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Abstract: This paper describes in detail the estimation algorithm of upper bound prediction of the time acquisition task. 
We use the specific hardware from ARM Cortex-A series and empirical approach of time values retrieval 
from the timer counter. The robust Measurement-Based Probabilistic Timing Analysis (MBPTA) method 
based on the Extreme Value Theory (EVT) has been used for experimental verification of the algorithm. The 
MBPTA method allows deriving a reliable and safe worst-case execution time (WCET) estimation based on 
the limited number of measurements on the target platform. However, it requires an appropriate complete set 
of statistical tests for verifying EVT applicability. In ongoing work, we intend to outline challenges behind 
EVT assumptions and parameter tuning for timing analysis, and provide more coherent approach for safe 
probabilistic WCET estimations in order to increase the confidence that timing constraints will be met. 

1 INTRODUCTION 

The timing validation process for real-time systems 
requires guarantees that the probability of the system 
failing to meet its timing constraints is below an 
acceptable threshold. Here the metric, which is used 
to prove that a task will complete its function in time, 
called the Worst Case Execution Times (WCET). 
However, due to diverse features of modern CPU, 
usually cycle-true simulation becomes infeasible and 
consequently imposes correspondent limitations to 
the aimed timing analysis. One possibility to get 
around this problem is the development of statistical 
methods, which could allow predicting the 
probability distribution of the circuit delay.  

In general, the goal of all timing analysis is 
providing a safe upper bound of execution time for a 
particular task (Wilhelm, 2007). Nowadays, a number 
of different approaches pursued that goal, primary 
such as deterministic (DTA) and probabilistic 
approaches (PTA). The difference is mainly that the 
deterministic method produces a unique WCET 
estimate, while probabilistic - multiple WCET 
estimates with their respective probabilities. Each 
approach has its static (SDTA, SPTA) and 
measurement-based (MBDTA, MBPTA) variants. 
Classical static timing analysis (STA) operates on 
deterministic processor architectures and provide safe 

WCET estimates as they are proven to be the worst 
ones (Abella, 2014). STA uses the exact modeling of 
the system or a simulator, which is in practice for 
modern complex real-time systems a quite 
challenging task. In contrary to that, the 
measurement-based method provides an estimation 
based on the derived maximal and minimal observed 
execution times or their distributions. Therefore, 
WCET estimates retrieved by static methods adds a 
possible extra margin, whereas WCET estimates 
retrieved by measurement-based methods is simply 
the maximum value observed or assumed during 
measurements: WCETmeasured <= WCETexact <= 
WCETstatic. Moreover, with a probabilistic hardware 
architecture and measurement-based approaches, it is 
possible to guarantee an accurate predicted WCET 
(probabilistic WCET or pWCET), what is taken upon 
itself by MBPTA approach. 

For characterizing the worst-case, the MBPTA 
(Measurement-Based Timing Analyses) approach 
aims at modeling extreme execution times values, 
relying on measurements and the application of the 
Extreme Value Theory (EVT). The EVT in its turn 
deals with the extreme deviations from the median of 
probability distributions. It estimates the tails of 
distributions, where the worst case should lie. 
However, hardware systemic effects in real-time 
systems make EVT applicability difficult with regard 
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to its required theoretical hypotheses. Initially, in this 
paper, we focus on a particular hardware presented on 
the Atmel SAMA5D4 board, which is based on ARM 
Cortex-A series processors. It employs a cache of 
random-replacement policy, where the failure 
probability of 10-9 is facilitated (Altmeyer, 2015). 

In our resent work (Fedotova, 2016), we have 
already outlined the main consequences of EVT 
assumptions and their correct interpretation. In the 
ongoing paper, we expand this research, in order to 
overcome rest difficulties with EVT checking all 
hypotheses for generalizing its applicability. 
Therefore, based on the previous related work 
(Abella, 2014), ( ), (Guet, 2016) and 
as well as on our empirical experiments, we suggest a 
consequent and systematic step-by-step method, in 
order to remove the existing ambiguities in applying 
EVT for providing probabilistic WCET estimations. 
Furthermore, we consider only the certain task of time 
acquisition on SoCs, unlike other works, where 
mostly known benchmark tools have been applied. 

The rest of the paper is organized as follows: In 
Section 2 the related work on solving the WCET 
calculation problem is described. Section 3 introduces 
the problem of the probabilistic modeling and focuses 
on the theoretical aspects of the EVT applicability. In 
this section the main steps of the algorithm proposed 
in this paper is described as well. Section 4 describes 
the experiments and their setup on the used ARM 
Cortex A5 platform. Section 5, 6, 7 and 8 provide 
subsequent details and the requirements for EVT 
applicability. Particularly, the proof of fitting the 
target distribution, estimation parameters and 
obtaining WCET estimators. Finally, Section 9 
concludes this work. 

2 RELATED WORK 

The first complete overview of modern methods for 
timing analysis of computer task has been done by R. 
Wilheim et al. (Wilheim, 2007). In this work, the 
classes of existing methods have been firstly 
presented. Particularly, the investigation of the 
correctness and precision of SPTA for systems that 
use a cache with an evict-on-miss random 
replacement policy have been described.  

F. Cazorla et al. in (Cazorla, 2013) establish 
principles and requirements to EVT with the MBPTA 
method to derive WCET estimates. Thereby they 
addresses WCET problem by introducing 
randomization into the timing behavior of the system 
hardware and software. The work (Abella, 2014) 
presents comprehensive comparison among timing 
analysis techniques SDTA, SPTA and MBPTA. 

These and others works by these authors have been 
performed within the PROARTIS and PROXIMA 
projects for artificial random systems (random 
replacement policies in cache memories). 

The work by F. Guet et al. (Guet, 2016) proposes a 
DIAGnostic tool, which applies the MBPTA method 
without human intervention. Depending on the 
certain theoretical hypotheses of the EVT, the logical 
work flow of the framework derives its pWCET 
estimate of traces of execution times. Also 
considering the DIAGnostic tool, K. Berezovskyi et 
al. investigate both methods of EVT “Block Maxima” 
in (Berezovskyi, 2014) and “Peak over Threshold” in 
(Berezovskyi, 2016) for Graphical Processor Units 
(GPUs). These works outline the particular features 
of each method. The main results have showed that 
hardware time-randomization is not essential for the 
applicability of EVT and can be applied even to some 
non-time-randomized systems as GPUs. 

A statistical approach based on EVT theory has 
also been used for optimal performance analysis. 
Radojkov . in ( ). Authors 
have presented an approach for finding and predicting 
the performance of the thread assignment in multi-
core processors, using statistical inference. 

However, aforementioned approaches give little 
information about the sequences of checking 
statistical hypotheses and making safe decision on 
their basis. In this work, adopting probabilistic 
analysis techniques, we intend to develop a more 
coherent analysis of the timing behavior on embedded 
platforms (in particular, considering the certain task 
of time acquisition).  

3 THE PROBABILISTIC 
MODELING OF EXECUTION 
TIME 

The measurement-based methods produce estimates 
(for parameters of some distributions) by executing 
the given task on the given hardware or on a simulator 
and measuring the execution time of the task or of its 
parts. In particular, MBPTA approaches are 
interested in modeling extreme execution times and 
characterizing the worst-case. The probabilistic 
theory that focuses on extreme values and large 
deviations from the average values is the Extreme 
Value Theory (EVT) (Coles, 2001). This section 
evaluates EVT theory by applying it to all 
measurements of time acquisition and outlines main 
steps to obtain reliable pWCET estimates - the worst 
possible distribution of task execution times.  
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3.1 EVT Applicability 

The safety of the probabilistic worst-case estimates 
relates originally to the EVT applicability. The EVT 
theory estimates the probability of occurrence of 
extremely large values, which are known to be rare 
events. More precisely EVT predicts the distribution 
function for the maximal (or minimal) values of a set 
of n observations, which are modeled with random 
variables. The main result of EVT is provided in the 
Fisher-Tippett-Gnedenko theorem (Embrechts, 
1996). The theorem characterizes the max-stable 
distribution functions, where {X1, X2, ..., Xn} is a 
sequence of n independent and identically-distributed 
(i.i.d.) random variables and Mn = max{X1, X2, ..., Xn}. 
According to the theorem, if F is a non degenerate 
distribution function and there exists a sequence of 
pairs of real numbers (an, bn) such that an > 0 and 
lim P([Mn n]/an , then F is called an 
extreme value distribution and belongs to one of the 
following three classes: either Fréchet, Gumbel, 
or Weibull. 

In fact, these three distributions are combined in a 
single family of continuous CDFs, known as the 
generalized extreme value (GEV) distribution. Then 
GEV is characterized by three parameters: μ  R - 
location parameter, - scale parameter and   R 
- shape parameter. Depending on the shape parameter 

GEV has 3 types of distributions depicting the 
following three CDFs:  

Type I, Gumbel ( = 0), when the underlying 
distribution has a nonheavy upper tail: ( ; , , ) = ( )/  ; (1) 

Type II, Fréchet ( -1 > 0), when the underlying 
distributions has a heavy upper tail:  

( ; , , ) =   > 0 1   0 ; (2) 

Type III, “reversed” Weibull* (  = - -1 < 0), when 
the underlying distributions has a bounded upper tail: 

( ; , , ) =  ( )  > 0 1   0 ; (3) 

where x is the total amount and y stands for the excess 
over the threshold u, with y = x - u. Figure 1 gives 
examples of Gumbel, Fréchet and Weibull 
distributions: 

* Within EVT the reverse (or negative) Weibull
distribution is often referred to as the Weibull 

Figure 1: Examples of Gumbel, Fréchet and Weibull a) 
CDFs and b) PDFs with μ 

By estimating  parameters, we can prove the 
resulting GEV distribution: if the shape parameter 
= 0, then the measured values in trace belong to a 
Gumbel distribution, which in most previous works 
(Cucu-Grosjean, 2012), (Hansen, 2009) has been 
assumed as applied to the pWCET distribution. 
Though there is no restriction on the values that  can 
take and resulting GEV distribution. Nevertheless, in 
order to be close to the accurate estimation of 
parameter, we intend to check all three distributions.  

3.2 Selecting Extreme Values 

Within the EVT context, there are two primary 
approaches to measure the extreme values: Block 
Maxima (BM) Models and The Peak over Threshold 
(POT). The approach of BM relies on deriving block 
maxima series. This is the traditional method, which 
comprises grouping the data into blocks, fitting the 
GEV distribution to the maxima of the blocks and 
estimating the risk measure from it. The second POT 
approach focuses on the observations, which exceed 
a given threshold. This is a more recent technique, 
which involves the following steps: select a threshold 
defining observations to include in modeling; 
calculate the exceedances; fit of the Generalized 
Pareto Distribution (GPD) to the exceedances and 
compute of the risk measure.  

In fact, the Fisher-Tippet-Gnedenko theorem 
described above presents the EVT BM formulation 
where the tail distribution is the possible limit law 
characterizing the sequence of the maxima 

distribution, whereas the inverse Weibull is also 
known as type II or the Fréchet distribution 
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(Berezovskyi, 2014). Whereas in case of the BM 
approach the block size plays a central role, 
analogically the POT method models the law of the 
execution time peaks that exceed selected threshold. 
Nevertheless, the law of extreme execution times and 
the BM are closely linked to the law of peaks above 
the thresholds. Since the same value of  is shared, the 
equivalence of the distribution laws composing both 
the GEV and GPD distributions can be followed 
(Berezovskyi, 2016). The Pickands-Balkema-de 
Haan theorem presents the formulation of POT 
method (Balkema, 1974). Accordingly to it, for a 
large class of underlying distribution function F 
(which satisfies the conditions of Fisher-Tippet-
Gnedenko Theorem) the conditional excess 
distribution function Fu(x), ( ) = ( + ) = ( | > )= ( ) ( )1 ( )   0 , (4) 

is well approximated by the Generalized Pareto 
Distribution , ( ):  lim  sup   | ( ) , ( )| =  0 

, ( )  =  1 (1 + ) /   0 1 /   = 0   (5) 

where x0 is either finite or infinite right endpoint of 
the underlying distribution F;  when  , and 0 

- /  when  <0; and  = + ( );  
As in recent studies have been followed, the POT 

is preferred over the BM, because data are used more 
efficiently, though the evident disadvantage is the 
selection of the suitable threshold value. Moreover, in 
the single-path case the POT appears to be more 
accurate (with respect to the measurements), but the 
increase of the threshold u can result into more 
pessimistic pWCET estimations. Further, we use the 
POT method to estimate the cost of time acquisition, 
based on the measured cost of the sample. However, 
the complexity due to threshold selection and its 
impact to the resulting pWCET has to be considered. 

3.3 WCET Estimation Algorithm 

The following algorithm for WCET estimation is 
suggested according to probabilistic theory described 
above: 
Step 1. Selecting extreme values. The objective of 
this step is to collect, from the original distribution, 
the values, which fit into the tail, and hence can be 

modeled with the GEV distribution. Further, the POT 
method has been chosen to estimate extremes: 
Step 1.1. Threshold choice. With the help of graphical 
diagnostic: mean residual life plot and parameter 
stability plot, choice the best fitted threshold. 
Step 1.2. Retrieve the new sample data: filter values 
which are above the threshold. 
Step 2. Fitting the GEV distribution: Gumbel, Fréchet 
and Weibull types. To ensure that the sample data 
correctly matches the distribution we fit, the certain 
goodness-of-fit tests as well as Chi-square, QQ-plot 
have been used. If none of three types distributions 
fits, then going back to Step 1.1 and increase the 
threshold value. 
Step 3. Estimate the remaining parameters of fitted 
distribution: μ,  and .  
Step 4. Verification of EVT hypothesis of 
independence and identical distribution. If both are 
verified, then the EVT distribution tail projection can 
be considered as a safe and good pWCET estimate. 
Step 4.1. Checking that the data are identically 
distributed.  
Step 4.2. Prove that samples are independent. That is 
ensured by a combination of hardware with suitable 
randomization properties.  
Step 5. 
parameter. 

4 EXPERIMENTAL SETUP

Within MBPTA approach, complete runs of the test 
are made on the target hardware. For these 
experiments, we have collected timestamps of CPU 
cycle counter on the Atmel SamaA5D4 board. This 
board uses one ARM Cortex-A5 600 MHz core, 
which belongs to the ARMv7-A architecture 
generation. The common problem of most processors 
in SoCs is, that CPU cycle counter is not directly 
available from user-space. Thereby, the 
investigations of timing capabilities are being 
performed within the high performance 
HighPerTimer library (Fedotova, 2013). The main 
idea behind the HighPerTimer library is to simplify 
the timestamps acquisition process from the main 
cycle counter of different processors. During the 
library initialization step, a specific time register is 
assigned to the main library time source. The time 
counter has the channel size of 32-bit width and 
frequency 11 MHz. Thus, it wraps around in every 6.5 
minutes. The said library provides means for correct 
dealing with such wrap-arounds and providing a 
global 64-bit fast ticks counter independently from 
the underlying timing hardware. A special device 
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driver within the library, which is loaded as a kernel 
module beforehand, enables proper operations with 
timers from the user-space. The main timing 
mechanism, which in its turn supports the procedure 
of handling overflows is processed by the user space 
library avoiding any system calls.  

The platform is running with the standard Linux 
kernel of version 4.4.11 and the measured process is 
scheduled by the Normal scheduling policy, which is 
set by default. Within the context of this work, we 
estimate the timer cost, setting two consecutive timers 
of HighPerTimer library and calculating the time 
difference between them (further xi.). The 
representation of complementary cumulative 
distribution function (CCDF) of the trace is shown in 
Figure 2 and basic statistics in Table 1.  

Table 1: Statistical properties of the original data set. 

Number of samples 30*106 

Trace length 27 min 

Mean execution time 5.71 cycles = 0.519   

Std. deviation 24.384 cycles = 2.217   
Max value 65943 cycles = 5994.7  
Min value 5 cycles = 0.455  

The estimation part of a representative trace has been 
taken 27 minute and as can be seen from the graph, 
the distribution peaks near the mean and falls with 
rapidly decreasing probability densi  

5 GRAPHICAL DIAGNOSTICS 
FOR THE OPTIMAL 
THRESHOLD

The choice of an appropriate threshold u requires a 
compromise between precision and bias. If the 

threshold is too low, then the results will tend to be 
more certain. On the other hand, the analysis will only 
become practically valid, when the threshold is 
sufficiently high. Therefore, the goal is to find such a 
lowest possible threshold, that the extreme value 
model provides a reasonable fit to exceedances of it. 
Two graphical tools can be used for identifying an 
appropriate threshold for modeling extremes via the 
GPD: Mean residual life plot and Parameter stability 
plot (Scarrott, 2012).  

a) Mean residual life plot.
In  the  mean  residual life plot, for a range of 

candidate values for u the corresponding mean 
threshold excess has to be identified. Then this mean 
threshold excess is plotted against u. The plot should 
be linear above the threshold u0 at which the GPD 
model becomes valid. On the Figure 3, the blue lines 
correspond to the lower and upper confidence limits 

threshold where the plot is nearly linear, taking into 
account the 95% confidence interval. Though 
interpretation of these plots can be subjective, 
linearity in Figure 3 might be suggested above 
u0  2e-04 sec, beyond which it is approximately 
linear until -04 sec, whereupon it decreases 
sharply. These limits are dashed red lines on the plot. 
This way, the minimum and maximum possible 
thresholds, at which the model can be fitted have been 
firstly suggested as umin  2e-04 and umax  2.5e-04.  

b) Parameter stability plot.
For the next step, two parameter stability plots 

showing maximum likelihood estimates, confidence 
intervals of the shape and modified scale parameters 
over a range of thresholds are produced. Figure 4 
represents plots from fitting the GPD and point 
process models to these data. Denoting the value of 
the generalized Pareto scale parameter u for a 
threshold from u > u0 in (5), the scale parameter 
changes with u unless  = 0. Thereby, we can better 

Figure 2: CCDF representation of time execution. 

Figure 3: The empirical mean residual life plot. 
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express it as a constant scale parameter with respect 
to u (Coles, 2001): 

                              = + ,                           (6) 
 

Consequently, estimated of * and  should be 
constant above u0 or at least stable after sampling 
errors. Therefore firstly, comparing the parameter 
stability plot for the whole range of samples in Figure 
4(a) with the mean residual life plot in Figure 3, the 
retrieved possible interval of umin and umax can be 
confirmed. At least for the case of Gumbel 
distribution with its shape parameter  = 0, the desired 
threshold is likely within this range. Figure 4(b) 
shows more accurately the desired range, where the 
dependence of  parameter can be better observed.  
 

 
a)  

 
b)  
Figure 4: Parameter stability plot a) for the whole trace and 
b) for the range with umin = 2e-04 sec. 

 
Though the threshold stability plots also does not 

provide very firm conclusions, together with the 
mean residual life plot, inconsistencies can be good 
observed. It lies between the estimated shape 
parameter at this level and higher thresholds around 
u=2.3e-04 sec. Therefore, at the current stage it can 

be concluded that this is the best choice of threshold, 
which allows retrieving 24 extremes from the trace. 

 6 FITTING THE GPD 
DISTRIBUTION AND 
ESTIMATION THE 
PARAMETERS 

Having determined the threshold value, the 
parameters of the GPD can be further estimated by 
maximum likelihood (MLE). In the following section 
we have tested the whole family of GPD distributions. 
The appropriate Goodness-of-fit statistics for 
Gumbel, Fréchet and Weibull distributions have been 
obtained and presented in Table 2. Each test is 
essentially a goodness of fit test and compares 
observed data to quantiles of the specified 
distribution. The null hypothesis for each test versus 
alternative is: 

H0: data follow an assigned distribution; 
H1: data do not follow an assigned distribution.  
The resulting value is then checked against the 

following statistics to see if it is significant: 
– the critical value from Chi-square test. Since we 

deal with the discrete data, the Chi-square test has 
been chosen against Kolmogorov Smirnov test. From 
the Chi-Square table we can find the critical Chi 
Square value for a level of significance p, which 
represents the probability that a Chi Square 
distributed random variable will exceed that critical 
value. Typically a match at the p = 0.05 is considered 
acceptable.  

– the Bayesian (BIC) and Akaike (AIC) 
information criterion of (Burnham, 2004). AIC tries 
to select the model that most adequately describes an 
unknown one. Conversely, BIC aims to find the true 
model among the set of candidates. When comparing 
models fitted by maximum likelihood to the same 
data, the smaller the AIC or BIC, the better the fit.  

– a QQ-plot (quantile plot). This is a plot of the 
empirical quantile values of observed data against the 
quantiles of the standard form of a target distribution. 
The slope and the intercept of the best-fit line through 
these points can be used as estimators  
parameters, respectively. A straight diagonal line of 
data points from the bottom left to the top right of the  
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Table 2: GPD parameters. 

 
plot indicates that an exponential distribution is a 
relatively good fit to the tail. 

Firstly, Chi-squared p-value for the Gumbel and 
Fréchet data (p-valueG = 0.346 and p-valueF = 0.065 
respectively) > 0.05, hence both hypotheses can’t be 
rejected. Secondly, the goodness-of-fit criteria for the 
Fréchet distribution is a bit less than for the Gumbel 
distribution: AICF = 531.211 < AICG = 534.240 and 
BICF = 534.745 < BICG = 536.596. Therefore, from 
the statistical tests the hypotheses that data fits 
Fréchet distribution is slightly preferred against the 
one, which checks Gumbel distribution. However, 
since the difference of statistics results is not 
significantly differed, it makes sense to retrieve the 
WCET estimate for both cases. 

 

 

 

7 VERIFICATION OF EVT 
HYPOTHESIS 

In order to apply the EVT, three hypotheses are 
required to verify: i) independent and ii) identically 
distributed execution time measurements from iii) a  
distribution, which belongs to the Maximum Domain 

(Guet, 2016). These proofs provide reliable and safe 
pWCET estimates. In the giving chapter, we intend to 
check the first two hypothesis. As follows from the 
definition, the sequence of random variables is 
independent and identically distributed if each 
random variable has the same probability distribution 
as the others and all are mutually independent (Coles, 
2001), (Burnham, 2004), (Feller, 1996).  

a) Identical Distribution. 
It is worth to note that in the given application of 

EVT, the rule of identically distributed is obeyed 
since the analysis models the behavior of the system 
in the same execution context using the same set of 
parameters, including initial hardware and software 
state (Cazorla, 2013). However, to provide enough 
level of reliability, the property of identical 
distributed values are verified by the two-sample 
Kolmogorov-Smirnov (KS) test. The Kolmogorov-
Smirnov statistic quantifies a distance between the 
empirical distribution functions of two samples. For 
the given experiment the null (H0) and alternative 
(H1) hypotheses are:  

H0: the both samples are identically distributed; 
H1: the samples are not identically distributed.  
The test is performed by dividing the trace into 

subsets in order to verify if they have the same 
distribution function. By randomly taking elements 
from the original sample, three subsets of 100, 500 
and 1000 values have been created. This ensures that 
the smaller samples maintain the same statistical 
properties as the original (Cucu-Grosjean, 2012), 
(Burnham, 2004), (Feller, 1996). Table 3 represents 
the p-value obtained by applying the KS test to the 
execution times. P-value is the probability of finding 
a situation more extreme than what in the data, 
assuming that an = bn . The smaller this number is, the 
less likely that an = bn is true. D value of the KS test 
statistic means the maximum difference between the 
an & bn probability mass function. The rule to accept 
H0 is p-value > 0.05 - the predetermined significance 
level. Accordingly, from Table 3, the null hypothesis 
cannot be rejected, which allow concluding that 
samples are identically distributed.  

 

 p-value AIC BIC  μ  

Gumbel 0.346 534.240 536.596 12247.56 12968.35 0 

Fréchet 0.065 531.211 534.745 10542.52 -1539.657 1.351 

 

 

 

 

 

a) 

 

 

 

 

 

 

b) 

Figure 5: The histogram against fitted density functions and
theoretical quantiles against empirical ones of a) Gumbel 
and b) Fréchet distribution. 
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Table 3: Statistics for identical distribution test. 

m D value p-value 

100 0.1 0.6994 

500 0.012 1 

1000 0.053 0.125 
 
b) Independence. 
From the definition, two random variables are 

considered to be independent if they describe two 
events such that the occurrence of one event does not 
have any impact on the occurrence of the other event 
(Coles, 2001), (Burnham, 2004), (Feller, 1996). To 
prove those properties, the Runs test (or Wald-
Wolfowitz test) (Feller, 1996), (Wald, 1940), is used. 
In this context, a term “run” is a sequence of identical 
responses. The null and alternative hypotheses are:  

H0: elements of the sequence are 
mutually independent;  

H1: elements of the sequence are not 
mutually independent. 

The following steps have to be accomplished to 
apply the Runs test: 

Step 1: compute the sequential differences di 
d , where positive values is related to increasing 
values and negative to a decreasing ones. 

Step 2: compute the expectation of the number of 
runs E(R) = 2mn/N, where N is the total sample size, 
m is the number of positive values, and n is the 
number of negative ones. 

Step 3: compute the variance of the number of runs  
V(R) = 2mn(2mn – N)/(N²(N–1)). The minimum value 
of R is always 2. The maximum value is given by 
2Min(m, n)-t, where t = 1 for m = n, and t = 0 if not. 
Step 4: estimate the test statistic Z=(r–E(R))/ ( ). 
In Table 4, Z value and p-value are compared for a 
significance level . At the given level, Z-value 
with an absolute value greater than 1.96 indicates 
non-randomness so the null hypothesis is rejected. 
Additionally, the rule to accept H0 is if p-value is 
more than 0.05.  

Since the p-value = 0.247 > 0.05 and Z value = 
0.684 < 1.96, the hypothesis that each element in the 
sequence is independently drawn from the same 
distribution is accepted.  

Table 4: Statistics for independence test. 

V(R) Z value p-value 

19.8 0.684 0.247 

8 ESTIMATION PROBABILISTIC 
PWCET 

The final step is to use the computed and verified 
GPD parameters and the exceedance probability of 
failure p to estimate the WCET. In fact, WCET 
thresholds are defined depending on the failue 
probability p such that p = P( WCETsafe > WCETexact). 
In standard statistical language, this is a quantile 
estimate or for instance in finance, it is often referred 
as Value-at-risk (VaR) for measuring of market risk. 
Considering these application for our case, the WCET 
estimation is then derived on the basis of estimated 
parameters  and  as following (Embrechts, 1996): 
 

 =   +  (( )  1)   > 0 ( )                =  0 

(7) 

 
where k - the number of peaks over the threshold 

standing for measurements that belong to the tail 
distribution. The initial probability of failure p 
defined as the likelihood the execution of a job 
exceeds its WCET for the current mode when 
previous jobs have not exceeded it. Different works 
on probabilistic WCET have claimed that values of p 
could typically be 10 , 10 or 10-4. For our 
investigations, the failure probability at the level 10-9 
< p < 10-7 (from hazardous class) provided by PED 
certification (Hsing, 1991), (ARP4761, 2001) has 
been chosen. PED certification is applied in the flight 
control system using portable electronic devices 
(PEDs). Further, Table 5 gives the modeling results 
of the extreme execution times and Figure 7, showing 
the distribution convergence for Gumbel and Fréchet 
scenarios.  

In Figure 6 the x-axis shows the pWCET 
estimation and the y-axis shows the associated 
probabilities. The challenge of risk assessment is to 
assess the value that for each of the activities is not 

Table 5: EVT Results for the Hazardous Class of p Considering GPD. 

  μ  (WCET ; 10 ) (WCET ; 10 ) (WCET ; 10 ) 

Gumbel 12247.56 12968.35 0 27968.09 cycles = 2.54 msec 56169.13 cycles = 5.11 msec 84370.18 cycles = 7.67 msec 
Fréchet 10542.529 -1539.657 1.351 124185.2 cycles = 11.3 msec 2898825 cycles = 263 msec 65126941 cycles = 5.921 sec 
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able to be measured accurately. So we use a CCDF of 
General Pareto Distribution to predict these potential 
values. Finally, all tests are diagnosed as reliable 
regarding the EVT applicability and the pWCET 
estimate has been derived.  

However, according to the Table 5 the WCET 
estimates for Gumbel and Fréchet distribution differ 
significantly. In fact, too pessimistic results of 
Fréchet are quite tight and practically less useful. On 
the other hand, the Gumbel distribution converges to 
0 faster than the Fréchet one and it decrease the 
pessimism of the WCET thresholds. Nevertheless, 
having the access to the true values and capacity to 
run the experiment including the target risk 
probabilities, we can estimate the real max value and 
predicted WCET estimates. According to the Table 1, 
the max value on the examined range is 0.005 sec and 
whereas predicated upper bound using parameters for 
Gumbel distribution for failure probability p = 10-9 

gives 0.007 sec, which fits the assumption. For the 
case of Fréchet parameters, the estimate of 5.921 sec 
is obviously too pessimistic and less useful. 

 CONCLUSION 

The contributions of this paper are: (i) proving 
optimality of the EVT theorems and verifying their 
applicability on the certain embedded platform ARM 
Cortex-A series of processors; (ii) introducing an 
approach of graphical diagnostic for selecting 
extreme values; (iii) considering several cases of 
GPD distributions for choosing reliable WCET 
estimation. Our results show that, for failure 
probability levels of 10  the single-path technique 
for time acquisition provides less pessimistic pWCET 
estimations about 7.67 msec using parameters for 
Gumbel distribution. This estimation can be taken as 
acceptable and considered during designing of time-
critical applications on such SoCs. Therefore, the 
ongoing paper provides a useful guide of how to 
predict the upper bounds for the embedded single-

core processor architecture. The future work should 
continue investigation of cache memory effects or 
impacts of scheduling tasks by Linux kernel. This can 
afford the improvement of the dependence metrics, 
reduce the pessimism of the pWCET estimation and 
as a result, make ARM processor more time-
predictable. 
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