

Braune, Christian:

Skeleton-based Validation for Density-based Clustering

Dissertation, Otto von Guericke University
Magdeburg, 2018.

Skeleton-based Validation for Density-based Clustering

Abstract

Clustering is an important process in data analysis. It is the process of grouping
previously unlabeled data and distinguishing noise or outliers from interesting
data. Clustering algorithms can work in many different ways. These are, for
example, centroid-based methods like k-means, hierarchical clustering or density-
based methods. DBSCAN is the best-known representative of the latter. Since
clustering is an unsupervised learning approach, validation measures are needed
to assess whether a found result is good or not. In the case of centroid-based
algorithms there exists a plethora of validation measures for the crisp and the
fuzzy case. Only recently the validation of density-based clustering has made some
progress. The majority of the hitherto used validation measures refer in some way
or another to the centroids of the clusters. When using density-based clustering,
these centroids to not exist or have no meaning. Therefore, these measures are
only help- or meaningful under a limited scope of scenarios. They would favor
clusterings that—to the human eye—are obviously sub-optimal.

This thesis suggest a way to make centroid-based cluster validation measures
available for clusterings obtained by a density-based algorithm. For this the
arithmetic mean as centroid is replaced by a cluster skeleton that provides more
structural information for a cluster than a single point. It can then be used instead
of the former centroid in the calculation of the validation scores. After discussing
several different techniques of finding such an object, the behavior of the different
validation scores is analyzed.

iii

Zusammenfassung

Clustering ist ein wichtiger Prozess in der Datenanalyse. Innerhalb dieses
Prozesses werden ungelabelte Datenpunkte zu sogenannten Clustern zusam-
mengefasst. Einige Clusteringalgorithmen sind außerdem in der Lage, zwischen
Rauschen, Ausreißen und interessanten Datenpunkten zu unterscheiden. Hi-
erfür arbeiten Clusteringalgorithmen auf vielfältige Art und Weise. So gibt es
zentroidbasierte Verfahren wie k-means, Hierarchisch-Agglomeratives Clustering
oder dichtebasierte Methoden wie DBSCAN.

Clustering ist im Wesentlichen ein unüberwachtes Lernverfahren und bedarf
daher einer sorgfältigen Validierung der Ergebnisse. Für die zentroidbasierten
Verfahren gibt es bereits eine Vielzahl verschiedener Maße, die jeweils leicht andere
Definitionen eines Clusters implizieren. Diese Maße erlauben es einzuschätzen,
wie gut ein jeweils gefundenes Ergebnis mit dieser Clusterdefinition übereinstimmt.
Viele dieser Maße können für hartes Clustering ebenso angewendet werden wie für
fuzzy Clustering.

Für die Validierung dichtebasierter Clusteringverfahren gibt es jedoch erst seit
kurzem erste Verfahren. Dies liegt unter anderem daran, dass sich die zentroid-
basierten Validierungsmaße nicht ohne weiteres auf dichtebasierte Clusterings
übertragen lassen, da der vielfach verwendete Mittelpunkt eines Clusters im Kon-
text des dichtebasierten Clusterings von geringerer Signifikanz ist. Würden diese
Maße zur Bewertung dichtebasierter Clusterings herangezogen, so würden sie
Ergebnisse bevorzugen, die – zumindest für das menschliche Auge – suboptimal
sind.

In dieser Dissertation wird eine Möglichkeit vorgeschlagen, wie zentroidbasierte
Clustervalidierungmaße auf dichtebasierte Clusterings angewandt werden können.
Hierzu wird der klassischerweise verwendete Mittelpunkt eines Clusters durch
ein Clusterskelett ersetzt. Es kann anstelle des Mittelpunktes für die Berech-
nung der einzelnen Validierungsmaßes genutzt werden. Nach einer Diskussion
verschiedener Methoden zum Finden eines solchen Skeletts wird das Verhalten
verschiedenen Validierungsmaße analysiert.

v

Contents

Contents vii

1 Introduction 1

1.1 Motivation . 1
1.2 Fundamentals . 3
1.3 Clustering . 6
1.4 Problem Definition . 17
1.5 Structure of this Thesis 20

2 Methods for Validation and Skeletonization 21

2.1 Cluster Validation . 21
2.2 Re-Representing Datasets 43

3 Generalized Centroids 47

3.1 Necessary Terms and Definitions 47
3.2 Cluster Skeletons in Two Dimensions 53
3.3 Cluster Skeletons in Higher Dimensions 58
3.4 Alternative Calculations 84

4 Validation & Experiments 93

4.1 Skeletonization Methods 94
4.2 Automatic Selection of Cluster Parameters 99
4.3 Results . 103

5 Conclusion & Future Work 117

5.1 Discussion & Research Questions 117
5.2 Future Work . 122

Bibliography 125

List of Figures 141

vii

viii CONTENTS

List of Tables 145

A Benchmark Data Sets 149

A.1 T4.8k . 149
A.2 Aggregation . 149
A.3 Compound . 151
A.4 Path-Based . 151
A.5 Spiral . 151
A.6 D31 . 152
A.7 R15 . 153
A.8 Jain’s Toy Dat Set . 153
A.9 Flame . 154

B Dataset Generation 159

B.1 Blobs . 159
B.2 Nested Circles . 159
B.3 Eightshape . 160
B.4 Half Circles . 161
B.5 Figure χ-Shape . 162
B.6 B-Spline Cluster . 162
B.7 Skeleton Cluster . 163

C
h

a
p

t
e

r

1
Introduction

1.1 Motivation

Data analysis has become a research area in its own right and revolves
around topics such as statistics, classification, regression, data preprocess-
ing, feature selection, and clustering [89]. Many of these methods are also
used in machine learning, which in itself can be divided into supervised and
unsupervised learning—although this is only a rough partitioning. Cluster-
ing algorithms fall into the domain of data analysis as well as they belong to
the unsupervised learning methods.

Clustering algorithms aim at learning to distinguish different (kinds of)
structures. The process is strictly hypothesis-driven in the sense that the
choice of the clustering algorithm and its inherent hypotheses of cluster
structure limits the search space and the types of cluster-shapes that can be
found. For this these algorithms analyze the spatial relationships of different
data points and categorize data into a previously unknown number of groups
(although the desired number of groups might be part of the hypothesis used
in the clustering process, cf. Section 1.3).

In some areas of neuro-science—for example—so-called spike trains
(recordings of the firing behavior of individual neurons) are analyzed. Spike
trains which exhibit similar, synchronous behavior are called ensembles.
The data analysis task usually practiced here follows the scheme: Are
there any neurons that exhibit synchronous firing activity? If so, in which
ensemble do they belong? This is often enough treated as a classification
task (e. g. [26, 32]) or as an association analysis (e. g. [22, 23, 33, 57]), despite

1

2 CHAPTER 1. INTRODUCTION

the fact that it could also be treated as a clustering problem as well (e. g.
[21, 22, 27–29, 31]). A slightly different approach is used in [56]. Here a
dataset is compressed by using different clustering algorithms to improve
the runtime of a support vector machine classifier. In [46] the algorithms
are used to cluster features of a dataset to reduce the overall dimensionality
while in [103] clustering algorithms are used to create codebooks of images
to analyze the behavior of different classification algorithms.

That clustering is a ubiquitous problem in natural sciences becomes
clear if one takes a look at the study performed in e. g. [101]. Cell images
taken from [39, 96] are analyzed in this study (a representative sample can
be found in Figure 1.1). To get the right proportion of cells that are either in
mitosis or otherwise interesting an accurate count of the cells is necessary.
This is an example for a clustering application with initially unknown number
of clusters. Even if performed manually by humans the cell count varies by
up to 11%. Since sometimes the number of images in such a dataset can be
larger than 50000, manual annotation or even validation of the results is
very much inefficient. Ideally one would use a clustering algorithm within
an automated process that is able to automatically detect the number of
clusters without feeding it any form of prior knowledge about the possible
number of cells.

Even with a dataset at hand and a properly working clustering algorithm,
it is still unclear what clusters should actually be found (or how many [120]).
A famous example is presented in [74]: a simple deck of cards is used as
dataset. The question posed is then: How many clusters does this set of
cards contain? The answer depends on what we see as a cluster. If we
consider cards of the same suit as cluster, then there are obviously four
clusters. If cards of the same rank form a cluster, then there are eight or
thirteen (depending on whether you use an English or a French deck). If we
look at the cards themselves, we will find two clusters: Those cards, that
contain an image and those that do not. Or are the clusters those that are
formed by the red and the black colors? All of these results would form valid
clusterings or labellings of the dataset (cf. next Section). This example might
serve as an argument for the futility of clustering itself [74], but it should

1.2. FUNDAMENTALS 3

Figure 1.1: 6 different cell images showing colon cancer cells. An accurate
count of the cells is needed for further studying the cells’ activity.

rather serve as a reason for why clustering is an interesting problem and
why the validation of clustering results is crucial for the data mining and
data analysis process.

1.2 Fundamentals

Datasets come in various shapes and sizes. Often they are represented
in a tabular format, in which each column represents an attribute (e. g.
age, gender, height) and each row represents one datum. Attributes may
be of different qualities, like categorical (or nominal), ordinal, or metric.
Categorical attributes are in general non-orderable, like gender or hair color.
Ordinal attributes may have a natural ordering (like perceived temperature;
cold, warm, hot), or even be numeric (like school grades). However, the
difference between numerical values has no meaning in itself except for its
sign. Metric attributes encode numeric values such as height in meters,
temperature in Kelvin or mass in kilograms. If all attributes are metric,
each datum can be represented by a vector x with each component x (i)

4 CHAPTER 1. INTRODUCTION

representing a single attribute. Such a vector x ∈ Rd is also called a data
point with d attributes. The set of all data points available is referred to as
𝒳 ⊆ Rd, with n = ‖𝒳‖ being the cardinality of the dataset.

Similarity between different data points is measured either through
similarity measures or by distance metrics. In the first case, points are said
to be more similar to each other if the chosen similarity measure yields a
higher value. In the second case, points are more similar to each other if the
distance metric yields a lower value.

Definition 1.1 (Metric)

A metric is a function d : 𝒳 × 𝒳 → R+0 which fulfills the following
properties ∀x, y, z ∈ 𝒳:
1. d(x, y) ≥ 0 (non-negativity)
2. d(x, y) = 0⇔ x = y (identity of indiscernibles)
3. d(x, y) = d(y, x) (symmetry)
4. d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

In machine learning there are two categories for learning problems.
Supervised learning is a form of learning problems where the dataset contains
labeled data points. This means that there is a target attribute for which
the relationship between all the other attributes should be learned. If these
relationships have been properly learned, new and unlabeled data points can
be classified, i.e. their respective target attribute’s value can be predicted.

On the other hand, there are unsupervised learning problems. In these
problems data points are usually unlabeled and class structure should be
inferred from the spatial relations between different data points. Usually we
use the distance or similarity of data points for this structural analysis. This
process is called clustering. Clustering assigns labels to hitherto unlabeled
data points to form groups (or clusters). Within these groups data points
should be relatively more similar to either all or some members of the same
group than to members of other groups and dissimilar to members of other
groups.

Definition 1.2 (Crisp Labeling)

A (crisp) labeling of a dataset is a function l : 𝒳 → {1, . . . , m}, i.e. each
point x is assigned one out of n possible numeric labels.

1.2. FUNDAMENTALS 5

Definition 1.3 (Cluster)

A subset 𝒞 ⊆ 𝒳 is called a cluster if and only if ∀x, y ∈ 𝒞 : l (x) = l (y)

holds. I. e., points belong to the same cluster 𝒞i if and only if their label
is equal.

Clusters are therefore formed by all the points that share the same label.
Points with different labels belong to different clusters. To better access
the index structure implied by such a labelling, a partition matrix can be
formed:

Definition 1.4 (Partition matrix)

A crisp labeling of a dataset 𝒳 into k clusters can also be represented by
a partition matrix of the form (uij) = U ∈ {0, 1}n×k. If a point xi belongs to
cluster 𝒞j, i.e. l(xi) = j, then uij = 1 and uik = 0 for all k , j.

Sometimes data points cannot be reasonably assigned to a cluster. This
might be the case for extreme outliers which are then considered as noise.
If an algorithm is capable of detecting such noise points, by convention the
additional label −1 is used for points belonging to no cluster. This ensures,
that l is still surjective.

The same problem might occur for inliers, i. e., points that cannot be
assigned unambiguously to a single cluster. In such cases fuzzy clustering
can be used. Points now do not solely belong to a single cluster but spread
their membership across different clusters to different degrees.

Definition 1.5 (Fuzzy Labeling)

A fuzzy labeling of a dataset 𝒳 into c clusters is a vector-valued function

l : 𝒳 → [0, 1]c with the constraint
c∑︀

i=1
li(x) = 1 ∀x ∈ 𝒳. Each component

li describes the membership of x to the cluster 𝒞i .

If the constraint that all components of l(x) have to sum up to 1 is omitted,
we speak of possibilistic clustering.

Analogous to the crisp partition matrix, a fuzzy partition matrix can be
defined.

Definition 1.6 (Fuzzy Partition matrix)

A fuzzy labeling of a dataset 𝒳 into c clusters can also be represented
by a fuzzy partition matrix of the form (uij) = U ∈ [0, 1]n×c with column
vectors (ui∘) = l(xi) (for a fuzzy labeling).

6 CHAPTER 1. INTRODUCTION

In probabilistic clustering each point belongs to exactly one cluster.
The uncertainty about what that cluster might be, is expressed by the
probabilisitc labeling. Numerically it is the same as a fuzzy labeling, but in
fuzzy clustering each data point usually belongs to every cluster to a degree
0, 1, or some number in between that describes the degree of membership..

1.3 Clustering

Figure 1.2: Two nested cir-
cles with their respective cen-
troids. Clusters are indiffer-
ent when compared to the
other cluster’s representa-
tive.

Since neither the number of possible labels
nor the shape of the clusters can usually be
known in advance with absolute certainty,
every labeling of the data might initially be
possible. The number of ways of grouping
points from an n-elemental set into k sub-
sets can be described by a Sterling num-
ber of the second kind and is denoted as
S(n, k) = 1

k!
∑︀k

j=0 (−1)k−j
(︁
k
j

)︁
jn. The sum over

all possible numbers of partitions is then the
Bell number Bn =

∑︀n
k=0 S(n, k), which grows

at least exponentially fast [111].

Thus, the total number of possible clus-
tering of a dataset of just 10 points is al-
ready B10 = 115, 975 and for a dataset with 100 points it is already
B100 = 4.7585 . . . × 10115. Datasets sometimes have several millions of
data points.

As already described in Section 1.2, clustering is the process of finding
groups of points. It is an unsupervised learning task in which a more or less
consistent labeling of points should be found. While Figure 1.3 certainly
shows two valid clusterings, the left one would probably never be the result
of a well-designed clustering algorithm. In fact the labeling produced there
is just random.

Different strategies have been developed over the last decades to find
proper labelings of a given dataset. They all show different characteristics
when it comes to how the clusters are found, which parameters are used
and what constitutes a cluster in itself. Candidates from two of the most

1.3. CLUSTERING 7

Figure 1.3: Two different labellings of the same dataset. Labels are randomly
scattered in the left plot and intuitively assigned in the right plot. Though
possible and a proper labelling, the left one does not produce natural cluster
structure.

famous categories will be described in this section, explain the difference
between crisp and fuzzy clustering and briefly summarize other clustering
schemes for the sake of completeness.

1.3.1 Centroid-based Clustering

The family of centroid-based clustering methods encompasses all the (crisp)
variants of the k-means algorithm [97]. The general procedure of this
algorithms is shown in Algorithm 1. This algorithm will later also be used to
determine the cluster skeleton which are the main focus of this thesis.

Formally the procedure described in Algorithm 1 optimizes the objective
function

J(X, k;𝒰,ℳ) =
|𝒳|∑︁
i=1

k∑︁
j=1

uij · d
2(xi , µj) w.r.t.

k∑︁
j=1

uij = 1. (1.1)

if d is the euclidean distance. Otherwise a different estimator for the centroid
than the arithmetic mean is needed. By an alternating optimization scheme,
one can derive the update formulas for the memberships stored in 𝒰 and
the centroids µj ∈ ℳ. Since the centroids are recalculated as the arithmetic
mean of all points they are representing, the only distance metric allowed
here is the euclidean distance. For other distance measures, the arithmetic
mean might not be an unbiased or consistent estimator.

8 CHAPTER 1. INTRODUCTION

Algorithm 1: Pseudocode of the k-means algorithm.

Require:
𝒳 set of n data points,
k number of clusters to find

1: function K-Means(𝒳, k)
2: ℳ = {µ1, . . . , µk} ← random but distinct points from 𝒳
3: 𝒰 ← 0x×k . matrix with zeros only
4: repeat
5: for all xi ∈ 𝒳 do
6: j ← argmin

l
d2(xi , µl)

7: 𝒰il ← 1 . Membership is 1 for closest centroid
8: 𝒰il ← 0, for all 1 ≤ l ≤ k, l , j . 0 otherwise
9: for all µj ∈ ℳ do

10: 𝒞j ← {xi | 𝒰ij = 1}

11: µ′j ←

∑︀
x∈𝒞j

x

|𝒞j |
. µ′j is the center of all point assigned to µj.

12: ℳ← {µ′1, . . . , µ′k}
13: until convergence
14: returnℳ, 𝒰

If for some reason one has to use the Manhattan distance instead of the
euclidean distance, the centroid calculation in line 11 of Algorithm 1 has
to be replaced by the component-wise median (as this is the appropriate
estimator for the Manhattan distance).

In both aforementioned cases the clusters’ centers might not be actual
points in the dataset nor is guaranteed that any of its components actually
exist in any data point. A clustering algorithm that solves this problem is
the k-medoid algorithm. Here the point xj is chosen as representative for a
cluster if it minimizes the sum of within-cluster distances, i. e.,

µj = argmin
xj∈𝒞j

{︂∑︁
x∈𝒞j

d(x, xj)
}︂
, (1.2)

where 𝒞j is the set of all points that have been assigned to the cluster j in a
previous step.

1.3. CLUSTERING 9

If we allow probabilistic membership degrees (which can be easily turned
into a crisp labelling by assigning to each point the label that maximizes its
membership to the respective cluster), gaussian mixture models can be seen
as prototype-based clustering algorithms as well.

One of the major problems with prototype-based clustering is the proper
choice of the number of clusters. Typically k is varied and so several different
clusterings on the same dataset are generated. These clusterings are then
compared with each other and the best choice is used as a labelling for the
dataset (cf. Section 2.1.2). In contrast, density-based clustering usually
chooses the number of clusters automatically. In the case of DBSCAN the
number of clusters is equal to the number of equivalence classes given an
algorithm-specific relation between points.

1.3.2 Crisp vs. Fuzzy Clustering

The previously described k-means algorithm suffers from two major draw-
backs. Its usage of the arithmetic mean to establish cluster centers makes
it susceptible to noise and outliers just like the arithmetic mean itself. This
problem can be overcome by using a fuzzy variant of the k-means algorithm:
fuzzy c-means [83]. And second, its crisp assignment of cluster labels may
lead to misleading, non-deterministic or implausible results. Clusters are
generated by finding the Voronoi cells [126] for the given cluster centers (cf.
Figure 1.4) The Voronoi diagram visualizes the partitioning of space around
a given set of points. It contains convex regions of points for each given point
(here: cluster center) such that all points within the same region have that
cluster center as their nearest neighbor. Each data point therefore belongs
to the cluster center into whose cell it falls. However, in some cases points
may lie on or near the intersection of two or more cells. In such cases a crisp
assignment does not properly reflect the true ambiguity of the membership.

To cope with this problem the fuzzy-c-means algorithm [16] has been
developed. Instead of assigning to each point the cluster’s index it belong to
(cf. Definition 1.2) the membership of a data point is inversely-proportional

10 CHAPTER 1. INTRODUCTION

Figure 1.4: Voronoi diagram for the cluster centers of three simple clusters.
Points are associated with the cluster center of the cell they fall into.

to their respective distance distributed across all cluster prototypes (see
Equation 1.3).

∀i, 1 ≤ i ≤ c : ∀j, 1 ≤ j ≤ n : uij =
d

2
1−ω
ij

c∑︀
k=1

d
2

1−ω

kj

(1.3)

Cluster centers are not anymore the arithmetic mean of their associated
data points but rather the weighted mean, where the cluster membership
acts as weight (see Equation 1.4).

∀i, 1 ≤ i ≤ c : µi =

n∑︀
j=1

uω
ij · xj

n∑︀
j=1

uω
ij

(1.4)

Formally this optimizes the objective function

J(X, c;𝒰,ℳ) =
n∑︁

i=1

c∑︁
j=1

uω
ij · d

2(xi , µj), with n = |𝒳|. (1.5)

In all three formulas ω > 1, ω ∈ R acts as a fuzzifier. This constant
determines the fuzziness of cluster memberships. Higher values lead to
more smoothed out membership degrees and in the limit-case lead to a
membership degree of 1/c for every point to every cluster. On the other hand,
lower values lead to a crisper assignment of point (cf. Figure 1.5).

1.3. CLUSTERING 11

0

1
ω = 1.5 ω = 2.0 ω = 3.0 ω = 4.25

Figure 1.5: Development of membership degrees for two one-dimensional
cluster centers (marked by vertical dashed lines) and different values for ω.

In general, fuzzy c-means tends to be more robust against outliers and
noise than its crisp counterpart k-means due to the reduced influence that
these points have on the calculation on the weighted mean [83].

As can be seen by comparison of Equation 1.5 and Equation 1.1, setting
ω = 1 leads to the crisp case of k-means. In that way, k-means might be
seen as a special case of the fuzzy-c-means algorithm, or fuzzy-c-means as
the generalization of k-means.

Figure 1.6: Membership con-
tour plot for two cluster cen-
ters and ω = 2.

Both k-means and fuzzy-c-means still
have the restriction of being only able to use
the euclidean distance as metric. When we
are not restricted to use metrics from the
Minkowski family, but can rather use the
Mahalanobis distance [98], we can derive
the Gustafson-Kessel algorithm for cluster-
ing data [68]. This algorithm is similar to the
k-means algorithm. During each iteration an
additional covariance matrix per cluster is es-
timated which defines a cluster-specific met-
ric (according to the Mahalanobis distance).
The membership degrees are then calculated with respect to the individual
within-cluster distances (i. e., for each point the covariance matrix for each
cluster has to be considered). This has an advantage over the standard
fuzzy-c-means algorithm. Clusters may have different shapes. Such clusters
can be recognized and distinguished well, as long as their convex hulls do
not overlap.

However, a high dimensionality of the dataset can have detrimental
effects on especially the fuzzy c-means algorithms as discussed in [129, 130].

12 CHAPTER 1. INTRODUCTION

In higher dimensional spaces the centers of clusters (calculated as weighted
means of all data points) tend towards the center of gravity of the whole
dataset. This happens since in high dimensions individual differences in
distances tend to vanish or become non-significant. And if almost all points
are almost equally far apart for each cluster center, the weighted mean has
to be the mean of all data points (in the limit case).

1.3.3 Density-based Clustering

centroid

centroid

Figure 1.7: Two non-convex clusters with their respective centroids (calcu-
lated as the mean of all the clusters’ points). The centroids do not lie within
the vicinity of any of the cluster’s points they are representing.

Density-based clustering does not suffer as much from this effect since
only the closest point bear relevance for the clustering process. Additionally,
for some datasets ordinary, prototype based clustering algorithms will not
work properly. If the clusters’ shapes are irregular, so that a single, simple
point does not suffice to represent the cluster (as in Figure 1.2 or Figure 1.7),
density-based clustering may be a solution.

Instead of parameterizing the algorithm with the desired number of
clusters, these clustering algorithms require as parameters a notion of
what is considered as dense. In the following a few selected density-based
algorithms will be presented: DBSCAN, OPTICS and Black Hole Clustering.

1.3. CLUSTERING 13

These algorithms all use slightly different notions or ways of defining density
or detecting dense regions. DBSCAN (and it successor HDBSCAN [38]) define
density directly in the physical sense that a region is dense if it contains a
minimum number of parts per volume. These two algorithms are without
any doubt the most prominent examples for density-based clustering. E. g.,
in 2014 DBSCAN was awarded the Test of Time Award by the SIGKDD [115].

OPTICS inverses this by sorting points by their actual density (or the
required parameter that would turn the region into a dense one) and Black
Hole Clustering performs its labeling by transforming data into an observer
space which is subsequently partitioned by only a single parameter.

DBSCAN

In the case of DBSCAN [55] these are ε, and minPts. These two parameters
define a hyper-sphere and the minimal number of points required within
such a sphere for its center point to become a cluster core. Following the
original paper of Ester et al. an explanation of how clusters are formed
within the DBSCAN algorithm is given by a series of definitions and relations
beforehand.

Definition 1.7 (ε-Neighborhood)

The ε-neighborhood of a point x ∈ 𝒳 is called 𝒩ε(x) and is the set of all
points q ∈ 𝒳 that lie within a hypersphere of radius ε centered around x,
i. e., 𝒩ε(x) = {q ∈ 𝒳 | d(x, q) ≤ ε}.

Definition 1.8 (Core Point)

A point x is a core point if and only if the size of its ε-neighborhood is at
least minPts, i. e., ‖𝒩ε(x)‖ ≥ minPts⇔ x is a core point.

Definition 1.9 (Directly Density Reachable)

A point x is directly density reachable from a point q if and only if q is a
core point and x ∈ 𝒩ε(q).

Definition 1.10 (Density Reachable)

A point x is density reachable from a point q if and only if there exists a
series of points q1, . . . qn with q1 = q and qn = x such that for any i, i + 1
holds that qi+1 is directly density reachable from qi.

14 CHAPTER 1. INTRODUCTION

Note that here q1 . . . , qn−1 are also required to be core points (by Defini-
tion 1.9).

Definition 1.11 (Density Connected)

A point x is density connected to a point y if and only if there exists a
point q such that both x and y are density reachable from q.

Note that in this definition neither x nor y need to be core points.

With these definitions at hand, finding clusters becomes simply finding the
transitive closure of the density connected relation.

Definition 1.12 (Cluster in DBSCAN)

The set of clusters found by DBSCAN with respect to its parameters ε,
and minPts is the transitive closure of the density-connected relation.

Note that the clusters can be be labeled in any arbitrary order, depending
on which point we start building the closure from. The definition also allows
for some (non-core) point x to belong to more than one cluster in case it is
density reachable from different core points which in return need not be
density connected (since x is not a core point in this case). Such border cases
are usually algorithmically decided by the first come, first serve principle.

Figure 1.8: Examples of clusters for which density based clustering works
better than centroid-based clustering

1.3. CLUSTERING 15

Definition 1.13 (Noise in DBSCAN)

Let 𝒞 = {C1, . . . , Cm} be the set of all clusters found by DBSCAN. Then

𝒳 ∖

(︃
m⋃︀

i=1
Ci

)︃
is the set of noise points (i. e., all points that are not assigned

to any cluster).

Hierarchical extensions for DBSCAN have been proposed in [47, 48]. Mono-
tonicity of the core point property in DBSCAN with respect to ε as well as
minPts can be exploited to generate two distinct dendrograms by fixing one of
the parameters and generating the dendrogram for the other. Non-constant
cuts in the dendrogram can also be applied to generate cuts at different
levels within one hierarchy, which allows to cluster datasets with varying
density.

Figure 1.8 shows two examples of clusters that are typically better suted for
density-based algorithms such as DBSCAN.

OPTICS

Another density-based clustering algorithm is OPTICS [6] which uses an
inverted approach to DBSCAN. Its main difference lies in the role of the
minPts parameter which here is used to determine the core distance for a
given point x.

Definition 1.14 (core distance)

The core distance cd(o) of a point o is the smallest ε for which the
ε-neighborhood of o is large enough to make o a core point. I. e.,
cd(o) = inf

ε
{‖𝒩ε(o)‖ ≥ minPts}.

With the help of the core distance a relative reachability distance can be
defined (relative in the sense that it is relative to another point, here: o).

Definition 1.15 (Reachability Distance)

The reachability distance rdo(x) of a point x w.r.t. o is the maximum of
either the core distance of x or the (euclidean) distance between x and o,
i. e., rdo(x) = max{cd(x), d(x, o)}.

OPTICS now starts by taking a random point o and all of its ε neighbors.
These p ∈ 𝒩ε(o) are then ordered according to their reachability distance

16 CHAPTER 1. INTRODUCTION

and stored in a priority queue. The first point in the output of OPTICS is the
randomly chosen point o while the next points are taken from the priority
queue. Whenever a point is taken from this queue, all of its neighbors enter
the queue. All point within the queue update their reachability distance with
respect to the last taken point, if this improves their reachability distance.

This generates an ordering of the points from which the cluster structure
can be extracted when plotting the ordering against the corresponding
reachability distances.

Black Hole Clustering

Black-Hole Clustering [25] is another density-based clustering approach
that is based on ordering (or sorting) points. By introducing d + 1 observers
for 𝒳 ⊆ Rd placed on the edges of an equilateral polytope bounding the
dataset and sorting the points iteratively according to the distances to these
observers, the dataset can be split into smaller chunks until only the clusters
remain. Each smaller chunk of data points is iteratively processed by the
next observer. The advantage of this procedure is its very low runtime.
Essentially it can find clusters (without the need to supply a number of
clusters beforehand) in O

(︀
(d + 1) · n · log n

)︀
which is at least a magnitude

faster than any other clustering algorithm that automatically detects the
number of clusters. It is—however—limited to only detect clusters with non-
overlapping convex hulls. It can be considered a density-based clustering
algorithm as it splits each sorted list of data points if two consecutive points
are too far apart from each other (i. e., not dense enough anymore).

1.3.4 Other Clustering Algorithms

Besides density-based and prototypical clustering algorithms, there is a
multitude of other clustering algorithms. Two methods should be mentioned
that are extremely useful in applications.

Hierarchical Clustering If the number of clusters is unknown and hard to
estimate and the data cannot be properly visualized, hierarchical clustering
might be an option to use. Starting from singleton clusters (each point forms
its own, individual cluster) a hierarchy of cluster merges is generated. For

1.4. PROBLEM DEFINITION 17

each step in the hierarchy the two closest clusters are combined and form
a new cluster. The distance between the clusters determines the height of
that merge in a dendrogram.

Probabilistic Clustering As already mentioned in Section 1.3.1 clusters
can be modeled as the result of a stochastic sampling from several different
multivariate Gaussian distributions. In such a case the probability that
a point was sampled from a specific distribution can be calculated by the
inverse probability density function of that distribution. The iteration scheme
is not significantly different from the k-means or the fuzzy-c-means scheme
(which is why it will not be repeated here again). Instead of calculating
the membership directly from the distance to the centroid, one needs to
calculate a probability density estimate for each given point and the current
cluster’s parameters (note: these are also estimated in each iteration of the
algorithm—just like the memberships and centers).

The most recent developments can always be found in the GfKI series on
data analysis, machine learning and knowledge discovery [118].

1.4 Problem Definition

Choosing which labeling of the data points is the correct one depends
not only on the algorithm used to find the labeling, but also on the (task-
specific) understanding of what a cluster is. Cluster validation measures
are measures that evaluate how much a given clustering corresponds with
the idea of a cluster. While clustering algorithms can only find a certain
subset of all the possible labelings (cf. Section 1.3), validation measures will
only yield high scores for such clusterings that are close to their internal
understanding of a cluster. If the inherent understanding of a cluster that
is used by the validation measure does not line up with the implicit cluster
definition of the clustering algorithm, an optimal clustering can hardly be
found.

In addition to the already presented prototype-based clustering algo-
rithms, there exist several (fuzzy) clustering algorithms, which do not use
single points as cluster prototypes. A simple variation is the extension from
points to hyperspheres as presented in [82]. In addition to the normal fuzzy

18 CHAPTER 1. INTRODUCTION

clustering approach, each prototype has a radius that is adapted during each
iteration of the clustering process. Points that fall within such a hypersphere
have a membership degree of 1.0 to that cluster. This results in a crispier
partitioning of the data and thus in better validation results.

Many of the existing validation measures refer implicitly or explicitly to a
cluster’s center. This distinguished point (which is not necessarily a point
belonging to the dataset) acts as a representative of the whole cluster. Some
clustering algorithms extend the notion of a cluster’s centroid even further.
These algorithms are called fuzzy shell clustering algorithms [84] and use
different shapes like circles [5], rectangles [72], or quadratic shells [87, 88]
as prototype. These algorithms have been successfully applied in shape
recognition on images. All of these algorithms have in common that they
only implicitly change the shape of the prototype by defining alternative
distance metrics. In case of the fuzzy-c-varieties clustering algorithm—for
example—the distance between a point and any centroid is not euclidean
anymore. Rather the distance is calculated by Equation 1.6:

d2(xj, ci) = |xj − ci |
2 −

m∑︁
k=1

(︁
xj − ci

)︁T
eik, (1.6)

where a cluster prototype is a tuple 𝒞i = (ci , ei1, . . . , eim) and the different eik

are pairwise orthogonal unit vectors spanning a subspace of the data space.
In the case of density-based clustering (cf. Section 1.3.3) one does not

have such a centroid and thus can not and should not use most of the existing
validation measures. While it would be possible to calculate a central point
as the mean of all data points that are assigned to a cluster, such a centroid
is not necessarily a good candidate for representing the cluster it is supposed
to represent (see Figure 1.7). But even if the centroids are representing their
respective clusters well, it might occur that the centroids do not allow to
distinguish between clusters properly (see Figure 1.2). This leads directly to
the first research question:

Q1 Can the arithmetic mean as a cluster representative be replaced by a
more general structure?

If such a more general structure can be defined, one would still lack a
proper way to find this structure (if its definition does not already imply

1.4. PROBLEM DEFINITION 19

its calculation). The medial axis (cf. Section 3.2) can describe such a more
general structure. Its definition implies that it may actually replace the
center point of a cluster by a tree-like structure. However, its calculation in
higher dimensions (d ≥ 3) is neither simple nor can the resulting structure
be guaranteed to be tree-like. This leads to the second research questions of
this thesis:

Q2 How can the medial axis be extended onto higher dimensions and how
can such a structure be efficiently calculated?

The latter part of this question is of special importance since validation takes
place several times. Each algorithm’s output would need to be validated and
clustering algorithms suffer from almost cubic complexity in many cases.

When applying density-based clustering algorithms noise has also to be
dealt with. In centroid-based clustering settings, noise is essentially ignored
in the basic algorithms, as e. g. k-means simply assigns all the points to the
clusters. Fuzzy clustering can deal with the problem of noise by assigning
low membership values to such points. As will shown in Section 1.3.2, this
only works well with a small workaround. Density-based clustering does
not assign points to any cluster if they do not belong to it (according to the
parametrization). These points might—however—still lie close to existing
clusters. A validation measure that completely ignores the existence of noise
points is certainly going to favor clusterings with very small clusters and
a lot of noise. In such a case the (few) points assigned to a cluster would
be represented well by whatever representative has been chosen, while the
remaining points (which were assigned to the noise cluster) are completely
ignored This over-simplifies the clustering problem and leads to wrong or
inadequate results. This leads to the next research question:

Q3 How can noise points originating from the density-based clustering be
dealt with in validation scores which ignore noise?

Finally some thoughts have to be given to the evaluation of the method
itself. Of course one can think about many potential solutions to these
problems. But at the end of the day the question which matters most is:

Q4 Does validation based on cluster skeletons actually lead to better
results?

20 CHAPTER 1. INTRODUCTION

1.5 Structure of this Thesis

To answer the research question just posed existing validation measures
are reviewed. (Chapter 2). Chapter 3 starts with an explanation of how
the quality of the skeleton that will be generated is going to be validated.
For this a modified version of the discrete Fréchet distance is used. In the
second part of this chapter different methods of obtaining a cluster skeleton
are presented and discussed. Chapter 4 starts with an evaluation of the
previously presented methods, discusses their advantages and disadvantages
w.r.t. the validation task and ends with a description if the evaluation setup
and the results of the final experiments. At last, in Chapter 5 the thesis
will be recapitulated, and the answers to the posed research questions will
be summarized. Overall advantages but also problems with the proposed
method are discussed here as well as open research questions that may lead
to future work.

C
h

a
p

t
e

r

2
Methods for Cluster Validation and

Skeletonization

This chapter will give a brief state-of-the-art of different cluster validation
techniques as well as different approaches to skeletonize datasets. The
chosen validation measures give an idea of what different measures can
achieve and also how that different optimization criteria might have to be
met.

In Section 2.2 different methods of re-representing data are discussed.
These are for once different skeletonization techniques that (usually) allow
to represent a dataset by a thinned, piece-wise one-dimensional object: A
skeleton. The presented algorithms cover the different categories of thinning
and skeletonization methods available for image-based datasets.

Within this section, core sets are discussed as well. These allow a sparser
representation of the dataset and might give insight into representation
techniques for datasets.

2.1 Cluster Validation

Once the result of a clustering algorithm has been obtained, only in the rarest
cases can one visually determine whether the results make sense or not.
Visual inspection is, however, mostly limited to two- or three-dimensional
datasets. If the performance of a clustering algorithm ought to be measured
or the result’s quality needs to be estimated, a way for validation or evaluation

21

22 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

is needed. Depending on the way a clustering has been computed, different
measures may be suitable or not. These can be broadly categorized in two
ways: external and internal cluster validation.

2.1.1 External Validation

External cluster validation generally uses external information that a clus-
tering algorithm’s result can be compared to. This may either be the result
of another clustering algorithm, some kind of expert knowledge or simply
a ground truth. The problem of externally validating a clustering result
lies mainly in how such a measure is computed. It is therefore rather a
computational problem.

All of the measures have in common that they can be used to compute a
similarity between two clusterings from different algorithms and to bench-
mark algorithms against an existing ground truth. In the first case, the
external validation computes the similarity between two clusterings. By
counting the agreements and disagreements the general procedure can be
compared to the computation of the Jaccard index [78]. In the second case,
the ground truth and the algorithm’s result can be compared by using an
external validation measure. Which one is used depends on the use case.
An overview over different distribution qualities of several external validation
measures can be found in [131].

Set-based approaches can work on the label list and count the number
of agreements and disagreements between two given labelings l1 and l2.
Agreements here are usually understood as the number of times a pair of
points, that lie in the same cluster in one labeling, also lie in the same
cluster in the other labeling (i. e., x, y ∈ 𝒳 : l1(x) = l1(y)→ l2(x) = l2(y)). Or,
that points which are not in the same cluster are placed in different clusters
in both labelings (i. e., x, y ∈ 𝒳 : l1(x) , l1(y) → l2(x) , l2(y)). For any pair
x, y for which neither of the previous implications hold, it is said that the
two labelings disagree. From the number of agreements and disagreements
one can compute different statistics that are described in the following.

2.1. CLUSTER VALIDATION 23

(Adjusted) Rand Index

The Rand Index (RI) [109] is defined as the ratio of the number of agreements
between two labelings, and the total number of possible pairs (without
ordering). Let nij denote the number of items that are shared by the clusters
i under labeling l1 and j under labeling l2 respectively. If 𝒞1

i denotes the set
of all points x for which l1(x) = i (or equivalently 𝒞1

i = l−1
1 (i)) and 𝒞2

j = l−1
2 (j),

then nij is can also be expressed by the cardinality of the set 𝒞1
i ∩ 𝒞

2
j . For

this the labelings do not need to be arranged such that cluster indices match
for the same clusters. In fact the RI/ARI are completely independent of the
order in which clusters are labeled (or the total number of clusters) since
agreements are counted on a per-pair basis of points.

The Rand Index can now be computed for any number of clusters as:

RI =

l∑︀
i=1

nii

max l1∑︀
i=1

max l2∑︀
j=1

nij

, where l = min {max l1, max l2}. (2.1)

Since by randomly labeling the data one would expect to get at least some
agreements purely by chance, the Adjusted Rand Index (ARI) [77] is defined
as:

ARI =
RI − E [RI]

max RI − E [RI]
. (2.2)

The resulting index yields values between −1 and 1. In the case of the RI
values around 0 indicate (nearly) complete randomness between the two
labeling l1 and l2. In the case of the ARI such values indicate that the
resulting labeling is as good as the expected value [125]. Higher values
indicate a better agreement between the two labelings while lower, negative
values rather indicate a disagreement between them.

Mutual Information

The Mutual Information (MI) [42] is the amount of information obtained
about one random variable when observing the other. In terms of labelings
it tells us how much can be known about the label of a data point x under

24 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

0 20 40

0.25

0.50

0.75

1.00
Adjusted Rand Index

0 2

−1.0

−0.5

0.0

0.5

1.0
0 20 40

0.6

0.8

1.0
V-Measure

0 2

−1.0

−0.5

0.0

0.5

1.0
0 20 40

0.4

0.6

0.8

1.0
Adjusted Mutual Information

0 2

−1.0

−0.5

0.0

0.5

1.0

Figure 2.1: Original cluster structure shows three spherical clusters. All
three shown external validation measures select the right number of clusters
when used with k-means.

labeling l2 once l1(x) is known. For discrete variables the Mutual Information
is defined as:

MI =
∑︁

i∈img(l1)

∑︁
j∈img(l2)

p(i, j)
p(i) · p(j)

, (2.3)

where p(i, j) is the joint distribution function of i and j, and img(·) is the
image set of a function.

With the same notation as for the RI, an alternative formulation can be
derived:

P(i) =
ni∙

N
, P(j) =

n∙j
N

, P(i, j) =
nij

N
,

MI =
∑︁

i∈img(l1)

∑︁
j∈img(l2)

p(i, j) log
p(i, j)

p(i) · p(j)

with n∙j =
∑︁

i

nij and ni∙ =
∑︁

j

nij

(2.4)

which can equally be adjusted for chance to the Adjusted Mutual Information
(AMI) as the RI:

AMI =
MI − E [MI]

max MI − E [MI]
. (2.5)

2.1. CLUSTER VALIDATION 25

Figure 2.2: Original cluster structure shows 31 spherical and slightly over-
lapping clusters. All three shown external validation measures select the
right number of clusters when used with k-means.

V-Measure

In [110] the V-Measure is defined as the harmonic mean between two different
aspects of comparing to labelings:
Homogeneity: Only points that fall into the same cluster (under one of the
labelings) have been placed into the same cluster (by the other labeling).
Completeness: All points that fall into the same cluster (under one of the
labelings) have been placed into the same cluster (by the other labeling).
Homogeneity can be understood as an implication (i. e., if a and b belong to

the same cluster, they are placed in the same cluster), while completeness
measures the inverse direction (i. e., if a and b have been placed in the same

cluster, they belong to the same cluster). In [12] it has been shown that the
V-Measure and the Normalized Mutual Information (NMI) are identical when
normalized by the sum of label entropies.

Human Assessment

Sometimes the number of clusters in a dataset is known it advance (e. g.
if one wants to distinguish between sick and healthy patients, meaning
k = 2). Sometimes the data analysis task requires a certain number of
clusters (e. g. four different groups of customers). And sometimes the correct
number of clusters that occur in a given dataset should be estimated. Beside
the difficulties for estimating certain parameters for a clustering algorithm,
this task can also be opened for humans to perform. Although in general
slower than computers, humans excel at visual interpretation tasks. Simply

26 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

Figure 2.3: The original cluster structure shows two half-circle clusters. All
three external validation measures fail at finding the right amount of clusters
when used with k-means. This happens because the optimal clustering lies
not in the range of possible results for the used clustering algorithm. The
small peaks which can be seen for k = 2 for all measures do not correspond
to a correct clustering but rather to one similar to that in Figure 2.7.

displaying the clustering result or the data itself is—however—infeasible
in any interesting clustering scenario that goes beyond two-dimensional
data. For such and similarly formulated tasks a complete family of visual
techniques for cluster validation has been developed in the past years. It
has to be noted though, that neither of the Visual Assessment of Cluster
Tendency (VAT) methods presented in the following is strictly a validation
technique in itself. It is rather a tool set to determine the number of clusters
in a dataset if there are any at all.

All of the algorithms in the VAT family have in common that they create
some form of graphical representation (the so-called Ordered Distance Image
(ODI)) of the clustering result and allow the user to decide which results
seems to be the most fitting. In case of the original VAT algorithm [17],
the data is re-ordered according to an ordering of the points obtained by
a Minimum Spanning Tree (MST) algorithm (Prim’s [107] or Kruskal’s [90]
algorithm). The algorithm used for constructing an MST used in the different
VAT algorithms uses a deterministic start: While the original MST may
choose the initial node randomly the version used here always chooses one
of those points that have the maximal distance. The rows and columns of
the distance matrix are then re-ordered according to the sequential order in
which the MST algorithm visits them and finally displayed as a gray-scale
image (the so-called Ordered Distance Image (ODI)).

2.1. CLUSTER VALIDATION 27

Extensions to this algorithm exist in the form of reVAT [76], which can
be used for larger datasets and which uses profile graphs and sub-sampling;
bigVAT [75] or scalable VAT [71] which both can be used for even larger
datasets by using sub-sampling, co-VAT [18] which can be used in case of
rectangular distance matrices for simultaneously finding row- and column-
clusters; specVAT [127] where the re-ordering is based on the spectrum of
the dataset’s Laplacian matrix, and iVAT [128] which is an improved version
of the original Visual Assessment of Cluster Tendency (VAT) algorithm that
uses a path-based dissimilarity [59] instead of the Euclidean distance to
improve the quality of the ODI.

The general process of the VAT algorithm can be seen in Figures 2.4a,
2.4b, 2.4c and 2.4d respectively. Especially Figure 2.4b shows an interesting
problem of this approach. The eight clusters in the center of the dataset
can appear as a single cluster in the ODI to one user, but another might
recognize the individual clusters as darker squares along the principal
diagonal inside the bigger square. Figure 2.4c shows, that for more complex
cluster structures the VAT algorithm produces ODIs which do not allow to
properly estimate the number of clusters. A similar effect can be seen in
Figure 2.4d where one could derive that some kind of structure exists in
the data, but a clear estimate such as in Figure 2.4a or Figure 2.4b is not
evident.

Another approach to involve humans into the clustering process has
been described in [67] where the clustering results of several different
algorithms are transformed into a clustering space. Within this space similar
clustering results would be placed close to each other. Users can then
choose different, dissimilar clusterings and decide which results best fit their
purpose. An example of what such a visualization might look like can be
found in Figure 2.5.

Summary

The selection process for the right number of clusters can be seen in Fig-
ure 2.1, Figure 2.2, and Figure 2.3. The process itself is fairly easy here,
since the ground truth labeling was available to the clustering algorithm
beforehand. Simply estimating the number of clusters in this scenario
could be have been done by looking at the number of different labels in the

28 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

Unordered Data Ordered Data

Corresponding, Unordered Graph Corresponding, Ordered Graph

a) VAT results for small blobs
dataset.

Unordered Data Ordered Data

Corresponding, Unordered Graph Corresponding, Ordered Graph

b) VAT results for R15 dataset.

Unordered Data Ordered Data

Corresponding, Unordered Graph Corresponding, Ordered Graph

c) VAT results for Aggregation
dataset. d) VAT results for moons dataset.

Figure 2.4: The respective left figures show the unordered distance matrices
and a graph visiting points according to this random ordering. The right
figures show the distance matrices after they have been re-ordered and the
resulting graphs.

2.1. CLUSTER VALIDATION 29

First Principal Component

Se
co

nd
Pr

in
ci

pa
lC

om
po

ne
nt

711
15

19
23

27
31

35
39

43
47

First Principal Component

Se
co

nd
Pr

in
ci

pa
lC

om
po

ne
nt

111519
23

2731
35

39 43
47

Figure 2.5: Projection of different clustering results onto the plane for D31 .
The similarities between different labelings have been computed with the
V-Measure (center) and the ARI (right).

ground truth labeling as well. However, Figure 2.3 shows that even with
the ground truth given, the correct clustering could not be found by the
k-means algorithm.

The usage of external validation measures becomes more interesting
when different clusterings on the same dataset are compared against each
other (as seen in Figure 2.5). External validation measures allow a direct
comparison of different labelings and may yield some further insight into
which labelings are fundamentally different. In such a setting, visual analysis
of the dataset to assess the number of clusters (and to some degree maybe
even their structure) may be guided by algorithmic assistance. For this one
may either use the VAT algorithms or by directly comparing clusterings in a
projected space.

The presented numerical measures (RI, MI, and V-Measure) do not yield
fundamentally different results for the same comparisons. Their major
difference lies in the philosophy behind their calculation (combinatorial,
information theoretical, or from an information-retrieval point-of-view re-
spectively)

2.1.2 Internal Validation

In contrast to external validation, internal cluster validation cannot compare
the labeling of a dataset against another one. Instead these measures have
to rely on internal information about the dataset and the labeling itself.
Usually this information can be categorized into measures of compactness,
and separation. These can be designed in different ways, as can be seen by

30 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

the different validation scores described in the following. In general it can be
said, that compactness is used as a measure of internal cluster similarity
(cf. Section 1.3): points that belong to the same cluster should be similar to
each other. Separation, on the other hand, measures how dissimilar points
from different clusters are.

The overall selection process for the best parameter is rather simple.
Every measure has to be either maximized, minimized or from a list of several
values the optimal value has to be obtained via the elbow method [120]. After
performing several runs of the centroid-based algorithm the resulting labeling
(or partition matrix) can be converted into a single value via the selected
validation measure. The optimal value (and therefore parametrization of the
algorithm) can be determined by the optimization criterion associated with
the validation measure. Since for centroid-based clustering methods like
k-means and fuzzy c-means only a single parameter has to be estimated,
such a process is sufficient.

Density-based clustering like DBSCAN required more sophisticated meth-
ods for validation since at least two parameters need to be estimated. In
[47] it was shown that a similar process extended to a two-dimensional
parameter space can lead to favorable results.

Centroid-based Measures

If an internal validation measure refers to the center of a cluster it is called a
centroid-based measure. All of these measures prefer spherical clusters over
non-spherical ones as their compactness definition leads to a minimization
of the distance between data points and centroids. This naturally leads to
spherical cluster structures.

Davies-Bouldin Index (DB) [43]
This validation index first measures the within-cluster scatter by summing
up the distances between each data point assigned to a cluster 𝒞i and its
associated cluster center µi :

Si =
1
|𝒞i |

|𝒞i |∑︁
j=1

d(xj, µj) (2.6)

2.1. CLUSTER VALIDATION 31

Calculating the ratio of the within-cluster scatters and the distances of their
respective centroids yields an indicator of how well two specific clusters are
separated from each other:

Mi,j = d(µi , µj) Ri,j =
Si + Sj

Mi,j
(2.7)

The rationale behind this is that if two clusters have a low within-cluster
scatter and a high distance from each other, they can be easily separated,
while highly scattered clusters that are close to each other yield high values
and indicate worse separation.

Di = max
j,i

Ri,j (2.8)

Taking the maximum over all the Ri,j for one cluster considers the worst-case
scenario—for each cluster only that one cluster is considered, that it is the
worst separated from.

DB =
1
k

k∑︁
i=1

Di (2.9)

Finally, taking the average over all individual scores for each cluster yields the
Davies-Bouldin Index (DB). Smaller values of DB indicate a better clustering.
The selection process for some typical datasets can be seen in Figure 2.6,
Figure 2.7, Figure 2.8, Figure 2.9, Figure 2.10, and Figure 2.11 respectively.

Silhouette Coefficient (SC) [112]
The calculation of the Silhouette Coefficient is initiated by calculation of an
individual score for each point. For this the average distance from a point xi

to all the points in the same cluster is measured (Equation 2.10). The same
is done for each other cluster (those xi does not belong to) and the minimum
is considered as bi (Equation 2.11):

ai = 1
|𝒞l(xi)|

∑︀
y:l(xi)=l(y)

d(xi , y) ≥ d(xi , µl(xi)) (2.10)

bi = min
1≤j≤k,j,l(xi)

1
|𝒞j |

∑︀
y∈𝒞j

d(xi , y) ≥ min
1≤j≤k,j,l(xi)

d(xi , µj) (2.11)

32 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

The silhouette score is then the ratio between the difference of bi and ai,
normalized by their maximal value to obtain scores between −1 and 1:

si =
bi − ai

max {bi , ai}
(2.12)

The final score is then the average of all obtained scores:

SC =
1
N

N∑︁
i=1

si (2.13)

Higher values indicate a better labeling than lower ones. The selection
process for some typical datasets can be seen in Figure 2.6, Figure 2.7,
Figure 2.8, Figure 2.9, Figure 2.10, and Figure 2.11 respectively.

Dunn’s Index (DI), Dunn-like Index (DLI) [49]
Dunn’s Index can be seen as a generalization of the Davies-Bouldin Index or
the Silhouette Coefficient. By calculating the ratio of inter-cluster distance
and intra-cluster distance a relatively simple measure can be derived, that
needs to be maximized in order to find a good clustering. The generalization
of the aforementioned lies in the fact, that Dunn’s Index allows different
notions of compactness and separation to be used.

Originally the index was defined as the ratio between the minimal distance
between two separate clusters (defined as the minimal distance between any
pair (x, y) ∈ 𝒞i × 𝒞j) and the maximal diameter of any cluster (defined as the
maximal distance between any pair from any cluster):

DI =

min
i,j

min
x∈𝒞i ,y∈𝒞j

d(x, y)

max
k

max
x,y∈𝒞k

d(x, y)
(2.14)

Nowadays a more relaxed form is used as Dunn’s Index, which can lead to
several different forms of this validation measure:

DLI =
min
i,j

δ(𝒞i ,𝒞j)

max
1≤i≤k

∆i
(2.15)

where δ(·, ·) is any kind of metric that measures the inter-cluster distance
and ∆i is a measure for the intra-cluster distance (or within-cluster scatter).

2.1. CLUSTER VALIDATION 33

Originally Dunn used the minimal distance between two points from separate
clusters for δ and the diameter of a set of points for ∆. As can be seen
in Equation 2.7, the inter-cluster distance can also be measured as the
distance between the clusters’ centroids instead of the smallest pairwise
distance.

Higher values of this index indicate a better clustering result. The selection
process for some typical datasets can be seen in Figure 2.6, Figure 2.7,
Figure 2.8, Figure 2.9, Figure 2.10, and Figure 2.11 respectively.

Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) computes the deviance of data points
to their associated cluster centers. This closely ties into the concept of
spherical clusters in which the distance between center and border would be
limited by the cluster’s radius. The denominator is adjusted by the number
of dimensions m and the number of clusters k:

RMSE =

⎯⎸⎸⎸⎸⎷ k∑︀
i=1

∑︀
x∈𝒞i

d2(x, µi)

m · (N − k)
(2.16)

Lower values indicate a better clustering result. The selection process for
some typical datasets can be seen in Figure 2.6, Figure 2.7, Figure 2.8,
Figure 2.9, Figure 2.10, and Figure 2.11 respectively.

Calinski-Harabasz Index (CH) [37]
The Calinski-Harabasz Index is also known as variance ratio criterion and is
mainly an F-value of a one-way ANOVA [60]. The enumerator shown in Equa-
tion 2.17 represents the variation between groups, while the denominator
represents the variation within groups:

CH =

1
k−1

k∑︀
i=1
|𝒞i |d2(µi , µ)

1
N−k

k∑︀
i=1

∑︀
x∈𝒞i

d2(x, µi)
(2.17)

Higher values indicate a better clustering result. The selection process for
some typical datasets can be seen in Figure 2.6, Figure 2.7, Figure 2.8,
Figure 2.9, Figure 2.10, and Figure 2.11 respectively.

34 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

Fukuyama-Sugeno Index (FS) [65]
The Fukuyama-Sugeno cluster validity index is based on the difference of
compactness of the clusters and the separation between the different clusters.
Compactness is measured by the same expression that is also used in the
k-means algorithm (cf. Algorithm 1 and Equation 1.1) as objective function,
while separation is the minimal distance between two clusters’ centroids. In
this sense it is similar to the Dunn-like measures or the Silhouette coefficient.
The main difference is that Fukuyama-Sugeno uses the sum of the obtained
values instead of the respective maxima or minima:

FS =

⎛⎜⎜⎜⎜⎜⎜⎝ 1
N

k∑︁
i=1

∑︁
x∈𝒞i

d2(x, µi)

⎞⎟⎟⎟⎟⎟⎟⎠ − (︃
min

1≤i,j≤k
d2(µi , µj)

)︃
(2.18)

The optimal values can be found by using the elbow method [120] The selec-
tion process for some typical datasets can be seen in Figure 2.6, Figure 2.7,
Figure 2.8, Figure 2.9, Figure 2.10, and Figure 2.11 respectively.

Xie-Beni Index (XB) [132]
The Xie-Beni Index (XB) is structurally similar to the previously mentioned
Fukuyama-Sugeno Index. It uses the same definitions for separation and
compactness, but instead of looking at their difference, the Xie-Beni Index
calculates their ratio.

XB =

k∑︀
i=1

∑︀
x∈𝒞i

d2(x, µi)

N · min
1≤i,j≤k

d2(µi , µj)
(2.19)

Lower values indicate a better clustering result. The selection process for
some typical datasets can be seen in Figure 2.6, Figure 2.7, Figure 2.8,
Figure 2.9, Figure 2.10, and Figure 2.11 respectively.

Partition Matrix-based Measures

Since fuzzy clustering does not yield a strict 0 or 1 labeling (cf. Equation 1.3)
the previously mentioned validation measures do not apply to fuzzy cluster-
ing results. Although fuzzy clustering results could be easily defuzzified by
assigning each point to the cluster it has the highest membership to, infor-

2.1. CLUSTER VALIDATION 35

Figure 2.6: Original cluster structure shows three spherical clusters
(blobs). Four out of seven shown validation measures select the right
number of clusters when used with k-means.

Figure 2.7: Original cluster structure shows two half-circle clusters (moons).
Almost all shown validation measures select a wrong number of clusters
when used with k-means. Respectively selected results shown below the
measures’ charts.

36 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

Figure 2.8: Original cluster structure shows two circular clusters
(circles). Almost all shown validation measures select a wrong number
of clusters when used with k-means. Respectively selected results shown
below the measures’ charts

Figure 2.9: Original cluster structure shows three tubular clusters arranged
in a spiral (spirals). All shown validation measures select a wrong
number of clusters when used with k-means. Respectively selected results
shown below the measures’ charts

2.1. CLUSTER VALIDATION 37

Figure 2.10: Original cluster structure shows a single χ-shaped cluster
(chishape). All shown validation measures select a wrong number of
clusters when used with k-means. Respectively selected results shown
below the measures’ charts

Figure 2.11: Original cluster structure shows a single 8-shaped cluster
(eightshape). All shown validation measures select a wrong number
of clusters when used with k-means. Respectively selected results shown
below the measures’ charts.

38 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

mation about the ambiguity of some cluster assignment (e. g. a point almost
directly between two clusters) would be lost after defuzzification. Instead
the degree of membership has to be taken into account in the validation
process, too. Some measures that do so are presented in the following:

Xie-Beni-Index [132]
Originally designed for fuzzy clustering, the Xie-Beni index works as well
for crisp clusterings (see above on page 34). Only the distances in the
enumerator’s sum are weighted by the membership degree and the fuzzifier.

XBω =

k∑︀
i=1

∑︀
xj∈𝒞i

uω
ij d2(x, µi)

N · min
1≤i,j≤k

d2(µi , µj)
(2.20)

With this adjustment the enumerator’s terms equals that of the fuzzy-c-
means objective function. Lower values indicate a better clustering result.

Partition Coefficient (PC) [14]
One of the many, purely partition matrix-based measures is the Partition
Coefficient. It argues that the coupling between a fuzzy partition with itself
can be measured by the average pairwise relative overlap of the correspond-
ing fuzzy membership vectors. This is realized by first calculating 𝒰𝒰T ,
𝒰 ∈ [0, 1]c×n, then calculating the trace of the resulting matrix, and dividing
by the number of data points:

PC =
1
n

trace(𝒰𝒰T). (2.21)

Since it is possible to study this function analytically it can be shown, that
an optimal partitioning is obtained when this function is maximized.

Actually a true maximum would be obtained for a crisp clustering. The
off-diagonal entries in𝒰𝒰T can only be zero if there is no agreement between
the corresponding membership vectors. However, since it is usually applied
to fuzzy clustering results, it can be said that the partition coefficient favors
labelings that are as crisp as possible. Higher values thus indicate a better
clustering result.

2.1. CLUSTER VALIDATION 39

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

0 20 40

0

500

1000

1500

Xie-Beni

0 2

−1.0

−0.5

0.0

0.5

1.0
0 20 40

0.2

0.4

0.6

0.8

1.0
Partition Coefficient

0 2

−1.0

−0.5

0.0

0.5

1.0
0 20 40

0.0

0.5

1.0

1.5

2.0

Partition Entropy

0 2

−1.0

−0.5

0.0

0.5

1.0

Figure 2.12: Original cluster structure shows three spherical clusters
(blobs). All shown validation measures select the right number of clusters
when used with k-means.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0 20 40

0

500

1000

1500

Xie-Beni

0 2

−0.5

0.0

0.5

1.0

0 20 40
0.2

0.4

0.6

Partition Coefficient

0 2

−0.5

0.0

0.5

1.0

0 20 40

0.5

1.0

1.5

2.0

Partition Entropy

0 2

−0.5

0.0

0.5

1.0

Figure 2.13: Original cluster structure shows two half-circle clusters
(moons). All shown validation measures select a wrong number of clusters
when used with k-means. Respectively selected results shown below the
measures’ charts.

Partition Entropy (PE) [15]
The partition entropy measures how orderly the entries within the partition
matrix are. As with Shannon entropy [50], the partition entropy obtains its
optimal value, when the entries in the matrix are only 0 or 1.

PE =
1
n
·

n∑︁
i=1

c∑︁
j=1

uij · log uij (2.22)

Lower values indicate a better clustering result.

40 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

0 20 40
0

100

200

300

Xie-Beni

−1 0 1

−1

0

1

0 20 40

0.2

0.3

0.4

0.5

0.6
Partition Coefficient

−1 0 1

−1

0

1

0 20 40
0.5

1.0

1.5

2.0

2.5

Partition Entropy

−1 0 1

−1

0

1

Figure 2.14: Original cluster structure shows two circular clusters
(circles). All but one shown validation measures select the correct
number of clusters when used with k-means. Respectively selected results
shown below the measures’ charts

5 10 15 20 25 30

5

10

15

20

25

30

0 20 40

0

2000

4000

6000
Xie-Beni

10 20 30

10

20

30

0 20 40

0.2

0.4

0.6

Partition Coefficient

10 20 30

10

20

30

0 20 40

1

2

Partition Entropy

10 20 30

10

20

30

Figure 2.15: Original cluster structure shows three tubular clusters arranged
in a spiral (spirals). All shown validation measures select a wrong
number of clusters when used with k-means. Respectively selected results
shown below the measures’ charts

0.0 0.5 1.0 1.5 2.0

−1.5

−1.0

−0.5

0.0

0.5

0 20 40
0

100

200

300
Xie-Beni

0 1 2

−1.5

−1.0

−0.5

0.0

0.5

0 20 40

0.4

0.6

Partition Coefficient

0 1 2

−1.5

−1.0

−0.5

0.0

0.5

0 20 40

0.5

1.0

1.5

2.0

Partition Entropy

0 1 2

−1.5

−1.0

−0.5

0.0

0.5

Figure 2.16: Original cluster structure shows a single χ-shaped cluster
(chishape). All shown validation measures select a wrong number of
clusters when used with k-means. Respectively selected results shown
below the measures’ charts

2.1. CLUSTER VALIDATION 41

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1.0

−0.5

0.0

0.5

1.0

0 20 40

0

500

1000

1500

Xie-Beni

0 2

−1.0

−0.5

0.0

0.5

1.0

0 20 40

0.2

0.3

0.4

0.5

Partition Coefficient

0 2

−1.0

−0.5

0.0

0.5

1.0

0 20 40

1.0

1.5

2.0

Partition Entropy

0 2

−1.0

−0.5

0.0

0.5

1.0

Figure 2.17: Original cluster structure shows a single 8-shaped cluster
(eightshape). All shown validation measures select a wrong number
of clusters when used with k-means. Respectively selected results shown
below the measures’ charts.

2.1.3 Density-based Cluster Validation

The validation of density-based clustering results is still a rather new and
open research topic. One of the recent advancements is the development
of the Clustering Validation Index based on Nearest Neighbors (CVNN) [94].
The index itself is calculated from the normalized separation and normalized
compactness (the respective measures divided by their maximally obtained
values). The main contribution here was that separation is not calculated
globally for a cluster but rather locally for each point. If such a point has
another point in its k-nearest-neighborhood and this other point does not
belong to the same cluster, the score is increased. The lower the sum of this
score is the better the separation between the different clusters. Problematic—
however—is the introduction of a new, user-definable parameter into the
validation process. Now, not only the clustering result but also the validation
of this result are subject to the parameter choice of the user and can therefore
not be judged completely independent from each other.

In [70] a method is proposed that tries to capture the geometric properties
of a cluster by choosing a set of k representative points along its border. The
first point is the one, which is farthest away from the center of the cluster,
all additional points are chosen such that they maximize the distance to
all points already selected. In this it acts quite similar to the k-means++
initialization method (cf. [8]). The clustering is then evaluated using these
points as anchors for calculating the clusters’ cohesion, compactness and

42 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

separation. A cluster has a high cohesion, if its density does not fluctuate
very much. Compactness and separation are used in a similar way as inter-
cluster and intra-cluster distances (which are used by the Davies-Bouldin-
Index or the Dunn-Index). However, since the number of representatives
selected is the same for each cluster, one may end up with too sparsely
scattered points in one and too tightly spaced points in another cluster. This
method also introduces an additional parameter into the validation process,
which is generally undesired.

Another approach was to adopt the silhouette score to a density-based
clustering scenario. In [47] an approach has been presented that directly
adopts the separation measure of the silhouette score and redefines the
compactness. Instead of using the distance to the cluster’s centroid the
longest edge in a minimum spanning tree over the data points within
the cluster is used. By choosing the longest edge an upper bound for
(non-)compactness is considered. The longer this longest edge was, the
worse the cluster’s coherence would be.

In [102] an inverse formulation of density is used to define the Mutual
Reachability Distance (MRD). The MRD between two points is the maximum
between their individual core distances and the true distance between them.
If this distance is calculated for any two objects within a cluster, it can be
used to construct a weighted, complete graph. The data structure used
for validation is then calculated from a minimum spanning tree of this
graph. The maximal weight within this minimum spanning tree is used as
a sparseness measure (the inverse of compactness), while the separation
between two clusters is measured by the minimal mutual reachability
distance between objects of these clusters.

Both of the aforementioned approaches take the cluster shape better into
consideration by using a minimum spanning tree for representation (w.r.t.
the CVNN measure).

Because both of the aforementioned approaches use a minimum spanning
tree to represent the clusters they take the shape of the clusters better
into account than the CVNN measure. Using a generalized descriptor (or
representative) of the clusters’ shapes seems to be a natural approach for
solving the problem of density-based cluster validation without introducing
additional parameters.

2.2. RE-REPRESENTING DATASETS 43

2.2 Re-Representing Datasets

Ultimately, when using cluster skeletons instead of the arithmetic mean
one chooses a different representation of the cluster itself for the validation
process. There are many choices for finding a proper representation of a
dataset and at least as many ways of obtaining them.

2.2.1 (Non-)Linear Transformations

One of the easiest ways to re-represent data is by a linear transformation.
E. g., performing a Principal Component Analysis on the covariance matrix of
a dataset allows a lower dimensional representation of the same data which
preserves most of its variance. This applies not only to the whole dataset
but to individual cluster as well. This can be seen either in the usage of the
Mahalanobis distance [98], or the Gustafson-Kessel algorithm [68].

Different algorithms for linear transformations are the Linear Discrim-
inant Analysis (LDA) [11, 61], and the Generalized Discriminant Analysis
(GDA). The first finds a hyperplane separating two classes while the latter
finds a general separation boundary. The parameters of the separating
objects can also be used to transform the original dataset into a lower-
dimensional version of itself. However, both methods need class information
which is usually not available in clustering a priori.

A non-linear transformation is multi-dimensional scaling [13]. By mi-
nimizing the stress between the original dataset and its lower-dimension
representation a good approximation can be achieved. Stress here is the
sum of pairwise differences of the distance matrices in both the high- and
low-dimensional space. If the pairwise differences as well as the overall sum
are normalized by the (sum of) distance(s) in the original space, the scaling
is also called Sammon’s Mapping [114].

Another non-linear way of re-representing data is by using structure
learning algorithms such as the Self-organizing Map (SOM) algorithm [85]
or the Growing Neural Gas (GNG) [63]. The first method adopts an initial
structure (often a grid network) to the dataset, while the latter starts with
just a single edge and lets the network iteratively grow. This approach will
be discussed in more detail in Section 3.3.5.

44 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

2.2.2 Core Sets

Another way of re-representing data is by finding a smaller sample that
still captures all interesting features of the original dataset. Core Sets [1]
are one way of describing such data summarizations. Several different
understandings of core sets exist. Yet, they all have in common that they
aim at generating a smaller dataset that can be used in calculations. Any
calculation on this smaller sample is supposed to yield approximately the
same result. The resulting centers of a k-means clustering can be seen
as one possible core set of the underlying dataset 𝒳 [35, 41, 58]. Any
query of the form "Which structure is point x closest to?" can be answered
with approximative correctness by only comparing x to the cluster centers
obtained via k-means instead of comparing it to all points. The representation
of a cluster used in [70] can actually be seen as such a core set approach.
By capturing interesting and important structural properties the true cluster
quality is approximated by the k representatives. These k points actually
form a kind of core set and are used to (approximately) answer the question
about the cluster’s quality.

In a broader view core sets yield a sparser (or smaller) dataset which can
be used to speed up otherwise costly calculations. Validating the labeling of
a dataset is usually not that difficult or complex once the measure has been
chosen and a (single) labeling has been obtained. Especially in the case of
density-based clustering the problem lies more in a proper representation
of a single cluster. For this task (as discussed earlier) and in many cases
single points are not suitable. Core sets do not yield a structure that can be
easily plugged into existing validation measures since the core set itself has
to be seen as a dataset 𝒳′ on its own—although it has been obtained from
the original dataset 𝒳.

Additionally, methods for generating core sets range in complexity from
𝒪(n) to 𝒪(n5) (depending on the type of core set and the definition of core
set used). As will be seen in Section 4.2, possibly all 𝒪(n2) entries of the
distance matrix and a certain number m of possible values for minPts in
DBSCAN might need to be tested. And for each of these 𝒪(n2m) trials a
core set representation would need to be found. This could in the very worst
case lead to a runtime complexity beyond 𝒪(n8) rendering such an approach
infeasible for any dataset of interesting size.

2.2. RE-REPRESENTING DATASETS 45

2.2.3 Skeletonization

original Medial Axis [blum1967]

Skeleton [Zha84] Skeletonize 3D [Lee94]

Thinned Partially Thinned

Figure 2.18: Different skeletoniza-
tion methods applied to a binary
image. Skeletons are the white pix-
els in the corresponding images,
except in case of the medial axis,
where white pixels denote the de-
tected borders and red pixels the
skeleton).

Another group of algorithms that try to
re-represent datasets are image skele-
tonization algorithms. In terms of com-
putational geometry these algorithm try
to find a topological skeleton [9] in var-
ious kinds of ways.

The group of thinning algorithms
takes a binary image and removes pixel
from the outside of a shape until a small
line is remaining (e. g. [105]). The so-
called grassfire transformation is prob-
ably the best known algorithm in this
class.

A strictly mathematical definition is
given in [19]. The topological skeleton
found here is the medial axis, which
is the set of centers of bi-tangent cir-
cles. This algorithm requires that the
exact boundary of the object to be skele-
tonized is known. This is certainly the case for binary images [135].

A third group is based on Discrete Curve Evolution (DCE) [91, 119].
The term evolution here is not to be understood in the same way as in
evolutionary algorithms. Instead a shape describing curve (or polygon) is
evolved over several steps and thus simplified until it can e. g. act as some
kind of topological skeleton.

Lastly, the group of algorithms based on distance transformations aims
at detecting ridges in the height profile of an image [20, 79]. Such a height
profile is obtained by a discrete filtering or kernel function. Ridges are then
those points in the (discrete) profile which have no neighboring points with
a higher value.

Most of the aforementioned methods have in common that they work
only on discrete (pixelized) binary data. This, of course, has limited use in
data analysis, where datasets could easily have more than two dimensions
and data points usually lie within a continuous space. Only the medial

46 CHAPTER 2. METHODS FOR VALIDATION AND SKELETONIZATION

axis transformation can be used without adaptation on continuous data.
However, it is mostly limited to two-dimensional shapes. In three dimensions
one could find medial surfaces and apply thinning algorithms on them [92]
to generate skeletons in three dimensions.

For more than three dimensions these approaches all become infea-
sible since they are not directly applicable to arbitrary datasets in high-
dimensional, continuous spaces. These algorithms can still be used as an
inspiration for the algorithms used in Section 3.3.

C
h

a
p

t
e

r

3
Generalized Centroids

In this chapter several different approaches to generate a cluster skeleton
will be discussed. A cluster skeleton will be the object that acts as a
representative for all the points of a cluster and replaces the otherwise
commonly used centroid in the context of density-based clustering.

Though not exhaustive the presented methods will cover a wide variety
of different approaches and give a good overview over what can be expected
from which kind of method.

3.1 Necessary Terms and Definitions

In the usual setting described in Section 1.3, clustering algorithms refer to a
centroid. This is a single point (which is not necessary part of the data set)
that can be calculated by e. g. the arithmetic mean of all data points that
are assigned to the cluster which the centroid should represent. In a more
general notion, the centroid could be any kind of object suitably representing
the points belonging to the cluster it stands for. In case of (hyper-)spherical
cluster shapes the arithmetic mean of the cluster’s members can represent
the cluster appropriately (cf. Figure 3.1). As one can see, the arithmetic
mean is a suitable centroid for spherical clusters. For more general cluster
types like the half-circles shown earlier, the arithmetic mean (or even a
single point) are no suitable representatives anymore.

In these cases a single point is not sufficient as a centroid and a different
structure needs to be created. Thus a generalized version of the term centroid
is needed which allows more complex structures to be equally well repre-

47

48 CHAPTER 3. GENERALIZED CENTROIDS

Figure 3.1: Three spherical clusters with their centroids in the left figure.
The centroids represent their clusters well, in contrast to the centroids
shown in the right figure.

sented as simple, spherical cluster structures. Such a generalized centroids
is an object that stands for the cluster and represents the cluster’s members
appropriately while still providing some form of proper generalization.

The idea of generalizing cluster prototypes to more abstract concepts is
not completely new. In one way the Mahalanobis distance [98] and later
on the Gustafson-Kessel algorithm [68] can be seen as first step towards
this direction. Within the Gustaffson-Kessel algorithm clusters need not be
strictly spherical in the euclidean sense anymore. Instead the covariance
matrix of each cluster provides a linear transformation from an elliptical
cluster to a spherical one.

Later on different cluster prototypes have been proposed that extend this
generalization to circles, rectangles or quadratic shells [5, 72, 82, 84, 87,
88] This thesis will go one step further by allowing any skeletal shape (i. e., a
structure composed of several connected line segments) to be the centroid of
a given cluster.

In the two-dimensional case the medial axis (see Section 3.2) can be seen
as such a skeleton. For the more general case of arbitrary dimensionality
one has to fall back to more approximative structures. Section 3.3 will give
an overview of methods that can be used to find such structures.

3.1. NECESSARY TERMS AND DEFINITIONS 49

3.1.1 Manifolds and Hausdorff Metrics

The search for a centroid can be seen as (a possibly non-linear) dimension
reduction and lies therefore in the domain of manifold learning. A manifold
is a topological structure which locally resembles euclidean space [121]. The
surface of a three-dimensional sphere for example cannot be directly mapped
onto a two-dimensional plane. However, certain mappings allow finding
a two-dimensional representation that maintains some properties of the
original space (e. g. Mercator projection [99, 117] which guarantees angular
accuracy). Such a mapping can only be accurate in a local neighborhood
of any given point such that a set of mappings (or charts) is needed to
properly describe the complete topological structure. Such a collection of
charts is called an atlas. Much like historical charts and atlases describe the
surface of the earth, maps and atlases (as collections of maps) describe in
mathematical terms how a topological space can be represented with several
euclidean approximations.

Definition 3.1 (r-neighborhood)

The r-neighborhood 𝒩r(p) of a point p ∈ Rd is defined as the set of points
x ∈ Rd which are contained in a hypersphere with radius r around p.

Note that this is similar to the definition of 𝒩ε(x) in Definition 1.7. The
difference between the two here is that the r-neighborhood describes a subset
of the space p is located in and 𝒩ε(x) describes a subset of the data set 𝒳,
that x is member of. The canonical extension from the point-wise definition
of an r-neighborhood to that of a set of points 𝒫 is that the r-neighborhood
of a set of points is the union of all the points’ r-neighborhoods:

Definition 3.2 (r-neighborhood of a set)

The r-neighborhood 𝒩r(𝒫) of a set of points p ∈ 𝒫 ⊆ Rn is the union of
the r-neighborhoods of the points contained in 𝒫, i. e., 𝒩r(𝒫) =

⋃︀
p∈𝒫
𝒩r(p).

If 𝒫 is convex, then the r-neighborhood is also called tubular neighbor-

hood.

In order to introduce a topological structure on the set of subsets of a
metric space, the Hausdorff metric is a good option.

50 CHAPTER 3. GENERALIZED CENTROIDS

Definition 3.3 (Hausdorff distance)

The Hausdorff distance δH(𝒜,ℬ) between two non-empty, compact sub-
sets 𝒜 and ℬ of euclidean space is defined as:

δH(𝒜,ℬ) = max
{︃

sup
a∈𝒜

{︃
inf
b∈ℬ

{︃
d(a, b)

}︃}︃
, sup

b∈ℬ

{︃
inf
a∈𝒜

{︃
d(a, b)

}︃}︃}︃

The Hausdorff distance may of course be used to compare curves as well
as polygons as well as sets with a non-zero diameter. However, if one
restricts themselves to curves and polygons, the Fréchet distance δF [4,
62] is a more suitable choice, since it takes into account the flow of the
curves. For polygonal representations of curves there exists a polynomial
time algorithm [54] that computes the coupling distance (or discrete Fréchet
distance) between two polygons.

In the following (V, d) denotes a metric space.

Definition 3.4 (Curve)

A curve is a continuous mapping f of the closed interval [u, v] to V .

Definition 3.5 (Reparametrization of a Curve)

A reparametrization of a curve f is a continuous, non-decreasing surjec-
tion from [u, v] to [0, 1]

Definition 3.6 (Fréchet Distance [3])

Let f and g be two curves. Let α, � be reparametrizations of f and g

respectively. The Fréchet distance between f and g is given by:

δF (f, g) = inf
α,�

{︃
max
t∈[0,1]

{︃
d(f (α(t)), g(�(t)))

}︃}︃
.

If f and g are represented as polygons, then the computation can be
performed faster and the distance measure is called discrete Fréchet dis-
tance δdF [54].

To represent clusters without too much over-fitting the term cluster
skeleton should be introduced:

3.1. NECESSARY TERMS AND DEFINITIONS 51

Definition 3.7 (Cluster Skeleton)

A cluster skeleton 𝒮𝒞 of a cluster 𝒞 is an object consisting of line
segments (sections of a straight line limited by two points) such that the
union of the tubular neighborhoods of the individual line segments of 𝒮𝒞
contains all points of 𝒞 for an adequately small r.

Such a cluster skeleton 𝒮𝒞 could also be interpreted as a graph G𝒮𝒞 = (V, E)
with edges e = (u, v) ∈ E for each line segment composing 𝒮𝒞. The vertices
are those points where each line segment ends and several line segments
may end at a common vertex (a joint). Points at which only one edge ends
are (from a graph-theoretical point-of-view) leaves.

In the following G𝒮𝒞 and 𝒮𝒞 will be used equivalently if the distinction is
clear from the context.

3.1.2 Modified Fréchet Distance

To evaluate the different methods proposed to generate the cluster skeletons
and compare their results with the underlying (and due to the data generation
process known) ground truth skeleton of the clusters, a modified version
of the discrete Fréchet distance will be used. Since one cannot expect the
cluster skeletons that have been found to be strictly linear (in the sense that
their graph structure contains exactly two leaves) one cannot directly apply
the Fréchet distance to calculate the distance between the estimated cluster
skeleton and the ground truth.

To cope with this problem the distance calculation is split into several
parts. The main idea is to calculate all possible distances between pairs of
paths. For this all possible pairs of leaves in the ground truth structure
and all possible pairs of leaves within the found cluster skeleton are formed.
Since the general procedure will yield a tree-like structure one can safely
assume that only one path exists between each pair of leaves (and that this
is also the shortest path). All pairwise discrete Fréchet distances between
pairs of paths formed in such ways are then computed. Ideally each path in
the found skeleton corresponds to one path in the original model and will
therefore have the smallest distance to the original model’s paths. All other

52 CHAPTER 3. GENERALIZED CENTROIDS

paths will in some point be dissimilar to the underlying model’s paths. For
each path within the original structure a corresponding path in the cluster
skeleton and vice versa can be found.

From this point on there are different options of aggregating these pair-
wise distances into a single value. The optimal fit between two paths is
obviously between the pair that yields the minimum of all pairwise Fréchet
distances. Using the minimum of all pairwise distances leads to an optimistic
interpretation of the path comparison. A single good fitting pair of paths
would dominate this calculation—no matter how bad the fit between the
other pairs of paths is. Taking the maximal distance between any two paths
is not feasible, though. Testing all pairs necessarily also tests those parts
of the structure against each other which do not correspond to each other.
These parts must have a high distance to each other and lead to the most
pessimistic interpretation of the obtained distance values possible. The last
option considered is taking the maximum over all minimal distances. Since
every path in the cluster skeleton should have a corresponding path in the
original structure and the Fréchet distance between those two should be
minimal for either of the two, one can select the best fitting partner for each
path. The maximum over all distances obtained in that way now describes
the worst fit of any of the corresponding pairs of paths.

Formally, the modified Fréchet distance for trees can be defined as:

Definition 3.8 (Discrete Fréchet Distance for Trees)

Let (a, b) be a pair of leaves in 𝒮𝒞 and let (u, v) be a pair of leaves in 𝒮𝒞′.

Let
𝒮

a − b denote the path between a and b in 𝒮.
The discrete Fréchet distance between the tree-like structures 𝒮𝒞 and

𝒮𝒞′ is then: ddFt(𝒮𝒞,𝒮𝒞′) = max
{︃

min
(a,b)∈𝒮𝒞,(u,v)∈𝒮𝒞′

{︃
ddF (

𝒮𝒞

a − b,
𝒮𝒞′

u − v)
}︃}︃

.

This final measure ddFt will be used throughout the rest of this chapter
to compare the found cluster skeletons to the (known) ground truth from
which the sample clusters were generated.

3.2. CLUSTER SKELETONS IN TWO DIMENSIONS 53

a) Green: medial axis. Parts of the
medial axis lie outside of the polygon
due to it concavity.

b) Green: simplified medial axis.

Figure 3.2: A non-convex region bounded by a simple polygon (black).

3.2 Cluster Skeletons in Two Dimensions

If the dataset to be analyzed is only two-dimensional a construct known from
computational geometry can be used to create a cluster skeleton. The medial
axis [19] is defined as the set of all center points of maximal circles that
touch but do not intersect the border of a region at least twice. An example
of the medial axis for a non-convex but still fairly simple region can be seen
in Figure 3.2a. As can be seen, not all parts of the medial axis are suitable
to be used as a generalized centroid as smaller and smaller circles will fit
into corners without being completely contained by other circles. Also, there
are arched edges which run around corners of the border polygon that lie on
the edges causing concavities. If those edges are removed that run towards
the corners of the border polygon, and the arched edges are approximated
by line segments and only those edges are kept which lie strictly inside the
polygon, then the result will be a reduced medial axis (cf. Figure 3.2b).

3.2.1 Concave Hull and Medial Axis

Obtaining the medial axis for a set of points is not a straightforward problem.
Cluster shapes might be arbitrarily complex and the region bounds are

54 CHAPTER 3. GENERALIZED CENTROIDS

Figure 3.3: The convex hull (bold, black) is in general not a good boundary
descriptor when one wants to use its simplified medial axis (green) as a
generalized centroid.

usually not given. A simplistic approach would be using the convex hull
of the point set. The resulting polygon certainly bounds the region where
points are located but usually over-simplifies the shape (cf. Figure 3.3). If
the structure is not convex then first a more complex but also more fitting
description of the point cloud’s shape needs to be constructed.

In [30] a way of obtaining a more detailed region bound by an iterative
refinement scheme has been presented. The resulting boundary or concave
hull can then be used to find a cluster’s skeleton by using the simplified
medial axis. Please note that there is no proper definition of what a concave

3.2. CLUSTER SKELETONS IN TWO DIMENSIONS 55

hull actually is. The algorithm presented here will refine the convex hull of
a point set as long as there are still edges on the hull that are deemed too
long.

The algorithm iteratively refines an existing hull by selecting the longest
edge el = (u, v). This edge is consecutively replaced by one ore more edges
such that empty areas within the hull are reduced.

To do this, a point p is chosen which is contained in the hull and which
will be used to replace el with the edges (u, p) and (p, v). This point can be
either the point that lies closest to the center of el or the point that lies closest
to the line segment defined by el itself. The former method intuitively allows
to split the dataset into two separate regions and apply a divide-and-conquer
approach to find the concave hull. However, there can be situations in
which the new hull will not include all the points previously contained by
the original hull.

To circumvent such situations the split point should be chosen as the
point lying closest to el. Though one cannot apply the divide-and-conquer
scheme anymore and the algorithm becomes purely iterative, the refined
boundary is guaranteed to still contain all points formerly contained in the
hull. This is easy to see, if p and el with its endpoints u and p are interpreted
as a triangle. By assumption p is the closest point to el and the proposition
is that after replacing the edge el with the edges (u, p) and (p, v) all points
formerly contained within the hull are also still contained within. Assume
there was a point q that after replacing is not contained within the hull.
Since the only part of the hull that has changed was around the edge el, q

has to lie within the triangle formed by p, u and v. Any points within the
triangle can be constructed by moving from p on the perpendicular to el and
then either move towards u or v parallel to el. However, by the intercept
theorem [2] it follows, that any point constructed in such a way must lie
closer to el than p. This is a contradiction to p is the closest point to el and
thus a point q cannot exist within the triangle. If no such point exists, then
the resulting hull muss still contain all points it formerly contained, q.e.d..

Edges are replaced until a termination criterion is met. Any edge longer
than a user-defined parameter θ has to be replaced. To find an appropriate
value for θ, different dataset statistics that give an estimate of the density of
the dataset can be used.

56 CHAPTER 3. GENERALIZED CENTROIDS

Using the Delaunay tessellation (or more specifically the lengths of
the edges contained in the Delaunay tessellation) yields such a statistic.
Intuitively it acts as an indicator of density in this scenario. By using the
Delaunay tessellation one acknowledges that longer edges in the tessellation
indicate less dense regions in the dataset while shorter edges indicate denser
regions. Any occurring length that could be seen as an outlier in the
distribution of the edges’ length of the Delaunay tessellation indicates that
this edge does not properly describe the underlying dataset. Such an edge is
a candidate for the refining process. Of course outliers in this sense are only
those edges that are significantly longer than the average edge even if outliers
in the other direct, i. e., very short edges, may exist. Other dataset statistics
that could be used instead of the Delaunay tessellation edge lengths are
e. g. Minimum Spanning Tree edge lengths, or the distance of points to their
k-nearest neighbors. Overall they are all only different means of defining
the threshold.

To better scale the range of possible values from which θ can be chosen,
two parameters are used. By default this algorithm find θ as the length of
an edge that is q = 3 times longer than the p-th percentile if the distribution
of edges’ lengths within the Delaunay tessellation. One could argue that
the algorithm now not only uses one but two parameters but the parameter
combination (p, q) could always be replaced by an alternative combination
(p, 1) of p is chosen accordingly. Setting q = 3 relaxes the set of values
from which p can be chosen to a wider range. This makes parametrization
more intuitive. The difference between two hulls that result from different
values for θ (and consequently from different values of p and q) is simple:
Let θ1 < θ2. The hull originating from θ1 will be more ragged since more
edges need to be removed. The resulting medial axis will therefore have more
arched segment (from possibly more concavities in the hull) and also more
segments then connect to the hull. However, since the simplified medial
axis will be used, the latter segments are not of interest at all and will be
pruned anyway while the arched segments will be interpolated by single line
segments.

The result of applying Algorithm 2 to an artificial dataset can be seen in
Figure 3.4 and Figure 3.5 respectively. These figures show the same dataset
with their respective concave boundaries (see Appendix B.4 for details of

3.2. CLUSTER SKELETONS IN TWO DIMENSIONS 57

Algorithm 2: Creating a concave hull

Require:
𝒳 set of data points,
θ threshold for the edges that need refinement

1: function ConcaveHull(𝒳, θ)
2: hull ← convex hull of 𝒳
3: el ← longest edge in hull

4: while |el | > θ do
5: hull ← REFINE(𝒳, hull, el) . cf. Algorithm 3
6: el ← longest edge in hull

7: return hullnew

Algorithm 3: Edge refinement

Require:
hull given as list of edges,
el = (u, v) is the longest edge currently in hull

1: function Refine(𝒳, hull, el)
2: p ← point closest to el . The split point

3: hullnew ← hull[v ... u] . Current hull without el

4: Append edge u ... p to hullnew . Insert new edges, that
5: Append edge p ... v to hullnew . replace el.
6: return hullnew

the data generation process). The difference between the two hulls lies only
in the choice of the parameter θ which is chosen significantly smaller in
Figure 3.5. The resulting simplified medial axis however remains nearly the
same and does not vary very much. Since the simplified medial axis consists
solely of line segments it can act as a cluster skeleton.

58 CHAPTER 3. GENERALIZED CENTROIDS

Figure 3.4: Concave hulls (left) and simplified medial axis (right) for two sets
of data points whose convex hull would be intersecting each other.

Figure 3.5: Concave hulls (left) and simplified medial axis (right) for the
same data as in Figure 3.4 but generated with a lower θ. The hull is visibly
more ragged, the simplified medial axis however changed only slightly.

With this method and the results already presented in [30, 34] Q1 can
now be answered: Yes, for clusters which are not properly representable by
a single point another representation in form of the medial axis is—at least
in the two dimensional case—possible.

3.3 Cluster Skeletons in Higher Dimensions

On a more general level (i. e., more than two dimensions) the medial axis can
neither be computed efficiently (i. e., its runtime complexity is exponential
with the number of dimensions) nor would it necessarily be a piecewise linear
construct. Since its computation implicitly constructs the Voronoi diagram
of the border polygon and the construction of a (simple) Voronoi diagram
for points already lies in 𝒪

(︁
n log n + n⌈d/2⌉

)︁
the computational effort rises

quickly with increasing dimensionality of the data set. In fact the medial
axis of a simple rectangular box (used as the hull that induces the medial
axis) would not consist of line segments alone. Instead one would have to

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 59

deal with medial surfaces as well, since the set of all points containing more
than just one nearest neighbor could possibly form a d − 1-dimensional
subspace. Furthermore, the generation of the concave hull requires at
least one computation of the convex hull (cf. Algorithm 2). Even the fastest
algorithms have a worst-case runtime that grows exponentially with the
number of dimensions. Thus—for the general case—other methods that can
be used to generate a cluster skeleton are introduced. All of the algorithm
have in common, that they only get the data set itself as information. No
additional knowledge is required.

In Section 2.2 several different skeletonization and techniques for finding
alternate representations have been discussed. Some of these can be seen
as inspiration for the methods described in the following.

Although Discrete Curve Evolution has nothing to do with evolutionary
algorithms, the term itself sparked the idea, that a curve itself could be
developed by an evolutionary algorithm. As such the evolutionary approach
in Section 3.3.1 directly constructs a curve representation of the given
dataset. The Glow Worm Swarm Optimization (GWSO) approach (presented
in Section 3.3.2) on the other hand calculates a local density estimate and
tries to find a skeleton along the different local maxima of that cumulated
density function. This can be seen as a direct extension of the distance
transformation approaches for image skeletonization to continuous spaces.
Representing a dataset by a smaller sample is the one of the motivations
behind coe sets. In combination with the way how the GWSO finds dense
regions in a dataset, the idea was born to represent a single cluster by
multiple cluster centers and using a MST on these centers as cluster skeleton.
This approach is described in Section 3.3.3 . The alternative prototypes that
have already been used in fuzzy clustering sparked the idea, that simpler
yet more prototypes could also be used for constructing a cluster skeletons.
An approach using that idea is presented in Section 3.3.4. And last but
not least an a possible solution for finding cluster skeletons is described in
Section 3.3.5 which uses automatic structure learning.

This chapter concludes with a description how the necessary distances
between single points and their cluster’s skeleton can be calculated and how

60 CHAPTER 3. GENERALIZED CENTROIDS

that can also lead to an alternative fuzzy membership calculation. Which of
the presented methods works best on a controllable set of cluster shapes is
validated in Section 4.1.

3.3.1 Evolutionary Approach

The first observation when comparing density- and prototype-based clus-
tering is that clusters can become arbitrarily elongated and twisted (e. g.
Figure 1.7). Such clusters could be described by a curve, e. g. a b-spline
curve [44]. The advantage of such a representation is that with relatively few
components (the control points) complex structures can be created. In [113]
one can find a discussion on how such a curve representation can be found
by a multi-objective evolutionary algorithm which aims at minimizing the
distance of all points to the curve as well as the number of control points.

B-Spline Curve Fitting

There are different types of curve fitting methods that depend on the type
of data the curve should be fitted to. Generally, a curve can be easily
approximated if the points are ordered or such an ordering can be imposed
on the points. The method in [53] can only be applied, if the ordering
corresponds to one of the main axes. The dataset shown in Figure 1.7 may
still fulfill this condition, but already a full circle could not be approximated
this way. If, e. g. the curve winds back and forth, or the data points are
placed along a circle, an algorithm that makes use of the flow of points
can be used to find a local order. This can then in return be used to apply
B-spline regression on the data [95]. However, these algorithm do not work
properly, when the curve is self-intersecting at acute angles. The locality
used by tangential flow algorithms may miss such intersections and thus
represent only parts of the dataset. Another group of algorithm should only
be mentioned for the sake of completeness. These expect the dataset to be
absolutely noise-free. Thus every point is fit to the curve. Although certainly
useful in their own right, these algorithms are not applicable to data analysis
when we expect noise to be present.

Given a set of data points. To minimize the distance between all points
in the dataset and a B-spline curve C(t) =

∑︀n
i=0 Ni,k(t)pi B-spline curve fitting

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 61

can be used. 𝒫 = (p0, p1, . . . , pn) is called the set of control points; 𝒩k(t) =(︀
N0,k(t), N1,k(t), . . . , Nn,k(t)

)︀
are called B-spline basis functions with degree

k − 1. The knot vector is a non-decreasing sequence of real numbers:
𝒯 = (t0, t1, . . . , tn+k). A B-spline curve is said to be clamped uniform, if and
only if the first and the last knot in the knot vector 𝒯 each have multiplicity
k and all for all other knots the absolute difference |ti − ti+1| is constant (i. e.,
all remaining knots are evenly spaced). A uniform clamped curve has the
property that it first and last point coincide with the first and last control
point, respectively. Additionaly, a control point only influences the curve in
the interval [ti , ti+k) due to the definition of the basis functions (local control
property).

In this section a curve approximation approach is used. These algorithms
are also known as curve reconstruction or curve extraction algorithms. These
algorithms cannot directly calculate the control points. Thus an evolutionary
algorithm based on NSGA-II [45] will be used.

Constraints

Out of all possible curves, the algorithm will be limited to a small subset.
This makes fitting a curve to the dataset easier for an evolutionary algorithm.

The curves will be constrained to be cubic. I. e., the degree of the basis
functions is constantly three. This guarantees C2 continuity which makes
curves visibly smoother [10]. In most cases C2 continuity is a desired
property except when the dataset contains very sharp corners. Here a less
smoother curve would be a better fit to the data. Higher degrees of the curve
may weaken the local control point property of the B-spline curve. The curve
is only influenced within an interval of four knots by a changed control
point..

Optimizing the fit of a curve to a dataset is a two-phase process. First
in ideal set of control points should be found. Second, an ideal knot vector
given the control points should be derived. Since the B-spline curves are
uniformly clamped, the latter step can be omitted.

Finally, the output of the proposed algorithm is not a single candidate,
but the first non-dominated Pareto front, i. e., a set of solutions. How a
single individual is chosen as a solution is described in Section 3.3.1.

62 CHAPTER 3. GENERALIZED CENTROIDS

Objectives

Minimizing the distance from the B-spline curve to the data allows the curve
to properly represent the data and can therefore be seen as one objective
that needs to be optimized. However, calculating the distance from a point x

to a B-spline curve is a not an easy task. The most common approach is to
determine the closest point on the curve by Newton iteration [106]. Another
approximative solution is to sample a large enough number of points on the
B-spline and choose as the point-to-curve distance the smallest distance
between x and any of the sampled points:

𝒞 = {C(t/n) | 0 ≤ t ≤ n}

d(x, C(t)) = min
c∈𝒞

{︃
d(x, c)

}︃ (3.1)

Simply minimizing the distance between the curve and the points of the
dataset may lead to an interpolation of the data instead of an approximation.
For noisy data an interpolation is not desirable (and can be compared to
polynomial regression with a polynom of a too high degree). An evolutionary
algorithm may be negligent of the minimization goal in favor of a simpler,
more generalizing model of the dataset. Properties of a curve that indicate
such simplicity may be the number of control points, the total length of the
curve, that runs parallel and close to another part of the curve (this would
indicate that the same part of the dataset is approximated by the curve twice
or more), or the length of segments outside of the dataset. For this section
the number of control points is chosen as second objective. The total curve
length has been used as an optional third objective for fitness in a later
test. All of the three criteria are independent of each other (though more
control points can lead to a longer curve easier) and can therefore be used
as fitness functions for multi-objective optimization like Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) [45]:

ℒ(C,𝒳) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ |P |∑︀
x

d(x, C(t))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.2)

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 63

Implementation

The algorithm described in this section has the goal to optimize the control
points of a B-spline curve. The number of control points is not known or fixed
beforehand. Although a minimum length of four control points can be given
(due to the cubic degree of the B-spline), the total number of control points
remains variable which favors the use of a vector as encoding structure for
the control points. The search space of the algorithm that is induced by
this encoding is closed except for the mutation and recombination operator.
Both may construct an invalid encoding of the curve by constructing a set of
control points that is too small. These corner cases are handled separately
in the implementation.

Choosing the optimal candidate

NSGA-II only yields the Pareto-optimal candidates identified by the algorithm.
These most certainly also contain candidates which only optimize a single
objective and are not suitable as a general solution. Two ways of obtaining a
single, Pareto-optimal candidate are the hypervolume indicator [136] and an
adaptation of Pareto tournaments [73]. Given a (weak) Pareto domination
relation ⪰ and a solution space𝒳, x ∈ 𝒳 (weakly1) dominates y ∈ 𝒳 if and only
if ∀1 ≤ i ≤ n : fi(x) R fi(y) (the direction of the relation depends on whether
the objectives should be minimized or maximized), where the individual fi

are the different objectives (here: number of control points, overall distance
to the spline, and curve length), normalized to the domain [0, 1]. A set A ⊆ 𝒳

(weakly) dominates B ⊆ 𝒳 (A ⪰ B) if and only if ∀y ∈ B ∃x ∈ A : x ⪰ y. With
the help of an indicator function αA

αA ({z}) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1, A ⪰ {z}

0, otherwise

the hypervolume indicator I*
H is defined as the integral over α

I*
H (A) =

(1,...,1)∫︁
(0,...,0)

αA ({z}) dz

1Weak domination occurs in case of equality.

64 CHAPTER 3. GENERALIZED CENTROIDS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15
control points

0.05

0.10

0.15

0.20

SS
E

0.0 0.5 1.0 1.5
0.25

0.00

0.25

0.50

0.75

1.00

1.25

Figure 3.6: Circle data (left; hypervolume-optimal candidate in orange,
Pareto-tournament winner in green) to which a set of splines is fitted (lower
right). Almost all elements of the population (shown in objective space;
upper right) are Pareto-optimal.

The solution x that maximizes IH ({x}) is the one that will be accepted as
single candidate when using the hypervolume indicator [24]. Please note,
that in the case of single instances, there is no need to compute the integral

over α but instead it is sufficient (and equivalent) to calculate
n∏︀

i=1
fi(x).

Though strictly speaking a selection operator for genetic algorithms, the
Pareto tournament can also be applied to select a single best solution out of a
set of Pareto-optimal solutions. By choosing two random samples of possible
solutions and comparing them objective-wise, the more suitable candidate
for reproduction can be found, i. e., the one that wins more of the individual
comparisons. In this case, all pairwise comparisons across all objectives
were performed and the single individual that dominated others in the most
cases was chosen. One can also imagine this tournament like a soccer league
season, where single objectives count as goals and comparisons between
individuals are matches, that can be either won, lost or end in a draw. At
the end the best candidate is the championship leader.

Figure 3.6 and Figure 3.7 show exemplary results obtained by the evolu-
tionary approach. In both cases the population contained 100 individuals

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 65

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15
control points

0.02

0.04

0.06

0.08

0.10

0.12

0.14

SS
E

0.0 0.5 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.7: Sharp sinusoidal-like data (left; hypervolume-optimal candidate
in orange, Pareto-tournament winner in green) to which a set of splines is
fitted (lower right). Almost all elements of the population (shown in objective
space; upper right) are Pareto-optimal.

per generation and the algorithm ran for 500 generations. In both cases,
the hypervolume-optimal candidate (superposed onto the data set as orange
curves) overfits the data a lot. Much of their low SSEs can be attributed
to them traversing around the data multiple times. The green curves on
the same figures show the Pareto tournament winners. These tend to be
slightly better (especially in the case of Figure 3.7), but lack overall accuracy.
Some of the individuals appear to be a good fit to the data. However, even
for these fairly small data sets the runtime for these few generations was
too long (approx. 25 minutes for each dataset). With more computing power
and a better parallelization implemented, the slowness of the evolutionary
approach might be compensated for. Within this thesis this approach cannot
be followed any further.

3.3.2 Glow Worm Swarm Optimization

Clusters in general can be defined as regions with increased point density
that are separated by regions of decreased density. Finding the regions of
maximal density within a complete data set can be done by particle swarm

66 CHAPTER 3. GENERALIZED CENTROIDS

optimization, as shown in [7]. In that work regions of higher density are
discovered by finding the several local maxima of a window density function,
which is defined as the cardinality of points lying within a hypercube centered
around the points. This is a special case of the uniform kernel, when the
underlying support is not spherical (or the maximum norm is used instead
of the euclidean). Local maxima in this case indicate clusters if the width
of the hyper cube is chosen appropriately. In the general case the kernel
density formula can be written as:

f𝒦 ,𝒳 =
∑︁
p∈𝒳

𝒦(p). (3.3)

I. e., the sum of all kernel density estimates (cf. Figure 3.8) centered around
each point in 𝒳. This yields a function f𝒦 ,𝒳(x) that yields a density estimate
for any point x that lies in the same space as the original data points. Solving
for the roots of the derivation of the window density function f𝒦 ,𝒳 is usually
not feasible since closed form solutions may not exist. As a consequence,
maxima have to be found in a different way. Since the density estimate can
usually be easily evaluated for any given point, Particle Swarm Optimization
(PSO) can be used.

PSO (cf. Algorithm 4, cf. [89]) belongs to the class of metaphorical
meta-heuristics. Solution candidates are imagined as particles in (d + 1)-
dimensional space that aim to find the global optimum of a given function.
The particles within a swarm know about the location of the current optimal
solution and their own (local) optimum. The movement of each particle
depends on these two variables. Each particle moves to some degree toward
its own local optimum and towards the known global optimum. Furthermore
the movement can also be influenced by inertia, i. e., the movement of the
previous iteration(s). PSO is a very powerful heuristic in finding a (possibly
local) extremum of a given function.

To actually find a cluster’s skeleton, a single extremum in density is
not sufficient. Iteratively finding all the extrema could have unwanted
side-effects. Instead a modified version of the PSO algorithm will be used.
The so-called Glow Worm Swarm Optimization (GWSO) [86] (or Firefly Al-
gorithm [133]) works in principle just as the normal PSO algorithm. But
instead of having the same global optimum available to all swarm members,

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 67

Algorithm 4: Particle Swarm Optimization

Require:
𝒳 set of n data points pi ,
m number of particles
γ = 0.7298
𝒦 Kernel function for density estimation
a inertia

1: function PSO(𝒦 , m, γ)
2: . the function to be optimized. Here: the sum of all kernels

3: f ←
n∑︀

i=1
𝒦(pi)

4: Create a swarm 𝒫 of m particles.
5: Initialize particle positions in 𝒫 with some randomly chosen x (0)

i .
6: Initialize all x (local)

i with −∞.
7: repeat
8: for all particles pi ∈ 𝒫 do
9: . local optimum might have changed, select the one, yielding the

highest value for f .
10: x (local)

i ← argmax {x (local)
i , argmax

xi

f (x (t)
i)}

11: . global optimum is the best of all local optima
12: x (global) ← argmax

xi

f (x (local)
i)

13: for all particles pi ∈ 𝒫 do
14: �1, �2 ← uniform random variables in [0, 1.49618]
15: . new velocity
16: v(t+1)

i ← γ · (α · v(t)
i + �1 · (x

(local)
i − xi) + �2 · (x (global) − xi))

17: x (t+1)
i ← x (t)

i + v(t)
i . new position = old position + velocity

18: until convergence
19: return x (global)

the intensity with which a local optimum attracts other particles varies with
the currently obtained function value and the distance between the particles.
Simplified this means, that particles can only find an extremum in their local
neighborhood and are only attracted to these. This difference can be seen
by comparing the pseudo-code for PSO and GWSO (Algorithm 5) in lines
10 and 13. For each particle a neighborhood optimum is calculated (from
the particles within some distance of the particle itself) and the attraction

68 CHAPTER 3. GENERALIZED CENTROIDS

Algorithm 5: Simplified Glowworm Swarm Optimization

Require:
𝒳 set of n data points pi,
m number of particles
γ = 0.7298
ϸ visibility range
𝒦 Kernel function for density estimation
a inertia

1: function GWSO(𝒦 , m, γ)
2: . the function to be optimized. Here: the sum of all kernels

3: f ←
n∑︀

i=1
𝒦(pi)

4: Create a swarm 𝒫 of m particles.
5: Initialize particle positions in 𝒫 with some randomly chosen x (0)

i .
6: Initialize all x (local)

i with −∞.
7: repeat
8: for all particles pi ∈ 𝒫 do
9: x (local)

i ← argmax {x (local)
i , argmax

xi

f (x (t)
i)}

10: x (neighborhood) ← argmax
xi∈Nϸ(pi)

f (x (local)
i) . neighborhood optimum

11: for all particles pi ∈ 𝒫 do
12: �1, �2 ← uniform random variables in [0, 1.49618]
13: v(t+1)

i ← γ · (α · v(t)
i + �1 · (x

(local)
i − xi) + �2 · (x (neighborhood) − xi))

14: x (t+1)
i ← x (t)

i + v(t)
i

15: until convergence
16: return x (global)

that is calculated per particle incorporates this neighborhood optimum. The
chosen values for γ = 0.7298 and �1 = �2 = 1.49618 stem from an empirical
performance evaluation made in [51]. The parameter α acts as an inertia
dampening factor so that the overall movement tends towards the local and
global extrema over time.

What remains is to choose a proper kernel to create the density function.
Figure 3.8 shows a choice of some kernels that appear to be suitable
or are commonly used for this task. Often a Gaussian (or RBF) kernel
is recommended for density estimates but since for large datasets the

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 69

0

1
constant doubleconstant

0

1
linear cubic

−θ 0 +θ
0

1
gaussian

−θ 0 +θ

cosine

Figure 3.8: Kernels used to define the density function in Algorithm 4 and
Algorithm 5.

probability density function of a multi-dimensional normal distribution has
to be evaluated n times for each particle and iteration, approximations
are more useful. In [108] a cosine approximation is suggested to speed
up computation. This, however, can still negatively influence the speed
of computation, so a cubic approximation is used. The resulting density
function resembles a mountain range and the particles/glowworms are
aiming towards the different mountain tops. The effects of choosing either
the cubic or the Gaussian kernel can be seen in Figure 3.9a and Figure 3.9b
respectively. Since several particles will gather near one local extremum,
a simple clustering process that aggregates particles which are very close
to each other (d(p1, p2) < ϸ) is used to find unique representatives for each
extremum. The remaining particles could then be used to create a minimum
spanning tree which in turn can act as a generalized centroid.

Actually the process is very sensitive to the choice of parameters so that
the out-of-the-box solution does not properly work here. Depending on
the dataset itself, the kernel parameter θ (cf. Figure 3.8) has to be chosen
properly. If it is chosen too small, every point will generate a singular
extremum (in the worst case) or only small groups will lead to a density
larger than one. On the other hand the initial number of particles, where

70 CHAPTER 3. GENERALIZED CENTROIDS

a) A dataset with three spherical clusters (left) and a data set with points
scattered along to half circles. The z-axis shows the local density function
when using a cubic kernel.

b) A dataset with three spherical clusters (left) and a data set with points
scattered along to half circles. The z-axis shows the local density function
when using a Gaussian kernel.

Figure 3.9: The choice of the kernel function is not as crucial as it might
seem.

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 71

they are placed, and how far they can see also affects the performance in
various ways. Lastly, the faster α decreases the less chance do particles
have to move towards an actual extremum and they might get stuck in
non-extremal areas of the density function.

For an illustration of the aforementioned effects, see Figure 3.10. Some of
the particles have actually found the extrema, while other particles are still
trapped in areas where the density function is constant zero. All points here
will have the same function value and movement is not guided but totally
random. One has to note, that the initial placement of 100 particles was
done by a best candidate sampling (cf. B.6, [100]), so that the particles are
placed in data space with nearly uniform density (as opposed to uniformly
distributed sampling, which usually generates clumps of particles). The
particles which where too far away from any data point (i. e., those that
are almost guaranteed to get stuck in the constant-zero zone outside of the
clusters’ influence zones) where removed prior to running the optimization.
Still some particles did not reach any extreme and so they have to be filtered
before generating the skeleton (here: a point was filtered if its function value
was less than 10% of the maximal value achieved by any other particle).
Out of the remaining ones, not every particle reached a local extremum, but
rather got stuck in a non-optimal location. Still, the resulting placement of
the particles seems promising enough to pursue this approach.

3.3.3 k-means Skeletonization

Inspired by what some of the internal validation measures consider the
best result (especially the R2 measure, cf. Figures 2.6, 2.7, 2.8, 2.10, and
2.11) one can see that the higher the number of cluster centers in the k-
means algorithm is chosen, the more do the clusters align along the clusters’
flow. If a proper number k to describe a single cluster can be selected, the
connection between the cluster’s centers could yield a suitable generalized
centroid. The idea to describe a single cluster via multiple cluster centers is
not completely new. In e. g. [25] or [93] multi-centers are suggested either
as an alternative to density-based clustering or to cope with the problem of
imbalanced data distributions.

A general problem with k-means is that its objective function only reaches
its true minimum, once k is set to n, i. e., the number of clusters is equal to

72 CHAPTER 3. GENERALIZED CENTROIDS

Figure 3.10: A dataset with three spherical clusters. The z-axis shows the
local density function when using a cubic kernel, red dots indicate particle
positions after the algorithm finished.

Figure 3.11: A dataset with points scattered along two half-circles and its
density function. The red dots mark the particles remaining after filtering.
Two different views of the same data set can be seen. Not all extrema are
occupied by particles and not every particle actually occupies an extremum.

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 73

the number of data points. This makes numerical optimization sub-optimal
for selecting a proper k. When choosing k too small, the approximation
of the resulting cluster centers would be too coarsely spaced within the
cluster, potentially losing important structural details. If k is chosen too
large, however, the cluster centers will have only limited space and—similar
to the pigeon hole principle—more than one cluster center will describe the
same structural detail (cf. Figure 3.12).

k = 3 k = 15 k = 40

Figure 3.12: A simple dataset, where k = 3 (left) cluster centers are not
sufficient to let the minimum spanning tree of the cluster centers describe
the structure appropriately, k = 15 (middle) yields a good structural approx-
imation and k = 40 (right) over-adapts to the cluster structure.

Figure 3.12 shows, that linear structures within a cluster can be approx-
imated quite well, if the right parameter is chosen. Although the underlying
prototype from which the data was generated contains only two line seg-
ments (and three joints), k = 3 is not sufficient to restore the structure. In
fact approximately l/2r joints per line segment are needed, if the segment
has a length of l and a diameter 2r. This can be easily understood by
noting that k-means finds hyper-spherical clusters. Though—in theory—the
cluster centers could be placed arbitrarily close together on the structure’s
generating prototype, local variations of data point placement will shift the
centers from the true structure. This leads to an effect similar to the solution
of the sphere packing problem [69] or covalent bonds between carbon atoms
in organic chemistry [116]. An interesting observation here is, that contrary
to the k = 15 solution, the angles between adjacent edges are normally not
180∘ anymore but rather close to 120∘. This could—however—lead to a way
to decide whether a solution is good enough or bad.

To achieve a mostly linear model for a cluster, angles between adjacent
edges should be close to 180∘ which means that the arithmetic mean of
the angles between two adjacent edges should be small. For sharp edges
however there is the need to allow more acute angles as well. Simply checking

74 CHAPTER 3. GENERALIZED CENTROIDS

whether the average angle is close to 180∘ will therefore not suffice. Still most

angles should be kept close to 180∘, reducing the standard deviation or the
variance of the angles is one of the desired properties of a cluster skeleton
as well. Additionally, the arithmetic mean of the angles in the skeleton can
be severely skewed by single edges with strongly deviating angles. Thus, the
median of the angles will be taken into account as well.

Other objectives that could be considered are the overall distance between
the points in the cluster and the cluster’s skeleton or the number of joints in
the skeleton. This first objective is monotonically decreasing as the number
of skeleton joints (cluster centers) increases. The two are easily just different
formulations of the same objective—but with opposite signs. If the number
of joints is increased, more edges will be present in the cluster skeleton and
with more edges, the sum of distances between points and edges decreases
(as in the standard k-means algorithm). While both the sum of distances
(better fit) and the number of joints (simpler model) should be minimized,
this conflict seems to be unsolvable for such directly related objectives. Due
to this only the mean, median, and the standard deviation (or variance) will
be considered at this time. This turns the choice of the proper, best solution
into a multi-objective optimization problem (cf. Section 3.3.1).

The complete procedure to obtain a skeleton via the k-means-based
skeletonization can be seen in Algorithm 6 while Figure 3.13, Figure 3.14,
Figure 3.15, and Figure 3.16 show the resulting skeletons for a variety of
different cluster shapes.

3.3.4 Fuzzy-c-Line Segments (FCLS)

A clear extension of the k-means skeletonization approach is loosely based on
the several different fuzzy shell clustering algorithms available, but especially
inspired by the volume prototype clustering introduced in [82]. Volume
prototypes extend the notion of a point prototype, to a hyper-spherical
prototype (in the case of [82] also to ellipsoidal prototypes by adjusting the
space-defining metric accordingly).

The centers used in the fuzzy-c-means algorithm (cf. Section 1.3.2) are
no longer restricted to have zero radius, but instead can grow to include
some points of the cluster. Fuzzy membership is set to 1.0 if and only if a

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 75

Figure 3.13: Skeletons obtained with the k-means skeletonization method.
Top row shows the candidates in objective space, middle rows show the
distribution of objective values per objective and the optimal candidate given
each single objective. Bottom shows the winning candidates when using the
hypervolume indicator or the Pareto tournament to determine a single best
solution respectively.

76 CHAPTER 3. GENERALIZED CENTROIDS

Figure 3.14: Skeletons obtained with the k-means skeletonization method.
Top row shows the candidates in objective space, middle rows show the
distribution of objective values per objective and the optimal candidate given
each single objective. Bottom shows the winning candidates when using the
hypervolume indicator or the Pareto tournament to determine a single best
solution respectively.

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 77

Figure 3.15: Skeletons obtained with the k-means skeletonization method.
Top row shows the candidates in objective space, middle rows show the
distribution of objective values per objective and the optimal candidate given
each single objective. Bottom shows the winning candidates when using the
hypervolume indicator or the Pareto tournament to determine a single best
solution respectively.

78 CHAPTER 3. GENERALIZED CENTROIDS

Figure 3.16: Skeletons obtained with the k-means skeletonization method.
Top row shows the candidates in objective space, middle rows show the
distribution of objective values per objective and the optimal candidate given
each single objective. Bottom shows the winning candidates when using the
hypervolume indicator or the Pareto tournament to determine a single best
solution respectively.

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 79

Algorithm 6: K-Means-based Skeletonization

Require:
𝒳, a set of n data points pi,
𝒯 , a function to choose the optimal solution

1: function angular_information(mst)
2: 𝒜 ← empty list
3: for all adjacent edges e1, e2 in mst do
4: Interpret e1 and e2 as vectors
5: a ← cosine distance between e1 and e2 . dcos(x, y) = 1 − x ·y

|x |·|y|
6: if a > 1 then
7: a ← |a − 2| . a ∈ [0, 1], a is now orientation-independent
8: Append a to 𝒜.

return median(𝒜), mean(𝒜), std(𝒜)

9: function k-means-skeletonization(𝒳, start, end)
10: 𝒜 ← empty list
11: for k ∈ [start, end] do
12: 𝒞 = c1, . . . , ck ← K-means(𝒳, k)
13: mst← MST on the complete graph formed by 𝒞
14: ã, ā, sa ← ANGULAR_INFORMATION(mst)
15: Append (ã, ā, sa , mst) to 𝒜.
16: Let mst* be the MST of the best solution determined by 𝒯 (𝒜).

return mst* . best skeleton

point is contained within the hypersphere (i. e., if its distance to the center is
smaller than or equal to some r). Outside of the sphere the standard fuzzy
membership calculation can be applied.

If prototypes within the fuzzy-c-means algorithm need not be restricted
to points, one could also look for line segments as cluster prototypes as well.
Theoretically the process of finding clusters with line segments works much
like the fuzzy-c-means algorithm with only one change: After the update of
the membership degrees, the lines’ starting and ending points have to be
determined.

To do this a (weighted) principal component analysis can be used. The
first eigenvector obtained this way points into the direction of the largest
variance within each cluster segment and could therefore be used as part of

80 CHAPTER 3. GENERALIZED CENTROIDS

the cluster skeleton if extended from the cluster segment’s center in both
directions. Since the length of each eigenvector corresponds to the variance
in that direction, the vectors should be scaled to represent the standard
deviation rather than the variance. This ensures that the line segments do
not extend into regions outside of the cluster it represents.

The general procedure is given in Algorithm 7

Figure 3.17: Resulting skeletons for the moons data set. Especially the
blue (upper) cluster shows a slight shift towards the cluster’s barycenter
originating from the fuzzy process. ω = 1.05 for the left figure, ω = 3 for the
right figure.

3.3.5 Kohonen Maps & Growing Neural Gas

A completely different approach to the ones previously presented falls into
the class of automatic structure learning algorithms. Self-organizing Maps
(SOMs) or Kohonen Maps [85]) deform a given neural network (the weight
vectors associated with the neurons which represent the mapping location)
so that it represents the topology of the target space. Since the output of a
SOM depends on the initial network that unfolds onto the target space, a
similar form of network will be considered here. This network starts with two
randomly placed neurons and grows along the data: The Growing Neural
Gas (GNG) [63] (cf. Algorithm 8).

This algorithm iteratively changes the size and shape of the initial graph
supplied. Starting from a simple line the error (in form of distance between

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 81

Algorithm 7: Fuzzy-c-Line Segments

Require:
𝒳, a set of n data points xi ,
c, the number of clusters to find,
ω, the fuzzifier

1: function Fuzzy c line Segments(𝒳, c, ω)
2: Initialize cluster prototypes pi as points. . start = end
3: Calculate a c × n distance matrix (dij) between centers and points.
4: Calculate membership degrees (uij) according to Equation 1.3.
5: repeat
6: for all clusters i do . weighted PCA
7: Calculate µi according to Equation 1.4.
8: Subtract µi from each data point . center data
9: W ← ui* · 1c . Turn membership degrees into diagonal matrix

10: A ← 𝒳T
centered ·W · 𝒳centered

11: R ← A
c∑︀

i=1
Wii

. Normalize

12: Calculate largest eigenvalue λ and the its eigenvector e of R.
13: pi ← (µi −

√
λ · e, µi +

√
λ · e) . start , end

14: Calculate a c×n distance matrix (dij) between cluster prototypes
(line segments) and data points.

15: Calculate membership degrees (uij) . Equation 1.3.
16: until convergence

neurons and the data points) for the initial neurons is calculated. For each
training sample the two closest neurons s1, s2 and all the direct neighbors of
s1 are located. All neighbors (in the graph structure) of s1 are moved closer
to the training sample (by a fraction of their respective distance). All edges
starting or ending in s1 increase their age except the edge between s1 and s2

(should it exist). If s1 and s2 were not connected, an edge between these two
is added. The rationale behind this is that neurons that both could be used
to represent a training point should also be connected. If there are edges
that are too old, they are removed from the graph.

Whenever a certain amount of iterations has passed, the neuron n with
the highest accumulated error is located. From all of this neurons neighbors
the one m with the highest error is located as well and a new neuron

82 CHAPTER 3. GENERALIZED CENTROIDS

0.0 0.5 1.0 1.5 2.0

−1.5

−1.0

−0.5

0.0

0.5

−1 0 1 2 3
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−1 0 1 2
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 3.18: Results of the growing neural gas algorithm for some data sets.
The resulting structures resemble the original data quite well although the
density of the skeletons’ nodes is unevenly distributed across the structure.

is inserted in the middle of n and m. After that, all accumulated errors
are decreased and the procedure starts from the beginning. After some
convergence criterion is met, the algorithm terminates and the final graph
structure is returned.

Because randomly selected neurons move towards their neighbors, they
tend to end in areas of high density. New neurons are inserted where the
current graph structure does not represent the underlying data structure
very well. Removing too old edges happens where the two connected nodes
are no longer the two closest neighbors of a data point and eases the graph
structure. The algorithms adaptability to local changes in the data density
actually also allows it to find structure in non-static data.

Figure 3.18 shows the result of the skeletonization process based on
the neural gas algorithm. The structures are well-preserved although the
GNG’s neurons are unevenly distributed across the complete structure. The
parameters used here are the default parameters suggested in [63].

3.3.6 Summary

In this section several different ways of obtaining a cluster skeleton for a
cluster have been described and explained. The methods originate from
different areas and are partially inspired by the skeletonization methods
known from image recognition.

The evolutionary approach for curve approximation was inspired by DCE
and approximates a b-spline to the dataset. However, it is rather slow and

3.3. CLUSTER SKELETONS IN HIGHER DIMENSIONS 83

could therefore not be used for the final validation. Due to the long computing
time too few generations could be iterated and this—of course—reduces the
quality of the results.

The GWSO mimics the ridge detection of the distance transformation
approaches by using a multi-modal swarm optimization. The choice of the
correct kernel and its parameters for density optimization and—in conse-
quence thereof—the proper convergence of this method make it difficult to
use it in a parameter-free setting.

The k-means-based skeletonization finds cluster skeletons by using
multi-objective optimization on small set of objectives that are geometrically
motivated for cluster skeletons. It can be parallelized well and requires no
additional parameters for finding well-fitting skeletons. The process itself
tests several clusterings of a single cluster and can therefor be seen as an
attempt to learn a sparser representation (or some kine of core set) of the
cluster. A Minimum Spanning Tree on the cluster centers is then used as
the cluster skeleton

The Fuzzy-c-Line Segments works in a similar fashion but uses line
segments as cluster prototypes. Those can represent linear segments within a
cluster already better than the centers used in the k-means-based approach.
Due to it being a fuzzy clustering algorithm it is prone to suffering from the
curse of dimensionality.

The Growing Neural Gas automatically learns the structure of the cluster
by placing neurons inside the data. The update process is very similar
to SOMs but with the benefit that no initial network structure has to be
supplied. Instead the network structure is learned during the process.

With the results from Section 3.3 Q2 can be answered: The medial axis
itself cannot be extended to higher dimensions easily or with the needed
efficiency. However, approximations of the medial axis can be found in
several different ways.

In the next chapter these methods will be evaluated and analyze which
one should be used for the validation of density-based clustering.

84 CHAPTER 3. GENERALIZED CENTROIDS

3.4 Alternative Distance Calculation and Modified

Fuzzy Membership Calculation

The motivation behind finding the cluster skeletons was—in the first place— to
enable the centroids-based validation measures for the use-case of density-
based clustering. Equation 2.6 or Equation 2.20, for example, use the
distance between the cluster center µ and each individual data point xi to
calculate their scores. Equation 1.3 uses the distance to the clusters’ centers
to calculate the fuzzy membership.

3.4.1 Alternative Distance Calculation

Since the generalized centroids or cluster skeletons are no longer simple
points from the same space as the data points but more complex structures,
using the simple euclidean distance will not suffice anymore. Instead one
has to use the distance between each data point individually and the edges
that make up the skeleton.

Definition 3.9 (Distance between a point and a cluster skeleton)

The distance between a point x and a cluster skeleton 𝒮𝒞 = {e1, . . . , en}

is the smallest distance between x any edge contained in 𝒮𝒞. Formally
the distance is defined as

d(x,𝒮𝒞) = min
e∈𝒮𝒞

{︂
d(x, e)

}︂
.

The process of finding the nearest edge to which the actual distance should
be calculated could be sped up by using the Voronoi diagram of the skeleton
(i. e., its edges). By finding the Voronoi cell one point belongs to the cor-
responding edge could be easily found. However, calculating the Voronoi
diagram for points is already in 𝒪

(︁
n log n + n⌈d/2⌉

)︁
and thus infeasible for

high-dimensional spaces. Instead one has to fall back to the brute force
solution for now.

The distance between a point and an edge (as part of a straight line can
be easily computed by projecting the point x onto the line e defined by its
start point v and end point w. Imagining that the edge e extends in both
directions infinitely (i. e., e is the supporting vector of a line), then this line

3.4. ALTERNATIVE CALCULATIONS 85

Figure 3.19: Illustration of the distance calculation for points and skeletons.
For each point (blue) the corresponding shortest vector is drawn as a dotted
line and the closest point on either skeleton is marked in green.

can be described parametrically as l(t) = v+ t · (w−v),∀t ∈ R. The orthogonal
projection of x onto l is given by t = ((x−v)·(w−v))

|w−v|2 . Should t < (0, 1) ⊂ R hold
(i. e., the foot point does not lie on the line segment), then the shortest
distance between x and e is the distance from x to v (if t ≤ 0) or to w (if t ≥ 1).
Otherwise the shortest distance between x and e is d(x, l(t)). Please note
that this projection is independent of the dimensionality of the underlying
vector space and this the end points defining the edge. It can therefor
be used to calculate the distance between points and cluster skeleton in
arbitrary dimensionality.

This definition of distance between a point and a cluster’s skeleton can
replace the distance d(x, µ) between a point and a cluster’s centroid in
(almost) all cluster validation measures.

Some validation measures also require the distance between two centroids
(cf. Equation 2.15, the Calinski-Harabasz Index (CH) on Page 33, or the

86 CHAPTER 3. GENERALIZED CENTROIDS

Xie-Beni Index (XB) on Page 34). The distance between two skeletons can be
calculated with a rather simple procedure:
Definition 3.10 (Distance between two cluster skeletons)

The distance between a two cluster skeletons (or inter-cluster distance)
𝒮1
𝒞

and 𝒮2
𝒞′

is given by the smallest distance between any pair of edges
(e1, e2) ∈ 𝒮1

𝒞
× 𝒮2

𝒞′
. Formally the distance between two cluster skeletons

is defined as

d(𝒮1
𝒞,𝒮

2
𝒞′) = min

e1∈𝒮
1
𝒞

{︃
min

e2∈𝒮
2
𝒞′

{︃
d(e1, e2)

}︃}︃
,

where each d(e1, e2) is calculated according to Algorithm 9.

Algorithm 9 [52] describes how the distance between two line segments
in arbitrary dimensionality can be calculated. The algorithm simultaneously
find the foot point on both line segments (similar to the point-to-line-segment
distance described earlier in this section) and then calculates the euclidean
distance between these two as the (shortest) distance between the two line
segments.

The distance presented in Definition 3.10 is conceptually completely
different from the modified Feéchet distance for trees presented in Defi-
nition 3.8. While the latter computes the similarity between to complete
skeletons (or trees) d(𝒮1

𝒞
,𝒮2
𝒞′

) computes the shortest distance between any
two points that are part of the skeleton.

3.4. ALTERNATIVE CALCULATIONS 87

Algorithm 8: Growing Neural Gas

Require:
𝒳, a set of n data points x,
i, maximum number of iterations,
eb, learning rate for best neurons,
en, learning rate for neighboring neurons,
λ, an iterator step-length,
a, local decay rate,
d, global decay rate

1: function GNG(𝒳, i, eb, en, λ, a, d)
2: repeat
3: for all x in random order do
4: s1, s2 ← two closest neurons to x
5: for all edges e connected to s1 do
6: e.age ← e.age + 1 . edge has been used, it grows older
7: s1.error ← s1.error + d(s1, x)
8: v ← x − s1
9: s1 ← s1 + eb · v

10: for all neighbors sn of s1 do
11: v ← x − sn

12: sn ← sn + en · v

13: if ∃e = (s1, s2) ∈ E then
14: e.age ← 0
15: else
16: E ← E ∪ {e}

17: for all edges e ∈ E do
18: if e.age > max − age then
19: Remove e from E
20: if Any neuron n has no edge anymore then
21: remove n from gas
22: if number of iteration mod λ � 0 then
23: q ← argmaxn n.error
24: f ← argmaxm∈neighbors(n) m.error
25: insert new neuron n halfway between q and f
26: connect n with q and f
27: remove (q, f) from E
28: q.error ← q.error · a
29: f.error ← q.error · a
30: n.error ← q.error

31: for all neurons n do
32: n.error ← n.error · d
33: until required number of iterations i

88 CHAPTER 3. GENERALIZED CENTROIDS

Algorithm 9: Segment-Segment-Distance

Require:
e1 = (p1, q1), e2 = (p2, q2), edges defined by start and end points pi , qi

1: function SSD(p1, q1, p2, q2)
2: u ← q1 − p1
3: v ← q2 − p2
4: w ← p1 − p2
5: a, b, c, d, e ← u · v, u · v, v · v, u ·w, v ·w
6: D ← ac − b2

7: sc, sN , sD ← D
8: tc, tN , tD ← D
9: if D < ε then . Lines are almost parallel

10: sN , sD, tN , tD ← 0.0, 1.0, e, c
11: else . Assume infinite lines and get closest point
12: sN , tN ← be − cd, ae − bd
13: if sN < 0.0 then
14: sN , tN , tD ← 0.0, e, c
15: else if sN > sD then
16: sN , tN , tD ← sD, e + b, c

17: if tN < 0.0 then . Adjust line parameters to cope for non-infiniteness
18: tN ← 0.0
19: if d > 0.0 then
20: sN ← 0.0
21: else if d < a then
22: sN ← sD

23: else
24: sN , sD ← −d, a

25: else if tN > tD then
26: tN ← tD

27: if b − d < 0.0 then
28: sN ← 0.0
29: else if b − d > a then
30: sN ← sD

31: else
32: sN , sD ← b − d, a

33: if |sN | < ε then
34: sc ← 0.0
35: else
36: sc ← sN/sD

37: if |tN | < ε then
38: tc ← 0.0
39: else
40: tc ← tN/tD

41: dP ← w + (sc · u) − (tc · v) . shortest vector between line segments
42: return ‖dP‖ . Length of shortest vector

3.4. ALTERNATIVE CALCULATIONS 89

3.4.2 Density-based Fuzzy Membership

With the alternative in calculating the distance between a cluster skeleton (in
lieu of the center point) and the cluster’s points the same term can be replaced
within the calculation of fuzzy membership degrees (see Equation 1.3). The
resulting fuzzy partition will seem much more natural (given the arbitrary
cluster shapes usually encountered in density-based clustering) than those
obtained ordinarily. An exemplary fuzzy partitioning for two clusters is
visualized in Figure 3.20; one for three clusters in Figure 3.22. The color
encoding on the picture shows the degree of membership to either of the two
clusters. The whiter the color is the more ambiguous is the membership
assignment (pure white meaning that a point lies directly between two
skeletons, i. e., d

(︀
x,𝒮𝒞1

)︀
= d

(︀
x,𝒮𝒞2

)︀
and thus µ(x) = (0.5, 0.5)T). Once

compared with Figure 3.21 it becomes obvious, that the partitioning obtained
with respect to the cluster skeleton resembles the original data better than
the centroid-based version.

Figure 3.20: halfcircles dataset with n = 1000 and σ = 0.05. The
resulting fuzzy partitioning is obtained with ω = 2 and with respect to the
clusters’ skeletons.

90 CHAPTER 3. GENERALIZED CENTROIDS

Figure 3.21: halfcircles dataset with n = 1000 and σ = 0.05. The
resulting fuzzy partitioning is obtained with ω = 2 and with respect to the
clusters’ center points.

3.4. ALTERNATIVE CALCULATIONS 91

Figure 3.22: spirals dataset with n = 624 and σ = 0.25. The resulting
fuzzy partitioning is obtained with ω = 2 and with respect to the clusters’
skeletons. The purple contour only encodes the membership to the closest
cluster.

C
h

a
p

t
e

r

4
Validation & Experiments

Within this chapter the previously described methods that can be used to ob-
tain a cluster skeleton in any arbitrary dimension are validated against some
useful and desired properties. Especially the results for high dimensional
data sets are interesting, since no other skeletonization method is supposed
to work on more than three dimensions. For this several different clusters
with known and controllable characteristics were generated. Using the
Modified Fréchet Distance derived in Section 3.1.2 the produced skeletons
can be compared against the known ground truth. After this one method
will be chosen for the next part of the experiments.

In the second part of this chapter the chosen method will be used to auto-
matically detect proper parameters for DBSCAN. By using a large number of
datasets different labelings can be obtained for DBSCAN (parameterized with
the help of the chosen skeletonization method) and k-means as a easy-to-
parameterize competitor. Each resulting labeling is then compared against
the ground truth (known from the dataset generation) using an internal
cluster validation measure. Both methods can then be compared with each
other and it can be seen which produces better results. Without the use of
such a ground truth-based validation it would be hard to assess the true
quality of the clusterings obtained. Even the direct comparison of labelings
of two different algorithms could only give a relative view on the result, e. g.
result A is similar to result B, but one still would not know whether A or B
are good or bad results.

93

94 CHAPTER 4. VALIDATION & EXPERIMENTS

4.1 Skeletonization Methods

Almost all of the methods presented in Section 3.3 are capable of generat-
ing a generalized centroid by creating a tree-like structure whose tubular
neighborhood contains all data points of the cluster. Some methods may—
however—be more suitable than others, either by speed, similarity to the
original structure, or the capability of detecting branching cluster structures.

4.1.1 Branching

Since all methods except the evolutionary algorithm find distinguished points
within the cluster structure (either as modal points in the density function or
as centroids of another clustering algorithm) and build the cluster skeleton
from the edges of a minimum spanning tree, this attribute can be obtained
very easily. The evolutionary algorithm directly computes a set of candidate
B-splines. These are smooth curves which are able to represent simple
shapes like a circle but as soon as branching has to be taken into account,
B-Splines cannot be used to properly describe the structure. Since this
limits the usability of the method quite a lot, it will be omitted from future
considerations.

4.1.2 Speed

The runtime of the algorithm has been tested on a single type of dataset. For
this dataset 100 different instantiations were created with all parameters
equal. The chosen dataset is the chishape because it needs a branching
model to be properly captured. Unlike the eightshape dataset this
dataset does not exhibit any ambiguity when it comes to finding the skeleton
since it does not contain any closed circles.

Each instantiation contained n = 2500 points. The runtimes were
measured on a Lenovo Y50-70 notebook (Intel(R) Core(TM) i7-4720HQ CPU,
2.6 GHz) with 16GB RAM. All implementation were done by myself and
in Python 2.7. To get an estimate of the average runtime 100 trials were
performed for each algorithm.

The fastest algorithm was the FCLS algorithm with an average runtime of
5.3s ± 1.5s. Approximately twice as much time was needed by the k-means

4.1. SKELETONIZATION METHODS 95

skeletonization (12.0s ± 3.5s). The GNG algorithm took again almost three
times this time (34.3s ± 12.2s), while the GWSO algorithm took almost
three minutes to skeletonize a single dataset (160.6s ± 191.0s). For the
last algorithms only 9 runs were performed since the runtime is already
at least one order of magnitude longer than that of the k-means-based
skeletonization or the FCLS.

Since validation usually occurs more than once per data set the high
runtime makes the GWSO infeasible for cluster validation at the moment.
The main problem lies in the repeated evaluation of the kernel function which
take an enormous aount of time. Even the faster to compute approximations
did not significantly reduce this problem. with more and faster CPUs the
GWSO might become a suitable candidate again.

4.1.3 Accuracy

The accuracy of the resulting cluster skeleton is measured by its distance
to the original model from which the data set had been generated. For this
the Discrete Fréchet Distance for Trees is used (see Definition 3.8. The
results can be seen in the following figures. In addition to the remaining
three methods (k-means-based skeletonization, fuzzy-c-line segments-based
skeletonization, growing neural gas-based skeletonization) the figures also
show a the distance distribution for a purely random skeleton. For this
between 11 and 36 points from within the bounding box of the original
data set were sampled. A minimum spanning tree on these is constructed
and used as a reference skeleton. Obviously this will not yield good results
(although the smaller ones might yield good results since the Discrete Fréchet
Distance for Trees uses the minimum over all infima that the discrete Fréchet
distance yields). However, one can use this distribution to see how much of
a methods quality might be attributed to chance.

The figures show that the k-means-based skeletonization yields the
smallest error, followed closely by the growing neural gas-based method
and the fuzzy-c-line-segments-based method. The k-means-based method
usually performs better both in terms of distance and variation. Especially
if only very few data points are available, this method performs much better
than the other two.

96 CHAPTER 4. VALIDATION & EXPERIMENTS

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

0.0

0.2

0.4

0.6

0.8

1.0
Fuzzy-C-Line-Segments

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

Growing Neural Gas

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

0.0

0.2

0.4

0.6

0.8

1.0
k-means

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

random

χ-Shape

Figure 4.1: Distribution of distances between cluster skeletons and original
cluster model as measured by the Discrete Fréchet Distance for Trees.
(chishape ,n, σ)

100
0.050

100
0.025

2500
0.100

1000
0.050

1000
0.025

1000
0.100

0.0

0.2

0.4

0.6

0.8

1.0
Fuzzy-C-Line-Segments

100
0.050

100
0.025

2500
0.100

1000
0.050

1000
0.025

1000
0.100

Growing Neural Gas

100
0.010

100
0.050

100
0.025

2500
0.100

1000
0.050

1000
0.025

1000
0.100

0.0

0.2

0.4

0.6

0.8

1.0
k-means

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

random

Eightshape

Figure 4.2: Distribution of distances between cluster skeletons and original
cluster model as measured by the Discrete Fréchet Distance for Trees.
(figureeight ,n, σ)

4.1. SKELETONIZATION METHODS 97

2500
0.100

1000
0.050

1000
0.025

1000
0.100

0.0

0.2

0.4

0.6

0.8

1.0
Fuzzy-C-Line-Segments

2500
0.100

1000
0.050

1000
0.025

1000
0.100

Growing Neural Gas

2500
0.100

1000
0.050

1000
0.025

1000
0.100

0.0

0.2

0.4

0.6

0.8

1.0
k-means

2500
0.100

1000
0.050

1000
0.025

1000
0.100

random

Eightshape with different densities

Figure 4.3: Distribution of distances between cluster skeletons and original
cluster model as measured by the Discrete Fréchet Distance for Trees.
(figureeight ,n, σ)

100
0.010

2000
0.100

1000
0.050

1000
0.025

0.0

0.2

0.4

0.6

0.8

1.0
Fuzzy-C-Line-Segments

100
0.010

2000
0.100

1000
0.050

1000
0.025

Growing Neural Gas

100
0.010

2000
0.100

1000
0.050

1000
0.025

0.0

0.2

0.4

0.6

0.8

1.0
k-means

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

random

Skeleton

Figure 4.4: Distribution of distances between cluster skeletons and original
cluster model as measured by the Discrete Fréchet Distance for Trees.
(skeleton ,n, σ)

98 CHAPTER 4. VALIDATION & EXPERIMENTS

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

0.0

0.2

0.4

0.6

0.8

1.0
Fuzzy-C-Line-Segments

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

Growing Neural Gas

100
0.010

2500
0.100

1000
0.010

1000
0.050

1000
0.025

1000
0.100

0.0

0.2

0.4

0.6

0.8

1.0
k-means

100
0.010

2500
0.100

1000
0.050

1000
0.025

1000
0.100

random

Skeleton 3D

Figure 4.5: Distribution of distances between cluster skeletons and original
cluster model as measured by the Discrete Fréchet Distance for Trees.
(skeleton3d ,n, σ)

4.1.4 Summary

From an evaluation point-of-view the solution based in the evolutionary
algorithms and B-splines was the least convincing approach. Neither was
the accuracy nor the computational speed satisfying. The skeletons found
lack the ability to find anything but single paths. The lack in accuracy—at
least for the tested datasets—can certainly be attributed to the small number
of generations that were used during testing. This, however, was necessary
due to the overall runtime of the algorithm. Better implementations on faster
computers may make this method an interesting candidate again, since the
overall procedure is certainly capable of representing non-branching clusters
in an appropriate way.

The same thing has to be said about the GWSO approach. Though it
allows branching skeletons (and not only simple paths) it can be used in
a wider range of scenarios. Yet, the repeated calculations of the kernel
functions make this method rather slow. Additionally, one can see from
the ground truth comparison, that the resulting skeletons do not have the
same level of accuracy as the k-means-based skeletonization, the FCLS, or
the GNG. This might also be attributed to the kernel parameters chosen

4.2. AUTOMATIC SELECTION OF CLUSTER PARAMETERS 99

sub-optimally. The cumulated density function across which the particles
move might not suitable to properly detect the cluster skeleton. However,
more general problems arise in cases where the density varies a lot inside
a cluster (e. g. in the chishape dataset where the two semi-circles meet).
The multimodal approach might favor placing particles in this high density
regions and too few inside the arms of the shape). So mainly due to its
slowness—but not only—the GWSO approach will not be used any further.

The GNG algorithm achieves one of the highest accuracies of the selected
algorithms, sometimes even surpassing the k-means-based skeletonization.
Unfortunately it is a rather slow algorithm that furthermore uses a lot of
hyper-parameters that can be tuned. The default parameters presented
in [63] already yield results that were so good, that no hyper-parameter
tuning was performed for this evaluation.

The fastest algorithm out of the five presented methods was the FCLS.
Its only drawback was the inferior accuracy when compared to the k-means-
based skeletonization or the Growing Neural Gas (GNG). The lack in accuracy
can be traced back to what has already been observed in [129, 130]. The
fuzzy centers tend to move towards the barycenter of the dataset. This effect
is possibly strengthened by the use of a weighted PCA.

The best trade-off between the desired properties for the method is given
by the k-means-based skeletonization. It yields the highest accuracy among
all tested methods while not taking too much time for the skeletonization
process. With a small set of objectives the selection process works towards
mostly straight skeletons that can have the necessary angles to capture
more complex structures. Furthermore it is relatively easy to incorporate
prior knowledge about the kinds of clusters, which are expected, into the
model selection process.

Due to this, the k-means-based skeletonization will be used for the rest
of this thesis as the primary skeletonization procedure.

4.2 Automatic Selection of Cluster Parameters

From the previous sections it is now known that in terms of speed and
accuracy the k-means-based skeletonization yields the most desirable com-
bination of both criteria. Although not the fastest it outperforms every other

100 CHAPTER 4. VALIDATION & EXPERIMENTS

method presented in achieved accuracy. For the rest of this thesis this
method for computing cluster skeletons will be used to calculate the different
validation scores. In Section 3.4 it has been shown how the distance between
a point and a cluster skeleton as well as the distance between two skeletons
can be computed with relative ease. In Section 2.1.2 several different crisp
and fuzzy clustering validation measures were introduced. In the following it
will be evaluated how the skeletonization along with an automated parameter
search for DBSCAN finds clusters.

4.2.1 Experimental Setup

To generate more challenging data sets to perform the evaluation on a com-
bination of all aforementioned cluster patterns will be used. The individual
clusters will be rotated, translated and scaled. An evaluation data set
contains a random number of clusters chosen from the different patterns
explained in Appendix A, randomly rotated around its individual center.
Each of the clusters can be differently scaled and is then randomly placed
inside a hypercube. In addition to that random, uniform noise is added
throughout this hypercube (potentially lying next to or within a cluster).
Figure 4.6 shows an exemplary data set that is used during the validation.

Please note that du to the random placement, and scaling clusters may
actually overlap. They then become indistinguishable to a density-based
clustering algorithm. Figure 4.7 shows such a case. In terms of density-
based clustering the brown and the red cluster near the center are actually
the same cluster and must not be separated. With increasing number of
clusters, the likelihood of two clusters joining also increases-

The clustering itself is performed by a modified version of the algorithm
presented in [47]. Instead of testing all possible values for ε a smaller sample
of parameters is selected by performing a k-means clustering on the set of
entries of the distance matrix (i. e., only distinct values will be clustered).
This also allows a nearly constant runtime since not all 𝒪(n2) possible values
have to be tested. This is important, because a single skeletonization of a
single cluster can already take up to two minutes if the cluster is sufficiently
large. For performance reasons the range for minPts has been limited as
well to [5, 15] ⊂ N.

4.2. AUTOMATIC SELECTION OF CLUSTER PARAMETERS 101

Figure 4.6: Example data set for final evaluation (left) and the resulting
labeling (right).

Figure 4.7: Example data set for final evaluation (left) and the resulting
labeling (right). In this case the random placement of the cluster centers led
to an overlap. Thus, the algorithm cannot separate the two central clusters
(red and brown) properly.

4.2.2 Centroid-based Measures with Generalized Centroids

Q3 (Section 1.4) already mentioned that noise can actually become a
problem for the validation process. In classical, centroid-based settings
noise is simply assigned to its nearest cluster prototype. It then is not treated
as noise anymore but just like any other point, possibly deteriorating the
clusters’ quality. Within a validation measure those noise points influence
the calculation of the score since they are not recognizable anymore. When
using a clustering algorithm that distinguishes noise from cluster points
applying the skeletonization may lead to two different outcomes:

102 CHAPTER 4. VALIDATION & EXPERIMENTS

1. The algorithm chooses parameters in such a way that only a few,
extremely dense points are assigned to clusters and the majority of
points are assigned to the noise cluster. Since the calculation of the
validation scores does not include term that cope with noise, they
do not contribute the the overall score. The score would then be
misleading in different ways. First, it would seem as if the score
had been calculated for a much smaller data set. Direct comparison
is then not feasible since the raw numbers do not say a lot about
the true quality of a clustering (e. g. think about the SSE: Selecting
those points closest to a cluster center and ignoring the remaining
points is guaranteed to lower the score for this measure). Second, a
clustering might appear good (or even yield the best value possible for
the respective score), simply because everything that would lead to
deduction has been filtered out by the clustering process (although it
is still there, of course).

2. The algorithm might choose parameters in such a way that all points
are placed into the same cluster. In the case of the fuzzy validation
measure Partition Entropy and it is fairly easy to see why this is could
be considered an optimal result. The Partition Entropy is maximized
for a crisp partitioning (i. e., all memberships are either 0 or 1). If only
a single cluster is present in the membership matrix, points spend
all their potential membership (which has to sum up to 1.0 on that
single cluster. The entropy measure is therefore maximized and the
parameter selection procedure would have to choose this clustering as
the optimal one.

4.2.3 Algorithmic Improvements

As shown points belonging to two different clusters may be placed into the
same cluster if the edge connecting the two individual skeletons is not too
long. The reason for this is that the majority of points will still have the
same distance to its representative (or rather the edge within the cluster
skeleton it is closest to). This distance does not change when another edge
is added somewhere else in the skeleton or two skeletons are joined this way.
For the membership (cf. Equation 1.3) this means that the enumerator stays

4.3. RESULTS 103

constant for most points while the denominator has one summand less for
each point. Overall the membership to the single cluster will be slightly
higher (depending on the other clusters) when fewer clusters are present.
Since the fuzzy partition based validation measures prefer clusterings that
have membership values closer to 0.0 or 1.0 such a clustering will be
considered favorable.

For this reason an additional filtering step was added to the algorithm
that will take care of such cases. When analyzing where points are projected
onto an edge (for distance calculation, cf. Figure 3.19), one can notice that
points are nearly uniformly distributed along those edges. However, for
edges that connect two different clusters one can see that they only have foot
points close to either end point and nearly no foot points in between. This
observation gives a simple criterion when a skeleton should be discarded.

4.3 Results

To answer the final research question Q4 several different instances of
the validation data sets have been generated. To assess the raw quality of
the results the Adjusted Rand Index (cf. Section 2.1.1) was used. It was
calculated against the ground truth known from the data generation process.
This procedure of validating an algorithm against a ground truth using
an external validation measure has already been proposed in [123] and
successfully employed in [124]. On the first glance one can see that not all
clusterings perfectly resemble the ground truth but that instead there are
either smaller or bigger deviations.

Having a closer look at those instances one can see that the small
deviations originate from two different sources:

1. The process of generating uniform background noise creates sometimes
small clusters of only a few points which are then recognized by the
clustering algorithm as dense region within an otherwise sparse region.

2. Sometimes noise points are simply placed within the clusters them-
selves (or nearby). Although they are technically noise they are also
indistinguishable from the cluster (e. g. the same would happen, if two

104 CHAPTER 4. VALIDATION & EXPERIMENTS

Figure 4.8: Two clusters joined by an unnecessary edge. The upper left
violin plot shows a typical distribution for an intra-cluster edge (marked in
green). The lower right violin plot shows a typical distribution of foot points
for an edge (marked in red), that wrongfully connects two clusters

blob-like clusters were created with their centers very close to each
other. These two clusters would appear as a single large and dense
cluster, cf. Appendix B.1)

These errors are not rectifiable and have to be tolerated. Similar situations
may occur in prototype-based clustering when a single outlier (not noise) for
a cluster happens to be closer to another cluster prototype than its original.
From a generative point of view the point belongs to the first cluster, from
an uninformed, analytical point of view there would be no justification to
perform such an assignment.

4.3. RESULTS 105

A similar problem occurs due to the random placement of the clusters.
Since the data set generation process does not take the size of the cluster
patterns into account it may happen, that the final cluster structures
overlaps (see e. g. Figure 4.7). In such cases the algorithm has to conclude
that the structures form a single cluster. But again, from a generative point
of view the result would be plainly wrong and thus the external validation
yields a suboptimal result.

Two clusters may also be joined if they are too close together or some
noise point fall into the immediate vicinity of the connecting edge. This
distorts the distribution of foot points that the closest point of an edge are
projected onto. The usual distributions for a good and a bad edge in the
skeleton of two wrongfully joined clusters can be seen in Figure 4.8.

The results for different sets of validation data can be found in Figure 4.9.
The scores are overall very good. Variations around 1.0 can be explained by
some noise points being added to the cluster if they are generated too close.
Noise that accidentally forms clusters on its own also deteriorates the score.
Table 4.1 shows the parameters used for data set generation.

The seemingly bad results around 0.75 and 0.5 can be explained by the
phenomenon that can also be seen in Figure 4.8. Sometimes two clusters
become joined by an edge and that edge cannot be removed due to noise
points being projected onto the center of that edge. Even more common is
the case that two or more clusters are joined because they are actually truly
overlapping and have to be counted as a single cluster w.r.t. density-based
clustering.

The same experiments have been performed for medium- and high-
dimensional datasets, as well. The results can be seen in Figure 4.10 and
Figure 4.11. It might seem surprising that the results actually seem to look
better than in two dimensions, but in higher-dimensional spaces we have
two adversing effects on cluster quality. First, the curse of dimensionality
leads to a vanishing relative difference in distances. Essentially at some
dimensionality points will always look like they are placed on the surface
of a hyper sphere. On the other hand there is much more space to place
clusters. Since density-based looks rather at the absolute differences of
the distances than the relative difference, the adverse effect of the curse of
dimensionality can be better coped with.

106 CHAPTER 4. VALIDATION & EXPERIMENTS

Partition Entropy
0.00

0.25

0.50

0.75

1.00

Partition Coefficient
0.00

0.25

0.50

0.75

1.00

Dunn's Index
0.00

0.25

0.50

0.75

1.00

Figure 4.9: Violinplots show the the aggregated ARI scores for PE, PC, and
DI. The parameters where chosen randomly and the range can be found in
Table 4.1.

Partition Entropy
0.00

0.25

0.50

0.75

1.00

Partition Coefficient
0.00

0.25

0.50

0.75

1.00

Figure 4.10: Violinplots show the the aggregated ARI scores for PE, and
PE. The parameters where chosen randomly and the range can be found in
Table 4.1 The number of features was set to 10.

Partition Coefficient
0.00

0.25

0.50

0.75

1.00

Figure 4.11: Violinplots show the the aggregated ARI scores for PE, and
PE. The parameters where chosen randomly and the range can be found in
Table 4.1 The number of features was set to 100.

4.3. RESULTS 107

Table 4.1: Parameters for generating Validation data sets.

Parameter Range
samples 2000–5000
clusters 3–5
noisiness of clusters 0.01–0.1
additional uniform noise 10%
rotation yes (0∘–360∘)

Figure 4.12: Two three-dimensional datasets clustered. Left: Spiral cluster
with no additional noise. Right: Skeleton clusters with additional noise.

All of the (numerically) imperfect result can be attributed to one of the
three above mentioned reasons. Since the scores from the external validation
reflect the quality of the result in a less than optimal way,

4.3.1 Comparison with Other Methods

To reflect the superiority of the skeletonization-based cluster validation in
the context of density-based clustering, the results were evaluated against
other algorithms and some exemplary trials were run against the Clustering
Validation Index based on Nearest Neighbors (CVNN) cluster validation
method proposed in [94] (cf. Section 2.1.3).

First, all data sets used in the previous section were also clustered by
k-means and a selection process as described in e. g. Figure 2.6 has been
employed. The clusters used in this setting do not match the implicit cluster
definition used by k-means. Additionally there is noise present, which

108 CHAPTER 4. VALIDATION & EXPERIMENTS

deteriorates the performance of k-means. So it might be expected, that the
results will be slightly worse. However, the strict partitioning scheme should
still be able to place clusters in separate Voronoi cells even if the clusters
are overlapping (i. e., all cases were DBSCAN fails). The competitive results
are shown in Figure 4.14. As one can see, the skeleton-based validation
yields better results for most tested instances.

As for the other density-based validation measure, the same parameter
search was used. Out of all possible, unique entries in the distance matrix of
the used datasets a smaller sample was generated by using k-means. Using
the CVNN the best parameter combination was chosen and compared to the
same parameter set chosen by the skeletonization-based validation. The
result can be seen in Figure 4.13. In case of the spiral clusters too many
clusters are found, while for the skeleton clusters the two clusters which are
in three-dimensional relatively close together are joined by the parameter
search. In both cases an optimal clustering could have been found since the
necessary parameters where well within the range of tested parameters. The
problem CVNN might have is that it requires an additional parameter (the
number of representatives) as its parameter (which was chosen as k = 15 in
both cases). This might be a suboptimal value. Nonetheless, introducing a
user-specifiable parameter into the validation process removes objectivity
from the validation process.

Figure 4.13: First two principal components plotted with resulting cluster
structure when using CVNN to guide the parameter search.

4.3. RESULTS 109

0.00 0.25 0.50 0.75 1.00
K-means Scores

0.00

0.25

0.50

0.75

1.00

AO
D

BS
CA

N
Sc

or
es

Partition Entropy

0.00 0.25 0.50 0.75 1.00
K-means Scores

0.00

0.25

0.50

0.75

1.00

AO
D

BS
CA

N
Sc

or
es

Partition Coefficient

0.00 0.25 0.50 0.75 1.00
K-means Scores

0.00

0.25

0.50

0.75

1.00

AO
D

BS
CA

N
Sc

or
es

Dunn’s Index

Figure 4.14: Results when comparing aoDBSCAN and k-means clustering
using skeletonization-based parameter-selection for aoDBSCAN and choos-
ing the best solution from k = 2, . . . , 20 for k-means. Points above the dotted
line indicate a better clustering result for the skeletonization-based method.

0.00 0.25 0.50 0.75 1.00
K-means Scores (ordered)

0.00

0.25

0.50

0.75

1.00

AO
D

BS
CA

N
Sc

or
es

(o
rd

er
ed

)

Partition Entropy

0.00 0.25 0.50 0.75 1.00
K-means Scores (ordered)

0.00

0.25

0.50

0.75

1.00

AO
D

BS
CA

N
Sc

or
es

(o
rd

er
ed

)
Partition Coefficient

0.00 0.25 0.50 0.75 1.00
K-means Scores (ordered)

0.00

0.25

0.50

0.75

1.00

AO
D

BS
CA

N
Sc

or
es

(o
rd

er
ed

)

Dunn’s Index

Figure 4.15: The same results as in Figure 4.14 but this time the results were
ordered individually per axis. The resulting QQ plot can also be interpreted
as a ROC curve.

Finally, this also answers research question Q4 : Skeletonization-based
validation yields better results than previously used methods.

4.3.2 Example: Biological Image Analysis

In Chapter 1 it was already motivated that especially in cases where the
number of clusters is hard to know a priori density-based clustering can
be one solution. The cell images used in this Section show an unspecified
number of cells. The task is to obtain a reliable count of these cells which is
needed for further analysis.

Since the cells shown in these image are usually circular and of a rather
small diameter this prior knowledge can be exploited within the clustering
process. By limiting the range of possible values ε and minPts can obtain,
the clustering process can be sped up. Additionally, there is no need to
look for cluster skeletons of a very high complexity. Nearly spherical cells
can be described by skeletons with at most four bones or five joints (i. e., a

110 CHAPTER 4. VALIDATION & EXPERIMENTS

star graph with four edges that all meet in one central point). The PC was
used as validation measure. Since the results for the different measures
do not differ that much any other measure could have been used as well.
The data points used as input to the clustering algorithm are those pixels of
the (gray-scale) images that remain after applying Otsu’s method [104] to
determine a gray-level threshhold.

The resulting clustering can be seen in Figure 4.16. Individual clusters
have different colors with border points habing a slightly darker shade of the
same color. It becomes clear that with this method not only the individual
cells can be found but also the cell walls can be made visible by connecting
the border points of each cluster. This information may be further used
to study some individual clusters which are not very circuly, e. g. the two
yellow clusters in the lower center region of the image.

Figure 4.16: Left: Original image. Right: Clusters found by the
skeletonization-based parameter selection.

The same procedure can obviously also performed by a simple k-means
algorithm and the results are shown in Figure 4.17. Here the search space
was limited to 2 ≤ k ≤ 50. It can already be seen that not every validation
measure is suitable for this task, e. g. Calinski-Harabasz Index favors an

4.3. RESULTS 111

equi-proportional partitioning of the dat space. Since the skeletonization
uses fuzzy validation measures, a direct comparison with crisp validation
measures does not yield a lot of information about the possible performance
increase. Thus, Figure 4.19 shows the same process but this time using
the fuzzy c-means algorithm in the background. The resulting clusterings
are clearly worse than those obtained via k-means or the k-means-based
skeletonization. This might be due to the overall high number of cluster in
a relatively small vicinity. This makes a lot of assignment very fuzzy and
less crisp which in return is accordingly penalized by the different fuzzy
validation scores.

112 CHAPTER 4. VALIDATION & EXPERIMENTS

Figure 4.17: Cluster selection process for the first three colon cancer cell
images using k-means. Due to memory limitations only the top-left quarter
of the image (256 × 256px has been used).

4.3. RESULTS 113

Figure 4.18: Cluster selection process for the last three colon cancer cell
images using k-means. Due to memory limitations only the top-left quarter
of the image (256 × 256px has been used).

114 CHAPTER 4. VALIDATION & EXPERIMENTS

Figure 4.19: Cluster selection process for the first three colon cancer cell
images using fuzzy c-means. Due to memory limitations only the top-left
quarter of the image (256 × 256px has been used).

4.3. RESULTS 115

Figure 4.20: Cluster selection process for the first three colon cancer cell
images using fuzzy c-means. Due to memory limitations only the top-left
quarter of the image (256 × 256px has been used).

C
h

a
p

t
e

r

5
Conclusion & Future Work

Within this thesis the problem of validating results from a density-based
clustering algorithm was discussed. As a prime example for such an algo-
rithm the DBSCAN algorithm was used. The problem with existing validation
measures roots in the use of the arithmetic mean as a cluster’s represen-
tative. However, the arithmetic mean is not always a suitable centroid for
clusters that can be found by density-based algorithms.

To overcome this problem cluster skeletons were introduced. How such
a skeleton can be found in two-dimensional space was shown and an
analytical method was discussed. Since most data is not two-dimensional,
different methods of obtaining an approximative solution to this problem
were presented and analyzed. Those methods come from many different
fields within computational intelligence, are motivated by existing algorithms
for skeletonization of discrete or low-dimensional data, and have different
benefits.

The resulting validation showed that an automated parameter selection
process (imitating an exhaustive search) yields very good results when
paired with validation measures that calculate their score based on a fuzzy
partitioning.

5.1 Discussion & Research Questions

To summarize all the result of this thesis w.r.t. to the research questions
initially posed, these will be recapitulated and a short discussion on each
question’s results be given in the following.

117

118 CHAPTER 5. CONCLUSION & FUTURE WORK

Q1 Can the arithmetic mean as a cluster representative be replaced by a

more general structure?

Using the medial axis (and removing undesired parts of it) yields an
object that better resembles a structured cluster. Performing necessary
calculations w.r.t. this medial axis object instead of the arithmetic
mean yields better results as can be seen in Figure 3.20. The resulting
fuzzy partitioning of the space surrounding the two clusters seems
much more intuitive and appropriate than the one resulting from using
the arithmetic mean as centroids (cf. Figure 3.21).

A clear disadvantage here is that in order to calculate the medial axis a
hull of the object has to be present from which the medial axis can be
calculated. Since the convex hull is not suitable for this, an algorithm
that either computes the medial axis of the data points indirectly is
needed or some notion of a concave hull is required. This concave hull
is neither easily nor uniquely defined. With Algorithm 2 however, some
sort of shape descriptor that is suitable for the task at hand has been
presented.

Q2 How can the medial axis be extended onto higher dimensions and how

can such a structure be efficiently calculated?

The medial axis is only defined (as a locally one-dimensional object)
in two-dimensional space. In three-dimensional space the resulting
object would be called medial surface and calculation regarding this
object (or its calculation itself) would become harder. For even higher
dimensions the calculations of such objects becomes infeasibly com-
plex (exponential in the number of dimensions). Though not strictly
required for a generalized centroid, having a local restriction on the
dimensionality eases some of the required calculations and makes the
representation easier.

Throughout Section 3.3 several different methods that find cluster
skeletons have been discussed. The selection of algorithms is not
exhaustive but gives a good overview over different kinds of approaches,
their limitations, and their benefits. With the help of a modified
Fréchet distance, that can be used for tree structures and not only
paths (or curves), the evaluation for a set of different cluster shapes

5.1. DISCUSSION & RESEARCH QUESTIONS 119

became possible. Thus it could be validated how well each methods
fits skeletons to the original model from which the data has been
generated.

A compromise between accuracy and speed had to be made here and
overall the best candidate for further consideration is the k-means-
based skeletonization. This methods yields the best accuracy by only
making slight admissions to speed.

Q3 How can noise points originating from the density-based clustering be

dealt with in validation scores which ignore noise?

Contrary to centroid-based clustering, one always has to consider that
some points will not be assigned to clusters when using density-based
clustering like DBSCAN. The original idea was to use cluster skeletons
instead of the arithmetic mean. In crisp cluster validation this can lead
to the (undesired) effect, that a clustering might assign almost every
point to the noise cluster, and that this clustering will be assessed
as a better result. This happens because noise points are commonly
ignored in centroid-based cluster validation. [102] discusses several
different approaches for handling noise:

1. Noise is assigned to a single cluster

This way the noise cluster could dominate the validation (since
noise should be expected to span the completely data space) and
solution that assign all or most points to the noise cluster will be
deemed better.

2. Noise is assigned to the nearest cluster

This changes the structure of the clusters. The clusters that
were found and the clusters that are validated are not the same
anymore and thus the outcome of the internal cluster validation
measures cannot be predicted.

3. Noise could be assigned to a singleton cluster that is equi-distant

to all points

The choice of the noise distance is crucial for this to lead to good
results. In the best case the validation has a(nother) parameter;
in the worst case the separation of clusters is lost (e. g. if the noise

120 CHAPTER 5. CONCLUSION & FUTURE WORK

cluster is less than ε from two core points of different clusters
it may look like these clusters should have been joined and the
clustering may be assessed as bad).

4. Noise could be completely ignored

Just as the in the second approach this leads to a manipulation
of the dataset such that the clustered and the validated dataset
are not the same anymore. Internal cluster validation measures
may produce results that do not allow to draw conclusions about
the original dataset.

5. Noise could be completely ignored (with penalty)

Adding a penalization to existing validation measures changes
the inherent behavior of the measure. One cannot say anymore
that the measures are identical. Although this is the path chosen
in [102] one cannot say that this is ultimately the optimal way.

All these options contradict the goal of this thesis to make the existing
terms available to density-based clustering and not introduce yet
another validation measure in one way or another.

However, noise points are more gently handled in fuzzy clustering
and the validation of fuzzy clusterings. Especially Partition Entropy
recognizes points that are extreme out- or inliers very well since they
will yield fuzzy memberships close to 1/c (in the case of outliers) or 1/2

(in the case of inliers) and thus generate a lot of entropy. The results
shown in Section 4.2 show that the only deviations from the ground
truth labeling have one of the following reasons: 1. The points that
were labeled incorrectly are actually noise points that were randomly
placed inside or in the vicinity of a cluster. Thus, they cannot be
distinguished from the cluster itself. Or, 2. The clusters were placed
too close to each other. This leads to the situation that the clusters
become density connected (cf. Definition 1.11) and by transitive closure
belong to the same cluster. Points that fulfill the first condition lead to
variance around the ideal scores; points that fulfill the latter lead to
much worse scores (cf. Figure 4.9).

5.1. DISCUSSION & RESEARCH QUESTIONS 121

Q4 Does validation based on cluster skeletons actually lead to better re-

sults?

Cluster skeletons describe and represent a cluster’s structure better
than a single point. This holds true especially if the cluster is not
spherical. The comparison between the two different approaches also
shows that density-based clustering can be led within an automatic
parameter selection process to find results that are better than those
of a similar centroid-based procedure.

However, the way skeletonization represents clusters favors piecewise
tubular clusters (like the skeleton clusters, cf. Appendix B.7). Spherical
clusters or those of wildly varying density cannot be properly repre-
sented. This effect is demonstrated in Figure 5.1. Although a simpler
model would suffice, the algorithm has to choose a more complex
representation. This partially comes from the selected skeletonization
method. Since the optimization process looks at the standard deviation
of the angles between edges, at least three edges have to be present.
Otherwise a proper estimation of either standard deviation or variance
would not be possible (with only two edges one would have only a
single angle and thus no way to properly estimate either value). This
excludes the simplest models.

Yet, by limiting the search space of the automatic parameter search
some form of prior knowledge can be introduced into the skeletoniza-
tion process. The standard skeletonization process described in Sec-
tion 3.3.3 evaluates cluster skeletons that have between 5 and 55
joints in total. If it is known in advance that the data set contains
mostly spherical or simple tubular clusters (without a more complex
structure) the range of skeletons can be easily restricted. The same
holds true for the parameter space of the DBSCAN algorithm (described
in Section 4.2). By limiting the possible range of values for ε and minPts

certain clustering could be excluded from the validation a priori.

Last, if two spherical clusters are (partially) overlapping in their less
dense regions (e. g. two clusters formed by Gaussian distributions),
centroid-based clustering will label the bigger part of the points cor-
rectly. Especially fuzzy clustering allows a fine differentiation in these
cases. Density-based clustering will—however—be forced to join these

122 CHAPTER 5. CONCLUSION & FUTURE WORK

Figure 5.1: On the left an well-skeletonized line of points. On the right an
overfitted skeleton of the same data

two clusters into one cluster if ε is chosen too large or miss many of
the points by labeling them as noise if minPts is chosen too high. For
such scenarios density-based clustering is less suitable in the first
place and skeletonization will not make this better.

5.2 Future Work

The kind of clusters this method is applicable to is limited to tubular clusters,
like blood vessels or streets. Gradual changes in thickness of these tubes
are not handled very well (see Figure 5.1). If one applied a density estimate
along each edge certain kinds of thickness changes might become detectable
and the resulting skeletons may fit the data better.

Another improvement could be done in the way that edges are detected
which connect to otherwise distinct clusters (cf. Section 4.2.3). While effective,
the currently employed method appears a bit crude and a more sophisticated
method might be more suitable. Especially when a single noise point lies
directly at or at least near the center of an edge, it would currently be hard to
detect this edge. Thus, a suboptimal skeleton would remain in the validation
process and distort the result.

This edge exclusion procedure could—on the other hand— potentially
lead to a completely new clustering algorithm. If the complete data set was
properly skeletonized the edge exclusion could possibly split the skeleton at

5.2. FUTURE WORK 123

the right places. The remaining connected components would then form the
clusters. However, a validation of this algorithm should then be done with
another method, since such a skeleton-based clustering would be strongly
biased.

A rough analysis of the proposed approach reveals that the overall com-
plexity is approximately in 𝒪(n3.5): For each entry in the distance matrix
(possible values of ε) perform several (reasonably only up to

√
n) calculations

of k-means for the skeletonization. k-means itself has a runtime complexity
of 𝒪(n ·k ·d · i), where i is the number of iterations needed and d the number
of dimensions of the dataset. This accumulates to 𝒪(n2 · (n ·k ·d · i)) because
i and d can be considered constant and k =

√
n in the worst case. A proper

parallelization or use of an incremental k-means algorithm, that re-uses
clustering information obtained from runs with lower k might speed up
computations here slightly. Also a proper sampling on the distance matrix
values to reduce the number of possible εs seems promising to reduce the
overall runtime.

Currently all algorithms are implemented in pure Python without any fur-
ther optimizations. C-based implementations will not reduce the complexity
but certainly speed up computations.

Another challenge that occurs due to the usage of k-means in the
skeletonization process is that k-means (as used here with k-means++ as
initialization) is not deterministic. The effect of this is usually alleviated by
running the same parametrization several times and then choosing the best
result. However, this still does not guarantee that for every distinct run on
identical datasets the same skeletons are constructed. Theoretically possible
are therefore cases in which an optimal clustering has been achieved but
cannot be found since the k-means step for the skeleton construction yielded
a suboptimal result.

On the validation side the algorithm has been tested for several config-
urations of datasets. It was, however, only validated on a small sample
of validation measures. The behavior of the other presented measures as
well as those not discussed throughout Chapter 2 has not been tested and
no statement about the algorithm’s behavior can be made. One can only
conjecture that they will show a similar behavior since the calculations are
not fundamentally different.

124 CHAPTER 5. CONCLUSION & FUTURE WORK

Some of the proposed skeletonization methods have not been included in
the final validation because they were either too slow or seemed to produce
results that did not meet certain quality criteria. These might prove effective
with a more suitable implementation or in the future with better hardware
or more computing power respectively.

Yet, the current approach already shows that skeletonization-based
cluster validation has the potential to improve clustering quality.

Bibliography
[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, “Geometric ap-

proximation via coresets,” Combinatorial and computational geometry,
vol. 52, pp. 1–30, 2005 (cited on page 44).

[2] I. Agricola and T. Friedrich, Elementary Geometry, ser. Student
Mathematical Library. Publications of the AMS, 2008, vol. 43 (cited
on page 55).

[3] H. Alt and M. Godau, “Measuring the resemblance of polygonal
curves,” in Proceedings of the eighth annual symposium on Computa-

tional geometry, ACM, 1992, pp. 102–109 (cited on page 50).

[4] ——, “Computing the fréchet distance between two polygonal curves,”
International Journal of Computational Geometry & Applications, vol. 5,
no. 01n02, pp. 75–91, 1995 (cited on page 50).

[5] I. Anderson, J. Bezdek, and R Dave, “Polygonal shape description of
plane boundaries,” Systems science and science, vol. 1, pp. 295–301,
1982 (cited on pages 18, 48).

[6] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in ACM Sigmod

record, ACM, vol. 28, 1999, pp. 49–60 (cited on page 15).

[7] G. S. Antzoulatos and M. N. Vrahatis, “α-clusterable sets,” in Joint

European Conference on Machine Learning and Knowledge Discovery

in Databases, Springer, 2011, pp. 108–123 (cited on page 66).

[8] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-

posium on Discrete algorithms, Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035 (cited on page 41).

[9] X. Bai, L. J. Latecki, and W.-Y. Liu, “Skeleton pruning by contour
partitioning with discrete curve evolution,” IEEE transactions on

pattern analysis and machine intelligence, vol. 29, no. 3, 2007 (cited
on page 45).

125

126 BIBLIOGRAPHY

[10] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction To

Splines For Use In Computer Graphics & Geometric Modeling. Los
Altos: Morgan Kaufmann, 1987 (cited on page 61).

[11] G. Baudat and F. Anouar, “Generalized discriminant analysis using a
kernel approach,” Neural computation, vol. 12, no. 10, pp. 2385–2404,
2000 (cited on page 43).

[12] H. Becker, “Identification and characterization of events in social
media,” PhD thesis, Columbia University, 2011 (cited on page 25).

[13] M. R. Berthold, C. Borgelt, F. Höppner, and F. Klawonn, Guide to

Intelligent Data Analysis, How to Intelligently Make Sense of Real Data,
1st ed., ser. Texts in Computer Science. London: Springer-Verlag,
2010, XIII, 394, isbn: 978-1-4471-2572-3 (cited on page 43).

[14] J. C. Bezdek, “Cluster validity with fuzzy sets,” Journal of Cybernetics,
vol. 3, no. 3, pp. 58–73, 1973 (cited on page 38).

[15] ——, “Mathematical models for systematics and taxonomy,” in Pro-

ceedings of eighth international conference on numerical taxonomy,
vol. 3, 1975, pp. 143–166 (cited on page 39).

[16] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means
clustering algorithm,” Computers & Geosciences, vol. 10, no. 2–3,
pp. 191–203, 1984 (cited on page 9).

[17] J. C. Bezdek and R. J. Hathaway, “VAT: A tool for visual assessment of
(cluster) tendency,” in Neural Networks, 2002. ĲCNN’02. Proceedings

of the 2002 International Joint Conference on, IEEE, vol. 3, 2002,
pp. 2225–2230 (cited on page 26).

[18] J. C. Bezdek, R. J. Hathaway, and J. M. Huband, “Visual assessment
of clustering tendency for rectangular dissimilarity matrices,” IEEE

Transactions on Fuzzy Systems, vol. 15, no. 5, pp. 890–903, 2007
(cited on page 27).

[19] H. Blum, “A transformation for extracting new descriptors of shape,”
Models for Perception of Speech and Visual Forms, 1967, pp. 362–380,
1967 (cited on pages 45, 53).

BIBLIOGRAPHY 127

[20] G. Borgefors, “Distance transformations in digital images,” Computer

Vision, Graphics, and Image Processing, vol. 34, no. 3, pp. 344–371,
1986, issn: 0734-189X (cited on page 45).

[21] C. Borgelt and C. Braune, “Prototype construction for clustering of
point processes based on imprecise synchrony,” in 8th conference of

the European Society for Fuzzy Logic and Technology (EUSFLAT-13),
Atlantis Press, 2013 (cited on page 2).

[22] C. Borgelt, C. Braune, T. Kötter, and S. Grün, “New algorithms for
finding approximate frequent item sets,” Soft Computing, vol. 16,
no. 5, pp. 903–917, 2012 (cited on pages 1, 2).

[23] C. Borgelt, C. Braune, K. Loewe, and R. Kruse, “Mining frequent
parallel episodes with selective participation,” in 2015 Conference of

the International Fuzzy Systems Association and the European Society

for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), Atlantis Press,
2015 (cited on page 1).

[24] L. Bradstreet, L. Barone, and L. While, “Maximising hypervolume for
selection in multi-objective evolutionary algorithms,” in Evolution-

ary Computation, 2006. CEC 2006. IEEE Congress on, IEEE, 2006,
pp. 1744–1751 (cited on page 64).

[25] C. Braune, S. Besecke, and R. Kruse, “Density based clustering: Al-
ternatives to DBSCAN,” in Partitional Clustering Algorithms, Springer
International Publishing, 2015, pp. 193–213 (cited on pages 16, 71).

[26] ——, “Using changes in distribution to identify synchronized point
processes,” in Strengthening Links Between Data Analysis and Soft

Computing, Springer, 2015, pp. 241–248 (cited on page 1).

[27] C. Braune, C. Borgelt, and S. Grün, “Finding ensembles of neurons in
spike trains by non-linear mapping and statistical testing,” Advances

in Intelligent Data Analysis X, pp. 55–66, 2011 (cited on page 2).

[28] ——, “Assembly detection in continuous neural spike train data,”
Advances in Intelligent Data Analysis XI, pp. 78–89, 2012 (cited on
page 2).

128 BIBLIOGRAPHY

[29] C. Braune, C. Borgelt, and R. Kruse, “Behavioral clustering for point
processes,” in Advances in Intelligent Data Analysis XII, Springer,
2013, pp. 127–137 (cited on page 2).

[30] C. Braune, M. Dankel, and R. Kruse, “Obtaining shape descriptors
from a concave hull-based clustering algorithm,” in International

Symposium on Intelligent Data Analysis, Springer International Pub-
lishing, 2016, pp. 61–72 (cited on pages 54, 58).

[31] C. Braune, M. Glauer, and R. Kruse, “Towards online detection
of neural assemblies in parallel spike trains,” in System Sciences

(HICSS), 2015 48th Hawaii International Conference on, IEEE, 2015,
pp. 1503–1511 (cited on page 2).

[32] C. Braune and R. Kruse, “Active learning-based identification of
neuronal assemblies in parallel spike trains,” in Proceedings. 24.

Workshop Computational Intelligence, Dortmund, 27.-28. November

2014, KIT Scientific Publishing, vol. 50, 2014, p. 155 (cited on page 1).

[33] ——, “Detecting parallel bursts in in silico generated parallel spike
train data,” BMC Neuroscience, vol. 16, no. Suppl 1, P134, 2015 (cited
on page 1).

[34] ——, “Fuzzy density based clustering with generalized centroids,” in
Computational Intelligence (SSCI), 2016 IEEE Symposium Series on,
IEEE, 2016 (cited on page 58).

[35] V. Braverman, D. Feldman, and H. Lang, “New frameworks for offline
and streaming coreset constructions,” arXiv/CoRR, vol.
abs/1612.00889, 2016 (cited on page 44).

[36] R. Bridson, “Fast poisson disk sampling in arbitrary dimensions,”
in ACM SIGGRAPH 2007 Sketches, ser. SIGGRAPH ’07, San Diego,
California: ACM, 2007, isbn: 978-1-4503-4726-6 (cited on page 163).

[37] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics-theory and Methods, vol. 3, no. 1, pp. 1–
27, 1974 (cited on page 33).

BIBLIOGRAPHY 129

[38] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in Pacific-Asia conference on

knowledge discovery and data mining, Springer, 2013, pp. 160–172
(cited on page 13).

[39] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang,
O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat,
P. Golland, and D. M. Sabatini, “Cellprofiler: Image analysis software
for identifying and quantifying cell phenotypes,” Genome Biology,
vol. 7, no. 10, R100, 2006, issn: 1474-760X (cited on pages 2, 167).

[40] H. Chang and D.-Y. Yeung, “Robust path-based spectral clustering,”
Pattern Recognition, vol. 41, no. 1, pp. 191–203, 2008 (cited on
page 151).

[41] K. Chen, “On coresets for k-median and k-means clustering in met-
ric and euclidean spaces and their applications,” SIAM Journal on

Computing (SICOMP), vol. 39, pp. 923–947, 2009 (cited on page 44).

[42] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley

Series in Telecommunications and Signal Processing). New York, NY,
USA: Wiley-Interscience, 2006, isbn: 0471241954 (cited on page 23).

[43] D. L. Davies and D. W. Bouldin, “A cluster separation measure,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 2,
pp. 224–227, 1979 (cited on page 30).

[44] C. De Boor, A practical guide to splines (applied mathematical sciences

vol 27), 1978 (cited on page 60).

[45] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE transactions on

evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002 (cited on
pages 61, 62).

[46] I. S. Dhillon, S. Mallela, and R. Kumar, “A divisive information-
theoretic feature clustering algorithm for text classification,” Journal

of machine learning research, vol. 3, pp. 1265–1287, 2003 (cited on
page 2).

130 BIBLIOGRAPHY

[47] A. Dockhorn, C. Braune, and R. Kruse, “An alternating optimization
approach based on hierarchical adaptations of dbscan,” in Compu-

tational Intelligence, 2015 IEEE Symposium Series on, IEEE, 2015,
pp. 749–755 (cited on pages 15, 30, 42, 100).

[48] ——, “Variable density based clustering,” in 2016 IEEE Symposium

Series on Computational Intelligence (SSCI), 2016 (cited on page 15).

[49] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters,” Journal of Cybernetics,
vol. 3, no. 3, pp. 32–57, 1973 (cited on page 32).

[50] S. C. E., “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, (cited on page 39).

[51] R. C. Eberhart and Y. Shi, “Comparing inertia weights and con-
striction factors in particle swarm optimization,” in Proceedings of

the 2000 Congress on Evolutionary Computation, IEEE, vol. 1, 2000,
pp. 84–88 (cited on page 68).

[52] D. H. Eberly, “Distance methods,” in 3D Game Engine Design (Second

Edition), ser. The Morgan Kaufmann Series in Interactive 3D Tech-
nology, D. H. Eberly, Ed., Second Edition, San Francisco: Morgan
Kaufmann, 2007, pp. 639–679 (cited on page 86).

[53] P. H. Eilers and B. D. Marx, “Flexible smoothing with B-splines and
penalties,” Statistical science, pp. 89–102, 1996 (cited on page 60).

[54] T. Eiter and H. Mannila, “Computing discrete fréchet distance,” Tech.
Report CD-TR 94/64, Information Systems Department, Technical
University of Vienna, Tech. Rep., 1994 (cited on page 50).

[55] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in Second International Conference on Knowledge Discovery

and Data Mining, E. Simoudis, J. Han, and U. Fayyad, Eds., Portland,
Oregon: AAAI Press, 1996, pp. 226–231 (cited on page 13).

[56] R. Evans, B. Pfahringer, and G. Holmes, “Clustering for classification,”
in 7th International Conference on Information Technology in Asia (CITA

11), 2011, IEEE, 2011, pp. 1–8 (cited on page 2).

BIBLIOGRAPHY 131

[57] S. Ezennaya-Gomez, C. Borgelt, C. Braune, K. Loewe, and R. Kruse,
“Handling selective participation in neuron assembly detection,” in
Computational Intelligence, Springer International Publishing, 2015,
pp. 386–406 (cited on page 1).

[58] D. Feldman and M. Langberg, “A unified framework for approximat-
ing and clustering data,” in Proceedings of the Forty-third Annual

ACM Symposium on Theory of Computing, ser. STOC ’11, San Jose,
California, USA: ACM, 2011, pp. 569–578, isbn: 978-1-4503-0691-1
(cited on page 44).

[59] B. Fischer, T. Zöller, and J. Buhmann, “Path based pairwise data
clustering with application to texture segmentation,” in Energy mini-

mization methods in computer vision and pattern recognition, Springer,
2001, pp. 235–250 (cited on page 27).

[60] R. A. Fisher, “On the probable error of a coefficient of correlation
deduced from a small sample,” Metron, vol. 1, pp. 3–32, 1921 (cited
on page 33).

[61] ——, “The use of multiple measurements in taxonomic problems,”
Annals of human genetics, vol. 7, no. 2, pp. 179–188, 1936 (cited on
page 43).

[62] M. M. Fréchet, “Sur quelques points du calcul fonctionnel,” Rendiconti

del Circolo Matematico di Palermo (1884-1940), vol. 22, no. 1, pp. 1–72,
1906 (cited on page 50).

[63] B. Fritzke, “A growing neural gas network learns topologies,” in
Advances in neural information processing systems, 1995, pp. 625–
632 (cited on pages 43, 80, 82, 99).

[64] L. Fu and E. Medico, “Flame, a novel fuzzy clustering method for the
analysis of dna microarray data,” BMC bioinformatics, vol. 8, no. 1,
p. 3, 2007 (cited on page 154).

[65] Y. Fukuyama, “A new method of choosing the number of clusters
for the fuzzy c-mean method,” in Proc. 5th Fuzzy Syst. Symp., 1989,
1989, pp. 247–250 (cited on page 34).

132 BIBLIOGRAPHY

[66] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,”
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 1,
no. 1, p. 4, 2007 (cited on page 149).

[67] J. Grimmer and G. King, “General purpose computer-assisted clus-
tering and conceptualization,” Proceedings of the National Academy

of Sciences, vol. 108, no. 7, pp. 2643–2650, 2011 (cited on page 27).

[68] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy
covariance matrix,” in Decision and Control including the 17th Sympo-

sium on Adaptive Processes, 1978 IEEE Conference on, IEEE, 1979,
pp. 761–766 (cited on pages 11, 43, 48).

[69] T. C. Hales, “Historical overview of the kepler conjecture,” in The

Kepler Conjecture, Springer, 2011, pp. 65–82 (cited on page 73).

[70] M. Halkidi and M. Vazirgiannis, “Clustering validity assessment using
multi representatives,” in Proceedings of the Hellenic Conference on

Artificial Intelligence, SETN, 2002, pp. 237–249 (cited on pages 41,
44).

[71] R. J. Hathaway, J. C. Bezdek, and J. M. Huband, “Scalable visual as-
sessment of cluster tendency for large data sets,” Pattern Recognition,
vol. 39, no. 7, pp. 1315–1324, 2006 (cited on page 27).

[72] F. Hoeppner, “Fuzzy shell clustering algorithms in image processing:
Fuzzy c-rectangular and 2-rectangular shells,” IEEE Transactions on

Fuzzy Systems, vol. 5, no. 4, pp. 599–613, 1997 (cited on pages 18,
48).

[73] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic
algorithm for multiobjective optimization,” in Evolutionary Compu-

tation, 1994. IEEE World Congress on Computational Intelligence.,

Proceedings of the First IEEE Conference on, Ieee, 1994, pp. 82–87
(cited on page 63).

[74] J. Huband and J. Bezdek, “VCV2–visual cluster validity,” Computa-

tional Intelligence: Research Frontiers, pp. 293–308, 2008 (cited on
page 2).

BIBLIOGRAPHY 133

[75] J. M. Huband, J. C. Bezdek, and R. J. Hathaway, “BigVAT: Visual as-
sessment of cluster tendency for large data sets,” Pattern Recognition,
vol. 38, no. 11, pp. 1875–1886, 2005 (cited on page 27).

[76] J. Huband, J. Bezdek, and R. Hathaway, “Revised visual assessment
of (cluster) tendency (reVAT),” in Fuzzy Information, 2004. Processing

NAFIPS’04. IEEE Annual Meeting of the, IEEE, vol. 1, 2004, pp. 101–
104 (cited on page 27).

[77] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifi-

cation, vol. 2, no. 1, pp. 193–218, 1985 (cited on page 23).

[78] P. Jaccard, “Distribution de la flore alpine dans le bassin des dranses
et dans quelques régions voisines,” Bull Soc Vaudoise Sci Nat, vol. 37,
pp. 241–272, 1901 (cited on page 22).

[79] A. K. Jain, “Fundamentals of digital image processing,” Prentice Hall

Information and System Sciences series, NewJersey, pp. 33–35, 1989
(cited on page 45).

[80] A. K. Jain and M. H. Law, “Data clustering: A user’s dilemma,” PReMI,
vol. 3776, pp. 1–10, 2005 (cited on page 153).

[81] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical
clustering using dynamic modeling,” Computer, vol. 32, no. 8, pp. 68–
75, 1999 (cited on page 149).

[82] U. Kaymak and M. Setnes, “Fuzzy clustering with volume prototypes
and adaptive cluster merging,” IEEE Transactions on Fuzzy Systems,
vol. 10, no. 6, pp. 705–712, 2002 (cited on pages 17, 48, 74).

[83] F. Klawonn and F. Höppner, “Fuzzy cluster analysis from the view-
point of robust statistics,” in Views on Fuzzy Sets and Systems from

Different Perspectives, Springer, 2009, pp. 439–455 (cited on pages 9,
11).

[84] F. Klawonn, R. Kruse, and H. Timm, “Fuzzy shell cluster analysis,”
in Learning, networks and statistics, Springer, 1997, pp. 105–119
(cited on pages 18, 48).

[85] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982 (cited
on pages 43, 80).

134 BIBLIOGRAPHY

[86] K. Krishnanand and D. Ghose, “Detection of multiple source locations
using a glowworm metaphor with applications to collective robotics,”
in Swarm intelligence symposium, 2005. SIS 2005. Proceedings 2005

IEEE, IEEE, 2005, pp. 84–91 (cited on page 66).

[87] R. Krishnapuram and C.-P. Freg, “Fitting an unknown number of
lines and planes to image data through compatible cluster merg-
ing,” Pattern recognition, vol. 25, no. 4, pp. 385–400, 1992 (cited on
pages 18, 48).

[88] R. J. Krishnapuram, H. Frigui, and O. Nasraoui, “New fuzzy shell
clustering algorithms for boundary detection and pattern recogni-
tion,” in Intelligent Robots and Computer Vision X: Algorithms and

Techniques, International Society for Optics and Photonics, vol. 1607,
1992, pp. 458–466 (cited on pages 18, 48).

[89] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M. Steinbrecher,
Computational intelligence: a methodological introduction. Springer,
2016 (cited on pages 1, 66).

[90] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathemati-

cal society, vol. 7, no. 1, pp. 48–50, 1956 (cited on page 26).

[91] L. J. Latecki and R. Lakämper, “Application of planar shape com-
parison to object retrieval in image databases,” Pattern Recognition,
vol. 35, no. 1, pp. 15–29, 2002, Shape representation and similarity
for image databases, issn: 0031-3203 (cited on page 45).

[92] T.-C. Lee, R. L. Kashyap, and C.-N. Chu, “Building skeleton models
via 3-d medial surface axis thinning algorithms,” CVGIP: Graphical

Models and Image Processing, vol. 56, no. 6, pp. 462–478, 1994 (cited
on page 46).

[93] J. Liang, L. Bai, C. Dang, and F. Cao, “The k-means-type algorithms
versus imbalanced data distributions,” IEEE Transactions on Fuzzy

Systems, vol. 20, no. 4, pp. 728–745, 2012 (cited on page 71).

BIBLIOGRAPHY 135

[94] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, and S. Wu, “Understanding
and enhancement of internal clustering validation measures,” IEEE

transactions on cybernetics, vol. 43, no. 3, pp. 982–994, 2013 (cited
on pages 41, 107).

[95] Y. Liu, H. Yang, and W. Wang, “Reconstructing b-spline curves
from point clouds–a tangential flow approach using least squares
minimization,” in Shape Modeling and Applications, 2005 International

Conference, IEEE, 2005, pp. 4–12 (cited on page 60).

[96] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, “Annotated high-
throughput microscopy image sets for validation,” Nat Methods, vol. 9,
no. 7, p. 637, 2012 (cited on pages 2, 167).

[97] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, Volume 1: Statistics, Berke-
ley, Calif.: University of California Press, 1967, pp. 281–297 (cited on
page 7).

[98] P. C. Mahalanobis, “On the generalised distance in statistics,” Pro-

ceedings of the National Institute of Sciences of India, 1936, pp. 49–55,
1936 (cited on pages 11, 43, 48).

[99] G. Mercator, Nova et aucta orbis terræ descriptio ad usum navigantium

emendate accomodata, Map, Duisburg, 1569 (cited on page 49).

[100] D. P. Mitchell, “Spectrally optimal sampling for distribution ray
tracing,” in ACM SIGGRAPH Computer Graphics, ACM, vol. 25, 1991,
pp. 157–164 (cited on pages 71, 163).

[101] J. Moffat, D. A. Grueneberg, X. Yang, S. Y. Kim, A. M. Kloepfer, G.
Hinkle, B. Piqani, T. M. Eisenhaure, B. Luo, J. K. Grenier, A. E.
Carpenter, S. Y. Foo, S. A. Stewart, B. R. Stockwell, N. Hacohen,
W. C. Hahn, E. S. Lander, D. M. Sabatini, and D. E. Root, “A lentiviral
RNAi library for human and mouse genes applied to an arrayed viral
high-content screen,” Cell, vol. 124, no. 6, pp. 1283 –1298, 2006,
issn: 0092-8674 (cited on page 2).

136 BIBLIOGRAPHY

[102] D. Moulavi, P. A. Jaskowiak, R. J. Campello, A. Zimek, and J. Sander,
“Density-based clustering validation,” in Proceedings of the 2014 SIAM

International Conference on Data Mining, SIAM, 2014, pp. 839–847
(cited on pages 42, 119, 120).

[103] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-
features image classification,” Computer Vision–ECCV 2006, pp. 490–
503, 2006 (cited on page 2).

[104] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1,
pp. 62–66, 1979 (cited on page 110).

[105] K. Palágyi, “A 3d fully parallel surface-thinning algorithm,” Theor.

Comput. Sci., vol. 406, no. 1-2, pp. 119–135, Oct. 2008, issn: 0304-
3975 (cited on page 45).

[106] L. Piegl and W. Tiller, The NURBS Book, 2nd. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996 (cited on page 62).

[107] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell Labs Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957
(cited on page 26).

[108] D. H. Raab and E. H. Green, “A cosine approximation to the normal
distribution,” Psychometrika, vol. 26, no. 4, pp. 447–450, 1961 (cited
on page 69).

[109] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971 (cited on page 23).

[110] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in EMNLP-CoNLL, vol. 7,
2007, pp. 410–420 (cited on page 25).

[111] G.-C. Rota, “The number of partitions of a set,” The American Mathe-

matical Monthly, vol. 71, no. 5, pp. 498–504, 1964 (cited on page 6).

[112] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and

Applied Mathematics, vol. 20, pp. 53–65, 1987 (cited on page 31).

BIBLIOGRAPHY 137

[113] T. Sabsch, C. Braune, A. Dockhorn, and R. Kruse, “Using a multi-
objective genetic algorithm for curve approximation,” in 2017 IEEE

Symposium Series on Computational Intelligence (SSCI), IEEE, 2017
(cited on page 60).

[114] J. W. Sammon, “A nonlinear mapping for data structure analysis,”
IEEE Transactions on computers, vol. 100, no. 5, pp. 401–409, 1969
(cited on page 43).

[115] (). SIGKDD News: 2014 SIGKDD TEST OF TIME AWARD, SIGKDD,
[Online]. Available: http://www.kdd.org/News/view/2014-
sigkdd-test-of-time-award (cited on page 13).

[116] M. Smith and J. March, March’s Advanced Organic Chemistry: Reac-

tions, Mechanisms, and Structure. Wiley, 2007, isbn: 978-047-008-
494-6 (cited on page 73).

[117] J. P. Snyder, Flattening the earth: two thousand years of map projec-

tions. University of Chicago Press, 1997 (cited on page 49).

[118] M. Spiliopoulou, L. Schmidt-Thieme, and R. Janning, Data Analysis,

Machine Learning and Knowledge Discovery, ser. Studies in Classifi-
cation, Data Analysis, and Knowledge Organization. Cham: Springer
International Publishing, 2014, p. 470, isbn: 978-3-319-01594-1
(cited on page 17).

[119] A. Tannenbaum, “Three snippets of curve evolution theory in com-
puter vision,” Mathematical and Computer Modelling, vol. 24, no. 5,
pp. 103–119, 1996, issn: 0895-7177 (cited on page 45).

[120] R. L. Thorndike, “Who belongs in the family?” Psychometrika, vol. 18,
no. 4, pp. 267–276, 1953 (cited on pages 2, 30, 34).

[121] L. W. Tu, An Introduction to Manifolds. New York: Springer-Verlag
New York, 2011, isbn: 978-1-4419-7399-3 (cited on page 49).

[122] C. J. Veenman, M. J. T. Reinders, and E. Backer, “A maximum
variance cluster algorithm,” IEEE Transactions on pattern analysis

and machine intelligence, vol. 24, no. 9, pp. 1273–1280, 2002 (cited
on pages 152, 153).

http://www.kdd.org/News/view/2014-sigkdd-test-of-time-award
http://www.kdd.org/News/view/2014-sigkdd-test-of-time-award

138 BIBLIOGRAPHY

[123] L. Vendramin, R. J. Campello, and E. R. Hruschka, “Relative cluster-
ing validity criteria: A comparative overview,” Statistical analysis and

data mining: the ASA data science journal, vol. 3, no. 4, pp. 209–235,
2010 (cited on page 103).

[124] L. Vendramin, P. A. Jaskowiak, and R. J. Campello, “On the combi-
nation of relative clustering validity criteria,” in Proceedings of the

25th International Conference on Scientific and Statistical Database

Management, ACM, 2013, p. 4 (cited on page 103).

[125] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures
for clusterings comparison: Is a correction for chance necessary?” In
Proceedings of the 26th annual international conference on machine

learning, ACM, 2009, pp. 1073–1080 (cited on page 23).

[126] G. Voronoï, “Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. Deuxième mémoire. Recherches sur
les parallélloèdres primitifs.,” Journal für die reine und angewandte

Mathematik, vol. 134, pp. 198–287, 1908 (cited on page 9).

[127] L. Wang, X. Geng, J. Bezdek, C. Leckie, and R. Kotagiri, “SpecVAT:
Enhanced visual cluster analysis,” in Eighth IEEE International Con-

ference on Data Mining, 2008. ICDM’08, IEEE, 2008, pp. 638–647
(cited on page 27).

[128] L. Wang, U. T. Nguyen, J. C. Bezdek, C. A. Leckie, and K. Ramamoha-
narao, “IVAT and aVAT: Enhanced visual analysis for cluster tendency
assessment,” in Pacific-Asia Conference on Knowledge Discovery and

Data Mining, Springer, 2010, pp. 16–27 (cited on page 27).

[129] R. Winkler, F. Klawonn, and R. Kruse, “Fuzzy c-means in high dimen-
sional spaces,” International Journal of Fuzzy System Applications

(ĲFSA), vol. 1, no. 1, pp. 1–16, 2011 (cited on pages 11, 99).

[130] ——, “Prototype based fuzzy clustering algorithms in high-dimensional
feature spaces,” in Enric Trillas: A Passion for Fuzzy Sets, Springer,
2015, pp. 233–243 (cited on pages 11, 99).

BIBLIOGRAPHY 139

[131] J. Wu, J. Chen, H. Xiong, and M. Xie, “External validation measures
for k-means clustering: A data distribution perspective,” Expert Sys-

tems with Applications, vol. 36, no. 3, pp. 6050–6061, 2009 (cited on
page 22).

[132] X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE

Transactions on pattern analysis and machine intelligence, vol. 13,
no. 8, pp. 841–847, 1991 (cited on pages 34, 38).

[133] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press,
2010 (cited on page 66).

[134] C. Zahn, “Graph-theoretical methods for detecting and describing
gestalt clusters,” Computers, IEEE Transactions on, vol. C-20, no. 1,
pp. 68–86, Jan. 1971, issn: 0018-9340 (cited on page 151).

[135] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236–239,
1984 (cited on page 45).

[136] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator
revisited: On the design of pareto-compliant indicators via weighted
integration,” in Evolutionary multi-criterion optimization, Springer,
2007, pp. 862–876 (cited on page 63).

List of Figures

1.1 Colon cancer cell images . 3

1.2 Nested clusters . 6

1.3 Different labellings for the same dataset 7

1.4 Voronoi diagram . 10

1.5 Membership degrees for different fuzzifiers 11

1.6 Membership contour plot . 11

1.7 Non-convex clusters . 12

1.8 Spiral cluster and skeleton cluster 14

2.1 Blobs (external validation process) 24

2.2 D31 (external validation process) 25

2.3 Moons (external validation process) 26

2.4 The respective left figures show the unordered distance matrices
and a graph visiting points according to this random ordering.
The right figures show the distance matrices after they have been
re-ordered and the resulting graphs. 28

2.5 Projection of different clusterings onto two-dimensional space. 29

2.6 blobs (internal validation process) 35

2.7 moons (internal validation process) 35

2.8 circles (internal validation process) 36

2.9 spirals (internal validation process) 36

2.10 chishape (internal validation process) 37

2.11 eightshape (internal validation process) 37

2.12 blobs (internal validation process, fuzzy measure) 39

2.13 moons (internal validation process, fuzzy measure) 39

2.14 circles (internal validation process, fuzzy measure) 40

2.15 spirals (internal validation process, fuzzy measure) 40

2.16 chishape (internal validation process, fuzzy measure) . . . 40

2.17 eightshape (internal validation process, fuzzy measure) . . 41

2.18 Skeletonization algorithms for images 45

141

142 List of Figures

3.1 Examples of cluster centroids 48
3.2 A non-convex region bounded by a simple polygon (black). . . 53
3.3 The convex hull is not a good boundary for calculating a general-

ized centroid. 54
3.4 Concave hulls for two half circles. 58
3.5 Concave hulls for two half circles with lower θ. 58
3.6 circles with with fitted splines 64
3.7 Edgy sinus wave with with fitted splines 65
3.8 Shape of different kernels. 69
3.9 The choice of the kernel function is not as crucial as it might

seem. 70
3.10 blobs with PSO particles. 72
3.11 moons with remaining particles after filtering. 72
3.12 Different skeletons obtained via k-means. 73
3.13 Multi-objective optimization for χ-shape cluster 75
3.14 Multi-objective optimization for skeleton cluster 76
3.15 Multi-objective optimization for Eightshape cluster 77
3.16 Multi-objective optimization for Eightshape cluster with different

densities . 78
3.17 Result of the FCLS algorithm. 80
3.18 Results of the GNG algorithm. 82
3.19 Illustration of the distance calculation for points and skeletons 85
3.20 Fuzzy partitioning with skeletons 89
3.21 Fuzzy partitioning with center points 90
3.22 Fuzzy partitioning of the spirals dataset 91

4.1 Distance distribution for the chishape data set 96
4.2 Distance distribution for the figureeight data set 96
4.3 Distance distribution for the figureeight data set 97
4.4 Distance distribution for the skeleton data set 97
4.5 Distance distribution for the skeleton3d data set 98
4.6 Example data set for final evaluation 101
4.7 Example data set for final evaluation with overlapping clusters 101
4.8 Two wrongfully joined clusters 104
4.9 Results for validation score based parameter search 106
4.10 Results for 10-dimensional datasets 106

List of Figures 143

4.11 Results 100-dimensional datasets 106
4.12 Two three-dimensional datasets clustered 107
4.13 Results using CVNN-guided parameter search 108
4.14 Comparison between skeletonization-based and prototype-based

clustering . 109
4.15 QQ plot of the previous results 109
4.16 Clustered colon cancer cells (skeletonization) 110
4.17 Clustered colon cancer cells (k-means) 1–3 112
4.18 Clustered colon cancer cells (k-means) 4–6 113
4.19 Clustered colon cancer cells (fuzzy c-means) 1–3 114
4.20 Clustered colon cancer cells (fuzzy c-means) 4–6 115

5.1 Well- and over-fitted skeletons 122

A.1 The t4.8k data set. 150
A.2 The aggregation data set. 150
A.3 The compound data set. 151
A.4 The pathbased data set. 152
A.5 spiral dataset . 153
A.6 The d31 data set. 154
A.7 The r15 data set. 155
A.8 The jain data set. 156
A.9 The flame data set. 157

B.1 Two-dimensional example of hyperspherical clusters and their
respective center points. 160

B.2 Two nested circles with their respective centroids. 161
B.3 Two versions of the eight-shaped cluster. 161
B.4 Two nested half circles with their respective centroids. 162
B.5 Two nested half circles with their respective centroids. 163
B.6 Two-dimensional example of a b-spline cluster and the corre-

sponding b-spline curve. 164
B.7 Skeleton clusters in 2d and 3d 165

List of Tables

4.1 Parameters for generating Validation data sets 107

145

Acronyms
AMI Adjusted Mutual Information. 24

ANOVA Analysis of Variance. 33

ARI Adjusted Rand Index. 23, 28, 101, 104

CH Calinski-Harabasz Index. 33, 85, 108

CVNN Clustering Validation Index based on Nearest Neighbors. 38, 42, 105,
106

DB Davies-Bouldin Index. 30, 31

DCE Discrete Curve Evolution. 45, 82

DI Dunn’s Index. 32, 104

DLI Dunn-like Index. 32

FCLS Fuzzy-c-Line Segments. 73, 80, 82, 92, 93, 96, 97

FS Fukuyama-Sugeno Index. 33, 34

GDA Generalized Discriminant Analysis. 42, 43

GNG Growing Neural Gas. 43, 80–82, 93, 96, 97

GWSO Glow Worm Swarm Optimization. 59, 66, 67, 82, 93, 96, 97

LDA Linear Discriminant Analysis. 42

MI Mutual Information. 23, 24, 29

MRD Mutual Reachability Distance. 41

MST Minimum Spanning Tree. 26, 59, 78, 82

147

148 ACRONYMS

NMI Normalized Mutual Information. 25

NSGA-II Non-Dominated Sorting Genetic Algorithm II. 60, 62

ODI Ordered Distance Image. 26, 27

PC Partition Coefficient. 37, 38, 107

PCA Principal Component Analysis. 42, 80, 97

PE Partition Entropy. 38, 100, 104, 118

PSO Particle Swarm Optimization. 65–67

RBF Radial Basis Function. 67

RI Rand Index. 23, 24, 29

RMSE Root Mean Squared Error. 32, 33

ROC Receiver Operating Characteristic. 107

SC Silhouette Coefficient. 31

SOM Self-organizing Map. 43, 79, 82

SSE Sum of Squared Errors. 65, 100

VAT Visual Assessment of Cluster Tendency. 26, 27, 29

XB Xie-Beni Index. 34, 85

A
p

p
e

n
d

ix

A
Benchmark Data Sets

This chapter shows some benchmark data sets commonly used for clustering.
Every plot shows the ground truth labeling if a ground truth was available.
Otherwise it will show a good fit resulting from a clustering algorithm
(parameters given in the plot’s caption).

A.1 T4.8k

The t4.8k data set [81] contains 8.000 two-dimensional data points
structured into six clusters. A seventh cluster might be recognized as a sine
curve in the background connecting the remaining clusters. This data set
also contains a large amount of unstructured noise and two clusters with
strongly overlapping convex hulls.

A.2 Aggregation

The aggregation data set [66] contains 788 two-dimensional data points
structured into seven clusters. It contains connected clusters as well as
two clusters which are almost indistinguishable close together. Two points
within the moon-shaped cluster to the top left are irregularly far apart from
the remaining points in the cluster. This sometimes leads to the detection of
yet another cluster.

149

150 APPENDIX A. BENCHMARK DATA SETS

Figure A.1: The t4.8k data set. The labeling is the result of running
DBSCAN with ε = 11.5 and minPts = 30, since no ground truth labeling was
availbale fo this data set.

Figure A.2: The aggregation data set.

A.3. COMPOUND 151

A.3 Compound

The compound data set [134] contains 399 two-dimensional data points
structured into six clusters. One cluster is completely contained within the
other, another one is surrounded by very structured noise (here counted as
cluster) and the two remaining clusters are located close to each other with
one point apparently mislabeled.

Figure A.3: The compound data set.

A.4 Path-Based

path-based [40] contains 300 two-dimensional data points structured
into three clusters. One cluster forms almost a full circle in which two
gaussian blobs are placed. These blobs lie very close to the circle, making it
hard for density-based algorithms to distinguish them from each other.

A.5 Spiral

The spiral data set [40] contains 312 two-dimensional data points struc-
tured into three clusters. Originally the clusters hae zero width and are
well separated. However by adding some gaussian noise onto each data

152 APPENDIX A. BENCHMARK DATA SETS

Figure A.4: The pathbased data set.

point (and drawing points with replacement from the original data set), three
clusters with non-zero width can be generated. If the magnitude of the added
noise is chosen too large, the clusters might become indistinguishable.

A.6 D31

The d31 data set [122] contains 3100 two-dimensional data points struc-
tured into 31 clusters. All of the 31 clusters are formed by sampling 100
points from a bivariate normal distribution with equal covariance matrices.

A.7. R15 153

Figure A.5: The spiral dataset (left: without additional noise, center wiht
noise, right: clustered, with skeletons).

The location of the cluster centers are chosen in such a way that the clus-
ters overlap or are at least not well separated, thus making them almost
indistinguishable for any density-based clustering algorithm.

A.7 R15

The r15 data set [122] contains 600 two-dimensional data points structured
into 15 clusters. Each cluster contains 40 samples drawn from a bivariate
normal distribution and seven clusters each are placed along two nested
circles. The last cluster is placed in the center of the two circles. Due to
the radii of the clusters with respect to the inner circle, it might appear to
some algorithms (or parametrizations) that the data set contains only eight
clusters (the eight central ones might be considered a single cluster).

A.8 Jain’s Toy Dat Set

The jain data set [80] contains 373 two-dimensional data points structured
into two clusters. The two clusters are similar two the half-circle data set
with the difference that the two clusters have varying density. One problem
with this data set is that the lower density half circle contains a small region
where no point at all is located. This is no problem for a human, but a lot of
algorithm recognize this as two separate clusters.

154 APPENDIX A. BENCHMARK DATA SETS

Figure A.6: The d31 data set.

A.9 Flame

The flame data set [64] contains 240 two-dimensional data points struc-
tured into two clusters. The two clusters are not well separated and lie very
close together. One of the clusters also contains two outlier points.

A.9. FLAME 155

Figure A.7: The r15 data set.

156 APPENDIX A. BENCHMARK DATA SETS

Figure A.8: The jain data set.

A.9. FLAME 157

Figure A.9: The flame data set.

A
p

p
e

n
d

ix

B
Dataset Generation

This chapter explains the different procedures according to which the data
sets throughout this thesis have been generated. For the sake of complete-
ness the general procedure of creating data sets will also be explained if the
methods have been taken from publicly available libraries.

B.1 Blobs

Hyperspherical clusters are created by sampling center points from a uniform,
d-dimensional distribution within the desired boundaries. These centers
are then used in a multivariate gaussian distribution with specified variance.
Depending on the intial location of the clusters’ centers the clusters may
overlap, making them indistinguishable for a (density-based) clustering
algorithm.

B.2 Nested Circles

Circular clusters a generated by equiangular spaced point on a unit circle.
For the inner circle, all a circle with smaller radius (by a user-defined factor,
0 < f ≤ 1) is used for sampling the corresponding data points. Gaussian
noise is of a user-defined magnitude is then added to all the points in
the data set. Depending on the magnitude of the noise and the factor for
the inner circles radius the resulting clusters may overlap, making them
indistinguishable for a (density-based) clustering algorithm.

159

160 APPENDIX B. DATASET GENERATION

Figure B.1: Two-dimensional example of hyperspherical clusters and their
respective center points.

B.3 Eightshape

The generation of clusters which follow this model is similar to that of the
nested circles (see Section B.2). Instead of solely applying a factor to the
main circles radius, the second circle is also translated in such a way, that
the to circles touch at one point. The result is a single cluster structure
which resembles the shape of an eight. Additionally, different noise setting
can be applied to the individual circles to generate clusters with varying
density.

B.4. HALF CIRCLES 161

Figure B.2: Two nested circles with their respective centroids.

Figure B.3: Two versions of the eight-shaped cluster.

B.4 Half Circles

The moon-shaped data set is generated similar to the nested circles (see
Section B.2). Instead of generating to separate circles, only a single unit
circle is generated and split into a lower and upper half. The lower half is

162 APPENDIX B. DATASET GENERATION

then translated to the lower right so that one of its end points lies at the
location of the initial circle’s center. Gaussian noise is of a user-defined
magnitude is then added to all the points in the data set. Depending on
the magnitude of the noise the resulting clusters may overlap, making them
indistinguishable for a (density-based) clustering algorithm.

Figure B.4: Two nested half circles with their respective centroids.

B.5 Figure χ-Shape

The generation of clusters which follow the χ-shape model is similar to that
of the half circles (see Section B.4). Instead of translating the lower half of
the initial circle to the lower right, it is moved up by one unit. This makes
the lowest point of the initial lower half coincide with the highest point of
the initial upper halfcircle. The resulting structure is shaped like a χ and
forms a single structure. Gaussian noise is of a user-defined magnitude is
then added to all the points in the cluster.

B.6 B-Spline Cluster

To generate clusters that follow a B-Spline model, the control points are
sampled from a uniform distribution in a way that the line is guaranteed to

B.7. SKELETON CLUSTER 163

Figure B.5: Two nested half circles with their respective centroids.

be non self-intersecting by sampling a certain number of points uniformly
from the desired bounding box and then sorting along the first axis. These
points uniquely define the b-spline curve. Within the bounding box blue
noise is created by either using Poisson disc sampling [36] or Mitchell’s best
candidate [100]. In contrast to white noise (points are randomly sampled
from a uniform distribution), blue noise guarantees to have approximately
equal density across every proper sub-neighborhood of the generated data.
From the blue noise sample only the points closer than a threshold θ are
kept in the data set.

B.7 Skeleton Cluster

The structural disadvantage of the χ-shape clusters is that they rarely
show any pronounced branching. Clusters always follow a single line
and only if two adjacent control vectors are very close to each other in
one dimension something like branching might be observed. The skeleton
clusters use a different model for cluster generation. In some sense this
model is similar to the spherical cluster from Appendix B.1. But instead
of a single point a cluster skeleton is sampled. This is done by choosing
b + 1 points that are sampled from a multivariate uniform distribution.

164 APPENDIX B. DATASET GENERATION

Figure B.6: Two-dimensional example of a b-spline cluster and the corre-
sponding b-spline curve.

On these points a minimum spanning tree is calculated and each edge in
this tree is subsampled into a specifiable number of points. Onto these
point gaussian noise with some user-specified variance can be added. The
resulting structure is usually highly dendritic in nature. Since all edges
receive the same number of points, these clusters will also exhibit varying
density along shorter edges and vertices where more than two edges join.

B.7. SKELETON CLUSTER 165

Figure B.7: Examples of skeleton clusters in 2d and 3d and the correspond-
ing bone structure. For better visibility the clusters’ arithmetic means have
been highlighted in a different color.

B.7. SKELETON CLUSTER 167

Acknowledgements

The font used in this thesis is called Kerkis and is copyrighted by the
Department of Mathematics, University of the Aegean.

This thesis used image set BBBC001v1 [39] from the Broad Bioimage
Benchmark Collection [96].

1

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete

fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich

nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte

haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter

 Weise zu interpretieren,

- fremde Ergebnisse oder Veröffentlichungen plagiiert,

- fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die

Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland

noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als

Ganzes auch noch nicht veröffentlicht.

Magdeburg, den

26.06.2018

Christian Braune

	Contents
	Introduction
	Motivation
	Fundamentals
	Clustering
	Problem Definition
	Structure of this Thesis

	Methods for Validation and Skeletonization
	Cluster Validation
	Re-Representing Datasets

	Generalized Centroids
	Necessary Terms and Definitions
	Cluster Skeletons in Two Dimensions
	Cluster Skeletons in Higher Dimensions
	Alternative Calculations

	Validation & Experiments
	Skeletonization Methods
	Automatic Selection of Cluster Parameters
	Results

	Conclusion & Future Work
	Discussion & Research Questions
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Benchmark Data Sets
	T4.8k
	Aggregation
	Compound
	Path-Based
	Spiral
	D31
	R15
	Jain's Toy Dat Set
	Flame

	Dataset Generation
	Blobs
	Nested Circles
	Eightshape
	Half Circles
	Figure -Shape
	B-Spline Cluster
	Skeleton Cluster

