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1 Intoduction 

Accurate measurement of time domain in modern computer systems often plays a key 

role in high-performance computing applications and communication processes. 

Without that it is difficult to imagine the process of end-to-end performance monitoring 

and designing traffic control algorithms in computer networks [1, 2, 3]. The correct 

performance of the majority of services and proper algorithm implementation in 

telecommunication protocols depend on the accuracy of time domain measurements. 

Due to that fact the necessity for reliable and fast time sourcing is obvious. 

However the high-precise and high-performance time interval measurement is facing 

some significant issues. Firstly, the Linux kernel uses different time sources. The most 

interesting are the Time Stamp Counter (TSC) [4, 5, 6] and the High Precision Event 

Timer (HPET) [7, 8]. Their main characteristics such as reliability and stability depend 

heavily on the processor architecture. So the time counter can have non-monotonic 

characteristics, it can even decrement ticks, or it may overflow and wrap back to zero.  

At this point the high priority task is to identify the most suitable and reliable time source 

for the appropriate measurements. Moreover, there are some cases [9, 10, 11] where it 

is not enough to have the accuracy of a timer up to microseconds. If it is meant the real 

high-accuracy performance, there must be a capability to handle nanoseconds and an 

ability to make appropriate operations with them.  

In this thesis, a novel approach solving the problems of high-efficient and precise time 

measurements on PC-platforms as well as ARM-architectures is elaborated. As a basis 

some already existing classes CTSCTimer and HPETTimer have been used. They 

provided the access to TSC and HPET hardware timers, respectively. However, there 

were no any guarantee that used processor architecture possesses of these timers, and 

even if it does no guarantee, how stable TSC and HPET are. In other words, it means, 

that user should investigate in advance which timer hardware is more suitable for his 

purposes and after that take a decision, which classes to use. Furthermore, existing 

CTSCTimer and HPETTimer allow operations at most with the resolution of 

microseconds. Also their sleep state spinning entirely on the CPU – so called busy-wait, 

which is very inefficient. It should be taken into account that CTSCTimer was written 

about 10 years ago. Since that the world of C++ has undergone enormous change, and 

one of the main goals were developing better software design, making them correspond 

with the C++11 standards and achieving greater efficiency and code maintainability. 
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As a result, a new high performance timer class HighPerTimer and a corresponding 

library has been introduced. It combines the known time counters and automatically 

takes upon itself the choice of suitable source (TSC, HPET or OS timer) like Linux 

kernel does it at boot time. It should be emphasized that the setting source for 

HighPerTimer occurs in user space, not in kernel space. The latter feature makes the 

HighPerTimer library very usable in versatile program environments on different PC and 

embedded processors. HighPerTimer class also has the user ability to change default 

timer source to another one. It provides access to some advanced hardware features 

such as CPU information or some TSC and HPET features. HighPerTimer extends a 

scope and successfully runs on new and old models of Intel, AMD, VIA and ARM 

processors.  

One of the most important achievements in this work is a new HighPerTimer combined 

sleep function. Actually, for sleeps standard C Library system sleep or busy-waiting 

mode (or so called spinning wait) is mostly used. System sleep runs not on CPU, but is 

a missing the target wake-up time for more than 50 microseconds in average, which is 

unacceptable for high-accuracy program sleep. Sleep in busy-waiting have a miss about 

100 nanoseconds, but keeps the CPU busy and prevents other threads from using the 

given CPU. It means that its performance is limited by numbers of processor cores. 

HighPerTimer sleep combines these two ways of sleeping and has a minimum 

nanoseconds miss with minimum CPU utilization, which creates a big competitive 

advantage over its predecessor solutions. 
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2 Main System Timers 

The kernel usually explicitly interacts with three kinds of hardware clocks: the Real Time 

Clock (RTC) [12], the Time Stamp Counter (TSC) and the High Precision Event Timer 

(HPET). The first two hardware devices allow the kernel to keep track of the current 

time of day, the latter device is programmed by the kernel so that it issues interrupts at a 

fixed, predefined frequency. However, there are always one more alternative – to rely on  

the  operating system choice, which means to use some system functions for obtaining 

the time value. This system functions apply for the most stable clock source, which it is 

set during the boot by kernel. Accordingly, the HighPerTimer library posses the most 

usable and preferable time counters: TSC, HPET and alternative timer of operating 

system (OS Timer). For each of them, brief overview of their functionality, preferred use 

as well as disadvantages along with some performance aspects are described below. 

2.1   Time-Stamp Counter Overview 

The Time Stamp Counter is a hardware feature found on a number of contemporary 

processors (on the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core 

Solo and Intel Core Duo processors and later processors) [13 vol. 3B 17-49]. The TSC 

is a special register which is simply incremented every clock cycle of a particular CPU. 

Since the clock is the fundamental unit of time as seen by the processor, the TSC 

provides the highest-resolution timing information available for that processor.  

2.1.1 Register Definition and General Capabilities 

The Time Stamp Counter is a 64-bit per-CPU register available on processors 

(beginning with the Intel Pentium) that can be used to monitor and identify the relative 

time occurrence of processor events. It is set to 0 following a reset of the processor and 

since that the counter increments. TSC posses the fastest and the lowest possible 

overhead way of getting CPU timing information with comparison of obtaining time value 

from other timer hardware. The RDTSC and RDTSCP instructions read the time-stamp 

counter and return a monotonically increasing unique value whenever executed, except 

for a 64-bit counter wrap around. The RDTSC and RDTSCP instructions are normally 

available in user mode. Moreover, Intel guarantees that the Time-Stamp Counter will not 

wrap around within 10 years after being reset [13 vol. 3B 17-50]. 

The RDTSC instruction (unlike the RDTSCP instruction) is not serializing or ordered 

with other instructions and can be executed out-of-order with respect to other 
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instructions around. It does not necessarily wait until all previous instructions have been 

executed before reading the counter. Similarly, subsequent instructions may begin 

execution before the RDTSC instruction operation is performed [13 vol. 2B 4-461, 14 p. 

411, 4 p. 3]. 

The RDTSCP instruction waits until all previous instructions have been executed before 

reading the counter, which called serializing feature. The advantage of using RDTSCP 

is its feature to vanish cashes from all waiting commands in queue before execution. It 

will guarantee that RDTSCP instruction will be executed in the order as user expects. 

According to the Table 2.1, average cost of setting TSC timer with RDTSC instruction is 

10 nanoseconds and with RDTSC instruction it is about 17 nanoseconds. Due to this 

results, it can be concluded that reading RDTSCP instruction is slower for about 6.7 

nanoseconds, but using this instruction is much more safety and reliable. The results 

were obtained on Intel ® Core ™ i7-2600 CPU processor, it was run 100 millions tests 

and results were not filtered. 

The way of reading TSC timer Mean, nsec 
Standard 

Deviation, nsec 

The final mean 

difference, nsec 

With RDTSC instruction 10.2031 20.9812 
6.7067 

With RDTSCP instruction 16.9097 21.8443 

Table 2.1: Average cost of setting TSC timer with RDTSC and RDTSCP instructions 

 

Figure 2.1: Comparison behavior of TSC with RDTSC and RDTSCP instructions 
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2.1.2 Identification of TSC Implementation Issues 

The TSC is the finest grained, widest, and most convenient timer device to access. 

However, it also has several drawbacks. Since the advent of multi-core CPUs, systems 

with multiple CPUs, and "hibernating" operating systems, the TSC cannot be relied on 

providing accurate results unless great care is taken to correct the possible flaws: rate 

of tick and whether all cores have identical values in their time-keeping registers. With 

the introduction of these features, it can no longer be ensured that the Time Stamp 

Counters of multiple CPUs on a single motherboard are synchronized. Thus 

programmers can only obtain reliable results by locking their code to a single CPU. 

Even then, the CPU speed may change due to power-saving measures taken by the OS 

or BIOS, or the system may be hibernated and later resumed (resetting the Time Stamp 

Counter). Several forms of power management technology vary the processor’s clock 

speed dynamically and thereby change the TSC rate with little or no notice [15, 16 p. 4]. 

In those latter cases, the counter must be periodically recalibrated to stay accurate.  

Moreover, not all processors families increment the Time-Stamp Counter in similar way 

including Pentium 4 processors, old families of Intel Xeon processors, Intel Core Solo, 

old models of Intel Core Duo processors and so on [13 vol. 3B 17-49]. The specific 

processor configuration determines the behavior. Constant TSC behavior ensures that 

the duration of each clock tick is uniform and supports the use of the TSC as a wall 

clock timer even if the processor core changes frequency.                                                                                                             

In newer processors the TSC may support an enhancement, referred to as Invariant 

TSC feature, which is not so tightly bound to processor cores and their cycles and, 

according to Intel documentation, has a constant rate. To determine whether a 

processor possesses Invariant TSC it is sufficient to inquire a processor ID handle and 

in case flag “InvariantTSC” equals 1, one can use TSC, if not, it would be better to look 

for other solutions [13 vol. 3B 17-50]. Accordingly, the TSC is considered stable if there 

are Invariant TSC flag or appropriate processor refers to some specific Intel-family 

processors. 

 

 

 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
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2.1.3 TSC Performance Optimization Aspects 

In the context of this thesis, initialization of the time counter means to ensure its 

reliability to provide accurate time information and make it is ready for use. The 

algorithm of the initialization process for Time-Stamp Counter consists of several steps 

and here is no way to avoid of using the CPUID opcode. 

The CPUID opcode is a processor supplementary instruction (its name derived from 

CPU IDentification) for the x86 architecture. It was introduced by Intel in 1993 when it 

introduced the Pentium and SL-Enhanced 486 processors [17 p. 5]. By using the 

CPUID opcode, software can determine processor type and the presence of some 

specific features. In assembly language the CPUID instruction takes no parameters as 

CPUID implicitly uses the EAX register for parameterization. The EAX register should 

be loaded with a value specifying what kind of information to return. Below it is shown 

the example of implementation of the function for executing the CPUID instruction in a 

scope of HighPerTimer: 

// InputEAX — value of EAX register and input data 

// RegsCPUIDoutput — structure for saving the value of registers 

TSCTimer::RegsCPUID TSCTimer::ExecuteCPUID ( uint32_t InputEAX ) 

{ 

    RegsCPUID RegsCPUIDoutput; 

 asm volatile 

 ( 

    "cpuid;" 

    : "=a" ( RegsCPUIDoutput.EAXBuf ), 

      "=b" ( RegsCPUIDoutput.EBXBuf ), 

      "=c" ( RegsCPUIDoutput.ECXBuf ), 

      "=d" ( RegsCPUIDoutput.EDXBuf ) 

    : "a" ( InputEAX ) 

 ); 

 return RegsCPUIDoutput; 

} 

Listing 2.1: Function executing CPUID instruction with driving EAX register value 

CPUID should be called with EAX = 0 first, as this will return the highest calling 

parameter that the CPU supports. The highest basic calling parameter (largest value 

that EAX can be set to before calling CPUID) is returned in EAX [17 p. 17]. 
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The second step is retrieving Vendor ID and Brand string. Calling CPUID with EAX = 0 

returns the CPU's manufacturer ID string - a twelve character ASCII string stored in 

EBX, EDX, ECX - in that order [17 p. 20, 18 p. 10]. The following are some known 

processor manufacturer ID strings (in particular used in a scope of HighPerTimer): 

 "GenuineIntel" — Intel 

 "CentaurHauls" — Centaur 

 "AuthenticAMD" — AMD 

Calling CPUID with EAX = 80000002h, 80000003h, 80000004h returns processor 

Brand String [17 p. 45, 18 p. 11]. CPUID must be issued with each parameter in 

sequence to get the entire 48-byte null-terminated ASCII processor brand string. It is 

necessary to check whether the feature is supported by the CPU by issuing CPUID with 

EAX = 80000000h first and checking if the returned value is greater or equal to 

80000004h. 

The presence of the RDTSCP instruction is indicated by CPUID leaf 80000001h, EDX 

bit 27. If the bit is set to 1 then RDTSCP is present on the processor [17 p. 45].  

Processor’s support for invariant TSC is indicated by CPUID leaf 80000007h, EDX bit 8. 

If this feature is presented, TSC doesn’t tightly bound to processor cores and has a 

stable rate. So TSC initialization function is succeed and returns true, thus 

HighPerTimer time source is assigned to the TSC timer. 

If processor doesn't support Invariant TSC, it is recommended to check for some 

specific processors. To retrieve processor model and family, it is called CPUID with 

EAX=1 [17 p. 21, 18 p. 10]. This returns the CPU's stepping, model, and family 

information in EAX (also called the CPU signature), feature flags in EDX and ECX, and 

additional feature information in EBX. The format of the information in EAX is as follows: 

 3:0 - Stepping 

 7:4 - Model 

 11:8 - Family 

 13:12 - Processor Type 

 19:16 - Extended Model 

 27:20 - Extended Family 

Intel suggests applications to display the family of a CPU as the sum of the "Family" and 

the "Extended Family" fields shown above, and the model as the sum of the "Model" 
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and the 4-bit left-shifted "Extended Model" fields. AMD recommends the same only if 

"Family" is equal to 15 (i.e. all bits set to 1). If "Family" is lower than 15, only the 

"Family" and "Model" fields should be used while the "Extended Family" and "Extended 

Model" bits are reserved. If "Family" is set to 15, then "Extended Family" and the 4-bit 

left-shifted "Extended Model" should be added to the respective base values. For 

example, here is the check for TSC stability of some specific Intel processor: 

if ( !memcmp ( VendorString, IntelVendor, 12 ) ) 

{ 

    // since family 0x0f and model 0x03 all has constant tsc 

 // including Pentium 4, Intel Xeon processors 

 if ((( SignCPUIDoutput.FamilyID + SignCPUIDoutput.ExtendedFamilyID) 

== 0x0f) && ((SignCPUIDoutput.ExtendedModel << 4|SignCPUIDoutput.Model 

) >= 0x03)) 

 { 

    TSCTimer::HasConstantTSC = true; 

    return true; 

 } 

} 

Listing 2.2: The check of specific Intel processor for TSC stability 

The final task of figuring out the actual frequency of TSC is accomplished next. In the 

context of HighPerTimer it is more useful to save the value of frequency as the number 

of cycles per one microsecond (int64_t TicsPerUsec) and reciprocal value as the 

number of nanoseconds within one cycle (double NsecPerTic). To figure out TSC 

frequency data returned from gettimeofday() system call and data retrieved from direct 

reading RDTSC/RDTSCP instruction are compared. This operation is performed in a 

loop of 5 steps with system sleep for 20 000 microseconds between two inquiries. At 

each step, it is compared data from both methods, saved intermediate result and finally 

calculated the mean value of frequency. 

2.2   High Precision Event Timer Overview 

The High Precision Event Timer is a hardware timer used in personal computers, 

formerly referred to by Intel as a Multimedia Timer [8 p. 4]. The term HPET was selected 

to avoid confusion with the multimedia timers software feature introduced in 

the MultiMedia Extensions to Windows 3.0. 

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Personal_computers
http://en.wikipedia.org/wiki/Multimedia_timers
http://en.wikipedia.org/wiki/MultiMedia_Extensions
http://en.wikipedia.org/wiki/Windows_3.0
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2.2.1 Hardware Implementation and General Capabilities 

The High Precision Event Timer was developed jointly by Intel and Microsoft and has 

been incorporated in PC chipsets since 2005 [19]. The main motivation for its creation 

was the necessity to replace slow and older Programmable Interval Timer (PIT) [20] 

whose frequency (1.19 MHz) did not meet the current requirements. The HPET circuit in 

modern PCs is integrated into the south bridge chip and consists of a 64-bit main 

counter counting at a frequency of at least 10 MHz and a set of timers that can be used 

by the operating system. These timers are 32- or 64-bit wide. Each timer can be 

configured to generate a separate interrupt. HPET specification allows for a block of 32 

timers, with support for up to 8 blocks, for a total of 256 timers [8 p. 7]. However, 

specific implementations can include only a subset of these timers. 

The timers are implemented as a single up-counter with a set of comparators. The 

counter increases monotonically. When software does two consecutive reads of the 

counter, the second read will never return a value that is less than the first read unless 

the counter has actually rolled over. Each timer includes a match register and a 

comparator. Each individual timer can generate an interrupt when the value in its match 

register equals the value of the free-running counter. Some of the timers can be enabled 

to generate a periodic interrupt. 

The registers associated with these timers are mapped to memory space (almost like 

the I/O APIC). However, it is not implemented as a standard PCI function. Instead, the 

BIOS reports to the operating system the location of the memory-mapped register 

space consumed by the timers. The hardware can support re-locatable address decode 

space, however the BIOS will set this space prior to handing it over to the OS. It is not 

expected that the OS will move the location of these timers once it is set by the BIOS [8 

p. 7]. 

2.2.2 Identification of HPET Implementation Issues 

The main problem of using HPET from user space is that operating systems designed 

before HPET has been introduced, can’t access them, so they work only on hardware 

that has other timer facilities. Indeed most current south bridge chips have legacy-

supporting instances of PIT [20], PIC [21, 22], APIC [23] and RTC [12] devices 

incorporated into their silicon whether or not they are used by the motherboard or the 

operating system, which is why even a very modern PC can still run older operating 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.nwlink.com%2F%7Edonclark%2Fleader%2Fcouncel.html&ei=rS_0T8_jI4_ssgaan53FCQ&usg=AFQjCNFph12FmHxNwleHnUYcbq2GAgys4A&sig2=U_qAFcgYRHJyhPUehUH4lw
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systems. The following operating systems are known not to be able to use HPET: 

Windows XP, Windows Server 2003, and earlier Windows versions and Linux kernels 

prior to 2.6 [19]. The basic proof HPET availability is the existence of /dev/hpet file. 

The difficulties are exacerbated if the main counter drives in a 32-bit mode. In fact a 32-

bit timer can be read directly using processors that are capable of 32-bit or 64-bit 

instructions (in other words, read for one step).  However, if the HPET main counter 

register has frequency of 10 MHz in a 32-bit mode, an overflow arises every 7,16 

minutes [24 p. 10]. It is very dangerous to use it and this case should be avoided. In 

average cost of obtaining time value from HPET devise can more than 1 microsecond 

[24, 25, 26]. 

Possible fails during the HPET initialization process can be occurred when the software 

attempts to open the device, to map it into memory and in case if a size of the main 

counter register has 32-bit width. In general, all possible errors are combined in 

enumeration class HPETFail, which is accessible for user through 

AccessTimeHardware class. 

enum class HPETFail 

{ 

ACCESS, 

FAULT,  

NOENT,  

MFILE,       // predominantly for attempt to open file of the device 

AGAIN,  

BUSY,  

BADF,                  

NODEV,       // for attempt to mmap device, including BUSY error 

AGAIN,  

NOMEM,  

MC32BIT,     // if main counter has 32-bit width 

UNKNOWN      // unknown error 

}; 

Listing 2.3: Possible reasons for HPET fail 

In general, these names of HPET fail reason are corresponding with errors from errno.h, 

header file indicating the kind of error and detailed description of each errors are 

available from Linux man, with the exception of MC32BIT and UNKNOWN [27, 28]. 

Moreover, in case of open() and mmap() this enumeration contains not the whole list of 

possible errors, only the most probable, which can occurred. The others errors, not 

mentioned in that list, are marked as UNKNOWN. 

 



13 

 
2.2.3 HPET Performance Optimization Aspects 

As mentioned above, a case when HPET main counter register has 32-bit width, should 

be avoided. The size of the main counter register is indicated by the 13th bit [8 p. 11]. If 

this bit is 0, the main counter is 32 bits wide: 

HPETTimer::HpetFd = ::open ( "/dev/hpet", O_RDONLY ); 

HPETTimer::HpetAdd_ptr = ( unsigned char * ) mmap ( NULL, 1024, 

PROT_READ, MAP_SHARED, HPETTimer::HpetFd, 0 ); 

 

// 32-bit HPET main counter overruns every 7,16 minutes, so it is      

denied using this source. 

uint64_t HpetMcounterSize =  * ( ( int64_t * ) ( HPETTimer:: 

HpetAdd_ptr ) ) >> 13; 

if ( ! HpetMcounterSize ) 

{ 

    // saves the reason which hpet initialization failed 

    HPETTimer::HPETFailReason = HPETFail::MC32BIT; 

    return false; 

} 

Listing 2.4: Indication of the 32-bit HPET main counter register 

In case of 64-bit mode of a timer, an overflow occurs only after 58,494 years, but a 32-

bit processor may not be able to read a 64-bit timer directly. The Intel specification 

suggests several ways of reading the 64 bit counter using 32 bit reads [8 p. 26]. The 

most suitable in the scope of HighPerTimer is doing a multiple separate reads of the 

counter. It is read the high 32 bits, then the low 32 bits, then the high 32 bits again. If the 

high 32 bits have not changed between the two reads, then a rollover has not happened 

and the low 32 bits are valid. Here is a detailed description of getting HPET ticks: 

// get hpet timer tics 

// the case when the main counter has 64 bit width, but a 32 bit 

// addresses, meaning reading the main counter must be performed    

// within two memory accesses. Multiple reads of HPET main counter  

// register avoiding an accuracy problem, which may be arised if after 

// reading one half, the other half rolls over and changes the first 

// half 

    

 uint64_t Hpet_High_Order = * ( reinterpret_cast<int32_t*>  
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    ( HPETTimer::HpetAdd_ptr + MainCounterOffsetHigh ) ); 

 uint64_t Hpet_Low_Order  = * ( reinterpret_cast<int32_t*> 

    ( HPETTimer::HpetAdd_ptr + MainCounterOffset ) ); 

 uint64_t _Hpet_High_Order = * ( reinterpret_cast<int32_t*> 

    ( HPETTimer::HpetAdd_ptr + MainCounterOffsetHigh ) ); 

 

// if both read from the high 32 bits of the main counter register  

// HPET are equal, clock cycles are current returned 

if ( Hpet_High_Order == _Hpet_High_Order ) 

{ 

    return ( Hpet_High_Order << 32 | Hpet_Low_Order ); 

} 

Listing 2.5: Extraction HPET time value from a 64-bit timer by a 32-bit processor 

The MainCounterOffset variable is equal to 0x0f0 and MainCounterOffsetHigh to 0x0f4 

and the mean offset value from the first mapped memory address for the main counter 

register [8 p. 15]. After successful timer initialization process, HPET frequency is 

calculated. It is read 4 bites from the HPET table adding period offset, which is equal to 

0x004 in hexadecimal system. 

2.3   Operating System Timer Source 

Timers of operating system keeps the current time and date on the running system, so 

that they can be returned to user programs through the respective system calls and 

used by the kernel itself as timestamps for files and network packets. This section 

describes the system calls related to timing measurements and the corresponding 

service routines. 

2.3.1 Basic Principles of Time-Related System Calls 

A personal computer has a battery driven hardware clock. The battery ensures that the 

clock will work even if the rest of the computer is without electricity. The hardware clock 

can be set from the BIOS setup screen or from whatever operating system is running on 

the system. The Linux kernel keeps track of time independently of the hardware clock. 

During the OS boot, Linux sets its own clock to the same time as the hardware clock. 

After this, both clocks run independently. Linux maintains its own clock because looking 

at the hardware is slow and complicated. 
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However, to obtain the time value on the running system, it is necessary to interact with 

a hardware device. It is known that all the devices communicate through drivers which 

run in kernel space and have full access to the hardware. It is not possible to directly 

link user-space applications with kernel space code. For reasons of security and 

reliability, user-space applications must not be allowed to access memory regions, used 

by kernel. Instead, the kernel must provide a mechanism by which a user-space 

application can "signal" the kernel that it wishes to invoke a system call. 

System calls (often named syscalls) are function invocations made from user space into 

the kernel (the core internals of the system) in order to request some service or 

resource from the operating system. Linux implements far fewer system calls than most 

other operating system kernels. For example, a count of the i386 architecture's system 

calls comes in at around 300, compared with the allegedly thousands of system calls on 

Microsoft Windows. In addition, system calls available on one hardware-architecture 

may differ from those available on another. Nonetheless, a very large subset of system 

calls—more than 90 percent—is implemented by all architectures [29 p. 18]. 

The application tells the kernel which system call to execute and with what parameters 

via machine registers. System calls are denoted by number, starting at 0. On the i386 

architecture, for example, to request system call 5 (which happens to be open()), the 

user-space application stuffs 5 in register EAX before issuing the instruction. Parameter 

passing is handled in a similar manner. On i386 a register is used for each possible 

parameter—registers EBX, ECX, EDX, ESI, and EDI contain, in order, the first five 

parameters [29 p. 19]. In the rare event of a system call with more than five parameters, 

a single register is used to point to a buffer in user space where all of the parameters 

are kept. However, most system calls have only a couple of parameters. Other 

architectures handle system call invocation differently, although the general approach is 

the same. 

A system call is processed in kernel mode, which is accomplished by changing the 

processor execution mode to a more privileged one, and a privilege context switch does 

occur [30, 31, 32]. Switching from one process to another requires up to 2 

microseconds for doing the administration - saving and loading registers and memory 

maps, updating various tables and list etc.  
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2.3.2 Virtual System Call gettimeofday() and clock_gettime() 

The virtual system call (vsyscall) is a mechanism on Linux used to reduce the overhead 

of system calls. Its basic function is providing fast access to functionality which does not 

need to run in kernel mode. Recently vsyscall has come to be seen as an enabler of 

security attacks, so some patches have been put together to phase it out [33]. 

The vsyscall area has been added as a way to execute specific system calls which do 

not need any real kernel-level of privilege to run. A good-example for a vsyscall is 

gettimeofday() and clock_gettime() - all they need to do is to read the kernel's data of 

the current time. The kernel allows at memory page containing the current time to be 

mapped read-only into user space; the page contains a fast gettimeofday() and 

clock_gettime() execution code. Using this virtual system call, the C library can provide 

a fast gettimeofday() which never actually has to switch into the kernel context. 

Accordingly, the result is a kernel system call emulating a virtual system call which was 

put there to avoid the kernel system call in the first place and prevent a context switch, 

respectively. This capability allows saving a fraction of a microsecond (more precise it is 

up to 2 microseconds) in comparison with a pure system call. The comparison of real 

system calls with virtual system calls is given in details in Bachelor Thesis for Anhalt 

University of Applied Sciences by H. Hu [24]. Vsyscall has some limitations, among 

others, there is only space for a handful of virtual system calls in an OS. 

The function gettimeofday() can get and set the time as well as a timezone. Filling a 

structure timeval (as specified in <sys/time.h>), it gives the number of seconds and 

microseconds since the UNIX Epoch. The functions clock_gettime() has higher 

accuracy and  retrieve the number of seconds and nanoseconds in a timespec 

structure. It sets the time of the specified clock clk_id. 

The clk_id argument is the identifier of the particular clock on which to act. A clock may 

be system-wide and hence visible for all processes, or per-process if it measures time 

only within a single process. All implementations support the system-wide real-time 

clock, which is identified by CLOCK_REALLTIME. Initially for OS Timer source 

CLOCK_REALTIME was chosen, which represents the machine's best-guess as to the 

current wall-clock. CLOCK_MONOTONIC is a clock that cannot be set and represents 

monotonic time since some unspecified starting point [34]. CLOCK_MONOTONIC 

represents monotonic time, which never goes back and always growing, when in theory 

CLOCK_ REALTIME can jump forwards and backwards as the system time-of-day clock 
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is changed. Actually this behavior has never been noticed on the go of HighPerTimer, 

because most modern processors posse at least one constant timer source for system 

call of clock_gettime(). Comparing their mean values on the Table 2.2, it is concluded 

that there are no big difference, only about 3 nanoseconds, but however CLOCK_ 

REALTIME argument is more precise. 

The clk_id argument Mean, nsec 
Standard Deviation, 

nsec 

The final mean 

difference, nsec 

CLOCK_ REALTIME 31.232 45.056 

2.887 
CLOCK_MONOTONIC 34.119 53.927 

Table 2.2: Mean and standard deviation values of clock_gettime() with  CLOCK_ REALTIME 

and  CLOCK_MONOTONIC arguments on the Intel Core i7 processor 

 

Figure 2.2: Measurements of clock_gettime() with  CLOCK_ REALTIME and  

CLOCK_MONOTONIC arguments on the Intel Core i7 processor 

For further work it was determined to switch clock id argument to more reliable 

CLOCK_MONOTONIC. By spending these couple of nanoseconds of CPU overhead, it 

is provided kind of assurance that no backward jumps in time will occur even in future 

implementations.  
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2.3.3 Performance Aspects of Choosing Clock Hardware Source 

OS Timer is a good alternative source when it is impossible to rely on HPET or TSC 

timers, but it should be used with caution. Firstly, there is only one hardware timer which 

can be used as a clock source which is not known in advance. Secondly, there is no any 

guaranty whether a real or virtual system call is issued by clock_gettime(). Below it is 

shown two examples with current HPET timer on AMD Athlon processor and TSC timer 

on Intel Core i7 processor and it is demonstrated the essential difference between 

current clock source on each processor and system call of OS Timer.  

Processor AMD Athlon has explicitly unstable TSC and uses HPET as a clock source. 

Comparing HPET behavior with clock_gettime() call (Figure 2.2), it is suggested that 

clock_gettime() invokes HPET device.  According to Table 2.2, the difference in their 

mean values is about 17 nanoseconds, the values of standard deviation are also very 

close to each other. It provides a basis to suggest that in this particular case OS Timer 

invokes HPET hardware. However, relatively to the mean values of 1 microsecond, 17 

nanoseconds for system call are not very essential. More detailed figure on this 

processor including TSC measurements is shown on the Figure 3.2.  

Main features of tested processor: 

Processor (CPU):  AMD Athlon ™ X2 Dual Core Processor BE-2350 

Speed: 1000  MHz 

Cores: 2 

RDTSCP instruction available 

HPET Frequency: 25 MHz 

cache size: 512 Kb 

Timer source Mean, usec Standard Deviation, usec The final mean difference, 

nsec 

HPET 1.1125 0.3073 

16.9241 
OS 1.1294 0.3582 

Table 2.3: Mean and standard deviation values of HPET and clock_gettime() call 

on the AMD Athlon processor 
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Figure 2.3: Measurements of clock_gettime() call with comparison of HPET  

on the AMD Athlon processor 

Processor Intel Core i7 has Invariant TSC with constant rate and so uses it as a clock 

source. On the Figure 2.3 it is shown measurements of TSC timer with comparison of 

clock_gettime() call. Analyzing mean and standard deviation on the Table 2.3, it is 

concluded that OS Timer invoke TSC timer in this case. Average mean difference is 

about 14 nanoseconds. Presumably, this difference is the time which is spent for virtual 

system call of clock_gettime(). With comparison of 16 nanoseconds of mean value of 

TSC invoking, 14 nanoseconds for system call can play an essential role. 

Main features of tested processor: 

Processor (CPU):  Intel ® Core ™ i7-2600 CPU @ 3.40GHz 

Speed: 1600  MHz 

Cores: 8 

RDTSCP instruction available 

cache size: 8192 Kb 

 

 



20 

 

Timer source Mean, nsec Standard Deviation, nsec The final mean difference, 

nsec 

TSC 16.9091 33.1484 

14.323 
OS 31.2322 45.0567 

Table 2.4: Mean and standard deviation values of TSC and clock_gettime() call 

on the Intel Core i7 processor 

 

Figure 2.4: Measurements of clock_gettime() call with comparison of TSC  

on the Intel Core i7 processor 

Concluding, the difference between current clock source and system time-related call 

varies depending on the tested processor and it is difficult to say in advance how much 

time is taken by real or virtual system call. The more important option is that the cost of 

system call and invocation current timer source is directly dependant on whether TSC or 

HPET is real time source. In case of HPET the mean value is more than 1 microsecond 

and the difference with OS Timer is only 17 nanoseconds, which is not always very 

significant. For case when TSC is the current clock source even 14 nanosecond can 

play a key role against 17 nanoseconds of mean value. Accordingly, it makes applying 

OS Timer for high accuracy measurement quite unreliable. 
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3 Logics of Timer Source Initialization 

In this section the experimental comparison of available timer sources are described 

along with the algorithm of the decision for an appropriate time source for 

HighPerTimer. 

3.1   HighPerTimer  Source Definition 

When the computer system is initially booted the Linux kernel sets its own clock source. 

One of ways to determine, which source using by kernel is checking the message buffer 

of the kernel with dmesg command. The example below shows a passage of dmesg 

output: 

[  0.000000] hpet clockevent registered 

[  0.867251] hpet0: 8 comparators, 64-bit 14.318180 MHz counter 

[  0.869264] Switching to clocksource hpet 

... 

[  0.000000] Fast TSC calibration using PIT 

[  2.420990] Refined TSC clocksource calibration: 3392.292 MHz. 

[  2.420995] Switching to clocksource tsc 

In the beginning, kernel is indicating hpet device and after about 2 seconds it is 

switching to TSC clock source. On the most Linux distributions (including OpenSuse, 

CentOS, Ubuntu distributions and so on) it can also be find out by checking the 

/sys/devices/system/clocksource/clocksource0/current_clocksource file, where the 

current clock source is written in plain text. 

The high priority HighPerTimer task is identifying the reliable time source at the early 

stage of initialization. Likewise the kernel, HighPerTimer has also the ability to choise 

the most suitable source. The function HighPerTimer::InitTimerSource() is responsible 

for this.  In header file TimeHardware.h three classes with respective initialization 

routines has been declared - TSCTimer, HPETTimer and OSTimer: 

 TSCTimer class                               TSCTimer::InitTSCTimer() 

 HPETTimer class                             HPETTimer::InitHPETTimer()  

 OSTimer class                   no init routine 

TSCTimer and HPETTimer contain the initialization functions which return true for 

success and false for failure. Success is meant the verifiable timer source is stable and 

it can be used for accurate counting, the failure means that it is should not rely on this 
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timer source. So the preferred timer is TSC, so that's way it is checked first: 

void HighPerTimer::InitTimerSource() 

{ 

    if ( TSCTimer::InitTSCTimer() ) 

    { 

        HighPerTimer::HPTimerSource =  TimeSource::TSC; 

        return; 

    } 

} 

Listing 3.1: Initialization HighPerTimer source by TSC Timer 

For example, processor VIA Nano X2 has a constant TSC rate and hence 

InitTimerSource() returns true immediately after the TSC check without 

HPETTimer::InitHPETTimer() call. However, HPET and OS Timer can also be used, but 

TSC timer is the most stable and the fastest one. In Figure 3.1 it is described behavior 

of all available timer sources in detail: 

Main features of tested processor: 

Processor (CPU): VIA Nano X2 U4025 @ 1.2 GHz 

Speed: 1067  MHz 

Cores: 2 

Constant TSC rate 

HPET Frequency: 14 MHz 

cache size: 1024 Kb 

 

Timer source Mean, usec Standard deviation, usec 

TSC Timer 0.0441 0.3711 

HPET Timer 0.6042 3.0271 

OS Timer 0.1122  0.3755 

 

Table 3.1: Mean and standard deviation values of HPET, TSC and OS Timer 
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Figure 3.1: Measurements of TSC, HPET and OS Timer on the VIA Nano X2 processor 

If InitTSCTimer() returns false, it means that TSC is unstable and can’t be a time source 

for the library. In that case there are two more options – HPET or OS Timer. However, 

there is no guarantee which hardware timer is used by clock_gettime() call and 

regarding this point it is necessary to check the mean value of getting ticks cost of both 

timers. The cost of getting timer tics means how long it is spent to set timer to actuall 

value and extract its time value. If mean value of timers differ by less than 25 %, there is 

a sense to estimate timers by standard deviation value: 

// mean values 

double MeanHpet ( 0 ), MeanOs ( 0 ); 

// standard deviation values 

double StDevHpet ( 0 ), StDevOs ( 0 ); 

// percents value means a limit which is compared with 

double Limit (25.0); 

 

// calculate percentage of means 

if ( MeanHpet < MeanOs ) 

{ 

    Percentage = 100 - ( MeanHpet / MeanOs * 100 ); 

} 

else 
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{ 

      Percentage = 100 - ( MeanOs / MeanHpet * 100 ); 

} 

// when the mean values are similar (the difference is no more than 

25%), compare deviation values of timers 

if ( Percentage < Limit ) 

{   

   if ( StDevHpet < StDevOs) 

   { 

       HighPerTimer::HPTimerSource =  TimeSource::HPET; 

       return; 

   } 

   else 

   { 

      HighPerTimer::HPTimerSource =  TimeSource::OS; 

      return; 

   } 

}        

Listing 3.2: Estimate of mean and deviation values of HPET and OS Timers 

As an example of unstable TSC source, a processor AMD Athlon X2 Dual Core can be 

examined. The RDTSCP instruction is available, but the system has neither Invariant 

TSC flag nor constant TSC, so TSCTimer::InitTSCTimer() returns false. HPET device 

with frequency of 25 MHz is also accessible.  According to Figure 3.2, OS Timer and to 

be more preciously, clock_gettime() invokes HPET timer as a source. Mean values of 

this both timers are close to each other and they differ by about 2%. In this case it is 

necessary to compare standard deviation o their values also and ultimately for this 

processor default HPTimerSource is equal to HPET Timer. 

Main features of tested processor: 

Processor (CPU):  AMD Athlon ™ X2 Dual Core Processor BE-2350 

Speed: 1000 MHz 

Cores: 2 

RDTSCP instruction available 

HPET Frequency: 25 MHz 

cache size: 512 Kb 

 



25 

 

Timer source Mean, usec Standard deviation, usec 

TSC Timer 0.0275 0.0756  

HPET Timer 1.1179 0.3764  

OS Timer 1.1423 0.5292  

 

Table 3.2: Mean and standard deviation values of HPET, TSC and OS Timer 

 on the  AMD Athlon processor 

 

Figure 3.2: Measurements of TSC, HPET and OS Timer on the AMD Athlon processor 

 3.2  Change of the Time Source for HighPerTimer 

Initializing HighPerTimer means not only to define its timer source. This concept also 

includes calculating of timer frequency, the value of shift against Unix Epoch, Max and 

Min values for HighPerTimer and determining HZ frequency of the kernel. These values 

are necessary for further operations with time value and overall design is described in 

Chapter 5. In fact, these variables must be defined primarily, in a strict order before and 

have unchanged values globally across the entire library scope. In other words, they 

should be allocated statically. The listing below shows the order of HighPerTimer 

initialization: 

HighPerTimer::InitTimerSource(); 

HighPerTimer::InitHPFrequency(); 
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HighPerTimer::InitUnixZeroShift(); 

HighPerTimer::InitMaxMinHPTimer(); 

HighPerTimer::InitSecPerJiffy(); 

Listing 3.3: Order of HighPerTimer initialization 

All these functions are static and determine appropriate parameters.  InitHPFrequency() 

sets the time counter frequency and calculates  the value of NsecPerTic - number of 

nanoseconds within one counter period. InitUnixZeroShift() sets the HighPerTimer 

counter offset against the Unix zero time - 1 January 1970. InitMaxMinHPTimer() 

initializes max and min HighPerTimer values which save values in seconds, 

nanoseconds and in timer tics. Both they are public, accessible for user from main 

routine and saved as instances of HighPerTimer objects: static HighPerTimer 

HPTimer_MAX and static HighPerTimer HPTimer_MIN. The biggest possible value in 

tics is always equal to the biggest value for 64-bit integer type. To calculate max value in 

seconds, it is divided to timer frequency or multiplied to reciprocal value of NSecPerTic. 

In case of HPET the minimum possible frequency is 10 MHz, so the max possible value 

of NSecPerTic is 100 and it can be caused a possible overflow and a loss of accuracy 

calculating seconds and nanoseconds max/min parts of timer. So in HPET case it is 

more reliable to decrease appropriate limits for max and min HighPerTimer values. 

Being more precise, these limits are decreased on 1 femptosecond (1e-15 sec), which 

is equal to 1e-6 nanosecond. In case of TSC or OS timer, the NSecPerTic value is 

always less than zero. So it is still safe to values within max and min values of 64-bit 

integer type. InitSecPerJiffy() obtains 1/HZ value, which needs for correct sleep 

performance. The number of ticks since the system started is recorded in a variable 

called jiffies in the kernel, which size is determined by the value of the kernel constant 

HZ.  

Sometimes there are some cases, when user would prefer some particular timer source 

which doesn't coincide with already initialized timer source. For that it is provided a 

special ability to change default timer - HighPerTimer::SetTimerSource (const 

TimeSource UserSource). This feature should be used with caution only at system 

initialization time, and in any case before instantiation of the first HighPerTimer object.  

This is very important, because, as it was described above, a number of global 

parameters are directly dependent upon this source. So when a change of timer source 

occurs, recalculation of most parameters also occurs, leading to invalidation of all the 

already existing timer objects within the executed program. 
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4  Software Design of The Unified Time Handling 

Software design is a process of problem solving and planning for a software solution. 

When the purpose and specifications of software are determined, a plan for a solution 

has to be developed. It includes low-level components and algorithm implementation 

issues as well as the architectural view. There are many aspects to consider in the 

design of a piece of software. The importance of each should reflect the goals the 

software is trying to achieve. The most significant guideline about designing interfaces 

of any kind: that they should be easy to use correctly and hard to use incorrectly. That 

sets the stage for a number of more specific guidelines addressing a wide range of 

topics, including correctness, efficiency, encapsulation, maintainability, extensibility, and 

conformance to convention [35 p. 79]. 

1.  Platform-independent model 

In general, a software design may be platform-independent or platform-specific, 

depending on the availability of the technology called for by the design. In fact, 

HighPerTimer tool depends of a specific technological platform. But due to its 

implementation it is allowed to perform it on different 64-bit and 32-bit processors of 

Intel, AMD, VIA and ARM processors, considering their features and specialities. The 

most special case relates in this case to the ARM processor. ARM’s embedded 32-bit 

processor architecture is found within cell phones, automotive systems, industrial 

computers, and other devices [36]. Comparing with familiar Intel and AMD processors, 

the ARM architecture specifies on other instructions set, other registers and different 

content of CPUID coprocessor register ( although ARM architectures have a CPUID 

coprocessor register for the same purpose ) [37 B3-713]. Furthermore, it posses neither 

TSC timer nor HPET device and to avoid possible compilation errors, it is used 

preprocessor commands like #ifdef ARM. 

2. Encapsulation and Control Hierarchy 

Encapsulation is an Object Oriented Programming concept that binds together the data 

and functions that manipulate the data, and that keeps both safe from outside 

interference and misuse. Data encapsulation led to the important OOP concept of data 

hiding. Data encapsulation is a mechanism of bundling the data, and the functions that 

use them and data abstraction is a mechanism of exposing only the interfaces and 

hiding the implementation details from the user. C++ supports the properties of 
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encapsulation and data hiding through the creation of user-defined types, called classes 

[38 p. 52].   

On the Figure 4.1, it is shown a structure that represents the organization of program 

components and implies a hierarchy of control. HighPerTimer  tool includes two header 

files and two implementation files called HighPerTimer and TimeHardware. Each of 

them contains three classes. TimeHardware module is designed so, that information 

contained within it, is inaccessible to user. There is an access only through 

AccessTimeHardware class from HighPerTimer module.  

 

Figure 4.1: HighPerTimer control hierarchy  

HPTimerInitAndClean is an also closed class, it defines a strict order of HighPerTimer 

initialization to control it and have the one instance in implementation HighPerTimer 

process. HPTimerInitAndClean class performs one more important operation. It is 

handling with HPET descriptor.  When it is invoked the process of initialization HPET 

device, the descriptor is saved in a static variable. Accidentally terminating the program, 

HPET device can stay opened and HPTimerInitAndClean destructor provides correct 

closure. The correct closure of file is guaranteed because destructor runs every time 

when an object is destroyed. 
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3. Correctness and error handling 

Error handling is fundamental. Any good program makes use of a language’s exception 

handling mechanisms. It provides correctness of performance and allows avoiding a lot 

of runtime problems. An exception is a situation in which a program has an unexpected 

circumstance that the section of code containing the problem is not explicitly designed 

to handle. In C++, exception handling is useful, because it makes it easy to separate the 

error handling code from the code written to handle the chores of the program. Doing so 

makes reading and writing the code easier.  

The most common potential problem for HighPerTimer is an type overflow of an integer 

variable and memory allocation error. Mostly it is related to storing time values in 

seconds (or nanoseconds) and in counter tics together. It's well-known, that counter tics 

are equal to seconds plus nanoseconds and multiplied to timer frequency or divided by 

the reciprocal value, accordingly to listing 4.1. In this situation, there is a high hazard of 

overflow int64_t mHPTics variable if adjusted value of mSeconds and Nseconds are too 

big. It is important to consider it creating an HighPerTimer object and working with any 

arithmetic operations and exceptions provide a way to react to this exceptional 

circumstances. This case is the most common for HighPerTimer and a lot of source 

code was devoted to throw an exception reporting an out-of-range error: 

// check for possible overflow according to max and min value of 

HighPerTimer 

if ( ( mSeconds * ONE_BILLION + mNSeconds ) > ( HPTimer_MAX.Seconds() 

* ONE_BILLION + HPTimer_MAX.NSeconds() ) ) 

{ 

   throw std::out_of_range ( "HPTimer overflow" ); 

} 

mHPTics = ( mSeconds * ONE_BILLION + mNSeconds ) / ( NsecPerTic ); 

Listing 4.1: Example of throwing out of range exception 

There are no any error outputs in log files in a scope of HighPerTimer library at all, 

because the record process can take time up to milliseconds, which is cruel for 

operations with high-precision timer. 

4. Conformance to convention 

C++11 is the most recent iteration of the C++ programming language. It was approved 

by ISO on 12 August 2011, replacing C++03 [39]. C++11 includes several additions to 
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the core language and extends the C++ standard library, incorporating most of the C++ 

Technical Report 1 (TR1) libraries — with the exception of the library of mathematical 

special functions. C++11 was published as ISO/IEC 14882:2011 in September 2011. For 

HighPerTimer implementation the performance benefit, either of memory or of 

computational speed are primarily essential and it is provided by C++11 core language 

runtime performance enhancements.  

▪ Move semantics 

C++ has always supported copying object state. In contrary, moving semantics is a 

key new idea of C++11. A move constructor, like a copy constructor, takes an 

instance of an object as its argument and creates a new instance based on the 

original object. However, the move constructor can avoid memory reallocation, 

because it has been provided a temporary object, so instead of coping the fields of 

the object, it move them. Move semantics allows avoiding unnecessary copies when 

working with temporary objects that are about to evaporate, and which resources can 

safely be taken from that temporary object and used by another. In fact, a move 

operation needs to do three things: get rid of the destination’s current value, move 

the source’s value to the destination, and leave the source in a valid state [40 p. 249]. 

HighPerTimer class posses a move constructor and a move assignment operator.   

HighPerTimer & HighPerTimer::operator= ( HighPerTimer &&  Timer ) 

{ 

    mHPTics = Timer.mHPTics; 

    mNormalized = false; 

    return *this;     

} 

Listing 4.2: Move assignment of HighPerTimer class 

▪ Generalized constant expressions 

C++ has always had the concept of constant expressions. Constant expressions are 

optimization opportunities for compilers, and compilers frequently execute them at 

compile time and hardcode the results in the program. Also, there are a number of 

places where the C++ specification requires the use of constant expressions. 

Defining an array requires a constant expression, and enumerator values must be 

constant expressions. However, constant expressions have always ended whenever 

http://en.wikipedia.org/wiki/Core_language
http://en.wikipedia.org/wiki/C%2B%2B_standard_library
http://en.wikipedia.org/wiki/C%2B%2B_Technical_Report_1
http://en.wikipedia.org/wiki/C%2B%2B_Technical_Report_1
http://en.wikipedia.org/wiki/Library_(computer_science)
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a function call or object constructor was encountered. C++11 introduced the keyword 

constexpr, which allows the user to guarantee that a function or object constructor is 

a compile-time constant [39]. Such data variables are implicitly const, and must have 

an initializer which must be a constant expression. The example can be written as 

follows: 

  // constant string for Cenatur vendor "CentaurHauls" 

constexpr char CentaurVendor[12] = {'C', 'e', 'n', 't','a','u', 'r', 

'H', 'a', 'u', 'l', 's'}; 

// constant string for Intel vendor "GenuineIntel" 

constexpr char IntelVendor[12] = {'G', 'e', 'n', 'u', 'i', 'n', 'e', 

'I', 'n', 't', 'e', 'l'}; 

Listing 4.3: Example of using constant expressions  

Prior to C++11, the values of variables could be used in constant expressions only if 

the variables are declared const, have an initializer which is a constant expression, 

and are of integral or enumeration type. C++11 removes the restriction that the 

variables must be of integral or enumeration type if they are defined with the 

constexpr keyword. 

▪ Object construction improvement 

In C++03, constructors of a class are not allowed to call other constructors of that 

class; each constructor must construct all of its class members itself or call a 

common member function. Constructors for base classes cannot be directly exposed 

to derived classes; each derived class must implement constructors even if a base 

class constructor would be appropriate. Non-constant data members of classes 

cannot be initialized at the site of the declaration of those members. They can be 

initialized only in a constructor. C++11 provides solutions to all of these problems. 

C++11 allows constructors to call other peer constructors (known as delegation). This 

allows constructors to utilize another constructor's behavior with a minimum of added 

code [40 p. 301]. A constructor that delegates to another constructor may do not 

anything else on its member initialization list. This example of syntax in a scope of 

HighPerTimer is as follows. It is removed this redundancy in the forthcoming code 

using delegating constructors: 

 

 

http://en.wikipedia.org/wiki/C%2B%2B11#cite_note-7
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// ctor 

// @param tv is the timevalue struct 

HighPerTimer::HighPerTimer ( const timeval & TV ) : 

           // delegating constructors 

    HighPerTimer ( timespec { TV.tv_sec, TV.tv_usec * 1000 } ) 

{     

} 

 

// ctor 

// @param ts is the timespec struct 

HighPerTimer::HighPerTimer ( const timespec & TS ) : 

     mSeconds ( TS.tv_sec ), 

     mNSeconds ( TS.tv_nsec ), 

     mSign ( false ), 

      mNormalized ( true ) 

{ 

//check for possible overflow according to max and min value HPTimer 

    if ( ( mSeconds * ONE_BILLION + mNSeconds ) > ( 

HighPerTimer::HPTimer_MAX.Seconds() * ONE_BILLION + 

HighPerTimer::HPTimer_MAX.NSeconds() ) ) 

    { 

        throw  std::out_of_range ( "HPTimer overflow" ); 

    } 

    mHPTics = static_cast<int64_t> ( ( mSeconds * ONE_BILLION + 

mNSeconds ) / ( HighPerTimer::NsecPerTic + (1/ONE_QUADRILLION ) ) ); 

} 

Listing 4.4: Example of using delegating constructors 

▪ Strongly typed enumerations 

In C++03 and before, enumerations were not type-safe. They were effectively 

integers, even when the enumeration types are distinct. This allowed comparison 

between two enum values of different enumeration types. The only safety that C++03 

provided was that an integer or a value of one enum type does not convert implicitly 

to another enum type. Additionally, the underlying integral type is implementation-

defined; code that depends on the size of the enumeration is therefore non-portable. 

Lastly, enumeration values are scoped to the enclosing scope. Thus, it is not possible 

for two separate enumerations to have matching member names. C++11 allows a 
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special classification of enumeration that has none of these issues. This is expressed 

using the enum class (enum structure is also accepted as a synonym) declaration. 

HighPerTimer makes use of several enumeration classes in its scope. One of them is 

shown below:  

//source of timer: TSC Timer, HPET Timer or  

// the timer, provided by OS 

enum class TimeSource 

{ 

    TSC, HPET, OS 

}; 

Listing 4.5: Example of using enumeration class 

This enumeration is type-safe. Enum class values are not implicitly converted to 

integers; therefore, they cannot be compared to integers either (the expression 

Enumeration::OS == 2 gives a compiler error).  
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5 Precise Sleep Timer Aspects 

To make process sleep it is mostly used two ways: standard C Library system sleep or 

sleep in busy-waiting loop. In this section it is given brief description of advantages and 

pitfalls of each method with comparison of newly implemented HighPerTimer sleep. 

5.1 System Sleeps Implementation 

C Library provides possibilities to suspend thread execution for the specified number of 

seconds, microseconds or nanoseconds. Declared in unistd.h, the function sleep() 

(analogically usleep() and nanosleep()) gives a simple way to make the program wait for 

a short interval. sleep() makes the calling thread sleep until seconds have elapsed or a 

signal arrives which is not ignored. It returns zero if the requested time has elapsed, or 

the number of seconds left to sleep, if the call was interrupted by a signal handler. If the 

call is interrupted by a signal handler or encounters an error, then it returns -1, with 

errno set to indicate the error [41, 42, 43]. 

Linux kernel keeps waiting threads in a special queue which afford to leave CPU free. It 

means that CPU usage during system sleep is close to zero. This is the main advantage 

of system sleeping. However, comparing the deviation value (or so called miss), it can 

be seen a big pitfall (Table 5.1). It was implemented system sleep from 1 second until 1 

microsecond. Measurements are performed with HighPerTimer on the Intel Core -i7 

processor with HZ = 1000. 

Obviously, miss value depends some way on the sleep time value. After some point its 

values are aligned and in average are equal to 53 microseconds, which unacceptably 

for high performance measurements. Nevertheless, at this point it is important to 

understand, how system sleep works and where it is spent so much time. On the Figure 

5.1, it is shown a simplified scheme of executing processes (in particular sleeping 

process) for a general overview. 
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Sleep time, sec Miss, usec 

1 161,135 

0,5 112,908 

0,25 92,139 

0,125 100,193 

0,0625 74,393 

0,03125 70,981 

0,015625 68,225 

0,007812 85,311 

0,003906 66,612 

0,001953 64,948 

0,000976 59,379 

0,000488 64,359 

0,000244 55,422 

0,000122 53,916 

0,000061 53,436 

0.000030 53,439 

0,000015 53,318 

0,000007 53,269 

0,000003 53.250 

0,000001 53,267 

Table 5.1: Miss measurements of system sleep, performed with TSC 

on the Intel Core i7 processor, HZ = 1000 

Run-time queue

Waiting queues

CPU

P7 P3 P1

P0

P4 P6 P1

P5 P2

Running

Completed

Waiting Ready

OS Scheduler

Block on I/O

- ProcessLegend:

 

Figure 5.1:  Simplified scheme of executing processes in Linux kernel 
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The Run-time queue, also known as a Ready list, in the operating system keeps a list of 

all processes that are ready to run and not blocked on some I/O or other system 

request, such as a semaphore. The entries in this list are pointers to the process control 

block, which stores all information and state about a process. When some process 

execution is suspended, the first place where it is going is the Run-time queue. After 

that, according to its priority, it is getting to the Wait queue, passing the CPU. The key 

point is that process is waiting for adjusted time not on CPU, but on the Wait queue. 

After sleep time is elapsed, process moves from the waiting state to the ready state, 

gets placed on the Ready list and completes its execution [44, 45]. This whole process 

is controlled by the process scheduler. 

The process scheduler is the component of the operating system that is responsible for 

deciding whether the currently running process should continue running and, if not, 

which process should run next, including a responsibility to alarm sleeping process [46 

Chapter 10.2]. It runs with a frequency of HZ, it means that it is able to check state of 

suspended process every 1/HZ seconds.  

HZ (hertz) is the frequency with which the system's timer hardware is programmed to 

interrupt the kernel and defined as the number of cycles per second. Much of the 

kernel's internal housekeeping, including process accounting, scheduler time slice 

accounting, and internal time management, is done in the timer interrupt handler. Thus, 

the frequency of the timer interrupt affects a number of things; in particular, it puts an 

upper bound on the resolution of timers used with the kernel. The value of HZ is 

configurable at kernel compilation time. The actual used HZ value can be extracted from 

and defined in /proc/config.gz. The value of HZ varies across kernel versions and 

hardware platforms and can be equal to 1000, 300, 250 or 100.  If HZ is 1000 (the i386 

default for 2.6 kernels through 2.6.12), then timers will have a best-case resolution of 

1ms. If, instead, HZ is 100 (the 2.4 and prior default), that resolution is 10 milliseconds. 

The 250 HZ default in 2.6.13 gives a maximum timer resolution of 4ms and since kernel 

2.6.20, a further frequency is 300 Hz and respectively resolution is 3 milliseconds.  

Executing system sleep is managed by scheduler and it means is directly dependent 

upon the HZ tick rate. It has a kind of limit and when sleep time is less than 1/HZ, 

system sleep miss is always about 53 microseconds. For accurate precise sleep this 

way is unsatisfactory. 
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 5.2   Implementation Sleep in Busy-wait Loop 

Alternative way for sleeping, which was used by old CTSCTimer, is sleeping in the so 

called mode of busy-waiting. This approach defines the way of waiting for an event by 

spinning through a tight loop or timed-delay loop, that polls for the event on each pass, 

as opposed to setting up an interrupt handler and continuing execution on another part 

of the task. This is a wasteful technique which hogs the processor.  

There are several ways to improve the performance of spin-wait loops or, in other 

words, make processor do nothing. In the Intel specification, it is recommended to use 

the pause instruction, which can be executed on a Pentium 4 or Intel Xeon processor. 

On a Pentium 4 processor, it provides the added benefit of reducing processor power 

consumption while executing a spin-wait loop [13 vol. 1 11-18]. On older processors, 

this instruction operates as a nop. The nop instruction performs no operation and 

usually it is used with rep (repeat the next instruction). “rep; nop” is indeed the same as 

the pause instruction. It might be used for assemblers which don't support the pause 

instruction. On previous processors, this was simply did nothing, just like nop but in two 

bytes. For example, ARM architecture doesn't support either rep and pause instructions. 

On new processors which support hyper threading, “rep; nop” is used as a hint to the 

processor that a spin loop is executed to increase performance. The example of busy-

waiting implementation is shown below: 

// TargetTics means current tics and given sleep time  

while ( HighPerTimer::GetTimerTics() < TargetTics ) 

{         

    asm volatile 

    ( 

        "rep;nop" 

     ); 

}  

Listing 5.1: Busy-waiting implementation 

Such sleep hogs 100% of CPU performance, but according to Table 5.2 has the 

minimum of possible miss value. Measurement of Table 5.2 was performed on the 

platform with HZ = 1000. It can be noticed that the miss value is aligned after sleep time 

of 0.001953 seconds and are equal to about 50 nanoseconds, although it isn’t evident 

on this table, but actually miss value is directly dependent upon 1/HZ value. 
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Sleep time, sec Miss, nsec 

1 334 

0,5 243 

0,25 159 

0,125 169 

0,0625 105 

0,03125 98 

0,015625 91 

0,007812 67 

0,003906 62 

0,001953 79 

0,000976 56 

0,000488 46 

0,000244 53 

0,000122 61 

0,000061 38 

0.000030 60 

0,000015 55 

0,000007 50 

0,000003 52 

0,000001 44 

Table 5.2: Miss measurements of sleep in busy waiting loop, performed with TSC 
on the Intel Core i7 processor, HZ = 1000 

In case described above, when sleep time is more than 1/HZ, the miss value is directly 

proportional to sleep time. When sleep time is less than 1/HZ, the miss value is 

approximately equal to 50 nanoseconds, which is quite good for high-accuracy sleeping.  

5.3   HighPerTimer Sleeps Realization 

5.3.1   Main Issues of HighPerTimer Sleeps 

HighPerTimer sleep is a new combined sleep mode which unifies system sleep and 

sleep in busy-waiting loop.  The purpose is combining all advantages from each way of 

sleep, matching minimum CPU usage and minimum miss of nanoseconds. The main 

idea is dividing total sleep time in two parts, subtracting 1/HZ value like it is shown on 

the Figure 5.2 
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HighPerTimer::Sleep 

for (Sleep time)

System sleep 

for (Sleep time – 1/HZ)

Busy-waiting loop

 for (1/HZ)

 

Figure 5.2: Division of sleep time for HighPerTimer sleep  

Before subtracting appropriate value of 1/HZ, it should be determined in a scope of 

HighPerTimer. It is preferred not to read /proc/config.gz, but find more flexible solution, 

not dependent on the file existence, moreover since some kernel configurations hide 

this information from the user. So the best way is calculating CPU usage during busy-

waiting loop with different value of sleep time. 

For obtaining resource usage, it was chosen to use getrusage() function specified in 

<sys/time.h> and in <sys/resource.h> [47]. The example of getting CPU time is shown 

below on the Listing 5.2. RUSAGE_ THREAD argument specifies to return resource 

usage statistics for the calling thread. Usages are returned in the struct rusage pointed 

by ru in this example. ru_utime field keeps user CPU time used and ru_stime – system 

CPU time used. The difference is whether the time is spent in user space or in kernel 

space. User CPU time is time spent on the process running program’s code in user 

mode. System CPU time is the time spent running code in the operating system kernel 

on behalf of a program (via a system call). 

struct rusage ru; 

struct timeval tim; 

double CpuTime; 

 

getrusage(RUSAGE_THREAD, &ru); 

tim = ru.ru_utime; 

CpuTime = tim.tv_sec + (double)tim.tv_usec / ONE_MILLION; 

tim = ru.ru_stime; 

CpuTime += tim.tv_sec + tim.tv_usec / ONE_MILLION; 

Listing 5.2: Obtaining CPU time 

Analyzing how kernel measures CPU usage with different platform, it was found out 

some dependencies, which are quite straight forward. Each hardware timer has its own 

resolution (more precise this resolution is equal to 1/HZ). For example, platform with 
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HZ=1000 has resolution of 0.001 seconds and measure CPU usage well when sleep 

time is 0.01, 0.02, 0.03 and so on. If sleep time is, for example, 0.0025, the total CPU 

usage time will be predominantly equal to zero predominantly and sometimes 0.01. It 

means that values below or above resolution are inappreciable. On the Figure 5.3 it is 

demonstrated measurements of CPU usage during sleeping in busy-wait loop for 

appropriate sleep time for different kind of platforms. In general they represent quite 

precise value, but there are still some deviations. 

   a) HZ = 100, sleep time = 0.01 sec                       b) HZ = 250, sleep time =  .004 sec

 

 

 

 

 

 

с) HZ = 300, sleep time = 0.003 sec                        d) HZ = 1000, sleep time = 0.001 sec                                                       

 

 

 

 

 

 

Figure 5.3: Measurements of CPU usage during busy-waiting  

on different platforms  with different sleep time value  

To simplify and speed up determination of HZ in a scope of HighPerTimer, it was 

chosen trade-off value of sleep time - 14500 microseconds for all kind of platforms. With 

this value it is possible to distinguish and identify HZ faster. On the Figure 5.4, it is 

shown that CPU usage values are not uniform, but each line has one stable value which 

dominates. For HZ = 100, this dominate value is 10 milliseconds (unlikely 20); for HZ = 

250 it is gotten 16 millisecond (unlikely 12); for HZ = 300, it is 13.3 milliseconds (unlikely 

16); for HZ = 1000, it is 14 milliseconds (unlikely 15).  
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HZ value CPU usage, msec 

100 10 

250 16 

300 13.3 

1000 14 

Table 5.3: The most probable values of CPU usage during sleeping  

in busy-wait loop for 14500 microseconds. 

 

 
 

Figure 5.4: Measurements of CPU usage during busy-waiting for 14500 microseconds sleep 

time in different platforms 

5.3.2  Performance- and Accuracy-optimization of HighPerTimer Sleeps  

HighPerTimer posses several different ways to make thread sleep: 

 sleep for the amount of corresponding time in microseconds; 

 sleep the amount of corresponding time in nanoseconds; 

 sleep the amount of time in tics which the corresponding timer is set to; 

Moreover, HighPerTimer provides functions passing parameters of sleep time in 

different ways. The next example lists the HighPerTimer::USecSleep() function: 
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void HighPerTimer::USecSleep ( const uint64_t USeconds ) const 

{     

    int64_t TargetTics (  HighPerTimer::GetTimerTics() + ( USeconds * 

1000 / ( HighPerTimer::NsecPerTic ) ) ); 

    // calculate 1/HZ in microseconds for system sleep, HPJiffies is 

equal to 1/HZ in seconds 

    uint64_t BusyUSeconds ( static_cast<uint64_t> 

(HighPerTimer::HPJiffies * 1000000  ));         

    if ( USeconds >=  BusyUSeconds ) 

    { 

        usleep( USeconds - BusyUSeconds );     

    } 

// the rest time is spending in busy-wait loop 

    while ( HighPerTimer::GetTimerTics() < Target ) 

    {         

          RepNop(); 

    }     

    return; 

} 

Listing 5.3:  HighPerTimer sleep for given amount of microseconds 

This operation is determined according to Figure 5.2. At first it is calculating 1/HZ value 

in microseconds (BusyUSeconds), and then it is subtracted from given initial sleep time 

(USeconds) for system sleep. After system sleep, the busy-wait loop is beginning, which 

duration is calculated due to initially value of TargetTics, which calculated in the very 

beginning of function. Here it is implied that real time spent in busy-waiting loop should 

be equal not only 1/HZ (as it was specified in Figure 5.2), but 1/HZ subtracted 

redundant time of system sleep or, in other words, 1/HZ minus system sleep miss. After 

successful implementation, HighPerTimer sleep is evaluated by two parameters – 

average miss value and CPU utilization:  

1. At first, new combined sleep is evaluated by the miss value. The results are shown 

on the Table 5.4. For better representation it is shown two kinds of them – Run 1 and 

Run 2, which perform with the same condition. After sleep time is less than 1/HZ, the 

miss value varies from 50 until 100 nanoseconds constantly. To demonstrate this 

behavior Run 1 and Run 2 columns were added. 
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Sleep time, sec 
Run 1 Run 2 

Miss, nsec Miss, nsec 

1 253 397 

0,5 304 266 

0,25 268 290 

0,125 285 265 

0,0625 239 281 

0,03125 254 242 

0,015625 208 230 

0,007812 284 226 

0,003906 311 236 

0,001953 258 182 

0,000976 113 161 

0,000488 48 128 

0,000244 48 114 

0,000122 42 89 

0,000061 48 96 

0,00003 46 85 

0,000015 46 100 

0,000007 41 83 

0,000003 38 114 

0,000001 49 112 

Table 5.4: Miss measurements in combined sleep, performed with TSC  

on the Intel Core –i7 processor, HZ = 1000 

When sleep time is more than 1/HZ (according to the Table 5.4, the interval from 1 

seconds to 1953 microseconds of sleep time), some tendency is observed. To 

demonstrate it more clearly one more measurements have been performed (Figure 

5.5). Current results show behavior of miss during sleeping from 10 seconds until 1 

microsecond. When sleep time is more than 1/HZ = 0.001 sec, miss value is 

increasing by some tendency. This dependency is also observed during sleep in 

busy-wait loop and in system sleep, but for better understanding the mean value 

has been calculated (Table 5.5). 
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Figure 5.5: Dependency of miss on sleep time, performed 

 with TSC on the Intel Core –i7 processor, HZ = 1000 

On the Table 5.5 it is shown results of average miss value for each way of sleeping 

(in particular system sleep and sleep in busy-wait loop). The loop consists of 10000 

steps and total performance time of measurements is equal about 830 minutes.   

  Sleep time >= 1/HZ  Sleep time < 1/HZ  

 

Mean miss, usec 
Mean miss, 

usec 
Standard 

Deviation, usec 

System sleep 61.985 50.879 11.412 

Busy-waiting loop 0.160 0.070 0.0400 

HighPerTimer sleep 0.258 0,095 0.0404 

Table 5.5: Miss value measurements of system sleep, busy-waiting sleep and HighPerTimer 

sleep, performed with TSC on the Intel Core –i7 processor, HZ = 1000 

The mean value of HighPerTimer sleep miss with sleep time more than 1/HZ is 258 

nanoseconds, which is quite bigger than the mean value of pure busy-waiting loop 

with 160 nanoseconds in the same interval. There is no sense to calculate standard 

deviation for case, when sleep time is more than 1/HZ, because miss value is 

dependent on sleep time by tendency according to Figure 5.5. 

When sleep time is less than 1/HZ, the miss is also bigger and the difference is 
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about 25 nanoseconds. The deviation value for this interval is about 400 

nanoseconds. In fact, miss of HighPerTimer sleep is really vary from 100 

nanoseconds to 50 nanoseconds (like it is shown on the Table 5.4), but in busy-

waiting sleep this value is more monotonic and stable. This behavior can be 

observed on the Figure 5.6, where it is compared miss value of HPsleep (red line) 

and miss after sleep in busy-waiting loop (green line). It is performed only with sleep 

time less than 1/HZ. The results were obtained on Intel ® Core ™ i7-2600 CPU 

processor: 

 

Figure 5.6: Comparison of miss during HPSleep and during sleep in busy-waiting loop when 

sleep time is less than 1/HZ 

According to Figure 5.6, on the interval of measurements from 1000 to 2000, both 

miss values have approximately the same stable behavior and are about 50 

nanoseconds. However on the interval from 0 to 1000 of measurements, miss of 

HPSleep is noticeably higher than busy-waiting sleep, about 90 nanoseconds. 

To identify place in source code, where it is lost the accuracy, 4 measuring points 

have been set: 

 T1 - the first point is set before invoking of USecSleep() in main routine; 

 T2 - the second point is set in the initial source code of USecSleep() (Listing 

5.3) in implementation file HighPerTimer.cpp after the Target calculating; 
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 T3 - the third point is set in the initial source code of USecSleep() (Listing 

5.3) before the exit of the function (being more precise before keyword 

return); 

 T4  - the fourth point is set after invoking of USecSleep() in main routine; 

Structural these measuring points can be represented the way like it is shown on 

Figure 5.7. To set measuring points it is used method of getting current tics 

HighPerTimer::Now(): 

 

Figure 5.7: Measuring points invoking USecSleep() 

On the Table 5.6, it is shown results of measuring time domain between T1 and T2 

points, time domain between T3 and T4 points and between T2 and T3.  
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Table 5.6: Miss measurements of system sleep, busy-waiting sleep and HighPerTimer sleep, 

performed with TSC on the Intel Core –i7 processor, HZ = 1000  

Decrypting Table 5.6, it is implied that the second column “T4 – T1” means real miss 

value, which it is considered before, but it should be considered that these values 

are increased on two extra operations of obtaining tics. The third column “T3 – T2” 

means miss, obtained inside a function, which ideally is equal to zero, but in fact can 

vary around zero and sometimes be negative. This column does not show a huge 

deviation. The values there are quite smooth, so it means that, in a whole, function 

works correctly. Nevertheless, the last two columns induce suspicion. “T2 – T1” 

column includes the entry to function and calculating tics for TargetTics variable in 

particular. “T4 – T3” is just an exit from USecSleep(). Moreover these two columns 

give a hint that probably entrance and exit from the function can be dependent upon 

1/HZ. Presumably calculating tics also has this dependency. To check these 

assumptions is necessary to investigate assembler code, which is out of scope of 

this thesis. 

 

Sleep time, sec T4 – T1, nsec T3 – T2, nsec T2 - T1, nsec T4 - T3, nsec 

1 391 16 143 273 

0,5 389 15 133 241 

0,25 328 12 75 241 

0,125 353 31 130 213 

0,0625 115 -14 78 52 

0,03125 159 21 36 103 

0,015625 210 10 78 123 

0,007812 216 16 78 123 

0,003906 205 8 75 123 

0,001953 223 22 78 123 

0,000976 126 21 75 30 

0,000488 86 23 42 20 

0,000244 79 21 40 18 

0,000122 87 34 35 18 

0,000061 66 13 35 18 

0,00003 70 18 35 18 

0,000015 67 17 35 15 

0,000007 71 14 40 18 

0,000003 81 29 35 18 

0,000001 67 14 38 15 
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Additionally, it was also checked HighPerTimer sleep performance with inline 

keyword. In theory, inline function is a function upon which the compiler has been 

requested to perform inline expansion. In other words, the compiler inserts the 

complete body of the function in every place that the function is called, rather than 

generating code to call the function in the one place it is defined. If the real reason 

of increased miss (it means with the comparison of sleep in busy-waiting loop) is 

entrance and exit from the function, inline expansion could help to avoid it. But in 

fact, against expectations, it doesn’t give a significant enhancement. On the Table 

5.7 it is compared two ways of implementations:  

 Miss value of HighPerTimer sleep, nsec 

 
Not inline expansion Inline expansion 

Sleep time >= 1/HZ 0.258 0.250 

Sleep time < 1/HZ 0.095 0.095 

Table 5.7:  Miss value of HighPerTimer sleep with comparison of different performance  

So at this stage average miss of HighPerTimer sleep corresponds with Table 5.5 – 

when sleep time is more than 1/HZ, it is about 258 nanoseconds and when sleep 

time is less than 1/HZ, it is about 95 nanoseconds. 

2. Secondly, HighPerTimer sleep is estimated with the CPU usage, which is shown on 

the Table 5.8 and with the comparison of CPU usage during standard system sleep 

and sleep in busy-waiting loop on the Table 5.8. Measurements are performed with 

HighPerTimer on the Intel Core -i7 processor with HZ = 1000: 

 
System sleep Busy-waiting 

Real time  835 min 49.698 sec 833 min 18.146 sec 

User CPU usage 3.619 sec 830 min 36.564 sec 

System CPU usage 4.560 sec 2.115 sec 

User + System СPU usage 8.179 sec 830 min 38.679 sec 

Ratio of CPU usage  
0.016% 99.681% 

to real time 

Table 5.8:  Average CPU usage in system sleep and in busy-waiting sleep 

Test results for Table 5.8 and Table 5.9 were obtained by performing a set of sleep 

execution like in Table 5.1 and Table 5.2 with sleep time from 0.25 seconds to 1 

microsecond. The loop consisted from 10000 steps and total performance time (raw 

“Real time”) is equal about 835-833 minutes. As it was mentioned above the 

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Inline_expansion
http://en.wikipedia.org/wiki/Inline_expansion
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difference between User CPU usage and System CPU usage is whether the time is 

spent in user space or in kernel space. The last row is a total percentage. In case of 

sleep in busy-waiting this value is almost 100%, in case of system sleep it tends to 

zero. 

In Table 5.9, it is added rows for executing sleep in pure busy-waiting mode (when 

sleep time is less than 1/HZ seconds) and for executing sleep in combined mode 

with involvement of system sleep  (when sleep time is more than 1/HZ seconds). 

Accordingly, sleep in real combined mode is performed for about 830 minutes and 

spent about 12 minutes on CPU, which is 1,5 %. Actually this percentage is quite 

bigger with comparison of 0.016% (Table 5.7), presumably the reason is an 

inaccuracy during scheduler performance. Sleep in pure busy-waiting mode is 

performed only for about 3 minutes and spent all this time on CPU, which is 98%. In 

general total time of sleep is about 833 minutes and percentage of CPU usage 

relatively to real time is about 1.89%, which can be estimated as satisfactory. 

  
Combined sleep 

Real time  833 min 18.675 sec 

Real time when sleep time >= 1/HZ 830 min 0.078 sec 

Real time when sleep time < 1/HZ 3 min 18.597 sec 

  
 User CPU usage 15 min 42.393 sec 

System CPU usage 3.613 sec 

User + System СPU usage  15 min 46.006 sec 

CPU usage when sleep time >= 1/HZ 12 min 29.425 sec 

CPU usage when sleep time < 1/HZ 3 min 16.581 sec 

  Ratio of CPU usage to real time 
1.504 % 

when sleep time >= 1/HZ 

Ratio of CPU usage to real time 
98.32 % 

when sleep time < 1/HZ 

The final ratio of CPU usage to real time 1.892 % 

Table 5.9: Average CPU usage in combined sleep 

Analyzing all results, presented above, it can be concluded that HighPerTimer sleep is 

appropriate for high accuracy performance. It has the miss value of about 95 

nanoseconds for sleep time less than 1/HZ. Moreover, predominantly the performance 

of HighPerTimer sleep is not dependent upon processor cores and has minimum CPU 

utilization, being more precise only 1.89%. 
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5.3.3 Handling Interruption of HighPerTimer Sleeps 

Since HighPerTimer library posses the mechanism for accurate sleeping, it is required 

the appropriate mechanism for an interruption this sleeping state. To interrupt sleeping 

process means terminate it at appropriate time moment with maximum possible 

accuracy. 

Actually, the implementation of the interrupt of sleep in busy-waiting loop is trivial and 

was borrowed from CTSCTimer class. The interruption can only be called from a 

different thread created in main routine, accessing the same object. Though it is 

intended to be used in a different thread from sleeps, for performance reason it is not 

thread save. So the iterrupt shall be considered as an effort to wake up prematurely, but 

gives no guarantee on this. The interruption is provided by function 

HighPerTimer::Interrupt() which set true value for corresponding member volatile bool 

mInterrupted. Below listing shows this implementation: 

void HighPerTimer::Interrupt() 

{     

    mInterrupted = true; 

    return; 

} 

Listing 5.4: Interruption function called from a different thread 

Meanwhile, sleeping process is spinning in a loop, which allows putting some 

conditional operator inside a loop. More precise, the loop contains the check whether 

mInterrupted member was changed to “true” value. Avoiding too often access to 

mInterrupted member, it is created local variable long Counter. It increments on each 

step and allows to make the check only on every 16th steps, since the mInterrupted is 

always on the stack. Below example is a passage from HighPerTimer sleep 

demonstrating an interruption process during sleep:  

long Counter ( 0 ); 

mInterrupted = false;     

 

while ( HighPerTimer::GetTimerTics() < Target ) 

{         

     // provides access to mInterrupted on every 16
th
 step 
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     if ( 0 == ( ++Counter & 0x0F ) && mInterrupted ) 

     { 

         return; 

     } 

     RepNop(); 

}  

Listing 5.5: Check for interrupting state during HighPerTimer sleep 

At this stage HighPerTimer provides an interruption only when process sleeps in busy-

wait loop. The task of interruption during system sleeping relates to further work and 

now it is difficult to predict which pitfalls can be faced. However, it's known that system 

sleep() function may be implemented using SIGALRM [41]. Presumably, to terminate 

sleep it would necessary to send a signal and use some thread synchronization 

methods, for instance, mutex which allows accessing the resource only one thread at a 

time. Only when a process goes to the signaled state are the other resources allowed to 

access. 
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Conclusions 

The primary goal of this thesis was the creation of time handling classes on the basis of 

separately existing CTSCTimer and HPETTimer classes, which allows combining well-

known timer sources to a single unified HighPerTimer. With the presented modifications 

and additions to the original code, it was expected to achieve greater efficiency, expand 

a scope of applicable systems and enhance resolution up to nanoseconds. As a result, 

HighPerTimer successfully runs on older and newer versions of Intel and AMD 

processors, including VIA and embeded-plattforms with ARM processors. HighPerTimer 

supports three kinds of timer sources, automatically identifies and chooses the most 

stable and reliable source and has a capability for user to change default timer to 

another one. It also corresponded with the last standard of programming language, 

which provides better readability of source code and incorporates a resilient fault 

tolerant solution due to handling error. The important achievement is the creation of a 

new improved HighPerTimer sleep with minimum nanoseconds loss and CPU 

utilization, which creates a big competitive advantage for the new HighPerTimer.   

HighPerTimer has the potential for a wide applicability, predominantly in a scope of 

telecommunication technologies. With HighPerTimer it is possible to improve an 

estimation of high-precision network performance, to increase accuracy of 

measurements of bandwidth capacity, maximum sustained throughput, packet delay 

and do in-depth analysis of many other derivative network parameters. HighPerTimer 

also has the potential to have real-time multimedia applications in the Internet and be 

applicable in video mixing.  

However, there is also space for developing and improving the created timing classes. 

One of the next steps is testing the accuracy and support on the virtual machines. For 

HighPerTimer, the possibility to run under conditions of virtuality will be a great 

advantage. Now it is unknown, which explicit difficulties can be faced and this case 

should be checked. It is also planned to better support the ARM processor system timer. 

Since ARM posses neither HPET nor TSC, the only way to support ARM at this stage is 

to select OS Timer. In the documentation it is said that an ARM implementation must 

include a system timer, SysTick [37 B3-744] (or it is also called GP Timer the ARM-

kernel tree). Presumably, an invocation of the initial ARM system timer can afford to 

save several additional microseconds and improve the time accuracy.  
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