
85

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

Abstract—The article considers the ways of organization of
databases for the storage of the results obtained during testing.
A new variant of the organization of the data to ensure the
ability to write to the database different sets of parameters in
the form of chronological series. The required set of
parameters depends on the modification of the tested technical
installation.

Keywords: testing of complex technical products, noSQL,
chronological database, document-oriented DBMS.

I. INTRODUCTION

Among the various tasks that require high-volume data
storage is allocated the task of gathering and storing of data
relating to tests of complex technical products [1,2,3]. A
feature of such tests is:
− You need to store a large amount of information that

describes the trends of measured parameters during the
test. Some tests require the speed of data collection to a
few KHz and the duration of the test can be up to
several days;

− There is no strict structure of the data collected. Various
modifications of products can have different sets of
parameters. Thus, over the entire life cycle of the
product can be tested with various modifications;

− Data retention period should correspond to the total
time of the product life cycle;

− In addition to storing the measured during testing the
parameters you want to store data pertaining to the
operation of the test items during its life cycle.

Much of the information that accumulates when testing
are the results of observation over parameters of the process
of testing. When observing the values of the parameters are
recorded and linked to the moment of observation. The
result is an ordered in chronological sequence of measured
values is called a time series.

II. WHY RDBMS IS NOT FIT FOR STORAGE OF TEST
RESULTS?

Traditional industrial relational DBMS are not adapted
for efficient storage and processing of time series. This is
because the relational DBMS include the following
mechanisms:
− Normalization, which on the one hand ensures the

absence of redundancy and logical errors when updating
and sample data, but other decreases the capacity of

− Support of the transaction, which ensures the reliability
and consistency of data, but requires substantial
resources.

These mechanisms are useful when solving business
problems, but they are not needed in the problems of
collection and storage of information about the tests. As a
result of the performance of processing time series is very
low, and the complexity of the description of the application
logic high.

To solve the problem of storing temporary data, there are
special temporal extension RDBMS, but most of the
developments in this direction are intended for storage of
slowly varying data.

It is proved that the storage time series in a relational
form causes some redundancy in the volume of content and
information. Storage of temporal data in a relational is the
amount, which is calculated by the formula [4,5].

 𝑇𝑇𝑇𝑇 = ∑ ∑ �∑ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 + 𝑉𝑉𝑉𝑉𝑡𝑡𝑡𝑡�

𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡=1

𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖=1 , (1)

where
T - the total volume of information;
Vij - the amount of information contained in the j

attribute tuple I;
K and N - number of records and columns in the table;
Vt - size of the temporary attribute;
Zi is the number of states tuple i.
While the amount of data in the same table excluding

temporality is expressed by the formula:

 𝑇𝑇𝑇𝑇 = ∑ ∑ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,
𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡=1

𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖=1 (2)

where
T - the total volume of information;
Vij - the amount of information contained in the j

attribute tuple i;
K and N - number of records and columns in the table.
Indeed, it is easy to see redundancy even if only saves the

current value of the entity in the temporal RDBMS.
Possible decrease in the volume Vt by changing its type

and the creation of a «cheap» surrogate primary keys for the
identification of a tuple and calculate its temporary values
relative to the parent of a tuple. Decrease in volume Vt
through the use of surrogate key is based on the records of

Storing Data in the Trial of Complex Technical
Products

Igor Shmidt
Perm National Research Polytechnic University - Electrotechnical Department

Komsomolsky Ave. 29, 614990, Perm, Russia
E-mail: shmidt@msa.pstu.ac.ru

86

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

relative time values for each tuple.
The total volume of the stored information will be

presented to the expression of the form (3). This method will
always be much more economic than presented by the
expression (1).

 T = ∑ �Vt + ∑ ∑ VijN
j=1 Zi

t=1 � K
i=1 (3)

On the basis of comparison of expressions (1) and (3) we
can construct a mapping of the sets being a description of
the database structure. So, for the formula (1) corresponds to
the set of (4) and formula (3) corresponds to the set of (5).

 ��Ti,, Vj�� (4)

 �Ti, �Vj�� , (5)

where
Ti - timestamp;
Vj - the value of the tag.
When creating the system of tests of important factors

that you need to evaluate the DBMS for storage of large
amounts of data, are: the complexity of the structure, the
volume occupied by the data and the speed of receiving
data.

III. USING NOSQL STORAGE OF TEST DATA

An alternative approach is the use of noSQL [6]. This
approach will build a system capable of adapting to the
increasing amounts of data and effectively handle them.
NoSQL solutions provide much higher data throughput than
traditional DBMS.

Storage time series are most adapted store known as
«key-value». Such databases are the easiest way to store
multiple values associated with the same timestamp tag.
Often such databases are included with the software for
measuring or checking or integrated into the SCADA
system [8]. Examples include the database Citadel, which is
part of the graphical programming platform National
Instruments - LabView. To improve the characteristics of
the storage of historical data in databases is usually possible
to buffering and compression.

A database that is organized as a «key-value», allow to
implement storage of large amount of historical data,
providing high speed write and retrieve data. However, if
you change the structure of the stored data will be
impossible to make a selection of the parameters
corresponding to one physical parameter.

The optimal solution is to use a document-oriented
database. Data model such storage allows you to merge
multiple key-value pairs in an abstraction called an
«document». Documents can be nested structure and form
collections. Collections can contain other collections. It is
this capability that allows to model the relationship is one-
to-many.

Such use document-oriented database unusual, because
these data are not the document.

Document-oriented architecture DBMS allows you to use
a hierarchy of nested and move to a higher level of General

information about the entity . Such a data model will
eventually permit from the base type of the provision of a
set of values (5) go to the form (6)

 �T0, �Tm, �Ts, {Ti, Vi}��� , (6)

where
T0 - the timestamp of the start of the test;
Tm - timestamp minutes;
Ts timestamp seconds;
Ti is the timestamp of the smallest interval of time;
Vi - the value of the tag.
The use of document-oriented database allows identifying

a common data structure in the form of fuzzy structures --
structures that can be dynamically expanded. The data is
organized as a tree that allows efficient indexing by
navigating to the key elements of the tree. This approach is
effective because the majority of requests contain the time
as the main parameter of search. Thus, a custom look at the
data will coincide with the hierarchical structure of the
applied model of data in most of the queries. Structure,
which is optimal for indexing time, also represents a
structure of nested objects, which fully corresponds to the
real logic of the objects of the test.

This approach to the implementation of the database
structure, there is virtually no duplication of data, and data
integrity is ensured by a hierarchical structure.

The proposed flexible structure of the database allows to
expand the horizontal functionality of the database (the add
parameter types, event types, etc), and also will allow to
store the compressed ranks, and automatically, transparently
to carry their processing.

For the implementation of such structure will use the
database MongoDB [8][9].

IV. THE STRUCTURE OF THE DATA IN PRACTICE

In the end, the overall structure of the developed
document-oriented storage will look like the following:

Fig. 1. Еxample data structures.

Such a structure allows to store:
− the results of observation over parameters of the process

of testing;
− meta-information about testing;
− information about the operation of the test items during

its life cycle.
Storage is not historical information in a document-

oriented database can be organized as a projection of the
structure RDBMS containing this information. This

87

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

structure will contain all the necessary information, ways of
transformation parameters, directly series, information on
testing. Storage same time series in the structure of the
document requires additional study.

To improve data search and to conserve space is proposed
to use the hierarchy of the document and represent time
series in the form of a tree. There is a particular task of
determining the optimal nesting branches of the tree. In
practice, it is necessary to find a compromise between the
memory size and speed. For this you must define the target
function f and solve optimization problem

 f(B,C) = km fm (B,C) + kv fv (B,C) (6)

f(B,C) → min,

where
B - nesting tree branches;
C - the number of elements in the tree;
fm - function determining the memory footprint;
fv function determining the speed of access to data;
km and fv – weights.

REFERENCES

[1] S. Schubring and I. Munoz, “Field Performance Testing from an
Operators Point of View,” Gas Turbine User Symposium 2005. -Las
Vegas, Nevada, 2005.

[2] D. Popov and I. Shmidt, “Development of the functional structure of
the software complex tests of gas turbine units with a capacity up to
40 MW,” Research and innovation, vol. 6, pp. 264–270, 2012.

[3] B. V. Kavalerov, V. P. Kazantsev, I. A. Shmidt, “Simulator and Semi-
Nature Testing of Gas-Turbine Power Units Control Systems,
Information and Control Systems,” St.-Petersburg, Russia, vol 5, pp.
25-31, 2009.

[4] S. Navathe, “Temporal Extensions to the Relational Model and SQL,”
in A. Tansel, J. Cliord, S. Gadia, S. Jajodia, A. Segev, and R.
Snodgrass, editors; Temporal Databases: Theory, Design, and
Implementation. / S. Navathe, R. Ahmed. – Benjamin/Cummings
Publishing Company, 1993. – pp. 92-109.

[5] R. Snodgrass, “The TSQL2 Temporal Query Language,” Kluwer
Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061, USA, 1995

[6] G. Vaish, “Getting Started with NoSQL,” Packt Publishing, 2013.
[7] D. Bailey and E. Wright, “Practical SCADA for industry,”

Oxford(GB): Elsevier, 2003. -304 p.
[8] K. Banker, “MongoDB in Action,” Manning Publications, 2011. p.

375.
[9] K. Chodorow, “Scaling MongoDB,” O’Reilly Media, 2011. p. 62.

