
Master Thesis

Design and implementation of a verifier for sequential programs using
the Hoare calculus

submitted by: Florian Wege
Student number: 15856
Field of studies: Information and Communication Systems
Merseburg University of Applied Sciences

supervised by: Prof. Dr. phil. Dr. rer. nat. habil. Michael Schenke
Merseburg University of Applied Sciences
Prof. Dr. rer. nat. habil. Andreas Spillner
Merseburg University of Applied Sciences

Merseburg, November 1, 2017

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Analysis vs simulation . 3
1.3 Basic approaches . 3
1.4 What the document is about . 6

2 Preliminaries 7
2.1 Overview . 7
2.2 How to instruct computers . 8

3 Introduction of a Language 12
3.1 On languages and grammars . 12

3.1.1 Definitions . 12
3.1.2 Ambiguity, associativity, precedence 15
3.1.3 The problem with left recursion 17
3.1.4 Construction of an LL(1) parser table 20

3.2 Core language . 22
3.2.1 Commands . 22
3.2.2 Numeric expressions . 25
3.2.3 Boolean expressions . 30

3.3 Semantic tree . 33

4 How to prove 35
4.1 Of operational semantics . 35
4.2 Transition to Hoare calculus . 37
4.3 Assertions as language extension . 44
4.4 Resolving implications . 45

4.4.1 The implication question . 45
4.4.2 Reduction of numeric expressions 46
4.4.3 Reduction of boolean expressions 48
4.4.4 Ordering . 50
4.4.5 Substitution . 50
4.4.6 Chosen approach . 51

ii

4.4.7 Greatest common divisor . 51
4.5 Finding invariants . 52

4.5.1 Pointers . 52
4.5.2 Parallel counter . 53
4.5.3 Transformation of loops and structural thoughts 55

5 Implementation 57
5.1 Java, surface . 57
5.2 Grammar, lexer, parser . 59

5.2.1 First, Follow . 63
5.3 Semantic transformation, reduction, ordering 68
5.4 Hoare . 73

6 Conclusion 76

A First, Follow, parser table listings 80

B Lexer, parser listings 83

C Semantic Transformation Listing 86

D Hoare listing 94

E Grammar for Hoare-decorated while programs 104

iii

List of Tables

T1 Empty First-Follow table. 20
T2 Filled First-Follow table. 21
T3 Predictive parser table. 22
T4 Operator table of 〈exp〉. 26
T5 Operator table of 〈bool_exp〉 . 31

vii

List of Figures

F1 From intention to program. 6

F2 High level code to machine code. 9
F3 Processing chain of a compiler. 10

F4 First example grammar. 13
F5 Example grammar as a tuple. 14
F6 Two-sided recursive grammar. 15
F7 Syntax trees of the example grammar for id+id+id 15
F8 Right-most derivation grammar. 16
F9 Leftmost derivation grammar. 16
F10 Syntax trees of the multiplication-extended 〈exp〉 grammar. 16
F11 Grammar of 〈exp〉 with multiplication. 17
F12 Grammar with operator precedence. 17
F13 Grammar with left recursion. 18
F14 Elimination of left recursion. 18
F15 Grammar of 〈exp〉 with right recursion. 19
F16 Elimination of left recursion with multiple instances of α and β. 19
F17 Left factoring. 19
F18 Example grammar for the clarification of First and Follow. 20
F19 Commands grammar. 24
F20 Shortened grammar of 〈prog〉 (raw). 24
F21 Shortened grammar of 〈prog〉 (left recursion eliminated). 25
F22 Core grammar of 〈exp〉 (raw). 26
F23 Grammar of 〈exp〉 (with fixed precedence). 27
F24 Core grammar of 〈exp〉 (with fixed associativity). 28
F25 Core grammar of 〈exp〉 (right recursive). 29
F26 Grammar of 〈exp〉 (final). 30
F27 Core grammar of 〈bool_exp〉 (raw). 31
F28 Grammar of 〈bool_exp〉 (final). 32
F29 Extensive syntax tree of A+1 . 33
F30 Semantic tree of A+1 . 34

F31 Tree for factorial program. 43

viii

F32 Hoare-extended grammar. 44
F33 Nested Hoare blocks. 45

F34 Main window. 58
F35 Views. 58
F36 Syntax chart. 59
F37 Grammar-related class diagram. 60
F38 Parser-related class diagram. 63
F39 Type hierarchy of 〈Prog〉. 69
F40 Type hierarchy of numeric expressions. 70
F41 Type hierarchy of boolean expressions. 71
F42 Hoare dialog and indicator. 74
F43 Loop invariant dialog. 74
F44 Consequence check dialog. 75
F45 Semantic tree with proof outline. 75

ix

Listings

L1 Simple increment of a variable . 4
L2 Disadvantages of state-space exploration 5

L3 Conversion of foot-loop to while-loop (Java). 23
L4 Conversion of count-controlled loop to while-loop (Java). 23
L5 Conversion of conditional assignment to selection (Java). 23

L6 Svar example . 35
L7 Decoration example. 37
L8 Factorial program. 43
L9 Swap program. 46
L10 Parallel counter . 53
L11 Parallel counter (parametrized) . 54
L12 Parallel counter (start parametrized) 54
L13 Loop transformation . 55

L14 Implementation of 〈exp〉 grammar (Java) 60
L15 Implementation of First (Java) . 63
L16 Implementation of Follow (Java) . 64
L17 Parser table (Java) . 65
L18 Lexer (Java, shortened) . 66
L19 Parser (Java, shortened) . 67
L20 Logic snippet for 〈Pow〉 nodes. 71

L21 First (Java) . 80
L22 Follow (Java) . 81
L23 Parser table (Java) . 82

L24 Lexer (Java) . 83
L25 Parser (Java) . 84

L26 Transformation to semantic tree (Java) 86

L27 Hoare (Java) . 94

x

Abstract

The Floyd-Hoare logic or calculus is a methodology for proving the partial or total cor-
rectness of computer programs developed by C.A.R. Hoare based on ideas of Robert
W. Floyd and has awoken a wave of enthusiasm in the domain of program verification.
Though the system has received a great deal of recognition, some fundamental problems
in effectively using it remain to be solved, as they were found undecidable at large.

This document aims to build a bridge between the often only theoretically-contemplated
Hoare calculus and the venture to implement such with an example, starting from
scratch. It describes the construction of an LL(1) parser, the preparation of correspond-
ing grammars, a transformation of the obtained syntax trees, the Hoare methodology
itself and then delves into the issues of searching for loop invariants and the handling
of logical and arithmetic expressions, seeking heuristics of the implication problem,
resorting to user interaction where automated solutions fall short.

xi

1 Chapter 1

Introduction

1.1 Motivation

Since the introduction of computers, more and more of humanity’s activities experienced
a shift into the direction of digital handling. That transition streamlined a lot of things
but also called for a new profession facing up to the proper control of those machines,
which would soon become known under the term software engineering. As there is
a myriad of processes to be described and accounted for, the phenomenon had been
bound to fan out. Thus the emergence of specialized engineers for diverse systems and
their hybrid forms gradually came to life. “Programming” in its accustomed associations
has turned into a basic skill and some politicians actually want to integrate it firmly
into the curriculums of elementary schools [Kam16]. This discipline has also adapted
a certain trait of creativity. With the right idea in mind for an App, arranging the
available components in a way of high usability, one can tap a market demand because
a range of platforms and services are already in place for unleashing one’s creative mind
upon. Hardware, too, became more feasible and sophisticated in time but, as the term
discloses, software stands for an elevated level of malleability, which initially fosters
a trial-and-error-flavored development. Adding more and more layers of abstraction,
the exact behavior of a program is often up for speculation. Unless one is working
with embedded systems, which require a close-up treatment, being aware of the inner
workings, to some extent at least, has been rendered increasingly dispensable.

“At least once a semester I hear some kid yell,
’Wow! This is like magic!’ and that really
motivates them.”

—Alfred Thompson, computer science teacher
[Kam16]

This aspect is in contradistinction to the foundations of computer science, which
seeks to formalize and systematically find solutions to problems. And in fact, as the
application of software engineering progressed, the domain of topics enlarged and
everything became more complex. There is the so-called Law of leaky Abstractions
[Spo02] as depicted by Joel Spolsky in 2002. It states that there is no perfect

1

abstraction of non-trivial procedures. Especially when things do not work as they
should, the put-on mask falls off and implementation details resurface. Questions of
optimization and concerns about security are catching up and thus a particularized
insight into the groundwork is about to regain value. As noted above, most everyday
business is already handled by software and there are a couple of different applications
where utmost accuracy is key:

• monetary transactions: automatic teller machines, to debit the right account,
transfering ability to where it is needed

• infrastructure: e.g. ensuring the proper behavior of vehicles, switching and
communication systems

• dealing with customer (private) data

• ...

Since it is more economic to do so, most software companies are content with the
density of errors below a priorly specified threshold. That is, the amount of errors per
lines of code is measured and weighed against a target value set within the analysis
phase. For applications where an error could cost the life of a human being, the
common pick is a limit of 0.5 per 1000 lines (0.05%) [Wik17b]. Yet one may argue
that risks of that kind should be diminished completely to zero and that an individual
life would not be up for quantification. From a historical viewpoint, a broad range of
different causes for malfunctioning software could be recorded: A comma in lieu of a
dot, a wrong signum leading a numeric expression, the usage of a wrong formula, racing
conditions, an insufficient domain of definition, protocol errors, imprecision of floating
point operations, overload, buffer overflow/underflow, non-considered constellations
and many more [Tan16][Kle09] pp. 4-6. Upcoming are trends like IoT (Internet
of Things) or autonomous driving that pose new layers of networks and challenge
established safety aspects. Another famous concern is cost efficiency: It is well known
that the later a software mistake is discovered, the more expensive it is to fix it. After
the development phase ended, the team that initially wrote the program often moved on
to newer shores. Or in a case like the Mars rover Curiosity, once deployed, replacing
the software a posteriori appears rather challenging. Moreover, often enough, the source
code is not published. Demanded requirements can change eventually and glitches may
manifest themselves without displaying any symptoms right away but which may infect
the system nonetheless and deal a blow to its expandability later on.

Summarizing this section, the sources of programming errors are multifarious. There
is a lot of potential hidden in between and it is often vital to know that a piece of code
is indeed working correctly before shipping or utilizing it. Hence is implied a stricter
methodology of scrutinizing software if not one for its systematic development.

2

1.2 Analysis vs simulation

To decrease the number of errors, a range of actions is at the software engineer’s
disposal. Most often that involves peer reviews, i.e. an independent surveyor evaluates
one’s code. Another idea is to simulate the behavior by carrying out dynamic test
cases, directly running units or whole modules [McC08]. Therefore, positive test cases
are written that present well-formed inputs or conditions for an algorithm, then that
algorithm is executed and the results are checked for their integrity. Conversely, negative
tests are to confirm that bad input or precondition scenarios will yield a proper error
handling. The program is not supposed to end in an unregarded segmentation fault
(stemming from an invalid access of memory), maybe should instead display a message
box and append the information of the exception to a log file. However, those tests
cover but a part of the possible instances the code allows for, therefore fail to vindicate
an overall correctness as a famous quote by E. W. Dijkstra alleges:

“Program testing can best show the presence of
errors but never their absence.”

—Edsger W. Dijkstra [Dij69]

On the other hand, when speaking about verification in the environment of theoretical
computer science, the term denotes a genuine proof of the absence of errors within a
program according to a specification using formal means. It therefore poses an exact
method to evaluate the quality of a software, which, as hinted above, turns out to be
crucial at some points and as a consequence rightfully contributes to the discipline of
software engineering.

1.3 Basic approaches

Currently, there are two main approaches known to this stipulation: model checking
and deductive means. Model checking is the method of deciding whether a program
or a model of it suffices a given specification by exploring its state-space. At this, a
model serves an abstraction of the reality. The idea is to examine the model in order
to draw conclusions about the actual system. It needs to be fitting to the task at
hand, should be reduced as far as possible to simplify the issue but still contain all the
relevant information to make the decision. Different models can be mixed to acquire
new information but such course of action is quick to decline the collective operability.
The state-space is a set or graph of constellations of the values of variables and the
current point of execution. This vector describes the state of the program in its entirety.
By going through the program code, a verifying tool shifts between the states in order

3

to find all possible execution paths. Those are then checked against constraints, e.g.
invariants like a combination of variable values that should never occur. If an execution
path is discovered that violates these conditions, it will be exposed and the programmer
can observe the execution path that lead to the error to hopefully fix its root cause.
This approach basically traverses all accessible variations of execution before it marks
the program as approved. That is why there is an exponential growth in computation
time and required memory involved, rendering the algorithm impractical fairly quickly.
Model checking also necessitates a closed, finite system (or an algorithm to render it
as such). Otherwise the program could keep allocating memory and the number of
states would not exhaust, thus the verifier may never come to a conclusion. Dynamic
data structures may be examined by dedicated methods like shape analysis [Wik17f].
Both the model and the specifications are described in appropriate languages that allow
the verifier to work with. Due to the intent of exploring the state space, the modeling
language must project a finite state machine. Examples are PROMELA (Process
Meta Language), Timed Automata or Petri nets [Kle09]. The specifications or
properties checked for are usually decorated by logical expressions like temporal logic
as introduced in programs by A. Pnueli [Pnu77], are tacit (a division by zero should
never occur) or may be integrated in the modeling language itself, e.g. PROMELA
permits to insert assertions as part of the control flow [Wik17e].

Another way of verifying a program and the approach presented to be in this
documentis by deductive resolution of theorems. This idea was first introduced by
Alan Turing on a conference in 1949 [FLM84]. Due to typographical mistakes and
other circumstances, it went hidden for a bit but other researchers had retaken the
topic, ultimately. The important aspect back then was the notion that the problem of
proving the correctness of programs could be modularized and that a program (Turing
used flowcharts) could be decorated with assertions. Later, in 1969, C.A.R. Hoare
invented a set of axioms and rules, the so-called Hoare triples, that would point out a
relation between an elementary program instruction or control flow and its effect on
what can be logically assumed from what the semantics of this code snippet are to
imply. For example, the following listing increments a numerical variable x by 1.

1 x:=x+1

Listing L1: Simple increment of a variable

Now it can be said that prior to this assignment, the variable had been smaller
by 1 compared to its new state. Or more confusingly, before the assignment, every
occurrence of x in an assertion had been substituted by the expression of the new value
comparing to the ensuing outcome.

4

1 PRE {true}
2 z:=x+y;
3 z:=z*2;
4 z:=z-(x+y)
5 POST {z=x+y}

Listing L2: Disadvantages of state-space exploration

The above Listing L2 shall serve as an easily comprehensible example for when
deductive means outclass the procedure of state exploration. Assuming that x and y
are only 2 byte integer variables and may take any value in their data type domain, that
totals the combination of 32 bits or over 4 billion possibilities to check the postcondition
for, which is what state exploration would do. On the other hand, a human being
should be able to recognize the pattern without much effort. By substitution, one
could argue the assignments can be reduced to a single one (z := x + y) and that
straight appears to match the postcondition. So does the above program fulfill the
surrounding specification? Maybe, maybe not. It should be considered that, first off,
the conditions between the curly braces possess their own language with their own
semantics, e.g. the operators may have their own meaning. Secondly, those are not
exactly mathematical expressions. As hinted by x and y being 2 byte integer variables,
z too might be restricted, thus the add and multiplication instructions may cause a
buffer overflow, whereupon the semantics would have been altered by the substitution
then. So of course it depends on the underlying system and that system respectively
the semantics of the language have to be well-known in advance. Other than that, an
axiomatic theorem solver like the human would identify the pattern, apply rules on the
structure of the program to see what can be derived from it and then make statements
about it.

Deductive program verification, however, comes with its own set of problems: Those
usually revolve around the elementary control flow structures of imperative programming
languages and the implications of those are not necessarily assessable in their entirety.
The question whether a logic expression connotes another is notably undecidable.
Furthermore, the later more precisely examined calculus only establishes relationships
and does not exactly hand out an algorithm. From theoretical computer science it can
be stated that, with no loss of generality, it is impossible to say if a program satisfies a
set of specifications of any kind. However, it becomes more feasible when narrowed
down to classes of programs and regarded languages.

5

1.4 What the document is about

The objective of this document shall be to outline the Hoare calculus, to make a design
for a verifier that would present how its rationales can be applied starting from a raw
string input, how the mathematical formulae that come with it could be transcribed to
imperative algorithms and at which points the interaction with a human user is still
required. The design is then to be implemented in the Java programming language
along with an appropriate graphical user interface to portray the inductive procedure of
Hoare-style reasoning.

To conclude the introduction, it should be stated that both model checking and
theorem solving rely on a proper specification of the issue. If that is already faulty,
which may be the case, since the specification needs a strict formalization as well, any
verification will be meaningless and is prone to invoke type II errors (“false negatives”)
because it fails to project the client’s true intentions. Figure F1 reveals more origins
of error. Even when establishing specifications and a model and even obtaining the
program by transformation of the model in the target language, there are still risks of
human failings in between that may falsify the verification result (and the tooling must
be assumed to be working flawlessly). That poses another reason why even a formal
verification should only be seen as an additional scheme in the quality assurance toolkit.

Intention Specification

Program

unsafe

backedarbitrary

refactoring

Figure F1: From intention to program.

6

2 Chapter 2

Preliminaries

2.1 Overview

Before plunging into the core topic of this document, it appears necessary to formalize
the target of a prospective verifier. In order to make statements about the validity of
a program, whether it holds to certain properties or not, both the program and the
properties should be fixated. What could be considered secure knowledge anyway? Such
a holistic view only makes sense under the presumption that some basic ideas can already
be regarded as irrevocably intrinsic and then means of induction, analogy or suchlike
are used to widen the scope and to declare more statements compatible to the existing
knowledge base, verifying them or, if they appear as contradictory, objecting them. And
the strategy here is like-minded: To know if a program fulfills some conditions, the
meaning of the program and the conditions have to be exact. Since this entails lots and
lots of programs and attributes in general, it becomes evident that rather than manually
and pointlessly contemplating all possible variations, it deems better to ascribe it to
some underlying scheme that can be unfolded on demand. Therefore the meaning,
also called the semantics, of a program (and later also those of conditions) should be
inductively synthesized using an appropriate model kit relating to a set of basic entities.
Prior to determining the semantics, these entities also have to be identified as such,
which is the part of the syntax analysis and shall be depicted as well.

Therefore the schedule is as follows: The rest of this chapter will give some further
classification, tease about the purport and hand over a short preview. It may be
skimmed or skipped over if the reader is fond of the contextual knowledge. Chapter 3:
Introduction of a Language will formally start with the definition of a suitable language,
how it is characterized and how it can be processed. Subsequently, the specific language
subject to this documentand whose programs are to be verified is firmly presented along
with some simple remarks about its significance. Chapter 4: How to prove first
formalizes these semantics and then reasons about their usage, talks about the notion
of correctness and introduces assertions by extending the language. Finally, a transition
to the Hoare rule system will be conducted, how to use it for verification of sequential
programs and what challenges come with it. Examples will be reviewed and ideas to
overcome the challenges be discussed along with some hints to the implementability of

7

such endeavor. At this point, the theory and the general design will have been covered.
The realization of the verifier using the aforementioned theory is carried out via the
Java programming language and eyed in the hindmost Chapter 5: Implementation .
Introduced shall be a simplified imperative language that later becomes target of the
Hoare rule system which is derived from operational semantics. The language contains
basic control flow elements like the composition of instructions, the selection routine
and condition-controlled loops. More complex programs can be written by combining
the aforementioned basic structures.

2.2 How to instruct computers

Computers by definition are devices that understand some sort of digitally represented
information and can process it in compliance with a program. That program may be
immutably ingrained or be loaded from a mounted memory storage as more dynamic
machines permit, which is what bestows a great range of use cases upon them and made
them ubiquitous. Yet those machines are set up at some point and consist of a number
of rigid hardware components providing their specific functionality and each of that
hardware piece speaks a certain language that needs to be addressed for. To be able to
have this orchestra flawlessly work in unison, besides complying with a couple of basic
interfaces, there is usually a mediator called the operating system in between and
the concept of drivers further helps to identify the spoken language of each component.
Hardware and operating system together are then referred to as the platform, serving
as a layer to host user-written programs on and more layers can be stacked on top if
required. But the platform is essentially the lowest layer to have the angularity of the
hardware components relaxed. At this point, everything channels through its digital
interface and is therefore unified in the language referred to as machine code.

Still, machine code, as the name indicates, varies between different machines. In
fact, in the beginning, software engineers tended to write in assembly language, which
is a more human-readable representation of machine code yet still platform-dependent.
To not have to rewrite the same program logic for different platforms over and over
again, more levels of abstractions were piled up and thus high level languages were
born. High level languages like C aggregate universal coding paradigms like variables
or control structures and can combine elementary instructions to larger compounds.
This makes it easier for the software engineer to assess the functionality of a program,
which in turn is kind of a first step to boost the drafting of correct programs. For the
platform to be able to use such high level programs, of course it appears necessary to
reduce them to executable machine code again. The standard procedure is depicted in
Figure F2 . The user-manufactured code may be exposed to a preprocessor, which

8

High level language

Preprocessor

Pure HLL

Compiler

Assembly

Assembler

Relocatable machine code

Loader/Linker

Absolute machine code

Figure F2: High level code to machine code.

takes care of some preparatory tasks like the inclusion of other script files or alternative
substitutions like those carried out by the #define directive in the C language. This
yields the pure high level language as understandable by a compiler. The compiler
does the main part of the translation and outputs assembly code which only needs
to be transcribed to machine code and linked together to obtain the final executable
version the hardware setup can be operated with.

The language as described in this document won’t be in need of such a preprocessor
and the verification is directly applied to the high level language during the compiler
phase. Thus any kind of assembly output or lower level persistence is not required here
and, in fact, the workings of a compiler can be split up further in detail.

9

Fr
on

te
nd

B
ackend

Pure HLL

lexical analyzer

list of tokens

syntactical
analyzer

syntax tree

semantic
analyzer

semantically ver-
ified syntax tree

intermediate
code generator

intermediate
code

code optimizer

optimized code

target code
generator

assembly

Figure F3: Processing chain of a compiler [Rav17].

Figure F3 shows the composition of the different components of a compiler. In
a first step, a lexical analyzer, usually referred to as lexer or tokenizer, surveys the
raw input sequence of characters and contracts the to be as cohesive identified words
(lexemes) to a sequence of tokens in the same order. This makes it easier for the
syntactical analyzer (parser) to progress because it promotes the tokens to serve as
the atomic symbols instead of the initial single characters. Both lexer and parser work
with some grammar based on which the symbols are bestowed semantics but while
the task of a lexer is to handle a less complex regular grammar (Chomsky ’s level 3),
which can be realized using regular expressions, parsers must cope with context-free
grammars (Chomsky ’s level 2) and normally it would be desirable for the parser to
produce a tree structure incorporating rule precedence [Sas10]. The lexer can also be
used to remove unnecessary white space and comments. More about the process can
be read in Chapter 5: Implementation . After the syntactical analysis, there can
be a semantic analysis that cross-checks the validity of the constructed syntax tree or
sanitizes it, e.g. the typing in a variable assignment statement like:

x := y + 1 (2.1)

Do variable x and the expression y+1 assigned to it actually match in their respective

10

data type? Since the type of the variable may be fixated (declared) far off the assignment
instruction, it probably won’t reside in the same branch/grammar production rule path.
Moreover, the namespace for variables may be shared with other entities like functions,
so it might make sense to examine whether the identifier does really denote a variable.
Thus the semantic analyzer exposes a verified syntax tree. The Intermediate Code
Generator translates the syntax tree into another intermediate representation, which
serves as an interface between the high level language and the platform. The last
two steps (Code Optimizer and Target Code Generator) can then be replaced per
setup, so the other components are left untouched. The program verifier as described
in this document is inserted right after the syntactical analyzer. It would ideally be
done after a semantic analysis but the contemplated language and the samples are
simple enough that such won’t be required. Nowadays, the described analyses are often
processed incrementally in background threads parallel to the programmer writing code
and, in this way, assisted deductive program verification can be blended in on-the-fly
but suchlike tool and verification in general are rather subject to specialized languages
at this point in time. Examples of those languages are Spec#, an extension to C# or
JML (Java Modeling Language), which seeks to introduce verification specifications
in the Java programming language by wilily wrapping the additional semantics required
in backwards compatibility guaranteeing comment syntax.

11

3 Chapter 3

Introduction of a Language

3.1 On languages and grammars

3.1.1 Definitions

The considered programs are made up from a sequence of symbols of a given alphabet.
A sequence of symbols is said to be a word.

Definition 1. An alphabet is a set of symbols.

Ex: {a, b, c}

Definition 2. A word is a string or finite sequence of symbols (associated to a specific
alphabet).

Ex: {aaba, bbb, acb} using the alphabet {a, b, c}

To later derive a meaning from it, some code must be established in advance and
not just any word shall be accepted by the compiler but a well-defined set of words as
denoted by a formal language.

Definition 3. A language is a set of words. Since those sets are usually infinite, a
language is commonly described by a predicate.

Ex: A language may be designated by the notation of a regular expression like for
instance a*b, the asterisk being a quantifier for the preceding symbol, indicating “an
arbitrary number of”, so the given example would encompass the words b, ab, aab, aaab
and so on but regular expressions can only describe regular languages (Chomsky ’s
level 3) while there are other ways to address greater sets of languages. Since languages
as defined above alone still lack a proper structure to bind semantics to, the concept of
grammars is to be introduced. Those consist of a set of production rules to span a
language incrementally, chunk and organize their words into a tree structure, called the
tree of the syntax. Grammars always relate to a (specific type of) language and are
formalized as following:

12

Definition 4. A grammar is a tuple of a set of variables (also called non-terminals),
terminal symbols, production rules and a starting symbol (or set thereof).

G = (V, T, P, S)

• V - set of non-terminal symbols or variables

• T - set of terminal symbols

• P - production rules

• S - starting symbol(s)

〈exp〉 ::= 〈exp〉 ‘+’ 〈exp〉
| 〈exp〉 ‘*’ 〈exp〉
| ‘id’

〈bool_exp〉 ::= 〈bool_exp〉 ‘&’ 〈bool_exp〉
| 〈bool_exp〉 ‘|’ 〈bool_exp〉
| 〈exp〉 ‘<’ 〈exp〉
| 〈exp〉 ‘>’ 〈exp〉
| 〈exp〉 ‘<=’ 〈exp〉
| 〈exp〉 ‘>=’ 〈exp〉
| 〈exp〉 ‘=’ 〈exp〉
| 〈exp〉 ‘<>’ 〈exp〉
| ‘true’
| ‘false’

Figure F4: First example grammar.

The first example of a grammar in Figure F4 displays the standard Backus-
Naur Form notation [Mignd] that will also be used throughout this document. In a
mathematical tuple notation it corresponds to:

13

G = (
V = {〈exp〉, 〈bool_exp〉},
T = {‘id’, ‘+’, ‘*’, ‘&’, ‘|’, ‘<’, ‘>’, ‘<=’, ‘>=’, ‘=’, ‘<>’, ‘true’, ‘false’},
P = {〈exp〉 ::= 〈exp〉 ‘+’ 〈exp〉,
〈exp〉 ::= 〈exp〉 ‘*’ 〈exp〉,
〈exp〉 ::= ‘id’,
〈bool_exp〉 ::= 〈bool_exp〉 ‘&’ 〈bool_exp〉,
〈bool_exp〉 ::= 〈bool_exp〉 ‘|’ 〈bool_exp〉,
〈bool_exp〉 ::= 〈exp〉 ‘<’ 〈exp〉,
〈bool_exp〉 ::= 〈exp〉 ‘>’ 〈exp〉,
〈bool_exp〉 ::= 〈exp〉 ‘<=’ 〈exp〉,
〈bool_exp〉 ::= 〈exp〉 ‘>=’ 〈exp〉,
〈bool_exp〉 ::= 〈exp〉 ‘=’ 〈exp〉,
〈bool_exp〉 ::= 〈exp〉 ‘<>’ 〈exp〉,
〈bool_exp〉 ::= ‘true’,
〈bool_exp〉 ::= ‘false’},
S = {〈exp〉}

)

Figure F5: Example grammar as a tuple.

This assumes that 〈exp〉 is indeed the starting symbol, which is not quite clarified
in the first notation and will instead be separately stated when needed. Variables are
those that appear on the lefthand side of the production rules and which form the
non-terminal nodes of the syntax tree. Terminals are atomic symbols, which means
they cannot be split up any further and become leaves of the syntax tree. They can
only be found on the righthand side of the rules. Furthermore, production rules tell how
the input words shall be broken down into variables and terminals. The starting symbol
(or set thereof) determines what rule(s) to regard on the highest level. The pipe or
vertical line symbol | in the Backus-Naur Form indicates an alternative. Thus the
variable 〈exp〉 can either be derived to exp + exp, to exp * exp or to id here.

Now there are different classes of grammars. Depending on it, the required strategy of
a parser will look different. The later introduced language shall suffice the context-free
LL(1) type. This is why the following steps explain the constraints and construction of
an LL(1) grammar. To obtain such one, ambiguity, left recursion and non-determinism
shall be erased. Some examples are to be inspected and transformed accordingly before

14

stepping further and applying the learned techniques on the actual used language.

3.1.2 Ambiguity, associativity, precedence

Note: Most of the conductions and remarks in this section refer to the compiler design
lectures by Ravindrababu Ravula [Rav17].

〈exp〉 ::= 〈exp〉 ‘+’ 〈exp〉
| ‘id’

Figure F6: Two-sided recursive grammar.

In a first step, the grammar of Figure F6 depicts the concatenation of ‘id’ terminals
by the ‘+’ operator, namely the infix notation of addition. When exposing an input
id+id+id to that grammar, the two different syntax trees shown in Figure F7 may be
obtained. That means the derivation process is not definite. Even with the arithmetic
addition of two numbers being associative and commutative (Abelian), ambiguity in
grammars is not really desired. There shall exist no more than one possible syntax tree
for the same input and grammar. Telling if a grammar is ambiguous in general is not
decidable [Wik17a]. However, the ambiguity at hand is evidently induced because it is
unclear whether the addition operator binds to the lefthand or righthand side. This can
be taken care of by rewriting the production rules to not include the same non-terminal
on both ends. The grammar of Figure F8 has the non-terminal situated at the ending,
its syntax trees grow right-sided (rightmost derivation). The grammar of Figure F9
has the non-terminal situated at the beginning, its syntax trees grow left-sided (leftmost
derivation). With the addition being commutative, it does not matter semantics-wise
but in order to be capable of elucidating another point about leftmost derivation, it
shall be persevered with.

left derivation right derivation
exp

exp

exp

id

+ exp

id

+ exp

id

exp

exp

id

+ exp

exp

id

+ exp

id

Figure F7: Syntax trees of the example grammar for id+id+id .

15

〈exp〉 ::= ‘id’ ‘+’ 〈exp〉
| ‘id’

Figure F8: Right-most derivation grammar.

〈exp〉 ::= 〈exp〉 ‘+’ ‘id’
| ‘id’

Figure F9: Leftmost derivation grammar.

In the following step, the grammar is extended by multiplication according to Figure
F11 . Again an example input id+id*id yields two different syntax trees as visible in
Figure F10 . Moreover, they entail different semantics. When evaluating the semantics
of an expression like applying the mathematical operations of addition and multiplication,
it is not reasonable to re-synthesize the string containing the mathematical expression
as that would again call for the necessity of analyzing the structure but rather the
syntax tree should directly be worked on progressively. The children of a node would
recursively be conflated before advancing to their parent. So in Figure F10 , the left
tree would prioritize and execute the addition first and the resulting sum would become
a factor in the multiplication, which would amount to a different value than what the
mathematical expression id+id*id advises. The multiplication must be carried out
before the summation directive. This raises the question on how to enforce precedence
of operators within a grammar. Operations of higher precedence have to be on a deeper
tree level. The solution is to split the grammar into more stages of variables.

exp

exp

exp

id

+ exp

id

* exp

id

exp

exp

id

+ exp

exp

id

* exp

id

Figure F10: Syntax trees of the multiplication-extended 〈exp〉 grammar.

16

〈exp〉 ::= 〈exp〉 ‘+’ 〈exp〉
| 〈exp〉 ‘*’ 〈exp〉
| ‘id’

Figure F11: Grammar of 〈exp〉 with multiplication.

Now, in the grammar of Figure F12 , the ‘+’ and the ‘*’ operators are disconnected,
they reside on different levels. Only the 〈prod〉 variable is able to contain multiplication
and it cannot go back to 〈exp〉. The purpose of 〈exp〉 is to realize summation but
it can derive to occurrences of 〈prod〉. So it realizes a one-way street and the sum
derivation happens at the upper levels. The intrinsic ambiguity was eliminated as well.
The raison d’être of the second production rule of 〈exp〉 is for the case that there is no
summation involved, it should go straight to 〈prod〉 then. The second rule of 〈prod〉
acts as a terminator, otherwise the tree would keep on growing and it accounts for the
case that maybe there exists no multiplication within the expression.

〈exp〉 ::= 〈exp〉 ‘+’ 〈prod〉
| 〈prod〉

〈prod〉 ::= 〈prod〉 ‘*’ ‘id’
| ‘id’

Figure F12: Grammar with operator precedence.

In summarization, to fix associativity, the recursivity of the rules has to be adjusted
(〈exp〉 ::= 〈exp〉 ‘+’ ‘id’ or 〈exp〉 ::= ‘id’ ‘+’ 〈exp〉 but no 〈exp〉 ::= 〈exp〉 ‘+’ 〈exp〉).
To fix precedence, a hierarchy of non-terminals has to be established. This information
will be adduced when designing the language whose words shall be verified and that is
up for implementation.

3.1.3 The problem with left recursion

When writing a grammar, it should be ensured that a real parser will have to be able to
work with it. In a grammar as depicted in Figure F13 with the starting symbol being
〈exp〉, a top-down parser has to make a decision whether to pick the rule 〈exp〉 ::=
〈exp〉 ‘+’ ‘id’ or 〈exp〉 ::= ‘id’.

17

〈exp〉 ::= 〈exp〉 ‘+’ ‘id’
| ‘id’

Figure F13: Grammar with left recursion.

The basis for a specific decision is the input string. When entering the 〈exp〉 variable,
the type of parser that will be illustrated here would investigate the first part of the
first production rule 〈exp〉 ::= 〈exp〉 ‘+’ ‘id’, which again is 〈exp〉. Without having
made any progress, it finds itself in the same situation, the parser will try to derive
〈exp〉 and see 〈exp〉 ::= 〈exp〉 ‘+’ ‘id’ as the path to pursue. It turns out to be a
never-ending loop. This is why left recursion should be avoided in all production rules.
To retain the generated language yet still get rid of left recursion, there is a simple
conversion prescript demonstrated in Figure F14 . Another non-terminal is inserted
that may right-recursively spawn new instances of α (everything that follows the initial
non-terminal of the production rule causing the left recursion) or end with ε , which
is the empty word. ε does not take any token from the input. Now, α and β may
be substituted by any sequence of variables/terminals. To reform the above example
grammar in Figure F12 and match the conversion pattern, α corresponds to ‘+’
〈prod〉 and β corresponds to 〈prod〉. The transformation is illustrated in Figure F15
. On top of that, the pattern can be extended for multiple α and β branches like in
Figure F16 .

left recursion right recursion

〈A〉 ::= 〈A〉 α
| β

〈A〉 ::= β 〈A’〉

〈A’〉 ::= α 〈A’〉
| ε

Figure F14: Elimination of left recursion.

18

left recursion right recursion

〈exp〉 ::= 〈exp〉 ‘+’ 〈prod〉
| β

〈exp〉 ::= 〈prod〉 〈exp’〉

〈exp’〉 ::= ‘+’ 〈prod〉 〈exp’〉
| ε

Figure F15: Grammar of 〈exp〉 with right recursion.

left recursion right recursion

〈A〉 ::= 〈A〉 α1

| 〈A〉 α2

| 〈A〉 α3 ...
| β1

| β2

| β3 ...

〈A〉 ::= β1 〈A’〉
| β2 〈A’〉
| β3 〈A’〉 ...

〈A’〉 ::= α1 〈A’〉
| α2 〈A’〉
| α3 〈A’〉 ...
| ε

Figure F16: Elimination of left recursion with multiple instances of α and β.

Lastly, in order to produce a LL(1) grammar, non-determinism must be preempted.
That means that the parser must be able to deduce which rule to pick looking only
at the next token of the input sequence, never tracing back. Common prefixes in the
production rules of the same variable have to be factored out to foster that feature.
That process is also called left factoring and is visualized in Figure F17 .

〈A〉 ::= α β1

| α β2

| ...

〈A〉 ::= α
〈A’〉

〈A’〉 ::= β1

| β2

| ...

Figure F17: Left factoring.

19

3.1.4 Construction of an LL(1) parser table

LL(1) stands for processing the input from left to right, right-most derivation and
having a lookahead of 1 token, so no back tracing required. Using a parsing table,
an LL(1) parser can directly make the rule picking decision by knowing the current
non-terminal and the next terminal obtained from the input sequence: NT × T 7→ P .
Before moving on to the actual language going to be used, the process of constructing
an LL(1) parser table shall be outlined, which requires the concept of First and Follow.
First and Follow both describe sets of terminals. First can furthermore contain the
empty word ε and Follow the terminating symbol $ (which is just an extra symbol
appended to the input sequence in order to mark the ending). Continuing to construct
the parser table, each variable is going to be assigned a pair of First and Follow sets.
Considering the grammar in Figure F18 , Table T1 must be filled in.

Table T1: Empty First-Follow table.

Non-
terminal

First Follow

S
A
B
C

〈S〉 ::= 〈A〉 〈C〉 〈B〉
| 〈C〉 ‘b’ 〈B〉
| 〈B〉 ‘a’

〈A〉 ::= ‘d’ ‘a’
| 〈B〉 〈C〉

〈B〉 ::= ‘g’
| ε

〈C〉 ::= ‘h’
| ε

Figure F18: Example grammar for the clarification of First and Follow.

First: First of a variable 〈X〉 is obtained by taking a look at each of its production
rules Qi, processing its sequence of symbols Pi, collecting First of Pi. To get First

20

of Pi, look at its first symbol. If it is a terminal, add it to the set and leave Pi. If it
is a variable 〈Sub〉, get First of 〈Sub〉. The next step depends on if First of 〈Sub〉
contains the empty word ε, for then 〈Sub〉 might be erased in Pi while parsing. If ε is
not included or if the variable being investigated is the last symbol of Pi, add all of
First of 〈Sub〉 to the set and leave Pi. If ε was contained and 〈Sub〉 was not the last
symbol of Pi, everything except ε is added and Pi advances to the next symbol.

Follow : Follow of a variable 〈X〉 is obtained by taking a look at each of its
occurrences in every production rule Qi of the grammar, processing its remaining
symbols after the occurrence of 〈X〉 Pi, collecting Follow of Pi. Additionally, start
variables automatically get the terminator symbol $ bestowed. If Pi contains sym-
bols, get First of Pi. If First of Pi contains the empty word ε, add everything of
First of Pi to the set except for ε and also get Follow of the variable in which Qi

resides. If ε is not included, simply add everything of First of Pi. If Pi was empty
to begin with, add Follow of the variable its original production rule Qi resides in.
Footnote: The Follow set never contains ε.

Since production rules may reference themselves or create a cyclic dependency, both
algorithms should mark which non-terminals were already visited. Using these algorithms
for First and Follow, the table can be filled in like done in Table T2 (Java listings
are provided in Chapter 5: Implementation). Transcribing the First-Follow table,
the promised predictive LL(1) parser table is about to erect. Therefore, each of the
variables qualifies a row once again and the columns are made up of all terminals of
the grammar, including the termination symbol $.

Table T2: Filled First-Follow table.

Non-
terminal

First Follow

S {a, b, d, g, h, e} {$}
A {d, g, h, e} {g, h, $}
B {g, e} {a, g, h, $}
C {h, e} {b, g, h, $}

The procedure appears straightforward: For every variable 〈X〉 and every rule P, check
the first symbol of P. If that symbol is a terminal, put P in the cell denoted by 〈X〉
and the actual terminal (X × t 7→〈X〉 ::= t). If it is a non-terminal 〈Y〉, put P in every
cell denoted by 〈X〉 and any of the terminals in the First set of 〈Y〉 (∀y ∈ First(Y) :
X×y 7→〈X〉 ::= Y). If (as a last option) it should be the empty word ε, the rule will be
to derive 〈X〉 to ε for all of the terminals of the Follow set of 〈X〉 (∀x ∈ Follow(X) :
X × x 7→〈X〉 ::= ε).

21

Table T3: Predictive parser table.

NT
T a b d g h $

S
A ‘d’ ‘a’ 〈B〉 〈C〉
B ε ε ε ε

C ε ε ε ε

If any of the cells should be object to multiple entries using the method just described,
the grammar has not been LL(1) as seeing only the next token is not enough to make a
decision in that case. All cells that remain empty are instances of failure. If the parser
comes across such a combination, it has to throw an exception and the input must not
be accepted. It should be noted that the above described algorithm for developing a
grammar does not ensure LL(1) behavior. Left factorization lifts the ambiguity evoked
by a common prefix in multiple production rules of the same variable but is purely
syntactic. Variables, whose decomposition may yield the same prefix of terminals, are
not of further interest, e.g. the rules 〈A〉 ::= ‘a’ ‘b’ and 〈A〉 ::= 〈A’〉 ‘b’ cannot be
unified/left factored even if ‘a’ ⊆ First(〈A’〉). Additionally, there may be overlapping
with the Follow sets. For a grammar to be LL(1), the First sets of all production
rules per variable must be disjoint and the intersection of the First and Follow sets of
a variable must be empty in case the variables has an ε production rule [Coc02]. One
type of parser that can handle LL(1) grammars is those that descend recursively. It is
presented in Chapter 5: Implementation .

3.2 Core language

3.2.1 Commands

After having previewed the example, the core language shall be designed now. The
Hoare calculus provides rules for the typical elementary imperative flow control elements
and statements: assignment of variables, branch selection, head-controlled loops and,
of course, sequential composition. It matches that of while programs [Wik17g]. Some
more commonly known structures can be extrapolated. Foot-controlled loops are
semantically equivalent to head-controlled loops with the loop body duplicated once in
front of the loop as shown in Listing L3 for example.

22

1 do {
2 BODY;
3 } while (CONDITION)
4
5 //same as
6 BODY;
7 while (CONDITION) {
8 BODY;
9 }

Listing L3: Conversion of foot-loop to while-loop (Java).

Count-controlled loops can be converted to head-controlled loops as well:
1 for (INIT; CONDITION; INCREMENT) {
2 BODY;
3 }
4
5 //same as
6 INIT;
7 while (CONDITION) {
8 BODY;
9 INCREMENT;

10 }

Listing L4: Conversion of count-controlled loop to while-loop (Java).

The ternary conditional assignment can be expanded to a selection:
1 x = pred ? y : z;
2
3 //same as
4 if (pred) x = y; else x = z;

Listing L5: Conversion of conditional assignment to selection (Java).

Although converting old-school goto jumps to loops may not be trivial and without
the use of additional support variables, it is possible to do so. This just to state that
the concepts presented here are transferable to more elaborated structures as they exist
in real programming languages.

23

〈skip〉 ::= ‘SKIP’

〈assign〉 ::= 〈id〉 ‘:=’ 〈exp〉

〈alt〉 ::= ‘IF’ 〈bool_exp〉 ‘THEN’ 〈prog〉 ‘ELSE’ 〈prog〉 ‘FI’

〈loop〉 ::= ‘WHILE’ 〈bool_exp〉 ‘DO’ 〈prog〉 ‘OD’

Figure F19: Commands grammar.

The commands for variable assignment, if selection (alternative) and while loop are
depicted in Figure F19 . The variable assignment 〈assign〉 assigns 〈exp〉 to 〈var〉
(no variable subscript/arrays here). The if selection 〈alt〉 checks the truth value of
〈bool_exp〉. Its evaluation being true will trigger the 〈prog〉 of the THEN-branch,
otherwise it will execute the 〈prog〉 of the ELSE -branch. The 〈loop〉 command checks
the truth value of 〈bool_exp〉. Should it evaluate to false, the execution point will
jump right after the loop. In case it is true, the inner 〈prog〉 will be called and
afterwards the whole loop mechanism be repeated. Additionally, there is 〈skip〉, which
does nothing of importance but can be placed to suffice the syntax (like maybe if the
ELSE -branch of the selection is superfluous). After having defined the elementary
commands, they can be tied together via 〈prog〉 as shown in Figure F20 , which is
also the starting symbol, and put in a sequential composition using the ‘;’ separator.
The first rule of 〈prog〉 displays left recursion which must be get rid of. This is easily
resolved in Figure F21 . The addition of 〈alt_else〉 and refactoring of 〈alt〉 renders
the else branch of selections optional for convenience.

〈prog〉 ::= 〈prog〉 ‘;’ 〈prog〉
| 〈skip〉
| 〈assign〉
| 〈alt〉
| 〈loop〉

Figure F20: Shortened grammar of 〈prog〉 (raw).

24

〈prog〉 ::= 〈cmd〉 〈prog’〉

〈prog’〉 ::= ‘;’ 〈cmd〉 〈prog’〉
| ε

〈cmd〉 ::= 〈skip〉
| 〈assign〉
| 〈alt〉
| 〈while〉

〈skip〉 ::= ‘SKIP’

〈assign〉 ::= 〈id〉 ‘:=’ 〈exp〉

〈alt〉 ::= ‘IF’ 〈bool_exp〉 ‘THEN’ 〈prog〉 〈alt_else〉 ‘FI’

〈alt_else〉 ::= ‘ELSE’ 〈prog〉
| ε

〈while〉 ::= ‘WHILE’ 〈bool_exp〉 ‘DO’ 〈prog〉 ‘OD’

Figure F21: Shortened grammar of 〈prog〉 (left recursion eliminated).

3.2.2 Numeric expressions

The 〈exp〉 and 〈bool_exp〉 non terminals remain open for definition. 〈exp〉 describes
an expression. In normal programming languages, this could be of any data type. Here,
it is restrained to numeric expressions. Floating-point operations in numerical systems
are commonly imprecise respectively on the bit level [Wik17d], which would make a
semantic observation more difficult. Some techniques to cope with fractions will be
covered later.

The indication of the initial grammar in Figure F22 is as it appears most intuitive.
For example, a numeric expression might be a multiplication of two other 〈exp〉 or
using any binary arithmetic operation for that matter. ‘+’ stands for addition, ‘-’ for
subtraction, ‘*’ for multiplication, ‘/’ for division, ‘ˆ’ for potentization and ‘!’ for
the factorial operation (which is unary). The terminal 〈id〉 matches a variable name
([a-zA-Z][a-zA-Z0-9]*), ‘num’ is any integer literal ([1-9][0-9]* | 0). The grammar rules
for 〈exp〉 contain left recursion and the precedence must be fixated to influence the
setup of the syntax tree as described in Section 3.1: On languages and grammars .

25

〈exp〉 ::= 〈exp〉 ‘+’ 〈exp〉
| 〈exp〉 ‘-’ 〈exp〉
| 〈exp〉 ‘*’ 〈exp〉
| 〈exp〉 ‘/’ 〈exp〉
| 〈exp〉 ‘ˆ’ 〈exp〉
| 〈exp〉 ‘!’
| 〈id〉
| 〈exp_lit〉

〈id〉 ::= [a-zA-Z][a-zA-Z0-9]*

〈exp_lit〉 ::= [1-9][0-9]*
| ‘0’

Figure F22: Core grammar of 〈exp〉 (raw).

First off, a total order of the operators must be established. It seems obvious to do
so abiding by the mathematical notation rules:

‘ + ’ .= ‘− ’l ‘ ∗ ’ .= ‘/’l ‘ˆ’l ‘!’ (3.1)

Table T4: Operator table of 〈exp〉.

+ - * / ˆ !
+ m m l l l l
- m m l l l l
* m m m m l l
/ m m m m l l
ˆ m m m m l l
! m m m m m m

So addition and subtraction come with the lowest precedence, followed by multiplica-
tion and division, then follows exponentiation and finally the factorial operator stands at
the top. The hierarchy is displayed in Table T4 , too. Moreover, this table denotes the
associativity of the binary operators: addition through division are left-associative but
exponentiation is not. The expression 2ˆ2ˆ3 shall denote 223 = 28 = 256 as opposed to
(22)3 = 43 = 64. While semantics-wise, associativity does not matter for addition and
multiplication, it is fixed to left bias on default to reduce ambiguity. Using the methods

26

proposed in Section 3.1: On languages and grammars , the grammar fragment for
〈exp〉 can be arranged. The first version in Figure F23 shows the precedence levels.
Associativity is applied in Figure F24 . In Figure F25 left recursion is abolished
and finally the grammar has been exposed to left factoring in Figure F26 . The
last version encloses the auxiliary rule 〈exp_elem〉 ::= ‘(’ 〈exp〉 ‘)’, whose parentheses’
encapsulation permits the prioritization of any operation over others.

〈exp〉 ::= 〈sum〉

〈sum〉 ::= 〈sum〉 ‘+’ 〈sum〉
| 〈sum〉 ‘-’ 〈sum〉
| 〈prod〉

〈prod〉 ::= 〈prod〉 ‘*’ 〈prod〉
| 〈prod〉 ‘/’ 〈prod〉
| 〈pow〉

〈pow〉 ::= 〈pow〉 ‘ˆ’ 〈pow〉
| 〈fact〉

〈fact〉 ::= 〈exp_elem〉 ‘!’
| 〈exp_elem〉

〈exp_elem〉 ::= 〈id〉
| 〈exp_lit〉

〈id〉 ::= [a-zA-Z][a-zA-Z0-9]*

〈exp_lit〉 ::= [1-9][0-9]*
| ‘0’

Figure F23: Grammar of 〈exp〉 (with fixed precedence).

27

〈exp〉 ::= 〈sum〉

〈sum〉 ::= 〈sum〉 ‘+’ 〈prod〉
| 〈sum〉 ‘-’ 〈prod〉
| 〈prod〉

〈prod〉 ::= 〈prod〉 ‘*’ 〈pow〉
| 〈prod〉 ‘/’ 〈pow〉
| 〈pow〉

〈pow〉 ::= 〈fact〉 ‘ˆ’ 〈pow〉
| 〈fact〉

〈fact〉 ::= 〈exp_elem〉 ‘!’
| 〈exp_elem〉

〈exp_elem〉 ::= 〈id〉
| 〈exp_lit〉

〈id〉 ::= [a-zA-Z][a-zA-Z0-9]*

〈exp_lit〉 ::= [1-9][0-9]*
| ‘0’

Figure F24: Core grammar of 〈exp〉 (with fixed associativity).

28

〈exp〉 ::= 〈sum〉

〈sum〉 ::= ‘+’ 〈prod〉 〈sum’〉
| ‘-’ 〈prod〉 〈sum’〉
| ε

〈prod〉 ::= 〈pow〉 〈prod’〉

〈prod’〉 ::= ‘*’ 〈pow〉 〈prod’〉
| ‘/’ 〈pow〉 〈prod’〉
| ε

〈pow〉 ::= 〈fact〉 ‘ˆ’ 〈pow〉
| 〈fact〉

〈fact〉 ::= 〈exp_elem〉 ‘!’
| 〈exp_elem〉

〈exp_elem〉 ::= 〈id〉
| 〈exp_lit〉

〈id〉 ::= [a-zA-Z][a-zA-Z0-9]*

〈exp_lit〉 ::= [1-9][0-9]*
| ‘0’

Figure F25: Core grammar of 〈exp〉 (right recursive).

29

〈exp〉 ::= 〈sum〉

〈sum〉 ::= 〈prod〉 〈sum’〉

〈sum’〉 ::= ‘+’ 〈prod〉 〈sum’〉
| ‘-’ 〈prod〉 〈sum’〉
| ε

〈prod〉 ::= 〈pow〉 〈prod’〉

〈prod’〉 ::= ‘*’ 〈pow〉 〈prod’〉
| ‘/’ 〈pow〉 〈prod’〉
| ε

〈pow〉 ::= 〈fact〉 〈pow’〉

〈pow’〉 ::= ‘ˆ’ 〈pow〉
| ε

〈fact〉 ::= 〈exp_elem〉 〈fact’〉

〈fact’〉 ::= ‘!’
| ε

〈exp_elem〉 ::= 〈id〉
| 〈exp_lit〉
| ‘(’ 〈exp〉 ‘)’

〈id〉 ::= [a-zA-Z][a-zA-Z0-9]*

〈exp_lit〉 ::= [1-9][0-9]*
| ‘0’

Figure F26: Grammar of 〈exp〉 (final).

3.2.3 Boolean expressions

The same procedure must be applied to boolean expressions. A 〈bool_exp〉 yields
a boolean value. Here, it may either be a conjunction (‘&’), a disjunction (‘|’), a
negation (‘~’) or an elementary entity: The comparison of two 〈exp〉s via the comparison
operators less (‘<’), greater (‘>’), less or equal(‘<=’), greater or equal(‘>=’), equal (‘=’)
or unequal (‘<>’) or the boolean literals ‘true’ or ‘false’.

30

‘|’l ‘&’l ‘ ∼ ’l ‘ < ’ .= ‘ > ’ .= ‘ <= ’ .= ‘ >= ’ .= ‘ = ’ .= ‘ <> ’ (3.2)

Table T5: Operator table of 〈bool_exp〉

| & ~ < > <= >= = <>
| m l l m m m m m m
& m m l m m m m m m
~ m m m m m m m m m
< l l l .= .= .= .= .= .=
> l l l .= .= .= .= .= .=
<= l l l .= .= .= .= .= .=
>= l l l .= .= .= .= .= .=
= l l l .= .= .= .= .= .=
<> l l l .= .= .= .= .= .=

〈bool_exp〉 ::= 〈bool_exp〉 ‘&’ 〈bool_exp〉
| 〈bool_exp〉 ‘|’ 〈bool_exp〉
| ‘~’ 〈bool_exp〉
| 〈exp〉 ‘<’ 〈exp〉
| 〈exp〉 ‘>’ 〈exp〉
| 〈exp〉 ‘<=’ 〈exp〉
| 〈exp〉 ‘>=’ 〈exp〉
| 〈exp〉 ‘=’ 〈exp〉
| 〈exp〉 ‘<>’ 〈exp〉
| ‘true’
| ‘false’

Figure F27: Core grammar of 〈bool_exp〉 (raw).

Complying with the steps in accordance to the previous section, one arrives at Figure
F28 . An analogous parentheses mechanism (〈bool_ elem〉 ::= ‘[’ 〈bool_ exp〉 ‘]’) is
inserted but it uses brackets instead of parentheses. The reason is that 〈bool_elem〉
possesses rules starting with 〈exp〉. 〈exp〉 can already start with ‘(’, using ‘(’ again
would break the LL(1) trait (First sets of 〈exp〉 and 〈bool_exp〉 would not be disjunct)
and are therefore not desirable. The reasoning parts of this document will still prefer
parentheses over brackets in boolean expressions.

31

〈bool_exp〉 ::= 〈bool_or〉

〈bool_or〉 ::= 〈bool_and〉 〈bool_or’〉

〈bool_or’〉 ::= ‘|’ 〈bool_and〉 〈bool_or’〉
| ε

〈bool_and〉 ::= 〈bool_neg〉 〈bool_and’〉

〈bool_and’〉 ::= ‘&’ 〈bool_neg〉 〈bool_and’〉
| ε

〈bool_neg〉 ::= 〈bool_elem〉
| ‘ ’ 〈bool_elem〉

〈bool_elem〉 ::= 〈exp〉 ‘<’ 〈exp〉
| 〈exp〉 ‘<’ 〈exp〉
| 〈exp〉 ‘>’ 〈exp〉
| 〈exp〉 ‘<=’ 〈exp〉
| 〈exp〉 ‘>=’ 〈exp〉
| 〈exp〉 ‘=’ 〈exp〉
| 〈exp〉 ‘<>’ 〈exp〉
| ‘true’
| ‘false’
| ‘[’ 〈bool_exp〉 ‘]’

Figure F28: Grammar of 〈bool_exp〉 (final).

This concludes the language definition subject to the forthcoming verifying methods.
It will be extended by the proof specification decorations later on. The whole language
(plus the later added assertion decorations) can be viewed in Appendix E: Grammar
for Hoare-decorated while programs . Line breaks and white space is tolerated for
readability and used as delimiters of keywords because e.g. IFabc should be regarded
as an identifier IFabc rather than the keyword IF plus the identifier a.

Note: The boolean operators ‘&’, ‘|’ and ‘~’ are interchangeably used with the
∧/∨/¬ symbols in the later chapters.

32

3.3 Semantic tree

exp

sum

prod

pow

fact

exp_elem

id

A

fact’

ε

pow’

ε

prod’

ε

sum’

+ prod

pow

fact

exp_elem

exp_lit

1

fact’

ε

pow’

ε

prod’

ε

sum’

ε

Figure F29: Extensive syntax tree of A+1 .

The syntax tree constructed so far was meant to match the workings of an LL(1)
parser. It creates a lot of unnecessary levels and the right recursion spawns extended
cascades and ε-branches. Ex: The syntax tree of a simple expression A+1 produces
the syntax tree in Figure F29 . As can easily be observed, this representation is
immensely oversized, contains redundancy and traversing it would be convoluted. Each
additional summand appends another operator and another 〈prod〉-sub tree. It turns
out to be impractical for further processing, which is why it should be converted into
a more semantically meaningful tree. The deflated result of such is shown in Figure
F30 . The expression is reduced to just a sum of an id and a numeric value, as one
would intuitively identify it. The operator is also removed because it can be implied by
the fact that the treated node is a sum (a minus sign could be realized by inserting
another intermediate negation node, not defined yet). More on the technical aspects

33

sum

id

A

exp_lit

1

Figure F30: Semantic tree of A+1 .

of typification of nodes and the transition from one tree to another are to be unveiled in
the Implementation chapter. The considerations up to this point are to showcase the
elements of the language to be verified and to give credit to the required preparatory
steps. The author will henceforth be using the term semantic tree to refer to the new
type when trying to emphasize a distinction between it and the original syntax tree.
The usual term found in literature is abstract syntax tree while semantic tree is
reserved for a quite similar entity in logic [RK83]. The author reckons the meaning can
be generalized to encompass the described topic and is fitting.

34

4 Chapter 4

How to prove

4.1 Of operational semantics

Speaking about verification of programs, it is of utmost importance to know what
a program does exactly, namely its semantics. These are inductively defined and
should be formally specified. The model checking part in the introduction mentioned
that the current point of execution (the instruction position) and the values of the
involved variables identify a snapshot of the program in its entirety. Theoretically, in a
deterministic environment where the next instruction to handle is fixed, the behavior can
be foretold as the machine would compute. Now, the idea is to formalize the semantics
defined in the previous chapter in order to make statements about the execution of a
given program, about computations. This is similar to actually running the program,
traversing the entered lines/statements of code in succession and keeping memory of
the current variable values. The mapping of all variables used inside the program as
well as additional helper variables to specific values is called a state. As according to
the introduced language, only the assignment instruction possesses the ability to alter
the state.

Definition 5. Be S a program. var(S) denotes the set of all variables occurring in S.

Ex: In Listing L6 var(Svar) = {x, y, z, q}
1 x := x + 1;
2 y := z;
3 IF z = q THEN
4 y := y + 1
5 FI

Listing L6: Svar example

Definition 6. Be S a program. change(S) denotes the set of all variables modified in
S (each one that has at least one assignment, irrespective to the instruction actually
being executed).

Ex: In Listing L6 change(Svar) = {x, y}

Definition 7. A state is a function, mapping a value to every variable in var(S) as
well as to auxiliary (on-the-fly created, originally not situated in the program) variables.

35

Definition 8. Be S a program and σ a state. The pair < S, σ > is called a configura-
tion.

A program can shift between configurations through computations. E denotes the
end of the program.

Ex: < x := 1, σ(x) = 0 > → < E, σ(x) = 1 >, prior, the value of variable x
was 0 but the assignment changed it to 1. Only the assignment was in the remaining
execution buffer, what follows is the termination of the program.

The following axioms and rules of the transition system matching the introduced
language were transcribed from page 59 of [APdBO10]:

< SKIP, σ > → < E, σ > (4.1)

< u := t, σ > → < E, σ[u := σ(t)] > (4.2)

< S1, σ > → < S2, τ >

< S1;S, σ > → < S2;S, τ >
(4.3)

< IF B THEN S1 ELSE S2 FI, σ > → < S1, σ >

where σ |= B
(4.4)

< IF B THEN S1 ELSE S2 FI, σ > → < S2, σ >

where σ |= ¬B
(4.5)

< WHILE B DO S OD, σ > → < S; WHILE B DO S OD, σ >

where σ |= B
(4.6)

< WHILE B DO S OD, σ >

→ < E, σ > where σ |= ¬B
(4.7)

(4.1) states that SKIP does not cause a state change and just transitions to E. In
(4.2), the state is altered by replacing the value of the variable u by t. (4.3) is the

36

propagation characteristic of the sequential composition: the first part is evaluated and
continued by the second part. (4.4) and (4.5) handle alternatives and (4.6) together
with (4.7) loops. It can be noticed that the assignment is the only statement to evoke
a state change and that only the loop in (4.6) has the powerful as hazardous quality
to have the impending “remaining” program to be processed larger than that of the
source configuration. Thus it is the only one with potential for divergence: to make
the program never end. With that comes a differentiation between partial and total
correctness. Latter avouches for the proper termination of a program in finite time in
addition to other tested for properties while partial correctness is only about “under
the assumption that it ends”. The Halting Problem gives testimony that showing
termination and/or establishing termination is no trivial request and that is why it is
often separately analyzed. As hinted in the introduction, correctness is a somewhat
vague term. For all it may concern, a program could be declared correct for halting,
containing specific statements, fulfilling liveliness parameters (the program keeps visiting
“good” configurations) or safety conditions (it never comes across “bad” configurations)
for instance. At that, arguing about correctness in detail, one has to commit oneself.

4.2 Transition to Hoare calculus

The now presented Hoare calculus defines relations of input/output behavior. That is,
if a program starts in a state satisfying a precondition p and executes a program S, it
is guaranteed to have taken on a state fulfilling a postcondition q afterwards.

{p} S {q} (4.8)

The notation is as shown in (4.8) and named Hoare triple. The conditions, also
called assertions, are put between curly braces although C.A.R. Hoare originally did it
the other way around (p {S} q). The difference between assertion and state is that an
assertion is a predicate for allowed states, it designates a set of states. Using assertions,
the programs of the developed language can be decorated to express a supposed to
prevail behavior:

1 PRE {x<y}
2 x:=x+y
3 POST {x<2*y}

Listing L7: Decoration example.

In that sense, of course, this is an arbitrary proposition that has to be verified. Do
all states where x is smaller than y initially lead to a state where x is smaller than

37

2 ∗ y after having added y to x? It may be comprehensible in this case but less so for
more complex problems. Fortunately, there is the Hoare calculus to help systematizing
them.

HOARE CALCULUS (PW):

SKIP AXIOM:
{p} SKIP {p} (4.9)

ASSIGNMENT AXIOM:

{p[u := t]} u := t {p} (4.10)

COMPOSITION RULE:

{p} S1 {r}, {r} S2 {q}
{p} S1;S2 {q}

(4.11)

CONDITIONAL RULE:

{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}
{p} IF B THEN S1 ELSE S2 FI {q}

(4.12)

LOOP RULE:
{p ∧B} S {p}

{p} WHILE B DO S OD {p ∧ ¬B}
(4.13)

CONSEQUENCE RULE:

p→ p1, {p1} S {q1}, q1 → q

{p} S {q}
(4.14)

as listed in [APdBO10] p. 65f.

More precisely, there are two versions. The above one is for partial correctness
only. The case of divergence, a program never halting, is not covered here. The
proof system consisting of axioms and rules establishes a relationship between pre- and
postconditions of a set of basic programming constructs. These are the groundwork for
further verification ventures. The horizontal bar is a fancier notation for an implication:

38

If all of the conditions above the bar hold true, the statements below it are assured to
be correct as well.

Again, the SKIP axiom in (4.9) confirms that SKIP is unable to do anything
to the state. The ASSIGNMENT axiom says that the precondition matches the
postcondition only that all occurrences of the variable are replaced by the new value
within the precondition. This is a bit problematic since substitution is not a reversible
(bijective) procedure, ergo a left to right evaluation becomes difficult. The composition
displays its transitive properties once more in (4.11). To obtain the postcondition of a
composition, the postcondition of its first part is fed as precondition to the second part
or vice versa. The CONDITIONAL rule (4.12) merges the triples of the individual
branches with the respectively associated condition for entering that branch. Perhaps
most intriguing is the rule responsible for loops in (4.13). The precondition becomes
a conjunction with the negation of the loop condition but that is only the case (this
transformation is only allowed to be conducted) if the conjunction of the precondition
and the loop condition applied to the loop body ends in the precondition. p is called a
loop invariant in that regard because it does not change within any of the iterations of
the loop. Lastly, the binding material to plug the holes like enhancing the versatility of
the LOOP rule is found in the CONSEQUENCE rule (4.14). A precondition can
be strengthened by finding another one that implies the former precondition. On the
other hand, a postcondition can always be relaxed by a weaker assertion. Essentially,
the strongest predicate would be {false}, enveloping no state. A program annotated
with {false} at the end should never be found correct unless it diverges. The weakest
assertion is {true}, encompassing all states, which is like the Cartesian product of
all possible variable values. Both strengthening and weakening must be exerted with
care, for overdoing it would elicit type I “false positive” errors. A program could be
mistakenly identified as incorrect because e.g. the postcondition was unnecessarily
rendered too weak and does no longer imply the final statement. S. Kleuker [Kle09]
p. 228 additionally states:

{p} S1 {q1}, {p} S2 {q2}
{p} IF B THEN S1 ELSE S2 FI {q1 ∨ q2}

(4.15)

and

{p} S1 {q1}, {p} S2 {q2}, var(B) /∈ (change(S1) ∪ change(S2))
{p} IF B THEN S1 ELSE S2 FI {(B → q1) ∧ (¬B → q2)}

(4.16)

39

The Hoare calculus by itself does not specify an algorithm yet. There is some
flexibility in there. The analysis of a program may commence from the beginning
onwards or push up from the ending, or even a combination thereof. However, there
are a couple of reasons why the second option seems preferable. The assignment axiom
does contain an explicit instruction to receive the precondition from the postcondition
whereas going from left to right in a variable assignment requires more thinking and case
distinction. Assuming that the precondition p does not include the modified variable x.
It would be intuitive that the strongest derived postcondition just adds the clause of x
possessing the newly assigned value:

{p} x := 2 {p ∧ x = 2} (4.17)

If p does not contain x and the assigned value is a function of x, as there is no
presumption about x, p will stay the same:

{p} x = x+ 2 {p} (4.18)

or one could insert some auxiliary anchor variable:

{p ∧X = x} x = x+ 2 {p ∧X + 2 = x} (4.19)

If p does contain x, the clauses in p that contain x would have to be discarded as
those terms could not be found true or relevant anymore:

{p⇒ y = 1 ∧ x = 4} x := 2 {q ⇒ y = 1 ∧ x = 2} (4.20)

or a stronger postcondition r may be found with q → r∧r → p (find an intermediate
condition). This is fractured and seldom suggested. More sustainable seems to be the
wlp (weakest liberal precondition) algorithm by E. W. Dijkstra:

wlp(SKIP, q)↔ q (4.21)

wlp(u := t, q)↔ q[u := t] (4.22)

40

wlp(S1;S2, q)↔ wlp(S1, wlp(S2, q)) (4.23)

wlp(IF B THEN S1 ELSE S2 FI, q)
↔

(B ∧ wlp(S1, q)) ∨ (¬B ∧ wlp(S2, q))
(4.24)

wlp(WHILE B DO S1 OD, q) ∧B
→

wlp(S1, wlp(WHILE B DO S1 OD, q))
(4.25)

wlp(WHILE B DO S1 OD, q) ∧ ¬B → q (4.26)

|= {p} S {q} ⇐⇒ p→ wlp(S, q) (4.27)

as listed in [APdBO10] p. 87f.

The wlp is a function supposed to return the weakest liberal precondition of a
program and a postcondition. (4.23) indicates that the program is processed in reverse.
In a composition, the wlp of S1 depends on the wlp of S2, so S2 must be evaluated
first. The already addressed skip and variable assignment handling is the same as
before. The alternative is transformed into a logical disjunction of both branches. It is
unknown which branch will be executed at runtime, so this can be imagined like the
least common multiple sort of. The problem of finding a loop invariant remains but
there are statements concerning it. The rough progressed algorithm is as follows: Apply
wlp to the overall program (the root 〈prog〉) and the given postcondition. Depending
on the current program part, act accordingly:

Skip: Return the postcondition.

Assignment: To get the precondition, replace all occurrences of the assigned variable
in the postcondition by the new value. This means the syntax/semantic tree of the
assertion must be recursively examined for the variable.

Composition: Find wlp of the rear program part using the given postcondition, then
find wlp of the anterior part by supplying the previously received precondition to deter-
mine the precondition of the composition. Of course this can be nested/elongated. This

41

corresponds to a syntax tree from the language definition being descended rightwards,
then working the way back up in accordance to a stack (recursive calls).

Alternative: Find wlp of the program in the THEN-branch (pthen) and the ELSE-
branch (pelse) in arbitrary order, then return B ∧ pthen ∨ ¬B ∧ pelse with B being
the condition of the alternative. This possesses the potential of easily inflating the
precondition.

Loop: Try to find a loop invariant p automatically (some ideas are discussed in
Section 4.5: Finding invariants), otherwise ask the user to present one. If it is indeed
a loop invariant, it can simply be returned but it is unlikely to be sure of it (both in
user query and automatic retrieval may fail), so executing the following inspection steps
appears appropriate. Check if p ∧ ¬B implies the available postcondition (if it is an
equivalent or stronger version of it). It cannot be a fitting invariant if that is not the
case, retry another one then. Find wlp of the loop body with p as the postcondition,
then check the returned predicate whether it is implied by p ∧B. It cannot be a fitting
invariant if that is not the case, back to first step. With both checks being successful,
p can be picked as a precondition of the loop. However, proving that one predicate
(Hoare is professed for predicate logic) does or does not imply another predicate is an
undecidable problem of its own (see Section 4.4: Resolving implications). Thus it
cannot be fully automatized, either, and must be user-supported.

Ex: A simple implementation for a Factorial procedure shall be outlined to clarify
the application of the used wlp algorithm.

42

1 PRE {n>=1}
2 k := 1;
3 f := 1;
4
5 WHILE k < n DO
6 k := k + 1;
7 f := f * k
8 OD
9 POST {f=n!}

Listing L8: Factorial program.

comp

assign

k:=1

assign

f:=1

while

k<n comp

assign

k:=k+1

assign

f:=f*k

Figure F31: Tree for factorial program.

Starting from the bottom, the postcondition is f = n! and the root is the main
composition. The composition is processed from right to left, its last element being
while, just passing the postcondition. The loop requires a loop invariant which is
f = k! ∧ 0 <= k ∧ k <= n in this case. This loop variant in conjunction with the
negate of the loop condition k < n yields f = k! ∧ 0 <= k ∧ k <= n ∧ k >= n and
must imply f = n!. Since k <= n ∧ k >= n implies k = n, k can be substituted by n
and the first comparison becomes f = n!. The implication holds true. Next on, wlp of
the loop body and the invariant needs to be explored. Unpacking the inner composition
again, the posterior assignment f := f ∗ k transforms f = k! ∧ 0 <= k ∧ k <= n to
f ∗ k = k!∧ 0 <= k∧ k <= n and k := k+ 1 further to f ∗ (k+ 1) = (k+ 1)!∧ 0 <=
(k + 1) ∧ (k + 1) <= n. To determine if it is truly a loop invariant that had been
selected, f ∗ (k+ 1) = (k+ 1)!∧ 0 <= (k+ 1)∧ (k+ 1) <= n∧ k < n (wlp result &
loop condition) will be checked against f = k!∧ 0 <= k ∧ k <= n (just the invariant).
f ∗ (k + 1) = (k + 1)! can be reduced to f = k!, 0 <= (k + 1) → 0 <= k and
k < n → k <= n are correct. All conditions of the invariant could be implied from

43

the inner wlp, too, hence the precondition of the loop is found to be f = k! ∧ 0 <=
k ∧ k <= n. Supplying it to first f := 1, then k := 1 results in the final precondition
of the program since the composition by itself does not invoke a change. wlp of the
whole program is thereby 1 = 1! ∧ 0 <= 1 ∧ 1 <= n. While the first two terms are
tautologies, the third one depends on the value of n. What is missing is the check of
the estimated precondition n >= 1 against 1 = 1! ∧ 0 <= 1 ∧ 1 <= n. As this can
be evaluated to true, the program is valid. Would the precondition be n >= 0 e.g., it
would be incorrect as the scenario for n = 0 would not be covered.

4.3 Assertions as language extension

〈prog〉 ::= 〈cmd〉 〈prog’〉

〈prog’〉 ::= ‘;’ 〈cmd〉 〈prog’〉
| ε

〈cmd〉 ::= 〈skip〉
| 〈assign〉
| 〈alt〉
| 〈while〉
| 〈hoare_block〉

〈skip〉 ::= ‘SKIP’

〈assign〉 ::= ‘id’ ‘:=’ 〈exp〉

〈alt〉 ::= ‘IF’ 〈bool_exp〉 ‘THEN’ 〈prog〉 〈alt_else〉 ‘FI’

〈alt_else〉 ::= ‘ELSE’ 〈prog〉
| ε

〈while〉 ::= ‘WHILE’ 〈bool_exp〉 ‘DO’ 〈prog〉 ‘OD’

〈hoare_block〉 ::= 〈hoare_pre〉 〈prog〉 〈hoare_post〉

〈hoare_pre〉 ::= ‘PRE’ ‘{’ 〈bool_exp〉 ‘}’

〈hoare_post〉 ::= ‘POST’ ‘{’ 〈bool_exp〉 ‘}’

Figure F32: Hoare-extended grammar.

The projected verifier will have to provide input masks for the inspected program itself
as well as its supposed pre- and postcondition. While those three things may seem

44

separable, it comes in handy to graft the assertions directly into the language. The
simple remodification in Figure F32 encapsulates a 〈prog〉 and enforces the existence
of a complete triumvirate whenever a ‘PRE’ token is scanned. It re-utilizes the definition
of 〈bool_exp〉, though that might be replaced for mightier constructs depending on
the desired semantics for assertions. It also permits nested 〈hoare_block〉s. Inner and
further below positioned assumptions could be tested first before advancing to outer
levels, modularizing the verification process.

Figure F33: Nested Hoare blocks.

4.4 Resolving implications

4.4.1 The implication question

It could already be observed from the Factorial example that making a decision about
implications is very difficult within the domain of predicate logic although the introduced
language allows but a subset of it. In fact, predicate logic in general is undecidable.
There could be much more arbitrary predicates like x is a zero of the zeta function
or y is prime. Quantifiers (universal quantifier, existential quantifier) were left out
since there were no subscripted variables declared. Arithmetics with unlimited variable
domains remain and those come with a non-decidability of their own. Proving, for
instance, x < x + 1 under the premise x ∈ [1, 10] could be verified by testing the
condition for all possible values from the 1 to 10 range, checking 1 < 1 + 1, 2 < 2 + 1,
..., 10 < 10 + 1. With in infinite domain, however, it is completely futile and also
the Cartesian product of multiple variables is quick to induce a state explosion. The
machine must be able to recognize the pattern as a human would. The question arises
how to teach the computer to do just that. At this point of explanation, the boolean
expression is a mere semantic tree matching the string input. Reviewing the Swap
program in Listing L9 , the wlp is X = y ∧ Y = x[Y := R][X := Y][R := X] ⇒
X = y ∧ R = x[X := Y][R := X] ⇒ Y = y ∧ R = x[R := X] ⇒ Y = y ∧X = x.
What must be proven is X = x ∧ Y = y → Y = y ∧ X = x, the terms are just in
different order. That is a fundamental problem of the language: Syntax and semantics

45

are not bijective, the syntax for the same semantics may very well diverge. This is why
it appears to be a good idea to try to restructure the expressions to a more unique
(and possibly less convoluted) representation. The idea is to apply the same set of
rules to both sides of the implication to have them at the same destination layout.
That this only works partially can be seen later on. Aside from the boolean literals
true and false, boolean expressions in the given language are built on top of numeric
expressions, so their reduction rules will be examined first. All of those rules base on
mathematics and logic, of course.

1 PRE {X=x&Y=y}
2 R:=X;
3 X:=Y;
4 Y:=R
5 POST {X=y&Y=x}

Listing L9: Swap program.

4.4.2 Reduction of numeric expressions

123 + nˆ2 + 5 ∗ n⇒ 1 + 2 + n ∗ n+ n+ n+ 3 ∗ n+ 5!
1/2⇒ 2/4

(4.28)

The proposed language seems like it only allows for integers. Yet the operations
enable the representation of rational and real numbers. An input of 1/2 would depict
0.5 as would 2ˆ(0-1). This 0.5 value may be irrelevant for the most part and never be
regarded along the lines of IEEE 7541 as only symbolic transformations are conducted.
An 〈ExpLit〉 in the sense of that document is pair of integers (opposed to the same-
named earlier defined syntax construct, a semantic entity is meant now), a numerator
and a denominator to represent a rational number. This induces an equivocation, any
fraction can be expanded. Finding the greatest common divisor of numerator and
denominator and reducing the fraction by this number unifies it again. The advantage
is that, this way, rational numbers can be compacted and worked on in a single 〈ExpLit〉
rather than in a product of an integer with the negative exponentiation of another
integer. Furthermore, elementary operations like the addition of two 〈ExpLit〉 can be
carried out in a streamlined fashion, converting the fractions to a common denominator,
totalizing the numerators and re-applying the greatest common divisor.

5!⇒ 5 ∗ 4 ∗ 3 ∗ 2⇒ 120 (4.29)

With the argument to the factorial operator being an 〈ExpLit〉 (5), it can be dissolved
to a 〈Prod〉 (5 ∗ 4 ∗ 3 ∗ 2) or directly to an 〈ExpLit〉 (120).

1common format for floating-point numbers in computers [Wik17d]

46

(k + 2)!⇒ k! ∗ (k + 2) ∗ (k + 1) (4.30)

If the argument is a sum, the 〈ExpLit〉 part can be extracted to a sequence of factors
as shown in (4.30).

2ˆ4⇒ 2 ∗ 2 ∗ 2 ∗ 2⇒ 16
(aˆb)ˆc⇒ aˆ(b ∗ c)

aˆ1⇒ a

aˆ0⇒ 1
(a+ b)ˆ2⇒ aˆ2 + 2 ∗ a ∗ b+ bˆ2

(4.31)

An exponentiation consists of a base and an exponent. If both of them are 〈ExpLit〉,
calculating a number from it will be trivial. That is, with a fractional exponent the
result may be real and not fit into a 〈ExpLit〉 anymore. To avoid the loss of information,
it may be wiser to leave it as it is then instead of rounding it. A nested exponentiation
can be reduced to a product of the exponents. Edge cases should be considered as far
as possible like a zero exponent degrading the exponentiation to an 〈ExpLit〉 of value 1.

2 ∗ 3 ∗ 5 ∗ a⇒ 30 ∗ a
a ∗ a ∗ aˆ3⇒ aˆ5
0 ∗ 4 ∗ a ∗ b⇒ 0

a ∗ (b+ c)⇒ a ∗ b+ a ∗ c
a ∗ (b ∗ c)⇒ a ∗ b ∗ c

(4.32)

In (4.32), the 〈ExpLit〉 parts of a product should be condensed. Multiple occurrences
of the same variable may be turned into an exponentiation. The whole product becomes
zero if there is any zero included. The distributivity law may be applied to sum factors
and nested products unwrapped.

1 + 2⇒ 3
a+ a+ 3 ∗ a⇒ 5 ∗ a
a+ (b+ c)⇒ a+ b+ c

(4.33)

Sums are the addition of two or multiple numeric expressions. Those expressions
could be literals, variables or other structures. Literals can be merged, so can variables
of the same name to a product. The 〈Sum〉 node in the semantic tree would review its
children and find that in n+ n+ 3 ∗ n, the first two are of type 〈Id〉 and the last one is

47

〈Prod〉. To be able to add the last part, 3 ∗ n could be transformed to n+ n+ n first
or the 〈Prod〉 is examined for its signature, cutting the n off, only an 〈ExpLit〉 remains,
which is added to the coefficient of the new product. Nested sums can be unwrapped
once more.

4.4.3 Reduction of boolean expressions

1 = 2⇒ false

1 < 2⇒ true

1 <> 2⇒ true

2 ∗ a = 0⇒ a = 0
a! + bˆc = a! + bˆc⇒ true

(4.34)

The literals for boolean expressions are true and false. Another 〈BoolElem〉 is the
comparison of two numeric expressions by a less, greater, less equal, greater equal,
equal or unequal operator. Actually, these operators implant ambiguity again. a <= b

could be expressed by a < b ∨ a = b, a >= b by a > b ∨ a = b and a <> b by
a < b ∨ a > b. The expressions of both sides of the comparison must be reduced and
the equation (or inequation) may be homogenized by subtracting the right expression
from both sides or vice versa, leaving a zero on the other. Dividing zero by any number
unequal to zero yields zero. Unnecessary coefficients may be erased. This only works if
the remaining side is a product. Comparing two 〈ExpLit〉 according to the operator is
trivial and returns either true or false. A comparison of two identical sides is reduced
to 0 < operator > 0 due to the homogenization and therefore erased, too.

a = 1 ∧ b = 2 ∧ true⇒ 1 = 2 ∧ 2 = 3
a = 1 ∧ a = 1⇒ a = 1

¬(a <> 1 ∧ b <> 2)⇒ a = 1 ∨ b = 2
(4.35)

The structural components of boolean expressions are the junctors conjunction and
disjunction plus negation. There is a couple of laws for them:

ASSOCIATIVITY
(A ∨B) ∨ C ⇒ A ∨ (B ∨ C)
(A ∧B) ∧ C ⇒ A ∧ (B ∧ C)

(4.36)

COMMUTATIVITY

(A ∨B)⇒ (B ∨ A)
(A ∧B)⇒ (B ∧ A)

(4.37)

48

DISTRIBUTIVITY

A ∨ (B ∧ C)⇒ (A ∨B) ∧ (A ∨ C)
A ∧ (B ∨ C)⇒ (A ∧B) ∨ (A ∧ C)

(4.38)

ABSORPTION
A ∧ (A ∨B)⇒ A

A ∨ (A ∧B)⇒ A
(4.39)

IDEMPOTENCY
A ∧ A⇒ A

A ∨ A⇒ A
(4.40)

IMPLICATION
false→ A⇒ true

A→ true⇒ true

A→ B ⇒ ¬A ∨B
A→ B ⇒ ¬B → ¬A

(4.41)

NEGATION AND DE’MORGAN

¬¬A⇒ A

¬(A ∧B)⇒ ¬A ∨ ¬B
¬(A ∨B)⇒ ¬A ∧ ¬B

A ∨ ¬A⇒ true

(4.42)

TRUE/FALSE
A ∧ true⇒ A

A ∧ false⇒ false

A ∨ true⇒ true

A ∨ false⇒ A

(4.43)

Apart from turning an implication A ∨ B → C ∨D into ¬(A ∨ B) ∨ (C ∨D), it
can also be split into (A→ C) ∧ (B → C) ∨ (A→ D) ∧ (B → D).

49

4.4.4 Ordering

The commutativity rules of boolean expressions hint at another problem. X = x∧Y =
y → Y = y ∧ X = x is still to show. One possibility would be to start with
A → B ⇒ ¬A ∨ B: X = x ∧ Y = y → Y = y ∧ X = x ⇒ ¬(X = x ∧ Y =
y) ∨ (Y = y ∧X = x)⇒ X <> x ∨ Y <> y ∨ Y = y ∧X = x and see that there
are complementary parts lodged. Another would be to try out all permutations of the
right side and see that one is identical. A third more versatile option is to collect the
terms of conjunction of the right side and see that all of those can be found on the
left side as well. More conjunction terms on the left side would only further decrease
the number of states to account for and a false left side renders the implication true,
anyway. Thus this inclusion check is fine. And the forth and last option described
here is the concept of ordering the expressions. The claim is that a total order can be
established of all sibling collections inside a semantic tree.

6 + a+ b+ c! + bˆ2⇒ c! + bˆ2 + a+ b+ 6 (4.44)

This can be done by first ordering the node types of the root: 〈Fact〉 m 〈Pow〉
m 〈Prod〉 m 〈Sum〉 m 〈Id〉 m 〈ExpLit〉 and recursively applying the same to the
children. Siblings that are of the same type are either identical, containers or 〈Id〉 or
〈ExpLit〉. 〈ExpLit〉 may be intuitively ordered for their value (e.g. numerator primarily,
denominator secondarily) or like 〈Id〉s lexically. Two containers of the same type may
be ordered by successively comparing their elements until the first mismatch. This
would yield a human-readable representation as taught in school. Of course, the whole
expression could just be seen as a string of characters, the operators included, and
ordered lexically.

4.4.5 Substitution

erg = 2ˆ(y − x) ∧ x = 0⇒ erg = 2ˆy (4.45)

The assignment of variables causes substitutions in the predicates and often stirs
them up in a way that they could tolerate another reduction. A reduction could indeed
be conducted after every assignment directive. Likewise, an assertion can be unified by
substitution of the available variables. To do that, an equation must be reorganized for
one specific variable standing alone on left- or righthand side or the pattern surrounding
it must exist somewhere else matching exactly.

Ex: Rearranging for k in k! = 1∧k! = 2ˆa is difficult, factorial does not even possess
a closed-form inverse function. Going for a is problematic as well as the language

50

currently does not feature logarithms. But k! does occur twice and is free to replace,
ending in 1 = 2ˆa.

Solving equations and systems thereof is not decidable. Handling inequations is
another issue. a < b expresses that a may have any value lower than b. That is a kind
of range mapping opposed to the exact mapping found in equations. To still be able to
carry out substitutions, inequations can transfer their property to the target expression.

Ex: a < 10 ∧ erg = 2ˆa is convertible to a < 10 ∧ erg < 100, the substitution in
a < 10 ∧ erg < 2ˆa is fine, too. Replacing the a in a < 10 ∧ b > a does not quite
work. b could have any value above or below 10 as long as it is greater than a but it
could instead be relaxed to a < 10 ∧ (b > a ∨ b >= 10).

Substitutions should only be done in pure conjunctions as disjunctions pose alternative
mappings. When both sides of an implication are pure conjunctions, it is practicable to
transfer the substitutions from the left to the right side as in a < 10 ∧ erg < 2ˆa→
erg < 2ˆa⇒ a < 10 ∧ erg < 100→ erg < 100.

4.4.6 Chosen approach

When facing the need of an implication check, both sides are revised into DNF
(disjunctive normal form). This yields an expression of the shape A1 ∨ A2 ∨ A3 . . . ∨
Am → B1 ∨ B2 ∨ B3 . . . ∨ Bn. Splitting it into multiple implications results in
A1 → B1 ∧ A2 → B1 ∧ A3 → B1 . . . ∧ Am → B1 ∨ A1 → B2 ∨ A2 → B2 ∨ A3 →
B2 . . . ∧ Am → B2 ∨ A1 → B3 ∧ A2 → B3 ∧ A3 → B3 . . . ∧ Am → B3 . . . ∨ A1 →
Bm ∧A2 → Bm ∧A3 → Bm . . . ∧An → Bm (m ∗ n implications). All of those A and
B terms are pure conjunctions then, which enables the aforementioned substitutions
after other reduction and ordering means have been exhausted. Should either the left
side be found false or the right side true will mean that the observed implication is
true. Otherwise it can still be converted from A→ B to ¬A ∨ B and mingled with
the results from the other implications.

Had quantifiers of predicate logic been factored in, surely the normalization process
would have been delegated to Skolemization or prenex normal form and contemplated
possible scenarios from there.

4.4.7 Greatest common divisor

The Listing ?? shows an implementation the Euclidean algorithm for getting the
greatest common divisor of two numbers. The postcondition reveals the introduction of
a named function gcd that can easily be added to the existing language as an indexed
〈Id〉 with two 〈Exp〉 arguments. The loop invariant here is gcd(x0, y0) = gcd(x, y)&x >

51

0&y > 0. Checking the lower end, gcd(x0, y0) = gcd(x, y)&x > 0&y > 0&x = y is
to imply x = y&x = gcd(x0, y0). Clearly, the x = y is in common. x being equal to
y means that gcd(x, y) ⇒ gcd(x, x) and the greatest common divisor of two equal
(positive) numbers is evidently the number itself. gcd(x0, y0) = gcd(x, x) is reduced
to gcd(x0, y0) = x, which fulfills the second term of the postcondition.

gcd(x0, y0) = gcd(x, y)&x > 0&y > 0&x = y → x = y&x = gcd(x0, y0) (4.46)

Replacing the x by x − y as the last instruction inside the loop commands when
searching for its wlp, gcd(x0, y0) = gcd(x−y, y)&x > 0&y > 0 will face the alternative
next. The selection rule signifies that the state in front of it is one that satisfies the wlp
of the chosen branch with its entering condition. Just using the wlp algorithm, a verifier
cannot exclude either path (unless the predicate collapses to a constant). So it has to
be the disjunction of both possibilities. An empty/non-existing ELSE -branch can be
regarded as containing a SKIP. The result is x < y&gcd(x0, y0) = gcd(y−x, x)&y−
x > 0&x > 0|x >= y&gcd(x0, y0) = gcd(x − y, y)&x − y > 0&y > 0. The upper
check is gcd(x0, y0 = gcd(x, y)&x > 0&y > 0&x <> 0 → x < y&gcd(x0, y0) =
gcd(y − x, x)&y − x > 0&x > 0|x >= y&gcd(x0, y0) = gcd(x − y, y)&x − y >

0&y > 0). A couple of terms vanish through the law of excluded middle2 and it
is to show that gcd(x, y) = gcd(y − x, x) basically. The mathematical gcd function
has multiple properties, one being “If m is any integer, then gcd(a+m*b,b)=gcd(a,b)”
[Wik17c]. Adding special functions is the same as inbuilt operators, the properties have
to be ingrained as rules to reason about it. The rest of the proof is trivial.

4.5 Finding invariants

4.5.1 Pointers

The other main challenge in using the Hoare calculus consists of the search for fitting
loop invariants. The pointers for finding them are:

• p ∧B → wlp(S, p)

• p ∧ ¬B → q

where B is the condition of the loop, S is the body of the loop, q the postcondition
after the loop and p the loop invariant. wlp(S, p), p ∧B, p ∧ ¬B are abbreviated by
R, P and Q respectively onwards.

2A| ∼ A⇒ true, two or more terms being complementary.

52

p = f(B, S, q)
B × S × q 7→ p

(4.47)

Finding f is undecidable and the involved implication relations suggest that this might
be an even harder venture but maybe an algorithm for finding those loop invariants
does not require implication checks or only simple ones? Most sources do not state a
direct methodology for seeking loop invariants and randomly building assertions appears
ineffective. At least, since Q is supposed to imply q, it is argumentative to say that
var(p) ∪ var(B) ⊇ var(q) (all variables of the postcondition should be included).
R is derived from the assignments (substitutions) in the body. As has already been
discussed earlier, substitutions are badly reversible. A number of examples are going to
be contemplated hereafter. One should pay attention that postconditions after loops in
existing code listings may not necessarily be the strongest possibility nor be verified
when they were actually user input. The loop invariant is artificially tailored to fit the
postcondition and the effect of the loop must rather be interpreted and the precondition
known to find the exact postcondition.

4.5.2 Parallel counter
1 PRE {x=0&y=0}
2 WHILE x<5 DO
3 x:=x+1;
4 y:=y+1
5 OD
6 POST {x=5&y=5}

Listing L10: Parallel counter

x < 5
×x := x+ 1; y := y + 1
×x = 5 ∧ y = 5
7→ x = y ∧ x < 6

(4.48)

There are only the variables x and y in Listing L10 . It seems obvious that x
and y are 5 after the loop. That is because they both start at the same value below
the loop condition threshold and increase at the same pace. This common pace or
distance is a constancy, an invariant. A suitable loop invariant is x = y∧x < 6 because
x = y ∧ x < 6∧ x >= 5⇒ x = y ∧ x = 5⇒ x = 5∧ y = 5 implies the postcondition,
directly at that, and x = y ∧ x < 6[y := y + 1][x := x+ 1]⇒ x+ 1∧ y + 1∧ x+ 1 <
6 ⇒ x = y ∧ x < 5 simply absorbs the loop condition x < 5. The example can be
parametrized to generalize it a bit and get a better understanding.

53

1 PRE {x=0&y=0&UNTIL >=0}
2 WHILE x<UNTIL DO
3 x:=x+1;
4 y:=y+1
5 OD
6 POST {x=UNTIL&y=UNTIL}

Listing L11: Parallel counter (parametrized)

x < UNTIL

×x := x+ 1; y := y + 1
×x = UNTIL ∧ y = UNTIL

7→ x = y ∧ x < UNTIL+ 1

(4.49)

The easiest parameter to alter appears to be the upper bound of the loop. It is
clearly represented in q as well as in p. However, this only works if UNTIL is greater
than or equal to the starting value 0. A negative UNTIL would mean that neither x
nor y experience modification and remain zero.

1 PRE {x=START&y=START}
2 WHILE x<UNTIL DO
3 x:=x+1;
4 y:=y+1
5 OD
6 POST {x=UNTIL&y=UNTIL}

Listing L12: Parallel counter (start parametrized)

Granting the starting values of the variables a degree of freedom induces the possibility
of not entering the loop (with START >= UNTIL) likewise. The postcondition must
handle this case (x = UNTIL∧ y = UNTIL∨ x = START ∧ y = START). What
does the previous R⇒ x = y∧x < UNTIL+1∧x >= UNTIL lack to imply that? It
misses exactly the alternative. The loop condition cannot be changed to accommodate
for it, the invariant must incorporate it. Choosing x = y ∧ x < UNTIL + 1 ∨ x =
START ∧ y = START for p makes R x + 1 = y + 1 ∧ x < UNTIL + 1 ∧ x <
UNTIL∨x+1 = START ∧y+1 = START ∧x < UNTIL, which does not imply p
evidently. A relaxation to x = y∧x < UNTIL+ 1∨x >= START ∧ y >= START

using the >= operator accounts for the < var >:=< var > +1 substitutions but no
longer implies q.

One rule can be derived: To pass the parts of a postcondition not depending on the
changed variables inside the loop body to the precondition of the loop, it can simply be
added to the invariant. Respectively that supplement can be omitted while observing
the loop and re-added afterwards.

p = f(B, S, q) ∧ var(Z) /∈ change(S)→ p ∧ Z = f(B, S, q ∧ Z) (4.50)

54

p = f(B, S, q) ∨ var(Z) /∈ change(S)→ p ∨ Z = f(B, S, q ∨ Z) (4.51)

That is due to the wlp(S,Z) = Z or more pellucidly R → p ∧ Z becoming
p′ ∧B ∧ Z → p ∧ Z. The variables in Z are not modified and p′ ∧B ∧ Z → p ∧ Z ⇒
(p′ → p ∨ B → p ∨ Z → p) ∧ (p′ → Z ∨ B → Z ∨ Z → Z). The argumentation is
analogous for the postcondition check and disjunctive operator. Z does not alter the
outcome of the implications.

4.5.3 Transformation of loops and structural thoughts

The loop in the Parallel counter example is indeed a count-controlled loop. The order
of the assignment lines does not matter either since they do not depend on each other.
That is why there is potential for certain transformations and more so with subscripted
variables. Listing L13 displays the split of a loop into three other loops responsible
for one of the assignments of the original loop each. That is possible because the
termination of the first loop only depends on x and x does not depend on any other
variable. The number of iterations is enumerated and the values of x within each
iteration to pass it to y. The order is preserved. Such remodeling may force smaller
structures whose loop invariants are perhaps known or that leave less of a scope to
generate loop invariants for. At least a dependency graph could unveil chances for
reduction.

1 x:=0;
2 y:=1;
3 z:=3;
4 WHILE x<5 DO
5 x:=x+1;
6 y:=y*x;
7 z:=z!
8 OD
9

10 //same as
11 x:=0;
12 y:=1;
13 z:=3;
14 c0:=0;
15 WHILE x<5 DO
16 x:=x+1;
17 c0save[c0]=x;
18 c0:=c0+1
19 OD
20 c1:=0;
21 WHILE c1 <c0 DO
22 y:=y*c0save[c1];
23 c1:=c1+1

55

24 OD
25 c2:=0;
26 WHILE c2 <c0 DO
27 z:=z!;
28 c2:=c2+1
29 OD

Listing L13: Loop transformation

Some more thoughts on the structure of loop invariants: The invariant must withstand
the upper and lower delimiter checks. The negation of the condition of the loop can
fulfill the postcondition on its own or part thereof. In that case, that burden is lifted
from the invariant. It does certainly depend on the kind of assignments and substitutions.
If the postcondition is a correct one, it deems the chance is high that the invariant
will have roughly the same function with just different parameter restrictions. One
cannot conclude a factorial relationship from proportionality, the interface between the
different operations is lacking where parametrization could have an effect.

56

5 Chapter 5

Implementation

5.1 Java, surface

The verifier tool is implemented using the Java programming language. Since the user
input codes may vary, should be able to be changed on-the-fly for experimentation pur-
poses and more user input and information exchange is required during the verification,
a graphical user interface seems plausible. Moreover, verifying assistance should ideally
be integrated into an IDE1, so that the context would be a better fit. Yet for simplicity,
independence of implementation and concentration on the core algorithms, the idea of
a standalone application surpasses the one of a plug-in for an existing IDE. JavaFX2 is
chosen as a framework for the GUI3. It enforces the MVC4 pattern, thereby separates
the graphical representation from the programming logic in a uniform way. Since the
framework lacks an inbuilt widget for so-called rich text5, which allows for individual
styling of characters inside a text area, the RichTextFX library by TomasMikula
[Mik17] is added in order to be able to properly illustrate both inputs and outputs. That
package also contains a dedicated widget for code areas. Features like line numbers,
highlighting of keywords or breakpoints can be realized. Figure F34 shows the main
window of the GUI. The program provides basic text editor functionality: opening,
saving and creating new files. Multiple files can be opened at once, each one being
represented by a tab. The displayed tab can be split into multiple views as Figure
F35 indicates. Besides showing the input code (1), this can reveal the lexer-generated
tokens (2) and the syntax tree composed by the parser (3) for introspection purposes.
The branches that only contain the empty word are hidden on default since the tree
can get pretty convoluted even without them. More output is visible in the console (4)
and the tree chart in Figure F36 , which is an alternative representation of the syntax
tree. After the code has been parsed, which is done automatically as the code area
content changes on default, the interactive proving functionality becomes activatable
(H button).

1Integrated Development Environment.
2GUI-Toolkit for Java applications, successor to AWT/Swing.
3Graphical User Interface.
4Model View Controller.
5Formatting or multimedia enriched text.

57

Figure F34: Main window.

Figure F35: Views.

58

Figure F36: Syntax chart.

5.2 Grammar, lexer, parser

A grammar hosts terminals and non-terminal symbols, which come with their respective
rules. Terminals are defined by lexer rules. Those are either regular expressions or fixed
terms especially used for keywords. Parser rules for non-terminals consist of an ordered
list of a combination of non-terminals and terminals or ε. Therefore, Symbol was
chosen as an abstract class generalizing Terminal and NonTerminal . The relationship
is depicted in Figure F37 and an example for the 〈exp〉 grammar is found in Listing
L14 .

59

Grammar

* *

**

*

Symbol

String : key

ParserRule

symbols : List<Symbol>

NonTerminal

rules : Set<ParserRule>

Terminal

rules : Set<LexerRule>

LexerRule

exp : String
isRegex : bool

Grammar

nonTerminals : Set<NonTerminal>
terminals : Set<Terminal>

Figure F37: Grammar-related class diagram.

1 public ExpGrammar () {
2 super();
3
4 //lexer rules
5 TERMINAL_EXP_LIT = createTerminal("EXP_LIT");
6 TERMINAL_PAREN_OPEN = createTerminal("PAREN_OPEN");
7 TERMINAL_PAREN_CLOSE = createTerminal("PAREN_CLOSE");
8 TERMINAL_OP_PLUS = createTerminal("OP_PLUS");
9 TERMINAL_OP_MINUS = createTerminal("OP_MINUS");
10 TERMINAL_OP_MULT = createTerminal("OP_MULT");
11 TERMINAL_OP_DIV = createTerminal("OP_DIV");
12 TERMINAL_OP_POW = createTerminal("OP_POW");
13 TERMINAL_OP_FACT = createTerminal("OP_FACT");
14 TERMINAL_ID = createTerminal("ID");
15 TERMINAL_PARAM_SEP = createTerminal("PARAM_SEP").setSep ();
16
17 TERMINAL_EXP_LIT.addRuleRegEx("[1 -9][0 -9]*");
18 TERMINAL_EXP_LIT.addRuleRegEx("0");
19
20 TERMINAL_PAREN_OPEN.addRule("(");
21 TERMINAL_PAREN_CLOSE.addRule(")");
22 TERMINAL_OP_PLUS.addRule("+");
23 TERMINAL_OP_MINUS.addRule("-");
24 TERMINAL_OP_MULT.addRule("*");
25 TERMINAL_OP_DIV.addRule("/");
26 TERMINAL_OP_POW.addRule("^");

60

27 TERMINAL_OP_FACT.addRule("!");
28
29 TERMINAL_ID.addRuleRegEx("[a-zA-Z][a-zA -Z0 -9]*");
30
31 TERMINAL_PARAM_SEP.addRule(",");
32
33 // parser rules
34 NON_TERMINAL_EXP = createNonTerminal("exp");
35 NON_TERMINAL_SUM = createNonTerminal("sum");
36 NON_TERMINAL_SUM_ = createNonTerminal("sum’");
37 NON_TERMINAL_PROD = createNonTerminal("prod");
38 NON_TERMINAL_PROD_ = createNonTerminal("prod’");
39 NON_TERMINAL_POW = createNonTerminal("pow");
40 NON_TERMINAL_POW_ = createNonTerminal("pow’");
41 NON_TERMINAL_FACT = createNonTerminal("fact");
42 NON_TERMINAL_FACT_ = createNonTerminal("fact’");
43 NON_TERMINAL_EXP_ELEM = createNonTerminal("exp_elem");
44 NON_TERMINAL_PARAM_LIST = createNonTerminal("param_list");
45 NON_TERMINAL_PARAM_LIST_ = createNonTerminal("param_list ’");
46 NON_TERMINAL_PARAM = createNonTerminal("param");
47
48 RULE_SUM = createRule(NON_TERMINAL_EXP , "sum");
49
50 RULE_PROD_SUM_ = createRule(NON_TERMINAL_SUM , "prod␣sum’");
51
52 RULE_OP_PLUS_PROD_SUM_ = createRule(NON_TERMINAL_SUM_ , "OP_PLUS␣prod␣sum’");
53 RULE_OP_MINUS_PROD_SUM_ = createRule(NON_TERMINAL_SUM_ , "OP_MINUS␣prod␣sum’");
54 createRule(NON_TERMINAL_SUM_ , Terminal.EPSILON);
55
56 RULE_POW_PROD_ = createRule(NON_TERMINAL_PROD , "pow␣prod’");
57
58 RULE_OP_MULT_POW_PROD_ = createRule(NON_TERMINAL_PROD_ , "OP_MULT␣pow␣prod’");
59 RULE_OP_DIV_POW_PROD_ = createRule(NON_TERMINAL_PROD_ , "OP_DIV␣pow␣prod’");
60 createRule(NON_TERMINAL_PROD_ , Terminal.EPSILON);
61
62 RULE_FACT_POW_ = createRule(NON_TERMINAL_POW , "fact␣pow’");
63
64 RULE_OP_POW_POW = createRule(NON_TERMINAL_POW_ , "OP_POW␣pow");
65 createRule(NON_TERMINAL_POW_ , Terminal.EPSILON);
66
67 RULE_EXP_ELEM_FACT_ = createRule(NON_TERMINAL_FACT , "exp_elem␣fact’");
68
69 RULE_OP_FACT_FACT_= createRule(NON_TERMINAL_FACT_ , "OP_FACT␣fact’");
70 createRule(NON_TERMINAL_FACT_ , Terminal.EPSILON);
71
72 RULE_ID_PARAM_LIST = createRule(NON_TERMINAL_EXP_ELEM , "ID␣param_list");
73 RULE_EXP_LIT = createRule(NON_TERMINAL_EXP_ELEM , "EXP_LIT");
74 RULE_PARENS_EXP = createRule(NON_TERMINAL_EXP_ELEM , "PAREN_OPEN␣exp␣PAREN_CLOSE"

);
75
76 RULE_PARENS_PARAM_PARAM_LIST_ = createRule(NON_TERMINAL_PARAM_LIST , "PAREN_OPEN␣

param␣param_list ’␣PAREN_CLOSE");
77 createRule(NON_TERMINAL_PARAM_LIST , Terminal.EPSILON);
78
79 RULE_PARAM_SEP_PARAM_PARAM_LIST_ = createRule(NON_TERMINAL_PARAM_LIST_ , "

PARAM_SEP␣param␣param_list ’");
80 createRule(NON_TERMINAL_PARAM_LIST_ , Terminal.EPSILON);
81
82 RULE_EXP = createRule(NON_TERMINAL_PARAM , "exp");
83
84 // finalize

61

85 setStartSymbol(NON_TERMINAL_EXP);
86
87 updateParserTable ();
88 }

Listing L14: Implementation of 〈exp〉 grammar (Java)

The Grammar class can be extended, e.g. ExpGrammar is inherited by While-
Grammar (the grammar that describes while Programs). This modularization approach
concedes further flexibility when converting between string and syntax tree. An instance
of Grammar both is used by the lexer and the parser. The Lexer class splits a string
into a stream of tokens and the Parser class transforms the tokens into a syntax tree.
Token is an aggregate of Terminal and contains additional details like the position it
occupies relating to the input string. That information can be used for error reporting
when checking the syntax or for other output arrangement. The inner workings of
the lexer can be looked at in Appendix B: Lexer, parser listings . The method first
removes comments and sanitizes the input from unnecessary line breaks. The current
position is memorized and incorporated into the regular expression pattern. All of the
terminals and rules are iterated over in order to find the longest match. Before doing
that, the rules get sorted because the language for 〈id〉 is, in fact, a superset of most
keywords like ‘IF’ or ‘WHILE’. In that case, the keywords should be prioritized. If no
match is found after trying everything, an exception with the current position will be
thrown. Otherwise, the longest match will generate a new instance of Token and the
lexer appends it to the output list. The pointer advances and the process is repeated
until it transcends the end of the input string.

Using the terminals and non-terminals along with the information about the parser
rules, a grammar can construct a predictive parser table. This table makes a direct
assignment between a pair of NonTerminal and Terminal and ParserRule and is
used by the parser to select the next rule. The parsing algorithm is depicted in Appendix
B: Lexer, parser listings . Firstly, the terminator symbol ‘$’ is annexed to the token list
and the iterator gets pointed to the first token. Beginning with the designated starting
rule of the grammar, the recursively invoked getNode method is called. It is supposed
to create a single node of the syntax tree (paying attention to the current non-terminal
and token) but triggers the construction of all children nodes in one fell swoop. The
selectRule method fetches the rule to pursue from the predictive parser table and will
report an error if there is no entry. Then the symbols of the rule are gone over: If a
symbol is a terminal, it will be compared against the current token, added as a child
and the iterator will take a step to point to the next token. In case of the empty word,
the child is a special ε node. Lastly, non-terminals amount to a child as well but call the
getNode method again to acquire their own respective children. Since the last case
does not effectuate a change in the token iterator, the grammar is expected to indeed

62

be a LL(1) grammar as a different scenario would be prone to induce an infinite loop.

Parsing

�create�
�use�

�use�

�create�

Terminal

rules : Set<LexerRule>

Token

terminal : Terminal
int : line

Grammar

nonTerminals : Set<NonTerminal>
terminals : Set<Terminal>

ParserTable

map : Map<Pair<
NonTerminal, Terminal>
, ParserRule>

Parser

parse(Grammar grammar,
List<Token>) : SyntaxTree

SyntaxTree

Lexer

tokenize(grammar: Grammar,
input : String) : List<Token>

Figure F38: Parser-related class diagram.

5.2.1 First, Follow

The algorithms for the concept of First and Follow were already outlined in Chapter
3: Introduction of a Language . Specific Java implementations are provided along
with the piecing together of the parser table in Appendix A: First, Follow, parser
table listings .

1 public Set <Terminal > getFirst(List <Symbol > symbols , Set <NonTerminal > recursiveSet)
{

2 if (symbols.contains(Terminal.EPSILON)) return new LinkedHashSet <>(Arrays.asList
(new Terminal []{ Terminal.EPSILON }));

3
4 Set <Terminal > ret = new LinkedHashSet <>();
5

63

6 for (int i = 0; i < symbols.size(); i++) {
7 Symbol symbol = symbols.get(i);
8
9 if (symbol instanceof Terminal) {

10 ret.add((Terminal) symbol); break;
11 } else if (symbol instanceof NonTerminal) {
12 Set <Terminal > setSub = getFirst ((NonTerminal) symbol , recursiveSet);
13
14 if (i < symbols.size() - 1 && setSub.contains(Terminal.EPSILON)) {
15 setSub.remove(Terminal.EPSILON); ret.addAll(setSub);
16 } else {
17 ret.addAll(setSub); break;
18 }
19 }
20 }
21
22 return ret;
23 }
24
25 public Set <Terminal > getFirst(NonTerminal nonTerminal , Set <NonTerminal >

recursiveSet) {
26 Set <Terminal > ret = new LinkedHashSet <>();
27
28 if (recursiveSet.contains(nonTerminal)) return ret;
29
30 recursiveSet.add(nonTerminal);
31
32 for (ParserRule p : nonTerminal.getRules ()) {
33 ret.addAll(getFirst(p.getSymbols (), recursiveSet));
34 }
35
36 return ret;
37 }
38
39 public Set <Terminal > getFirst(NonTerminal nonTerminal) {
40 return getFirst(nonTerminal , new LinkedHashSet <>());
41 }

Listing L15: Implementation of First (Java)

1 public Set <Terminal > getFollow(NonTerminal nonTerminal , Grammar grammar , Set <
NonTerminal > recursiveSet) {

2 Set <Terminal > ret = new LinkedHashSet <>();
3
4 if (recursiveSet.contains(nonTerminal)) return ret;
5
6 recursiveSet.add(nonTerminal);
7
8 if (grammar.getStartParserRule ().equals(nonTerminal)) ret.add(Terminal.

TERMINATOR);
9

10 for (NonTerminal p : grammar.getNonTerminals ()) {
11 for (ParserRule rule : p.getRules ()) {
12 List <Symbol > symbols = rule.getSymbols ();
13
14 for (int i = 0; i < symbols.size(); i++) {
15 Symbol symbol = rule.getSymbols ().get(i);
16
17 if (symbol.equals(nonTerminal)) {
18 List <Symbol > restSymbols = (i < symbols.size() - 1) ? symbols.subList(i

+ 1, symbols.size()) : new ArrayList <>();

64

19
20 if (restSymbols.isEmpty ()) {
21 ret.addAll(getFollow(p, grammar , recursiveSet));
22 } else {
23 Set <Terminal > subSet = getFirst(restSymbols , new LinkedHashSet <

NonTerminal >());
24
25 if (subSet.contains(Terminal.EPSILON)) {
26 subSet.remove(Terminal.EPSILON);
27
28 ret.addAll(subSet);
29
30 ret.addAll(getFollow(p, grammar , recursiveSet));
31 } else {
32 ret.addAll(subSet);
33 }
34 }
35 }
36 }
37 }
38 }
39
40 return ret;
41 }
42
43 public Set <Terminal > getFollow(NonTerminal nonTerminal , Grammar grammar) {
44 return getFollow(nonTerminal , grammar , new LinkedHashSet <NonTerminal >());
45 }

Listing L16: Implementation of Follow (Java)

1 public PredictiveParserTable(Grammar g) {
2 Map <NonTerminal , Set <Terminal >> firstMap = new LinkedHashMap <>();
3 Map <NonTerminal , Set <Terminal >> followMap = new LinkedHashMap <>();
4
5 for (NonTerminal p : g.getNonTerminals ()) {
6 firstMap.put(p, getFirst(p));
7 followMap.put(p, getFollow(p, g));
8 }
9

10 for (NonTerminal p : g.getNonTerminals ()) {
11 for (ParserRule r : p.getRules ()) {
12 List <Symbol > symbols = r.getSymbols ();
13
14 if (symbols.contains(Terminal.EPSILON))
15 for (Terminal terminal : followMap.get(p)) {
16 set(p, terminal , r);
17 }
18 else {
19 Symbol symbol = r.getSymbols ().get (0);
20
21 if (symbol instanceof Terminal) {
22 set(p, (Terminal) symbol , r);
23 } else if (symbol instanceof NonTerminal) {
24 for (Terminal terminal : firstMap.get((NonTerminal) symbol)) {
25 set(p, terminal , r);
26 }
27 }
28 }
29 }
30 }

65

31 }

Listing L17: Parser table (Java)

1 public LexerResult tokenize(String s) throws LexerException {
2 s = removeComments(s);
3
4 Vector <Terminal > terminals = new Vector <>(_grammar.getTerminals ());
5
6 terminals.sort(new Comparator <Terminal >() {
7 private boolean isRegEx(Terminal terminal) {
8 for (LexerRule rule : terminal.getRules ()) if (rule.isRegEx ()) return true;
9

10 return false;
11 }
12
13 @Override
14 public int compare(Terminal terminalA , Terminal terminalB) {
15 if (terminalA.getRules ().isEmpty () || terminalB.getRules ().isEmpty ()) return

0;
16
17 if (isRegEx(terminalA)) return 1;
18 if (isRegEx(terminalB)) return -1;
19
20 return 0;
21 }
22 });
23
24 Terminal wsRule = new Terminal(new SymbolKey("WS"), true);
25
26 wsRule.addRule(new LexerRule("\\s+", true));
27
28 terminals.add(wsRule);
29
30 int curPos = 0; Vector <Token > tokens = new Vector <>(); int x = 0; int y = 0;
31
32 while (curPos < s.length ()) {
33 if ((s.length () - curPos >= System.lineSeparator ().length ()) && s.substring(

curPos , curPos + System.lineSeparator ().length ()).equals(System.
lineSeparator ())) {

34 curPos += System.lineSeparator ().length (); x = 0; y++;
35
36 continue;
37 }
38
39 int curLen = 0; LexerRule curRule = null; Terminal curTerminal = null;
40
41 for (int i = 0; i < terminals.size(); i++) {
42 Terminal terminal = terminals.get(i);
43
44 for (LexerRule rule : terminal.getRules ()) {
45 String ruleS = (curPos > 0) ? String.format("^.{%d}(%s)", curPos , rule.

getRegEx ()) : String.format("^(%s)", rule.getRegEx ());
46
47 Pattern adjustedPattern = Pattern.compile(ruleS , Pattern.DOTALL);
48
49 Matcher matcher = adjustedPattern.matcher(s);
50
51 if (matcher.find() && (matcher.start (1) == curPos)) {
52 int newLen = (matcher.end(1) - 1) - matcher.start (1) + 1;
53

66

54 if (newLen > curLen) {
55 curTerminal = terminal; curRule = rule; curLen = newLen;
56 }
57 }
58 }
59 }
60
61 if (curRule == null) throw new LexerException(y, x, curPos , s);
62 else {
63 String text = s.substring(curPos , curPos + curLen);
64
65 for (int i = 0; i < text.length ();) {
66 if ((text.length () - i >= System.lineSeparator ().length ()) && text.

substring(i, i + System.lineSeparator ().length ()).equals(System.
lineSeparator ())) {

67 i += System.lineSeparator ().length ();
68 } else {
69 i++;
70 }
71 }
72
73 Token token = createToken(curTerminal , curRule , text , y, x, curPos);
74
75 if (!token.getTerminal ().isSkipped ()) tokens.add(token);
76
77 curPos += curLen;
78 x += curLen;
79 }
80 }
81
82 return new LexerResult(tokens);
83 }

Listing L18: Lexer (Java, shortened)

1 private ParserRule selectRule(NonTerminal nonTerminal , Token terminal) throws
ParserException {

2 try {
3 ParserRule rule = _ruleMap.get(nonTerminal , terminal.getTerminal ());
4
5 if (rule == null) throw new Exception ();
6
7 return rule;
8 } catch (Exception e) {
9 if (terminal == null) throw new NoMoreTokensException(nonTerminal);

10 else throw new NoRuleException(terminal , nonTerminal);
11 }
12 }
13
14 private SyntaxTreeNode getNode(NonTerminal rule) throws ParserException {
15 ParserRule nextRule = selectRule(rule , _token);
16
17 SyntaxTreeNode thisNode = new SyntaxTreeNode(rule , nextRule);
18
19 for (Symbol symbol : nextRule.getSymbols ()) {
20 if (symbol instanceof NonTerminal) {
21 thisNode.addChild(getNode ((NonTerminal) symbol));
22 } else {
23 if (symbol.equals(Terminal.EPSILON)) {
24 thisNode.addChild(new SyntaxTreeNodeTerminal(null));
25

67

26 continue;
27 }
28
29 if (_token == null) throw new NoMoreTokensException(rule , (Terminal) symbol)

;
30 if (! _token.getTerminal ().equals(symbol)) throw new WrongTokenException(

_token , rule , symbol);
31
32 thisNode.addChild(new SyntaxTreeNodeTerminal(_token));
33
34 _token = _tokensItr.hasNext () ? _tokensItr.next() : null;
35 }
36 }
37
38 return thisNode;
39 }
40
41 public SyntaxTree parse(Vector <Token > tokens) throws ParserException {
42 _tokens = tokens;
43
44 if (_tokens.isEmpty ()) throw new NoMoreTokensException(_grammar.

getStartParserRule ());
45
46 _tokens.add(Token.createTerminator(tokens));
47
48 _tokensItr = _tokens.iterator ();
49
50 _token = _tokensItr.next();
51
52 SyntaxTreeNode root = getNode(_grammar.getStartParserRule ());
53
54 if (! _token.getTerminal ().equals(Terminal.TERMINATOR)) throw new

SuperfluousTokenException(_token);
55
56 return new SyntaxTree(_grammar , root);
57 }

Listing L19: Parser (Java, shortened)

5.3 Semantic transformation, reduction, ordering

The syntax trees as produced by the parser are difficult to operate on, which is why
the notion of semantic trees was mentioned earlier in Section 3.3: Semantic tree
of Chapter 3: Introduction of a Language . The semantics are as needed: Their
type-specific nature calls for individual treatment as a 〈While〉 node differs from a 〈Id〉
for example. In line with this, there is no uniform conversion from syntax to semantic
tree. The semantic nodes are modeled in own Java classes, spanning a type hierarchy
with abstract base and intermediates. The rough layout for the verifier is depicted in
Figure F39 , Figure F40 and Figure F41 . The typification allows for proper case
distinction using instanceof 6, so do the interfaces and overloading of shared methods.

6Java operator that checks if an object is of a given type (or super types).

68

Prog

SemanticNode Prog Comp

parts : List<Prog>

CmdSkip

Assign

var : Id
val : Exp

Alt

cond : BoolExp
thenProg : Prog
elseProg : Prog

While

cond : BoolExp
body : Prog

Figure F39: Type hierarchy of 〈Prog〉.

〈Exp〉 and 〈BoolExp〉 declare the methods reduce_spec, order_spec and comp_spec
for their children to implement. reduce_spec tries to apply reductions on the targeted
object and further down in its node chain, presenting the result as a newly constructed
node. The frequent manipulation of semantic nodes suggests to render the classes
immutable7. For the reduce_spec method, returning a new object is a must because
a 〈Sum〉 of 〈ExpLit〉 is to collapse to an 〈ExpLit〉 for example. order_spec sorts
the children of a node in defined order by making comparisons using comp_spec.
Those methods are highly recursive and complex to re-enact normally. The base types
define reduce/order/comp as wrapper methods to track the calls and stream them
through a common gateway. comp additionally makes a comparison based on the class
types before running the individually bound order_spec of the object in question. An
example for those functionalities, albeit only a part of the recursive chain, is portrayed
in Listing L20 .

7The attributes of the object are final, it cannot be modified.

69

Exp

SemanticNode

Exp

Sum

exps : List<Exp>

Prod

exps : List<Exp>

Pow

base : Exp
exponent: Exp

Fact

arg : Exp

ExpElem
ExpLit

num : BigInteger
denom : BigInteger

Id

name : String

IdWithParams

GcdId

a : Exp
b : Exp

Figure F40: Type hierarchy of numeric expressions.

70

BoolExp

SemanticNode BoolExp BoolAnd

exps : List<BoolExp>

BoolOr

exps : List<BoolExp>

BoolNeg

arg : BoolExp

BoolImpl

source : BoolExp
target : BoolExp

BoolElem

BoolLit

val : boolean

ExpComp

left : BoolExp
compOp : ExpCompOp
right : BoolExp

Figure F41: Type hierarchy of boolean expressions.

1 //Exp code
2
3 @CheckReturnValue
4 @Nonnull
5 public final Exp reduce () {
6 if (! getChildren ().isEmpty ()) {
7 _printer.println("enter␣" + getTypeName () + "->" + this);
8 }
9 _printer.begin();

10
11 _reduceStack.push(this);
12
13 Exp ret = reduce_spec ();
14
15 _reduceStack.pop();
16
17 _printer.end();
18 if (!ret.getChildren ().isEmpty ()) {
19 _printer.println("leave␣" + getTypeName () + "->" + ret);
20 }
21
22 if (_reduceStack.isEmpty ()) {
23 _printer.println("finished");
24 } else {

71

25 _printer.println("reenter" + _reduceStack.peek().getTypeName ());
26 }
27
28 return ret;
29 }
30
31 @CheckReturnValue
32 @Nonnull
33 public abstract Exp order_spec ();
34
35 @CheckReturnValue
36 @Nonnull
37 public final Exp order() {
38 return order_spec ();
39 }
40
41 public abstract int comp_spec(Exp b);
42
43 public final int comp(Exp b) {
44 List <Class <? extends Exp >> types = new ArrayList <>();
45
46 types.add(ExpLit.class);
47 types.add(Id.class);
48 types.add(Sum.class);
49 types.add(Prod.class);
50 types.add(Pow.class);
51 types.add(Fact.class);
52
53 if (types.indexOf(getClass ()) < types.indexOf(b.getClass ())) return -1;
54 if (types.indexOf(getClass ()) > types.indexOf(b.getClass ())) return 1;
55
56 return comp_spec(b);
57 }
58
59 //Pow code
60
61 @Nonnull
62 @Override
63 public Exp reduce_spec () {
64 Exp base = _base.reduce ();
65 Exp exponent = _exponent.reduce ();
66
67 if (base instanceof ExpLit && exponent instanceof ExpLit) {
68 ExpLit ret = (ExpLit) base;
69
70 ret = ret.pow((ExpLit) exponent);
71
72 return ret;
73 }
74
75 if (base instanceof Pow) {
76 exponent = new Prod (((Pow) base).getExponent (), exponent);
77
78 base = ((Pow) base).getBase ();
79 }
80
81 if (exponent.equals(new ExpLit (1))) return base;
82 if (exponent.equals(new ExpLit (0))) return new ExpLit (1);
83
84 return new Pow(base , exponent);
85 }

72

86
87 @Nonnull
88 @Override
89 public Pow order_spec () {
90 return new Pow(_base.order (), _exponent.order());
91 }
92
93 @Override
94 public int comp_spec(Exp b) {
95 int baseRet = _base.comp (((Pow) b).getBase ());
96
97 if (baseRet != 0) return baseRet;
98
99 return _exponent.comp (((Pow) b)._exponent);
100 }

Listing L20: Logic snippet for 〈Pow〉 nodes.

5.4 Hoare

Starting the Hoare-style verification opens up a special menu next to the code area
shown in Figure F42 . The mechanism walks the semantic tree from the root in search
of a 〈HoareBlock〉, consequently initiates the wlp approach with the inner 〈Prog〉 node
and the postcondition. Each step displays a new dialog for the user to notice and to
understand the rationale for the ongoing decision making while marking the currently
considered piece of code with pointing arrows in the code area. These description
texts are adjusted to integrate the actually seen values. The dialogs can be skipped
over as far as possible with a checkbox selected. As this is generally not the case with
loops and implication checks, there are adequate input options as required. Figure
F43 displays the input box in the right lower part. The user may present a boolean
expression as string or, if any loop invariants were found, select it from a combobox.
The program can generally search for possibilities in parallel without blocking the GUI.
The dynamically more complex consequence check dialog in Figure F44 has the
implication split apart, trying to solve the shards individually but giving the user a
veto/input possibility to make a potentially better/different choice before merging the
results for the next level. A live proof outline can be eyed in the semantic tree chart view
Figure F45 . The Hoare algorithm itself is in Appendix D: Hoare listing . As most
of the implementation of a verifier proved to be, operating on the tree structure often
ends in recursive calls. The dialogs necessitate stops in between. Callback interfaces
were installed to emulate a calling stack without blocking the thread.

73

Figure F42: Hoare dialog and indicator.

Figure F43: Loop invariant dialog.

74

Figure F44: Consequence check dialog.

Figure F45: Semantic tree with proof outline.

75

6 Chapter 6

Conclusion

The Hoare calculus is good in theory but very difficult to apply and reenact since there
are a lot of cavities and eventualities to account for. There is no single straightforward
way to make use of it and the verification process must often be supported by the
user. This is why a program should be annotated with assertions and loop invariants.
The arising question is whether those annotations are chosen correctly then in order
to meet the expectations of the developer. Program verification is a bit of a self-
fulfilling prophecy, the software engineer inserts more information with the ambition of
constraining malfunctioning scenarios, trusting that additional information (hopefully
this is done by peers). The axioms and rules are general enough that the implementation
and strategies are heavily dependent on the language. The semantics of the elements in
assertions, the types of predicates and symbols, whose correctness must be ascertained,
are the pivot point for what statements may be constructed. The topic is copious, can
be scrutinized further for sure and concedes space for creativity. Finding loop invariants
is usually regarded as an intuitive task. Maybe such vagueness could be combined
with machine learning or databases be gradually fed with previously regarded proof
outlines. Implication checks for the observed arithmetics are feasible but may fail in
detail. Similarly to solving equations in school, sometimes it requires a sharp eye or
the right application of conversion rules to get the proper result. The expansion of
expressions appears to be very arbitrary, trial and error, but instead of only reducing
them to a final format, which is ambiguous and more so with an enlarged language,
intermediate comparisons and reshuffling multiple reduced representations should be
able to solve more implication problems.

A verifier benefits from a test-driven and agile development. The verification rules are
extendable and a lot of edge cases up for optimization. Frequent code refactoring may
cause hard to track down issues. Test cases or other verification methods safeguard
integrity and give an overview.

76

Bibliography

[APdBO10] K. Apt, A. Pnueli, F.S. de Boer, and E.R. Olderog. Verification of
Sequential and Concurrent Programs. Texts in Computer Science. Springer,
London, 2010. URL: books.google.de/books?id=9BGPVwLTkh4C.

[Coc02] Robin Cockett. Cpsc411 – compiler construction i: Ll(1) gram-
mars and predictive top-down parsing. pages.cpsc.ucalgary.ca/ robin/-
class/411/LL1.2.html, 2002. [Online; accessed 30-October-2017].

[Dij69] Edsger W. Dijkstra. Ew dijkstra quotes. wiki.c2.com/?EwDijkstraQuotes,
1969. [Online; accessed 30-October-2017].

[FLM84] C. B. Jones F. L. Morris. An early program proof by alan turing.
pdfs.semanticscholar.org/dfd7/34b2de2cbcce6ac07e909011b0ed6ba32b01.pdf,
1984. [Online; accessed 30-October-2017].

[Gri82] David Gries. A note on a standard strategy for developing loop
invariants and loops. Science of Computer Programming, 2(3):207
– 214, 1982. URL: www.sciencedirect.com/science/article/
pii/0167642383900151, doi:dx.doi.org/10.1016/0167-6423(83)
90015-1.

[Kam16] Anya Kamenetz. The president wants every stu-
dent to learn computer science. how would that work?
www.npr.org/sections/ed/2016/01/12/462698966/the-president-
wants-every-student-to-learn-computer-science-how-would-that-work,
2016.

[Kapnd] Craig S. Kaplan. The craig web experience: Understanding the halting
problem. www.cgl.uwaterloo.ca/csk/halt, n.d. [Online; accessed 31-
October-2017].

[Kle09] S. Kleuker. Formale Modelle der Softwareentwicklung: Model-Checking,
Verifikation, Analyse und Simulation. Vieweg Studium. Vieweg+Teubner
Verlag, 2009. URL: books.google.de/books?id=Gql3pv5V85cC.

[Mat17] Richard J. Mathar. A java math.bigdecimal implementation of core math-
ematical functions. arxiv.org/abs/0908.3030v2, 2017. [Online; accessed
25-October-2017].

77

books.google.de/books?id=9BGPVwLTkh4C
www.sciencedirect.com/science/article/pii/0167642383900151
www.sciencedirect.com/science/article/pii/0167642383900151
http://dx.doi.org/dx.doi.org/10.1016/0167-6423(83)90015-1
http://dx.doi.org/dx.doi.org/10.1016/0167-6423(83)90015-1
books.google.de/books?id=Gql3pv5V85cC

[McC08] James D. McCaffrey. The difference between unit testing and module test-
ing. jamesmccaffrey.wordpress.com/2008/08/29/the-difference-between-
unit-testing-and-module-testing, 2008. [Online; accessed 30-October-
2017].

[Mignd] Matt Might. Grammar: The language of languages (bnf, ebnf, abnf and
more). matt.might.net/articles/grammars-bnf-ebnf, n.d. [Online; accessed
20-June-2017].

[Mik17] Tomas Mikula. Rich-text area for javafx. github.com/FXMisc/RichTextFX,
2017. [Online; accessed 15-June-2017].

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, SFCS ’77,
pages 46–57, Washington, DC, USA, 1977. IEEE Computer Society. URL:
dx.doi.org/10.1109/SFCS.1977.32, doi:10.1109/SFCS.1977.32.

[Rav17] Ravindrababu Ravula. Compiler design online lectures.
www.youtube.com/playlist?list=PLEbnTDJUr_IcPtUXFy2b1sGRPsLFMghhS,
2017. [Online; accessed 31-August-2017].

[RK83] P. J. Hayes R. Kowalski. Semantic Trees in Automatic Theorem-Proving.
Springer, Berlin, Heidelberg, 1983. URL: link.springer.com/chapter/
10.1007/978-3-642-81955-1_13.

[Sas10] SasQ. parsing - lexers vs parsers - stack overflow.
stackoverflow.com/questions/2842809/lexers-vs-parsers, 2010. [Online;
accessed 20-June-2017].

[Spo02] Joel Spolsky. The law of leaky abstractions.
www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions,
2002.

[Tan16] Gang Tan. A collection of well-known software failures.
www.cse.psu.edu/ gxt29/bug/softwarebug.html, 2016. [Online;
accessed 30-October-2017].

[Wik17a] Wikipedia. Ambiguous grammar — wikipedia, the free encyclopedia.
en.wikipedia.org/wiki/Ambiguous_grammar#Recognizing_ambiguous_grammars,
2017. [Online; accessed 20-June-2017].

[Wik17b] Wikipedia. Fehlerquotient — wikipedia, die freie enzyklopädie.
de.wikipedia.org/w/index.php?title=Fehlerquotient, 2017. [Online; ac-
cessed 24-August-2017].

[Wik17c] Wikipedia. Greatest common divisor — wikipedia, the free encyclope-
dia. en.wikipedia.org/wiki/Greatest_common_divisor#Properties, 2017.
[Online; accessed 1-November-2017].

78

dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
link.springer.com/chapter/10.1007/978-3-642-81955-1_13
link.springer.com/chapter/10.1007/978-3-642-81955-1_13

[Wik17d] Wikipedia. Ieee 754 — wikipedia, the free encyclopedia.
en.wikipedia.org/wiki/IEEE_754, 2017. [Online; accessed 25-October-
2017].

[Wik17e] Wikipedia. Model checking — wikipedia, the free encyclopedia.
en.wikipedia.org/wiki/Model_checking, 2017. [Online; accessed 24-August-
2017].

[Wik17f] Wikipedia. Shape analysis (program anal-
ysis) — wikipedia, the free encyclopedia.
en.wikipedia.org/w/index.php?title=Shape_analysis_(program_analysis),
2017. [Online; accessed 24-August-2017].

[Wik17g] Wikipedia. While-programm — wikipedia, die freie enzyklopädie.
de.wikipedia.org/w/index.php?title=WHILE-Programm, 2017. [Online;
accessed 25-October-2017].

79

A Appendix A

First, Follow, parser table listings

1 public Set <Terminal > getFirst(List <Symbol > symbols , Set <NonTerminal > recursiveSet)
{

2 if (symbols.contains(Terminal.EPSILON)) return new LinkedHashSet <>(Arrays.asList
(new Terminal []{ Terminal.EPSILON }));

3
4 Set <Terminal > ret = new LinkedHashSet <>();
5
6 for (int i = 0; i < symbols.size(); i++) {
7 Symbol symbol = symbols.get(i);
8
9 if (symbol instanceof Terminal) {

10 ret.add((Terminal) symbol); break;
11 } else if (symbol instanceof NonTerminal) {
12 Set <Terminal > setSub = getFirst ((NonTerminal) symbol , recursiveSet);
13
14 if (i < symbols.size() - 1 && setSub.contains(Terminal.EPSILON)) {
15 setSub.remove(Terminal.EPSILON); ret.addAll(setSub);
16 } else {
17 ret.addAll(setSub); break;
18 }
19 }
20 }
21
22 return ret;
23 }
24
25 public Set <Terminal > getFirst(NonTerminal nonTerminal , Set <NonTerminal >

recursiveSet) {
26 Set <Terminal > ret = new LinkedHashSet <>();
27
28 if (recursiveSet.contains(nonTerminal)) return ret;
29
30 recursiveSet.add(nonTerminal);
31
32 for (ParserRule p : nonTerminal.getRules ()) {
33 ret.addAll(getFirst(p.getSymbols (), recursiveSet));
34 }
35
36 return ret;
37 }
38
39 public Set <Terminal > getFirst(NonTerminal nonTerminal) {
40 return getFirst(nonTerminal , new LinkedHashSet <>());
41 }

Listing L21: First (Java)

80

1 public Set <Terminal > getFollow(NonTerminal nonTerminal , Grammar grammar , Set <
NonTerminal > recursiveSet) {

2 Set <Terminal > ret = new LinkedHashSet <>();
3
4 if (recursiveSet.contains(nonTerminal)) return ret;
5
6 recursiveSet.add(nonTerminal);
7
8 if (grammar.getStartParserRule ().equals(nonTerminal)) ret.add(Terminal.

TERMINATOR);
9

10 for (NonTerminal p : grammar.getNonTerminals ()) {
11 for (ParserRule rule : p.getRules ()) {
12 List <Symbol > symbols = rule.getSymbols ();
13
14 for (int i = 0; i < symbols.size(); i++) {
15 Symbol symbol = rule.getSymbols ().get(i);
16
17 if (symbol.equals(nonTerminal)) {
18 List <Symbol > restSymbols = (i < symbols.size() - 1) ? symbols.subList(i

+ 1, symbols.size()) : new ArrayList <>();
19
20 if (restSymbols.isEmpty ()) {
21 ret.addAll(getFollow(p, grammar , recursiveSet));
22 } else {
23 Set <Terminal > subSet = getFirst(restSymbols , new LinkedHashSet <

NonTerminal >());
24
25 if (subSet.contains(Terminal.EPSILON)) {
26 subSet.remove(Terminal.EPSILON);
27
28 ret.addAll(subSet);
29
30 ret.addAll(getFollow(p, grammar , recursiveSet));
31 } else {
32 ret.addAll(subSet);
33 }
34 }
35 }
36 }
37 }
38 }
39
40 return ret;
41 }
42
43 public Set <Terminal > getFollow(NonTerminal nonTerminal , Grammar grammar) {
44 return getFollow(nonTerminal , grammar , new LinkedHashSet <NonTerminal >());
45 }

Listing L22: Follow (Java)

81

1 public PredictiveParserTable(Grammar g) {
2 Map <NonTerminal , Set <Terminal >> firstMap = new LinkedHashMap <>();
3 Map <NonTerminal , Set <Terminal >> followMap = new LinkedHashMap <>();
4
5 for (NonTerminal p : g.getNonTerminals ()) {
6 firstMap.put(p, getFirst(p));
7 followMap.put(p, getFollow(p, g));
8 }
9

10 for (NonTerminal p : g.getNonTerminals ()) {
11 for (ParserRule r : p.getRules ()) {
12 List <Symbol > symbols = r.getSymbols ();
13
14 if (symbols.contains(Terminal.EPSILON))
15 for (Terminal terminal : followMap.get(p)) {
16 set(p, terminal , r);
17 }
18 else {
19 Symbol symbol = r.getSymbols ().get (0);
20
21 if (symbol instanceof Terminal) {
22 set(p, (Terminal) symbol , r);
23 } else if (symbol instanceof NonTerminal) {
24 for (Terminal terminal : firstMap.get((NonTerminal) symbol)) {
25 set(p, terminal , r);
26 }
27 }
28 }
29 }
30 }
31 }

Listing L23: Parser table (Java)

82

B Appendix B

Lexer, parser listings

1 public LexerResult tokenize(String s) throws LexerException {
2 s = removeComments(s);
3
4 Vector <Terminal > terminals = new Vector <>(_grammar.getTerminals ());
5
6 terminals.sort(new Comparator <Terminal >() {
7 private boolean isRegEx(Terminal terminal) {
8 for (LexerRule rule : terminal.getRules ()) if (rule.isRegEx ()) return true;
9

10 return false;
11 }
12
13 @Override
14 public int compare(Terminal terminalA , Terminal terminalB) {
15 if (terminalA.getRules ().isEmpty () || terminalB.getRules ().isEmpty ()) return

0;
16
17 if (isRegEx(terminalA)) return 1;
18 if (isRegEx(terminalB)) return -1;
19
20 return 0;
21 }
22 });
23
24 Terminal wsRule = new Terminal(new SymbolKey("WS"), true);
25
26 wsRule.addRule(new LexerRule("\\s+", true));
27
28 terminals.add(wsRule);
29
30 int curPos = 0; Vector <Token > tokens = new Vector <>(); int x = 0; int y = 0;
31
32 while (curPos < s.length ()) {
33 if ((s.length () - curPos >= System.lineSeparator ().length ()) && s.substring(

curPos , curPos + System.lineSeparator ().length ()).equals(System.
lineSeparator ())) {

34 curPos += System.lineSeparator ().length (); x = 0; y++;
35
36 continue;
37 }
38
39 int curLen = 0; LexerRule curRule = null; Terminal curTerminal = null;
40
41 for (int i = 0; i < terminals.size(); i++) {
42 Terminal terminal = terminals.get(i);
43
44 for (LexerRule rule : terminal.getRules ()) {
45 String ruleS = (curPos > 0) ? String.format("^.{%d}(%s)", curPos , rule.

getRegEx ()) : String.format("^(%s)", rule.getRegEx ());
46

83

47 Pattern adjustedPattern = Pattern.compile(ruleS , Pattern.DOTALL);
48
49 Matcher matcher = adjustedPattern.matcher(s);
50
51 if (matcher.find() && (matcher.start (1) == curPos)) {
52 int newLen = (matcher.end(1) - 1) - matcher.start (1) + 1;
53
54 if (newLen > curLen) {
55 curTerminal = terminal; curRule = rule; curLen = newLen;
56 }
57 }
58 }
59 }
60
61 if (curRule == null) throw new LexerException(y, x, curPos , s);
62 else {
63 String text = s.substring(curPos , curPos + curLen);
64
65 for (int i = 0; i < text.length ();) {
66 if ((text.length () - i >= System.lineSeparator ().length ()) && text.

substring(i, i + System.lineSeparator ().length ()).equals(System.
lineSeparator ())) {

67 i += System.lineSeparator ().length ();
68 } else {
69 i++;
70 }
71 }
72
73 Token token = createToken(curTerminal , curRule , text , y, x, curPos);
74
75 if (!token.getTerminal ().isSkipped ()) tokens.add(token);
76
77 curPos += curLen;
78 x += curLen;
79 }
80 }
81
82 return new LexerResult(tokens);
83 }

Listing L24: Lexer (Java)

1 private ParserRule selectRule(NonTerminal nonTerminal , Token terminal) throws
ParserException {

2 try {
3 ParserRule rule = _ruleMap.get(nonTerminal , terminal.getTerminal ());
4
5 if (rule == null) throw new Exception ();
6
7 return rule;
8 } catch (Exception e) {
9 if (terminal == null) throw new NoMoreTokensException(nonTerminal);

10 else throw new NoRuleException(terminal , nonTerminal);
11 }
12 }
13
14 private SyntaxTreeNode getNode(NonTerminal rule) throws ParserException {
15 ParserRule nextRule = selectRule(rule , _token);
16
17 SyntaxTreeNode thisNode = new SyntaxTreeNode(rule , nextRule);
18

84

19 for (Symbol symbol : nextRule.getSymbols ()) {
20 if (symbol instanceof NonTerminal) {
21 thisNode.addChild(getNode ((NonTerminal) symbol));
22 } else {
23 if (symbol.equals(Terminal.EPSILON)) {
24 thisNode.addChild(new SyntaxTreeNodeTerminal(null));
25
26 continue;
27 }
28
29 if (_token == null) throw new NoMoreTokensException(rule , (Terminal) symbol)

;
30 if (! _token.getTerminal ().equals(symbol)) throw new WrongTokenException(

_token , rule , symbol);
31
32 thisNode.addChild(new SyntaxTreeNodeTerminal(_token));
33
34 _token = _tokensItr.hasNext () ? _tokensItr.next() : null;
35 }
36 }
37
38 return thisNode;
39 }
40
41 public SyntaxTree parse(Vector <Token > tokens) throws ParserException {
42 _tokens = tokens;
43
44 if (_tokens.isEmpty ()) throw new NoMoreTokensException(_grammar.

getStartParserRule ());
45
46 _tokens.add(Token.createTerminator(tokens));
47
48 _tokensItr = _tokens.iterator ();
49
50 _token = _tokensItr.next();
51
52 SyntaxTreeNode root = getNode(_grammar.getStartParserRule ());
53
54 if (! _token.getTerminal ().equals(Terminal.TERMINATOR)) throw new

SuperfluousTokenException(_token);
55
56 return new SyntaxTree(_grammar , root);
57 }

Listing L25: Parser (Java)

85

C Appendix C

Semantic Transformation Listing

1 private static SemanticNode transform(@Nonnull SyntaxNode syntaxNode) {
2 SemanticNode newNode = null;
3
4 Symbol symbol = syntaxNode.getSymbol ();
5 ParserRule subRule = syntaxNode.getSubRule ();
6
7 if (symbol.equals(_grammar.NON_TERMINAL_BOOL_EXP) && subRule.equals(_grammar.

RULE_BOOL_OR)) {
8 SyntaxNode orSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_BOOL_OR);
9

10 if (orSyntaxNode != null) newNode = transform(orSyntaxNode);
11 } else if (symbol.equals(_grammar.NON_TERMINAL_BOOL_OR) || symbol.equals(

_grammar.NON_TERMINAL_BOOL_OR_)) {
12 if (subRule.equals(_grammar.RULE_BOOL_AND_BOOL_OR_) || subRule.equals(_grammar

.RULE_OP_OR_BOOL_AND_BOOL_OR_)) {
13 BoolOr boolOrNode = new BoolOr ();
14
15 SyntaxNode andSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_AND);
16
17 if ((andSyntaxNode != null)) {
18 SemanticNode andNode = transform(andSyntaxNode);
19
20 if (andNode != null) boolOrNode.addBoolExp ((BoolExp) andNode);
21 }
22
23 SyntaxNode or_SyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_OR_);
24
25 if (or_SyntaxNode != null) {
26 SemanticNode or_Node = transform(or_SyntaxNode);
27
28 if (or_Node != null) boolOrNode.addBoolExp ((BoolExp) or_Node);
29 }
30
31 if (boolOrNode.getChildren ().size() > 1) {
32 newNode = boolOrNode;
33 } else if (! boolOrNode.getChildren ().isEmpty ()) {
34 newNode = boolOrNode.getChildren ().get(0);
35 }
36 }
37 } else if (symbol.equals(_grammar.NON_TERMINAL_BOOL_AND) || symbol.equals(

_grammar.NON_TERMINAL_BOOL_AND_)) {
38 if (subRule.equals(_grammar.RULE_BOOL_NEG_BOOL_AND_) || subRule.equals(

_grammar.RULE_OP_AND_BOOL_NEG_BOOL_AND_)) {
39 BoolAnd boolAndNode = new BoolAnd ();
40
41 SyntaxNode negSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_NEG);
42

86

43 if (negSyntaxNode != null) {
44 SemanticNode negNode = transform(negSyntaxNode);
45
46 if (negNode != null) boolAndNode.addBoolExp ((BoolExp) negNode);
47 }
48
49 SyntaxNode and_SyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_AND_);
50
51 if (and_SyntaxNode != null) {
52 SemanticNode and_Node = transform(and_SyntaxNode);
53
54 if (and_Node != null) boolAndNode.addBoolExp ((BoolExp) and_Node);
55 }
56
57 if (boolAndNode.getChildren ().size() > 1) {
58 newNode = boolAndNode;
59 } else if (! boolAndNode.getChildren ().isEmpty ()) {
60 newNode = boolAndNode.getChildren ().get(0);
61 }
62 }
63 } else if (symbol.equals(_grammar.NON_TERMINAL_BOOL_NEG)) {
64 if (subRule.equals(_grammar.RULE_NEG_BOOL_ELEM)) {
65 SyntaxNode elemSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_ELEM);
66
67 if (elemSyntaxNode != null) newNode = new BoolNeg ((BoolExp) transform(

elemSyntaxNode));
68 } else if (subRule.equals(_grammar.RULE_BOOL_ELEM)) {
69 SyntaxNode elemSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_ELEM);
70
71 if (elemSyntaxNode != null) newNode = transform(elemSyntaxNode);
72 }
73 } else if (symbol.equals(_grammar.NON_TERMINAL_BOOL_ELEM)) {
74 if (subRule.equals(_grammar.RULE_BOOL_LIT)) {
75 SyntaxNode boolLitSyntaxNode = syntaxNode.findChild(_grammar.

TERMINAL_BOOL_LIT);
76
77 if (boolLitSyntaxNode != null) newNode = transform(boolLitSyntaxNode);
78 } else if (subRule.equals(_grammar.RULE_EXP_OP_COMP_EXP)) {
79 SyntaxNode leftExpSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_EXP , 0);
80 SyntaxNode expCompOpSyntaxNode = syntaxNode.findChild(_grammar.

TERMINAL_OP_COMP);
81 SyntaxNode rightExpSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_EXP , 1);
82
83 if ((leftExpSyntaxNode != null) && (expCompOpSyntaxNode != null) && (

rightExpSyntaxNode != null)) {
84 Exp leftExpNode = (Exp) transform(leftExpSyntaxNode);
85 ExpCompOp expCompOpNode = (ExpCompOp) transform(expCompOpSyntaxNode);
86 Exp rightExpNode = (Exp) transform(rightExpSyntaxNode);
87
88 newNode = new ExpComp(leftExpNode , expCompOpNode , rightExpNode);
89 }
90 } else if (subRule.equals(_grammar.RULE_PAREN_BOOL_EXP)) {
91 SyntaxNode boolExpSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_EXP);
92
93 if (boolExpSyntaxNode != null) newNode = transform(boolExpSyntaxNode);

87

94 }
95 } else if (symbol.equals(_grammar.TERMINAL_BOOL_LIT)) {
96 newNode = new BoolLit ((SyntaxNodeTerminal) syntaxNode);
97 } else if (symbol.equals(_grammar.TERMINAL_OP_COMP)) {
98 newNode = new ExpCompOp ((SyntaxNodeTerminal) syntaxNode);
99 }
100
101 if (symbol.equals(_grammar.NON_TERMINAL_EXP)) {
102 newNode = transform(syntaxNode.findChild(_grammar.NON_TERMINAL_SUM));
103 } else if (symbol.equals(_grammar.NON_TERMINAL_SUM) || symbol.equals(_grammar.

NON_TERMINAL_SUM_)) {
104 if (subRule.equals(_grammar.RULE_PROD_SUM_) || subRule.equals(_grammar.

RULE_OP_PLUS_PROD_SUM_) || subRule.equals(_grammar.RULE_OP_MINUS_PROD_SUM_
)) {

105 boolean positive = subRule.equals(_grammar.RULE_PROD_SUM_) || subRule.equals
(_grammar.RULE_OP_PLUS_PROD_SUM_);

106
107 Sum sumNode = new Sum();
108
109 SyntaxNode prodSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_PROD)

;
110
111 if (prodSyntaxNode != null) {
112 Exp prodNode = (Exp) transform(prodSyntaxNode);
113
114 if (prodNode != null) {
115 Exp exp = prodNode;
116
117 if (! positive) exp = exp.makeNeg ();
118
119 sumNode.addExp(exp);
120 }
121 }
122
123 SyntaxNode sum_SyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_SUM_)

;
124
125 if (sum_SyntaxNode != null) {
126 Exp sum_Node = (Exp) transform(sum_SyntaxNode);
127
128 if (sum_Node != null) sumNode.addExp(sum_Node);
129 }
130
131 if (sumNode.getExps ().size() > 1) {
132 newNode = sumNode;
133 } else if (! sumNode.getExps ().isEmpty ()) {
134 newNode = sumNode.getExps ().get (0);
135 }
136 }
137 } else if (symbol.equals(_grammar.NON_TERMINAL_PROD) || symbol.equals(_grammar.

NON_TERMINAL_PROD_)) {
138 if (subRule.equals(_grammar.RULE_POW_PROD_) || subRule.equals(_grammar.

RULE_OP_MULT_POW_PROD_) || subRule.equals(_grammar.RULE_OP_DIV_POW_PROD_))
{

139 boolean positive = subRule.equals(_grammar.RULE_POW_PROD_) || subRule.equals
(_grammar.RULE_OP_MULT_POW_PROD_);

140
141 Prod prodNode = new Prod();
142
143 SyntaxNode powSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_POW);
144

88

145 if (powSyntaxNode != null) {
146 Exp powNode = (Exp) transform(powSyntaxNode);
147
148 if (powNode != null) {
149 Exp exp = powNode;
150
151 if (! positive) exp = powNode.makeInv ();
152
153 prodNode.addExp(exp);
154 }
155 }
156
157 SyntaxNode prod_SyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_PROD_);
158
159 if (prod_SyntaxNode != null) {
160 Exp prod_Node = (Exp) transform(prod_SyntaxNode);
161
162 if (prod_Node != null) prodNode.addExp(prod_Node);
163 }
164
165 if (prodNode.getExps ().size() > 1) {
166 newNode = prodNode;
167 } else if (! prodNode.getExps ().isEmpty ()) {
168 newNode = prodNode.getExps ().get(0);
169 }
170 }
171 } else if (symbol.equals(_grammar.NON_TERMINAL_POW) && subRule.equals(_grammar.

RULE_FACT_POW_)) {
172 SyntaxNode factSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_FACT);
173
174 if (factSyntaxNode != null) {
175 Exp factNode = (Exp) transform(factSyntaxNode);
176
177 SyntaxNode pow_SyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_POW_)

;
178
179 if (pow_SyntaxNode != null) {
180 Exp pow_Node = (Exp) transform(pow_SyntaxNode);
181
182 if (pow_Node != null) newNode = new Pow(factNode , pow_Node); else newNode

= factNode;
183 } else {
184 newNode = factNode;
185 }
186 }
187 } else if (symbol.equals(_grammar.NON_TERMINAL_POW_) && subRule.equals(_grammar.

RULE_OP_POW_POW)) {
188 SyntaxNode powSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_POW);
189
190 if (powSyntaxNode != null) newNode = transform(powSyntaxNode);
191 } else if (symbol.equals(_grammar.NON_TERMINAL_FACT) && subRule.equals(_grammar.

RULE_EXP_ELEM_FACT_)) {
192 SyntaxNode expElemSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_EXP_ELEM);
193
194 if (expElemSyntaxNode != null) {
195 SyntaxNode fact_SyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_FACT_);
196
197 Exp exp = (Exp) transform(expElemSyntaxNode);

89

198
199 while (fact_SyntaxNode != null && fact_SyntaxNode.getSubRule ().equals(

_grammar.RULE_OP_FACT_FACT_)) {
200 fact_SyntaxNode = fact_SyntaxNode.findChild(_grammar.NON_TERMINAL_FACT_);
201
202 exp = new Fact(exp);
203 }
204
205 newNode = exp;
206 }
207 } else if (symbol.equals(_grammar.NON_TERMINAL_EXP_ELEM)) {
208 if (subRule.equals(_grammar.RULE_ID_PARAM_LIST)) {
209 SyntaxNode idSyntaxNode = syntaxNode.findChild(_grammar.TERMINAL_ID);
210
211 SyntaxNode paramListSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_PARAM_LIST);
212
213 Id id = (Id) transform(idSyntaxNode);
214
215 if (id != null) {
216 ParamList paramList = (ParamList) transform(paramListSyntaxNode);
217
218 if (paramList != null) {
219 if (id.getName ().equals("fact")) id = new FactId(paramList);
220 if (id.getName ().equals("gcd")) id = new GcdId(paramList);
221 }
222
223 newNode = id;
224 }
225 } else if (subRule.equals(_grammar.RULE_EXP_LIT)) {
226 SyntaxNode numSyntaxNode = syntaxNode.findChild(_grammar.TERMINAL_EXP_LIT);
227
228 newNode = transform(numSyntaxNode);
229 } else if (subRule.equals(_grammar.RULE_PARENS_EXP)) {
230 SyntaxNode expSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_EXP);
231
232 newNode = transform(expSyntaxNode);
233 }
234 } else if (symbol.equals(_grammar.TERMINAL_ID)) {
235 newNode = new Id(((SyntaxNodeTerminal) syntaxNode).getToken ().getText ());
236 } else if (symbol.equals(_grammar.TERMINAL_EXP_LIT)) {
237 newNode = new ExpLit(new BigInteger (((SyntaxNodeTerminal) syntaxNode).getToken

().getText ()), BigInteger.ONE);
238 } else if (symbol.equals(_grammar.NON_TERMINAL_PARAM_LIST) && subRule.equals(

_grammar.RULE_PARENS_PARAM_PARAM_LIST_)) {
239 SyntaxNode paramSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_PARAM)

;
240
241 if (paramSyntaxNode != null) {
242 ParamList paramListNode = new ParamList ();
243
244 SemanticNode paramNode = transform(paramSyntaxNode);
245
246 if (paramNode != null) paramListNode.addParam ((Exp) paramNode);
247
248 SemanticNode paramList_Node = transform(syntaxNode.findChild(_grammar.

NON_TERMINAL_PARAM_LIST_));
249
250 if (paramList_Node != null) paramListNode.addParamList ((ParamList)

paramList_Node);
251

90

252 newNode = paramListNode;
253 }
254 } else if (symbol.equals(_grammar.NON_TERMINAL_PARAM_LIST_) && subRule.equals(

_grammar.RULE_PARAM_SEP_PARAM_PARAM_LIST_)) {
255 SyntaxNode paramSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_PARAM)

;
256
257 if (paramSyntaxNode != null) {
258 ParamList paramListNode = new ParamList ();
259
260 SemanticNode paramNode = transform(paramSyntaxNode);
261
262 if (paramNode != null) paramListNode.addParam ((Exp) paramNode);
263
264 SyntaxNode paramList_SyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_PARAM_LIST_);
265
266 if (paramList_SyntaxNode != null) {
267 SemanticNode paramList_Node = transform(paramList_SyntaxNode);
268
269 if (paramList_Node != null) paramListNode.addParamList ((ParamList)

paramList_Node);
270 }
271
272 newNode = paramListNode;
273 }
274 } else if (symbol.equals(_grammar.NON_TERMINAL_PARAM) && subRule.equals(_grammar

.RULE_EXP)) {
275 newNode = transform(syntaxNode.findChild(_grammar.NON_TERMINAL_EXP));
276 }
277
278 if (symbol.equals(_grammar.NON_TERMINAL_PROG) || symbol.equals(_grammar.

NON_TERMINAL_PROG_)) {
279 if (subRule.equals(_grammar.RULE_PROG_CMD_PROG_) || subRule.equals(_grammar.

RULE_PROG__SEP_CMD_PROG_)) {
280 SyntaxNode cmdSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_CMD);
281
282 Comp comp = new Comp();
283
284 if (cmdSyntaxNode != null) {
285 SemanticNode cmdNode = transform(cmdSyntaxNode);
286
287 if (cmdNode != null) comp.addProg ((Prog) cmdNode);
288 }
289
290 SyntaxNode prog_SyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_PROG_);
291
292 if (prog_SyntaxNode != null) {
293 SemanticNode prog_Node = transform(prog_SyntaxNode);
294
295 if (prog_Node != null) comp.addProg ((Prog) prog_Node);
296 }
297
298 if (comp.getChildren ().size() > 1) {
299 newNode = comp;
300 } else if (!comp.getChildren ().isEmpty ()) {
301 newNode = comp.getChildren ().get(0);
302 }
303 }
304 } else if (symbol.equals(_grammar.NON_TERMINAL_CMD)) {

91

305 if (subRule.equals(_grammar.RULE_CMD_SKIP)) {
306 SyntaxNode skipNode = syntaxNode.findChild(_grammar.NON_TERMINAL_SKIP);
307
308 if (skipNode != null) newNode = transform(skipNode);
309 } else if (subRule.equals(_grammar.RULE_CMD_ASSIGN)) {
310 SyntaxNode assignNode = syntaxNode.findChild(_grammar.NON_TERMINAL_ASSIGN);
311
312 if (assignNode != null) newNode = transform(assignNode);
313 } else if (subRule.equals(_grammar.RULE_CMD_ALT)) {
314 SyntaxNode altNode = syntaxNode.findChild(_grammar.NON_TERMINAL_ALT);
315
316 if (altNode != null) newNode = transform(altNode);
317 } else if (subRule.equals(_grammar.RULE_CMD_WHILE)) {
318 SyntaxNode whileNode = syntaxNode.findChild(_grammar.NON_TERMINAL_WHILE);
319
320 if (whileNode != null) newNode = transform(whileNode);
321 } else if (subRule.equals(_grammar.RULE_HOARE_BLOCK)) {
322 SyntaxNode hoare_blockSyntayNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_HOARE_BLOCK);
323
324 if (hoare_blockSyntayNode != null) newNode = transform(hoare_blockSyntayNode

);
325 }
326 } else if (symbol.equals(_grammar.NON_TERMINAL_SKIP) && subRule.equals(_grammar.

RULE_SKIP)) {
327 newNode = new Skip();
328 } else if (symbol.equals(_grammar.NON_TERMINAL_ASSIGN) && subRule.equals(

_grammar.RULE_ASSIGN)) {
329 SyntaxNode idSyntaxNode = syntaxNode.findChild(_grammar.TERMINAL_ID);
330 SyntaxNode expSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_EXP);
331
332 if ((idSyntaxNode != null) && (expSyntaxNode != null)) {
333 SemanticNode idNode = transform(idSyntaxNode);
334 SemanticNode expNode = transform(expSyntaxNode);
335
336 newNode = new Assign ((Id) idNode , (Exp) expNode);
337 }
338 } else if (symbol.equals(_grammar.NON_TERMINAL_ALT) && subRule.equals(_grammar.

RULE_ALT)) {
339 SyntaxNode boolExpSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_EXP);
340 SyntaxNode thenProgSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_PROG);
341 SyntaxNode alt_elseSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_ALT_ELSE);
342
343 if ((boolExpSyntaxNode != null) && (thenProgSyntaxNode != null) && (

alt_elseSyntaxNode != null)) {
344 SemanticNode boolExpNode = transform(boolExpSyntaxNode);
345 SemanticNode thenProgNode = transform(thenProgSyntaxNode);
346 SemanticNode alt_elseNode = transform(alt_elseSyntaxNode);
347
348 newNode = new Alt((BoolExp) boolExpNode , (Prog) thenProgNode , (Prog)

alt_elseNode);
349 }
350 } else if (symbol.equals(_grammar.NON_TERMINAL_ALT_ELSE) && subRule.equals(

_grammar.RULE_ALT_ELSE)) {
351 SyntaxNode progSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_PROG);
352
353 if (progSyntaxNode != null) {
354 SemanticNode progNode = transform(progSyntaxNode);

92

355
356 if (progNode != null) newNode = progNode;
357 }
358 } else if (symbol.equals(_grammar.NON_TERMINAL_WHILE) && subRule.equals(_grammar

.RULE_WHILE)) {
359 SyntaxNode boolExpSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_BOOL_EXP);
360 SyntaxNode progSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_PROG);
361
362 if ((boolExpSyntaxNode != null) && (progSyntaxNode != null)) {
363 SemanticNode boolExpNode = transform(boolExpSyntaxNode);
364 SemanticNode progNode = transform(progSyntaxNode);
365
366 newNode = new While ((BoolExp) boolExpNode , (Prog) progNode);
367 }
368 }
369
370 if (symbol.equals(_grammar.NON_TERMINAL_HOARE_BLOCK) && subRule.equals(_grammar.

RULE_HOARE_PRE_PROG_HOARE_POST)) {
371 SyntaxNode hoare_preSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_HOARE_PRE);
372 SyntaxNode progSyntaxNode = syntaxNode.findChild(_grammar.NON_TERMINAL_PROG);
373 SyntaxNode hoare_postSyntaxNode = syntaxNode.findChild(_grammar.

NON_TERMINAL_HOARE_POST);
374
375 if ((hoare_preSyntaxNode != null) && (progSyntaxNode != null) && (

hoare_postSyntaxNode != null)) {
376 SemanticNode hoare_preNode = transform(hoare_preSyntaxNode);
377 SemanticNode progNode = transform(progSyntaxNode);
378 SemanticNode hoare_postNode = transform(hoare_postSyntaxNode);
379
380 newNode = new HoareBlock ((HoareCond) hoare_preNode , (Prog) progNode , (

HoareCond) hoare_postNode);
381 }
382 } else if (symbol.equals(_grammar.NON_TERMINAL_HOARE_PRE) || symbol.equals(

_grammar.NON_TERMINAL_HOARE_POST)) {
383 if (subRule.equals(_grammar.RULE_HOARE_PRE_CURLIES_BOOL_EXP_CURLY_CLOSE) ||

subRule.equals(_grammar.RULE_HOARE_POST_CURLY_OPEN_BOOL_EXP_CURLY_CLOSE))
{

384 SyntaxNode boolExpSyntaxNode = syntaxNode.findChild(_grammar.
NON_TERMINAL_BOOL_EXP);

385
386 if (boolExpSyntaxNode != null) {
387 SemanticNode boolExpNode = transform(boolExpSyntaxNode);
388
389 newNode = new HoareCond ((BoolExp) boolExpNode);
390 }
391 }
392 }
393
394 if (newNode != null) newNode._syntax = syntaxNode;
395
396 return newNode;
397 }

Listing L26: Transformation to semantic tree (Java)

93

D Appendix D

Hoare listing

1 private class HoareNode {
2 private SyntaxTreeNode _actualNode;
3
4 private Vector <HoareNode > _children = new Vector <>();
5
6 public Vector <HoareNode > getChildren () {
7 return _children;
8 }
9

10 public void addChild(HoareNode child) {
11 _children.add(child);
12 }
13
14 public HoareNode(SyntaxTreeNode actualNode) {
15 _actualNode = actualNode;
16 }
17 }
18
19 private Vector <HoareNode > collectChildren(SyntaxTreeNode node) {
20 Vector <HoareNode > ret = new Vector <>();
21
22 for (SyntaxTreeNode child : node.getChildren ()) {
23 Vector <HoareNode > hoareChildren = collectChildren(child);
24
25 ret.addAll(hoareChildren);
26 }
27
28 if ((node.getSymbol () != null) && node.getSymbol ().equals(_grammar.

nonTerminal_hoare_block)) {
29 HoareNode selfNode = new HoareNode(node);
30
31 for (HoareNode child : ret) {
32 selfNode.addChild(child);
33 }
34
35 ret.clear();
36
37 ret.add(selfNode);
38 }
39
40 return ret;
41 }
42
43 private interface ExecInterface {
44 public void finished () throws HoareException , LexerException , IOException ,

ParserException;
45 }
46
47 public static class Executer {
48 private HoareNode _node;

94

49 private int _nestDepth;
50 private HoareWhileGrammar _grammar;
51 private ObservableMap <SyntaxTreeNode , HoareCond > _preCondMap;
52 private ObservableMap <SyntaxTreeNode , HoareCond > _postCondMap;
53 private ExecInterface _callback;
54
55 private Vector <Executer > _execChain = new Vector <>();
56 private Iterator <Executer > _execChainIt;
57
58 public interface ImplicationInterface {
59 public void result(boolean yes) throws HoareException , LexerException ,

IOException , ParserException;
60 }
61
62 public interface InvariantInterface {
63 public void result(HoareCond invariant) throws HoareException , LexerException ,

IOException , ParserException;
64 }
65
66 private boolean check(HoareCond a) throws ScriptException {
67 /* ScriptEngineManager manager = new ScriptEngineManager ();
68
69 ScriptEngine engine = manager.getEngineByName (" JavaScript ");
70
71 System.out.println(engine.eval(a.toString ()));
72
73 return true;*/
74 return true;
75 }
76
77 private boolean implicates(HoareCond a, HoareCond b, ImplicationInterface

callback) throws ScriptException , IOException , HoareException , LexerException ,
ParserException {

78 System.out.println("try␣implication␣" + a + "->" + b);
79
80 //TODO implicit check
81 boolean checkSuccess = false;
82 boolean checkResult = false;
83
84 if (checkSuccess) {
85 callback.result(checkResult);
86 } else {
87 new ImplicationDialog(a, b, callback , false).show();
88 }
89
90 return !check(a) || check(b);
91 }
92
93 private int _wlp_nestDepth = 0;
94 private int _wlp_printDepth = 0;
95
96 private void println_begin () {
97 _wlp_printDepth ++;
98 }
99
100 private void println(String s) {
101 System.out.println(StringUtil.repeat("\t", _wlp_printDepth - 1) + s);
102 }
103
104 private void println_end () {
105 _wlp_printDepth --;

95

106 }
107
108 private interface wlp_callback {
109 public void result(HoareCond cond) throws IOException , HoareException ,

LexerException , ParserException;
110 }
111
112 private void wlp_assign(HoareCond postCond , String var , SyntaxTreeNode valNode ,

wlp_callback callback) throws IOException , HoareException {
113 println_begin ();
114
115 HoareCond preCond = postCond.copy();
116
117 try {
118 Exp val = Exp.fromString(valNode.synthesize ());
119
120 preCond.replace(_grammar.TERMINAL_ID , var , val.getBaseEx ());
121
122 println("apply␣assignment␣rule:");
123 println("\t" + postCond.toStringEx(var + ":=" + valNode.synthesize ()) + "␣"

+ var + "=" + valNode.synthesize () + "␣" + postCond.toStringEx ());
124 println("\t->" + preCond.toStringEx () + "␣" + var + "=" + valNode.synthesize

() + "␣" + postCond.toStringEx ());
125
126 println_end ();
127
128 callback.result(preCond);
129 } catch (ParserException | LexerException e) {
130 throw new RuntimeException(e);
131 }
132 }
133
134 private void wlp_composite(HoareCond postCond , SyntaxTreeNode first ,

SyntaxTreeNode second , wlp_callback callback) throws HoareException ,
IOException , LexerException , ParserException {

135 println_begin ();
136
137 println("applying␣composition␣rule ...");
138
139 wlp(second , postCond , new wlp_callback () {
140 @Override
141 public void result(HoareCond midCond) throws IOException , HoareException ,

LexerException , ParserException {
142 wlp(first , midCond , new wlp_callback () {
143 @Override
144 public void result(HoareCond preCond) throws IOException , HoareException

, LexerException , ParserException {
145 String firstS = first.synthesize ().replaceAll("\n", "");
146 String secondS = second.synthesize ().replaceAll("\n", "");
147
148 // System.out.println ("{" + postCondition + "}" + " -> " + "{" +

midCondition + "}" + " -> " + "{" + ret + "}");
149 println("apply␣composition␣rule:");
150 println("\t" + preCond.toStringEx () + "␣" + firstS + "␣" + midCond.

toStringEx () + ",␣" + midCond.toStringEx () + "␣" + secondS + "␣" + postCond.
toStringEx ());

151 println("\t" + "->");
152 println("\t" + preCond.toStringEx () + "␣" + firstS + ";␣" + secondS +

"␣" + postCond.toStringEx ());
153
154 println_end ();

96

155
156 callback.result(preCond);
157 }
158 });
159 }
160 });
161 }
162
163 private void wlp_alt(HoareCond postCond , HoareCondBoolExpr altCond ,

SyntaxTreeNode first , SyntaxTreeNode second , wlp_callback callback) throws
IOException , HoareException , LexerException , ParserException {

164 println_begin ();
165
166 HoareCond preCond = postCond.copy();
167
168 String firstS = first.synthesize ().replaceAll("\n", "");
169 String secondS = second.synthesize ().replaceAll("\n", "");
170
171 //TODO
172 println("apply␣alternative␣rule:");
173 println("\t" + new HoareCondAnd(preCond , altCond).toStringEx () + "␣" + firstS

+ "␣" + postCond.toStringEx () + ",␣" + new HoareCondAnd(preCond , new
HoareCondNeg(altCond)).toStringEx () + "␣" + secondS + "␣" + postCond.
toStringEx ());

174 println("\t" + "->");
175 println("\t" + preCond.toStringEx () + "␣if␣" + "(" + altCond + ")" + "{" +

firstS + "}" + "␣else␣" + "{" + secondS + "}" + postCond.toStringEx ());
176
177 println_end ();
178
179 callback.result(preCond);
180 }
181
182 private void wlp_loop_acceptInvariant(HoareCond invariant , SyntaxTreeNode

loopNode , wlp_callback callback) throws IOException , HoareException ,
LexerException , ParserException {

183 HoareCond loopCond = new HoareCondBoolExpr(loopNode.findChild(_grammar.
NON_TERMINAL_BOOL_EXP));

184 SyntaxTreeNode body = loopNode.findChild(_grammar.NON_TERMINAL_PROG);
185
186 println("accept␣invariant␣" + invariant);
187
188 HoareCond preCond = new HoareCondAnd(invariant);
189
190 if (preCond ==null) throw new RuntimeException("preCond␣null");
191 if (loopCond ==null) throw new RuntimeException("loopCond␣null");
192
193 String bodyS = body.synthesize ().replaceAll("\n", "");
194
195 println("apply␣loop␣rule:");
196 println("\t" + new HoareCondAnd(preCond , loopCond).toStringEx () + "␣" + bodyS

+ "␣" + preCond.toStringEx ());
197 println("\t" + "->");
198 println("\t" + new HoareCondAnd(preCond).toStringEx () + "␣while␣" + "(" +

loopCond + ")" + "{" + bodyS + "}" + "␣" + new HoareCondAnd(preCond , new
HoareCondNeg(loopCond)).toStringEx ());

199
200 println_end ();
201
202 callback.result(preCond);
203 }

97

204
205 private void wlp_loop_tryInvariant(SyntaxTreeNode loopNode , HoareCond postCond ,

HoareCond invariantPost , wlp_callback callback) throws HoareException ,
IOException , LexerException , ParserException {

206 //TODO: auto -generate invariants
207
208 if (invariantPost == null) {
209 println("failed␣to␣guess␣invariant:␣ask␣user");
210
211 InvariantDialog diag = new InvariantDialog(_grammar , loopNode , postCond , new

InvariantInterface () {
212 @Override
213 public void result(HoareCond invariant) throws HoareException , IOException

, LexerException , ParserException {
214 if (invariant != null) {
215 wlp_loop_acceptInvariant(invariant , loopNode , callback);
216 } else {
217 throw new HoareException("aborted");
218 }
219 }
220 });
221
222 diag.show();
223 } else {
224 println("try␣invariant:␣" + invariantPost);
225
226 wlp(loopNode.findChild(_grammar.NON_TERMINAL_PROG), invariantPost , new

wlp_callback () {
227 @Override
228 public void result(HoareCond invariantPre) throws HoareException ,

LexerException , IOException , ParserException {
229 println("tried␣invariant␣" + invariantPost + "␣resulted␣in␣" +

invariantPre);
230
231 ImplicationDialog diag = new ImplicationDialog(invariantPre ,

invariantPost , new ImplicationInterface () {
232 @Override
233 public void result(boolean yes) throws HoareException , LexerException ,

IOException , ParserException {
234 if (yes) {
235 wlp_loop_acceptInvariant(invariantPre , loopNode , callback);
236 } else {
237 wlp_loop_tryInvariant(loopNode , postCond , null , callback);
238 }
239 }
240 }, true);
241
242 diag.show();
243 }
244 });
245 }
246 }
247
248 private void wlp_loop(HoareCond postCond , SyntaxTreeNode loopNode , wlp_callback

callback) throws HoareException , IOException {
249 println_begin ();
250
251 try {
252 println("applying␣loop␣rule ...␣needs␣invariant");
253
254 // HoareCondition invariantPost = HoareCondition.fromString ("erg ==2^(y-x)");

98

255 HoareCond invariantPost = null;// HoareCond.fromString ("y==z!");
256
257 wlp_loop_tryInvariant(loopNode , postCond , invariantPost , callback);
258 } catch (LexerException | ParserException e) {
259 throw new HoareException(e.getMessage ());
260 }
261 }
262
263 private void wlp_consequence_pre(HoareCond origPreCond , HoareCond origPostCond ,

SyntaxTreeNode body , HoareCond newPreCond , HoareCond newPostCond , wlp_callback
callback) throws IOException , HoareException , LexerException , ParserException
{

264 println_begin ();
265
266 String bodyS = body.synthesize ().replaceAll("\n", "");
267
268 System.out.println("apply␣consequence␣rule");
269 System.out.println("\t" + newPreCond + "->" + origPreCond + ",␣" +

origPostCond.toStringEx () + "␣" + bodyS + "␣" + origPostCond.toStringEx () + ",
␣" + origPostCond + "->" + newPostCond);

270 System.out.println("\t" + "->");
271 System.out.println("\t" + newPreCond.toStringEx () + "␣" + bodyS + "␣" +

newPostCond.toStringEx ());
272
273 println_end ();
274
275 //TODO: for post as well , merged?
276 callback.result(newPreCond);
277 }
278
279 private void wlp(SyntaxTreeNode node , HoareCond postCondV , wlp_callback callback

) throws HoareException , IOException , LexerException , ParserException {
280 _wlp_nestDepth ++;
281
282 final HoareCond postCond = postCondV.copy();
283
284 _postCondMap.put(node , postCond);
285
286 // System.out.println(StringUtil.repeat ("\t", _wlp_nestDepth) + "postcond " +

node);
287
288 wlp_callback retCallback = new wlp_callback () {
289 @Override
290 public void result(HoareCond cond) throws IOException , HoareException ,

LexerException , ParserException {
291 _preCondMap.put(node , cond);
292 _wlp_nestDepth --;
293
294 callback.result(cond);
295 }
296 };
297
298 if (node.getSymbol ().equals(_grammar.NON_TERMINAL_PROG)) {
299 SyntaxTreeNode firstChild = node.getChildren ().firstElement ();
300 SyntaxTreeNode lastChild = node.getChildren ().lastElement ();
301
302 if (lastChild.findChild(_grammar.NON_TERMINAL_PROG) != null) {
303 wlp_composite(postCond , firstChild , lastChild.findChild(_grammar.

NON_TERMINAL_PROG), retCallback);
304 } else {
305 wlp(firstChild , postCond , retCallback);

99

306 }
307 } else if (node.getSymbol ().equals(_grammar.NON_TERMINAL_PROG_)) {
308 if (node.getSubRule ().equals(_grammar.RULE_PROG__PROG))
309 wlp(node.findChild(_grammar.NON_TERMINAL_PROG), postCond , retCallback);
310 else
311 retCallback.result(postCond);
312 } else if (node.getSymbol ().equals(_grammar.NON_TERMINAL_SKIP))
313 retCallback.result(postCond);
314 else if (node.getSymbol ().equals(_grammar.NON_TERMINAL_ASSIGN)) {
315 SyntaxTreeNode idNode = node.findChild(_grammar.TERMINAL_ID);
316
317 SyntaxTreeNode expNode = node.findChild(_grammar.NON_TERMINAL_EXP);
318
319 String var = idNode.synthesize ();
320 SyntaxTreeNode exp = expNode;
321
322 wlp_assign(postCond , var , exp , retCallback);
323 } else if (node.getSymbol ().equals(_grammar.NON_TERMINAL_SELECTION)) {
324 if (node.getSubRule ().equals(_grammar.RULE_SELECTION)) {
325 SyntaxTreeNode selectionElseRule = node.findChild(_grammar.

NON_TERMINAL_PROG);
326
327 if (selectionElseRule.getSubRule ().equals(Terminal.EPSILON)) {
328 wlp(node.findChild(_grammar.NON_TERMINAL_PROG), postCond , new

wlp_callback () {
329 @Override
330 public void result(HoareCond thenCond) throws IOException ,

HoareException , LexerException , ParserException {
331 HoareCond elseCond = postCond;
332
333 retCallback.result(new HoareCondOr(thenCond , elseCond));
334 }
335 });
336 } else if (selectionElseRule.getSubRule ().equals(_grammar.

RULE_SELECTION_ELSE)) {
337 wlp(node.findChild(_grammar.NON_TERMINAL_PROG), postCond , new

wlp_callback () {
338 @Override
339 public void result(HoareCond thenCond) throws IOException ,

HoareException , LexerException , ParserException {
340 wlp(node.findChild(_grammar.NON_TERMINAL_PROG , 2), postCond , new

wlp_callback () {
341 @Override
342 public void result(HoareCond elseCond) throws IOException ,

HoareException , LexerException , ParserException {
343 retCallback.result(new HoareCondOr(thenCond , elseCond));
344 }
345 });
346 }
347 });
348 }
349 }
350 } else if (node.getSymbol ().equals(_grammar.NON_TERMINAL_WHILE)) {
351 wlp_loop(postCond , node , retCallback);
352 } else if (node.getSymbol ().equals(_grammar.nonTerminal_hoare_block)) {
353 wlp(node.findChild(_grammar.NON_TERMINAL_PROG), postCond , retCallback);
354 } else {
355 throw new HoareException("no␣wlp␣for␣" + node + "␣with␣rule␣" + node.

getSubRule ());
356 }
357 }

100

358
359 public void exec() throws IOException , HoareException , LexerException ,

ParserException {
360 SyntaxTreeNode preNode = _node._actualNode.findChild(_grammar.

nonTerminal_hoare_pre);
361 SyntaxTreeNode postNode = _node._actualNode.findChild(_grammar.

nonTerminal_hoare_post);
362
363 HoareCond preCondition = HoareCond.fromString(preNode.findChild(_grammar.

NON_TERMINAL_BOOL_EXP).synthesize ());
364 HoareCond postCondition = HoareCond.fromString(postNode.findChild(_grammar.

NON_TERMINAL_BOOL_EXP).synthesize ());
365
366 System.err.println(StringUtil.repeat("\t", _nestDepth) + "checking␣" +

preCondition + "->" + postCondition + "␣at␣" + _node);
367
368 _wlp_nestDepth = 0;
369 _wlp_printDepth = 0;
370
371 wlp(_node._actualNode , postCondition , new wlp_callback () {
372 @Override
373 public void result(HoareCond finalPreCondition) throws IOException ,

HoareException , LexerException , ParserException {
374 System.out.println("final␣preCondition:␣" + finalPreCondition);
375
376 try {
377 implicates(preCondition , finalPreCondition , new ImplicationInterface () {
378 @Override
379 public void result(boolean yes) throws HoareException , LexerException ,

IOException , ParserException {
380 if (yes) {
381 System.out.println(preCondition + "->" + postCondition + "␣holds␣

true␣(wlp:␣" + finalPreCondition + ")");
382 } else {
383 System.out.println(preCondition + "->" + postCondition + "␣failed␣

(wlp:␣" + finalPreCondition + ")");
384 }
385
386 _callback.finished ();
387 }
388 });
389 } catch (ScriptException e) {
390 e.printStackTrace ();
391 }
392 }
393 });
394 }
395
396 public void start() throws IOException , HoareException , LexerException ,

ParserException {
397 _execChainIt.next().exec();
398 }
399
400 public Executer(HoareNode node , int nestDepth , HoareWhileGrammar grammar ,

ObservableMap <SyntaxTreeNode , HoareCond > preCondMap , ObservableMap <
SyntaxTreeNode , HoareCond > postCondMap , ExecInterface callback) throws
IOException , HoareException , NoRuleException , LexerException {

401 _node = node;
402 _nestDepth = nestDepth;
403 _grammar = grammar;
404 _preCondMap = preCondMap;

101

405 _postCondMap = postCondMap;
406 _callback = callback;
407
408 ExecInterface childCallback = new ExecInterface () {
409 @Override
410 public void finished () throws HoareException , LexerException , IOException ,

ParserException {
411 Executer next = _execChainIt.next();
412
413 next.exec();
414 }
415 };
416
417 for (HoareNode child : node.getChildren ()) {
418 _execChain.add(new Executer(child , nestDepth + 1, _grammar , preCondMap ,

postCondMap , childCallback));
419 }
420
421 _execChain.add(this);
422
423 _execChainIt = _execChain.iterator ();
424 }
425 }
426
427 private Vector <Executer > _execChain;
428 private Iterator <Executer > _execChainIt;
429
430 public void exec() throws HoareException , LexerException , IOException ,

ParserException {
431 System.err.println("hoaring ...");
432
433 Vector <HoareNode > children = collectChildren(_tree.getRoot ());
434
435 if (children.isEmpty ()) {
436 System.err.println("no␣hoareBlocks");
437 } else {
438 _execChain = new Vector <>();
439
440 for (HoareNode child : children) {
441 if (children.lastElement ().equals(child)) {
442 _execChain.add(new Executer(child , 0, _grammar , _preCondMap , _postCondMap ,

new ExecInterface () {
443 @Override
444 public void finished () throws HoareException , NoRuleException ,

LexerException , IOException {
445 System.err.println("hoaring␣finished");
446 }
447 }));
448 } else {
449 _execChain.add(new Executer(child , 0, _grammar , _preCondMap , _postCondMap ,

new ExecInterface () {
450 @Override
451 public void finished () throws IOException , HoareException ,

LexerException , ParserException {
452 _execChainIt.next().exec();
453 }
454 }));
455 }
456 }
457
458 Iterator <Executer > execChainIt = _execChain.iterator ();

102

459
460 execChainIt.next().exec();
461 }
462 }

Listing L27: Hoare (Java)

103

E Appendix E

Grammar for Hoare-decorated
while programs

〈exp〉 ::= 〈sum〉

〈sum〉 ::= 〈prod〉 〈sum’〉

〈sum’〉 ::= ‘+’ 〈prod〉 〈sum’〉
| ‘-’ 〈prod〉 〈sum’〉
| ε

〈prod〉 ::= 〈pow〉 〈prod’〉

〈prod’〉 ::= ‘*’ 〈pow〉 〈prod’〉
| ‘/’ 〈pow〉 〈prod’〉
| ε

〈pow〉 ::= 〈factorial〉 〈pow’〉

〈pow’〉 ::= ‘ˆ’ 〈pow〉
| ε

〈factorial〉 ::= 〈exp_elem〉 〈factorial’〉

〈factorial’〉 ::= ‘!’
| ε

〈exp_elem〉 ::= 〈id〉 〈param_list〉
| 〈exp_lit〉
| ‘(’ 〈exp〉 ‘)’

〈param_list〉 ::= ‘(’ 〈param〉 〈param_list’〉 ‘)’
| ε

〈param_list’〉 ::= ‘;’ 〈param〉 〈param_list’〉
| ε

〈param〉 ::= 〈exp〉

〈exp_lit〉 ::= [1-9][0-9]*
| ‘0’

104

〈id〉 ::= [a-zA-Z][a-zA-Z0-9]*

〈bool_exp〉 ::= 〈bool_or〉

〈bool_or〉 ::= 〈bool_and〉 〈bool_or’〉

〈bool_or’〉 ::= ‘|’ 〈bool_and〉 〈bool_or’〉
| ε

〈bool_and〉 ::= 〈bool_neg〉 〈bool_and’〉

〈bool_and’〉 ::= ‘&’ 〈bool_neg〉 〈bool_and’〉
| ε

〈bool_neg〉 ::= 〈bool_elem〉
| ‘~’ 〈bool_elem〉

〈bool_elem〉 ::= 〈exp〉 ‘<’ 〈exp〉
| ‘true’
| ‘[’ 〈bool_exp〉 ‘]’

〈*prog〉 ::= 〈cmd〉 〈prog’〉

〈prog’〉 ::= ‘;’ 〈cmd〉 〈prog’〉
| ε

〈cmd〉 ::= 〈skip〉
| 〈assign〉
| 〈alt〉
| 〈while〉

〈skip〉 ::= ‘SKIP’

〈assign〉 ::= 〈id〉 ‘:=’ 〈exp〉

〈alt〉 ::= ‘IF’ 〈bool_exp〉 ‘THEN’ 〈prog〉 〈alt_else〉 ‘FI’

〈alt_else〉 ::= ‘ELSE’ 〈prog〉
| ε

〈while〉 ::= ‘WHILE’ 〈bool_exp〉 ‘DO’ 〈prog〉 ‘OD’

〈hoare_block〉 ::= 〈hoare_pre〉 〈prog〉 〈hoare_post〉

〈hoare_pre〉 ::= ‘PRE’ ‘{’ 〈bool_exp〉 ‘}’

〈hoare_post〉 ::= ‘POST’ ‘{’ 〈bool_exp〉 ‘}’

105

Declaration of Originality
I hereby confirm that I have written the accompanying thesis by myself, without
contributions from any sources other than those cited in the text and acknowledgements.
This applies also to all graphics, drawings, maps and images included in the thesis.

Merseburg, November 1, 2017
. .
Place and date Signature

106

	1 Introduction
	1.1 Motivation
	1.2 Analysis vs simulation
	1.3 Basic approaches
	1.4 What the document is about

	2 Preliminaries
	2.1 Overview
	2.2 How to instruct computers

	3 Introduction of a Language
	3.1 On languages and grammars
	3.1.1 Definitions
	3.1.2 Ambiguity, associativity, precedence
	3.1.3 The problem with left recursion
	3.1.4 Construction of an LL(1) parser table

	3.2 Core language
	3.2.1 Commands
	3.2.2 Numeric expressions
	3.2.3 Boolean expressions

	3.3 Semantic tree

	4 How to prove
	4.1 Of operational semantics
	4.2 Transition to Hoare calculus
	4.3 Assertions as language extension
	4.4 Resolving implications
	4.4.1 The implication question
	4.4.2 Reduction of numeric expressions
	4.4.3 Reduction of boolean expressions
	4.4.4 Ordering
	4.4.5 Substitution
	4.4.6 Chosen approach
	4.4.7 Greatest common divisor

	4.5 Finding invariants
	4.5.1 Pointers
	4.5.2 Parallel counter
	4.5.3 Transformation of loops and structural thoughts

	5 Implementation
	5.1 Java, surface
	5.2 Grammar, lexer, parser
	5.2.1 First, Follow

	5.3 Semantic transformation, reduction, ordering
	5.4 Hoare

	6 Conclusion
	A First, Follow, parser table listings
	B Lexer, parser listings
	C Semantic Transformation Listing
	D Hoare listing
	E Grammar for Hoare-decorated while programs

