

Applied Sciences

FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

Entwicklungsprojekt MCUI13

Machbarkeitsstudie/ Konzept zum Bau und Betrieb einer "Power to Methanol"-Anlage

Betreuer: Prof. Dr. Thomas Martin Prof. Dr. Mathias Seitz Prof. Dr. Ulf Schubert

Ausgabedatum der Aufgabenstellung: 10.04.2014

Abgabedatum der Dokumente: 30.01.2015

Inhaltsverzeichnis

1	Eir	lleitung und Projektziel	1
2	Pro	ojektstruktur	2
2.1		Art des Projektmanagements	2
2.2		Gruppeneinteilung	3
2.3		Zeitplanung	3
3	Str	omproduktion	5
3.1		Stromproduktion in den Jahren 2012/2013	5
3.2		Prognostizierte Stromerzeugung im Jahr 2030	6
3.3		Regelenergie (Regelleistung)	6
3. 3.	3.1 3.2	Allgemeines Primärregelung, Sekundärregelung, Minutenreserve	6 7
3.4		Überschussstrom	8
4	Vo	rbetrachtungen zur Wirtschaftlichkeit	9
4.1		H ₂ -Erzeugung	9
4.2		Methanol-Produktion1	1
5	Ele	ktrolyse1	3
5.1		Prozessoptionen	3
5. 5. 5. 5.	1.1 1.2 1.3 1.4	Alkalische Elektrolyse	3 4 5 6
5.2		Wasserstofflagerung1	7
5. 5. 5.	2.1 2.2 2.3	Druckgasspeicherung	8 9 9
5.3		Prozessauswahl für den Wechsellastbetrieb2	0
5. 5. 5. 5.	3.1 3.2 3.3 3.4	Auswahl Elektrolysezellenart	0 1 1 2
5.4		Prozessauswahl für den Dauerbetrieb23	3
5. 5. 5. 5.	4.1 4.2 4.3 4.4	Auswahl Elektrolysezellenart	3 3 3 4
5.5		Simulation mittels ChemCAD2	5
5. 5.	5.1 5.2	Elektrolyse	5 6
5.6		Aufstellungs- und Ex-Zonenplan	7
6	СС	2-Gewinnung durch Absorption aus Luft3	1

6.1	Prozessoptionen	31
6.1.1	Aminwäsche	31
6.1.2	Besondere Absorptionsmittel	
614	Hydroxide Feste Absorptionsmittel	
62	Prozessauswahl: CO ₂ -Absorption mit Hilfe von Hydroxiden	
621	CO ₂ -Absorption mit Hilfe von Kaliumbydroxid	35
6.2.2	CO ₂ -Absorption mit Hilfe von Natriumhydroxid	
6.2.3	CO2-Absorption mit Hilfe von Natrium- und Calciumhydroxid	38
6.3	Simulation mittels ChemCAD	42
6.4	Wirtschaftlichkeitsbetrachtung der CO2-Absorption aus Luft	45
7 CC	02-Gewinnung durch Polygeneration	46
7.1	Kraftwerkstechnologie / Polygeneration in Deutschland	46
7.1.1	Allgemeines	
7.1.2	Kraftwerkstechnologien	47
7.1.3	Kraftwerkswahl in der Region Halle/Leipzig	50
7.2	Prozessoptionen zur Abtrennung des Kohlenstoffdioxids	51
7.2.1	Pre-Combustion	51
7.2.2	Oxyfuel-Verfahren	
7.2.3	Vergleich der Absorptionstechnologien	
7.3	Prozessauswahl	56
7.0	Wirtschaftlichkeitsbetrachtung	56
7.7	wintschattlichkeitsbeträchtung	
	A succedary characterized and the descention	50
8 CC	D_2 aus der chemischen Industrie	58
8 CC 9 (Re	D_2 aus der chemischen Industrie	58 59
8 CC 9 (Re 9.1	0₂ aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift	58 59 59
8 CC 9 (Re 9.1 9.1.1	D ₂ aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung	58 59 59
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.2	D ₂ aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren	58 59 59 59 59
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3	D2 aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren	58 59 59 59 59 60
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2	D2 aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion	58 59 59 59 59 60 62
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.1	 D2 aus der chemischen Industrie Everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren	58 59 59 59 60 62 62 62
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3	D2 aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion	
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4	 D2 aus der chemischen Industrie	
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3	D2 aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion Katalysatoren Prozessoption 3: Alternative Verfahren zu Herstellung von CO	
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1	D2 aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion Katalysatoren Prozessoption 3: Alternative Verfahren zu Herstellung von CO Steamreforming	
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2	D2 aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion Katalysatoren Prozessoption 3: Alternative Verfahren zu Herstellung von CO Steamreforming Vergasung von Biomasse	
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 9.4	 D2 aus der chemischen Industrie Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion Katalysatoren Prozessoption 3: Alternative Verfahren zu Herstellung von CO Steamreforming Vergasung von Biomasse Prozessauswahl: RWGS 	
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.1 9.4.2	D2 aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion Katalysatoren Prozessoption 3: Alternative Verfahren zu Herstellung von CO Steamreforming Vergasung von Biomasse Prozessbeschreibung Mögliche Betriebsweisen des Reaktors	58 59 59 59 60 62 62 62 62 62 62 62 62 62 62 62 63 64 65 65 65 69 69 70
8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.2 9.5	D2 aus der chemischen Industrie	
 8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.2 9.5 9.6 	D2 aus der chemischen Industrie Everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion Katalysatoren Prozessoption 3: Alternative Verfahren zu Herstellung von CO Steamreforming Vergasung von Biomasse Prozessbeschreibung Mögliche Betriebsweisen des Reaktors Verfahrensfließbild Simulation mittels ChemCAD	58 59 59 59 60 62 62 62 62 62 62 62 62 63 64 65 65 65 66 69 70 71 72
 8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.2 9.5 9.6 9.6.1 	D2 aus der chemischen Industrie Everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion Katalysatoren Prozessoption 3: Alternative Verfahren zu Herstellung von CO Steamreforming Vergasung von Biomasse Prozessbeschreibung. Mögliche Betriebsweisen des Reaktors. Verfahrensfließbild Simulation mittels ChemCAD Energieströme	
 8 CC 9 (Re 9.1 9.1.1 9.1.2 9.1.3 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.2 9.5 9.6 9.6.1 9.6.2 	D2 aus der chemischen Industrie everse) Wasser-Gas-Shift Prozessoption 1: Wasser-Gas-Shift Ziel und Anwendung Verfahren Mögliche Reaktoren & Katalysatoren Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion Zielstellung Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion Katalysatoren Prozessoption 3: Alternative Verfahren zu Herstellung von CO Steamreforming Vergasung von Biomasse Prozessbeschreibung Mögliche Betriebsweisen des Reaktors Verfahrensfließbild Simulation mittels ChemCAD Energieströme Stoffmengenströme	

10	Methanolsynthese	77
10.1	Prozessoptionen und Verfahrensauswahl	77
10 10	0.1.1Mögliche Verfahren0.1.2Zusammensetzung des Synthesegases	77 79
10.2	2 Verfahrensbeschreibung des ICI-Niederdruckverfahrens	80
10 10 10	0.2.1 Synthesegaszufuhr0.2.2 Kreislaufprozess0.2.3 Reinigung	80 80 81
10.3	3 Verfahrensfließbild	81
10.4	Simulation mittels ChemCAD	82
10 10	0.4.1Stoffmengenströme0.4.2Energieströme	85 85
10.5	5 Aufstellungs- und Ex-Zonenplan	86
11	Prozessübersicht	87
11.1	Gesamtbilanz	87
11.1	Gesamtverfahrensfließbild	88
11.2	2 Gesamtaufstellungsplan	89
12	Wirtschaftlichkeitsanalyse	90
12.1	Generelle Annahmen und Berechnungen	90
12.2	2 Betrachtungsszenarien	93
12.3	B Ergebnisse der Wirtschaftlichkeitsbetrachtungen	96
12 12 12 12	 2.3.1 Ergebnisse der Szenarien 1a bis 1d 2.3.2 Ergebnisse der Szenarien 2a bis 3d 2.3.3 Ergebnisse der Szenarien 4a und 4b 2.3.4 Break-Even-Points 	96
13	Ergebnisübersicht	103
14	Fazit	106
15	Literaturverzeichnis	108
16	Anhänge	116

Abbildungsverzeichnis

ABBILDUNG 1: SCHEMA DER ORGANISATIONSSTRUKTUR DES PROJEKTES	2
ABBILDUNG 2: BILDSCHIRMAUFNAHME DES ILIAS-FORUMS "ENTWICKLUNGSPROJEKT MCUI13"	4
ABBILDUNG 3: AUSSCHNITT DES ZEITPLANS "WINTERSEMESTER 2014/2015"	4
ABBILDUNG 4: BRUTTO-STROMERZEUGUNG – ANTEILE NACH ENERGIETRÄGERN 2012 (BUNDESVERBAND DER ENERGIE-	JND
WASSERWIRTSCHAFT, 2013)	5
ABBILDUNG 5: BRUTTO-STROMERZEUGUNG – ANTEILE NACH ENERGIETRÄGERN 2013 (BUNDESVERBAND DER ENERGIE- U	JND
Wasserwirtschaft, 2013)	5
ABBILDUNG 6: STROMERZEUGUNG VS. BRUTTOSTROMVERBRAUCH 2011-2030 (IER, MÄRZ 2010)	6
Abbildung 7: Netzregelsystem (Statkraft Markets GmbH, 2014)	7
ABBILDUNG 8: WASSERSTOFFENTSTEHUNGSKOSTEN (GASFÖRMIG), FOSSIL UND REGENERATIV (NACH NITSCH, ET AL., 200)2)
	. 10
Abbildung 9: Methanolpreisentwicklung von 2002 bis zum Frühjahr 2014 (Methanex Corporation, 2014;	
Gelsenchem Chemical Products GmbH, 2014)	. 12
ABBILDUNG 10: AUFBAU DER ALKALISCHEN ELEKTROLYSE (WENSKE, 2008)	. 13
ABBILDUNG 11: AUFBAU UND REAKTIONEN DER PEMEL (WENSKE, 2008)	. 14
ABBILDUNG 12: AUFBAU PROTONENAUSTAUSCHMEMBRAN (LEICHTFRIED, 2007)	. 15
ABBILDUNG 13: PRINZIPIELLER AUFBAU EINER HTEL-ZELLE	. 16
ABBILDUNG 14: VERFAHRENSFLIEßBILD DER PEMEL	. 22
ABBILDUNG 15: VERFAHRENSFLIEßBILD DER AEL	. 24
ABBILDUNG 16: ABBILDUNG DER CHEMCAD-SIMULATION DER ELEKTROLYSE	. 25
ABBILDUNG 17: ABBILDUNG DER CHEMCAD-SIMULATION DER SAUERSTOFFVERDICHTUNG	. 26
ABBILDUNG 18: AUFSTELLUNGS- UND EX-ZONEN-PLAN DER ELEKTROLYSE IM WECHSELLASTBETRIEB	. 27
ABBILDUNG 19: AUFSTELLUNGS- UND EX-ZONENPLAN DER ELEKTROLYSE FÜR DEN DAUERBETRIEB	. 29
ABBILDUNG 20: FOTO EINES AEL-MODULS	. 30
ABBILDUNG 21: ABLAUFENDE REAKTIONEN BEI DER AMINWÄSCHE MIT VERSCHIEDENEN LÖSUNGSMITTELN (OHLE, 2009)	. 32
ABBILDUNG 22: SCHEMATISCHER AUFBAU EINER INDUSTRIELLEN ABGASREINIGUNG (YEH, ET AL., 2006)	. 32
ABBILDUNG 23: 1-BUTYL-3-METHYLIMIDAZOLIUM-HEXAFLUOROPHOSPHAT	. 33
ABBILDUNG 24: STARK VEREINFACHTES VERFAHRENSFLIEßBILD ZUR CO2-ABSORPTION MITTELS KALIUMHYDROXID	. 35
Abbildung 25: Verfahrensfließbild zur CO_2 -Absorption mittels Natriumhydroxid (Nach Keith, et al., 2009).	. 37
ABBILDUNG 26: GRUNDFLIEßBILD DER CO2-ABSORPTION AUS DER LUFT MITTELS NATRIUMHYDROXID UND CALCIUMHYDRO	DIXC
	. 38
ABBILDUNG 27: VERFAHRENSFLIEßBILD FÜR DIE CO2-ABSORPTION AUS LUFT MIT HILFE VON NAOH UND CA(OH)2	. 40
ABBILDUNG 28: ABBILDUNG DER CHEMCAD-SIMULATION DER CO2-ABSORPTION AUS LUFT	. 42
ABBILDUNG 29: ENERGIEQUELLEN IN DEUTSCHLAND (FIZ KARLSRUHE GMBH, 2010)	. 46
ABBILDUNG 30: PROZESSSCHAUBILD EINES GAS- UND DAMPF-KOMBIKRAFTWERKS (LEHMACHER, 2005)	. 47
ABBILDUNG 31: PROZESSSCHAUBILD DAMPFKRAFTWERK (JOACHIM HERZ STIFTUNG, 2014)	. 48
ABBILDUNG 32: IGCC- UND POLYGENERATIONS-ANLAGEN WELTWEIT (FIZ KARLSRUHE GMBH, 2010)	. 49
ABBILDUNG 33: SCHEMA EINES IGCC-KRAFTWERKS (SIEMENS AG, 2014)	. 49
ABBILDUNG 34: SCHEMATISCHE DARSTELLUNG DES PRE-COMBUSTION PROZESSES EINES IGCC KRAFTWERKES	
(NACHTROY, 2012)	. 51
ABBILDUNG 35: SCHEMATISCHE DARSTELLUNG DES OXYFUEL-VERFAHRENS (NACHTROY, 2012)	. 52
ABBILDUNG 36: PROZESSFLIEBBILD DER CO2-WÄSCHEPILOTANLAGE IN NIEDERAUBEM (SCHMIDT, ET AL., 2013)	. 53
ABBILDUNG 37: WGS-REAKTORSCHALTUNG UND CO-KONZENTRATIONSVERLAUF (OTTERSTÄTTER, 2012)	. 59
Abbildung 38: Membranreaktor (Silvano, et al., 2014)	. 60

ABBILDUNG 39:	Plug-flow Reaktor (Leppelt, 2007)	1
ABBILDUNG 40:	THERMODYNAMISCHE GLEICHGEWICHTSZUSAMMENSETZUNG DES PRODUKTGASES DER RWSG-REAKTION	
	BEI 0,1 MPA UND EINEM H2/CO2 EDUKTVERHÄLTNIS VON 3 (KAISER, ET AL., 2013).	3
ABBILDUNG 41:	VERFAHRENSFLIEBBILD DES CAMERE PROZESSES (OH-SHIM, ET AL., 1999). LINKS RWGS-PROZESS,	
	RECHTS METHANOL-SYNTHESE. IM "REACTOR1" WIRD CO2 UND H2 IN DER RWGS-REAKTION UMGESETZT.6	5
ABBILDUNG 42:	GLEICHGEWICHTSKURVEN BEI KOHLENSTOFFVERGASUNG (HESSE, ET AL., 2014)	6
ABBILDUNG 43:	WIRBELSCHICHTREAKTOR FÜR DIE BIOMASSEVERGASUNG (HESSE, ET AL., 2014)	7
ABBILDUNG 44:	IDEALISIERTE DARSTELLUNG DER IM AER-PROZESS ABLAUFENDEN REAKTIONEN (ZUBERBÜHLER, ET AL.,	
	2003)	8
ABBILDUNG 45:	DARSTELLUNG DES AER-PROZESSES MIT SEPARATER REGENERIERUNG (ZUBERBÜHLER, ET AL., 2003) 6	8
ABBILDUNG 46:	VERFAHRENSFLIEBBILD DES RWGS	1
ABBILDUNG 47:	ABBILDUNG DER CHEMCAD-SIMULATION DES RWGS	2
ABBILDUNG 48:	AUFSTELLUNGSPLAN DES RWGS	5
ABBILDUNG 49:	EX-ZONENPLAN DES RWGS	6
ABBILDUNG 50:	FLIEBBILD DER METHANOLSYNTHESE (BAERNS, ET AL., 2013)	8
ABBILDUNG 51:	VERFAHRENSFLIEBBILD DER METHANOLSYNTHESE	1
ABBILDUNG 52:	ABBILDUNG DER CHEMCAD-SIMULATION DER METHANOLSYNTHESE	2
ABBILDUNG 53:	AUFSTELLUNGSPLAN DER METHANOLSYNTHESE	6
ABBILDUNG 54:	EX-ZONEN-PLAN DER METHANOLSYNTHESE	6
ABBILDUNG 55:	GESAMTVERFAHRENSFLIEßBILD DER "POWER TO METHANOL"-ANLAGE	8
ABBILDUNG 56:	GESAMTAUFSTELLUNGSPLAN	9
ABBILDUNG 57:	Kostenaufschlüsselung der Wasserstoffgestehungskosten der Szenarien 1a bis 1d	7
ABBILDUNG 58:	Kostenaufschlüsselung der Methanolproduktionskosten der Szenarien 2a bis 3d	9
ABBILDUNG 59:	Kostenaufschlüsselung der Methanolproduktionskosten der Szenarien 4a bis 4b 10	0
ABBILDUNG 60:	Break-Even-Points der 6 günstigsten Szenarien bei einer 6 % p.a. Preissteigerung des	
	METHANOLMARKTPREISES	2

Tabellenverzeichnis

TABELLE 1: PERSONELLE AUFSTELLUNG UND AUFGABENBEREICHE DER PROJEKTLEITERGRUPPE	2
TABELLE 2: PERSONELLE AUFSTELLUNG UND AUFGABENPAKETE DER WIRTSCHAFTLICHKEITSGRUPPE	2
TABELLE 3: PERSONELLE AUFSTELLUNG UND AUFGABENPAKETE DER ELEKTROLYSEGRUPPE	2
TABELLE 4: PERSONELLE AUFSTELLUNG UND AUFGABENPAKETE DER POLYGENERATIONSGRUPPE	2
TABELLE 5: PERSONELLE AUFSTELLUNG UND AUFGABENPAKETE DER REVERSE WASSER-GAS-SHIFT-GRUPPE	3
TABELLE 6: PERSONELLE AUFSTELLUNG UND AUFGABENPAKETE DER METHANOLSYNTHESEGRUPPE	3
TABELLE 7: PERSONELLE AUFSTELLUNG UND AUFGABENPAKETE DER CO2-ABSORPTIONS-GRUPPE	3
TABELLE 8: HERSTELLUNGSMENGEN VON WASSERSTOFF (NACH ENERGIEPORTAL24, 2014)	9
TABELLE 9: ECKDATEN AUSGEWÄHLTER WASSERSTOFFHERSTELLUNGSVERFAHREN (NACH NITSCH, ET AL., 2002)	. 10
TABELLE 10: ÜBERSICHT ÜBER METHANOLERZEUGUNGSKOSTEN VERSCHIEDENER ANLAGEN (NACH BANDI, ET AL., 2004).	. 11
TABELLE 11: VOR- UND NACHTEILE DER AEL	. 14
TABELLE 12: VOR- UND NACHTEILE DER PEMEL	. 15
TABELLE 13: VOR- UND NACHTEILE DER HTEL	. 16
TABELLE 14: GERUNDETE H2-LAGERVOLUMEN BEI DRUCKLAGERUNG UNTER VERSCHIEDENEN DRÜCKEN	. 18
TABELLE 15: ERFORDERLICHE EIGENSCHAFTEN DES WASSERS FÜR DIE PEMEL	. 21
TABELLE 16: STOFFSTRÖME DER CHEMCAD-SIMULATION DER CO ₂ -Absorption aus Luft	. 44
TABELLE 17: ENERGIESTRÖME DER WÄRMETAUSCHER DER CHEMCAD-SIMULATION DER CO2-ABSORPTION AUS LUFT	. 44
TABELLE 18: VERGLEICH DER CO ₂ -Emissionen verschiedener Kraftwerke	. 50
TABELLE 19: TECHNISCHE DATEN DES KRAFTWERK SCHKOPAUS (E.ON SE, 2014)	. 50
TABELLE 20: PROZESS- UND BETRIEBSPARAMTER DER CO ₂ -Wäschepilotanlage in Niederaußem (Schmidt, et al.,	
2013)	. 54
TABELLE 21: VERGLEICH VON VERSCHIEDENEN ABSORPTIONSTECHNOLOGIEN (NACH NOTZ, 2010)	. 55
TABELLE 22: KOSTENVERGLEICH KONVENTIONELLES DKW VS. IGCC-CCS (RAUCHFUB, 2012)	. 57
TABELLE 23: ÜBERSICHT CO ₂ -Quellen und Emisssionen großer stationärer Quellen durch Nutzung fossiler	
Brennstoffe (Ausfelder, et al., 2008)	. 58
TABELLE 24: KATALYSATOR, EDUKT- UND PRODUKTGASZUSAMMENSETZUNG NACH DEM PATENTIERTEN VERFAHREN VON	
(DUPONT, ET AL., 2003)	. 64
TABELLE 25: REAKTORPARAMETER	. 70
TABELLE 26: ENERGIESTRÖME DER WÜ DES RWGS	. 73
TABELLE 27: AUSGEWÄHLTE STOFFMENGENSTRÖME DER SIMULATION	. 74
TABELLE 28: ÜBERSICHT STOFFSTRÖME DER METHANOLSYNTHESE	. 85
TABELLE 29: ENERGETISCHE KENNDATEN DER KOMPRESSOREN DER CHEMCAD-SIMULATION DER METHANOLSYNTHESE.	. 85
TABELLE 30: ENERGETISCHE KENNDATEN DER KOLONNEN DER CHEMCAD-SIMULATION DER METHANOLSYNTHESE	. 85
TABELLE 31: ENERGETISCHE KENNDATEN DER WÄRMETAUSCHER DER CHEMCAD-SIMULATION DER METHANOLSYNTHESE	<u> 85</u>
TABELLE 32: ZUSCHLAGSFAKTOREN ZUR ERMITTLUNG DER GESAMTINVESTITIONSKOSTEN (NACH KLAPP, 1980)	. 91
TABELLE 33: ANGENOMMENE PREISE FÜR DIE NOTWENDIGEN BETRIEBSSTOFFE	. 92
Tabelle 34: Berechnungsgrundlagen der weiteren Kosten für Wartung, Personal, Projektplanung und	
INBETRIEBNAHME	. 93
Tabelle 35: Kostenaufschlüsselung der Wasserstoffgestehungskosten der Szenarien 1a bis 1d	. 97
Tabelle 36: Kostenaufschlüsselung der Methanolproduktionskosten der Szenarien 2a bis 3d	. 98
Tabelle 37: Kostenaufschlüsselung der Methanolproduktionskosten der Szenarien 4a bis 4b	101
TABELLE 38: ERGEBNISÜBERSICHT TEIL 1 (SZENARIEN 1 UND 2)	104
TABELLE 39: ERGEBNISÜBERSICHT TEIL 2 (SZENARIEN 3 UND 4)	105

1 Einleitung und Projektziel

Im Zuge der aktuellen politischen Energiewende ist es erforderlich, theoretische Ansätze auf ihre Umsetzbarkeit zu untersuchen. Der aus erneuerbaren Energien erzeugte Strom kann nicht konstant vollständig genutzt werden. Deshalb müssen entweder die Stromerzeuger abgeschaltet bzw. reguliert werden, wenn ein Überangebot an elektrischer Energie zur Verfügung steht, oder es muss ein Weg gefunden werden, den Strom auf eine wirtschaftlich vertretbare Art zu speichern. Eine Möglichkeit dazu ist die elektrolytische Herstellung von Wasserstoff. Dieser der Explosionsgruppe IIC zugeordnete Stoff ist aus sicherheitstechnischer Sicht jedoch nicht unbedenklich. Sollte es als Endprodukt verkauft werden, ist meist eine Komprimierung erforderlich, welche das Gefahrenpotential zusätzlich erhöht. Deshalb bietet eine weitere Umwandlung des erzeugten Wasserstoffs mit Kohlenstoffdioxid und -monoxid zu Methanol, welches ähnliche Eigenschaften wie die gängigen olefinen Energieträger besitzt, eine potentielle Möglichkeit, die Energie zu speichern.

Das Ziel dieser Machbarkeitsstudie ist es, zu untersuchen, unter welchen Rahmenbedingungen eine Erzeugung von Wasserstoff bzw. Methanol aus erneuerbarer Energie mit dem aktuellen Stand der Technik wirtschaftlich umsetzbar sein kann. In einem Einstiegsszenario soll dabei elektrolytischer Wasserstoff mit einem Volumenstrom von 10.000 Nm³/h erzeugt und verkauft werden. Weiterhin beschäftigt sich die vorliegende Studie mit der Herstellung von Methanol mit einer Jahreskapazität von 500.000 t. Durch die Betrachtung verschiedener CO₂-Quellen soll dieses Szenario stärker differenziert werden. Zur Bewertung der Szenarien soll eine Kostenschätzung der Anlagen- sowie der Betriebskosten durchgeführt werden. Dabei sind die zu erwartende Zeiträume von Überkapazitäten an Strom aus regenerativen Quellen zu berücksichtigen.

Zur Erstellung dieser Machbarkeitsstudie soll der Studiengang MCUI13 wie ein Ingenieurbüro arbeiten, aufgeteilt in eine Projektleitergruppe und sechs Fachgruppen. Im Rahmen des Masterstudiums umfasst die Arbeit 150 Stunden, in denen das Thema eigenverantwortlich vom Studiengang bearbeitet wird. Die Bearbeitung untergliedert sich dabei in die Literaturrecherche, die Prozessauswahl, die Prozesssimulation, die Erstellung von Planungsdokumenten (Zeitpläne etc.), die Erstellung von Verfahrensunterlagen (z.B. Verfahrensfließbilder), die Kostenschätzung sowie die Betrachtung der Wirtschaftlichkeit in Hinblick auf zukünftige Trends.

2 Projektstruktur

2.1 Art des Projektmanagements

Allgemein kann das Projekt als Entwicklungsprojekt bzw. Mehrpersonen-Projekt bezeichnet werden. Dabei wird auf einer fest umrissenen Planungsbasis mit fest definierten Zielen gearbeitet. Zudem erfordert die aufwändige Aufgabenstellung den Einsatz von Projektgruppen, welche von einem Projektleiterteam geleitet werden (Olfert, 2012). Im Rahmen des Masterstudiums kann die Aufgabenstellung zudem nur als Teilzeitprojekt bearbeitet werden.

Wenn man das Masterstudium als eine Ansammlung von Teilprojekten der Studenten betrachtet, kann die Organisation des Entwicklungsprojekts als Matrix-Projektorganisation bezeichnet werden. Dies ist eine Mischform aus reiner Projektorganisation, in der die Projektgruppen für die Projektdauer vollständig aus den Fachabteilungen herausgelöst werden, und Stabs-Projektorganisation. Bei zuletzt genanntem koordiniert ein Projektleiter oder eine Projektleitergruppe den Ablauf des Projekts und übernimmt eine Vermittlerrolle, die den Informationsfluss zwischen den Gruppen kontrolliert. Die Leiter der Fachabteilungen üben einen großen Einfluss auf die Arbeit der Projektgruppen aus.

In Abbildung 1 ist die gewählte Organisationsstruktur des Projektes dargestellt.

Abbildung 1: Schema der Organisationsstruktur des Projektes

Die betreuenden Professoren nahmen während der Projektbearbeitung die Stellung des Auftraggebers an. Mit ihnen konnten Details besprochen und Probleme geklärt werden. Die Projektleitergruppe koordiniert im Projektverlauf den Informationsfluss, die Einhaltung des Zeitplans und trifft Entscheidungen bei inhaltlichen Problemstellungen. Zudem schließt sie eine Beraterfunktion für die Fachgruppen mit ein, durch die Probleme und Entscheidungen mit dem Auftraggeber geklärt werden. Die Fachgruppen werden jeweils von einem Gruppenleiter geführt, welcher in regelmäßigen Abständen die Projektleiter über den Arbeitsfortschritt unterrichtet. Gegenüber den Projektmitgliedern in den Fachabteilungen sind die Gruppenleiter in der Entscheidungsgewalt weitestgehend mit den Projektleitern gleichgestellt, sodass die Gruppenleiter keine permanente Rücksprache mit den Projektleitern halten müssen. Dies führt dazu, dass die Projektleiter zusammen mit den Gruppenleitern gemeinsam die Projektverantwortung tragen. Daraus resultiert zwar eine höhere Flexibilität der Fachgruppen in ihrem Arbeitsverhalten, es erfordert aber auch eine erhöhte Überwachung des Projektfortschritts seitens der Projektleiter. (Olfert, 2012)

2.2 Gruppeneinteilung

Es erfolgte eine Einteilung in sechs themenbezogene Arbeitsgruppen und eine Projektleitergruppe. Diese sind nachfolgend aufgelistet:

- Projektleiter
- Gruppe 1: Wirtschaftlichkeit

Gruppe 3: Polygeneration

- Gruppe 4: (Reverse) Wasser-Gas-Shift
- Gruppe 2: Elektrolyse
- Gruppe 6: CO₂-Absorption

Gruppe 5: Methanolsynthese

Die personellen Aufstellungen und die bearbeiteten Aufgabenpakete der einzelnen Gruppen sind im Folgenden dargestellt. Um die Einteilung der Mitarbeiter in die einzelnen Gruppen zu realisieren, wurde vorab in ILIAS eine Umfrage durchgeführt. Zur Wahl standen dabei:

- 1. Einteilung durch das Projektleitungsteam
- 2. Ernennung von Gruppenleitern durch das Projektleitungsteam, welche ihre Mitglieder selbst wählen
- 3. Individuelle Einteilung

Die Mitarbeiter sprachen sich in der Mehrheit dafür aus, sich selbst einzuteilen. Dies geschah unter der Leitung der Projektleiter im Zuge eines Gesamtmeetings. Nachdem sich die einzelnen Gruppen gefunden hatten, wurde ihnen eine Zeitspanne von 30 min gegeben, um ihren jeweiligen Gruppenleiter zu bestimmen.

Nachfolgend sind in Tabelle 1 bis Tabelle 7 die jeweiligen Gruppen mit ihren Leitern, Mitgliedern (nach Nachnamen alphabetisch sortiert) und Aufgaben dargestellt.

Projektleiter			
Mitglieder Spezifische Aufgaben			
Hennig, Alexander	Kommunikation mit den Auftraggebern, Präsentationen		
Ruppach, Antje Sent, Theresa	Inhaltliche Planung und Korrekturen, Zeitplanung, Erstellung der Vorlagen, Formatierung der Berichte, Protokollführung		
Weinand, Johannes	Erinnerung an Abgabefristen, Mitarbeiterkontakt, Protokollführung		

Tabelle 1: Personelle Aufstellung und Aufgabenbereiche der Projektleitergruppe

Tabelle 2: Personelle Aufstellung und Aufgabenpakete der Wirtschaftlichkeitsgruppe

Gruppe 1: Wirtschaftlichkeit			
Gruppenleiter	Mitglieder	Aufgaben	
Hartung, Sascha	Bartsch, Cindy	Recherche zur Stromproduktion, wirtschaftliche	
	Hernsdorf, Anne	Elektrolyse, RWGS, Methanolsynthese und CO ₂ -Absorption	
	Jiang, Yingqing	aus Luft, wirtschaftliche Beurteilung der verschiedenen Szenarien	
_	Xia, Ping	Szenanen	

Tabelle 3: Personelle Aufstellung und Aufgabenpakete der Elektrolysegruppe

Gruppe 2: Elektrolyse		
Gruppenleiter	Mitglieder	Aufgaben
Meyer, Marcus	Chen, Miaowei	Recherche zu Prozessoptionen und Lagerungsmöglich-
	Ding, Xiatong	Verfahrensfließbilder, Stoff- und Energiebilanzen,
	Reinecke, Tim	Simulation mittels ChemCAD, Aufstellungs- und Ex-
	Schwarz, Christian	2011-11 Jane

Tabelle 4: Personelle Aufstellung und Aufgabenpakete der Polygenerationsgruppe

Gruppe 3: Polygeneration			
Gruppenleiter	Mitglieder	Aufgaben	
Pyka, Philipp	Eckhardt, Sven	Recherche zu Kraftwerkstechnologien und	
	Figur, Hans-Jürgen	Prozessoptionen, Prozessauswahl,	
	Pietzonka, Sebastian	wirtschartlichkeitsbetrachtung	
	Thomas, Nico		

Gruppe 4: Reverse Wasser-Gas-Shift		
Gruppenleiter	Mitglieder	Aufgaben
Philipp, Marcel	Gruschwitz, Tony	Recherche zu Prozessoptionen und alternativen
	Pan, Zhengdong	Prozessbeschreibung, Verfahrensfließbild, Simulation
	Sachs, Rolf	mittels ChemCAD, Stoff- und Energiebilanzen,
	Wiedecke, Franziska	

. . .

~

Tabelle 5: Personelle Aufstellung und Aufgabenpakete der Reverse Wasser-Gas-Shift-Gruppe

Tabelle 6: Personelle Aufstellung und Aufgabenpakete der Methanolsynthesegruppe

Gruppe 5: Methanolsynthese			
Gruppenleiter	Mitglieder	Aufgaben	
Pujan, Robert	Heinrich, Franziska	Recherche zu Prozessoptionen, Prozessauswahl,	
	Hermann, Christian	Prozessbeschreibung, Verfahrensfließbild, Simulation	
	Lagatz, Henry	Aufstellungs- und Ex-Zonen-Pläne	
	Vetter, Marcel		

Tabelle 7: Personelle Aufstellung und Aufgabenpakete der CO₂-Absorptions-Gruppe

Gruppe 6: CO2-Absorption				
Gruppenleiter	Mitglieder	Aufgaben		
Fischer, Johannes	Finzel, Christopher			
	Fischbach, Daniel	Prozessbeschreibung, Verfahrensfließbild, Simulation		
	Hähnel, Mirko	mittels ChemCAD, Bewertung der Wirtschaftlichkeit		
	Huang, Ping			

Zusätzlich zu ihren gruppeninternen Aufgaben wurden von Herrn Sascha Hartung und Frau Cindy Bartsch Sonderaufgaben übernommen. Dabei handelt es sich um die Erstellung und Betreuung des ILIAS-Forums, also der Kommunikationsplattform des Projektes, sowie der Erstellung des abschließenden Fazits.

2.3 Zeitplanung

Für die zeitliche Planung des Projekts wurden regelmäßig mit Microsoft Projekt 2013 erstellte Zeitpläne in der Arbeitsgruppe "Entwicklungsprojekt MCUI13" im Ilias-Forum der Hochschule Merseburg hochgeladen. Zusätzlich wurden die Änderungen in den zweiwöchentlichen Gruppenleiter-Meetings bekannt gegeben.

Abbildung 2: Bildschirmaufnahme des Ilias-Forums "Entwicklungsprojekt MCUI13"

Die Zeitpläne wurden in 3 große Abschnitte unterteilt: "Sommersemester 2014", "vorlesungsfreie Zeit 2014" und "Wintersemester 2014/2015". Der größte Unterschied zwischen den drei Zeitabschnitten bestand in der Verfügbarkeit der Mitarbeiter. Anfang bis Mitte der Zeitabschnitte "Sommersemester 2014" und "Wintersemester 2013/2014" lag der Großteil der Aufgaben. Gegen Ende der Zeitabschnitte waren alle Mitarbeiter in anderen Projekten mit einem stark erhöhten Arbeitsaufwand belastet (Prüfungszeit). In diesen Zeiträumen wurden wenig bis keine Aufgaben bearbeitet. Der Zeitabschnitt "vorlesungsfreie Zeit 2014" zeichnet sich durch sehr schlechte Ab- und Rücksprachemöglichkeiten sowie einen schlechten Zugriff auf Programme aus dem Angebot der Hochschule Merseburg (z.B. ChemCAD) aus. Deshalb wurden in diesem Zeitabschnitt nur Aufgaben durchgeführt, welche kein Teamwork, keine Rücksprachen und keine Simulationssoftware erforderten.

Generell wurde die Zeitplanung so konzipiert, dass aufeinander aufbauende Arbeitspakete sinnvoll nacheinander geschaltet sind. Kleine Zeiträume für unerwartete Probleme und Korrekturen wurden eingeplant. Bei größeren Problemen wurden die Zeitpläne angepasst.

Nr.	Vorgangsname	Anfang	Ende	Oktober 2014 November 2014 Dezember 2014 Januar 2015 Februar 20 40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 29.0906.1013.1020.1027.1003.1110.1117.1124.1101.1208.1215.1222.1229.1205.0112.0119.0126.0102.0209.01 1020.0209.01 1020.012.0119.0126.0102.0209.01 1020.009.01 <td< th=""></td<>
1	Gruppe 1 (Wirtschaftlichkeitsbetrachtung)	Mon 13.10.14	Son 11.01.15	
2	Recherche Überschussstrom	Mon 13.10.14	Son 02.11.14	
3	Investitions- und Betriebskosten	Mon 17.11.14	Son 14.12.14	
4	Berechnung versch. Einstiegsszenarien	Mon 17.11.14	Son 14.12.14	
5	Präsentationserstellung	Mon 15.12.14	Son 11.01.15	

Abbildung 3: Ausschnitt des Zeitplans "Wintersemester 2014/2015"

Die drei Zeitpläne in voller Länge sind im Anhang R enthalten.

3 Stromproduktion

3.1 Stromproduktion in den Jahren 2012/2013

Im Jahr 2012 wurde in der Bundesrepublik Deutschland eine Gesamtmenge von 617 Mrd. kWh elektrische Energie erzeugt. Der Großteil der Bruttostromerzeugung erfolgt aus der Verbrennung von Braunkohle (25,6%), Steinkohle (19,1%) und Erdgas (11,3%). Einen Anteil von 16% erzeugen Kernkraftwerke, deren Einfluss jedoch in Zukunft weiter abnehmen wird.

Erneuerbare Energien nehmen bereits einen Anteil von 21,9% an der Gesamterzeugung ein. Das entspricht in etwa einer erzeugten Energie von 135 Mrd. kWh. Die Winderzeugung stellt davon einen Anteil von einem Drittel bereit. Einen Viertel der erzeugten erneuerbaren Energie wird durch Biomasseanlagen bereitgestellt. Photovoltaik- und Wasserkraftanlagen liefern den restlichen Teil. (Bundesverband der Energie- und Wasserwirtschaft, 2013)

Abbildung 4: Brutto-Stromerzeugung – Anteile nach Energieträgern 2012 (Bundesverband der Energieund Wasserwirtschaft, 2013)

Die Anteile liegen im Jahr 2013 in einer ähnlichen Größenordnung (vgl. Abbildung 5).

Abbildung 5: Brutto-Stromerzeugung – Anteile nach Energieträgern 2013 (Bundesverband der Energie- und Wasserwirtschaft, 2013)

Stromproduktion

3.2 Prognostizierte Stromerzeugung im Jahr 2030

Die Zusammensetzung der erzeugten elektrischen Energie wird sich bis zum Jahr 2030 verändern. Durch den Ausbau der erneuerbaren Energien und verschärfte Klimaschutzbedingungen wird sich die Hauptstromerzeugung von den Primärenergieträgern Kohle und Kernenergie entfernen.

In der obenstehenden Grafik wird ein Anteil von ca. 34% für die Erzeugung der Energie aus Kohle angenommen, eine Reduzierung um mehr als 10%-Punkte im Vergleich zu 2012/2013. Erdgas jedoch soll einen größeren Anteil am Energiemix einnehmen. Laut Prognose liegt es 2030 bei ca. 16% der Gesamterzeugung, was einer Zunahme von ca. 5%-Punkten entspricht. Der Anteil an erneuerbaren Energien soll bis 2020 auf 27% und bis 2030 auf 38% ansteigen.

3.3 Regelenergie (Regelleistung)

3.3.1 Allgemeines

Elektrische Energie kann nicht in großen Mengen gespeichert werden. Das bedeutet, dass immer genauso viel Energie erzeugt bzw. zur Verfügung gestellt werden muss, wie benötigt (verbraucht) wird. Jedoch sind weder das Lastverhalten der Verbrauchsseite noch das Entstehungsverhalten bei erneuerbaren Energien exakt vorhersehbar, weshalb es zu natürlichen Schwankungen im Versorgungssystem kommen kann. Dafür stehen verschiedenste Regelsysteme bereit. Ein Indikator für eine schwankende Versorgung ist die Netzfrequenz. Sollwert der Netzfrequenz ist im europäischen Bereich ein Wert von 50 Hz.

Abbildung 6: Stromerzeugung vs. Bruttostromverbrauch 2011-2030 (IER, März 2010)

Dieser Wert darf nur in sehr geringen Grenzen schwanken, um keinerlei Störungen bei den Verbrauchern auszulösen. Dazu steht in Europa ein dreistufiges Regelsystem zur Verfügung.

3.3.2 Primärregelung, Sekundärregelung, Minutenreserve

Laut des Übertragungsnetzbetreibers Amprion GmbH funktioniert die Regelleistung wie folgt: Drei Regelungsstufen treten nacheinander und zu verschiedenen Zeiten ein. Sie müssen sowohl Netzüber- als auch Netzunterdeckung kompensieren können. Die Primärregelung muss nach 30 Sekunden in vollem Umfang abrufbar sein, um den jeweiligen Wert der Netzfrequenz wieder auf den Sollwert zu regeln. Hierfür müssen alle Kraftwerke im europäischen Verbundsystem (UCTE) zwei Prozent ihrer Nenn-Anschlussleitung zur Verfügung halten (50Hertz Transmission GmbH, 2014).

Abbildung 7: Netzregelsystem (Statkraft Markets GmbH, 2014)

Auch die Sekundärreserve muss vollständig abrufbar zur Verfügung stehen, jedoch ist hier ein Anfangszeitpunkt von 15 Minuten nach dem Eintreten der Netzunregelmäßigkeit vorgeschrieben. Die Sekundärregelung wird durch schnell an- und abfahrbare Pumpspeicherwerke oder Gasturbinenkraftwerke realisiert (Amprion GmbH, 2014). Nach dem Einsatz der Sekundärregelung wird die Primärregelung deaktiviert. Für die Minutenreserve (auch Tertiärregelung) gibt es keine Zeitvorgabe. Als Quellen für die Minutenreserve stehen unterschiedliche Möglichkeiten zur Verfügung, von konventionellen Kraftwerken bis hin zu regelbaren Lasten (50Hertz Transmission GmbH, 2014). Dieser Bedarf oder Überschuss an Energie wird in regelmäßigen Abständen ausgeschrieben und führt schlussendlich zu einem Bilanzausgleich nach einer gewissen Zeit (Amprion GmbH, 2014).

3.4 Überschussstrom

Das System zur Einhaltung der Netzfrequenz bei schwankender Netzlast besteht aus einem komplizierten Gefüge unterschiedlicher Regelbeiträge (Primärregelung, Sekundärregelung, Minutenreserve). Eine auftretende Änderung der Netzlast, sowohl in positiver (Stromüberangebot) als auch in negativer (Strommangel) Richtung wird durch dieses bestehende System bereits schnellstmöglich ausgeglichen.

Die mögliche industrielle Verwendung von Überschussstrom, erzeugt durch regenerative Quellen, gehört zu solch einer geänderten Nutzlast. Bereits kurz nach dem Entstehen des Überschussstroms wird dieser durch das Regelsystem abgefangen (Wirkung der Primärregelung bereits nach 30 s). Eine weitere industrielle Verwendung gestaltet sich somit schwierig, da diese Netzschwankung nicht beim Stromendkunden (Industrie bzw. private Haushalte) ankommt. Eine Möglichkeit der Verwendung des entstandenen Überschussstroms liegt in der Elektrolyse in das Regelsystem, sodass es als Minutenreserve verwendet werden kann.

4 Vorbetrachtungen zur Wirtschaftlichkeit

4.1 H₂-Erzeugung

Aktuell wird Wasserstoff überwiegend aus fossilen Energieträgern gewonnen (nach Energieportal24, 2014). In Deutschland werden ca. 5 % und weltweit ca. 2 % über Chlor-Alkali-Elektrolyse produziert (siehe Tabelle 8).

	Deutschland [Milliarden Nm ³]	Welt [Milliarden Nm ³]
Dampfreformierung von Erdgas oder Naphta	6	190
Partielle Oxidation von Schweröl	3	120
Petrochemie: Benzinreformierung	2,5	90
Petrochemie: Ethylenproduktion	3,6	33
Sonstige chemische Industrie	0,9	7
Chlor-Alkali-Elektrolyse	0,9	10
Kohlevergasung (Koksgas)	2,1	50
Gesamt	19	500

Tabelle 8: Herstellungsmengen von Wasserstoff (nach Energieportal24, 2014)

In Tabelle 9 werden verschiedene Wasserstoffherstellungsverfahren gegenüber gestellt (nach Nitsch, et al., 2002). Es wird deutlich, dass der Elektrolyse-Prozess heutzutage aus energetischer Sicht nicht mit der Dampfreformierung von Erdgas konkurrieren kann. Mit steigenden Kosten von fossilen Energieträgern und fortschreitender Kostenreduzierung von Elektrolyse-Komponenten sowie auf Grund von Umweltaspekten kann jedoch davon ausgegangen werden, dass zukünftig der Anteil an regenerativer Wasserstoffproduktion zunimmt.

Die Wasserstoffentstehungskosten setzen sich im Wesentlichen aus den Investitionskosten, den Energiekosten, der Anlagenauslastung, dem elektrischen Wirkungsgrad und den Nebenkosten, wie z.B. Lieferung, Montage und Wartung, zusammen (Smolinka, et al., 2011). Wie Abbildung 8 zeigt, liegen die Wasserstoffherstellungskosten aus Erdgas bzw. Kohle aktuell unterhalb von 5 ct/kWh. Mit Verwendung regenerativer Energiequellen betragen die Produktionsausgaben mindestens 8 ct/kWh. Wasserstoff aus Elektrolyse kann also heutzutage aus ökonomischer Sicht nicht mit fossilen Verfahren konkurrieren, könnte aber durch steigende Erdölpreise zukünftig rentabel werden.

	Dampfreformierung von Erdgas		Vergasung von Biomasse		Alkalische Wasser- elektrolyse (Modul)	
	heute	> 2020	heute	> 2020	heute	> 2020
H ₂ - Produktion , Nm ³ /h	100 000	100 000	13 000	13 000	500	500
MW _{H2}	300	300	40	40	1,5	1,5
Lieferleistung Rohstoff, MW	405	385	55 ¹⁾	53 ¹⁾	0.70	
Strombedarf, MW	1,5	1,5	3,0	2,8	2,05	1,95
Prozessnutzungsgrad, %	74	78	73	76	73	77
Wasserbedarf, m³/h	58	58	28	28	0,43	0,43
Arbeitsdruck, bar	30	30	50	50	30	100
Bereitstellungsnutzungsgrad von GH ₂ frei mittelgroßem- Verbraucher (einschließlich Anlagenerstellung, Rohstoff- beschaffung, Hilfsenergie), %	64	68	60	66	63 ²⁾	67 ²⁾
Investitionskosten, EUR/kW H2	350	350	ca. 700	ca. 500	1 000	ca. 700

Tabelle 9: Eckdaten ausgewählter Wasserstoffherstellungsverfahren (nach Nitsch, et al., 2002)

1) entspricht rund 12 t/h Holz

2) ohne Bereitstellung des regenerativen Stroms; jedoch unter Berücksichtigung von Transportverlusten über 3000 km mittels HGÜ

- gasförmig; frei Grossabnehmer -

Abbildung 8: Wasserstoffentstehungskosten (gasförmig), fossil und regenerativ (nach Nitsch, et al., 2002)

- SKW solarthermische Kraftwerke
- PV Photovoltaik

Vorbetrachtungen zur Wirtschaftlichkeit

4.2 Methanol-Produktion

Zur Herstellung von Methanol existieren heutzutage verschiedene Prozesse. Konventionell wird das nötige Synthesegas aus Erdgas erzeugt und dieses katalytisch zu Methanol umgesetzt. Die Produktion von Methanol auf Kohlebasis ist ein weiteres etabliertes Verfahren, das insbesondere in China bevorzugt Anwendung findet (Su, et al., 2013). In den letzten Jahren stand außerdem die Methanolherstellung aus Biomasse oder Biogas im Fokus der Forschung. Auf Grund der hohen Erzeugungskosten sind diese Verfahren jedoch kaum interessant für kommerzielle Unternehmen. Tabelle 10 gibt einen Überblick über die Produktionskosten für Methanol in verschiedenen Anlagen (nach Bandi, et al., 2004).

Tabelle 10: Übersicht über Methanolerzeugungskosten verschiedener Anlagen (nach Bandi, et al., 2004)

Verfahren	CHOREN (Biomasse)	Schwarze Pumpe (Abfall+ Kohle)	CHEMREC, Schweden (black liquor)	LPMEOH [™] Air Products (Kohle)	Erdgas
Anlagegröße	400.000 t _{меон} /а а)	120.000 t _{МеОн} /а	410.000 t _{меон} /а	160.000 t _{МеОн} /а	
Energetischer Wirkungs- grad der Methanol- herstellung, % ^{e)}	54 (60) ^{b)} 80°)	50 (Gesamt- wirkungsgrad)		71	
Anlagekosten, Mio EUR	45		150 (nur für Methanolanlage)	30	
Betriebskosten, % der Anlagekosten/a		Ca. 10		10	
Methanolerzeugungs- kosten, EUR/t	400 ^{d)}	150-180 ^{e) f)}	182	110-120 ^{f)}	80-95

a) für eine 500 MW_{th}Anlage

b) 60% für größere Anlagen

c) Vergasungswirkungsgrad (Kaltgas)

 d) mit Biomassepreis von 70 EUR/t, Angaben von CHOREN im Juni 2004 (Kosten entfallen zu 1/3 auf Biomasse, 1/3 auf Personal und 1/3 auf Betrieb und Wartung / Instandhaltung)

e) Stoff-Kraft-Kopplung

f) Angaben von SVZ im Juni 2004

Da Methanol überwiegend aus Erdgas gewonnen wird, reagiert der Methanol-Preis höchst sensitiv auf den Erdgas-Preis. Es wird angenommen, dass eine Erhöhung des Erdgas-Preises um 1 \$/GJ durchschnittlich eine Steigerung des Methanol-Preises um 37 \$/t nach sich zieht (Raschka, 2002). Die Preisentwicklung seit 2002 ist in Abbildung 9 dargestellt (Methanex Corporation, 2014; Gelsenchem Chemical Products GmbH, 2014). Seit Januar 2010 konnte im Mittel eine jährliche Preissteigerung um ca. 6% beobachtet werden. Im Oktober 2014 beläuft sich der aktuelle Methanolpreis auf 354 €/t bzw. 482 \$/t (Methanex Corporation, 2014).

Bei der Methanol-Produktion aus Biogas- bzw. Biomasse können Erzeugungskosten von bis zu 400 - 500 €/t anfallen (Forschungs-Informations-System, 2010), sodass sich ein kommerzieller Betrieb solcher Anlagen aus ökonomischer Sicht (noch) nicht lohnt.

Abbildung 9: Methanolpreisentwicklung von 2002 bis zum Frühjahr 2014 (Methanex Corporation, 2014; Gelsenchem Chemical Products GmbH, 2014)

5 Elektrolyse

5.1 Prozessoptionen

Aus der Bilanz des Verfahrens ergibt sich, dass die Elektrolyse einen Wasserstoffbedarf von 65,62 Gmol/Jahr decken muss. Dieser sollte laut ursprünglicher Zielsetzung des Projekts durch Überschussstrom erzeugt werden. Dieser theoretische Überschussstrom wurde als nicht durchgängig verfügbare Stromquelle angedacht, wodurch es zu häufigem An- und Abfahren der Elektrolyse kommt. Im Folgenden sollen die existierenden Elektrolyseverfahren vorgestellt werden und hinsichtlich ihrer Eignung für die gegebene Problemstellung geprüft werden.

5.1.1 Alkalische Elektrolyse

Bei der alkalischen Elektrolyse (AEL) wird meist eine 20-40%ige wässrige Kaliumhydroxidlösung (Smolinka, et al., 2010 S. 10) als Elektrolyt eingesetzt. Außerdem wird bei einer erhöhten Temperatur von ca. 80°C gearbeitet, was zu geringen Stromeinsparungen führt (Roesler, 1994 S. 48). Es ist möglich, die Elektrolyse unter Druck zu betreiben, um die Produktgase unter erhöhten Druck herzustellen (Roesler, 1994 S. 48), wodurch Kompressionsstufen eingespart werden können.

Die Trennung von Kathoden- und Anodenraum erfolgt mit einem porösen Diaphragma, welches beispielsweise aus Asbest oder Ton besteht (Roesler, 1994 S. 43). Beide Elektrolyseräume sind mit wässriger Kaliumhydroxidlösung gefüllt, welche als Elektrolyt fungiert. Das Kaliumhydroxid wird nur einmalig in das System eingebracht und dort nicht verbraucht. Der Apparatur wird beidseitig Frischwasser zugeführt.

Die Elektroden sind nah am Diaphragma angebracht, um Widerstandsverluste zu minimieren. Folgende Einzelreaktionen ergeben sich (Wenske, 2008):

Kathode	$2 \text{ H}_2\text{O} + 2 \text{ e}^{\text{-}} \rightarrow \text{H}_2 + 2 \text{ OH}^{\text{-}}$
Anode	$2 \text{ OH}^- \rightarrow \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 + 2 \text{ e}^-$

In Tabelle 11 sind die Vor- und Nachteile der AEL aufgelistet.

Tabelle 11: Vor- und Nachteile der AEL

Vorteile	Nachteile	
einfacher Aufbau	Elektrolysezelle muss auf Betriebstemperatur erhitzt werden	
vergleichsweise geringe Anschaffungskosten	erhöhte Anfahrzeit	

5.1.2 Membranelektrolyse

Die Membranelektrolyse (Protonen Exchange Membrane Elektrolyse; PEMEL) benutzt reines Wasser für die Elektrolyse. Das Wasser wird über den Anodenraum in die Elektrolysezelle gebracht und an einer Protonenaustauschmembran elektrolysiert. Die Protonen wandern durch die Membran und werden an der Kathodenseite in gasförmigen Wasserstoff umgewandelt. Es wird bei Betriebstemperaturen von bis zu 80°C gearbeitet.

Abbildung 11: Aufbau und Reaktionen der PEMEL (Wenske, 2008)

Abbildung 12: Aufbau Protonenaustauschmembran (Leichtfried, 2007)

Der Elektrolyt ist in der fluorierten, organischen Membran in Form von Sulfonsäuregruppen fixiert. Da bei der Elektrolyse örtlich sehr niedrige pH-Werte entstehen, sind entsprechend wertvollere Elektrodenmaterialien notwendig. Üblicherweise werden Pt- oder Pd-Elektroden eingesetzt (Roesler, 1994 S. 44).

In Tabelle 12 sind die Vor- und Nachteile der PEMEL aufgelistet.

Tabelle	12: Vo	or- und	Nachteile	der	PEMEL
1 4 8 0 11 0			11401110110		

Vorteile	Nachteile
keine Gefahrstoffe	hohe Investitionskosten
weitgehend wartungsfrei	moderater Wirkungsgrad
kompakte Bauweise	Lebensdauer der Membran
schnelles Anfahrverhalten	
erzeugt hochreinen Wasserstoff ohne aufwendige Nachreinigung	

5.1.3 Hochtemperaturelektrolyse

Die Besonderheit der Hochtemperaturelektrolyse (HTEL) besteht in dem Einkoppeln von Wärme in den Elektrolyseprozess. Dadurch steigt der Gesamtenergiebedarf, der zur Spaltung des Wassers nötig ist. Gleichzeitig fällt jedoch der Gesamtelektrizitätsbedarf deutlich ab. Bei Temperaturen von 800 bis 1000°C wird die endotherme Zersetzung des Wassers soweit gefördert, dass sich eine Einsparung von bis zu 25% des Elektrizitätsbedarfs ergibt. Es wird also ein Teil der aufzubringenden Energie durch Wärme gedeckt.

Bei der Hochtemperaturelektrolysezelle sind Kathode und Anode durch eine Membran voneinander getrennt. An der Kathode strömt Wasserdampf entlang. Beim Anlegen einer Spannung wird das Wasser gespalten. Dabei verbleibt der gebildete Wasserstoff im Wasserdampfstrom, der Sauerstoff wandert im Status nascendi als O²⁻-Ion durch die Membran und bildet auf der Anode molekularen Sauerstoff.

Abbildung 13: Prinzipieller Aufbau einer HTEL-Zelle

In Tabelle 13 sind die Vor- und Nachteile der HTEL aufgelistet.

Vorteile	Nachteile
Einsparung von Elektroenergie	lange An- und Abfahrzeiten
Nutzung von Abwärme aus anderen Prozessen	mechanische und chemische Materialprobleme durch teilweise extreme Prozessbedingungen
	viel Abwärme aus externen Prozessen nötig, ideal bei Geothermie / Solarthermie → jedoch ist bei guter Isolierung auch ein Ausgleich der Wärmeverluste durch elektrisches Nachheizen möglich

Tabelle 13: Vor- und Nachteile der HTEL

5.1.4 Diskussion

Die Hochtemperaturelektrolyse zeichnet sich durch sehr hohe Stromwirkungsgrade aus. Ein Nachteil ist jedoch, dass die Technologie noch nicht ausreichend erforscht ist, um großtechnische Prozesse hinreichend zu spezifizieren. Unabhängig davon wäre das Problem der Wärmebereitstellung zu lösen. Abwärmen aus Produktströmen und nachgeschalteten Reaktionen bieten zwar hohe Abwärmen, jedoch nicht auf ausreichend hohem Temperaturniveau. Um die HTEL nutzen zu können, wäre Abwärme von Betrieben mit ausreichend hohem Temperaturniveau nötig (z.B. Müllverbrennung, Kohlekraftwerke).

Die alkalische Elektrolyse ist das am meisten erprobte Verfahren unter den Elektrolysetechniken. Die geringen Investitionskosten machen sie vergleichsweise attraktiv. Ein Nachteil der AEL ist jedoch die notwendige Vorwärmphase vor der Produktion. Wenn die Phasen des Überschussstroms genau voraus bestimmt werden können, wäre dieser Nachteil nichtig. Wenn die Prozessabwärmen von nachgeschalteten Prozessen genutzt werden, um die Elektrolysezellen dauerhaft auf Betriebstemperatur zu halten, wäre die AEL eine gute Alternative.

Die PEMEL erscheint für die Aufgabenstellung das Verfahren der Wahl. Es ist keine Vorwärmphase notwendig, so dass die Überschusszeiten optimal ausgenutzt werden können. Die Produktreinheit ist für weitere Synthesen gut geeignet, da im Wasserstoff kein Wasser vorliegt. Ein entscheidender Nachteil dieser Technologie ist die Notwendigkeit von edlem Elektrodenmaterial. Dadurch ergeben sich hohe Investitionskosten.

5.2 Wasserstofflagerung

Inhalt der Aufgabenstellung ist eine kontinuierlich arbeitende Methanolsynthese. Wenn die Elektrolyse mit nicht durchgängig verfügbarem Überschussstrom betrieben werden soll, kommt es zu einer diskontinuierlichen Wasserstoffproduktion. Um diesen Schwankungen entgegen zu wirken, muss eine Wasserstofflagerung vor nachfolgende Prozesse geschaltet werden.

Die Lagergröße wird maßgeblich von den Standby-Zeiten der Elektrolyse bestimmt, in welchen kein Überschussstrom verfügbar ist. Es werden drei Speichergrößen betrachtet, wobei der volle Speicher die Methanolsynthese 12 h, 2 Tage bzw. 1 Woche kontinuierlich betreiben können soll. Aus der Gesamtbilanz ergibt sich, dass die Speicher 2,2 Mio. Nm³; 8,8 Mio. Nm³ bzw. 31 Mio. Nm³ fassen können müssten, bei einem Verbrauch der Methanolsynthese von 183.850 Nm³/h H₂.

Als Speichervarianten werden die Druckgasspeicherung, die Flüssiggas-Speicherung und die Kavernenspeicherung betrachtet. Die Speicherung als Metallhydrid, im Slush oder im überkritischen Zustand werden nicht weiter aufgeführt, da diese als Speichermöglichkeiten direkt ausgeschlossen werden konnten (Töpfler, et al., 2014 S. 54-55). Die Lagerung als Metallhydrid würde zu große Mengen Metall beanspruchen. Die Lagerung im Slush ist aufgrund des hohen Aufwands technisch nicht ökonomisch und die überkritische Lagerung befindet sich noch im Entwicklungsstadium (Stand: 2014) (Töpfler, et al., 2014 S. 54).

5.2.1 Druckgasspeicherung

Die Gasspeicherung erfolgt unter Druckbeaufschlagung in Druckbehältern. Mit der Druckerhöhung verringert sich das Gasvolumen, sodass das nötige Behältervolumen mit der jeweiligen Druckstufe sinkt. Für Autos wurden bereits Druckbehälter für Wasserstoff in einem Bereich bis 700 bar entwickelt (Töpfler, et al., 2014 S. 53). Druck-Gasspeicher fassen typischerweise Volumina von bis zu 10.000 m³ bei Drücken bis zu 200 bar. Niederdruckspeicher hingegen besitzen Volumina von bis zu 600.000 m³ bei Lagerungsdrücken von 12 – 16 bar (Roesler, 1994 S. 129).

Bei der vereinfachten Umrechnung mit der idealen Gasgleichung auf die jeweiligen Drücke bei gleichbleibender Temperatur (273,15 K Normtemperatur), ergeben sich folgende nötige Behältervolumina für die Speicher:

Lagerzeit	12 Stunden	2 Tage	1 Woche
12 bar	186000 m³	745000 m³	2608000 m³
16 bar	140000 m³	559000 m³	1956000 m³
200bar	11000 m³	45000 m³	156000m³
700 bar	3200 m³	12800 m³	44700 m ³

Tabelle 14: Gerundete H₂-Lagervolumen bei Drucklagerung unter verschiedenen Drücken

Es zeigt sich, dass bei der Verwendung eines einzigen Niederdruckspeichers in Maximalausführung (600.000 m³ und 16 bar) Vorratszeiten von 2 Tagen erreichbar sind. Die Maximalausführung eines einzelnen Druckgasspeichers (10.000 m³ und 200 bar) würde lediglich 13,8 h ausreichen.

Bei einer Entscheidung zwischen Niederdruck- und Druckgasspeicherung spielt vor allem die Platzverfügbarkeit eine entscheidende Rolle. Bei höheren Speicherdrücken kann die Anlage bedeutend kleiner gebaut werden. Die Produktstromdrücke des Wasserstoffs liegen bei etwa 14 bar, was eine Niederdruckspeicherung prädestiniert, da nur eine geringe weitere Energiezufuhr notwendig wäre. Die nachgeschaltete Methanolsynthese kann mit verschiedenen, mitunter auch hohen Drücke betrieben werden. Bei der Wahl einer Methanolsynthese mit hohen Drücken kann es sinnvoll sein, die Kompression der Speicherung vorzuschalten, um daraufhin die Druckgasspeicherung zu nutzen.

5.2.2 Flüssiggas-Speicherung

Bei der Flüssiglagerung wird der gasförmige Wasserstoff über das Linde-Verfahren verflüssigt und in kryogenen Lagertanks gespeichert. Es kommt zu einer hohen Stoffdichte und damit wiederum zu einer Verringerung der Speichergröße. Die Tanks speichern Wasserstoff bei -253 °C und 6 bis 9 bar. Bei diesen Bedingungen ergibt sich eine Dichte von 56,8 kg/m³ (680,7 Nm³/m³) (Hirscher, 2010 S. 17).

Ein entscheidender Nachteil ist, dass für die Herunterkühlung des Wasserstoffs viel Energie aufgebracht werden muss. Außerdem führt der Temperaturunterschied zur Umgebung zu einem dauerhaften Energieeintrag, welcher durch Isolierung und Kühlung ausgeglichen werden muss.

Vorteil dieser Technologie ist, dass bei der Verdampfung des flüssigen Wasserstoffs andere verflüssigte Gase nicht verdampfen. Es kommt bei der Entnahme zu einer Reinigung des Wasserstoffstroms (Töpfler, et al., 2014 S. 54). Auf lange Sicht gesehen kann es zu einer Anreicherung von Wasser, Stickstoff und Sauerstoff im Flüssigtank kommen.

Für die Speicherzeiträume wären Tankgrößen von 3240 m³ (12 Stunden), 12970 m³ (2 Tage) bzw. 45380 m³ (1 Woche) einzuplanen.

5.2.3 Kavernenspeicherung

Für die Lagerung von Gasen können auch ausgediente Salzstöcke verwendet werden. Die Speicherung von Wasserstoff in Salzkavernen wurde bereits vor 30 Jahren erfolgreich umgesetzt (UK und Texas, USA) (Töpfler, et al., 2014 S. 55). Die Verluste in diesen Speichern liegen bei unter 0,01% (Töpfler, et al., 2014 S. 55). Es existieren nutzbare Kavernen von bis zu $3 \cdot 10^8$ m³ Fassungsvermögen, bei denen der Betriebsdruck bis auf 60 bar gesetzt werden kann (Roesler, 1994 S. 130).

Vorteil der Salzkavernen sind die großen Lagervolumina, welche eine lange Wasserstoffversorgung ermöglichen würden. Nachteil wäre die örtliche Bindung an die Salzkaverne, so dass die Standortentscheidung im Wesentlichen danach entschieden werden müsste. Nachteil für den geplanten Prozess wäre, dass die Speicherung in Kavernen eigentlich nur für Langzeitspeicherungen geeignet ist (Roesler, 1994 S. 130). Als Ursache dafür wären die langen Transportwege des Gases unterirdisch zu beachten. Der Wasserstoff wäre durchschnittlich 600 bis 1200 m in die Tiefe zu transportieren (Roesler, 1994 S. 129).

5.3 Prozessauswahl für den Wechsellastbetrieb

5.3.1 Auswahl Elektrolysezellenart

Die Hauptprobleme bei der Auslegung der Elektrolyse sind die wechselnden Lasten der Elektrolyseure. Zwischen Betriebszustand und Standby liegen entscheidende Temperaturunterschiede. Bei Lastwechsel kommt es durch Temperaturausdehnungseffekte zu Materialbeanspruchungen. Die HTEL, die ohnehin noch nicht im großtechnischen Bereich Einzug gefunden hat (Roesler, 1994 S. 66), findet mit diesem Problem ein letztes Ausschlusskriterium (Smolinka, et al., 2010 S. 17). Sowohl die AEL als auch die PEMEL haben ebenfalls dieses Problem, jedoch sind die Effekte aufgrund der kleineren Temperaturschwankungen geringer.

Bei der Dynamik der AEL sind die Komponenten des Gesamtsystems der Problempunkt. Die elektrochemischen Komponenten reagieren praktisch verzögerungsfrei, jedoch weisen nachgeschaltete Systemkomponenten wie Laugenpumpen, Druckregler und Produktgasseparatoren höhere Trägheiten auf (Töpfler, et al., 2014 S. 12). Die Teillastfahrweise führt bei der AEL vermehrt zu beidseitigen Gasverunreinigungen, da es zu Diffusionseffekten während der Standby-Zeit kommt (Smolinka, et al., 2010 S. 23). Diese Effekte können zu kritischen Gemischen (2% H₂ in O₂) führen, was aus sicherheitstechnischen Gründen zu einer Abschaltung der Anlage führen würde (Smolinka, et al., 2010 S. 24).

Die PEMEL ist "daher die einzige sinnvolle Variante für Photovoltaik- oder Windkraft-Inselsysteme" (Leichtfried, 2007 S. 21). "Das schnelle dynamische Verhalten wird als ein wesentlicher Vorteil der PEM-Elektrolyse gesehen" (Smolinka, et al., 2010 S. 15).

Die guten dynamischen Eigenschaften und die hohen Wasserstoffreinheiten (99,999% H₂ (Leichtfried, 2007 S. 10)) prädestinieren die PEMEL für die Nutzung bei einer Elektrolyse mit wechselnden Betriebslasten und einer nachgeschalteten chemischen Synthese.

Die im nachfolgendem aufgeführten Daten stammen aus der Produktbeschreibung eines PEMEL-Elektrolyseurs der Firma CETH (CETH, 2014 S. 1-2). Es handelt sich um ein aus vier Einzeleinheiten bestehendes Modul, welches in der Lage ist, 240 Nm³/h H₂ herzustellen.

5.3.2 Spezifikationen der Module

Aus der Gesamtbilanz ergibt sich ein durchschnittlicher Wasserbedarf (für die Elektrolyse) von 147,6 m³/h. Das Wasser sollte die in Tabelle 15 aufgelisteten Eigenschaften erfüllen.

Eigenschaft	erforderlicher Bereich
Leitfähigkeit	< 2000 µS/cm
Druck	2 bis 6 bar
pH-Wert	4-10
Temperatur	5 bis 40°C
Wasserqualität	Leitungswasser (Umkehr- osmose ist Teil des Moduls)

Tabelle 15: Erforderliche Eigenschaften des Wassers für die PEMEL

Der maximale, zeitweise Wasserbedarf der Elektrolyseeinheiten bei Volllast ergibt sich aus dem Produkt der Modulanzahl und dem Einzelmodulbedarf (480 l/h).

Die Elektrolyse benötigt außerdem Kühlwasser. Es ergibt sich ein Kühlwasserbedarf von 48 m³/h pro Modul. Ebenfalls muss ein elektrischer Anschluss mit einer Wechselspannung von 400 V und einer Frequenz von 50 oder 60 Hz zur Verfügung stehen.

Von der Firma Ceth wird ein Verbrauch von 4,4 kWh/Nm³ H₂ prognostiziert.

5.3.3 Prozessanordnung

Mit der beschriebenen Modulgröße wären 766 Module notwendig, um die benötigte Wasserstoffmenge von 183.850 Nm³/h kontinuierlich herzustellen. Da nur der Überschussstrom genutzt werden soll und von etwa 2000 h Überschussstrom pro Jahr ausgegangen wird, müssen 3356 Module installiert werden. Bei Vollastbetrieb ergibt sich somit ein Wasserbedarf von 1471 m³/h.

Laut Datenblatt der Firma Ceth (CETH, 2014 S. 1-2) entsteht der Wasserstoff bei einem Druck von 14 bar. Nach einer Verdichtung für den Abtransport soll eine Lagerung in mehreren Niederdrucktanks bei 16 bar erfolgen. Die Tankgröße muss mindestens 840.000 m³ umfassen, damit die Lagerung für 3 Tage Methanolsynthesebetrieb ausreicht. Außerdem sollte das Tanklager so konzipiert werden, dass eine Erweiterung der Lagerkapazität möglich ist.

Abbildung 14: Verfahrensfließbild der PEMEL

Elektrolyse

5.4 Prozessauswahl für den Dauerbetrieb

5.4.1 Auswahl Elektrolysezellenart

Bei kontinuierlicher Betriebsweise entfallen die häufigen Temperaturschwankungen und damit auch ein Großteil der Materialbeanspruchungen. Die vergleichsweise geringen Anschaffungskosten zusammen mit der Bewährtheit der Technologie prädestinieren die alkalische Elektrolyse.

Die im Folgenden verwendeten Daten wurden der Internetseite der Firma ELB Elektrolysetechnik GmbH entnommen. Es handelt sich um eine Druckelektrolyse, die auf dem Lurgi System basiert. Die Modulkapazität umfasst für dieses Modell bis zu 1400 Nm³/h.

5.4.2 Spezifikationen der Module

Pro Normkubikmeter Wasserstoff werden 0,85 l Speisewasser und 80 l Kühlwasser benötigt. Die Qualität des Speisewassers wurde nicht genauer spezifiziert. Die Gasleistung dieses Moduls ist zwischen 25% und 100% der Nennleistung einstellbar.

Das Modul hat einen spezifischen Energieverbrauch von 4,3 bis 4,65 kWh/Nm³ H₂.

Die Wasserstoffqualität liegt bei 99,8 bis 99,9 vol%. Es liegen Verunreinigungen mit 0,1 bis 0,2 vol% O_2 , 1 bis 2 g/Nm³ H₂O und KOH < 0,1 mg/Nm³ vor.

5.4.3 Prozessanordnung

Für die kontinuierliche Produktion von 183.850 Nm³/h H₂ werden mit der beschriebenen Modulkapazität 132 Module benötigt. Bei Volllast werden kontinuierlich 156,3 m³/h Speisewasser verbraucht.

Beide Produktgase entstehen mit einem Druck von 30 bar. Abhängig von der benötigten Reinheit besteht die Möglichkeit, einen katalytischen Gasreiniger nachzuschalten. Damit können Restverunreinigungen kleiner 1 ppm erreicht werden.

Da eine kontinuierliche Produktion vorliegt, entfällt die Notwendigkeit der Wasserstofflagerung.

Abbildung 15: Verfahrensfließbild der AEL

5.5 Simulation mittels ChemCAD

Aus der technischen Simulation sollen die nötigen Energiemengen für den Betrieb der Elektrolysezellen sowie für die Weiterverarbeitung der Produktgase ermittelt werden. Außerdem sollen die nötigen Leistungen der Wärmetauscher bestimmt werden.

Für die Elektrolysezellen sollen die Prozesswärmen bestimmt werden und aus ihnen die notwendigen Kühlleistungen. Abhängig von der benutzten Elektrolysezelle entsteht der Wasserstoff bei 14 bzw. 30 bar. Dieser soll bei 16 bar gelagert werden. Da der Energiebedarf für die eventuell notwenige Verdichtung von dem Transportweg und damit vom Aufstellungsplan abhängig ist, wurde diese Energiemenge vorerst vernachlässigt (gering im Vergleich zu den anderen Prozessenergien). Der entscheidende Energiebedarf würde bei einer Verdichtung des Sauerstoffs für eine Flaschenabfüllung entstehen. Hierfür mussten die Verdichterleistungen und Kühlleistungen bestimmt werden.

5.5.1 Elektrolyse

Abbildung 16: Abbildung der ChemCAD-Simulation der Elektrolyse

Die Elektrolysereaktion wurde in einem stöchiometrischen Reaktor isotherm bei 40 °C durchgeführt. Es konnte herausgelesen werden, dass der endothermen Reaktion eine Leistung von 79,3 kW pro 1000 mol/h Wasserstoff in Form von Elektroenergie bereitgestellt werden muss. Laut Herstellerangaben (4,4 kWh/Nm³) wird für 1000 mol/h Wasserstoff 98,6 kW Leistung benötigt (CETH, 2014). Es ergibt sich ein Stromwirkungsgrad von 80%, was als plausibel angenommen werden kann. Die Differenz zwischen Reaktionsenergie und real notwendiger Energie ergibt die abzuführende Wärme. Für 1000 mol/h Wasserstoff müssen 19,3 kW Wärme abgeführt werden.

Für den Prozess ergibt sich bei einem Durchfluss von 8202,5 kmol/h eine abzuführende Wärme von 158,6 MW.

Abbildung 17: Abbildung der ChemCAD-Simulation der Sauerstoffverdichtung

Für eine Flaschenabfüllung kann der Sauerstoff theoretisch von 13 bar (40°C) auf 200 bar (40°C) verdichtet werden. Die energetische Analyse ergab, dass eine 3-stufige Verdichtung sinnvoll wäre. Die sich ergebenden Zwischendrücke liegen bei etwa 25,7 bar, 51 bar und 101 bar. Nach jeder Verdichtung erfolgt eine Kühlung des Gases im Wärmetauscher auf etwa 40°C. Es wurde von einem isentropen Wirkungsgrad von 0,75 für die Verdichtung ausgegangen.

Für die sich ergebende Produktmenge benötigt jeder Verdichter eine Leistung von etwa 4,2 MW. Wenn alle Wärmetauscher in Reihe mit Kühlwasser betrieben werden, ergibt sich ein Kühlwasserbedarf von etwa 300 m³/h.

Da eine Menge an Sauerstoff entsteht, die zum größten Teil keinen Absatz finden wird (sie übersteigt den Bedarf der chemischen Industrie in Deutschland), ist das Abfüllen in Gasflaschen als nicht rentabel anzusehen. Daher wird die Sauerstoffverdichtung in den folgenden Abschnitten nicht weiter betrachtet. Die Verdichtung von Luft ist rentabler als die Verdichtung von reinem Sauerstoff, da hierbei die wertvollen Edelgase gewonnen werden können.

5.6 Aufstellungs- und Ex-Zonenplan

Abbildung 18: Aufstellungs- und Ex-Zonen-Plan der Elektrolyse im Wechsellastbetrieb

Aufstellung

Für die PEM-Elektrolyse wurden 3356 notwendige Module ermittelt. Jedes Modul enthält 4 Elektrolysezellen. Durch eine Clusterbauweise ist es möglich 12 Zellen zusammen zu fassen. Jeder Cluster ist etwa 4,8 m lang; 3,8 m breit und 6,6 m hoch. Wenn jeweils 2 Cluster übereinander aufgestellt werden, ergibt sich eine Gebäudehöhe von etwa 14 m. Um Begehbarkeit und Verrohrung zu gewährleisten, wurde pro Cluster auf Länge und Breite jeweils ein Meter addiert. In Gebäudelänge sollen 24 Cluster aufgestellt werden, in Breite 24. Es ergibt sich ein Gebäude mit etwa 140 m Länge und 115 m Breite, wenn die Cluster längs zur Gebäuderichtung ausgerichtet werden. Es liegt eine Fundamentbelastung von 1917 kg/m² vor. Stirnseitig soll das Kühl-, sowie das Elektrolysewasser eingeleitet werden. Durch
Aufteilung in 12 Einzelströme, die jeweils zwischen 2 Clustern über die gesamte Gebäudelänge hindurch geführt werden, soll die Versorgung gewährleistet werden. Produktgase und Abwasser sollen über die gleichen Trassen abgeführt werden.

Der Wasserstoff wird am Gebäudeende in die sechs 100.000 m³ Tanks eingeleitet. Die Tanks sind freistehend und zylindrisch. Die Anordnung erfolgt im 2x3 Muster. Höhe sowie Durchmesser liegen bei etwa 31,7 Metern.

Der Sauerstoff wird in sicherer Entfernung zur Elektrolyseanlage in die Umgebung abgegeben.

Sicherheitstechnische Betrachtung/Ex-Zone

Quer zu den Rohrtrassen sollte eine Raumbelüftung mit hohem Luftwechsel erfolgen. Zusätzlich müssen Gasdetektoren im gesamten Elektrolysegebäude installiert werden. Die gesamte Halle und die Wasserstofftanks werden als Ex-Zone 1 eingestuft. Eventuelle Mannlöcher an den Gastanks werden als Ex-Zone 2 ausgeschrieben. Die Austrittsstelle des Sauerstoffs ist als Ex-Zone 0 (dauerhafte explosionsgefährdete Atmosphäre) anzusehen.

Abbildung 19: Aufstellungs- und Ex-Zonenplan der Elektrolyse für den Dauerbetrieb

Aufstellung

Da vom Hersteller der AEL keine Abmaße der Elektrolysemodule gegeben war, wurden diese auf 5x2x2m anhand eines Bildes geschätzt. Wenn diese (132 Module) in 4 Reihen angeordnet werden mit 3 m Platz zwischen den Reihen ergibt sich eine Breite von 24 m mit einer Länge von 66 m. Die Verrohrung kann in den oberen Gebäudebereich gelegt werden. Die Gebäudelänge kann durch die Größe des katalytischen Gasreinigers und Platzzuschläge entscheidend steigen.

Abbildung 20: Foto eines AEL-Moduls

Sicherheitstechnische Betrachtung/Ex-Zone

Auch hier ist eine starke Belüftung der Räumlichkeiten zu empfehlen. Der Elektrolyseraum ist Ex-Zone 1. Ein durchgehender Sicherheitsbereich um die Betriebshalle wird als Ex-Zone 2 eingestuft.

6 CO₂-Gewinnung durch Absorption aus Luft

6.1 Prozessoptionen

Prinzipiell können zwei Arten der Absorption unterschieden werden. Beide werden nachfolgend kurz erläutert.

Bei der **Physisorption** ist der Absorptionsgrad stark von dem Partialdruck der zu trennenden Komponente im Gasstrom abhängig. Die Komponente geht mit dem Absorptionsmittel keine chemische Bindung ein, was eine leichte Abtrennung im nachfolgenden Schritt ermöglicht (z.B. durch Druckerniedrigung). Es ist nur dann sinnvoll ein solches Verfahren (z.B. Rectisol-Verfahren) einzusetzen, wenn eine hohe CO₂-Konzentration vorliegt. Da in der Luft nur ca. 0,038 - 0,040% Kohlendioxid vorliegt, ist davon abzuraten.

Bei der **Chemisorption** ist es möglich, Stoffe selektiv abzutrennen, auch wenn diese nur in kleinen Konzentrationen vorliegen. Die Zielstoffe gehen mit dem Absorptionsmittel eine chemische Bindung ein und müssen daher aufwändiger als bei der Physisorption zurückgewonnen werden. Dies geschieht meist über eine Temperaturerhöhung, die zur Verlagerung des Gleichgewichts führt. Der Wirkungsgrad lässt sich nur bedingt mit einer Druckerhöhung beeinflussen.

6.1.1 Aminwäsche

Die häufigste Art der CO₂-Abtrennung ist derzeit die Aminwäsche. Hierbei wird zwischen primären, sekundären und tertiären Aminen als Lösungsmittel unterschieden.

Die bekanntesten Vertreter der primären Lösungsmittel sind hierbei Monoethanolamin (MEA) und Diglykolamin (DGA). Sie werden in der Industrie sehr häufig eingesetzt.

Vorteile:

- geringes Molekulargewicht → hohe Beladungskapazität bei moderaten Massenkonzentrationen
- hohe Alkalinität → hohe Reaktivität mit Sauergasen (H₂S, CO₂)

Nachteile:

- stark korrosiv (vor allem MEA)
- hohe Lösungswärme → Beeinflussung des Gleichgewichts
- hohe Waschmittelverluste durch hohen Dampfdruck

Sekundäre und tertiäre Amine weisen sich vor allem durch ihre geringere Wärmefreisetzung bei der Reaktion, die geringere Korrosivität und eine leichtere Desorption aus. Allerdings ist die maximale Beladung im Vergleich zu den primären Aminen geringer. (Ohle, 2009)

Es laufen prinzipiell folgende Reaktionsmechanismen ab:

BA DOT OF DATA AND DOT OF AND			
Dissoziation des Wassers:	H ₂ O	\leftrightarrow	H + OH
Hydrolyse und Dissoziation des ge	elösten CO2:		
	CO2 + H2O	\leftrightarrow	HCO3 + H +
Protonation des Alkanolamins:			
primäres Amin	RNH2 + H +	0	RNH3 ⁺
sekundäres Amin	RRNH + H +	\leftrightarrow	RRNH2 ⁺
tertiäres Amin	RRRN + H *	\leftrightarrow	RRRNH ⁺
Carbamat-Bildung:			
primäres Amin	RNH ₂ + CO ₂	\leftrightarrow	RNHCOO' + H*
sekundäres Amin	RRNH + CO ₂	+	RRNCOO*+H*

Abbildung 21: Ablaufende Reaktionen bei der Aminwäsche mit verschiedenen Lösungsmitteln (Ohle, 2009)

Technische Umsetzung

Damit die Absorption einen hohen Wirkungsgrad erzielt, muss die Übertragungsfläche entsprechend groß sein. Hierfür eignen sich Packungs- oder Füllkörperkolonnen. Des Weiteren müssen die einzelnen Stoffströme beheizt bzw. gekühlt werden, damit das Gleichgewicht günstig liegt (Yeh, et al., 2006). In Abbildung 22 ist der prinzipielle Aufbau einer solchen Anlage dargestellt.

Abbildung 22: Schematischer Aufbau einer industriellen Abgasreinigung (Yeh, et al., 2006)

6.1.2 Besondere Absorptionsmittel

Als Beispiel für besondere Absorptionsmittel soll im Folgenden auf Polyethylenimin (PEI) eingegangen werden. Dieses ist als Absorptionsmittel zur CO₂-Bindung getestet worden. Dabei werden die Amide auf mehrere Trägerröhren aufgetragen (Polyamidimid, Cellulose), wobei sich eine verbesserte Absorptionsrate beobachten lässt. PEI werden auch als ionic liquids (IL) bezeichnet, welche aus langen organischen Kationen und organischen/ anorganischen Anionen bestehen. Ein Beispiel ist in Abbildung 23 dargestellt.

Diese Verbindungen zeichnen sich durch eine hohe Basizität aus, wodurch ein saures Gas wie CO₂ gut gebunden werden kann. Es konnte mit unterschiedlichen Anionen bis zu 0,5 mol CO₂/mol IL gebunden werden.

Abbildung 23: 1-Butyl-3-methylimidazoliumhexafluorophosphat

Die Verwendung solcher Reagenzien ist jedoch noch nicht so ausgereift, wie es bei der klassischen Aminwäsche der Fall ist. (Sistla, et al., 2014)

6.1.3 Hydroxide

Die Verwendung von Hydroxiden zur Absorption von CO₂ wird bereits industriell angewendet. Ein großer Vorteil von Hydroxiden als Absorptionsmittel ist, dass CO₂ auch bei sehr geringen Konzentrationen absorbiert werden kann. Das CO₂ wird chemisch in Form von Carbonaten gebunden und kann mittels Säuren daraus entfernt werden. In der gebundenen Form ist es gut speicherbar. Durch die Wiederverwendung der Hydroxide und die geringen Anschaffungskosten, bleiben die Investitionskosten auf einem verhältnismäßig geringen Niveau.

Da die Forschung zur Absorption von CO₂ mittels Hydroxiden am weitesten verbreitet ist und teilweise Pilotanlagen betrieben werden, erfolgt eine Betrachtung verschiedener Verfahren im Abschnitt 6.2.

6.1.4 Feste Absorptionsmittel

Die Benutzung eines festen Lösungsmittels für die direkte Absorption von CO₂ aus der Luft bietet eine Vielzahl von Vorteilen. Beispielsweise sorgt eine erhöhte Rauigkeit der Feststoffe für eine vergrößerte Oberfläche und somit mehr Absorptionsfläche.

Die meisten alkalischen Lösungen (Hydroxid-Lösungen) gehen starke Bindungen mit dem CO₂ ein. Dadurch wird es umständlicher, das CO₂ wieder von der Lösung zu trennen. Gleichzeitig ist es sehr aufwendig, bei direktem Kontakt mit der Umgebungsluft einen langsamen Volumenstrom an Lösungsmittel zu verwirklichen und keine zu großen Verluste an Flüssigkeit durch Verdunstung zu erleiden.

Der Mechanismus, welcher hinter der Absorption von CO₂ mit einem festen Lösungsmittel steckt, unterscheidet sich stark von dem mit einem flüssigen Lösungsmittel.

Nach einem von Lackner beschriebenen Verfahren von 2009 kann für die CO₂-Absorption ein Harz verwendet werden, welches auf einer Polystyrolschicht aufgebracht wird und dem von der DOW Chemical Company hergestelltem Marathon A ähnelt. Dieses Harz ist in der Lage, CO₂ bei einer hohen Reaktionsgeschwindigkeit in Form von Bicarbonaten zu binden. Der Kreislauf zur CO₂-Gewinnung würde dabei wie folgt aussehen:

$OH^- + CO_2$	\rightarrow	HCO3 ⁻
2 OH ⁻ + CO ₂	\rightarrow	CO3 ²⁻ + H2O
CO ₃ ²⁻ + CO ₂ + H ₂	0 →	2HCO ₃ -

Feuchtes Harz nimmt während der Trocknung CO₂ aus der Luft auf und bindet es in Form von Carbonaten bzw. Bicarbonaten. Dabei können pro Kilogramm Harz ca. 0,85 mol CO₂ absorbiert werden. Um das CO₂ aus dem Harz zu lösen, wird dieses "bewässert". Da Wasser CO₂ nicht halten kann, wird es direkt an die Luft abgegeben, wenn das Harz befeuchtet wird. Dies kann entweder mit Wasserdampf oder mit flüssigem Wasser geschehen, wobei die Reaktion mit flüssigem Wasser schneller verläuft. Um das CO₂ entsprechend nutzbar zu machen, wird vorgeschlagen, die beladenen Filter (auf Polystyrol aufgebrachtes Harz) in einer Vakuumkammer mit Wasser zu waschen und das freiwerdende CO₂ dabei entsprechend umzuleiten. Durch eine Automatisierung kann so eine semikontinuierliche Anlage aufgebaut werden. Da dies bisher allerdings nur eine theoretische Überlegung ist, existiert noch keine in Serie produzierte Anlage zu diesem Verfahren. Weiterhin sind keine genauen Prozessparameter bekannt (Lackner, 2009).

Dieses Verfahren kann nur als eventuelle zukünftige Alternative zur CO₂ Absorption angesehen werden.

6.2 Prozessauswahl: CO₂-Absorption mit Hilfe von Hydroxiden

Im Folgenden sind drei verschiedene Verfahren zur CO₂-Absorption mit Hilfe von Hydroxiden näher beschrieben. Sie unterscheiden sich hauptsächlich in der Art des Kations und damit in dem entstehenden Carbonat.

6.2.1 CO₂-Absorption mit Hilfe von Kaliumhydroxid

Ein Verfahren zur Anreicherung von CO₂ aus der Atmosphäre mit Hilfe von Hydroxiden wurde 2007 in einer Pilotanlage getestet. In einem Absorber wird das CO₂ der Luft durch Auswaschen mit einer KOH-Lösung entfernt. Hierbei entsteht im Wesentlichen K₂CO₃. Die Freisetzung von CO₂ erfolgt durch Ansäuern der Carbonatlösung mit H₂SO₄.

$$\mathsf{K_2CO_3} + \mathsf{H_2SO_4} \rightarrow \mathsf{CO_2} + \mathsf{H_2O} + \mathsf{K_2SO_4}$$

Die Chemikalien werden im Kreislauf gefahren. Die K₂SO₄-Lösung wird in einer Elektrodialyseanlage mit einer bipolaren Membran wieder zu Absorberlösung und Säure aufbereitet (Bandi, et al., 2007; Carbon Engineering Ltd., 2011).

$$K_2SO_4 + 2 H_2O \rightarrow 2 KOH + H_2SO_4$$

Das vereinfachte Fließbild zu diesem Prozess ist in Abbildung 24 dargestellt.

Abbildung 24: Stark vereinfachtes Verfahrensfließbild zur CO₂-Absorption mittels Kaliumhydroxid

In einer 2 m hohen Kolonne konnte eine 70% ige CO₂ Absorption bei einer KOH-Lösung (c = 1 mol/l) und Strömungsgeschwindigkeit der Luft von ca. 1 m/s nachgewiesen werden. Der Energiebedarf einer Zwei-Kammer-Elektrolyse wurde zu 14 MJ/kg CO₂ bestimmt. (Bandi, et al., 2007; Carbon Engineering Ltd., 2011)

6.2.2 CO₂-Absorption mit Hilfe von Natriumhydroxid

Beim diesem Air-Capture Prozess wird Kohlendioxid direkt aus der Luft gewonnen. Hierfür werden mehrere Prozessschritte benötigt: eine Absorption, zwei Kristallisationen und ein Flüssigbettreaktor, sowie die Regeneration der Hilfsstoffe.

Absorption

Zu Beginn wird Luft mit einer CO₂-Konzentration von 380 - 400 ppm in einen Absorber geleitet. Hier wird mit Hilfe von wässriger Natriumhydroxidlösung (T = 20°C) das CO₂ zu Natriumcarbonat (Na₂CO₃) umgesetzt. Die eingesetzte Lauge kann je nach Prozessführung in ihrer Konzentration variieren: 1,5 mol/l, 3 mol/l oder 5 mol/l. Die geringer konzentrierte NaOH ist in der Lage mehr CO₂ zu lösen, jedoch verdunstet auch mehr Wasser, welches ausgeglichen werden muss. Die Abluft am Ende des Prozesses hat noch einen Rest-CO₂-Gehalt von ca. 200 ppm.

$$CO_2 + 2 NaOH \rightleftharpoons Na_2CO_3 + H_2O$$

Die beladene Natronlauge wird in das Reservoir geleitet. Ein Teil der Natronlauge wird im Kreislauf geführt und wieder in den Absorber geleitet. Dadurch kann die Lösung näherungsweise mit Natriumcarbonat gesättigt werden. Ist die gewünschte Konzentration erreicht, wird die beladene Lauge in den nächsten Prozessschritt geleitet.

Kristallisation

Die Lauge wird vor dem Kristallisator auf eine Temperatur von 10°C abgekühlt und somit ein Ausfallen des Carbonats als hydratisiertes Salz herbeigeführt. Im oberen Teil des Kristallisators wird die Natronlauge abgezogen und wieder zum Speichertank zurückgeführt. Der ausgefallene Feststoff wird als aufkonzentrierte NaOH-Na₂CO₃-Lösung in einen Behälter geleitet, in dem das Carbonat bei 31°C gelöst wird. Dieser Schritt dient dazu, eventuelle Monooder Pentahydrate zu vermeiden und eine Lösung mit einheitlicher Kristallstruktur zu bilden. Die dabei entstehende 30%ige Na₂CO₃-Lösung (pH = 12) wird in den zweiten Kristallisator weitergeleitet.

Nun wird die Flüssigkeit auf eine Temperatur von 103°C vorgewärmt. Im Kristallisator wird mit Hilfe weiterer Natronlauge und hohen Temperaturen von ca. 118°C das Natriumcarbonat getrocknet und so die Solvat-Hüllen entfernt. Hierfür wird nochmals Natronlauge zugegeben. Das verdunstete Wasser wird über einen Wärmeübertrager zurück zum Wasserbehälter geleitet.

Flüssigbett-Reaktor

Das zu 95% getrocknete Na₂CO₃ wird nun in den Flüssigbett-Reaktor weitergeleitet, wobei es auf die Schmelztemperatur von 850°C vorgeheizt werden muss. Des Weiteren muss separat Natrium-trititanat mit ebenfalls 850°C in den Reaktor gegeben werden. Die beiden Stoffe reagieren miteinander unter Bildung von CO₂ und Natrium-pentatitanat:

$$7 Na_2CO_3 + 5 (Na_2O \cdot 3TiO_2) \rightleftharpoons 3 (4Na_2O \cdot 5TiO_2) + 7 CO_2$$

Da diese Reaktion endotherm abläuft, muss der Reaktor extern beheizt werden. Das CO₂ wird dann am oberen Ende abgeführt, abgekühlt und auf 100 bar verdichtet.

Regeneration

Das heiße Natrium-pentatitanat (850°C) wird auf 100°C heruntergekühlt. Anschließend wird es in der Regeneration mit NaOH aus dem Reservoir gewaschen. Die NaOH wurde ebenfalls auf 100°C erwärmt. Hierbei bildet sich wieder Natrium-trititanat, welches in den Flüssigbett-Reaktor zurückgeleitet wird. Dabei erfolgt eine Erwärmung auf 850°C. (Keith, et al., 2009)

$$3 (4Na_20 \cdot 5TiO_2)_{(s)} + 7 H_20 \leftrightarrow 5 (Na_20 \cdot 3TiO_2)_{(s)} + 14 NaOH_{(aq)}$$

Das zu diesem Verfahren gehörige Fließbild ist in der nachfolgenden Abbildung 25 dargestellt.

Abbildung 25: Verfahrensfließbild zur CO₂-Absorption mittels Natriumhydroxid (nach Keith, et al., 2009)

6.2.3 CO₂-Absorption mit Hilfe von Natrium- und Calciumhydroxid

Im Folgenden wird für die CO₂ -Absorption aus der Luft ein Prozess beschrieben, welcher als Absorptionsmittel NaOH bzw. KOH nutzt. Des Weiteren wird mit Hilfe von Ca(OH)₂ CO₂ in Form von CaCO₃ ausgefällt und gespeichert. Dieses CO₂ kann anschließend freigesetzt und für industrielle Prozesse bereitgestellt werden. Hydroxide werden bereits vermehrt für die CO₂ Absorption eingesetzt. Eine große Herausforderung stellt die Absorption aus der Luft dar, da das CO₂ nur in geringer Konzentration vorliegt (380 - 400 ppm). Weiterhin muss darauf geachtet werden, dass zur Absorption und für die wichtigen Prozessschritte wenig Energie aufgewendet werden sollte, da es sich sonst nicht lohnen würde, CO₂ aus der Luft zu gewinnen. Weiterhin sind Zusatzkosten bspw. von zusätzlichen Verfahren, Arbeitsschritte, Chemikalien und deren Aufarbeitung so gering wie möglich zu halten.

Das folgende Prozessschema zeigt den Weg der Absorption von CO₂, die anschließende Ausfällung und die Möglichkeit der Speicherung von CO₂ in Form von Calciumcarbonat. Weiterhin werden die Freisetzung des CO₂ und die Aufarbeitung der für den Prozess wichtigen Chemikalien dargestellt.

Abbildung 26: Grundfließbild der CO₂-Absorption aus der Luft mittels Natriumhydroxid und Calciumhydroxid

Üblicherweise werden Absorptionsprozesse in Packungs- oder Füllkörperkolonnen durchgeführt. Dabei muss die Übertragungsfläche so groß wie möglich sein, damit ein hoher Wirkungsgrad erzielt werden kann. CO₂ ist in der Luft mit nur 380 - 400 ppm vorhanden, sodass eine sehr große Übertragungsfläche und ein gutes Absorptionsmittel notwendig sind. Eine alternative Möglichkeit ist das Herstellen eines feinen Sprühnebels der absorbierenden Lösung, um eine große Oberfläche zu erreichen und die Luft über einen offenen Turm durch diesen Nebel zu führen. Ein Vorteil ist dabei der geringe Druckverlust. Außerdem können die Kosten für Packungsmaterialien eingespart werden. (Storaloff, et al., 2008)

Die NaOH-Lösungen müssen dabei so fein verteilt werden, dass das CO₂ gut aus der Luft entfernt werden kann. Hydroxide sind derzeit die effektivsten Absorptionsmittel für CO₂ und mitunter günstig. Studien haben gezeigt, dass in Füllkörperkolonnen der Anteil von 500 ppm CO₂ in der Eintrittsluft um ca. 250 ppm gesenkt werden kann. Dabei wurden NaOH-Lösungen der Konzentration 2 mol/l genutzt. Zeman berichtet zudem, dass die Konzentration von 380 ppm CO₂ mit einer NaOH-Lösung der Konzentration 1 mol/l um bis zu 50% gesenkt werden konnte. Diese Ergebnisse wurden in einem mit Packungsmaterialien gefüllten Windkessel erhalten (Zeman, 2007).

Bei der Absorption von CO₂ laufen zunächst folgende Reaktionen ab:

$$H_2O + CO_2 \rightleftharpoons H_2CO_3$$

2 NaOH + $H_2CO_3 \rightarrow Na_2CO_3 + 2 H_2O$

Die entstandene Na₂CO₃-Lösung soll anschließend in einen Reaktor eingespeist werden, bei dem Ca(OH)₂ zugefügt wird. Entsprechend der folgenden Reaktion wird CaCO₃ ausgefällt:

$$Na_2CO_3(I) + Ca(OH)_2(s) \approx 2 NaOH(I) + CaCO_3(s) \downarrow$$

Nach anschließender Abtrennung des Calciumcarbonates könnte die regenerierte NaOH-Lösung zurück zum Kontaktapparat geführt werden. CaCO₃ kann gesammelt werden (Speicherung von CO₂ im Carbonat) und für weitere Anwendungen genutzt werden. Die Freisetzung von CO₂ kann unter dem bereits technisch genutzten Kalkbrennen oder alternativ unter Umsetzung mit Säuren freigesetzt werden. Kalkbrennen ist allerdings ein sehr energieaufwendiger Prozess, welcher eher ungünstig ist, wenn eine positive CO₂ Bilanz erzielt werden soll.

Kalkbrennen:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g) \uparrow$$

Freisetzen mit Säure:

$$CaCO_{3}(s) + 2 HCL(I) \rightarrow CO_{2}(g) \uparrow + CaCI_{2} + H_{2}O$$

Alternativ kann auch die Na₂CO₃-Lösung angesäuert werden, um das CO₂ freizusetzen. Dann ist jedoch keine Speicherung des CO₂ als Carbonat möglich.

$$CaCO_3(s) + 2 \text{ HNO}_3(I) \rightarrow CO_2(g) \uparrow + Ca(NO_3)_2(I) + H_2O(I) + H_2O(I)$$

Zur Rückgewinnung des Ca(OH)₂ sind prinzipiell zwei Möglichkeiten gegeben. Zum einen kann das Calciumoxid vom Kalbrennen mit Wasser versetzt werden, um Ca(OH)₂ zu erhalten.

$$CaO + H_2O \rightarrow Ca(OH)_2$$
 $\Delta H_{100^{\circ}C} = -65 \text{ kJ/mol } CO_2$

CO2-Gewinnung durch Absorption aus Luft

Weiterhin ist die Darstellung von Ca(OH)₂ über die Reaktion von Calciumsalzlösungen und Alkalilaugen möglich:

$$Ca(NO_3)_2 + 4 H_2O + 2 \text{ KOH} \rightarrow Ca(OH)_2 + 2 \text{ KNO}_3 + 4 H_2O$$

Das Problem hierbei ist, dass das Ca(OH)₂ wieder abgetrennt werden muss, was letztendlich immer einen Energieaufwand zur Folge hat. Jedoch ergeben sich dabei auch Vorteile, wie bspw. dass das KNO₃ weiterverwendet werden kann. Anwendungsbereiche sind bspw. als Dünger, als Oxidationsmittel, zur Haltbarmachung von Lebensmitteln oder zur Herstellung von Schwarzpulver.

Es handelt sich hierbei lediglich um eine Idee für einen Prozess und eine grobe Prozessbeschreibung. Inwieweit Energie für Trennprozesse, Pumpen oder Wärmeaustauschprozesse aufgebracht werden muss, ist noch unklar. Weiterhin ist fraglich, ob genügend CO₂ kontinuierlich für die Methanolsynthese bereitgestellt werden kann.

Das folgende Prozessflussdiagramm zeigt, welche Möglichkeiten, welcher Aufwand und welche wesentlichen Prozessschritte notwendig sind, um CO₂ zu speichern und die damit verbundenen Möglichkeiten zur Rückgewinnung der genutzten Chemikalien.

Abbildung 27: Verfahrensfließbild für die CO₂-Absorption aus Luft mit Hilfe von NaOH und Ca(OH)₂

CO2-Gewinnung durch Absorption aus Luft

Der rote Pfad zeigt den Weg der CO₂ - Absorption mit temporärer Speicherung (in Form von Na₂CO₃(I)-gelöst) und mit anschließender Säure/Hitzeeinwirkung zur Freisetzung von CO₂. Die blauen Pfade beschreiben einen Kreislaufprozess, bei dem CO₂ mithilfe von Ca(OH)₂ zu schwerlöslichem CaCO₃ umgesetzt werden kann und lange, ohne schädliche Folgen für die Umwelt zu haben, gelagert werden kann. In diesen Kreislauf integriert ist die mögliche Rückgewinnung von NaOH und Ca(OH)₂ über bekannte chemische Reaktionen bei denen letztendlich Salze entstehen, die keine großen Bedenken für die Umwelt darstellen bzw. für weitere Anwendungen genutzt werden können.

Der notwendige Druck und die notwendige Temperatur sind zum Teil noch nicht bekannt, allerdings handelt es sich um die Idee eines Low-Energy-Prozesses. Hierbei sollen die Reaktionsbedingungen mit geringen Abweichungen den Normalbedingungen entsprechen. Viele der beschriebenen Reaktionen sind exotherm, wobei die Möglichkeit besteht, entstehende Wärme abzuführen und sie an anderer Stelle zu nutzen.

6.3 Simulation mittels ChemCAD

Abbildung 28: Abbildung der ChemCAD-Simulation der CO₂-Absorption aus Luft

CO2-Gewinnung durch Absorption aus Luft

Die ChemCAD-Simulation orientiert sich an dem Fließschema, welches in Abbildung 25 dargestellt ist. Das Fließschema konnte jedoch nicht so umgesetzt werden, wie es ursprünglich gedacht war, da ChemCAD bei der Simulation von Feststoffen unzureichend definiert ist. Da im Prozess aber kristalline Stoffe benötigt werden, musste dieser auf eine andere Art simuliert werden.

In der dargestellten Simulation wurde für die Absorptionskolonne ein Gibbs Reaktor verwendet. Dieser rechnet mit der Annahme einer unendlich großen Absorptionsfläche. Weitere Simulationen mit einer SCDS-Kolonne, liefern die Daten, auf denen die Auslegung basiert. Wenn man Kolonnen von 10 m Höhe und 3 m Durchmesser verwendet, werden 7860 Stück benötigt, um den geforderten Stoffstrom bereit zu stellen. Diese würden ohne Einbeziehung von Rohrleitungen und Weiterem eine Fläche von 55020 m² beanspruchen, was einer Fläche von etwa 8 Fußballfeldern entspricht. Hinzu kommt für jede Kolonne ein Feed von 1 t/h Luft und 130 t/h Waser.

Der Apparat 23 (die Zentrifuge), welcher in Abbildung 28 dargestellt ist, wird benötigt, um überschüssiges Wasser abzutrennen. Der Feed für die Zentrifuge setzt sich aus Carbonat und Natronlauge zusammen. Theoretisch und praktisch ist es nicht möglich, Wasser aus Natronlauge mittels Zentrifugation abzutrennen, dennoch ist dies in ChemCAD unerlässlich, da sonst der Kristallisator nicht funktioniert. Des Weiteren wurde anschließend Natronlauge hinzugefügt, da der Kristallisator stöchiometrisch arbeitet und somit ein bestimmtes Verhältnis zwischen Wasser, Natronlauge und Carbonat (8:5:3) benötigt.

Apparat 6 stellt den Lösungstank dar. Hier wird das kristallisierte Carbonat wieder aufgelöst. Dabei entsteht so viel Wasser, dass dieses anschließend abzentrifugiert werden muss. Aus dem Fließbild wird dies nicht ersichtlich, es ist aber bei der Simulation erforderlich. Der zweite Kristallisator (Apparat 4) wird in Form eines Trockners realisiert. Laut Fließbild soll Carbonat mit einem Trockenrückstand von 95% entstehen. Da es nicht möglich war, dies mit einem Kristallisator umzusetzen, ist der Trockner die einfachste Möglichkeit, auf den gewünschten Wert zu kommen. Um nicht das gesamte Wasser aus dem Lösungstank zu verdampfen, wird die Zentrifuge (Apparat 3) benötigt.

Für die Gewinnung von CO₂ wird Carbonat und Natriumtritanat benötigt (siehe Prozessbeschreibung Abschnitt 6.2.2). In ChemCAD existiert dieser Stoff nicht und thermodynamische Daten sind ebenfalls unbekannt. Aufgrund der fehlenden Angaben wird für den Apparat 11 ein stöchiometrischer Reaktor verwendet. Der nachgeschaltete Flash dient zur Abtrennung des CO₂. Bei der anschließenden Regeneration des Trititanats ist davon auszugehen, dass der Katalysator vollständig regeneriert wird. Dies wird im Prozess durch eine hohe Verweilzeit und eine Rückführung realisiert. In der Simulation wurde jedoch zur Vereinfachung auf eine Kreislaufführung verzichtet.

In Tabelle 16 sind die Stoffströme der in Abbildung 28 dargestellten ChemCAD-Simulation dargestellt. Stoffströme, die sowohl normal als auch als "Clone" auftreten, stehen in ihrer normalen Form für den flüssigen Zustand und in ihrer "Clone"-Form für den festen Zustand bzw. Kristalle.

Stoffstrom	32	33	39	9	11	25	17
NaOH [t/h]	480		68			1.000	
Wasser [t/h]	1.920		234	0,1		9.000	
Sodium Carbonate [t/h]							
Na ₂ CO ₃ *10 H ₂ O [t/h]							
Clone Na ₂ CO ₃ *10 H ₂ O [t/h]							
Clone Sodium Carbonate [t/h]							0,1
Air [t/h]					1.000		
Sodium trititanate [t/h]							1.178
Sodium pentatitanate [t/h]							
Carbon Dioxide [t/h]		260					
Nitrogen [t/h]		39.000					
Oxygen [t/h]		11.960					
Argon [t/h]		780					

Tabelle 16: Stoffströme der ChemCAD-Simulation der CO₂-Absorption aus Luft

In Tabelle 17 sind die Energieströme der Wärmetauscher der in Abbildung 28 dargestellten ChemCAD-Simulation dargestellt.

Wärmetauscher	21	5	7	8	9	16	14	17
gerechnete Wärme [GJ/h]	-39	0,0025	51	126	29	23.330	-40	21

6.4 Wirtschaftlichkeitsbetrachtung der CO₂-Absorption aus Luft

Aufgrund mangelnder Datenlage zur großtechnischen CO₂-Absorption aus Luft mussten für die Betrachtung der Wirtschaftlichkeit des Verfahrens vereinfachte Annahmen getroffen werden. Zur Abschätzung der Anschaffungskosten der CO₂-Absorptionsanlage wurden die drei kostenbestimmenden Teile ausgewählt und berechnet. Die notwendigen Kristallisatoren wurden als Rührkessel mit Doppelmantel mit einem Volumen von 10.000 m³ in ChemCAD ausgelegt. Kristallisatoren dieser Größe sind jedoch nicht verfügbar, sodass die Kostenrechnung für 100 Kristallisatoren mit je 100 m³ erfolgte. Außerdem wurden die 7860 Kolonnen sowie die 6 notwendigen Lüfter kalkuliert. Für alle weiteren Kostenfaktoren erfolgte in der Kostenabschätzung keine explizite Bestimmung, sondern eine Einrechnung über Aufschlagsfaktoren.

Die Investitionskosten der einzelnen Apparate wurden über Kostendiagramme (Ulrich G., 2004) ermittelt. Das Vorgehen wird in Kapitel 12 ausführlich erläutert. Die Gesamtinvestitionskosten belaufen sich auf ca. 70,5 Milliarden Euro.

Außerdem müssen noch Ausgaben für Betriebsstoffe, Wartung, Personal, Projektplanung und Inbetriebnahme berücksichtigt werden (vgl. Tabelle 33 und Tabelle 34, Kapitel 12).

Mit einer Abschreibungslaufzeit von 10 Jahren ergeben sich somit laufende Kosten von ca. 9,6 Milliarden Euro im Jahr. Der Kostensatz für das produzierte Kohlenstoffdioxid würde sich somit auf 8.220 €/t belaufen. Eine Aufschlüsselung der Kostenschätzung ist in Anhang A dargestellt. Die aktuellen Preise der CO₂-Zertifikate bewegen sich bei 6,70 €/t (European Energy Exchange AG, 2014). Die Absorption von CO₂ aus der Luft ist somit absolut unwirtschaftlich. Der Preis der CO₂-Zertifikate müsste sich zukünftig um das 1.200-fache erhöhen, damit der Betrieb einer solchen Anlage wirtschaftlich vorteilhaft wird.

7 CO₂-Gewinnung durch Polygeneration

7.1 Kraftwerkstechnologie / Polygeneration in Deutschland

7.1.1 Allgemeines

Um das Potential der Anwendung der Polygeneration auf Kraftwerke zu diskutieren, ist es wichtig, sich ein Bild über die Kraftwerkslandschaft zu machen.

Deutschland verfügt derzeit über rund 670 Kraftwerke. Dabei sind die Anteile der vertretenen Energiequellen in der folgenden Abbildung zusammengefasst.

Abbildung 29: Energiequellen in Deutschland (FIZ Karlsruhe GmbH, 2010)

Demnach wird 45% der Energie aus fossilen Brennstoffen unter CO₂-Emission gewonnen. Im Rahmen der Energiewende sind CO₂-arme, fossile Kraftwerke als Brückentechnologie sowie zur Grundlastsicherung Basis vieler Forschungsprojekte (FIZ Karlsruhe GmbH, 2010).

Unter dem Begriff "Polygeneration" wird das Gewinnen von mehreren Produkten aus einem Edukt verstanden. In Bezug auf Kraftwerke, welche fossile Brennstoffe verstromen, würde die Weiterverwendung des entstandenen CO₂ als zweites Produkt gelten.

Für die Synthese von Methanol im Sinne einer Polygeneration ist demnach die Abscheidung des Kohlenstoffdioxids bzw. Kohlenstoffmonoxids aus den Ab- bzw. Verbrennungsgasen der Kraftwerke notwendig.

7.1.2 Kraftwerkstechnologien

Im Folgenden sind verschiedene Kraftwerkstechnologien beschrieben, welche in Deutschland angewendet werden.

Gas- und Dampf-Kombikraftwerke

Die zurzeit effektivste Methode aus fossilen Brennstoffen elektrische Energie zu erzeugen, sind erdgasbetriebene Gas- und Dampf-Kombikraftwerke (GuD-KKW). Das Prinzip eines solchen Kraftwerks ist in Abbildung 30 dargestellt.

Abbildung 30: Prozessschaubild eines Gas- und Dampf-Kombikraftwerks (Lehmacher, 2005)

Im Vergleich zu Kohlekraftwerken liegen die Wirkungsgrade bei geringerer CO₂-Emission deutlich höher. Während Kohlekraftwerke bei einer Emission von rund 750 - 930 gCO₂/kWh einen Wirkungsgrad von 46% nicht übersteigen, liefern GuD-Kraftwerke bei einem Emissionswert von 350 gCO₂/kWh Wirkungsgrade von bis zu 60% (E.ON SE, 2014). Vorteile gegenüber Kohlekraftwerken sind weiter die geringeren Investitionskosten und die schnelle Regulierbarkeit in Teillastsituationen. Dem entgegen stehen jedoch die höheren Betriebskosten und die Tatsache, dass Deutschland über keine eigenen Erdgasvorkommen verfügt (Bundesministerium für Wirtschaft und Energie, 2014). Auch liegt hier wegen geringerer Konzentrationen im Abgas eine schlechtere Abtrennbarkeit des Kohlenstoffdioxids vor. Die

CO₂-Entfernung würde zu einem Mehrverbrauch von rund 20% Erdgas führen. Eine wirtschaftliche Betriebsweise ist so nur im Grundlastbetrieb gewährleistet.

Dampfkraftwerke

Konventionelle Kohlekraftwerke (Braun- und Steinkohle) erreichen maximale Wirkungsgrade von 46% (FIZ Karlsruhe GmbH, 2010). Aufgrund der höheren CO₂-Emission bieten sich diese Kraftwerke besonders für die Polygeneration an. Auch mit Blick auf die Versorgungssicherheit bieten die heimischen Kohlereviere eine höhere Sicherheit. Ein Überblick über die Abfolge der einzelnen Prozesse ist in der Abbildung 31 dargestellt.

Abbildung 31: Prozessschaubild Dampfkraftwerk (Joachim Herz Stiftung, 2014)

Optimierungsansätze der Dampfkraftwerke liegen im Betrieb bei höheren Dampfdrücken und -temperaturen (700°C) sowie geringeren Feuchtigkeitsgehalten der Kohlen. Bei der sogenannten Braunkohlenvortrocknung wird der Wassergehalt der Kohle von 50% auf ca. 12% gesenkt. Dies führt aufgrund eines geringeren Rauchgasmassenstroms zu einer Zunahme des Wirkungsgrades von bis zu 10%. (FIZ Karlsruhe GmbH, 2010)

Vergasungskraftwerke

Die modernste Technologie der Kohleverstromung ist die Kohlevergasung (IGCC – Inegrated Gasification Combined Cycle). Dabei wird getrocknete Kohle mit Sauerstoff und Wasserdampf

zu Wasserstoff und Kohlenstoffmonoxid vergast. Nach Abscheidung des zu Kohlenstoffdioxid konditionierten Kohlenstoffmonoxids (CO-Shift) findet der Wasserstoff als Brenngas in der Gasturbine Verwendung. Die Verbrennung mit Sauerstoff sorgt dabei nicht für eine CO₂ Emission. Die entstehende Verbrennungswärme wird anschließend in einem additiven Dampfkreislauf verwendet. Auch hier liegt also die effektive Kopplung von Gas- und Dampfkraftwerk vor. Das CO₂ entsteht in hohen Konzentrationen. Der Einsatz von IGCC-Kraftwerken ist aufgrund der höheren Komplexität und Investitionskosten zurzeit weltweit noch stark begrenzt. IGCC-Kraftwerke in Kombination mit einer Polygenerationstechnologie sind in Deutschland nur als Pilotprojekte vorhanden.

	Elektrische Leistung	Vergasertyp	Gasturbine	Baujahr	Integrations- grad LZA	Brennstoff	Verfüg- barkeit	Netto- Wirkungsgrad
Standorte	[MW]				[%]		[%]	[%]
IGCC-Kraftwerke								
Buggenum (Niederlande)	250,0	SCGP	Siemens V94.2	1994	100	SK/EG	85,6	43,2
Wabash River (USA)	250,0	E-Gas	GE7FA	1995	0	SK/PK/EG	74,0	37,8*
Polk County (USA)	252,0	GEE	GE7FA	1996	0	SK/PK/EG	96,0	35,4*
Puertollano (Spanien)	300,0	PRENFLO	Siemens V94.3	1997	0	SK/PK/EG	80,1	42,2
Pinon Pine (USA)	99,7	KRW	GE6FA	1998	100	SK	n. v.	40,7
Nakoso (Japan)	250,0	MHI	n. v.	2007	0	SK	n. v.	42,0
Polygeneration-Kraftwer	ke							
Priolo (Italien)	512,0	GEE	Siemens V94.2	1999	0	SÖ	>90,0	n. v.
Sarlux (Italien)	551,0	GEE	GE9E	2000	0	Teer	90,8	n. v.
Falconara (Italien)	241,0	GEE	ALSTOM GT13E2	2001	0	SÖ/EG	95,0	40,8
Negishi (Japan)	342,0	GEE	Mitsubishi MHI701F	2003	0	SÖ	n. v.	n. v.

Abbildung 32: IGCC- und Polygenerations-Anlagen weltweit (FIZ Karlsruhe GmbH, 2010)

Abbildung 33 zeigt den schematischen Aufbau eines IGCC Kraftwerkes.

Abbildung 33: Schema eines IGCC-Kraftwerks (Siemens AG, 2014)

7.1.3 Kraftwerkswahl in der Region Halle/Leipzig

Tabelle 18: Vergleich de	r CO ₂ -Emissionen	verschiedener	Kraftwerke
--------------------------	-------------------------------	---------------	------------

Energieträger	Betrieb
Braunkohle ¹	1014 g CO ₂ /kWh
Braunkohle ²	1190 g CO₂/kWh
Braunkohle ³	946 g CO₂/kWh
Steinkohle ¹	780 g CO₂/kWh
Steinkohle ²	931 g CO ₂ /kWh
Steinkohle ³	802 g CO ₂ /kWh
Erdgas ¹	350 g CO ₂ /kWh
Erdgas ²	544 g CO ₂ /kWh
Erdgas ³	488 g CO ₂ /kWh

1 - (Marheineke, 2002);

2 - (Bundesministerium für Umwelt und Forschung, 2008);

3 - (Forschungsstelle für Energiewirtschaft, 1996)

Aus der Tabelle 18 geht hervor, dass die höchsten CO₂-Emissionen pro erzeugte kWh bei den Kraftwerken zu erwarten sind, die auf Braunkohle als Energieträger zurückgreifen. Da es in Deutschland Vorschriften gibt, um die CO₂-Emissionen zu reduzieren, sollte in Betracht gezogen werden, ein Braunkohlekraftwerk als CO₂-Lieferanten zu wählen. Aller Wahrscheinlichkeit nach können diese Kraftwerke ihr emittiertes CO₂ zu den besten Konditionen anbieten, wodurch eine Kosteneinsparung bei den Edukten erzielt wird. In der Region Halle/Leipzig gibt es ein Braunkohlekraftwerk in Schkopau, dessen technische Daten in der Tabelle 19 erläutert werden.

Kraftwerk	Kraftwerk Skopau
Energieträger	Braunkohle
Masse	6 Mio t/a
CO ₂ -Ausbeute	754 g CO2 / kWh
CO ₂ -Bilanz	4.524.000 t CO2 /a
Energiebilanz	2* 450 MW

Tabelle 19: Technische Daten des Kraftwerk Schkopaus (E.ON SE, 2014)

Das Kraftwerk Schkopau wird von E.ON betrieben und basiert auf der energetischen Verwertung von Braunkohle. Die dabei freigesetzte Wärme verdampft einen Strom aus Kesselspeisewasser, dessen Dampf zwei Turbinen mit angeschlossenem Generator antreiben. Beide Blöcke sind für eine Nennleistung von jeweils 450 MW ausgelegt. Die erzeugte elektrische Leistung wird genutzt, um die Region und die örtlichen Chemiewerke mit Strom zu versorgen. (E.ON SE, 2014)

7.2 Prozessoptionen zur Abtrennung des Kohlenstoffdioxids

Aktuell stehen für die CO₂-Abtrennung drei großtechnische Verfahren zu Auswahl. Sie unterscheiden sich in der Position der Installation sowie der damit einhergehenden Nachrüstbarkeit. Bei allen drei Verfahren ist mit einer teils deutlichen Abnahme des Kraftwerk-Wirkungsgrades zu rechnen.

7.2.1 Pre-Combustion

Bei der Pre-Combustion Technologie handelt es sich um eine CO/CO₂-Abtrennung speziell für IGCC-Kraftwerke (Integrated Gasification Combined Cycle). Hier findet die Absorption unmittelbar nach dem Vergasungsprozess der Kohle statt (Forschungszentrum Jülich GmbH, 2009). Abbildung 34 zeigt den allgemeinen Prozessablauf einer Pre-Combustion CO₂-Abtrennung.

Abbildung 34: Schematische Darstellung des Pre-Combustion Prozesses eines IGCC Kraftwerkes (nachTroy, 2012)

In einer Luftzerlegungsanlage wird der Sauerstoff zunächst aufkonzentriert. Anschließend erfolgt unter Wärmezufuhr die Umwandlung von Sauerstoff und Kohle zu Synthesegas. Dieses besteht vorzugsweise aus H₂ und CO. Im CO-Shift wird das Kohlenmonoxid mittels Wasserdampf in Kohlendioxid umgewandelt. Durch ein geeignetes Waschverfahren lässt sich das CO₂ abschließend aus dem Gasgemisch abtrennen. (Troy, 2012)

Da die Wirkungsgradverluste bei bis zu 11 %-Punkten liegen (FIZ Karlsruhe GmbH, 2010) und in Deutschland lediglich Pilotanlagen existieren (Pilotanlage Schwarze Pumpe), kann dieses Verfahren nicht als Stand der Technik angesehen werden.

7.2.2 Oxyfuel-Verfahren

Beim Oxyfuel-Verfahren (siehe Abbildung 35) wird der Brennstoff mit Sauerstoff (>95%) und zurückgeführtem Rauchgas verbrannt. In der Brennkammer entstehen hierbei Temperaturen von 3500°C. Zur Reduzierung der Brenntemperatur wird daher ein Teilstrom von rund 2/3,

bestehend aus CO₂ und H₂O, in die Brennkammer zurückgeführt (Notz, 2010). Das dabei entstehende Rauchgas ist nicht mit Luft-Stickstoff verdünnt, da dieser entzogen wird und besteht im Wesentlichen aus CO₂ und Wasserdampf. Der Wasserdampf kann mit wenig Aufwand kondensiert werden, sodass ein hochkonzentrierter CO₂-Strom übrig bleibt (rund 90%). Das CO₂ kann dann verdichtet und zum Lager transportiert werden.

Der Stickstoff wird bei diesem Verfahren somit vor dem Verbrennungsprozess entfernt. Die Schwierigkeiten von konventionellen Kraftwerksprozessen, den hohen N₂-Anteil im Gasgemisch vor der CO₂-Lagerung zu entfernen, können demnach mit diesem Verfahren vermieden werden. Eine Reinigung von Schwefelbestandteilen muss allerdings beachtet werden.

Abbildung 35: Schematische Darstellung des Oxyfuel-Verfahrens (nachTroy, 2012)

Bei dem Oxyfuel-Verfahren sinkt der elektrische Wirkungsgrad gegenüber einer Anlage ohne CO₂-Abscheidung um ca. 10 Prozentpunkte, was je nach Wirkungsgrad des zugrundeliegenden Prozesses einem 30–50% höheren Kohlebedarf entspricht. Hauptenergieverbraucher ist in diesem Fall die Luftzerlegungsanlage für die Produktion des reinen Sauerstoffs (DIE WELT BERLIN, 2013). Auch dieses Verfahren wurde lediglich in Pilotanlagen angewendet.

7.2.3 Post-Combustion

Bei diesem Verfahren wird das CO₂ nach der Verbrennung aus dem Rauchgas entfernt. Der konventionelle Aufbau des Kraftwerkes muss daher nicht verändert werden. Für die Abtrennung des CO₂ ist nach heutigem Stand der Technik lediglich die chemische Absorption verfügbar. Dies geschieht zumeist mit Aminwaschverfahren. Verfahren zur CO₂-Abscheidung mit Monoethanolamin werden in der chemischen Industrie bereits eingesetzt (vgl. 6.1.1). Die aus diesen Anlagen gewonnen Daten können als Grundstein für die Errichtung von Pilotanlagen eingesetzt werden. Beispielsweise eignet sich in der chemischen Industrie ein Massenstrom mit 30 w% Monoethanolamin besonders effektiv, um CO₂ abzuscheiden (Schmidt, et al., 2013).

Abbildung 36 zeigt den Prozess der CO₂-Wäsche am Beispiel der Pilotanlage in Niederaußem. Die Anlage wurde im Juni 2009 mit 30 w% Monoethanolamin befüllt und in Betrieb genommen. Vereinfacht lässt sich das Fließbild wie folgt erklären: Das Rauchgas aus einer konventionellen Rauchgasentschwefelungsanlage wird in einer Feinwäsche abgekühlt. Bei größeren SO₂-Gehalten als 10 mg/m³_{i.N.} wird zusätzlich zur weiteren Reduzierung des SO₂ Natronlauge eingesetzt. Die CO₂-Absorption mittels wässriger Aminlösung findet in einem 40 m hohen Absorber statt. Das CO₂-arme Rauchgas wird am Kopf des Absorbers abgezogen, einer Wasserwäsche zugeführt und gegebenenfalls für die Emissionsreduzierung weiter behandelt. Anschließend wird das Rauchgas in den Rauchgasstrom der Anlage zurückgeführt. Das mit CO₂ beladene Waschmittel wird über den Sumpf in den Desorber geleitet. Das Waschmittel wird im Desorber erhitzt, wodurch das CO₂ ausgetrieben wird. Das abgefangene CO₂ wird entweder zum Rauchgasstrom des Kraftwerkes rückgeführt oder an eine CO₂ Abfüllstation abgegeben. Das CO₂-freie Waschmittel wird über diverse Wärmetauscher herunter gekühlt und dem Waschprozess erneut zugeführt (Schmidt, et al., 2013).

Abbildung 36: Prozessfließbild der CO₂-Wäschepilotanlage in Niederaußem (Schmidt, et al., 2013)

Einige Prozessparameter der CO₂-Wäschepilotanlage sind in Tabelle 20 dargestellt.

Prozess- und Betriebsparameter	Wert	Einheit
Rauchgasteilstrom	1550	[m³/h i.N.]
CO ₂ -Abscheiderate	90; <7,2	[%]; [tCO ₂ /Tag]
Rauchgastemperatur vor Absorber	40	[°C]
CO ₂ -Konzentration im Rauchgas nach Entschwefelung	13,5-15,5	[vol% trocken]
O ₂ -Konzentration im Rauchgas nach Entschwefelung	4,5-6,5	[vol% trocken]
SO ₂ -Konzentration im Rauchgas nach Entschwefelung	60	[mg/m ³ i.N. trocken]
SO ₂ -Konzentration im Rauchgas nach weiterer Entschwefelung	<10	[mg/m ³ i.N. trocken]
Verfügbarkeit	97	[%]
Betriebszeit seit Inbetriebnahme	28000	[h]
Gesamtmenge abgetrenntes CO ₂	6500	[t]

Tabelle 20: Prozess- und	Betriebsparamter	der	CO ₂ -Wäschepilotanlage	in	Niederaußem	(Schmidt,	et al.,
2013)							

Der Waschmittelverlust beim Aminwaschverfahren bildet ein bis heute ungelöstes Problem. Die Waschmittel werden über die Zeit oxidiert. Ein häufiges Oxidationsprodukt ist Ammoniak, welches in geringen Mengen bei der CO₂-Absorption entsteht und die Emissionen der Anlage erhöht (Moser, et al., 2013).

Des Weiteren ist zu beachten, dass Amine das Krebsrisiko erhöhen und somit eine erhebliche Gefahrenquelle für Arbeiter, Bevölkerung und Umwelt darstellen (Holst, 2009).

Die Aminwäsche stellt große Anforderung an die Beständigkeit der eingesetzten Werkstoffe. Anlagenteile, die unter hohen Druck und erhöhter Temperatur der Aminwaschflüssigkeit ausgesetzt sind, werden stark durch Korrosion angegriffen. Davon ist auch Edelstahl betroffen. In der Pilotanlage Niederaußem wurden Bauteile, bestehend aus glasfaserverstärkter Kunststoff (GFK) mit Epoxidharz, eingebaut, die sich im Laufe der Versuchszeit als chemisch widerstandsfähig erwiesen haben (Moser, et al., 2011).

Anzumerken ist, dass die Anwendung der Aminwäsche auf Kraftwerksdimensionen bis jetzt ausgeblieben ist. Es sind Versuche mit Maßstabsvergrößerungen um den Faktor 20 bis 50 nötig. Nach aktuellem Erkenntnisstand existieren lediglich Pilotanlagen. Die Abtrennungsrate dürfte aber bei rund 90% liegen. Die Investitionskosten einer Nachrüstung eines Kraftwerks mit einem Post-Combustion-Verfahren können die Kosten eines Neubaus übertreffen. (Grünwald, 2007)

7.2.4 Vergleich der Absorptionstechnologien

Die Vor- und Nachteile der vorgestellten Absorptionstechnologien sind in Tabelle 21 zusammengefasst.

	Pre- Combustion	Oxyfuel- Verfahren	Post- Combustion
Wirkungsgradverlust [%-Punkte]	6 - 11	7 - 11	10 - 15
Kosten der CO₂-Vermeidung [€/tCO₂] [*]	20 - 40	20 - 40	25 - 45
Nachrüstbarkeit bestehender Kraftwerke	-	+	+
Zeit bis zur Verfügbarkeit	(+)	(+)	+
Komplexität	-	(+)	+
Lastflexibilität	-	(+)	+

Tabelle 21: Vergleich von verschiedenen Absorptionstechnologien (nach Notz, 2010)

* Kosten für CO₂-Abtrennung und Kompression (ohne Kosten für den CO₂-Transport und die Speicherung)

Von den diskutierten Absortionsverfahren besitzt die Aminwäsche den fortschrittlichsten Entwicklungsstand und die größte Anwendungsreife. Demnach ist eine zeitnahe Realisierung eines Kraftwerkkonzeptes am ehesten mit einer Post-Combustion-Technologie möglich. Die Post-Combustion ist eine End-of-pipe-Technologie, wodurch ein vergleichsweise einfaches Nachrüsten der bestehenden Kraftwerke gewährleistet ist (Notz, 2010). Die Nachrüstung mit dem Oxyfuel-Verfahren ist mit einem deutlich höheren Aufwand verbunden. Das Nachrüsten eines Kraftwerkes mit einer Pre-Combustion-Technologie ist nicht möglich.

Ein wesentlicher Nachteil der Post-Combustion-Technologie liegt in dem hohen Energiebedarf für die Lösungsmittelregeneration. Daraus ergibt sich im Vergleich zu den anderen Prozessen ein höherer Wirkungsgradverlust. Für die Beurteilung der Wirtschaftlichkeit eines Kraftwerkkonzeptes werden neben dem Wirkungsgradverlust auch die Kosten der CO₂-Vermeidung herangezogen. Diese ergeben sich aus dem Unterschied in den Gesamtkosten der Stromerzeugung zwischen einem Kraftwerk mit bzw. ohne CO₂-Abtrennung bezogen auf die Differenz im CO₂-Ausstoß. Auch hier sind die Vermeidungskosten von Pre-Combustion-bzw. Oxyfuel-Technologien im Vergleich zu den Post-Combustion-Technologien geringer.

Ein Nachteil der Pre-Combustion-Technologie liegt in der hohen Komplexität des Prozesses verbunden mit einer geringen Lastflexibilität. Das Oxyfuel-Verfahren stellt aufgrund der sehr hohen Temperaturen große Anforderungen an die eingesetzten Materialien. Zudem ist der hohe Energieaufwand bei der Bereitstellung von reinem O₂ zu berücksichtigen.

7.3 Prozessauswahl

Durch die noch nicht im kommerziellen Maßstab erprobten Techniken sind Kostenprognosen sehr ungenau. Nach Grünwald (2007) liegen für die Umrüstung bestehender Kraftwerke keine Kostenrechnungen vor. Tendenziell dürften sie jedoch höher ausfallen als bei einem Neubau. Des Weiteren führt die CO₂-Abtrennung aufgrund des Wirkungsgradverlustes zu höheren Stromkosten. Es ist daher interessant die Entwicklung bezüglich der Emissionstickets und Gesetzeslage zu beobachten.

In Anbetracht des hohen Forschungsbedarfs der benötigten Technologien, lässt sich nur schwer eine finale Prozessauswahl treffen. Geht man von bestehenden Kraftwerken im Einzugsgebiet von 100 km um Halle (Saale) aus, so bietet sich die Post-Combustion-Technologie oder das Oxyfuel-Verfahren an. Beide Verfahren können prinzipiell in bestehende Kohle- bzw. Gaskraftwerke implementiert werden. Hierbei dürfte das Post-Combustion-Verfahren zu einem geringeren Aufwand führen. Bei der Oxyfuel-Methode würden Veränderungen nötig sein, die stärker in die Prozessführung eingreifen.

Betrachtet man jedoch eine langfristige Entwicklung für die nächsten 50 Jahre, so ist im Hinblick auf die höheren Wirkungsgrade und effizientere CO₂-Abtrennung mit neugebauten IGCC-Kraftwerken zu rechnen. Bei Kraftwerksneubauten wird es, wie der aktuelle Entwicklungsstand zum Beispiel in Puertollano zeigt, wahrscheinlich zum Einsatz der Pre-Combustion-Technologie kommen. Die folgende Wirtschaftlichkeitsbetrachtung begrenzt sich daher auf den Vergleich von konventionellen Kohlekraftwerken mit IGCC-Kraftwerken inklusive CO₂-Abtrennung über Pre-Combustion.

7.4 Wirtschaftlichkeitsbetrachtung

Im folgenden Kapitel werden die Investitionskosten sowie die zur CO₂–Abtrennung anfallenden Kosten zwischen konventionellen Kohlekraftwerken und IGCC-CCS-Kraftwerken verglichen. In beiden Fällen wird Braunkohle als fossiler Energieträger betrachtet.

Die Daten für ein konventionelles Kohlekraftwerk beziehen sich auf das Dampfkraftwerk (DKW) Neurath. Die Kosten für das IGCC-Kraftwerk sind Mittelwerte verschiedener IGCC-Simulationen nach Rauchfuß (2012). Die folgende Tabelle 22 zeigt eine Gegenüberstellung entscheidender Kostenpunkte.

	Kraftwerkstyp	
	konventionell	IGCC-CCS simuliert
Spez. CO ₂ Emission	929 kg CO₂/MWh	213 kg CO ₂ /MWh
Spez. Investkosten	1644 €/kW	3168 €/kW
Stromgestehungskosten	56 €/MWh	84 €/MWh

Tabelle 22: Kostenvergleich konventionelles DKW vs. IGCC-CCS (Rauchfuß, 2012)

Die Anlagenkosten für ein IGCC-CCS-Konzept können nur mit einer Genauigkeit von +/- 30% ermittelt werden. Es ist erkennbar, dass trotz der ungenauen Schätzung die Investitionskosten eines IGCC Kraftwerks über denen eines modernen Referenzkraftwerks liegen. Zu den deutlich höheren Investitionskosten kommen höhere Betriebskosten hinzu. Um den Vorteil der IGCC-CCS Technologie in Form der deutlich geringeren CO₂-Emissionen auch wirtschaftlich geltend zu machen, muss der Emissionshandel betrachtet werden. Die Kosten für Emissionszertifikate belaufen sich aktuell auf rund 6,70 €/t CO₂ (European Energy Exchange AG, 2014). Zu diesen Konditionen ist es nicht möglich IGCC Kraftwerke auf einem konkurrenzfähigen Preisniveau zu betreiben. Nach Rauchfuß (Rauchfuß, 2012) liegen die emissionsärmeren Vergasungskraftwerke erst ab einem Zertifikatspreis von mehr als 47 €/t CO₂ auch wirtschaftlich im Vorteil.

Daten aus dem sich im Pilotbetrieb befindlichen IGCC-Kraftwerk in Puertollano ergeben leicht andere Zahlen. Firmenangaben gehen von Investitionskosten für einen Neubau von rund 1300 €/kW aus. Diese Angabe bezieht sich jedoch auf ein IGCC Kraftwerk ohne integrierte CO₂-Abtrennung. Dennoch dürfte eine CCS fähige Anlage bei den Investitionskosten unterhalb den von Rauchfuß angegebenen 3000 €/kW liegen (Trevino Coca, 2003). Die Ergebnisse der Pilotanlage lassen darauf schließen, dass sich die Abtrennungskosten für das Kohlenstoffdioxid, inkl. Kompression, auf rund 35 €/tCO₂ belaufen werden (Casero, et al., 2012).

8 CO₂ aus der chemischen Industrie

In den Abschnitten 6 und 7 wurde bereits auf die CO₂-Gewinnung durch Absorption aus Luft und durch Polygeneration (im Kraftwerksbereich) eingegangen. Neben diesen CO₂-Quellen gibt es noch viele weitere. Die wichtigsten CO₂-Quellen mit ihren jeweiligen CO₂-Konzentrationen im Abgasstrom sind in Tabelle 23 dargestellt.

Sektor	CO ₂ -Emissionen aus großen stationären Quellen weltweit (Gt)	Prozentualer Anteil an der Gesamtemission aus diesen Quellen	CO₂-Konzentration im Abgasstrom
Energiewirtschaft	10,5	45%	3-4% (Gasturbine) 14% (IGCC)
Stahlherstellung	1,5	6%	15-27%
Zementherstellung	0,93	4%	14-33%
Raffinerien	0,8	3%	3-13%
Chemische Industrie	0,4 ¹²	2%	z.B. NH ₃ , EO: 100%
Transport	5,6	24%	
Sonstige	3,4	14%	-

 Tabelle 23: Übersicht CO₂-Quellen und Emisssionen großer stationärer Quellen durch Nutzung fossiler Brennstoffe (Ausfelder, et al., 2008)

Es wird ersichtlich, dass einige Prozesse der chemischen Industrie die mit weitem Abstand höchsten CO₂-Konzentrationen im Abgasstrom aufweisen. Aus diesem Grund ist die chemische Industrie als Quelle für die stoffliche CO₂-Nutzung am besten geeignet. Besonders hervorzuheben sind dabei die Ammoniaksynthese, welche weltweit mindestens 120 Mt CO₂ pro Jahr herstellt und die Ethylenoxidsynthese, welche eine Produktion von schätzungsweise 5,1 Mt CO₂ pro Jahr zur Verfügung stellt (Stand: 2008). 94 Mt des aus diesen beiden Quellen gewonnenen CO₂ werden jedes Jahr für die Harnstoffsynthese eingesetzt. Weitere 20 Mt CO₂ pro Jahr werden der "physikalischen" Verwendung als technisches Gas, Trockeneis, in der Getränkeindustrie etc. zugeführt. Somit verbleibt ein Überschuss von mindestens 10 Mt CO₂ pro Jahr an reinem CO₂. (Ausfelder, et al., 2008)

Der Standort der betrachteten Power-to-Methanol-Anlage ist Leuna, Sachsen-Anhalt. Durch die geringe räumliche Entfernung bietet sich als CO₂-Quelle das Ammoniak-Werk von SKW Piesteritz an. Da das CO₂ aus der chemischen Industrie weniger Nachfrage als Angebot aufzeigt, kann es für die nachfolgenden Berechnungen vereinfacht als kostenlos angenommen werden.

9 (Reverse) Wasser-Gas-Shift

Für die Synthese von Methanol wird ein definiertes Eduktverhältnis (H₂: CO₂: CO) benötigt. Im Folgenden werden Verfahren vorgestellt, welche zur Einstellung dieses Verhältnisses einen Beitrag leisten.

9.1 Prozessoption 1: Wasser-Gas-Shift

9.1.1 Ziel und Anwendung

Die Hauptaufgabe der Wasser-Gas-Shift-Reaktion (WGS-Reaktion) ist die Entfernung von Kohlenstoffmonoxid (CO) aus Gasgemischen. Dabei entsteht Wasserstoff (Leppelt, 2007). Dies ist in der folgenden Gleichung dargestellt.

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

Die Hinreaktion ist exotherm, wodurch sich das Gleichgewicht bei niedrigeren Temperaturen auf die Seite der Produkte verschiebt (Leppelt, 2007). Als Edukte werden Wasser und Kohlenstoffmonoxid aus vorgeschalteten Prozessschritten (wie z.B. der Polygeneration) verwendet. Im Folgenden soll ein kurzer Überblick zum WGS-Verfahren gegeben werden.

9.1.2 Verfahren

Zurzeit wird in der Industrie eine Kopplung aus High Temperature Shift-Verfahren (HTS-Verfahren) und nachgeschaltetem Low Temperature Shift-Verfahren (LTS-Verfahren) angewendet (Leppelt, 2007). Dabei ist das Hauptziel, wie unter 9.1.1 bereits erwähnt, die CO-Entfernung aus einem Gasstrom. Die WGS-Reaktion hat dabei den Vorteil, dass kein zusätzlicher Wasserstoff verbraucht sondern produziert wird (Karpenko, 2007).

Das Verfahren besteht aus zwei Reaktoren, in denen die Reaktionen stattfinden (Membranreaktoren) und einem dazwischenliegenden Wärmeaustauscher zur Kühlung des Produktes aus dem HTS-Reaktor (Leppelt, 2007).

Wie in Abbildung 37 dargestellt, läuft das HTS-Verfahren bei Temperaturen von 300 - 500°C und Drücken von 3 - 40 bar ab. Die verwendeten Katalysatoren sind Fe₂O₃/Cr₂O₃. Der anschließende Niedrigtemperaturreaktor wird bei 200 - 260 °C und mit einem CuZnO-Katalysator betrieben. Dabei wird im ersten Schritt der CO-Gehalt auf weniger als 3% und im zweiten Schritt auf weniger als 0,1% gesenkt. Die beiden Temperaturstufen liegen darin begründet, dass bei hohen Temperaturen die gute Kinetik ausgenutzt wird und bei niedrigen Temperaturen die Gleichgewichtslage besser ist (Otterstätter, 2012).

9.1.3 Mögliche Reaktoren & Katalysatoren

<u>Reaktoren</u>

Reaktoren, in denen chemische Reaktionen kombiniert mit einem Membranverfahren stattfinden, nennt man Membranreaktoren (vgl. Abbildung 38). Diese werden bereits erfolgreich in der Industrie eingesetzt. Dabei lassen sich drei Hauptprinzipien unterscheiden (Melin, et al., 2007):

- 1. Extraktorprinzip (Selektive Entfernung von Produkten aus dem Reaktionsgemisch)
- 2. Distributorprinzip (Kontrollierte Zugabe von Edukten zum Reaktionsgemisch)
- 3. Kontaktorprinzip (Intensivierung des Kontaktes der Edukte)

Abbildung 38: Membranreaktor (Silvano, et al., 2014)

Eine weitere Möglichkeit ist der Mikroreaktor. Die Strömungsverhältnisse in diesem entsprechen einem "plug-flow". R. Leppelt beschreibt in seiner Dissertation (2007), dass die Gasmischeinheit die verschiedenen Gasströme über Massendurchflussregler zusammenführt, welche über eine Steuereinheit geregelt werden. Gas wird über eine Gasbefeuchtungseinheit zudosiert. Dabei wird das Gas durch temperiertes Wasser geleitet. Die Menge an Wasser wird durch den Dampfdruck bestimmt.

Auch die Modellbeschreibung kann bei R. Leppelt nachvollzogen werden. Dabei wird ein Volumenelement dV betrachtet. Es wird angenommen, dass nur Teilchenbewegung in Flussrichtung stattfindet und eine homogene Gaszusammensetzung vorliegt.

Abbildung 39: Plug-flow Reaktor (Leppelt, 2007)

Katalysatoren

Beim WGS-Verfahren sind viele verschiedene Katalysatoren denkbar. Jedoch konnten bisher noch nicht alle Varianten getestet werden. Industrielle Katalysatormaterialien sind: Cr, Fe, Cu und Zn. Diese werden mit weiteren möglichen Katalysatormaterialien wie Co, Ru, Rh, Pd, Ir, Pt, Au kombiniert. Da der gesamte Katalysator aus Kostengründen nicht nur aus den aufgeführten Materialien besteht, verwendet man zusätzlich Trägerstoffe. Diese bestehen zumeist aus Oxiden wie Ti-Oxid, Zr-Oxid, Hf-Oxid, Ce-Oxid, Th-Oxid, Al-Oxid (Karpenko, 2007).

9.2 Prozessoption 2: Reverse Wasser-Gas-Shift-Reaktion

9.2.1 Zielstellung

Mit der Einbindung einer Prozesseinheit mit einer Reverse Wasser-Gas-Shift-Reaktion (RWGS-Reaktion) in eine Methanolsynthese-Anlage soll erreicht werden, dass dem Methanolreaktor ein Synthesegas mit einem möglichst hohen CO/CO₂-Verhältnis zugeführt werden kann. Dies erhöht die Effizienz der Methanolsynthese, da im Gegensatz zum Kohlenmonoxid, bei der Reduktion von Kohlendioxid zu Methanol Wasser entsteht. Dieses vermindert die Aktivität des Katalysators im Methanolreaktor. Kohlenmonoxid ist nicht nur ein Edukt der Methanolsynthese, sondern kann auch durch die WGS-Reaktion mit Wasser zu CO₂ und H₂ umgesetzt werden. Somit wird die Aktivität des Katalysator im Methanolreaktor aufrechterhalten (Arakawa, 2001; Ganesh, 2014). Dies setzt voraus, dass in einer Prozesseinheit mit RWGS-Reaktion auch das entstehende Wasser abgetrennt wird.

9.2.2 Thermodynamik der Reverse-Wasser-Gas-Shift-Reaktion

Der RWGS (Gleichung 1) ist eine endotherme Gleichgewichtsreaktion mit einer Reaktionsenthalpie von 41 kJ/mol (298 K). Nach dem Prinzip von Le Chatelier und Braun begünstigen hohe Temperaturen die Hinreaktion. Der Druck hat aber keinen Einfluss auf die Lage des Gleichgewichts. Die Edukte des RWGS können in einer konkurrierenden Gleichgewichtsreaktion zu Methan reagieren (Gleichung 2). Die Methanbildung in einem technischen Verfahren ist nicht nur wegen der geringeren CO Ausbeute ein unerwünschter Prozess, sondern das Methan kann in Folgereaktionen auch zur Koksentstehung führen, welches eine reduzierte Katalysatorlebensdauer bedeutet. Bei einem Druck von 1 bar wird die Methanbildung erst ab Temperaturen über 700 °C unterdrückt (Abbildung 40). Bei 25 bar verschiebt sich diese Grenze sogar bis 900 °C (Kaiser, et al., 2013). Bei 25 bar liegt diese Grenze sogar erst bei 900 °C (Kaiser, et al., 2013). Hohe Temperaturen verschieben zwar auch das Gleichgewicht der RWGS-Reaktion zu Gunsten der Produkte, aber die Materialkosten für einen Reaktor steigen dadurch erheblich an. Außerdem zeigt die Erfahrung, dass hohe Prozesstemperaturen zum Sintern des Katalysators führen (De Falco, et al., 2013). Die Wirtschaftlichkeit des RWGS-Verfahrens hängt somit stark von der Auswahl des Katalysators ab.

$$CO_2 + H_2 \rightleftharpoons CO + H_2O \tag{1}$$

$$CO_2 + 4 H_2 \rightleftharpoons CH_4 + 2 H_2O \tag{2}$$

Abbildung 40: Thermodynamische Gleichgewichtszusammensetzung des Produktgases der RWSG-Reaktion bei 0,1 MPa und einem H₂/CO₂ Eduktverhältnis von 3 (Kaiser, et al., 2013).

9.2.3 Katalysatoren

Ein geeigneter Katalysator für den RWGS erhöht die Selektivität für die Bildung von CO und unterdrückt die Methanbildung. Außerdem sollte er auch bei höheren Temperaturen für längere Zeit aktiv bleiben, um die Ausbeute an CO zu erhöhen.

Der kommerziell erhältliche Nickelkatalysator NiO/Al₁₂O₁₉ (G90-B, Südchemie) erwies sich als sehr aktiv, jedoch wird aufgrund des hohen Nickelanteils eine erhebliche Menge Methan gebildet (Unde, 2012). Auch ein Eisenanteil in potentiellen Katalysatoren, wie in frühen Verfahren eingesetzt (Bader, 1933), hat eine hohe Methanbildung zur Folge (Dupont, et al., 2003). Da Eisenoxid außerdem bei hoher Temperatur und hohem Wasserstoffpartialdruck zu elementarem Eisen reduziert wird, sollte diese Komponente ersetzt werden. Mit einer Zusammensetzung aus Zinkoxid und Chromoxid (ZnO/Cr₂O₃) wurde ein Katalysator gefunden, dessen Stabilität bei 600°C über 80 h nachgewiesen werden konnte und mit dem bei einer Gasflussrate von 15 l/(g_{kat}·h) ab 500°C das thermodynamische Gleichgewicht erreicht wird (Park, et al., 2000). In einem patentierten Verfahren wird ein ähnlicher Zinkoxid/Chromoxid-Katalysator (ZnO/Cr₂O₃) verwendet, der nicht mehr als 2,5 w% Nickel und kein Eisen enthält. Bei Temperaturen von 300 bis 520°C und Drücken von 15 bis 25 bar konnten so 4000 bzw. 6000 Nm³/h Edukt pro m³ Katalysator umgesetzt werden (Dupont, et al., 2003). Bei einem durchgeführten Versuch über 1200 Stunden sowie einem Druck von 20 bar und 430°C konnte ein CO₂-Umsatz von 0,4 und damit das thermodynamische Gleichgewicht erreicht werden. Die hierbei verwendete Katalysator-, Edukt- und Produktzusammensetzung sind in Tabelle 24 aufgeführt. Bei diesem Verfahren verbleiben nur 0,8 vol% Methan im Produktgasstrom.
Katalysator		E	duktgas	Produktgas	
ZnO	77.5 w%	H ₂	74.2 vol%	H ₂	71.3 vol%
Cr_2O_3	21.3 w%	CO ₂	24.7 vol%	CO ₂	15.8 vol%
NiO	1.2 w%	со	1.0 vol%	СО	12.1 vol%
		H ₂ O	0.1 vol%	CH_4	0.8 vol%

Tabelle 24: Katalysator, Edukt- und Produktgaszusammensetzung nach dem patentierten Verfahren von (Dupont, et al., 2003)

Ein verbessertes Verfahren verwendet den CATOFIN[®] Cr/Al₂O₃-Katalysator des Unternehmens Süd-Chemie AG, München. Bei Drücken von bis zu 60 bar und Temperaturen von bis zu 730°C konnte die Methanbildung fast vollständig unterdrückt werden und auf Grund der hohen Temperaturen auch ein hoher Umsatzgrad erreicht werden. Auch die Langzeitstabilität des Katalysators wurde nachgewiesen (Mammadov, et al., 2014).

9.2.4 Prozessgestaltung

Im Eduktstrom des RWGS-Prozesses wäre es angebracht, ein H₂/CO₂ Verhältnis von 3 vorzulegen, um bereits an dieser Stelle die Stöchiometrie der Nettogleichung der Methanolsynthese zu erfüllen (Gleichung 3) und durch den Überschuss an Wasserstoff das Gleichgewicht des RWGS auf die Seite des CO zu verschieben.

$$CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O \tag{3}$$

Nach dem RWGS-Reaktor muss Wasser vom Synthesegas abgetrennt werden. Dafür können erprobte Verfahren der Kondensation und Flüssig/Gas-Trennung eingesetzt werden. Im Gesamtsystem einer Power-to-Gas-Anlage ließe sich das kondensierte Wasser wieder der Elektrolyse zuführen. Dabei ist aber noch zu untersuchen, welche Mengen an CO₂ und CO im Kondensat gelöst werden und so eventuell die Elektrolyse beeinflussen.

Das so erzeugte Synthesegas kann nun dem Methanolreaktor zugeführt werden. Dabei sollte berücksichtigt werden, dass dieses je nach Wahl des Katalysators geringe Mengen an Methan enthalten kann. Um die Ausbeute an CO bei niedrigen Reaktionstemperaturen zu erhöhen, kann ein Teil des Synthesegases über einen Splitter dem Reaktor wieder zugeführt und so im Kreislauf gefahren werden. Auch ein bestimmtes CO₂/CO-Verhältnis des Synthesegases, das bei der folgenden Methanolsynthese eingehalten werden sollte, ließe sich über das Splitverhältnis einstellen. Daneben bestünde die Möglichkeit, das CO₂/CO-Verhältnis nach dem RWGS-Reaktor durch Zudosieren von CO₂ zu beeinflussen.

Das beschriebene Verfahren ist bereits im Pilotmaßstab unter dem Namen CAMERE (<u>ca</u>rbon dioxide hydrogenation to form <u>me</u>thanol via a <u>re</u>verse-water-gas-shift reaction) realisiert. In Abbildung 41 ist das dazugehörige Verfahrensfließbild dargestellt.

Abbildung 41: Verfahrensfließbild des CAMERE Prozesses (Oh-Shim, et al., 1999). Links RWGS-Prozess, rechts Methanol-Synthese. Im "Reactor1" wird CO₂ und H₂ in der RWGS-Reaktion umgesetzt.

Ein anderer Ansatz der Gestaltung eines RWGS-Prozesses wird beim Einsatz von adsorptiven Reaktoren verfolgt (Carvill, et al., 1996; Nataraj, et al., 2001; Jung, et al., 2013). Hierbei findet im Reaktor nicht nur die Reaktion, sondern auch die Adsorption von Wasser an ein geeignetes Material statt. Dadurch wird das Reaktionsgleichgewicht auf die Produktseite verschoben und man erhält einen nahezu vollständigen Umsatz von CO₂ zu CO. Durch die exotherme Adsorption wird auch die Energie für die endotherme RWGS-Reaktion bereitgestellt. Diese Prozessgestaltung erfordert jedoch zwei Reaktoren, die abwechselnd im Reaktions-/Adsorptions- und im Desorptionszustand betrieben werden.

9.3 Prozessoption 3: Alternative Verfahren zu Herstellung von CO

9.3.1 Steamreforming

Die Produktion von Wasserstoff aus Produkten der Petrochemie ist heutzutage üblich und hinreichend bekannt. Dabei zählt das Steamreforming-Verfahren zu den Bekanntesten. Hierbei wird aus CH₄ und Wasser CO und H₂ hergestellt.

Beim herkömmlichen Steamreforming werden vorrangig fossile Rohstoffe verwendet. Im Hinblick auf eine abnehmende Verfügbarkeit dieser Rohstoffquelle müssen weitere Alternativen in Betracht gezogen werden.

9.3.2 Vergasung von Biomasse

Laut des Artikels "Wasserstoffproduktion aus Biomasse" (Hesse, et al., 2014) besteht die Möglichkeit, aus Biomasse wie z.B. Holz, Feststoffabfällen bei der Getreideverarbeitung oder anderen anfallenden Abfällen, unter Sauerstoffmangel zu vergasen (Hesse, et al., 2014).

Folgende Gleichung zeigt die Wasserdampf-Kohlenstoff-Reaktion:

Biomasse +
$$H_2O \rightarrow CO + H_2$$

Vorteile dieses Verfahrens sind zu einem die Tatsache, dass jegliche Biomasse vergast werden kann und das aufgrund der Organik weniger O₂ benötigt wird. Da bei der Reaktion auch zum Teil CO₂ entsteht, sollte eine Begünstigung des Boudouard-Gleichgewichts berücksichtigt werden, welches in der nachfolgenden Gleichung dargestellt ist.

$$CO_2 + C \rightarrow 2 CO$$

Da es sich dabei um eine endotherme Reaktion handelt, wird also eine Erhöhung der Reaktionstemperatur das Gleichgewicht in Richtung CO verschieben. Dies hat einen zweiten positiven Nebeneffekt. Die Methanisierung kann unterdrückt werden. Dieser Zusammenhang ist in Abbildung 42 verdeutlicht.

Abbildung 42: Gleichgewichtskurven bei Kohlenstoffvergasung (Hesse, et al., 2014)

Daraus resultiert eine Reaktion der Biomasse bei hohen Temperaturen. Einen möglichen Realisierungsversuch stellt hierbei die thermische Umsetzung von Biomasse in einem Wirbelschichtreaktor dar (siehe Abbildung 43).

Abbildung 43: Wirbelschichtreaktor für die Biomassevergasung (Hesse, et al., 2014)

Das Hauptproblem ist die Gasreinigung. Aufgrund der komplexen Verbindungen in der Biomasse ist diese sehr speziell und weitreichend. Des Weiteren ist die derzeitige Wirtschaftlichkeit einer solchen Anlage noch fraglich, da die meisten herkömmlichen Verfahren einen besseren Wirkungsgrad aufweisen (Hesse, et al., 2014).

Absorption Enhanced Reforming Process (AER)

Bei dem AER-Prozess handelt es sich um ein reines Forschungsthema, welches bis jetzt keine großtechnischen Anlagentests beinhaltet und zum Großteil nur im Labormaßstab getestet wird.

Es dient als Alternative zu der Verbrennung in der Wirbelschicht. Die Bestandteile des hierbei erhaltenen Synthesegases sind H₂, CO, CO₂, CH₄, N₂ sowie Verunreinigungen wie z.B. Teere, Partikel, Schwefel-, Halogen- und Alkali-Verbindungen (Zuberbühler, et al., 2003).

Der AER-Prozess kann vereinfacht mit den in Abbildung 44 dargestellten Reaktionsgleichungen beschrieben werden.

$C_xH_yO_z$ + (x-z) $H_2O \rightarrow x CO$ + (2x+0.	5y-z) H ₂ (600-800°C)	Gl (1)
+ Shift-Reaktion:		
$x \text{ CO} + x \text{ H}_2\text{O} \rightarrow x \text{ CO}_2 + x \text{ H}_2$	(600 °C)	Gl (2)
+ Hochtemperatur CO ₂ Absorption:		
$x \text{ CaO} + x \text{ CO}_2 \rightarrow x \text{ CaCO}_3$	(600 °C)	Gl (3)
= AER-Prozess:		
$C_xH_yO_z$ + (2x-z) H_2O + x CaO \rightarrow x Ca	aCO ₃ + (2x-z+0.5y) H ₂	Gl (4)

Abbildung 44: Idealisierte Darstellung der im AER-Prozess ablaufenden Reaktionen (Zuberbühler, et al., 2003)

Eine daraus resultierende Folge ist ein Kreislauf, in dem CaO über CaCO₃ wieder regeneriert wird und dem Prozess so wieder zugeführt werden kann. Auch der bei der Reaktion evtl. nicht umgesetzte Kohlenstoff kann so verwertet bzw. dem Prozess entnommen werden. Abbildung 45 zeigt eine Darstellung dieses Verfahrens.

Abbildung 45: Darstellung des AER-Prozesses mit separater Regenerierung (Zuberbühler, et al., 2003)

In Versuchen zeigte sich, dass ein Katalysator für eine übliche Niedertemperatur-WGS-Reaktion gut für gasförmige Eduktströme geeignet ist. Da die Edukte meist Flüssigkeiten oder Feststoffe sind, ist hier noch Forschungsbedarf. Ebenfalls gibt es Schwierigkeiten bei dem Verkoken des CaO-Filters, der in Form von Dolomit in einer Schüttung realisiert wurde (Zuberbühler, et al., 2003).

Fazit: Der AER-Prozess erweist sich rein formal als gute Alternative. Jedoch weisen Katalysator und Prozessführung viele Schwächen auf. Beispielsweise sind hier die Belastung an Schadstoffen für den Katalysator zu nennen, sowie die daraus resultierende Reinigung des Gases.

9.4 Prozessauswahl: RWGS

Für die durchgeführte Konzeption einer "Power to Methanol"-Anlage wurden drei Möglichkeiten der CO₂/CO-Gewinnung in Betracht gezogen. Dabei handelt es sich um die Absorption aus Luft, die Gewinnung mittels Polygeneration und die Verwendung von CO₂ aus der chemischen Industrie. Letzterer weist eine Reinheit von etwa 99,9% auf. Da dieser als näherungsweise kostenfrei angenommen werden kann, stellt das CO₂ aus der chemischen Industrie die Grundlage der Prozessauswahl dar.

Die Methanol-Synthese benötigt sowohl CO₂ als auch CO. Die optimale Prozessoption stellt hierbei der RWGS dar. Dieser wird im Folgenden näher beschrieben.

9.4.1 Prozessbeschreibung

Im ersten Schritt werden Kohlenstoffdioxid und Wasserstoff auf den Prozessdruck verdichtet und in einen Gasmischer geleitet. Anschließend wird der Eduktstrom mit dem Gasstrom, der den Reaktor verlassen hat, vorgewärmt. Die Reaktionstemperatur wird mit Hilfe eines Erhitzers eingestellt. Dann wird das Gasgemisch aus Kohlenstoffdioxid und Wasserstoff über einen Katalysator im Reaktor geleitet. Dabei entstehen Wasser, Kohlenmonoxid sowie geringe Anteile an Methan. Das CO₂ wird nicht vollständig umgesetzt und befindet sich auch im Produktstrom des Reaktors. Eine erste Kühlung des Produktstromes erfolgt über die Vorwärmung des Eduktstromes. Durch einen nachgeschalteten Wärmetauscher wird der Produktstrom weiter auf 65°C abgekühlt, um den Anteil des Wassers in der Gasphase auf 1 mol% zu reduzieren. Das verflüssigte Wasser wird in einem Flashbehälter abgetrennt. Am Kopf des Flashs erhält man die Gaszusammensetzung, die der Methanolsynthese zugeführt werden kann. Auf Grundlage der angestrebten Jahresproduktion an Methanol beträgt die Menge an Wasser, die bei diesem Prozess anfällt, etwa 12,1 Gmol/Jahr. Durch eine teilweise Rückführung des umgesetzten Gases lässt sich das CO₂/CO-Verhältnis einstellen, wie es die Technologie der Methanolsynthese erfordert. Der hier beschriebene Prozess ist in dem Verfahrensfließbild in Abbildung 46 dargestellt.

9.4.2 Mögliche Betriebsweisen des Reaktors

Für die Betriebsweise des Reaktors sind mehrere Möglichkeiten denkbar. Die einzelnen Varianten sind in Tabelle 25 dargestellt.

	Variante 1	Variante 2 (Dupont, et al., 2003)	Variante 3 (nach Camere)
Betriebstemperatur	730°C	430°C	300 - 500°C
Druck	40 bar	20 bar	10 - 30 bar
Rückführung	ohne	evtl. mit	mit und ohne
Methanisierung	nein	ja	möglich

Tabelle 25: Reaktorparameter

Mit diesen drei Varianten kann die gewünschte Zusammensetzung des Eduktstroms der Methanolsynthese (4:1:1) erreicht werden.

Variante 3 ist in der Literatur für verschiedene Prozessparameter beschrieben und kann gut als Vergleich mit eigenen Simulationen herangezogen werden. Die Produktgaszusammensetzung kann bei dieser Variante über das Rücklaufverhältnis eingestellt werden, das mit milderen Reaktionsbedingungen zunimmt. Über die Publikation des CAMERE-Prozesses (Oh-Shim, et al., 1999) konnte eine Reaktorgröße von ca. 44 m³ errechnet werden.

Für die Ermöglichung einer Teillast-Fahrweise, muss der Volumenstrom durch Rückführung aufrechterhalten werden. Dies führt zu einer Verlängerung der Gesamtverweilzeit des Synthesegases im Reaktor und begünstigt damit die Nebenreaktion der Methanbildung. Es ist davon auszugehen, dass durch eine Verdopplung der Verweilzeit auch die Methankonzentration um den Faktor 2 steigt. Es konnten keine genaueren Daten zu den Möglichkeiten, den RWGS-Reaktor bei niedrigerer Last zu fahren, gefunden werden. Daher werden die mit den Auftraggebern vereinbarten 60% als minimale Teillast für die Berechnungen herangezogen.

Reaktorvolumen: V = 77 m³ Katalysatorvolumen: V = 64,3 m³

7

Abbildung 46: Verfahrensfließbild des RWGS

Abbildung 47: Abbildung der ChemCAD-Simulation des RWGS

(Reverse) Wasser-Gas-Shift

Der gemessene Umsatzgrad in der RWGS-Reaktion bei verschiedenen Temperaturen für den ZnO/Cr₂O₃-Katalysator, wie sie von Park et al., 2000 publiziert sind, bildeten die Grundlage für eine in der Literatur beschriebene Prozesssimulation mit dem Programm PROII[™] (De Falco, et al., 2013). Diese lieferte das Ergebnis, dass eine Rückführung des Produktgasstromes bei einer Temperatur des einströmenden Gases in den Reaktor von 640°C nicht nötig ist, um ein CO/CO₂-Verhältnis von 1 zu erreichen.

Auf Grundlage dieser Arbeit wurde eine eigene Prozesssimulation mit dem Programm ChemCAD entworfen, mit dem Ziel durch die Wahl einer geeigneten Temperatur des Gasstromes in den Reaktor eine Rückführung für den Prozess im Dauerbetrieb zu vermeiden.

Die Anlage wurde, wie in Abbildung 47 dargestellt, in ChemCAD simuliert. Die hieraus

1

relevanten Ströme sind Strom

- Eduktstrom an CO₂
- 2 Eduktstrom an H₂
- 5 Reaktorzulauf
- 6 Reaktorablauf
- 10 Produktstrom an Wasser (Nebenprodukt)
- 11 Produktstrom für die Methanolsynthese

9.6.1 Energieströme

Tabelle 26: Energieströme der WÜ des RWGS

Wärmeübertrager	Energiemenge
1 (Apparat 5)	47214 kW
2 (Apparat 3)	17670 kW
3 (Apparat 4)	-18421 kW

Da der erste Wärmeübertrager (WÜ) die Abwärme aus dem Reaktor benutzt, besitzt dieser keine Relevanz für die Gesamtenergiebilanz. Für die Energiebilanz relevant ist lediglich der zweite WÜ, der in Form eines Brenners realisiert werden muss und eine Leistung von 17,67 MW bringen muss.

9.6.2 Stoffmengenströme

	Stoffmengenströme der Komponenten [kmol/h]				
	H ₂	CO ₂	СО	H ₂ O	
Eduktstrom [2]	8202,31	-	-	-	
Eduktstrom [1]	-	3280,69	-	-	
Produktstrom [10]	0,25	0,91	0,05	1514,54	
Produktstrom [11]	6588,60	1664,59	1614,76	99,68	
Reaktorzulauf [5]	8202,30	3280,69	-	-	
Reaktorablauf [6]	6591,24	1666,18	1614,51	1614,51	

Tabelle 27: Ausgewählte Stoffmengenströme der Simulation

Tabelle 27 zeigt alle eingehenden und ausgehenden Stoffströme des RWGS. Die Simulation erfolgte dabei auf Grundlage des benötigten Eduktstroms der Methanolsynthese zur Realisierung der Herstellung von 500.000 t Methanol pro Jahr.

9.7 Aufstellungs- und Ex-Zonenplan

Abbildung 48: Aufstellungsplan des RWGS

Abbildung 49: Ex-Zonenplan des RWGS

10 Methanolsynthese

10.1 Prozessoptionen und Verfahrensauswahl

Die nachfolgende Ausarbeitung beschäftigt sich mit der Auswahl eines geeigneten Syntheseverfahrens (Hoch-, Mittel- oder Niederdruckverfahren) sowie deren eingesetzten Katalysatoren, auftretenden Nebenreaktionen und der Zusammensetzung des Synthesegases.

10.1.1 Mögliche Verfahren

Für die Methanolsynthese kommen drei Syntheseverfahren in Frage. Es handelt sich um das Hoch-, das Mittel- und das Niederdruckverfahren.

Das Hochdruckverfahren arbeitet im Bereich von 250 bis 350 bar und 360 bis 380°C und nutzt ZnO/Cr₂O₃-Katalysatoren. Es wird jedoch heutzutage, aufgrund zu hoher Investitions- und Betriebskosten, nicht mehr eingesetzt. (Baerns, et al., 2013) Der beim Entwicklungsprojekt einzusetzende Wasserstoff liegt teilweise in Druckbehältern zwischengelagert vor, sodass dieser Druck bei Entscheidung für das Hochdruckverfahren genutzt werden könnte.

Das Mitteldruckverfahren nutzt Drücke zwischen 100 und 300 bar und Temperaturen zwischen 220 und 300°C. Zum Einsatz kommen CuO/ZnO/Cr₂O₃-Katalysatoren. Dieses Verfahren weist aufgrund der exothermen und volumenkontrahierenden Natur der Methanolsynthese die höchsten Ausbeuten auf, da hohe Drücke und niedrige Temperaturen im Allgemeinen das Gleichgewicht auf die Seite der Produkte verschieben. (Baerns, et al., 2013)

In der Praxis wird das Niederdruckverfahren nach LURGI im Rohrbündelreaktor oder ICI im Quenchreaktor bevorzugt eingesetzt. Für Letzteres besitzt die Linde AG seit 1984 eine Lizenz (Linde Aktiengesellschaft, 2013). Es nutzt 50 bis 100 bar, 200 bis 300°C und Katalysatoren auf Kupferbasis. Daraus resultieren geringere Investitionskosten und geringere Betriebskosten, da weniger Kompressionsenergie notwendig ist. Die Kosteneinsparung je Tonne Methanol ist jedoch abhängig von der Anlagengröße: eine größere Anlage bedeutet einen geringeren Kostenvorteil des Niederdruckverfahrens im Vergleich zu den anderen Verfahren. (Bolton, 1969)

Die meisten Methanolsynthese-Anlagen sind auf 1,5 Mio. t Methanol pro Jahr ausgelegt (Baerns, et al., 2013). Die Zielsetzung des Entwicklungsprojektes beträgt nur 500.000 t/a. Somit gehört die zu planende Anlage zu den kleineren Aufbauten. Außerdem liegt der Druck des elektrolytisch produzierten Wasserstoffs unter 100 bar und fällt somit in den Bereich des ICI-Verfahrens. Die Methanolsynthese kann im Niederdruckverfahren für eine Anlagengröße

von 500.000 t/a am ökonomischsten durchgeführt werden. Daher wird dieses Verfahren für die nachfolgenden Betrachtungen und Auslegungen gewählt.

Das allgemeine Fließbild der Methanolsynthese ist in Abbildung 50 dargestellt.

Abbildung 50: Fließbild der Methanolsynthese (Baerns, et al., 2013)

Haupt- und Nebenreaktionen

Die allgemeine Reaktionsformel zur Methanolsynthese lautet wie folgt:

$$CO + 2 H_2 \rightarrow CH_3OH$$

Es sind jedoch auch folgende Nebenreaktionen zu erwarten (Baerns, et al., 2013):

CO_2	+	3 H ₂	\rightarrow	CH ₃ O	Н	+	H ₂ O			
CO	+	3 H ₂	\rightarrow	CH_4		+	H ₂ O			
CO	+	H ₂	\rightarrow	HCHC)					
n CO	+	2n H₂	\rightarrow	HOCH (z.B. Wachs	l₂-CH₂O kurzket se)	H + H₂ tige A	O + CH Ikane,	₃OH + etc Olefine,	höhere	Alkohole,

Diese Nebenprodukte werden in dem Reaktor nachgeschalteten Abscheider mit dem Rohmethanol vom Kreislaufstrom abgetrennt. Allgemein senken die Nebenreaktionen die Ausbeute. Je Durchgang der Kreislaufführung ist eine Ausbeute von etwa 10 bis 15 % zu erwarten (Baerns, et al., 2013). Das Endprodukt Methanol wird durch Destillation erhalten.

Als erste Annahme kann eine Ausbeute von 70% des eingesetzten Wasserstoffes angenommen werden. Somit ergibt sich bei einer Jahresproduktion von 500.000 t Methanol eine benötigte Menge Wasserstoff von 44,644 Gmol.

10.1.2 Zusammensetzung des Synthesegases

Eine Zielsetzung des Entwicklungsprojektes ist es, verschiedene Kohlenstoffdioxidquellen zu betrachten und in einem Reverse Wasser-Gas-Shift in Kohlenstoffmonoxid umzuwandeln.

Je nach Art der Kohlenstoffdioxidquelle werden besondere Anforderungen an den Katalysator gestellt. Die im Niederdruckverfahren eingesetzten Katalysatoren reagieren zumeist sehr sensibel auf Giftstoffe im Synthesegas. So werden Katalysatoren aus Nickel und Kupfer durch Schwefel- und Chlorverbindungen im Synthesegase schnell vergiftet (Agny, et al., 2006). Das einsetzbare Synthesegas kann Teer, Staubpartikel, Schwefeloxide, Stickoxide und Chloride enthalten. Da im Folgenden von CO₂ aus der Ammoniaksynthese ausgegangen wird, können mögliche Verunreinigungen in der weiteren Betrachtung vernachlässigt werden.

Das genutzte Synthesegas besteht größtenteils aus H₂, CO₂, CO und in geringeren Anteilen N₂ und CH₄ (Bolle, 2012). Das Kohlenstoffdioxid wird im RWGS zu Kohlenstoffmonoxid umgewandelt. Da dafür ebenfalls Wasserstoff verbraucht wird und eine hundertprozentige Umsetzung von CO₂ zu CO nicht zu erwarten ist und ein geringer Anteil CO₂ im Synthesegase sogar katalytisch wirkt, bleibt zu entscheiden, wie das Verhältnis CO₂ zu CO im Synthesegas zu wählen ist.

Aus verschiedenen Quellen geht hervor, dass die Methanolsynthese heutzutage überwiegend großtechnisch mittels Synthesegas der Zusammensetzung $H_2:CO:CO_2 = 4:1:1$ (Molverhältnis) Anwendung findet (Baerns, et al., 2013; Arutyunov, et al., 2002; Canete, et al., 2014). Somit würden jährlich für 44,644 Gmol H_2 jeweils 11,161 Gmol CO und CO₂ benötigt werden. Bei dieser Zusammensetzung erzeugte ein Zr-Cu/ZnO-Katalysator in Bezug auf Konversion, Selektivität und Ausbeute besonders gute Ergebnisse (Agny, et al., 2006).

10.2 Verfahrensbeschreibung des ICI-Niederdruckverfahrens

Im Folgenden erfolgt analog zum beiliegenden Verfahrensfließbild eine Prozessbeschreibung der kontinuierlichen Methanolsynthese. Diese ist nach dem ICI-Niederdruckverfahren (Patent der Linde AG) aufgebaut und umfasst den Prozess von der Synthesegaszufuhr bis zur Zwischenlagerung des Methanols.

Der Wasserstoff wird kontinuierlich durch den vorgeschalteten Elektrolyseprozess bereitgestellt. Falls dieser nicht ausreicht, wird die Annahme getroffen, dass der benötigte Wasserstoff über eine Pipeline zur Verfügung gestellt wird. Ebenfalls kontinuierlich erfolgt die Zufuhr eines CO-CO₂-Gasgemisches (optimal jeweils 50 % Molanteil).

10.2.1 Synthesegaszufuhr

Die Zusammenfuhr der Stoffströme ist so einzustellen, dass im erhaltenen Synthesegas ein Molverhältnis an $H_2: CO_2: CO$ von 4:1:1 besteht. Der Wasser-Gas-Shift liefert diese Zusammensetzung bereits. Für eventuelle Nachjustierungen wird zusätzlich eine H_2 -Rohrleitung direkt von der Elektrolyse eingeplant.

Dieses Synthesegas wird anschließend mittels Verdichter P1 auf einen Druck zwischen 50 und 100 bar verdichtet und durch den Wärmetauscher W1 auf etwa 200 bis 300°C erhitzt. Genauere Angaben zu den endgültigen Synthesebedingungen können erst nach erfolgter Simulation in ChemCAD getroffen werden.

10.2.2 Kreislaufprozess

Das verdichtete und erhitzte Synthesegas wird dem Reaktor R1 zugeführt, in dem die Methanolsynthese stattfindet. Ein Teil des Gases wird vor dem Wärmetauscher abgespalten und dient der Temperaturregulierung im Katalysatorbett. Dazu wird das kühle Synthesegas direkt in das Bett geleitet, um der stark exothermen Methanolsynthese entgegen zu wirken. Wird der abgespaltene Gasstrom nicht komplett im Katalysatorbett verbraucht, so kann der Rest am Reaktoreingang wieder dem Zufuhrstrom zugegeben werden.

Genaue Umsatzgrade eines Reaktordurchganges sind nach aktuellem Erkenntnisstand nicht bekannt. Es kann von Werten kleiner 15 % ausgegangen werden. Das abgeführte Produktgemisch unterstützt im Wärmetauscher W1 die Erhitzung der Reaktorzufuhr, ehe es zur Entspannung in den Abscheider A1 gelangt. Dort trennen sich die Gasanteile (größtenteils Synthesegas) von den Flüssiganteilen (Methanol und Nebenprodukte). Die Gase werden im Verdichter P2 wieder auf Prozessdruck gebracht und zur Frischgaszufuhr addiert. Somit verläuft die Synthese größtenteils mit Kreislaufgas, dem stetig frisches Synthesegas zugeführt wird.

10.2.3 Reinigung

Die im Abscheider A1 abgetrennten Flüssiganteile werden der Destillationskolonne K1 zugeführt, in welcher der erste Reinigungsschritt erfolgt. Durch die Destillation werden zunächst die leichtsiedenden Verunreinigungen abgetrennt, während das Sumpfprodukt in die Destillationskolonne K2 überführt wird. Dort erfolgt durch die Abdestillation des Reinmethanols der letzte Reinigungsschritt. Die schwersiedenden Verunreinigungen im Sumpfprodukt und werden vom Prozess abgetrennt.

In der weiteren Planung sollte untersucht werden, ob den Verdampfern der beiden Kolonnen Energie aus anderen Prozessschritten zugeführt bzw. die an den Kondensatoren freiwerdende Energiemenge genutzt werden kann.

Das synthetisierte Methanol wird in einem Behälter B1 zwischengelagert, ehe es zur Weiterverarbeitung bzw. Energierückgewinnung entnommen wird. Der Behälter sollte ein Speichervolumen von drei Produktionstagen fassen können, um eventuelle Entnahmepausen zu überbrücken.

10.3 Verfahrensfließbild

10.4 Simulation mittels ChemCAD

Abbildung 52: Abbildung der ChemCAD-Simulation der Methanolsynthese

Methanolsynthese

Im Folgenden werden die mittels ChemCAD aufgestellte Simulation der Methanolsynthese erläutert und noch bestehende Problemstellungen aufgezeigt. Die Simulation ist in Abbildung 52 dargestellt.

Synthesegaszufuhr

Nimmt man 8000 Stunden Volllastfahrt im Jahr an, so werden dem Prozess 9964,709 kmol/h im Feedstrom zugeführt. Dieser beinhaltet das erforderliche Synthesegas im H₂:CO:CO₂-Molverhältnis 4:1:1 und Verunreinigungen wie Methan und Edelgase, welche mit jeweils 1 Vol.-% angenommen werden. Der Feed wird in dieser Zusammensetzung direkt vom Reverse-Wasser-Gas-Shift mit 25 bar und 65 °C eingeleitet.

Nachdem dem Feed der ebenfalls auf 25 bar komprimierte Recyclingstrom zugeleitet wurde, wird das Gas in einer vierstufigen Kompressorkette P1 bis P4 auf 80 bar gebracht. Um die nötige Kühlung dieses Vorgangs zu simulieren, wurde jedem Kompressor ein Wärmetauscher nachgeschaltet.

Das so verdichtete Synthesegas wird im Wärmetauscher W6 durch den Reaktorabstrom vorgewärmt, ehe es in den Reaktor eingeleitet wird. W6 ist ein weiterer Wärmetauscher (W5) vorangestellt, da ChemCAD ohne diesen bei der Berechnung von W6 Probleme aufweist.

Kreislaufprozess

Das verdichtete, erhitzte Synthesegas wird dem Reaktor R1 zugeführt, in dem die Methanolsynthese stattfindet. Der Reaktor wurde als Gleichgewichtsreaktor simuliert, in dem die Reaktionen I bis III ablaufen.

I	$2 \text{ H}_2 + \text{CO} \rightarrow \text{CH}_3\text{OH}$	Umsatz des zugeführten H ₂ : 10 %
II	$3 \text{ H}_2 + CO_2 \rightarrow CH_3OH + H_2O$	Umsatz des zugeführten H2: 10 %
III	$H_2 + CO_2 \rightarrow H_2O + CO$	Umsatz des zugeführten H2: 0,01 %

Die Umsätze durch die jeweiligen Reaktionen sind dabei reine Annahmen, da keine genaueren Daten zur Simulation vorlagen.

Der gewählte Reaktor simuliert hierbei einen ICI-Reaktor. Die Teileinspeisung des Synthesegases direkt in das Katalysatorbett konnte mithilfe von ChemCAD nicht zufriedenstellend simuliert werden. Die Nutzung des Eduktstroms zur Kühlung des Reaktors und dessen Produktstroms kann mit W6 aber näherungsweise abgebildet werden.

Der aus R1 erhaltene Produktstrom wird anschließend mittels zweier Flashs F1 und F2 in eine Gas- und eine Flüssigphase getrennt. Die Flashs stellen dabei die Funktion eines Abscheiders

dar. Der Kompressor P5 und Wärmetauscher W7 dienen der Entspannung des Stroms auf Normaldruck und Raumtemperatur, damit eine effektive Gas-Flüssig-Trennung erfolgen kann.

Der Gasstrom wird über den Recyclingstrom wieder dem Feed zugeführt, sodass sich ein Kreislaufprozess ergibt. Dem Recyclingstrom wird ein geringer Anteil als Purge entnommen, um eine Aufkonzentration der Verunreinigungen Methan und Edelgase im Kreislauf zu vermeiden.

Reinigung

Die im Abscheider abgetrennten Flüssiganteile werden der Destillationskolonne K1 zugeführt, in welcher der erste Reinigungsschritt erfolgt. Durch Destillation werden zunächst die leichtsiedenden Verunreinigungen abgetrennt, die in K2 und nachgeschalteter K3 einer Abgasreinigung unterzogen werden. Das aus K2 über K3 abgeführte Sumpfprodukt wird mit der schwersiedenden Fraktion aus K1 zusammen in K4 geleitet, wo über Kopf das Produkt Methanol mit 500.000 t im Jahr gewonnen wird. Über den Sumpf von K4 wird das verbliebene Wasser abgeführt.

Das synthetisierte Methanol wird in einem Behälter B1 zwischengelagert, der in der Simulation nicht eingebaut wurde, ehe es zur Weiterverarbeitung bzw. Energierückgewinnung entnommen wird. Der Behälter sollte ein Speichervolumen von drei Produktionstagen fassen können, um eventuelle Entnahmepausen zu überbrücken.

Wechsellast

Da der Elektrolyse nicht konstant ausreichend Strom zur katalytischen Herstellung von Wasserstoff bereit steht, muss auch ein Reaktorbetrieb auf Minimallast untersucht werden. Als Annahme wurde festgelegt, dass der Prozess nur 2000 Stunden im Jahr unter Volllast fahren kann und die verbleibenden 6000 Stunden unter Minimallast fährt, um die Menge Wasserstoff, die in dieser Zeit eingekauft und nicht durch Elektrolyse hergestellt wird, möglichst gering zu halten. Problematisch ist jedoch, dass sich Reaktoren unter wechselnden Lasten kaum beherrschen lassen. Ein Aufbau mehrerer kleiner Reaktoren, die unter Volllast zugeschaltet werden können, entfällt ebenfalls, da die Reaktoren nicht auskühlen dürfen.

Man kann davon ausgehen, dass eine Lastwechselfahrweise eine große Herausforderung darstellt. Genaue Angabe zu den Möglichkeiten, den Reaktor der Methanolsynthese bei niedrigerer Last zu fahren, konnten über eine Recherche nicht ermittelt werden. Daher werden die mit den Auftraggebern vereinbarten 60% als minimale Teillast für die Berechnungen herangezogen. Mit ChemCAD konnte der Wechsellastfall ohne Änderungen am Prozess

ebenfalls umgesetzt werden. Lediglich die nötigen Leistungen und Apparategrößen ändern sich.

10.4.1 Stoffmengenströme

Tabelle 28: Übersicht Stoffströme der Methanolsynthese

	Stoffmengenströme der Komponenten [kmol/h]					
	H ₂	CO ₂	СО	H_2O	Inertgase & Methan	Methanol
Eduktstrom	6.562	1.640	1.640	0	194	0
Produktstrom	0	0	0	0	0	1.951
Reaktorzulauf	23.696	2.972	5.866	0	1.914	0
Reaktorablauf	18.715	2.190	4.699	782	1.914	1951
Purge	1.870	147	470	0	191	0
Abtrennung mit Kolonnen	6	709	3	782	3	0

10.4.2 Energieströme

Tabelle 29: Energetische Kenndaten der Kompressoren der ChemCAD-Simulation der Methanolsynthese

Kompressor	Eingangsdruck	Enddruck	Leistung	Kühlleistung
P1	25 bar	33,4 bar	3803 kW	-48943 kW
P2	33,4 bar	44,7 bar	3763 kW	-4157 kW
P3	44,7 bar	59,8 bar	3685 kW	-4189 kW
P4	59,8 bar	80 bar	3615 kW	-4169 kW
P5	80 bar	1 bar	-35668 kW	-
P6	1 bar	5 bar	20878 kW	-12762 kW
P7	5 bar	25 bar	20910 kW	-21182 kW

Tabelle 30: Energetische Kenndaten der Kolonnen der ChemCAD-Simulation der Methanolsynthese

	Leistung	Leistung
Kolonne	Kondensator	Verdampfer
K1	-48938 kW	56722 kW
К2	-35400 kW	35325 kW
КЗ	-0,1 kW	0,2kW
К4	-210534 kW	231793 kW

Tabelle 31: Energetische K	Cenndaten der Wärmetausch	her der ChemCAD-Simulat	ion der Methanolsynthese
----------------------------	---------------------------	-------------------------	--------------------------

	T(ein)	T(aus)	Leistung
W6	150,0 °C	250,0 °C	
	407,7 °C	304,9 °C	
W7	304,9 °C	22,0 °C	-110149 kW

10.5 Aufstellungs- und Ex-Zonenplan

Abbildung 53: Aufstellungsplan der Methanolsynthese

Abbildung 54: Ex-Zonen-Plan der Methanolsynthese

Methanolsynthese

11 Prozessübersicht

In diesem Abschnitt werden die Gesamtbilanz, das Gesamtverfahrensfließbild und der Gesamtaufstellungsplan dargestellt. In allen Prozessübersichten wird dabei von einem Dauerbetrieb der Elektrolyse und damit der Wahl der Elektrolyse als AEL ausgegangen. Wenn man von einem Teilbetrieb der Elektrolyse und damit der Ausführung der Elektrolyse als PEMEL ausgeht, steigt die stündliche Produktion an Wasserstoff, eine Wasserstofflagerung wird notwendig und der Platzbedarf der Gesamtanlage steigt erheblich.

Des Weiteren wurden die Möglichkeiten zur CO₂-Gewinnung bei dem Gesamtverfahrensfließbild und dem Gesamtaufstellungsplan außer Acht gelassen. Hier gibt es eine große Vielfalt von möglichen Verfahrensoptionen (z.B. Polygeneration, CO₂-Absorption aus Luft, CO₂ aus der chemischen Industrie).

11.1 Gesamtbilanz

Die im Folgenden dargestellte Gesamtbilanz zeigt die wichtigsten Stoffströme der Hauptprozessschritte. Alle Werte beziehen sich dabei auf eine Arbeitszeit von 8000 Stunden pro Jahr.

11.1 Gesamtverfahrensfließbild

Abbildung 55: Gesamtverfahrensfließbild der "Power to Methanol"-Anlage

Prozessübersicht

11.2 Gesamtaufstellungsplan

Im in Abbildung 56 dargestellten Optimalfall wird für die Gesamtanlage eine Fläche von etwa 5600 m² benötigt, was in etwa 80 % der Fläche eines Fußballfeldes entspricht. Die Elektrolyse nimmt dabei bereits in der platzsparenden AEL-Ausführung über die Hälfte des Geländes in Anspruch. Bei einem Szenario mit 2000 Jahresbetriebsstunden im Wechsellastbetrieb und der damit einhergehenden Verwendung von PEM-Elektrolyseuren und Wasserstoffspeichern hätte die Elektrolyse etwa den 10-fachen Platzbedarf (bei gleichbleibender Methanolproduktion).

Abbildung 56: Gesamtaufstellungsplan

12 Wirtschaftlichkeitsanalyse

Zur Betrachtung der Wirtschaftlichkeit der Power-To-Methanol-Anlage müssen die Investitionskosten für die Anlagenelemente inklusive Rohrleitungen, die Kosten für Montage und Bau, die Kosten für Betriebsstoffe sowie laufende Ausgaben für z.B. Personal und Wartung, einbezogen werden. Im folgenden Abschnitt werden getroffene Annahmen und verwendete Gleichungen aufgeführt, die Verfahren zur Kostenermittlung erläutert sowie die Ergebnisse für verschiedene Szenarien dargestellt.

12.1 Generelle Annahmen und Berechnungen

Die Ermittlung der Anschaffungskosten für die einzelnen Apparate und Maschinen wurde mit Hilfe von Kostendiagrammen (Ulrich G., 2004) vorgenommen. Die reinen Apparatekosten C_P können bei Kenntnis des kostenbestimmenden Faktors (z.B. Wärmetauscherfläche, Anschlussleistung oder Hauptabmaße) direkt in den Diagrammen abgelesen werden. Zur Bestimmung der Bare-Module-Kosten C_{BM} (Apparatekosten ohne Aufstellung) wird der erhaltene C_P-Wert gemäß nachfolgender Gleichung mit einem Bare-Module-Faktor F_{BM} multipliziert. Dieser ergibt sich aus dem Materialfaktor F_M sowie dem Druckfaktor F_P, welche ebenfalls nach (Ulrich G., 2004) ermittelt wurden.

$$C_{BM} = C_P \cdot F_{BM}$$

Der erhaltene C_{BM}-Wert wird anschließend mit einem Aufstellungsfaktor F_A multipliziert. Dieser wird mit 1,05 angenommen, da die Anlage für den mitteldeutschen Raum konzipiert wird. Da sich die Preise der Kostendiagramme auf das Jahr 2004 beziehen, muss zwangsläufig eine zeitliche Anpassung der Kosten auf das Jahr 2014 folgen. Dies geschieht über den *Chemical Engineering's Plant Cost Index* (CEPCI), der 2004 bei einem Wert von 400 lag und im Jahr 2014 585 beträgt (Chemical Engineering, 2014). Als Währungs-Umrechnungsfaktor F_w wurde der aktuelle Börsenkurs von 1,30 \$/€ herangezogen. Die Berechnung der Gesamtapparate-kosten aus der Summe aller ermittelten C_{BM}-Werte erfolgte mit nachfolgender Gleichung.

$$C_{GA}[\boldsymbol{\epsilon}] = \sum C_{BM,i} \cdot F_A \cdot \frac{CEPCI_{2014}}{CEPCI_{2004}} \cdot F_W$$

Zur Bestimmung der Elektrolysekosten wurde der energiespezifische Kostensatz verwendet. Dieser liegt je nach Art der Elektrolyse bei 1.000 €/kW_{el} für die AEL bzw. bei 2.500 €/kW_{el} für die PEMEL (Henke J., 2013; Smolinka T., 2011; Wenske M., 2008). Die jeweilig benötigten Hilfs- und Betriebsstoffe können den Produktdatenblättern der Elektrolysehersteller entnommen werden. Die Höhe der Anschaffungskosten der Elektrolyseure richtet sich nach ihrer Anschlussleistung. Für die Berechnungen wurde die Annahme getroffen, dass zur Herstellung eines Normkubikmeter Wasserstoffs 5 kWh elektrische Energie benötigt werden. Die so errechneten Anschaffungskosten wurden ebenfalls mit dem Aufstellungsfaktor 1,05 multipliziert.

Neben den reinen Apparate- und Maschinenkosten müssen zusätzliche Anschaffungskosten wie z.B. Rohrleitungen, elektrische Versorgung, MSR-Einrichtungen und Montagekosten berücksichtigt werden. Zur Berechnung der Gesamtinvestitionskosten inklusive Montage und Bau wurde das Zuschlagsverfahren genutzt (nach Klapp, 1980). Die angewendeten Faktoren sind in Tabelle 32 aufgeführt. Diese einfache Methode ermöglicht eine schnelle Berechnung der überschlägigen Gesamtanschaffungskosten der Anlage.

Auf Grund der hohen Komplexität der Elektrolyseure fallen sehr hohe Investitionskosten für die Module an. Deshalb wurde das Zuschlagsverfahren hier angepasst, indem sich die Faktoren nun auf einen Berechnungswert als Anteil der Gesamtapparatekosten beziehen. Für die Ermittlung der Zuschlagskosten II bis V wurden bei der AEL nur 40 % und bei der PEMEL nur 20 % der Apparate- und Maschinenkosten als Berechnungsgrundlage angenommen.

	Anschaffungskosten für:	Berechnung		
I	Apparate- und Maschinenkosten	gemäß (gemäß Cost-To-Index-Charts	
II	Rohrleitungen	30%	von l	
II.1	Montage der Rohrleitungen	100%	von II	
III	elektrische Versorgung	15%	von l	
III.1	Montage der elektrischen Versorgung	55%	von III	
IV	MSR-Einrichtung	20%	von l	
IV.1	Montagematerial der MSR-Einrichtung	20%	von IV	
IV.2	Montage der MSR-Einrichtung	65%	von IV	
V	Bau- und Baunebenkosten	55%	von l	

Tabelle 32: Zuschlagsfaktoren zur Ermittlung der Gesamtinvestitionskosten (nach Klapp, 1980)

Damit die Wirtschaftlichkeit der Power-To-Methanol-Anlage geprüft werden kann, muss die Absetzung für Abnutzung berücksichtigt werden, d.h. die Investitionskosten sowie auch Projektkosten und die Ausgaben für Inbetriebnahme werden anteilig auf die Jahre der Anlagennutzung verteilt. Der Abschreibungszeitraum wurde vereinfacht für alle Apparate und Maschinen auf 10 Jahre festgelegt und es wird von einer linearen Abschreibung ausgegangen.

Neben den Abschreibungen fallen laufende Kosten für Betriebsstoffe an. Deren Preise werden auf Grundlage der aktuellen Börsenpreise (finanzen.net GmbH; European Energy Exchange AG) sowie einer Firmenanfrage (RP Compounds GmbH, 2014) angenommen und in sind Tabelle 33 aufgelistet. Diese Preise wurden zusätzlich durch Vergleich mit errechneten Hilfsstoffkosten (nach Ulrich G., 2014) angepasst.

	Betriebsstoff	Preis	Quelle	
eleł	ktrische Energie	65 €/MWh	(European Energy Exchange AG) (RP Compounds GmbH, 2014)	
thermisc	he Energie (Erdgas)	3 €/GJ	(European Energy Exchange AG) (finanzen.net GmbH)	
	Heizdampf	15 €/t	(Ulrich G., 2014) (RP Compounds GmbH, 2014)	
	Kühlwasser	20 €/1000 m³	(Ulrich G., 2014) (RP Compounds GmbH, 2014)	
Speisewa	sser für Elektrolyseure	2 €/m³	(Ulrich G., 2014) (RP Compounds GmbH, 2014)	
	Wasserstoff	1 €/kg	(Henke J., 2013) (Smolinka T., 2011)	
Kohlenstoff- dioxid	aus der chem. Industrie	0 €/t	Annahme	
	aus Polygeneration	47 €/t	(Rauchfuß H., 2012) (Casero P., 2012)	
	aus CO ₂ -Absorption aus Luft	8.220 €/t	Berechnung (siehe Kapitel 7.4)	

Weitere Kosten, die für Wartung, Instandhaltung, Betriebspersonal und Verwaltung jährlich anfallen, wurden über industrietypische Prozentsätze ermittelt (siehe Tabelle 34). Weiterhin müssen die Abschreibungen für Projektplanung und Inbetriebnahme einbezogen werden.

Kosten für:	Berechnung	Quelle	
Wartung/Instandhaltung	4% der Gesamtinvestitionskosten	(Anderson J., 2009) (Rasch A.A., 2000)	
Betriebspersonal	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr	(Anderson J., 2009)	
Verwaltung	180% der Kosten für das Betriebspersonal	(Anderson J., 2009)	
Projektkosten	5% der Gesamtinvestition (auf 10 Jahre verteilt)	Annahme	
Inbetriebnahme	10% der Gesamtinvestition (auf 10 Jahre verteilt)	(Weber K.H., 2006)	

Tabelle 34: Berechnungsgrundlagen der weiteren Kosten für Wartung, Personal, Projektplanung und Inbetriebnahme

Die anfallenden Produktionskosten pro Jahr ergeben sich folglich aus der Abschreibung der Gesamtinvestitionskosten (inklusive Rohrleitungen, Montage, etc.), den Ausgaben für verwendete Betriebsstoffe sowie den weiteren Kosten für z.B. Wartung und Personal. Zur besseren Anschaulichkeit wurden die laufenden Gesamtkosten auf die produzierte Menge bezogen. Dieser so entstandene produktspezifische Kostensatz wurde für jeden Anlagenteil ermittelt und kennzeichnet den Preis pro Menge Produkt, der mindestens erreicht werden muss, um kostendeckend zu arbeiten.

 $Kostensatz \ f"ur \ H_2 \ bzw. \ MeOH = \frac{j"ahrliche \ Produktionskosten}{j"ahrliche \ Produktionsmenge \ an \ H_2 \ bzw. \ MeOH}$

12.2 Betrachtungsszenarien

Zur Einschätzung der Wirtschaftlichkeit der Power-To-Methanol-Anlage wurden 14 verschiedene Betrachtungsszenarien entwickelt, die im Folgenden näher erläutert werden. Im Anhang B werden alle Szenarien in einer Übersichtstabelle dargestellt.

Szenarien Kategorie 1: Es werden 10.000 Nm3/h Wasserstoff hergestellt und verkauft.

• **1a:** Die Elektrolyse wird im Volllastbetrieb betrieben (8000 h/a). Es werden demzufolge alkalische Elektrolysemodule verwendet. Der Strom für die Elektrolyse wird als kostenlos angenommen.

- 1b: Die Elektrolyse wird im Volllastbetrieb betrieben (8000 h/a). Es werden demzufolge alkalische Elektrolysemodule verwendet. Der Strom für die Elektrolyse wird für einen Preis von 65 €/MWh eingekauft.
- 1c: Die Elektrolyse wird im Teillastbetrieb betrieben (2000 h/a). Es werden demzufolge PEM-Elektrolysemodule verwendet. Der Strom f
 ür die Elektrolyse wird als kostenlos angenommen.
- 1d: Die Elektrolyse wird im Volllastbetrieb betrieben (8000 h/a). Es werden demzufolge alkalische Elektrolysemodule verwendet. Der Strom für die Elektrolyse wird für 2000 Betriebsstunden als kostenlos angenommen und die weiteren 6000 Betriebsstunden für einen Preis von 65 €/MWh eingekauft.

Szenarien Kategorie 2: Es werden 500.000 t/a Methanol hergestellt und verkauft. Das notwendige Kohlenstoffdioxid zur Synthesegasherstellung stammt aus der chemischen Industrie. Verunreinigungen werden vernachlässigt und es wird als kostenlos angenommen.

- 2a: Die Elektrolyse wird im Volllastbetrieb betrieben (184.000 Nm³/h, 8000 h/a). Es werden demzufolge alkalische Elektrolysemodule verwendet. Der Strom für die Elektrolyse wird als kostenlos angenommen, für alle weiteren Anlagen wird er für einen Preis von 65 €/MWh eingekauft. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).
- 2b: Die Elektrolyse wird im Teillastbetrieb betrieben (184.000 Nm³/h, 2000 h/a). Es werden demzufolge PEM-Elektrolysemodule verwendet. Der weitere notwendige Wasserstoff zur Synthesegasherstellung wird für einen Preis von 1 €/kg eingekauft. Der Strom für die Elektrolyse wird als kostenlos angenommen, für alle weiteren Anlagen wird er für einen Preis von 65 €/MWh eingekauft. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).
- 2c: Die Elektrolyse wird im Teillastbetrieb betrieben (184.000 Nm³/h, 2000 h/a). Es werden demzufolge PEM-Elektrolysemodule verwendet. Der weitere notwendige Wasserstoff zur Synthesegasherstellung wird für einen Preis von 1 €/kg eingekauft. Der Strom für die Elektrolyse wird als kostenlos angenommen, für alle weiteren Anlagen wird er für einen Preis von 65 €/MWh eingekauft. Die Methanolsynthese wird 2000 Betriebsstunden im Volllastbetrieb gefahren und die weiteren 6000 Betriebsstunden im Minimallastbetrieb (60%). Es werden somit jährlich nur 350.000 t Methanol produziert.

2d: Die Elektrolyse wird im Teillastbetrieb betrieben (736.000 Nm³/h, 2000 h/a). Es werden demzufolge PEM-Elektrolysemodule verwendet. Der produzierte Wasserstoff wird in Drucklagertanks zwischengespeichert. Der Strom für die Elektrolyse wird als kostenlos angenommen, für alle weiteren Anlagen wird er für einen Preis von 65 €/MWh eingekauft. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).

Szenarien Kategorie 3: Es werden 500.000 t/a Methanol hergestellt und verkauft. Das notwendige Kohlenstoffdioxid zur Synthesegasherstellung stammt aus Polygenerations-prozessen oder wird aus der Luft absorbiert.

- 3a: Die Elektrolyse wird im Teillastbetrieb betrieben (736.000 Nm³/h, 2000 h/a). Es werden demzufolge PEM-Elektrolysemodule verwendet. Der produzierte Wasserstoff wird in Drucklagertanks zwischengespeichert. Der Strom für die Elektrolyse wird als kostenlos angenommen, für alle weiteren Anlagen wird er für einen Preis von 65 €/MWh eingekauft. Das Kohlenstoffdioxid wird für 47 €/kg aus Polygeneration-Prozessen gewonnen. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).
- 3b: Die Elektrolyse wird im Volllastbetrieb betrieben (184.000 Nm³/h, 8000 h/a). Es werden demzufolge alkalische Elektrolysemodule verwendet. Der Strom für die Elektrolyse wird als kostenlos angenommen, für alle weiteren Anlagen wird er für einen Preis von 65 €/MWh eingekauft. Das Kohlenstoffdioxid wird für einen Preis von 47 €/kg aus Polygeneration-Prozessen gewonnen. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).
- 3c: Die Elektrolyse wird im Teillastbetrieb betrieben (736.000 Nm³/h, 2000 h/a). Es werden demzufolge PEM-Elektrolysemodule verwendet. Der produzierte Wasserstoff wird in Drucklagertanks zwischengespeichert. Der Strom für die Elektrolyse wird als kostenlos angenommen, für alle weiteren Anlagen wird er für einen Preis von 65 €/MWh eingekauft. Das Kohlenstoffdioxid wird für einen Preis von 8.220 €/kg aus der Luft absorbiert. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).
- 3d: Die Elektrolyse wird im Volllastbetrieb betrieben (184.000 Nm³/h, 8000 h/a). Es werden demzufolge alkalische Elektrolysemodule verwendet. Der Strom für die Elektrolyse wird als kostenlos angenommen, für alle weiteren Anlagen wird er für einen Preis von 65 €/MWh eingekauft. Das Kohlenstoffdioxid wird für einen Preis von

8.220 €/kg aus der Luft absorbiert. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).

Szenarien Kategorie 4: Es werden 500.000 t/a Methanol hergestellt und verkauft. Das notwendige Kohlenstoffdioxid zur Synthesegasherstellung stammt aus der chemischen Industrie. Verunreinigungen werden vernachlässigt und es wird als kostenlos angenommen. Betrachtet werden das realistischste Szenario (4a) sowie der Idealfall (4b) aus Sicht der Wirtschaftlichkeit.

- 4a: Die Elektrolyse wird im Volllastbetrieb betrieben (184.000 Nm³/h, 8000 h/a). Es werden demzufolge alkalische Elektrolysemodule verwendet. Der Strompreis für die Elektrolyse setzt sich aus 2.000 h regenerativer kostenloser Versorgung und 6.000 h herkömmlicher Versorgung zu einem vergünstigten Großabnehmerpreis von 40 €/MWh zusammen. Für alle weiteren Anlagenteile gilt ebenfalls der Großabnehmerpreis. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).
- 4b: Die Elektrolyse wird im Volllastbetrieb betrieben (184.000 Nm³/h, 8000 h/a). Es werden demzufolge alkalische Elektrolysemodule verwendet. Ein Fortschritt in der großtechnischen Produktion der Elektrolysemodule gewährleistet Anschlusskosten von nur 500 €/kW_{el}. Der Strom wird nicht nur für die Elektrolyse sondern für die gesamte Power-To-Methanol-Anlage als kostenlos angenommen. Die Methanolsynthese wird im Volllastbetrieb gefahren (8000 h/a).

12.3 Ergebnisse der Wirtschaftlichkeitsbetrachtungen

Im folgenden Abschnitt sollen die wichtigsten Ergebnisse der Wirtschaftlichkeitsbetrachtung aller Einzelszenarien erläutert werden. Alle konkreten Zahlen und Daten können den Anhängen C-P entnommen werden.

12.3.1 Ergebnisse der Szenarien 1a bis 1d

Im vorherigen Abschnitt wurde bereits das Ziel der Szenarien der Gruppe 1 erläutert. Sie betrachten lediglich die Wirtschaftlichkeit der Elektrolyse an sich. Es wurden verschiedene Preise für den elektrischen Strom als Ressource angenommen. Bei den Szenarien 1a und 1c wurde dieser als regenerativ und somit kostenlos angenommen. In den Szenarien 1b und 1d wurde mit einem üblichen Brutto-Industriepreis (inkl. Steuern und EEG-Umlage) von 65 €/MWh gerechnet. Des Weiteren mussten für das Teillastszenario 1c preisintensivere PEM-Elektrolyseure verwendet werden. Abbildung 57 zeigt die Kostenaufschlüsselung der

einzelnen Szenarien bezogen auf ein Kilogramm produzierten Wasserstoffs. Die Werte können außerdem Tabelle 35 entnommen werden.

Abbildung 57: Kostenaufschlüsselung der Wasserstoffgestehungskosten der Szenarien 1a bis 1d

	1			
	а	b	С	d
Abschreibungen	1,25 €/kg H ₂	1,25 €/kg H ₂	9,91 €/kg H ₂	1,25 €/kg H ₂
Strom, Speisewasser	0,02 €/kg H₂	3,68 €/kg H₂	0,08 €/kg H₂	2,78 €/kg H₂
Kühlwasser	0,02 €/kg H ₂	0,02 €/kg H ₂	0,04 €/kg H ₂	0,02 €/kg H ₂
weitere Fixkosten	1,44 €/kg H₂	1,44 €/kg H₂	8,46 €/kg H₂	1,44 €/kg H ₂
Gesamtkosten	2,72 €/kg H ₂	6,38 €/kg H ₂	18,49 €/kg H ₂	5,48 €/kg H ₂

Tabelle 35: Kostenaufschlüsselung der Wasserstoffgestehungskosten der Szenarien 1a bis 1d

Die rote Markierung kennzeichnet den aktuellen Industriepreis für Wasserstoff aus der Erdgasreformierung (1 €/kg, (Henke J., 2013)). In allen Szenarien liegt der Gesamtpreis des produzierten Wasserstoffs über dem Industriepreis. Bereits die umgelegten Anschaffungskosten (Abschreibungen) der Elektrolyseure überschreiten diesen Wert um

mindestens 0,25 €/kg H₂. Ein weiterer wesentlicher Faktor ist, je nach Szenario, der elektrische Strom, dessen Kostenanteil bei bis zu 60 % liegt. Das Speisewasser hat auf Grund seines geringen Preises einen vernachlässigbaren Einfluss auf den Preis (0,02 bis 0,08 €/kg H₂). Ebenso ist der Anteil des Kühlwassers in allen Szenarien unwesentlich (ca. 0,02 €/kg H₂). Die weiteren Fixkosten stellen nochmal einen größeren Anteil dar, da diese direkt von den Anschaffungskosten abhängen (siehe Tabelle 34). Die Szenarien 1a, 1b und 1d liegen mit 2,50 €/kg H₂; 5,50 €/kg H₂ bzw. 6,50 €/kg H₂ in einem wirtschaftlich realistisch umsetzbaren Bereich für regenerativen Wasserstoff.

Ein Wert von 18,50 €/kg H₂ wie in Szenario 1c ist wirtschaftlich nicht tragbar. In diesem Szenario sind die Anschaffungskosten derartig hoch, dass eine konkurrenzfähige Produktion nicht gewährleistet werden kann.

12.3.2 Ergebnisse der Szenarien 2a bis 3d

In den Szenarien 2a bis 3d soll nun eine großtechnische Herstellung von 500.000 Jahrestonnen Methanol gewährleistet werden. Diese wird über eine Elektrolysestation mit Wasserstoff versorgt. Das ebenso benötigte CO₂ wird aus verschiedenen Quellen bezogen. Die Kosten für eingekauften Wasserstoff und Kohlenstoffdioxid werden auf den RWGS umgelegt. Abbildung 58 zeigt die Kostenaufschlüsselung der einzelnen Anlagenteile auf den Gesamtmethanolpreis pro Tonne. Die Werte können außerdem Tabelle 36 entnommen werden.

	2				
	а	b	С	d	
Elektrolyse	526 €/t MeOH	1.280 €/t MeOH	1.830 €/t MeOH	5.530 €/t MeOH	
RWGS	43 €/t MeOH	240 €/t MeOH	254 €/t MeOH	43 €/t MeOH	
Methanolsynthese	230 €/t MeOH	230 €/t MeOH	254 €/t MeOH	230 €/t MeOH	
Gesamtkosten H ₂	799 €/t MeOH	1.750 €/t MeOH	2.338 €/t MeOH	5.803 €/t MeOH	
			2		
		3			
	а	b	С	d	
Elektrolyse	5.530 €/t MeOH	526 €/t MeOH	5.530 €/t MeOH	526 €/t MeOH	
RWGS	153 €/t MeOH	153 €/t MeOH	19.154 €/t MeOH	19.154 €/t MeOH	
Methanolsynthese	230 €/t MeOH	230 €/t MeOH	230 €/t MeOH	230 €/t MeOH	
Gesamtkosten H ₂	5.913 €/t MeOH	909 €/t MeOH	24.914 €/t MeOH	19.910 €/t MeOH	

Fahalla 26, Kaatanaufaahlügaalung	day Mathanalayadulatia	makaatan dar Czanarian	On hin Od
radelle 30. Kostenautschlusselund	der Melhanoldroduklic	onskoslen der Szenarien	za dis su

Abbildung 58: Kostenaufschlüsselung der Methanolproduktionskosten der Szenarien 2a bis 3d

Die rote Markierung im Diagramm markiert den aktuellen Börsenpreis für Methanol (400 €/t, (Methanex Corporation, 2014)). Bereits der Kostenanteil der Elektrolyse überschreitet in allen acht betrachteten Fällen den aktuellen Börsenpreis.

Alle Elektrolyseteillastszenarien mit Wasserstoffzwischenspeicherung (2d, 3a, 3c) liegen mit Kostensätzen der Elektrolyse von über 5.500 €/t Methanol deutlich über wirtschaftlich sinnvollem Niveau. Der Kostensatz für die eigentliche Methanolsynthese ist relativ konstant bei einem Wert von 230 bis 250 €/t Methanol (entspricht zwischen 2 und 29 % der Gesamtmethanolkosten). Der Anteil der Methanolherstellungskosten des RWGS liegt in allen Szenarien außer 3c und 3d unter 17 % (43 bis 250 €/t Methanol). Bei den letzten beiden Szenarien fällt der immens hohe Preis des absorbierten Kohlenstoffdioxids ins Gewicht. Somit werden hier unrealistisch hohe Methanolpreise (20.000 bis 25.000 €/t Methanol) erreicht, die in keiner Weise am Markt erzielt werden können. Selbst bei einer enorm hohen
Preissteigerungsrate des Methanols von 11 % jährlich wird dieser Preis bis 2050 nicht erreicht werden.

12.3.3 Ergebnisse der Szenarien 4a und 4b

In den Szenarien 4a und 4b sollen ebenfalls 500.000 Jahrestonnen Methanol produziert werden. In Fall 4a wird die realistische Annahme getroffen, dass der Strom für alle Anlagen außer der Elektrolyse zu einem Großabnehmerpreis eingekauft werden kann. Er wird deshalb nur mit 40 €/MWh angenommen. Das ideale Betrachtungsszenario 4b geht davon aus, dass so viel regenerativer Strom produziert und zur Verfügung gestellt wird, dass kein zusätzlicher Strom für den RWGS und die Methanolsynthese eingekauft werden muss. Die Kostenaufschlüsselung der einzelnen Anlagenteile auf den Gesamtmethanolpreis pro Tonne ist in Abbildung 59 gezeigt. Die Werte können außerdem Tabelle 37 entnommen werden.

Abbildung 59: Kostenaufschlüsselung der Methanolproduktionskosten der Szenarien 4a bis 4b

	4		
	а	b	
Elektrolyse	970 €/t MeOH	274 €/t MeOH	
RWGS	40 €/t MeOH	36 €/t MeOH	
Methanolsynthese	226 €/t MeOH	219 €/t MeOH	
Gesamtkosten H ₂	1.236 €/t MeOH	530 €/t MeOH	

Tabelle 37: Kostenaufschlüsselung der Methanolproduktionskosten der Szenarien 4a bis 4b

Auch im Szenario 4a nimmt der Preis der Elektrolyse wieder den größten Anteil ein. Hier wird wieder sehr deutlich wie hoch die Anschaffungskosten dieses Anlagenteiles sind. Der verringerte Strompreis hat eher wenig Einfluss auf die Methanolsynthese und den RWGS. Hier sind eher die anderen Energieträger kostenbestimmend. Das Szenario 4b sollte nochmal den absoluten Best-Case aufzeigen. Mit den geringeren Anschaffungskosten der Elektrolyseure und dem komplett kostenlosen elektrischen Strom für alle Anlagenteile, wird hier ein Methanolpreis von unter 600 €/t erreicht.

12.3.4 Break-Even-Points

Zum abschließenden Vergleich aller untersuchten Szenarien 2a bis 4b wurden Break-Even-Analysen durchgeführt. Es wurde davon ausgegangen, dass sich der Methanolpreis, der z.Z. bei 400 €/t liegt, mit einer durchschnittlichen Preissteigerung von 6 % p.a. erhöht. Diese Preissteigerung ist realistisch, betrachtet man die preisliche Entwicklung des Methanols über die letzten 12 Jahre. Für die Kosten der ausgelegten Anlage wurden keine Preissteigerungen berücksichtigt, sodass die Kosten pro Tonne Methanol als konstant angesehen werden. Abbildung 60 zeigt die sechs günstigsten Szenarien sowie die mögliche preisliche Entwicklung von Methanol am Markt.

Der Zeitpunkt, bei dem die Methanolpreis-Referenzlinie die jeweilige Kostenlinie des Szenarios durchdringt, ist mit einer vertikalen Linie gekennzeichnet. Diese markiert den Break-Even-Point und kennzeichnet das Jahr, in dem sich eine Umsetzung des Szenarios wirtschaftlich lohnt. Das Szenario 4b als Best-Case wird theoretisch bereits 2018 rentabel sein. Die Prämissen dieses Szenarios stellen jedoch den Idealfall dar. Das Szenario 4a, als realistischster Betrachtungsfall, könnte ab dem Jahr 2033 mit einem Preis von über 1.200 €/t Methanol wirtschaftlich werden.

Die Szenarien 2a und 3b erreichen ebenfalls relativ schnell (2026 bzw, 2028) ihre Break-Even-Points. Doch auch diese beiden Fälle sind an die Voraussetzung des kostenlosen Elektrolysestroms gekoppelt.

Abbildung 60: Break-Even-Points der 6 günstigsten Szenarien bei einer 6 % p.a. Preissteigerung des Methanolmarktpreises

13 Ergebnisübersicht

In den nachfolgenden Tabellen 38 und 39 werden die signifikanten Werte aller Szenarien tabellarisch dargestellt. Dafür werden die Bedingungen der Szenarien, der Input, der Output, die Annahmen sowie die Parameter der Kosten- und Effizienzbetrachtung aufgelistet.

Für die Bestimmung der Parameter wurden die nachfolgenden Berechnungsvorschriften mit den angegebenen stoffspezifischen Kennwerten genutzt.

Gesamtinvestitionskosten pro kW [€/kW]

 $Gesamt investitions kosten \ pro \ kW = \frac{Gesamt investitions kosten}{Elektrische \ Anschlussleistung_{Gesamtanlage}}$

Mehrkosten im Vergleich zu Marktpreisen [ct/kWh]

$$Mehrkosten = \frac{(spezif.Kosten_{Produkt} - spezif.Marktpreis_{Produkt}) \cdot Produktionsmenge_{jährlich}}{\Sigma(Anschlussleistung_{Anlagenabschnitt} \cdot Laufzeit_{jährlich})}$$
Spezif.. Marktpreis_{MeOH} = 400 €/t (Methanex Corporation, 2014)
Spezif.. Marktpreis_{H2} = 1 €/kg (Henke J., 2013)

Elektrischer Energiebedarf [kW/kg Produkt]

 $Energiebedarf_{elektrisch} = \frac{\Sigma(Anschlussleistung_{Anlagenabschnitt} \cdot Laufzeit_{jährlich})}{Produktionsmenge_{jährlich}}$

Stromwirkungsgrad [EProdukt/Eelektrisch]

Stromwirkungsgrad – $\frac{oberer Heizwert_P}{Oberer Heizwert_P}$	r_{rodukt} · Produktionsmenge _{jährlich}
$\Sigma(Anschlussleistun$	$ng_{Anlagenabschnitt} \cdot Laufzeit_{jährlich})$
Oberer Heizwert _{H2} = 3,54 kWh/Nm ³	(H2moves.eu, 2009)
Oberer Heizwert _{MeOH} = 8,01 kWh/kg	(Reitmaier, I., 2013)

In den Szenarien 2b und 2c, in denen H_2 eingekauft wurde, wurde der Energiegehalt des H_2 in die elektrische Energie eingerechnet.

Tabelle 38: Ergebnisübersicht Teil 1 (Szenarien 1 und 2)

				1			2	2	
		а	b	С	d	а	b	С	d
Elektrolyse-Produktionszeit / Typ		8.000 h / AEL	8.000 h / AEL	2.000 h /PEMEL	8.000 h / AEL	8.000 h / AEL	2.000 h /PEMEL	2.000 h /PEMEL	2.000 h /PEMEL
Platzbedarf der Gesamtanlage		200 m²	200 m²	300 m²	200 m²	5.600 m ²	7.325 m ²	7.325 m²	32.200 m ²
Output									
H ₂ -Produktion ¹⁾		10.000 Nm³/h	10.000 Nm³/h	10.000 Nm³/h	10.000 Nm³/h	(184.000 Nm³/h)	(184.000 Nm³/h)	(184.000 Nm³/h)	(736.000 Nm³/h)
MeOH-Produktion		-	-	-	-	500.000 t/a	500.000 t/a	350.000 t/a	500.000 t/a
Input									
Elektrische Anschlussleistung	Bedarf	50.265 kW	50.265 kW	50.667 kW	50.265 kW	924.872 kW	932.271 kW	932.271 kW	3.729.086 kW
(Elektrolyse)	Kosten	-	65,00 €/MWh	-	49,00 €/MWh	-	-	-	-
Elektrische Anschlussleistung	Bedarf	-	-	-	-	16.271 kW	16.271 kW	16.271 kW	16.271 kW
(restliche Anlage)	Kosten	-	-	-	-	65 €/MWh	65 €/MWh	65 €/MWh	65 €/MWh
Elektrische Anschlussleistung (Gesamtanlage)	Bedarf	50.265 kW	50.265 kW	50.667 kW	50.265 kW	941.143 kW	948.542 kW	948.542 kW	3.745.357 kW
Kühlusser	Bedarf	800 m³/h	800 m³/h	2.000 m³/h	800 m³/h	24.386 m³/h	46.466 m³/h	43.566 m³/h	156.866 m³/h
Kuniwasser	Kosten	20 €/ 1.000 m³							
	Bedarf	8,5 m³/h	8,5 m³/h	34,0 m³/h	8,5 m³/h	156,4 m³/h	625,6 m³/h	625,6 m³/h	2502,4 m³/h
Speisewassei	Kosten	2,00 €/m³	2,00 €/m³	2,00 €/m³	2,00 €/m³				
	Bedarf	-	-	-	-	73.500 Nm³/h	73.500 Nm³/h	51.450 Nm³/h	73.500 Nm³/h
Kohlenstoffdioxid	Kosten	-	-	-	-	kostenlos (aus Industrie)	kostenlos (aus Industrie)	kostenlos (aus Industrie)	kostenlos (aus Industrie)
Zusäteliskas II. Fiskauf	Bedarf	-	-	-	-	-	138.000 Nm³/h	82.800 Nm³/h	-
	Kosten	-	-	-	-	-	1,00 €/kg	1,00 €/kg	-
Kosten- und Effizienzbetrachtung									
Gesamtinvestitionskosten		88,9 Mio. €	88,9 Mio. €	221,8 Mio. €	88,9 Mio. €	1.849 Mio. €	4.293 Mio. €	4.293 Mio. €	17.913 Mio. €
Gesamtinvestitionskosten pro kW		1.769 €/kW	1.769 €/kW	4.378 €/kW	1.769 €/kW	1.964 €/kW	4.526 €/kW	4.526 €/kW	4.783 €/kW
Betriebskosten (jährlich)		11 Mio. €	37 Mio. €	18 Mio. €	30 Mio. €	214 Mio. €	446 Mio. €	389 Mio. €	1.109 Mio. €
laufende Gesamtkosten (jährlich)		19,4 Mio. €	45,6 Mio. €	40,0 Mio. €	39,1 Mio. €	399 Mio. €	876 Mio. €	819 Mio. €	2.900 Mio. €
Mehrkosten im Vergleich zu Marktpreisen (Okt. 2014)		3,07 ct/kWh	9,62 ct/kWh	31,01 ct/kWh	8,01 ct/kWh	2,65 ct/kWh	33,84 ct/kWh	34,00 ct/kWh	35,60 ct/kWh
elektr. Energiebedarf		447,6 MW/kg H ₂	447,6 MW/kg H ₂	112,8 MW/kg H ₂	447,6 MW/kg H ₂	131,9 MW/kg MeOH	34,9 MW/kg MeOH	49,9 MW/kg MeOH	132,9 MW/kg MeOH
Stromwirkungsgrad (E _{Produkt} / E _{elektr})		0,704	0,704	0,699	0,704	0,532	0,813 ²⁾	0,747 ²⁾	0,528
Kostensatz des Endproduktes		2,72 €/kg H₂	6,38 €/kg H₂	18,49 €/kg H₂	5,48 €/kg H₂	799 €/t MeOH	1.750 €/t MeOH	2.338 €/t MeOH	5.803 €/t MeOH

¹⁾ eingeklammerte Werte bedeuten, dass der Wasserstoff in der Anlage weiterverwendet wird
 ²⁾ Wirkungsgrad für die Darstellung des eingekauften Wasserstoffs fließt mit 100% ein

Tabelle 39: Ergebnisübersicht Teil 2 (Szenarien 3 und 4)

			3	}		4	
		а	b	C	d	а	b
Elektrolyse-Produktionszeit / Typ		2.000 h /PEMEL	8.000 h / AEL	2.000 h /PEMEL	8.000 h / AEL	8.000 h / AEL	8.000 h / AEL
Platzbedarf der Gesamtanlage		32.200 m² (+IGCC)	5.600 m² (+IGCC)	310.000 m ²	280.600 m ²	5.600 m ²	5.600 m ²
Output							
H ₂ -Produktion ¹⁾		(736.000 Nm³/h)	(184.000 Nm³/h)	(736.000 Nm³/h)	(184.000 Nm³/h)	(184.000 Nm³/h)	(184.000 Nm³/h)
MeOH-Produktion		500.000 t/a	500.000 t/a	500.000 t/a	500.000 t/a	500.000 t/a	500.000 t/a
Input							
Flaktrische Anschlussleitung (Flaktrahuse)	Bedarf	3.729.086 kW	924.872 kW	3.729.086 kW	924.872 kW	924.872 kW	924.872 kW
Elektrische Anschlussieistung (Elektrolyse)	Kosten	-	-	-	-	30,00 €/MWh	-
Flaktrische Anschlussleitung (restliche Anlage)	Bedarf	16.271 kW	16.271 kW	93.271 kW	93.271 kW	16.271 kW	16.271 kW
Elektrische Anschlussieistung (restliche Anlage)	Kosten	65 €/MWh	65 €/MWh	65 €/MWh	65 €/MWh	40 €/MWh	-
Elektrische Anschlussleistung (Gesamtanlage)	Bedarf	3.745.357 kW	941.143 kW	3.822.357 kW	1.018.143 kW	941.143 kW	941.143 kW
Köbburgeser	Bedarf	156.866 m³/h	24.386 m³/h	156.866 m³/h	24.386 m³/h	24.386 m³/h	24.386 m³/h
Kuniwasser	Kosten	20 €/ 1.000 m³	20 €/ 1.000 m³	20 €/ 1.000 m³	20 €/ 1.000 m³	20 €/ 1.000 m³	20 €/ 1.000 m³
Carainan and an	Bedarf	2502,4 m³/h	156,4 m³/h	2502,4 m³/h	156,4 m³/h	156,4 m³/h	156,4 m³/h
Speisewasser	Kosten	2,00 €/m³	2,00 €/m³	2,00 €/m³	2,00 €/m³	2,00 €/m³	2,00 €/m³
Kablensteffelisvid	Bedarf	73.500 Nm³/h	73.500 Nm³/h	73.500 Nm³/h	73.500 Nm³/h	73.500 Nm³/h	73.500 Nm³/h
Konienstoffaloxia	Kosten	47 €/t	47 €/t	8220 €/t	8220 €/t	kostenlos (aus Industrie)	kostenlos (aus Industrie)
Zusätzlicher H. Einkauf	Bedarf	-	-	-	-	-	-
	Kosten	-	-	-	-	-	-
Kosten- und Effizienzbetrachtung							
Gesamtinvestitionskosten		17.913 Mio. €	1.849 Mio. €	88.416 Mio. €	72.352 Mio.€	1.849 Mio. €	1.035 Mio. €
Gesamtinvestitionskosten pro kW		4.783 €/kW	1.964 €/kW	23.131 €/kW	71.062 €/kW	1.964 €/kW	1.099 €/kW
Betriebskosten (jährlich)		1.164 Mio. €	269 Mio. €	13.171 Mio. €	12.277 Mio. €	433 Mio. €	161 Mio. €
laufende Gesamtkosten (jährlich)		2.955 Mio. €	454 Mio. €	22.013 Mio. €	19.512 Mio. €	618 Mio. €	265 Mio. €
Mehrkosten im Vergleich zu Marktpreisen (Okt. 20	014)	36,33 ct/kWh	3,38 ct/kWh	149,40 ct/kWh	119,76 ct/kWh	5,55 ct/kWh	0,86 ct/kWh
elektr. Energiebedarf		132,9 MW/kg MeOH	131,9 MW/kg MeOH	143,7 MW/kg MeOH	142,7 MW/kg MeOH	131,9 MW/kg MeOH	131,9 MW/kg MeOH
Stromwirkungsgrad (E _{Produkt} / E _{elektr})		0,528	0,532	0,488	0,492	0,532	0,532
Kostensatz des Endproduktes		5.913 €/t MeOH	909 €/t MeOH	24.914 €/t MeOH	19.910 €/t MeOH	1.236 €/t MeOH	530 €/t MeOH

¹⁾ eingeklammerte Werte bedeuten, dass der Wasserstoff in der Anlage weiterverwendet wird

worst case realistic case

best case

14 Fazit

Die Wirtschaftlichkeitsbetrachtung der Power To Methanol-Anlage, welche auf der Herstellung von elektrolytischem Wasserstoff mit regenerativen Energien als Stromquelle beruht, hat gezeigt, dass aktuell keine rentable Produktion von Wasserstoff oder Methanol nach diesem Verfahren möglich ist. Es besteht derzeit keine Konkurrenzfähigkeit mit den Marktpreisen (1 €/kg H₂, 400 €/t Methanol). Aus den detaillierten Daten, welche in den Tabellen 38 und 39 zusammengefasst sind, ist erkennbar, dass der Wasserstoffpreis selbst im bestmöglichen Falle (Dauerbetrieb mit kostenlosem Strom) den Marktpreis um 172% übersteigt. Für das Methanol ergibt sich im günstigsten Fall ein Preis von 530 €/t. Wenn unter näherungsweise realistischen Bedingungen gearbeitet wird, müssen sogar 1.236 €/t für das produzierte Methanol verlangt werden. Sollte die Luft als CO₂-Quelle in Betracht gezogen werden, so kann bestenfalls von einem Preis von 19.910 €/t Methanol ausgegangen werden. Dies ist etwa um den Faktor 50 höher als der aktuelle Marktpreis.

Die Recherchearbeiten haben gezeigt, dass es sich bei dem Reverse Wasser-Gas-Shift sowie der Methanolsynthese um etablierte und stabile Prozesse handelt. Der Forschungs- und Entwicklungsbedarf liegt im Wesentlichen bei der Elektrolyse sowie der CO₂-Gewinnung.

Ein Fortschritt in der großtechnischen Elektrolysezellenproduktion könnte zukünftig zu geringeren Anschlusskosten führen und somit die notwendigen Investitionskosten deutlich senken. Ein weiteres Entwicklungspotential liegt im Platzbedarf der Elektrolyse. Die Aufstellungspläne haben aufgezeigt, dass die Elektrolyse innerhalb der geplanten Power To Methanol-Anlage einen Flächenbedarf zwischen 3.400 m² und 30.000 m² aufweist und damit 61 bis 93% der Gesamtfläche beansprucht. Der enorme Kühlwasserbedarf der Elektrolyse beträgt bis zu 150.000 m³/h (je nach Szenario). Dies entspricht bis zu einem Viertel des Saale-Durchflusses in der Höhe Halle Trotha. Für eine großtechnische Umsetzung muss der Kühlwasserbedarf demzufolge reduziert werden.

Die Recherchen haben des Weiteren ergeben, dass eine Absorption von CO_2 aus der Luft im großtechnischen Maßstab mit dem heutigen Stand der Forschung utopisch ist. Hier besteht ein enormer Entwicklungsbedarf, damit überhaupt eine großtechnische Anwendung möglich wird. Es kann außerdem davon ausgegangen werden, dass in den nächsten Jahren die CO_2 -Zertifikate nicht so stark ansteigen werden, dass sich die Luftabsorption rentieren würde (ab ca. 8.000 \in /t CO_2).

Die CO₂-Gewinnung über Polygeneration-Prozesse stellt sich ebenfalls als schwierig dar. Es kann davon ausgegangen werden, dass aufgrund des einhergehenden Wirkungsgrad-106 verlustes keine Nachrüstungen für die Oxyfuel- bzw. Post-Combustion-Technologie in bestehenden Kraftwerken stattfinden wird. Die Alternative wäre der Neubau eines IGCC-Kraftwerkes mit integrierter CO₂-Abtrennung. Allerdings weist die Variante noch einen hohen Forschungsbedarf auf, um wirtschaftlich rentabel betrieben werden zu können.

Ob bzw. wann eine Power To Methanol-Anlage, wie sie hier betrachtet wurde, tatsächlich wirtschaftlich rentabel sein wird, hängt stark von der technischen und auch politischen Entwicklung ab (z.B. CO₂-Zertifikate) und lässt sich deshalb aktuell nur grob einschätzen. Die Ergebnisse der Kostenschätzung haben gezeigt, dass bei einer jährlichen Methanolpreissteigerung von 6% frühestens 2018 ein konkurrenzfähiger Methanolkostensatz erzielt werden kann. Realistischer ist 2026 bis 2033. Dabei wurde jedoch keine Preissteigerung für den Betrieb der Power To Methanol-Anlage einkalkuliert. Außerdem kann davon ausgegangen werden, dass zum Beispiel steigende Erdgas-, Wasser- und Strompreise zu noch höheren Produktionskosten führen werden.

15 Literaturverzeichnis

50Hertz Transmission GmbH. 2014. *Eingesetzte Minutenreserve.* [Zitat vom: 12.10.2014.] http://www.50hertz.com/de/Energiebeschaffung/Regelenergie/Eingesetzte-Minutenreserve.

50Hertz Transmission GmbH. 2014. *Regelleistung*. [Zitat vom: 12.10.2014.] https://www.regelleistung.net/ip/action/index.

Agny, R.M., C.G.Takoudis. 2006. *Catalytic synthesis of methanol from hydrogen and carbon monoxide on a copper-zinc oxide supported catalyst.* West Lafayette: Purdue University : School of Chemical Engineering.

Amprion GmbH. 2014. *Primärregelung, Sekundärregelung, Minutenreserve*. [Zitat vom: 12.10.2014.] http://www.amprion.net/primaerregelung-sekundaerregelung-minutenreserve.

Amprion GmbH. 2014. Regelenergie, Regeleistung. [Zitat vom: 29.06.2014.] http://www.amprion.net.

Anderson, J. 2009. Determining Manufactoring Costs. CEP. 2009.

Arakawa, H., M.Aresta, J.N.Armor, et al. Autorenkollektiv. 2001. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. *Chemical Reviews.* Vol.101. S:953–96.

Arutyunov, V.S., V.I.Savchenko, V.M.Rudakov, V.N.Blinichev, A.M.Kutepov. 2002. Methanol Synthesis by Direct Oxidation of Natural Gas at Thermal Power Plants. *Theoretical Foundations of Chemical Engineering*. Vol.36, No.4. S:382-388.

Ausfelder, F., A.Bazzanella. DECHEMA e.V. 2008. Diskussionspapier Verwertung und Speicherung von CO₂ [Zitat vom: 19.10.2014.]

 $http://www.dechema.de/dechema_media/diskussionco2.pdf.$

Edward, E.S., W.Bader. 1933. *Treatment of gases containing carbon dioxide and hydrogen*. Patent US1913364 A.

Baerns, M., A.Behr, A.Brehm. 2013. *Technische Chemie.* Weinheim: Wiley-VCH Verlag GmbH.

Bandi, A., M.Specht. 2004. *Gewinnung von Methanol aus Biomasse.* Union zur Förderung von Öl- und Proteinpflanzen e.V. (UFOP).

Bandi, A., M.Specht. 2007. Herstellung von flüssigen Kraftstoffen aus atmosphärischem Kohlendioxid. [Zitat vom: 21.08.2014.]

http://www.sfv.de/artikel/herstellung_von_fluessigen_kraftstoffen_aus_atmosphaerischem_k ohlendioxid.htm.

Bolle, F.-W. 2012. *Einsatz der Wasserstofftechnologie in der Abwasserbeseitigung - Phase I Band II: Methanolsynthese* Aachen: RWTH - Forschungsinstitut für Wasser- und Abfallwirtschaft.

Bolton, D.H. 1969. Methanol-Herstellung nach dem Niederdruck-Verfahren der ICI. *Chemie Ingenieur Technik.* Vol.41, No.3. S:129-134.

Bundesministerium für Umwelt und Forschung. 2008. Erstellung der Grundlagen für einen harmonisierten und fortschreibbaren Datensatz des deutschen Strommixes. Projektbericht: FKZ 01 RN 0401.

Bundesministerium für Wirtschaft und Energie. 2014. *Gas.* [Zitat vom: 17.10.2014.] http://www.bmwi.de/DE/Themen/Energie/Konventionelle-Energietraeger/gas.html.

Bundesverband der Energie- und Wasserwirtschaft e.V. 2013. Erneuerbare Energien und das EEG: Zahlen, Fakten, Grafiken. Berlin: bdew.

Canete, B., C.E.Gigola, N.B.Brignole. 2014. Synthesis Gas Processes for Methanol Production via CH₄ Reforming with CO₂, H₂O and O₂. *Industrial % Engineering Chemistry Research.* Vol.53, No.17. S:7103-7112.

Carbon Engineering Ltd. 2011. *Air Capture.* [Zitat vom: 11.10.2014] http://carbonengineering.com/air-capture.

Carvill, B.T., J.R.Hufton, M.Anand, S.Sircar. 1996. Sorption-Enhanced Reaction Process. *AIChE Journal.* Vol.42, No.10. S:2765-2772.

Casero P. 2012. *Elcogas 14 MWh pre-combustion carbon dioxid capture pilot: technical & economical achievements.* Leipzig : Elcogas S.A., 2012. Presentation: 5th International Freiberg Conference on IGCC & XtL Technologies.

CETH₂**. 2014.** *PEM Elektrolysers: from 5 to 60 Nm³/h.* [Zitat vom: 27.10.2014.] http://www.ceth.fr/download.php?type=spec&doc=technicalSpecifications-electrolyzer5-60-EN.pdf. Chemical Engineering. 2014. Economic Indicators March 2014. Rockville : Access Intelligence, LLC.

De Falco, M., G.Iaquaniello, G.Centi. 2013. *CO₂: A Valuable Source of Carbon.* London: Springer Verlag GmbH.

DIE WELT. 2013. Berlin: Nr. 209, 07.09.2013, S:36.

Dupont, R., P.Gauthier, P.Marty. 2003. *Reverse conversion, in the gas phase of carbon dioxide and hydrogen at a temperature of 300-520 degrees c, pressure of 10-40 bar in the presence of a zinc and chromium oxide catalyst that is iron free.* Patent US20030113244 A1.

E.ON SE. 2014. *CO*₂-*Abtrennung und Speicherung*. [Zitat vom: 06.06.2014.] http://www.eon.com/de/geschaeftsfelder/stromerzeugung/kohle/co2-abtrennung-und-speicherung.html.

Energieportal24. 2014. *Wasserstoff Herstellung.* [Zitat vom: 12.10.2014.] http://www.energieportal24.de/cms1/wissensportale/brenn-kraftstoffe/wasserstoff/h2-herstellung.

European Energy Exchange AG. 2014. *eex - Price List*. [Zitat vom: 11.12.2014.] https://www.eex.com/en#/en.

finanzen.net GmbH. 2014. *Börse Online Erdgaspreis*. [Zitat vom: 12.10.2014.] http://www.boerse-online.de/rohstoffe/Erdgas-Preis-Natural-Gas.

FIZ Karlsruhe GmbH. 2010. *Neue Kraftwerke mit fossilen Brennstoffen.* Bonn: BINE Informationsdienst.

Forschungs-Informations-System. 2010. *Herstellkosten von Methanol*. [Zitat vom: 08.10.2014.] http://www.forschungsinformationssystem.de/servlet/is/290850.

Forschungsstelle für Energiewirtschaft. 1996. *Ganzheitliche energetische Bilanzierung der Energiebereitstellung, Teil VII: Emissionen der Strombereitstellung aus thermischen und nuklearen Kraftwerken.* München: Gesellschaft für praktische Energiekunde e.V.

Forschungszentrum Jülich GmbH. 2009. *IEF-3-Report 2009 - Grundlagenforschung für die Anwendung.* Jülich: Forschungszentrum Jülich.

Ganesh, I. 2014. Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review). *Renewable and Sustainable Energy Reviews.* Vol.31. S:221-257.

Gelsenchem Chemical Products GmbH. 2014. *Preishistorie Methanol.* [Zitat vom: 08.10.2014.] http://www.gelsenchem.de/de/methanol-preishistorie.

Grünwald, R. 2007.*CO2-Abscheidung und Lagerung bei Kraftwerken.* Sachstandsbericht zum Monitoring "Nachhaltige Energieversorgung". Berlin: Büro für Technikfolgen-Abschätzung beim deutschen Bundestag.

H2moves.eu. 2009. *H2data_german.* [Zitat vom 25.01.2015] http://www.hylights.org/publications/reports/hyLights_final_results/h2data_german.pdf

Henke J. 2013. Wasserstoff und die magische Grenze von 3 €/kg. Berlin : Graforce Hydro GmbH.

Hesse, K., J.Klinkenberg. 2014. Wasserstoffproduktion aus Biomasse [Zitat vom: 02.06.2014.]

http://www.h2works.org/de/inhaltliches/h2herstellung/wasserstoffproduktion-aus-biomasse.

Hirscher, M. 2010. Handbook of Hydrogen Storage. Weinheim: Wiley-VCH Verlag GmbH.

Holst, J.van. 2009. CO₂ Capture, Transport and Storage in the Netherlands. [Zitat vom: 04.06.2014.] http://www.co2-cato.org/

IER, RWI, ZEW. 2010. *Die Entwicklung der Energiemärkte bis 2030 - Energieprognose 2009.* Hauptbericht.

Ignatowitz, E., G.Fastert. 2009. Chemietechnik. Haan-Gruiten: Europa-Lehrmittel.

Joachim Herz Stiftung. 2014. *Kohle Fossilenergie*. [Zitat vom: 13.06.2014.] http://www.leifiphysik.de/sites/default/files/medien/kohle_fossilenergie_gru.gif.

Joo, O.-S., K.-D.Jung, I.Moon, A.Y.Rozovskii, G.I.Lin, S.-H.Han, S.-J.Uhm. 1999. Carbon Dioxide Hydrogenation To Form Methanol via a Reverse-Water-Gas-Shift-Reaction (the CAMERE Process). *Industrial & Engineering Chemistry Research*. Vol.38, No.5. S:1808-1812.

Jung, S., S.Reining, S.Schindler, D.W.Agar. 2013. Anwendung von adsorptiven Reaktoren für die reverse Wassergas-Shift-Reaktion. *Chemie Ingenieur Technik.* Vol.85, No.4. S:484-488.

Kaiser, P., R.B.Unde, C.Kern, A.Jess. 2013. Production of Liquid Hydrocarbons with CO₂ as Carbon Source based on Reverse Water-Gas Shift and Fischer-Tropsch Synthesis. *Chemie Ingenieur Technik.* Vol.85, No.4. S:489-499.

Karpenko, A. 2007. Untersuchung der Tieftemperatur Wassergas-Shift Reaktion über *Au/CeO*₂ Katalysatoren. Univerität Ulm: Dissertation, Institut für Oberflächenchemie und Katalyse.

Keith, D., M.Mahmoudkhani. 2009. Carbon dioxide capture. Patent: US8119091 B2.

Klapp, E. 1980. Apparate- und Anlagentechnik. Berlin: Springer Verlag GmbH.

Lackner, K.S. 2009. Capture of Carbon Dioxide from ambient air. *The European Physical Journal Special Topics*. Vol.176. S:93-106.

Lehmacher, P. 2005. *So funktioniert ein Kombi-Kraftwerk.* [Zitat vom: 02.10.14] http://kraftwerkforschung.info/quickinfo/kombi-kraftwerke/so-funktioniert-ein-kombi-kraftwerk.

Leichtfried, F.E. 2007. Wasserstofferzeugung. Evergreen: Biovest GmbH. Präsentation

Leppelt, R. 2007. Untersuchungen zur CO-Oxidation und Wassergas-Shift Reaktion an Au/TiO2 und Au/CeO2 Katalysatoren. Universität Ulm: Dissertation, Institut für Oberflächenchemie und Katalyse.

Linde Aktiengesellschaft. 2013. *Methanol.* [Zitat vom: 07.11.2013.] http://www.linde-engineering.de/de/process_plants/hydrogen_and_synthesis_gas_plants/ gas_products/methanol/index.html.

Mammadov, A., M.Huckman, C.Rea, X.Zhang, S.N.Shaikh. 2014. Method of forming a syngas mixture". Patent: US8551434 B1.

Marheineke, T. 2002. Lebenszyklusanalyse fossiler, nuklearer und regenerativer Stromerzeugungstechniken. Universität Stuttgart: Dissertation, Institut für Energiewirtschaft und Rationelle Energieanwendung.

Melin, T., R.Rautenbach. 2007. Membranverfahren - Grundlagen der Modul- und Anlagenauslegung. Berlin: Springer Verlag GmbH. S:549.

Methanex Corporation. 2014. Methanex Monthly Average Regional Posted Contract Price History. [Zitat vom: 08.10.2014.] https://www.methanex.com/sites/default/files/methanolprice/MxAvgPrice_Sep%2029%202014.pdf. Moser, P., S.Schmidt, S.Wallus, T.Ginsberg, G.Sieder, I.Clausen, J.G.Palacios, T.Stoffregen, D.Mihailowitsch. 2013. Enhanced and longterm testing of optimized postcombustion capture technology. *Energy Procedia*. Vol.37. S:2377-2388.

Moser, P., S.Schmidt, R.Uerlings, G.Sieder, J.-T.Titz, A.Hahn, T.Stoffregen. 2011. Material testing for future commercial post-combustion capture plants - Results of the testing programme conducted at the Niederaussem pilot plant. Vol.4. S. 1317-1322.

Nataraj, S., B.T.Carvill, J.R.Hufton, S.G.Mayorga, T.R.Gaffney, J.R.Brzozowski. 2001. *Process for operating equilibrium controlled reactions.* Patent: US6315973 B1.

Nitsch, J., M.Fischedick. 2002. Eine vollständig regenerative Energieversorgung mit Wasserstoff - Illusion oder realistische Perspektive?. [Zitat vom:10.10.2014] http://www.dlr.de/Portaldata/41/Resources/dokumente/institut/system/publications/Wassersto ff-Essen.pdf.

Notz, R.J. 2010. *CO*₂-*Abtrennung aus Kraftwerksabgasen mittels Reaktivabsorption.* Berlin: Logos Verlag Berlin GmbH.

Ohle, A. 2009. *CO*₂-*Abtrennung aus Gasströmen durch Absorption in Poly(methyldiklykol)amin.* Technische Universität Dresden: Dissertation, Fakultät Maschinenwesen.

Olfert, K. 2012. *Kompakt-Training Praktische Betriebswirtschaft: Projektmanagement.* Herne: NWB Verlag GmbH & Co. KG.

Otterstätter, R. 2012. Untersuchung der Wassergas-Shift-Reaktion über Pt- und Rh-Katalysatoren. Karlsruher Institut für Technologie: Diplomarbeit, Fakultät für Chemie und Biowissenschaften.

Pardermann, R. 2010. *Kohlekraftwerke mit Vergasung - Stand der Technik und Entwicklungspotentiale.* Technische Universität - Bergakademie Freiberg: Themeninfo, Institut für Energieverfahrenstechnik und Chemieingenieurwesen.

Park, S.-W., O.-S.Joo, K.-D.Jung, H.Kim, S.-H.Han. 2000. ZnO/Cr₂O₃ Catalyst for Reverse-Water-Gas-Shift Reaction of CAMERE Process. *Korean Journal of Chemical Engineering.* Vol.17, No.6. S:719-722.

Rasch, A.A. 2000. Erfolgspotential Instandhaltung. Berlin: Erich Schmidt Verlag GmbH &Co.

Raschka, M. 2002. *Methanol als Energieträger in einem nachhaltigen Energiesystem?* Aachen: Veranstaltung "Neue Entwicklung auf den Energiemärkten, 2002.

Rauchfuß, H. 2012. Untersuchung von Konzepten zur CO₂-Abtrennung in Kombikraftwerken *mit integrierter Wirbelschichtvergasung.* Technische Universität - Bergakademie Freiberg: Dissertation, Fakultät für Maschinenbau, Verfahrenstechnik und Energietechnik.

Reitmaier, I. 2013. *Heizwerte, Brennwerte, Primärenergiefaktoren, CO2-Äquivalente* [Zitat vom 25.01.2015] http://www.heizkostenrechner.eu/heizwert-brennwert-tabelle.html

Roesler, R., W.Zittel. 1994. *Wasserstoff als Energieträger: Wasserstofferzeugung, Wasserstoffeinsatz im Kraftwerkssektor, Wasserstoffspeicherung, -transport und -verteilung, Wasserstoff-Verflüssiger, H*₂/*O*₂-*Dampferzeuger.* Jülich: Forschungszentrum Jülich GmbH.

RP Compounds GmbH. 2014. Persönliche Anfrage. Schkopau.

Schmidt, S., P.Moser. 2013. CO₂ Abtrennung mit Monoethanolamin für braunkohle-gefeuerte Kraftwerke. Essen: VGB Powertech e.V.

Siemens AG. 2014. Bild 1. [Zitat vom: 05.06.2014.]

http://www.energy.siemens.com/hq/pool/hq/power-generation/power-plants/integrated-gasification-combined-cycle/bild1.jpg.

Silvano, T., N.Ghirelli, F.Borgognoni, P.Trabuc, A.Santucci, K.Liger, F.Marini. 2014. Membranreaktor zur Behandlung von Gasen mit Tritium. Patent: EP 2582618 B1

Sistia, **Y.S.**, **A.Khanna. 2014.** Carbon dioxide absorption studies using amine-functionalized ionic liquids. *Journal of Industrial and Engineering Chemistry.* Vol.20, No.4. S:2497-2509.

Smolinka T., M.Günther, J.Garche. 2011. *NOW-Studie, Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien.* Freiburg im Breisgau: Fraunhofer ISE, FCBAT.

Smolinka, T., M.Günther. 2010. *Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien.* Freiburg im Breisgau: Fraunhofer ISE.

Specht, M., A.Bandi. Herstellung von flüssigen Kraftstoffen aus atmosphärischem Kohlenstoffdioxid. [Zitat vom: 18.06.2014.]

http://www.sfv.de/artikel/herstellung_von_fluessigen_kraftstoffen_aus_atmosphaerischem_k ohlendioxid.htm.

Statkraft Markets GmbH. 2014. *Energiewissen*. [Zitat vom: 29.06.2014.] http://www.statkraft.de/produkte-und-dienstleistungen/direktvermarktung/energiewissen.

Storaloff, J., D.W.Keith, G.Lowry. 2008. Carbon dioxide capture from atmospheric air using hydroxide spray. *Environmental Science & Technology*. Vol.42, No.8. S:2728-2735.

Su, L.-W., W.-R.Li, Z.-Y.Sun. 2013. The consumption, production and transportation of methanol in China: A review. *Energy Policy*. Vol.63. S:130-138.

Töpfler, J., J.Lehmann. 2014. *Wasserstoff und Brennstoffzelle.* Heidelberg: Springer Verlag GmbH.

Trevino Coca, M. 2003. Integrated gasification combined cycle technology: IGCC. Firmenbericht. Puertollano: Elcogas, S.A..

Troy, S. 2012. *CO*₂-freier Kohlestrom durch Einsatz von Carbon Capture and Storage und Biomasse-Mitverbrennung. Berlin : LIT Verlag.

Ulrich, G., P.Vasudevan. 2014. How to Estimate Utility Costs. *Chemical Engineering.* Vol.113, No.4.

Ulrich, G., P.Vasudevum. 2004. *Chemical Engineering Process Design and Economics, A Pratical Guide.* Durham, N.H.: Process Publishing. S:364 - 397.

Unde, R.B. 2012. *Kinetics and Reaction Engineering Aspects of Syngas Production by the Heterogeneously Catalysed Reverse Water Gas Shift Reaction.* Universität Bayreuth: Dissertation, Fakultät für Ingenieurwissenschaften.

Weber, K.H. 2006. Inbetriebnahme verfahrenstechnischer Anlagen. Berlin: Springer-Verlag GmbH.

Wenske, M. 2008. Wasserstoff - Herstellung per Elektrolyse. Dauerthal: Enertrag AG.

Yeh, **J.T.**, **H.W.Pennline**. **2006**. *Study of CO*₂ *Absorption and Desorption in a Packed Column*. [Zitat vom: 08.06.2014.]

https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/45_4_WASHINGTON%20DC_08-00_0650.pdf.

Zeman, F. 2007. Energy and material balance of CO₂ capture from ambient air. *Environmental Science & Technology*. Vol.41, No.21. S:7558-7563.

Zuberbühler, U., M.Specht, A.Bandi, T.Marquard-Möllenstedt. 2003. *H*₂-reiches Synthesegas aus Biomasse: Der AER- Prozess. Stuttgart: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW). Fachtagungspapier.

16 Anhänge

Anhangsverzeichnis

Anhang A bis P – Wirtschaftlichkeit

Α.	Berechnung der CO ₂ -Absorption	Seite A-1
В.	Beschreibung der Szenarien	Seite B-1
C.	bis P. Berechnung der Szenarien	Seite C-1

Anhang Q – Protokolle

Gesamtmeeting	Seite Q-1
Einzelmeetings mit den Gruppen	Seite Q-2
Projektbesprechung mit den Auftraggebern	Seite Q-8
Gruppenleitermeetings	Seite Q-10
Projektleitermeetings	Seite Q-20

Anhang R – Zeitpläne

Sommersemester 2014	Seite R-1
Vorlesungsfreie Zeit 2014	Seite R-2
Wintersemester 2014/2015	Seite R-3

<u>Fließbild</u>

	Luft thermische Energie elektrische Energie	CO2- ABSORPTION	Kohlendioxid	>
Einheitenfe	stlegung	recherchier	te Größenangaben	
	Einflussgröße	Meng	e Kosten	
	Luft (wird als kostenlos angesehen)		n³/h 0,00 €/Nm³	

elektrische Energie	0 kW	65,00€/MWh
thermische Energie	0 kW	0,00 €/kWh

Berechnungen

stündliche Kohlendioxidproduktion 74.000 Nm³/h jährliche Produktionszeit 8.000 h

Anschaffungskos	ten		
	Absorberkolonne	7860 Stück	
	Volumen	212 m ³	berechnet aus D = 3 m, L = 30 m
	Durchmesser	3,0 m	
	Länge	30 m	
	Volumenstrom	14 m³/s	berechnet aus V*=v x A, v= 2 m/s
	Preis Cp0	150.000 \$	Preis Kolonne, Fig. 5.44, vertically, aus D = 3 m, L = 30 m
	Faktor Fp	1,0	Druckfaktor, 1 bar, Fig. 5.45
Cost to	Faktor FM	4,0	Materialfaktor Kolonne, Fig. 5.45, stainless steel
LOSI-IO-	Faktor FBMa	9,5	bare module factor, Fig. 5.46, vertically
index-charts	Preis Cp0	150.000 \$	Preis pro Boden 5.000 \$ aus D = 3 m, Fig. 5.48, 30 Böden
	Faktor FBM	2,2	Materialfaktor Böden, Fig. 5.48, stainless steel
	Preis CBM	1.755.000 \$	bare module Preis Kolonne inkl. Packung
	Kristallisator (100x) (Auslegung als Rüh	rkessel mit Donnelmantel)
	Volumen	100 m ³	It ChemCAD-Simulation 10 000 m ³
	Durchmesser	75 m	I/D=3
	Höhe	22.5 m	
	Preis Cn0	1 166 516 \$	Preis Behälter Fig 5 44 vertically aus D = 4 m I = 12 m Exponent = 0 f
	Faktor Ep	1.0	Druckfaktor, 1 bar. Fig. 5.45
	Faktor FM	4.0	Materialfaktor Kolonne, Fig. 5.45, stainless steel
	Faktor FBMa	9.5	bare module factor. Fig. 5.46. vertically
	Preis CBM	11.081.903 Ś	bare module Preis Behälter
	Rührerleistung	81 kW	berechnet aus, d/D=1/3, Ne=5.5, n=30 1/min.p=1.200 kg/m ³
	Preis Cp0	60.000 \$	Preis Rührer, Fig. 5.42, agitator - open tank
	Faktor FBM	2,5	Materialfaktor Rührer, Fig. 5.42, stainless steel
	Preis CBM	150.000 \$	bare module Preis Rührer inkl. Antrieb
	Preis CBM	11.231.903 \$	bare module Preis Behälter inkl. Rührer

<u>Lüfter (ingesamt 6x)</u> Fluidleistung (ges.) 6.556 kW berechnet aus w*_f=m* RT ln(p2/p1) mit m*_L=5,2E7 kg/h,Δp=200 mbar Motorleistung 10.927 kW Motorleistung Lüfter, Wirkungsgrad 0,6 Preis Cp0 300.000 \$ Preis Lüfter ohne Motor, Fig. 5.30, rotary-screw, 1.000 kW 2,2 bare module factor, Fig. 5.30, cotal ystew, 1 70.000 Preis Motor, Fig. 5.20, open drip proof, 1.700 kW 1,5 Materialfaktor Motor, Fig. 5.20, installed on fans 765.000 \$ bare module Lüfter inkl. Motor Faktor FBM Preis Cp0,d Faktor FBM,d Preis CBM

Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
CEPCI (2014)	585	Preisindex chemischer Apparate
Umrechnungskurs Anschaffungspreis	1,30 \$/€ 17.625.677.812 €	umgerechneter Aufstellungspreis der ausgewählten Apparate

Gesamtinv.koste 70.503 Mio. € Gesamtkosten Absorption inkl. Montage und Bau, Faktor 400 %

laufende Kosten

Abschreibungen	7.050.271.125€	Afa-Laufzeit 10 Jahre
elektrische Energie	34.092.935€	
Wartung/Instandh.	1.410.054.225€	2 % von Gesamtinvestitionskosten
Betriebspersonal	1.920.000€	4 Schichten x 8 Mitarbeiter x 60.000€/Jahr
Verwaltung	3.456.000€	180 % vom Betriebspersonal
Projektkosten	352.513.556€	5 % Gesamtinvestition auf 10 Jahre verteilt
Inbetriebnahme	705.027.112€	10 % Gesamtinvestition auf 10 Jahre verteilt

lfd. Gesamtkoste 9.557 Mio. € jährliche Gesamtkosten

<u>Erlöse</u>

Verkaufspreis	8,22 €/kg 8.220 €/t
Gewinnmarge	0,00 €/kg
Kostensatz	16,14 €/Nm³ 8,22 €/kg
jährliche Produktion	592.000.000 Nm ³

Anhang B

			El	ektrolyse		RWGS		Methar	olsynthese	RWGS & MS
Szer	nario	Ziel des Szenarios	H ₂ - Produktion	Produktions- zeit	Strompreis	Einkaufspreis H ₂	Einkaufspreis CO ₂	MeOH- Produktion	Produktions- zeit	Strompreis
	а	Verkauf H2	10.000 Nm³/h	8.000 h	0 €/MWh	-	-	-	-	-
	b	Verkauf H2	10.000 Nm³/h	8.000 h	65 €/MWh	-	-	-	-	-
	С	Verkauf H2	10.000 Nm³/h	2.000 h	0 €/MWh	-	-	-	-	-
	d	Verkauf H2	10.000 Nm³/h	8.000 h	49 €/MWh	-	-	-	-	-
	а	Verkauf MeOH	184.000 Nm³/h	8.000 h	0€/MWh	-	-	500.000 t/a	8.000 h	65 €/MWh
	b	Verkauf MeOH	184.000 Nm³/h	2.000 h	0 €/MWh	1,00 €/kg	-	500.000 t/a	8.000 h	65 €/MWh
2	С	Verkauf MeOH	184.000 Nm³/h	2.000 h	0€/MWh	1,00 €/kg	-	350.000 t/a	2.000 h Volllast + 6.000 h Min.last	65 €/MWh
	d	Verkauf MeOH	736.000 Nm³/h	2.000 h	0 €/MWh	-	-	500.000 t/a	8.000 h	65 €/MWh
	а	Verkauf MeOH	736.000 Nm³/h	2.000 h	0 €/MWh	-	47 €/t	500.000 t/a	8.000 h	65 €/MWh
2	b	Verkauf MeOH	184.000 Nm³/h	8.000 h	0 €/MWh	-	47 €/t	500.000 t/a	8.000 h	65 €/MWh
3	С	Verkauf MeOH	736.000 Nm³/h	2.000 h	0€/MWh	-	8.220 €/t	500.000 t/a	8.000 h	65 €/MWh
	d	Verkauf MeOH	184.000 Nm³/h	8.000 h	0 €/MWh	-	8.220 €/t	500.000 t/a	8.000 h	65 €/MWh
4	а	Verkauf MeOH	184.000 Nm³/h	8.000 h	30 €/MWh	-	-	500.000 t/a	8.000 h	40 €/MWh
4	b	Verkauf MeOH	184.000 Nm³/h	8.000 h	0 €/MWh	-	-	500.000 t/a	8.000 h	0€/MWh

Szenario 1A: 8000h Volllast-Elektrolyse (10.000 Nm³/h), Strom kostenlos, CO2 kostenlos

Fließbild			1			Annahmen Elektrolyse	AEL	PEMEL
	elektrische Ener	gie	Wasse	erstoff >		benötigte Leistung	5 kWh/ Nn	n ³ H2
	Elektrolysewasse					Anschlusskosten	1.000 €/KW	2.500 €/kW
		ELEKTROLYSE	Sauer	toff		Kulliwassei	80 I/ NIT H2	2001/10111 112
	Kühlwasser		Sauers	>				
			J					
Finheitenfe	stlegung		rec	herchierte Größenau	ngahen			
Linneiteine	stiegung		100	neremente Großena	iigabeii			
	Einflussgröße			Menge	Kosten			
	elektrische Energie			50.005.004	0.00 6/144/6			
	(Elektrolyse mit Pu	mpen (je 2x))		50.265 KW	0,00€/к₩Π			
	Spoisowassar			9 E m ³ /b	2 00 £/m ³			
	speisewassei			0,5 111 /11	2,00 €/11			
	Kühlwasser			800 m ³ /b	$20 \notin (1 \ 000 \ m^3)$			
	Kulliwassel			800 11 /11	20 €/ 1.000 11			
Berechnung	en	stündliche Wasserstoffpro	duktion		10.000 Nm³/h			
		jährliche Produktionszeit			8.000 h			
	Anschaffungskos	ten Flaktuskussuus						
		<u>Elektrolyseure</u> Anschlussleistung		50.000 kW	Anschlussleistur	ng für 10.000 Nm ³ /b. AFI		
		Anschaffungskosten		50.000.000€	Anschaffungsko	sten ohne Aufstellung		
		Aufstellungsfaktor		1,05	It. Vorlesung Pro	zessverfahrenstechnik, für Mitteldeutschland		
		Aufstellungspreis		52.500.000€	Preis Elektrolyse	eure mit Aufstellung		
		1/35.h						
		Kuhlwasserpumpe (2x)		000	Küblussesset	n It Horstollorangabo		
		Druckdifferenz		800 m-/n 5 bar	Druckerhöhung	n II. Herstellerangabe		
		Anschlussleistung		111 kW	$P = V^* \times \Lambda n$			
		Motorleistung		131 kW	mit Motor/Getri	ebe, Wirkungsgrad 0.85		
		Preis Cp0		30.000 \$	Preis Pumpe mit	Motor, Fig. 5.49, centrifugal		
		Faktor Fp		1,0	Druckfaktor, <10) bar, Fig. 5.50		
		Faktor FM		1,0	Materialfaktor,	Fig. 5.49, cast iron		
		Faktor FBMa		3,5	bare module fac	tor, Fig. 5.51		
		Preis CBM		105.000 \$	bare module Pro	eis Kühlwasser-Pumpe mit Motor		
		Speisewassernumpe (2x)					
		Volumenstrom	L	8,5 m³/h	Speisewasserstr	om lt. Herstellerangabe: 0,85 l/Nm ³ H2		
		Druckdifferenz		6 bar	Druckerhöhung	von Obarü auf 6 barü ,lt. Herstellerangabe		
		Anschlussleistung		1,4 kW	P = V* x Δp			
		Motorleistung		1,7 kW	mit Motor/Getri	ebe, Wirkungsgrad 0,85		
		Preis Cp0		4.000 \$	Preis Pumpe mit	Motor, Fig. 5.49, centrifugal		
		Faktor Fp		1,0	Druckfaktor, <10) bar, Fig. 5.50		
		Faktor FM		1,0	Materialfaktor,	Fig. 5.49, cast iron		
				3,5 14.000 \$	bare module Pre	eis Kühlwasser-Pumpe mit Motor		
		Aufstellungsfaktor		1,05	It. Vorlesung Pro	zessverfahrenstechnik, für Mitteldeutschland		
		CEPCI (2014)		585	Preisindex chem	ischer Apparate		
		Umrechnungskurs		1,30 \$/€				
		Anschaffungspreis		281.138€	umgerechneter	Aufstellungspreis ohne Elektrolyseure		
		Gesamtapparatekosten		52.8 Mio €				
		Berechnungswert		21,1 Mio. €	40 % von Gesamta	apparatekosten wegen Komplexität Elektrolyseure		
		Rohrleitungen		6,3 Mio. €	30 % der Berech	nungswert, da hoher Preis Elektrolyseure		
		Montage RL		6,3 Mio. €	100 % der Rohrl	eitungskosten		
		elektr. Versorgung		3,2 Mio. €	15 % von Berech	nnungswert		
		MSR-Einrichtung		1,7 Mio.€	55 % der elektri			
		Montage MSR		4,∠ IVIIO. € 2.7 Mio €	65 % von MSR-F	inrichtungen, inkl. Material		
		Bau- und Baunebenk.		11,6 Mio. €	55 % von Berech	nungswert		
		Gesamtinvestitionsk	osten	88,9 Mio.€	Gesamtkost	en Elektrolyse inkl Montage und Bau		
	laufende Kosten	Absobraibungan		0 000 600 F	Afa Laufzoit 10	ahro		
		Kühlwasser		0.095.022€ 128.000€	Ald-Lauizeit 103	ane		
		Speisewasser		136.000€	Trinkwassergual	lität		
		elektrische Energie		0€	lt. Szenario 1a	> keine Kosten für elektrische Energie		
		Wartung/Instandhaltung		3.557.449€	4 % von Gesamt	investitionskosten		
		Betriebspersonal		1.920.000€	4 Schichten x 8 I	Mitarbeiter x 60.000 €/Jahr		
		verwaitung Projektkosten		3.456.000€ AAA 681 €	180 % vom Betri 5 % Gesamtinus	euspersonai stition auf 10 labre verteilt		
		Inbetriebnahme		889.362 €	10 % Gesamtinve	estition auf 10 Jahre verteilt		
		lfd. Gesamtkosten		19,4 Mio.€	jährliche Ge	samtkosten		
	Kostensatz			00.000				
		jährliche Produktion		80 Mio. Nm ³				
		Kostensatz		24,3 ct/Nm ³	bezogen auf	H2		
		Elektrolyse		2,72 €/kg				
		· · ·		0				

Szenario 1B: 8000h Volllast-Elektrolyse (10.000 Nm³/h), Strom zum Industriepreis, CO2 kostenlos

Fließbild			1 "	Annahmen Elektrolyse	AEL PEMEL
	elektrische Ener	gie >	Wasserstoff >	benötigte Leistung	5 kWh/ Nm ³ H2
	Elektrolysewasse			Anschlusskosten Kühlwasser	1.000 €/KW 2.500 €/KW 80 I/Nm ³ H2 200 I/Nm ³ H2
			Sauerstoff	Kullwasser	2001/111112
	Kühlwasser				
Einheitenfes	tlegung		recherchierte Größena	ngaben	
	5			Markey.	
•	EInflussgroße		ivienge	Kosten	
	elektrische Energie (Elektrolyse mit Pu	mnen (ie 2x))	50.265 kW	65,00 €/MWh	
	(
	Elektrolysewasser		8,5 m³/h	2,00 €/m³	
	Kühlwasser		800 m³/h	20 €/1.000 m³	
Berechnung	en.	stündliche Wasserstoffnro	duktion	10 000 Nm ³ /b	
Derechnunge	<u>= </u>	jährliche Produktionszeit	duktion	8.000 h	
	Anschaffungskos	<u>ten</u> Elektrolyseure			
		Anschlussleistung	50.000 kW	Anschlussleistung für 10.000 Nm ³ /h, AEL	
		Anschaffungskosten	50.000.000€	Anschaffungskosten ohne Aufstellung	
		Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
		Aufstellungspreis	52.500.000€	Preis Elektrolyseure mit Aufstellung	
		Kühlwasserpumpe (2x)			
		Volumenstrom	800 m³/h	Kühlwasserstrom lt. Herstellerangabe	
		Druckdifferenz	5 bar	Druckerhöhung von Obarü auf 5 barü ,lt. Herstellerangabe	
		Anschlussleistung	111 kW	$P = V^* \times \Delta p$	
		Motorleistung	131 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Preis Cp0	30.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal	
		Faktor FD	1,0	Drucktaktor, <10 bar, Fig. 5.50 Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBMa	3,5	bare module factor, Fig. 5.51	
		Preis CBM	105.000 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
		Encicourocarnumna (2)	a		
		Volumenstrom	9 8.5 m³/h	Speisewasserstrom It. Herstellerangabe: 0.85 I/Nm ³ H2	
		Druckdifferenz	6 bar	Druckerhöhung von Obarü auf 6 barü ,lt. Herstellerangabe	
		Anschlussleistung	1,4 kW	$P = V^* x \Delta p$	
		Motorleistung	1,7 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Preis Cp0	4.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal	
		Faktor FD	1,0	Druckfaktor, <10 bar, Fig. 5.50 Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBMa	3,5	bare module factor, Fig. 5.51	
		Preis CBM	14.000 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
		Aufstallungsfaktor	1.05	It Verlegung Drongerunfebranztachnik für Mitteldeutschland	
		CEPCI (2014)	1,05	It. Voriesung Prozessverfahrenstechnik, für Mitteldeutschland Preisindev chemischer Annarate	
		Umrechnungskurs	1,30 \$/€	reisindex enemischer Apparate	
		Anschaffungspreis	281.138€	umgerechneter Aufstellungspreis ohne Elektrolyseure	
		Cocomtonnorateliset	ED 0 140 0		
		Berechnungswert	52,8 MI0.€ 21.1 Mio.€	40 % von Gesamtapparatekosten wegen Komplexität Flektrolyseure	
		Rohrleitungen	6,3 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure	
		Montage RL	6,3 Mio. €	100 % der Rohrleitungskosten	
		elektr. Versorgung	3,2 Mio. €	15 % von Berechnungswert	
		MSR-Einrichtung	1,7 Mio. €	55 % der elektrischen Versorgung	
		Montage MSR	4,2 Mi0.€ 2.7 Mio.€	65 % von MSR-Finrichtungen, inkl. Material	
		Bau- und Baunebenk.	11,6 Mio. €	55 % von Berechnungswert	
		Gesamtinvestitionsk	iosten 88,9 Mio.€	Gesamtkosten Elektrolyse inkl Montage und Bau	
	laufende Kosten				
		Abschreibungen	8.893.622€	Afa-Laufzeit 10 Jahre	
		Kühlwasser	128.000€		
		Speisewasser	136.000€	Trinkwasserqualität	
		Wartung/Instandhaltung	20.137.081€ 3.557.449€	4 % von Gesamtinvestitionskosten	
		Betriebspersonal	1.920.000€	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr	
		Verwaltung	3.456.000€	180 % vom Betriebspersonal	
		Projektkosten Inbetriebnahme	444.681€ 889.362.€	5 % Gesamtinvestition auf 10 Jahre verteilt 10 % Gesamtinvestition auf 10 Jahre verteilt	
			005.502 C		
		lfd. Gesamtkosten	45,6 Mio.€	jährliche Gesamtkosten	
	Kostensata				
	NOSCENSAL2	iährliche Produktion	80 Mio Nm ³		
		Kostonsatz	E7 0 c+/NIm3	hannan auf UD	
		NUSLEIISALZ		bezogen aut HZ	

6,38 €/kg

Elektrolyse

Szenario 1C: 2000h Teillast-Elektrolyse (10.000 Nm³/h), Strom kostenlos, CO2 kostenlos

Fließbild			1	Annahmen Elektrolyse	AEL PEMEL
	elektrische Ener	rgie	Wasserstoff	benötigte Leistung	5 kWh/ Nm ³ H2
	Elektrolysewass	er		Anschlusskosten	1.000 €/kW 2.500 €/kW
		ELEKTROLYSE		Kühlwasser	80 l/Nm ³ H2 200 l/Nm ³ H2
	Kable and a		Sauerstoff >		
	Kuhlwasser]		
Einheitenfe	stlegung		recherchierte Größena	ngaben	
	<u> </u>				
	Einflussgröße		Menge	Kosten	
	elektrische Energie	2			
	(Elektrolyse mit Pu	- Impen (je 2x))	50.667 kW	0,00 €/MWh	
	Elektrolysewasser		34,0 m³/h	2,00 €/m³	
	Kühlwasser		2.000 m³/h	20 €/1.000 m³	
Borochnung	an	ctündliche Maccorctoffpro	duktion	$10,000 \text{ Nm}^3/\text{b}$	
Derectinung	en	iährliche Produktionszeit	Jukton	2 000 h	
		janniche Froduktionszeit		2.000 11	
	Anschaffungskos	ten			
		Elektrolyseure			
		Anschlussleistung	50.000 kW	Anschlussleistung für 10.000 Nm ³ /h, PEMEL	
		Anschaffungskosten	125.000.000€	Anschaffungskosten ohne Aufstellung	
		Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
		Aufstellungspreis	131.250.000€	Preis Elektrolyseure mit Aufstellung	
		weit 1			
		Kuhlwasserpumpe (2x)	0.007	With the second second by the set of the second s	
		Volumenstrom	2.000 m ² /h	Kuhlwasserstrom It. Herstellerangabe	
			5 bar	Diruckethonung von obaru auf 5 baru jit. Herstellerangabe	
		Anschlussieistung	278 KW	$P = V^* X \Delta P$	
		Prois Col	327 KW 40 000 \$	Preis Pumpe mit Motor, Eig. 5.49, centrifugal	
		Field CpU Faktor En	40.000 \$	Druckfaktor <10 bar Eig 5 50	
		Faktor FM	1,0	Materialfaktor Fig 5.49 cast iron	
		Faktor FBMa	3,5	bare module factor, Fig. 5.51	
		Preis CBM	140.000 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
		Speisewasserpumpe (2x	1		
		Volumenstrom	34,0 m³/h	Speisewasserstrom lt. Herstellerangabe: 3,4 I/Nm ³ H2 (4x AEL)	
		Druckdifferenz	6 bar	Druckerhöhung von Obarü auf 6 barü ,lt. Herstellerangabe	
		Anschlussleistung	5,7 kW	$P = V^* \times \Delta p$	
		Motorleistung	6,7 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Preis Cp0	7.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal	
		Faktor Fp	1,0	Druckfaktor, <10 bar, Fig. 5.50	
		Faktor FIVI	1,0	Materiairaktor, Fig. 5.49, cast iron	
			24.500 \$	hare module Preis Kühlwasser-Pumpe mit Motor	
			2.0000		
		Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
		CEPCI (2014)	585	Preisindex chemischer Apparate	
		Umrechnungskurs	1,30 \$/€		
		Anschaffungspreis	388.631€	umgerechneter Aufstellungspreis ohne Elektrolyseure	
		Gesamtapparatekosten	131,6 Mio.€		
		Berechnungswert	52,7 Mio. €	20 % von Gesamtapparatekosten wegen Komplexität Elektrolyseure	
		Montage Pl	15,8 WIO.€ 15 0 Min €	100 % der Bohrleitungswert, ud nuner Preis Elektrolyseure	
		elektr. Versorgung	15,0 Ⅳ10.€ 79 Mio £	15 % von Berechnungswert	
		Montage elektr. Vers.	4.3 Mio. €	55 % der elektrischen Versorgung	
		MSR-Einrichtung	10,5 Mio. €	20 % von Berechnungswert	
		Montage MSR	6,8 Mio. €	65 % von MSR-Einrichtungen, inkl. Material	
		Bau- und Baunebenk.	29,0 Mio. €	55 % von Berechnungswert	
		Gesamtinvestitionsk	osten 221,8 Mio. €	Gesamtkosten Elektrolyse inkl Montage und Bau	
	laufende Kosten				
		Abschreibungen	22.181.109€	Afa-Laufzeit 10 Jahre	
		Kühlwasser	80.000€	T	
		Speisewasser	136.000€	Irinkwasserqualitat	
		Wartung/Instandbaltung	U t 8 877 144 F	4 % von Gesamtinvestitionskosten	
		Betriebspersonal	1.920.000€	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr	
		Verwaltung	3.456.000€	180 % vom Betriebspersonal	
		Projektkosten	1.109.055€	5 % Gesamtinvestition auf 10 Jahre verteilt	
		Inbetriebnahme	2.218.111€	10 % Gesamtinvestition auf 10 Jahre verteilt	
		lfd. Gesamtkosten	40,0 Mio. €	jährliche Gesamtkosten	
	<u>Kostensatz</u>				
		jährliche Produktion	20 Mio. Nm ³		
		Kostensatz	2.0 €/Nm³	bezogen auf H2	
		Elektrolyce	22 A1 E/kg	J	
		LICKUUIYSE	22,41 t/ Kg		

Szenario 1D: 8000h Volllast-Elektrolyse (10.000 Nm³/h), Strom für 2000h kostenlos und für 6000h zum Industriepreis, CO2 kostenlos

Fließbild		· · · · · · · · · · · · · · · · · · ·		Annahmen Elektrolyse	AEL PEMEL
	elektrische Ener	/gie	Wasserstoff >	benötigte Leistung	5 kWh/ Nm ³ H2
	Elektrolysewasse			Anschlusskosten Kühlwasser	1.000 €/kW 2.500 €/kW PO I/Nm ³ H2 200 I/Nm ³ H2
		ELENINOLISE	Sauerstoff	Kuniwassei	80 I/ NITE TZ 200 I/ N
	Kühlwasser				
			-		
Einheitenfe	<u>stlegung</u>		recherchierte Größen	<u>iangaben</u>	
	Einflussgröße		Menge	Kosten	
	elektrische Energie	e	50 265 kW	40 00 6/MM/h	
	(Elektrolyse mit Pur	ımpen (je 2x))	30.203 KVV	49,00 €/MWn	
	Elektrolysewasser		8,5 m³/h	2.00 €/m³	
	Erenter ,		· .		
	Kühlwasser		800 m³/h	20 €/1.000 m³	
Porechnung		ctündliche Wasserstoffpr	dubtion	10 000 Nm³/h	
Berecimana	en	jährliche Produktionszeit	Jduktion	10.000 km²/ii 8.000 h	
	. Generkov]-			
	Anschaftungskos	<u>ten</u> Flektrolvseure			
		Anschlussleistung	50.000 kW	Anschlussleistung für 10.000 Nm³/h, AEL	
		Anschaffungskosten	50.000.000€	Anschaffungskosten ohne Aufstellung	
		Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
		Aufstellungspreis	52.500.000 €	Preis Elektrolyseure mit Aufstellung	
		Kühlwasse <u>rpumpe (2x</u>)	a		
		Volumenstrom	800 m³/h	Kühlwasserstrom It. Herstellerangabe	
		Druckdifferenz	5 bar	Druckerhöhung von Obarü auf 5 barü ,lt. Herstellerangabe	
		Anschlussleistung	111 kW	P = V* x Δp	
		Motorleistung	131 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Preis Cp0	30.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal	
		Faktor Fp	1,0	Druckfaktor, <10 bar, Fig. 5.50	
		Faktor FM	1,0	Materialfaktor, Fig. 5.49, cast iron	
		Preis CBM	105.000 \$	bare module ractor, Fig. 5.51 bare module Preis Kühlwasser-Pumpe mit Motor	
		1			
		Speisewasserpumpe (2)	<u>.x)</u> 8.5 m ³ /h		
		Volumenstrom	۲۱۱-۲۱۱ 6 bar	Speisewasserstrom It. Herstellerangabe: U,85 I/NMT nz	
			1.4 kW	Druckerhöhung von Ubaru auf o baru ,it. meistellerangase	
		Anschlussielstung	1,7 kW	P = V* x Ap	
		Motorieiscung Prais CnA	4.000 \$	mit Motor/Getriebe, wirkungsgrau 0,00 Dreis Pumpe mit Motor, Fig. 5.49, centrifugal	
		Faktor Fp	1,0	Preis Pumpe mit motor, n.g. 5.50	
		Faktor FM	1,0	Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBMa	3,5	bare module factor, Fig. 5.51	
		Preis CBM	14.000 Ş	bare module Preis Kühlwasser-Pumpe mit Motor	
		Aufstellungsfaktor	1,05	It Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
		CFPCI (2014)	585	Preisindex chemischer Apparate	
		Umrechnungskurs	1,30 \$/€	Plennuex of children's pportec	
		Anschaffungspreis	281.138€	umgerechneter Aufstellungspreis ohne Elektrolyseure	
		Commonaratekoster	52.8 Mio.€		
		Gesamtapparatenosten Berechnungswert	21,1 Mio. €	40 % von Gesamtanparatekosten wegen Komplexität Elektrolyseure	
		Rohrleitungen	6,3 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure	
		Montage RL	6,3 Mio. €	100 % der Rohrleitungskosten	
		elektr. Versorgung	3,2 Mio. €	15 % von Berechnungswert	
		Montage elektr. Vers.	1,7 Mio. €	55 % der elektrischen Versorgung	
		MSR-Einrichtung	4,2 Mio. €	20 % von Berechnungswert	
		Montage MSK	2,7 IVIIO.€ 11.6 Mio.€	65 % von MSR-Einrichtungen, inkl. Material	
		Bau- unu paunepens.	11,0 mio. c	55 % von Berechnungswert	
		Gesamtinvestitions!	kosten 88,9 Mio.€	Gesamtkosten Elektrolyse inkl Montage und Bau	
	· · · · Veston				
	laufende Kosten	Abschreibungen	8.893.622€	Afa-Laufzeit 10 Jahre	
		Kühlwasser	128.000€		
		Speisewasser	136.000€	Trinkwasserqualität	
		elektrische Energie	19.703.790€	lt. Szenario 1d> 49 €/MWh, Elektrolyseure + Pumpen (je 2x)	
		Wartung/Instandhaltung	3.557.449 € 1.020.000 €	4 % von Gesamtinvestitionskosten	
		Betriebspersonal	1.920.000 € 2.456.000 £	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr	
		Verwaltung	5.450.000 €	180 % vom Betriebspersonal 5 % Cocomtinuestition auf 10 Jahre verteilt	
		Inbetriebnahme	889.362€	10 % Gesantinvestition auf 10 Jahre verteilt	
		lfd. Gesamtkosten	39,1 Mio.€	jährliche Gesamtkosten	
	Kostensatz				
	Nosteriot	jährliche Produktion	80 Mio. Nm ³		
	,	Kostensatz	48,9 ct/Nm ³	herogen auf H2	I

5,48 €/kg

Elektrolyse

Anhang G

Szenario 2A: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom kostenlos, CO2 kostenlos, 8000h Methanolsynthese

Fließbild			1			Annahmen Elektrolyse	AEL	PEMEL
	elektrische Ene	rgie >	Wasser	stoff >		benötigte Leistung	5 kWh/ I	Nm ³ H2
	Elektrolysewass					Kühlwasser	1.000 €/KW 80 I/Nm ³ H2	2.500 €/KW 200 I/Nm ³ H2
			Sauerst	off			,	
	Kühlwasser			\rightarrow				
Einheitenfe	stlegung		reche	rchierte Größenang	aben			
	Finflussgröße			Menge	Kosten			
	elektrische Energie			menge	hosten			
	(Elektrolyse mit Pu	mpen (je 2x))		924.872 kW	0,00 €/kWh			
	Elektrolysewasser			156,4 m²/n	2,00 €/m°			
	Kühlwasser			14.720 m³/h	20 €/1.000 m³			
	Rammasser			1	20 0/ 21000 111			
Berechnung	en	stündliche Wasserstoffprode	uktion		184.000 Nm³/h			
		jährliche Methanolproduktio	on		500.000 t/a			
		janniche Produktionszeit			8.000 h			
	Anschaffungskos	ten						
		Elektrolyseure		920 000 kW	Anschlusslaistun	a für 194 000 Nm ³ /b AEI		
		Anschaffungskosten		920.000 KW	Anschaffungskos	ten ohne Aufstellung		
		Aufstellungsfaktor		1,05	lt. Vorlesung Pro	zessverfahrenstechnik, für Mitteldeutschland		
		Aufstellungspreis		966.000.000€	Preis Elektrolyse	ure mit Aufstellung		
		Kühlwassernumne (2v)						
		Volumenstrom		14.720 m³/h	Kühlwasserstron	n It. Herstellerangabe		
		Druckdifferenz		5 bar	Druckerhöhung	von Obarü auf 5 barü ,lt. Herstellerangabe		
		Anschlussleistung		2.044 kW	P = V* x ∆p			
		Motorleistung		2.405 kW	mit Motor/Getri	ebe, Wirkungsgrad 0,85		
		Preis CpU Faktor En		200.000 \$	Preis Pumpe mit	Motor, Fig. 5.49, centrifugal, extrapoliert		
		Faktor FM		1,0	Materialfaktor, F	ig. 5.49, cast iron		
		Faktor FBMa		3,5	bare module fac	tor, Fig. 5.51		
		Preis CBM		700.000 \$	bare module Pre	is Kühlwasser-Pumpe mit Motor		
		Speisewasserpumpe (2x)						
		Volumenstrom		156,4 m³/h	Speisewasserstre	om lt. Herstellerangabe: 0,85 l/Nm ³ H2		
		Druckdifferenz		6 bar	Druckerhöhung	von Obarü auf 6 barü ,lt. Herstellerangabe		
		Anschlussleistung		26 kW	P = V* x Δp			
		Preis Cn0		31 kW	Preis Pumpe mit	ebe, Wirkungsgrad 0,85 Motor Fig 5.49 centrifugal		
		Faktor Fp		1,0	Druckfaktor, <10	bar, Fig. 5.50		
		Faktor FM		1,0	Materialfaktor, F	ig. 5.49, cast iron		
		Faktor FBMa		3,5	bare module fac	tor, Fig. 5.51		
		Preis CBIVI		52.500 \$	bare module Pre	sis Kuniwasser-Pumpe mit Motor		
		Aufstellungsfaktor		1,05	lt. Vorlesung Pro	zessverfahrenstechnik, für Mitteldeutschland		
		CEPCI (2014)		585	Preisindex chem	ischer Apparate		
		Umrechnungskurs Anschaffungspreis		1,30 \$/€ 1 777 781 €	umgerechneter	Aufstellungspreis ohne Elektrolyseure		
		Anschantungspreis		1.777.751 €	ungerechneter	Austenungspreis onne elektrolyseure		
		Gesamtapparatekosten		967,8 Mio.€				
		Berechnungswert		387,1 Mio. €	40 % von Gesamta	pparatekosten wegen Komplexität Elektrolyseure		
		Konrieitungen Montage RI		116,1 Mio.€ 116 1 Mio.€	30 % der Berech	nungswert, da hoher Preis Elektrolyseure Pitungskosten		
		elektr. Versorgung		58,1 Mio. €	15 % von Berech	nungswert		
		Montage elektr. Vers.		31,9 Mio.€	55 % der elektris	chen Versorgung		
		MSR-Einrichtung		77,4 Mio.€	20 % von Berech	nungswert		
		Bau- und Baunebenk.		50,3 MIO.€ 212.9 Mio.€	55 % von MSR-E	nrichtungen, inkl. Material nungswert		
		bud und budnebenni		222,5 1110. 0	55 % for bereen			
		Gesamtinvestitionsko	sten	1.630,7 Mio.€	Gesamtkoste	n Elektrolyse inkl Montage und Bau		
	laufende Kosten							
	<u>laurenae Rosten</u>	Abschreibungen		163.070.556€	Afa-Laufzeit 10 J	ahre		
		Kühlwasser		2.355.200€				
		Speisewasser		2.502.400€	Trinkwasserqual	ität Alaina Kastaa für alalteiraka Gaania		
		Wartung/Instandhaltung		65.228.222€	4 % von Gesamti	nvestitionskosten		
		Betriebspersonal		1.920.000€	4 Schichten x 8 M	Aitarbeiter x 60.000€/Jahr		
		Verwaltung		3.456.000€	180 % vom Betri	ebspersonal		
		Inbetriebnahme		8.153.528€ 16.307.056€	5 % Gesamtinves	estition auf 10 Jahre verteilt		
		lfd. Gesamtkosten		263,0 Mio. €	jährliche Ges	amtkosten		
	Kostensatz	enales a la com		1 470 84:- 81 2				
		janriiche Produktion		1.472 IVIIO. Nm ³				
		Kostensatz		17,9 Ct/Nm ³	bezogen auf	H2		
		Flektrolyse		2,00 €/kg	.			
		LIERUUIYSE		525,99 €/t	bezogen auf	Methanol		

Szenario 2a, 2d: CO2 kostenlos, VL-Methanolsynthese, Industriestrompreis

vereinfachtes Fließbild

Kohlendioxid WASSER- Kohlendioxid GaS-	hlenmonoxid	4	Wasserstoff	
Wasserstoff GAS-	hlendioxid	-	Kahlandiavid	
(14)-	asserstoff	WASSER-	Koniendioxid	\rightarrow
thermische Energie Kohlenmonoxid	ermische Energie	GAS-	Kohlenmonoxid	
elektrische Energie	ktrische Energie	1		

Einheitenfe:	stlegung		recherchierte Größenangaben		
	Einflussgröße	-	Menge	Kosten	
	Kohlendioxid		73.500 Nm³/h	0,00 €/t	
	Wasserstoff (Preis wird mit null angesetzt, da aus vorher. Prozess)		184.000 Nm³/h	0,00 €/Nm³	
	Kühlwasser		375 Nm³/h	20 €/1.000 m³	
	elektrische Energie		6.222 kW	65,00 €/MWh	
	thermische Energie ((aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ	
Berechnung	en	stündliche Wasserstoffproduktion		184.000 Nm³/h	
		stündliche Methanolproduktion		62,5 t/h	
		jährliche Produktionszeit		8.000 h	
	A				
	Anschaffungskoste	en Komprossor H2			
		Anschlussleistung	4 000 kW	It ChemCAD obne Motor/Getriebe Wirkungsgrad 0.6	
		Motorleistung	4.000 KW	mit Motor/Getriebe Wirkungsgrad 0.9	
		Preis Cp0	1.000.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw	
		Faktor FBM	5,5	bare module factor, Fig. 5.30, stainless steel	
		Preis Cp0,d	250.000 \$	Preis Motor, Fig. 5.20, totally enclosed	
		Faktor FBM,d	1,5	bare module factor, Fig. 5.20, compressor	
		Preis CBM	5.875.000 \$	bare module Preis Kompressor mit Motor	
		Kompressor CO2			
		Anschlussleistung	1.600 kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6	
		Motorleistung	1.778 kW	mit Motor/Getriebe, Wirkungsgrad 0,9	
		Preis Cp0	450.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw	
		Faktor FBM	5,5	bare module factor, Fig. 5.30, stainless steel	
		Preis Cp0,d	100.000 \$	Preis Motor, Fig. 5.20, totally enclosed bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor	
			1,5 2,625,000 \$		
			2.025.000 \$		
		Vorwärmer (2x gleiche Größe)			
		WT-Fläche	1.000 m²	lt. ChemCAD 173.600 MJ/h, U-Wert 850 W/m²K	
		Preis Cp0	80.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head	
		Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar	
		Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel	
		Faktor FBMa	6,3 504 000 \$	bare module factor, Fig. 5.38, shell and tube	
			504.000 \$	bare module Preis Warmelauscher	
		Brenner			
		Heizleistung	20 MW	It. ChemCAD	
		Preis CpU	2.200.000 \$	Preis Brenner, Fig. 5.27, pyrolysis furnace	
		Faktor En	2,7	Materialiaktor, Fig. 5.27, stainless steel, 600 C mit H2	
		Preis CBM	6.125.625 \$	bare module Preis Brenner	
		Reaktor			
		Katvolumen	64,4 m ³	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h	
		Innere Durchmesser	3 m	L/D =4	
		Lange	12 m	Desis Debälten für 5 44 metionlikenischen	
		Field CPU Faktor FM	60.000 Ş	Freis benditer, Fig. 5.44, vertically oriented Materialfaktor Fig. 5.45, stainlass steel	
		Faktor Fp	4,0	Druckfaktor, Fig. 5.45, für 25 bar	
		Faktor FBMa	26.5	bare module factor, Fig. 5.46. vertically oriented	
		Preis CBM	1.590.000 \$	bare module Preis Reaktor	
		Katalysator			
		Katvolumen	64.4 m³	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h	
		Schüttdichte Kat.	800 kg/m ³	Noble metal doped, Fig. 5.47, Mittelwert	
		Masse Katalysator	51.500 kg		
		Preis Katalysator	4.635.000 \$	90 \$/kg, Fig. 5.47	

Anhang G

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16,0	bare module factor, Fig. 5.46
	Preis CBM	104.000,0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 \$	Preis Demister, Fig. 5.48
	Faktor FBM	1,2	Nickel alloy, Fig. 5.48
	Preis CBM	720,0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	Kühler		
	Wärmemenge	17,4 MW	Lt. ChemCAD
	WT-Fläche	773 m²	lt. ChemCAD 17,4 MW, U-Wert 500 W/m²K
	Preis Cp0	55.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
	Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5,2	bare module factor, Fig. 5.38, shell and tube
	Preis CBM	286.000 \$	bare module Preis Wärmetauscher
	Aufstellungsfaktor	1.05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1.30 \$/€	Fr
	Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	26,3 Mio. €	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2,2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten			
	Abschreibungen	7.129.003 €	Afa-Laufzeit 10 Jahre
	Kühlwasser	59.943 €	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	3.235.556 €	
	Wartung/Instandhaltung	2.851.601 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	356.450 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	712.900 €	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	21,4 Mio. €	jährliche Gesamtkosten
	Kastansatz	1,46 ct/Nm ³	h
		0,16 €/kg	bezogen aut H2
	wietnanoisyntnese	42,90 €/t	bezogen auf Methanol

gültig für alle Szenarien außer 2c, und 4a/b

Fließbild Synthesegas				1				
	Heizdam	nf						
	Kühlwass	er	METHA	VIETHANOL-		Methanol		
			SYNTH	ESE		·		
	elektrisch	ne Energie						
<u>Einheitenfe</u>	stlegung			recherch	ierte Größ	Senangaben		
	Einflussgröß	e		Me	nge	Kosten		
	Synthesegas	(kostenlos.						
	da aus vorh.	Proz.schritt)		220.50	0 Nm³/h	0,00 €/Nm³		
	Heizdampf			668	3 t/h	15,00 €/t		
	Kühlwasser			9.291	. m³/h	20 €/1.000 m³		
	elektrische Energie			10.04	19 kW	65,00 €/MWh		
D						404.000 N 3/I		
Berechnun	gen	stundliche Wasserstoffpr	Oduktion			184.000 Nm ² /h		
		jährliche Produktionszeit	JUKLION			8.000 h		
	Anschaffun	igskosten						
		Anschlussleistung	<u>gas (4x)</u>		3 800 kW	It ChemCAD ohne Motor/Getriebe Wirkungsgrad 0.6		
		Motorleistung			4.222 kW	mit Motor/Getriebe. Wirkungsgrad 0.9		
		Preis Cp0			900.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw		
		Faktor FBM			5,5	bare module factor, Fig. 5.30, stainless steel		
		Preis Cp0,d			200.000 \$	Preis Motor, Fig. 5.20, totally enclosed		
		Faktor FBM,d		1,5 bar		bare module factor, Fig. 5.20, compressor		
		PTEIS CDIVI		5.	250.000 \$	bare module Preis compressor mit wotor		
		<u>Kompressorzwischenk</u>	<u>ühler (3x)</u>					
		Wärmemenge			4,5 MW	It. ChemCAD		
		WI-Flache Preis Coll			300 m²	It. ChemCAD 4,5 MW, U-Wert 500 W/m²K Preis Wärmetauscher, Eig, 5.36, floating bead		
		Faktor Fp			20.000 \$	Druckfaktor, Fig. 5.37, für 70 bar		
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel		
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube		
		Preis CBM			130.000 \$	bare module Preis Kompressorzwischenkühler		
		<u>Vorwärmer</u>						
		Wärmemenge			30 MW	lt. ChemCAD		
		WT-Fläche			2.000 m ²	lt. ChemCAD 40 MW, U-Wert 500 W/m²K		
		Preis Cp0			100.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head		
		Faktor FM			3.0	Materialfaktor, Fig. 5.36, both sides stainless steel		
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube		
		Preis CBM			650.000 \$	bare module Preis Wärmetauscher		
		Wärmetauscher						
		Wärmemenge			30 MW	lt. ChemCAD		
		WT-Fläche			2.000 m ²	lt. ChemCAD 40 MW, U-Wert 500 W/m²K		
		Preis Cp0			100.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head		
		Faktor Fp			1,2	Drucktaktor, Fig. 5.37, für 70 bar Matarialfaktor, Fig. 5.26, both sides stainless staal		
		Faktor FBMa			6.5	bare module factor. Fig. 5.38, shell and tube		
		Preis CBM			650.000 \$	bare module Preis Wärmetauscher		
		Reaktor						
		Katvolumen			55,1 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h		
		Innere Durchmesser			3 m	L/D =4		
		Preis Cp0			12 m \$ 60.000	Preis Behälter, Fig. 5.44, vertically oriented		
		Faktor FM			4,0	Materialfaktor, Fig. 5.45, stainless steel		
		Faktor Fp			4,3	Druckfaktor, Fig. 5.45, für 70 bar		
		Faktor F a BM			32,0	bare module factor, Fig. 5.46, vertically oriented		
		Preis CBM		1.	920.000 \$	bare module Preis Reaktor		
		Katalysator						
		Katvolumen			55,1 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h		
		Schüttdichte Kat.			800 kg/m ³	Noble metal doped, Fig. 5.47, Mittelwert		
		Preis Katalysator		2	969,000 ¢	90 \$/kg. Fig. 5.47		

Anhang G

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM Flash Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM

Preis CBM

 $2.500\ m^2$ $\,$ lt. ChemCAD 100 MW, U-Wert 1.000 W/m²K $\,$ 150.000 \$ Preis Wärmetauscher, Fig. 5.36, floating head 1,2 Druckfaktor, Fig. 5.37, für 70 bar 3,0 Materialfaktor, Fig. 5.36, both sides carbon steel 6,5 bare module factor, Fig. 5.38, shell and tube 975.000 \$ bare module Preis Wärmetauscher 4 m keine Angabe der Größe --> Annahme 20.0 m L/D = 5 60.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel 4.0 1,0 Druckfaktor, Fig 5.10 6,0 bare module factor, Fig. 5.46, horizontally oriented 360.000 \$ bare module Preis Behälter ohne Finbauten 10.000 \$ Preis Demister, Fig. 5.48 1,2 bare module factor, Fig. 5.48, stainless steel 12.000.0 bare module Preis Demister 372.000 s bare module Preis Flash 3.800 kW It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 3.420 kW mit Motor/Getriebe, Wirkungsgrad 0.9 400.000 \$ Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw 3,5 bare module factor, Fig. 5.30, stainless steel 1.400.000 \$ bare module Preis Kompressor mit Motor 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden 2,2 bare module factor Böden, Fig. 5.48, stainless steel 10 aus ChemCAD-Simulation 1.2 quantity factor, Fig. 5.48, 10 264 000 \$ bare module Preis aller Böden 60 MW lt. ChemCAD 1.500 m² berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m² K, 40 K 100.000 Ś Preis Condensor, Fig. 5.39, flat plate 2,3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 200.000 \$ bare module Preis Condensor 69 MW lt. ChemCAD 1.232 m² berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K 200.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3.0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 1.200.000 \$ bare module Preis Condensor 2.873.000 \$ bare module Preis Kolonne 1 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel 2,2 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264.000 S bare module Preis aller Böden 44 MW lt. ChemCAD 1.100 m² berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K 80.000 \$ Preis Condensor, Fig. 5.39, flat plate 2.3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 160.000 \$ bare module Preis Condensor 44 MW lt. ChemCAD 786 m² berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m² K, 40 K 150.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3,0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 900.000 \$ bare module Preis Condensor 2.533.000 \$ bare module Preis Kolonne 2

100 MW It. ChemCAD

Anhang G

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Länge	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	1,0	Druckfaktor, Fig 5.10
	Faktor FBMa	9,3	bare module factor, Fig. 5.46
	Preis CBM	1.860.000 \$	bare module Preis Behälter ohne Einbauten
	Preis CpSS	10.000 \$	Preis pro Boden
	FBM	2,2	bare module factor Böden, Fig. 5.48, stainless steel
	Anzahl Böden	20	aus ChemCAD-Simulation
	Fq	1,1	quantity factor, Fig. 5.48, 10
	Preis CBM	462.000 \$	bare module Preis aller Böden
	Wärmemenge Cond.	214 MW	lt. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39, flat plate
	Faktor FM	2,3	Materialfaktor, Fig. 5.39, stainless steel
	Faktor FBMa	2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	460.000 \$	bare module Preis Condensor
	Wärmemenge Reb.	265 MW	lt. ChemCAD
	WT-Fläche (2x)	2.366 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K
	Preis Cp0	400.000 \$	Preis Reboiler, Fig. 5.36, kettle reboiler
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, stainless steel
	Faktor FBMa	6,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	2.400.000 \$	bare module Preis Condensor
	Preis CBM	7.582.000 \$	bare module Preis Kolonne 3
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	the second s
	Anschaffungspreis	54,0 Mio. €	umgerechneter Aufstellungspreis
	Gesamtannaratekosten	54.0 Mio £	
	Berechnungswert	54.0 Mio. €	100 % von Gesamtannaratekosten
	Rohrleitungen	16.2 Mio. €	30 % der Berechnungswert
	Montage BI	16.2 Mio. €	100 % der Bohrleitungskosten
	elektr Versorgung	10,2 Mio. €	15 % von Berechnungswert
	Montage elektr Vers	4.5 Mio. €	55 % der elektrischen Versorgung
	MSR-Finrichtung	4,5 Mio. €	20 % von Berechnungswert
	Montage MSR	10,0 Mio. €	65 % von MSR-Finrichtungen inkl. Material
	Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	146 5 Mio €	Gesamtkosten Methanolsvothese inkl. Montage und Bau
		1-0,0 1000 0	essentiesten methanologinnese niki montuge und bud
laufende Ko	osten		
	Abschreibungen	14.647.408 €	Afa-Laufzeit 10 Jahre
	Kühlwasser	1.486.507 €	
	Heizdampf	80.116.364 €	16 bar ND-Dampf
	elektrische Energie	5.225.422 €	
	Wartung/Instandhaltung	5.858.963 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten Inbetriebnahme	732.370 € 1.464.741 €	5 % Gesamtinvestition auf 10 Jahre verteilt 10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	114,9 Mio. €	jährliche Gesamtkosten
		7.81 ct/Nm ³	
	Kostensatz	0,88 €/kg	bezogen auf H2
	Methanolsynthese	229,82 €/t	bezogen auf Methanol

Szenario 2B: 2000h Teillast-Elektrolyse (184.000 Nm³/h), Strom kostenlos, CO2 kostenlos, 8000h Methanolsynthese, Rest H2 wird eingekauft

Fließbild	elektrische Ener	gie .	Wasserstoff	Annahmen Elektrolyse	AEL PEMEL
	Elektrolysewasse			benotigte Leistung Anschlusskosten	5 kWh/ Nm ³ H2 1.000 €/kW 2.500 €/kW
		ELEKTROLI'SE	Sauerstoff	Kühlwasser	80 l/Nm ³ H2 200 l/Nm ³ H2
	Kühlwasser	×			
Einheitenfes	stlegung		recherchierte Größena	Ingaben	
	Finflussgröße		Menge	Kosten	
	elektrische Energie		022.271 Jun		
	(Elektrolyse mit Pur	npen (je 2x))	552.271 KW	0,00 €/101001	
	Elektrolysewasser		625,6 m³/h	2,00 €/m³	
	Kühlwasser		36.800 m³/h	20 €/1.000 m³	
Berechnung	<u>en</u>	stündliche Wasserstoffproo	duktion	184.000 Nm³/h	
		jährliche Methanolprodukt jährliche Produktionszeit	ion	500.000 t/a 2.000 h	
	Anschaffungskost	<u>en</u>			
		<u>Elektrolyseure</u> Anschlussleistung	920.000 kW	Anschlussleistung für 184.000 Nm ³ /h, PEMEL	
		Anschaffungskosten	2.300.000.000€	Anschaffungskosten ohne Aufstellung	
		Aufstellungsfaktor Aufstellungspreis	1,05 2.415.000.000 €	It. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland Preis Elektrolyseure mit Aufstellung	
		Kühlwasserpumpe (2x)			
		Volumenstrom Druckdifforonz	36.800 m³/h	Kühlwasserstrom lt. Herstellerangabe	
		Anschlussleistung	5 bar 5.111 kW	$P = V^* \times \Delta D$	
		Motorleistung	6.013 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Preis Cp0 Faktor En	400.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal, stark extrapoliert	
		Faktor FM	1,0	Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBMa	3,5	bare module factor, Fig. 5.51	
		Preis CBM	1.400.000 Ş	bare module Preis Kühlwasser-Pumpe mit Motor	
	1	Speisewasserpumpe (2x	1		
		Volumenstrom Druckdifferenz	625,6 m³/h	Speisewasserstrom It. Herstellerangabe: 3,4 I/Nm ³ H2 (4x AEL)	
		Anschlussleistung	104 kW	$P = V^* x \Delta p$	
		Motorleistung	123 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Preis Cp0	35.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal	
		Faktor Fp Faktor FM	1,0 1,0	Druckfaktor, <10 bar, Fig. 5.50 Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBMa	3,5	bare module factor, Fig. 5.51	
		Preis CBM	122.500 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
		Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
		CEPCI (2014) Umrechnungskurs	585 1,30 \$/€	Preisindex chemischer Apparate	
		Anschaffungspreis	3.596.906€	umgerechneter Aufstellungspreis ohne Elektrolyseure	
		Gesamtapparatekosten	2.418,6 Mio.€		
		Berechnungswert Rohrleitungen	967,4 Mio.€ 290.2 Mio.€	40 % von Gesamtapparatekosten wegen Komplexität Elektrolyseure 30 % der Berechnungswert, da hoher Preis Elektrolyseure	
		Montage RL	290,2 Mio.€	100 % der Rohrleitungskosten	
		elektr. Versorgung Montage elektr. Vers	145,1 Mio.€	15 % von Berechnungswert 55 % der elektrischen Versorgung	
		MSR-Einrichtung	193,5 Mio.€	20 % von Berechnungswert	
		Montage MSR Bau- und Baunebenk	125,8 Mio.€	65 % von MSR-Einrichtungen, inkl. Material 55 % von Berechnungswert	
		Gesamtinvestitionski	osten 4.075,3 Mio.€	Gesamtkosten Elektrolyse inkl Montage und Bau	
	laufende Kosten			-	
		Abschreibungen	407.533.579€	Afa-Laufzeit 10 Jahre	
		Kühlwasser Spoisowassor	1.472.000€	Tripkupecorguplität	
		elektrische Energie	2.502.400€	It. Szenario 2b> keine Kosten für elektrische Energie	
		Wartung/Instandhaltung	163.013.431€	4 % von Gesamtinvestitionskosten	
		Betriebspersonal Verwaltung	1.920.000€ 3.456.000€	4 Schichten x 8 Mitarbeiter x 60.000€/Jahr 180 % vom Betriebspersonal	
		Projektkosten	20.376.679€	5 % Gesamtinvestition auf 10 Jahre verteilt	
		lfd. Gesamtkosten	40.753.558€	iährliche Gesamtkosten	
			,		
	<u>Kostensatz</u>	iährliche Produktion	368 Mio Nm ³		
		Janniene r rouuktion	1 74 £/Nm ³		
		Kostensatz	10 52 £/ba	bezogen auf H2	
		Elektrolyse	1 202 05 5/ Kg	horegon auf Methanol	
			1.202,03 €/l	nerokeu ani meruanoi	

Szenario 2b: CO2 kostenlos, VL-Methanolsynthese, H2 eingekauft, Industriestrompreis

vereinfach	tes Fließbild					
		Kohlenmonoxid			Wasserstoff	→
		Kohlendioxid	WASSER-		Kohlendioxid	· · · · · · · · · · · · · · · · · · ·
		Wasserstoff	GAS-	K -		\rightarrow
		elektrische Energie		KO	nienmonoxia	\rightarrow
Einheitenfe	estlegung	~	recherchierte Größenan	gaben		
		Einflussgröße	Menge	-	Kosten	
	Kohlendioxid		73.500 Nm³/h		0,00 €/t	
	Wasserstoff (Durch	schnittspreis)	184.000 Nm³/h		0,75 €/kg	
	Küblwasser		275 Nm ³ /h		$20 f / 1 000 m^3$	
	oloktrischo Enorgio		6 222 kW		65 00 £/MWb	
	elektrische Energie		0.222 KVV		65,00 €/WW	
	thermische Energie	e (aus Erdgasbörsenpreis)	20.000 kW		3,00 €/GJ	
<u>Berechnun</u>	gen	stündliche Wasserstoffproduktion			184.000 Nm ³ /h	
		jährliche Produktionszeit			62,5 t/h 8.000 h	
	Anschaffungskos	<u>ten</u>				
		Kompressor H2	1.0	000 kW		Motor/Cotriobo Wirkunggrad 0.6
		Motorleistung	4.0	144 kW	mit Motor/Getriek	e Wirkungsgrad 0.9
		Preis Cp0	1.000	0.000 \$	Preis Kompressor	ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM		5,5	bare module facto	r, Fig. 5.30, stainless steel
		Preis Cp0,d	250	0.000 \$	Preis Motor, Fig. 5	.20, totally enclosed
		Faktor FBM,d		1,5	bare module facto	r, Fig. 5.20, compressor
		Preis CBM	5.875	5.000 \$	bare module Preis	Kompressor mit Motor
		Kompressor CO2 Anschlussleistung	1.6	600 kW	lt. ChemCAD. ohne	e Motor/Getriebe. Wirkungsgrad 0.6
		Motorleistung	1.7	778 kW	mit Motor/Getriet	pe, Wirkungsgrad 0,9
		Preis Cp0	450	0.000 \$	Preis Kompressor	ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM		5,5	bare module facto	r, Fig. 5.30, stainless steel
		Preis Cp0,d	100	0.000\$	Preis Motor, Fig. 5	.20, totally enclosed
		Preis CBM	2.625	1,5 5.000 \$	bare module facto	r, Fig. 5.20, compressor Kompressor mit Motor
		Vorwärmer (2x gleiche Größe)				
		WT-Fläche	1.	000 m²	lt. ChemCAD 173.6	500 MJ/h, U-Wert 850 W/m²K
		Preis Cp0	80	0.000 \$	Preis Wärmetausc	her, Fig. 5.36, floating head
		Faktor Fp		1,1	Druckfaktor, Fig. 5	.37, 25 bar
		Faktor FM		3,0	Materialfaktor, Fig	s. 5.36, both sides stainless steel
		Faktor FBMa		6,3	bare module facto	r, Fig. 5.38, shell and tube
			504	4.000 Ş	bare module Preis	swarmetauscher
		Brenner				
		Heizleistung Brois CoO	2.00	20 MW	It. ChemCAD	E 27 pyrolycic furnace
		Fiels CPU Faktor FBM	2.200	0.000 Ş 2 7	Materialfaktor Fig.	5.27, pyrolysis lurnace 5.27 stainless steel 600°C mit H2
		Faktor Fp		1,03	Druckfaktor. Fig. 5	.27, extrapoliert für 25 bar
		Preis CBM	6.125	5.625 \$	bare module Preis	Brenner
		<u>Reaktor</u> Katvolumen	e	54.4 m ³	It Berechnung aus	: 4 000 Nm³ Gas/ m³ Kat b
		Innere Durchmesser	C.	3 m	L/D =4	a noos nin Gusy ni Kat n
		Länge		12 m		
		Preis Cp0	60	0.000 \$	Preis Behälter, Fig	5.44, vertically oriented
		Faktor FM		4,0	Materialfaktor, Fig	. 5.45, stainless steel
		Faktor Fp		3,5	Druckfaktor, Fig. 5	.45, für 25 bar
		Preis CBM	1.590	26,5 0.000 \$	bare module facto	יו, רופ. 5.46, vertically oriented Reaktor
		Katalysator				
		Katvolumen	6	54,4 m ³	It. Berechnung aus	4.000 Nm ³ Gas/ m ³ Kat h
		Schuttdichte Kat. Masse Katalysator	800	500 kg	Noble metal dope	a, Fig. 5.47, Mittelwert
		Preis Katalysator	51 4.63	5.000 kg	90 \$/kg. Fig. 5.47	
			4.03.			

Anhang H

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16,0	bare module factor, Fig. 5.46
	Preis CBM	104.000,0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 \$	Preis Demister, Fig. 5.48
	Faktor FBM	1,2	Nickel alloy, Fig. 5.48
	Preis CBM	720,0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	Kühler		
	Wärmemenge	17,4 MW	Lt. ChemCAD
	WT-Fläche	773 m ²	lt. ChemCAD 17,4 MW, U-Wert 500 W/m²K
	Preis Cp0	55.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
	Faktor Fp	1.1	Druckfaktor, Fig. 5.37, 25 bar
	Faktor FM	3.0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5.2	bare module factor. Fig. 5.38, shell and tube
	Preis CBM	286.000 \$	bare module Preis Wärmetauscher
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	26,3 Mio. €	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2,2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten			
	Abschreibungen	7.129.003 €	Ata-Lautzeit 10 Jahre
	Wasserstoff	98.476.800 €	
	Kuhlwasser	59.943€	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	3.235.556 €	
	wartung/instandnaitung	2.851.601 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000€	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	356.450 ŧ	5 % Gesamtinvestition auf 10 Jahre verteilt
	inpetriebnanme	/12.900€	TO 20 Gesantinvestition and TO Janke Astfelit
	lfd. Gesamtkosten	119,9 Mio. €	jährliche Gesamtkosten
		8,15 ct/Nm ³	
	Kostensatz	0,91 €/kg	bezogen aut H2
	wiethanoisynthese	239,85 €/t	bezogen auf Methanol

gültig für alle Szenarien außer 2c, und 4a/b

Fließbild	Synthese					
	Heizdamr	nf				
Kühlwassor		er >	METHAN	ETHANOL-		Methanol
		SYNTH	ESE		,	
	elektrisch	e Energie				
Einheitenfestlegung				recherchierte Größenangaben		Benangaben
Finflussgröße		e		Menge		Kosten
	Synthesegas	(kostenios				
	da aus vorh.	Proz.schritt)		220.500) Nm³/h	0,00 €/Nm³
	Heizdampf			668	t/h	15,00 €/t
	Kühlwasser			9.291	m³/h	20 €/1.000 m³
	elektrische E	nergie		10.04	19 kW	65,00 €/MWh
Berechnung	<u>(en</u>	stündliche Wasserstoffprod	uktion			184.000 Nm ³ /h
		iährliche Produktionszeit	tion			82,5 t/n 8.000 h
		jannene i rodantionozen				
	Anschaffun	<u>gskosten</u>				
		Kompressor Synthesegas	<u>s (4x)</u>		2 000 1111	
		Anschlussleistung			3.800 kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0			900.000 S	Preis Kompressor ohne Motor, Fig. 5.30. rotary-screw
		Faktor FBM			5,5	bare module factor, Fig. 5.30, stainless steel
		Preis Cp0,d			200.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Faktor FBM,d			1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM		5.	250.000 Ş	bare module Preis Kompressor mit Motor
		Kompressorzwischenküh	ler (3x)			
		Wärmemenge			4,5 MW	It. ChemCAD
		WI-Flache Preis Col			300 m²	It. ChemCAD 4,5 MW, U-Wert 500 W/m²K
		Faktor Fp			1.2	Druckfaktor. Fig. 5.37. für 70 bar
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM			130.000 \$	bare module Preis Kompressorzwischenkühler
		Vorwärmer				
		Wärmemenge			30 MW	lt. ChemCAD
		WT-Fläche			2.000 m ²	It. ChemCAD 40 MW, U-Wert 500 W/m ² K
		Preis CpU Faktor En			100.000 \$	Preis Warmetauscher, Fig. 5.36, floating head
		Faktor FM			3.0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM			650.000 \$	bare module Preis Wärmetauscher
		<u>Wärmetauscher</u>				
		Wärmemenge			30 MW	lt. ChemCAD
		W I-Fläche Brois CoO			2.000 m ²	It. ChemCAD 40 MW, U-Wert 500 W/m ² K
		Faktor En			100.000 \$	Druckfaktor Fig 5 37 für 70 bar
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM			650.000 \$	bare module Preis Wärmetauscher
		Reaktor				
		Katvolumen			55,1 m ³	It. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h
		Innere Durchmesser			3 m 12 m	L/D =4
		Preis Cp0			60.000 \$	Preis Behälter, Fig. 5.44, vertically oriented
		Faktor FM			4,0	Materialfaktor, Fig. 5.45, stainless steel
		Faktor Fp			4,3	Druckfaktor, Fig. 5.45, für 70 bar
		Faktor F a BM		_	32,0	bare module factor, Fig. 5.46, vertically oriented
		Preis CBM		1.	920.000 \$	bare module Preis Reaktor
		Katalysator				
		Katvolumen			55,1 m ³	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h
		Schuttaichte Kat. Masse Katalysstor			800 kg/m ³	Noble metal doped, Fig. 5.47, Mittelwert
		Preis Katalysator		3.	969.000 \$	90 \$/kg, Fig. 5.47

Anhang H

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM <u>Flash</u> Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp . Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM

Preis CBM

2.500 m ²	It. ChemCAD 100 MW, U-Wert 1.000 W/m²K
150.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
1,2	Druckfaktor, Fig. 5.37, für 70 bar
3,0	Materialfaktor, Fig. 5.36, both sides carbon steel
975.000 Ś	bare module Preis Wärmetauscher
4 m	keine Angabe der Größe> Annahme
60.000 Ś	bare module Preis Behälter. Fig 5.44. vertically oriented
4,0	Materialfaktor, Fig. 5.45, stainless steel
1,0	Druckfaktor, Fig 5.10
6,0	bare module factor, Fig. 5.46, horizontally oriented
10 000 \$	Preis Demister Fig. 5.48
1,2	bare module factor, Fig. 5.48, stainless steel
12.000,0	bare module Preis Demister
372.000 \$	bare module Preis Flash
3.800 kW	lt. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
3.420 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
400.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
5,5 1.400.000 \$	bare module Preis Kompressor mit Motor
4 m	keine Angabe der Größe> Annahme
130.000 \$	bare module Preis Behälter. Fig 5.44, vertically oriented
4,0	Materialfaktor, Fig. 5.45, stainless steel
1,0	Druckfaktor, Fig 5.10
9,3	bare module factor, Fig. 5.46
1.209.000 \$	bare module Preis Benaiter onne Einbauten
2,2	bare module factor Böden, Fig. 5.48, stainless steel
10	aus ChemCAD-Simulation
1,2	quantity factor, Fig. 5.48, 10
204.000 Ş	It. ChemCAD
1.500 m ²	berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m ² K, 40 K
100.000 \$	Preis Condensor, Fig. 5.39, flat plate
2,3	Materialfaktor, Fig. 5.39, stainless steel
200.000 \$	bare module Preis Condensor
69 MW	lt. ChemCAD
1.232 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m ² K, 40 K
200.000 \$	Materialfaktor, Fig. 5.36, stainless steel
6,0	bare module factor, Fig. 5.38, flat plate, Fp=1
1.200.000 \$	bare module Preis Condensor
2.873.000 \$	bare module Preis Kolonne 1
4 m	keine Angabe der Größe> Annahme
20,0 m	L/D = 5
130.000 \$	bare module Preis Benalter, Fig 5.44, Vertically oriented Materialfaktor Fig 5.45 stainless steel
4,0	Druckfaktor, Fig 5.10
9,3	bare module factor, Fig. 5.46
1.209.000 \$	bare module Preis Behälter ohne Einbauten
10.000 \$	Preis pro Boden hare module factor Böden, Eig. 5.48, staipless steel
10	aus ChemCAD-Simulation
1,2	quantity factor, Fig. 5.48, 10
264.000 \$	bare module Preis aller Böden
1.100 m ²	berechnet aus A= $Q^*/U \Delta T$, U-Wert 1.000 W/m ² K. 40 K
80.000 \$	Preis Condensor, Fig. 5.39, flat plate
2,3	Materialfaktor, Fig. 5.39, stainless steel
2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
44 MW	It. ChemCAD
786 m ²	berechnet aus A= Q*/U $\Delta T,$ U-Wert 1.400 W/m² K, 40 K
150.000 \$	Preis Reboiler, Fig. 5.36, kettle reboiler
3,0 6.0	iviateriaitaktor, Fig. 5.36, stainless steel bare module factor. Fig. 5.38 flat plate. Fn=1
900.000 \$	bare module Preis Condensor
2.533.000 \$	bare module Preis Kolonne 2

100 MW It. ChemCAD

Anhang H

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Länge	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Ep	1.0	Druckfaktor, Fig 5.10
	Faktor FBMa	9.3	bare module factor. Fig. 5.46
	Preis CBM	1 860 000 \$	hare module Preis Rehälter ohne Finhauten
	Preis CoSS	10 000 \$	Preis pro Boden
	FBM	201000 \$	hare module factor Böden. Fig. 5.48. stainless steel
	Anzahl Böden	20	aus ChemCAD-Simulation
	Fa	11	quantity factor. Fig. 5.48.10
	Preis CBM	462 000 \$	hare module Preis aller Böden
	Wärmemenge Cond.	214 MW	It. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= $O^*/U \Lambda T$. U-Wert 1.000 W/m ² K. 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39. flat plate
	Faktor FM	23	Materialfaktor Fig. 5.39 stainless steel
	Faktor FBMa	2,0	hare module factor. Fig. 5.38. flat plate. En=1
	Preis CBM	460 000 \$	hare module Preis Condensor
	Wärmemenge Reh	265 MW	It ChemCAD
	WT-Fläche (2x)	2 366 m ²	herechnet aus A= $\Omega^*/U \Lambda T$ U-Wert 1 400 W/m ² K 40 K
	Preis Cn0	400 000 \$	Preis Rehoiler Fig 5 36 kettle rehoiler
	Faktor FM	3.0	Materialfaktor Fig. 5.36 stainless steel
	Faktor FBMa	5,0	hare module factor. Fig. 5.38, flat plate. En-1
	Proje CBM	2 400 000 \$	bare module Preis Condensor
	Preis CBM	7 582 000 \$	hare module Preis Kolonne 3
		7.502.000 \$	
	Aufstellungsfaktor	1.05	lt Vorlesung Prozessverfahrenstechnik für Mitteldeutschland
	CEPCI (2014)	585	Preisindev chemischer Annarate
	Umrochnungskurs	1 20 ¢/£	reisindex chemischer Apparate
	Anschaffungenrois	1,50 5/ €	umgerechneter Aufstellungspreis
	Ansenarrangspreis	54,0 WIO. C	
	Gosamtannaratokoston	E4.0 Mio f	
	Desenhausen	54,0 Mio. €	100 % was Commission and blocker
	Beheloitungen	16.2 Mio. €	20 % der Berechnungswort
	Mantaga Di	10,2 WIU. €	100 % der Behelstungswert
		16,2 IVIIO. €	100 % der Konrietungskosten
	Mantaga alaktr Vara	8,1 IVIIO. €	15 % von Berechnungswert
	Wontage elektr. vers.	4,5 Ⅳ110. €	55 % der elektrischen Versorgung
	MSR-EINFICHTUNG	10,8 Mio. €	20 % von Berechnungswert
	Montage MSR	7,0 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	146,5 Mio. €	Gesamtkosten Methanolsynthese inkl. Montage und Bau
lautende Ko	sten		
	Abschreibungen	14.647.408 €	Ata-Lautzeit 10 Jahre
	Kühlwasser	1.486.507 €	
	Heizdampf	80.116.364 €	16 bar ND-Dampf
	elektrische Energie	5.225.422 €	
	Wartung/Instandhaltung	5.858.963 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	732.370 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Indetriebnahme	1.464.741€	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	114,9 Mio. €	jährliche Gesamtkosten
	Kostensatz	7,81 ct/Nm ³	horogon auf U2
		0,88 €/kg	שבנטצבוו מעו חב
	wethanolsynthese	229,82 €/t	bezogen auf Methanol

Szenario 2C: 2000h Teillast-Elektrolyse (184.000 Nm³/h), Strom kostenios, CO2 kostenios, Methanolsynthese 2000h Volllast und 6000h Teillast, Rest H2 wird eingekauft

Fließbild				Annahmen Elektrolyse	AFL PEMEL
elektrische E	Energie		Wasserstoff >	benötigte Leistung	5 kWh/ Nm ³ H2
Elektrolysewa	asser			Anschlusskosten	1.000 €/kW 2.500 €/kW
		LEKTROLTSE	Sauerstoff	Kulliwassei	80 I/ NM ⁺ H2 200 I/ NM ⁺ H2
Kühlwasser			>		
Einheitenfestlegung			recherchierte Größenang	aben	
r:=fluese=#0=			Manag	Kenter	
Ennussgroise			wenge	Kosten	
elektrische Eher (Elektrolyse mit	rgie t Pumpen (ie 2x))	932.271 kW	0,00 €/MWh	
()	,	,			
Elektrolysewass	ser		625,6 m³/h	2,00 €/m³	
1/21 J			20.000 - 3/4	20.04.000.03	
Kuniwasser			36.800 m²/h	20 €/1.000 m°	
Berechnungen	stündliche V	Vasserstoffprod	luktion	184.000 Nm³/h	
	jährliche Me	ethanolprodukti	ion	350.000 t/a	
	jährliche Pro	oduktionszeit		2.000 h	
Anschaffungsk	kosten				
	Elektrolyse	eure			
	Anschlussle	eistung	920.000 kW	Anschlussleistung für 184.000 Nm ³ /h, PEMEL	
	Aufstellung	rgskusten	2.300.000.000€	Anschaltungskösten onne Aufstellung	
	Aufstellung	gspreis	2.415.000.000€	Preis Elektrolyseure mit Aufstellung	
				-	
	Kühlwasse	rpumpe (2x)	20.00034	Kühlwassarstrom It. Harstellerangsha	
	Druckdiffer	rom	36.800 m-/n 5 bar	Druckerhöhung von Obarü auf 5 barü .lt. Herstellerangabe	
	Anschlussle	eistung	5.111 kW	P = V* x ΔD	
	Motorleist	ung	6.013 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
	Preis Cp0		400.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal, stark extrapoliert	
	Faktor Fp		1,0	Druckfaktor, <10 bar, Fig. 5.50	
	Faktor FBN	1a	3.5	bare module factor. Fig. 5.51	
	Preis CBM		1.400.000 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
	. .	(2.)			
	Speisewas: Volumenst	serpumpe (2x) rom	625.6 m³/b	Speisewasserstrom It Herstellerangabe: 3.4.1/Nm ³ H2 (4x AFL)	
	Druckdiffer	renz	6 bar	Druckerhöhung von Obarü auf 6 barü ,lt. Herstellerangabe	
	Anschlussle	eistung	104 kW	$P = V^* \times \Delta p$	
	Motorleist	ung	123 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
	Preis Cp0 Eaktor En		35.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal	
	Faktor FM		1,0	Materialfaktor, Fig. 5.49, cast iron	
	Faktor FBN	1a	3,5	bare module factor, Fig. 5.51	
	Preis CBM		122.500 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
	Aufstellung	sfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
	CEPCI (201	4)	585	Preisindex chemischer Apparate	
	Umrechnu	ngskurs	1,30 \$/€		
	Anschaffun	igspreis	3.596.906€	umgerechneter Aufstellungspreis ohne Elektrolyseure	
	Gesamtapp	oaratekosten	2.418,6 Mio.€		
	Berechnungs	wert	967,4 Mio. €	40 % von Gesamtapparatekosten wegen Komplexität Elektrolyseure	
	Kohrleitung Montage P	gen I	290,2 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure 100 % der Rohrleitungskosten	
	elektr. Vers	sorgung	290,2 Mi0.€ 145,1 Mio.€	15 % von Berechnungswert	
	Montage e	lektr. Vers.	79,8 Mio. €	55 % der elektrischen Versorgung	
	MSR-Einric	htung	193,5 Mio.€	20 % von Berechnungswert	
	Bau- und B	aunebenk.	125,8 MI0. € 532.1 Mio. €	55 % von MSR-Einrichtungen, inkl. Material	
			,		
	Gesamtin	vestitionsko	osten 4.075,3 Mio.€	Gesamtkosten Elektrolyse inkl Montage und Bau	
laufende Kost	Ahschreibur	igen	107 522 570 F	Afa-l aufzeit 10 Jahre	
	Kühlwasser		407.333.379€ 1.472.000€		
	Speisewasse	er	2.502.400€	Trinkwasserqualität	
	elektrische I	Energie	0€	It. Szenario 2c> keine Kosten für elektrische Energie	
	Betriebsper:	sonal	1.920.000€	4 Schichten x 8 Mitarbeiter x 60.000€/Jahr	
	Verwaltung		3.456.000€	180 % vom Betriebspersonal	
	Projektkoste	en hme	20.376.679€	5 % Gesamtinvestition auf 10 Jahre verteilt	
	mperiepha		40.753.358€	To to deservatives and an To fame vertent	
	lfd. Gesa	mtkosten	641,0 Mio. €	jährliche Gesamtkosten	
Kostensatz					
	jährliche Pr	roduktion	368 Mio. Nm ³		
	Kosten	satz	1,74 €/Nm³	bezogen auf H2	
	Elektro	hico	19,53 €/kg		
	LIEKUO	iyse	1 831 51 £/t	herogen auf Methanol	
Szenario 2c: CO2 kostenlos, TL-Methanolsynthese, H2 eingekauft, Industriestrompreis

vereinfach	tes Fließbild			
		Kohlenmonoxid		Wasserstoff
		Kohlendioxid	WASSER-	Kohlendioxid
		Wasserstoff	GAS-	
		elektrische Energie		
<u>Einheitenf</u>	estlegung		recherchierte Größenangabe	<u>n</u>
		Einflussgröße	Menge	Kosten
	Kohlendioxid		73.500 Nm³/h	0,00 €/t
	Wasserstoff (Durcl	hschnittspreis)	184.000 Nm³/h	0,75 €/kg
	Kühlwasser		375 Nm³/h	20 €/1.000 m³
	elektrische Energie	2	6.222 kW	65,00 €/MWh
	thermische Energi	e (aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ
Berechnun	igen	stündliche Wasserstoffproduktion		184.000 Nm³/h
	_	stündliche Methanolproduktion jährliche Produktionszeit		62,5 t/h 5.600 h
	Anschaffungskos	sten		
		Kompressor H2		
		Anschlussleistung Motorleistung	4.000 k	V It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0, mit Motor/Getriebe, Wirkungsgrad 0, 0
		Preis Cp0	1.000.000	 Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM	5	5 bare module factor, Fig. 5.30, stainless steel
		Preis Cp0,d	250.000	Preis Motor, Fig. 5.20, totally enclosed
		Preis CBM	1. 5.875.000	 bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor
		Kompressor CO2		
		Anschlussleistung	1.600 k	N It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,
		Motorleistung	1.778 k	M mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0	450.000	\$ Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Preis Coû d	د 100 000	S Preis Motor Fig 5 20 totally enclosed
		Faktor FBM,d	1,00,000	5 bare module factor, Fig. 5.20, compressor
		Preis CBM	2.625.000	\$ bare module Preis Kompressor mit Motor
		Vorwärmer (2x gleiche Größe)		
		WT-Fläche	1.000 n	² It. ChemCAD 173.600 MJ/h, U-Wert 850 W/m ² K
		Preis Cp0	80.000	\$ Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp	1	1 Druckfaktor, Fig. 5.37, 25 bar
		Faktor FIM	3,	Materialitation, Fig. 5.36, both sides stainless steel have module factor. Fig. 5.38, shell and tube
		Preis CBM	504.000	 bare module Preis Wärmetauscher
		Brenner		
		Heizleistung	20 M	V It. ChemCAD
		Preis Cp0	2.200.000	Preis Brenner, Fig. 5.27, pyrolysis furnace
		Faktor FBM	2,	7 Materialfaktor, Fig. 5.27, stainless steel, 600°C mit H2 2 Druckfaktor, Fig. 5.27, avtrapoliert für 25 bar
		Preis CBM	6.125.625	 bare module Preis Brenner
		Reaktor		
		katvolumen Innere Durchmesser	64,4 n	 it. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h it. μ/D =4
		Länge	12	
		Preis Cp0	60.000	\$ Preis Behälter, Fig. 5.44, vertically oriented
		Faktor FM	4	0 Materialfaktor, Fig. 5.45, stainless steel
		Faktor Fp	3	5 Druckfaktor, Fig. 5.45, für 25 bar
		Preis CBM	26 1.590.000	 bare module factor, Fig. 5.46, vertically oriented bare module Preis Reaktor
		Katalysator		
		Katvolumen	64,4 n	³ It. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h
		Schüttdichte Kat.	800 kg/n	Noble metal doped, Fig. 5.47, Mittelwert
		Preis Katalysator	4.635.000	5 \$ 90 \$/kg, Fig. 5.47
		-		

Anhang I

<u>Flash</u>		
Durchmesser	1 m	Berechnung It. Vorlesung PVT
Länge	5,5 m	L/D = 5,5
Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
Faktor Fp	2.5	Druckfaktor, Fig 5.45
Faktor FBMa	16,0	bare module factor, Fig. 5.46
Preis CBM	104.000.0	bare module Preis Behälter ohne Einbauten
Preis Cp0	600 Ś	Preis Demister, Fig. 5.48
Faktor FBM	1.2	Nickel allov. Fig. 5.48
Preis CBM	720.0	bare module Preis Demister
Preis CBM	104.720 \$	bare module Preis Flash
1473 ka 1		
Kunier Wärmomongo	17 4 144	It ChamCAD
Warnenienge	17,4 10100	LI. CHENICAD
WI-Flache	773 m-	It. Chemicad 17,4 MW, U-wert 500 W/m ⁻ K
Preis Cpu	55.000 \$	Preis Warmetauscher, Fig. 5.36, floating nead
Faktor Fp	1,1	Drucktaktor, Fig. 5.37, 25 bar
Faktor FIVI	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
Faktor FBIVIa	5,2	bare module factor, Fig. 5.38, shell and tube
Preis CBM	286.000 Ş	bare module Preis Warmetauscher
Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
CEPCI (2014)	585	Preisindex chemischer Apparate
Umrechnungskurs	1,30 \$/€	
Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
Gesamtapparatekos	ten 26.3 Mio. €	
Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
Montage elektr. Ver	s. 2,2 Mio. €	55 % der elektrischen Versorgung
MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
Bau- und Baunebenk	k. 14,5 Mio. €	55 % von Berechnungswert
Gesamtinvestitio	nskosten 71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten		
Abschreibungen	7.129.003 €	Afa-Laufzeit 10 Jahre
Wasserstoff	68.933.760 €	
Kühlwasser	41.960€	
Erdgas für Brenner	1.209.600 €	
elektrische Energie	2.264.889 €	
Wartung/Instandhaltu	ing 2.851.601 €	4 % von Gesamtinvestitionskosten
Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
Verwaltung	3.456.000 €	180 % vom Betriebspersonal
Projektkosten	356.450 €	5 % Gesamtinvestition auf 10 Jahre verteilt
Inbetriebnahme	712.900€	10 % Gesamtinvestition auf 10 Jahre verteilt
lfd. Gesamtkoste	n 88,9 Mio. €	jährliche Gesamtkosten
	8.63 ct/Nm ³	
Kostensatz	0.97 €/kg	bezogen auf H2
Methanolsyn	these 253,93 €/t	bezogen auf Methanol

Szenario 2C: 2000h Teillast-Elektrolyse (184.000 Nm³/h), Strom kostenlos, CO2 kostenlos, Methanolsynthese 2000h Volllast und 6000h Teillast, Rest H2 wird eingekauft

Fließbild	Synthese	gas]	
	Heizdami	of			
	Kühlupse		METHAN	IOL-	Methanol
	KUNIWass	er >	SYNTHE	SE	~
	elektrisch	ne Energie			
Finhaitanfa	stlogung			racharchiarta Gri	
Linneitenre	stiegung			recherchierte Gro	bsenangaben
	Einflussgröß	e		Menge	Kosten
	Synthesegas	(kostenlos,		220.500 Nm³/h	0,00 €/Nm³
	ua aus vorn.	Proz.sciintt)			
	Heizdampf			668 t/h	15,00 €/t
	Kühlwasser			9.291 m³/h	20 €/1.000 m³
	elektrische F	nergie		10 049 kW	65.00 €/MWb
		incigic .		10.045 KW	
Berechnung	<u>en</u>	stündliche Wasserstoffp	roduktion duktion		184.000 Nm³/h 62 5 t/b
		jährliche Produktionszeit	t (VL-Stunder	ı)	5.600 h
		j		,	
	Anschaffun	gskosten			
		Anschlussleistung	gas (4x)	3 800 kW	It ChemCAD ohne Motor/Getriebe Wirkungsgrad 0.6
		Motorleistung		4.222 kW	mit Motor/Getriebe. Wirkungsgrad 0.9
		Preis Cp0		900.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM		5,5	bare module factor, Fig. 5.30, stainless steel
		Preis Cp0,d		200.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Faktor FBM,d		1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM		5.250.000 \$	bare module Preis Kompressor mit Motor
		Kompressorzwischen	kühler (3x)		
		Wärmemenge		4,5 MW	lt. ChemCAD
		WT-Fläche		300 m ²	lt. ChemCAD 4,5 MW, U-Wert 500 W/m²K
		Preis Cp0		20.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp		1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Preis CBM		6,5 130.000 \$	bare module factor, Fig. 5.38, shell and tube bare module Preis Kompressorzwischenkühler
					···· ··· · · · · · · · · · · · · · · ·
		<u>Vorwärmer</u>		20 1414	h Characa D
		Warmemenge		30 MW	It. ChemCAD
		Preis CnO		2.000 m 100 000 \$	Preis Wärmetauscher Fig 5 36 floating head
		Faktor Fp		1.2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3.0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa		6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		650.000 \$	bare module Preis Wärmetauscher
		Wärmetauscher			
		Wärmemenge		30 MW	lt. ChemCAD
		WT-Fläche		2.000 m ²	lt. ChemCAD 40 MW, U-Wert 500 W/m²K
		Preis Cp0		100.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp		1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa Prois CBM		6,5 650 000 \$	bare module factor, Fig. 5.38, shell and tube
		FIEls CDIVI		050.000 Ş	bare moule ries warmetauscher
		Reaktor			
		Katvolumen		55,1 m ³	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h
		Innere Durchmesser		3 m	L/D =4
		Preis Con		12 m 60 000 ¢	Preis Rehälter Fig. 5.44 vertically oriented
		Faktor FM		ې 00.000 ¢ 4 ۵	Materialfaktor, Fig. 5.45, stainless steel
		Faktor Fp		4,0	Druckfaktor, Fig. 5.45. für 70 bar
		Faktor FBMa		32.0	bare module factor, Fig. 5.46, vertically oriented
		Preis CBM		1.920.000 \$	bare module Preis Reaktor
		Katalysator			
		Katvolumen		55.1 m³	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h
		Schüttdichte Kat.		800 kg/m ³	Noble metal doped, Fig. 5.47, Mittelwert
		Masse Katalysator		44.100 kg	
		Preis Katalysator		3.969.000 \$	90 \$/kg, Fig. 5.47

Anhang I

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM Flash Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM

Preis CBM

2.300 11	IL CHEMICAD 100 WW, 0-WEIL 1.000 W/III K
150.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
1,2	Druckfaktor, Fig. 5.37, für 70 bar
3,0	Materialfaktor, Fig. 5.36, both sides carbon steel
6,5	bare module factor, Fig. 5.38, shell and tube
975.000 Ş	bare module Preis Wärmetauscher
4 m	keine Angabe der Größe> Annahme
20,0 m	L/D = 5
60.000 \$	bare module Preis Benalter, Fig 5.44, Vertically oriented
4,0	Materialiaktor, Fig. 5.45, stainless steel
1,0	bare module factor. Fig. 5.46 horizontally oriented
260,000 \$	bare module Prois Pobälter obno Einbauton
10.000 \$	Draic Domictor, Eig E 49
10.000 \$	hare module factor. Fig. 5.48 stainless steel
12 000 0	hare module Preis Demister
372 000 \$	hare module Preis Elash
372.000 \$	
3.800 kW	lt. ChemCAD. ohne Motor/Getriebe. Wirkungsgrad 0.6
3.420 kW	mit Motor/Getriebe. Wirkungsgrad 0.9
400.000 \$	Preis Kompressor ohne Motor Fig 5 30 rotary-screw
3.5	bare module factor. Fig. 5.30. stainless steel
1.400.000 \$	bare module Preis Kompressor mit Motor
2	
4 m	keine Angabe der Größe> Annahme
20.0 m	L/D = 5
130.000 \$	bare module Preis Behälter. Fig 5.44. vertically oriented
4,0	Materialfaktor, Fig. 5.45, stainless steel
1,0	Druckfaktor, Fig 5.10
9,3	bare module factor, Fig. 5.46
1.209.000 \$	bare module Preis Behälter ohne Einbauten
10.000 \$	Preis pro Boden
2,2	bare module factor Böden, Fig. 5.48, stainless steel
10	aus ChemCAD-Simulation
1,2	quantity factor, Fig. 5.48, 10
264.000 \$	bare module Preis aller Böden
60 MW	lt. ChemCAD
1.500 m ²	berechnet aus A= Q*/U ∆T, U-Wert 1.000 W/m² K, 40 K
100.000 \$	Preis Condensor, Fig. 5.39, flat plate
100.000 \$ 2,3	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel
100.000 \$ 2,3 2,0	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1
100.000 \$ 2,3 2,0 200.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor
100.000 \$ 2,3 2,0 200.000 \$ 69 MW	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U AT, U-Wert 1.400 W/m ² K, 40 K Preis Paboiler, Fig. 5.36, kettla raboiler
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3.0	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U AT, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Ein 5.36 stainless steel
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6 0	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= $Q^*/U \Delta T$, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor. Fig. 5.38 flat plate for-1
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1,200.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ∆T, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 4 m 20,0 m 130.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 4 m 20,0 m 130.000 \$ 4,0	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 4 m 130.000 \$ 4,0 1,0	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig 5.10
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 4 m 130.000 \$ 4,0 1,0 9,3	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.10 bare module factor, Fig. 5.46
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 4 m 20,0 m 130.000 \$ 4,0 1,0 9,3 1.209.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U AT, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.10 bare module factor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Fig. 5.46
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 4,0 1,000 \$ 1.209.000 \$ 1.0000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ∆T, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.10 bare module Preis Behälter, Fig. 5.46 bare module Preis Behälter ohne Einbauten Preis pro Boden
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 4 m 130.000 \$ 4,0 1,0 9,3 1.209.000 \$ 1.209.000 \$ 2,2	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.10 bare module factor, Fig. 5.46 bare module freis Behälter ohne Einbauten Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 1.200,000 \$ 4,0 1,0 9,3 1.209.000 \$ 10.000 \$ 10.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 Keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.10 bare module factor, Fig. 5.46 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel aus ChemCAD-Simulation
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 4,0 1,000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.10 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module factor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor Sig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 4,0 1,200,000 \$ 4,0 1,0 9,3 1.209.000 \$ 1,209.000 \$ 2,200.000 \$ 1,200.000 \$ 1,200.000 \$ 1,200.000 \$ 1,200.000 \$ 1,200.000 \$ 1,200.000 \$ 1,200.000 \$ 1,200.000 \$ 2,873.000 \$ 1,200.000 \$ 2,873.000 \$ 1,200.000 \$ 1,200.000 \$ 2,873.000 \$ 1,200.000 \$ 2,873.000 \$ 1,200.000 \$ 1,200.000 \$ 2,873.000 \$ 1,200.000 \$ 1,200.000 \$ 2,873.000 \$ 1,200.000 \$ 1,000.000 \$ 1,000 \$ 1,0	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.10 bare module factor, Fig. 5.46 bare module factor, Fig. 5.46 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 1.200,000 \$ 2.873.000 \$ 1.209.000 \$ 10.000 \$ 2,2 10 0,000 \$ 1.209.000 \$ 10.000 \$ 2,2 10 1,209.000 \$ 10.000 \$ 2,2 10 1,209.000 \$ 1,209.000 \$ 10.000 \$ 2,2 10 1,209.000 \$ 1,209.000 \$ 1,200.000 \$ 1,200.0000 \$ 1,200.000 \$ 1,200.000 \$ 1,200.0000 \$ 1,200.000	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U AT, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Fig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden It. ChemCAD
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 1.209.000 \$ 10.000 \$ 1.209.000 \$ 10.000 \$ 2,2 10 1,2 264.000 \$ 4 MW 1.100 m ²	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Fig. 5.48, stainless steel Druckfaktor, Fig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m ² K, 40 K Preis pro Iso
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 130.000 \$ 1,009.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 10 2,200.000 \$ 2,200.000 \$ 2,000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus $A = Q^*/U \Delta T$, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettile reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.10 bare module factor, Fig. 5.46 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module Preis Behälter ohne Einbauten Preis pro Boden bare module Preis aller Böden ti. ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden ti. ChemCAD
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 1.200.000 \$ 1.200.000 \$ 1.200.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 2,2 10 1,2 264.000 \$ 2,2 10 1,2 264.000 \$ 2,2 264.000 \$ 2,2 264.000 \$ 2,2 2,2 10 1,2 2,2 2,2 10 1,2 2,2 2,2 10 1,2 2,2 10 1,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Big. 5.46 bare module factor, Big. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m ² K, 40 K Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.39, flat plate
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 1.200.000 \$ 4,0 1,0 9,3 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 2,2 10 1,2 264.000 \$ 2,2 20,000 \$ 2,2 10 1,2 264.000 \$ 2,3 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.10 bare module factor, Fig. 5.46 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, flat plate
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 1.200,000 \$ 4,0 1,0 9,3 1.209.000 \$ 10.000 \$ 2,2 10 1,2 264.000 \$ 4,4 MW 1.100 m ² 80.000 \$ 2,3 2,3 2,0 160.000 \$ 2,3	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kattle reboiler Materialfaktor, Fig. 5.38, flat plate, Fp=1 bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.10 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module factor Fig. 5.46 bare module factor Böden, Fig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, flat plate, Fp=1 bare module factor Fig. 5.38, flat plate, Fp=1 bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 1.200,000 \$ 4,0 1,0 9,3 1.209.000 \$ 10.000 \$ 2,2 10 1,2 264.000 \$ 44 MW 1.100 m ² 80.000 \$ 2,3 2,0 160.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U AT, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.45, stainless steel Dare module factor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Fig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden It. ChemCAD berechnet aus A= Q*/U AT, U-Wert 1.000 W/m ² K, 40 K Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate Materialfaktor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, flat plate
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 2.873.000 \$ 4,0 1,0 9,3 1.209.000 \$ 4,0 1,0 9,3 1.209.000 \$ 2,2 10 1,2 264.000 \$ 44 MW 1.100 m ² 80.000 \$ 2,3 2,0 160.000 \$ 44 MW	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A = Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.46 bare module factor, Fig. 5.46 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.48, 10 bare module Preis aller Böden It. ChemCAD berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K Preis Condensor, Fig. 5.39, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 2.873.000 \$ 4,0 1,0 9,3 1.209.000 \$ 10.000 \$ 10.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 4.4 MW 1.100 m ² 80.000 \$ 2,3 2,0 160.000 \$ 4.4 MW 786 m ² 150.000 \$ 3,0	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus $A = Q^*/U \Delta T$, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.46 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module Preis Behälter ohne Einbauten Preis pro Boden bare module Preis aller Böden It. ChemCAD berechnet aus $A = Q^*/U \Delta T$, U-Wert 1.000 W/m ² K, 40 K Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus $A = Q^*/U \Delta T$, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module factor, Fig. 5.38, flat plate, Fp=1 bare module factor, Fig. 5.36, stainless steel bare module factor, Fig. 5.36, stainless steel
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 1.200,000 \$ 4,0 1,0 9,3 1.209.000 \$ 1.209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 2,2 10 1,209.000 \$ 1,209.000 \$ 2,2 10 1,209.000 \$ 2,3 2,00 1,009.000 \$ 2,2 10 1,209.000 \$ 2,3 2,000 \$ 2,000 \$ 2,3 2,000 \$ 2,3 2,000 \$ 2,3 2,000 \$ 2,000 \$ 2,3 2,000 \$ 2,000 \$ 2,3 2,000 \$ 2,000	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus $A = Q^*/U \Delta T$, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.10 bare module factor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Fig. 5.48, stainless steel Druckfaktor, Fig. 5.48, 10 bare module Preis Behälter ohne Einbauten Preis pro Boden bare module Preis aller Böden It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m ² K, 40 K Preis Condensor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate Materialfaktor, Fig. 5.38, flat plate Materialfaktor, Fig. 5.38, flat plate, Fp=1 bare module factor, Fig. 5.38,
100.000 \$ 2,3 2,0 200.000 \$ 69 MW 1.232 m ² 200.000 \$ 3,0 6,0 1.200.000 \$ 2.873.000 \$ 2.873.000 \$ 2.873.000 \$ 4,0 1,2 0,0 m 1300,000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 1.209.000 \$ 2,2 10 1,2 264.000 \$ 2,2 10 1,2 264.000 \$ 2,3 2,0 160.000 \$ 44 MW 786 m ² 150.000 \$ 3,0 6,0 900.000 \$	Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.36, kettle reboiler Materialfaktor, Fig. 5.36, stainless steel bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor bare module Preis Condensor bare module Preis Kolonne 1 keine Angabe der Größe> Annahme L/D = 5 bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Fig. 5.46 bare module factor, Big. 5.48, stainless steel Druckfaktor, Fig. 5.48, 10 bare module factor Böden, Fig. 5.48, stainless steel aus ChemCAD-Simulation quantity factor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.38, flat plate, Fp=1 bare module factor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor It. ChemCAD berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K Preis Reboiler, Fig. 5.38, flat plate, Fp=1 bare module factor, Fig. 5.38, flat plate, Fp=1

100 MW It. ChemCAD

Anhang I

Kolonne 3		
Durchmesser	4 m	keine Angabe der Größe> Annahme
Länge	40,0 m	L/D = 10
Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
Faktor Fp	1,0	Druckfaktor, Fig 5.10
Faktor FBMa	9.3	bare module factor, Fig. 5.46
Preis CBM	1.860.000 \$	bare module Preis Behälter ohne Einbauten
Preis CpSS	10.000 \$	Preis pro Boden
FBM	2.2	bare module factor Böden. Fig. 5.48. stainless steel
Anzahl Böden	20	aus ChemCAD-Simulation
Fa	1.1	quantity factor. Fig. 5.48. 10
Preis CBM	462.000 \$	bare module Preis aller Böden
Wärmemenge Cond.	214 MW	lt. ChemCAD
WT-Fläche	5.350 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K
Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39, flat plate
Faktor FM	2,3	Materialfaktor, Fig. 5.39, stainless steel
Faktor FBMa	2.0	bare module factor. Fig. 5.38. flat plate. Fp=1
Preis CBM	460.000 \$	bare module Preis Condensor
Wärmemenge Reb.	265 MW	lt. ChemCAD
WT-Fläche (2x)	2.366 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K
Preis Cp0	400.000 Ś	Preis Reboiler, Fig. 5.36, kettle reboiler
Faktor FM	3.0	Materialfaktor, Fig. 5.36, stainless steel
Faktor FBMa	6.0	hare module factor. Fig. 5.38 flat plate. Ep=1
Preis CBM	2 400 000 \$	bare module Preis Condensor
Preis CBM	7 582 000 \$	hare module Preis Kolonne 3
	7.502.000 9	
Aufstellungsfaktor	1.05	lt Vorlesung Prozessverfahrenstechnik für Mitteldeutschland
CEPCI (2014)	5.95	Preisindex chemischer Annarate
Limrechnungskurs	1 20 ¢/f	reament aremacher appurate
Anschaffungsnreis	54 0 Mic f	umgerechneter Aufstellungspreis
Anschartungspreis	54,0 WIO. C	ungerechneter Austenungspreis
Gesamtannaratekosten	54.0 Mio. £	
Borochnungswort	54,0 Mio. €	100 % von Gerantannaratekerten
Pohrleitungen	16.2 Mio. €	20 % der Berechnungswort
Montago Pl	16,2 Mio. €	100 % der Behelaitungswert
	10,2 MIO. €	100 % der Rommenungskösten
Mantaga alakta Vara	8,1 IVIIO.€	
Montage elektr. Vers.	4,5 Mio. €	55 % der elektrischen Versorgung
	10,8 Mio. €	20 % von Berechnungswert
Montage MSR	7,0 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
Gesamtinvestitionskosten	146,5 Mio. €	Gesamtkosten Methanolsynthese inkl. Montage und Bau
sten		
Abschreibungen	14.647.408€	Afa-Laufzeit 10 Jahre
Kühlwasser	1.040.555€	
Heizdampf	56.081.455€	16 bar ND-Dampf
elektrische Energie	3.657.796€	
Wartung/Instandhaltung	5.858.963€	4 % von Gesamtinvestitionskosten
Betriebspersonal	1.920.000€	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
Verwaltung	3.456.000€	180 % vom Betriebspersonal
Projektkosten	732.370€	5 % Gesamtinvestition auf 10 Jahre verteilt
Inbetriebnahme	1.464.741€	10 % Gesamtinvestition auf 10 Jahre verteilt
lfd. Gesamtkosten	88,9 Mio. €	jährliche Gesamtkosten
	8.62 ct/Nm ³	
Kostensatz	8,62 ct/Nm ³	bezogen auf H2
Kostensatz Methanolsynthese	8,62 ct/Nm ³ 0,97 €/kg	bezogen auf H2

Szenario 2D: 2000h Teillast-Elektrolyse (736.000 Nm³/h), Strom kostenlos, CO2 kostenlos, 8000h Methanolsynthese, H2-Speicher

Fließbild			Massarsta	"	Annahmen Elektrolyse	AEL	PEMEL
	elektrische Ener	gie	Wdsselsto	[™] →	benötigte Leistung	5 kWh/	Nm ³ H2
	Elektrorysewass				Kühlwasser	80 I/Nm ³ H2	2.500 €/ KVV 200 I/Nm ³ H2
			Sauerstoff	\rightarrow			
	Kühlwasser	k		·			
Einheitenfe	stlegung		rechercl	nierte Größenang	<u>aben</u>		
	Finflussgröße			Menge	Kosten		
	elektrische Energie						
	(Elektrolyse mit Pu	- impen (je 2x))	3.	729.086 kW	0,00 €/kWh		
	Flaktrobycowaccor		2	502 4 m3/h	2 00 c/m3		
	Elektrolysewassei		۷.	502,4 m ⁻ /11	2,00 €/m-		
	Kühlwasser		14	17.200 m³/h	20 €/1.000 m³		
Berechnung	<u>çen</u>	stündliche Wasserstoffpro	duktion		736.000 Nm³/h		
		jährliche Methanolprodukt	ion		500.000 t/a		
		jährliche Produktionszen			2.000 h		
	Anschaffungskos	sten					
		Elektrolyseure					
		Anschlussleistung		3.680.000 kW 9.200.000.000 €	Anschlussleistung für 184.000 Nm ³ /h, PEMEL Anschaffungskosten ohne Aufstellung		
		Aufstellungsfaktor		1,05	It. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland		
		Aufstellungspreis		9.660.000.000€	Preis Elektrolyseure mit Aufstellung		
		Köhlungen (20)					
		Volumenstrom		147.200 m ³ /h	Kühlwasserstrom It Herstellerangabe		
		Druckdifferenz		5 bar	Druckerhöhung von Obarü auf 5 barü ,lt. Herstellerangabe		
		Anschlussleistung		20.444 kW	$P = V^* \times \Delta p$		
		Motorleistung		24.052 kW	mit Motor/Getriebe, Wirkungsgrad 0,85		
		Preis Cp0		4.000.000 \$ 1.0	Preis Pumpe mit Motor, Fig. 5.49, centrifugal, stark extrapollert		
		Faktor FM		1,0	Materialfaktor, Fig. 5.49, cast iron		
		Faktor FBMa		3,5	bare module factor, Fig. 5.51		
		Preis CBM		14.000.000 \$	bare module Preis Kühlwasser-Pumpe mit Motor		
		Speisewasserpumpe (2x	١				
		Volumenstrom	L	2.502,4 m³/h	Speisewasserstrom It. Herstellerangabe: 3,4 I/Nm ³ H2 (4x AEL)		
		Druckdifferenz		6 bar	Druckerhöhung von Obarü auf 6 barü ,lt. Herstellerangabe		
		Anschlussleistung		417 kW	$P = V^* \times \Delta p$		
		Motorleistung		491 kW	mit Motor/Getriebe, Wirkungsgrad 0,85		
		Faktor Fp		50.000 ş 1,0	Preis Pumpe mit wotor, Fig. 5.49, centinugai, exclapolier Druckfaktor, <10 bar, Fig. 5.50		
		Faktor FM		1,0	Materialfaktor, Fig. 5.49, cast iron		
		Faktor FBMa		3,5	bare module factor, Fig. 5.51		
		Preis CBIVI		1/5.000 ş	bare module Preis Kuniwasser-Pumpe הוג ואוטנטו		
		Drucklagertanks für H2	<u>6x 100.000 m³, 16 k</u>	oar)			
		Preis Cp0		30.000.000 \$	Preis Drucklagertank, Fig. 5.61, stark extrapoliert, floating roof		
		Faktor FBMa Preis CBM		3,8 114.000.000 \$	bare module factor, Fig. 5.61, stainless steel, bullet		
				114.000.000 -			
		Aufstellungsfaktor		1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland		
		CEPCI (2014)		585 1 30 \$/£	Preisindex chemischer Apparate		
		Anschaffungspreis		1,50 Ş/€ 841.463.438€	umgerechneter Aufstellungspreis ohne Elektrolyseure		
					angereen		
		Gesamtapparatekosten		10.501,5 Mio.€			
		Berechnungswert Rohrleitungen		4.200,6 Mio. € 1 260.2 Mio. €	40 % von Gesamtapparatekosten wegen Komplexitat Elektrolyseure 30 % der Berechnungswert, da hoher Preis Elektrolyseure		
		Montage RL		1.260,2 Mio. €	100 % der Rohrleitungskosten		
		elektr. Versorgung		630,1 Mio. €	15 % von Berechnungswert		
		Montage elektr. Vers.		346,5 Mio. € 940 1 Mio. €	55 % der elektrischen Versorgung		
		Montage MSR		546,1 Mio. €	65 % von MSR-Einrichtungen, inkl. Material		
		Bau- und Baunebenk.		2.310,3 Mio. €	55 % von Berechnungswert		
		• • • • • • • • • • • • • • • • • • •		1005 0 Min 6	•		
		Gesamtinvestitionsk	osten 17	.695,0 NIIO. e	Gesamtkosten Elektrolyse Inkl Wontage und Dau		
	laufende Kosten						
	_	Abschreibungen		1.769.496.589€	Afa-Laufzeit 10 Jahre		
		Kühlwasser		5.888.000 €	Trinkunssorgunlität		
		elektrische Energie		10.005.000€	It. Szenario 2d> keine Kosten für elektrische Energie		
		Wartung/Instandhaltung		707.798.636€	4 % von Gesamtinvestitionskosten		
		Betriebspersonal		1.920.000€	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr		
		Projektkosten		3.450.000€ 88.474.829€	5 % Gesamtinvestition auf 10 Jahre verteilt		
		Inbetriebnahme		176.949.659€	10 % Gesamtinvestition auf 10 Jahre verteilt		
		lfd. Gesamtkosten		2.764 Mio. €	jährliche Gesamtkosten		
	Kostensatz						
		jährliche Produktion	1	.472 Mio. Nm ³			
			1	.88 €/Nm³			
		Kostensatz		21.05 €/kg	bezogen auf H2		
		Elektrolyse	5	= 27 QQ £/t	harmon out Mothanal		
				327,33 E/C	bezogen auf wiethanol		

Szenario 2a, 2d: CO2 kostenlos, VL-Methanolsynthese, Industriestrompreis

vereinfachtes Fließbild

Kohlendioxid WASSER- Kohlendioxid GaS-	hlenmonoxid	4	Wasserstoff	
Wasserstoff GAS-	hlendioxid	-	Kahlandiavid	
(14)-	asserstoff	WASSER-	Koniendioxid	\rightarrow
thermische Energie Kohlenmonoxid	ermische Energie	GAS-	Kohlenmonoxid	
elektrische Energie	ktrische Energie	1		

<u>Einheitenfest</u>	tlegung		recherchierte Größenangaben	
_	Einflussgröße		Menge	Kosten
	Kohlendioxid		73.500 Nm³/h	0,00 €/t
	Wasserstoff (Preis w angesetzt, da aus voi	ird mit null rher. Prozess)	184.000 Nm³/h	0,00 €/Nm³
	Kühlwasser		375 Nm³/h	20 €/1.000 m³
	elektrische Energie		6.222 kW	65,00 €/MWh
	thermische Energie (aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ
Berechnunge	en	stündliche Wasserstoffproduktion		184.000 Nm³/h
		stündliche Methanolproduktion		62,5 t/h
		jährliche Produktionszeit		8.000 h
	• · · · · · · · · · · · · · · · · · · ·			
	Anschattungskoste	Kompresser H2		
		Anschlussleistung	4 000 KW	It ChemCAD obne Motor/Getriebe Wirkungsgrad 0.6
		Motorleistung	4.000 KW	mit Motor/Getriebe Wirkungsgrad 0.9
		Preis Cp0	1.000.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM	5,5	bare module factor, Fig. 5.30, stainless steel
		Preis Cp0,d	250.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Faktor FBM,d	1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM	5.875.000 \$	bare module Preis Kompressor mit Motor
		Kompressor CO2		
		Anschlussleistung	1.600 kW	lt. ChemCAD. ohne Motor/Getriebe. Wirkungsgrad 0.6
		Motorleistung	1.778 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0	450.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM	5,5	bare module factor, Fig. 5.30, stainless steel
		Preis Cp0,d	100.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Faktor FBM,d	1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM	2.625.000 \$	bare module Preis Kompressor mit Motor
		Vorwärmer (2x gleiche Größe)		
		WT-Fläche	1.000 m ²	lt. ChemCAD 173.600 MJ/h, U-Wert 850 W/m ² K
		Preis Cp0	80.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar
		Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa	6,3	bare module factor, Fig. 5.38, shell and tube
		Preis CBM	504.000 Ş	bare module Preis Wärmetauscher
		Brenner		
		Heizleistung	20 MW	lt. ChemCAD
		Preis Cp0	2.200.000 \$	Preis Brenner, Fig. 5.27, pyrolysis furnace
		Faktor FBM	2,7	Materialfaktor, Fig. 5.27, stainless steel, 600°C mit H2
		Faktor Fp	1,03	Druckfaktor, Fig. 5.27, extrapoliert für 25 bar
		Preis CBM	6.125.625 \$	bare module Preis Brenner
		Reaktor		
		Katvolumen	64,4 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h
		Innere Durchmesser	3 m	L/D =4
		Länge	12 m	
		Preis Cp0	60.000 \$	Preis Behälter, Fig. 5.44, vertically oriented
		Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
		Faktor ERMa	3,5	Drucktaktor, Fig. 5.45, für 25 bar
		Preis CBM	26,5 1 590 000 \$	pare module factor, Fig. 5.46, vertically oriented
			T:220:000 \$	
		<u>Katalysator</u>		
		Katvolumen	64,4 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h
		Schüttdichte Kat.	800 kg/m ³	Noble metal doped, Fig. 5.47, Mittelwert
		iviasse Katalysator	51.500 kg	
		Preis Katalysator	4.635.000 Ş	90 Ş/Kg, Fig. 5.47

Anhang J

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16,0	bare module factor, Fig. 5.46
	Preis CBM	104.000,0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 \$	Preis Demister, Fig. 5.48
	Faktor FBM	1,2	Nickel alloy, Fig. 5.48
	Preis CBM	720,0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	Kühler		
	Wärmemenge	17.4 MW	It ChemCAD
	WT-Fläche	772 m ²	It ChemCAD 17.4 MW, IL-Wert 500 W/m ² K
	Preis Cn0	55 000 \$	Preis Wärmetauscher Fig 5.36 floating head
	Faktor En	1 1	Druckfaktor Eig 5 37 25 bar
	Faktor FM	3.0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5,0	hare module factor. Fig. 5.38 shell and tube
	Preis CBM	286.000 \$	bare module Preis Wärmetauscher
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	26,3 Mio. €	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2,2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten			
	Abschreibungen	7.129.003 €	Afa-Laufzeit 10 Jahre
	Kühlwasser	59.943 €	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	3.235.556 €	
	Wartung/Instandhaltung	2.851.601 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	356.450 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	712.900€	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	21,4 Mio. €	jährliche Gesamtkosten
	Kastansata	1,46 ct/Nm ³	h
		0,16 €/kg	bezogen aut HZ
	Wethanolsynthese	42,90 €/t	bezogen auf Methanol

gültig für alle Szenarien außer 2c, und 4a/b

	JVIILIEJE				
	Heizdam	of			
	Kählussa		METHANO	L-	Methanol
	Kuniwass	er >	SYNTHES	E	~
	elektrisch	ne Energie			
		, <u>, , , , , , , , , , , , , , , , , , </u>			
Einheitenfe	estlegung		<u>1</u>	recherchierte Gröl	<u> Benangaben</u>
	Finflussgröß	o		Menge	Kosten
	Curtherese	(heeteelee		Wenge	Kosten
	da aus vorh.	Proz.schritt)		220.500 Nm ³ /h	0,00 €/Nm³
	Heizdampf			668 t/h	15,00 €/t
	Kühlwasser			9.291 m³/h	20 €/1.000 m³
	elektrische E	inergie		10.049 kW	65,00 €/MWh
Berechnun	gen	stündliche Wasserstoffproduk	ktion		184.000 Nm ³ /h
		stündliche Methanolproduktio	on		62,5 t/h
		janniche Produktionszeit			8.000 h
	Anschaffun	<u>gskosten</u>			
		Kompressor Synthesegas (4	4x)		
		Anschlussleistung		3.800 kW	lt. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung		4.222 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0		900.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM		5,5	bare module factor, Fig. 5.30, stainless steel
		Preis CpU,a		200.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Preis CBM		1,5 5,250,000 \$	bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor
				0.200.000 \$	
		Kompressorzwischenkühle	er (3x)		
		Wärmemenge		4,5 MW	It. ChemCAD
		WI-Flache		300 m²	It. ChemCAD 4,5 MW, U-Wert 500 W/m²K
		Freis Cpu Faktor En		20.000 \$	Preis warmetauscher, Fig. 5.36, floating nead
		Faktor FM		1,2	Materialfaktor, Fig. 5.36, hoth sides stainless steel
		Faktor FBMa		6.5	bare module factor. Fig. 5.38, shell and tube
		Preis CBM		130.000 \$	bare module Preis Kompressorzwischenkühler
		Manusäunaan			
		<u>vorwarmer</u> Wärmemenge		30 MW	It ChemCAD
		WT-Fläche		2.000 m ²	It. ChemCAD 40 MW. U-Wert 500 W/m ² K
		Preis Cp0		100.000 Ś	Preis Wärmetauscher, Fig. 5.36. floating head
		Faktor Fp		1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa		6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		650.000 \$	bare module Preis Wärmetauscher
		Wärmetauscher			
		Wärmemenge		30 MW	lt. ChemCAD
		WT-Fläche		2.000 m ²	lt. ChemCAD 40 MW, U-Wert 500 W/m²K
		Preis Cp0		100.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp		1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa		6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		650.000 \$	bare module Preis Wärmetauscher
		Reaktor			
		Katvolumen		55,1 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h
		Innere Durchmesser		3 m	L/D =4
		Lange		12 m	
		Fiels CDU Faktor EM		ь0.000 \$	Materialfaktor, Fig. 5.44, Vertically oriented
		Faktor En		4,0	Druckfaktor Fig. 5.45, stdfffess steel
		Faktor F a BM		4,5 32 N	bare module factor. Fig. 5.46 vertically oriented
		Preis CBM		1.920.000 \$	bare module Preis Reaktor
		Kataluaat - "			
		Katalysator Katvolumon		EE 43	It Porochnung aus 4 000 Nm ³ Cas/m ³ Kat b
		Schüttdichte Kat		55,1 M ³	n. berechnung aus 4.000 NM ⁻ GaS/ M ⁻ Kat N Noble metal doned Fig. 5.47 Mittelwort
		Masse Katalysator		44,100 kg	
		Preis Katalysator		3.969.000 Ś	90 \$/kg, Fig. 5.47

Anhang J

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM Flash Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM

Preis CBM

 $2.500\ m^2$ $\,$ lt. ChemCAD 100 MW, U-Wert 1.000 W/m²K $\,$ 150.000 \$ Preis Wärmetauscher, Fig. 5.36, floating head 1,2 Druckfaktor, Fig. 5.37, für 70 bar 3,0 Materialfaktor, Fig. 5.36, both sides carbon steel 6,5 bare module factor, Fig. 5.38, shell and tube 975.000 \$ bare module Preis Wärmetauscher 4 m keine Angabe der Größe --> Annahme 20.0 m L/D = 560.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel 4.0 1,0 Druckfaktor, Fig 5.10 6,0 bare module factor, Fig. 5.46, horizontally oriented 360.000 \$ bare module Preis Behälter ohne Finbauten 10.000 \$ Preis Demister, Fig. 5.48 1,2 bare module factor, Fig. 5.48, stainless steel 12.000.0 bare module Preis Demister 372.000 s bare module Preis Flash 3.800 kW It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 3.420 kW mit Motor/Getriebe, Wirkungsgrad 0.9 400.000 \$ Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw 3,5 bare module factor, Fig. 5.30, stainless steel 1.400.000 \$ bare module Preis Kompressor mit Motor 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden 2,2 bare module factor Böden, Fig. 5.48, stainless steel 10 aus ChemCAD-Simulation 1.2 quantity factor, Fig. 5.48, 10 264 000 \$ bare module Preis aller Böden 60 MW lt. ChemCAD 1.500 m² berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m² K, 40 K 100.000 Ś Preis Condensor, Fig. 5.39, flat plate 2,3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 200.000 \$ bare module Preis Condensor 69 MW lt. ChemCAD 1.232 m² berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K 200.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3.0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 1.200.000 \$ bare module Preis Condensor 2.873.000 \$ bare module Preis Kolonne 1 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel 2,2 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264.000 S bare module Preis aller Böden 44 MW lt. ChemCAD 1.100 m² berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K 80.000 \$ Preis Condensor, Fig. 5.39, flat plate 2.3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 160.000 \$ bare module Preis Condensor 44 MW lt. ChemCAD 786 m² berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m² K, 40 K 150.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler

100 MW It. ChemCAD

3,0 Materialfaktor, Fig. 5.36, stainless steel
 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1

900.000 \$ bare module Preis Condensor

Anhang J

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Länge	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	1.0	Druckfaktor, Fig 5.10
	Faktor FBMa	9.3	bare module factor. Fig. 5.46
	Preis CBM	1 860 000 \$	hare module Preis Behälter ohne Finhauten
	Preis CnSS	10 000 \$	Preis pro Boden
	FBM	20.000 \$	hare module factor Böden. Fig. 5.48. stainless steel
	Anzahl Böden	20	aus ChemCAD-Simulation
	Fa	11	quantity factor. Fig. 5.48.10
	Preis CBM	462 000 \$	hare module Preis aller Böden
	Wärmemenge Cond.	214 MW	lt. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= $O^*/U \Lambda T$. U-Wert 1.000 W/m ² K. 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39. flat plate
	Faktor FM	23	Materialfaktor. Fig. 5.39. stainless steel
	Faktor FBMa	2,0	hare module factor. Fig. 5.38 flat plate. En=1
	Preis CBM	460.000 \$	bare module Preis Condensor
	Wärmemenge Reh	265 MW	It ChemCAD
	WT-Fläche (2x)	2.366 m ²	berechnet aus A= $Q^*/U \Delta T$, U-Wert 1.400 W/m ² K. 40 K
	Preis Cp0	400.000 S	Preis Reboiler, Fig. 5.36, kettle reboiler
	Faktor FM	3.0	Materialfaktor, Fig. 5.36, stainless steel
	Faktor FBMa	6.0	hare module factor. Fig. 5.38 flat plate. En=1
	Preis CBM	2.400.000 \$	bare module Preis Condensor
	Preis CBM	7.582.000 \$	bare module Preis Kolonne 3
	Aufstellungsfaktor	1.05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Annarate
	Umrechnungskurs	1 30 \$/€	
	Anschaffungspreis	54.0 Mio €	umgerechneter Aufstellungspreis
	, albendariangspreis	5 1,0 11101 0	
	Gesamtannaratekosten	54.0 Mio £	
	Berechnungswert	54,0 Mio. €	100 % von Gecomtannaratekosten
	Rohrleitungen	16.2 Mio. €	30 % der Berechnungswert
	Montago Pl	16,2 Mio. €	100 % der Behelaitungskorten
		10,2 Mio. €	15 % von Perochnungswort
	Montago oloktr Vors	A E Mio. €	EF % der elektrischen Vercorgung
	MSB Einrichtung	4,5 Mio. €	20 % von Berechnungswort
	Montage MSR	10,8 Mio. €	20 % von MCD Einrichtungen inkl. Meteriel
		7,0 IVIIO. €	55 % von Misk-Enhoumenten
	Bau- und Baunebenk.	29,7 IVIIO. €	55 % von Berechnungswert
	C		Committee store Masthematicum the sea field. Manutanes used Davi
	Gesamtinvestitionskosten	140,5 IVIIO. €	Gesamtkösten Methanoisynthese inki. Montage und Bau
laufanda K-			
lautende Ko	<u>Isten</u>	14 017 100 5	
	Abschreibungen	14.647.408€	Ata-Lautzeit 10 Jahre
	kuniwasser	1.486.507€	
	Heizdampt	80.116.364 €	16 Dar NU-Uampt
	elektrische Energie	5.225.422 €	
	wartung/Instandhaltung	5.858.963 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	verwaitung	3.456.000€	180 % vom Betriebspersonal
	Projektkosten	/32.370€	5 % Gesamtinvestition auf 10 Jahre Verteilt
	mberrebhanme	1.404.741 t	10 % desaminivestition ant 10 Janle Aettent
	ira. Gesamtkosten	114,9 Mio. €	janriiche Gesamtkosten
	Kastanasta	7,81 ct/Nm ³	
	Kostensatz	0.88 £/kg	bezogen auf H2
	Methanolsynthese	220 02 0/ 16	
		229,82 €/t	bezogen auf Methanol

Szenario 3A: 2000h Teillast-Elektrolyse (736.000 Nm³/h), Strom kostenlos, CO2 aus Polygeneration, 8000h Methanolsynthese, H2-Speicher

Fließbild			1			Annahmen Elektrolyse	AEL	PEMEL
	elektrische Ener	rgie >	Wassers	ston >		benötigte Leistung	5 kWh/ I	Nm ³ H2
	Elektrolysewass	ELEKTROLYSE				Anschlusskosten Kühlwasser	1.000 €/kW 80 I/Nm ³ H2	2.500 €/kW 200 I/Nm ³ H2
			Sauerst	off		Kennesser	00 1/111 112	2001/1111 112
	Kühlwasser			-				
<u>Einheitenfe</u>	stlegung		reche	rchierte Größenang	aben			
	5				K t			
	Eliniussgroße			wenge	Kosten	-		
	(Elektrolyse mit Pu	e umpen (ie 2x))		3.729.086 kW	0,00 €/kWh			
	. ,							
	Elektrolysewasser			2.502,4 m³/h	2,00 €/m³			
	Kühlupssor			147.200 m ³ /b	20 £ /1 000 m ³			
	Kuniwasser			147.200 m ⁻ /n	20 €/1.000 m ²			
Berechnung	gen	stündliche Wasserstoffpro	duktion		736.000 Nm ³ /h			
		jährliche Methanolprodukt	ion		500.000 t/a			
		jährliche Produktionszeit			2.000 h			
	Anschaffungskos	sten						
		Elektrolyseure						
		Anschlussleistung		3.680.000 kW	Anschlussleistun	g für 184.000 Nm³/h, PEMEL		
		Anschattungskösten		9.200.000.000€ 1.05	It. Vorlesung Pro	ten onne Aufstellung zessverfahrenstechnik, für Mitteldeutschland		
		Aufstellungspreis		9.660.000.000€	Preis Elektrolyse	ure mit Aufstellung		
		Köhlunger (*)						
		Kuhiwasserpumpe (2x)		147 200 m ³ /b	Kühlwasserstron	h It. Herstellerangabe		
		Druckdifferenz		5 bar	Druckerhöhung	von Obarü auf 6 barü ,lt. Herstellerangabe		
		Anschlussleistung		20.444 kW	P = V* x Δp			
		Motorleistung		24.052 kW	mit Motor/Getri	ebe, Wirkungsgrad 0,85		
		Preis CpU Faktor En		4.000.000 \$	Preis Pumpe mit	Motor, Fig. 5.49, centrifugal, stark extrapoliert		
		Faktor FM		1,0	Materialfaktor, F	ig. 5.49, cast iron		
		Faktor FBMa		3,5	bare module fac	tor, Fig. 5.51		
		Preis CBM		14.000.000 \$	bare module Pre	is Kühlwasser-Pumpe mit Motor		
	Speisewasserpumpe (2x))					
		Volumenstrom	_	2.502,4 m³/h	Speisewasserstro	om lt. Herstellerangabe: 3,4 l/Nm ³ H2 (4x AEL)		
		Druckdifferenz		6 bar	Druckerhöhung	von Obarü auf 6 barü ,lt. Herstellerangabe		
		Anschlussleistung		417 kW	$P = V^* \times \Delta p$	abo Wiskungsgrad 0.95		
		Preis Cp0		50.000 \$	Preis Pumpe mit	Motor, Fig. 5.49, centrifugal, extrapoliert		
		Faktor Fp		1,0	Druckfaktor, <10	bar, Fig. 5.50		
		Faktor FM		1,0	Materialfaktor, F	ig. 5.49, cast iron		
		Preis CBM		3,5 175.000 \$	bare module fac	tor, Fig. 5.51 is Kühlwasser-Pumpe mit Motor		
		Drucklagertanks für H2	6x 100.000 m ³ , 10	<u>5 bar)</u>				
		Preis Cp0 Faktor FBMa		30.000.000 \$	Preis Drucklager	tank, Fig. 5.61, stark extrapoliert, floating roof		
		Preis CBM		114.000.000 \$	bare module Pre	is für einen Drucklagertank		
		Aufstellungsfaktor		1,05	It. Vorlesung Pro	zessverfahrenstechnik, für Mitteldeutschland		
		Umrechnungskurs		585 1,30 \$/€	Preisindex chem	ischer Apparate		
		Anschaffungspreis		841.463.438€	umgerechneter	Aufstellungspreis ohne Elektrolyseure		
		Casamtanaarataliaatan		10 501 5 Min 6				
		Berechnungswert		10.501,5 WIO.€ 4.200.6 Mio.€	40 % von Gesamta	pparatekosten wegen Komplexität Elektrolyseure		
		Rohrleitungen		1.260,2 Mio.€	30 % der Berech	nungswert, da hoher Preis Elektrolyseure		
		Montage RL		1.260,2 Mio. €	100 % der Rohrle	eitungskosten		
		eiektr. versorgung Montage elektr. Vers		630,1 Mio.€ 346.5 Mio.€	15 % von Berech 55 % der elektrig	nungswert chen Versorgung		
		MSR-Einrichtung		840,1 Mio. €	20 % von Berech	nungswert		
		Montage MSR		546,1 Mio. €	65 % von MSR-E	nrichtungen, inkl. Material		
		Bau- und Baunebenk.		2.310,3 Mio.€	55 % von Berech	nungswert		
		Gesamtinvestitionsk	osten	17.695.0 Mio.€	Gesamtkoste	en Elektrolyse inkl Montage und Bau		
	laufende Kosten							
		Abschreibungen Kühlwasser		1.769.496.589€	Afa-Laufzeit 10 J	ahre		
		Speisewasser		10.009.600€	Trinkwasserqual	ität		
		elektrische Energie		0€	lt. Szenario 3a	> keine Kosten für elektrische Energie		
		Wartung/Instandhaltung Betriebspersonal		707.798.636€	4 % von Gesamt 4 Schichten x 8 M	nvestitionskosten Aitarbeiter x 60.000 €/Jahr		
		Verwaltung		3.456.000€	180 % vom Betri	ebspersonal		
		Projektkosten		88.474.829€	5 % Gesamtinve	stition auf 10 Jahre verteilt		
		inpetriepnahme		176.949.659€	10 % Gesamtinv	estition auf 10 Janre verteilt		
		lfd. Gesamtkosten		2.764 Mio. €	jährliche Ges	amtkosten		
	Kostensatz	Rhallaha Desidertat		1 472 14:0 10 3				
		janrliche Produktion		1.4/2 IVIIO. NM ³				
		Kostensatz		1,88 €/Nm³	bezogen auf	H2		
		Flektrolyse		21,05 €/kg	-			
				5.527.99 €/t	bezogen auf	Methanol		

Szenario 3a und 3b: CO2 aus Polygeneration, VL-Methanolsynthese, Industriestrompreis

vereinfachtes Fließbild

		-
Kohlenmonoxid		Wasserstoff
Kohlendioxid		Kahlandiavid
Wasserstoff	WASSER-	
thermische Energie	GA3-	Kohlenmonoxid
elektrische Energie	1	

<u>Einheitenfe</u>	stlegung		recherchierte Größenangaben	
		Einflussgröße	Menge	Kosten
	Kohlendioxid (Szenario 3A und 3B: Polygeneration)		73.500 Nm³/h	47,00 €/t
	Wasserstoff (Preis v angesetzt, da aus vo	vird mit null orher. Prozess)	184.000 Nm³/h	0,00 €/Nm³
	Kühlwasser		375 Nm³/h	20 €/1.000 m³
	elektrische Energie		6.222 kW	65,00 €/MWh
	thermische Energie	(aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ
Berechnungen stündliche Wasserstoffprodukti stündliche Methanolproduktior jährliche Produktionszeit		stündliche Wasserstoffproduktion stündliche Methanolproduktion jährliche Produktionszeit		184.000 Nm³/h 62,5 t/h 8.000 h
	Anschaffungskost	<u>en</u>		
		Kompressor H2 Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis Cp0,d Faktor FBM,d Preis CBM	4.000 kW 4.444 kW 1.000.000 \$ 5,5 250.000 \$ 1,5 5.875.000 \$	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 mit Motor/Getriebe, Wirkungsgrad 0,9 Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw bare module factor, Fig. 5.30, stainless steel Preis Motor, Fig. 5.20, totally enclosed bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor
		Kompressor CO2 Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis Cp0,d Faktor FBM,d Preis CBM	1.600 kW 1.778 kW 450.000 \$ 5,5 100.000 \$ 1,5 2.625.000 \$	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 mit Motor/Getriebe, Wirkungsgrad 0,9 Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw bare module factor, Fig. 5.30, stainless steel Preis Motor, Fig. 5.20, totally enclosed bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor
		Vorwärmer (2x gleiche Größe) WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM	1.000 m ² 80.000 \$ 1,1 3,0 6,3 504.000 \$	lt. ChemCAD 173.600 MJ/h, U-Wert 850 W/m ² K Preis Wärmetauscher, Fig. 5.36, floating head Druckfaktor, Fig. 5.37, 25 bar Materialfaktor, Fig. 5.36, both sides stainless steel bare module factor, Fig. 5.38, shell and tube bare module Preis Wärmetauscher
		Brenner Heizleistung Preis CpO Faktor FBM Faktor Fp Preis CBM	20 MW 2.200.000 \$ 2,7 1,03 6.125.625 \$	lt. ChemCAD Preis Brenner, Fig. 5.27, pyrolysis furnace Materialfaktor, Fig. 5.27, stainless steel, 600°C mit H2 Druckfaktor, Fig. 5.27, extrapoliert für 25 bar bare module Preis Brenner
		Reaktor Katvolumen Innere Durchmesser Länge Preis Cp0 Faktor FM Faktor FBMa Preis CBM	64,4 m ³ 3 m 12 m 60.000 \$ 4,0 3,5 26,5 1,590,000 \$	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h L/D =4 Preis Behälter, Fig. 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.45, für 25 bar bare module factor, Fig. 5.46, vertically oriented bare module Preis Reaktor
		Katalysator Katvolumen Schüttdichte Kat. Masse Katalysator Preis Katalysator	64,4 m ³ 800 kg/m ³ 51.500 kg 4.635.000 \$	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h Noble metal doped, Fig. 5.47, Mittelwert 90 \$/kg, Fig. 5.47

Anhang K

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16,0	bare module factor, Fig. 5.46
	Preis CBM	104.000,0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 \$	Preis Demister, Fig. 5.48
	Faktor FBM	1,2	Nickel alloy, Fig. 5.48
	Preis CBM	720,0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	Kühler		
	Wärmemenge	17,4 MW	Lt. ChemCAD
	WT-Fläche	, 773 m²	lt. ChemCAD 17,4 MW, U-Wert 500 W/m ² K
	Preis Cp0	55.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
	Faktor Fp	1.1	Druckfaktor. Fig. 5.37, 25 bar
	Faktor FM	3.0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5.2	bare module factor. Fig. 5.38. shell and tube
	Preis CBM	286.000 Ś	bare module Preis Wärmetauscher
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	26,3 Mio. €	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2,2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten			
	Abschreibungen	7.129.003 €	Afa-Laufzeit 10 Jahre
	CO2 aus Polygeneration	54.636.372 €	Kostensatz: 47 €/t CO2, (1,977 kg CO2 / Nm ³)
	Kühlwasser	59.943 €	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	3.235.556 €	
	Wartung/Instandhaltung	2.851.601 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	356.450 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	712.900 €	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	76,1 Mio. €	jährliche Gesamtkosten
	Kastansatz	5,17 ct/Nm ³	haranan auf 112
	Nostensalz	0,58 €/kg	bezogen auf HZ
	ivietnanoisyntnese	152,17 €/t	bezogen auf Methanol

gültig für alle Szenarien außer 2c, und 4a/b

Fließbild	Cthe second					
	Heizdamp	[™] →	METHAN	IOL-		Methanol
	Kühlwass	er >	SYNTH	ESE		
	elektrisch	e Energie				
		<u> </u>				
<u>Einheitenfe</u>	stlegung			recherchierte C	Größ	enangaben
	Einflussgröße	e		Menge		Kosten
	Synthesegas	(kostenios				
	da aus vorh.	Proz.schritt)		220.500 Nm ³ /	h	0,00 €/Nm³
	Heizdampf			668 t/h		15,00 €/t
	Kühlwasser			9.291 m³/h		20 €/1.000 m³
	elektrische E	nergie		10.049 kW		65,00 €/MWh
D						101 000 N 3/I
Berechnung	en	stundliche Wasserstompro	duktion			184.000 Nm ² /n
		iährliche Produktionszeit	IKUON			8 000 h
		junnene rroduktionszere				0.000 11
	Anschaffun	<u>gskosten</u>				
		Kompressor Syntheseg	as (4x)			
		Anschlussleistung		3.800	kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung		4.222	kW oc	mit Motor/Getriebe, Wirkungsgrad 0,9
		Freis Cpu Faktor EBM		900.00	U Ş E E	Preis Kompressor onne Motor, Fig. 5.30, rotary-screw
		Preis Co0.d		200.00	3,5 10 \$	Preis Motor, Fig. 5.20. totally enclosed
		Faktor FBM,d			1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM		5.250.00	0\$	bare module Preis Kompressor mit Motor
		Kompressorzwischenkü	ihler (3x)	4.5.1	A) A /	It ChamCAD
		WT-Fläche		4,51	m ²	It. ChemCAD 4.5 MW, LI-Wert 500 W/m ² K
		Preis Cp0		20.00	0 Ś	Preis Wärmetauscher. Fig. 5.36. floating head
		Faktor Fp			1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		130.00	0\$	bare module Preis Kompressorzwischenkühler
		Vorwärmer				
		Wärmemenge		30 N	лw	lt. ChemCAD
		WT-Fläche		2.000	m²	lt. ChemCAD 40 MW, U-Wert 500 W/m²K
		Preis Cp0		100.00	0\$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp			1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Prois CBM		650.00	6,5 In ¢	bare module factor, Fig. 5.38, shell and tube
				050.00	bare module Preis Warmetauscher	
		<u>Wärmetauscher</u>				
		Wärmemenge		30 N	лw	lt. ChemCAD
		WT-Fläche		2.000	m²	It. ChemCAD 40 MW, U-Wert 500 W/m ² K
		Preis Cp0		100.00	12	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor FM			3.0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa			6.5	bare module factor. Fig. 5.38, shell and tube
		Preis CBM		650.00	0\$	bare module Preis Wärmetauscher
		<u>Reaktor</u>				
		Katvolumen		55,1	m² 2	It. Berechnung aus 4.000 Nm° Gas/ m° Kat h
		Länge		1	2 m	C/D -4
		Preis Cp0		60.00	0\$	Preis Behälter, Fig. 5.44, vertically oriented
Faktor FM Faktor Fp Faktor F \u00e4 BM				4,0	Materialfaktor, Fig. 5.45, stainless steel	
				4,3	Druckfaktor, Fig. 5.45, für 70 bar	
			3	2,0	bare module factor, Fig. 5.46, vertically oriented	
		Preis CBM		1.920.00	0 Ş	bare module Preis Reaktor
		Katalysator				
		Katvolumen		55,1	m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h
		Schüttdichte Kat.		800 kg,	/m³	Noble metal doped, Fig. 5.47, Mittelwert
		Masse Katalysator		44.100) kg	
		Preis Katalysator		3.969.00	0\$	90 \$/kg, Fig. 5.47

Anhang K

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM <u>Flash</u> Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM <u>Kolonne 1</u> Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp . Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM

100 MW	lt. ChemCAD
2.500 m^2	It ChemCAD 100 MW/ U-Wert 1 000 W/m ² K
2.300 m	Received to www.o-weit 1.000 w/m K
150.000 \$	Preis warmetauscher, Fig. 5.36, floating nead
1,2	Druckfaktor, Fig. 5.37, für 70 bar
3,0	Materialfaktor, Fig. 5.36, both sides carbon steel
6,5	bare module factor, Fig. 5.38, shell and tube
975.000 \$	bare module Preis Wärmetauscher
4 m	keine Angabe der Größe> Annahme
20.0	
20,0 m	L/D = 5
60.000 Ş	bare module Preis Behälter, Fig 5.44, vertically oriented
4,0	Materialfaktor, Fig. 5.45, stainless steel
1,0	Druckfaktor, Fig 5.10
6,0	bare module factor, Fig. 5.46, horizontally oriented
360.000 \$	bare module Preis Behälter ohne Einbauten
10 000 \$	Preis Demister Fig 5 48
1 2	hare module factor. Fig. 5.49, stainless steel
12 000 0	bare module Preis Demister
12.000,0	bare module Preis Demister
372.000 Ş	bare module Preis Flash
3.800 kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
3.420 kW	mit Motor/Getriebe, Wirkungsgrad 0.9
400 000 \$	Preis Kompressor ohne Motor Fig 5 30 rotary-screw
-+00.000 Ş 2 E	hare module factor. Fig. 5.20, staipless steel
5,5	bare module factor, Fig. 5.50, stamless steel
1.400.000 \$	bare module Preis Kompressor mit Motor
4 m	keine Angabe der Größe> Annahme
20,0 m	L/D = 5
130.000 Ś	bare module Preis Behälter, Fig 5.44, vertically oriented
4.0	Materialfaktor Fig 5.45 stainless steel
4,0	Drugkfaktor, Fig. 5.45, Stanless Steel
1,0	Drucklaktor, Fig 5.10
9,3	bare module factor, Fig. 5.46
1.209.000 Ş	bare module Preis Behälter ohne Einbauten
10.000 \$	Preis pro Boden
2,2	bare module factor Böden, Fig. 5.48, stainless steel
10	aus ChemCAD-Simulation
1,2	quantity factor, Fig. 5.48, 10
264.000 \$	bare module Preis aller Böden
60 MW	lt. ChemCAD
1.500 m ²	berechnet aus A= $Q^*/U \Delta T$. U-Wert 1.000 W/m ² K. 40 K
100.000 Ś	Preis Condensor, Fig. 5.39, flat plate
23	Materialfaktor Fig 5.39 stainless steel
2,5	hare module factor. Fig. 5.39, flat plate. En-1
2,0	bare module Preis Condensor
200.000 \$	
69 MW	It. ChemCAD
1.232 m ²	berechnet aus A= $Q^*/U \Delta I$, U-wert 1.400 W/m ² K, 40 K
200.000 Ş	Preis Reboiler, Fig. 5.36, kettle reboiler
3,0	Materialfaktor, Fig. 5.36, stainless steel
6,0	bare module factor, Fig. 5.38, flat plate, Fp=1
1.200.000 \$	bare module Preis Condensor
2.873.000 \$	bare module Preis Kolonne 1
4 m	keine Angabe der Größe> Annahme
20.0 m	I/D = 5
120,000 ¢	bare module Preis Debölter, Fig F 44 vertically eriented
130.000 \$	bare module Freis Benarter, Fig 5.44, Vertically Orienteu
4,0	Materialfaktor, Fig. 5.45, stainless steel
1,0	Druckfaktor, Fig 5.10
9,3	bare module factor, Fig. 5.46
1.209.000\$	bare module Preis Behälter ohne Einbauten
10.000 \$	Preis pro Boden
2,2	bare module factor Böden, Fig. 5.48, stainless steel
10	aus ChemCAD-Simulation
1.2	quantity factor, Fig. 5.48, 10
264,000 \$	bare module Preis aller Böden
	It ChemCAD
1 100 m ²	herechnet aus A= O*/II AT IL-Wart 1 000 W/m2 K 40 K
1.100 11	Drois Condensor Eig 5 20 flat what-
00.000 Ş	Preis condensor, Fig. 5.59, flat plate
2,3	iviaterialTaktor, Fig. 5.39, stainless steel
2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
160.000 \$	bare module Preis Condensor
44 MW	lt. ChemCAD
786 m²	berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m ² K, 40 K
150.000 \$	Preis Reboiler, Fig. 5.36, kettle reboiler
3,0	Materialfaktor, Fig. 5.36, stainless steel
6.0	bare module factor. Fig. 5.38. flat plate. Fp=1
900.000 \$	bare module Preis Condensor
2 522 000 \$	hare module Preis Kolonno 2
~	

Anhang K

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Länge	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	1,0	Druckfaktor, Fig 5.10
	Faktor FBMa	9,3	bare module factor, Fig. 5.46
	Preis CBM	1.860.000 Ś	bare module Preis Behälter ohne Einbauten
	Preis CpSS	10.000 \$	Preis pro Boden
	FBM	2,2	bare module factor Böden, Fig. 5.48, stainless steel
	Anzahl Böden	20	aus ChemCAD-Simulation
	Fq	1,1	quantity factor, Fig. 5.48, 10
	Preis CBM	462.000 \$	bare module Preis aller Böden
	Wärmemenge Cond.	214 MW	lt. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39, flat plate
	Faktor FM	2,3	Materialfaktor, Fig. 5.39, stainless steel
	Faktor FBMa	2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	460.000 \$	bare module Preis Condensor
	Wärmemenge Reb.	265 MW	lt. ChemCAD
	WT-Fläche (2x)	2.366 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K
	Preis Cp0	400.000 \$	Preis Reboiler, Fig. 5.36, kettle reboiler
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, stainless steel
	Faktor FBMa	6,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	2.400.000 \$	bare module Preis Condensor
	Preis CBM	7.582.000 \$	bare module Preis Kolonne 3
	Aufstellungsfaktor	1,05	It. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	54,0 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	54,0 Mio. €	
	Berechnungswert	54,0 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	16,2 Mio. €	30 % der Berechnungswert
	Montage RL	16.2 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	8.1 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	4.5 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	10.8 Mio. €	20 % von Berechnungswert
	Montage MSR	7.0 Mio. €	65 % von MSR-Finrichtungen, inkl. Material
	Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	146,5 Mio. €	Gesamtkosten Methanolsynthese inkl. Montage und Bau
laufende Ko	osten		
	Abschreibungen	14 647 408 £	Afa-Laufzeit 10 Jahre
	Kühlwasser	1 486 507 £	na concer 20 June
	Heizdampf	80 116 36/ £	16 bar ND-Dampf
	elektrische Energie	5 225 422 £	10 but No bumpi
	Wartung/Instandhaltung	5 858 063 £	1 % von Gesamtinvestitionskosten
	Retriebspersonal	1 920 000 €	4 Schichten x 8 Mitarbeiter x 60 000 €/lahr
	Verwaltung	3 456 000 €	180 % vom Betriehsnersonal
	Projektkosten	732.370 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	1.464.741 €	10 % Gesamtinvestition auf 10 Jahre verteilt
	ltd. Gesamtkosten	114,9 Mio. €	jahrliche Gesamtkosten
		7.04 -+ / 1 3	
	Kostensatz	7,81 CT/INM*	bezogen auf H2
	Methanolsynthese	0,88 €/kg	
	menunoisynthese	229,82 €/t	bezogen auf Methanol

Szenario 3B: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom kostenlos, CO2 aus Polygeneration, 8000h Methanolsynthese

Fließbild			Wassarstoff	Annahmen Elektrolyse	AEL PEMEL
	elektrische Ene	rgie		benötigte Leistung Anschlusskosten	5 kWh/ Nm³ H2 1.000 €/kW 2.500 €/kW
	i	ELEKTROLYSE		Kühlwasser	80 l/Nm ³ H2 200 l/Nm ³ H2
	Kühlwasser		Sauerstoff >		
<u>Einheitenfes</u>	tlegung		recherchierte Größenanga	aben	
	Einflussgröße		Menge	Kosten	
	elektrische Energie				
	(Elektrolyse mit Pu	impen (je 2x))	924.872 KW	0,00 €/KWN	
	Elektrolysewasser		156,4 m³/h	2,00 €/m³	
	Kühlwasser		14.720 m³/h	20 €/1.000 m³	
Berechnunge	en	stündliche Wasserstoffprodukti	on	184.000 Nm³/h	
		jährliche Methanolproduktion jährliche Produktionszeit		500.000 t/a 8.000 h	
	A	•			
	Anschattungskos	<u>Elektrolyseure</u>			
		Anschlussleistung	920.000 kW	Anschlussleistung für 184.000 Nm³/h, AEL	
		Anschaffungskosten	920.000.000 €	Anschaffungskosten ohne Aufstellung	
		Aufstellungspreis	966.000.000 €	Preis Elektrolyseure mit Aufstellung	
		Kühlwasserpumpe (2x)			
		Volumenstrom	14.720 m³/h	Kühlwasserstrom lt. Herstellerangabe	
		Druckdifferenz	5 bar	Druckerhöhung von Obarü auf 5 barü ,lt. Herstellerangabe	
		Anschlussleistung	2.044 kW	$P = V^* \times \Delta P$	
		Motorleistung Preis CoO	2.405 kW	mit Motor/Getriebe, Wirkungsgrad 0,85 Preis Pumpe mit Motor, Fig. 5.49, centrifugal, extrapoliert	
		Faktor Fp	200.000 5	Druckfaktor, <10 bar, Fig. 5.50	
		Faktor FM	1,0	Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBMa	3,5 700 000 ś	bare module factor, Fig. 5.51	
			700.000 \$		
		Speisewasserpumpe (2x)	156.4 m ³ /b	Spairaurassasstram It Harstellarangaba: 0.95 1/Nm3 H3	
		Druckdifferenz	156,4 m²/n 6 bar	Druckerhöhung von Obarü auf 6 barü ,lt. Herstellerangabe	
		Anschlussleistung	26 kW	P = V* x Δp	
		Motorleistung	31 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Preis Cpu Faktor Fp	15.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal Druckfaktor. <10 bar. Fig. 5.50	
		Faktor FM	1,0	Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBMa	3,5	bare module factor, Fig. 5.51	
		Preis CBM	52.500 Ş	bare module Preis Kühlwasser-Pumpe mit Motor	
		Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
		CEPCI (2014)	585 1 20 \$/6	Preisindex chemischer Apparate	
		Anschaffungspreis	1,50 5/€	umgerechneter Aufstellungspreis ohne Elektrolyseure	
		Gosamtannaratokoston	067.9 Mio £		
		Gesamtapparatekosten Berechnungswert	967,8 MIO.€ 387.1 Mio.€	40 % von Gesamtapparatekosten wegen Komplexität Elektrolyseure	
		Rohrleitungen	116,1 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure	
		Montage RL	116,1 Mio. €	100 % der Rohrleitungskosten	
		elektr. Versorgung Montage elektr. Vers	58,1 Mio.€ 31.9 Mio.€	15 % von Berechnungswert 55 % der elektrischen Versorgung	
		MSR-Einrichtung	77,4 Mio. €	20 % von Berechnungswert	
		Montage MSR	50,3 Mio. €	65 % von MSR-Einrichtungen, inkl. Material	
		Bau- und Baunebenk.	212,9 Mio. €	55 % von Berechnungswert	
		Gesamtinvestitionskoste	en 1.630,7 Mio.€	Gesamtkosten Elektrolyse inkl Montage und Bau	
	laufanda Kaster				
	laurende Kösten	Abschreibungen	163.070.556 €	Afa-Laufzeit 10 Jahre	
		Kühlwasser	2.355.200 €		
		Speisewasser	2.502.400 €	Trinkwasserqualität It. Szenaria 23> keine Kosten für elektrische Energie	
		Wartung/Instandhaltung	65.228.222 €	4 % von Gesamtinvestitionskosten	
		Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr	
		Verwaltung	3.456.000 €	180 % vom Betriebspersonal	
		Inbetriebnahme	8.153.528 € 16.307.056 €	10 % Gesamtinvestition auf 10 Jahre verteilt	
		Ifd Gasamthastan	262 0 Mic. C	jährliche Gesamtkoston	
		nu. Gesamikosten	203,0 WIO.€	jannulle GesanlukUSLEII	
	Kostensatz				
		jährliche Produktion	1.472 Mio. Nm ³		
		Kostensatz Elektrolyse	17,87 ct/Nm ³	bezogen auf H2	
			525,99 €/t	bezogen auf Methanol	

Szenario 3a und 3b: CO2 aus Polygeneration, VL-Methanolsynthese, Industriestrompreis

vereinfachtes Fließbild

Kohlenmonoxid Kohlendioxid Wasserstoff	→ ₩ASSER-	Wasserstoff Kohlendioxid	\rightarrow
thermische Energie	GAS-	Kohlenmonoxid	~
elektrische Energie	1		

<u>Einheitenfe</u>	stlegung		recherchierte Größenangaben	
		Einflussgröße	Menge	Kosten
	Kohlendioxid (Szena	ario 3A und 3B: Polygeneration)	73.500 Nm³/h	47,00 €/t
	Wasserstoff (Preis v angesetzt, da aus vo	vird mit null orher. Prozess)	184.000 Nm³/h	0,00 €/Nm³
	Kühlwasser		375 Nm³/h	20 €/1.000 m³
	elektrische Energie		6.222 kW	65,00 €/MWh
	thermische Energie	(aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ
<u>Berechnung</u>	<u>gen</u>	stündliche Wasserstoffproduktion stündliche Methanolproduktion jährliche Produktionszeit		184.000 Nm³/h 62,5 t/h 8.000 h
	Anschaffungskost	ten		
		Kompressor H2 Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis Cp0,d Faktor FBM,d Preis CBM	4.000 kW 4.444 kW 1.000.000 \$ 5,5 250.000 \$ 1,5 5.875.000 \$	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 mit Motor/Getriebe, Wirkungsgrad 0,9 Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw bare module factor, Fig. 5.30, stainless steel Preis Motor, Fig. 5.20, totally enclosed bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor
		Kompressor CO2 Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis Cp0,d Faktor FBM,d Preis CBM	1.600 kW 1.778 kW 450.000 \$ 5,5 100.000 \$ 1,5 2.625.000 \$	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 mit Motor/Getriebe, Wirkungsgrad 0,9 Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw bare module factor, Fig. 5.30, stainless steel Preis Motor, Fig. 5.20, totally enclosed bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor
		<u>Vorwärmer (2x gleiche Größe)</u> WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM	1.000 m² 80.000 \$ 1,1 3,0 6,3 504.000 \$	lt. ChemCAD 173.600 MJ/h, U-Wert 850 W/m ² K Preis Wärmetauscher, Fig. 5.36, floating head Druckfaktor, Fig. 5.37, 25 bar Materialfaktor, Fig. 5.36, both sides stainless steel bare module factor, Fig. 5.38, shell and tube bare module Preis Wärmetauscher
		<u>Brenner</u> Heizleistung Preis CpO Faktor FBM Faktor Fp Preis CBM	20 MW 2.200.000 \$ 2,7 1,03 6.125.625 \$	lt. ChemCAD Preis Brenner, Fig. 5.27, pyrolysis furnace Materialfaktor, Fig. 5.27, stainless steel, 600°C mit H2 Druckfaktor, Fig. 5.27, extrapoliert für 25 bar bare module Preis Brenner
		Reaktor Katvolumen Innere Durchmesser Länge Preis Cp0 Faktor FM Faktor FBMa Preis CBM	64,4 m ³ 3 m 12 m 60.000 \$ 4,0 3,5 26,5 1,590,000 \$	It. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h L/D =4 Preis Behälter, Fig. 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel Druckfaktor, Fig. 5.45, für 25 bar bare module factor, Fig. 5.46, vertically oriented bare module Preis Reaktor
		Katalysator Katvolumen Schüttdichte Kat. Masse Katalysator Preis Katalysator	64,4 m ³ 800 kg/m ³ 51.500 kg 4.635.000 \$	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h Noble metal doped, Fig. 5.47, Mittelwert 90 \$/kg, Fig. 5.47

Anhang L

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16.0	bare module factor. Fig. 5.46
	Preis CBM	104.000.0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 Ś	Preis Demister, Fig. 5.48
	Faktor FBM	1.2	Nickel allov. Fig. 5.48
	Preis CBM	720.0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	Kühler		
	Wärmemenge	17,4 MW	Lt. ChemCAD
	WT-Fläche	773 m²	lt. ChemCAD 17,4 MW, U-Wert 500 W/m²K
	Preis Cp0	55.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
	Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5,2	bare module factor, Fig. 5.38, shell and tube
	Preis CBM	286.000 \$	bare module Preis Wärmetauscher
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
	Gesamtannaratekosten	26.3 Mio £	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	79 Mio €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7.9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3.9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2.2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3.4 Mio. €	65 % von MSR-Finrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten			
	Abschreibungen	7.129.003 €	Afa-Laufzeit 10 Jahre
	CO2 aus Polygeneration	54.636.372 €	Kostensatz: 47 €/t CO2, (1,977 kg CO2 / Nm³)
	Kühlwasser	59.943 €	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	3.235.556 €	
	Wartung/Instandhaltung	2.851.601 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	356.450 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	712.900€	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	76,1 Mio. €	jährliche Gesamtkosten
		5 17 ct/Nm ³	
	Kostensatz	0 50 6/1-	bezogen auf H2
	Methanolsynthese	U,58 €/Kg	
	,	152,17 €/t	bezogen aut Methanol

gültig für alle Szenarien außer 2c, und 4a/b

	JVIILIEJE				
	Heizdampf				
			METHANO	L-	Methanol
	Kuniwass	er >	SYNTHES	E	~
	elektrisch	ne Energie			
		, <u>, , , , , , , , , , , , , , , , , , </u>			
Einheitenfe	estlegung		<u>1</u>	recherchierte Gröl	<u> Benangaben</u>
	Finflussgröß	o		Menge	Kosten
	Curtherese	(heeteelee		Wenge	Kosten
	da aus vorh.	Proz.schritt)		220.500 Nm ³ /h	0,00 €/Nm³
	Heizdampf			668 t/h	15,00 €/t
	Kühlwasser			9.291 m³/h	20 €/1.000 m³
	elektrische E	inergie		10.049 kW	65,00 €/MWh
Berechnun	gen	stündliche Wasserstoffproduk	ktion		184.000 Nm ³ /h
		stündliche Methanolproduktio	on		62,5 t/h
		janniche Produktionszeit			8.000 h
	Anschaffun	<u>gskosten</u>			
		Kompressor Synthesegas (4	4x)		
		Anschlussleistung		3.800 kW	lt. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung		4.222 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0		900.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM		5,5	bare module factor, Fig. 5.30, stainless steel
		Preis CpU,a		200.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Preis CBM		5.250.000 \$	bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor
				0.1200.000 ¢	
		Kompressorzwischenkühle	er (3x)		
		Wärmemenge		4,5 MW	It. ChemCAD
		WI-Flache		300 m²	It. ChemCAD 4,5 MW, U-Wert 500 W/m²K
		Freis Cpu Faktor En	20		Preis warmetauscher, Fig. 5.36, floating nead
		Faktor FM			Materialfaktor, Fig. 5.36, hoth sides stainless steel
		Faktor FBMa		6.5	bare module factor. Fig. 5.38, shell and tube
		Preis CBM		130.000 \$	bare module Preis Kompressorzwischenkühler
		Manusäunaan			
		<u>vorwarmer</u> Wärmemenge		30 MW	It ChemCAD
		WT-Fläche		2.000 m ²	It. ChemCAD 40 MW. U-Wert 500 W/m ² K
		Preis Cp0		100.000 Ś	Preis Wärmetauscher, Fig. 5.36. floating head
		Faktor Fp		1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa		6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		650.000 \$	bare module Preis Wärmetauscher
		Wärmetauscher			
		Wärmemenge		30 MW	lt. ChemCAD
		WT-Fläche		2.000 m ²	lt. ChemCAD 40 MW, U-Wert 500 W/m²K
		Preis Cp0		100.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp		1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa		6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		650.000 \$	bare module Preis Wärmetauscher
		Reaktor			
		Katvolumen		55,1 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h
		Innere Durchmesser		3 m	L/D =4
		Lange		12 m	
		Fiels CDU Faktor EM		ь0.000 \$	Materialfaktor, Fig. 5.44, Vertically oriented
	Faktor FM Faktor Fp Faktor F a BM Preis CBM			4,0	Druckfaktor Fig. 5.45, stdfffess steel
				4,5 32 N	bare module factor. Fig. 5.46 vertically oriented
				1.920.000 \$	bare module Preis Reaktor
		Kataluaat - "			
		Katalysator Katvolumon		EE 43	It Porochnung aus 4 000 Nm ³ Cas/m ³ Kat b
		Schüttdichte Kat		55,1 M ³	n. berechnung aus 4.000 NM ⁻ GaS/ M ⁻ Kat N Noble metal doned Fig. 5.47 Mittelwort
		Masse Katalysator		44,100 kg	
		Preis Katalysator		3.969.000 Ś	90 \$/kg, Fig. 5.47

Anhang L

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM Flash Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM

Preis CBM

100 MW It. ChemCAD $2.500\ m^2$ $\,$ lt. ChemCAD 100 MW, U-Wert 1.000 W/m²K $\,$ 150.000 \$ Preis Wärmetauscher, Fig. 5.36, floating head 1,2 Druckfaktor, Fig. 5.37, für 70 bar 3,0 Materialfaktor, Fig. 5.36, both sides carbon steel 6,5 bare module factor, Fig. 5.38, shell and tube 975.000 \$ bare module Preis Wärmetauscher 4 m keine Angabe der Größe --> Annahme 20.0 m L/D = 560.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented Materialfaktor, Fig. 5.45, stainless steel 4.0 1,0 Druckfaktor, Fig 5.10 6,0 bare module factor, Fig. 5.46, horizontally oriented 360.000 \$ bare module Preis Behälter ohne Finbauten 10.000 \$ Preis Demister, Fig. 5.48 1,2 bare module factor, Fig. 5.48, stainless steel 12.000.0 bare module Preis Demister 372.000 s bare module Preis Flash 3.800 kW It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 3.420 kW mit Motor/Getriebe, Wirkungsgrad 0.9 400.000 \$ Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw 3,5 bare module factor, Fig. 5.30, stainless steel 1.400.000 \$ bare module Preis Kompressor mit Motor 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden 2,2 bare module factor Böden, Fig. 5.48, stainless steel 10 aus ChemCAD-Simulation 1.2 quantity factor, Fig. 5.48, 10 264 000 \$ bare module Preis aller Böden 60 MW lt. ChemCAD 1.500 m² berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m² K, 40 K 100.000 Ś Preis Condensor, Fig. 5.39, flat plate 2,3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 200.000 \$ bare module Preis Condensor 69 MW lt. ChemCAD 1.232 m² berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K 200.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3.0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 1.200.000 \$ bare module Preis Condensor 2.873.000 \$ bare module Preis Kolonne 1 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel 2,2 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264.000 S bare module Preis aller Böden 44 MW lt. ChemCAD 1.100 m² berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K 80.000 \$ Preis Condensor, Fig. 5.39, flat plate 2.3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 160.000 \$ bare module Preis Condensor 44 MW lt. ChemCAD 786 m² berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m² K, 40 K 150.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3,0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 900.000 \$ bare module Preis Condensor 2.533.000 \$ bare module Preis Kolonne 2

Anhang L

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Länge	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	1,0	Druckfaktor, Fig 5.10
	Faktor FBMa	9,3	bare module factor, Fig. 5.46
	Preis CBM	1.860.000 Ś	bare module Preis Behälter ohne Einbauten
	Preis CpSS	10.000 \$	Preis pro Boden
	FBM	2,2	bare module factor Böden, Fig. 5.48, stainless steel
	Anzahl Böden	20	aus ChemCAD-Simulation
	Fq	1,1	quantity factor, Fig. 5.48, 10
	Preis CBM	462.000 \$	bare module Preis aller Böden
	Wärmemenge Cond.	214 MW	lt. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39, flat plate
	Faktor FM	2,3	Materialfaktor, Fig. 5.39, stainless steel
	Faktor FBMa	2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	460.000 \$	bare module Preis Condensor
	Wärmemenge Reb.	265 MW	lt. ChemCAD
	WT-Fläche (2x)	2.366 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K
	Preis Cp0	400.000 \$	Preis Reboiler, Fig. 5.36, kettle reboiler
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, stainless steel
	Faktor FBMa	6,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	2.400.000 \$	bare module Preis Condensor
	Preis CBM	7.582.000 \$	bare module Preis Kolonne 3
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	54,0 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	54,0 Mio. €	
	Berechnungswert	54,0 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	16,2 Mio. €	30 % der Berechnungswert
	Montage RL	16,2 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	8,1 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	4,5 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	10,8 Mio. €	20 % von Berechnungswert
	Montage MSR	7,0 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	146,5 Mio. €	Gesamtkosten Methanolsynthese inkl. Montage und Bau
laufende Ko	sten		
	Abschreibungen	14.647.408 €	Afa-Laufzeit 10 Jahre
	Kühlwasser	1.486.507 €	
	Heizdampf	80.116.364 €	16 bar ND-Dampf
	elektrische Energie	5.225.422 €	
	Wartung/Instandhaltung	5.858.963 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten Inbetriebnahme	732.370 € 1.464.741 €	5 % Gesamtinvestition auf 10 Jahre verteilt 10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	114,9 Mio. €	jährliche Gesamtkosten
		7 81 ct/Nm ³	
	Kostensatz	0.88 £/kg	bezogen auf H2
	Methanolsynthese	229.82 €/t	bezogen auf Methanol
		- // •	U TITI

Szenario 3C: 2000h Teillast-Elektrolyse (736.000 Nm³/h), Strom kostenlos, CO2 aus Absorption, 8000h Methanolsynthese, H2-Speicher

Fließbild			-			Annahmen Elektrolyse	AEL	PEMEL
	elektrische Energ	ie	Wasserstoff	→		benötigte Leistung	5 kWh/	Nm ³ H2
	Elektrolysewasse					Anschlusskosten	1.000 €/kW	2.500 €/kW
		ELEKTROLYSE	Sauerstoff			Kuniwasser	80 I/Nmº H2	200 I/Nm ² H2
	Kühlwasser		Jadeiston	\rightarrow				
Finheitenfe	stlegung		recherchi	arte Größenang	ahen			
Linnenternet	stiegung		recherchi	ente Großenange	aben			
	Einflussgröße			Vienge	Kosten	_		
	elektrische Energie			0.005.114	0.00.0/111/			
	(Elektrolyse mit Pur	mpen (je 2x))	3.72	9.086 KW	0,00 €/kWh			
	Elektrolycowassor		2.5	22.4 m ³ /b	2.00 € /m3			
	Liekti olysewassei		2.30	52,4 m /m	2,00 €/11			
	Kühlwasser		147	200 m ³ /b	20 €/1 000 m ³			
	Kuniwussei		14/	.200 111 / 11	20 0/1.000 11			
Berechnung	en	stündliche Wasserstoffpro	duktion		736.000 Nm ³ /h			
		jährliche Methanolprodul	tion		500.000 t/a			
		jährliche Produktionszeit			2.000 h			
	Anachaffungalian							
	Anschaffungskos	<u>ten</u> Elektrolyseure						
		Anschlussleistung		3.680.000 kW	Anschlussleistun	g für 184.000 Nm³/h, PEMEL		
		Anschaffungskosten		9.200.000.000 €	Anschaffungskos	ten ohne Aufstellung		
		Aufstellungsfaktor		1,05	It. Vorlesung Pro	zessverfahrenstechnik, für Mitteldeutschland		
		Aufstellungspreis		9.660.000.000 €	Preis Elektrolyse	ure mit Aufstellung		
		Kühlwasserpumpe (2x)						
		Volumenstrom		147.200 m³/h	Kühlwasserstrom	n It. Herstellerangabe		
		Druckdifferenz		5 bar	Druckerhöhung	von Obarü auf 5 barü ,lt. Herstellerangabe		
		Anschlussleistung		20.444 kW	P = V* x ∆p			
		Motorleistung		24.052 kW	mit Motor/Getri	ebe, Wirkungsgrad 0,85		
		Faktor En		4.000.000 \$	Preis Pumpe mit	Motor, Fig. 5.49, centrifugal, stark extrapoliert		
		Faktor FM		1,0	Materialfaktor, F	ig. 5.49, cast iron		
		Faktor FBMa		3,5	bare module fact	tor, Fig. 5.51		
		Preis CBM		14.000.000 \$	bare module Pre	is Kühlwasser-Pumpe mit Motor		
		Spaisawassarnumpa (2	~1					
		Volumenstrom	<u> </u>	2.502.4 m ³ /h	Speisewasserstro	om It. Herstellerangabe: 3.4 I/Nm ⁸ H2 (4x AFL)		
		Druckdifferenz		6 bar	Druckerhöhung	von Obarü auf 6 barü ,lt. Herstellerangabe		
		Anschlussleistung		417 kW	P = V* x Δp			
		Motorleistung		491 kW	mit Motor/Getri	ebe, Wirkungsgrad 0,85		
		Preis Cp0		50.000 \$	Preis Pumpe mit	Motor, Fig. 5.49, centrifugal, extrapoliert		
		Faktor Fp		1,0	Druckfaktor, <10	bar, Fig. 5.50		
		Faktor FBMa		3.5	bare module fact	tor. Fig. 5.51		
		Preis CBM		175.000 \$	bare module Pre	is Kühlwasser-Pumpe mit Motor		
		Drucklagertanks für H2	(6x 100.000 m ³ , 16 bar	<u>)</u>				
		Freis Cpu Faktor FBMa		30.000.000 \$	bare module fact	tank, Fig. 5.61, stark extrapoliert, floating root		
		Preis CBM		114.000.000 \$	bare module Pre	is für einen Drucklagertank		
						-		
		Aufstellungsfaktor		1,05	It. Vorlesung Pro	zessverfahrenstechnik, für Mitteldeutschland		
		CEPCI (2014)		585	Preisindex chem	ischer Apparate		
		Anschaffungspreis		1,3U \$/€ 841,463.438 £	umgerechneter	Aufstellungspreis ohne Flektrolyseure		
				5.1.100.400 C		Service Since Electrolyseure		
		Gesamtapparatekosten	1	.0.501,5 Mio.€				
		Berechnungswert		4.200,6 Mio. €	40 % von Gesamta	pparatekosten wegen Komplexität Elektrolyseure		
		Montage RI		1.260,2 Mio. €	30 % der Berech	nungswert, da noner Preis Elektrolyseure Pitungskosten		
		elektr. Versorgung		630,1 Mio. €	15 % von Berech	nungswert		
		Montage elektr. Vers.		346,5 Mio. €	55 % der elektris	chen Versorgung		
		MSR-Einrichtung		840,1 Mio. €	20 % von Berech	nungswert		
		wontage MSR		546,1 Mio. €	65 % von MSR-Ei	nrichtungen, inkl. Material		
		Sou and baulepelik.		2.310,3 WIU. €	55 % VOIL DELECTI			
		Gesamtinvestitions	kosten 17.	695,0 Mio.€	Gesamtkoste	en Elektrolyse inkl Montage und Bau		
						-		
	laufende Kosten							
		Abschreibungen Küblwassor		1.769.496.589 ŧ	Ata-Lautzeit 10 J	anre		
		Speisewasser		10.009.600 €	Trinkwasserguali	ität		
		elektrische Energie		0€	lt. Szenario 3a	> keine Kosten f ür elektrische Energie		
		Wartung/Instandhaltung		707.798.636 €	4 % von Gesamti	nvestitionskosten		
		Verwaltung		1.920.000 €	4 Schichten x 8 N 180 % vom Betri	/litarbeiter x 60.000 €/Janr ebspersonal		
		Projektkosten		88.474.829€	5 % Gesamtinves	stition auf 10 Jahre verteilt		
		Inbetriebnahme		176.949.659€	10 % Gesamtinve	estition auf 10 Jahre verteilt		
		If Constant		2.764.54	186-11-6 C	anthester		
		iid. Gesamtkosten		2.764 IVIIO.€	janriiche Ges	аткозтеп		
	Kostensatz							
		jährliche Produktion	1.4	72 Mio. Nm ³				
				1,88 €/Nm³	h			
		kostensatz Elektrolyse		21,05 €/kg	bezogen auf	nz		
				5.527,99 €/t	bezogen auf	Methanol		

Szenario 3c und 3d: CO2 aus CO2-Absorption, VL-Methanolsynthese, Industriestrompreis

vereinfachtes Fließbild

Kohlenmonoxid Kohlendioxid Wasserstoff	→ → wasser-	Wasserstoff Kohlendioxid	\rightarrow
thermische Energie	→ GAS-	Kohlenmonoxid	
elektrische Energie			

Einheitenfestlegung		recherchierte Größenangaben			
	Einflussgröße		Menge	Kosten	
	Kohlendioxid (Szenario 3A und 3B: CO2-Absorption) Wasserstoff (Preis wird mit null angesetzt, da aus vorher. Prozess)		73.500 Nm³/h	8.220 €/t	
			184.000 Nm³/h	0,00 €/Nm³	
	Kühlwasser		375 Nm³/h	20 €/1.000 m³	
	elektrische Energie		6.222 kW	65,00 €/MWh	
	thermische Energie	(aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ	
<u>Berechnung</u>	nnungen stündliche Wasserstoffproduktion stündliche Methanolproduktion jährliche Produktionszeit			184.000 Nm³/h 62,5 t/h 8.000 h	
	Anschaffungskost	<u>en</u>			
		Kompressor H2	4 000 100	h Charles Mater/Catricks Withwarened C.	
		Anschlussielistung	4.000 KW	It. ChemCAD, onne Motor/Getriebe, Wirkungsgrad 0,6	
		Preis Cn0	4.444 KVV 1.000.000 \$	mit Motor/Getriebe, Wirkungsgrad 0,9 Preis Kompressor ohne Motor, Fig. 5-30, rotary-screw	
		Faktor FBM	1.000.000 \$	hare module factor. Fig. 5.30, stainless steel	
		Preis Cp0.d	250.000 Ś	Preis Motor. Fig. 5.20. totally enclosed	
		Faktor FBM,d	1,5	bare module factor, Fig. 5.20, compressor	
		Preis CBM	5.875.000 \$	bare module Preis Kompressor mit Motor	
		Kompressor CO2			
		Anschlussleistung	1.600 kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6	
		Motorleistung	1.778 kW	mit Motor/Getriebe, Wirkungsgrad 0,9	
		Preis Cp0	450.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw	
		Faktor FBM	5,5	bare module factor, Fig. 5.30, stainless steel	
		Preis Cpu,d Eaktor ERM d	100.000 \$	Preis Motor, Fig. 5.20, totally enclosed	
		Preis CBM	2.625.000 \$	bare module Preis Kompressor mit Motor	
		Vorwärmer (2x gleiche Größe)			
		WT-Eläche	1.000 m^2	It ChemCAD 173 600 MI/b 11-Wert 850 W/m ² K	
		Preis Cn0	80,000 \$	Preis Wärmetauscher Fig. 5.36 floating head	
		Faktor Fp	1.1	Druckfaktor. Fig. 5.37. 25 bar	
		Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel	
		Faktor FBMa	6,3	bare module factor, Fig. 5.38, shell and tube	
		Preis CBM	504.000 \$	bare module Preis Wärmetauscher	
		Brenner			
		Heizleistung	20 MW	lt. ChemCAD	
		Preis Cp0	2.200.000 \$	Preis Brenner, Fig. 5.27, pyrolysis furnace	
		Faktor FBM	2,7	Materialfaktor, Fig. 5.27, stainless steel, 600°C mit H2	
		Paktor Pp Preis CBM	1,03 6.125.625 \$	bruckfaktor, Fig. 5.27, extrapoliert für 25 bar bare module Preis Brenner	
		<u>Reaktor</u>			
		Katvolumen	64,4 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h	
		Innere Durchmesser	3 m	L/D =4	
		Länge	12 m		
		Preis Cp0	60.000 \$	Preis Behälter, Fig. 5.44, vertically oriented	
		Faktor FN	4,0	Materialfaktor, Fig. 5.45, stainless steel	
		Faktor EPMa	3,5	Drucktaktor, Fig. 5.45, tur 25 bar	
		Preis CBM	26,5 1.590.000 \$	bare module factor, rig. 5.46, vertically oriented	
		Katalysator			
		Katvolumen	64.4 m ³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h	
		Schüttdichte Kat.	800 kg/m ³	Noble metal doped, Fig. 5.47, Mittelwert	
		Masse Katalysator	51.500 kg		
		Preis Katalysator	4.635.000 \$	90 \$/kg, Fig. 5.47	

Anhang M

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16,0	bare module factor, Fig. 5.46
	Preis CBM	104.000,0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 \$	Preis Demister, Fig. 5.48
	Faktor FBM	1,2	Nickel alloy, Fig. 5.48
	Preis CBM	720,0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	Kühler		
	Wärmemenge	17,4 MW	Lt. ChemCAD
	WT-Fläche	773 m²	lt. ChemCAD 17,4 MW, U-Wert 500 W/m²K
	Preis Cp0	55.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
	Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5,2	bare module factor, Fig. 5.38, shell and tube
	Preis CBM	286.000 \$	bare module Preis Wärmetauscher
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	26,3 Mio. €	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2,2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten			
	Abschreibungen	7.129.003 €	Afa-Laufzeit 10 Jahre
	CO2 aus CO2-Absorption	9.555.552.720 €	Kostensatz: 8.220 €/t CO2, (1,977 kg CO2 / Nm ³)
	Kühlwasser	59.943 €	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	3.235.556 €	
	Wartung/Instandhaltung	2.851.601 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	verwaltung	3.456.000€	180 % vom Betriebspersonal
	Inbetriebnahme	356.450 € 712.900 €	5 % Gesamtinvestition auf 10 Jahre verteilt 10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	9.577 Mio. €	jährliche Gesamtkosten
	Kastanasta	650,61 ct/Nm ³	1
	Kostensatz	72,94 €/kg	bezogen auf H2
	ivietnanoisynthese	19.154 €/t	bezogen auf Methanol

gültig für alle Szenarien außer 2c, und 4a/b

Fließbild	Synthese					
	Synthesegas					
			METHANOL-			Methanol
	Kuhlwass	er >	SYNTHESE			
	elektrisch	e Energie				
Einheitenfe	stlegung			recherchi	ierte Größ	Benangaben
	Finflussgröß	•		Me	000	Kostan
	Ennusserois	<u> </u>		IVIE	lige	Kosten
	Synthesegas da aus vorh	(KOSTENIOS, Proz schritt)		220.500	Nm³/h	0,00 €/Nm³
		,				
	Heizdampf			668	t/h	15,00 €/t
	Kühlwasser			9.291	m³/h	20 €/1.000 m³
	elektrische E	nergie		10.04	9 kW	65,00 €/MWh
Berechnung	<u>gen</u>	stündliche Wasserstoffprode	uktion			184.000 Nm³/h
		stündliche Methanolproduk	tion			62,5 t/h
		jahrliche Produktionszeit				8.000 h
	Anschaffun	gskosten				
		Kompressor Synthesegas	<u>; (4x)</u>			
		Anschlussleistung			3.800 kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung			4.222 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0			900.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM			5,5	bare module factor, Fig. 5.30, stainless steel
		Preis Cpu,a Eaktor ERM d			200.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Preis CBM		5.3	250.000 Ś	bare module Preis Kompressor mit Motor
		Kompressorzwischenküh	ler (3x)			
		Wärmemenge			4,5 MW	lt. ChemCAD
		WT-Flache			300 m²	It. ChemCAD 4,5 MW, U-Wert 500 W/m²K
		Faktor En			20.000 \$	Preis Warmetauscher, Fig. 5.36, floating head
		Faktor FM			3.0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM			130.000 \$	bare module Preis Kompressorzwischenkühler
		<u>Vorwarmer</u> Wärmamanga			20 M/M	It ChamCAD
		WT-Fläche			2 000 m ²	It. ChemCAD 40 MW, LI-Wert 500 W/m ² K
		Preis Cp0			100.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp			1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM			650.000 Ş	bare module Preis Wärmetauscher
		Wärmetauscher				
		Wärmemenge			30 MW	lt. ChemCAD
		WT-Fläche			2.000 m ²	lt. ChemCAD 40 MW, U-Wert 500 W/m²K
		Preis Cp0			100.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp			1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FIVI			3,0	Materialfactor, Fig. 5.36, both sides stainless steel
					650.000 Ś	bare module Preis Wärmetauscher
		Reaktor				
		Katvolumen			55,1 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h
		Innere Durchmesser			3 m	L/D =4
		Dreis CnO			12 III 60 000 \$	Prois Rehälter Fig. 5.44 vertically oriented
		Faktor FM			4.0	Materialfaktor, Fig. 5.45, stainless steel
		Faktor Fp			4,3	Druckfaktor, Fig. 5.45, für 70 bar
		Faktor F α BM			32,0	bare module factor, Fig. 5.46, vertically oriented
		Preis CBM		1.	920.000 \$	bare module Preis Reaktor
		Kataburatar				
		Katvolumen			55 1 m ³	It Barechnung aus 4 000 Nm ³ Cas/m ³ Kat h
		Schüttdichte Kat		s	300 kg/m ³	Noble metal doped, Fig. 5.47 Mittelwert
		Masse Katalysator			44.100 kg	
		Preis Katalysator		3.	969.000 \$	90 \$/kg, Fig. 5.47

Anhang M

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM Flash Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM

 $2.500\ m^2$ $\,$ lt. ChemCAD 100 MW, U-Wert 1.000 W/m²K $\,$ 150.000 \$ Preis Wärmetauscher, Fig. 5.36, floating head 1,2 Druckfaktor, Fig. 5.37, für 70 bar 3,0 Materialfaktor, Fig. 5.36, both sides carbon steel 6,5 bare module factor, Fig. 5.38, shell and tube 975.000 \$ bare module Preis Wärmetauscher 4 m keine Angabe der Größe --> Annahme 20.0 m L/D = 5 60.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 6,0 bare module factor, Fig. 5.46, horizontally oriented 360.000 \$ bare module Preis Behälter ohne Finbauten 10.000 \$ Preis Demister, Fig. 5.48 1,2 bare module factor, Fig. 5.48, stainless steel 12.000.0 bare module Preis Demister 372.000 s bare module Preis Flash 3.800 kW It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 3.420 kW mit Motor/Getriebe, Wirkungsgrad 0.9 400.000 \$ Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw 3,5 bare module factor, Fig. 5.30, stainless steel 1.400.000 \$ bare module Preis Kompressor mit Motor 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden 2,2 bare module factor Böden, Fig. 5.48, stainless steel 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264 000 \$ bare module Preis aller Böden 60 MW lt. ChemCAD 1.500 m² berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m² K, 40 K 100.000 Ś Preis Condensor, Fig. 5.39, flat plate 2,3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 200.000 \$ bare module Preis Condensor 69 MW lt. ChemCAD 1.232 m² berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K 200.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3,0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 1.200.000 \$ bare module Preis Condensor 2.873.000 \$ bare module Preis Kolonne 1 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel 2,2 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264.000 S bare module Preis aller Böden 44 MW lt. ChemCAD 1.100 m² berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K 80.000 \$ Preis Condensor, Fig. 5.39, flat plate 2,3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 160.000 \$ bare module Preis Condensor 44 MW It. ChemCAD 786 m² berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m² K, 40 K 150.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3,0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 900.000 \$ bare module Preis Condensor

100 MW It. ChemCAD

2.533.000 \$ bare module Preis Kolonne 2

Anhang M

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Lange	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
		4,0	Materialitaktor, Fig. 5.45, stainless steel
	Faktor FDM	1,0	Drucktaktor, Fig 5.10
		9,3	pare module factor, Fig. 5.46
	Preis CBIVI	1.860.000 \$	pare module Preis Benalter onne Einbauten
	FIELS CHOSS FRM	τ0.000 \$	rieis più buueli hare module factor Röden, Fig. 5.48, stainless steel
	Anzahl Böden	2,2	aus ChemCAD-Simulation
	Fa	1.1	quantity factor. Fig. 5.48. 10
	Preis CBM	462.000 \$	bare module Preis aller Böden
	Wärmemenge Cond.	214 MW	lt. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39, flat plate
	Faktor FM	2,3	Materialfaktor, Fig. 5.39, stainless steel
	Faktor FBMa	2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	460.000 \$	bare module Preis Condensor
	Wärmemenge Reb.	265 MW	It. ChemCAD
	WI-Flache (2x)	2.366 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K
	Preis CpU	400.000 \$	Preis Rebolier, Fig. 5.36, kettle reboller
	Faktor ERMa	3,0	ivialerialiaktor, Fig. 5.36, Stalfiless steel
		6,0 ع ۲۵۵ ۵۵۵ خ	uare module ractor, Fig. 5.38, flat plate, Fp=1 bare module Preis Condensor
	Preis CBM	2.400.000 \$ 7,582 000 ¢	hare module Preis Coluction
		7.302.000 Ş	
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	54,0 Mio. €	umgerechneter Aufstellungspreis
	Casamtannaratakastan	54.0.14	
	Gesamtapparatekosten	54,0 Mio. €	
	Berechnungswert Robeloitungen	54,U IVIIO. €	20 % der Berechnungswort
	Montago Pl	16.2 Min 6	30 % der Behrleitungskerten
	elektr Versorgung	10,2 IVIIU. E 8 1 Mio E	15 % von Berechnungswert
	Montage elektr Vers	4.5 Mio £	55 % der elektrischen Versorgung
	MSR-Einrichtung	10.8 Mio. £	20 % von Berechnungswert
	Montage MSR	7,0 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	146,5 Mio. €	Gesamtkosten Methanolsynthese inkl. Montage und Bau
louforde #-	art an		
lautende Ko	Abschroibungon	14 647 400 0	Afa Laufzait 10 Jahra
	Kühlwasser	1 /26 507 £	Ala-Lauizeit 10 Jaille
	Heizdamnf	1.460.307 € 80 116 364 £	16 bar ND-Dampf
	elektrische Energie	5,225 422 £	zo our no ouripi
	Wartung/Instandhaltung	5.858.963 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	732.370 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	1.464.741 €	10 % Gesamtinvestition auf 10 Jahre verteilt
	Ifd Cocomthector	114.0 84%- 0	jährliche Gesemtkesten
	nu. Gesamtkosten	114,9 WIO.€	jannune Gesamtkosten
		7 91 ct /Nim-3	
	Kostensatz	7,81 CT/INM	bezogen auf H2
		0,88 €/kg	
	wiethanoisynthese	229,82 €/t	bezogen auf Methanol

Szenario 3D: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom kostenlos, CO2 aus Absorption, 8000h Methanolsynthese

Fließhild			Annahmen Elektrolyse	
elektrische Er	nergie	Wasserstoff	benötigte Leistung	5 kWh/ Nm ³ H2
Elektrolysewa	sser	-	Anschlusskosten	1.000 €/kW 2.500 €/kW
i	ELEKTROLYSE		Kühlwasser	80 l/Nm ³ H2 200 l/Nm ³ H2
		Sauerstoff		
Kühlwasser	×]		
Einheitenfestlegung		recherchierte Größenanga	aben	
Einflussgröße		Menge	Kosten	
elektrische Ener	gie	024.072.114	0.00 0/10/1	
(Elektrolyse mit	Pumpen (je 2x))	924.872 KVV	0,00 €/К₩	
et al a secondaria de la companya de		450 4 - 34	2.02.01/23	
Elektrolysewasse	er	156,4 m²/h	2,00 €/m³	
Kühlwasser		14.720 m³/h	20 €/1.000 m³	
Berechnungen	stündliche Wasserstoffproc	luktion	184.000 Nm³/h	
	jährliche Methanolprodukt	ion	500.000 t/a	
	jährliche Produktionszeit		8.000 h	
Anschaffungsk	osten			
Ansenarrangsk	Elektrolyseure			
	Anschlussleistung	920.000 kW	Anschlussleistung für 184.000 Nm ³ /h, AEL	
	Anschaffungskosten	920.000.000 €	Anschaffungskosten ohne Aufstellung	
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
	Aufstellungspreis	966.000.000 €	Preis Elektrolyseure mit Aufstellung	
	Kühlwasserpumpe (2x)			
	Volumenstrom	14.720 m³/h	Kühlwasserstrom lt. Herstellerangabe	
	Druckdifferenz	5 bar	Druckerhöhung von Obarü auf 5 barü ,lt. Herstellerangabe	
	Anschlussleistung	2.044 kW	$P = V^* \times \Delta p$	
	Motorleistung	2.405 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
	Preis Cp0	200.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal, extrapoliert	
	Faktor Fp	1,0	Druckfaktor, <10 bar, Fig. 5.50	
	Faktor FBMa	1,0	hare module factor. Fig. 5.1	
	Preis CBM	700.000 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
		7001000 ¢		
	Speisewasserpumpe (2x)			
	Volumenstrom	156,4 m³/h	Speisewasserstrom It. Herstellerangabe: 0,85 I/Nm ³ H2	
	Druckdifferenz	6 bar	Druckerhöhung von Obarü auf 6 barü ,lt. Herstellerangabe	
	Anschlussleistung	26 kW	$P = V^* \times \Delta p$	
	Motorleistung	31 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
	Preis Cp0	15.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal	
	Faktor Fp	1,0	Druckfaktor, <10 bar, Fig. 5.50	
	Faktor FM	1,0	Materialfaktor, Fig. 5.49, cast iron	
	Faktor FBIVIa	3,5	bare module factor, Fig. 5.51	
	Preis CBIVI	52.500 \$	bare module Preis Kuniwasser-Pumpe mit Motor	
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
	CEPCI (2014)	585	Preisindex chemischer Apparate	
	Umrechnungskurs	1,30 \$/€		
	Anschaffungspreis	1.777.781 €	umgerechneter Aufstellungspreis ohne Elektrolyseure	
	Gesamtapparatekosten	967,8 Mio. €		
	Berechnungswert	387,1 Mio. €	40 % von Gesamtapparatekosten wegen Komplexität Elektrolyseure	
	Montage RI	116,1 Mi0. €	30 % der Berechnungswert, da noher Preis Elektrolyseure	
	elektr Versorgung	58.1 Mio. €	15 % von Berechnungswert	
	Montage elektr. Vers.	31.9 Mio. €	55 % der elektrischen Versorgung	
	MSR-Einrichtung	77,4 Mio. €	20 % von Berechnungswert	
	Montage MSR	50,3 Mio. €	65 % von MSR-Einrichtungen, inkl. Material	
	Bau- und Baunebenk.	212,9 Mio. €	55 % von Berechnungswert	
	Gesamtinvestitionsk	osten 1.630,7 Mio. €	Gesamtkosten Elektrolyse inkl Montage und Bau	
laufende Koste	<u>en</u>			
	Abschreibungen	163.070.556 €	Afa-Laufzeit 10 Jahre	
	Kuniwasser	2.355.200 € 2.502.400 €	Trinkwassergualität	
	elektrische Energie	2.302.400 0	lt. Szenario 2a> keine Kosten für elektrische Energie	
	Wartung/Instandhaltung	65.228.222 €	4 % von Gesamtinvestitionskosten	
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr	
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal	
	Projektkosten	8.153.528 €	5 % Gesamtinvestition auf 10 Jahre verteilt	
	Inbetriebnahme	16.307.056 €	10 % Gesamtinvestition auf 10 Jahre verteilt	
	If the Committee of the	202.010	iiihaliaha Casaanthaataa	
	ird. Gesamtkösten	263,0 Mio. €	janriiche Gesamtkosten	
Kostensatz				
	jährliche Produktion	1.472 Mio. Nm ³		
	Kostensatz Elektrolyse	17,87 ct/Nm ³	bezogen auf H2	
	LientionyJe	2,00 €/kg		
		525,99 €/t	bezogen auf Methanol	

Szenario 3c und 3d: CO2 aus CO2-Absorption, VL-Methanolsynthese, Industriestrompreis

vereinfachtes Fließbild

Kohlenmonoxid		Wasserstoff
Kohlendioxid		Kohlandiavid
Wasserstoff	GAS-	Komenuloxia
thermische Energie		Kohlenmonoxid
elektrische Energie		

Einheitenfestlegung		recherchierte Größenangaben		
		Einflussgröße	Menge	Kosten
	Kohlendioxid (Szenario 3A und 3B: CO2-Absorption)		73.500 Nm³/h	8.220 €/t
	Wasserstoff (Preis wird mit null angesetzt, da aus vorher. Prozess)		184.000 Nm³/h	0,00 €/Nm³
	Kühlwasser		375 Nm³/h	20 €/1.000 m³
	elektrische Energie		6.222 kW	65,00 €/MWh
	thermische Energie ((aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ
<u>Berechnung</u>	<u>en</u>	stündliche Wasserstoffproduktion stündliche Methanolproduktion jährliche Produktionszeit		184.000 Nm³/h 62,5 t/h 8.000 h
	Anschaffungskoste	en		
		Kompressor H2 Anschlussleistung Motorleistung	4.000 kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Preis Cp0 Faktor FBM	1.000.000 \$ 5,5	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw bare module factor, Fig. 5.30, stainless steel
		Preis Cp0,d Faktor FBM,d Preis CBM	250.000 \$ 1,5 5.875.000 \$	Preis Motor, Fig. 5.20, totally enclosed bare module factor, Fig. 5.20, compressor bare module Preis Kompressor mit Motor
		Kompressor CO2		
		Anschlussleistung	1.600 kW	lt. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung	1.778 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis CpU Faktor ERM	450.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Preis Cp0.d	3,3 100.000 \$	Preis Motor. Fig. 5.20. totally enclosed
		Faktor FBM,d	1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM	2.625.000 \$	bare module Preis Kompressor mit Motor
		Vorwärmer (2x gleiche Größe)		
		WT-Fläche	1.000 m²	lt. ChemCAD 173.600 MJ/h, U-Wert 850 W/m²K
		Preis Cp0	80.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar
		Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Preis CBM	6,3 504.000 \$	bare module factor, Fig. 5.38, shell and tube bare module Preis Wärmetauscher
		Brenner		
		Heizleistung	20 MW	lt. ChemCAD
		Preis Cp0	2.200.000 \$	Preis Brenner, Fig. 5.27, pyrolysis furnace
		Faktor FBM	2,7	Materialfaktor, Fig. 5.27, stainless steel, 600°C mit H2
		Paktor Pp Preis CBM	1,03 6.125.625 \$	Druckfaktor, Fig. 5.27, extrapoliert für 25 bar bare module Preis Brenner
		Reaktor	64.4 m3	It Derechnung aus 4,000 Nm ³ Cas (m ³ Vat h
		Innere Durchmesser	64,4 III 3 m	1/D = 4
		Länge	12 m	
		Preis Cp0	60.000 \$	Preis Behälter, Fig. 5.44, vertically oriented
		Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
		Faktor Fp	3,5	Druckfaktor, Fig. 5.45, für 25 bar
		Faktor FBMa	26,5	bare module factor, Fig. 5.46, vertically oriented
			1.590.000 \$	bare module Preis Reaktor
		Katalysator		
		Katvolumen	64,4 m ³	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h
		Schuttdichte Kat.	800 kg/m ³	Noble metal doped, Fig. 5.47, Mittelwert
		Preis Katalysator	51.500 kg 4.635.000 \$	90 \$/kg. Fig. 5.47

Anhang N

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16,0	bare module factor, Fig. 5.46
	Preis CBM	104.000,0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 \$	Preis Demister, Fig. 5.48
	Faktor FBM	1,2	Nickel alloy, Fig. 5.48
	Preis CBM	720,0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	Kühler		
	Wärmemenge	17,4 MW	Lt. ChemCAD
	WT-Fläche	773 m²	lt. ChemCAD 17,4 MW, U-Wert 500 W/m²K
	Preis Cp0	55.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
	Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5,2	bare module factor, Fig. 5.38, shell and tube
	Preis CBM	286.000 \$	bare module Preis Wärmetauscher
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	26,3 Mio. €	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2,2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten			
	Abschreibungen	7.129.003 €	Ata-Lautzeit 10 Jahre
	CO2 aus CO2-Absorption	9.555.552.720 €	Kostensatz: 8.220 €/t CO2, (1,977 kg CO2 / Nm³)
	Kuniwasser	59.943€	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	3.235.556€	
	wartung/instandnaitung	2.851.601€	4 % von Gesamtinvestitionskosten
	Venualtung	1.920.000 € 2.456.000 €	4 Schichten x 8 Mild Deller x 60.000 €/Jahr
	Projektkosten	3.430.000 €	5 % Gesantinvestition auf 10 Jahre verteilt
	Inbetriebnahme	712.900€	10 % Gesantinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	9.577 Mio. €	jährliche Gesamtkosten
	Kastanasta	650,61 ct/Nm ³	1
	Kostensatz	72,94 €/kg	bezogen auf HZ
	ivietnanoisyntnese	19.154 €/t	bezogen auf Methanol

gültig für alle Szenarien außer 2c, und 4a/b

Fließbild	Synthese							
	Heizdampf							
	Kühlwasser		METHAN	NOL-		Methanol		
	Kunwuss	>	SYNTH	ESE		,		
	elektrisch	e Energie						
<u>Einheitenfe</u>	stlegung			<u>recherch</u>	ierte Größ	Benangaben		
	Einflussgröß	e		Me	nge	Kosten		
	Synthesegas	(kostenios						
	da aus vorh.	Proz.schritt)		220.500) Nm³/h	0,00 €/Nm³		
	Heizdampf			668	t/h	15,00 €/t		
	Kühlwasser			9.291	m³/h	20 €/1.000 m³		
	elektrische E	nergie		10.04	19 kW	65,00 €/MWh		
Berechnung	<u>(en</u>	stündliche Wasserstoffprod	uktion			184.000 Nm ³ /h		
		iährliche Produktionszeit	tion			82,5 t/n 8.000 h		
		jannene i rodantionozen						
	Anschaffun	<u>gskosten</u>						
		Kompressor Synthesegas	<u>s (4x)</u>		2 000 1111			
		Anschlussleistung			3.800 kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 mit Motor/Getriebe, Wirkungsgrad 0,9		
		Preis Cp0			900.000 S	Preis Kompressor ohne Motor, Fig. 5.30. rotary-screw		
		Faktor FBM			5,5	bare module factor, Fig. 5.30, stainless steel		
		Preis Cp0,d			200.000 \$	Preis Motor, Fig. 5.20, totally enclosed		
		Faktor FBM,d			1,5	bare module factor, Fig. 5.20, compressor		
		Preis CBM		5.	250.000 Ş	bare module Preis Kompressor mit Motor		
		Kompressorzwischenküh	ler (3x)					
		Wärmemenge			4,5 MW	It. ChemCAD		
		WI-Flache Preis Col			300 m²	It. ChemCAD 4,5 MW, U-Wert 500 W/m²K		
		Faktor Fp			1.2	Druckfaktor. Fig. 5.37. für 70 bar		
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel		
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube		
		Preis CBM			130.000 \$	bare module Preis Kompressorzwischenkühler		
		Vorwärmer						
		Wärmemenge			30 MW	lt. ChemCAD		
		WT-Fläche			2.000 m ²	It. ChemCAD 40 MW, U-Wert 500 W/m ² K		
		Preis CpU Faktor En			100.000 \$	Preis Warmetauscher, Fig. 5.36, floating head		
		Faktor FM			3.0	Materialfaktor, Fig. 5.36, both sides stainless steel		
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube		
		Preis CBM			650.000 \$	bare module Preis Wärmetauscher		
		<u>Wärmetauscher</u>						
		Wärmemenge			30 MW	lt. ChemCAD		
		W I-Fläche Brois CoO			2.000 m ²	It. ChemCAD 40 MW, U-Wert 500 W/m ² K		
		Faktor Ep			1.2	Druckfaktor, Fig. 5.37, für 70 bar		
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel		
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube		
		Preis CBM			650.000 \$	bare module Preis Wärmetauscher		
		<u>Reaktor</u>						
		Katvolumen			55,1 m³	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h		
		Innere Durchmesser			3 m 12 m	L/D =4		
		Preis Cp0			60.000 \$	Preis Behälter, Fig. 5.44, vertically oriented		
		Faktor FM			4,0	Materialfaktor, Fig. 5.45, stainless steel		
	Faktor Fp				4,3	Druckfaktor, Fig. 5.45, für 70 bar		
	Faktor F α BM			_	32,0	bare module factor, Fig. 5.46, vertically oriented		
		Preis CBM		1.	920.000 \$	bare module Preis Reaktor		
		Katalysator						
		Katvolumen			55,1 m ³	lt. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h		
		Schuttaichte Kat. Masse Katalysstor			800 kg/m ³	Noble metal doped, Fig. 5.47, Mittelwert		
		Preis Katalysator		3.	969.000 \$	90 \$/kg, Fig. 5.47		

Anhang N

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM Flash Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM

Preis CBM

 $2.500\ m^2$ $\,$ lt. ChemCAD 100 MW, U-Wert 1.000 W/m²K $\,$ 150.000 \$ Preis Wärmetauscher, Fig. 5.36, floating head 1,2 Druckfaktor, Fig. 5.37, für 70 bar 3,0 Materialfaktor, Fig. 5.36, both sides carbon steel 6,5 bare module factor, Fig. 5.38, shell and tube 975.000 \$ bare module Preis Wärmetauscher 4 m keine Angabe der Größe --> Annahme 20.0 m L/D = 5 60.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 6,0 bare module factor, Fig. 5.46, horizontally oriented 360.000 \$ bare module Preis Behälter ohne Finbauten 10.000 \$ Preis Demister, Fig. 5.48 1,2 bare module factor, Fig. 5.48, stainless steel 12.000.0 bare module Preis Demister 372.000 s bare module Preis Flash 3.800 kW It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 3.420 kW mit Motor/Getriebe, Wirkungsgrad 0.9 400.000 \$ Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw 3,5 bare module factor, Fig. 5.30, stainless steel 1.400.000 \$ bare module Preis Kompressor mit Motor 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden 2,2 bare module factor Böden, Fig. 5.48, stainless steel 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264 000 \$ bare module Preis aller Böden 60 MW lt. ChemCAD 1.500 m² berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m² K, 40 K 100.000 Ś Preis Condensor, Fig. 5.39, flat plate 2,3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 200.000 \$ bare module Preis Condensor 69 MW lt. ChemCAD 1.232 m² berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K 200.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3,0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 1.200.000 \$ bare module Preis Condensor 2.873.000 \$ bare module Preis Kolonne 1 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel 2,2 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264.000 S bare module Preis aller Böden 44 MW lt. ChemCAD 1.100 m² berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K 80.000 \$ Preis Condensor, Fig. 5.39, flat plate 2,3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 160.000 \$ bare module Preis Condensor 44 MW It. ChemCAD 786 m² berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m² K, 40 K 150.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3,0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1

100 MW It. ChemCAD

900.000 \$ bare module Preis Condensor 2.533.000 \$ bare module Preis Kolonne 2

Anhang N

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Länge	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	1,0	Druckfaktor, Fig 5.10
	Faktor FBMa	9,3	bare module factor, Fig. 5.46
	Preis CBM	1.860.000 \$	bare module Preis Behälter ohne Einbauten
	Preis CpSS	10.000 \$	Preis pro Boden
	FBM	2,2	bare module factor Böden, Fig. 5.48, stainless steel
	Anzahl Böden	20	aus ChemCAD-Simulation
	Fq	1,1	quantity factor, Fig. 5.48, 10
	Preis CBM	462.000 \$	bare module Preis aller Böden
	Wärmemenge Cond.	214 MW	lt. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39, flat plate
	Faktor FM	2,3	Materialfaktor, Fig. 5.39, stainless steel
	Faktor FBMa	2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	460.000 \$	bare module Preis Condensor
	Wärmemenge Reb.	265 MW	lt. ChemCAD
	WT-Fläche (2x)	2.366 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K
	Preis Cp0	400.000 \$	Preis Reboiler, Fig. 5.36, kettle reboiler
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, stainless steel
	Faktor FBMa	6,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	2.400.000 \$	bare module Preis Condensor
	Preis CBM	7.582.000 \$	bare module Preis Kolonne 3
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	the second s
	Anschaffungspreis	54,0 Mio. €	umgerechneter Aufstellungspreis
	Gesamtannaratekosten	54.0 Mio £	
	Berechnungswert	54.0 Mio. €	100 % von Gesamtannaratekosten
	Rohrleitungen	16.2 Mio. €	30 % der Berechnungswert
	Montage BI	16.2 Mio. €	100 % der Bohrleitungskosten
	elektr Versorgung	10,2 Mio. €	15 % von Berechnungswert
	Montage elektr Vers	4.5 Mio. €	55 % der elektrischen Versorgung
	MSR-Finrichtung	4,5 Mio. €	20 % von Berechnungswert
	Montage MSR	10,0 Mio. €	65 % von MSR-Finrichtungen inkl. Material
	Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	146 5 Mio €	Gesamtkosten Methanolsvothese inkl. Montage und Bau
		1-0,0 1000 0	essentiesten methanologinnese niki montuge und bud
laufende Ko	osten		
	Abschreibungen	14.647.408 €	Afa-Laufzeit 10 Jahre
	Kühlwasser	1.486.507 €	
	Heizdampf	80.116.364 €	16 bar ND-Dampf
	elektrische Energie	5.225.422 €	
	Wartung/Instandhaltung	5.858.963 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten Inbetriebnahme	732.370 € 1.464.741 €	5 % Gesamtinvestition auf 10 Jahre verteilt 10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	114,9 Mio. €	jährliche Gesamtkosten
		7.81 ct/Nm ³	
	Kostensatz	0,88 €/kg	bezogen auf H2
	Methanolsynthese	229,82 €/t	bezogen auf Methanol

Szenario 4A: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom 2000h kostenlos/6000 h zu 40€/MWh, CO2 kostenlos, 8000h Methanolsynthese

Fließbild	oloktrische Ene		[Wasserstoff	Annahmen Elektrolyse	AEL PEMEL
	Elektrolysewass	er	ELEKTROLYSE			Anschlusskosten Kühlwasser	1.000 €/kW 2.500 €/kW 80 I/Nm³ H2 200 I/Nm³ H2
	Kühlwasser				Sauerstoff >		
Finheitenfe	stlegung			I	recherchierte Größenang	shen	
Ennenence	Einflusseröße				Menge	Kosten	
	elektrische Energie				924.872 kW	30.00 €/kWh	
	(Elektrolyse mit Pumpen (je 2x))				156 A m ³ /h	2026/_3	
	Elektrolysewasser				150,4 111 /11	2,00 €/m ⁻	
	Kühlwasser				14.720 m³/h	20 €/1.000 m ³	
<u>Berechnung</u>	rechnungen stündliche Wasserstoffproduktion jährliche Methanolproduktion jährliche Produktionszeit			uktion on		184.000 Nm³/h 500.000 t/a 8.000 h	
	Anschaffungskost	<u>ten</u> Elektrol	lvseure				
		Anschlu	ussleistung		920.000 kW	Anschlussleistung für 184.000 Nm³/h, AEL	
		Anschat Aufstell	ffungskosten lungsfaktor		920.000.000€ 1.05	Anschaffungskosten ohne Aufstellung	
		Aufstel	lungspreis		966.000.000€	Preis Elektrolyseure mit Aufstellung	
		<u>Kühlwa</u>	isserpumpe (2x)				
		Volume	instrom		14.720 m³/h 5 bar	Kühlwasserstrom It. Herstellerangabe Druckerhöhung von Obarü auf 5 barü .lt. Herstellerangabe	
		Anschlu	ussleistung		2.044 kW	$P = V^* x \Delta p$	
		Motorle	eistung		2.405 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Faktor F	эО Fp		200.000 ş 1,0	Preis Pumpe mit Motor, Fig. 5.49, centritugai, extrapolier Druckfaktor, <10 bar, Fig. 5.50	
	Faktor FM			1,0	Materialfaktor, Fig. 5.49, cast iron		
	Faktor FBMa Preis CBM			3,5 700.000 \$	bare module factor, Fig. 5.51 bare module Preis Kühlwasser-Pumpe mit Motor		
	Speisewasserpumpe (2x)						
	Volumenstrom			156,4 m³/h	Speisewasserstrom It. Herstellerangabe: 0,85 I/Nm ³ H2		
		Anschlu	itterenz ussleistung		o Dai 26 kW	Druckerhohung von Ubaru aut 6 baru ,it. Herstellerangabe $P = V^* \times \Delta D$	
		Motorle	eistung		31 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
	Preis Cp0 Faktor Fo			15.000 \$ 1.0	Preis Pumpe mit Motor, Fig. 5.49, centrifugal Druckfaktor, <10 bar, Fig. 5.50		
	Faktor FM			1,0	Materialfaktor, Fig. 5.49, cast iron		
	Faktor FBMa Preis CBM			3,5 52.500 \$	bare module factor, Fig. 5.51 bare module Preis Kühlwasser-Pumpe mit Motor		
					4.05		
		Aufstell CEPCI (2	ungsfaktor 2014)		1,05 585	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland Preisindex chemischer Apparate	
		Umrech	inungskurs		1,30 \$/€		
		Anschar	ffungspreis		1.777.781€	umgerechneter Aufstellungspreis ohne Elektrolyseure	
		Gesamt	apparatekosten		967,8 Mio.€	10.1/	
		Rohrleit	ingswert tungen		367,1 WIO. € 116,1 Mio. €	40 % von Gesamtapparatekosten wegen komplexitat Elektrolyseure 30 % der Berechnungswert, da hoher Preis Elektrolyseure	
		Montag	je RL		116,1 Mio. €	100 % der Rohrleitungskosten	
		elektr.	√ersorgung ze elektr. Vers.		58,1 MIO.€ 31,9 Mio.€	15 % von Berechnungswert 55 % der elektrischen Versorgung	
		MSR-Ei	nrichtung		77,4 Mio.€	20 % von Berechnungswert	
		Montag Bau- un	ε MSR d Baunebenk.		50,3 Mio. € 212,9 Mio. €	65 % von MSR-Einrichtungen, inkl. Material 55 % von Berechnungswert	
		Gesam	ntinvestitionsko	sten	1.630,7 Mio.€	Gesamtkosten Elektrolyse inkl Montage und Bau	
	laufende Kosten						
	<u> </u>	Abschre	ibungen		163.070.556€	Afa-Laufzeit 10 Jahre	
		Kühlwas Speisew	asser		2.355.200€ 2.502.400€	Trinkwassergualität	
		elektrisc	he Energie		221.969.230€	lt. Szenario 2a> keine Kosten für elektrische Energie	
		Wartung Betriebs	g/Instandhaitung spersonal		65.228.222 € 1.920.000 €	4 % von Gesamtinvestitionskosten 4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr	
		Verwaltu	ung		3.456.000€	180 % vom Betriebspersonal	
		Projektk Inbetriel	osten bnahme		8.153.528€ 16.307.056€	5 % Gesamtinvestition auf 10 Jahre verteilt 10 % Gesamtinvestition auf 10 Jahre verteilt	
		lfd. Ge	samtkosten		485,0 Mio. €	jährliche Gesamtkosten	
	Kostensatz						
		jährlich	e Produktion		1.472 Mio. Nm ³		
		Koste	ensatz		32,9 ct/Nm ³	bezogen auf H2	
	Elektrolyse				3,69 €/kg		
	,				969,92 €/ l	bezogen auf Methanol	
<u>Szenario 4A: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom 2000h kostenlos/6000 h zu 40€/MWh,</u> <u>CO2 kostenlos, 8000h Methanolsynthese</u>

vereinfacht	es Fließbild				
		Kohlenmonoxid		Wasserstoff	_
		Kohlendioxid	WASSER-	Kohlendioxid	~
		Wasserstoff	GAS-	Cohlenmonovid	
		elektrische Energie	·	omenmonoxia	\rightarrow
<u>Einheitenfe</u>	stlegung		recherchierte Größenangaber	<u>1</u>	
		Einflussgröße	Menge	Kosten	
	Kohlendioxid		73.500 Nm³/h	0,00 €/t	
	Wasserstoff (Preis w angesetzt, da aus vo	vird mit null vrher. Prozess)	184.000 Nm³/h	0,00 €/Nm³	
	Kühlwasser		375 Nm³/h	20 €/1.000 m³	
	elektrische Energie		6.222 kW	40,00 €/MWh	
	thermische Energie	(aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ	
Berechnung	en	stündliche Wasserstoffproduktion		184.000 Nm³/h	
		stündliche Methanolproduktion jährliche Produktionszeit		62,5 t/h 8.000 h	
	Anschaffungskost	on			
	Anschanungskost	Kompressor H2			
		Anschlussleistung	4.000 kV	V It. ChemCAD, ohn	e Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung	4.444 kV	v mit Motor/Getriel	be, Wirkungsgrad 0,9
		Preis Cp0	1.000.000	5 Preis Kompressor bara madula fasta	ohne Motor, Fig. 5.30, rotary-screw
		Preis CoO d	5, 250.000	S Preis Motor Fig 5	20 totally enclosed
		Faktor FBM,d	1,	5 bare module facto	pr, Fig. 5.20, compressor
		Preis CBM	5.875.000	\$ bare module Preis	s Kompressor mit Motor
		Kompressor CO2			
		Anschlussleistung	1.600 kV	V It. ChemCAD, ohn	e Motor/Getriebe, Wirkungsgrad 0,6
		Preis CnO	1.778 KV 450.000	mit Motor/Getriei Preis Kompressor	obne Motor Fig 5 30 rotary-screw
		Faktor FBM		5 bare module facto	or, Fig. 5.30. stainless steel
		Preis Cp0,d	100.000	Preis Motor, Fig. 5	5.20, totally enclosed
		Faktor FBM,d	1,	5 bare module facto	or, Fig. 5.20, compressor
		Preis CBM	2.625.000	bare module Preis	s Kompressor mit Motor
		Vorwärmer (2x gleiche Größe)			
		WT-Fläche	1.000 m	² It. ChemCAD 173.	600 MJ/h, U-Wert 850 W/m²K
		Preis Cp0	80.000	\$ Preis Wärmetauso	her, Fig. 5.36, floating head
		Faktor Fp	1,	1 Druckfaktor, Fig. 5	5.37, 25 bar
		Faktor FM	3,	0 Materialfaktor, Fig	g. 5.36, both sides stainless steel
		Faktor FBMa Preis CBM	6, 504.000	3 bare module facto 5 bare module Preis	or, Fig. 5.38, shell and tube s Wärmetauscher
		Brenner Heizleictung		the Character	
		Heizielstung	20 MV	V It. ChemCAD	E 27 purchasis furnasa
		Faktor FBM	2.200.000	7 Materialfaktor Fig	z. 5.27, stainless steel. 600°C mit H2
		Faktor Fp	_, 1,0	B Druckfaktor, Fig. 5	5.27, extrapoliert für 25 bar
		Preis CBM	6.125.625	\$ bare module Preis	s Brenner
		Reaktor			
		Katvolumen	64,4 m	³ It. Berechnung au:	s 4.000 Nm³ Gas/ m³ Kat h
		Innere Durchmesser	3 r	n L/D =4	
		Länge Drois Cr0	12 r	n Ó Desis D. L. T	E 44 controlle out to t
		Fiels CDU Faktor FM	60.000	 Preis Benalter, Fig Materialfaktor Fig 	. 5.44, vertically oriented
		Faktor Fp	4, २	5 Druckfaktor. Fig	5.45. für 25 bar
		Faktor FBMa	26.	5 bare module facto	or, Fig. 5.46, vertically oriented
		Preis CBM	1.590.000	\$ bare module Prei	s Reaktor
		<u>Katalysator</u>			
		Katvolumen	64,4 m	³ It. Berechnung au	s 4.000 Nm³ Gas/ m³ Kat h
		Schüttdichte Kat.	800 kg/m	³ Noble metal dope	d, Fig. 5.47, Mittelwert
		Masse Katalysator	51.500 k	g	
		Preis Katalysator	4.635.000	> 90 \$/кg, Fig. 5.47	

Anhang O

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16,0	bare module factor, Fig. 5.46
	Preis CBM	104.000,0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 \$	Preis Demister, Fig. 5.48
	Faktor FBM	1,2	Nickel alloy, Fig. 5.48
	Preis CBM	720,0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	<u>Kühler</u>		
	Wärmemenge	17,4 MW	Lt. ChemCAD
	WT-Fläche	773 m²	lt. ChemCAD 17,4 MW, U-Wert 500 W/m²K
	Preis Cp0	55.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
	Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5,2	bare module factor, Fig. 5.38, shell and tube
	Preis CBM	286.000 \$	bare module Preis Wärmetauscher
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	26,3 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	26,3 Mio. €	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2,2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
laufende Kosten			
	Abschreibungen	7.129.003 €	Afa-Laufzeit 10 Jahre
	Kühlwasser	59.943 €	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	1.991.111 €	
	Wartung/Instandhaltung	2.851.601 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	356.450 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	712.900 €	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	20,2 Mio. €	jährliche Gesamtkosten
	Kostensatz	1,37 ct/Nm ³	hazaran auf U2
	Mothanalounthasa	0,15 €/kg	bezogen auf HZ
	wiethanoisynthese	40,41 €/t	bezogen auf Methanol

Szenario 4A: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom 2000h kostenlos/6000 h zu 40€/MWh, CO2 kostenlos, 8000h Methanolsynthese

<u>Fließbild</u>	Synthese	726			
	Heizdamn	f sas			
	Kühlupsei	" >	METHANC	DL-	Methanol
	Kuniwasse	er >	SYNTHES	E	~
	elektrisch	e Energie			
		<u></u>			
Einheitenfes	stlegung		<u> </u>	recherchierte Grö	ißenangaben
	5 1	_			Walter -
	Einflussgröße	<u> </u>		Menge	Kosten
	Synthesegas	(kostenlos, Broz. schritt)		220.500 Nm³/h	0,00 €/Nm³
		102.301110			
	Heizdampf			668 t/h	15,00 €/t
	Kühlwasser			9.291 m³/h	20 €/1.000 m³
	elektrische Ei	nergie		10.049 kW	40,00 €/MWh
Berechnung	en	stündliche Wasserstoffprod	uktion		184.000 Nm³/h
		stündliche Methanolproduk	tion		62,5 t/h
		janriiche Produktionszeit			8.000 h
	Anschaffun	<u>gskosten</u>			
		Kompressor Synthesegas	s (4x)		
		Anschlussleistung		3.800 kW	/ It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung		4.222 kW	/ mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0		900.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM		5,5 200,000 č	bare module factor, Fig. 5.30, stainless steel
		Faktor FBM d		200.000 \$	bare module factor. Fig. 5.20, compressor
		Preis CBM		5.250.000 Ś	bare module Preis Kompressor mit Motor
					· · · · · · · · · · · · · · · · · · ·
		Kompressorzwischenküh	ler (3x)		
		Wärmemenge		4,5 MW	/ It. ChemCAD
		WT-Fläche		300 m ²	² It. ChemCAD 4,5 MW, U-Wert 500 W/m ² K
		Preis Cpu Faktor En		20.000 \$	Preis Warmetauscher, Fig. 5.36, floating head
		Faktor FM		1,2	Druckiaktor, Fig. 5.37, full 70 bar Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa		6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		130.000 \$	bare module Preis Kompressorzwischenkühler
		<u>Vorwärmer</u>		20 1414	L th Character
		W/T-Fläche		30 IVIV	 It. ChemCAD It. ChemCAD 40 MW/ 11-Wert 500 W/m²K
		Preis Cn0		100 000 S	Preis Wärmetauscher Fig 5 36 floating head
		Faktor Fp		1,2	2 Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa		6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		650.000 \$	bare module Preis Wärmetauscher
		Wärmetauscher			
		Wärmemenge		30 MW	/ It. ChemCAD
		WT-Fläche		2.000 m ²	² It. ChemCAD 40 MW, U-Wert 500 W/m ² K
		Preis Cp0		100.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp		1,2	2 Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM		3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa		6,5 670 000 ¢	bare module factor, Fig. 5.38, shell and tube
		Preis CBIWI		650.000 \$	bare module Preis Warmetauscher
		Reaktor			
		Katvolumen		55,1 m³	It. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h
		Innere Durchmesser		3 m	n L/D =4
		Lange Brois Col		12 m) * Decis Dobältor, Fig. F. 44 ventiently enterted
		Fiels Cpu Faktor EM		БО.000 Ş	Materialfaktor Fig. 5.44, Vertically Oriented
		Faktor Fp		4,0 4 3	Bruckfaktor, Fig. 5.45. für 70 bar
		Faktor F a BM		32,0	bare module factor, Fig. 5.46, vertically oriented
		Preis CBM		1.920.000 \$	bare module Preis Reaktor
		Wataharatan			
		Katalysator Katvolumon		FF 4	³ It Berechnung aus 4 000 Nm ³ Gas/m ³ Kath
		Schüttdichte Kat		55,1 M ⁻ 800 kg/m ³	³ Noble metal doped, Fig. 5 47 Mittelwert
		Masse Katalysator		44.100 kg	Biological and a second s
		Preis Katalysator		3.969.000 \$	90 \$/kg, Fig. 5.47

Anhang O

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM Flash Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM

Preis CBM

 $2.500\ m^2$ $\,$ lt. ChemCAD 100 MW, U-Wert 1.000 W/m²K $\,$ 150.000 \$ Preis Wärmetauscher, Fig. 5.36, floating head 1,2 Druckfaktor, Fig. 5.37, für 70 bar 3,0 Materialfaktor, Fig. 5.36, both sides carbon steel 6,5 bare module factor, Fig. 5.38, shell and tube 975.000 \$ bare module Preis Wärmetauscher 4 m keine Angabe der Größe --> Annahme 20.0 m L/D = 560.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 6,0 bare module factor, Fig. 5.46, horizontally oriented 360.000 \$ bare module Preis Behälter ohne Finbauten 10.000 Ś Preis Demister, Fig. 5.48 1,2 bare module factor, Fig. 5.48, stainless steel 12.000.0 bare module Preis Demister 372.000 S bare module Preis Flash 3.800 kW It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 3.420 kW mit Motor/Getriebe, Wirkungsgrad 0,9 400.000 \$ Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw 3,5 bare module factor, Fig. 5.30, stainless steel 1.400.000 \$ bare module Preis Kompressor mit Motor 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden 2,2 bare module factor Böden, Fig. 5.48, stainless steel 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264 000 \$ bare module Preis aller Böden 60 MW It. ChemCAD 1.500 m² berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K 100.000 Ś Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel 2.3 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 200.000 \$ bare module Preis Condensor 69 MW It. ChemCAD 1.232 m² berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K 200.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3.0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 1.200.000 \$ bare module Preis Condensor 2.873.000 \$ bare module Preis Kolonne 1 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel 2,2 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264.000 \$ bare module Preis aller Böden 44 MW It. ChemCAD 1.100 m² berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m² K, 40 K 80.000 \$ Preis Condensor, Fig. 5.39, flat plate 2,3 Materialfaktor, Fig. 5.39, stainless steel 2,0 bare module factor, Fig. 5.38, flat plate, Fp=1 160.000 \$ bare module Preis Condenso 44 MW It. ChemCAD 786 m² berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m² K, 40 K 150.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3,0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 900.000 \$ bare module Preis Condensor

100 MW It. ChemCAD

2.533.000 \$ bare module Preis Kolonne 2

Anhang O

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Länge	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	1,0	Druckfaktor, Fig 5.10
	Faktor FBMa	9,3	bare module factor, Fig. 5.46
	Preis CBM	1.860.000 Ś	bare module Preis Behälter ohne Einbauten
	Preis CpSS	10.000 \$	Preis pro Boden
	FBM	2,2	bare module factor Böden, Fig. 5.48, stainless steel
	Anzahl Böden	20	aus ChemCAD-Simulation
	Fq	1,1	quantity factor, Fig. 5.48, 10
	Preis CBM	462.000 \$	bare module Preis aller Böden
	Wärmemenge Cond.	214 MW	lt. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39, flat plate
	Faktor FM	2,3	Materialfaktor, Fig. 5.39, stainless steel
	Faktor FBMa	2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	460.000 \$	bare module Preis Condensor
	Wärmemenge Reb.	265 MW	lt. ChemCAD
	WT-Fläche (2x)	2.366 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K
	Preis Cp0	400.000 \$	Preis Reboiler, Fig. 5.36, kettle reboiler
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, stainless steel
	Faktor FBMa	6,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	2.400.000 \$	bare module Preis Condensor
	Preis CBM	7.582.000 \$	bare module Preis Kolonne 3
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	54,0 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	54,0 Mio. €	
	Berechnungswert	54,0 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	16,2 Mio. €	30 % der Berechnungswert
	Montage RL	16,2 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	8,1 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	4,5 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	10,8 Mio. €	20 % von Berechnungswert
	Montage MSR	7,0 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	146,5 Mio. €	Gesamtkosten Methanolsynthese inkl. Montage und Bau
laufende Ko	sten		
	Abschreibungen	14.647.408 €	Afa-Laufzeit 10 Jahre
	Kühlwasser	1.486.507 €	
	Heizdampf	80.116.364 €	16 bar ND-Dampf
	elektrische Energie	3.215.644 €	
	Wartung/Instandhaltung	5.858.963 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	732.370 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	1.464.741 €	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	112,9 Mio. €	jährliche Gesamtkosten
		7.67 ct/Nm ³	
	Kostensatz	0.86 €/kg	bezogen auf H2
	Methanolsynthese	225.80 £/t	hezogen auf Methanol
		220,00 0/1	

Szenario 4B: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom für alle Anlagenteile kostenlos, CO2 kostenlos, 8000h Methanolsynthese

Fließbild					Annahmen Elektrolyse	AEL PEMEL
	elektrische	Energie		Wasserstoff >	benötigte Leistung	5 kWh/ Nm³ H2
	Elektrolyse	wasser			Anschlusskosten	500 €/kW 1.250 €/kW
			ELEKTROLYSE	Coursest off	Kuniwasser	80 I/Nmº H2 200 I/Nmº H2
	Kühlwasser			Sauerston		
		,	*			
Finheitenfe	stlegung			recherchierte Größenang	aben	
Linnenterne	Stichung			recherchierte Grobenang		
	Einflussgröße			Menge	Kosten	
	elektrische En	ergie		024 872 1/14	0.00 5 //W/b	
	(Elektrolyse m	iit Pumpen (je	e 2x))	924.072 KW	0,00 €/к₩1	
	Flektrolysewa	ccor		156.4 m ³ /h	2 00 €/m³	
	Elekti olysewa.	5501		150,4 11 /11	2,00 0/11	
	Kühlwasser			14 720 m³/h	20 €/1 000 m ³	
	Kumuuuu			211120111711	200,2000 m	
Berechnung	gen	stündliche W	Vasserstoffproduktio	n	184.000 Nm³/h	
		jährliche Me	ethanolproduktion		500.000 t/a	
		jährliche Pro	oduktionszeit		8.000 h	
	Anschaffung	skosten				
	<u>, institution</u>	Elektrolyse	eure			
		Anschlussle	eistung	920.000 kW	Anschlussleistung für 184.000 Nm³/h, AEL	
		Anschaffun	igskosten	460.000.000€	Anschaffungskosten ohne Aufstellung	
		Aufstellung	sfaktor	1,05	It. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland	
		Austenung	spreis	485.000.000€	Preis Elektrolyseure mit Aufstehung	
		<u>Kühlwassei</u>	rpumpe (2x)			
		Volumenstr	rom	14.720 m³/h	Kühlwasserstrom It. Herstellerangabe	
		Druckdiffer	renz	5 bar	Druckerhöhung von Obarü auf 5 barü ,lt. Herstellerangabe	
		Anschlussle	eistung	2.044 kW	$P = V^* \times \Delta p$	
		Preis CnO	ung	2.405 KW	MIT MOTOR/GETRIEDE, WIRKUNGSGRAD 0,85 Preis Pumpe mit Motor, Fig. 5.49, centrifugal, extrapoliert	
		Faktor Fp		1,0	Druckfaktor, <10 bar, Fig. 5.50	
		Faktor FM		1,0	Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBM	1a	3,5	bare module factor, Fig. 5.51	
		Preis CBM		700.000 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
		Speisewass	serpumpe (2x)			
		Volumenst	rom	156,4 m³/h	Speisewasserstrom lt. Herstellerangabe: 0,85 l/Nm ³ H2	
		Druckdiffer	renz	6 bar	Druckerhöhung von Obarü auf 6 barü ,lt. Herstellerangabe	
		Anschlussle	eistung	26 kW	$P = V^* \times \Delta p$	
		Motorleistu	ung	31 kW	mit Motor/Getriebe, Wirkungsgrad 0,85	
		Preis Cp0 Eaktor En		15.000 \$	Preis Pumpe mit Motor, Fig. 5.49, centrifugal	
		Faktor FM		1,0	Materialfaktor, Fig. 5.49, cast iron	
		Faktor FBM	1a	3,5	bare module factor, Fig. 5.51	
		Preis CBM		52.500 \$	bare module Preis Kühlwasser-Pumpe mit Motor	
		Aufstellung	sfaktor	1.05	lt Vorlesung Prozessverfahrenstechnik für Mitteldeutschland	
		CEPCI (2014	4)	585	Preisindex chemischer Apparate	
		Umrechnur	ngskurs	1,30 \$/€		
		Anschaffun	Igspreis	1.777.781€	umgerechneter Aufstellungspreis ohne Elektrolyseure	
		Gesamtann	aratekosten	484.8 Mio £		
		Berechnungsv	wert	404,0 WIU.€ 193,9 Mio.€	40 % von Gesamtapparatekosten wegen Komplexität Elektrolvseure	
		Rohrleitung	gen	58,2 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure	
		Montage R	L	58,2 Mio.€	100 % der Rohrleitungskosten	
		elektr. Vers	sorgung lektr Vers	29,1 Mio.€	15 % von Berechnungswert	
		MSR-Einrich	htung	10,0 WIO.€ 38.8 Mio.€	20 % von Berechnungswert	
		Montage N	ISR	25,2 Mio.€	65 % von MSR-Einrichtungen, inkl. Material	
		Bau- und Ba	aunebenk.	106,7 Mio.€	55 % von Berechnungswert	
		.				
		Gesamtin	ivestitionskoster	816,9 MIO.€	Gesamtkosten Elektrolyse inkl Montage und Bau	
	laufende Kos	sten				
		Abschreibun	ngen	81.685.056€	Afa-Laufzeit 10 Jahre	
		Kühlwasser		2.355.200€		
		Speisewasse	er	2.502.400€	I rinkwasserqualitat It. Szenario 2a> keine Kosten für elektrische Energie	
		Wartung/Ins	standhaltung	32.674.022€	4 % von Gesamtinvestitionskosten	
		Betriebspers	sonal	1.920.000€	4 Schichten x 8 Mitarbeiter x 60.000€/Jahr	
		Verwaltung		3.456.000€	180 % vom Betriebspersonal	
		Projektkoste	en hme	4.084.253€ 8.168.506€	5 % Gesamtinvestition auf 10 Jahre verteilt 10 % Gesamtinvestition auf 10 Jahre verteilt	
		mbethebhai		0.100.500 C	10 % desantanvestation auf 10 same vertent	
		lfd. Gesar	mtkosten	136,8 Mio. €	jährliche Gesamtkosten	
	Kostensatz					
		jährliche Pr	roduktion	1.472 Mio. Nm ³		
		Kostor	catz	9,3 ct/Nm ³	herogen auf H2	
		- ·	5012	1,04 €/kg	Service and the	
		Elektro	iyse	273.69 €/t	bezogen auf Methanol	

Szenario 4B: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom für alle Anlagenteile kostenlos, <u>CO2 kostenlos, 8000h Methanolsynthese</u>

vereiniachtes rheisphu

Kohlenmonoxid	-	Wasserstoff
Kohlendioxid		Kablandiada
Wasserstoff	WASSER-	Koniendioxid
thermische Energie	GAS-	Kohlenmonoxid
elektrische Energie	1	

Einheitenfe:	stlegung	<u>r</u>	echerchierte Größenangaben	
		Einflussgröße	Menge	Kosten
	Kohlendioxid		73.500 Nm³/h	0,00 €/t
	Wasserstoff (Preis	wird mit null	184.000 Nm³/h	0,00 €/Nm³
	Kühlwasser	01161. 1102633)	375 Nm³/h	20 €/1 000 m³
			5751411711	20 0/ 1.000 m
	elektrische Energie		6.222 kW	0,00 €/MWh
	thermische Energie	(aus Erdgasbörsenpreis)	20.000 kW	3,00 €/GJ
Berechnung	<u>en</u>	stündliche Wasserstoffproduktion		184.000 Nm³/h 62 5 t/h
		jährliche Produktionszeit		8.000 h
	Anschaffungskos	ten		
		Kompressor H2		
		Anschlussleistung	4.000 kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung	4.444 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0	1.000.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM	5,5	bare module factor, Fig. 5.30, stainless steel
		Preis Cp0,d	250.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Faktor FBM,d	1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM	5.875.000 \$	bare module Preis Kompressor mit Motor
		Kompressor CO2	4 600 100	
		Anschlussieistung	1.600 kW	It. ChemCAD, onne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung	1.778 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis Cp0	450.000 \$	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Faktor FBM	5,5	bare module factor, Fig. 5.30, stainless steel
		Preis Cp0,d	100.000 \$	Preis Motor, Fig. 5.20, totally enclosed
		Faktor FBM,d	1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM	2.625.000 \$	bare module Preis Kompressor mit Motor
		Vorwärmer (2x gleiche Größe)		
		WT-Fläche	1.000 m ²	lt. ChemCAD 173.600 MJ/h. U-Wert 850 W/m²K
		Preis Cn0	80,000 \$	Preis Wärmetauscher Fig 5 36 floating head
		Faktor En	1 1	Druckfaktor Fig 5 37 25 bar
		Faktor FM	1,1	Matarialfaltar Fig. 5.26 bath sides staipless staal
			3,0	Materialfactor, Fig. 5.36, both sides stainless steel
		Faktor FBIVIa	6,3	bare module factor, Fig. 5.38, shell and tube
		Preis CBM	504.000 Ş	bare module Preis Wärmetauscher
		<u>Brenner</u> Heizleistung	20 14/4/	It ChemCAD
				Dreis Brenner Eig 5.27 pyrolysis furnace
		Preis Cpu	2.200.000 \$	Preis Brenner, Fig. 5.27, pyrolysis turnace
		Faktor FBIVI	2,7	Materialfactor, Fig. 5.27, stainless steel, 600°C mit H2
		Faktor Fp Preis CBM	1,03 6.125.625 \$	Druckfaktor, Fig. 5.27, extrapoliert für 25 bar bare module Preis Brenner
		Reaktor		
		Katvolumen	64.4 m ³	It Berechnung aus 4 000 Nm ³ Gas/ m ³ Kat h
		Innere Durchmessor	04,4 111	
			5 III 13 m	
			12 m	Drois Dehölter, Fig. F. 44 vertigelik geiseted
		Fiels CPU	60.000 \$	Matavialfaltar Fig. 5.44, vertically oriented
			4,0	iviaterialTaktor, Fig. 5.45, stainless steel
		Faktor Fp	3,5	Drucktaktor, Fig. 5.45, für 25 bar
		Faktor FBMa	26,5	bare module factor, Fig. 5.46, vertically oriented
		Preis CBM	1.590.000 \$	bare module Preis Reaktor
		Katalysator	<i>c</i> 4 + 3	
		Katvolumen Schüttdichte Kat	64,4 m ³	IL DEFECTIONING AUS 4.000 NM ² GAS/ M ² KAT N
		Schultuichte Kat.	SUU Kg/m ³	Noble metal doped, Fig. 5.47, MittelWert
		IVIASSE KALAIYSALUF	51.500 kg	
		Preis Katalysator	4.635.000 \$	эu ş/кg, Fig. 5.47

Anhang P

	<u>Flash</u>		
	Durchmesser	1 m	Berechnung It. Vorlesung PVT
	Länge	5,5 m	L/D = 5,5
	Preis Cp0	6.500 \$	Preis Behälter, Fig. 5.44, horizontally oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	2,5	Druckfaktor, Fig 5.45
	Faktor FBMa	16,0	bare module factor, Fig. 5.46
	Preis CBM	104.000,0	bare module Preis Behälter ohne Einbauten
	Preis Cp0	600 \$	Preis Demister, Fig. 5.48
	Faktor FBM	1,2	Nickel alloy, Fig. 5.48
	Preis CBM	720,0	bare module Preis Demister
	Preis CBM	104.720 \$	bare module Preis Flash
	Kühler		
	Wärmemenge	17,4 MW	Lt. ChemCAD
	WT-Fläche	773 m ²	lt. ChemCAD 17,4 MW, U-Wert 500 W/m²K
	Preis Cp0	55.000 \$	Preis Wärmetauscher, Fig. 5.36, floating head
	Faktor Fp	1,1	Druckfaktor, Fig. 5.37, 25 bar
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
	Faktor FBMa	5,2	bare module factor, Fig. 5.38, shell and tube
	Preis CBM	286.000 \$	bare module Preis Wärmetauscher
	Aufstallungsfaktor	1.05	It Vorlagung Drazassuarfahranstashnik für Mittaldauteshland
		1,05	It. Vorlesung Prozessverranrenstechnik, für Mitteideutschland
		1 20 \$ (0	Preisindex chemischer Apparate
	Anschaffungsprois	1,50 \$/€	umgerechneter Aufstellungspreis
	Anschandingspreis	20,3 1010. €	
	Gesamtapparatekosten	26,3 Mio. €	
	Berechnungswert	26,3 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	7,9 Mio. €	30 % der Berechnungswert, da hoher Preis Elektrolyseure
	Montage RL	7,9 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	3,9 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	2,2 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	5,3 Mio. €	20 % von Berechnungswert
	Montage MSR	3,4 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	14,5 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	71,3 Mio. €	Gesamtkosten RWGS inkl. Montage und Bau
			ŭ
laufende Kosten			
	Abschreibungen	7.129.003 €	Ata-Lautzeit 10 Jahre
	Kühlwasser	59.943 €	
	Erdgas für Brenner	1.728.000 €	
	elektrische Energie	0€	
	Wartung/Instandhaltung	2.851.601 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	356.450 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	712.900 €	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	18,2 Mio. €	jährliche Gesamtkosten
	li a stan a sta	1,24 ct/Nm ³	
	Kostensatz	0.14 €/kg	bezogen aut H2
	Methanolsynthese	36,43 €/t	bezogen auf Methanol

Szenario 4B: 8000h Volllast-Elektrolyse (184.000 Nm³/h), Strom für alle Anlagenteile kostenlos, CO2 kostenlos, 8000h Methanolsynthese

<u>Fließbild</u>	Synthese	gas				
	Heizdamp	of				
	Kühlwass	er		NOL-		Methanol >
		>	31111	ESE		
	elektrisch	e Energie				
<u>Einheitenfe</u>	stlegung			recherchierte	Größ	Benangaben_
	Einflussgröße	e		Menge		Kosten
	Synthesegas	(kostenlos,				
	da aus vorh.	Proz.schritt)		220.500 Nm³,	/h	0,00 €/Nm³
	Heizdampf			668 t/h		15,00 €/t
	Kühlwasser			9.291 m³/h		20 €/1.000 m³
	elektrische E	nergie		10.049 kW		0,00 €/MWh
Berechnung	en	stündliche Wasserstoffpr	roduktion			184.000 Nm³/h
		stündliche Methanolproc	duktion			62,5 t/h
		jährliche Produktionszeit				8.000 h
	Anschaffun	<u>gskosten</u>				
		Kompressor Synthese	gas (4x)			
		Anschlussleistung		3.800) kW	It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6
		Motorleistung		4.222	2 kW	mit Motor/Getriebe, Wirkungsgrad 0,9
		Preis CpU		900.0	00 Ş	Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw
		Preis Cp0.d		200.0	00 Ś	Preis Motor. Fig. 5.20. totally enclosed
		Faktor FBM,d			1,5	bare module factor, Fig. 5.20, compressor
		Preis CBM		5.250.0	00 \$	bare module Preis Kompressor mit Motor
		Kompressorzwischenk	ühler (3x)			
		Wärmemenge		4,5	MW	It. ChemCAD
		WT-Fläche		30	0 m²	lt. ChemCAD 4,5 MW, U-Wert 500 W/m²K
		Preis Cp0		20.0	00\$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp Faktor FM			1,2	Druckfaktor, Fig. 5.37, fur 70 bar Materialfaktor, Fig. 5.36, both sides staipless steel
		Faktor FBMa			6,5	bare module factor, Fig. 5.38, shell and tube
		Preis CBM		130.0	00\$	bare module Preis Kompressorzwischenkühler
		<u>Vorwarmer</u> Wärmemenge		30	MM	It ChemCAD
		WT-Fläche		2.00	0 m²	It. ChemCAD 40 MW, U-Wert 500 W/m ² K
		Preis Cp0		100.0	00 \$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp			1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Preis CBM		650.0	6,5 00 \$	bare module factor, Fig. 5.38, shell and tube hare module Preis Wärmetauscher
		<u>Wärmetauscher</u>			N 414 -	It chamCAD
		warmemenge WT-Fläche		30 2 Mi	vvvV 0 m²	II. CHEMICAD It. ChemCAD 40 MW, U-Wert 500 W/m²K
		Preis Cp0		100.0	00\$	Preis Wärmetauscher, Fig. 5.36, floating head
		Faktor Fp			1,2	Druckfaktor, Fig. 5.37, für 70 bar
		Faktor FM			3,0	Materialfaktor, Fig. 5.36, both sides stainless steel
		Faktor FBMa Preis CBM		650.0	6,5 00 \$	bare module factor, Fig. 5.38, shell and tube bare module Preis Wärmetauscher
		Reaktor				
		Katvolumen		55,	1 m³	lt. Berechnung aus 4.000 Nm³ Gas/ m³ Kat h
		Innere Durchmesser			3 m	L/D =4
		Preis Cp0		60.0	00 Ś	Preis Behälter, Fig. 5.44, vertically oriented
		Faktor FM		00.0	4,0	Materialfaktor, Fig. 5.45, stainless steel
		Faktor Fp			4,3	Druckfaktor, Fig. 5.45, für 70 bar
		Faktor F a BM		1 000 0	32,0	bare module factor, Fig. 5.46, vertically oriented
				1.920.0	ς υυ	vare mouure Freis NedKLUF
		Katalysator				
		Katvolumen Schüttdichte Ket		55,	1 m^{3}	It. Berechnung aus 4.000 Nm ³ Gas/ m ³ Kat h
		Masse Katalysator		800 Kg 44.10	5/111 ⁻)0 kg	איטאיב ווופנמו מטובע, רוצ. ס.איז, זאווננפושפרנ
		Preis Katalysator		3.969.0	00 \$	90 \$/kg, Fig. 5.47

Anhang P

<u>Produktkühler</u> Wärmemenge WT-Fläche Preis Cp0 Faktor Fp Faktor FM Faktor FBMa Preis CBM Flash Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis Cp0 Faktor FBM Preis CBM Preis CBM Turbine (2x) Anschlussleistung Motorleistung Preis Cp0 Faktor FBM Preis CBM Kolonne 1 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Preis CBM Kolonne 2 Durchmesser Länge Preis CBM Faktor FM Faktor Fp Faktor FBMa Preis CBM Preis CpSS FBM Anzahl Böden Fq Preis CBM Wärmemenge Cond. WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM Wärmemenge Reb WT-Fläche Preis Cp0 Faktor FM Faktor FBMa Preis CBM

Preis CBM

60.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 6,0 bare module factor, Fig. 5.46, horizontally oriented 360.000 \$ bare module Preis Behälter ohne Finbauten 10.000 Ś Preis Demister, Fig. 5.48 1,2 bare module factor, Fig. 5.48, stainless steel 12.000,0 bare module Preis Demister 372.000 S bare module Preis Flash 3.800 kW It. ChemCAD, ohne Motor/Getriebe, Wirkungsgrad 0,6 3.420 kW mit Motor/Getriebe, Wirkungsgrad 0,9 400.000 \$ Preis Kompressor ohne Motor, Fig. 5.30, rotary-screw 3,5 bare module factor, Fig. 5.30, stainless steel 1.400.000 \$ bare module Preis Kompressor mit Motor 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden 2,2 bare module factor Böden, Fig. 5.48, stainless steel 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 bare module Preis aller Böden 264 000 \$ 60 MW It. ChemCAD 1.500 m² berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K 100.000 Ś Preis Condensor, Fig. 5.39, flat plate Materialfaktor, Fig. 5.39, stainless steel 2.3 bare module factor, Fig. 5.38, flat plate, Fp=1 2,0 200.000 \$ bare module Preis Condensor 69 MW It. ChemCAD 1.232 m² berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K 200.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler 3,0 Materialfaktor, Fig. 5.36, stainless steel 6,0 bare module factor, Fig. 5.38, flat plate, Fp=1 1.200.000 \$ bare module Preis Condensor 2.873.000 \$ bare module Preis Kolonne 1 4 m keine Angabe der Größe --> Annahme 20,0 m L/D = 5 130.000 \$ bare module Preis Behälter, Fig 5.44, vertically oriented 4,0 Materialfaktor, Fig. 5.45, stainless steel 1,0 Druckfaktor, Fig 5.10 9,3 bare module factor, Fig. 5.46 1.209.000 \$ bare module Preis Behälter ohne Einbauten 10.000 \$ Preis pro Boden bare module factor Böden, Fig. 5.48, stainless steel 2,2 10 aus ChemCAD-Simulation 1,2 quantity factor, Fig. 5.48, 10 264.000 \$ bare module Preis aller Böden lt. ChemCAD 44 MW 1.100 m² berechnet aus A= Q*/U Δ T, U-Wert 1.000 W/m² K, 40 K

80.000 \$ Preis Condensor, Fig. 5.39, flat plate

150.000 \$ Preis Reboiler, Fig. 5.36, kettle reboiler

3,0 Materialfaktor, Fig. 5.36, stainless steel

6,0 bare module factor, Fig. 5.38, flat plate, Fp=1

160.000 \$ bare module Preis Condenso

900.000 \$ bare module Preis Condensor

2.533.000 \$ bare module Preis Kolonne 2

Materialfaktor, Fig. 5.39, stainless steel

2,0 bare module factor, Fig. 5.38, flat plate, Fp=1

berechnet aus A= Q*/U Δ T, U-Wert 1.400 W/m² K, 40 K

2,3

786 m²

44 MW It. ChemCAD

100 MW It. ChemCAD

20.0 m

L/D = 5

 $2.500\ m^2$ $\,$ lt. ChemCAD 100 MW, U-Wert 1.000 W/m²K $\,$

150.000 \$ Preis Wärmetauscher, Fig. 5.36, floating head

4 m keine Angabe der Größe --> Annahme

3,0 Materialfaktor, Fig. 5.36, both sides carbon steel

6,5 bare module factor, Fig. 5.38, shell and tube

1,2 Druckfaktor, Fig. 5.37, für 70 bar

975.000 \$ bare module Preis Wärmetauscher

Anhang P

	Kolonne 3		
	Durchmesser	4 m	keine Angabe der Größe> Annahme
	Länge	40,0 m	L/D = 10
	Preis CBM	200.000 \$	bare module Preis Behälter, Fig 5.44, vertically oriented
	Faktor FM	4,0	Materialfaktor, Fig. 5.45, stainless steel
	Faktor Fp	1,0	Druckfaktor, Fig 5.10
	Faktor FBMa	9,3	bare module factor, Fig. 5.46
	Preis CBM	1.860.000 \$	bare module Preis Behälter ohne Einbauten
	Preis CpSS	10.000 \$	Preis pro Boden
	FBM	2,2	bare module factor Böden, Fig. 5.48, stainless steel
	Anzahl Böden	20	aus ChemCAD-Simulation
	Fq	1,1	quantity factor, Fig. 5.48, 10
	Preis CBM	462.000 \$	bare module Preis aller Böden
	Wärmemenge Cond.	214 MW	lt. ChemCAD
	WT-Fläche	5.350 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.000 W/m² K, 40 K
	Preis Cp0	230.000 \$	Preis Condensor, Fig. 5.39, flat plate
	Faktor FM	2,3	Materialfaktor, Fig. 5.39, stainless steel
	Faktor FBMa	2,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	460.000 \$	bare module Preis Condensor
	Wärmemenge Reb.	265 MW	lt. ChemCAD
	WT-Fläche (2x)	2.366 m ²	berechnet aus A= Q*/U ΔT, U-Wert 1.400 W/m² K, 40 K
	Preis Cp0	400.000 \$	Preis Reboiler, Fig. 5.36, kettle reboiler
	Faktor FM	3,0	Materialfaktor, Fig. 5.36, stainless steel
	Faktor FBMa	6,0	bare module factor, Fig. 5.38, flat plate, Fp=1
	Preis CBM	2.400.000 \$	bare module Preis Condensor
	Preis CBM	7.582.000 \$	bare module Preis Kolonne 3
	Aufstellungsfaktor	1,05	lt. Vorlesung Prozessverfahrenstechnik, für Mitteldeutschland
	CEPCI (2014)	585	Preisindex chemischer Apparate
	Umrechnungskurs	1,30 \$/€	
	Anschaffungspreis	54,0 Mio. €	umgerechneter Aufstellungspreis
	Gesamtapparatekosten	54,0 Mio. €	
	Berechnungswert	54,0 Mio. €	100 % von Gesamtapparatekosten
	Rohrleitungen	16,2 Mio. €	30 % der Berechnungswert
	Montage RL	16,2 Mio. €	100 % der Rohrleitungskosten
	elektr. Versorgung	8,1 Mio. €	15 % von Berechnungswert
	Montage elektr. Vers.	4,5 Mio. €	55 % der elektrischen Versorgung
	MSR-Einrichtung	10,8 Mio. €	20 % von Berechnungswert
	Montage MSR	7,0 Mio. €	65 % von MSR-Einrichtungen, inkl. Material
	Bau- und Baunebenk.	29,7 Mio. €	55 % von Berechnungswert
	Gesamtinvestitionskosten	146,5 Mio. €	Gesamtkosten Methanolsynthese inkl. Montage und Bau
laufende Ko	sten		
	Abschreibungen	14.647.408 €	Afa-Laufzeit 10 Jahre
	Kühlwasser	1.486.507 €	
	Heizdampf	80.116.364 €	16 bar ND-Dampf
	elektrische Energie	0€	
	Wartung/Instandhaltung	5.858.963 €	4 % von Gesamtinvestitionskosten
	Betriebspersonal	1.920.000 €	4 Schichten x 8 Mitarbeiter x 60.000 €/Jahr
	Verwaltung	3.456.000 €	180 % vom Betriebspersonal
	Projektkosten	732.370 €	5 % Gesamtinvestition auf 10 Jahre verteilt
	Inbetriebnahme	1.464.741 €	10 % Gesamtinvestition auf 10 Jahre verteilt
	lfd. Gesamtkosten	109,7 Mio. €	jährliche Gesamtkosten
	Vesterest	7,45 ct/Nm ³	
	RUSLEIISALZ	0.84 €/kg	bezogen auf HZ
	Methanolsynthese	219,36 €/t	bezogen auf Methanol
	•		

Meeting des	Datum, Uhrzeit 06.05.2014, 7.30 Uhr	
Teilnehmer / Abwesende	Schriftführer	Ort
abwesend: Rolf Sachs	Hennig, Alexander	HS Merseburg, HS 5

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Themenvorstellung, Zeitplan			1. Antje Ruppach		
2	Gruppenzusammenstellung		siehe Gruppeneinteilungstabelle	 Antje Ruppach Alexander Hennig 		
3	Themenzuweisung		siehe Gruppeneinteilungstabelle			
4	Sonstige Informationen	 Formatierung der Arbeit E-Mail Lesebestätigung Termin Gruppenleitertreffen 	 Erstellung einer Vorlagedatei Einführung der Lesebestätigung bei E-Mail Versand von der Projektleitergruppe 	 Theresa Sent Johannes Weinand 	1. 09.05.2014 2. – 3. 07.05.2014	

Meeting mit der	Datum, Uhrzeit 07.10.2014, 11:00	
Teilnehmer / Abwesende	Schriftführer	Ort
Gesamte Gruppe 1, Antje Ruppach, Theresa Sent	Theresa Sent	HS Merseburg

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben
1	Stromproduktion (Unterpunkt 2)	 Alter Text Überschussstrom 	 Kleinigkeiten des Textes geklärt Absatz zu ,nicht-existentem' Überschussstrom soll ergänzt werden
2	Weitere fehlende Teile (Unterpunkt 3)	Wasserstoff- und Methanolpreise	 Preise bei konventioneller Gewinnung: 1. mit aktuellen Erdöl-/Strompreisen 2. mit prognostizierten Erdöl-/Strompreisen wie viel teurer dürfen jeweils regenerativ hergestellte Produkte sein?
3	Allgemeine Aufgaben für dieses Semester (Unterpunkt 10)	 Invest u. Betriebskosten Einstiegsszenarien 	 für: Elektrolyse, Wasser-Gas-Shift und MeOH-Synthese welche Parameter werden von den anderen Gruppen benötigt -> Absprache mit anderen GL soll erfolgen für die Betriebskosten können vereinfachte Annahmen getroffen werden Investitionskosten auf selbst vorgegebene Lebensdauer der Anlage beziehen (da MeOH und Wasser-Gas-Shift kontinuierlich laufen, betrifft die Auslastungsfrage nur den H2-Preis) Ergebnis sollen Wasserstoff- und MeOH-Preise mit diesem Herstellungsprozess sein Ggf. Unterteilung in: CO₂ kostenlos, durch Polygeneration und durch CO₂-Absorption Allgemeine Fallunterscheidung: Analge läuft 2000 h/a bzw. 8000 h/a
4	Sonstige Fragen/Anmerkungen	Verhältnis bei der MeOH-Synthese	 4:1:1 bedeutet kein Wasserstoffüberschuss und damit kein vollständiger Kohlenstoffumsatz 5:1:1 und alles darüber würde passen ⇒ muss im nächsten GL-Meeting aufgegriffen werden!

Besprechung: CO₂-Absorption

- Insbesondere Quellen viel geändert bzw. angepasst

Einarbeitung Änderungen

- bei "Prozessoptionen Hydroxide": allgemeiner Text, da sonst Überschneidungen mit "Prozessauswahl" (ggf. mit Verweis, dass in Prozessauswahl beschrieben)
- bei "Prozessauswahl" fehlt noch genauere Begründung, warum Hydroxide! (1 -2 Sätze)
- Quelle f
 ür Verfahrensflie
 ßbild zur CO2-Absorption mittels Natriumhydroxid oder selbst erstellt?
- genaue Auswahl welches Hydroxid (NaOH)+ **Begründung**!!
 - ✓ für ausgewählten Prozess: richtiges VFB
- aktueller Anteil von Daniel
 - Abb.: Grundfließbild, NaOH & Ca(OH)₂: Pfeile fehlen

Wegfall von:

- Aufstellungs- und Ex-Zonen-Pläne
- Investitionskosten, falls CO₂-Kosten hoch genug sind! (wovon wir ausgehen)

neue Aufgaben:

- Stoff- und Energiebilanz (bei Bedarf mit ChemCAD simulieren)
 - Text + Übersicht und Begründung der ChemCAD-Auswahl/-Eingaben (nicht zu lang!)
- Wie teuer ist euer CO₂?
 Stromkosten z.B. von Wirtschaftlichkeit (damit einheitliche Grundannahmen);
 Betriebsmittelkosten selbst raussuchen (u.a. Hydroxide)
- welches Szenario müsste eintreten, damit das anwendbar wäre (CO₂-Zertifikate wie teuer die werden müssen, wie teuer CO₂ aus Industrie werden müsste)! benötigte Strom- und Betriebsmittelmenge
 - wg. CO₂-Zertifikate ggf. mit Polygeneration besprechen, da die das ebenfalls betrachten müssen
 - o damit begründen, warum keine Aufstellungs-und Ex-Zonen-Pläne nötig
- optional Recherche: wie teuer andere Anlage (keine Berechnung)

Besprechung: Polygeneration

- Übersicht mit veränderter Gliederung zeigen (Absorptionsverfahren wurden zusammengeführt)

Einarbeitung Änderungen

- Abb.: Untertitel?
- rot markierte Quellen nachreichen
- Quelle: DIE WELT BERLIN vervollständigen
- Dampfkraftwerke letzte Klammer
- Anzahl der IGCC-Kraftwerke mit Polygeneration?
- ✓ schematische Darstellungen: "nach" Troy? Selbst gemacht? Wird Sauerstoff trotz Luftzerlegung extern zugeführt?
- ✓ GFK = glasfaserverstärkter Kunststoff?
- ✓ Wirkungsgradverlust in % oder in %-Punkten?

Wegfall von:

Weil: CO₂ wird aus der chem. Industrie genommen (soll als kostenlos kalkuliert werden), daher keine haarkleine Simulation/Berechnung der Polygeneration notwendig

Aber: Die Beweisführung, dass Polygeneration teurer ist, ist wichtig für die Begründung, dass folgendes wegfällt:

- Energie- und Stoff-Bilanzierung
- ChemCAD-Simulation
- Aufstellungs- und Ex-Zonen-Pläne

neue Aufgaben:

- Kostenabschätzung für IGCC und Post-Combustion
- CO₂-Preis für beide
- Was-wäre-Wenn-Szenario: CO₂-Zertifikate müssen wie teuer werden, damit sich IGCC bzw. Post-Combustion rechnet

Besprechung: MeOH-Synthese

Korrekturen:

- Quellen ergänzen, z.B. Jahreszahl (Baerns, et al.; Agny, et al. -> ggf. Internetlink an uns weiterleiten)
- Quellen nachreichen
- Lizenz oder Patent?
- 10.1.2 roter Satz Verhältnisse überprüfen; Rohsynthesegas vs. Synthesegas
- Verhältnis 4:1:1 → je 11,161 Gmol an CO₂ und CO?

ICI-Verfahren:

- Massen mit Bilanz überprüfen bzw. am Ende anpassen (grün)
- zum nächsten GL-Meeting: Verunreinigung (~0,1%)
- Prozessparameter und Reaktoraufbau Entscheidung: treffen bzw. vereinfachte Annahmen treffen -> da Literaturrecherche in dem Teil so i.O.; müssen aber später gewählt/angenommen werden
- Verfahrensfließbild → sehr gut, aber VISIO

neues:

- Stoff- und Energiebilanz
- Simulation mittels ChemCAD → Umsatzgrad wird weitergegeben
 - Text: Tabellen der eingegebenen Daten (z.B. Thermodynamik,...)
- Aufstellungs- und Ex-Zonenplan
 - Programm: VISIO

Weitergabe der Investitionskosten: Gruppe 1 - Wirtschaftlichkeit!

Besprechung: Elektrolyse

Anmerkungen:

Zahlen rückwirkend überprüfen

- H₂-Bedarf mit Bilanz abgleichen (je nach Verhältnis der MeOH-Synthese; H₂-Bedarf des RWGS) → am 27.10.
- gleiches für Speichergröße
- ✓ PEMEL: "moderater" Wirkungsgrad von 80% bleibt so stehen

Fragen:

- ✓ Was ist ein ein "Slush"?
- ✓ Druck-Großspeicher = Druck-Gasspeicher?

Prozessbeschreibung:

- ,hauptsächlich' gelöscht, wenn es mehr Sachen gibt, müssen die mit aufgezählt/angegeben werden
- ✓ jährlicher Bedarf, aber m³/h...
- Quelle für das Datenblatt (Prozessanordnung) → Ceth
- Verfahrensfließbilder (ergänzende Informationen)

anstehende Aufgaben:

jeweils für kontinuierlich <u>und</u> diskontinuierlich (da Auslegung auf 2000 und 8000 b/a):

8000 h/a):

-

- Stoff- und Energiebilanz
- Simulation mittels ChemCAD
 - Text: Tabellen der eingegebenen Daten (z.B. Thermodynamik,...)
 - Aufstellungs- und Ex-Zonenplan
 - o Programm: VISIO
- Investitionskostenparameter [mit Cindy (Gruppe 1 Wirtschaftlichkeit) absprechen]

Besprechung: RWGS

- WGS und alternative Verfahren tlw. sehr viel geändert
- RWGS wenig Änderungen

Korrekturen:

- Quellen nachreichen
- bei Katalysatoren ein Satz nicht verständlich + Quelle fehlt (S. 45)
- Fazit beim AER-Prozess: 2 Sätze für Erläuterung der Schwächen einfügen
- RWGS Prozessbeschreibung: Gesamtbilanz nochmal zu Rate ziehen!
- ✓ RWGS Prozessbeschreibung: Letzter Satz endet nicht!

inhaltliche Besprechung:

- ist die vereinfachte Annahme in Ordnung: Wasserstoff nach dem Reaktor nur im Wasser oder unverbraucht, aber nicht durch Nebenreaktionen entfernt?

neues:

- Stoff- und Energiebilanz
- Simulation mittels ChemCAD
 - Text: Tabellen der eingegebenen Daten (z.B. Thermodynamik,...)
- Aufstellungs- und Ex-Zonenplan
 - Programm: VISIO

Weitergabe der Investitionskosten: Gruppe 1 - Wirtschaftlichkeit!

Dieser Zettel und Text in einem Ordner in der Gruppe im ILIAS!

Projektbesprechung vom 27.10.2014

1 Zu betrachtende Einstiegsszenarien

Szenario 1: nur H2

/

- a) 8000h (Strom = regenerativ = kostenlos)
- b) 8000h (Strom = Industriepreis)
- c) 2000h (Strom = regenerativ = kostenios)
- d) 2000h (Strom = kostenlos) + 6000h (Strom = Industriepreis)
- ⇒ Vergleich mit H₂-Industriepreis

Szenario 2: MeOH mit CO2 aus chem. Industrie

- a) 8000h H₂ aus 100% Elektrolyse Volllast MeOH/RWGS – Volllast
- b) 8000h H₂ aus 2000h Elektrolyse (Rest-H₂ eingekauft) MeOH/RWGS –Volliast
- c) 8000h H₂ aus 2000h Elektrolyse (Rest-H₂ eingekauft) MeOH/RWGS –(2000h Volllast, 6000h Minimallast)
- ⇒ Vergleich mit MeOH-Industriepreis (aktuell)
- ⇒ ab welchem Jahr beide MeOH-Preise vergleichbar (Prognose über jährlichen Preisanstieg für MeOH und H₂)

Szenario 3: MeOH mit CO₂ aus Polygeneration/CO₂-Absorption aus Luft

- a) MeOH-Preisdifferenz f
 ür Polygenerations-CO₂ nach worst case (nur 2000h im Jahr H.Produktion) – mehr Elektrolysezellen + H₂ Speicher
- b) MeOH-Preisdifferenz für Polygenerations-CO₂ nach best case (8000h gratis Strom für Elektrolyse)
- MeOH-Preisdifferenz f
 ür CO₂-Absorption aus Luft nach worst case (nur 2000h im Jahr H₂Produktion) – mehr Elektrolysezellen + H₂ Speicher
- d) MeOH-Preisdifferenz f
 ür CO₂-Absorption aus Luft nach best case (8000h gratis Strom f
 ür Elektrolyse)
- e) Zwischenszenario 1
- f) Zwischenszenario 2
- Vergleich mit MeOH-Industriepreis (aktuell)
- ab welchem Jahr beide MeOH-Preise vergleichbar (Prognose über jährlichen Preisanstieg für MeOH und H₂)

2 Vereinfachungen

- Annahme Minimallast RWGS/MeOH = 60%, wenn keine Daten gefunden werden
- Wirkungsgrad Minimallast = Wirkungsgrad Volllast
- CO₂-Absorption aus Luft: nur 1 Apparat auslegen, mit 5-7 multiplizieren = Gesamt-Investitionskosten; keine Aufstellungs- und Ex-Zonenpläne
- Polygeneration: keine ChemCAD-Simulation, keine Aufstellungs- und Ex-Zonenpläne; Investitionskostenrechnung als Recherche
- CO2 aus chem. Industrie: Verunreinigung vernachlässigen, als kostenlos annehmen
- ChemCAD: falls nicht anders möglich, darf mit "Black Box" gerechnet werden

Ulf thebet

(Prof. Dr. Ulf Schubert)

(Prof. Dr. Matthias Seitz)

Meeting de	Datum, Uhrzeit 07.05.2014, 12.30 Uhr	
Teilnehmer / Abwesende	Schriftführer	Ort
Hennig, Alexander; Ruppach, Antje; Hartung, Sascha; Meyer, Marcus; Pyka, Philipp; Philipp, Marcel; Pujan, Robert; Fischer, Johannes	Hennig, Alexander	Falle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Terminabsprache		 Dienstags 3. Block ungerade Woche Gruppenleiter oder Stellvertreter immer anwesend 			
2	Zeitplan	 grober Überblick erste Phase 	 schriftlicher Bericht am Ende jeder Phase erste Übersicht zur nächsten Sitzung (nicht schriftlich) 	1 2. Gruppenleiter		

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
Falle	20.05.14	19.30	Theresa	PL-Gruppe	

Meeting der Gruppenleiter		Datum, Uhrzeit 20.05.2014, 11:00
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter, keiner abwesend	Johannes Weinand	E/0/14

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Berichte der Gruppenleiter	 Wirtschaftlichkeit Elektrolyse Polygeneration Wasser-Gas-Shift Methanolsynthese CO₂ Absorption 	 realistische Preise finden Membranverfahren unwirtschaftlich, evtl als Puffer, Alkaliverfahren billiger, dafür längere Anfahrtszeit, Lagerverfahren/-möglichkeit? CO₂ aus Kraftwerken der Umgebung beziehen, Mög- lichkeiten recherchieren Wie ist die Abgasqualität? Wird CO oder CO₂ benötigt? Welche Schiene für MeOH-Synthese? Druck? -> Hochdruck besser für Kat Bilanzierung der Stoffströme unwirtschaftlich, evtl. Einsatz als Puffer Kunststoffe binden CO₂ und geben sie bei T-Erhöhung wieder frei 	 Hartung Meyer Pyka Philipp Pujan Fischer 	 09.06.2014 02.06.2014 09.06.2014 09.06.2014 09.06.2014 Bilanzierung: 26.05.2014 Bericht: 02.06.2014 09.06.2014 	1 2 3 4 5 6
2	Deadlineverlegung	 Gruppen 1,3,4 und 6 Gruppe 5 	 um eine Woche nach hinten (09.06.2014; 20:00) um 3 Stunden nach hinten (02.06.2014; 23:00) 			-

Nächste(s) Treffen						
Ort	Datum	Uhrzeit	Schriftführer	Anwesende		
E/0/14	03.06.2014	11:00	Johannes Weinand	Gruppenleiter (Ersatz für Meyer voraussichtlich: Schwarz) + Projektleiter (außer:		
				Ruppach)		

Meeting der Gruppenleiter		Datum, Uhrzeit 03.06.2014, 11:00
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter, Ersatz für Meyer: Schwarz	Johannes Weinand	E/0/14

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Recherche Prozessoptionen und Auswahl	 Elektrolyse Methanolsynthese 	 wahrscheinlich PEMEL Methode, evtl. kombiniert mit alkalischer Elektrolyse, Entscheidung über Verfahren fällen Niederdruckverfahren ICI von Linde, Anfrage Alex Reinheit Edukt? Katvergiftung? Gemisch H₂:CO:CO₂ = 4:1:1 ; wahrscheinlich mit Water-Gas-Shift 	1. Schwarz 2. Pujan	1. 10.06.2014	1.
2	Verlegung Meeting	1. Verlegung Meeting	1. Verlegung Meeting von 17.06. auf 19.06.			-

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
E/0/14	19.06.2014	11:00	Johannes Weinand	Gruppenleiter (Ersatz für Meyer voraussichtlich: Schwarz, Ersatz für Pyka: unbe-	
				kannt) + Projektleiter (außer: Ruppach)	

Meeting der Gruppenleiter		Datum, Uhrzeit 19.06.2014, 11:00
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter, Ersatz für Meyer: Schwarz, Ersatz für Pyka Eckhardt, Ruppach abwesend	Johannes Weinand	C/3/18

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Prozessbeschreibung und Verfahrensfließbild	 Elektrolyse Polygeneration CO₂ Absorption Water-Gas-Shift MeOH-Synthese Wirtschaftlichkeit 	 PEMEL bisher favorisiert, jedoch auf der Grundlage, dass viele An- und Abfahrzeiten entstehen -> evtl. anderer Prozess?! Problem: CO₂ Abtrennung bei Kraftwerken -> nur Pilotanlagen vorhanden -> Aminwäsche Möglichkeit, Problem: senkt Wirkungsgrad des Kraftwerks; → Alternative: Biogasanlagen, dort Aminwäsche bereits im Einsatz NaOH-Anlage: auf 400 ppm lassen sich 200 ppm gewinnen, Nachteil: Reaktor mit 850°C Speicherung von CO₂ mit NaOH und Ca(OH)₂ -> aufwändig, unwirtschaftlich Welches Kühl-Heiz-Medium? Problem: Kühlung des Ablaufs zur Wasserabtrennung Abgleichung der Bilanzierung mit Hartung Es gibt keinen Überschussstrom, da Kraftwerke an den Strombedarf angepasst werden 	 Meyer Pyka Fischer Philipp Pujan 	 26.06.2014 26.06.2014 26.06.2014 26.06.2014 26.06.2014 26.06.2014 	1 2 3 4 5
2	Zusätzliches Meeting	1. zusätzliches Meeting	1. zusätzliches Meeting am 26.06.			-
3	Aufgabenstellung	1. Aufgabenstellung	 keinen Überschussstrom berechnen, sondern 500.000 t/a als Ziel verwenden 			
4	Programm für Verfahrensfließbilder		Alle verwenden VISIO Antrag wird ins ILIAS-Forum gestellt	Sent	24.06.2014	

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
E/0/14	26.06.2014	11:00	Johannes Weinand	Gruppenleiter + Projektleiter	

Meeting der Gruppenleiter		Datum, Uhrzeit 26.06.2014, 9:15
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter außer Pujan	Johannes Weinand	E/0/14

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Endberichte		Abgabe der Endberichte am 21.08.2014	 Meyer Pyka Fischer Philipp Pujan Hartung 	1.21.08.20142.21.08.20143.21.08.20144.21.08.20145.21.08.2014	1. 2. 3. 4. 5. 6.
2	Recherche - Präsentation		 Präsentation findet am 03.07.2014 11 Uhr in HS4 statt Hennig fertigt Präsentation an, Gruppenleiter disku- tieren Einzelheiten mit den Professoren 			-
3	Sonstiges	 Polygeneration Methanolsynthese W.S. Inhalt Verfahrensfließ- bild neuer Zeitplan 	 Aminwäsche bei Biogasanlagen sind Pilotprojekte Absprache Bilanz Hartung und Pujan Detailliertere Anmerkungen für Endbericht- Korrektur Welche Informationen soll das VFB enthalten? Erstellung eines neuen Zeitplans 	 Pyka Pujan + Hartung Sent + Ruppach Sent Ruppach 	1. – 2. 03.07.2014 3. – 4. 03.07.2014 5. 21.08.2014	1. 2. 3. 4. 5.
4	Telefonliste	1. Erstellung Telefonliste	Telefonliste aller Gruppenleiter wird erstellt und ins ILIAS hochgeladen	Sent		

Nächste(s) Treffen						
Ort	Datum	Uhrzeit	Schriftführer	Anwesende		
HS 4	03.07.2014	11:00	Johannes Weinand	Matrikel + Professoren + Vertreter von Linde		

Meeting der Gruppenleiter		Datum, Uhrzeit 13.10.2014, 15:15
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter	Johannes Weinand	E/0/13

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Festlegung GL-Treffen		alle zwei Wochen Montags, 15:15 Uhr			
2	Festlegung Einzeltermine		 Festlegung der Einzeltermine f ür Besprechung der ge änderten Aufgaben 	1. Ruppach + Sent		-
3	Gesamtbilanz	1. Mischungsverhältnis	 Durchrechnen in ChemCAD bis zum nächsten GL- Meeting, dann Festlegung des Mischungsverhältnis- ses 	1. Pujan + Hartung	1. 27.10.14	1.
4	Sonstiges	 Wirtschaftlichkeit Ex-Zonen 	 Wirtschaftlichkeit braucht sämtliche wirtschaftlich relevanten Informationen (Behälter, Material, etc.); evtl auch Quellen für Preise Zeichnung der Ex-Zonen mit VISIO 	1. Hartung		

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
E/0/13	27.10.2014	15:15	Johannes Weinand	alle Projekt- und Gruppenleiter	

Meeting der Gruppenleiter		Datum, Uhrzeit 10.11.2014, 15:00
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter	Johannes Weinand	C/4/02

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Besprechung geänderte Aufga- benstellung		Bekanntgabe der festgelegten Aufgabenstellung, dazu diverse einzelne Anmerkungen zu jeder Gruppe	 Meyer Pyka Fischer Philipp Pujan Hartung 		1. 2. 3. 4. 5. 6.
2	Sonstiges	 Rundmail Vorverlegung nächs- tes GL-Treffen 	 Rundmail an Studiengang bzgl. Veranstaltung "Ver- fahrenstechnik für eine veränderte Rohstoffbasis" Vorverlegung des nächsten Gruppenleitertreffens auf 12:30 	1. Weinand		-

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
HS-Mersburg	24.11.2014	12:30	Johannes Weinand	alle Projekt-und Gruppenleiter	

Meeting der Gruppenleiter		Datum, Uhrzeit 24.11.2014, 12:30
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter	Johannes Weinand	C/2/17

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Berichte		Aufgaben- und Exzonenpläne mit ungefährer räumli- cher Aufstellung der Apparate auf dem Gelände mit Maßstab		07.12.2014	
2	Gruppenprobleme	 CO₂ Absorption RWGS 	 Preis für Zertifikate mit CO₂ Preis berechnen, Ergeb- nis in Präsentation einbinden Informationen über Teillast unbekannt, deshalb 60% verwenden 	1. Fischer	1. 07.12.2014	
3	Sonstiges		1. alle Gruppen bis 8.12.14 Folien-Konzepte vorlegen			

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
HS-Mersburg	08.12.2014	15:00	Sent	alle Projekt-und Gruppenleiter außer Weinand	

Meeting der Gruppenleiter		Datum, Uhrzeit 08.12.2014, 13:30
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter, außer Weinand (entschuldigt)	Theresa Sent	
Vertreter: Schwarz statt Meyer, Bartsch statt Hartung, Lagatz und Vetter statt		C/4/02
Pujyn		

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin
1	Gruppen durchgehen (wer hält die Präsentation)	 Wirtschaftlichkeit Elektrolyse Polygeneration CO₂ – Absorption RWGS Methanolsynthese 	 Bericht von Sascha, wie weit (Sascha) fertig (wird noch geklärt) fertig (Pyka) letzten Teile lesen, einbinden + Fragen klären (Finzel oder Hähnel) durch (wird noch geklärt) A.&EPläne: gewünschte Korrekturen bereits mit Lagatz abgesprochen (Pujan) 		
2	Vorstellen der Präsentationsstruk- tur			Hennig	
3	Nächstes GL-Meeting vorziehen		Vorlesung von Prof. Sokollik beendet, daher wird das nächste GL-Meeting vorgezogen; jedoch viele Vertreter, daher nochmal Bekanntgabe via E-Mail und ILIAS	Alle (insbesondere Sent & Ruppach)	15.12. 12:30

Nächste(s) Treffen						
Ort	Datum	Uhrzeit	Schriftführer	Anwesende		
HS Merseburg	15.12.2014	13:30	Weinand	Alle GL- & PL-Leiter, sowie alle anderen Vortragenden		
C/4/02						

Meeting der Gruppenleiter		Datum, Uhrzeit 15.12.2014, 13:30
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projekt- und Gruppenleiter, Wiedecke, Hähnel	Johannes Weinand	C/4/02

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Präsentation der Teilgruppen		Die Teilgruppen präsentieren ihre Präsentationen.			
2	Verbesserungsvorschläge	 Elektrolyse Polygeneration CO₂ – Absorption RWGS Methanolsynthese 	 Zielstellung fehlt; Theorie verkürzen (HTEL weglassen); nur Fließschema PEMEL; gute Vergleiche zu Zahlen finden Entwicklungsbedarf auf separate Folie statt Natriumtrititanat Katalysator schreiben; zu Kosten auch Kolonnenanzahl etc. nennen; Kosten aktualisieren Zielstellung statt Schaubild; Tabelle unter Fließbild raus; warum Wasserabscheider (Flash) benötigt wird erklären; Forschungsbedarf raus; ChemCAD Bild rein Zielstellung fehlt; Purge bei Prozess fehlt; Verdichter statt Pumpe; ChemCAD allgemeiner erklären (Verdichteranzahl etc.); Aufstellungsplan raus; Ausblick raus 			-
3	Deadlines		Deadline für verbesserte Präsentationen 23.12.14			

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	

Meeting de	Datum, Uhrzeit 29.04.2014, 18:30	
Teilnehmer / Abwesende	Schriftführer	Ort
Hennig, Alexander; Ruppach, Antje; Sent, Theresa; Weinand, Johannes	Sent, Theresa	Falle
Hennig, Alexander; Ruppach, Antje; Sent, Theresa; Weinand, Johannes	Sent, Theresa	Falle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Gruppeneinteilung	 Ablauf Termin Terminbekanntgabe 	 a individuelle Gespräche b Vorstellung der Gruppeninhalte c Moderierung der Einteilung 06.05.2014, 7:30 Uhr, HS 5 3. Rundmail, FB, Forum 	 a insbes. Johannes b,c Antje – Johannes, Theresa 	1. a 30.04.14 bzw. 05.05.14 2. – 3. 29.04.14	1. 2. – 3. 🕅
2	Aufgabenverteilung innerhalb der PL-Gruppe		 Professoren-, Firmenkontakt, Dankesliste Rundmails, Deadlineerinnerungen, Hauptansprech- partner für den Studiengang Terminplanung, fachl. Fragen 	 Alexander Johannes Antje, Theresa 	-	-
3	Vorbereitung der Gruppen- einteilung am 06.05.2014	 Gruppeninhalte Aufgaben der Gruppen f ür die ersten 4 Wochen 		Antje, Theresa	06.05.2014	1 2
4	GL-Treffen	 Häufigkeit Termin Ort 	 15.05. und 05.06. danach alle 2 bis 4 Wochen Donnerstags ab 11.00 Uhr noch zu klären 	alle	 regelmäßig - 06.05.2014 	1 2 3.
5	PL-Treffen	 Häufigkeit Termin Ort 	 wöchentlich Dienstags, 20.00 Uhr Falle 	alle	-	-
6	Absprache mit Prof. Schubert	 E-Mail bzgl. PL-Gruppe schriftliche Zwischen- berichte? 		Alexander	06.05.2014	1. X 2.

Nächste(s) Treffen						
Ort	Datum	Uhrzeit	Schriftführer	Anwesende		
HS 5	06.05.14	07:30	Alexander	Gesamter Studiengang, außer Johannes W.		
Falle	06.05.14	20:00	?	PL-Gruppe		

Meeting der	Datum, Uhrzeit 13.05.2014, 19:30	
Teilnehmer / Abwesende	Schriftführer	Ort
Hennig, Alexander; Ruppach, Antje; Sent, Theresa; Weinand, Johannes	Sent, Theresa	Falle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Gruppeneinteilung & 1. GL- Meeting	Johannes und Theresa infor- mieren		Alexander, Antje	13.05.2014	\square
2	Zeitplanung	 Allgemein i.O.? Deadlines Erinnerungsmail 	 ok, aber: Forderung eines Berichtes am Ende jedes AP auf den jeweiligen Sonntag 20:00 vor dem GL- Meeting sollen vor dem Ende der Deadline verschickt werden 	 Theresa Theresa Johannes 		1. X 2. X
3	Inhalt des nächsten GL- Meetings		 Berichterstattung der GL (welche Verfahren gibt es, bisherige Rechercheergebnisse) AP ,Prozessbeschreibung' startet Zwischenbericht von Alexander bzgl. Zwischenpräsen- tation 	 alle GL PL Alexander 	20.05.2014	
4	Inhalt des nächsten PL- Meetings	 Vorankommen der Grup- pen planmäßig? sonstige Probleme inner- halb der Gruppen Allgemeines 			20.05.2014	
5	Allgemeines		 Word-Vorlage und Recherche-Datei wurden online gestellt (Info) ggf. Recherche-Link von Johannes für Zwischenpräsentation müssen sich die Dozenten erst beraten es wird keinen direkten Kontakt zu Linde geben 			

Nächste(s) Treffen						
Ort	Datum	Uhrzeit	Schriftführer	Anwesende		
E/0/16	20.05.2014	10:50	Johannes	GL & PL		
Falle	20.05.2014	20:00	Antje	PL		

Meeting de	Datum, Uhrzeit 20.05.2014, 20):00	
Teilnehmer / Abwesende	Schriftführer	Ort	
Hennig, Alexander; Ruppach, Antje; Sent, Theresa; Weinand, Johannes	Ruppach, Antje	Falle	
			l

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Auswertung GL-Meeting vom 20.05.2014	 Allgemein i.O.? Bilanzierung Gruppe Methanolsynthese 	1. top 2. Überprüfung	 alle Johannes 	1. – 2. 26.05.2014	1. X 2.
2	Daten von Linde anfordern	 erforderliche Daten genau definieren Kommunikation mit Linde 	 Absprache mit Sascha/ Liste erstellen Mail schreiben/ Kommunikation mit Professoren 	 Alexander Alexander 	1. 23.05.2014 2. im Anschluss	1. 🗌 2. 🗌
3	Meeting mit Professoren	 Verpflichtungen und Nutzen klären Zwischenpräsentation 	 Absprache mit Prof. Schubert unseren Inhalt vorstellen (Grobplanung) 	 Alexander Alexander 		1. 🗌 2. 🗌

Nächste(s) Treffen						
Ort	Datum	Uhrzeit	Schriftführer	Anwesende		
Falle	27.05.2014	20:00	Theresa	PL		

Meeting der	Datum, Uhrzeit 27.05.2014, 20:00 Uhr	
Teilnehmer / Abwesende	Schriftführer	Ort
Hennig, Alexander; Ruppach, Antje; Sent, Theresa; Weinand, Johannes	Sent, Theresa	Falle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben		Verantwortlich	Termin	Erledigt
1	Bilanzierung der MeOH-Synthese	1. Fertig? 2. i.O?	 - im ILIAS unter der Gruppe und der Elektrolyse wurde Bescheid gegeben - in den allgemeinen Bereich verschieben - muss noch an die anderen GL weitergereicht werden (E-Mail, dass es online steht) GL sollen sich melden, falls diese Form nicht ausreicht 		1. Theresa 2. GL	1. 28.05.2014 2	1. X 2
2	Antwort der Dozenten		Information der PL durch Alexander: Dozenten müssen sich beraten, bevor sie auf offene Fragen antworten		1. Alexander	-	-
3	Vertretung von GL		Erinnerung der GL, dass sie eine Vertretung schicken, falls sie nicht teilnehmen können (E-Mail!)		Johannes	29.05.2014	1.
4	Vorbereitung GL-Meeting	 Deadlineerinnerung Berichte TOP 	 Mündliche Erinnerung Zum GL-Meeting sollen die Berichte (MeOH-Synthese & Elektrolyse) gelesen worden sein TOP 1: mündliche Vorstellung der Berichte TOP 2: Diskussion der Berichte, offene Fragen klären, ggf. Änderungen TOP 3: Stand der Gruppen bzgl. verlängerter Deadline bzw. Prozessauswahl TOP 4 : Start der Phase. Verfahrensfließbilder" 		1. Johannes 2. PL	1. 02.06.2014 2. 03.06.2014	1. 2.
5	Allgemeines	 Zeitplanung aktuali- sieren Klären ob Verfah- rens- oder R&I- Fließbilder gefordert 	 Insbesondere die neuen Deadlines einfügen, dann E- Mail an GL Diskutieren, Angaben von Prof. Seitz erneut studieren, ggf. Dozenten fragen 		 Antje Theresa, Alexander 	1. 29.05.2014 2. 03.06.2014	1. X 2. X
Näcł	nste(s) Treffen						
Ort E/0/1 Falle	Datum 03.06.2014 03.06.2014	Uhrzeit 10:50 20:00	Schriftführer Johannes Antje	Anwesende GL + PL (abwesend: Antje; s PL	tatt Marcus: ?)		

Meeting der	Datum, Uhrzeit 17.06.2014; 20:00	
Teilnehmer / Abwesende	Schriftführer	Ort
Hennig, Alexander; Ruppach, Antje; Sent, Theresa	Sent, Theresa	Falle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Alexander vom letzten Meeting berichten	 Berichte Zwischenpräsentation Protokolle 	 Anmerkungen wurden rausgeschickt mit der Bitte um Korrektur Elektrolyse (Marcus) muss noch Teile der Lit Recherche (Lagerung) nachreichen und Quellen ein- fügen Da keine konkrete Antwort erfolgte, soll es keine Zwi- schenpräsentation mit Linde geben (Klausuren- phase!), trotzdem schriftlicher Zwischenbericht in Zukunft Johannes' Aufgabe 	-	-	-
2	Berichte (Prozessauswahl, VFB)	 Elektrolyse sonstige 	 Prozessauswahl, VFB und Berichtsteil zur Lagerung 2. 	-	-	-
3	Zwischenpräsentation		Nicht komplett wegfallen lassen -> Anfang nächstes Semester -> Auffrischung für die einzelnen Gruppen, um wieder in die Arbeit reinzukommen	-	-	-

Nächste(s) Treffen						
Ort	Datum	Uhrzeit	Schriftführer	Anwesende		
C/2/14	19.06.2014	11:00	Johannes Weinand	GL (Stellvertreter für Marcus & Phillip) und PL (außer Antje)		
Falle	24.06.2014	20:00	Johannes Weinand	PL		

Meeting der	Datum, Uhrzeit 24.06.2014, 20:00	
Teilnehmer / Abwesende	Schriftführer	Ort
Hennig, Alexander; Ruppach, Antje; Sent, Theresa; Weinand, Johannes	Sent, Theresa	Falle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Nächstes GL-Meeting		 Vorverlegt auf 09:15 Uhr, Raum steht noch nicht fest E-Mail an GL 	 1. – 2. Johannes Weinand 	1.26.06.20142.25.06.2014	1. – 2. 🕅
2	Präsentation	 Raum wer erstellt und hält die Präsentation Fragen Vorlage Inhalt Einladung der Prof. Information MCUI13 	 HS 4 Alexander Hennig gehen an die GL Theresa Sent - keine Ergebnispräsentation, Information des Studienganges über den Projektfortschritt Präsentation der (in der Litrecherche) ermittelten Prozesse und welche werden warum favorisiert Präzision der Aufgabenstellung, klären von Problem, Prozessentscheidungen Alexander Hennig Johannes Weinand 	 Alexander Hennig Alexander Hennig GL Theresa Sent Alexander Hennig Alexander Hennig Alexander Hennig Johannes Weinand 	1. 01.07.2014 2. 26.06.2014 3. 03.07.2014 4. 25.06.2014 5 6. 25.06.2014 7. 25.06.2014	1. 2. 3. 4. 5. 6. 7.
3	Berichte	 neue Deadline Allgemein 	 21.08.2014 Ausarbeitung so, dass es ,fertig' für den Endbericht ist 	1. GL 2. GL	1. 21.06.2014 2	1 2
4	Bilanz MeOH-Synthese		Robert Pujan und Sascha Hartung müssen sich ab- sprechen	Robert Pujan und Sascha Hartung	-	

Nächste(s) Treffen									
Ort	Datum	Uhrzeit	Schriftführer	Anwesende					
HS Merseburg	26.06.2014	09:15	Johannes Weinand	Alle PL und GL					
Falle	01.06.2014	20:00	Johannes Weinand	Alle PL					
Meeting der Projektleiter		Datum, Uhrzeit 04.07.2014, 19:30							
---------------------------	------------------	-------------------------------------							
Teilnehmer / Abwesende	Schriftführer	Ort							
alle Projektleiter	Johannes Weinand	Alchimistenfalle							

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Präsentation Inhalt					
2	Aufgaben für nächstes Semester	 Elektrolyse Wasser-Gas-Shift Methanol Synthese CO₂ Absorption Polygeneration 	 H₂ Beschaffung : Kosten bei 8000 h/a; kein H₂ Speicher; PEM Kostenreduzierung durch Forschung Camere Prozess ChemCAD Berechnung mit Umsatzgrad aus Literatur kein CO₂ Speicher; unter welchen Umständen wäre es machbar belegen, dass Gruppe keinen Sinn macht, bzw. unter welchen Umständen es Sinn machen würde 	 Meyer + Hartung Philipp Pujan Fischer Pyka 		1.
3	Aufgaben für Projektleiter	1. Berichte-Korrektur	 Berichte zusammen mit GL verbessern und zusam- menfügen 	1. Sent + Ruppach		1.
4	Sonstiges	1. Abwesende Zwischen- präsentation	 fließt mit in die Bewertung am Ende des Projekts mit ein 			

Nächste(s) Treffen				
Ort	Datum	Uhrzeit	Schriftführer	Anwesende

Meeting der Projektleiter		Datum, Uhrzeit 10.10.2014, 19:30
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projektleiter	Johannes Weinand	Alchimistenfalle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Präsentation Prof. Martin		1. Präsentation des Projekts am 24.11.14; Dauer ca. 20 min	1. Hennig	24.11.2014	
2	Geänderte Aufgaben	 Polygeneration CO₂ Absorption 	 Literaturrecherche und Bilanz durchrechnen, Vorraussetzungen für Einsatz von Polygeneration darstellen Bilanzen; ChemCAD Berechnung von Energie, etc.; darstellen warum Thema keinen Sinn macht 	1. Pyka 2. Fischer		1.
3	Gesamtbilanz fehlerhaft		1. Korrektur des Verhältnisses von H ₂ :CO:CO ₂	1. Hartung+Pujan		1.
4	Meetings	 Projektleitermeeting Gruppenleitermeeting ting 	 Donnerstags 21 Uhr Besprechung beim GL-Meeting am 13.10.14 			
5	Sonstiges	 Deadlines Endpräsentation Benotung 	 Festlegung der neuen Deadlines Rahmenbedingungen der Endpräsentation erfragen Rahmenbedingungen der Benotung erfragen 	 Ruppach Hennig Hennig 		1. 2. 3.

Nächste(s) Treffen						
Ort	Datum	Uhrzeit	Schriftführer	Anwesende		
Alchimistenfalle	17.10.2014	21 Uhr	Weinand	alle Projektleiter		

Meeting der Projektleiter		Datum, Uhrzeit 23.10.2014, 20:30
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projektleiter	Johannes Weinand	Alchimistenfalle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Auswertung Gruppen- Einzelgespräche		 In Kenntnissetzung der Ergebnisse der Gruppenein- zelgespräche 	1. Sent + Ruppach		
2	Deadlines	 CO₂-Absorption W.GShift + Elektro- lyse 	 Verlegung CO₂-Absorption ChemCAD-Deadline auf 16.11.14 Verlegung W.GShift + Elektrolyse auf 7.11.14 			1.
3	Meeting mit Professoren		 Meeting mit Professoren zeitnah, Besprechung der Aufgabenstellung 	1. Hennig		1.
4	Sonstiges	 Wirkungsgrad MeOH Synthese Elektrolyse in Chem- CAD Verunreinigungen in CO₂ Kontrolle ChemCAD Projektleiter Beleg 	 MeOH Synthese: Wirkungsgrad unklar, muss drin- gend geklärt werden Kann Elektrolyse in ChemCAD simuliert werden? Verunreinigungen in CO₂ aus Industrie werden ver- nachlässigt ChemCAD Belege werden von Hennig und Ruppach kontrolliert Projektleiter Beleg wird von Sent und Weinand ange- fertigt 	 Hartung+Pujan Hennig Hennig + Ruppach Sent + Weinand 		

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
Alchimistenfalle	30.10.2014	21 Uhr	Weinand	alle Projektleiter	

Meeting der Projektleiter		Datum, Uhrzeit 06.11.2014, 21:00
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projektleiter	Johannes Weinand	Alchimistenfalle

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Auswertung Chemcad	1. Methanolsynthese	1. Datei gut, Erläuterung fehlt	1. Weinand		
2	Vorlesung Sokollik		1. versuchen am 24.11. Vorlesung ausfallen zu lassen			

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
Alchimistenfalle	13.11.2014	21 Uhr	Sent	alle Projektleiter	

Meetin	Meeting der Projektleiter	
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projektleiter	Johannes Weinand	Wh 6

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Probleme der Gruppen	 CO₂ Absorption Wirtschaftlichkeit + CO₂ Absorption MeOH Synthese Wirtschaftlichkeit 	 Probleme bei Reaktorauswahl -> GIBBS Reaktor verwenden Treffen vereinbaren für Kostenbesprechung, Kristallisator soll ausgelegt werden, Wärmetauscher noch ungeklärt Text zu CC-Simulation fehlt immer noch Besprechung diverser Annahmen, viele Daten sind bereits von den Gruppen abgeliefert worden 			

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
Alchimistenfalle	20.11.2014	21 Uhr	Weinand	alle Projektleiter	

Meeting der Projektleiter		Datum, Uhrzeit 20.11.2014, 21:00
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projektleiter	Johannes Weinand	Wh 6

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Probleme der Gruppen	 Aufstellungs- und Exzonenpläne Wirtschaftlichkeit + CO₂ Absorption 	 Erklärung beim nächsten GL-Treffen Kosten sind richtig, aber nicht umsetzbar, Preise für diverse Stoffe unbekannt -> "was wäre wenn"- Aufgabe entfällt großteils, nur Investkosten mit Ab- schreibungen (sind schon teuer genug); CO₂ Preis für CO₂ Absorption bis 25.11., dann Text mit Begrün- dung warum Thema unrealistisch, bzw. Preis für CO₂ Zertifikate 		1. 24.11.2014 2. 07.12.2014	
2	Gespräch mit Prof. Seitz	1. Präsentation	 Präsentation in diplomatischer Art und Weise vor- tragen, auf Forschung und Entwicklung eingehen; evtl. zusätzlicher Punkt was den Studenten das Ent- wicklungsprojekt gebracht hat 			
3	Vorstellung der Präsentation		1. Inhaltliche Besprechung der Präsentation			

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
Alchimistenfalle	27.11.2014	21 Uhr	Weinand	alle Projektleiter	

Meeting der Projektleiter		Datum, Uhrzeit 04.12.2014, 21:00
Teilnehmer / Abwesende	Schriftführer	Ort
Projektleiter außer: Weinand (entschuldigt)	Theresa Sent	WH 6

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin
1	Call-for-Papers		Hennig bringt alle auf den gleichen Stand	Hennig	
2	Aufstellungs- und ExZonen-Pläne	 Elektrolyse MeOH-Synthese RWGS CO₂-Absoprtion 	 fehlt fehlt (ebenfalls fehlt die VISIO-Datei des VfB) Wert und Einheit am Maßstab fehlt, Beschriftungen und Optimierung des Platzbedarfs Erinnerung an Deadline (Wunsch des GL) 		
3	Nächstes GL-Meeting		Aktuellen Text hochladen	Sent/Ruppach	05.12.2014

Nächste(s) Treffen				
Ort	Datum	Uhrzeit	Schriftführer	Anwesende
Alchimistenfalle	11.12.2014	21 Uhr	Sent	alle Projektleiter außer: Weinand (entschuldigt)

Meetin	Meeting der Projektleiter		
Teilnehmer / Abwesende	Schriftführer	Ort	
Projektleiter außer: Weinand (entschuldigt)	Theresa Sent	WH 6	

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin
1	Nächstes GL-Meeting		Vorbereiten, welche Gruppe was in ihrem Vortrag ha- ben soll	Hennig	15.12.2014
2	Deadline-Überschreitungen		E-Mail an Joe, welchen Gruppen wegen was Bescheid gegeben werden muss	Sent	12.12.2014

Nächste(s) Treffen					
Ort	Datum	Uhrzeit	Schriftführer	Anwesende	
	18.12.2014	21 Uhr	Weinand	alle Projektleiter	

		Datum, Uhrzeit 18.12.20	14, 19:00						
Teilne	hmer / Abwesende		Schriftführer						
alle F	Projektleiter		Johannes Weinand		Wohr	heim 6			
Nr. Tagesordnungspunkt (TOP) / Problem Unterpunkt			Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt			
1	Auswertung Teilpräsentationen		Auswertung der Teilpräsentationen mit Verbesse- rungen (Details: s.u.)						
inle ufg	eitung jabenstellung		Art des Projektmanagements Gruppeneinteilung	tels Meetings GL/PL Grobstruktur Aufbau aller Gruppen					
Aufç <u>Elek</u>	jabenstellung (trolyse:	(]	Gruppeneinteilung Theorie verkürzen (weniger tiefgehend erzählen+	Grobstruktur Aufbau aller Gruppen Fließschema PEM-Elektrolyse					
Uberleitung Elektrolyse → altes Seitz-Bild Zielstellungsfolie					· veruieiche				
Ziels	stellungsfolie		/ergleichsfolie						
Ziels <u>Alex</u> Übe Alle	stellungsfolie $\frac{c}{2}$ rleitung CO ₂ \rightarrow altes Seitz-Bild + r 3 Mgl. einmal erklären \rightarrow CO ₂ aus	oten Kringel s chem. Industrie dabei e	vergleichsfolie erklären						

RWGS:

Zielstellung Reaktionsübersicht (Quelle)

MeOH-Synthese:

Zielstellung Allgemeines kann so bleiben Fließbild: purge ChemCAD (weniger detailliert erklären, mehr allgemein) Aufstellungsplan & Ausblick raus Bild fragwürdig, das an anderer Stelle → bessere mündliche Beschreibung Fließbild anders erklären, Tabelle raus

Wirtschaftlichkeit:

→ Sascha macht einen Teilausblick

Alex:

→ Diskussion

➔ Prognose /Ausblick

ChemCAD statt Zusammenfassungsfolie \rightarrow Worte verlieren \rightarrow Verfahren etabliert und funktioniert

Meetin	Datum, Uhrzeit 08.01.2015, 21:00	
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projektleiter	Johannes Weinand	Wohnheim 6

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Abschlussbericht	 Gesamtbilanz Prognose Binden Abgabe 	 Anfertigung der Gesamtbilanz bis 12.1. Anfertigung der Prognose Fachschaftsrat fragen, ob Kosten übernommen werden; Binden bis 23.01., 3 Exemplare Abgabe am 31.1.15, deshalb Endversion bis 19.1., sodass jede Gruppe nochmal bis 21.1. die Endversion einblicken kann 	1. Ruppach 2. Bartsch 3. Weinand		
2	Präsentation1. Korrekturen2. Generalprobe3. Abschlusspräsentation		 Korrekturen fehlen, Abgabe bis 23.1. Termin: 26.1. 3 Termine für Prof. Seitz: 2.2. 13:30-15:00; 3.2. 13:30-15:00; 5.2. 9:15-10:45 	1. Weinand 2. Weinand		

Nächste(s) Treffen				
Ort	Datum	Uhrzeit	Schriftführer	Anwesende
Wohnheim 6	15.01.2015	21:00	Weinand	alle Projektleiter

Meetin	Datum, Uhrzeit 30.01.2015, 21:00	
Teilnehmer / Abwesende	Schriftführer	Ort
alle Projektleiter	Wohnheim 6	

Nr.	Tagesordnungspunkt (TOP) / Problem	Unterpunkt	Ergebnisse / Aufgaben	Verantwortlich	Termin	Erledigt
1	Abschlussbericht	1. Tabelle	1. Anfertigung einer Tabelle mit allen wichtigen Werten	1.		
2	Präsentation	 Kleiderordnung Generalprobe Handouts 	 Hemd und dunkle Hose Termin: 26.1. 13:30 6 Handouts mit Tabelle aller wichtigen Werte 	1.		

Nächste(s) Treffen				
Ort	Datum	Uhrzeit	Schriftführer	Anwesende
Wohnheim 6	30.01.2015	21:00	Weinand	alle Projektleiter

Nr.	Vorgangsname	Anfang	Ende	15	16	17	Mai 201	4	20	21	22	Juni 2014
				07.04	14.04	21.04	28.04	05.05	12.05	19.05	26.05	02.06
1	Gruppe 1 (Wirtschaftlichkeitsbetrachtung)	Die 06.05.14	Mit 02.07.14									
2	Vorbetrachtung bzgl. H2	Die 06.05.14	Son 15.06.14									
3	Vorbetrachtung bzgl. MeOH	Die 06.05.14	Son 15.06.14									
4	Parameterangabe	Die 06.05.14	Son 15.06.14									
5	Vorbereitung auf Rückfragen bei der Zwischenpräsentation	Don 26.06.14	Mit 02.07.14									
6	Gruppe 2, 3, 4 , 5, 6	Die 06.05.14	Mit 02.07.14									
7	Recherche Prozessoptionen und -auswahl	Die 06.05.14	Mon 02.06.14									
8	Prozessbeschreibung	Die 20.05.14	Mit 18.06.14									
9	Verfahrensfließbild	Die 20.05.14	Mit 18.06.14									
10	Vorbereitung auf Rückfragen bei der Zwischenpräsentation	Don 26.06.14	Mit 02.07.14									
11	Projektleitung	Son 20.04.14	Don 03.07.14		Г							
12	Inhaltliches Konzept	Son 20.04.14	Mon 05.05.14									
13	Vorlagen, Recherchehinweise	Son 20.04.14	Mon 05.05.14									
14	Korrekturen	Mon 02.06.14	Don 03.07.14									
15	Gesamtfließbild	Don 19.06.14	Mon 30.06.14									
16	Präsentation erstellen/ organisieren	Don 26.06.14	Mit 02.07.14									
17	Meetings	Don 10.04.14	Don 03.07.14	1								
18	Kick-Off-Meeting	Don 10.04.14	Don 10.04.14	 10. 	04							
19	Gesamtmeeting 1	Die 06.05.14	Die 06.05.14					06.05				
20	GL-Meeting SS 1	Mit 07.05.14	Mit 07.05.14					07.05				
21	GL-Meeting SS 2	Die 20.05.14	Die 20.05.14							◆ 20.05		
22	GL-Meeting SS 3	Die 03.06.14	Die 03.06.14									• 03.06
23	GL-Meeting SS 4	Don 19.06.14	Don 19.06.14									
24	GL-Meeting SS 5	Don 26.06.14	Don 26.06.14									
25	Gesamtmeeting 2 (Präsentation)	Don 03.07.14	Don 03.07.14									
	·			1		Seit	e 1					

Nr.	Vorgangsname	Anfang	Ende	Juli 2014					August 2014					September 2014					
				25 26	27	28	29	30	31 3	2 3	34	1	35	36	37	38	39	40	41
				16.0623.0	630.06	07.07 [°]	14.07	21.072	8.07 04	08 11.	08 18.0	<u>)82!</u>	5.080	1.09 08	3.09 1	5.0922	2.09 29	9.090)6.101
1	Gruppe 1 bis 6	Don 26.06.14	Don 21.08.14	1							I								
2	Überarbeitung Berichte & VfB	Don 26.06.14	Don 21.08.14																
3	Projektleitung	Fre 22.08.14	Die 30.09.14								ľ						-1	ļ	
4	Überarbeitung Gesamtfließbild	Fre 22.08.14	Fre 12.09.14								i								
5	Zusammenführung der Berichte	Fre 22.08.14	Fre 12.09.14								i								
6	Vorbereitung Einzelgruppenmeetings	Fre 05.09.14	Die 30.09.14																

Nr.	/organgsname	Anfang	Ende	Oktober 20 40	014 41	42 43	Nover 44	nber 2014 45 46	47 48	Dezember 2014 49 50	51 52	Januar 2015 1 2	3	4	Feb 5	ruar 2015 6	7
1	Gruppe 1	Mon 13.10.14	Son 11.01.15	29.09	06.10	13.10 20.10	27.10	03.11 10.11	17.11 24.11	01.12 08.12	15.12 22.12	29.12 05.01	12.01	19.01	26.01	02.02	09.02
2	Recherche Überschussstrom	Mon 13.10.14	Son 02.11.14														
3	Investitions- und Betriebskosten	Mon 17.11.14	Son 14.12.14								I						
4	Berechnung versch.	Mon 17.11.14	Son 14.12.14								ı						
5	Einstiegsszenarien Präsentationserstellung	Mon 15.12.14	Son 11.01.15														
6	Gruppe 2 (Elektrolyse)	Mon 13.10.14	Son 14.12.14								1						
7	Einarbeitung Änderungen	Mon 13.10.14	Son 26.10.14	_													
8	Bilanzierung + ChemCAD	Mon 13.10.14	Fre 07.11.14														
9	Aufstellungs & Ex-Zonenpläne	Mon 27.10.14	Son 16.11.14														
10	Investitionskostenparameter	Mon 10.11.14	Son 16.11.14														
11	Überarbeitung, falls erforderlich	Mon 24.11.14	Son 07.12.14	_													
12	Präsentationserstellung	Mon 17 11 14	Son 14 12 14														
13	Gruppe 3 (Polygeneration)	Mon 13 10 14	Son 14 12 14														
14		Mon 12 10 14	Son 26 10 14	_		•	_				•						
14		Mon 12 10 14	Son 22 11 14														
15	Post-Combustion)	Won 13.10.14	Son 23.11.14	_													
16	Lastvarianz IGCC	Die 28.10.14	Son 23.11.14														
17	Uberarbeitung, falls erforderlich	Mon 24.11.14	Son 07.12.14														
18	Präsentationserstellung	Mon 17.11.14	Son 14.12.14								•						
19	Gruppe 4 (RWGS)	Mon 13.10.14	Son 14.12.14								1						
20	Einarbeitung Änderungen	Mon 13.10.14	Son 26.10.14														
21	Bilanzierung + ChemCAD	Mon 13.10.14	Fre 07.11.14														
22	Aufstellungs & Ex-Zonenpläne	Mon 27.10.14	Son 16.11.14														
23	Investitionskostenparameter	Mon 10.11.14	Son 16.11.14					Ť	•								
24	Recherche Minimallast & Umbauten für Flexibilität	Mon 03.11.14	Son 23.11.14														
25	Überarbeitung, falls erforderlich	Mon 24.11.14	Son 07.12.14														
26	Präsentationserstellung	Mon 17.11.14	Son 14.12.14								I						
27	Gruppe 5 (MeOH)	Mon 13.10.14	Son 14.12.14								1						
28	Einarbeitung Änderungen	Mon 13.10.14	Son 26.10.14														
29	Aufstellungs & Ex-Zonenpläne	Mon 27.10.14	Son 16.11.14														
30	Bilanzierung + ChemCAD	Mon 13.10.14	Son 02.11.14														
31	Investitionskostenparameter	Mon 03.11.14	Son 16.11.14				-										
32	Recherche Minimallast &	Mon 03.11.14	Son 23.11.14														
33	Überarbeitung, falls erforderlich	Mon 24.11.14	Son 07.12.14														
34	Präsentationserstellung	Mon 17.11.14	Son 14.12.14								I Contraction						
35	Gruppe 6 (CO2-Absorption)	Mon 13.10.14	Son 14.12.14			1					1						
36	Einarbeitung Änderungen	Mon 13.10.14	Son 26.10.14														
37	Bilanzierung + ChemCAD	Mon 13.10.14	Son 16.11.14						B								
38	Investitionskostenparameter	Mon 17.11.14	Son 23.11.14														
39	Wirtschaftlichkeitsbetrachtung	Mon 24.11.14	Son 07.12.14														
40	Überarbeitung, falls erforderlich	Mon 01.12.14	Fre 12.12.14							1							
41	Präsentationserstellung	Mon 24.11.14	Son 14.12.14														
42	Projektleitung	Mon 13.10.14	Fre 30.01.15														
43	Korrekturen	Mon 13.10.14	Son 21.12.14	-													
44	Texte verfassen (PL, CO2-chem.	Mon 10.11.14	Son 14.12.14	-							ı						
45	Industrie, Prozessübersicht) Zusammenstellung	Mon 13.10.14	Son 18.01.15														
46	Abschlussbericht Präsentation Fachtagung	Mon 24.11.14	Mon 24.11.14	-					♦ 24.11								
47	Präsentation korrigieren &	Mon 15.12.14	Fre 23.01.15	-													
48	fusionieren Binden lassen etc.	Mon 19.01.15	Fre 30.01.15	-													
49	Meetings	Die 07.10.14	Mit 04.02.15												-	-	
50	- PL & Gruppe 1	Die 07.10.14	Die 07.10.14		07.10												
51	GL-Meeting WS 1	Mon 13.10 14	Mon 13.10 14	-		13.10											
52	PL & Grunne 6	Die 14 10 14	Die 14 10 14	_		▲ 14.10											
52		Die 14.10.14	Die 14.10.14			14 10											
55	PL & Gruppe 3	Die 14.10.14	Die 14.10.14	_		• 16 10											
54	PL & Gruppe 5	Don 16.10.14	Don 16.10.14			• 16.10											
55		Don 16.10.14	Don 16.10.14	_		 10.10 17.40 											
56	PL & Gruppe 4	Fre 17.10.14	Fre 17.10.14			17.10											
57	Dozenten-Meeting	Mon 27.10.14	Mon 27.10.14				27.10										
58	GL-Meeting WS 2	Mon 10.11.14	Mon 10.11.14					10.11									
59	GL-Meeting WS 3	Mon 24.11.14	Mon 24.11.14						24.11								
60	GL-Meeting WS 4	Mon 08.12.14	Mon 08.12.14							♦ 08.12							
61	GL-Meeting WS 5 (Probe der Einzel-Präsentationen)	Mon 15.12.14	Mon 15.12.14							•	15.12						
62	GL-Meeting WS 6	Mon 12.01.15	Mon 12.01.15									٠	12.01				
63	GL-Meeting WS 7 (Generalprobe Geamtvortrag)	Mon 26.01.15	Mon 26.01.15											٠	26.01		
64	Abschlusspräsentation	Mit 04.02.15	Mit 04.02.15	1												04.02	
		1		1				Seite 1					1				