instead fed into the
classifying FFNN architecture, as mentioned. This provides an option to produce
feature reduction on an automated scale. The autoencoder itself can be trained
before such a system would be implemented, after which the relevant classifying
system could operate on much smaller data amount and feature sizes. This would
e�ectively reduce the necessary calculation time, especially in complex tasks.

The other approach used the abilities of the CNN architecture for its feature
selection and optimisation task. As mentioned in Section 2.2.1, the strength of
CNNs is their ability to e�ectively optimise the data �ow when using images
as an input, as this is part of the general convolutional processing steps, as
shown in [Krizhevsky et al. 2017]. These so called kernels work on an area
(or volume in the case of 3d-arrays) of the input at the same time, retaining
information coded in the relation of the image values to each other, even over
multiple processing steps. Contrary to most other machine learning methods,
CNNs are capable of producing their own �lter functions this way [Krizhevsky
et al. 2017]. This leads to much improved results for most image based tasks,
to which this experiment belongs to. While convolutional �lters would, based on
their implementation, reduce the necessary data size, there is a distinction to be
made. The resulting convolution of an image is smaller (dimensionally and data
wise) compared to the original input. It is also traditionally done several times
over each convolutional step, generating a �deeper� representation. Alternatively,
it can also be understood as the result of several �lters applied to the same area
of an image. While the result itself is smaller than the input, the amount of �lters
is often higher than the �depth� of the original image. This approach as such is
closer to the idea of intelligently interpreting the input features and not so much
for the reduction of data during the task.

The aim of the experiment was now to compare these two approaches for a
potentially clearly advantageous option. This proved highly dependable on the
available data. While the experiment in practice proved better for the FFNN
option, this was only the case when the system was trained on one dataset and
then employed on the other one, proving the generalisation capabilities of this
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Table 4.3: Comparison of a FFNN and a CNN classi�er for physical load detection
on the TalkR and the MBC datasets. The given values are the Unweighted Average
Recall (UAR) and are taken from [Egorow et al. 2019].

System Females Males Overall
TalkR

FFNN 83.4 69.7 79.22
CNN 81.8 73.2 79.52

MBC
FFNN 57.7 62.3 60.71
CNN 55.9 55.5 55.69

comparably simpler solution. The results of the classi�cation compared between
these two methods can be seen in Table 4.3, while the architectures themselves
are part of further examination in Section 5.2.2 and Section 6.2.2 respectively.
Conversely for the alternative method, the CNN architecture requires greater
amounts of training data to provide the baseline system with enough material to
generate the optimal �lter capabilities. Secondly, while the training of a CNN
lasts considerable longer than a FFNN of similar depth, the computational time
necessary for the process afterwards for the classi�cation itself is roughly of a
similar length.

As a general decision point, for a problem with high amount of training data
and without much prior knowledge of usable features and their interpretation, a
system such as a CNN can provide the necessary complexity as well as the ability
to train its own optimisation. A problem for which the amount of available data
is relatively small, but for which the classifying complexity can be assumed to
be comparatively low, the better generalisation of a FFNN with added feature
selection and reduction steps is better.

4.3.3 Visual Keypoints

Besides using the methods typically associated with CNNs, the step from con-
verting the feature arrays into image representations also allows for di�erent real-
isation methods. The methods, mentioned before, assume a visual representation
where the system is either employing the feature values with the added bene�t of
local feature groupings as in Section 4.3.2, or the typical CNN classi�er, roughly
representing a trained technical expert looking at an image, here a spectrogram.
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An additional avenue is the option to view the task as a purely vision based
problem and employing the options connected with computer vision algorithms.
In [Weiÿkirchen et al. 2020b], we proposed exactly such an idea, by using a spec-
trogram based classi�er with the speciality of using computer vision algorithms
to detect the relevant points of interest for the di�erent emotional states of a
speaker, while employing a Support Vector Machine (SVM) for the classifying
task itself.

This would combine certain aspects of the local groupings inside the visual
representation, which would be missing in a pure feature array representation,
while also employing the much less computationally complex methods of a SVM
instead of a CNN approach.

The key of determining the relevant points with computer vision algorithms is
the ability to discern repeating patterns between examples of the same class, in
this case a speci�c emotion, while foregoing the complex learning algorithms of
a CNN. This promises a better generalisation ability, while requiring less data,
to achieve satisfactory results. The requirement for such a system to e�ectively
work, is the ability to detect these patterns, especially when certain variations
are a natural part of the data, speci�cally in the way individual idiosyncrasies of
the speakers in�uence the resulting spectrogram.

A visual detection algorithm achieves pattern recognition by comparing points
and their surrounding between several other examples. In a spectrogram this
re�ects certain patterns of the frequency and time which re-appear for most
examples of a class. As it is not bound on either axis (frequency or time), neither
higher or lower frequency, nor earlier or later appearance of the pattern in the
spectrogram are relevant. Converted into speech, this would present di�erent
spoken utterances or speakers with a di�erent baseline frequency in their voice.

More complex methods are capable of rotating, and sometimes stretching, the
compared pattern. In typical images this would represent objects which are closer
or farther away from the camera, while in our visualisation of speech it instead
represents small changes in the expression not covered by the former approach.
The used dataset was the SmartKom Database (SmartKom) multi-modal cor-
pus [Steininger et al. 2002], from which only the audio recordings were used. It
covers 3.828 samples and is received from an HMI, closely resembling the require-
ments for an assistant system, further information of this dataset can be found in
Section 3.2.3. The distinguishing classes we examined were the typical seven emo-
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tions, and a second experiment was done using the more compact valence-arousal
classi�cation, see also in Section 2.1.1.

As there is a variety of di�erent visual extraction algorithms, we decided on
a method being comparably fast and capable of working with image trans-
formations. The chosen method was Oriented FAST and rotated BRIEF
(ORB) [Rublee et al. 2011], an improved variant of the Binary Robust Inde-
pendent Elementary Features (BRIEF) [Calonder et al. 2010], which is capable
of providing these comparisons while including the ability to perform the neces-
sary image transformations. Both methods were also compared with each other,
which is examined further in Section 6.3 for the achieved classi�cation results.

As spectrogram images are comparably noisy, the algorithm was applied after
a Gaussian �lter was used, to reduce the sensitivity of the system for it. The
key point detection was done by employing the intensity threshold between the
central pixel and its surrounding with a 9 pixel width. When comparing the

Figure 4.2: Heatmaps of key points density for di�erent emotion classes, taken from
[Weiÿkirchen et al. 2020b]. One can see di�erent areas of interest. What is not
directly visible, is that the type and pattern of keypoints also is an important part
of the detection making process.

average location of the key-points over all representations of certain classes, a
type of heat-map develops, as seen in Figure 4.2, representing which areas of
the spectrogram are important for each class. The existence of the key-points
in itself, and their locations, can then later be used for classi�cation tasks, as
presented in Section 6.3. The necessary amount of key-points could be as low as
10 compared with the original full size spectrogram, presenting another option
to reduce and pre-select the available data. In comparison, similar experiments
which used the much larger emolarge feature set with 6.558 features [Schuller
et al. 2009] achieved worse results, with a Weighted Average Recall (WAR) of
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around 60% compared to 40% from [Schuller et al. 2009]. More in-depth analysis
of the architecture and a comparable two dimension classi�cation task are done
in Section 6.3. This shows that by using visual inputs it is possible to provide
di�erent and still e�cient features for a machine learning system. While this
provides not the same bene�ts as the CNN system currently favoured, it also
requires not as much computational power and less training data before achieving
successful results.

4.4 Summary of the Chapter

For the research into the �rst aspect of the concept system, several novel meth-
ods for the selection and optimisation of available feature sets were presented.
The primary questions of this chapter were, if there are possibilities to improve
feature optimisation in complex speech based tasks and if there is an advantage
for visual data representations. Considering cases when the ordinary approaches
are not su�cient, such as feature spaces with overlapping examples or complex
multi-dimensional input arrays, the presented methods provided the necessary
improvements to allow the following processing steps in a machine learning ar-
chitecture to work e�ciently. Also discussed were the necessities to reduce the
amount of features used, and the reason to even change the internal information
representation from an audio signal to an image. Furthermore, the basis for a
continuously adapting and engaging recognition system which may optimise its
data processing to better align towards a speci�c user or situation was introduced.

With the optimisation of the used feature sets, both the results of the following
recognition steps can be improved, but can also be processed much faster and
react potentially in real-time to situations. Building on these e�ects, the next
layer of the system can now more reliably interpret the input. For this di�erent
methods will be examined in the next chapter.



Chapter 5

Processing User Acoustics

Contents
5.1 Basic Machine Learning . . . . . . . . . . . . . . . . . . . 72

5.2 Deep Machine Learning . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Layered Classi�er . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Integrated Feature Optimisation . . . . . . . . . . . . . . 77

5.3 Continuous Learning . . . . . . . . . . . . . . . . . . . . . 81

5.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . 85

T
he second aspect of the conceptualised intelligent assistant system examined
in this thesis is the technical ability to �understand� a situation. In practical

terms this describes a system which is able to recognise not directly measurable
occurrences, such as user states and intentions, environmental states or context
depending developments. After I examined the information pipeline from the real
world environment into a machine understandable format in the former chapter,
it is now necessary for the system to interpret the relevant conclusions from
these features. Traditionally, this would be a problem for a technical system
when using rule-based approaches, as di�erent feature values would need to be
connected to speci�c states, such as a speci�c emotion connected to a speci�c set
of voice features [Schuller et al. 2009]. As the complexity and granularity of the
extractable real world data increases, manually programmed decision algorithms
may lack the necessary versatility or may even be impossible to implement due
to the non-linearity of the feature space representation. To solve this problem for
complex feature and problem spaces, be it classi�cation or predictive tasks, the
applications of autonomous machine learning algorithms are preferable. They can
learn the inner context or at least correlations su�ciently to map real world data
to conclusions with a satisfactory accuracy, based solely on provided examples.

In this chapter speci�cally several novel and adaptive approaches for complex
machine learning architectures will be examined in greater detail, these can take
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a functional advantage from the improvements of the features extracted and pre-
pared in Chapter 4. The focus in this chapter lies on architectures combining
several functionally independent recognition layers to improve on the abilities of
other approaches using only singular functional layers. Further methods con-
cerning architectures motivated by visual inputs will primarily be examined in
Chapter 6. The topical structure for this chapter begins �rst with a short ex-
amination of general applications of machine learning methods in my research in
Section 5.1. This is followed by two di�erent experimental approaches to layering
otherwise single layer methods in a fashion similar to deep learning approaches,
but with less computational requirements in Section 5.2 and in Section 5.3. The
chapter is then concluded by a summary in Section 5.4, which will also lead to
the foundation for Chapter 6.

The relevant basis for this chapter is taken from a variety of experiments done
by me, with the primary sources being published in [Weiÿkirchen & Böck 2018;
Egorow et al. 2019] and [Siegert et al. 2021].

5.1 Basic Machine Learning

The employment of machine learning systems is based on several advantages.
First of all it provides an easy and comparably e�cient way to solve a variety
of classifying and predicting tasks which would otherwise require complex expert
automation designs to solve adequately [Grosan & Abraham 2011]. Related to
this is the easy way to implement a human-like training process [Rumelhart
et al. 1986], which learns from problems and examples and can improve the
results based on them instead of requiring fully explainable expert knowledge.
An additional reason is the adaptability and transferability of most solutions
from one task to another, which allows the implementation of several solutions
based on one basic architecture [Weiss et al. 2016].

The general training process of machine learning requires only the availability
of examples, as presented by features such as the ones prepared in Chapter 4, and
ideally the prior knowledge what the examples objectively present as labels. Oth-
erwise self-learning approaches are even capable of �nding their own conclusions
and patterns in situations where no prior knowledge is available and can extract
their own features from raw data [Ghahramani 2004]. The method which is most
prevalent in this work employs the so called �supervised� approach, where the
available features can directly be linked to a speci�c result in a classi�er system.
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An alternative implementation would additionally allow such a system to be used
as a predictive model [Emmert-Streib et al. 2020], which mainly changes the way
the training data is prepared and its classi�cation results are interpreted. The
advantage compared to a singular if-then causality connection, is the ability of a
machine learning system to designate a region in feature space as belonging to a
resulting class, assuring that there exist no unde�ned situations, even when the
situation at hand was never experienced by the system through examples [Sarker
2021b].

A typical example for machine learning systems is the Arti�cial Neural Network
(ANN) architecture, this architecture allows for precisely this kind of training by
approximating the kind of connections found in biological neural connections [Mc-
Culloch & Pitts 1943]. As further information can be taken from Section 2.2, it
is su�cient to say in this place that this original architecture, while adaptable, is
often not su�cient for problems beyond a certain complexity and structure [Ma-
linowski et al. 1995]. It nonetheless is a standard building block for a vari-
ety of more capable and specialised systems such as Recurrent Neural Network
(RNN) [Rumelhart et al. 1986] or Long-Short Term Memory (LSTM) [Hochreiter
& Schmidhuber 1997]. Both of these approaches are optimised for time depend-
encies in the feature space, which is an important aspect of acoustic features in
general and speech speci�cally. This is primarily done by providing a system with
its own former results, either by additional connections in RNNs or per special
design as in LSTMs. This is the so called recurrence, which may incur often high
computational complexity on such problems, as it �remembers� former states of
the network for each following step of the computation [Glüge 2013].

An alternative to such methods are more mathematical inspired solutions such
as a Support Vector Machine (SVM) [Cortes & Vapnik 1995], which also al-
lows for linear classi�cations tasks, whose strength lies in the ability to transform
high-dimensional feature spaces into more simplistic representations and apply
their classi�cations there. Because of their high robustness and proven capabil-
ities they are often used as a baseline comparison method, either to prove the
general classi�cation potential of a corpus or to compare the results against this
method [Schuller et al. 2009].

On top of these mentioned methods, which were often used in my research,
there exist a wide variety of continuously expanding variants of self-learning ar-
chitectures [Qiu et al. 2016; Salkuti 2020], with di�erent strengths and weaknesses
depending on the kind of available data and the speci�c type of result which is
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required [Sarker 2021b]. This shows not only a general trend toward this kind of
solution for complex tasks, but also the general versatility a system would achieve
by employing these methods in the interpreting layer of the presented assistance
system.

Two important problems for most of these systems, beyond the potentially high
computational requirement, are the problems of resulting from the �blackbox�
behaviour, which describes generally the non-traceability of the found solution
compared to a rule-based system. Speci�cally, this manifests itself on one hand by
surprising errors, created even by small changes in the used feature set [Szegedy et
al. 2014b], but also in a potential bias based on the used training data on the other
hand [Paullada et al. 2021]. Both of these problems, the lack of explainability and
the missing impartiality in the system, primarily stem from the incompleteness
of the used data and are as such part of the solutions presented in Chapter 4.
Additionally, a system may employ a self-check for correctness or plausibility
during certain tasks, by using the methods presented in Chapters 7 and 8.

The problem of computational complexity may be solved partially by solutions
presented in this chapter, but also by technical solutions such as edge or cloud
computing, depending on the type and privacy of the processed data [Murshed
et al. 2019; Siegert et al. 2022a]. This would in this case allow the generation,
processing and interpretation of the features to be done primarily on the sensor
side of the �rst layer in the information pipeline presented in Section 1.2, while
the upper decision making processes done on the central processor would only
work on the already processed information from the lower layers.

5.2 Deep Machine Learning

One of the main developments in the area of machine learning is currently the
employment of Deep Neural Network (DNN) architectures [Pouyanfar et al. 2018;
Emmert-Streib et al. 2020; Alzubaidi et al. 2021]. They generally allow for bet-
ter classi�cation results, even for complex distinction problems, because of their
greater generalisation and learning capabilities, the technical reasons behind this
are explained on a basic level in Section 2.2. As a rough approximation of their
abilities it can be said, that more processing steps layered sequentially are better
than one singular processing step [Albornoz et al. 2010; Stuhlsatz et al. 2011].
A common disadvantage is the generally higher data requirement, both to train
such a system and to impede the typical e�ect of over�tting [Ying 2019]. The
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questions of research in this section are: First, if the proposed method of layering
classi�ers can be used e�ectively for tasks using acoustic features, as opposed to
visual inputs as usual in Convolutional Neural Network (CNN) solutions? And
second, if such a method can be modi�ed to minimise the required amount of
training data, instead of increasing the necessary size?

5.2.1 Layered Classi�er

A possible use of a layered classi�er is the implementation of the principal design
discussed in Section 4.2. As mentioned there, the ability to distinguish the signi-
�cant features is of less relevance when they cannot be adequately separated in
the feature space. This can either be solved by using a system which can train
the complexities behind the feature space and/or by increasing the amount of
training data to allow a system to learn an overarching generalisation.

A proposed easy and e�cient solution employing this layered architecture
would be to �rst distinguish each source semi-automatically, for example in
speaker groups in this speci�c case, where all speaker share the same charac-
teristics and would fall into the same area of the feature space when deciding
the classi�cation of the input [Siegert et al. 2014]. As an easy proof of concept
we decided in [Weiÿkirchen & Böck 2018] to distinguish the speakers based on
the biological sex and rough age groupings, as this relevantly changes the way of
speaking [Harrington et al. 2007; Siegert et al. 2018]. This was done before ap-
plying a typical classi�cation system to the task of identifying high or low mental
loads of the speaker. To test the hypothesis we compared, as seen in Section 4.2,
the similarity within and outside of this speaker group and found an improved
matching inside of the group.

To implement such a system we prepared three di�erent experiments, �rst of
all a baseline where a SVM architecture would be trained on the full available
feature set. Secondly, the layered classi�er would �rst solve the comparatively
easy task of separating male and female speakers (for which the result by itself
is less relevant as the system is only designed to simply group roughly similar
sounding speakers together). And as a third approach we employed a Random
Forest (RF) as a classi�er, as such a system would by design solve a problem by
implementing layered decision, this was done to compare the �nal e�ectiveness
of the proposed system.

The used dataset was the same as presented in Section 4.2 and 3.2.1 and was
used for all the experiments in a Leave-One-Speaker-Out (LOSO) procedure. The
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Figure 5.1: Figure illustrating the data�ow from the original dataset to the �nal
classi�cation into low and high mental load. The shown con�guration used SVMs
as classi�ers, which all used the same parameters but were trained on di�erent target
data. General structure is taken from [Weiÿkirchen et al. 2018].

layered approach used a data�ow as shown in Figure 5.1 between the di�erent
classi�ers. The �rst classi�er used the same signi�cant features as the other ones,
with the caveat that the signi�cance of the features was not measured for the
speaker type classi�cation and as such not optimised for the task. The result
was still reasonably high with around 86% Unweighted Average Recall (UAR)
classi�cation result concerning the stated sex of the speaker. The results of the
experiments can be seen in Table 5.1, which compares the di�erent results for used
features and classi�ers. As seen, the baseline for SVM is around 68.5% UAR and
as comparison 74.2% UAR when using the full dataset with a RF. When using
only the signi�cant features, the system �rst loses its classi�cation capabilities in
the classi�er approach and regains them only when layering the classi�cation into
two steps. These results imply several conclusions: While the di�erence in recall
and precision is comparably small or even slightly negative, the resulting system
only uses 20 instead of 933 features. The results for the RF are nearly the same
for both approaches, implying that the system is basically following the same
principle by design. As a general conclusion one can see the bene�t concerning
the feature reduction, while at �rst glance no relevant improvements can be seen
for the �nal classi�cation results. Important for this is the suboptimal training of
the classi�er in the �rst step, which would ideally use a di�erent signi�cant feature
set for its own task instead of sharing them for both tasks. This would imply that
an optimised system would possibly still transfer all available data, while only
using a relevant subgroup to reduce computational requirements e�ectively during
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Table 5.1: The table lists the Classi�cation Results (Unweighted Average Recall
(UAR) and Unweighted Average Precision (UAP)) for all experimental setups. The
full feature set consists of all 933 features from the Opensmile's emobase (emobase)
set, while the reduced set consist of the chosen ones given in Table 4.1. Full Group
and In Group distinguishes if the dataset was separated beforehand for biological
sex or not. SVM and RF refer to the used type of classi�er. The results are taken
from [Weiÿkirchen et al. 2018].

Full Feature Set Reduced Feature Set
SVM RF SVM RF

UAR 68.5 74.2 46.4 69.2 Full
GroupUAP 68.7 75.9 46.5 69.6

UAR 69.5 75.5 68.4 69.8 In
GroupUAP 69.2 75.6 60.2 69.9

each step. Even more complex architectures would be possible, pre-sorting and
optimising the full task into smaller and more traceable steps. For this, additional
expert knowledge could be implemented like in the presented experiment, or
alternatively, the system itself may cluster towards similar occurrences, where
even unsupervised methods could be applied.

5.2.2 Integrated Feature Optimisation

The next research presented here deals with the idea to improve the feature rep-
resentation of the available data before training, to ideally optimise the resulting
classi�er. This is the continuation of the experiment presented in Section 4.3.2,
where the e�ects of the feature selection and reduction process were discussed.
The full system, as presented here, constitutes a form of deep architecture, spe-
ci�cally a hybrid architecture as it employs di�erent methods with each having
their own set of advantages contributing to the �nal results. This architecture
was used by my colleagues and myself in [Egorow et al. 2019]. An overview is
given in Figure 5.2 and the individual steps will be described now.

The �rst section of the general architecture is the Feedforward Neural Network
(FFNN) part of the system, containing the functional sparse autoencoder, which
reduces the available data channels for each step of the calculations. In this case,
reduction is from the 3.396 channels in the �rst layer down to 100 channels in the
�fth, which is a designated �bottleneck� layer. This means, it presents a reduced
information pipeline, where the information has to �t through a lesser amount
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of channels without losing information. This part of the system has to be pre-
trained, before the relevant classi�cations can be done, as it needs to develop
these capabilities of an autoencoder to retain the information of the original
data (which consisted of 3.396 di�erent features). This training is done in an
unsupervised manner utilising scaled conjugate training methods [Møller 1993],
these have to be applied to each individual layer before proceeding to the �nal
bottleneck, which can then be used as an input for another classi�er.

The result of this autoencoding in the system is then used for the relevant clas-
si�cation training itself and consists of a SVM employing a radial basis function
as kernel, which is only using the processed data from the �rst part. Compared
to typical deep learning architectures, a SVM is much less complex in their com-
putational requirements [Amara Korba & Arbaoui 2018], resulting ideally in less
training and/or classi�cation time. The classi�er itself was trained independently
from the autoencoder. Speci�cally the autoencoder was trained on a subset con-
sisting only of the female speakers, while the full network was trained with the
typical LOSO procedure and the full dataset. This was partially done to measure
the potential generalisation capabilities of the system. The general architecture
can be seen in Figure 5.2.

As mentioned in Section 4.3.2, the used dataset for the experiment was taken
from the Talk Run Speech Database (TalkR) [Truong et al. 2015], which was
further distinguished into the subset containing only the 15 female speakers (des-
ignated �femTalkR�) and the full set with additional 6 male speakers. The au-
toencoder was only trained on the �femTalkR� part, while the classi�cation was
done on the full set (with the mentioned LOSO procedure) to assure that general-
isation capabilities can be measured from the classi�cation results. An additional
dataset was afterwards used, to measure learned transferable capabilities of the
trained system. This was the Munich Biovoice Corpus (MBC), which in contrast
consists of 15 male and 4 female speakers [Schuller et al. 2014a] and contains
primarily the non-voiced components of the recordings, such as sighs and breath-
ing sounds. Both sets, and the experiment itself, were generated to measure the
in�uence of physical load on the recordable expression of the participants. For
these speci�c experiments only the acoustic aspects were employed.

The experiment tried to answer the following three sub-questions:

1. Can the autoencoder optimise the data representation?

2. Can the e�ect of the autoencoder freely be transferred between only female
speakers and all speakers?
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Input Stacked Autoencoder Bottleneck Output

Figure 5.2: Sketch of the Bottleneck Feature Architecture. The original input data
will be compressed into a smaller �bottlenecked� representation after which the
resulting data is fed into a classi�er. Not included is the following SVM �nal classi�er
step. The concept of the �gure is taken from [Egorow et al. 2019].

3. Is the trained classi�er generalised enough to transfer to an untrained cor-
pus?

Each step requires greater transferable qualities from the extracted data as the
system gradually works on material more dissimilar to the original trained data.
Additionally, the available amount of data for this network is much smaller than
in typical deep learning architectures, which need normally more examples to
achieve generalisation [Amara Korba & Arbaoui 2018]. The result for these ex-
periments can be seen in Table 5.2, it shows that the results for the trained
dataset, TalkR, are better than the baseline established in [Truong et al. 2015].
This answers question one and two positively concerning the optimisation aspect.
Even though the autoencoder is only trained on the female speaker subset, the
e�ects transfer to the whole set and the resulting classi�cation is better than oth-
erwise possible. The answer for question three is less indicative. It can be seen
that the baseline results taken from [Kaya et al. 2014] are better than the achieved
results from the system. In contrast to their baseline, the training itself was only
done on the TalkR dataset, as such only using general applicable features for
the classi�cation. The baseline in contrast trains directly on the correct dataset.
As can be seen in this section, the proposed method compared di�erently to a
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Table 5.2: The table shows the classi�cation results for the bottleneck optimised SVM
classi�er. The general relation between the results for female and male speaker is
the same as in the baseline, taken from [Truong et al. 2015]. Worse results were seen
in comparison with the second MBC dataset, as the system was not directly trained
on this data. For this the baseline was taken from [Kaya et al. 2014]. Transferable
generalisation results can still be seen. Results taken from [Egorow et al. 2019].

Data Females Males Overall
TalkR

- Baseline [Truong et al. 2015] 73.5 60.0 70.1
- Recall High Physical Load 83.5 71.7 79.72
- Recall Low Physical Load 83.3 67.4 78.73

- UAR Both 83.4 69.7 79.22
MBC

- Baseline [Kaya et al. 2014] - - 75.35
- Recall High Physical Load 56.8 64.3 61.65
- Recall Low Physical Load 58.6 60.3 59.77

- UAR Both 57.7 62.3 60.71

typical approach. A great boon for the system is the generally low requirement
on available training data. With only 250 audio samples (constituting around
85 minutes of continuous recordings), it is far below typical data requirements
for deep learning architectures [Dawson et al. 2023]. The extracted features were
also comparably easy producible and speci�cally in this experiment also reducible
to a signi�cant extent, from the original 3.396 features down to 100 used data
channels in the e�ective classifying part.

Concerning the required training of the full structure, this process could eas-
ily be separated. While the feature reduction and selection process are part
of the system, the used autoencoder was, and should in a real application, be
pre-trained. With this, the in�uence on the computational time of the full ar-
chitecture is negligible. The relevant classi�er itself is a SVM with a relative low
computational requirement compared to other machine learning architectures,
especially deep learning ones. This further improves on the bene�ts of a small
dataset. Together, this gives a positive result for the architecture from an e�-
ciency standpoint, as results are achievable easily and fast.

Concerning the results for the classi�cation process itself, a di�erent conclu-
sion can be drawn. The generated feature representations of the autoencoder were
transferable from the purely female speaker subset to the full dataset without a
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great loss to the achievable results. The following high di�erence for the classi-
�cation results themselves appear comparably strong, but they are similar to the
baseline results from [Truong et al. 2015], and can be assumed to be an aspect of
the dataset itself (based for example on the skewed speaker representation). In
sum this provides a good indicator for the system's classi�cation capabilities as
a whole.

The �nal generalisation aspect, its transferability from a trained dataset to-
wards another untrained one, was less successful. As the type and expressiveness
of the employed data changed, the extracted representations and classi�er proved
worse than comparable baseline results [Kaya et al. 2014]. Nonetheless, the sys-
tem seems to have found indicative results above chance or guessing level of 50%.
This proves an adequate applicability potential in this case, even when not su�-
cient for an optimal result.
To solve this problem a system either needs more informative features generally,
and/or better capabilities to employ the available features for a speci�c situation,
with both proposals preferring an individualised approach to the classi�cation
task. Given this problem, it leads to put further weight onto the experiments as
described in Sections 4.2 and 5.2.1

Concerning the general capabilities of the system, it provides an e�cient al-
ternative to other deep learning approaches, as they will be employed in Chapter
6, for the same general setup done comparatively with a CNN system. And, as
presented in Section 4.2, it is strongly dependant on the available amount and
type of data to decide if such a structure or the more complex approach is the
preferred solution.

5.3 Continuous Learning

An alternative solution to improve the performance of a machine learning system
is by solving the generally appearing problem of lacking training data. While
the current trend for assistant systems is to employ great amounts of data [Qiu
et al. 2016; Salkuti 2020] this reduces the potential applicability to speci�c cases,
where the designer is capable of providing these requirements. Generally, this
�big data� approach attempts to solve a problem by either allowing a system to
�nd the most general classi�er for all situations [Kawaguchi et al. 2017] or by
providing a su�cient capable system to train its own layered strategies and sub-
tasks to solve a more complex task [Krizhevsky et al. 2017]. As seen in Section
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4.2 it is unlikely to �nd a general set of features and classi�er architectures which
may solve all tasks satisfactorily, especially in case of highly unique examples
sets, as such a true generaliser is unlikely to happen. Also, as seen in Section
2.2, the available systems continuously increase in their complexity, and while the
technical capabilities also increase, this often comes with further technical restric-
tions which are against the widespread adoption, such as exponential increasing
processing times. The question in this section is, if there is a di�erent approach
which may allow a system to train su�ciently for a complex problem without re-
quiring grand amounts of data before implementation and without computational
complex architectures, for a satisfactory result.

For this, one possible solution is a system which would continuously learn from
new data, allowing even with small training sets in the beginning to gradually ad-
apt to new information as it appears instead of needing the full training set at the
beginning. This would ideally allow such a system to either expand towards new
areas in the feature space, which at the moment lack training data covering it, or
otherwise to improve specialisation, if the same situation is happening repeatedly
with only slight variation in areas where di�erent classes overlap. In case of the
voice based classi�ers often examined in this thesis, this would translate to a sys-
tem either learning new speaking patterns or learning the idiosyncrasies of one
particular speaker speci�cally. To examine the capabilities of such a Continuous
Learning Framework (CLF) approach, my colleagues and I researched a wake-
word independent addressee detector only based on prosodic variations [Siegert
et al. 2019].

The used dataset was the Restaurant Booking Corpus (RBC) [Siegert et al.
2019], which is comprised of 30 speakers using phone calls to book a restaurant
either via a technical system or a human interlocutor. The full set contains 90
recordings, three for each participant, further information on this dataset can be
found in Section 3.2.4. Instead of otherwise typical device-directed and human-
directed speech, in that dataset there was no reoccurring wake-word signalling
the type of interaction partner. Our assumption as such was that the prosodic
variation when knowingly talking with a human is di�erent from the prosodic
variation with a technical device, a theory which is based on �ndings of [Batliner
et al. 2008a; Shriberg et al. 2012]. Furthermore, to test the resulting capabilities
of the system, we also performed a study with human annotators, especially if
they were capable of interpreting the directedness of played samples correctly,
also seen in Table 5.3. This setup and problem were chosen speci�cally, as it is
a good approximation for a real world situation where continuous learning could
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Figure 5.3: Presented CLF architecture and data�ow explaining the training and im-
plementation of the principle. By using a LOSO procedure for the pre-training and
then employing the remaining utterances of the untrained speaker as incremental
interactions with the system, a high similarity to a real use case is achieved. Figure
taken from [Siegert et al. 2019].

happen and provide a good alternative to one �nalised training approach during
system design. Especially during interactions with new users, the ability of a
system to rely on old information and examples is not su�cient to provide a
correct distinction of the feature space. The architecture for the designed CLF-
architecture can be seen in Figure 5.3. An important aspect of the experiment
was that the system behaved similar to a real situation, where a new user may
interact for the �rst time with a generally trained system and then gradually
starts to adapt in an emulation of continued interaction. As the data was used in
a LOSO architecture, the one speaker left out represented this user. The other
speakers ful�lled the role of pre-training the system. As can be seen in Figure
5.4 for low number of utterances, the general classi�cation results of the system
were considerably low. This is most likely a result of the high individuality of the
speaker expressions concerning human and device-directed speech and the general
small size of the dataset. It can also be seen in the comparable results in Table 5.3
that the problem by itself is quite complex, even for human annotators or more
complex classifying systems. The second step of the training process was then for
the utterances of the last speaker to be also separated into individual utterances
and then continuously fed to the training mechanism. The approach tries to elicit
a certain over�tting behaviour, in this speci�c case with a positive side-e�ect as
is allows for satisfactory classi�cation results for the relevant speaker where an
otherwise general classi�er would be of lesser quality. The objectivity was still
given as the validation set of the last speaker was separated before the continuous
training. Thus the validation was never trained speci�cally to the system and
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Figure 5.4: Progress of the UAR-values utilising our proposed CLF of two speak-
ers from RBC using 10 utterances each. One can see the rapid improvement after
around 4 utterances when the system switches to a user adapted state of classi�ca-
tion. Figure taken from [Siegert et al. 2019].

only other examples from the same speaker were used for that. Additionally, to
improve the training speed the used data was slightly enhanced by repeating the
same data with small variations in the features in a form of data-augmentation.
Similar to the addition of noise onto training data, this was done to improve the
generalisation aspect, while still only employing the interaction from a singular
speaker. The experiment has shown that the idea of a CLF framework can

Table 5.3: Comparison of average recall and precision values of a two class problem
between the human labelers as recognition baseline, our CLF, and an additional
meta classi�er result from a comparison experiment, taken from [Siegert et al. 2019].

UAR [%] abs. ∆ UAP [%] abs. ∆

Human Labelling (NON-GER) 53.57 � 53.35 �
Baseline (linear SVM) 52.02 -1.55 52.22 -1.13

Meta classi�er 62.70 9.13 63.20 9.85
CLF 85.77 32.20 85.67 32.32

be successfully implemented, potentially giving an alternative for the necessary
collection of extensive amounts of sample data before the implementation of a
system can be tried. The presented system produces very good results, even in
this simple exemplary architecture. A potential drawback would be the e�ect
of over�tting, as it may also lead to a decrease of the general capabilities the
system had originally, which means decreasing classi�cation results concerning
all other speakers. A more adaptive system could use the same over�tting e�ects
speci�cally to its advantage by, similar to the layered classi�er approach in the
last section, allowing itself to adapt to di�erent speakers at the same time as
being able to generate di�erent classi�ers for di�erent situations. On top of that,
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such a system would also be better for privacy concerns, as the new interaction
examples train on the local system itself, instead of sending all examples into
external data storage for the generation of future training data as commercially
available systems tend to do.

5.4 Summary of the Chapter

In this chapter several machine learning architectures were examined, as well as
their novel implementations as conducted by me were presented. The main as-
pect of research was the optimisation of results compared to the usual way of
application, without requiring large amounts of training data or computational
power. The research here is distinct to the next Chapter 6, where more typical
CNNs and DNNs applications will be employed. Regarding this chapter several
solutions could be achieved. The general necessity for the use of machine learn-
ing methods could be established, especially for the occurring complex classi�ca-
tion task in Human-Machine Interaction (HMI) situations. Two e�ectively novel
methods for layering and stacking classi�ers were presented, one of them capable
of improving generalisation capabilities of a system, while the other reduced the
necessary feature size considerably. Finally, the option of using a Continuous
Learning Framework (CLF) approach as an alternative to a pre-trained system
was evaluated.

In conjunction with the next chapter, this provides the �rst �intelligent� part
of an assistant system, by allowing the classi�cation of internal user states which
can be used in the latter decision stages of the system.
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A
fter introducing the general concept of machine learning methods in the last
chapter, as well as including potential alternatives for Deep Neural Network

(DNN) architectures, this chapter primarily focuses on applying the typical deep
architectures in the context of the assistant system. As indicated before, the
use of visual classi�ers requires di�erent preparations than the ones examined for
acoustic data, speci�cally a change of the format and a generally higher training
size requirement. It also tends to require more in-depth parameter adaptions,
depending on the relevant problem, to achieve optimal network sizes [Wallingford
et al. 2022]. The most important di�erence in application, which leads to the �rst
topic of this chapter, is the systems own optimisation and adaption towards the
usage of visual data representations. In practice it requires data in the form of
multi-dimensional arrays instead of one-dimensional number arrays, as is usual
in less complex Arti�cial Neural Network (ANN) solutions presented beforehand
to function optimally.

In this chapter, the research is presented �rst by a general introduction into the
Convolutional Neural Network (CNN) deep-learning framework and the e�ect it
has on the typical preparation steps in Section 6.1. This is followed by the
practical application in my research for acoustic problems in Sections 6.2.1 and
6.2.2 for di�erent problems. To provide an alternative to the complex CNN
architecture, the experiment described in Section 6.3 uses visual keypoints as
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input values instead of the full image representations as is usual. With this
chapter the machine learning examination is concluded in Section 6.4 and leads
into the research for better integrations of the human-machine environment with
self-adapting and proactively designed methods beginning in Chapter 7.

The primary research used in this chapter is taken mostly from the publications
of [Weiÿkirchen et al. 2017; Egorow et al. 2019] and [Weiÿkirchen et al. 2020b].

6.1 General Visual Classi�er

In contrast to Section 4.3, where experimental results where shown on how such
a system can be implemented, this section is intended to take a step back to
discuss if or when such an approach is sensible for a classi�cation task to pursue.
In context of this thesis this has to be viewed as a classi�cation task inside the as-
sistance system pipeline, especially during an ongoing interaction between a user
and the system. The initial reason why visual data as basis for machine learning
applications, especially for a DNN, is so common is because it follows a general
trend in current developments [Nassif et al. 2019; Alzubaidi et al. 2021]. This
approach is partially based on the development of the CNN architecture [Kr-
izhevsky et al. 2017], as such a system can employ the locality in the (visual) data
representations, which in turn improves the ability of deep learning architectures
to correlate even complex patterns through repeating processing steps [Rumel-
hart et al. 1986]. This is in contrast to most other forms of machine learning,
where the data is presented in a vector and all information are processed inde-
pendently of their relative position to each other. As such the use of deep learning
architectures often implies automatically the employment of visual input features
themselves, even though alternatives to such an approach exist, such as shown in
both external research [Siegert et al. 2019] or my own (Section 5.2) in this thesis.
A connected result of this implementation of deep architectures is that it is often
in exchange for higher computational and sample requirements [Sarker 2021a] to
provide the necessary basis to produce a stable classi�er.

The exemplary method to establish this is the mentioned CNN, which employs
the convolutional kernel method, explained in Section 2.2.1, to establish correl-
ations between �regions� of information in each processing step. With these an
area of input is processed as a whole, where each additional layer of the system
increases the area of processed patterns from the original input as well as estab-
lishing an internal data processing pipeline to optimise the �ow of information.



6.1. General Visual Classi�er 89

This allows the system to generate its own process of data interpretation similar
to methods otherwise used in pre-processing done for other architectures, such as
resembling typical visual �lters when used on images, as shown in [Krizhevsky
et al. 2017], where an edge �lter trained itself to interpret the visual input. Based
on this architecture as groundwork, a wide variety of adaptions developed, which
concentrate on di�erent aspects of the method, for example on di�erent depths
when employing functional layers, on better visualisation of the data �ow inside
the processing steps or even just small adaptions on how data is processed inside
the kernels itself [Pouyanfar et al. 2018; Sarker 2021a].

A general alternative and precursor for the use of CNNs is given by the already
mentioned architectures in Section 2.2, which includes the Recurrent Neural Net-
work (RNN) and the layered architecture as mentioned in Section 5.2. Speci�cally
the recurrent networks achieve their �deep� characteristics by processing the in-
formation several times through the same layer for each time step, instead of the
otherwise used method of layering the functional units behind each other [Rumel-
hart et al. 1986], which reduces the complexity of implementation but also reduces
the possible extent on how complex the solution can be.

The cost of the comparably complex architectures is the increased requirement
of training samples to achieve generalisation e�ects during training. An other-
wise frequently observed e�ect is the over�tting to the available training samples,
which inhibits the further use of the system when new data needs to be classi-
�ed. As an example, when using Leave-One-Speaker-Out (LOSO), such as in the
experiments done in [Weiÿkirchen et al. 2017], one observable e�ect was a fast
increase in classi�cation accuracy for the training set, achieving nearly perfect
recall and precision during training, while also remaining on a practical random
chance level for the validation set, which comprised of utterances from speakers
which were not trained during the creation process. The same e�ect could be
observed even when the validation sets consisted of untrained utterances coming
from the same speaker which also provided the training data. This strong e�ect
could only be reduced by extensive data augmentation and expansion, after which
the generalisation capabilities of the architecture began to set in.

These high requirements, in conjunction with the otherwise high capabilities of
the system, prove a strong indication for the possible use cases, especially when
aiming for widespread applications, where each user is required to participate in
the data generation, as is usual for current assistant systems. In these cases it
can ideally work as a complex generalising classi�er, as it can process and train
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continuously to include new information. Additionally, it remains a very capable
implementation for its originally designed image classi�cation task, where the
general data pre-processing methods are trained on big data sets and the further
optimisation to a speci�c task can be done on smaller sets by the user himself [Kr-
izhevsky et al. 2017]. The applicability of successfully trained architectures for
one task when used for another classi�cation problem is strongly reduced when
di�erent forms of data representations are used, which cannot employ the same
visual �lters to a similar e�ect. This requires often a more in-depth retraining of
the underlying CNN architecture.

In speci�c cases the necessity of DNN for these positive e�ects is not given, such
as in the examples of Section 5.2. This approach to employ alternative methods
for the same e�ect will be examined further in this chapter, especially in cases
when these alternatives are preferable, see Section 6.2.2.

6.2 Convolutional Classi�er

In this section the research done concerned one of the usual main DNN methods,
which is the CNN architecture. At the time of my �rst experiments, this archi-
tecture was not typically used for acoustic input. This fact necessitated a more
thorough examination of the parameters, which is presented in Section 6.2.1, on
how the system had to be adapted for this unusual data type. In Section 6.2.2,
a comparable experiment to the one presented in Section 5.2.2, is examined with
an alternative architecture, the results are then used to establish a baseline for
the decision on which type of architecture is preferable for di�erent classi�cation
tasks, based on external factors.

6.2.1 Visual Classi�er for Acoustic Features

Even though the application of CNN architectures provides the common state-of-
the-art of deep learning methods [Krizhevsky et al. 2017], it is still primarily based
on the interpretation of visual data. Further explanations about the structure
and development of the architecture can be seen in Section 2.2.1. As a short
reminder, the original architecture is based on the visual cortex of most mammal
species [Krizhevsky et al. 2017], as such, both the processing as well as the input
format are solely structured around this speci�c application case. Conversely, it
provides great processing improvements in the areas of classi�cation results and
complexity for these speci�c cases. As a result, research by me and my colleagues
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from 2016 to 2017, for example in [Weiÿkirchen et al. 2017], was done to transfer
these capabilities into the acoustic area of speech interpretation, such as emotion
classi�cation from spoken words. To our knowledge this was one of the �rst
forays into this area, at least with published results, and was done to explore
the general possibilities and potential improvements which may come with this
change of frame.

When adapting the otherwise used methods to this new problem space, it was
�rst necessary to employ a transfer from the usual acoustic representation, similar
to the pipeline explained in Section 1.2. Several options appeared possible at the
time where no best practice was established yet.

The typical approach employed was the use of feature extraction methods,
already proven in the �eld of speech interpretation, such as the Opensmile's emo-
base (emobase) feature set [Eyben et al. 2010]. This method, which is usually
employed for ANN, gives all features in a one-dimensional array for the system to
process. The alternative to this, which is inspired by the speci�c processing steps
in the convolutional layers explained in Section 2.2.1 is specialised on working
on two or more dimensional inputs, is the transfer of the acoustic data into the
visual space. The easiest and fastest of the used transformations was a simple
wavelet representation of the utterance [Debnath & Antoine 2003], which in the
experiment proved insu�cient, most likely because of the sparseness of informa-
tion compared to the size of the image. The more useful and chosen alternative
was the more complex spectrogram representation [French & Handy 2007], as
seen in Figure 6.1. Practically the aim for the data transformation was to im-
prove on how much information is coded in the available channels of an image,
supporting the convolutional steps of the CNN. Colour, depth and time can all
be used in this approach to improve the amount of information available, for
which the spectrogram was chosen as a representation, being both rich in inform-
ation density and still be easy for a human observer to understand. The usual
approach for a new classi�cation task with CNN architectures is the employment
of a pre-trained network, where only the �nal classi�cation layer, usually com-
posed of several simple fully-connected feed-forward steps, will be changed. This
allows the pre-trained visual identi�ers, as shown in [Krizhevsky et al. 2017] re-
sembling edge and point detectors, to transfer into the new problem, practically
only changing the classi�ed object from one class to another. This optimisation
for (physical) object detection was not adequate for any of the typical used rep-
resentations of acoustic data, therefore the research further concentrated on the
full new initialisation training of the network and the parameter optimisation
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Figure 6.1: A colour Spectrogram of the word �Degree� from the Speech Under
Simulated and Actual Stress (SUSAS) dataset. As can be seen, the di�erent parts
of the image all contain important information. Frequency and time is part of the
x- and y- coordinates, while the amplitude is coded in the colour channels (3 for
the typical rgb approach). A simpler version could use grayscale information and
would then only require one channel. Taken from [Weiÿkirchen et al. 2017].

combined with that. As a result of the new training, I employed a comparat-
ively small depth for the architecture, similar to the one used �rst in [Krizhevsky
et al. 2017]. Additionally, the use of a relatively small data set employed in the
research, required further restrictions on the resulting network. The used dataset
was the Berlin Emotional Speech Database (EmoDB)-corpus, consisting of ten
actors speaking 553 phrases, speci�cally in a form which contains acted emotions
to in�ect on each of the utterances. The speciality of this dataset is that the emo-
tional in�ections are quite distinct and as such the di�erent classes di�er clearly
from one other. This often leads to the employment of this corpus as a baseline
method [Schuller et al. 2009]. Further information of this dataset can be taken
from Section 3.1.1, speci�cally how it was originally designed as base for in�ection
experiments. Furthermore the eNTERFACE'05 (eNTERFACE) corpus and the
SUSAS corpus were employed to provide further comparisons with [Schuller et al.
2009]. The eNTERFACE corpus consisted of 1.277 examples, the SUSAS corpus
of 3.593 examples. The setup of the architecture itself was changed dynamically
during the experiment by employing a LOSO validation set. As mentioned, the
optimal structure was di�erent from the otherwise employed architecture of the
original visual experiment. Both complexity and available data sizes were smaller,
as such the structure itself was reduced, as seen in Table 6.1. It was not neces-
sary to employ the same amounts of kernels, or convolutions, and the amount of
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Table 6.1: Structure plan of the designed CNN system, the functional aspects consist
primarily of convolutional layers. Additionally, the system employs a �pooling layer�
which practically reduces the processable amount of information by pooling several
kernels together. The later layer follows a more traditional Feedforward Neural Net-
work (FFNN), consisting of a neural net with Recti�ed Linear Unit (ReLU) as activ-
ation functions and dropout layers to reduce over�tting. Taken from [Weiÿkirchen
et al. 2017].

Layer Name Filter Size Step Size Depth
Input Layer 3
Conv 1 11x11 5 96

Max Pooling 2x2 2
Conv 2 5x5 1 256
Conv 3 3x3 1 384
Conv 4 3x3 1 384
Conv 5 3x3 1 256

Max Pooling 2x2 2
ReLU 4096

Dropout Layer
ReLU 4096

Dropout Layer
Output Layer Variable

Softmax
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Table 6.2: Unweighted Average Recall (UAR) of the classi�cation experiment of dif-
ferent datasets, top1-top3 represent when the correct class is part of the highest
probabilities taken from the top 1 to the top 3. Development Set consists only of
untrained LOSO examples. Taken from [Weiÿkirchen et al. 2017].

Avg. UAR on Test-set Avg. UAR on development-set
top1 top2 top3 top1

EmoDB 0.71 0.86 0.94 0.96
eNTERFACE 0.66 0.73 0.86 0.87

SUSAS 0.57 0.76 0.89 0.92

layers was also reduced in turn to suppress the over�tting e�ect. Additionally, a
stronger dropout was implemented to achieve better generalisation e�ects with
higher robustness. With the data generation methods, also mentioned in Section
2.1, the available data was expounded by data augmentation methods described
in Section 2.1.2. The �nal results, as seen in Table 6.2, were still relatively low.
But when including the second and third highest probabilities of the results gen-
erated, it achieved nearly the same high results as the ones from the training
set. While this would normally be no indication for success, the di�erence in
probability for the most likely classes only manifested in the lower percentiles
of distinction, which was then drastically increased for the following classes. An
explanation for this non-optimal result with ambiguous class distinction can dir-
ectly be linked to the overarching over�tting e�ect which even with all the used
methods could not entirely be eliminated. As this experiment was done at a time
when no, or very few, published methods existed to adapt the architecture to
a small dataset, no better results were achieved at that time. Still the method
proved positive indications, especially as the result itself were comparable for the
dataset to the ones used as baseline in [Schuller et al. 2009].

With this experiment a �rst indicator for the employability of this DNN were
established. Data size and parameters in turn proved to be very important decid-
ing factors for the use of CNNs, as it also indicated that a system which receives a
su�cient amount of examples, would be capable of providing much better results
than otherwise employed machine learning solutions. In general this experiment
showed a promising starting point for the employment of these architectures, and
for the classi�cation capabilities for non-visual data.
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6.2.2 Convolutional Feature Optimisation

With the more widespread adoption of the CNN architectures, even beyond the
original visual representation frame, the generally positive e�ects of this method
compared to other machine learning architectures lead to certain expectations of
general best practice. As indicated in Sections 2.2.1 and 5.2.1, this may not be al-
ways the case. The overall assumed positive abilities, such as good generalisation
capabilities and generally higher classi�cation results than other machine learn-
ing methods, have to be weighed against the higher resource requirements of the
system, be it computational or of the available example sizes [Sevilla et al. 2022].
This section speci�cally examines the question if and how a CNN architecture
can be optimised or adapted for di�erent applications, with a special emphasis
on the amount of available data and how it compares to similar approaches. To
get a basic comparison of applicability, my colleagues and I performed such an
examination between two approaches in [Egorow et al. 2019], one of them being
the aforementioned CNN while the other was a more traditional FFNN approach.

An added bene�t which has to be acknowledged is that the use of CNN can po-
tentially remove any further pre-processing steps, except providing the data in a
readable format for the system. Speci�cally this means that slight optimisations
for di�erent areas of the input are done by the system itself, instead of manually
by the supervisor before the training [Krizhevsky et al. 2017]. As such CNNs
are capable of performing feature selection similar to the methods explained in
Section 5.2.2, where an autoencoder was used to optimise the data representa-
tion. A disadvantage of the convolutional steps during this process is the further
increase of data requirements which needs to be computed instead of a preferable
reduction. This is a result from the architecture in which each input layer gets
processed with several independent �lters. Admittedly this also depends on the
number of used and necessary kernels, as explained in-depth in Section 2.2.1.

The experiment done here is in comparison to the one done in Section 5.2.2,
while there the usage of an autoencoder was exempli�ed as a method to lead
information from the input into a classi�er. In this experiment instead a CNN
is used, this means that instead of separate classi�ers and input architectures,
in this experiment all processing steps were done in one architecture. The un-
derlying structure is nonetheless similar, as the structure of the typical CNN is
also separated into two aspects. First are the convolutional layers which process
the input (images) into an e�cient format for the data, without losing inform-
ation. Following this are the classifying steps which are done by employing a
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relatively simple feed-forward neural network. This allows basically for feature
input optimisation and classi�cation optimisation separately, especially after the
underlying problem is trained. The otherwise used data and setup is similar

CNN FFNN

Dataset 1

Dataset 2

Classi�ers 1

Classi�ers 2

Transfer

Figure 6.2: Seen is the concept to transfer CNN networks from one system to another
to signi�cantly reduce training times. For this to function at its best, the di�erent
datasets need to be similar in their expression. Only the �nal interpreting layer
(often a FFNN) needs to be trained on the new possible classes.

to the comparison experiment, also employing the distinction between the Talk
Run Speech Database (TalkR) and Munich Biovoice Corpus (MBC) to observe
the transferability of the di�erent experiments, practically measuring the gen-
eralisation capabilities of the system itself and follows the build in Figure 6.2.
It also compares the general e�ort in setting up the system. Compared to the
experiment done in the last section, the application of an acoustic input and the
implementation of the architecture itself were more advanced, as follows: The
data representation also employs a spectrogram, similar to the last section. In-
stead of using colour as an encoding for volume, here a black-and-white image
was chosen, which only uses one channel for the grayscale values. The other chan-
nels contained the �rst and the second derivative of the spectrogram, enriching
the information of the chosen data representation. When examining the results
from the experiments, as seen in Table 6.3, it appears a bit di�erent from the
one done before. One can see, that again the system works reasonably well to
generalise between the female part of TalkR and the full dataset. Also similar
to the previous experiment and the baseline is the ability to classify correctly
slight di�erences between the male and female speakers. Here the generalisation
is working as intended, without the strong over�tting e�ect seen in the last sec-
tion. Contrary to this, the transfer from the TalkR dataset to the MBC corpus is
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Table 6.3: Classi�cation Results from the classi�er generalisation experiment. Gen-
eralisation on the same set where the training data was taken from is similar to
the baseline, while the transfer of the classi�er to a new corpus reduced the results
considerably. UAR stands for Unweighted Average Recall. Table values taken from
[Egorow et al. 2019].

Data Females Males Overall
TalkR

- Baseline 73.5 60.0 70.1
- Recall High Physical Load 81.7 (83.5) 74.3 (71.7) 79.94 (79.72)
- Recall Low Physical Load 82.0 (83.3) 72.5 (67.4) 79.09 (78.73)

- UAR Both 81.8 (83.4) 73.2 (69.7) 79.52 (79.22)
MBC

- Baseline - - 75.35
- Recall High Physical Load 56.9 (56.8) 55.9 (64.3) 56.20 (61.65)
- Recall Low Physical Load 55.0 (58.6) 55.3 (60.3) 55.19 (59.77)

- UAR Both 55.9 (55.9) 55.5 (55.5) 55.69 (55.69)

considerably worse. Here the mentioned over�tting e�ects come into play, exem-
plarily by only achieving slightly better results than chance level, clearly below
the comparison and baseline experiments.

These aspects of the result, together with the implementation itself shows the
capabilities but also the disadvantages of the system. It employs the e�cient data
extraction without further human e�ort, given the optimised presentation of the
input data itself as an image. As shown, the over�tting also can be reduced to a
smaller e�ect as long as the data itself is relatively similar, as is the case for data
from the same corpus. When transferring the same classi�er to another corpus the
e�ect becomes apparent again. This reduces the applicability of the architecture,
especially in real world applications. When now comparing both approaches
directly, under the assumption of application in an assistant system, one can see
the area of application depending on the available amount of training data and
the type of classi�able data. The current trend is by employing great amounts
of data, preferably from a multitude of sources ensuring a generalisation over
di�erent types of data. When assuring that the type of data remains relatively
the same, as seen when using the same dataset even when not using male speakers,
available pre-optimisation such as data representation and augmentation su�ce.
With this also smaller datasets can be used as training base.
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Figure 6.3: Marked Keypoints for a neutrally intoned Word and one spoken in an
angry voice taken from [Weiÿkirchen et al. 2020b]. One can see that keypoints
cluster in di�erent areas of the visualisation, instead of using the full image as input
only the parts containing relevant information need to be observed.

6.3 Visual Feature Classi�cation

An altogether di�erent method of interpreting visual data, instead of using
the aforementioned CNN, is by employing otherwise typical image processing
steps [Rublee et al. 2011] and feed the resulting information into a machine learn-
ing application. This functions as an alternative variant to the typical approach
for deep learning architectures, and can also be described as a hybrid architec-
ture. In this experiment, as was already introduced in Section 4.3.2, spectrograms
were also used as input, given their high density of information over the full im-
age representation, and the assumed existence of repeating patterns for the same
class [Weiÿkirchen et al. 2020b]. The speci�c di�erence to the otherwise used
method is that the feature extraction itself searches for repeating patterns, or
keypoints, which then were used as input for a Support Vector Machine (SVM)
as classi�er. This o�ers an alternative to the idea of using CNN, with all its
potential drawbacks, while at the same time using the advantages of the visual
representation with its high information density and additional locality aspect.
As shown in the last section, the applicability of deep learning architectures can
be highly dependent on the speci�c situation, with the availability of data being
especially important. By using a less complex classi�er, it was aimed to reduce
this dependency on the dataset size.

The used classi�er consists of two di�erent functional aspects. The �rst aspect
employs an image processing method or computer vision algorithm, called Ori-
ented FAST and rotated BRIEF (ORB), to identify repeating patterns [Rublee
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et al. 2011]. The second aspect is then a regular SVM classi�er, using the ex-
istence of the pre-trained keypoints as information for the classi�cation step. As

SVM Classi�er

Full Input

Keypoints

Figure 6.4: Seen here is the optimisation of a Classi�cation Network by using key-
points. Instead of training a network to interpret a full visualisation of the data, it
only needs to employ the much sparser, but information rich, keypoints. The net-
work in this case can be less complex and trains much faster without losing recall
or accuracy.

shown in Section 2.2 the computational requirement for a SVM are much lower
than for a DNN or speci�cally for a CNN. Additionally, they do not tend to
over�t as easily with few examples [Sakr et al. 2016]. As such the system ideally
bene�ts from the improvements of the visual representation without increasing
the requirements at the same time. As an added part of the experiment we also
tried to reduce the necessary features for a functional classi�er, further reducing
the minimal computational requirements, the experiments is shown in Figure 6.4.

The used dataset for this experiment, is the SmartKom Database
(SmartKom) [Steininger et al. 2002], which is also further explained in Section
3.2.3. As a short summary, the dataset contains 3.823 natural acoustic emotion
samples, classed according to a variant of a typical emotional chart, containing:
anger, helplessness, joy, surprise, neutral, pondering and anger. As an alternative
we also employed a classi�cation only using arousal and valence as output, e�ect-
ively lowering the dimension of the classi�cation from seven to two [Russell 1980].
The system proved functional and advantageous compared to the chosen baseline
experiment in [Schuller et al. 2009]. Even with only 10 keypoints the system
achieved results of 60% Weighted Average Recall (WAR) compared to 40% taken
from the baseline. The weighting was done to account for the high numerical
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Table 6.4: Results for the classi�cation of Valence and Arousal in comparison to the
baseline taken from [Schuller et al. 2009], the experimental results are taken from
[Weiÿkirchen et al. 2020b]. Even in the reduced problem space the chosen method
provided signi�cant improvements in the classi�cation.

Class Base Results Di�.
Arousal 64.1 82.4 18.3
Valence 75.6 91.3 15.7

occurrence di�erence between the di�erent classes. When changing the classi�c-
ation task to a valence/arousal classifcation, the results also improved compared
to the baseline, as seen in Table 6.4. Interestingly, the results of the system relat-
ing to accuracy and recall decrease when employing more keypoints. This either
implies that the problem became too complex for the system, or more likely that
with the inclusion of too many keypoints there occur overlapping information in
the problem space which can be counterintuitive for the classi�er. Speci�cally in
this case this could be the similarity in utterances, chosen words or other aspects
which are not directly connected to the emotion classi�cation.

6.4 Summary of the Chapter

In this chapter di�erent examples for the usage for visual representation of acous-
tic signals were examined, speci�cally in context of machine learning methods
and their applicability for classi�cation tasks. The main research was in their
employment for deep learning architectures, which were primarily used in the
form of CNN architectures. This was chosen as an example for an approach
which is based on the present state-of-the-art for a complex machine learning
system. Alternatively, a method for employing the visual input with a less com-
plex architecture was also presented here. This variant allowed for the higher
information density contained in an image compared to a value array to be in-
terpreted e�ciently, without also requiring the high increase in computational
power. A comparison of all the results discussed can be seen in Figure 6.5. In
conjunction with the former chapter, this concludes the purely machine learning
aspect of the proposed assistant system, which is functionally the second layer
of the full system. In the following chapters the transfer from a purely passive
system towards a more reactive and �nally proactive system will be explored.
These additional experiments also employ machine learning processes as a tool,



6.4. Summary of the Chapter 101

but concentrate the examination on the further improvements done to provide
the necessary basis for the later development towards a peer-like system.
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Figure 6.5: A comparison of all the results given in this chapter, as can be seen all
results are above chance level, most pronouncedly so.
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I
n this chapter, the usable results and possible implementations of the formerly
investigated machine learning techniques will be examined in greater detail.

While the last two chapters established the general capabilities and advantages
of machine learning over purely rule-based approaches, it did not establish its
concrete use in the frame of an assistant system which can show empathy to its
user. For this, the most prevalent implementation would be the classi�cation of
inner user states and implicit situational information.

As mentioned before, a personal assistance system is ideally operating in an
integrated human-machine environment, which requires more information from
their users than a simple speech-to-text parsing with word detection of the voiced
input can provide. While humans have a natural ability to interpret information
which is not directly stated, machines lack the inner ability and understanding
of these cues.

With su�ciently observed correlating occurrences of measurable features, taken
from exemplary interactions, and at the same time the expression of the not
directly measurable inner user states, taken ideally from the users through self-
reporting, the system can train a practical approximation of this natural ability
in a technical form, even without requiring a direct causal connection between
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the features and the states. As an example, di�erent relevant user states are
described in this chapter, with their impact in the full theoretical framework
explained. In Section 7.1 an introductory overview of the type and e�ect of user
states in an assistant system are given. This is followed by Section 7.2, which
proceeds with speci�c examples of emotions in Section 7.2.1, the mental load in
Section 7.2.2 and physical load in Section 7.2.3 as practical examples of inner user
states. In Section 7.3 another example of implicit information detection is shown
with addressee-detection, this information is not part of the inner user states
usually associated with paralingual features and proves further potential of this
application. In Section 7.4 this chapter is summarised. An important point to
mention is the repetition of the experimental results of prior chapters, while the
speci�c setups and methods will not. The main aspect here is an observation
and discussion of these results in the frame of the projected assistance system,
speci�cally under the constraint of minimal privacy invasion by using only or
mainly audio cues, instead of video recordings or wearable sensors.

As this chapter is a collection of di�erent aspects, the examples are taken from
a wide variety of publications, mainly from [Weiÿkirchen et al. 2017; Weiÿkirchen
et al. 2018; Weiÿkirchen & Böck 2018; Egorow et al. 2019] and [Weiÿkirchen et al.
2020b].

7.1 Relevance of User States

The current state-of-the-art in commercially available assistant systems, including
their variations such as smart homes and smart factories [Lee 2015; Rock et al.
2022], primarily concentrates on the ease of control, speci�cally using speech as
a medium [Rakotomalala et al. 2021]. Based on this trend, the implementation
of the voice controlled interface continuously improves in its capabilities, often
representing the main aspect of human-machine interaction and the stated aim
for future developments. In contrast, or at least as an extension, of this idea is
the aim of a technical companion [Biundo & Wendemuth 2017], with assistant
systems in particular being a part of that, where the aspect of understanding and
engaging the human user in a personalised and situational dependent manner is of
much greater importance than being just a user interface. These systems should
ideally adapt to their user and their individual abilities instead of providing a
general assistance to most users.
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Contrary to true human-to-human interactions, technical systems by them-
selves lack the ability to empathically interact, as they lack the behavioural basis
for this [Plutchik 2001]. Additionally, even the approximation of this behaviour
with rule-based solutions requires further information, which the typical voice
interaction does not convey [Campbell 2004], which requires di�erent approaches
such as the development of systems capable of recognising a�ective states of the
user [Picard et al. 2001]. In this chapter the speci�c aspect of lacking background
information is the focus, speci�cally which information of the internal user state
can be extracted, without requiring further speci�c instructions from the interac-
tion partner. This also excludes information generation through other methods,
such as further external sensors or additional statements which may intrude on
the user behaviour or lifestyle for the sake of such a system [Chignell et al. 1999].

The �rst step of enabling a system with an approximation of human empathy,
is by converting the user states into speci�c categories, as described in Section
4.1 where natural signals were digitalised. As described before, psychological
expressions such as emotions, physical- or mental-load are not directly measurable
values, in contrast to temperature or voltage, it has to be determined indirectly
by identifying correlating physical features such as taken from biosensors. This
also provides an exemplary application of the methods presented in the last two
chapters, Chapter 5 and Chapter 6.

Such a solution, for generating indirect indicators, for the internal user states
can theoretically be applied to a nearly limitless amount of di�erent states, as
long as the found relations are reproducible in similar experiments or situations.
In this chapter, three speci�c applicable use cases will be examined in greater
detail: This will be the emotional state, the physical load and the mental load of
a user. It is important to reiterate that such a system does not possess a direct
understanding of, for example, the emotion sadness or happiness and how to
react in a natural way to it. It instead requires a follow-up rule, as in rule-based
system, on how such a measured emotion may change the following decisions of
the system itself and how it can react ideally. As such it presents still a fully
reactive, technical approach of human behaviour.

Furthermore, general information from the user may also be described as user
state, this area can include more in-depth descriptions such as a�ect or interest
of the user and may require the successful interpretation of facial expressions,
gestures, or body posture in the general classi�cation step. In its completeness
such information can be used to mirror the inner processes of a human in a
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technical understandable format [Picard et al. 2001]. Even though such a system
still lacks true human empathy and understanding of these states, it can allow for
a functional su�cient approximation, which can be used by the technical system
for its decision making process.

As my research approaches a technical assistance framework from the point of
view of a human-like partner and supporter, it in turn needs relevant information
to achieve a approximation of empathy for its user. Either by using the rule
generating framework presented in later chapters, or simply as a pre-de�ned
causal connection between a certain user state and a speci�c assistive action.
Exemplary results for these states will be presented in the following sections,
with a view on how they can be integrated into the wider architecture.

7.2 Inner User States

One of the major aspects in my research concerned the recognition of the inner
user states of human speakers [Weiÿkirchen et al. 2017; Weiÿkirchen et al. 2018;
Weiÿkirchen & Böck 2018]. The biggest topic in this regard was the area of human
emotions [Weiÿkirchen et al. 2017; Weiÿkirchen & Böck 2018]. This includes
primarily a general emotional state of the users, such as their happiness, sadness
or similar broad categories. These distinguish the subjective expression of the
users concerning their current situation, which can then be used to change the
approach the system may employ towards them. In addition to this general
expression, the users may also exhibit speci�c states concerning their current
mental or physical load [Weiÿkirchen et al. 2018; Egorow et al. 2019], with the
general term of load in this case meaning a measure for the speci�c impact of a
task on an individual user. While the perception of load is highly subjective from
the user's part, the indirect measurement of this perception allows for awareness
of the system, when the user is stressed [Weiÿkirchen et al. 2018].

7.2.1 Emotions as User States

The �rst area approached for the inner human states is the aspect of emotions
and how they can be distinguished into classes. This was partially described in
Section 2.2.2 in its basic form as part of machine learned classi�cation tasks. In
this section instead the potential capabilities of this approach and their prac-
tical implementation in the assistance system in the frame of the research I have
done will be discussed. While the human awareness of emotion is often addi-
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tionally dependent on a variety of features, such as facial expressions, gestures,
as well as depending on the situation itself, a purely voice based recognition is
possible, and technically implementable [Ververidis & Kotropoulos 2006; Sezgin
et al. 2012], which leads to the question if this is a realistic way of approaching
an arti�cial sense of empathy for a technical system, given the wide variety of
external situations such a system may require to cope with.

As the basis for most of the research into this aspect, it is necessary to de�ne
the natural emotional expression into discrete recognisable classes [Batliner et al.
2003]. For this, di�erent approaches are possible and were also used in my experi-
ments, such as in [Weiÿkirchen et al. 2020b], where di�erent possible classi�cation
schemes for the same dataset were presented. A common scheme is the use of
around seven classes based on the work in [Schuller et al. 2010]. As this distinct
class representation is comparably unnatural for a human like interaction, two
di�erent improvement methods are usually employed, either by increasing the
number of distinctions, or alternatively by reducing the number of classes into
more general representation as in [Schuller et al. 2010]. The �rst approach re-
quires a greater number of examples which are evenly distributed for these classes
and the necessary annotators for preparing, and was not used in my experiments.
The other method assumes a continuous emotion �space� which is described by
its two axes of valence and arousal, which is based on a di�erent approach to
observe emotions [Wöllmer et al. 2008]. Comparative research allows mapping
all other emotion classes into this representation. This was used for example
in [Weiÿkirchen et al. 2020b].

To receive emotional data, such as in the datasets mentioned in Section 3,
these emotions had to be either acted or induced. Natural emotional states are
comparably hard to come by for a data collection, especially when it needs to be
equally distributed and unambiguously annotated, requiring the arti�cial genera-
tion of these examples instead, either through acting or inducing the emotion by
or in a speaker, alternatively by using data augmentation methods to in�ate the
available amount of examples. During acting, such as in the Berlin Emotional
Speech Database (EmoDB) corpus, the user strongly exaggerates the expression
compared to natural occurrences, while induced emotions in contrast have the
problem, that some emotions are harder to generate than others.

The reason for this research is that emotions represent one of the main para-
linguistic features employed during interpersonal interactions, which allows for a
wide range of interpretation about the personal state of the speaker without inhib-



108 7. Application of User States

Table 7.1: The table shows the development from 2009/2010 to the ones done in my
research for di�erent datasets. Further information of the results can be taken from
Chapters 5 and 6 where the experiments were presented. The baseline is taken from
[Schuller et al. 2010] from the Support Vector Machine (SVM) experiments. De-
pending on experiment the Unweighted Average Recall (UAR) or Weighted Average
Recall (WAR) results were taken.

Corpus Source Result
emoDB(Baseline) [Schuller et al. 2010] 0.86 [UAR]

emoDB [Weiÿkirchen et al. 2017] 0.70 (0.96) [UAR]
Smartkom(Baseline) [Schuller et al. 2010] 0.39 [WAR]

Smartkom [Weiÿkirchen et al. 2020b] 0.60 [WAR]

iting the transmission of textual information through the speech itself [Campbell
2004]. For a technical system to assume the same capabilities during a Human-
Machine Interaction (HMI) as is usual between human speakers, a system needs
to be able to record and interpret these same signals, or at least include them
in the interpretation of the spoken words, as the emotional state may strongly
in�uence the meaning of a sentence [Ephratt 2011].

This usage in context of an integrated assistant system is as such manifold, as
emotional user states can be used in that case to indicate satisfaction, interest
or agreeableness during all interactions. Potential errors can, for example, be as-
sumed by continuous aggressiveness on side of the user leading to the system to
react accordingly. The broader distinction into user a�ects improves on these in-
dicative abilities by including further reaction states to account for non-emotional
reactions. My research followed a basic approach of utterances based emotion de-
tection, usually employing the Opensmile's emobase (emobase) feature extraction
pipeline [Eyben et al. 2010] with di�erent classi�cation methods, such as SVM
and Convolutional Neural Network (CNN), depending on the available amount
of data and the complexity of the used dataset. For more in-depth explanations
of the experiments itself, they are described in Chapters 5 and 6 as they also
represent a form of machine learning architectures. As can also be seen from the
Table 7.1, the results were clear improvements over the ones from several years
back. Additionally to the direct work done by me and my colleagues, the area of
emotion recognition is generally on a trend of improving accuracy and applicabil-
ity [Siegert et al. 2022b]. This shows not only that the use of human emotions in
technical system is quite possible, but that it is also still improving, potentially
even above the original human level of understanding [Siegert et al. 2021].
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For the resulting technical system itself, this can lead to several improvements,
as otherwise overlooked paralingual features can then be used to improve under-
standing and reactivity from the technical side towards the human speaker. It
can also be used as an alternative form of information exchange by itself, without
requiring the direct expression from the user and instead changes in emotion or
state may prompt a technical system to initiate certain actions. Concerning the
described assistance system it can be concluded, that emotion recognition, even
when only using voice, is a stable and important aspect of HMI.

7.2.2 Mental Load as User State

The second aspect of inner human user states examined here is the area of mental
load. This term is relatively widely applied for di�erent topics, such as in [Liz
Dean & Ruppanner 2022] for a gender speci�c occurrence of stress, for my research
it is instead understood as a general measurement for the stress and concentration
of the user during a task. As such, the mental load can vary between a low state
of either disinterest or by engaging in low e�ort, repetitious tasks or a high state
for stressful necessary concentration. It has to be understood in my work as a
form of expression of cognitive load, for example in the form of accumulating
(mental) work load during increasingly complex work orders [Kindsvater et al.
2017].

Ideally the state of mental load for a user would be a continuum of values
from a low to a high state and every situation in between during the naturally
increasing stress of the user. Because of the highly individual perception of this
state, the generation of such �nely divided examples is practically impossible. It
would also require the user, or an unambiguous expert, to annotate this state
unbiasedly and repeatedly in the same fashion. As such, in my experiments I
distinguished between low and high load, both induced by outside in�uence and
as such non-acted, but elicited [Lotz et al. 2016]. Additionally, as the user was not
aware of the induction, unwitting acting could also be excluded in this speci�c
case.

The usage of mental load as an indicator during an interaction can be wide-
spread. A system may assume problems and a need for further assistance in cases
where the user shows a heightened mental or cognitive load, as this implies sev-
eral tasks accumulating on side of the user [Melo et al. 2020]. When the system
already is in an interaction, or even in a human-machine supported task such as
in a smart factory, cognitive load precisely indicates to the system when the user
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is overwhelmed either indicating a possible slowing down of the processes or a
better explanation from the system concerning the necessary support. Together
with an emotion recognition from the last section, the system can also give a
more �objective� measure for the current condition of the user.

Thus mental load, as used in my research, is an important aspect for continuous
HMI, as it measures situations when the technical side may increase its assistive
function. Di�erently from the former aspect of emotion it is also more relevant in
a �productive� setting, in the sense where a human and a machine work together
to achieve a speci�c result [Yang et al. 2022].

In this thesis this was already presented, with the experiment fully explained
in Section 5.2.1, where the examined problems were similar to the ones described
here, speci�cally in the context of time based decision making and increasingly
hostile assistive behaviour by the technical system. The question stemming from
this research is, if it is realistically implementable and practically valuable in
the assistance system to provide an input on the state of the user from this
information? As it can be seen in Table 7.2 high mental load recognition results

Table 7.2: The table list my classi�cation results (UAR and Unweighted Average
Precision (UAP)) for mental load states and is abridged from Table 5.1. The data
is taken from [Weiÿkirchen et al. 2018].

Full Feature Set Reduced Feature Set
SVM RF SVM RF

UAR 69.5 75.5 68.4 69.8 In
GroupUAP 69.2 75.6 60.2 69.9

were achievable, indicating not only that the induction of mental load states
provided robust feature di�erences over several speakers, but also that the used
classi�ers proved to be adequate for this task. Additional e�ects and a�ects used
in the experiment, such as interest (for the task) or attention (without high stress)
were also tested in one speci�c experiment, but only provided results around 55%
each, i.e. slightly above chance level. Importantly, neither the dataset nor the
classi�er itself was speci�cally adapted for this experiment, as such the low result
is explainable.

Given the encouraging results for the measurement of mental load taken only
from vocal interactions between humans and a technical system, this also could
easily become one of the standard methods for indirect user state detection.
As mentioned, situations during a HMI can easily become stressful, either due to



7.2. Inner User States 111

external factors or the type of assistive function the system provides. With a lack
of proper measurement, these in turn can easily lead to user dissatisfaction or even
potential termination of the cooperation altogether. By enabling a system with
the necessary insight, relevant countermeasures can instead be taken to suppress
such occurrences.

7.2.3 Physical Load as User State

The last inner human state to be examined in my research is physical load. It
is similar to mental load in the sense that it describes the currently felt personal
e�ort of the user during a situation. Instead of measuring the mental perception
of the user, this value describes the general physical requirement as dictated
for example by the personal stamina or strength of the user [Weiÿkirchen &
Böck 2018]. With this aspect the requirements for a technical interpretation are
even higher, as it is not directly expressed through an a�ective or even directly
subconscious change of the user, but the bodily reaction and its in�uence on the
spoken utterances themselves.

When using the state of physical load, it practically receives an indirect meas-
urement for the general physical state of the user. This includes, similar to the
mental aspect, short term problems such as sudden strains and overexertions
during daily activities, requiring direct engagement by the system to identify and
solve the problem. It also includes long term interactions on a task, for example
during an assisted work�ow or during a supervised exercise, indicating the ap-
proaching limit of the user capabilities and allows for the reduction of the user
load beforehand by the system.

The physical load is complementary to the mental load in that is presents
the remaining capacity of a user to increase their activity and that a potential
overload by the user could negatively impact further HMI situations. Beside
the importance during productive assistance situations it can also be of high
importance for users who are injured or with reduced physical capabilities [Kumar
& Lee 2022]. As it is an individual measurement of the speci�c user instead of
a generalisation, it allows the system to approach these users without leading to
potential further complications resulting from physical overexertion.

In my research the speci�c physical load was taken from elderly people on a
physical training course, which also shows one of the possible applications of such
a state detection. As physical capabilities strongly di�er between people [Cooper
et al. 2011], it is of high importance that a system would be able to recognise
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Table 7.3: The table shows our classi�cation results for physical load recognition. It
is an abridged version of Table 5.2. Result taken from [Egorow et al. 2019].

Data Females Males Overall
- High 83.5 71.7 79.72
- Low 83.3 67.4 78.73
- UAR 83.4 69.7 79.22

such capabilities independently from the user, who may be inclined to lie about
their own physical disabilities or are not fully aware of their own limits. The
speci�c experiments where explained in greater detail in Section 5.2.2 for the
approach using an autoencoder and in Section 6.2.2 where a CNN was used.
Without repeating the speci�c experiment in this section, the achievable result
were very good, as seen in Table 7.3, and allowed for a physical load detection
using only audio cues. This is especially interesting, as it shows the potential to
measure physical load information indirectly, in this case through speech, which
otherwise would require body sensors, with a varying degree of intrusion, or
declaration from the user. This opens a variety of new possibilities, with the
caveat that the best results for the used system was done on speech data, which
is not necessarily always given during physical exertion, such as sports. Visual
sensors, or the aforementioned body-sensor, could in these cases provide a more
continuous mode of supervision.

7.3 Other User States

The former section dealt with an area of user states I described as inner states,
this was done to exemplify their originally complex interpretability as there is
no direct method to look into the �inner� workings of a user, the area of such
states is of course even wider than the examples given in this thesis and examined
in my research [Siegert et al. 2022b]. Di�erent from these aspects, I would also
de�ne a comparable area of �outer� user states. In this area falls very roughly all
information which can be recognised by an external observer. One such aspect
which was often mentioned in this chapter is the idea of indirect measurement or
recognition. Similar to methods in agricultural research, where indirect sensors
are employed to reduce stress on organics [Zheng et al. 2021], an integrated
human-machine environment could potentially prefer indirect measurements to
reduce intrusion on the user. In my research, I experimented several times with
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such approaches, replacing an otherwise necessary visual sensor. This can be
done to reduce overtly privacy concerns, such as the feeling of being watched,
but also to ease the complexity to implement a semi-mobile assistant system,
where either the user or the assistance system can be placed at arbitrary places
in the environment.

One important example of such an approach is the measurement of addressee
detection without the use of explicit information. Usually this would be done
through a wake-work, or by gaze tracking in conjunction with an interaction
agent. While both methods work on a certain level, both require either an unnat-
ural action, such as a wake-word for every interaction, or clear gaze recognition,
as well as a user who tends to look towards their interaction partner. By using
voice based indications, which are subconsciously generated during any natural
interaction, such indicators can either be supported or even fully replaced.

The reason to survey this speci�c aspect in my research is given by the high
unnaturalness and error rate for current system addressee situations [Siegert et al.
2022b]. Wake-words both impede the �ow of conversation and are prone to false
activations when uttered in non-optimal circumstances [Siegert et al. 2021]. At
the same successful addressee detection is also a necessity for all user-controlled
interactions during a HMI and as such a major part of what a user can perceive
from the system, especially in regards of functionality. The research done in
this area also led to a patent employing the results taken from [Siegert et al.
2021] which used this Continuous Learning Framework (CLF) as a means to
solve addressee detection failures in HMI systems. As can be seen in Table 7.4

Table 7.4: Results from our voice based addressee detection, abridged from Table 5.3
with information taken from [Siegert et al. 2021].

UAR [%] abs. ∆ UAP [%] abs. ∆

Meta classi�er 62.70 9.13 63.20 9.85
CLF 85.77 32.20 85.67 32.32

signi�cant results were achieved in the detection of addressees when only using
paralinguistic features. As this experiment builds the base for a proactive system
design, it will be explained in greater detail in the next Chapter 8.
Using this information about the user, as mentioned, provides the basis for a
more human like interaction from the side of a technical system. Otherwise such a
system would have problems to approach the aspect of empathy or understanding
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a human interaction partner could provide [Ephratt 2011]. It is also an important
aspect of the generation of context sensitive rules beyond the scope of current
user pro�les which often lack deeper understanding of the reasoning behind the
decisions the user takes [Champney & Stanney 2007].

7.4 Summary of Chapter

In this chapter I presented the utilisation of the formerly presented machine
learning methods in the recognition of only indirectly measurable user states.
Emotions, mental/physical load, a�ect, or similar states provide an important
part for more natural interactions between technical systems and human partners.
It was shown how each of these states could be recognised from purely speech
based information and what underlying in�uence on the user they had.

The speci�c e�ects of such information, either used in a rule-based framework
where each user state is mapped to a technical reaction, or as an input for a
more natural human-like behaviour control will be examined in more detail in
Chapter 9. There a (human) peer-like architecture will be presented and it will
be examined how such information is integral to its function.

The next step of the framework follows in Chapter 8 where �rst I will explain
how an assistant system can change from a purely reactive mode of operation
into a proactive system, and which bene�ts such a mode has. With this I also
go into the next layer of the assistant system framework, as described in Section
1.2. As this aspect requires the information from all the former chapters, inform-
ation extraction, interpretation and indirect conclusion, all based on the machine
learning framework, this will also be the �nalisation of that step.
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I
n the last chapters we examined the general data �ow of the incoming inform-
ation through a data pipeline of a typical assistance system and how this

information can be processed. Given that such a system is generally constrained
by only reacting to the decisions of the user, it can only work with provided
information. In addition to this method, the projected approach has to provide
reactive and a proactive information gathering capabilities in such a situation
when it is necessary [Siegert et al. 2021]. A logical continuation of this distinc-
tion provides also a connection to the following chapter concerning true peer-like
technical architectures. These are ideally human-like, equal participants in all
their interactions and capable of performing their own information gathering
tasks.

Contrary to this theoretical high-level process of proactivity, there is also a tech-
nical intermediate step of reactivity/proactivity possible, which will be themat-
ised here. This level of activity concerns itself primarily with the ability to collect
and generate information in case of imminent uncertainty. Speci�cally, when a
system is unable to apply a previously trained or programmed solution, either
through the lack of available information or novel problems, it may discuss this
directly with its user to solve the uncertainty. As the currently typical reactive
approach depends mainly on the available training examples, learned before an
interaction, a more proactive engaging system has to learn organically throughout
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an interaction additional information, as well as through an interactive human-
machine rapport when required. For this a suitable method was developed by
colleagues and me, which implemented this underlying idea and its self-validation
in a technical way which was published in [Siegert et al. 2021] and furthermore
patented as a novel method.

The basic idea for this chapter is taken from publications like [Siegert et al.
2021; Siegert et al. 2022b] as well as further initial experiments into this topic.
This chapter begins with a more general analysis of the changes happening during
a shift from a reactive towards proactive approach in Section 8.1. The main
researched applied aspect is in Section 8.2, which explains this approach on a
speci�c problem which is part of the Human-Machine Interaction (HMI) space,
namely the addressee detection, which is in turn divided into the solving general
problem in the usual reactive manner in Section 8.2.1, as well as the transfer into
the proactive method in Section 8.2.2, with its measurable advantages. In Section
8.3 the method gets expanded, to further include human-machine environments,
or smart environments, where human and technical agents act alongside each
other in close proximity. Section 8.4 is the summary of this chapter and presents
also an implementation in the general framework.

8.1 Di�erent Levels of Engagement

The basic framework for a general HMI based assistant system was described in
the former chapters based on a few functional groups. These can generally be
understood as the interface, the interpreter and the control unit. This separation,
which is also mirrored in the proposed assistant system, as seen in the illustration
in Section 1.2, is functionally the same, independent from the system complex-
ity. An important aspect during the process of designing a more advanced form
of assistance system is the continuous function during situations with missing
information, speci�cally how the system recognises and increases the awareness
about a certain topic or task when it lacks the necessary background data.

Most assistant systems currently work on a voice based interface model [Grün-
enfelder et al. 2021]. Every action and decision is initiated directly by the user,
who commands the next action by interacting with the system when assistance is
wished. After receiving the initiation, often done by a speci�c phrase or keyword,
the system parses the command and then activates the relevant technical inter-
faces, using databases, smart applications or similar extensions of the assistant
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system itself [Ricquebourg et al. 2007]. The relevant part here is the require-
ment of full responsibility by the user for every action taken, as each action is
dependent on the initialisation done beforehand.

Contrary to this approach, an active or proactive system, as envisioned in our
research in [Siegert et al. 2021] or generally as a more active companion or part-
ner as in [Biundo & Wendemuth 2017], does not always need to wait for a user
initiation, but may instead request user input themselves or even autonomously
decide for the next action to happen based on other stimuli, with the intention
to follow the original user intention indirectly. Such a system would not only be
much more natural and e�cient in its performance, but it could also be necessary
for the solution of certain imminent tasks, where a purely user-activated system
may prove disadvantageous. Such examples can be the care of elderly people with
inhibited communication skills or coordinating operations in dangerous work en-
vironments without continuous interaction. To facilitate a system to be proactive,
it must be capable to interact on its own accord and to make its own decision,
using the interface and decision parts of the pipeline more independently from
the user than usual.

The �rst aspect to examine for an active engagement in most HMI capable
systems includes all potential ways in which the system and the user may declare
their intention to interact with each other. The usual method in current voice
control systems, classify their interaction based on speech as either device or hu-
man directed [Siegert & Krüger 2021]. Similar less naturalistic interface options
use textual input or haptic surfaces, such as keyboards or touchscreens. Through
current text-to-speech and speech-to-text software these forms are often directly
convertible [Mache et al. 2015]. Chapter 7 described how this user based inform-
ation became usable for a system, but did not describe the process to detect the
addressee correctly.

The second aspect is normally lacking in current frameworks, the system based
intention to engage in an interaction, which is dependent on the decision making
process of the technical system. While in a current usual application a system
does not need to make any decision, or at most only in the way on how to solve a
command, a proactive system needs to be more involved. Based on a situational
indicator and process oversight, the system needs to recognise a situation when
the current task is either no longer possible to solve, or the situation as such
is not known, or alternatively changed considerably from the initial situation.
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Following that recognition, the system has to actively engage the user to solve
this lack of information or correct the approach for the designated task.

An engaging, in addition to an active, system now can employ both aspects
to recognise a problem and then interact with the user or the environment to
solve the current lack of information. Additionally, when the system recognises
the situation in advance, it may even attempt to solve or prevent a problem
before it arises and reaches the user [Weiÿkirchen et al. 2020a]. This is similar
for user independent tasks, which will be explained further in Chapter 9, when
the peer-like level will be introduced.

The prevalent topic in this chapter is the initial solution for lacking information,
and how the system can engage to generate new information. Connected to this
approach is the idea of a Continuous Learning Framework (CLF), not only for
a system to be able to recognise new problems, but most importantly as part
of the solution to learn from the generated information through the interaction.
Otherwise, without self-directed learning the system would always engage the
same problem with the same solution, repeating its errors from the beginning.
This ideal approach will be presented initially in this chapter as a middle step,
which will then be further expanded with a full decision making aspect in the
next chapter, allowing for a truly proactive system.

8.2 Addressee Detection in di�erent Engagement

Levels

The exemplary task examined in this chapter for a proactive engagement system
is from the area of addressee detection [Siegert et al. 2021]. In the context of
a voice controlled assistant system this means the ability of a technical system
to distinguish utterances aimed at the system from any other sound recorded on
the external sensors, such as background chatter or exclamations. Especially in a
natural, or even an open microphone, environment this is an extremely relevant
part of an e�ciently functioning system [Richey et al. 2018]. In this section the
development from the actually used method, which is comparably primitive and
stilted when compared to a natural interaction, towards a more proactive and
natural method, which is based on active system engagement, will be discussed.
Importantly, this also provides a blueprint for other complex information depend-
ent tasks, which otherwise require a great amount of pre-existing knowledge on
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the side of the system when solved with alternative approaches [Weiÿkirchen et
al. 2020a].

8.2.1 Development of Addressee Detection

The general task of an addressee detection system encompasses the recognition
of all possible aims, or addressees, which are possible for a speaker to have. Spe-
ci�cally, in case of a voice controlled assistance system, the primary motivation
is the separation of device-directed speech, which is information which must be
parsed, from all other recordings, often human-directed speech in a multi-user
environment or similar unaimed exclamations, which can be ignored by the sys-
tem or even should be ignored for privacy reasons [Guhr et al. 2020]. In real
world applications this none-device directed speech can also contain background
noise or self-talk and exclamations [Siegert et al. 2021]. The correct functioning
of this classi�cation is an important part of the perceived reliability of an assist-
ant system. It also contributes to the security of a system, as false activations
are often a source for signi�cant problems for the user, especially if the used
system also contains commercial applications such a buying objects trough voice
commands [Liptak 2017].

As a consequence, the aspect of addressee detection is of high importance for
the proposed assistance system as well as part of a proactive engagement method.
To solve this issue, the general method developed into an array of di�erent solu-
tions. The typical avenue with the ordinarily best results is the implementation
of multi-modal feature solutions, especially gaze detection and visual orientation
as indicator for the current addressee of an interaction in conjunction with voice
and keyword spotting [Siegert et al. 2021]. As mentioned beforehand, visual re-
cognition is not always possible or preferable, either because of environmental or
privacy reasons [Guhr et al. 2020].

The alternative which is both more natural, and less invasive, is the idea of
using the speech signal itself as an indicator for the addressee, speci�cally to
distinguish device- and human-directed speech, as also proposed in our research
in [Siegert et al. 2021]. Contrary to the common method of using wake- or
activation-words as in [Siegert et al. 2021], which have to be parsed to be under-
stood, the in�ection and paralingual features themselves should and can be used
as base for the classi�cation [Siegert et al. 2021]. While such a system would
continuously scan the spoken utterances in its surrounding, similar to a wake-
word parsing approach, it would only process the sentences if the speech signal
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prosody can be identi�ed as device-directed. Such a method can be used either
independently or in conjunction with other classi�ers. Depending if the privacy
or security requirements of the user are of a higher importance in the current situ-
ation it can also perform locally with high accuracy, as shown in the next section.
The development of this approach is based on similar works as seen in Table 8.1,

Table 8.1: Comparison review of device-directed(DD)/human-directed(HD) recogni-
tion performance of selected studies, compiled regarding the utilize dataset and
method. Speci�cally examining experiments using purely voice based methods.
Taken from joint work in [Siegert et al. 2021].

Reference Measurement Value[%]
�Conversational Browser�

[Shriberg et al. 2012] equal error rate (EER) 12.63
[Shriberg et al. 2013] EER 12.50

�Trivia-Question Game�
[Tsai et al. 2015b] EER 16.39
[Tsai et al. 2015a] EER 13.90
[Vinyals et al. 2012] EER 10.80

Smart Web Video Corpus (SVC)
[Batliner et al. 2008b] Accuracy (ACC) 74.20
[Pugachev et al. 2018] Unweighted Average Recall (UAR) 78.00

[Akhtiamov & Palkov 2018] UAR 80.00
[Akhtiamov et al. 2017] UAR 82.20
[Akhtiamov et al. 2017] UAR 82.80

Amazon in-house dataset, using [Mallidi et al. 2018] as baseline
[Mallidi et al. 2018] EER 10.9
[Mallidi et al. 2018] EER 5.2
[Mallidi et al. 2018] EER -35.36% (rel.)
[Tong et al. 2021] EER -41.1% (rel.)

Voice Assistant Conversation Corpus (VACC)
[Siegert & Krüger 2021] UAR 81.97
[Akhtiamov et al. 2019] UAR 90.10

Restaurant Booking Corpus (RBC)
[Akhtiamov et al. 2020] UAR 62.80

[Baumann & Siegert 2020] F1-score 65.50
[Siegert et al. 2021] UAR 85.77

and developed comparably slower than the multimodal approach but over a long
period of time with di�erent feature sets as base. Common observations between
these experiments noted the high individuality in the relevant expression feature
changes [Siegert et al. 2021]. Speci�cally, the di�erence between device-directed
and human-directed speech was noted, but was described as quite di�cult to
distinguish even for human listeners and annotators. This separates this problem
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from the one in Section 5.2.1, where the di�erence was based on the biological
changes in the generation of the individual speaking style of di�erent users. Here
for addressee detection the speaker behaviour or idiosyncrasies are instead the
primary di�erentiable aspect. Common descriptions by human annotators were
often contrasting, such as: More acted or more colloquial, faster or slower [Siegert
et al. 2021].

To improve the results of such a classi�er a more complex approach is necessary,
such as in our research in [Siegert et al. 2021] where several di�erent classi�ers
were combined into a metaclassi�er, using the di�erent strengths of the individual
systems to support each other for a better �nal result. While typical methods,
and even human listeners without a textual understanding (due to a language
barrier), were unable to generate good classi�cation results, our group achieved
better results with a meta-classi�er as seen in Figure 8.1. Interesting is the
result, that human listeners by themselves are only capable to achieve chance
level, while technical systems could surpass this boundary. Combining several
approaches into one system provided the system with the necessary capabilities to
distinguish speaking style and features more accurately. Even then, the systems
were generally limited to certain levels of results, which were below what a wake-
word or even multimodal approach could accomplish. To solve these restriction
required a di�erent approach to the problem, speci�cally a system which actively
engages its user during uncertainty and learns during activation from its own
errors instead of following the typical pre-trained method for classi�ers [Siegert
et al. 2021]. Practically this resulted in an improvement from 60.54% UAR or
53.57% UAR from human annotators, depending if they understood the language
of the utterances or not respectively, to an UAR of 85.77%, even above the results
possible by more complex metaclassi�ers of 62.70% [Siegert et al. 2021].

8.2.2 Proactive Addressee Detection

The highly individualised expression of each possible user, together with the
potential change of speaking behaviour during the ongoing use of an assistant
system, lead to a system which may continuously lack the most current informa-
tion. With a purely reactive system this is only solvable through simpli�cations,
such as wake-word or push-to-talk activations, or intrusive measurement methods
such as continuous camera surveillance [Siegert et al. 2021]. A proactive system,
as proposed in [Weiÿkirchen et al. 2020a], instead attempts to solve the lack of
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Figure 8.1: Architecture of the comparable meta classi�er. As input, RBC and VACC
feature sets were used, SVC turned out to be not as powerful. Models from left to
right: ComParE_func, ASR_conf, ComParE_LLD, e2e. Notation of convolutional
layers: layer name(n units, �lter size, stride). Other network layers: layer name(n
units). Taken from [Siegert et al. 2021].

knowledge by informing the user and generating new and relevant information as
needed. This connects the system also with a CLF [Siegert et al. 2021].

The CLF describes a machine learning method, which is both initially trained
and can be further adapted, especially when new or changed data is available.
During any interaction new examples are created potentially, under the assump-
tion that the system may be able to check its own result with the objective truth
of the user intention. At the same time it requires for its e�cient implementation
that the training works iteratively. Both requirements pose certain architectural
requirements not all methods can solve successfully.
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The compared meta-classi�er, but also usual deep learning architectures, re-
quires often complex training stages and a lot of training initially [Siegert et al.
2021]. A change back into the training stage, after completed training, is not eas-
ily done and as such an improved or increased training set would require a new
retraining of the system itself. The commercial variants solve this by employing
the new training externally and only applying the trained classi�er as update on
the system itself, alternatively the classifying itself is often externalised on con-
nected clusters, requiring the system to be always connected to the internet to
process the otherwise local information [Chung et al. 2017]. The relevant change
in the system itself to generate objective and correct training data additionally
would require a local change of the system.

The solution proposed was as shown in Figure 8.2. Utterances by themselves
can be recognised through volume and pauses. Instead of parsing for the exist-
ence of a wake-word, the system uses its pre-trained classi�er which is based on
a generalised training set of di�erent speakers. A positive addressee result will
be sent to the relevant parsing system while a negative result will be ignored.
Relevant to the usual model is the situation under uncertainty or after wrong
classi�cation. In case of uncertainty, which means a result which is neither close
to the category �device-directed� nor to the �non-device-directed� the system en-
gages by simply asking if an interaction was intended. Speci�cally during the
�rst interaction between user and system, where an adaption was not done, this
will most likely be the main situation. Compared with current typical systems,
this is already a more robust method, as the usual solution is to simply ignore
unclear or ambivalent results [Siegert et al. 2021]. The questions by the sys-
tem are not only used to correctly start an interaction with its user, but also
to gather a label for its continuous training process. As the user themselves are
questioned this would be as close to an expert labelling as a technical system
can provide. The problems described before for the CLF in 5.3 are still given.
The characteristics of the reoccurring user potentially develop into an over�tted
system during the training, especially when no data augmentation and optimisa-
tion steps by the system are performed. Additionally, a self-learning system in
such an con�guration is biased by only receiving a very small amount of data, in
contrast to a typical system employing user data from a wide variety of sources.
The usefulness of this approach was shown in Table 7.4, where this approach was
successfully implemented and capable of improving both UAR and Unweighted
Average Precision (UAP) around 20% compared to the metaclassi�er.
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Figure 8.2: Scheme of our proposed Faultiness Learning Framework for improved
Addressee-Detection. T de�nes the con�dence threshold before the system engages
the user. Taken from [Siegert et al. 2021].

8.3 Engaging Environmental Awareness

The presented solution was concentrated on the generation of further training
data during a continuous interaction with a user. The potential for a system
which is able to actively engage when its decision making is still uncertain is much
wider, especially when in a more integrated smart environment. The interactions
till now were based on the spoken utterances, as they provide the usual main
interface between the human and a machine. In a smart factory, for example,
with a high amount of background noise and movement, this could become less
relevant [Lee 2015]. As those environments would be less concerned with privacy,
visual sensors would again become more relevant.

Similar solutions are also possible in the areas of disaster relief or maintenance,
especially when direct human oversight is not continuously possible [Rejeb et al.
2021]. Connecting all these di�erent tasks, is the ability of a technical system
to recognise the information level for a current situation and to independently
decide if the level needs to be higher for a continuous assisting function of the
system itself.

A further aspect of an engaging system is the perceived reliability and care such
a system would provide [Alharbi et al. 2019]. As mentioned, a reactive system
is constrained by the activation through the user, which is contrary to the idea
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of a continuously caring assistant which should be able to provide uninterrupted
help, especially when the user is either unaware or unable to activate the necessary
functions, similar to a human peer.

8.4 Summary of the Chapter

In this chapter we applied the formerly described information pipeline in a prac-
tical application for an assistant system, importantly in a di�erent manner than
it is usually done. While the typically employed methods can achieve good clas-
si�cation results, it is clear that without increasing and adding to the capabilities
of the assistant system they are held back in their further development towards
user adaption. With the change from the reactive and only observing approach
towards the proactive and engaging method, a system is no longer constrained
to its initial state. Speci�cally, in the area of an assistant system there is a lack
of comparable developments, even though many aspects would bene�t from the
more active engagement behaviour, as it allows the system to solve situations
under uncertainty which can easily appear due to the highly individualistic beha-
viour occurring with di�erent users and the potential wide variety of situations
a modern integrated HMI architecture may encounter.

The solutions presented allow for an intermediate step, where a system may still
follow the typical rule-based approach of prede�ned reactions, but is also capable
of improving its capabilities in a real-time environment. This is in contrast to
current methods which are based on externalised control software, where all new
abilities and applications need to be trained for a most generalised solution and
most user speci�c adaptions based on localised user pro�les which do not change
the underlying classi�ers and architectures.

In the next chapter this idea will be expanded further for this work, when a
technical system is not only actively engaged during its interactions to a user,
but equal in its status and decision making as well. Additionally, to ful�l these
requirements the �nal control layer of the presented architecture will be explained
in detail and the full data pipeline completed.
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I
n the penultimate chapter of this Thesis, the presented concept of a peer-like
assistant system will be �nalised. Following the underlying structure of the

architecture, as shown in Section 1.2, the methods in this chapter also coincide
with the necessary functions of the topmost layer. Speci�cally this includes the
control and decision making capabilities of the system. As such, it is a them-
atic continuation of the last chapter, where the system was controlled by semi-
autonomously chosen actions during a situation of lacking information. Missing
in the aspect explained there was the ability to perform a truly user independent
objective based approach, which will now be examined here. The idea behind
this method is primarily based on the former research of me and my colleagues
as found in [Weiÿkirchen et al. 2020a] and [Weiÿkirchen & Böck 2022], which is
called the �peer�-level of a technical agent. This name is used to describe the
relative position of an advanced technical assistant in a human-machine envir-
onment. This is primarily described in contrast to the current frame, where the
technical aspect is clearly in a user subordinated position, providing often only a
user interface.

The chapter is separated in di�erent subtopics, explaining this overarching
concept in greater detail. First, the general di�erences, peculiarities and con-
sequences of this approach will be roughly expounded in Section 9.1. Because of
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the implicit impact such a system would have on its human counterpart, this is
separated into a purely technical discussion in Section 9.1.1 and an observation
of the higher impact and responsibilities such a system would have, speci�cally
from an implementation standpoint, in Section 9.1.2. The architectural design
for a technical implementation of such a �peer�-level system will be explained in
Section 9.2.1, followed by an exemplary discussion of the transfer from the pro-
active/engaging system in the last chapter into this framework in Section 9.2.2.
Finally, the potentially �nalised assistance system will be examined in its com-
pleteness together with the summary of the chapter in Section 9.3. An important
distinction of this chapter, in comparison to the former ones, is its generally
conceptual nature, as the described architecture is not yet implemented into an
experimental setup and its functional analysis is based on the combination of
several proven subcomponents instead of a full implementation.

9.1 Peer Level

The name �Peer� was chosen in [Weiÿkirchen et al. 2020a] to distinguish a system
capable of formulating and following its own set of objectives and instructions,
independently from a directly supervising human user. While this may appear
contrary to one of the primary tenets of a companion or assistant system, which
is the idea of supporting the user during problematic tasks, it is a necessary step
to remove the user based initiation from the provided support. The heightened
independence allows a system to predict and solve potential problems for the
user, before they become too imminent or severe which could happen if the user
lacks information compared to the system. Following such a design concept, care
has to be taken that such a system is not fully subsuming the decision making
processes of the human side in the shared environment, as well as to �nd a balance
between the in�uence of the system and the self-determination of the user.

While the practical implementations will be discussed in detail in Section 9.2,
the implications of such a system will be presented in this section. For this
the general impact on the user is discussed in Section 9.1.1 and the heightened
requirements on the system will be examined as follows in Section 9.1.2.

9.1.1 Di�erence in Status

The idea of a �peer�-like system is a continuation of the proactive principle ex-
amined in the last chapter. The biggest di�erence is given by the controlling
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decision making process such a system must employ. The formerly described
proactive engagement was controlled by a comparably simple if-then rule, such
as low con�dence in the generated results or lacking information of a situation as
initiation. Building on this principle a �peer� would need to be able to distinguish
not only these situations, but may additionally prioritise certain information or
situations above others depending on its own objectives and priorities. These
objectives are in turn dependent on the overarching aim of the designed system.
As a result such a system would be much more human-like in its decision making
process and be capable of much more natural interactions, than a simpler reactive
system as in [Valli 2008].

Based on the main topic of this work, such a system still needs to ful�l the
position of an assistant. Notwithstanding of further potential interpretations of a
�peer�, this is a role which may be qualitatively improved by a higher independ-
ence of the system itself. As mentioned before in Chapter 8, the current trend of
systems develops often into voice controlled databank interface, allowing for an
easy user access for a variety of information and operations [Dekate et al. 2016].
While this ful�ls the requirement of assisting the user, the general idea behind
an assistance system is a much wider concept, which is better exempli�ed as a
companion and care system [Biundo & Wendemuth 2017].

By giving a technical system the ability to form independent decisions, which
are neither directly controlled nor initiated by the user, the system becomes a
variation of a technical agent [Strasser 2022]. This gives way for a somewhat equal
human machine environment with interdependent support capabilities between
the user and the system [Blackler et al. 2018]. This in turn requires a di�erent
understanding of the cooperation from both the user and the system itself. An
important aspect, which will be examined in greater detail in the next Section
9.1.2, is the complications such a system may pose to a user in contrast to a
purely reactive variant, and which responsibilities and safeguards have to be
implemented beforehand [Meurisch et al. 2020]. The advantage is the heightened
performance which is an important aspect of future designs [Ötting et al. 2020].
In contrast the current state-of-the-art is comparably low for an interactions
partner, such as in Chat-bots or similar agents [Chaves & Gerosa 2021].

A speci�c important ability is to act even before a problem may arise or to
establish positive rapport with its user. Given a more human-like design it also
implicitly leads to a better understanding of the technical decision making process
compared to the current black-box approaches, where the user is only presented
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with the results of the internal decisions [Rosenfeld & Richardson 2019]. To
allow for both, an independent decision making process with its own objectives,
as well as an inbuilt safety for the user from bad decisions by the system, such
a design needs a robust control architecture, capable of generating, interpreting
and remembering old and new rules during run-time. Additionally, to ensure that
the interacting human agents may follow the processes of the system, it should
also mirror the human decision processes for the most part if possible. Given the
better anticipatory behaviour resulting from this, both the system and the user
are more able to adapt to each other [Vinciarelli et al. 2009].

To achieve these results the proposed system should employ the so called cog-
nitive architectures, as explained in detail in Section 2.3.2. These are methods
which are speci�cally designed to map the human cognitive process on a technical
architecture with the employment of memories and indirect rules [Kotseruba &
Tsotsos 2020].

In summary, such a system is capable of operating either alone on a continuous
running basis, as it �nds its own tasks to accomplish based on its original starting
parameter, or it can e�ciently support one or several users when that is the main
objective. The generation of new tasks and objectives in this case would be
concentrated on this main objective of supporting the user. This is comparable
with a human servant or caretaker, whose primary task is not directly stated
but encompasses all occurring support situations. Such a person also needs to
generate further sub-objectives to achieve this, while at the same time reacting
to potentially sudden problems arising which were not predictable.

9.1.2 Problem of Integrated Position

An important result of a fully integrated assistant system, which is additionally
capable of independent decision making, is the in�uence, good or bad, such a
system can make on the user. While the general idea and motivation is a system
with greater and better capabilities it follows that any erroneous decision the
system takes in�uences the user to a potentially much greater degree than the
typical reactive method could produce. While not necessary, it should be observ-
able that the objective of the system is at least aligned if not actively supporting
the potential human interaction partners. This can be achieved by generating a
set of base rules, elaborating where and where not the full range of independent
decision processes is allowed.
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As a result the system should ideally be planned to generate a �self�-chosen
dependency on the user. Instead of the formerly usual reactive voice command
dependency, this would translate into a �desire� by the system to assure the
correctness or agreeableness of its decisions with the user before the �nal imple-
mentation, especially when the decision is impactful on the human lifestyle [Edu
et al. 2019]. Other, less impactful, decisions on the contrary would need no con-
tinuous assurance, or at least no repeating reassurance by a human operator.
This is only possible by giving the system a �feel� for the relative impact.

The disadvantage of such an independent, and ideally reliable, system is the
heightened dependency the user develops towards the system in question. Instead
of planning each interaction beforehand, the user may be tempted to relinquish
control or even high level decision making to the system. In this con�guration
the user would only actively engage with a problem during a phase of technical or
information impasse, and may then have less necessary information to deal with
this problem as they were not aware on how the system came to be. In this case
a system is required to provide all necessary information before it asks for a �nal
decision by the user, and additionally the system needs to anticipate the time
needed to inform the user of the problem to prevent that the user input arrives
too late.

Nonetheless, as every system is open to potential errors, human or technical, the
questions of �nal responsibility should be cleared before using such an integrated
system. For example in an industrial environment such a system would not
replace the need for a human supervisor, but alleviate the workload during regular
situations. In case of a home care application, similarly, the patient should still
be regularly visited and examined by a capable human professional, while the
technical system would primarily help with less involved day to day activities.

A �nal consideration has to be taken concerning the ability of any system to
be too active. A system optimised for pattern recognition and proactive problem
solving may unintentionally solve non-existent problems. Without an internal
supervision aspect to the decision and control process, which would allow poten-
tial situations to develop to a certain degree before the correction is applied, the
user could potentially become a marionette to the system. In this case a higher
error rate would most likely be preferable to an overbearing system.

In e�ect any independent system working in close relation to a human partner
needs a set of overhead rules which constrains or instructs the system on how to
employ its self-steering abilities. While this detracts from the core principle of a
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true independent system, in lieu of the availability of morality or true understand-
ing capabilities in current systems architectures, it is a necessary compromise.

9.2 Peer-like Architecture

Following the presented implications and safety measures a �peer�-like system
would have, the next step is the technical solution which can potentially ful�l
these requirements. This includes an architecture which can provide the general
control abilities on top of the underlying information pipeline as presented in the
chapter before. This includes the ability to interpret information and generate
decisions based on external signals, as well as the internal implementation of user
input independent objectives and priorities, while at the same time being able
to constrain them for a safe user environment. In the following Section 9.2.1 the
general architecture implementation will be shown, as well as a further detailed
analysis in Section 9.2.2 of this new architecture in an application where situ-
ational awareness and knowledge generation has to balanced inside user-engaging
frameworks.

By separating the idea of a �peer�-like assistant into the system side of decision
and control and the user and environment side of information and awareness, it is
easier to provide a necessary layer of security and oversight. The idea of leaving
a technical system with full control over the user support, while also allowing
the system to generate its own rules of solution may not only unsettle the user
but can also realistically lead to grave errors as the rules may be faulty or based
on correlation instead of causation. For this the system side in my approach is
still regulated by easily interpretable and controllable rule-based architectures.
For example, by giving the system certain boundaries for states which should not
be achievable during the assistance process, certain rules can be deleted before
they are applied. On the other side the abilities of current machine learning
systems should be much greater than the usual generalised solution provider,
both for new tasks but also for user speci�c adaptions, in this case the use of
dynamic adaptions could become a helpful and necessary addition to provide the
best possible results during an interaction. Both of these, the advantages and
disadvantages, need to be evaluated against each other, which is the aim of the
presented architecture.



9.2. Peer-like Architecture 133

9.2.1 Decision and Control

The practical solution for the establishment of a �peer�-like system as described
in [Weiÿkirchen et al. 2020a], mirrors the general architecture from Section 1.2.
The awareness the system generates about its surrounding can use the described
pipeline of sensors, machine learning solutions and databanks. Included here are
the directed user commands from interfaces, such as voice and haptic controls,
but also indirect command information like mimic or gestures. User unattached
information, such as time, temperature or similar environmental information are
additionally used to generate a situational awareness, allowing the system ideally
to recognise a potential overarching task or problem of the user without direct
input.

In the beginning, without the required background information to solve prob-
lems independently from the user, such a system would be similar to the typical
assistant system of today, with the added aspect of active engagement during
task solutions. This phase is called �rule-based� in our research, because it is
simply the application of standard rules, often as a result from a speci�c activ-
ation by the user. Importantly, during each interaction the system collects data
to generate a situational pro�le as an experience. This goes beyond the typical
user pro�le often generated based on repeating inquiries or interactions, as it
connects user preferences with situational speci�cs together into a more complete
representation.

Cognitive architectures allow this kind of pre-planned mapping through their
inner design [Kotseruba & Tsotsos 2020]. Adaptive Control of Thought�Rational
(ACT-R) for example employs a method of accessing memory units, such as
speci�c tasks, based on the grade of matching between the remembered situation
and the currently recorded one [Bothell et al. 2004]. This can be as simple as
being the same command input by the user or the mentioned situational match.
In the �rule-based� stage, most of these tasks are pre-programmed and connected
to the control inputs. The implementation of additional peripherals also would
come with their starting set of rules and regulations, mirroring again the typical
design of current systems.

Di�ering from the typical approach is the underlying potential learning pro-
cess. During any interaction or observation the system collects the mentioned
data, additionally, by employing the engaging activity from Section 8.1, speci�c
questions may be asked to ascertain user priorities and objectives. This stage,
depending on the intensity of the questions posed by the system, is called the �ex-
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ploration� or even �exploitation� phase [Weiÿkirchen et al. 2020a]. Exploitation
in this case is given when the system interrupts the user in a frequency where
the satisfaction and trust in the system may be reduced. Given the underlying
aim of a fast and e�cient user understanding this may sometimes be required
and preferable instead of a continuation of the proven �rule-based� method. At
the same time the system must be perceived to be trustworthy and e�ective to
ensure a continuous use, which is needed to generate the expertise for its task,
this balance act is the main objective of this part of the system [Wienrich et al.
2021].

The important aspect is the ability of the cognitive architectures to generate
new rules based on experience. Particularly, the recording of a new situation com-
bined with a system operated task can lead to a general rule which �res the task as
soon as the situation arises again. These requirements before activating the task
can be of di�erent complexity, ranging from simple new command instructions to
speci�c environmental situations independent from the former direct interaction
by the user. Depending on the learning rate of a system it is either fast in the
implementation of new rules or requires regular repetitions before learning a new
rule.

An important aspect, especially in conjunction with the �peer�-level, which
implies a certain independence from the user, is the safety and robustness of
these new rules to be correct. A relatively easy pitfall such a method possesses
is the codi�cations of simple correlations as a rule [Duangsoithong & Windeatt
2010]. Without an understanding of the underlying causation, which a technical
system may not easily achieve, this is the most likely alternative result. To reduce
such errors and to allow for a more secure application of this method, is should
contain a series of safeguards, which were examined in greater detail in Section
9.1.2. One of the most applicable ones is the ability and requirement of the
system to present a new rule to the user before memorisation.

Given a correct new design of the new rule, which is based on the behaviour
and priorities of the particular user instead of the general rules available from the
�rule-based� stage, which are aimed to apply to a wide variety of di�erent users,
this builds the base for the �nal stage. This stage is called �data-based�, and even
though it repeats basically the �rst �rule-based� stage in its process it di�ers in
the generation of the used rules. This di�erence is the adaptiveness and speci�c
applicability of the rules on either the speci�c user based on real examples or on
designer given assumptions based on statistical probability. During the lifetime
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Figure 9.1: The architecture and control schema. The control unit observes the di�er-
ent stages and decides based on the change of the information and user satisfaction,
which state of behaviour is preferable. The initial state is always pre-planned rules
on the left. During the life cycle of the system this changes continuously towards
the right. Exceptions happen when the user has to be calmed down, in which case it
reverts to the simpler rule state. Figure adapted from [Weiÿkirchen & Böck 2022].

of the system it may continuously change between the mentioned behaviours
of stable reactive behaviour, explorative information gathering and optimally
user adapted rule sets. Every time a new situation arises with adequately novel
information the system will change back to the exploratory stage, as it needs to
learn the new parameters. In case of high complexity, and in practically every
time when the user loses interest and goodwill in the borderline exploitative
behaviour of the system, it may also return as a failsafe into the original rule-
set. This should be done as in these situations it is simply a variant of the
current architectures, combing full user control with the lowered expectations
of a customarily used approach by other systems, giving a sense of stability to
the user. As soon as the situation stabilises, the system may again engage in
exploratory behaviour, continuously gauging the limit of the possible interaction.
This can be seen in Figure 9.1 in greater detail in a technical schema.

This shows the initial decision to start the behaviour of an agent in a fully
rule-based environment, where each reaction is pre-designated by the human de-
velopers of the system itself. Similar to current approaches this can be upgraded
with new rules, which are generated from generalised data collections done dur-
ing the lifetime of the application. These are produced externally and provide a
rough approximation for the best practice over a wide variety of di�erent users
and their idiosyncrasies. As soon as the system approaches a problem or task
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which is not solvable by the available rules, or where the certainty of the generated
solution is under a speci�c threshold, the behaviour shifts into the exploratory
stage. This is marked by increased back and forth interaction between the system
and the user, ranging from verbal or textual interviews to gathering of inducted
sensor data and correlating them. Ideally during this process new rules can be
designed locally, which expand or replace the generalised ones, which are instead
personalised for the speci�c user and their singular environment. In case this
explorative behaviour stresses the user, as in reaching the limit of their goodwill,
the system can still fall back to the pre-designed rules from before. In the long
term this method can then replace the full set of rules with individualised one,
which are based on local and speci�c data instead of a general approximation as
in the beginning. Still the ability to reduce the state of the system back into its
basic form is a necessary precaution to ensure the safety of a rule set which was
approved by a human observer in case of faulty training solutions. An accompa-
nying �ow diagram for the behaviour can be seen in Figure 9.2 at the end of this
chapter. In case of a simple cognitive architecture, the system's reactions can
instead be simulated by a basic rule set deciding the relevant changes of state.
While this does not include the wide array of possibilities of a true cognitive rule
system, it approximates the same reactions with less technical complexities.

When examining the system as a �ow diagram one can see where the internal
architecture of the system still follows a rule-based, and as such comprehensible,
reaction. The adaptiveness and uncertainty concerning the decisions of the sys-
tem are contained in the rules for the solution �nding and not in the interaction
with the user, who retains the control on which level to interact. The speci�c
thresholds the system may employ to decide if enough data is available or if the
behaviour is still agreeable can then also be decided by the users themselves.
As a rough estimate for the knowledge level we proposed the amount of internal
connections to other data points in [Weiÿkirchen & Böck 2022], while the user's
agreeableness with the system can be an adaption of a typical emotion and af-
fect recognition as presented in this thesis. The ability to discern if personalised
rules approach the current problem is solved in cognitive architectures through
mapping the rules on current situations.

The great improvement in contrast to the current method is the ability of the
system to advance beyond the basic structure of the assistance provided. This
is necessary for the greater personalisation but also allows the employment of
the system in areas where new tasks may occur. The same architecture which is
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capable of learning from the user, can potentially also engage new environmental
situations within the same framework.

9.2.2 Information and Awareness

In the previous section, frequently mentioned topics were the situational aware-
ness and the information level of the system. These are technical interpretations
of the human feeling of not knowing enough. As an integral part of the engage-
ment control process it is also an integral part of the advanced idea of �peer�-like
systems. Considering the change between rule-based, exploratory and rule gener-
ating stages, the con�dence of the system that the available information is correct
or not su�cient are a direct indicator whether the stage has to change and for
the system to collect new or more conclusive data before deciding on the next
step.

A purely mechanical solution would be a simply matching process, only if
a situation is identical to a former state the system can assume a repetitive
behaviour from the user side. Alternatively, when a situation mostly matches
for several examples, a system ideally discards all information which appears to
be dynamically changing between the available examples. Both these approaches
employ a simple algorithm or assume an underlying simple pattern. Especially in
complex human behaviour this cannot always be assumed as given, as it discards
the underlying context which in�uences the decision. For example the changing
of temperature control settings is not directly dependent on the time but more
likely on the outside temperature, nonetheless examples taken from the human
user would indicate that changes always occurred after a certain time as the
temperature also follows a certain pattern. This is a problem in as much as the
system would not directly be able to distinguish between the correlation and the
causation.

To reduce the impact of correlation instead of causation, which is given when
employing pattern recognition, as the system may not understand the underlying
connections, several solutions are possible. The most straightforward but not
often employed is by simply engaging the user, asking for direct con�rmation
before changing or creating a rule. This would allow for the user to reclaim the
decision making process, while still allowing the system to assist in the creation
of the rules. This assistance by itself would take workload from the user, who
otherwise would need to program each aspect of the assistance system themselves,
instead of semi-automatically as described here. Alternatively, we proposed in
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[Weiÿkirchen & Böck 2022], the designation of a knowledge value for a speci�c
information based on the amount of connected available information. Practically
this means that a situation or topic is only assumed to be understood, when the
system was able to generate a suitable frame of reference in conjunction. This
can either be repeating behaviour under the same or with slightly di�erent cir-
cumstances. In case of the last example, when only connecting the temperature
control to one frame of reference, the time, the knowledge value is low and should
be cleared with the user. Alternatively, when the system is able to connect time,
outside temperature, location of the user and personal temperature preference
together the value is high and the creation of a rule can be approached. Gen-
erally, the higher the in�uence on the user the rule would have, the higher the
amount of knowledge should be before the creation should be attempted. The
important di�erence to the usual approach is the continuous search for contex-
tual information instead of a surface level pattern matching. This requires active
information gathering from the side of the system, requiring a new approach for
Human-Machine Interaction (HMI). Especially in cases where prior decision mak-
ing processes no longer apply, instead of slightly adapting the pattern the system
would now search for the underlying connecting correlations.

A possibility is to describe the knowledge value as a formulaic expression, such
as:

K(T ) =
n∑

i=1

(Ii(T ) +
m∑
j=1

(wi,j(T ) · Si,j(T ))) (9.1)

where K(T ) is the knowledge value concerning the topic T , and

Ii(T ) are all beliefs or information directly concerning T , where n is the
amount of available information,

Si,j(T ) are all the contextual information concerning T , where m is the
amount context information for each i,

wi,j(T ) are the weighted importance which connects the context to the
original topic T

To control the general trend of the system to collect new knowledge indiscrimin-
ately, the system needs a complementary value of user satisfaction. User satisfac-
tion is to be understood as a fusion of di�erent aspects indirectly explaining the
general agreeableness of the user to continue with a system interaction. Practic-
ally, a user may be discouraged from further system engagement, either because
of dissatisfaction or impatience with the system to cope with a new situation
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without existing rule. This may lead to a discontinuation of further user input,
as the user decides to approach the task themselves without further assistance.

A negative user reaction towards the help received from the system is the worst
case for the assistance system itself, as it may stop any interaction and in turn
any further data generation, as the system is viewed as unreliable and ine�cient
to provide a solution. In such cases where the satisfaction drops to a low level it
is of higher importance for the system to assure the user either its competence
or reliability, as the base problem of lacking information most likely still prevails.
The system instead should try to solve the dissatisfaction by following a proved
method. In the presented architecture as seen in Figure 9.1 this is achieved by
changing from �exploitative� behaviour back to the original �rule-based�.

By changing between these extremes dynamically instead of simply switching
the illusion of human like behaviour is generated. The system approaches a new
problem and slowly develops interest, as soon as the user is dissatis�ed it tries
to reassure by following simpler methods while acknowledging its shortcomings.
This is not only done to better achieve a long term data generation, but also to
assure a felt form of reciprocal empathy, where the user may foresee the future
behaviour of the system. This gives another aspect of trust, or at least habitus
between both agents. This should lead generally to better long-term cooperation
than a singular approach or method, which would lock the system into a non-
reactive way.

The general examination till now worked on the usual voice interaction struc-
ture, incorporating questions and answers with a higher situational awareness. As
explained in Section 2.3.1, interactions can be happening without voice, either
by other interfaces or simply through indirect assumptions about the interaction
partners intentions. Viewing all interactions between the user, the environment
and the system as sources for further information, the system may engage, on a
small level, in manipulation of the environment to create further reaction from
the user. For example the closing of window blinds during high outside illumin-
ation can be employed to gauge the interest of the user to make this a regular
decision of the system during di�erent illuminations levels, or at least generate a
system question if this action is wished by the operator.
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9.3 Summary of Chapter

In this chapter the discussion of the assistant system was completed with all ne-
cessary functional aspects as described in the introductory chapter. From the
technical awareness through sensors in the human-machine environment till the
human-like decision making processes using cognitive architectures, the system
is described over all stages and in its functions as an advanced assistant system
which is not only capable of reactive but instead of proactive user engagements.
The �nal layer of the cognitive architecture as described here would allow such
a system to possess a growing potential in excess of the currently regular applic-
ations. Given the full set of abilities such a system provides, it is also capable
to work in an unknown situation and adapt [Jakobson et al. 2006]. This con-
cludes the presented system as supported by my research and is followed with
my conclusions and outlooks in the last chapter which is next.
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Conclusion and Outlook
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T
his thesis described an advancement of the typical assistance system employed
nowadays. The general structure of a continuous information pipeline was

described and separated into three functional groups, each presenting a di�erent
aspect of a modern system with its own included objectives and tasks. During
this thesis high importance was set onto the architectural design and methodo-
logies behind machine learning and cognitive architectures. Both were presented
with typical applications and state-of-the-art implementations in Chapter 2. The
other important tool used during this thesis was a selection of employed data-
sets, given the nature of self-learning architectures; these directly in�uence the
capabilities of the �nalised system, by either providing idealised expressions or
real world occurrences. With the presented results from Chapter 4 onwards, I
presented the improvements for the feature extraction and processing in Chapter
5 and the preparation for di�erent modalities for di�erent tasks in Chapter 6.
Concerning the applied machine learning methods Chapter 7 examined the dif-
ferent deep learning applications employed, followed by Chapter 8 with the results
for employing machine learning solutions for the detection of inner user states.
Finally the high level decision making and control aspects of an assistant sys-
tem were examined in Chapter 9, �rst as proactive information gathering device
which works independently from the employed pre-training, a second as an over-
arching cognitive architecture control system. The results will be �nally shortly
collected in this chapter with a conclusion and an outlook for further research
opportunities in this sector.
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10.1 Results and Summary

During the thesis a variety of di�erent topics were examined and potential solu-
tions for the overarching architecture were researched. In the following the speci�c
results will be reviewed with a deeper insight on how these results may in�uence
the potential true �peer�-like assistance system. The underlying structure is again
based in the information processing pipeline, as it de�nes how any interaction or
situation is processed throughout the system coming from the real world, and
�nalising in the overarching cognitive control architecture.

10.1.1 Results for the System Awareness

In Chapter 4 signi�cant features were the main objective of the research. For this
the identi�cation of these features was relevant, as well as a possible reductions
of the necessary amount of data points. The importance of this research is to
reduce the necessary processing power and complexity, so that even a system with
a plethora of di�erent observed environmental and user states is not overloaded
and can react in a timely fashion to a change in situation. Signi�cant features
are as such de�ned in this context as information rich singular data points, which
ideally in a collection contain little overlap between each other.
The �rst research done was to distinguish acoustic features which contain a lot
of overlap when observed over several human speakers, but which are potentially
rich in information. This is an e�ect due to the high dynamic and individualistic
qualities of speech, especially in their expressiveness. To evaluate the e�ect of the
signi�cance, the capability of a classi�er with the di�erent features was taken as
measurement. The result was the reduction from 933 features down to 16 which
provide nearly the same classi�cation abilities, while requiring the speakers to
be roughly grouped based on their speaking behaviour, in this simple case by
biological sex and age.

The second area of research, done in Chapter 5, examined the general changes
when transferring acoustic data into a visual representation. This is relevant as
many current state of the art classi�ers are based primarily on visual input data,
opening a wide variety of solutions to solving these acoustic tasks. Alternatively,
it also examines the possibilities how visual data representation can contain data
in several dimensions, in contrast to purely acoustic ones which are represented
either in a wave format or as a simple value array. The localities of information,
similar to the temporal changes, provide relevant information snippets for many
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tasks and as such may provide a di�erent improvement. The research showed
that spectrograms provide a dense and expressive representation for visual clas-
si�ers. It is also still relatively well interpretable for human experts, in contrast
to a simple waveform depiction. It also allows for the comparison over several
examples which allow the depiction of �hot-zones� or key points of information
for di�erent tasks, such as exemplarily the depiction of emotion.

In conclusion both areas of research proved positive, the high individuality of
speakers may inhibit the abilities of a technical classi�er, but when implement-
ing a relatively simple pre-selection system the amount of necessary information
can be reduced signi�cantly allowing either better generalisation or the imple-
mentation of more tasks on the same system. In summary it can also be said,
that changing the representation from one format to another, as from acoustic
to visual, can be positive for a variety of reasons, such as information density or
interpretability.

10.1.2 Results for the System Understanding

The next topic of research concerned itself with the ability of machine learning
systems to interpret the aforementioned acoustic signals into machine represent-
ations of human user states. Because of the wide variety of di�erent applications
and architectures, this concerned most of the performed experiments to one de-
gree or another. The experiments described in Chapter 6 were primarily about
the implementation or evaluation of deep learning architectures, as well as po-
tential alternatives possessing similar advantages without the high requirements.
Alternatively it also explored the possibility of changing from a pre-trained gen-
eralised classi�er to a system continuously adapting over time to a specialised
selection of user characteristics.

The research into deep learning, such as Convolutional Neural Network (CNN),
provided insight into a system which is capable of high classi�cation results but
also requiring a high amount of example sets and data. Alternatively my research
presented the idea of simply layering classi�ers after each other, using the inform-
ation extracted from the signi�cant feature research before. Using this method, a
result of around 69% Unweighted Average Recall (UAR) could be achieved either
with greater or smaller datasets, in the classi�cation of the mental load in human
speakers. At the same time, the layering of two classi�ers behind each other im-
proved the results compared to a singular used Support Vector Machine (SVM)
system, when using the smaller feature set. This allowed the system to work sat-
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isfactory even in data size areas in which traditional deep-learning architectures
are not applicable. As a disadvantage the system designer needs to decide on
the di�erent classifying functions for each layer, in contrast to a traditional deep
learner which can train these functions themselves.

Alternatively this ability to optimise the feature selection for a classi�er can also
be implemented into a layered architecture through the use of an auto-encoder.
With this implementation the presented experiment was able to generate a feature
set which was reasonably robust even for di�erent datasets using similar but not
the same input types.

The alternative to the mentioned generalised and pre-trained architectures is
the use of smaller but specialised systems. In my research this was done on a
SVM based classi�er for a problem which was too complex to be solved in a
pre-training step. Instead by training the system over time with examples during
an interaction with a speci�c speaker the system was able to achieve results in
excess of 85% UAR, while similar complex system remained at chance level and
more complex meta-classi�er reaching 62.70% UAR.
In conclusion, the results in this chapter showed promising results in exchanging
complex deep learning architectures with architectural alternatives. Especially
for smaller example sets, or situation where human expertise is available this
allowed for a great reduction in complexity.

When employing visual input, either because of the type of performed classi-
�cation or because of the chosen representation of the available data, the use of
a convolutional neural network becomes theoretically possible. This is relevant
as it presents the opportunity to employ a wide range of tools and methods of a
widely adopted and actively developed system, both by academia and business
applications. As described before, it still requires a great data size to reduce the
impact of over�tting and to assure a robust training phase, which then can em-
ploy a system which has proven to be capable of even very complex applications.
In my research, which was at the time novel in its method, I implemented an
emotional classi�er on exactly this architecture to observe this e�ect.

In my work I could observe the impact of both the data size and the employed
architectural design, such as depth and number of functional units. And while
some tests with more complex approaches only achieved comparable results to
regular baseline methods, this e�ect could primarily be attributed to the small
data size which was employed during the training. This leads to the conclusion,
that certain aspects of an integrated system should to be designed beforehand
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to employ the most e�ective use for the available data. In this case it could be
advantageous for the system to develop two di�erent approaches in parallel, one
applies to the currently available data with fast optimisations and good short
term results and another system which would be trained during a longer period
of time and would take over the classi�cation task after achieving stable and
better results. Combined with the active engagement in my latter research such
a system would produce its own training set over time with its own set of priorities
based on the environment and the users.

One of the most relevant aspects to employ machine learning solutions in hu-
man assistance systems is the ability to discern information form the human
interaction partner, which are not readily measurable, such as emotions, mental
and physical states or unmentioned dispositions. Using the ability of self-learning
instead of fully pre-designed human expert knowledge allows for better results in
such high complexity tasks which are additionally highly dependent on the spe-
ci�c expressions of the human user. The disadvantage for all these methods in
contrast is the general use of correlation and not causation in the �nding of the
results. As such the systems require a great amount of external and internal
checking to assure that not erroneous or falsely biased training occurs, which
then skews the achieved results.

In my research, shown in Chapter 7, these tasks where primarily concerned
with the recognition of these user states through acoustic information, allowing
for both a close approximation of human abilities through the interpretation of
paralinguistic features, as well as a perceived reduction in privacy invasion in
contrast to a system employing a continuous visual observation or requiring the
use of wearable sensor equipment.

The examples used in my research were three di�erent sets of user states,
emotions, mental load and physical load. Emotions and the more inclusive aspect
of a�ections describe a baseline for many interactions. As shown by my and
external results the general declaration of emotional states is robust and results
in good results which are comparable or even higher than comparable human
abilities. As this aspect would directly in�uence the way a human or technical
system should approach a speaker it would build also the basis for the behaviour
and engagement control. The mental load, in the context of this thesis described
as the general stress and concentration ability of a user when performing more
mental tasks, is equally important for a system to distinguish. Especially the
assistance aspect needs an independent veri�cation of the user's mental state,
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given the inability to rely on an accurate self-expression of most speakers to accept
when they are under mental duress. My research showed high results, especially
given the ability of a system to learn the individual expressions of a speci�c user,
comparable with a long-term user of an assistance system. The last experiment
aspect is the physical load, similar to mental load but concentrated on physical
instead of mental tasks. The speciality in this case is the high indirectness of the
interpretation, as the most measurable indicators for physical stress are based on
inner body functions and not on speech or acoustic sources. Nonetheless, good
results were also achievable for this task, allowing a potential assistance system
to support or alarm a user when a certain stress level is reached.

In conclusion it can be said that acoustic information in conjunction with
machine learning systems can be applied to recognise a very wide variety of
otherwise not measurable inner user states. Importantly, these were all testable
against human expert knowledge.

10.1.3 Results for the Peerlike Systems

The next research, done in Chapter 8, was done to examine the possibility to
change the engagement level from a technical system to get away from a typical
rule-based means. As an aspect which is directly accessible from the human user,
speci�cally how the system acts or reacts to outside situations and interaction, it
is a necessary area of improvement to achieve �peer�-like reception. As it precedes
the later change in control behaviour, it only employs additional elements to the
formerly explained tools.

As an important aspect of engagement, the interaction success depends strongly
on the ability to discern if the user attempts to communicate with the system or
with another agent not connected to the technical system. This aspect, called
addressee detection, works primarily through wake words or activation controls.
To improve the natural interaction a system should be capable of identifying the
addressee based on the intonation alone. As such the system designed in our
experiment in Chapter 5 was able to learn the speci�c expressions of a human
speaker over time, using the results from the Continuous Learning Framework
(CLF). Even for such a complex problem the �nally resulting system was capable
of reaching a high level of robustness. For an integrated human machine environ-
ment, where the same human users would continuously interact with the system,
the perceived time duration for the training would be acceptable. Such a solution
prohibits the implementation in an open environment with changing human users



10.1. Results and Summary 149

present, as a system would be unable to achieve similarly high results.
Based on these experiments, and the underlying idea of engagement levels, a
similar system for mobile technical agents would be implementable. As a system
would discern a lack of information it would engage by collecting new information
and then improve its own trained abilities further.

The �nal aspect, examined in Chapter 9, was the change from a typical reactive
architecture to a more independently deciding �peer�-like system. The important
aspect of this is the ability to provide a system not only with the ability to choose
from several options, but also to generate its own solutions and to react in an
understandable manner for an outside observer. This part was mainly on a theor-
etical level. It examined two connected but discrete problems for such a system.
The �rst part is the general structure on how to implement such a system with
the realistically available technology, and the other part was a practical example
for the implementation to control the engagement and information gathering for
a system to improve both aspects of the system.

The �rst question concerning the most quali�ed underlying architecture was
answered in our examination of cognitive architectures, like Adaptive Control
of Thought�Rational (ACT-R), which is directly oriented on human cognitive
functions. The presented pipeline is directly implementable in the general ar-
chitecture as one of the input interfaces. Even more importantly, the ability to
design methods to solve a problem and compare with older situations to then
decide based on available information is the function of the memory accessing
stage in ACT-R where all tasks are saved in this manner. Overarching priorities
are also part of the general structure, with the ability to create new rules and
actions based on these priorities when given the rights by a human observer. The
important part is that, while at no stage true arti�cial intelligence is achieved by
the system, the reaction on outside stimuli is exactly modelled after the human
way. Given a priority for assistive functions, such as smart home environments
or smart factories, the system would be �lled with the most obvious �rst situ-
ations and solutions and would then continuously adapt further to the developing
situation, based on occurring new information.

The examination of a practical problem presented the idea of a system which
was trying to optimise the system side need for information gathering, while at
the same time providing a positive rapport with the user concerning fast and e�-
cient reactions to every interaction. Comparing this problem with a variant of the
exploration-exploitation problem, the system needs to achieve a sensible balance
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of the two priorities, without possessing a universal ground truth for best beha-
viour. Depending on the current user, as well as their speci�c current situation, a
user may be willing to interact for longer times with the system while providing
all missing information required for the system to generate a complete pro�le
of the interaction. Alternatively, during high stress and pre-existing emotional
situations, a user may prefer a simple but reactive version of an interaction which
provides the necessary assistance without further rapport between the user and
the system. In the examination a structure was introduced which continuously
observes the user state and gives a system a variety of interaction or engage-
ment behaviour options, which changes the short-term priorities on the �y, while
retaining the overarching priorities of the original base-line system.

10.2 Future Works

Given the results of this work, the general outline and implementability of an
advanced assistance system can be assumed to be possible. Given the wide array
of possible applications for assistance systems there is still a wide variety of partial
functions whose capabilities could be researched. Examining the pipeline there
expand several areas of interest for further consideration.

First of all in the area of awareness, there is still the expansion of all the avail-
able modalities, especially the visual and body wearables. While most systems
would ideally reduce the necessary modalities to reduce the invasion of privacy,
other studies have shown the positive e�ects of employing multimodal input in-
formation.

Concerning the use of machine learning methods, there is still the ability to
discern situational instead of inner user states. This requires the use of use cases
as they appear in typical assistance applications, as well as their use in external
sensor applications. Further experiments, requiring much greater example sets,
could be done to �nd the speci�c change from one system framework to another,
speci�cally the deep learning one. Additionally, more usage of the continually
learning framework should be done as an alternative for the most complex of
classifying tasks, as to their ability to adapt to special situations without losing
their general abilities.

Most importantly of all, the overarching cognitive architecture needs to be
applied in a real life simulator, while all the di�erent aspects work, based on
internal and external research, it needs to be condensed into a singular system
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employing all the di�erent aspects of a fully functioning assistance system. Such
an experiment would need the ability to implement such a system for a long-term
for it to learn during its lifetime all the abilities which otherwise would need to
be fed in manually per design.
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