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Annotation 

The master's thesis describes the choice features of methods for predicting 

the parameter values of production and economic systems. For this, the data 

features collected and used are considered, the main problem in the projects’ data 

analysis implemented in production and economic systems will be either a small 

amount of statistical data or data describing a number of products, product 

modifications, etc.  

The main approaches used for predicting parameters are considered. These 

are approaches described by special curves, supervised learning, unsupervised 

learning and semi-supervised learning. Features of the forecasted data and also 

forecasts based on regression analysis, the method of support vector machine, auto 

regression and wavelet analysis are constructed. For the predicted values, the 

method of choosing the forecasting method based on the risk assessment of the 

introduced forecasts is given. The choice is proposed to be made on the basis of an 

estimate of the exact prediction for a maximum period of time. Since, starting with 

a certain forecast value, risk value assessment begins to increase sharply, which 

allow choosing the method of forecasting.  

Also, for these forecast values, the root-mean-square error and the mean 

error of approximation are calculated. The best methods are compared on the basis 

of calculating the accuracy of forecasting and assessing the risk of compiled 

forecasts. The result of the comparison with a small margin of error makes it 

possible to use the risk assessment in the future to estimate the prediction of the 

model 
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Introduction 

Based on the international rating of production competitiveness for 2016, the 

greatest impact on the competitiveness of industrial companies has had the 

application of predictive models in management. This allowed the USA and 

Chinese industrial companies to take a leading position for the last 5 years. The 

role of using forecasts in management tasks is significantly increased in connection 

with the substitution of cognitive methods for statistical data processing. An 

important role in this is the reliability of forecasts. Therefore, the task of assessing 

the reliability of the forecast and assessing the risks of the received forecasts is 

relevant. 

Initially, time series analysis was used only for models with a systematic 

component (in such models, the time course does not affect the random 

component). 

Most of the parameters characterizing production and economic systems are 

the ability to describe the change in the values of most parameters using S-curves 

or periodic curves. However, lately there has been an increase in the mobility of 

the values of the parameters characterizing the production and economic systems. 

To predict such values, it is necessary to use methods that can self-correct in the 

light of current trends and respond quickly to changes in the values of production 

and economic systems. 

Thus, when considering individual parameters (without considering methods 

of complex prediction of a number of parameters, such as PLS regression [1] and 

cognitive maps [2]), the prediction task will be reduced to the selection and 

application of the following methods: 

- approaches used to predict data described by special curves (usually these 

are parameters described by innovative and S-shaped curves (see, for example, [3] 

and [4]); 

- unsupervised learning (used for models with a large amount of training 

sample, when it is necessary to determine the internal relationships, dependencies, 



6 

 

patterns existing between objects, is based on the application of the clustering 

method). One of the methods used for analysis is the k-means, hierarchical 

clustering, neural networks, autoregression method [5]; 

- supervised learning (used to determine the data interrelationship functions 

based on the training sample). The training sample consists of a set of input and 

output values. The methods used are the support vector method (SVM) [6], k-

nearest neighbors algorithm (k-NN) , Gaussian mixture mode), naive Bayesian 

classifier naive Bayes, decision trees, radial basis function classifiers, etc.); 

- semi-supervised learning (machine learning methods that simultaneously 

use a training sample with unlabeled data and a small number with tagged, popular 

approaches like: self-training, co-training, graph-based algorithms Based 

algorithms, generative models, Cluster-and-Label) [7]. 

The purpose of this work is to build a forecast and assess the risk of the 

values of the parameters of serial production in production and economic systems 

(PES). 

For this you need to solve the following tasks: 

- Prepare data for further analysis, restore missing values, expand data by 

years using seasonal coefficients; 

- Apply methods of regression analysis, support vector method, 

autoregression, wavelet analysis and fractal analysis to predict values; 

- Based on the forecasts received, calculate the value of the error and the risk 

of the predicted values. 

Relevance of the research: effective management of production and 

economic systems is possible only with the use of predictive models, this is due to 

the mobility of the system parameters. In this case, there are risks of forecasting, 

which are also worth considering. 
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Chapter 1. Basic approaches to working with time series 

1.1. Basic methods of forecasting time series 

The questions of forecasting data characterizing production and production 

and economic systems are relevant because such information is used in 

management tasks, both by experts and in models used to support decision making. 

At present, approaches are being developed on the basis of predictive models 

combining approaches based on the principles of optimal control and predicting the 

values of parameters, introducing a new time factor in traditional tasks. In such 

problems, the accuracy of the predicted values will acquire special significance. It 

should be borne in mind that it is through forecasting values in such tasks that the 

influence of the external environment is taken into account and indirectly through 

it the influences of other "players" in the subject domain of production and or 

market. Therefore, work with such systems will be cyclical, due to the need to 

refine the forecasts when new data appear. This factor becomes especially 

important in the context of data limitations, as well as in connection with the 

characteristics of the statistics that are collected, which usually does not allocate 

each unit of product name and modification, so that even if the nature of the data 

change is known, this information becomes difficult to apply. 

At the moment, the following methods and approaches are used to solve the 

tasks of forecasting time series: 

- The approaches used to predict the data described by special curves (as a 

rule, these parameters are described by innovative and S-shaped curves, see [8], 

[9], [10], [11] 

- Unsupervised learning. One of the ways of machine learning, in which the 

test system spontaneously learns to perform the task without intervention from the 

experimenter. He studies a wide class of data processing tasks, in which only 

descriptions of a set of objects (learning sample) are known, and it is required to 

detect internal relationships, dependencies, patterns existing between objects. This 
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approach is based on the application of the clustering method. Methods used for 

analysis: k-means, hierarchical clustering, neural networks.  

- supervised learning. These methods are based on the use of labeled  

training data. These data have input and output parameters. Based on which a 

function is constructed, which can be used later to predict the values of new, 

unlabeled data. This type of training uses classification methods. The main 

methods used in this method are neural network, support vector method (SVM), 

neighbor nearest-neighbor algorithm (k-NN), Gaussian mixture model, naive 

Bayes classifier, decision trees and radial basis functions of classifiers. [12] 

 - Semi-supervised learning is a method of machine learning that 

simultaneously uses the elements of supervised and unsupervised learning. 

Typically, the system uses a small amount of label data and a large amount of 

unlabeled data. The combination of two techniques of machine learning can 

significantly improve the accuracy of training. Also, the use of this method 

simplifies and reduces the cost of preparing the labeled data. Because processing 

with a teacher a large number of data is either impossible, or very expensive. In 

such situations, semiautomatic training can be of great practical importance. [13] 

As methods for teaching with partial involvement of the teacher, 

classification algorithms can be distinguished: self-training, co-training, graph 

based algorithms, generative models, Cluster-and-Label. 

1.2. Features of time series in production and economic systems 

The first step in any analysis is the collection and data preparation. There is 

a widespread opinion that up to 80% of the data analysis process is the time spent 

on their preparation. Data preparation is not only the first step, but they must be 

repeated many times during the analysis as new problems are identified or new 

data are collected. Part of the problem is the breadth of the work from the 

systematization of data, the reduction of data from different sources, the restoration 

of missing values. 
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When analyzing data on projects implemented in production and economic 

systems, one has to work either with a small amount of statistical data, or with data 

describing a number of products, product modifications, etc. (I.e., unlabeled data). 

In this case, as a rule, there are periods when several types or modifications of the 

product were made simultaneously. The data can be characterized by a different 

frequency of data collection (different time intervals between values). In addition, 

data may be contained in different sources and may be incomplete or have errors. 

Such situation with statistical data can be resolved either by using additional 

information about the analyzed data, or by using methods to increase the statistical 

sample. 

Additional information is expressed in information about the type of the 

curve which describes data or data areas. Knowledge of the laws of changing 

values allows us to determine the form of the function and reduce the solution of 

the problem to the search for the coefficients of functions for the best description 

of the data. 

The innovation curve is a piecewise-defined function: exponential growth, 

linear section, parabolic maturity. The system of equations describing the curve 

(1.1) [14]: 

 

                                                 
                                             
                

                     

    (1.1) 

where the coefficients c determine the position, shape and growth (fall) of the 

function and depend on the features of the innovative project. The          – the 

time corresponding to the transition points from one stage of the innovation project 

to another. 

The task of determining the points of transition from one stage to another 

stage of model modification development can be solved by an expert method based 

on the features of the innovation curve. Such as [15]: the area of the figure, limited 

by a segment of exponential growth (entering the market), is 3% of the total area of 

the figure; The area of the figure bounded by the linear growth area is 13% of the 
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total area of the figure; The area of the figure bounded by the maturity site is 34% 

of the total area of the figure; The area of the figure, bounded by the recession 

area, is 16% of the total area of the figure. 

When predicting the values of the parameters described by S-shaped curves, 

questions arise about the origin of the coordinates of such curves, the location of 

the bending point, the choice of the functional description (the Pearl curve, 

Gompertz curve, etc.). These data can be determined in the same way as in the 

previous case by the expert method. 

In this case, there is a problem that the collected data characterize several 

projects or models. The application of methods based on innovative and S-shaped 

curves in this case probably introduces features related to the need to determine the 

points of the generation change (see, for example, Fig. 1.1) by expert methods, 

special processing at the stages of transition from one generation to another, a short 

period of time Forecasting limited to one stage of the project [16]. Everything 

becomes difficult (see, for example, Figure 1.1), and the accuracy of the methods 

existing on the basis of this approach is not high in connection with the need to 

determine the points of transition from the release of one model to another and the 

absence of it [17] 

. 



 

11 

 

  
а)       b) 

  

c) 

Fig. 1.1. Change in price value (blue), sales value (black) and red points - generation change for a) Ford Mustang car (1979-1993 

- third generation, 1994 - 2004 fourth generation, 2005-2014 - fifth generation, 2015 sixth generation b) car Ford F-Series, c) car 

Ford Explorer..
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In this case, the information about the change in the model parameters 

within the model range is known and given in Table 1.1. The generational change 

points are shown in red, in Figure 1.1. 

Table 1.1. 

Data about the change of the model range for Ford cars models: Mustang, F-series 

and Explorer 

Mustang F-series Explorer 

The third generation (1979-

1993) 

1992 - 1993, increase the 

power from 88 to 105 hp. 

The fourth generation (1994-

2004) 

1994 - 1995 "SN-95", Serious 

change 

1996 - 1998 8-cylinder 

1998 Engine power increased 

1999-2004 "New Edge 

2001 - Power increased 

Fifth generation 2005 – 2014 

2005 «S-197» 

2006-2008, Shelby GT 

2010 Updated model 

2011 Engine Update 

2012 New Mustang Boss 302 

introduced 

The Sixth Generation (2015) 

Eighth generation 

1987 * 1991 

The ninth generation (1992-

1997) 

993 SVT Lightning 

The tenth generation (1997-

2003) 

The eleventh generation 

(2004-2008) 

The Twelfth Generation 

(2009-2014) 

The thirteenth generation 

(2015) 

2017 - Restyling 

 

First generation 1990 – 1994 

Second 1994 * 2001 

Third 2002-2005 

Fourth 2006-2010 

Fifth 2010- Now 
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1.3. Features of data preparation when working with time series 

Due to the peculiarity of data in which there is no selection of goods and 

their modifications and different frequency of compiling reports and collecting 

data, an important stage is the preparation of data. In addition to this reason, the 

data may be contained in different sources, be incomplete or have errors. 

Therefore, before working with data, it is so important to properly prepare them. 

Let's consider some peculiarities of working with data characterizing 

production and economic systems on the example of open data on the volume of 

sales of Ford cars in the US market. 

The aim of the study is to predict and assess the risk of the values of the 

parameters of serial production in PES. 

Data for analysis are taken from open sources: WolframAlpha and a site 

containing sales statistics for various brands of cars for the markets of the USA and 

Canada (http://www.goodcarbadcar.net/2011/01/ford-crown-victoria-sales-

figures.html) and Another site (http://carsalesbase.com/us-car-sales-data/ford/ford-

mustang). 

Since the data is taken from different sources and presented in a different 

format (xls document and web page). The original data was tabulated in the xls 

format. The data is filled manually, using the Microsoft Excel program (Table 1.1) 

The data shown in Table 1 has gaps. To use such data in predictive models, 

they require a synchronization operation. 

The filling of the gaps between 1989 and 1994 can be accomplished by 

extrapolating the data by the number of sales. Such extrapolation can be performed 

both by mathematical methods and by an expert method. However, working with 

the received data, we observe that some of the data is specified with a periodicity 

in a month and a part with a periodicity in a year. When choosing the size of the 

period per year, the amount of data can be so insignificant that the use of 

mathematical methods will be difficult. Therefore, further it is necessary to deploy 

by months based on seasonality of sales. Data for the period from 1989 to 2009 

inclusive are given for the year, and from 01/01/2010 to 01/01/2017, data are 
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presented for each month. We expand the data based on the seasonal coefficients 

for each model. 

Table 1.2. 

An example of data used for analysis. 

Date 

Sales 

value in 

USA 

Mustang 

Price 

average 

Mustang 

Price 

min 

Musta

ng 

Price 

Max 

Musta

ng 

Sales 

value 

in 

USA 

F-150 

Priсe 

averag

e F-

150 

Price 

min F-

150 

Price 

Max F-

150 

Sales 

value in 

USA 

Explorer 

Priсe 

averag

e Exp-

r 

Price 

min 

Exp-r 

Price 

Max 

Exp-r 

01.01.1989 
 

13026 9050 17512 
        

01.01.1990 
 

13838 9456 18805 
 

12607 10366 14933 
    

01.01.1991 
 

14813 10157 19864 
 

13051 10398 15857 
 

18216 14792 22125 

01.01.1992 
 

15069 10215 20199 
 

14128 10336 17296 
 

19284 15854 23553 

01.01.1993 
 

16034 10810 20950 
 

14963 11138 18923 
 

20991 16690 27422 

01.01.1994 
 

18389 13695 22195 
 

16646 14256 18971 
 

22284 17970 28910 

01.01.1995 
 

18667 14530 22795 
 

16833 14306 19294 
 

24739 18985 33935 

01.01.1996 
 

21623 15180 27580 
 

17551 15150 19840 
 

26385 19770 34950 

01.01.1997 
 

21928 15355 28135 
 

21461 15525 27115 
 

26754 20085 35005 

01.01.1998 
 

22553 16150 28510 
 

21800 15865 27415 
 

27298 19880 33720 

01.01.1999 
 

23751 16470 31470 
 

23018 16220 29565 
 

28841 20065 34540 

01.01.2000 
 

24024 16710 31605 
 

23366 16455 32305 
 

29209 19970 34565 

01.01.2001 
 

24200 17095 32605 
 

23877 17245 31745 
 

31098 25210 34660 

01.01.2002 138356 23007 17475 28645 813701 26188 18540 35995 433847 30524 24585 34510 

01.01.2003 140350 27520 17720 39275 845586 27237 19125 37035 373118 32353 26285 37000 

 

Seasonal fluctuations are characterized by seasonality indices (  ). The 

annual parameter of seasonal fluctuations forms a seasonal wave. The seasonality 

index refers to the percentage of actual annual levels within an annual average. 

To identify seasonal fluctuations, data are usually taken over several years, 

distributed over the months. These data, usually used in a sample over a period of 

three years, are used to identify a stable seasonal wave. Sampling of the data for 

several years allows to avoid the influence of random annual parameters and to 

represent the average seasonal wave. 

When calculating the seasonality indexes, different methods are used. In the 

absence of pronounced seasonal trends, the values of the indices are calculated on 

the basis of the initial empirical data, without additional alignment. 
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Then the calculation algorithm has the following form: the average value of 

the index is calculated for each month, in this case for seven years (   ), then the 

average monthly level of the series for the year (    is calculated from the average 

values of the month and, as a result, Values for the month to the total average 

monthly value (1.2), i.e. [12] 

   
   

  
           (1.2) 

The sum of the coefficients should be 1200, with the correct calculation. 

Next, we need to restore the value of the amount of sales of each brand for a 

month, taking into account the seasonal coefficients. To do this, we divide the 

value of annual sales by 1200 and multiply by the coefficient of each month. We 

perform this operation for each model. (Fig.1.2) 

As a result, we have 337 rows of data. In final, we have restored the 

intermediate data for a month; also for the further investigation it is necessary to 

restore the data for the intervals at the beginning and end of the time periods. To do 

this, we again apply the expert method. Since the intervals needed for recovery are 

small, a maximum of 24 points out of 338. To do this, we use the linear 

extrapolation method. The essence of the method lies in the fact that the forecast 

values are determined on the basis of the average increase (decrease) in the 

indicator under study over a certain period of time. [13] Forecasting is carried out 

on the average absolute increase, and can be performed if the general trend is 

assumed to be linear. 

If the main trend of the changes in the sign is close to rectilinear, then the 

value of the level of the series in the subsequent period (n +1) can be 

approximately determined by formula (1.3): 

              ,      (1.3) 

where:        - is the average absolute increase. [18]. 
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a) 

 

b) 

 

c) 

Fig.1.2. Seasonal coefficients for 3 selected Ford cars’ models 

 

In this case, the use of this method is acceptable, because we need to rebuild 

a small area, while, judging by the graph of 1, on the interval at the beginning of 

the time range the graph is close to the linear function. Therefore, the use of linear 

extrapolation is justified (Table 1.3, Fig.1.3). 
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Table 1.3. 

Values of R
2
 linear approximation 

 
Price min 

F-150 

Price max 

F-150 

Price min 

Explorer 

Price max 

Explorer 

R
2  

linear 

approximation 
0.9457 0.9732 0.9397 0.7651 

 

 

Fig.1.3. Graphs of functions for which approximation is necessary 

 

As a result, data were obtained for further analysis using linear 

extrapolation, linear interpolation, and seasonal coefficients. 
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Chapter 2. Data forecasting described by time series in production 

and economic systems 

Each method has features and accuracy of adjustment. Therefore, often the 

problem arises not only of choosing a method that is optimal for these conditions, 

but also of selecting parameters for them. To select the optimal model for 

forecasting and its parameters, it is suggested to divide the retrospective data into 

two sections: training and test. After the preliminary method, it is necessary to 

refine the internal parameters already on the combined data. 

2.1. Using regression analysis to predict data 

Regression is the mathematical expectation of a random variable on one or 

more variables (other random variables) (2.1), that is, 

                  (2.1) 

Regression analysis is the search for a function f that describes this 

dependence. Regression can be represented as a sum of non-random and random 

components (2.2). 

              (2.2) 

where   is a regression function, and   is an additive random variable with zero 

expectation. The assumption of the nature of the distribution of this quantity is 

called the data generation hypothesis. It is usually assumed that the quantity   has 

a Gaussian distribution with zero mean and variance   
 . 

The problem of finding the regression model of several free variables is set 

as follows. A sample is defined-the set                of values of free 

variables and the set              of the corresponding values of the 

dependent variable. These sets are denoted as D, the set of initial data        . A 

regression model is defined-a parametric family of functions      ) depending on 

the parameters     and free variables  . It is required to find the most probable 

parameters    (2.3): 

                                 (2.3) 
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The probability function   depends on the hypothesis of data generation and 

is given by the Bayesian derivation or the maximum likelihood method. [19] The 

quality of predicting the regression model depends on the type of function chosen. 

Let's construct a regression model for the sales volume of each car model 

(Listing 2.1, Figure 2.1).  

The disadvantages of the method include the need to select the form of the 

function, and in the event that the data have complex regularities, as in the case of 

the parameters of production and economic systems, it is necessary to use power 

series that give low accuracy beyond the range in question with the data, and hence 

the poor quality of the forecast. 

 

Listing 2.1. An example of regression analysis code in the language R, for model 

F-Series. 

plot(pr_av_f,sf) 

  points(test[,7],test[,6], col= 'green') 

  carlf <-lm(formula = sf ~ pr_av_f) 

  lpr_f<- predict(carlf) 

  summary(carlf) 

  abline(carlf, col='red') 

  error <- sf - lpr_f         # error linear predict mustang 

  predictionRMSE <- rmse(error)    # 14046.504 root-mean-square 

deviation for mustang linear regression 

  dost_f_av<- sigm(error) 

  print(dost_f_av) 

  #for sales only 

  x<- 1:337 

  e<-data.frame(x=x,y=sf) 

  lm_f_s<- nls(y ~ k1+k2*x+k3*x*x+k4*x*x*x+k5*x*x*x*x, data=e, 

start=list(k1=0.1, k2=0.1, k3=0.1, k4=0.1, k5=0.1)) 

  lpr_tr_f_s<- predict(lm_f_s) 

  coef_func <- coef(lm_f_s) 

   lpr_tr_f<- predict(lm_f_s) 

  plot(date,sf, type = "l", ylab = "Sales F-series") 

  points(date_t,test[,6], col= 'green', type="l") # test data 

points 

  lines(date, lpr_tr_f_s, col='red') 
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а) 

  

b) 

 

c) 

Fig. 2.1. Forecasting of regression sales volume - initial data (black), data 

for forecasting (green) and data obtained by regression (red line): a) Ford Mustang 

car, b) Ford F-Series car, c) Ford Explorer car. 
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2.2. Using supervised learning method 

2.2.1. Support vector machine method 
 

The Support Vector Machine (SVM) is supervised learning models with 

associated learning algorithms used for classification tasks and regression data 

analysis. It belongs to the family of linear classifiers and can also be regarded as a 

special case of Tikhonov regularization. A special property of the support vector 

method is a continuous decrease in the empirical classification error and an 

increase in the gap, so the method is also known as the classifier method with the 

maximum gap. 

The main idea of the method is the translation of the initial vectors into a 

space of higher dimension and the search for a separating hyperplane with the 

maximum gap in this space. Two parallel hyperplanes are constructed on both 

sides of the hyperplane that separates the classes. The separating hyperplane is a 

hyperplane that maximizes the distance to two parallel hyperplanes. The algorithm 

works under the assumption that the greater the difference or the distance between 

these parallel hyperplanes, the smaller the average classifier error [20]. 

Describing the rules of classification in its unconditional form shows that the 

maximum margin of the hyperplane and, consequently, the classification problem 

is only a function of support vectors. 

Observations for training lie on the edge. 

Using the fact (2.4) 

             (2.4) 

And substituting (2.5), 

         
 
         (2.5) 

It can be shown that the second form of the support vector method allows to 

solve the optimization problem: 

Maximizing with respect to    (2.6): 
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            (2.6) 

The restriction on minimization for b (2.7) 

     
 
           (2.7) 

The kernel is defined as k                

W can be computed by conditions (2.8): 

         
 
         (2.8) 

However, in our case, an explicit nonlinearity of the function is observed. 

For such cases, a non-linear classifier is used. In 1992, Bernhard E. Boser, Isabelle 

M. Guyon and Vladimir N. Vapnik proposed a method for creating a nonlinear 

classifier using an arbitrary kernel trick (proposed by Eiserman) to find the planes 

of maximum difference. 

The final algorithm is formally simple, except that each scalar product is 

replaced by a nonlinear kernel function. This allows us to find the hyperplane of 

the maximum difference in the changed function space. [20] 

The change can be non-linear and can be transformed into a space with high 

dimensionality. 

Although the classifier is a hyperplane in a multidimensional function space, 

it can be non-linear in the source space of the training sample. 

If the kernel used Gaussian radial basis functions, the corresponding 

function space is a Hilbert space with infinite dimension. 

The classifier of the maximum difference is well settled, because Infinite 

dimension will not spoil the results. It is worth noting that the accuracy of the 

received forecasts depends on the volume of the training sample. 

We obtain a function for constructing the forecast obtained by the support 

vector method for the Mustang model (Listing 2.2). To build the forecast of the 

remaining models, we apply the same algorithm as in the listing. 2.2. 

Listing 2.2 the program code for building the support vector method for the 

Mustang model in RStudio 

f.svm_m_av<- function(test,d,sm) #svm { 

  #from time sales only  
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  for (i in 1:length(test)){ 

    test[i,14]<- as.numeric(as.Date(test[i,1], format = 

'%d.%m.%Y'))} 

  date_t<- as.Date (test[,1], "%d.%m.%Y") 

    model1<- svm(sm ~ date, d) 

  prY2 <- predict(model1,d) 

  plot(date,sm, type = "l") 

  points(date_t,test[,2], col= 'green', type = "l") # test data 

points 

  points(date, prY2, col = "red", type ="l")} 

Let us consider the results that can be obtained by the support vector method 

(Fig. 2.2) using data with which we supplemented our samples. 
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a)    

  

b)    

 

c)    

Fig.2.2. Forecasting the volume of sales by the method of reference vectors - 

initial data (black), data for checking forecasting (green) and data obtained by the 

support vector method (red line): a) Ford Mustang car, b) Ford F-Series car, c) 

Ford Explorer car . 
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2.3. Using semi-supervise learning methods 

2.3.1. Autoregression 

The simplest method is the autoregressive method. Forecasting using the 

autoregression model is based on previous sales values. The word autoregression 

means the dependence of the subsequent value of sales on previous sales. 

Dependence in the case of autoregression is assumed to be linear, that is, the 

forecast is the sum of sales for the previous days with some coefficients that are 

constant and determine the parameters of the autoregression model. How many 

days (periods in the general case) of such sales from the past we will take to try to 

predict future sales is called the order of the autoregression model p. For example, 

we want to enter the entrance to sell for the previous three days, and predict how 

much will be sold the next day. Then, the order of the model is p = 3. In brief this 

is often written as AR (3). The formula will have the form (2.9) [21] 

                                 (2.9) 

In this work, were used the autoregressive and integrated moving average 

model (ARIMA.). ARIMA model is used to model non-stationary time series. This 

method is well suited for describing periodic data, but it does not allow taking into 

account fluctuations in the data. 

The non-stationary time series is characterized by unstable mathematical 

expectation, variance, autocovariance and autocorrelation. 

At the heart of the ARIMA model are two processes: 

• autoregression process; 

• moving average process. 

The ARIMA process can be determined by the formula (2.10): 

         –       –             (2.10) 

where   is a constant, a free member of the model; 

     …- parameters of the autoregression model; 

  - random effect (model error). 
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Any observation in the autoregression model is the sum of the random 

component and the linear combination of the previous values 

The moving average process can be described by a formula of the form 

(2.11): 

       –     –  –     –  –         (2.11) 

where μ is the free term of the model, constant; 

     …... - parameters of the moving average model; 

  - random effect (model error). 

The current observation of ARIMA consists of the sum of the values of the 

initial component at the current time and a combination of random effects at 

previous time instants. 

As a result, the ARIMA model is presented in general form in the formula 

(2.12): 

        
             

                (2.12) 

where C is the free term of the model, a constant; 

  is a random residue uncompensated by the model. 

In the works of Box and Jenkins, the autoregression model and the 

integrated moving average are presented in the form ARIMA (p,d,q), where 

 p - parameters of the autoregression process; 

 d is the order of the difference operator; 

 q - parameters of the moving average process. 

When modeling ARPSS models in non-stationary time series, three stages of 

modeling. 

1. Checking the time series for stationarity; 

2. Identification of the order of the model and estimation of unknown 

parameters; 

3. Forecast. 

When using the autoregression model of the integrated moving average, it is 

necessary to verify the stationary of the investigated series. This assumption is 

verified using autocorrelation and partial autocorrelation functions of a number of 
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residues. Remnants mean the difference between the observed time series and the 

values calculated using the model. 

The nonstationarity of the time series can be eliminated by the method of 

difference operators. 

By a difference operator of the first order we mean the replacement of the 

initial level of the time series by first-order differences (2.13): 

  
                 (2.13) 

The application of first-order difference operators makes it possible to 

eliminate linear trends. And the application of difference operators of the second 

order makes it possible to exclude parabolic trends. 

Seasonal difference operators are used to exclude 12- or 4-period seasonality 

(2.14): 

  
          , или   

            (2.14) 

If the model contains both trend and seasonal components, then both 

operators must be used. 

At the second stage, the number of autoregression parameters and the 

moving average are selected. 

In the process of estimating the ARIMA model, a quasi-Newton algorithm is 

used to maximize the likelihood of observing the values of the series in terms of 

the parameter values. In this case, the (conditional) sum of squares of the 

remainders of the model is minimized. To assess the significance of the 

parameters, Student's t-statistics are used. If the values of the obtained t-statistics 

are not significant, the corresponding parameters, as a rule, can be deleted from the 

model without affecting the total values of the system. The obtained parameter 

estimates are used at the last stage to calculate the new values of the series and 

construct the confidence interval for the prediction. 

The accuracy of the obtained forecast based on ARIMA model is determined 

using the mean-square error (2.15): 

  
                (2.15) 

The smaller the error value, the more accurate the forecast. 
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ARIMA model is considered adequate to the initial data if the remnants of 

the model are uncorrelated normally distributed random variables. [22] 

Let's apply the autoregressive method in the RStudio, build the forecast for 

39 points (the amount of data in the test file) and present the result as a graph for 

the Mustang model (Listing 2.3): 

Listing 2.3 the code of the program for constructing the autoregressive 

method for the Mustang in the RStudio program 

  model<- auto.arima(smt) 

  future<- forecast(model, h=39) 

  plot(date, sm, type = "l") 

  points(date_t,test[,2], col= 'green', type = "l") # test 

data points 

  points(date_t, future_ar_m$mean, type="l", col="red") 

Result of autoregression calculation: 

Series: smt  

ARIMA(4,1,3)                     

Coefficients: 

         ar1     ar2      ar3      ar4      ma1      ma2     

ma3 

      0.7200  0.3054  -0.2458  -0.4009  -1.1780  -0.1499  

0.5396 

s.e.  0.1256  0.1856   0.1027   0.0575   0.1309   0.2354  

0.1232 

 

sigma^2 estimated as 2698607:  log likelihood=-2619.14 

AIC=5254.27   AICc=5254.77   BIC=5283.82 

The forecast command predicts values based on the training data, the result 

of the calculation of the representation in Figure 2.3. 
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a)  

  

b)    

 

c)    

Fig. 2.3. Forecasting sales volume using the autoregressive method - initial data 

(black), data to check the forecasting (green) and data obtained by the 

autoregressive method (red line): a) Ford Mustang car; b) Ford F-Series car; c) 

Ford Explorer car. 
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The prediction function forecast also builds the value of the prediction 

interval. The prediction interval should not be confused with a confidence interval. 

The prediction interval is the interval associated with a random variable that 

is still to be observed, with a given probability of a random variable lying within 

the interval. Prediction intervals can occur in Bayesian or frequency statistics. 

The confidence interval is the interval associated with the parameter. The 

parameter is considered non-random, but unknown, and the confidence interval is 

calculated from the data. Since the data is random, the interval is random. The 95% 

confidence interval will contain the true parameter with a probability of 0.95. That 

is, with a large number of repeated samples, 95% of the intervals will contain the 

true parameter. [23] 

2.3.2. Wavelet analysis  
 

Another method for analyzing complex functions is Fourier analysis. It is 

based on Fourier series. In accordance with the principle of interference, the series 

begins with the decomposition of a complex form into simple ones. Fourier 

showed how these simple solutions can be summed up to obtain a solution to the 

whole complex problem as a whole. (In the language of mathematics, the Fourier 

series is a method of representing a function by the sum of harmonics - a sinusoid 

and a cosine wave, so Fourier analysis was also known as "harmonic analysis.") 

The Fourier transform allows us to represent a continuous function f (x) 

(signal) defined on the interval {0, T} as the sum of an infinite number of (infinite 

series) of trigonometric functions (sine and / or cosine) with certain amplitudes and 

phases, also considered on the segment {0, T}. Such a series is called the Fourier 

series. [24] 

Another method of training the model is the application of wavelet analysis. 

Wavelet is a mathematical function that allows analyzing various frequency 

components of data. The graph of the function looks like wave-like oscillations 

with an amplitude decreasing to zero far from the origin. However, this is a 

particular definition - in the general case, signal analysis is performed in the plane 
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of wavelet coefficients (Scale-Time-Amplitude). The wavelet coefficients are 

determined by the integral transformation of the signal. The wavelet spectrograms 

obtained differ fundamentally from the usual Fourier spectra in that they give a 

clear binding of the spectrum of various signal features to time [10]. 

One of the most promising methods remains the use of wavelet analysis. The 

wavelet spectrograms obtained differ fundamentally from the usual Fourier spectra 

in that they give a clear binding of the spectrum of various signal features to time 

(Fig. 2.4). The spectrogram allows you to select the periods that will have the 

greatest impact on the forecast of the values, after which for each curve of the 

reconstructed curve for the selected periods, forecast one of the methods giving the 

best result (in our case, using the autoregressive method). The accuracy of the 

forecast values depends on the selected periods. [25] The obtained data can be 

averaged to account for all components in the simplest case [26]. As a result, we 

obtain the data shown in Fig. 7. [27] 

The wavelet analysis function for the Mustang model, in the RStudio 

program, is given in Listing 2.4. 

Listing 2.4. The wavelet analysis function code for the Mustang model, in 

the RStudio program 

my.data<- data.frame(t1=t1)  #sales  

vs time 

  plot(my.data, type = "l") 

  my.w_m_sail<- analyze.wavelet(my.data, "t1.2", 

                         loess.span = 0, 

                         dt=1, dj=1/298, 

                         lowerPeriod = 1, 

                         upperPeriod = 128, 

                         make.pval = F, n.sim=10) 

  wt.image(my.w, n.levels = 298,  

           legend.params = list(lab="wavelet power levels")) 

library(WaveletComp) 

my.rec3<- reconstruct(my.w_m_sail, sel.period = 3, show.legend = 

F) 

x.rec3<- my.rec3$series$t1.2.r 

model3<-auto.arima(x.rec3) 

future3<-forecast(model3, h=39) 

plot(future3) 
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my.rec5<- reconstruct(my.w_m_sail, sel.period = 5, show.legend = 

F) 

x.rec5<- my.rec5$series$t1.2.r 

model5<-auto.arima(x.rec5) 

future5<-forecast(model5, h=39) 

plot(future5) 

 

my.rec8<- reconstruct(my.w_m_sail, sel.period = 8, show.legend = 

F) 

x.rec8<- my.rec8$series$t1.2.r 

model8<-auto.arima(x.rec8) 

future8<-forecast(model8, h=39) 

plot(future8) 

 

my.rec18<- reconstruct(my.w_m_sail, sel.period = 18, show.legend 

= F) 

x.rec18<- my.rec18$series$t1.2.r 

model18<-auto.arima(x.rec18) 

future18<-forecast(model18, h=39) 

plot(future18) 

 

my.rec135<- reconstruct(my.w_m_sail, sel.period = 135, 

show.legend = F) 

x.rec135<- my.rec135$series$t1.2.r 

model135<-auto.arima(x.rec135) 

future135<-forecast(model135, h=39) 

 

plot(future135) 

 

my.rec150<- reconstruct(my.w_m_sail, sel.period = 150, 

show.legend = F) 

x.rec150<- my.rec150$series$t1.2.r 

model150<-auto.arima(x.rec150) 

future150<-forecast(model150, h=39) 

plot(future150) 

 

my.rec256<- reconstruct(my.w_m_sail, sel.period = 256, 

show.legend = F) 

x.rec256<- my.rec256$series$t1.2.r 

model256<-auto.arima(x.rec256) 

future256<-forecast(model256, h=39) 

plot(future256)   

fin.rec<-NA 

for (i in 1:298) 

  fin.rec[i]<- sum (x.rec3[i], x.rec5[i],x.rec8[i], 

                x.rec135[i], x.rec18[i], 

                x.rec150[i],x.rec256[i] 

  )/7 

fin_m<-NA 

for (i in 1:39) 

  fin_m[i]<- sum (future3$mean[i], 

future5$mean[i],future8$mean[i], 

                future135$mean[i], future18$mean[i], 
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                future150$mean[i],future256$mean[i] 

  )/7 

plot(date, sm, type="l") 

lines(date_t, test$Sales_value_in_USA_Must.g, col="green") 

lines(date_t, fin_m, col="red") 

lines(date1, fin.rec, col="red") 

asd<- NA 

asd[1]<- fin.rec[298]  

asd[2]<- fin_m[1] 

lines(date[298:299],asd, col="red" ) 

At the first stage we get a spectrogram for training values. On the basis of 

this spectrogram, the main periods are selected for further prediction of the system 

(Figure 2.4) 

The next stage of data recovery for selected values based on the 

spectrogram. And learning with the help of any machine learning model, in this 

case it uses ARIMA autoregressive method, as one of the most effective for this 

model. And the subsequent forecasting. Below is an example for the 3 period, for 

the Mustang model (Listing 2.5, Fig.2.5). 

Listing 2.5 Auto-regression program code for the Mustang in the RStudio 

program 

my.rec3<- reconstruct(my.w_m_sail, sel.period = 3, show.legend = 

F) 

x.rec3<- my.rec3$series$t1.2.r 

model3<-auto.arima(x.rec3) 

future3<-forecast(model3, h=39) 

plot(future3) 
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а) 

 

b) 

 

c)    

Fig. 2.4. Spectrogram for time (horizontally) versus period (vertical) for sales 

volume data: a) Ford Mustang car, b) Ford F-Series car, c) Ford Explorer car. 
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Fig. 2.5. Recover volume data sales data using the wavelet analysis method 

for a period of 3, the Ford Mustang 

Restore the data for periods equal to 3, 5, 8, 18, 135, 150, 256 for the 

Mustang model. For the periods 3, 5, 8, 128, 150, 290 and for the periods 2, 3, 8, 

28, 125, 135, 256 for the F-Series and Explorer models respectively. 

And we will calculate the average value based on the received periods. 

As a result of such stages for all models and all periods, we get the predicted 

values of sales. (Figure 2.6) 

As can be seen from Fig. 2.6 The method works well for given periods but a 

big role, with the choice of the periods used that are selected manually. On the 

basis of this, it can be concluded that the adjustment of this method plays a 

significant influence on the results obtained. 
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а) 

 

b) 

 

c) 

Fig. 2.6. Forecasting of the volume of sales by the wavelet analysis method - initial 

data (black), data for forecasting verification (green) and data obtained by the 

wavelet analysis method (red line): a) Ford Mustang car, b) Ford F-Series car, c) 

Ford Explorer car 
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2.3.3. Fractal analysis 

Fractal (Latin fractus - fractured, broken, broken) is a mathematical set 

possessing the property of self-similarity (an object that exactly or roughly 

coincides with a part of itself, that is, the whole has the same form as one or more 

parts). [3] 

Fractals have certain features and properties. The first property is self-

similarity. It means that the parts are in some way related to the whole. This 

property makes the fractal scale-invariant. Fractal dependencies have a direct form 

on the graphs, where both axes have a logarithmic scale. The models described in 

this way should use the power law (real number raised to the power). This feature 

of power law scaling is the second property of fractals, a fractal dimension that can 

describe either a physical structure, such as a light or a time series. 

Fractal properties help us to distinguish and predict the features of the 

surrounding reality. Today, the fractal analysis method helps physicians in 

analyzing the fractal dimensions of complex signals, such as encephalograms or 

heart sounds, to help diagnose severe diseases at the initial stage. This helps to cure 

the patient before the disease becomes incurable. Also, analysts comparing the 

behavior of prices, can foresee future development, not allowing a gross error in 

forecasting. 

The main characteristic of fractal objects is the fractal dimension D, which is 

the main parameter reflecting their properties. This is a coefficient that describes a 

fractal structure based on its complexity. 

The fractal coefficient can take either an integer or an integer value; this is 

because the fractal set fills the space differently than the usual geometric set does. 

For example, a curve with a fractal dimension very close to 1, say 1.10, 

behaves quite like an ordinary line, but a curve with fractal dimension 1.9 is wound 

in space, almost like a surface. Similarly, a surface with a fractal dimension of 2.1 

behaves. It fills the space almost like an ordinary surface, but the surface with a 

fractal dimension of 2.9 folds and tends to fill the space almost like a volume. [28] 
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The concept of fractal dimension is a classic kind of complex structure. In 

practice, fractal dimensions can be determined using methods using an 

approximate scale. As a definition of fractal dimension in the book of S.V 

Bozhokin and Parshina D.A "Fractals and Multifractals" uses the following 

formula: 

         
       

      
     (2.15) 

Where    is the minimal number of n-dimensional "balls" of radius ε 

required to cover the set. [8] The accuracy of the predicted values obtained by this 

method depends on the dimension of the fractal. 

Based on the theory of fractal analysis for time series, we construct a model 

of fractal analysis in the RStudio environment (Listing 2.5). 

The result of the forecast by the method of fractal analysis, as well as the 

initial data for checking the forecasting are presented in Figure 2.7. 

When constructing methods for fractal analysis in the RStudio program, it is 

possible to apply several methods for analysis. We choose the method giving the 

best value of the risk assessment. 

As a result, the original data was trained on four models: regression, support 

vector method, autoregression, wavelet analysis and fractal analysis. Based on the 

trained model, a forecast is made for 39 points. The obtained predicted values are 

presented on the charts together with the initial training data and data for the 

prediction check. A visual assessment of the accuracy of the forecast was made. 
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Listing 2.5 4 The code of the program for constructing the fractal analysis 

method for the Mustang in the RStudio program 

endingIndex <- 298 

method <- "variogram" 

random_sample_count <- 39 

Sm2 <- as.data.frame(smt, row.names = NULL)  #train 

#do 39 predictions of next values in Sm2 

for(i in 1:39){ 

    delta <- c() 

    # calculate delta  

  for(j in 2:length(smt)){ 

      delta <- rbind(delta, (smt[j]-smt[j-1])) } 

  # calculate standard deviation of delta 

  Std_delta <- apply(delta, 2, sd) 

  #update fractal dimension used as reference 

  V_Reference <- fd.estimate(smt, method=method, trim=TRUE)$fd 

  Sm_guesses <- rnorm(random_sample_count , 

mean=smt[length(smt)], sd =Std_delta) 

  minDifference = 1000000 

  for(j in 1:length(Sm_guesses)){ 

    new_Sm <- rbind(Sm2, Sm_guesses[j]) 

    new_V_Reference <- fd.estimate(new_Sm$smt, method=method, 

trim=TRUE)$fd 

        if (abs(new_V_Reference - V_Reference) < minDifference 

){       

      Sm_prediction <- Sm_guesses[j] 

      minDifference = abs(new_V_Reference - V_Reference)}} 

  print(i) 

  #add prediction to Sm2 

  Sm2 <- rbind(Sm2, Sm_prediction)} 

plot(Sm2) 

plot(Sm2$smt, type="l", xlab="Value Index", ylab="Adjusted 

Close", main="SPY Rodogram") 

lines(as.data.frame(sm[1:(endingIndex+39)], row.names = NULL), 

col="blue") 

lines(287:325, set1, col="green") 
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а)                                     b) 

 
c) 

Fig. 2.7. Forecasting the volume of sales by the fractal analysis method - the initial test data (blue), the data for the prediction 

verification (green) and the data obtained by the fractal analysis (black): A) Ford Mustang car, b) Ford F-Series car, c) Ford 

Explorer car 
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Chapter 3. Evaluation of the reliability of the received forecasts 

3.1. Assessment of the risks of applying forecasts for making managerial 

decisions 

Risk assessment is the process of determining the probability of occurrence 

of a risk, i.e. events or situations capable of adversely affecting the development of 

the system. In a narrower sense, risk assessment is the quantitative or qualitative 

determination of the magnitude of the risk. 

Using forecasting data, the risk's magnitude of the results obtained will 

increase when the results are deleted in time. 

The risk assessment is calculated taking into account a certain number of 

factors influencing the risk (3.1) [29]: 

    
 

  
,        (3.1) 

To calculate the risk assessment and determine the planning horizon, the 

existing set of retrospective data will be divided into two sections. The first data set 

(training sample) will be used to train the forecast model (determine the parameters 

of the forecasting method), and the second (test sample) to check the accuracy of 

the model for risk assessment. Then the value of the risk assessment can be 

calculated by the cumulative total (Figure 3.1 and Table 3.1). To do this, we will 

use the expression      , where   is the probability and magnitude of the risk 

assessment given by the table, which for assessing the overall risk should be 

considered as a chain of interrelated events. 

Considering the fact that the probability for the independent events is    and 

   under the condition that     occurs after   . The considered values are 

independent, because we get them from the predicted part and do not use them in 

the training data set.                                 we get      

                                               

                     . To calculate the subsequent values, we use the formula 

                                         . Obtained values show that 
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starting from a certain moment, the value of the risk assessment begins to increase 

the sharply, which allows us to choose a method for forecasting and the planning 

horizon. The choice will be based on the choice of the method with the best 

planning horizon. For the calculated forecast results best results based on the risk 

assessment , for the Ford Mustang car models is autoregression and SVM, for F-

Series is autoregressive and wavelet analysis methods, for Explorer is 

autoregressive and regression methods. 

Table 3.1. 

An example of the values of the cumulative value of the risk assessment for a Ford 

Explorer car. 

Regression Autoregression Wavlet analysis SVM Fractal analysis 

0.226705351 0.073774554 1.565765958 0.172078643 0.028302 

0.299352744 0.081265481 3.80131923 0.221558541 0.030991 

0.319640138 0.096799634 12.60947032 0.231096739 0.041999 

0.354823755 0.106097902 25.04742219 0.254775734 0.047554 

0.474047645 0.128584038 29.7246083 0.341784982 0.047783 

0.607404479 0.151047464 42.53763036 0.443574415 0.051717 

0.846435461 0.200271118 49.60492369 0.628044399 0.05631 

0.99983937 0.223949516 69.95623009 0.76701035 0.066946 

1.23218959 0.268221414 112.8889433 0.980487266 0.07976 

1.510034166 0.325520482 233.8868897 1.254996018 0.08679 

1.543559308 0.336800478 940.6309626 1.380283654 0.107599 

1.602461284 0.36227517 2701.765777 1.549989297 0.128541 

1.611942475 0.387347823 4063.764445 1.706528997 0.163016 

1.765946975 0.45481378 4671.109333 2.027722401 0.163505 

1.77373331 0.502543694 5188.521849 2.243151895 0.222566 

1.878033431 0.593393124 6298.560108 2.619525362 0.293144 

2.296344235 0.794378715 7290.257192 3.450159974 0.318288 

2.359977517 0.945963597 7879.571457 3.968584227 0.374516 

2.739447366 1.245218462 8040.515591 5.042090965 0.428973 

3.157301247 1.648392207 8423.482828 6.386118285 0.55742 

3.681721398 2.221769445 11487.58146 8.181849074 0.582459 
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a) 

 

b) 

 

c) 

Fig. 3.1. The instantaneous value of the risk assessment using forecasts and 

cumulative values, where the cross is the support vector method, the black triangle 

regression, the white circle - autoregression, the rhombic wavelet analysis, the 

white triangle - the fractal analysis: a) Ford Mustang car, b) Ford car F-Series, c) 

Ford Explorer car.  
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3.2. Comparison of the results obtained with the help of risk assessment with 

estimates of errors 

Accuracy is the most important characteristic of the forecast. We calculate 

the accuracy of the obtained prediction by several methods. 

1. Absolute forecast error, which is defined as the difference between the 

actual and theoretical levels of a series of dynamics (3.2): 

               (3.2) 

Where    - actual values of the level of the series;     are the forecast values. 

2. The relative error of the forecast is defined as the ratio of the absolute 

error of the forecast (3.3): 

    
  

  

  
 

        

  
         (3.3) 

Absolute and relative forecast errors are used to check the accuracy of the 

forecast of one-dimensional series, which depend only on time. This reduces their 

importance, since usually a number of factors affect the system. [30] 

Comparative accuracy indicators of the forecast include the average index of 

forecast accuracy and the standard error of the forecast. 

The average index of forecast accuracy is calculated as the arithmetic mean 

of simple absolute errors and shows a generalized estimate of the degree of 

deviation of the actual and forecast values (3.4): 

    
    
   

 
 

          
   

 
     (3.4) 

where - n is the length of the time series. 

The mean square error of the forecast is determined by the formula (3.5) 

               
  

   

 
     (3.5) 

In practice, to determine the accuracy of the forecast, determine the mean 

error of approximation by the formula [32]: 

    
 

 
  

      

  
  

            (3.6) 
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For each method and each value, calculate the mean square error and the 

mean error of approximation. [31] 

Table 3.1. 

The results of estimating the accuracy of the predictions received for the Mustang: 

 Regression SVM Autoregression 
Wavelet 

analysis 

Fractal 

analysis 

Mean- root-square error 2792.051 2586.582 2780.096 4444.728 2902.137 

Mean error of 

approximation, % 
30.05322 28.54587 26.8457 59.44638 28.5975 

Risk assessment 

(number of iterations, 

up to a sharp increase 

in the values of the 

integral risk 

assessment) 

11 11 15 2 10 

 

Table 3.2. 

The results of estimating the accuracy of the predictions received for the F-series: 

 Regression SVM Autoregression 
Wavelet 

analysis 

Fractal 

analysis 

Mean- root-square error 10543.86 7769.33 8167.399 9522.45 12945.55 

Mean error of 

approximation, % 
13.04173 9.30563 9.527343 12.13911 15.67242 

Risk assessment 

(number of iterations, 

up to a sharp increase 

in the values of the 

integral risk 

assessment) 

27 26 36 5 8 

 

Table 3.3. 

The results of estimating the accuracy of the predictions received for the Explorer: 

 Regression SVM Autoregression 
Wavelet 

analysis 

Fractal 

analysis 

Mean- root-square error 5355.316 2371.569 4883.227 17161.69 3131.141 

Mean error of 

approximation, % 
22.35523 10.77976 20.56545 90.50585 13.18923 

Risk assessment 

(number of iterations, 

up to a sharp increase 

in the values of the 

integral risk 

assessment) 

8 26 16 3 18 
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In this chapter, the methods for assessing risks have been described, the 

values of the accumulated risk assessment have been calculated, and the risk 

assessment charts for each model have been constructed. Also, the Root-mean-

square error and the average error of approximation of each method of all vehicle 

models were calculated. These methods are usually used to assess the accuracy of 

forecasts. 

As a result of comparing the best methods obtained by estimating the 

forecast and using the risk assessment, different absolute best values for each 

method were obtained. However, the accumulated value of the risk assessment 

coincided with the 1 or 2 best method for the considered model of the car. This 

result allows, with a small margin of error in the future, to use the risk assessment 

method for estimating the prediction of the model.  



 

47 

 

Conclusion 

 

In the course of the study, issues related to the features of predicting the 

parameters of production and economic systems were considered. To this end, the 

methods of working with incomplete data and methods of preparing data for 

analysis, as well as the features of restoring data taking into account seasonal 

coefficients, as well as extrapolation and interpolation of data were considered. 

In the second part of the work, the regression analysis method, support 

vector method, autoregression, wavelet analysis and fractal analysis was 

considered. At training values derived from the original reconstructed data, a 

model is trained and predicted values for each method are constructed. 

For the obtained forecast values, the method of selecting a method with the 

time factor based on the planning horizon using an integrated assessment of the 

accumulation of the risk assessment value is considered, using the example of 

using methods such as: regression analysis, autoregression, support vector method, 

wavelet analysis.[32] 

Also, for these forecast values, the mean-root-square error and the mean 

error of approximation are calculated. The best methods are compared on the basis 

of calculating the accuracy of forecasting and assessing the risk of compiled 

forecasts. The result of the comparison with a small margin of error makes it 

possible to use the risk assessment in the future to estimate the prediction of the 

model.  
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Appendix A. The code of all functions used in program Rstudio. 

d<-read.table("C:\\Users\\User\\YandexDisk\\Project\\data_month_for 

_r5.csv", sep=";",na.strings="NA", header=TRUE) 

as.matrix(d) #download data from csv format 

 

library(xts) 

f<-f.plot_input(d) 

f.plot_m_base<- function(d) 

{  #mustang 

  for (i in 1:length(d[,1])) { 

    d[i,14]<- as.numeric(as.Date(d[i,1], format = '%d.%m.%Y'))} 

  date<- as.Date (d[,1], "%d.%m.%Y") 

   

  plot(date,d[,3], type = "l", col='blue', ylim=range(0,40000), ylab = 

"prise average Mustang") 

  lines(d[,14],d[,2] ) 

  points(d[61,14], d[61,3],  col='red') 

  points(d[193,14], d[193,3], col='red') 

  points(d[313,14], d[313,3], col='red') 

  points(d[61,14], d[61,2],  col='red') 

  points(d[193,14], d[193,2], col='red') 

  points(d[313,14], d[313,2], col='red') 

} 

f.plot_m_sales<- function(d) 

{ 

  #sales 

  plot(date, d[,2], type="l", ylab = "sales value Mustang") 

  points(d[61,14], d[61,2],  col='red') 

  points(d[193,14], d[193,2], col='red') 

  points(d[313,14], d[313,2], col='red') 

} 

f.plot_fs_base<- function(d)  #f-series 

{ 

  plot(date,d[,7], type="l", col='blue', ylab = "prise average and 

sales  F-Series", 

       ylim = range(0,90000)) 

  points(d[37,14], d[37,7],  col='red') 

  points(d[97,14], d[97,7], col='red') 

  points(d[181,14], d[181,7], col='red') 

  points(d[241,14], d[241,7], col='red') 

  points(d[313,14], d[313,7], col='red') 

} 

f.plot_fs_sales<- function(d)  #sales f-150 

{ 

  lines(date, d[,6]) 

  points(d[37,14], d[37,6],  col='red') 

  points(d[97,14], d[97,6], col='red') 

  points(d[181,14], d[181,6], col='red') 

  points(d[241,14], d[241,6], col='red') 

  points(d[313,14], d[313,6], col='red') 

} 

f.plot_e_base<- function(d)  #explorer 

{ 

  plot(date,d[,11], col='blue', type="l", ylab = "prise average and 

sales Explorer", ylim=range(0,45000)) 

  points(d[61,14], d[61,11],  col='red') 

  points(d[157,14], d[157,11],  col='red') 
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  points(d[205,14], d[205,11],  col='red') 

  points(d[253,14], d[253,11],  col='red') 

} 

f.plot_e_sales<- function(d) 

{ 

  lines(date, d[,10], type="l", ylab = "sales explorer") 

  points(d[61,14], d[61,10],  col='red') 

  points(d[157,14], d[157,10],  col='red') 

  points(d[205,14], d[205,10],  col='red') 

  points(d[253,14], d[253,10],  col='red') 

} 

#--------------linear regression 

sm<- d[,2] 

pr_av_m<-d[,3] 

sf<- d[,6] 

pr_av_f<-d[,7] 

se<- d[,10] 

pr_av_e<-d[,11] 

 

f.lregr_m<- function(test,train,d,sm, pr_av_m, sigm, error)  #linear 

mustang 

{ 

  plot(pr_av_m,sm) 

  points(test[,3],test[,2], col= 'green') # test data points 

  carlm <-lm(formula = sm ~ pr_av_m) 

  lpr_m<- predict(carlm) 

  summary(carlm) 

  abline(carlm, col='red') 

   

    # #predict 

    plot(train[,3],train[,2], col = 'blue') 

    lm_m<- lm(formula = train[,2] ~ train[,3]) 

    #for sales only 

    x<- 1:337 

     

    e<-data.frame(x=x,y=sm) 

    lm_m_s<- nls(y ~ k1+k2*x+k3*x*x+k4*x*x*x+k5*x*x*x*x, data=e, 

start=list(k1=0.1, k2=0.1, k3=0.1, k4=0.1, k5=0.1)) 

    lpr_tr_m_s<- predict(lm_m_s) 

    coef_func <- coef(lm_m_s) 

     

    #lpr_tr_m<- predict(lm_m) 

    plot(date,sm, type = "l", ylab = "Sales Mustang") 

    points(date_t,test[,2], col= 'green', type="l") # test data points 

    lines(date, lpr_tr_m_s, col='red') 

    #error 

    error <- smt1 - lpr_tr_m_s[299:337]         # error linear predict 

mustang 

    # predictionRMSE <- rmse(error)    # 3104.2510  Средняя 

квадратическая ошибка прогноза root-mean-square deviation for mustang 

linear regression 

    dost_m_av<- sigm(error) 

    print(dost_m_av) 

    #средняя ошибка аппроксимации 

    croshappr<- sum(abs(error/smt1))/length(smt1)*100 

    print(croshappr) 

    #risk 

    x1<-1:39 
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    e_2<-(1-lpr_tr_m_s[x1]/smt1[x1]) 

      e2<-matrix() 

      e2[1]<-1.45 

    for (i in 2:39) {  

      e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

       

    } 

    plot(x1, abs(e2), col = "red", type = "l", ylim=range(0,10)) 

    lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

  } 

f.lregr_f<- function(test,train,d,sf, pr_av_f, sigm, error)   #linear 

f-150 

{  plot(pr_av_f,sf) 

  points(test[,7],test[,6], col= 'green') 

  carlf <-lm(formula = sf ~ pr_av_f) 

  lpr_f<- predict(carlf) 

  summary(carlf) 

  abline(carlf, col='red') 

  error <- sf - lpr_f         # error linear predict mustang 

  predictionRMSE <- rmse(error)    # 14046.504 root-mean-square 

deviation for mustang linear regression 

  dost_f_av<- sigm(error) 

  print(dost_f_av) 

  #for sales only 

  x<- 1:337 

  e<-data.frame(x=x,y=sf) 

  lm_f_s<- nls(y ~ k1+k2*x+k3*x*x+k4*x*x*x+k5*x*x*x*x, data=e, 

start=list(k1=0.1, k2=0.1, k3=0.1, k4=0.1, k5=0.1)) 

  lpr_tr_f_s<- predict(lm_f_s) 

  coef_func <- coef(lm_f_s) 

   

  lpr_tr_f<- predict(lm_f_s) 

  plot(date,sf, type = "l", ylab = "Sales F-series") 

  points(date_t,test[,6], col= 'green', type="l") # test data points 

  lines(date, lpr_tr_f_s, col='red') 

  #error 

  error <- sft1 - lpr_tr_f_s[299:337]         # error linear predict 

mustang 

  # predictionRMSE <- rmse(error)    # 3104.2510  Средняя 

квадратическая ошибка прогноза root-mean-square deviation for mustang 

linear regression 

  dost_m_av<- sigm(error) 

  print(dost_m_av) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/sft1))/length(sft1)*100 

  print(croshappr) 

  #risk 

  x1<-1:39 

  e_2<-(1-lpr_tr_f_s[x1]/sft1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

} 

f.lregr_e<- function(test,train,d,se, pr_av_e, sigm, error)   #linear 

explorer 
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{ 

  plot(pr_av_e,se) 

  points(test[,11],test[,10], col= 'green') 

  carle <-lm(formula = se ~ pr_av_e)  

  lpr_e<- predict(carle) 

  summary(carle) 

  abline(carle, col='red') 

  for (i in 1:325) 

    se_n[i]<- d[i+12,10] 

  date_n<- matrix() 

  for (i in 1:325) 

    date_n[i]<- date[i+12] 

  error <- se_n - lpr_e         # error linear predict mustang 

  predictionRMSE <- rmse(error)    # 10082.29 root-mean-square 

deviation for mustang linear regression 

  dost_e_av<- sigm(error) 

  print(dost_e_av) 

  #for sales only 

  x<- 1:337 

  e<-data.frame(x=x,y=se) 

  lm_e_s<- nls(y ~ k1+k2*x+k3*x*x+k4*x*x*x+k5*x*x*x*x, data=e, 

start=list(k1=0.1, k2=0.1, k3=0.1, k4=0.1, k5=0.1)) 

  lpr_tr_e_s<- predict(lm_e_s) 

  coef_func <- coef(lm_e_s) 

   

  lpr_tr_e<- predict(lm_e_s) 

  plot(date,se, type = "l", ylab = "Sales Explorer") 

  points(date_t,test[,10], col= 'green', type="l") # test data points 

  lines(date_n, lpr_tr_e_s, col='red') 

  #risk 

  x1<-1:39 

  e_2<-(1-lpr_tr_e_s[x1]/set1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

  #error 

  error <- set1 - lpr_tr_e_s[287:325]         # error linear predict 

mustang 

  # predictionRMSE <- rmse(error)    # 3104.2510  Средняя 

квадратическая ошибка прогноза root-mean-square deviation for mustang 

linear regression 

  dost_m_av<- sigm(error) 

  print(dost_m_av) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/set1))/length(set1)*100 

  print(croshappr) 

} 

#support vector machine 

  library(e1071) 

f.svm_m_av<- function(test,train,d,sm, pr_av_m, sigm, error ) #svm 

mustang sales ans average prise 

{ 

  model<- svm(sm ~ pr_av_m,d) 

  prY1 <- predict(model,d) 

  plot(pr_av_m,sm, type = "l") 
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  points(test[,3],test[,2], col= 'green', type = "l") # test data 

points 

  points(pr_av_m, prY1, col = "red", type ="l") 

  summary(model) 

  #deviation 

  error <- smt1 - prY1[299:337]         # error linear predict mustang 

  predictionRMSE <- rmse(error)    # 2774.115 root-mean-square 

deviation for mustang linear regression 

  dost_m_av<- sigm(error) 

  print(dost_m_av) 

  #from time sales only  

  for (i in 1:length(test)){ 

    test[i,14]<- as.numeric(as.Date(test[i,1], format = '%d.%m.%Y'))} 

  date_t<- as.Date (test[,1], "%d.%m.%Y") 

    model1<- svm(sm ~ date, d) 

  prY2_m <- predict(model1,d) 

  plot(date,sm, type = "l") 

  points(date_t,test[,2], col= 'green', type = "l") # test data points 

  points(date, prY2_m, col = "red", type ="l") 

  #deviation 

  error <- smt1 - prY2_m[299:337]         # error linear predict 

mustang 

  predictionRMSE <- rmse(error)    # 2790.9426 root-mean-square 

deviation for mustang linear regression 

  dost_m_av<- sigm(error) 

  print(dost_m_av) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/smt1))/length(smt1)*100 

  print(croshappr) 

  #risk 

  x1<-1:39 

  e_2<-(1-prY2_m[x1]/smt1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

   

} 

f.svm_f_av<- function(test,train,d,sf, pr_av_f, sigm, error ) #svm f-

series sales ans average prise 

{ 

  model<- svm(sf ~ pr_av_f,d) 

  prY2 <- predict(model,d) 

  plot(pr_av_f,sf) 

  points(test[,7],test[,6], col= 'green') # test data points 

  points(pr_av_f, prY2, col = "red") 

  summary(model) 

  #deviation 

  error <- sf - prY2         # error linear predict mustang 

  predictionRMSE <- rmse(error)    # 10422.37 root-mean-square 

deviation for mustang linear regression 

  dost_f_av<- sigm(error) 

  print(dost_f_av) 

  #from time sales only  

  for (i in 1:length(test)){ 

    test[i,14]<- as.numeric(as.Date(test[i,1], format = '%d.%m.%Y'))} 
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  date_t<- as.Date (test[,1], "%d.%m.%Y") 

  model1<- svm(sf ~ date, d) 

  prY2_f <- predict(model1,d) 

  plot(date,sf, type = "l") 

  points(date_t,test[,6], col= 'green', type = "l") # test data points 

  points(date, prY2_f, col = "red", type ="l") 

  #deviation 

  error <- sft1 - prY2_f[299:337]         # error linear predict 

mustang 

  predictionRMSE <- rmse(error)    # 8786.4529 root-mean-square 

deviation for mustang linear regression 

  dost_m_av<- sigm(error) 

  print(dost_m_av) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/sft1))/length(sft1)*100 

  print(croshappr) 

  #risk 

  x1<-1:39 

  e_2<-(1-prY2_f[x1]/sft1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

} 

f.svm_e_av<- function(test,train,d,se, pr_av_e, sigm, error, svme, 

se_n ) #svm f-series sales ans average prise 

{ 

  model<- svm(se ~ pr_av_e,d) 

  prY3 <- predict(model,d) 

  plot(pr_av_e,se) 

  points(test[,11],test[,10], col= 'green') # test data points 

  se_n<- matrix() 

  for (i in 1:325){ 

    se_n[i]<- d[i+12,11]} 

  points(se_n, prY3, col = "red") 

  summary(model) 

  #deviation 

  error <- se_n - prY3             # error linear predict mustang 

  predictionRMSE <- rmse(error)    # 12780.74 root-mean-square 

deviation for mustang linear regression 

  dost_e_av<- sigm(error) 

  print(dost_e_av) 

  #from time sales only  

  for (i in 1:length(test)){ 

    test[i,14]<- as.numeric(as.Date(test[i,1], format = '%d.%m.%Y'))} 

  date_t<- as.Date (test[,1], "%d.%m.%Y") 

  model1<- svm(se ~ date, d) 

  prY2_e <- predict(model1,d) 

  prY2_n<- matrix() 

  for (i in 1:325){ 

    prY2_n[i]<- prY2_e[i+12]    } 

  plot(date,se, type = "l") 

  points(date_t,test[,10], col= 'green', type = "l") # test data 

points 

  points(date_n, prY2_n, col = "red", type ="l") 

  #deviation 
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  error <- se_n[287:325] - prY2_n [287:325]        # error linear 

predict mustang 

  predictionRMSE <- rmse(error)    # 14696.2404 root-mean-square 

deviation for mustang linear regression 

  dost_m_av<- sigm(error) 

  print(dost_m_av) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/se_n[287:325]))/length(se_n[287:325])*100 

  print(croshappr) 

  #risk 

  x1<-1:39 

  e_2<-(1-prY2_e[x1]/set1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

  #predict 

  model<- svm(train[,10] ~ train[,11],train) 

  model_e<- as.ts(train[,11], model ) 

  prY_e <- forecast(model_e,39) 

   

  prY_e <- predict(model,newdata = test[,11]) 

  plot(train[,11], train[,10]) 

  points(test[,11],prY_e, col='red') 

  plot(prY_e) 

} 

# root-mean-square deviation 

rmse <- function(error) 

  { 

    sqrt(mean(error^2)) 

  }                                #function rmse 

sigm<- function(error)             # Достоверность  

{ 

  l<- length(error) 

  sqrt(sum((error^2))/l) 

} 

#_______здесь были расчеты------ 

#-----------autoregration---------------- 

train<-

read.table("C:\\Users\\User\\YandexDisk\\Project\\data_month_training.

csv", sep=";",na.strings="NA", header=TRUE) 

as.matrix(train) 

train2<-

read.table("C:\\Users\\User\\YandexDisk\\Project\\data_month_training2

.csv", sep=";",na.strings="NA", header=TRUE) 

as.matrix(train2) 

train3<-

read.table("C:\\Users\\User\\YandexDisk\\Project\\data_month_training3

.csv", sep=";",na.strings="NA", header=TRUE) 

as.matrix(train3) 

test<-

read.table("C:\\Users\\User\\YandexDisk\\Project\\data_month_test.csv"

, sep=";",na.strings="NA", header=TRUE) 

as.matrix(test) 

library('e1071')  

library(forecast) 
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# trainig data 

date1<- as.Date (train[,1], "%d.%m.%Y") 

smt<- train[,2] 

pmt<- train [,3] 

sft<- train [,6] 

set<- train [,10] 

#test data 

date2<- as.Date (test[,1], "%d.%m.%Y") 

smt1<- test[,2] 

pmt1<-test[,3] 

sft1<- test [,6] 

set1<- test [,10] 

f.autoregr_m_sales<- function(smt) #autoregression function for 

mustang sales 

{ 

  model<- auto.arima(smt) 

  future_ar_m<- forecast(model, h=39) 

  plot(future_ar_m) 

  #plot for article 

  plot(date, sm, type = "l") 

  points(date_t,test[,2], col= 'green', type = "l") # test data points 

  points(date_t, future_ar_m$mean, type="l", col="red") 

  #error 

  m.accur<- accuracy(future_ar_m, smt1) 

  tr<- residuals.Arima(future_ar_m)   #Returns time series of 

residuals from a fitted model. 

  #error standart 

 # trainy<- c(568.508, 5162.420, 6317.372, 6290.167, 7245.803, 

7851.728, 8123.545, 8280.318, 7944.192, 7440.366, 

#             6827.474, 6252.108, 5909.257, 5839.302, 6071.335, 

6531.942, 7089.062, 7601.857, 7934.976, 8009.847, 

#             7816.118, 7412.066, 6910.054, 6442.823, 6130.083, 

6047.584, 6208.754, 6563.763, 7014.226, 7440.425, 

#            7732.986, 7820.756, 7687.967, 7376.410, 6972.692, 

6584.330, 6311.230, 6220.119, 6328.408) 

  error <- smt1 - future_ar_m$mean       # error svm predict mustang 

  predictionRMSE <- rmse(error)    #2884.2807 

  p_m_av<- sigm(error) 

  print(p_m_av) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/smt1))/length(smt1)*100 

  print(croshappr) 

  #risk 

  x1<-1:39 

  e_2<-(1-future_ar_m$mean[x1]/smt[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

} 

# write risk table   

  must<- data.frame(future_ar_m$mean, prY2_m[299:337],  e_ar, e_2< 

e_wv ) 

  write.table(must, file = file.choose()) 

  fser<- data.frame(future_f_s$mean, fin_f,  e_ar, e_wv ) 

  write.table(fser, file = file.choose()) 
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  expl<- data.frame(future_e_s$mean,lpr_tr_e_s[287:325] ,  e_ar, e_r ) 

  write.table(expl, file = file.choose()) 

# write risk table for all models and elements 

  all<- data.frame(future_ar_m$mean, prY2_m[299:337],  e_ar, e_2, 

future_f_s$mean, fin_f,  e_ar, e_wv, future_e_s$mean, 

lpr_tr_e_s[287:325],  e_ar, e_r ) 

  write.table(all, file = file.choose()) 

f.autoregr_f_sales<- function(sft) #autoregression function for 

mustang sales 

{ 

  model_f<- auto.arima(sft) 

  future_f_s<- forecast(model_f, h=39) 

  plot(future_f_s) 

  #plot for article 

  plot(date, sf, type = "l") 

  points(date_t,test[,6], col= 'green', type = "l") # test data points 

  points(date_t, future2$mean, type="l", col="red") 

  #error 

  m.accur<- accuracy(future2, sft1) 

  tr<- residuals.Arima(future)   #Returns time series of residuals 

from a fitted model. 

  #error standart 

#  trainy2<- c( 66260.94, 63160.00, 64722.95, 64551.66, 64165.50, 

64518.18, 64375.71, 64368.14, 64421.11, 64383.02, 

#              64394.68, 64398.35, 64391.68, 64395.58, 64394.80, 

64394.10, 64394.89, 64394.52, 64394.54, 64394.65, 

#              64394.56, 64394.59, 64394.60, 64394.58, 64394.59, 

64394.59, 64394.59, 64394.59, 64394.59, 64394.59, 

#              64394.59, 64394.59, 64394.59, 64394.59, 64394.59, 

64394.59, 64394.59, 64394.59, 64394.59)   

  error <- sft1 - future_f_s$mean     # error svm predict mustang 

  predictionRMSE <- rmse(error)    #8167.399 

  p_f_av<- sigm(error) 

  print(p_f_av) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/sft1))/length(sft1)*100 

  print(croshappr) 

  #risk 

  x1<-1:39 

  e_2<-(1-future_f_s$mean[x1]/sft1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

} 

f.autoregr_e_sales<- function(set) #autoregression function for 

mustang sales 

{ 

  model_e<- auto.arima(set) 

  future_e_s<- forecast(model_e, h=39) 

  plot(future_e_s) 

  #plot for article 

  plot(date, sm, type = "l") 

  points(date_t,test[,2], col= 'green', type = "l") # test data points 

  points(date_t, future$mean, type="l", col="red") 

  #error 
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  m.accur<- accuracy(future3, set1) 

  tr<- residuals.Arima(future)   #Returns time series of residuals 

from a fitted model. 

  #error standart 

#  trainy3<- c( 15320.62, 15190.30, 15258.67, 15261.50, 15236.40, 

15250.75, 15250.57, 15245.77, 15248.76, 15248.58, 

#               15247.67, 15248.29, 15248.22, 15248.05, 15248.18, 

15248.16, 15248.13, 15248.15, 15248.15, 15248.14, 

#               15248.15, 15248.14, 15248.14, 15248.14, 15248.14, 

15248.14, 15248.14, 15248.14, 15248.14, 15248.14, 

#               15248.14, 15248.14, 15248.14, 15248.14, 15248.14, 

15248.14, 15248.14, 15248.14, 15248.14)   

  trainy3<- future_e_s$mean 

  error <- set1 - trainy3       # error svm predict mustang 

  predictionRMSE <- rmse(error)    #5043.714 

  p_e_av<- sigm(error) 

  print(p_e_av) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/set1))/length(set1)*100 

  print(croshappr) 

  #risk 

  x1<-1:39 

  e_2<-(1-future_e_s$mean[x1]/set1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

} 

#_________________________WAVELET 

#wavelet analyses 

library(WaveletComp) 

for (i in 1:length(train[,1])) { 

  train[i,14]<- as.numeric(as.Date(train[i,1], format = '%d.%m.%Y'))} 

attach(train) 

test_e1<- matrix() 

test_e2<- matrix() 

for (i in 1:286){ 

test_e1[i]<- train[i+12,10] 

test_e2[i]<- train[i+12,11] 

} 

t1 = cbind(1:298, train[,2]) 

t2 = cbind(1:298, train[,3]) 

tf1 = cbind(1:298, train[,6]) 

tf2 = cbind(1:298, train[,7]) 

te1 = cbind(1:286, test_e1) 

te2 = cbind(1:286, test_e2) 

t2_1 = cbind(1:337, train3[,2]) 

t2_2 = cbind(1:337, train3[,3]) 

f.wavelet_2_m<-function(t1,t2, t2_1, t2_2) #for mustang sales 

{ 

  my.data<- data.frame(t1=t1)  #sales vs time 

  plot(my.data, type = "l") 

  my.w_m_sail<- analyze.wavelet(my.data, "t1.2", 

                         loess.span = 0, 

                         dt=1, dj=1/298, 

                         lowerPeriod = 1, 
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                         upperPeriod = 128, 

                         make.pval = F, n.sim=10) 

  wt.image(my.w, n.levels = 298,  

           legend.params = list(lab="wavelet power levels")) 

 # my.data<- data.frame(t2=t2)  #prise vs time 

#  plot(my.data, type = "l") 

#  my.w_m_pr<- analyze.wavelet(my.data, "t2.2", 

 #                        loess.span = 0, 

  #                       dt=1, dj=1/298, 

   #                      lowerPeriod = 1, 

    #                     upperPeriod = 256, 

     #                    make.pval = F, n.sim=10) 

#  wt.image(my.w, n.levels = 298,  

 #          legend.params = list(lab="wavelet power levels"))} 

library(WaveletComp) 

my.rec3<- reconstruct(my.w_m_sail, sel.period = 3, show.legend = F) 

x.rec3<- my.rec3$series$t1.2.r 

model3<-auto.arima(x.rec3) 

future3<-forecast(model3, h=39) 

plot(future3) 

 

my.rec5<- reconstruct(my.w_m_sail, sel.period = 5, show.legend = F) 

x.rec5<- my.rec5$series$t1.2.r 

model5<-auto.arima(x.rec5) 

future5<-forecast(model5, h=39) 

plot(future5) 

 

my.rec8<- reconstruct(my.w_m_sail, sel.period = 8, show.legend = F) 

x.rec8<- my.rec8$series$t1.2.r 

model8<-auto.arima(x.rec8) 

future8<-forecast(model8, h=39) 

plot(future8) 

 

my.rec18<- reconstruct(my.w_m_sail, sel.period = 18, show.legend = F) 

x.rec18<- my.rec18$series$t1.2.r 

model18<-auto.arima(x.rec18) 

future18<-forecast(model18, h=39) 

plot(future18) 

 

my.rec135<- reconstruct(my.w_m_sail, sel.period = 135, show.legend = 

F) 

x.rec135<- my.rec135$series$t1.2.r 

model135<-auto.arima(x.rec135) 

future135<-forecast(model135, h=39) 

plot(future135) 

 

my.rec150<- reconstruct(my.w_m_sail, sel.period = 150, show.legend = 

F) 

x.rec150<- my.rec150$series$t1.2.r 

model150<-auto.arima(x.rec150) 

future150<-forecast(model150, h=39) 

plot(future150) 

 

my.rec256<- reconstruct(my.w_m_sail, sel.period = 256, show.legend = 

F) 

x.rec256<- my.rec256$series$t1.2.r 

model256<-auto.arima(x.rec256) 

future256<-forecast(model256, h=39) 
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plot(future256)   

fin.rec<-NA 

for (i in 1:298) 

  fin.rec[i]<- sum (x.rec3[i], x.rec5[i],x.rec8[i], 

                x.rec135[i], x.rec18[i], 

                x.rec150[i],x.rec256[i] 

  )/7 

fin_m<-NA 

for (i in 1:39) 

  fin_m[i]<- sum (future3$mean[i], future5$mean[i],future8$mean[i], 

                future135$mean[i], future18$mean[i], 

                future150$mean[i],future256$mean[i] 

  )/7 

plot(date, sm, type="l") 

lines(date_t, test$Sales_value_in_USA_Must.g, col="green") 

lines(date_t, fin_m, col="red") 

lines(date1, fin.rec, col="red") 

asd<- NA 

asd[1]<- fin.rec[298]  

asd[2]<- fin_m[1] 

lines(date[298:299],asd, col="red" ) 

#error 

error <- smt1 - fin_m          # error6 

predictionRMSE <- rmse(error) #30196.102 

fin.pr<- sigm(error) 

print(fin.pr) 

#средняя ошибка аппроксимации 

 croshappr<- sum(abs(error/smt1))/length(smt1)*100 

 print(croshappr) 

 #risk 

 x1<-1:39 

 e_2<-(1-fin_m[x1]/smt1[x1]) 

 e2<-abs(e_2) 

 for (i in 2:39) {  

   e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

 } 

 plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

 lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

f.wavelet_2_f<-function(tf1,tf2, t2_1, t2_2) #for f-series  

{ 

  my.data<- data.frame(tf1=tf1)  #sales vs time 

  plot(my.data, type = "l") 

  my.w_f_s<- analyze.wavelet(my.data, "tf1.2", 

                         loess.span = 0, 

                         dt=1, dj=1/298, 

                         lowerPeriod = 1, 

                         upperPeriod = 128, 

                         make.pval = F, n.sim=10) 

  wt.image(my.w_f_s, n.levels = 298,  

           legend.params = list(lab="wavelet power levels")) 

 # my.data<- data.frame(tf2=tf2)  #prise vs time 

#  plot(my.data, type = "l") 

 # my.w<- analyze.wavelet(my.data, "tf2.2", 

  #                       loess.span = 0, 

   #                      dt=1, dj=1/298, 

    #                     lowerPeriod = 1, 

     #                    upperPeriod = 256, 

      #                   make.pval = F, n.sim=10) 



 

63 

 

#  wt.image(my.w, n.levels = 298,  

 #          legend.params = list(lab="wavelet power levels")) 

  library(WaveletComp) 

  my.rec3<- reconstruct(my.w_f_s, sel.period = 3, show.legend = F) 

  x.rec3<- my.rec3$series$tf1.2.r 

  model3<-auto.arima(x.rec3) 

  future3<-forecast(model3, h=39) 

  plot(future3) 

   

  my.rec5<- reconstruct(my.w_f_s, sel.period = 5, show.legend = F) 

  x.rec5<- my.rec5$series$tf1.2.r 

  model5<-auto.arima(x.rec5) 

  future5<-forecast(model5, h=39) 

  plot(future5) 

   

  my.rec8<- reconstruct(my.w_f_s, sel.period = 8, show.legend = F) 

  x.rec8<- my.rec8$series$tf1.2.r 

  model8<-auto.arima(x.rec8) 

  future8<-forecast(model8, h=39) 

  plot(future8) 

   

  my.rec135<- reconstruct(my.w_f_s, sel.period = 128, show.legend = F) 

  x.rec135<- my.rec135$series$tf1.2.r 

  model135<-auto.arima(x.rec135) 

  future135<-forecast(model135, h=39) 

  plot(future135) 

   

  my.rec150<- reconstruct(my.w_f_s, sel.period = 150, show.legend = F) 

  x.rec150<- my.rec150$series$tf1.2.r 

  model150<-auto.arima(x.rec150) 

  future150<-forecast(model150, h=39) 

  plot(future150) 

   

  my.rec256<- reconstruct(my.w_f_s, sel.period = 290, show.legend = F) 

  x.rec256<- my.rec256$series$tf1.2.r 

  model256<-auto.arima(x.rec256) 

  future256<-forecast(model256, h=39) 

  plot(future256)   

  fin.rec<-NA 

  for (i in 1:298) 

    fin.rec[i]<- sum (x.rec3[i], x.rec5[i],x.rec8[i], 

                      x.rec135[i], 

                      x.rec150[i],x.rec256[i] 

    )/6 

  fin_f<-NA 

  for (i in 1:39) 

    fin_f[i]<- sum (future3$mean[i], future5$mean[i],future8$mean[i], 

                  future135$mean[i], 

                  future150$mean[i],future256$mean[i] 

    )/6 

   

  plot(date, sf, type="l") 

  lines(date_t, test$Sales_value_in_USA_F.150, col="green") 

  lines(date_t, fin_f, col="red") 

  lines(date1, fin.rec, col="red") 

  asd<- NA 

  asd[1]<- fin.rec[298]  

  asd[2]<- fin_f[1] 
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  lines(date[298:299],asd, col="red" ) 

  #error 

  error <- sft1 - fin_f          # error6 

  predictionRMSE <- rmse(error) #30196.102 

  fin.pr<- sigm(error) 

  print(fin.pr) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/sft1))/length(sft1)*100 

  print(croshappr) 

  x1<-1:39 

  e_2<-(1-fin_f[x1]/sft1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

}  

f.wavelet_2_e<-function(te1,te2, t2_1, t2_2) #for explorer 

{ 

  my.data<- data.frame(te1=te1)  #sales vs time 

  plot(my.data, type = "l") 

  my.w_e_s<- analyze.wavelet(my.data, "te1.test_e1", 

                         loess.span = 0, 

                         dt=1, dj=1/298, 

                         lowerPeriod = 1, 

                         upperPeriod = 128, 

                         make.pval = F, n.sim=10) 

  wt.image(my.w_e_s, n.levels = 298,  

           legend.params = list(lab="wavelet power levels")) 

 # my.data<- data.frame(te2=te2)  #prise vs time 

  #plot(my.data, type = "l") 

  #my.w<- analyze.wavelet(my.data, "te1.test_e1", 

   #                      loess.span = 0, 

    #                     dt=1, dj=1/298, 

     #                    lowerPeriod = 1, 

      #                   upperPeriod = 256, 

       #                  make.pval = F, n.sim=10) 

#  wt.image(my.w, n.levels = 298,  

 #          legend.params = list(lab="wavelet power levels")) 

  library(WaveletComp) 

  my.rec3<- reconstruct(my.w_e_s, sel.period = 2, show.legend = F) 

  x.rec3<- my.rec3$series$te1.test_e1.r 

  model3<-auto.arima(x.rec3) 

  future3<-forecast(model3, h=39) 

  plot(future3) 

  lines(x.rec3, col="red") 

   

  my.rec5<- reconstruct(my.w_e_s, sel.period = 3, show.legend = F) 

  x.rec5<- my.rec5$series$te1.test_e1.r 

  model5<-auto.arima(x.rec5) 

  future5<-forecast(model5, h=39) 

  plot(future5) 

  lines(x.rec5, col="red") 

  my.rec8<- reconstruct(my.w_e_s, sel.period = 8, show.legend = F) 

  x.rec8<- my.rec8$series$te1.test_e1.r 

  model8<-auto.arima(x.rec8) 

  future8<-forecast(model8, h=39) 
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  plot(future8) 

  lines(x.rec8, col="red") 

  my.rec28<- reconstruct(my.w_e_s, sel.period = 28, show.legend = F) 

  x.rec28<- my.rec28$series$te1.test_e1.r 

  model28<-auto.arima(x.rec28) 

  future28<-forecast(model28, h=39) 

  plot(future28) 

  lines(x.rec28, col="red") 

   

  my.rec135<- reconstruct(my.w_e_s, sel.period = 24, show.legend = F) 

  x.rec135<- my.rec135$series$te1.test_e1.r 

  model135<-auto.arima(x.rec135) 

  future135<-forecast(model135, h=39) 

  plot(future135) 

  lines(x.rec135, col="red") 

   

  my.rec150<- reconstruct(my.w_e_s, sel.period = 125, show.legend = F) 

  x.rec150<- my.rec150$series$te1.test_e1.r 

  model150<-auto.arima(x.rec150) 

  future150<-forecast(model150, h=39) 

  plot(future150) 

  lines(x.rec150, col="red") 

   

  my.rec256<- reconstruct(my.w_e_s, sel.period = 256, show.legend = F) 

  x.rec256<- my.rec256$series$te1.test_e1.r 

  model256<-auto.arima(x.rec256) 

  future256<-forecast(model256, h=39) 

  plot(future256)  

  lines(x.rec256, col="red") 

   

  fin.rec<-NA 

  for (i in 1:286) 

    fin.rec[i]<- sum (x.rec3[i], x.rec5[i],x.rec8[i], 

                      x.rec135[i], 

                      x.rec28[i], 

                      x.rec150[i] 

                      #x.rec256[i] 

    )/6 

  fin_e<-NA 

  for (i in 1:39) 

    fin_e[i]<- sum (future3$mean[i], future5$mean[i],future8$mean[i], 

                  future135$mean[i], 

                  future28$mean[i], 

                  future150$mean[i] 

                 # future256$mean[i] 

    )/6 

   

  plot(date, se, type="l") 

  lines(date_t, test$Sales_value_in_USA_Exp.r, col="green") 

  lines(date_t, fin_e, col="red") 

  date_t_n<- matrix() 

  for (i in 1:286) 

    date_t_n[i]<- date1[i+12] 

  lines(date_t_n, fin.rec, col="red") 

  asd<- NA 

  asd[1]<- fin.rec[286]  

  asd[2]<- fin_e[1] 

  lines(date[298:299],asd, col="red" ) 
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  #error 

  error <- set1 - fin_e          # error6 

  predictionRMSE <- rmse(error) #30196.102 

  fin.pr<- sigm(error) 

  print(fin.pr) 

  #средняя ошибка аппроксимации 

  croshappr<- sum(abs(error/set1))/length(set1)*100 

  print(croshappr) 

  #risk 

  x1<-1:39 

  e_2<-(1-fin_e[x1]/set1[x1]) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  plot(x1, abs(e2),col="red", type = "l", ylim=range(0,10)) 

  lines(x1,abs(e_2), col = "black", type = "l",lty=4) 

}   

#_____________Fractal__________________________ 

library(quantmod) 

library(fractaldim) 

 

endingIndex <- 298 

#method <- "rodogram" # 10 ,  1.395073e+00 

method <- "variogram" #12 1.088473e+00 

#method <- "madogram" #8 1.250406e+00 

#method <- "variation" #11, 2.087000e+00 

#method <- "incr1"   # 5,  1.1668507 ступенчатое приращение 

##method <- "boxcount" #2 1.114187e+00 

#method <- "dctII"  #3, 1.216222e+00 

 

Sm1 <- as.data.frame(smt1, row.names = NULL) #test 

Sm2 <- as.data.frame(smt, row.names = NULL)  #train 

 

#number of samples to draw for each guess 

random_sample_count <- 39 

 

#Mustang 

for(i in 1:39){ 

   

  delta <- c() 

 

  for(j in 2:length(smt)){ 

    delta <- rbind(delta, (smt[j]-smt[j-1])) 

  } 

  # calculate standard deviation of delta 

  Std_delta <- apply(delta, 2, sd) 

   

  #update fractal dimension used as reference 

  V_Reference <- fd.estimate(smt, method=method, trim=TRUE)$fd 

   

  Sm_guesses <- rnorm(random_sample_count , mean=smt[length(smt)], sd 

=Std_delta) 

   

  minDifference = 1000000 

   

  # check the fractal dimension of Sm plus each different guess and 

  # choose the value with the least difference with the reference 
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  for(j in 1:length(Sm_guesses)){ 

    new_Sm <- rbind(Sm2, Sm_guesses[j]) 

    new_V_Reference <- fd.estimate(new_Sm$smt, method=method, 

trim=TRUE)$fd 

     

    if (abs(new_V_Reference - V_Reference) < minDifference ){       

      Sm_prediction <- Sm_guesses[j] 

      minDifference = abs(new_V_Reference - V_Reference) 

    } 

  } 

  print(i) 

  Sm2 <- rbind(Sm2, Sm_prediction) 

} 

plot(Sm2$smt, type="l", xlab="Дата", ylab="Объем продаж", 

main="Фрактальный анализ для модели Mustang") 

lines(as.data.frame(sm[1:(endingIndex+39)], row.names = NULL), 

col="blue") 

lines(299:337, smt1, col="green") 

 

#calculate risk 

x1<-1:39 

fm_2<-(1-Sm2$smt[299:337]/smt1[x1]) 

fm2<-abs(fm_2) 

for (i in 2:39) {  

  fm2[i]<-abs(fm2[i-1])+abs(fm_2[i]*fm2[i-1]) 

} 

plot(x1, abs(fm2),col="red", type = "l", ylim=range(0,10)) 

lines(x1,abs(fm_2), col = "black", type = "l",lty=4) 

#error 

error <- smt1 - Sm_prediction         # error6 

predictionRMSE <- rmse(error) #30196.102 

fin.pr<- sigm(error) 

print(fin.pr) 

#средняя ошибка аппроксимации 

croshappr<- sum(abs(error/smt1))/length(smt1)*100 

print(croshappr) 

} 

 

#F-series 

function_fractal_f-ser<- function(sft, sft1, sf){ 

   

random_sample_count <- 39 

Sf1 <- as.data.frame(sft1, row.names = NULL) #test 

Sf2 <- as.data.frame(sft, row.names = NULL)  #train 

 

#do 39 predictions of next values in Sm 

for(i in 1:39){ 

  delta <- c() 

   

  for(j in 2:length(sft)){ 

    delta <- rbind(delta, (sft[j]-sft[j-1])) 

  } 

  # calculate standard deviation of delta 

  Std_delta <- apply(delta, 2, sd) 

  V_Reference <- fd.estimate(sft, method=method, trim=TRUE)$fd 

  Sf_guesses <- rnorm(random_sample_count , mean=sft[length(sft)], sd 

=Std_delta) 

  minDifference = 1000000 
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  for(j in 1:length(Sf_guesses)){ 

    new_Sf <- rbind(Sf2, Sf_guesses[j]) 

    new_V_Reference <- fd.estimate(new_Sf$sft, method=method, 

trim=TRUE)$fd 

     

    if (abs(new_V_Reference - V_Reference) < minDifference ){       

      Sf_prediction <- Sf_guesses[j] 

      minDifference = abs(new_V_Reference - V_Reference) 

    } 

  } 

  print(i) 

  Sf2 <- rbind(Sf2, Sf_prediction) 

} 

#plot(Sf2) 

plot(Sf2$sft, type="l", xlab="Дата", ylab="Объем продаж", 

main="Фрактальный анализ для модели F-series") 

lines(as.data.frame(sf[1:(endingIndex+39)], row.names = NULL), 

col="blue") 

lines(299:337, sft1, col="green") 

#calculate risk 

x1<-1:39 

ff_2<-(1-Sf2$sft[299:337]/sft1) 

ff2<-abs(ff_2) 

for (i in 2:39) {  

  ff2[i]<-abs(ff2[i-1])+abs(ff_2[i]*ff2[i-1]) 

} 

plot(x1, abs(ff2),col="red", type = "l", ylim=range(0,10)) 

lines(x1,abs(ff_2), col = "black", type = "l",lty=4) 

#error 

error <- sft1 - Sf_prediction         # error6 

predictionRMSE <- rmse(error) #30196.102 

fin.pr<- sigm(error) 

print(fin.pr) 

#средняя ошибка аппроксимации 

croshappr<- sum(abs(error/sft1))/length(sft1)*100 

print(croshappr) 

} 

#Explorer_____________________ 

function_fractal_must<- function(smt, smt1, sm){ 

   

random_sample_count <- 39 

Se1 <- as.data.frame(set1, row.names = NULL) #test 

Se2 <- as.data.frame(set, row.names = NULL)  #train 

 

#do 39 predictions of next values in Sm 

for(i in 1:39){ 

  delta <- c() 

  for(j in 14:length(set)){ 

    delta <- rbind(delta, (set[j]-set[j-1])) 

  } 

  # calculate standard deviation of delta 

  Sed_delta <- apply(delta, 2, sd) 

  V_Reference <- fd.estimate(set, method=method, trim=TRUE)$fd 

  Se_guesses <- rnorm(random_sample_count , mean=set[length(set)], sd 

=Sed_delta) 

  minDifference = 1000000 

  for(j in 1:length(Se_guesses)){ 

    new_Se <- rbind(Se2, Se_guesses[j]) 
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    new_V_Reference <- fd.estimate(new_Se$set, method=method, 

trim=TRUE)$fd 

    if (abs(new_V_Reference - V_Reference) < minDifference ){       

      Se_prediction <- Se_guesses[j] 

      minDifference = abs(new_V_Reference - V_Reference) 

    } 

  } 

  print(i) 

  Se2 <- rbind(Se2, Se_prediction) 

} 

#plot(Se2) 

plot(Se2$set[13:337], type="l", xlab="Дата", ylab="Объем продаж", 

main="Фрактальный анализ для модели Explore") 

lines(as.data.frame(se[13:(endingIndex+39)], row.names = NULL), 

col="blue") 

lines(287:325, set1, col="green") 

#calculate risk 

x1<-1:39 

fe_2<-(1-Se2$set[287:325]/set1) 

fe2<-abs(fe_2) 

for (i in 2:39) {  

  fe2[i]<-abs(fe2[i-1])+abs(fe_2[i]*fe2[i-1]) 

} 

plot(x1, abs(fe2),col="red", type = "l", ylim=range(0,10)) 

lines(x1,abs(fe_2), col = "black", type = "l",lty=4) 

#error 

error <- set1 - Se_prediction         # error6 

predictionRMSE <- rmse(error) #30196.102 

fin.pr<- sigm(error) 

print(fin.pr) 

#средняя ошибка аппроксимации 

croshappr<- sum(abs(error/set1))/length(set1)*100 

print(croshappr) 

} 

 

f.plot_risk_m<- function() 

{ 

  x1<-1:39 

  #svm 

  e_2<-(1- prY2_m[299:337]/smt1) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  #regress 

  e_r<- (1-lpr_tr_m_s[299:337]/smt1) 

  er<- abs(e_r) 

  for (i in 2:39) {  

    er[i]<-abs(er[i-1])+abs(e_r[i]*er[i-1]) 

  } 

  #avtoregr 

  e_ar<- (1-future_ar_m$mean[x1]/smt1) 

  ear<- abs(e_ar) 

  for (i in 2:39) {  

    ear[i]<-abs(ear[i-1])+abs(e_ar[i]*ear[i-1]) 

  } 

  #wavelet 

  e_wv<- (1-fin_m[x1]/smt1) 
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  ewv<- abs(e_wv) 

  for (i in 2:39) {  

    ewv[i]<-abs(ewv[i-1])+abs(e_wv[i]*ewv[i-1]) 

  } 

  #fractal 

  x1<-1:39 

  fm_2<-(1-Sm2$smt[299:337]/smt1) 

  fm2<-abs(fm_2) 

  for (i in 2:39) {  

    fm2[i]<-abs(fm2[i-1])+abs(fm_2[i]*fm2[i-1]) 

  } 

  plot(x1, abs(e2),col="blue", type = "b", ylim=range(0,3), pch=4, 

main = "Mustang") # х 

  lines(x1,abs(e_2), col = "black", type = "b",lty=4, pch =4) 

  lines(x1,abs(er), col = "blue", type = "b",lty=5, pch =17) # 

triangle black 

  lines(x1,abs(e_r), col = "black", type = "b",lty=5, pch =17) 

  lines(x1,abs(ear), col = "blue", type = "b",lty=6, pch =1) # ring 

white 

  lines(x1,abs(e_ar), col = "black", type = "b",lty=6, pch =1) 

  lines(x1,abs(ewv), col = "blue", type = "b",lty=6, pch =23)  # romb 

  lines(x1,abs(e_wv), col = "black", type = "b",lty=6, pch =23) 

  lines(x1,abs(fm2), col = "blue", type = "b",lty=6, pch =2)  # 

triangle white 

  lines(x1,abs(fm_2), col = "black", type = "b",lty=6, pch =2) 

  #print in file 

  m_b<- data.frame (future_ar_m$mean, fin_m,  e_ar,  e_wv) 

  must<- data.frame(lpr_tr_m_s[299:337], e_r, prY2_m[299:337], e_2, 

future_ar_m$mean,   e_ar, fin_m, e_wv, Sm2$smt[299:337], fm_2 ) 

  write.table(must, file = file.choose()) 

  write.table(m_b, file = file.choose()) 

} 

f.plot_risk_f<- function() #plot risk f-series sales 

{ 

  x1<-1:39 

  #svm 

  e_2<-(1-prY2_f[299:337]/sft1) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  #regress 

  e_r<- (1-lpr_tr_f_s[299:337]/sft1) 

  er<- abs(e_r) 

  for (i in 2:39) {  

    er[i]<-abs(er[i-1])+abs(e_r[i]*er[i-1]) 

  } 

  #avtoregr 

  e_ar<- (1-future_f_s$mean[x1]/sft1) 

  ear<- abs(e_ar) 

  for (i in 2:39) {  

    ear[i]<-abs(ear[i-1])+abs(e_ar[i])*ear[i-1] 

  } 

  #wavelet 

  e_wv<- (1-fin_f[x1]/sft1) 

  ewv<- abs(e_wv) 

  for (i in 2:39) {  

    ewv[i]<-abs(ewv[i-1])+abs(e_wv[i]*ewv[i-1]) 
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  } 

  #fractal 

  ff_2<-(1-Sf2$sft[299:337]/sft1) 

  ff2<-abs(ff_2) 

  for (i in 2:39) {  

    ff2[i]<-abs(ff2[i-1])+abs(ff_2[i]*ff2[i-1]) 

  } 

  plot(x1, abs(e2),col="blue", type = "b", ylim=range(0,1), pch=4, 

main = "F-series") # х 

  lines(x1,abs(e_2), col = "black", type = "b",lty=4, pch =4) 

  lines(x1,abs(er), col = "blue", type = "b",lty=5, pch =17) # 

triangle black 

  lines(x1,abs(e_r), col = "black", type = "b",lty=5, pch =17) 

  lines(x1,abs(ear), col = "blue", type = "b",lty=6, pch =1) # ring 

white 

  lines(x1,abs(e_ar), col = "black", type = "b",lty=6, pch =1) 

  lines(x1,abs(ewv), col = "blue", type = "b",lty=6, pch =23)  # romb 

  lines(x1,abs(e_wv), col = "black", type = "b",lty=6, pch =23) 

  lines(x1,abs(ff2), col = "blue", type = "b",lty=6, pch =2)  # 

triangle white 

  lines(x1,abs(ff_2), col = "black", type = "b",lty=6, pch =2) 

  #print in file 

  #print all in file 

  fser<- data.frame(lpr_tr_f_s[299:337], e_r, prY2_f[299:337], e_2, 

future_f_s$mean,   e_ar, fin_f, e_wv, Sf2$sft[299:337], ff2 ) 

  write.table(fser, file = file.choose()) 

} 

f.plot_risk_e<- function() #plot risk explorer 

{ 

  x1<-1:39 

  #svm 

  e_2<-(1-prY2_e[287:325]/set1) 

  e2<-abs(e_2) 

  for (i in 2:39) {  

    e2[i]<-abs(e2[i-1])+abs(e_2[i]*e2[i-1]) 

  } 

  #regress 

  e_r<- (1-lpr_tr_e_s[287:325]/set1) 

  er<- abs(e_r) 

  for (i in 2:39) {  

    er[i]<-abs(er[i-1])+abs(e_r[i]*er[i-1]) 

  } 

  #avtoregr 

  e_ar<- (1-future_e_s$mean[x1]/set1) 

  ear<- abs(e_ar) 

  for (i in 2:39) {  

    ear[i]<-abs(ear[i-1])+abs(e_ar[i]*ear[i-1]) 

  } 

  #wavelet 

  e_wv<- (1-fin_e[x1]/set1) 

  ewv<- abs(e_wv) 

  for (i in 2:39) {  

    ewv[i]<-abs(ewv[i-1])+abs(e_wv[i]*ewv[i-1]) 

  } 

  #fractal 

  fe_2<-(1-Se2$set[287:325]/set1) 

  fe2<-abs(fe_2) 

  for (i in 2:39) {  
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    fe2[i]<-abs(fe2[i-1])+abs(fe_2[i]*fe2[i-1]) 

  } 

  plot(x1, abs(e2),col="blue", type = "b", ylim=range(0,4), pch=4, 

main = "Explorer") 

  lines(x1,abs(e_2), col = "black", type = "b",lty=4, pch =4) 

  lines(x1,abs(er), col = "blue", type = "b",lty=5, pch =17) 

  lines(x1,abs(e_r), col = "black", type = "b",lty=5, pch =17) 

  lines(x1,abs(ear), col = "blue", type = "b",lty=6, pch =1) 

  lines(x1,abs(e_ar), col = "black", type = "b",lty=6, pch =1) 

  lines(x1,abs(ewv), col = "blue", type = "b",lty=6, pch =23) 

  lines(x1,abs(e_wv), col = "black", type = "b",lty=6, pch =23) 

  lines(x1,abs(fe2), col = "blue", type = "b",lty=6, pch =2)  # 

triangle white 

  lines(x1,abs(fe_2), col = "black", type = "b",lty=6, pch =2) 

  #print all in file 

  fser<- data.frame(lpr_tr_e_s[287:325], e_r, prY2_e[299:337], e_2, 

future_e_s$mean,   e_ar, fin_f, e_wv, Se2$set[287:325], fe_2 ) 

  write.table(fser, file = file.choose()) 

  fser2<- data.frame(lpr_tr_e_s[287:325], er, prY2_e[299:337], e2, 

future_e_s$mean,   ear, fin_f, ewv, Se2$set[287:325], fe2 ) 

  write.table(fser2, file = file.choose()) 

} 

 


