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ABSTRACT 

Healthy immunoglobulin repertoire has not been extensively evaluated reflecting in part the 

challenge of generating sufficiently robust data sets by conventional clonal sequencing. Deep 

sequencing has revolutionized the capacity to evaluate the depth and breadth of the Ig 

repertoire along the B cell developmental pathway, and can be used to pin point defect(s) of 

primary or acquired B-cell associated diseases. In this study healthy IgM and IgG repertoires 

were studied by 454-pyrosequencing to establish the healthy controls for diseased repertoires. 

Messenger RNA was extracted from peripheral blood mononuclear cells from four healthy 

young adults. Amplicon library of immunoglobulin heavy chain variable region [IGH] of IgM 

or IgG was generated from mRNA by a RT-PCR followed by a nested PCR. IgM or IgG-

specificity was determined by downstream primers Cµ15 and Cµ2, or C16 and C1 

homologous to the IgM or IgG constant region without separation of IgM
+
 and IgG

+
 B cells 

by cell surface markers. The upstream primers were an IGHV family-specific primer cocktail. 

IGHM or IGHG amplicon library, 400 to 500 nucleotides covering the whole IGH, was then 

gel purified and submitted for 454-pyrosequencing. An average number of 7,100 quality 

sequences were obtained for each library. A novel IgSEQ software developed by us for 

automated analysis of IGH pyrosequences through IMGT/V-QUEST and 

IMGT/JunctionAnalysis was applied to obtain information about somatic hypermutation 

[SHM], use of IGHV, IGHD and IGHJ alleles and IGHD reading frame, length and clonality 

in complementarity determining regions [CDR], and junctional modifications. The program 

ESPRIT was used to evaluate the extent of biodiversity. 

IgM repertoire is significantly different from IgG repertoire in healthy young adults. A higher 

percentage of sequences with SHM was observed in IgG [99%] compared with IgM [98%]. 

IgG sequences contain more non-silent mutations in CDR1, CDR2 and FR3 regions than IgM 

sequences. When comparing sequences with SHM, IgM sequences showed significantly 

greater fraction of sequences with nucleotide [N] insertion in VH-D-JH junctions. Frequency 

distribution of CDRH3 length was Gaussian-like in IgM repertoire but relatively variable 

among individuals in IgG. Although used preferentially in both IgM and IgG, IGHV3 was 

expressed at lower frequency in IgG than in IgM. There was an increased use of IGHV1 and 

IGHV6 in IgG in comparison with IgM. IgM repertoire is significantly different from IgG 

repertoire in healthy young adults. IgG antibody repertoire comprise more diversity than IgM 

mostly due to acquisition of greater extent of SHM. 
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1 Introduction 

The immune system is an amazing means of our body to defend countless pathogens that we 

are continuously exposed to. Every day we come into contact with many non-self molecules 

and yet become ill only rarely. How does our body protect us? This is one of many questions 

that are addressed to the research field of immunology.  

The underlying study focused on one of the key players of the immune system: the B cells and 

their immunoglobulins. B cells are a cell type which is able to recognize numerous antigens 

(Ag) with its specific cell surface–bound immunoglobulin, the so called B cell receptor 

(BCR). The way of creating such a great amount of Ag specificity in their BCR has been of 

researchers’ interest since decades. Even after the Japanese biologist Tonegawa was honored 

with the Nobel Prize in 1987, for unraveling the secret of antibody diversity, there are still 

enough mechanisms on the molecular and cellular level that need to be explored. 

1.1 Immunoglobulins 

An antibody molecule is the secreted form of the B cell receptor with an identical structure, 

except for a small region of the constant heavy chain. In the case of the BCR, the C terminus 

contains a hydrophobic sequence that enables the BCR to be anchored into the cell membrane 

of the B lymphocyte. For the soluble antibody molecule in contrast the C terminus is 

hydrophilic (Rogers et al. 1980). The antibodies functions can be explained by three 

principles: neutralization, opsonization and complement activation. Neutralization explains 

the event of binding a foreign antigen, e.g. a toxin, and thus hinders the interaction with host 

cells. The binding of immunoglobulins to foreign antigens also marks them for further 

degradation by macrophages. This process is referred to as opsonization. Complement 

activation represent/explains the involvement of antibodies in the innate immunity. 

The immunoglobulin molecule consists of two identical heavy chains which are joined with 2 

identical light chains by disulfide bonds and non-covalent interactions. The presence of two 

identical heavy and light chains gives the antibody the ability to simultaneously bind two 

antigens at their specific antigen-binding sites, also referred to as Fab fragments (Silverton et 

al. 1977; Edelman 1991). The region where both arms of that Y shaped molecule meet is 

called hinge region. The hinge region is responsible for the flexibility within the molecule. 

Altogether the whole antibody molecule has a molecular weight of approximately 150 kDa.  
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There are five major antibody classes: IgM, IgD, IgG, IgA and IgE that differ in their 

structure as well as their functions. Every isotype contains a different heavy chain C terminal 

region. Both, the heavy and the light chains consist of one variable (V) and at least one 

constant (C) domain (Figure 1). The variable domain of both chain types varies greatly in 

their amino acid composition between antibodies. The constant region determines the 

antibody’s effector functions. Depending on the isotype, there are three to four constant 

domains (CH) in the heavy chain, which are numbered from the amino terminal to the carboxy 

terminal end (CH1, CH2, etc.) (Kabat 1982; Davies & Metzger 1983). The variability of the 

variable regions is not equally distributed throughout the regions. There are six hypervariable 

regions which exhibit a higher degree of variability, the so called complementarity-

determining regions (CDR). The three CDR’s of the light chain and those of the heavy chain 

together create the antigen-binding site, as their loops are brought into close contact in the 

folded molecule. In fact, they determine the specificity of the antibody. Each CDR is followed 

by a less variable framework region (FR). The complementarity-determining region 3 (CDR3) 

of the heavy chain varies most extensively in length because it is encoded by V, D and J gene 

segments which are recombined in a process called VDJ recombination. It also displays the 

highest degree of diversification due to junctional modifications that are created in the event 

of somatic recombination (Tonegawa 1983; Wu et al. 1993). This process will be explained in 

detail in the following section. 

            

Figure 1: Schematic structure of an IgG antibody molecule. The two heavy chains consist of three constant 

(CH) and one variable (VH) domain. The light chains are composed of one constant and one variable 

domain. The six hypervariable regions of both the VH and the VL form the Antigen-binding site. The most 

hypervariable region lies in the variable domain of the heavy chain and is called CDR3. Modified from 

(Kumagai & Tsumoto 2001). 
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1.2 The generation of B cell receptor diversity 

The diversity of the B cell receptor and likewise for secreted antibodies is created by unique 

genetic mechanisms throughout the development of B lymphocytes. There are several factors 

and mechanisms involved in the diversification process. The first and probably most 

important reason for the enormous diversity which can be found in the B cell receptors is the 

existence of multiple gene segments, which encode the variable region of the heavy and light 

immunoglobulin chains. 

The second factor yielding to a highly diverse BCR repertoire takes place at the very 

beginning of the lymphocyte development in the bone marrow and comprises the assembly of 

gene segments mentioned above to form an exon coding for the variable heavy and light 

chains. This molecular mechanism is called somatic recombination, or V-D-J recombination 

in the case of a heavy chain. Further diversity is created by the combination of different light 

with different heavy chains as well as from junctional variability. Finally the process of 

somatic hypermutation induces point mutations in the DNA sequences that encode for the 

variable region of the antibody and is therefore able to change its amino acid composition. 

These factors will be explained in detail in this chapter. 

The immunoglobulin variable heavy chain locus is composed of a set of gene segments.  

There are multiple copies for each type of gene segment. The variable part of the heavy chain 

of an antibody molecule is encoded by three different gene segments: the VH, DH and the JH 

gene segments (Tonegawa 1983) (Figure 2). Most of them are gathered in a definite area 

which is referred to as cluster with lengths of up to one (or more) megabase(s) on the 

chromosome 14q32.3 (Cox et al. 1982). Approximately 38-46 functional genes belong to the 

variable heavy chain locus (VH). A cluster of 23 functional diversity gene segments (DH) lies 

between the V gene segments and the cluster of 6 joining gene segments (JH). There are also 

several gene segments belonging to the light chain locus. All of these germline gene segments 

are thought to evolve from conversion, duplication and diversification (Fukui et al. 1983; Lee 

et al. 1993). The heavy chain V gene segments can be grouped into 7 families (IGHV) due to 

sequence homology. V families can further be grouped into four clans, from which clan IV 

only contains one pseudogene. A clan comprises gene subgroups that appear to be related on 

phylogenetic trees. The subclasses IGHV1, IGHV5 and IGHV7 belong to clan I. Clan II 

includes IGHV2, IGHV4 and IGHV6 families. Subgroup IGHV3 shares the least sequence 

homology with the other families and therefore belongs to a single clan (Cook & Tomlinson 

1995; Matsuda et al. 1998; Pallares et al. 1999).The 23 functional gene segments of the 
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human diversity gene locus have lengths of 11 to 37 nucleotides. They are further on 

classified into seven families (Tomlinson et al. 1994; Corbett et al. 1997). Due to the addition 

and deletion of nucleotides during the event of somatic recombination, the DH gene can occur 

in six different reading frames (RF), three of them arising from an inverted DH segment use. It 

has been reported that those RFs that arise from an inverted DH gene segment and D-D 

fusions are practically never observed in healthy human subjects (Ohm-Laursen et al. 2006). 

Considering only productive rearrangements with forward-facing RFs, there is a bias towards 

one RF. Indeed different theories in literature speculate how and why one RF is preferred over 

the others. Reading frame usage appears to be selected after the V-D-J rearrangement process 

occurred, when a B cell with a certain specificity for an antigen is clonally expanded. It is also 

suggested that individual DH segments favor different reading frames and that the RF is thus 

evolutionary conserved (Briney et al. 2012; Benichou et al. 2013). 

The IGHJ gene locus consists of 9 gene segments, all arranged in a single cluster. Only 6 gene 

segments are functional however (Ruiz et al. 1999). The heavy chain locus also contains a 

large cluster of CH genes, which encode for the constant heavy chain of the antibody 

molecule. The most used haplotype in humans contains 9 genes in the IGHC locus, namely µ, 

δ, γ3, γ1, α1, γ2, γ4, ε and α2 (Flanagan & Rabbitts 1982).  

While the V region of the heavy chain is encoded by clusters of the three segments namely 

VH-D-JH, the variable region of the light chain does only contain V and J gene segments, 

referred to as VL and JL. Besides, the arrangement of these segments in the germline DNA 

depends on the type of light chain locus. There are two distinct types of light chains that differ 

in the organization of their gene segments. Only one of these two types is used to be 

assembled in one immunoglobulin molecule. There is no combination of both types in one 

antibody. The lambda light chain locus is assembled by a set of VL gene segments followed 

by a set of JL segments each linked to a CL gene. The kappa light chain locus by contrast 

contains a set of VL gene segments followed by a set of JL and then by a single CL gene 

segment. The two light chain types are not equally used in the human antibody repertoire. The 

average κ to λ in humans is 2:1. Distortions in this ration could be used to detect defects in 

the B cell development (Frippiat et al. 1995; Tomlinson et al. 1995; Williams et al. 1996). 

Having described the structure of the immunoglobulin heavy chain locus (IGH) leads to the 

question of how the B cell receptor is being generated out of those gene segments that are 

assembled in the germline DNA. Before limited numbers of gene segments were found to 

encode the immunoglobulin protein it was first believed that each BCR was encoded by a 



 

 
5 

 

separate gene. In fact however, every BCR is encoded by the combination of a VH, D and JH 

gene which have been chosen from the gene segment clusters belonging to the germ line 

DNA. This process is called somatic recombination. 

The process of somatic recombination takes place in the bone marrow when a hematopoietic 

stem cell is becoming an actual B cell. The rearrangement and combination of different gene 

segments is made possible by the presence of noncoding DNA sequences that flank every 

single gene segment. These regions are referred to as recombination signal sequences (RSSs). 

Recombination signal sequences consist of three regions: the highly conserved heptamer, 

followed by a spacer and a conserved nonamer DNA sequence. The sequence of the spacer is 

variable, in contrast to its nucleotide length which is either 12 bp or 23 bp long. Gene 

segments that are flanked by a 23 bp spacer can only be joined to a gene segment flanked by a 

12 bp spacer. Following this 12/23 rule VH gene segments can never be joined with JH gene 

segments, because both of them are flanked by 23 bp spacers. There is an enzyme complex 

called the V(D)J recombinase that carries out the necessary steps to join the segments. First 

the two enzymes RAG-1 and RAG-2 recognize the signal sequences and bring the segments 

together according to the 12/23 rule. RAG-1 and RAG-2 are specific lymphoid enzymes that 

are only expressed in the developing lymphocytes to mediate the recombination event 

(Nagaoka et al. 2000). They are encoded by the recombination-activating genes 1 and 2 

respectively. After aligning the two gene segments, the endonuclease activity of the RAG 

complex creates single-stranded nicks right 5’ behind the RSS of the recombining gene. The 

OH group overhang which is created after the cleavage at the 3’ end of the gene will then 

react with a phosphodiester bond of the opposite DNA to form a hairpin loop. The blunt 

ended signal ends are then joined with the help of the ubiquitous enzymes of the recombinase 

complex Ku70:Ku80 and a DNA ligase IV that creates a piece of extrachromosomal DNA 

which gets lost during cell division. The coding ends however are joined in a slightly different 

mechanism. Also the heterodimer Ku70:Ku80 binds to the aligned ends and forms a ring so 

that DNA-dependent protein kinase is recruited. The endonuclease Artemis is further on 

activated by phosphorylation and opens the hairpin by creating nicks at various positions, 

creating a nucleotide overhang that originally was complementary in the double strand and is 

therefore called palindromic. This nicking is therefore a means to create sequence variability. 

At the cut end the enzyme terminal deoxinucleotidyl transferase (TdT) adds randomly non-

template encoded nucleotides while at the same time DNA repair enzymes with exonuclease 

activity delete nucleotides from both ends of the DNA that do not pair. After this modification 
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the two gene segments are finally joined with the help of a DNA ligase IV (Alt et al. 1992; 

McBlane et al. 1995). This process thus creates diversity in the joining of the combined gene 

segments and makes the joining an important feature to look at when estimating the 

biodiversity of a given memory B cell repertoire. The fact that there are multiple clusters of 

genes in the germline DNA and that these can be combined randomly creates already two 

steps to increase the diversity and is called combinatorial diversity. Additionally the V(D)J 

recombination event increases the number of events to create diversity by the modification of 

the junction, which is referred to as junctional diversity. The final event that can shape the 

BCR repertoire is called somatic hypermutation (SHM), a process that introduces point 

mutations into the V region genes of mature B cells in the secondary lymphoid organs 

(Muramatsu et al. 1999; Odegard & Schatz 2006). The process mostly proceeds in the 

germinal centers of secondary lymphoid tissues. Germinal centers (GC) are distinct regions in 

the follicles that are predominantly seeded with B cells and to a smaller extent with T cells 

(Ramiscal & Vinuesa 2013). The initiation of SHM in B cells happens with expression of the 

enzyme activation-induced cytidine deaminase. This enzyme, also called AID, is only 

expressed in activated B cells, which means B cells that have already encountered antigen 

(Tomlinson et al. 1996). AID modifies only single-stranded DNA, thus in the process of 

transcription where the DNA is temporarily opened, AID causes a nucleophilic attack on the 

cytosine ring on both sides of the DNA strand which results in its deamination and forms an 

uridine (Maul & Gearhart 2010). Since uridine is a foreign base to DNA it causes a mismatch 

with the guanosine of the opposite DNA strand and thus activates in the mismatch repair 

mechanism DNA repair enzymes to remove the whole uridine nucleotide and several other 

nucleotides adjacent to them. The other way of repairing the mismatch is called base-excision 

repair mechanism. In this case the repair enzyme uracil-DNA glycosylase (UNG) only 

removes the uracil base from the uridine nucleotide, creating a gap with absent base. In the 

following DNA replication a new nucleotide will be added in the opposite strand and another 

enzyme will splice out the abasic nucleotide. The repair of the gap further on leads to gene 

conversion, which is an event unlikely to happen in humans. Since AID causes 

carcinogenesis, when active on other than lymphocyte immunoglobulin loci, expression is 

highly restricted to only centroblast B cells (Li et al. 2004). A centroblast is an activated B 

cell type that undergoes rapid proliferation in the GC. Somatic hypermutation can be 

explained as a means of the body to enhance the affinity maturation of B cells with specificity 

for a certain antigen. The mature B cells, which became activated by antigen, most likely 
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undergo another stage of further diversification in the germinal centers where they compete 

with other B cells with specific BCR for an encountered antigen. Only B cells with an 

increased affinity for that antigen continue to receive survival signals from helper T cells and 

follicular dendritic cells and are thus selected for clonal expansion (Smith et al. 1997; 

Shlomchik & Weisel 2012). 

In case the AID enzyme deaminates switch regions of the constant locus, class switch 

recombination is initiated. Class-switch recombination does not increase the specificity of the 

B cell receptor repertoire per se, but plays an important role in the diversification of its 

functions. Class-switching allows the BCR to acquire distinct effector functions which are 

mediated by the type of the constant heavy chain. Isotype-switch only occurs in activated 

mature B cells. The VDJ segment of the IGH is translocated from its original position 

upstream of the CH gene and placed in front of a different C region. It is important to note that 

the selection for the new C region does not proceed randomly; rather it is the result of various 

cytokines released from helper T and other cells upon antigen recognition. They enhance the 

transcription of that constant region gene which BCR isotype should be expressed later. Since 

AID does only induce mutations in single-stranded DNA, it will be targeted to the actively 

transcribed regions. The prerequisites of this mechanism are the switch regions which are 

located in the intron sequence upstream of every constant region gene, except for the Cδ 

(Manis et al. 2002). The Cδ.gene is located right downstream of the Cµ gene and shares the 

same switch region. The switch occurs between the switch region of the Cµ gene and the 

switch-region of the gene of the new isotype. Transcription factors that are released from the 

cell upon cytokine stimulation, bind to the intronic (I) region promoter, a region upstream of 

each switch region, and initiates transcription. The start of transcription recruits the AID 

enzyme that now deaminates various cytidine residues which results in the formation of uracil 

(Xue et al. 2006). Two other enzymes further convert the uracils to nicks on both DNA 

strands. Since the two switch regions that now contain multiple breaks lie in two distinct 

locations the DNA break repair machinery joins the two switch regions and excises all DNA 

that lies in between these regions. The rearranged VDJ segment is now located a few kilo 

bases upstream of the new constant gene. After transcription, the region between is spliced 

out and the immunoglobulin can be expressed on the cell surface of the B cell (Stavnezer et 

al. 2008). This mechanism ensures the body to create antibodies with the same specificity 

while changing its effector properties (Snapper et al. 1997).  



 

 
8 

 

The total diversity of the BCR repertoire is achieved by several distinct molecular 

mechanisms. The simple fact that the genetic information for the antibody variable region is 

inherited in several gene segments gives rise to 6,300 different potential recombinations for 

the heavy chain and approximately 255 for the light chains. These numbers can be multiplied 

by 1000 to include the diversity that is introduced by junctional modifications. Further the 

repertoire is diversified by combining two of several light chains to two heavy chains (Figure 

2). After the B cells have encountered their cognate antigen they will possibly undergo 

somatic hypermutation and class-switch recombination in the secondary lymphoid tissues. 

Thus in total, approximately 2x10
12

 different antibodies can be created. 

 

Figure 2: The molecular generation of antibody diversity. The occurrence of multiple variable, diversity 

and junctional gene segments leads to a great combinatorial and junctional diversity in the B cell receptor 

repertoire that makes it possible for the body’s immune system to respond to an enormous number of 

different (foreign) antigens. The final estimated number of different antibodies each with different 

specificities is estimated to be 2x10
12

. Figure from www.IMGT.org. 
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1.3 The developmental pathway of B lymphocytes 

Humoral immunity is initiated by naïve mature B cells in the peripheral blood, which enter 

the secondary lymphoid tissues to become activated. Approximately 5-15% of circulating 

lymphoid cells are B lymphocytes (Maddaly et al. 2010). Naïve B cells are the progeny of 

hematopoietic stem cells from the bone marrow (Busslinger 2004). Starting from a progenitor 

cell the B lymphocyte undergoes several stages of maturation until it leaves the bone marrow 

as immature B cell and migrates to peripheral lymphatic organs. The process of B cell 

maturation requires the interaction with bone marrow stromal cells for necessary signaling 

and is also referred to as antigen-independent phase of development (Hystad et al. 2007). The 

bone marrow dependent stages of the B cell development are highly dependent on the 

functional assembly of gene segments and involve the expression of various surface markers 

as well as transcription factors (LeBien 2000). Until the early pro-B cell stage the DNA of the 

B cell is still in germline configuration. The first B cell stage that arises from a common 

lymphoid progenitor (CLP) is the pro-B cell. Characteristic for the pro-B cell stage is the 

rearrangement of the heavy chain locus, namely the recombination of a D gene with a heavy 

chain JH gene segment (Figure 3). For the required proliferation signals the B cell binds its 

receptor tyrosine kinase Kit (CD117) to the stem cell factor (SCF) expressed on the surface of 

the bone marrow stromal cell. The late pro B cell stage is characterized by the rearrangement 

of the VH gene segment to the previously rearranged DJH segment. A productively rearranged 

heavy chain locus leads to the expression of a pre-B cell receptor (pre-BCR) inside the cell at 

the large pre-B cell stage. The pre-B cell receptor forms of the expressed µ-heavy chains with 

surrogate light chains (λ5, Vpre-B), because the light chain loci gene rearrangement has not 

taken place yet (Pieper et al. 2013). The pre-BCR plays an important role for the formation of 

only one antigen specificity per B cell, a process called allelic exclusion (Löffert et al.). Thus, 

at the large pre-B cell stage the expression of the RAG1/2 proteins, which are required for 

VDJ recombination, is reduced to ensure no further rearrangement of the heavy chain locus. 

As the B cell continues proliferation it undergoes the rearrangement of the light chain locus in 

the small pre-B cell stage. At this time the RAG1/2 proteins are again expressed to enable the 

recombination of the light chain gene segments. So from each large pre-B cell many B cells 

with certain antigen specificities are developing. A productive light chain gene rearrangement 

eventually leads to the expression of an IgM BCR of the immature B cell, which forms a BCR 

complex with Igα/Igβ proteins on the cell surface (Perez-Andres et al. 2010). Igα/Igβ 

heterodimer is needed in the BCR complex to transduce signals from the BCR for its 
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interaction with intracellular tyrosine kinases. The immature B cell is further tested on self-

reactivity before it leaves the bone marrow to become a mature B cell, expressing also IgD on 

its surface (Casellas et al. 2001). This important step generates a self tolerance which prevents 

the B lymphocytes from encountering self-antigens. Each B cell expresses on average 

1.5 x 10
5
 membrane-bound antibody molecules (Maddaly et al. 2010). Immature B cells leave 

the bone marrow via sinusoids and are transported with the blood stream to the spleen or other 

secondary lymphoid tissues. The migration of the B lymphocytes into the spleen or the lymph 

nodes is initially directed by the release of the cytokines CCL18 and CCL19 from dendritic 

cells (Ansel & Cyster 2001). Since not all potential self antigens are present in the bone 

marrow, there is a second phase of testing a B cell’s self-reactivity in the periphery. It could 

be shown in a mouse model that B cells that strongly react with self antigen by cross-linking 

are removed from the B cell pool by clonal deletion (Goodnow et al. 1989). As soon as the B 

lymphocytes migrate to secondary lymphoid organs the subsequent development is assigned 

as antigen-dependent phase. There are two different ways for B lymphocytes to be activated 

by an antigen: the activation upon encounter a T-independent (TI) antigen or by a T-

dependent (TD) antigen. Usually the exposure to microbial lipopolysaccharides or bacterial 

flaggelin elicits a TI activation of B cells. This non-specific activation involves both mature 

and immature B cells and leads to the expression of only IgM, showing lower antigen affinity. 

The B cell response to T-dependent antigens requires the help of T helper cells and their 

cytokines. Soluble protein antigens cause a cross-linking of the B cell’s antigen receptors and 

therefore attract antigen-specific T cell help (Maddaly et al. 2010). It is generally believed 

that mature B cells that have encountered antigen migrate to the germinal centers of the 

secondary lymphoid tissues and undergo somatic hypermutation as well as class switching. 

The germinal center stage is known as a phase of rapid proliferation and the continuously 

competition for survival signals from follicular dendritic cells and T helper cells. B 

lymphocytes which acquire SHM are expressing rendered surface immunoglobulin with an 

either increased or decreased affinity for their cognate antigen. Only these cells continue to 

differentiate into isotype-switched memory B cells or antibody secreting plasma cells that 

obtain an improved affinity for their antigen presented on a follicular dendritic cell or a CD4
+
 

T cell. The follicular dendritic cells provide essential survival and proliferation signals to the 

selected B cell. The process of selection for B cells with increased antigen affinity is called 

affinity maturation. B cells that received survival signals from the antigen-presenting cell 
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(APC) further differentiate into long-lived plasma cells or to a smaller amount into GC-

derived memory B cells. Most of these memory B cells are class switched.  

Another fate of B lymphocytes that have already seen antigen is the differentiation into 

memory B cells right after they experienced antigen exposure without the formation of a 

germinal center. The expression of CD40 ligand by the APC is critical for the differentiation 

into GC independent memory B cells. These types of memory B cells are mostly expressing 

IgM on their surface and do not contain SHM. Although it has been shown that populations of 

IgM
+
 memory B cells exist that carry SHM but did not evolve after germinal center reaction, 

however from marginal zone B cells. The majority of switched memory B cells are derived 

from germinal centers. After the exposure to an unknown antigen the earliest memory B cells 

can be detected after 3 days, still before the germinal center form (Taylor et al. 2012). 

 

Figure 3: Developmental stages of B lymphocytes. The antigen independent stage of the development 

proceeds in the bone marrow, versus the antigen dependent stage takes place in the periphery. Modified 

from Perez-Andres et al. 2010. 

1.4 Aim of this investigation 

In this study the IgM and IgG transcriptome repertoires of four healthy subjects have been 

subjected to examination of their genetic and molecular properties with data obtained from 

deep sequencing. Deep pyrosequencing makes it possible to generate up to 3,000,000 reads 

per run (Metzker 2010) and thus has revolutionized the capacity to evaluate the 

immunoglobulin repertoires. Insights in the Ig heavy chain variable region (IGH) repertoire 

along the B cell developmental pathway might give an important baseline for further 

investigations of B cell associated disorders. Molecular perturbations in memory B cell 

repertoires could indicate diseases when comparing with the healthy repertoires.  

Stem cell

D-J IGHV-D-J IGKV-J
IGLV-J

pre-B cell receptor

Pro-B cell Pre-B cell Immature B cell

IgM

Antigen independent phase
Bone marrow Blood

Antigen dependent phase
Secondary lymphoid organs

IgM

IgD

IgM

IgDSHM

IgM

IgD

Mature
B cell

Ag IgM

IgG

IgE

IgA

SHM

IgA

IgM
Ag

Ag

memory B cells

isotype switched
memory B cells

CSR

Ag

Plasma cell



 

 
12 

 

The primary focus of this study was the contribution of genetic markers, such as VHDJH 

combinations and the extent of SHM, to the diversity of the given repertoires. It was 

hypothesized that the IgG repertoire displays greater biodiversity due to its derivation from 

IgM
+
 B cells and thus belonging to a developmentally later stage. 

This investigation was conducted using mRNA from whole peripheral blood mononuclear 

cells (PBMC) and therefore presents a new method to discover genetic properties along the B 

cell’s developmental pathway. The advantage of using mRNA over genomic DNA is that only 

productive DNA is expressed. No surface marker has been used prior to generating 

transcriptome repertoires, so the only way to identify the developmental stage was by looking 

at the presence of somatic hypermutations. Somatic hypermutations are the most precisely 

means to distinguish naïve from memory B cells. 
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2 Material and Methods 

2.1 Study cohort 

A total of four healthy young adults (median age: 20 years) was enrolled in this study. None 

of them was infected with HIV or suffered from any autoimmune or chronic disease nor 

received of any kind of vaccination up to 30 days prior to the study. 

2.2 Cell sorting for B cell profiles 

Peripheral blood mononuclear cells were stained using the whole blood lyses method 

(Bossuyt et al. 1997) and sorted with the LSR2 flow cytometer (BD Biosciences, Franklin 

Lakes, NJ, USA). B cells were positively selected using the monoclonal PECy7-conjugated 

anti-CD19 (BD Biosciences) antibody. The separation of IgM+ and IgG+ B cells was done by 

means of APC-conjugated anti-IgM and anti-IgG antibody (BD Biosciences). Among all 

subjects B cell percentages ranged from 4.0 to 10.4% of the lymphocytes.  

2.3 Isolation of Peripheral blood mononuclear cells and mRNA 

Peripheral blood mononuclear cells (PBMC) were extracted from peripheral blood with the 

aid of Lymphoprep™ density gradient medium (Fisher Scientific, Waltham, MA, USA) using 

a density gradient centrifugation protocol. Granulocytes and the erythrocytes sediment 

through the Lymphoprep™ layer due to their higher density leaving a layer of PBMC on the 

top of their own layer, but beneath the plasma layer. Messenger RNA was extracted from 

PBMC (without the isolation of IgM
+
 and IgG

+
 B cells) with the MicroPoly[A]Purist™ kit 

(Ambion, Austin, TX, USA) following the manufacturer’s instructions. 

2.4 cDNA synthesis and creation of amplicon libraries 

To synthesize cDNA, approximately 10 ng (equivalent to       B cells) of extracted 

mRNA was used as a template for the reverse transcriptase (RT) PCR.   

The first round primers enabled the amplification of the whole rearranged immunoglobulin 

sequence, as the upstream primer binds to the first framework region of the heavy chain 

variable antibody sequence and the downstream primer to the corresponding constant part of 

the sequence (Figure 4).  
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Figure 4: Primers used to amplify the IgM and IgG variable heavy region [IGHM/IGHG] for library 

construction. The upstream primer cocktail consists of six primers which are specific to IGHV1 to 

IGHV7, and located in FR1. The downstream primers are located in the constant region of IgM/IgG. PCR 

products ranged from 400 bp to 500 bp covering the entire heavy chain variable region [IGH]. P/N 

symbolizes the non-germline encoded and palindromic nucleotides that are added in the junction in the 

process of somatic recombination. 

Specificity for the IgM and IgG transcriptome was archived by using downstream primers 

homologous to the constant region of the immunoglobulin isotype (Gokmen et al. 1998). The 

Cµ15 primer was used for the amplification of the IgM sequences and the Cγ16 primer for the 

amplification of the IgG repertoire (Table 1). 

Table 1: Downstream primers used in the RT-PCR. The Cµ15 primer binds to the IGHM and the Cγ16 

primer to the IGHG constant region. Both were obtained from  Invitrogen (Carlsbad, CA, USA).  

Primer name Sequence 5' -> 3' 

Cµ15 GACGAAGACGCTCACTTTGGG 

Cγ16 CACCTTGGTGTTGCTGGGCTTGT 

 

The upstream primer cocktail contained 6 different primers with binding specificity to all 

IGHV families ( Table 2). To check for binding bias, every primer was tested for its binding 

capacity in a previous investigation. It could be seen that each primer displayed similar 

binding capacities to the IGHV family sequences. 

 

 

 

 



 

 
15 

 

Table 2: Forward primer cocktail used in the RT-PCR for IgM and IgG antibody sequences. Primers bind 

to the framework 1 antibody sequence and enable the amplification of all seven IGHV families. All 

primers were obtained from Invitrogen.  

Primer name Sequence 5' -> 3' 

VH2-FR1 CTCTGGTCCTACGCTGGTGAAACCC 

VH3-FR1 CTGGGGGGTCCCTGAGACTCTCCTG 

VH4-FR1 CTTCGGAGACCCTGTCCCTCACCTG 

VH5-FR1 CGGGGAGTCTCTGAAGATCTCCTGT 

VH6-FR1 TCGCAGACCCTCTCACTCACCTGTG 

VH7/VH1-FR1 CTGGGGCCTCAGTGAAGGTCTCCTG 

The RT-PCR was conducted in a 50 µl reaction volume at 50°C (30 min), 95 °C (2 min), 

92 °C (30 sec), 62°C (35 sec), 72°C (1 min), 72°C (10 min) for 20 cycles with the following 

reagents: 

Table 3: Composition of the reaction mix for the reverse-transcriptase PCR. The RT Platinum Taq PCR 

kit was obtained from Invitrogen.  

Reagents Volume per reaction (µl) Final concentration 

2x Reaction mix 25 1x 

MgSO4 (50 mM) 1.3 2,8 mM 

VHs-FR1 cocktail (5µM/primer) 0.5 50 nM/primer 

Cµ15 / Cγ16 (30 µM)  0.5 300 nM 

RT Platinum Taq mix  1  

dH2O 11.7  

Template mRNA 10 10 ng 

 

The second round PCR was performed to increase the yield of the first PCR products using 

primers with a template-independent region, which functions as adapter for the subsequent 

pyrosequencing step. The upstream primer mix contained the same template-specific 

sequences as the first round PCR primers except for the adapter sequences (Table A 1) 

The second round downstream primers were located inside the (nested) first round amplicons 

(Figure 4) and contained labeled adapters for subsequent pyrosequencing (Table A 2). 

The amplification of the IGH specific sequences was conducted at 94 °C (2 min), 94 °C 

(30 sec), 62 °C (35 sec), 68 °C (1 min), 68 °C (5 min) in a cycle with 30 repetitions.  

The Q5 High–Fidelity DNA polymerase (NEB, USA) was used to ensure high-fidelity 

reading rates. 
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The reaction mix was composed of the following reagents: 

Table 4: Composition of the second round PCR reaction mix.  

Reagents Volume per reaction (µl) Final concentration 

A-VHs-FR1 cocktail (5µM/primer) 0.5 50 nM/primer 

TiB-MID-Cµ2 / Cγ1 (30 µM) 0.5 300 nM 

Q5 High-Fidelity 2x Master Mix 25 1x 

dH2O 19  

Template mRNA 5  

 

Prior to submitting the amplicons to the Interdisciplinary Center for Biotechnology Research 

(University of Florida, USA) for 454-pyrosequencing, the PCR products were gel-purified 

(QIAquick Gel extraction kit, Qiagen). The deep sequencing was done with the Genome 

Sequencer FLX (454 Life Sciences) according to the manufacturer’s protocol. 

2.5 Bioinformatics pipeline 

To analyze the sequencing data, a bioinformatics pipeline has been developed. 

A total of 5000 -15,700 raw sequences per subject could be obtained which were further on 

processed through a quality control filtering step (Figure 5). Ambiguous nucleotides and 

sequences that failed to align properly to the reference sequences of the IMGT database or 

contained any sequencing errors were removed.  

 

Figure 5: Bioinformatic pipeline overview. After qualifying raw sequences, quality sequences were    

analyzed by IMGT/ Junction analysis and ESPRIT to obtain several data (green box).  

IgSEQ

Quality sequences 
(3,500 – 10,500 reads per library)

Raw sequences 
(5000 – 15,700 reads per library)

IGH amplicon libraries

• Full amino acid sequence
• Extent of SMH in each region
• Frequency distribution of

o V, D (H), J alleles 
o D(H) RF
o Length of each region

• Biodiversity

IMGT /Junction analysis
(Ig and junction features)

Quality control step
• Ambiguous   

nucleotides
• Alignment errors 

ESPRIT
(Biodiversity)
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A novel IgSEQ software, developed by our group, for automated analysis through IMGT/V-

QUEST and IMGT/Junction Analysis was applied to obtain key features of immunoglobulin 

repertoire, including somatic hypermutation (SHM), use of IGHV, IGHD and IGHJ genes, 

amino acid lengths of framework regions and complementarity determining regions, as well 

as junctional modifications (Monod et al. 2004; Brochet et al. 2008). 

The numbers of silent, non-silent and total somatic hypermutations have been determined for 

all framework and complementarity determining regions. Sequences with one or less than one 

somatic hypermutation (one nucleotide difference from the reference sequences) were 

excluded from further investigation to prevent ambiguities (Glanville et al. 2009). 

Furthermore, all sequences harboring two or more mutations over the whole IGHV-D-J 

antibody sequence were classified as SHM
+.

 

The biodiversity was estimated using the program ESPRIT. The study includes factors 

yielding to biodiversity such as the extent of junctional modifications and somatic 

hypermutations, but also the variety which is created by VH-D-JH combinations.  

The values of biodiversity are further influenced by the number of input cells and the 

distribution and richness of the combinational sequence clusters. Therefore it was weighted by 

the number of input B cells, to make the data comparable among individuals. 

The rarefaction analysis gives information about the diversity of the transcriptome repertoire 

at the depth of sequences (number of sequences). The run of the curve displays an increase or 

decrease of the biodiversity. Deeper initial slopes and a left shift of the curve indicate an 

increase.  

Chao1 analysis describes the maximum estimated biodiversity within the input templates 

(3500 - 10500 sequences). In this study the sequences were clustered at a genetic distance of 

10%.  

The data was combined and summarized in Excel (Microsoft). Subsequent graphic 

presentation and statistics were implemented with GraphPad Prism (GraphPad 5.2 Software, 

CA, USA). Comparisons of the amount of somatic hypermutation and the frequency of gene 

alleles among study groups were performed by ANOVA followed by a Bonferroni post test 

(Yin et al. 2013). 
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3 Results 

3.1 Somatic Hypermutations 

When comparing the IgM with the IgG transcriptome repertoires initially the total extent of 

sequences with or without somatic hypermutation was determined. Sequences that do not 

contain somatic hypermutations are considered to correspond to the naïve B cell population, 

whereas the mutated sequences are equivalent to the memory B cell population. It was found 

that the IgG repertoire contains approximately five times more sequences with somatic 

hypermutations (99.2%) than the IgM repertoire (94.7%) (Figure 6). 

 

Figure 6: Sequence profile. The IgM transcriptome repertoire possesses about five times more sequences 

without somatic hypermutations than the IgG repertoire. Error bars indicate SEM among four 

individuals. 

Besides the greater general extent of somatic hypermutations, the IgG transcriptome 

repertoire contains more nonsilent mutations (21.6 mutations per 100 bp), compared to the 

IgM repertoire (13.8 mutations per 100 bp) and therefore a different corresponding amino 

acid composition of the antibody (Figure 7A). Although the difference among both repertoires 

was not significant, there was a visible trend towards a greater extent of mutations in the IgG 

repertoire. The amount of sequences with silent mutations was approximately similar in both 

repertoires (4.6 mutations per 100 bp ±1.5). Drilling down the extent of mutations over the 

whole IGH sequence the IgG repertoire possesses significantly more silent and nonsilent 

mutations in the first and second complementary determining region (CDR1 and CDR2) and 

the third framework region (FR3) than the IgM repertoire (Figure 7B). The framework region 

one is the only region in the IgM repertoire that harbors significantly more somatic 

hypermutations than the IgG repertoire. The greatest extent of nonsilent mutations in the IgG 
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transcriptome was found in the CDR2 region, followed by the CDR1 and the FR1. The FR1 

region also displays the greatest amount of silent and nonsilent mutations of the IgM 

repertoire. 

 

Figure 7: Silent and nonsilent SHM along the whole depth of sequences (A) and in all CDRs and FRs of 

IGHM and IGHG. A. The IgG transcriptome repertoire contains a greater extent of silent and nonsilent 

mutations than the IgM repertoire. B. Overall, the extent of either silent or nonsilent SHM is greater in 

FRs and CDRs in IGHG than in IGHM except for FR1 which has significantly more mutations in IGHM 

than in IGHG. Error bars indicate SEM among four individuals. * p<0.05, *** p<0.001, **** p<0.0001. 
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3.2 Frequency of IGHV, IGHD and IGHJ gene families 

In this investigation, the frequency of existing IGHV, IGHD and IGHJ gene families in the 

mutated IgM and IgG expressing B cell repertoires was compared among the four individuals. 

Every variable heavy chain immunoglobulin gene segment [IGHV] belongs to one of seven 

gene families (Cook & Tomlinson 1995).  

 

Figure 8: IGHV family usage in IgM and IgG transcriptome repertoires. IgG repertoire predominantly 

contained IGHV3 but at a reduced frequency and with an increase in use of IGHV4 in comparison to IgM 

repertoire. Each symbol represents one individual. ** p< 0.01 

Figure 8 shows a strong notable bias towards the gene family VH3 (~70%) among all 

individuals in both the IgM and the IgG repertoire. There is also a slight bias towards gene 

family VH1 and VH4 among the four individuals. Comparison of the frequency of IGHV 

gene families between IgM and IgG repertoire showed a significantly elevated frequency of 

the IGHV3 segments in the IgM repertoire, and a trend towards higher frequency of IGHV4 

family in the IgG repertoire. The other gene families appear consistent among all subjects. 

Although the total frequencies of IGHV families of the IgG repertoire are very similar to 

those of IgM, except for IGHV3, there is a greater variability of use among each individual; 

noticeable as the black data points are more spread out vertically. 
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Biased gene usage does not only apply to IGHV genes. IGHD genes are also unequally 

distributed within the examined B cell repertoires (Figure 9). The frequency of the seven 

IGHD families (Corbett et al. 1997) was similar in both IgM and IgG repertoires. The gene 

frequencies of various IGHD genes of the IgM repertoire are clustered together among 

individuals, whereas the IgG repertoire gene family usage displays some more variation from 

one person to another. 

 

Figure 9: IGHD gene family usage in IgM and IgG transcriptome repertoires. Frequency of IGHD gene 

families was similar in IgM and IgG B cell repertoires and among all individuals. IGHD3 was used most 

in both repertoires. Each symbol represents one individual. 

From seven IGHD gene families, IGHD3 showed the highest frequency (~30%) among all 

individuals. The IGHD7 gene segments were underrepresented in all individuals. 

There is also considerable variation between the utilization frequencies of IGHJ genes (Figure 

10). The IGHJ4 family genes make the greatest contribution (~50%) to both the repertoires of 

all examined individuals, but with a significant difference in the frequency among IgM and 

IgG repertoire. 
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Figure 10: IGHJ gene family usage in IgM and IgG transcriptome repertoires.  Except for IGHJ3 and 

IGHJ4 the frequency was similar in both repertoires. Although there is a significant difference  in usage, 

IGHJ4 was the most abundant family in both repertoires. Each symbol represent one individual.  

While the IGHJ4 family is present with 56% in the IgM repertoire, only 40% of gene 

segments in the IgG repertoire belong to the IGHJ4 family. The second most abundant IGHJ 

genes of the IgG repertoire belong to the IGHJ3 family, followed by those of the IGHJ6 

family. The usage of IGHJ3 differs significantly between IgM and IgG repertoire. The 

frequency of IGHJ1, IGHJ2, IGHJ5 and IGHJ6 is similar in both examined repertoires. 

 

3.3  DH Reading frame usage and the extent of non-germline encoded 

nucleotides 

It is known from previous investigations that DH gene segments of the immunoglobulin heavy 

chain variable region can occur in three different forward and three inverted reading frames. 

Due to the addition and deletion of nucleotides between the junction of two gene segments 

during the process of somatic recombination. Although there are three possible forward 

reading frames of the DH segment, reading frames are not equally utilized in the antibody 

repertoire. As the occurance of inverted RF in productive rearrangements has been considered 

very unlikely in humans this study focused on the use of the forward reading frames only 

(Ohm-Laursen et al. 2006). 
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As seen from Figure 11, in this investigation the preferred reading frame two with ~48% in 

both IgM and IgG repertoires. The frequency of usage of RF1 and RF3 was significantly 

different from that of RF2.  

 

Figure 11: The DH reading frame usage in IgM and IgG transcriptome repertoires. In both repertoires RF 

2 was preferred. Each symbol represents one individual. 

The addition of non-template encoded nucleotides [N] between the junction of the VH-D and 

D-JH segments, also occurs during somatic recombination of B cells. In this investigation the 

amount of sequences with and without N was compared between the mutated and unmutated 

IgM and IgG repertoires. Figure 12A displays the difference of added N between the mutated 

IgM and IgG repertoires. 98.7% of sequences of the mutated IgG repertoire contain added N, 

whereas the IgM repertoire displays approximately 2% less. In the unmutated repertoire as 

shown in Figure 12B the amount of sequences with N is very similar between the IgM and 

IgG repertoires. Although every sequence of the unmutated IgG repertoire contains N 

nucleotides, at least 1% of sequences lack added N in the IgM repertoire.  

The extent of non-template encoded nucleotides is slightly higher in the hypermutated 

repertoires. 
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Figure 12: The frequency of sequences with non-germline encoded nucleotides in IgM and IgG 

repertoires. A: In the repertoires that contain somatic hypermutation, IgG sequences contain 

approximately two times more N than IgM sequences. B: Looking at sequences that do not contain SHM, 

the percentage of sequences with N was higher than in the mutated repertoires. All of the few non-

mutated IgG sequences contain N. Each symbol represents one individual. 

 

3.4 Complementarity determining region 3 length variation 

The complementarity determining region 3 (CDR3) of the heavy chain is one of three highly 

variable immunoglobulin regions, that displays the highest degree of variability, due to its 

genetic composition and is therefore a marker for diversity.  

Figure 13 depicts the CDR3 length distribution in the IgM (upper panel) and IgG (lower 

panel) transcriptome repertoires. In both repertoires the amino acid length ranged from five to 

32 residues. Differences can be seen in the frequency of the peaks. The length variation of the 

IgM repertoire follows a bell-shaped curve with a maximum peak of 14 amino acids for all 

subjects, whereas the graph of the IgG repertoire displays a more irregular (diverse) 

distribution in which the frequencies of the preferred CDR3 lengths vary among the 

individuals. In the IgG repertoire subject 1, 3 and 4 preferentially use one particular CDR3 

length, subject 3 the CDR3 length of 15 amino acids with a frequency of over 30% and 

subject 4 the length of 19 amino acids. The CDR3 length distribution for subject 2 reveals two 

major peaks for the CDR3 length of 10 and 18 amino acid residues with a frequency of ~16%. 

In contrast to the highest peaks of the IgM repertoire which reach a frequency of 15%, the 

highest peaks in the IgG repertoire reach frequencies over 30%. This may be due to the 
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exposure of a particular antigen that causes a specific B cell clone to proliferate as a response 

to that antigen.  

 

Figure 13: CDR3 amino acid length distribution in IgM and IgG transcriptome repertoires. The IgM 

repertoire displays a Gaussian-llike distribution, whereas the IgG repertoire looks skewed. 

 

3.5 Clonality in the IgG repertoire 

To further investigate if the high frequency of sequences with certain CDR3 length of the IgG 

repertoire derived from clonal expansion or from other potentially conserved genetic 

mechanisms, all CDR3 length duplicates were removed from the repertoire of each individual. 

Only one sequence per cluster of identical amino acid residues for a particular CDR3 length 

was kept to compose a unique pool of sequences of a certain CDR3 length. Clonally expanded 

B cell populations all expressing a specific B cell receptor (and therefore contain several 

sequences with the same CDR3 amino acid composition) indicate an elevated immune 

response due to antigen exposure. By removing all duplicative sequences possessing the same 
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VH-D-JH amino acid sequence for one CDR3 length, the frequency of the cluster may differ 

from the normal CDR3 length distribution (Figure 13). The removal of clonality was 

performed for each of the four individuals separately. 

The overall CDR3 length distribution of subject 1 (Figure 14A) displays a Gaussian-like 

shape except for the outlier peak at a CDR3 length of 20 amino acids. A total of 80% of 

multiple existing sequences within the junction area was removed to generate a unique 

sequence pool (Figure 14B). The junction region is defined based on IMGT as ranging from 

the Cysteine (position 104) encoded from the 3’ end of IGHV up to the first Tryptophan or 

Phenylalanin encoded from the IGHJ gene, spanning the whole CDR3 region (Figure A 1). 

After removing the duplicates with the same junction amino acid sequence, the distribution 

looks more Gaussian. There is also a shift of the maximum peak from a CDR3 length of 13 

amino acids (Figure 14A) to 15 amino acids (Figure 14B). 

 

Figure 14: Subject 1 - CDR3 amino acid length distribution considering all quality sequences (A) and all 

unique sequences which were obtained by removing duplicative sequences with the same junction amino 

acid composition (B). After removing all multiple sequence copies the original sequence number of 3450 

was greatly reduced to 666 sequences. The frequency of sequences in B is slightly different from graph A. 

The major peak shifted from a CDR3 length of 13 to 15, and the peak at a CDR3 length of 20 amino acids 

is still noticeable when comparing A and B. 

To further estimate the impact of clonality within the sequence clusters with the most used 

CDR3 amino acid lengths, total sequence numbers for that particular CDR3 length were 

subjected to the removal of doubled or multiple sequences using the same VH-D-JH amino 

acid residues. This study was done particularly for the CDR3 length of 13, 15 and 20 amino 

acids. For the CDR3 length of 13 amino acids a total of 430 sequences were observed. After 

removal of all duplicative sequences with the same IGH VDJ region, 268 unique sequences 

remain, resulting in 37.7% clonality. To explore whether the sequences among themselves 
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with this CDR3 length are genetically related, an amino acid alignment of the IGH VDJ 

region of the four most abundant sequence clusters was performed (Figure 15). The most used 

sequence cluster with 52 multiples (cluster 1) served as reference sequence for the alignment. 

Except for the variable and the junction region of sequence cluster 2, all other sequence 

clusters align very well. The match of the alignment of the IGH VDJ region of sequence 

cluster 1, 3 and 4 can be confirmed by observing the use of IGHV, D and J families, which 

are indeed identical. All the three clusters include the V3-7*01, D3-16*01 and J4*02 gene. 

The second sequence cluster differs from the rest, with only the IGHJ family in common.  

 

Figure 15: Subject 1: Amino acid alignment of the IGH VDJ antibody region of the four most abundant 

sequences with a CDR3 length of 13 amino acids. The in red designated region displays the junction 

region between the corresponding variable and joining gene segments, and comprises the diversity 

segment and junctional modifications, due to somatic recombination. The first sequence cluster was with 

12% the most used cluster for this CDR3 length and was therefore chosen as reference sequence. The 

lower panel of this figure presents the IGHV, D and J alleles of the underlying sequence clusters. 

These results suggest that sequence clusters 1, 3 and 4 are more closely related genetically 

compared to sequence cluster 2.  

To confirm this consideration a phylogenetic neighbor-joining tree was created (Figure 16). 

As expected, the sequence clusters 1, 3 and 4 group together at one branch of the tree, 

indicating their genetic proximity. This finding implies that memory B cells carrying an 

antigen binding site on their IgG B cell receptor with the CDR3 length of 13 amino acids 

might have developed mostly from the same ancestral cell. 

 

1(52) GGSLRLSCAA SGFTFSHSWM TWVRQTPGKR LEWVANIHPN GYETYYLDSV  50

2(30) LSLTCAISGD -VSSNVAA-N WLRQSPSRGL EWLGRTYYRS -WHYG-AT--

3(20) -D--KI---- ---------- ---------- ---------- ----------

4(13) -A-VKV---- ---------- ---------- ---------- ----------

1(52) KGRFTFSRDN PKNSVYLQMN SLRTEDTAVY YCVKDYVWGT TDKDYWGQGT  100

2(30) RS-ISI-P-T SQ-QFS--L- FVTP------ --AR-PEYSL ...-------

3(20) ---------- ---------- ---------- ---------- ----------

4(13) ---------- ---------- ---------- ---------- ----------

1(52) LVTVSS  106

2(30) ------

3(20) ------

4(13) ------

 

 1(52,  12%) V3-7*01  D3-16*01  J4*02  

 2(30, 6.9%) V6-1*01  D6-6*01   J4*02    

 3(20, 4.7%) V3-7*01  D3-16*01  J4*02  

 4(13, 3.0%) V3-7*01  D3-16*01  J4*02   

Junction
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Figure 16: Subject 1: Neighbor-joining tree of the four most abundant sequence clusters with a CDR3 

length of 13 amino acids. The sequence clusters 1, 3 and 4 grouped together at one end of the tree branch, 

indicating a closer phylogenetic proximity. The numbers in brackets indicate the number of sequences 

belonging to this cluster. 

Based on Figure 14B, the highest frequency of sequences after removal of duplicates from the 

junction region, shifted towards a CDR3 length of 15 amino acids. When looking into detail at 

the sequences clustering at this CDR3 length, 322 sequences could be found in the whole IgG 

expressing B cell repertoire of subject 1. With 230 unique sequences, the clonality in this case 

was about 28.6%, indicating that the majority of B cell receptors were unique. The IGH VDJ 

amino acid alignment and the neighbor-joining tree of the four most abundant sequence 

clusters with the CDR3 length of 15 amino acids are shown in Figure A 2 and Figure A 3. The 

most abundant sequence cluster only comprises 7% of all clusters within this CDR3 length, 

followed by the second most abundant cluster with 3.4%. Both sequence clusters are 

composed of different IGH VDJ families. All in all the CDR3 length of 15 amino acids 

contains many different sequences with distinct amino acid residues. 

Figure 14B also displays that the high peak at a CDR3 length of 20 amino acids falls out of 

the usual distribution pattern of the total sequences as well as that ones with a unique junction 

region (Figure 14 A and B). From 263 overall sequences with this CDR3 length, 170 were 

unique, displaying a clonality of 35.4%. Both the IGH VDJ amino acid alignment and the 

neighbor-joining tree are presented in Figure A 4and Figure A 5. 

Altogether the results of this clonality study were quite similar for the three dominant 

sequence clusters of subject 1. The clonality ranged from 28% to 37%, indicating that most of 

the sequence clusters that do not fit into the normal distribution of the CDR3 length 

distribution, do not derive from a clonal expansion of a certain specific B cell.  
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The CDR3 length distribution of subject 2 (Figure 17) displays an intermittent sequence 

frequency while having two predominant length of 10 and 18 amino acid residues. After 

removing the duplicates with the same junction amino acid sequence from the pool, the 

frequency of sequences with a CDR3 length of 18 amino acids remains similar, yet those with 

a CDR3 length of 10 amino acid is reduced (Figure 17B). Instead the frequency of CDR3 

lengths with 13 amino acids increased. Compared with the original sequence pool, the number 

of sequences after removing all junction duplicates was reduced to 85%, counting then 709 

sequences. 

 

Figure 17: Subject 2: CDR3 amino acid length distribution considering all quality sequences (A) and all 

unique sequences which were obtained by removing duplicate sequences with the same junction amino 

acid composition (B). After removing all multiple sequence copies the original sequence number of 5968 is 

greatly reduced to 907 sequences. The frequency of sequences in Figure B is slightly different from graph 

A. The major peak shifted from a CDR3 length of 10 to 13, while the peak at a CDR3 length of 18 amino 

acids remains almost similar. 

For the sequence cluster with the CDR3 length of 10 amino acids a total of 1012 sequences 

were attained. After removing the duplicates with the same IGH VDJ region, the sequence 

number decreased to 601, including a clonality of 41%.  

The amino acid alignment of the four most abundant sequence clusters with a CDR3 length of 

10 amino acids revealed that sequence cluster 1, 3 and 4 are rather conform (Figure 18). 

Especially cluster 1 and 4 have, except for a single amino acid, the same IGH VDJ region. 
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Figure 18: Subject 2: Amino acid alignment of the IGH VDJ antibody region of the four most abundant 

sequences with a CDR3 length of 10 amino acids. The in red designated region displays the junction 

region between the corresponding variable and joining gene segments, and comprises the diversity 

segment and junctional modifications, due to somatic recombination. The first sequence cluster was with 

9.1% the most used cluster for this CDR3 length and was therefore chosen as reference sequence. The 

lower panel of this figure presents the IGHV, D and J alleles of the underlying sequence clusters. 

Figure 18 also shows that both sequence cluster 1 and 4 have identical VH-D-JH usage. Cluster 

2 has the least correspondence to the reference sequence. This cluster also uses a different 

IGHV and IGHJ family. To estimate the genetic relationship, a neighbor-joining tree was 

created, displaying that indeed sequence cluster 1 and 4 are very closely related, as they stand 

on the same branch end of the phylogenetic tree (Figure 19). Sequence cluster 2 has the 

greatest genetic distance to all the other sequences. 

 

Figure 19: Subject 2: Neighbor-joining tree of the four most abundant sequence clusters with a CDR3 

length of 13 amino acids. The sequence clusters 1, 3 and 4 grouped together at one end of the tree branch, 

indicating a closer phylogenetic proximity. The numbers in brackets indicate the number of sequences 

belonging to this cluster. 

Based on Figure 17, the second most frequently occurring CDR3 length in the repertoire of 

subject 2, was 18 amino acids. This cluster contains 966 sequences, of which 686 are unique, 

thus having a clonality of 28.9%. The amino acid alignment of the four predominant sequence 

1(92) QTLSLTCAFS GDGFSSNSVA WNWIRQSPSR GLEWLGRTYY WSKWNNDYAV  50 

2(46) .GA-VKVSCK TS-YTFTASY LH-V--A-GQ -P--M--HIN PYSGVSKQTQ 

3(40) .--------- ------R--- ---------- ---------- --R------G 

4(26) E--------- ---------- ---------- ---------- ---------- 

 

1(92) SVKGRITISP DTSKNQFSLQ LKSVTPEDTA VYYCARGRNS GFDIWGQGTM  100 

2(46) KFQ--V-MTR ---ISTAF-E -TGL-SD--- ------FGYN LP-S-----L 

3(40) --R------- -PP------- ---------- -------N-- A--------A 

4(26) ---------- ---------- ---------- ---------- ---------- 

 

1(92) VTVSS  105 

2(46) ---F- 

3(40) ----- 

4(26) ----- 

Junction

 

 1 (92, 9.1%) V6-1*01  D3-16*01  J3*02  

 2 (46, 4.6%) V1-2*02  D5-24*01  J5*01   

 3 (40, 4.0%) V6-1*01  D5-24*01  J3*02   

 4 (26, 2.6%) V6-1*01  D3-16*01  J3*02   

 

 

 1(92)

 4(26)

 3(40)

 2(46)

88

0.1

 1(92)

 4(26)

 3(40)

 2(46)

88

0.1
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clusters with a CDR3 length of 18 reveals that cluster 1, 2 and 3 are matching together in most 

of their amino acids. (Figure A 6). These three clusters also harbor the same IGHV, IGHD 

and IGHJ family, which make them very similar to each other. Cluster 4 however does not 

align with the same similarity as clusters 1-3. Indeed cluster 4 contains different IGHV, IGHD 

and IGHJ families than the other sequence clusters. It can be assumed that sequence clusters 

1, 2 and 3 are closely related genetically. This assumption can be confirmed by reviewing the 

phylogenetic tree (Figure A 7). It is also important to notice that no sequence clusters were 

predominant, since even the reference sequence made up only 2.1% of all sequence clusters. 

The third most frequently used CDR3 length in the repertoire of subject 2 is 13 amino acids. 

There are 718 sequences present having this CDR3 length, of which 507 are unique. The 

clonality within this sequence pool is therefore 29.4%. The most frequent sequence cluster 

with this CDR3 length has 28 duplicates and was chosen as reference sequence in the IGH 

VDJ amino acid alignment (Figure A 8). Cluster 2 and 3 display some degree of agreement in 

the alignment, due to the use of the same IGHV family as cluster 1. The sequence cluster 4 

however possesses with IGHV1 a complete different family than the other 3 clusters and 

therefore does not show similarity in the alignment. The confirmation to this finding can be 

found by examining the neighbor-joining tree (Figure A 9). Especially cluster 2 and 3 display 

a short distance among each other.  

The CDR3 length distribution of subject 3 shows one main peak at a length of 15 amino acids, 

both in the sequence distribution with all sequences (Figure 20A) and within the distribution 

once duplicates were removed from the junction region (Figure 20B). Overall there are not 

many changes in the peak frequencies among both distributions although the shape of the 

graph with the unique junction sequences appears more Gaussian-like. The frequency of 

sequences with a CDR3 length of 15 amino acids decreased. The total number of 8534 

sequences in the whole repertoire decreased to 709 sequences after removing the duplicates 

with the same junction amino acid sequence.  
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Figure 20 Subject 3: CDR3 amino acid length distribution considering all quality sequences (A) and all 

unique sequences which were obtained by removing duplicate sequences with the same junction amino 

acid composition (B). After removing all multiple sequence copies the original sequence number of 8534 is 

greatly reduced to 709 sequences. The frequency of sequences in B is a little bit different from graph A.  

 

A closer look at the sequence cluster with a CDR3 length of 15 amino acids in the original 

repertoire reveals a total of 2654 sequences of which 1290 are unique in their IGH VDJ 

region. For this CDR3 length a clonality of 51.4% can be found. The most used sequence 

cluster with 17.1%, possessing a CDR3 length of 15 amino acids, was chosen as reference 

sequence for an amino acid alignment with the four most used sequence clusters (Figure 21). 

The alignment shows high similarity among sequence cluster 1, 2 and 4. All of them use the 

same VH-D-JH alleles. The clusters differ from sequence 1 only in three and four amino acid 

residues. Sequence cluster 3 possesses a different IGHD and IGHJ family. Consequently its 

sequence does not match with the reference sequence in the junction area. 
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Figure 21: Subject 3: Amino acid alignment of the IGH VDJ antibody region of the four most abundant 

sequences with a CDR3 length of 15 amino acids. The in red designated region displays the junction 

region between the corresponding variable and joining gene segments, and comprises the diversity 

segment and junctional modifications, due to somatic recombination. The first sequence cluster was with 

17.1% the most used cluster for this CDR3 length and was therefore chosen as reference sequence. The 

lower panel of this figure presents the IGHV, D and J alleles of the underlying sequence clusters. 

The genetic relationship was further evaluated by means of a phylogenetic tree (Figure 22) 

Sequence cluster 2 and 4 are assembled together on one end of the tree, sharing the same node 

and potentially descending from the same progenitor cells like sequences from cluster 1. 

Sequence cluster 3 with a different DH and JH family belongs to another branch of the tree. 

 

 

Figure 22: Subject 3: Neighbor-joining tree of the four most abundant sequence clusters with a CDR3 

length of 15 amino acids. The sequence clusters 2 and 4 group together at one end of the tree branch, 

indicating a close phylogenetic proximity to each other and cluster 1. The numbers in brackets indicate 

the number of sequences belonging to this cluster. 

 

 

1(453) GGSLRLSCVA SGFSFSNFAM SWVRQAPGKG LEWVSHLYGD GYGAQYADSG  50

2(217) -D--KI---- ---------- ---------- ---------- ----------

3(102) --------S- ---T--SYP- -----T---- -----SISES -DTTY----V

4(90) -A-VKV---- ---------- ---------- ---------- ----------

1(453) KGRFTISRDN SKNTVYLQMN SLRAEDTAQY YCAKMRGDPH YNYCMDVWGK  100

2(217) ---------- ---------- ---------- ---------- ----------

3(102) E--L------ F---LS---- G--V----L- ---RKGVVAA LHDAF-I--Q

4(90) ---------- ---------- ---------- ---------- ----------

1(453) GTTVTVSS  108

2(217) --------

3(102) --M-A---

4(90) --------

1 (453, 17.1%) V3-23*01  D4-23*01  J6*03

2 (217,  8.2%) V3-23*01  D4-23*01  J6*03

3 (102,  3.8%) V3-23*01  D2-15*01  J3*02

4 ( 90,  3.4%) V3-23*01  D4-23*01  J6*03

Junction

 2(217)

 4(90)

 1(453)

 3(102)

95

0.05
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The CDR3 length distribution of subject 4 displays a major frequency of sequences with the 

CDR3 length of 19 amino acid residues in the original distribution (Figure 23A). Other CDR3 

lengths do not occur at similar frequencies. After removing the duplicative sequences that 

contain the same IGH VDJ region, the distribution normalized, because the peak frequency of 

the CDR3 length with 19 amino acids is reduced (Figure 23B). In this distribution the 

frequency of sequences with the CDR3 length of 14 amino acids is greater than that of 19 

amino acids and therefore the maximum peak in this distribution. This is why these two 

sequence pools are further described in detail by means of their most existing sequence 

clusters. 

 

 

Figure 23: Subject 4: CDR3 amino acid length distribution considering all quality sequences (A) and all 

unique sequences which were obtained by removing duplicate sequences with the same junction amino 

acid composition (B). After removing all multiple sequence copies the original sequence number of 4470 is 

greatly reduced to 651 sequences. The frequency of sequences in B looks like a normalized cluster.  

Starting with the 1318 sequences containing a CDR3 length of 19 amino acids, a total of 574 

unique sequence clusters were found, displaying a clonality of 56.4%. For the four most 

abundant sequence clusters an amino acid alignment was performed. Sequence cluster 1 

consists of 501 sequences with the same IGH VDJ region and was chosen as reference 

sequence for the alignment (Figure 24). The alignment shows similarity between sequence 

cluster 1 and 4, as they contain the same IGH VDJ alleles. Sequence 2 does not match the 

reference sequence due to its different VH, DH and JH alleles. The largest portion of the 

sequence pool is made up with sequence cluster 1 (38.1%). Likely there was a strong clonal 

expansion of B cells specific for a certain antigen in this repertoire. 
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Figure 24: Subject 4: Amino acid alignment of the IGH VDJ antibody region of the four most abundant 

sequences with a CDR3 length of 19 amino acids. The in red designated region displays the junction 

region between the corresponding variable and joining gene segments, and comprises the diversity 

segment and junctional modifications, due to somatic recombination. The first sequence cluster was with 

38.1% the most used cluster for this CDR3 length sequence pool and was therefore chosen as reference 

sequence. The lower panel of this figure presents the IGHV, D and J alleles of the underlying sequence 

clusters. 

The phylogenetic tree from the four most abundant sequence clusters confirms the close 

genetic relationship of sequence cluster 1 and 4 (Figure 25). Due to the usage of the same 

IGHJ gene, sequence cluster 3 is also closer related to 1 and 4 than cluster 2. 

 

Figure 25: Subject 4: Neighbor-joining tree of the four most abundant sequence clusters with a CDR3 

length of 15 amino acids. The sequence clusters 1 and 4 group together at one end of the tree branch, 

indicating a close phylogenetic proximity to each other. The numbers in brackets indicate the number of 

sequences belonging to this cluster. 

The other sequence pool with a CDR3 length of 14 amino acids that possesses the greatest 

frequency of sequences after the removal of junctional duplicates (Figure 23) contains 451 

sequences. After the removal of duplicative sequences with identical IGH VDJ regions from 

1(501) TLSLTCTVSG GSISGYYWSW IRQPPGKGLE WIGYIYYRGT TNYNPSLKSR  50

2(46) ---------- ----SGTFF- AWIRQPP-KG LEWIGTIHYS GRTYYNPSLK

3(22) VPETLLHCLW WLHQWLLLEL DPAA------ ---------- ----------

4(13) ---------- ---------- ---------- ---------- ---------

1(501) VTMAIDTSKS QFSLRLNSVT AADTAVYYCA RDFQDTTSGR YYFYYMDVWG  100

2(46) SRLT-SVDT- KNHFS-SLTS VTAADTAVYY CARSPQYFSD GSG-ANAFDI

3(22) ---------- ---------- ---------- ---------- ----------

4(13) ---------- ---------- ---------- ---------- ----------

1(501) QGSTVTVSS  109

2(46) W-HGTV-TV

3(22) ---------

4(13) ---------

Junction

1(501,38.1%) V4-59*01  D1-1*01  J6*03  

2(46, 3.5%)  V4-39*02  D3-22*01 J3*02  

3(22, 1.7%)  V4-61*07  D4-17*01 J6*03  

4(13, 1.0%)  V4-59*01  D1-1*01  J6*03   

 1(501)

 4(13)

 3(22)

 2(46)

99

0.05
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the total CDR3 length pool, 331 sequence clusters remained and therefore a clonality of 

26.6%. Out of those none is represented over 6.4%, which indicates a highly diverse sequence 

pool. Looking at the amino acid alignment of the four most often occurring sequence clusters, 

one find cluster 1 and 2 to be matched very well (Figure A 10) Both clusters use the same 

IGH VDJ alleles. While cluster 3 matches with the reference sequences to some extent, the 

alignment of cluster 4 is quite poor. Sequences from cluster 4 contain different IGH VDJ 

families than cluster 1 and 2. 

The neighbor-joining tree of Figure A 11 displays a great distance between sequence cluster 4 

and the cluster 1, 2 and 3. Cluster 1 and 2 themselves are located on the same branch end and 

are considered to be very closely genetically related. 

Table 5 summarizes the results of this clonality study. 

Table 5: Predominantly used CDR3 lengths with their corresponding number of sequence clusters, unique 

sequences and clonality.  

Subject 
Predominant 
CDR3 length 

Nb. of sequences 
within cluster 

Nb. of 
unique seq. 

Clonality 
[%] 

 

13 430 268 37.7 

1 15 322 230 28.6 

 

20 263 170 35.7 

 

10 1012 601 41.0 

2 18 966 686 28.9 

 

13 718 507 29.4 

3 15 2654 1290 51.4 

4 19 1318 574 56.4 

 

14 451 331 26.6 
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3.6 Biodiversity in the IgM and IgG transcriptome repertoires 

Biodiversity is a key factor to estimate the effectiveness of the immune system works. A 

distinct biodiversity is associated with a greater ability to recognize unknown antigens and 

therefore increased protection. The extent of somatic hypermutations and CDRH3 clonality 

are two of several factors that contribute to biodiversity. 

To evaluate the extent of biodiversity in these IgM and IgG memory B cell repertoires, a 

rarefaction and Chao1 analysis was performed. Since the biodiversity is influenced by the 

number of input cells, it was weighted by the absolute number of input B cells. Rarefaction 

curves display the increase of biodiversity in the repertoires of the participating individuals 

along the number of analyzed sequences. Likewise, deeper slopes of the rarefaction curves 

indicate higher biodiversity than lower slopes. In this investigation, the curves of the IgG data 

show deeper slopes than the IgM curves. Consequently the IgG repertoire contains a higher 

level of biodiversity (Figure 26A). The Chao1 analysis reveals greater maximum estimated 

biodiversity in the IgG repertoire (Figure 26B). In addition, the maximum estimated 

biodiversity among individuals varies in the IgG repertoire. Whereas data points of the IgM 

repertoire are consistently clustered together, those of the IgG repertoire are more spread out. 

It can therefore be assumed that the IgG repertoire shows a greater individual variation in 

terms of biodiversity. 

 

 

Figure 26: Biodiversity investigation among IgM and IgG transcriptome repertoire. A: The biodiversity 

along the depth of sequences was evaluated using a rarefaction analysis. B: For the maximum estimated 

biodiversity a Chao1 investigation has been conducted. Numbers and symbols represent four subjects. 

Curves and symbols marked in red represent the IgM repertoire. Black curves and symbols correspond to 

the IgG repertoire. Both graphs show an overall greater biodiversity of the IgG repertoire. 
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4 Discussion 

The goal of this study was to investigate molecular differences between IgM and IgG 

transcriptome repertoires that contribute to the biodiversity of the B cell immunity. For this 

purpose a new strategy of using mRNA of total B cell populations for subsequent deep 

sequencing was applied. These B cells have not been sorted into different subtypes by using 

cell surface markers prior to the extraction of mRNA. The advantage of this method is that 

possible incorrect assignments to different B cell subtypes can be avoided. The 

immunoglobulin subtypes IgM and IgG were assigned based on their heavy chain constant 

region, which provides undoubted accuracy. Until now, the field of B cell development and 

diversity still contains a lot of aspects to discover and revise. 

Investigations on the assignments of different B cell clonotypes in past years have been 

shown that there is a great amount of B cell subtypes that cannot be distinguished by means of 

one cell surface marker. In contrast it has recently been shown that there are several distinct B 

cell populations using the same surface antigen. That makes it difficult to capture all memory 

cells, when analyzing immunoglobulin repertoires. Previous studies on assessing 

immunoglobulin repertoires used DNA from previously sorted B cell subclones. 

The cell surface marker CD27 for example has long been thought to identify only somatically 

hypermutated memory B cells. Although, more recent studies have shown that there is a 

population of B cells lacking CD27 expression and can still be referred to as memory B cells 

(Wei et al. 2007). The most precise marker to identify memory B cells is the analysis of 

somatic hypermutations, since they are imprinted in the rearranged IGH variable region 

genes.  

High-throughput sequencing has enabled the generation of almost 16,000 raw reads in this 

study and therefore gives the possibility to analyze a lot more sequences then conventional 

Sanger sequencing, which is essential given the fact that the immune system comprises about 

10
12

 different antibody specificities. 

4.1 Somatic hypermutations as marker for B cell development and biodiversity 

Somatic hypermutations are a means to distinguish memory from naïve B cells. The analysis 

of the IGHM repertoire revealed a percentage of 2.2% sequences without somatic 

hypermutation and approximately 95% of sequences that contain at least two or more (Figure 

6). This high number of sequences with somatic hypermutations might indicate a greater IgM 



 

 
39 

 

expression memory B cell population than previously thought. Although not significant the 

IgG transcriptome repertoire contains about 4% more sequences with somatic hypermutation 

than the IgM repertoire suggesting that indeed IgG expressing memory B cells are more 

diversified and originate from a later developmental stage. They have undergone SHM in a 

germinal center reaction, as well as class-switch recombination to gain new effector functions. 

Although the extent of somatically mutated sequences in the IgG transcriptome repertoire was 

greater than in the IgM repertoire that might not definitely indicate a greater pool of mutated 

IgG expressing memory B cells in the peripheral blood. According to Klein et al. activated B 

cells such as memory B cells contain a 7 times higher amount of mRNA compared to naïve B 

cells (Klein et al. 1998). Due to this fact, a disproportionally greater amount of mRNA of 

those cells could have contributed in generating the amplicon library. 

The analysis of the total extent of somatic hypermutations (Figure 7A) revealed that the IgG 

repertoire contains more sequences with both silent and nonsilent mutations compared to the 

IgM sequence repertoire. The relevant SHM that lead to a more diversity in the 

immunoglobulin repertoires are the nonsilent mutations, since they possibly alter the amino 

acid sequence. The more nonsilent mutations a sequence repertoire displays, the greater the 

BCR was shaped towards better antigen affinity. The detailed look at different IGH regions 

shows that the two transcriptome repertoires are quite different regarding the locations of the 

SHM (Figure 7B). The greatest extent of SHM in the IgM repertoire was found in the first 

framework region, whereas in the IgG repertoire most SHM are located in the CDR2. In the 

IgG repertoire most nonsilent SHM can be found in the CDR’s. The distribution of SHM in 

the IgM repertoire however reveals the greatest extent in FR1 and CDR1. Framework regions 

in general do not contribute as much as complementarity determining regions to antibody 

affinity and antigen binding capacity. However, nonsilent mutations in FR could alter the 

correlation of amino acid residues in the framework regions of the antibody molecule, so that 

the whole secondary and tertiary structure of the antibody could change and consequently 

enhance or impair the binding capacity. The framework regions of the IgM repertoire might 

be a target for SHM due to a higher transcription rate at the beginning of the antibody DNA 

sequence. It has been proven that SHM are targeted to regions with higher transcription rates 

(Odegard & Schatz 2006). My attempted explanation is, because IgM antibodies tend to form 

pentameric complexes in the body, mutations in the structure-giving regions could affect the 

three-dimensional protein structure.  
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Somatic hypermutations are not equally distributed along the IGH chain. There are mutational 

hotspots with a higher frequency of SHM. In this study especially FR1 of the IgM repertoire 

was affected by SHM, followed by mutations in the CDR1. This is true for both the silent and 

the nonsilent mutations. The distribution of SHM is significantly different from the IgG 

repertoire. IgG transcriptome repertoire displays the greatest extent of SHM in the CDR2 and 

CDR1 regions. Liberman .et al. found that CDR regions of switched memory B cell clones 

are subjected to a stronger selection process compared to the IgM positive memory B cells 

(Liberman et al. 2013). It was further suggested that IgM expressing B cells leave the 

germinal center reaction earlier than their class-switched counterparts, resulting in a generally 

lower extent of SHM (Seifert & Kuppers 2009). 

4.2 Characterization of combinatorial and junctional diversity 

To evaluate the genetic properties of the rearranged immunoglobulin DNA, the utilization 

frequencies of IGH VDJ families, DH reading frame as well as non-germline encoded 

nucleotides were determined.  

Figure 8 displays that the IGHV family utilization is consistent among the four analyzed 

individuals. In both IgM and IgG repertoires the VH3 family was used predominantly. The 

IgM repertoire shows a significantly higher frequency of VH3 family though. Whereas the 

individual VH family usage of the IgM repertoire is clustered, the usage is more spread out 

among individuals in the IgG repertoire. Overall the frequencies of IGHV families are similar 

among the IgM and the IgG repertoire.  

The same conclusion can be reached when observing the IGHD family usage (Figure 9). 

There are no significant differences when comparing the IgM with the IgG transcriptome 

repertoires. Yet, also in the case of IGHD families, the individual frequencies of the IgG 

repertoires are spread out, instead of clustered together as it is case in the IgM repertoires. The 

most frequently used DH family is DH3, followed by DH2. 

Utilization frequencies of the IGHJ families also displayed variation (Figure 10). The most 

predominantly occurring JH family is JH4 for both the IgM and the IgG repertoire, although 

with significantly different frequency. As already mentioned above there is some 

intraindividual variation in the IgG repertoire in contrast to the consistency of in the IgM 

repertoire. 

The reason for this observation might be that the IgM memory B cells give baseline immune 

protection in every individual with the same most abundant VH-D-JH combinations. The 
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characterization of the IGH VDJ family frequency is means to map the combinatorial 

diversity of a given repertoire. It has already been reported that the utilization frequency of 

the different IGH VDJ families and the combination of certain gene segments is highly biased 

(Volpe & Kepler 2008). The utilization frequencies seem to be genetically determined, since 

they are influenced by the variation in recombination signal sequences (Jackson et al. 2013) 

There are already investigations to study the frequency of IGH VDJ families, but most of 

them focused on the detection of malignancies, which makes them not suitable to investigate 

healthy repertoires (van Dongen et al. 2003). An even greater bias in the utilization 

frequencies is induced by the DH gene segments. Theoretically they can be used in 6 different 

reading frames and thus hold the possibility to alter the amino acid sequence, especially of the 

CDR3 region. Although there are potentially 6 reading frames (RF), three of them arise from 

an inverted DH gene segment and are rarely found in any healthy B cell repertoire (Benichou 

et al. 2013). DH segments can even occur in a double fusion, resulting in VH-(DD)-JH 

recombinations (Briney et al. 2012). It has been shown that the use of RF is biased. Studies in 

mice for example suggest the selection against RF containing a stop codon (Zemlin et al. 

2008). In contrast to other studies evaluating the DH reading frames, in this investigation the 

use of RF2 was preferred in both IgM and IgG repertoires (Figure 11). Studies in mice 

however have shown that mice forced to use RF2 developed fewer numbers of both immature 

and mature B cells in the spleen and bone marrow (Schelonka et al. 2008). The DH RF 

influences the amino acid content of the CDRH3 repertoire, since it represents the central part 

of the CDRH3 coding DNA. Until recently it was believed that the DH RF choice was 

strongly regulated by the underlying rearrangement process, but a more recent study claims 

the means of negative selection instead. There are two selection checkpoints suggested: one at 

the stage of early B cell development and one occurring in the periphery (Benichou et al. 

2013). The RF bias is dependent on the individual DH gene segment. Benichou et al. also 

report a very similar distribution of RF use in IgM and IgG memory B cell repertoires. As a 

matter of fact, the present investigation could not find any impact of SHM on the DH RF 

usage. The preferential RF in the unmutated sequences still account for RF2, although the 

sequence number was too small to be representative (data not shown).  

The junctional diversity was evaluated by observing the non-germline encoded nucleotides in 

the mutated and unmutated repertoires (Figure 12). In both sequence repertoires with and 

without SHM the IgG repertoire contains more N nucleotides than IgM repertoire. 

Interestingly, all sequences of the nonmutated IgG repertoire contain N nucleotides, whereas 
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there are approximately 1.3% of sequences without N in the mutated sequences. It seems that 

IgG expressing memory B cells are selected to leave the GC prior to acquisition of SHM 

because they are already sufficiently diversified and probably possess enough antigen affinity. 

The addition of N nucleotides is intrinsically biased due to the preference of TdT to 

incorporate G nucleotides (Jackson et al. 2007). 

 

4.3 The role of immunoglobulin heavy chain CDR3 region for biodiversity 

The heavy chain CDR3 region is the region located in the middle of the binding site, after the 

antibody molecule has assumed its final shape. It greatly makes contact with antigens and is 

therefore subjected to diversification along the B cell development. It is consequently an 

important characteristic to evaluate immunoglobulin repertoires. The CDRH3 region acquires 

the most diversity because its genetic formation involves three different gene segments. 

Another aspect that helps to create diversity as well as functional flexibility is the non-

germline encoded nucleotides that flank the DH gene segment (Jackson et al. 2013).  

It is already known that the CDR3 length distribution displays a Gaussian-like shape in non-

stimulated B cell populations (Miqueu et al. 2007). Here the IgM and IgG immunoglobulin 

repertoires from memory B cells were analyzed. Especially the length distribution of the IgM 

repertoire displays a Gaussian distribution with a predominantly used length of 14 amino 

acids (Figure 13). The frequencies are very consistent between the four individuals.  

In contrast the CDR3 length distribution of the IgG repertoire displays variation between 

individuals, which alters the Gaussian shape from polyclonal to oligoclonal. At least three of 

four individual’s repertoires prefer amino acid lengths outside the bell shape curve.  

The CDRH3 length and amino acid composition influences the shape and folding structure of 

its loop and the interacting loops of CDRH1 and CDRH2 (Davis et al. 1998). The differences 

between the repertoires of different individuals can be explained by the existence of clonal 

expansions of B cells with a specific BCR. Obviously there must have been a strong antigen 

that activated a particular B cell and thus enhanced its proliferation and the differentiation into 

IgG expression memory B cells. This event is clearly represented in the oligoclonal frequency 

peaks in the IgG repertoire. Every peak of the length distribution contains multiple distinct 

sequences, which can be summarized in multiple clusters. 
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4.4 Measurement of B cell activation by clonality in antibody sequences 

Since the IgG repertoire displayed some monoclonal peaks in the CDR3 length distribution, 

these peaks were subjected to further analysis. Since every peak is composed of several 

sequences with the same amino acid length, it is interesting to see if all of those are composed 

of the same amino acid sequence. It is believed that the predominantly occurring CDR3 

lengths and outlier indicate B cell activation and in response their clonal expansion (Miqueu 

et al. 2007). 

This study cannot confirm the idea that high length frequencies relate to a strong clonal 

expansion of a specific B cell clone. When observing the predominant CDR3 lengths of a 

given immunoglobulin B cell repertoire, they do not always show the highest amount of 

clonality. Yet they are composed of a highly diverse cluster of different sequences with the 

same CDR3 length, but variable amino acid composition. The most abundant sequence 

clusters do not automatically add to the majority of sequences belonging to one CDR3 length. 

This observation is independent of the position of the peak with respect to the length 

distribution pattern. Outliner peaks as well as predominantly occurring peaks within the 

Gaussian-like shape do not correlate with an increase in clonality per se. 

 

4.5 Factors contributing to biodiversity of the IgM and IgG repertoires 

There are several factors influencing the extent of diversity in a given memory B cell 

population. These factors were already described in detail in the introduction of this thesis. 

Since IgM is the first antibody type that is produced upon first encounter with an unknown 

antigen, it is believed to belong to a more primarily immune response that has not acquired 

full antigen affinity yet (Taylor et al. 2012). Consequently it can be assumed that the IgM
+
 

memory B cell compartment comprises less diversity in its BCR than IgG
+
 B cells. 

The rarefaction and Chao1 analysis provides the possibility to compare IgM and IgG 

biodiversity (Figure 26). The rarefaction curve estimates the diversity of the repertoires along 

with the depth of sequences. The higher the number of analyzed sequences of a given 

repertoire the more biodiversity can be catched. Rarefaction curves do not rise endlessly 

however. At a certain number of sequences there is no further increase in diversity possible, 

since the curve reaches the plateau phase. In this investigation all curves belonging to the IgM 

repertoires reached the plateau phase indicating that no more biodiversity can be expected 
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even when the input number of sequences would be greater. The curves of the IgG repertoires 

have deeper initial slopes and do not fully reach the plateau phase, confirm the hypothesis of a 

greater extent of biodiversity. This finding is also confirmed by the Chao1 analysis which 

estimates the maximum biodiversity. It also reveals more variation between subjects in the 

IgG repertoires, suggesting that IgG immunoglobulins are expressed to precisely respond to 

individual antigen exposure. Obviously different stages during B cell maturation add to the 

amount of biodiversity (Arnaout et al. 2011). The factor SHM that is shaping the BCR post 

antigen exposure seems to contribute to the very high extent to the biodiversity of a B cell 

population. 

In conclusion this study contributes to the molecular understanding of creating antibody 

diversity and presents an important baseline for further investigations in healthy and diseased 

individuals. 
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6 Abbreviations 

Ag  antigen 

bp  base pairs 

CD  cluster of differentiation 

CDR  complementarity determining region 

CLP  common lymphoid progenitor 

BCR  B cell receptor 

FR  framework region 

GC  germinal center 

H  heavy (chain) 

IGHV  immunoglobulin heavy chain variable region 

IGHD  immunoglobulin heavy chain diversity region 

IGHJ  immunoglobulin heavy chain juncional region 

IMGT  international ImMunoGeneTics information system 

N  non-germline encoded nucleotide 

PCR  polymerase chain reaction 

PBMC  peripheral blood mononuclear cells 

RAG  recombination activating gene  

RF  reading frame 

RT-PCR reverse-transcriptase PCR 

SHM  somatic hypermutation 
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9 Appendix 

 

Table A 1: Upstream primers for the second round PCR containing non-template specific adapter regions. The IGHV specific primer sequences are shown in green. All 

primers were purchased from Invitrogen. 

Primer name Sequence 5' -> 3' 

A-VH2 FR1 CGTATCGCCTCCCTCGCGCCATCAGGTCTGGTCCTACGCTGGTGAAACCC 

A-VH3 FR1 CGTATCGCCTCCCTCGCGCCATCAGCTGGGGGGTCCCTGAGACTCTCCTG 

A-VH4 FR1 CGTATCGCCTCCCTCGCGCCATCAGCTTCGGAGACCCTGTCCCTCACCTG 

A-VH5 FR1 CGTATCGCCTCCCTCGCGCCATCAGCGGGGACTCTCTGAAGATCTCCTGT 

A-VH6 FR1 CGTATCGCCTCCCTCGCGCCATCAGTCGCAGACCCTCTCACTCACCTGTG 

A-VH7/ VH1 FR1 CGTATCGCCTCCCTCGCGCCATCAGCTGGGGCCTCAGTGAAGGTCTCCTG 

 

Table A 2: Downstream primers with adaptor sequences for the amplification of the IGHM and IGHG region. The IGHC specific primer sequences are displayed in 

green. All primers were obtained from Invitrogen. 

Primer name Sequence 5' -> 3' 

TiB-MID1-Cµ2 CTATGCGCCTTGCCAGCCCGCTCAGACGAGTGCGTGGAATTCTCACAGGAGACG 

TiB-MID2- Cµ2 CTATGCGCCTTGCCAGCCCGCTCAGACGCTCGACAGGAATTCTCACAGGAGACG 

TiB-MID3- Cµ2 CTATGCGCCTTGCCAGCCCGCTCAGAGACGCACTCGGAATTCTCACAGGAGACG 

TiB-MID4- Cµ2 CTATGCGCCTTGCCAGCCCGCTCAGAGCACTGTAGGGAATTCTCACAGGAGACG 

TiB-MID5- Cγ1 CTATGCGCCTTGCCAGCCCGCTCAGATCAGACACGAGACCGATGGGACCTTGGTGGAAG 

TiB-MID6- Cγ1 CTATGCGCCTTGCCAGCCCGCTCAGATATCGCGAGAGACCGATGGGACCTTGGTGGAAG 

TiB-MID7- Cγ1 CTATGCGCCTTGCCAGCCCGCTCAGCGTGTCTCTAAGACCGATGGGACCTTGGTGGAAG 

TiB-MID8- Cγ1 CTATGCGCCTTGCCAGCCCGCTCAGCTCGCGTGTCAGACCGATGGGACCTTGGTGGAAG 
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Figure A 1: Example of a IMGT Junction Analysis result of two input sequences. The nucleotide sequence of the 3’V, the whole D, the 5’J region and potential 

palindromic and non-template encoded nucleotides are shown in the upper part. In the bottom panel the corresponding amino acid sequences in the correct reading 

frame are denoted. 
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Figure A 2: Subject 1: Amino acid alignment of the whole IGH VDJ region with a CDR3 amino acid 

length of 15. Due to the dominance with 22 sequences, cluster 1 was chosen as reference sequence in this 

alignment. Sequence cluster 1 and 4 align very exact, associating with the same IGHV and IGHJ genes. 

The bottom panel displays the IGH VDJ genes found for these clusters. The numbers in brackets indicate 

the number and percentage of sequences belonging to this cluster. 

 

 

 

Figure A 3: Subject 1: Neighbor-joining  tree of the four most abundant sequence clusters with a CDR3 

length of 15 amino acids. Sequence clusters 1 and 4 are genetically more closely related with each other 

than with cluster 2 and 3.  The numbers in brackets indicate the number of sequences belonging to this 

cluster. 

 

 

 

 

 

1(22) LTCAISGDSV STNTAAWSWI RQSPSRGLEW LGRTLYRSNK WHNEFVVSMR  50

2(11) GSLRL-CTAS GFTFGNFAMT WVRQTP-KGL EWLSTIFGGG FGTYSAD-V-

3(9) GSLRL-CAAS GFIFTSYAMS WVRQAP-KGL EWVSGINTGG IGTYYAD-VK

4(9) ---------- -S-L---N-- ---------- ----Y---QW F--DYAS-VK

1(22) SRININPDTS KNQLSLHLDS VTPEDTAVYY CARDMGSTSP HSLGFWGQGT  100

2(11) G-FT-SR-N- --T-Y-QMN- LRV----I-- -VKYN-MVFQ SYYMDV--K-

3(9) G-FT-SR-N- --T-Y-QIN- LGAA---I-- -VKHLSPGPN WTPFDY----

4(9) --LA----A- --HF--L-S- ---D------ ---ERDYGRS ADFD------

1(22) PVTVSS  106

2(11) -T----

3(9) ------

4(9) L-----

1(22, 6.9%) V6-1*01 J4*02  D1-26*01

2(11, 3.4%) V3-23*01 J6*03  D2-15*01

3 (9, 2.8%) V3-23*01 J4*02  D2-2*01

4 (9, 2.8%) V6-1*01 J4*02  D4-23*01

Junction

 1(22)

 4(9)

 2(11)

 3(9)

100

0.1
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Figure A 4.Subject 1: Amino acid alignment of the IGH VDJ region with a CDR3 length of 20 amino 

acids. The sequence cluster 1 consists of 21 sequences with the same IGH VDJ region and was therefore 

considered as reference sequence in this alignment. The numbers in brackets indicate the number and 

percentage of sequences belonging to this cluster. 

 

 

 

Figure A 5: Subject 1: Neighbor-joining tree of the four most abundant sequence clusters with a CDR3 

length of 20 amino acids. Sequence clusters 2 and 4 are genetically more closely related with each other 

than with cluster 2 and 3.  The numbers in brackets indicate the number of sequences belonging to this 

cluster. 

 

 

1(21) GGSLRLSCSA SGFTFGDHPM AWIRQTPQKG LEALITTSRN 40

2(13) --------A- -----S-YA- N-V--A-G-- --WVSSI-G-

3(11) -A-VKV--KT --YD-NKFAI S-V--A-GR- --WMGWINIY 

4(11) --------A- -----NSYA- H-V--A-G-- --WVAF--Y-

1(21) AESKHYIASV EGRFTISRDD FRNTVHLQMT SITPDDAGLY 80

2(13) GG-IYRAD-- K---IT---N S----Y---H -LRAE-TAV-

3(11) NSDIK-NQKF Q----MTT-T STS-AFMELA -LR---TAI-

4(11) GSE-YNAD-- K--------N SK--LY---N -LRVE-TAV-

1(21) FCARNKISPA TQLWLPYDTF DVWGKGTIVS VSS  113

2(13) Y---EGSKHS STWTVLPNY- -Y--Q--VIT ---

3(11) Y---DENWDF CVHNCGLGY- -S--Q--L-- ---

4(11) Y--KVVY-RS YLSDHY-YYM ----R--T-T ---

Junction

1(21, 7.9%) V3-49*01 D2-8*01  J3*01

2(13, 4.9%) V3-23*01 D6-13*01 J4*02 

3(11, 4.2%) V1-18*01 D3-3*01  J4*02

4(11, 4.2%) V3-30*03 D6-25*01 J6*03

 2(13)

 4(11)

 1(21)

 3(11)

66

0.1
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Figure A 6: Subject 2: Amino acid alignment of the IGH VDJ region with a CDR3 length of 18 amino 

acids. The sequence cluster 1 consists of 20 sequences with the same IGH VDJ region and was therefore 

considered as reference sequence cluster in this alignment. The numbers in brackets indicate the number 

and percentage of sequences belonging to this cluster. 

 

 

 

Figure A 7: Subject 2: Neighbor-joining tree of the four most abundant sequence clusters with a CDR3 

length of 18 amino acids. Sequence clusters 1 and 2 are genetically more closely related with each other 

than with cluster 3 and 4.  The numbers in brackets indicate the number of sequences belonging to this 

cluster. 

 

 

 

 

1(20) GSLRLSCVVS GFSFSNYAMS WVSQAPGKGL EWVSAISGSD TGTYYTDSVK  50

2(16) -------AA- --T-N----- --R-TQ---- ----TF--GS DT--TA---R

3(16) -------AA- --T-T----N --R----REM ----S-T-GG HN--HAE---

4(14) A-VKV--KA- -YT--F-Y-H --R----Q-- --MGM-NP-G GS-THAQKFQ

1(20) GRFTISRDNS KNTLYLHMNS LRAEDTAIYY CAKAPAGSCR GRSCYRLDFW  100

2(16) ---------- ------Q-T- --V------- ----TLPT-A -AL--NF-S-

3(16) ---------- ------Q--- -------V-- ---GRLET-S -VV--PF---

4(14) D-V-VT--T- TS-V-MELS- --S----V-- --LRGPYCSG -TCYDAF-I-

1(20) GQGTPVTVSS  110

2(16) ----L-----

3(16) ----L-S---

4(14) ----L-----

  

 1(20, 2.1%) V3-23*01  D2-15*01  J4*02   

 2(16, 1.7%) V3-23*01  D2-8*02   J4*01   

 3(16, 1.7%) V3-23*01  D2-21*02  J4*02  

 4(14, 1.5%) V1-46*01  D2-15*01  J3*02   

 

Junction

 1(20)

 2(16)

 3(16)

 4(14)

70

0.05
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Figure A 8: Subject 2: Amino acid alignment of the IGH VDJ region with a CDR3 length of 13 amino 

acids. The sequence cluster 1 consists of 28 sequences with the same IGH VDJ region and was therefore 

considered as reference sequence cluster in this alignment. The numbers in brackets indicate the number 

and percentage of sequences belonging to this cluster. While sequence clusters 2 and 3 have some amino 

acids in common with the reference sequence, cluster 4 displays a very distinct IGH VDJ amino acid 

composition  

 

 

 

Figure A 9: Subject 2: Neighbor-joining tree of the four most abundant sequence clusters with a CDR3 

length of 13 amino acids. Sequence clusters 2 and 3 are genetically more closely related with each other 

than with cluster 4.  The numbers in brackets indicate the number of sequences belonging to this cluster. 

 

 

 

 

 

1(28) SETLSLTCAV YGGSFSDYYW SWIRQPPGKS LEWIGEIDHS GSTSYNPSLQ  50

2(19) TLS-TC-VSG GSV-SGS--- T-V------G -----Y-HYT -A-N--RA-K

3(13) TLS-TC-VSG GSI-S-S--- G--------G --C--S-YY- -N-Y-----K

4(9) ASVKVSCK-S GYTFT-YDIN WVRQATGQGL EWMGWMNTD- -N-G-AQNF-

1(28) SRVTISVASS KSQLSLNLDS VTAADTAVYF CARVRVGCCD AYDLWGQGTV  100

2(19) ---A--ADT- EN-F--S-Y- ---------- -V-SVHYYYY YM-V--K--T

3(13) -------DT- -N-F--K-I- L--------Y ---LNS-PAW YF-Y-----L

4(9) G---MTRDT- I-TAY-E-S- LRSE-----Y -G--TSRPSW YF----R--L

1(28) VTVSS  105

2(19) I----

3(13) -----

4(9) -----

1(28, 3.9%) V4-34*01 D5-24*01 J3*01 

2(19, 2.7%) V4-61*01 D6-6*01  J6*03 

3(13, 1.8%) V4-39*01 D5-12*01 J4*02 

4( 9, 1.3%) V1- 8*01 D2-15*01 J2*01

Junction

 2(19)

 3(13)

 1(28)

 4(9)

73

0.1
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Figure A 10: Subject 4: Amino acid alignment of the IGH VDJ region with a CDR3 length of 14 amino 

acids. The sequence cluster 1 consists of 29 sequences with the same IGH VDJ region and was therefore 

considered as reference sequence cluster in this alignment. The numbers in brackets indicate the number 

and percentage of sequences belonging to this cluster. While sequence clusters 2 and 3 have some amino 

acids in common with the reference sequence, cluster 4 displays a very distinct IGH VDJ amino acid 

composition  

 

 

 

 

Figure A 11: Subject 4: Neighbor-joining tree of the four most abundant sequence clusters with a CDR3 

length of 14 amino acids. Sequence clusters 1 and 2 are genetically closely related with each other. 

Sequence cluster 4 does not share the same branch and is therefore showing a greater genetic distance. 

The numbers in brackets indicate the number of sequences belonging to this cluster. 

Junction

 1(29)

 2(13)

 3(13)

 4(9)

99

0.05


