
FPGA Implementation of IP Packet Header Parsing Hardware

Danijela Efnusheva, Aristotel Tentov, Ana Cholakoska and Marija Kalendar
 Computer Science and Engineering Department, Faculty of Electrical Engineering and Information Technologies,

Ss. Cyril and Methodius University, Skopje, Macedonia
{danijela, toto, acholak, marijaka}@feit.ukim.edu.mk

Keywords: FPGA, Header Parser, IP Packet Processing, Multi-gigabit Networks, Network Processor.

Abstract: The rapid expansion of Internet has caused enormous increase in number of users, servers, connections and
demands for new applications, services, and protocols in the modern multi-gigabit computer networks. The
technology advances have resulted with significant increase of network connection links capacities,
especially with the support for fiber-optic communications, while on the other hand the networking router's
hardware and software have experienced many difficulties to timely satisfy the novel imposed requirements
for high throughput, bandwidth and speed, and low delays. Considering that most network processors spend
a significant part of processor cycles to provide IP packet header field access by means of general-purpose
processing, in this paper we propose a specialized IP header parsing hardware that is intended to provide
much faster IP packet processing, by allowing direct access to non byte- or word-aligned fields found in
IPv4/IPv6 packet headers. The proposed IP packet header parser is designed as a specialized hardware logic
that is added to the memory where the IP packet headers are placed; and is described in VHDL and then
implemented in Virtex7 VC709 Field Programmable Gate Array (FPGA) board. The simulation timing
diagrams and FPGA synthesis (implementation) reports are discussed and analyzed in this paper.

1 INTRODUCTION

Internet as the most popular and most widely used
network is constantly growing with an extremely
large pace, (Ahmadi, 2006). This is due to the ever
increasing number of users, servers, connections and
new applications. In parallel, the speed of the
networking links grows constantly, especially with
the great expansion of the fiber-optic technology. As
a result of the increased network traffic, the
networking hardware remains as the bottleneck for
constructing high speed networks. Network
processors (NPs) have become the most popular
solution to this problem, (Wheeler, 2013). In general
they are defined as chip-programmable devices,
which are specially tailored to perform several
network processing operations, including: header
parsing, bit-field manipulation, pattern matching,
table look-ups, and data movement, (Lekkas, 2013).

NPs are usually implemented as application
specific instruction processors (ASIPs) that mainly
include many processing engines (PE), dedicated
hardware accelerators, network interfaces, adjusted
memory architectures, interconnection mechanisms

and provide support for various parallelization
techniques, (Shorfuzzaman, Eskicioglu, Graham,
2004). NPs might be used in different types of
network equipment such as routers, switches, IDS or
firewalls, (Giladi, 2008). Over the last few years
many vendors have developed their own NPs, which
resuled with many NP architectures existing on the
market. Moreover, many novel approaches, such as
the NetFPGA architecture, (Naous, Gibb, Bolouki,
McKeown, 2008), or software routers, (Petracca,
Birkea, Bianco, 2008), are constantly emerging.

The most popular NPs, which are used today,
include one or many parallel homo- or
heterogeneous processing cores. For instance, Intel's
IXP2800 processor, (Intel, 2005), includes 16
identical multi-threaded general-purpose RISC
processors organized as a pool of parallel
homogenous processing cores that can be easily
programmed with great flexibility towards ever-
changing services and protocols. Furthermore,
EZChip has introduced the first NP with 100 ARM
cache-coherent programmable processor cores,
(Doud, 2015), that is by far the largest 64-bit ARM
processor yet announced.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

33

The discussed NPs confirm that most of the
operations in NPs are performed by general-purpose
RISC-based processing cores as a cheaper but
slower solution, combined with custom-tailored
hardware that is more expensive but also more
energy-efficient and faster. If network packet
processing is analyzed on general-purpose
processing cores then it can be easily concluded that
a significant part of processor cycles will be spent on
packet header parsing, especially when the packet
header fields are non byte- or word-aligned. In such
case, some bit-wise logical and arithmetical
operations are needed in order to extract the value of
the appropriate field from the packet header.

Network processing usually begins by copying
the packets into a shared memory buffer that is
available for further processing by the processor.
This buffer may be upgraded with specialized
hardware to perform the field extraction operations
directly on its output, before forwarding them to the
processor. The basic idea of this approach is to
replace the bit-wise logical and arithmetic operations
by a special parsing logic that will extract the header
fields from the on-chip memory and provide them to
the processor. The result of using this header parsing
logic should be a single-cycle memory access to
these non byte- or word- aligned header fields.

The header parsing logic is simple to design,
provided that it will be specially adapted to work
with IPv4/IPv6 header formats. Actually, the
proposed header parsing hardware will be used for
reading a single IPv4/IPv6 header field from the
memory, or writing to a single IPv4/IPv6 header
field into the memory. If this logic is manufactured
as an ASIC it cannot be reused for other header
formats, so in this paper we investigate the
possibilities to utilize a reconfigurable hardware
platform like Virtex7 VC709 FPGA, (Xilinx, 2016).
In fact, FPGA technology is very suitable for use,
providing a compromise between performance, price
and re-progrmability, (Cardoso, Hubner, 2011).

The rest of this paper is organized as follows:
Section II gives an overview of different networking
hardware and software solutions intended to speed
up network processing and also discusses several
aproaches used for simplifing packet header parsing.
Sections III describes the proposed IP header parsing
logic and explains its ability to allow single-cycle
memory access to non byte- or word- aligned packet
header fields. Section IV presents simulations and
synthesis results from the FPGA implementation of
the IP header parsing hardware model in VHDL.
Section V concludes the paper, outlining the benefits
of the proposed IP header parsing module.

2 STATE OF THE ART

Each network device that exists in the computer
networks examines fields in the packet headers in
order to decide what to do with each packet. As a
result, the process of identifying and extracting
fields in a packet header is subject to a vast amount
of research, (Gibb, Varghese, Horowitz, McKeown,
2013). With the ever increasing speed of network
links, the research is mostly focused on hardware
acceleration for achieving suitable processing
speeds, (2013). This is mainly done by
combining application-specific coprocessors with
general-purpose multiprocessor systems, or
reconfigurable FPGA platforms.

The basic function of each network device is to
process the ingress data flow accepted by the
physical interface, and then forward the packets to
an outbound port, after the processing is finished. In
order to achieve this, network devices are usually
designed as a composition of four functional blocks:
physical interface, data plane, control plane and
switching interface, (Lekkas, 2013). Generally NPs
are used to perform fast packet processing in the
data plane. On the other hand, the slow packet
processing in the control plane (configuration and
management, execution of routing protocols) is
mostly handed by general purpose processor.

NP operation begins with the receipt of an input
stream of data packets. After that, usually the IP
header of the received packets is being processed, by
analyzing, parsing and modifying its content,
(Giladi, 2008). NPs might include some specialized
hardware units to perform classification of packets,
lookup and pattern matching, queue management
and traffic control. After the completion of all the
required operations, the network processing is
finished and the packet is sent out through the
switching fabric to the appropriate outbound port.

According to (Hauger, Wild, Mutter, 2009)
simpler packet processing and higher speeds can be
achieved if the most time–consuming network
processing operations are simplified, and some
appropriate choices of the routing protocol
functionalities are made. As a result, many different
approaches have been proposed, including label
concept and several other algorithms for faster table
lookup given by (Gupta, Lin, McKeown, 1998) and
(Eatherton, Varghese, Dittia, 2004).

In general, NP software is getting closer to the
NP hardware, such as in (
2014) where part of the packet processing tasks such
as classification or security are offloaded to
application-specific coprocessors that are used and

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

34

Figure 1: Reading a single IPv4/IPv6 header field with the IP header parsing hardware unit.

controlled by the software. In this way, the
coprocessor hardware handles the heavy part of the
packet processing, at the same time leaving more
specific network traffic analyses to the general-
purpose processor. As follows, a flexible network
processing system with high throughput is built.
Some researchers also try to unify the view on the
various network hardware systems, as well as their
offloading coprocessors, by developing a common
abstraction layer for network software development,
(Bolla, Bruschi, Lombardo, Podda, 2014).

Other proposals make big use of FPGA
technology for packet parsing, as it is very suitable
for implementation of pipeline architectures and thus
ideal for achieving high-speed network stream
processing, (Puš, Kekely, . Actually,
the reconfigurable FPGA boards can be used to
design flexible multiprocessing systems that adjust
themselves to the current packet traffic protocols and
characteristics. This approach is given by (Attig,
Brebner, 2011), who propose use of PP as a simple
high-level language for describing packet parsing
algorithms in an implementation-independent
manner. Similarly, in (Brebner, Jiang, 2014), a
special descriptive language PX is used to describe
the kind of network processing that is needed in a
system, and then a special tool generates the whole
multiprocessor system as an RTL description.

3 DESIGN OF IP PACKET
HEADER PARSING UNIT

The general idea of this paper is to propose an IP
packet header parsing hardware module that will
allow single cycle access (read or write) to various
IP header fields. As a result, the proposed IP header
parsing unit would speed up packet processing,
allowing same access time for a packet header field
as the access to any random memory word, even
when it is not byte- or word- aligned. This approach
would have huge impact on network processing
hardware and would provide increased overall
network throughput in computer networks at all.

In order to achieve single-cycle access, the
proposed IP packet header parsing unit will use part
of the memory address space to directly address
various IP packet header fields. This technique is
known as memory aliasing, and allows each IP
header field to be accessed with a separate memory
address value. When such address is input in the IP
header parsing module it selects the corresponding
word from memory, and afterwards depending on
the field, the word is processed in order to extract it.
This may include shifting the word and/or
modification of its bits. A scheme of the proposed
logic, used to read out a single IP header filed, is
presented in Fig.1.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

35

IPv4 Header

IPv4 Header @0000100000001000
version 4
headerLength 4
typeofService 8
firstwordfirstHalf 16 //used for IP checksum
totalLength 16
identifier 16
flags 3
fragmentOffset 13
secondwordsecondHalf 16 // used for IP checksum
timetoLive 8
protocol 8
thirdwordfirstHalf 16 //used for IP checksum
headerChecksum 16

IPv6 Header

IPv6 Header @0000110000000000
version 4
trafficClass 8
flowLabel 20
payloadLength 16
nextHeader 8
hopLimit 8

Figure 2: Description of IPv4 and IPv6 headers.

The IP header parsing logic is designed so that it
assumes that a packet with IPv4 or IPv6 header
format is located in a fixed area of the memory. The
description of the format of IPv4 or IPv6 packet
headers is shown in Fig. 2. In the given IP header
descriptions the first line defines the name of the IP
header and its location in memory, while each
following line contains the definition of a single

field. For each IP header field, the name and its size
in bits are specified. The IP header fields are defined
in the order that they appear in the IP header.

The IP packet header starting address, which is
specified in the IP header description, is placed in a
specific base address unit that is part of the IP
header parsing logic. Besides that, the input memory
address for the specific IP header field is translated
into a field offset by the lookup table (LUT), as
given in Table 1. The field offset represents a word-
aligned offset to the starting IP header packet
address, which points to the location where the given
IP packet header field is placed. This means that if
the length of a specific field is smaller than the
memory word length, then the closest word-aligned
offset is selected and put in the LUT table.

The address of the memory word that holds the
required IP packet header field is calculated by
adding the field offset to the IP packet header
starting address. Once the word is selected, it is read

Table 1: Look up table in IP header parsing logic.

MemoryAddress for
IP header field

Word-aligned
IP header Field Offset

0000h (IPv4 version) 0000h (first word)

0001h (IPv4 headerLength) 0000h (first word)

0002h (IPv4 typeofService) 0000h (first word)

0003h (IPv4 firstwordfirstHalf) 0000h (first word)

0004h (IPv4 totalLength) 0000h (first word)

0005h (IPv4 identifier) 0001h (second word)

0006h (IPv4 flags) 0001h (second word)

0007h (IPv4 fragmentOffset) 0001h (second word)

0008h (IPv4 secondwordsecondHalf) 0001h (second word)

0009h (IPv4 timetoLive) 0002h (third word)

000Ah (IPv4 protocol) 0002h (third word)

000Bh (IPv4 thirdwordfirstHalf) 0002h (third word)

000Ch (IPv4 headerChecksum) 0002h (third word)

000Dh (IPv6 version) 0000h (first word)

000Eh (IPv6 trafficClass) 0000h (first word)

000Fh (IPv6 flowLabel) 0000h (first word)

0010h (IPv6 payloadLength) 0001h (second word)

0011h (IPv6 nextHeader) 0001h (second word)

0012h (IPv6 hopLimit) 0001h (second word)

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

36

Figure 3: Writing to a single IPv4/IPv6 header field with the IP header parsing hardware unit.

from the memory and then forwarded to the field
processing units. Each field processing is separated
into a field logic (FL) block that is activated by the
output enable (OE) signal connected to a decoder
output. The decoder is also driven by part of the
input memory address, causing only one of the FL
units to be selected at a given moment. Each FL
block is responsible to perform some bit-wise and/or
shifting operations in order to extract and then zero-
extend the appropriate IP header field. In the case
when an IP header field is word-aligned, then its FL
block is empty and the word is directly forwarded
from memory to the module output.

The presented IP header parsing module form
Fig. 1 shows the hardware that is needed to read out
a single IP header field from memory. The same
concept is used for writing directly to the IP header
field in memory, as can be seen in Fig. 3. The both
modules select the address of the memory word that
holds the required IP packet header field in the same
way. The only difference between them is that the
packet header word-aligned data read from memory

and the IP packet header field that should be written
to the memory are applied to each field logic block,
when writing is performed. In this way, the decoder
that is driven by part of the input memory address
activates only one of the FL units and then the
selected FL block sets the input IP packet header
field to the appropriate position in the input packet
header word-aligned data. After that the whole word,
including the appropriate IP header field is written to
the generated address into the memory.

The given approach of direct access to IP header
fields obviously brings much faster packet
processing in comparison with the bare general-
purpose processing, used by nearly all network
processors. For example, a comparison between
RISC-based general-purpose MIPS processor,
(Patterson, Hennessy, 2014) with and without IP
header parsing logic has shown that the number of
instructions needed to load all fields from IPv4/IPv6
header is decreased by 40%/45% when IP header
parsing unit is used.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

37

Figure 4: Schematic of IP header parsing logic used for direct access to IP header fields. The module is described in
VHDL and then generated in Xilinx VIVADO Design Suite.

Figure 5: Schematic of IP header parsing logic used for writing to IP header fields. The module is described in VHDL
and then generated in Xilinx VIVADO Design Suite.

4 FPGA IMPLEMENTATION OF
IP PACKET HEADER PARSING
UNIT

The proposed IP header parsing logic was described
in VHDL, by means of Xilinx VIVADO Design
Suite tool. This software environment includes a
simulator for performing functional analysis of
VHDL models, and several other tools for hardware
synthesis and FPGA implementation. The FPGA
technology is utterly suitable for research purposes,
due to its advantage in terms of speed, cost,
flexibility and ease of re-programmability, (Cardoso,
Hubner, 2011). Therefore, for the FPGA
implementation of the proposed IP header parsing
logic, we make use of Virtex7 VC709 evaluation
platform, (Xilinx, 2016).

The VHDL model of the proposed IP header
parsing logic used for reading IP header fields is a
module that includes three sub blocks: Field/Data
address memory generator, on-chip memory and
Field/Data Selector. This top module receives a

memory address for specific IP header field and an
IP packet header starting address as an input, and
produces an IP packet header field or a word-aligned
data as an output. This unit is optimized only to
extract fields from IPv4 and IPv6 headers, but it can
be easily extended and reconfigured to work with
other packet header formats. This extension would
introduce some modifications into the look up table
and would require definition of novel field logic
blocks in the IP header parsing logic.

The schematic of the IP header parsing logic
used for direct access to IP header fields that has
been generated in Xilinx VIVADO Design Suite is
shown in Fig. 4. In addition to that, Fig. 5 presents
the schematic of IP header parsing logic that is used
for writing to IP header fields. This schematic has
been generated in Xilinx VIVADO Design Suite and
as shown in Fig. 5 is composed of RAM memory
and a ShiftBackComputeDataAndAddress module
that consists of memory address generator and data
field selector, which are used to generate the write
address and the data that should be written into the
RAM memory.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

38

Figure 6: Simulation of direct access to IP header fields in VIVADO simulator.

a)

b)

Figure 7(a and b): Implementation of IP header parsing logic in Virtex 7 VC709 FPGA board.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

39

Fig. 6 presents simulation results of the IP header
parsing top module (which includes modules for
read or write to IP header fields), while performing
extraction of several fields (version, header length
and type of service) from an IPv4 packet header. For
the given simulation scenario, it is considered that
the memory is already filled with several IP packets,
whose IP headers are later parsed and inspected. The
waveform signal given in Fig. 6 verifies that the
proposed IP header parsing logic works properly.

Once the functional simulation is finished, FPGA
synthesis and implementation of the proposed IP
header parsing module are performed. The synthesis
results show that the IP header parsing logic can be
implemented in Virtex7 VC709 evaluation platform,
by utilizing 0.01% of the slice registers and 0.35%
of the slice LUT resources, which is less than 1% of
the occupied FPGA slice resources. As a result of
the low FPGA resource's utilization, the initial IP
header parsing logic design can be further extended
(for other packet header formats) and then
implemented in the same Virtex 7 VC 709 FPGA
board. According to that, the use of FPGA
technology makes the proposed IP header parsing
hardware very flexible and also cheap for
implementation.

Fig. 7 presents the FPGA implementation of the
proposed IP header parsing logic. For that purpose
we have created a constraint file which makes use of
the input Switch Pins and output LEDs of the Virtex
7 VC 709 FPGA board. Therefore, we have used the
Switch Pins to set the specific memory address of
the IP header field that should be parsed. Once the
IP header field has been selected, the output LEDs
light were showing which FL block was activated,
during the appropriate IP header field extraction. In
this way we were able to test the proposed IP header
parsing module in real hardware (FPGA prototype).

5 CONCLUSIONS

This paper proposes an IP header parsing hardware
module that allows single- cycle memory access to
non byte- or word- aligned fields in IPv4 and IPv6
packet header formats. This approach accelerates the
packet processing in both general-purpose and
application-specific processor architectures, as IP
header field access is a very frequent operation in
network processing. Actually, it was shown that a
MIPS processor that is extended with IP header
parsing logic achieves 40/45% faster header parsing
of IPv4/IPv6 packets, in comparison with a bare
MIPS processor.

The main focus of this paper is the FPGA
implementation of the proposed IP header parsing
logic. Considering that the implemented IP header
parsing logic utilizes less than 1% of the occupied
FPGA slice resources, future work would include
comparison of hardware complexities for various
header formats and justification of the additional
hardware over the performance improvement. It is
obvious that these modifications would require
extensions of the look up table and definition of
novel field logic blocks in the existing IP header
parsing logic. Having this possibility to generate
parsing modules for specific packet headers, and
reconfigure the system to start using them, whenever
there is a need for a new networking protocol, is
very attractive. This approach makes use of FPGA
re-configurability, which has proven to be an ideal
solution for achieving reasonable speed at low price.

REFERENCES

Ahmadi, M., Wong, S., 2006. Network processors:
challenges and trends. In 17th Annual Workshop on
Circuits, Systems and Signal Processing.

Wheeler, B., 2013. A new era of network processing.
LinleyGroup Bob Wheeler's White paper.

Lekkas, P. C., 2013. Network Processors: Architectures,
Protocols and Platforms, McGraw-Hill Professional.

Shorfuzzaman, M., Eskicioglu, R., Graham, P., 2004.
Architectures for network processors: key features,
evaluation, and trends, Communications in
Computing, pp.141-146.

Giladi, R., 2008. Network Processors - Architecture,
Programming and Implementation, Ben-Gurion
University of the Negev and EZchip Technologies
Ltd.

Naous, J., Gibb, G., Bolouki, S., McKeown, N., 2008.
NetFPGA: reusable router architecture for
experimental research, in Sigcomm Presto Workshop.

Petracca, M., Birkea, R., Bianco, A., 2008. HERO: High
speed enhanced routing operation in software routers
NICs. in IEEE Telecommunication Networking
Workshop on QoS in Multiservice IP Networks.

Intel, 2005. Intel® IXP2800 and IXP2850 network
processors, Product Brief.

Doud, B., 2015. Accelerating the data plane with the Tile-
mx manycore processor, in Linley Data Center
Conference.

Xilinx, 2016. VC709 Evaluation Board for the Virtex-7
FPGA. User guide.

Cardoso, J. M. P., Hubner, M., 2011. Reconfigurable
Computing: From FPGAs to Hardware/Software
Codesign, Springer-Verlag.

Gibb, G., Varghese, G., Horowitz, M., McKeown, N.,
2013. Design principles for packet parsers. In

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

40

ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, pp. 13–24.

 J., 2013. Hardware acceleration in computer
networks. In 16th International Symposium on Design
and Diagnostics of Electronic Circuits Systems.

Hauger, S., Wild, T., Mutter, A., 2009. Packet processing
at 100 Gbps and beyond—challenges and
perspectives. In 15th International Conference on
High Performance Switching and Routing.

Gupta, P., Lin, S., McKeown, N., 1998. Routing lookups
in hardware at memory access speeds. In IEEE
Infocom’98, pp. 1240–1247.

Eatherton, W., Varghese, G., Dittia, Z., 2004. Tree bitmap:
hardware/software IP lookups with incremental
updates. In Sigcomm Computer Communication
Review, vol. 34, no. 2.

Kekely, L., Puš, V., J., 2014. Software Defined
Monitoring of application protocols. In IEEE
Conference on Computer Communications, pp. 1725–
1733.

Bolla, R., Bruschi, R., Lombardo, C., Podda, F., 2014.
OpenFlow in the Small: A Flexible and Efficient
Network Acceleration Framework for Multi-Core
System. In IEEE Transactions on Network and Service
Management, pp. 390-404.

Puš, V., Kekely, L., J., 2014. Design
methodology of configurable high performance packet
parser for FPGA. In 17th International Symposium on
Design and Diagnostics of Electronic Circuits
Systems, pp. 189–194.

Attig, M., Brebner, G., 2011. 400 Gb/s Programmable
Packet Parsing on a Single FPGA. In Seventh
ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, pp. 12-23.

Brebner, G., Jiang, W., 2014. High-Speed Packet
Processing using Reconfigurable Computing. In IEEE
Micro, vol. 34, no. 1, pp. 8– 18.

Patterson, D., A., Hennessy, J., L., 2014. Computer
organization and design: the hardware/software
interface, Elsevier. 5th ed.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

41

