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Abstract

Polytopes are basic geometric objects of fundamental importance for Linear Program-
ming (i.e., optimization of linear functions under linear constraints). One of the most
important research topic of polytope theory is its combinatorial aspect: the combina-
torial structure of polytopes. This thesis is primarily concerned with the concept of the
undominated set of a polytope, i.e., the set of all those points of a polytope such that there
is no other different point in the polytope which is component-wise less than or equal to it.

The interest in undominated sets originates in the fact that two polytopes (in the first
orthant) have the same dominant if and only if their undominated sets coincide. The
dominant of a polyhedron is the geometric object that is of interest when minimizing
linear objective functions with nonnegative coefficients only. For such minimization prob-
lems over a polyhedron, the initial polyhedron can be replaced by another polyhedron
with the same dominant but which is easier to describe, e.g. with fewer inequalities.

It turns out that the undominated set of a polytope is a polyhedral complex (the undomi-
nated complex), formed by those faces that are also faces of the dominant, or, equivalently,
the bounded faces of the dominant. One result we establish about the undominated com-
plexes of general polytopes is that they are contractible. While their topological structure
thus is rather simple, we provide some three-dimensional examples showing that their ge-
ometry can nevertheless look surprisingly complicated.

The main part of the thesis is devoted to investigating the undominated complexes of the
polytopes associated with the cuts in the complete undirected graph on nodes {1,2,...,n}
that separate at least one of the nodes 1,2, ..., ¢ from node n. We provide characteriza-
tions of the combinatorial structures of the undominated complexes of those cut polytopes
for € = 1,2, 3, showing that those complexes are pure simplicial complexes of dimension
n — 2, n— 1, n in these cases, respectively. We also provide a conjecture for the combi-
natorial structures of those complexes for general &, for which a partial prove is given by
the main contribution.






iii

Zusammenfassung

Polytope sind geometrische Grundobjekte von fundamentaler Bedeutung fiir die Lineare
Programmierung (d.h. die Optimierung linearer Funktionen unter linearen Nebenbe-
dingungen). Eines der wichtigsten Forschungsthemen der Polytoptheorie ist der kombi-
natorischer Aspekt: die kombinatorische Struktur von Polytopen. In der vorliegenden
Arbeit beschaftigen wir uns hauptsachlich mit dem Konzept der nichtdominierten Menge
eines Polytops, d.h. die Menge aller Punkte eines Polytops, fiir die kein anderer Punkt
im Polytop existiert, der komponenten weise kleiner oder gleich ist.

Das Interesse an nichtdominierten Mengen riihrt daher, dass zwei Polytope (im ersten Or-
thanten) genau dann die gleiche Dominante haben, wenn ihre nichtdominierten Mengen
gleich sind. Die Dominante eines Polyeders ist das geometrische Objekt, das von Inter-
esse ist, wenn lineare Zielfunktionen nur mit nichtnegativen Koeffizienten minimiert wer-
den. Fiir ein solches Minimierungsproblem iiber einem Polyeder kann das urspriingliche
Polyeder durch ein anderes Polyeder mit der gleichen Dominante ersetzt werden, das aber
einfacher zu beschreiben ist, z.B. mit weniger Ungleichungen.

Es stellt sich heraus, dass die nichtdominierte Menge eines Polytops ein polyedrischer
Komplex (der nichtdominierte Komplex) ist, der aus den Seiten besteht, die auch Seiten
der Dominante sind, oder, dquivalent, die beschrankten Seiten der Dominante. Ein Re-
sultat, das wir iiber die undominierten Komplexe allgemeiner Polytope feststellen, ist,
dass sie zusammenziehbar sind. Wahrend ihre topologische Struktur ziemlich einfach
ist, geben wir einige dreidimensionale Beispiele, die zeigen, dass ihre Geometrie dennoch
iiberraschend kompliziert aussehen kann.

Der Hauptteil der Arbeit untersucht nichtdominierte Komplexe der Polytope, die mit
den Schnitten des vollstéandigen ungerichteten Graphen mit den Knoten {1,2,...,n} ver-
bunden sind, die mindestens einen von den Knoten 1, 2, ..., £ vom Knoten n trennen. Wir
geben Charakterisierungen der kombinatorischen Strukturen der undominierten Komplexe
von diesen Cut Polytopen fiir £ = 1, 2, 3, welche zeigen, dass diese Komplexe in diesen
Fallen reine Simplizialkomplexe der Dimension n —2, n —1, n sind. Wir formulieren auch
eine Vermutung fiir die kombinatorischen Strukturen dieser Komplexe fiir allgemeine &,
fiir die ein Teilbeweis durch den Hauptbeitrag gegeben ist.
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Chapter 1

Introduction

Linear programming concerns the problem stated as minimization or maximization of
a linear function over a polyhedron. The description of polyhedra by a linear system of
equations and inequalities is one of the most important topics in Combinatorial Optimiza-
tion. This method, known as Polyhedral Combinatorics, makes the linear programming
approaches applicable to the problems of the combinatorial optimization. Although the
Weyl-Minkowski Theorem (see Weyl [34], Minkowski [22]) guarantees the existence of
such a description for every polyhedron, it could be a very challenging problem to find it.

The minimization problem with a nonnegative linear objective function over a polyhe-
dron can be simplified by optimizing over the dominant or by replacing the initial poly-
hedron by another polyhedron with the same dominant but which is easier to describe,
e.g. with fewer inequalities. This follows from the fact that minimizing a nonnegative
linear objective function over a polyhedron is equivalent to minimizing the nonnegative
linear objective function over its dominant (Observation [2.1.4). For more on dominants
of polyhedra see Chapter 2] Section [2.1]

In the search for compact linear descriptions of polytopes, one can try to represent them
as affine projections of higher-dimensional polytopes (an extension), i.e., they may allow
a compact extended formulation. In practice this leads to the use of additional variables,
which may have a negative impact on the running time of algorithms for solving linear
programs. However, higher-dimensional polyhedra may have fewer facets than their im-
ages. For example, Figure[L.I]illustrates a regular octagon with 8 facets as an extension of
a cube with 6 facets. For more extensive familiarity with extended formulations of com-
binatorial polytopes we refer to Conforti, Cornuéjols, and Zambelli [4], Pashkovich [25].

Finding compact extended formulations is of great importance for Linear Programming
since they allow to formulate corresponding optimization problems as linear programming
problems of small sizes, i.e., with small number of inequalities. It is even more important
to know how to get small extension formulations with a few additional variables. A nice
example of these compact extended formulations is the linear formulation of Carr, Kon-
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=
Q
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Figure 1.1: A regular octagon P as a projection of a cube Q).
(Fiorini, Kaibel, and Pashkovich [12])

jevod, Little, Natarajan and Parekh [3] for the minimum cut problem for the complete
undirected graph on n nodes (see Chapter , Section . Their formulation uses only
O(n?) variables and O(n?) constraints, which means the reduction of the number of vari-
ables by the factor n on the complete graph on n nodes, when compared with the smallest

known linear formulation for the minimum cut problem before their work (see Conforti,
Rinaldi and Wolsey [7]; Tamir [33]).

Carr, Konjevod, Little, Natarajan and Parekh specify a polyhedron P for which they
have a small extended formulation and which has the same dominant as the cut poly-
tope of the complete undirected graph. One of the key approaches in their proof is to
consider those vectors x from a polyhedron P such that there is no y in P different from
x with y < x. We define the subset of such vectors of P as the undominated set of P
and introduce this concept in Chapter [2] Section 2.2] Carr, Konjevod, Little, Natarajan
and Parekh did not work out this concept, they argued their result in a different way by
giving two proofs. In the first proof they use the graph-theoretical notion of splitting off
(see Frank [15], Lovész [21]). The second proof shows how an integral solution can be
reconstructed from any optimal fractional solution what makes possible the recovery of
a convex combination of cuts dominated by any given feasible fractional solution to the
linear program.

In Chapter [2] we examine the structure and general geometrical properties of the un-
dominated set. One of the obtained results is that the undominated set of a polytope
is contractible (Corollary . Despite the simple topological structure, however, their
geometry can look quite complicated, as one can see from the three-dimensional examples
in Section Additionally, we obtain that the undominated set of a polytope is a poly-
hedral complex (the undominated complex), formed by those faces that are also faces of
the dominant, or, equivalently, the bounded faces of the dominant. Two polytopes in the
nonnegative orthant have the same dominant if and only if their undominated sets are
equal. In order to show how this characterization can be applied we rewrite in Chapter [1]

2



1.1. PRELIMINARIES

Section the second version of Carr’s, Konjevod’s et al. proof in terms of the undomi-
nated set.

Minimizing a nonnegative linear objective function over the dominant of the cut polytope
of a graph is equivalent to finding a cut of minimum capacity in the graph. Neverthe-
less, a description by a finite system of facet-defining inequalities and a structure of the
faces for the dominant of the cut polytope are not known. According to blocking polarity
(see Schrijver [27], Section 5.8) the vertices of the Subtour Elimination Relazation of the
Graphical Traveling Salesman Polyhedron yield an irredundant description of the domi-
nant of the cut polytope. Hence, if we know a facet description of the dominant of the cut
polytope then we know a description of the vertices of the subtour elimination relaxation
(for detailed information we refer to Conforti, Fiorini, and Pashkovich [6]). This is one
reason why the dominant of the cut polytope is of interest.

In this thesis we examine the combinatorial structure of the bounded faces of the dom-
inant, i.e., the undominated complex, of certain cut polytopes. We study the cut poly-
topes which are the convex hulls of those cuts in the complete undirected graph on nodes
{1,2,...,n} that separate at least one of the nodes 1,2,...,£ from node n. We define
these cut polytopes as the [{]-n-cut polytopes.

The main part of this thesis, Chapter |3 is devoted to the undominated complexes of
the [¢]-n-cut polytopes for the complete graph on nodes {1,2,...,n}. The main contri-
bution of this thesis is the elaboration of the vertex set description of the facets of the
undominated complexes of those cut polytopes for € = 1, 2, 3. It turns out that those
complexes are pure simplicial complexes of dimension n — 2, n — 1, n, respectively. In
Section we consider the undominated complexes of the [¢]-n-cut polytopes for the
complete graph on n nodes for general £&. We find some faces of those complexes and
provide Conjecture for the complete description of their combinatorial structure,
which was proved by the main contribution for the cases £ =1, 2, 3.

All images of undominated complexes (undominated sets) provided in Section were
made using Polymake in a collaboration with Kiryl Kukharenka. In Appendix [A] we
present the program code of finding and visualization of the undominated complex of a
three-dimensional polytope. Appendices [B] and [C] include additional lemmas which give
a detailed proof for the results used in Lemma and Proposition [3.7.1] respectively.
Derivation of auxiliary results we collect in appendices for the sake of readability.

1.1 Preliminaries

This thesis borrows a lot of definitions, notation, concepts and statements from two areas
of mathematics: convex geometry and combinatorial optimization. To make this work as
self-contained as possible we introduce some basic facts in this section.
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1.1.1 Basic facts of Convex Geometry

A polytope P C R" is the convex hull of a finite set X = {x1, 29, ..., 2, }, m € N of points

in R”, i.e.
P::conV(X):{Z)\ixi: Z/\izl’ Al,...,)\mZO}. (1.1)
i=1 i=1

In turn, a polyhedron P C R" is an intersection of finitely many closed halfspaces in R"”
and can be expressed as the Minkowski sum of the convex hull of a finite point set X C R"
and the cone generated by a finite set of vectors Y C R", i.e.

P = conv(X) + cone(Y) (1.2)
q

where cone(Y) == S> Ayt Y, Y €Y, A1, N > O} (see Conforti, Cornuéjols
i=1

and Zambelli [5], Theorem 3.13).

For a polyhedron P C R™ we define any intersection of P with the boundary hyper-
plane of some affine halfspace containing P as a face of P. We consider the empty set
and the polyhedron P itself to be faces of P as well. A vertex of P is a face of dimension
zero; and a facet of P is a face of dimension dim(P) — 1, i.e., an inclusion-wise maximal
face different from P. A hyperplane that contains a facet of P (but not P itself) we call
a facet hyperplane of P.

Example 1.1.1. Let Px C R3 be the polytope and Py C R3 be the polyhedron as in
Figure and Figure respectively. Then, Px and Py can be represented as follows:

Py = conv(X),

(1.3)
Py = conv(X) + cone(Y),
where X = {x1,29,..., 710} CRY, Y ={y1,92,...,y5} CR3. As we can see, the polytope
Px has 10 vertices and 7 facets, the polyhedron Py has 5 vertices and 6 facets.

Every polytope P C R™ can be described by the Weyl-Minkowski Theorem (see
Weyl [34], Minkowski [22]) as the solution set for a system of linear equalities and in-
equalities where the number of inequalities is equal to the number of facets of P. Thus
polytopes are special kind of polyhedra, but not all polyhedra are polytopes, namely the
Weyl-Minkowski Theorem for Polytopes (see Conforti, Cornuéjols and Zambelli [5], Corol-
lary 3.14) states that every polytope is a polyhedron, and only every bounded polyhedron
is a polytope.

The Farkas’” Lemma gives a characterization if a system of linear inequalities is

feasible (it has at least one solution). There are several equivalent variants of this lemma.
Lemma [L.1.2] below is an affine version of Farkas’ Lemma.

4
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Figure 1.2: A polytope Px. Figure 1.3: An unbounded polyhedron P .

Lemma 1.1.2 (Farkas’ Lemma; Schrijver [26], Corollary 7.1h).

Let Ax < b be a feasible system of linear inequalities and let (o, z) < 5 be an inequality
that holds for each x with Az < b. Then for some ' < [ the inequality (o, z) < ' is a
nonnegative linear combination of the inequalities in the system Ax < b.

The recession cone of the polyhedron P is defined as
rec(P):={yeR": x+ye Pforal zeP} (1.4)
and the normal cone of a polyhedron P at € P is defined as
Nz(P):={yeR": (y,z—1) <0 for all x € P}. (1.5)
The normal cone to a polyhedron P at a face F' we define as

Np(P) := (] Na(P). (1.6)
ZeF
The convex hull of any £+ 1 affinely independent points in R” with k£ < n is said to
be a simplez of dimension k. A simplicial complex (see Chapter , Section [2.3.3)) is a finite

non-empty collection of simplicies § in R™ such that for all S € § each face of S is also in
S, and for any two simplicies S, Sy € S we have that S1M.55 is a face of each of S7 and 55.

For more detailed information from polyhedral theory we refer to the books of
Griinbaum [I6], Schrijver [26] and Ziegler [35]. Moreover, additional important informa-
tion can be found in the mentioned references throughout all this thesis.

1.1.2 Basic facts of Combinatorial Optimization

An undirected graph is a pair G = (V, E) consisting of a finite set V and aset £ C (%) of
unordered pairs from V. The elements of V' we call the vertices, or the nodes, of GG, the

5



CHAPTER 1. INTRODUCTION

elements of E are called the edges of G. The complete undirected graph K, = ([n],
on n nodes [n] := {1,2,...,n} is an undirected graph where any two vertices v, w €
v # w are adjacent, i.e., for all v, w € [n| with v # w we have {v,w} € E,,.

Ey)
[n],

In an undirected graph G = (V, E) a sequence {{vo,v1}, {vi,ve},. .., {vg—1,vk}},
k > 1 of edges of GG is said to be a vo-vg-path if all vy, vy,...,0p € V are pairwise distinct.
If for each pair s, t € V there is a s-t-path in G then a graph G is called connected.

A directed graph is a pair D = (V, A) consisting of a finite set V' and a set
ACV xV\{(v,v): veV} (1.7)

of ordered pairs from V. The elements of V' we call the vertices, or the nodes, of D, the
elements of A we call the arcs of D.

In a directed graph D = (V, A) a sequence {(vo,v1), (v1,v2), ..., (Vg—1,0)}, K > 1
of arcs of D is said to be a (directed) vo-vg-path if all vy, vy,...,v, € V are pairwise distinct.

In an undirected graph G = (V, E) a (proper) cut is an edge set 6(S) with @ # S G V

where
0(9) = {5} € B: [{i, 5} n S| =1} (1.8)
If se€ Sandt¢ S then §(S) is an s-t-cut of G for s, t € V.

In a directed graph D = (V, A) a (proper) directed cut is a set
§5(8) = {(v,w) € A: ve S,wé¢ S} (1.9)
For s, t € V an s-t-cut in D is a cut §°“(S) for some S C A with s € S and ¢ ¢ S.
Let G = (V, E) be an undirected graph and let V be a set of subsets of V. Then the
cut-incidence matrix of V is defined as the matrix ©y = (0x,)xey ccr Where

1, ifeed(X),
9Xe = .
= Yo, ifedd(x).

A network is a pair (D, ¢) consisting of a directed graph D = (V, A) and nonnegative
arcs capacities c: A — R.. A flow in (D, ¢) is a function f : A — Ry (or briefly f € R%)
with f(a) < ¢(a) for all @ € A. For a vertex v € V we define the excess of a flow f at

veVvia
ex(v) = > fla)— > fla (1.11)

ae(szn ’U) aeéout(v

where §°“(v) := {(v,w) : w €V, (v,w) € A} and §*(v) := {(w,v) : w €V, (w,v) € A}.
For s, t € V an s-t-flow is a flow f € RY satisfying ex;(s) < 0 and ex;(v) = 0 for all

(1.10)

6



1.2. SMALL LINEAR FORMULATION FOR THE MINIMUM CUT
PROBLEM

v e V\{s,t}. The value of an s-t-flow f is defined as value(f) := —exy(s), i.e.

value(f Z f(a Z f(a). (1.12)

a€dout(s) a€din(s)
Theorem below is the central result of network flow theory.

Theorem 1.1.3 (Max-Flow Min-Cut Theorem; Dantzig and Fulkerson [g]).
In a network the mazximum value of an s-t-flow is equal to the minimum capacity of an
s-t-cut.

An alternative proof of the Max-Flow Min-Cut Theorem was given by Elias, Feinstein,
and Shannon [I1].

For more detailed familiarity with facts from combinatorial optimization we refer
to Korte & Vygen [20], Schrijver [27], Schrijver [28] and Schrijver [29]. Furthermore, ad-
ditional important information can be found in the mentioned references throughout all
this work.

1.2 Small Linear Formulation
for the Minimum Cut Problem

Let G = (V, E) be an undirected graph and ¢ € R¥ be a capacity vector with nonnegative
edge capacities ¢, for each e € E. The problem of finding a cut of minimum total capacity
(sum of the capacities of the edges in a cut) in a connected graph G is called the minimum
cut problem, i.e.

min{(c, x(6(5))) : 0 # S GV} (1.13)

The minimum cut problem is polynomial-time solvable (see Korte and Vygen [20],
Chapter 8.7). Before Carr’s, Konjevod’s et al. work [3], the smallest known linear formu-
lation for this problem required O(|V||E|) constraints and variables (see Conforti, Rinaldi
and Wolsey [7]; Tamir [33]). Their formulation beats this bound, in a way that it has a
variable for each edge and uses only |V| — 1 additional variables and O(]V[?) constrains.
An immediate consequence of their result is the following compact linear formulation with
O(|V|?) constrains and O(]V|?) variables:

minimize Z Ci,jTi,j

ijeE

subject to: Yoozi=1 1.14(1)
2<i<n

Tik T Tjk 2137;73'4‘22]@ V’Lj S E,k'e VZ,j <k (1.14 2) (114)

xi’kz,zk V’ZE‘/,ICEVZ</{Z 1143)

i >0 Vij € E T.1414)

%> 0 Vi e V\{1} T14,5)
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Carr, Konjevod, Little, Natarajan and Parekh specify a polyhedron for which they
have a small extended formulation and which has the same dominant as the cut polytope
of the complete graph on n nodes. The key approach in their proof is to consider those
vectors = from the polyhedron such that there is no y in P different from z with y < z.
We define the subset of such vectors as the undominated set. We introduce this concept
in Chapter [2| Section and prove that in the nonnegative orthant two sets have the
same dominant if and only if their undominated sets are equal. To show how to apply
this characterization we rewrite below one of two proofs given in Carr, Konjevod et al. [3]
using our notion.

We denote the set of points satisfying system (1.1411)-(1.14[5) by Prp, i.e.

n
E Z; = 1,
1=2

(1.15)
Tip + T > x5+ 22, forall 4,5 <k, (L.151)
Tik > 2k for all i <k, (1.152)
z>0 }.

The cut polytope P.,; for the complete undirected graph K, on n nodes is the convex
hull of the incidence vectors of all edge sets of nonempty cuts in K, (see Chapter ,
Section for more on the cut polytope). We further define also

P.eut := conv{x"*(S) : 0 £ S C [n] \ {1}} (1.16)

Theorem 1.2.1. The dominant of the polytope P,... is equal to the dominant of the
polytope which is defined by Prp.

Proof. Due to P,y € Prp and Remark (ii) the dominant of the cut polytope is
equal to the dominant of the polyhedron which is defined by P if and only if

U(Prr) € P.ewt € D(Ppp) (1.17)

where U(Prr) (the undominated set of Prp) and D(Ppr) (the dominant of Ppp) are
defined in Chapter [2] Sections [2.1] and [2.2], respectively. Thus it suffices to show that

U(PLF> g chut- (118)
Lemma 1.2.2. If (z,2) € U(Prp) then x;; <z, + xj), for all i,j,k € [n].

Proof. Let (z,2z) € U(Prr). Choose j such that j is minimal with x;; > x; + 2, and
i < j. As x;; > x4z implies k < j, we attain z; < xp; < 2y + 24 < 245. Hence due
to (z,z) € U(Ppp) there is some p < j with

Tip = g5 + Tp; — 2Zj > Tk + ik + Tp; — 2Zj Z Tk + Tkp

what contradicts the minimality of 7. O]



1.2. SMALL LINEAR FORMULATION FOR THE MINIMUM CUT
PROBLEM

Lemma 1.2.3. Let (x,2) € U(Prr), (¢/,2') € Prp, and

1
(7,2) = 1 ((z,2) = A(2,2) € PLp with 0< X< 1. (1.19)

Then (Z,2) is a point of U(Prr) and (2',2') € U(PLF).

Proof. The statement follows from Lemma [2.3.1} as if a convex combination of two points
of a polyhedron is in a certain face then both those points are as well. O

We continue the proof of Theorem by proving expression (|1.18)).

Let (z*,2%) € U(Prp) with p = max{i : 2 > 0} and S* := {u} U{i > p: z}, = 0}.
Considering in (1.15[1) all triangle inequalities with u, Lemma implies that zj; =0
V{i,j} € E(S*), xj; >0V {i,j} € 6(S*) and Vi ¢ S* 35; > 0 Vj € S* such that §; = z7;.

Let A := min ({z;} U{d; :i ¢ S*}) > 0. Then A < 1 due to the definition of Ppp.
If A =1 then (z*,2*) € x**(S*) € P,eus- Thus it remains to consider 0 < A < 1.

It is enough to show that (Z,z) := (2%, 2*) — A - x™*(S*) satisfies the inequalities
(1.15/1) and .2). Because then 15 (7, %) € Prp, hence in U(Ppp) due to Lemma,
with support strictly contained in the support of (z*, z*), thus by induction in P,.,;, which
by (27, 2*) € conv { 25(T, %), x"*(5*) } yields (2%, 2*) € Picw.

First, it is easy to see that (1.15/2) holds. Indeed, for i < j with {i,5} € §(S*)if j = p
then 7;; — 2}; = A = Z;; — 2}, otherwise j > p since {i,j} € 6(5*) and zj; = z}; = 0 < Ty,
To show ({1.15/1) we choose j such that j is minimal and there exist i, k with i < j < k and
Tij > T, + T, — 2Z;. Clearly k > p (otherwise 7;; = Ti, Tik = Ty, Tjp = Ty, 2k = 25).
Furthermore, k # 1 (otherwise T;; = Tjj, Tig + Tjp — 225 = Ty + Thp, — 22;). Hence k > p
what implies Z;, = 0. Thus T;; > T;, + Tj; what implies that {7, k}, {j,k} € d(S*), ie.

{,51 ¢ 0(57).

Therefore Ty, = xj;, Tix = 2, — A and Ty, = xj;, — A, thus we have z}; > a7y +x7, —2A > 0.
In particular, due to {7, j} ¢ 6(S*) and zj; > 0 we have i,j ¢ S* and k € S*\ {u} thus
T = 0 = xj,, ¥y = 0; = xj,, from which we further deduce zj; > xj, + @}, — 2A >
x, + @, — 2z, what implies j > p and thus z7; > 0 = z].

By the minimality of (z*, 2*) these hence must be some p < j (p # i) with

o ¥ o R *
xT; —xij+xpj Z xz]—l—:z:m

ip j
Lemma [[.2.2] (120)

> x5 — 22+ 2, > Tip + Tpp — 2X = Tig + Tpr — .
If p ¢ S* then the inequality yields 7;, = Ty > Tk + Ty — A =Tip 4+ Tp, = Tigg + Tpi, — 2%,
(Zr = 0) what contradicts the minimality of j. If p € S* we have z}; > ¢; + J; — 2\ and
0; = xj; + 0; implying d; — 0; > 0; +0; — 2, thus A > d; contradicting the choice of A. [
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Chapter 2

Undominated Sets and
some (Geometrical Properties

This chapter is devoted to the dominants and the undominated sets of polyhedra. We
start with a definition and some properties of the dominant of a polyhedron. Then, in
Section [2.2] we define the undominated set and elaborate on its relation to the dominant.
Furthermore, we present some geometrical properties of undominated sets of polytopes.

2.1 Dominants of Polyhedra

In this section and further below R” := {z € R": = > 0}.

For any subset X of R" we define
D(X):= X +R]. (2.1)

This is the dominant of X. Thus the dominant D(X) of X is the set of all vectors y € R”
such that y > x for some x € X, i.e.

D(X)={yeR": Jx € X withy > x} (2.2)

and it is always full dimensional (if X # (). For example, Figure illustrates the dom-
inant of some set P C R2.

Observation 2.1.1. For X, Y € R™ we have:
(a) D(XUY) = D(X)UD(Y),
(b) D(XNY)C D(X)ND(Y),
(¢) D(X x Y) = D(X) x D(Y),
(d) D(conv(X)) = conv(D(X)).

11
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Figure 2.1: The dominant of P.
The set P is in green, and the dominant of P is in red.

Proof. Properties (a)-(c) follow immediately from (2.1)) and (2.2]).

Let us prove property (d). From ({2.1)) we have
D(conv(X)) = conv(X) +R", conv(D(X)) = conv(X + R%). (2.3)
Let > Az’ + v € D(conv(X)) where 2* € X, \; > 0 with >-\; = 1 and v € R”. Then

3
we obtain

Z a4 v = Z Ai(z" +v) € conv(X + R") = conv(D(X)). (2.4)

Thus, the inclusion D(conv(X)) C conv(D(X)) holds.

Now let Y \i(z' 4+ v') € conv(D(X)) where z* € X, \; > 0 with >_)\; = 1 and

= R?. Then we have
D X+ =) Na' + D A’ € conv(X) + R = D(conv(X)) (2.5)

what proves the inclusion conv(D(X)) C D(conv(X)).
[

Remark 2.1.2. Note that, in (b) the reverse inclusion is not true in general. For example,
if X, Y CR™ with X, Y # 0 such that X NY =0 then D(X NY) = 0 in contrast to
D(X)ND(Y) #0.

Observation 2.1.3. Let X CR"™ and Y C R™. Then
conv(D(X)UD(Y)) = D(conv(X UY)). (2.6)

12
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Proof. The proof follows from properties (a) and (d) of Observation [2.1.1} O

The next observation shows that minimization problems over a polyhedron can be
solved over its dominant for linear objective functions with nonnegative coefficients only.

Observation 2.1.4. Let P C R"™ be a polyhedron. Then

D(P)={yeR": (a,y) > inlf__,<a,x> for all a € R }. (2.7)
S
Proof. First, we observe that

D(P)C{yeR": (a,y) > irellf;(a,x) for all a € R} } (2.8)

since for each § € D(P) there exists some x € P such that § > « and then for all a € R"}
we have

{a,9) = (a,2) = inf{a, z). (2.9)

To show the reverse inclusion, we suppose that there exists y* € D(P) such that

y* is not contained in the right-hand side of . Then by a separation theorem (see

Stoer and Witzgall [32], Corollary (3.3.8)), since D(P) is closed and convex (in fact: a

polyhedron), there is some (a,y) > 8 with a € R%, 5 € R valid for D(P) with (a,y*) < 8,

what leads to a contradiction. Hence the right-hand side of equation ([2.7)) is contained in
D(P).

O

2.2 Undominated Set

Let X be a subset of R". We say that x € X is an undominated point of X if ' < x and
2’ € X imply «’ = z. The set of all undominated points of X we define as U(X) and call
it the undominated set of X. For example, Figure illustrates the undominated set of
some set P C R2.

A face of X containing only undominated points of X is said to be an undominated face of
X. In addition, the undominated complex of X is the set of all faces of the undominated
set of X and denoted by U.(X). Note that the undominated set is the support of the
undominated complex, i.e., the union of all the faces in the complex.

Observation 2.2.1. For X,Y € R" we have:
(o) UXUY)CUX)UU(Y),
(b) UXNY)2UX)NU(Y),
(c) UX xY)=U(X) xU(Y),

13
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U(P)

Figure 2.2: The undominated set of P.
The set P is in green, and the undominated set of P is in blue.

(d) if X is a subset of Y then U(Y)NX CU(X),
n particular
U(conv(X))NX CU(X).

Remark 2.2.2. In general the undominated set of X € R™ is not contained in the un-
dominated set of the convex hull of X, i.e.

U(X) € U(conv(X)).

Proof. Let X C R? be the set as in Figure a). Then we can see that the undominated
set of X (see Figure [2.3|b)) is not a subset of the undominated set of the convex hull of

X (see Figure2.3]d)). O

Below we provide some properties of the dominant and the undominated set which
show relations of the undominated set to the dominant.

Corollary 2.2.3. Let X C R" be closed and such that X N (R™\ R%) bounded. Then for
all x € X there is & € U(X) such that & < x, in particular

D(X) = D(U(X)). (2.10)

Proof. Since X N (R™\R?%) is bounded there is z € R™ such that X N (R"\R7}) C 2+ R7.
Let X=* = {y € X : y <z} for z € X. Then the set X= is bounded because for all
y € X=* x € X we have z < y < 2 and closed as the intersection of the closed set X
with the halfspaces of all (y1, s, ..., yn) defined by y; < @y, ..., y, < x,. Therefore X=*
is compact and choosing 7 as an optimal solution to min{(1,y) : y € X=*} completes the

proof.
O

Remark 2.2.4. [t is important that X N (R™\R") bounded because for X =R" we have
UX)=0, D(X)=R" however D(X)# DU(X))=10.

14
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U(X)

a) b)

d)

Figure 2.3: Noninclusion of the undominated set of X
in the undominated set of the convex hull of X.

Corollary 2.2.5. If two sets X1, Xy C R" have the same dominant then their undomi-
nated sets are equal as well.

Proof. Let D(X;) = D(X5) thus
V:Ul € X1 E|¢2($1) € X2 with ¢2($1) S T (211)

and
VIQ € X2 Elqbl(l'g) S X1 with ¢1([L’2) S ZIo. (212)

Now let 1 € U(Xy). In ¢1(p2(x1)) < ¢a(x1) < z1 both inequalities are tight due to
1 € U(X}), in particular x; = ¢o(z1) € Xy. For y, € Xy with yo < 27 we have that
both inequalities in ¢1(y2) < yo < x; are also tight due to x; € U(X7), thus we conclude
x1 € U(Xy). Similarly we find U(X3) C U(X)).

]

Remark 2.2.6. Thus for X1, Xy CR" closed such that X1 N(R™"\R") and X, N (R™\R?)
are bounded we have:

(i) D(X2) = D(Xs) if and only if U(X,) = U(Xs);
(i) D(X1) = D(Xs) if and only if
U(X)) C D(Xs) and U(Xs) C D(X,).

15



CHAPTER 2. UNDOMINATED SETS AND GENERAL GEOMETRICAL
PROPERTIES

Example 2.2.7. If X; =0 and X, = R™ we have
UX1)=U(Xs) =0 however D(X;)# D(X3) (2.13)
since D(X1) =0, D(X3) = R".

2.3 General Geometrical Properties
of Undominated Set

Let Cps(P) denote the set of all faces F' of a polyhedron P C R™ such that the normal
cone Np(P) intersects R%, := {z € R" : z < 0}, i.e.,

Cr(P) :={F € faces(P) : Np(P)NRZ, # 0}. (2.14)

For example, Figure shows the undominated set U(P) of some polytope P C R? with
the normal cones of P which have a non-empty intersection with the negative octant R2,,.

U1 + Nvl(P)
(%) + NUQ(P)

x + Ny (P)

Figure 2.4: Normal cones of P C R? which intersect R%,,.

Lemma 2.3.1. For a polyhedron P C R" the undominated set U(P) is the union of all
faces F of P such that the normal cone Ng(P) has a non-empty intersection with the
negative orthant R7Z.

Proof. Let first F' be a face with some ¢ € Np(P) with ¢; < 0 for all i. For every z* € F
we have (c,z*) = max{(c,z) : © € P}, thus for each x € P with x < z* we have x = z*
(as otherwise (¢, x) > (c,z*)).
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Conversely, for * € U(P) let F be the smallest face of P containing z*. It is clear
that N,«(P) = Np(P), hence it suffices to exhibit some vector ¢ € N,«(P) NRZ,.

Due to z* € U(P) for any x € P with < z* we have —z < —z*. Then by Farkas’
Lemma for all ¢ there exists (a', 5;) € R"™ and 7' € R" such that (a’,z) < f3; is
valid for P and the inequality —x; < —z is the sum of (a’,x) < ; and (7%, z) < (v, x*).
Then we have

— € = ai+7i7 _a:;‘k :ﬁl+ <")/Z,.1'*> (215)
what implies ' ' .
at=—e; —°', p[i=(—e —7" 12" (2.16)
Thus we can choose ¢ := Y a’ for our purposes. Indeed, ¢; = —e; — " < 0 for all ¢ and

=1

n n

(c,x) = Z(—ei — 5 ) = Z(aﬁx) < Zﬁi (2.17)

i=1 i=1

is valid for P with

n n

(c,x*) = Z(—ei — ATt = Z(ai, ) = Zﬂz (2.18)
i=1 i=1
[
Lemma 2.3.2. For each polytope P C R™ we have
Cy(P) = faces(D(P)) Nfaces(P) = {F € faces(D(P)) : F bounded}. (2.19)

Proof. First we show that Cyp/(P) is contained in the set defined by the second term of
(2.19). Let F' € Cp(P) such that (a,xz) > 5 defines F as a face of P with a € RZ, 5 € R.
Now we want to show that the face F' of D(P) which is defined by (a,z) > 3 is equal to F'.

Clearly, F' C F. Now let y € P,z € R?} such that y + 2 € F then
p={a,y+ z) = (a,y) + (a, z) where (a,y) > [ and (a, z) > 0. (2.20)

Hence (a,y) = § and since a € R%; and z > 0 we have z = 0. Therefore y+z=y € F
what implies F' C F.

It is clear that the set defined by the second term of (2.19) is contained in the set
defined by the third term of (2.19) since each polytope is a bounded polyhedron.

It remains to prove that the set defined by the third term of (2.19)) is contained in
Cy(P). It follows from Lemma since all faces of D(P) are defined by inequalities
(a,xz) > B with a > 0 and if such a face is bounded, no a; can be 0 (as R?} C rec(D(P))).

[
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From Corollary [2.2.3] Observation and Lemma [2.3.1) we obtain the following

observation.

Observation 2.3.3. For a polyhedron P C R™

pP)= |J D). (2.21)

FGC}M(P)

Remark 2.3.4. Fach F € Cp(P) is a face of its dominant D(F).

2.3.1 Contractibility

Let X be a non-empty set in R". If each closed curve in X can within X be contracted
to a single point within X then X is said to be contractible.

Lemma 2.3.5 (Miller and Sturmfels [23]). Let F' be a face of a polytope Q. If K is
the subcomplex of bd(Q) consisting of all faces of Q) that are disjoint from F, then K is
contractible.

Theorem 2.3.6. The union of all bounded faces of a convex pointed polyhedron P in R™
18 a contractible topological space.

Proof. Since the polyhedron P is pointed rec(P) is also pointed what implies that the
polar recession cone of P is full-dimensional.

Let H= be a hyperplane such that H< is a halfspace with normal vector from the
interior of the polar recession cone of P that contains all vertices of P. Then PN H=
is bounded and the convex hull of the vertices of P lies strictly on the one side of this
hyperplane H=. Now we cut the unbounded polyhedron P with the hyperplane H~.
Then the unbounded faces of the polyhedron P are exactly the faces of P that intersect
this hyperplane H=. From Lemma follows that if we take the intersection of P with
H= as the face F' then K is exactly the union of all bounded faces of P which build the
subcomplex of bd(P) consisting of all faces disjoint from F' and K is contractible. n

Corollary 2.3.7. The undominated set of a polytope P C R"™ is contractible, and thereby
connected.

Proof. From Lemma we have that all faces of the undominated set of a polytope P
are the bounded faces of its dominant which are also faces of the P. Thus Theorem [2.3.6]
implies that the undominated set is contractible, and thereby connected. O

In the next subsection we provide another proof that the undominated set of a
polytope P C R" is (path-)connected (for all p;, po € P there is a path in P from p; to
p2) and for n < 3 also contractible. Our proof works specifically for the undominated set
and not directly for any bounded subcomplex of an unbounded polyhedron.
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2.3.2 Connectedness

Let X C R™. We say that a point z is a relative interior point of X if there exists some
e > 0 such that B.(x) Naff(X) C X, where aff(X) is the affine hull of X and B.(z) is
the ball of radius € centered at x. The set of all relative interior points of X is called the
relative interior of X and denoted by relint(X), i.e.

relint(X) :={z € X : Je >0 with B.(z)Nnaff(X) C X} (2.22)

where
B.(zx) ={yeR": ||y — z|| <€},

aff(X) := {zm:/\ixi: meN, z; € X, f:/\i _ } (2.23)

From Ziegler [35] we attain that every polytope P C R™ decomposes into the disjoint
union of the relative interiors of its faces

P= |4 relint(F). (2.24)
F face of P
Lemma 2.3.8. If ) C R" is a polyhedron, and H, K are faces of polyhedron @) such that
relint(H) N K # () then H C K.
Proof. Let v € relint(H) N K and
Fp:={F € faces(Q) : H C
Fx :={F € faces(Q) : K C
Fo:=A{F € faces(Q) : v € F}.

From v € K it follows that every face that contains K also contains v, hence Fx C F,.

: (2.25)

Due to v € H every face that contains H also contains v hence Fy C F,.

Let L be a face of ) that contains v, i.e. L € F,. Then the intersection of L and H
is not empty since it contains v. Each face of () intersecting with a face of H gives a face
of H and the intersection of two faces of a polyhedron is a face of both. Thus LN H = H
or the intersection of L and H is an edge of H. If LN H = H then L € Fy what implies
F, € Fy. If LN H is an edge of H then v is contained in this edge since v € L, but
v € relint(H). Thus we have F, C Fy and consequently Fy = F,.

It is known that every face of a polyhedron @) is the intersection of all faces of @
that contain it. Thus we have
fK gF’u

H= (Y F=()F < () F=K (2.26)

FeFy FeF, FeFk

what complete the proof.
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Theorem 2.3.9. For any polytope P C R" the undominated set U(P) is (path-)connected.

Proof. Suppose that x, & € U(P) with « € F, & € I such that F, F € Cj;(P). From the
definition of Cy/(P), see (2.14]), we have

Cu(P) :={G € faces(P) : No(P)NRZL, # 0}. (2.27)

It has to be shown that there is a path between x and Z which only goes through faces
of U(P). For this it should be find a sequence of faces F' = Gy, Ga, ..., Gy = F € Cp(P)
withz e G, 7€ G and G;NGiyqy #Dfori=1,...,k—1.

Let y € NrNRZ, and g € Ny NRZ,. Then y is from the normal cone to P at the
face F' which contains z and g is from the normal cone to P at the face F' which contains
z. Let us consider s = conv{y, 7} C R%,

Since P is a polytope then the normal cones at faces of P cover all R"

R'= |J Nw (2.28)

Fefaces(P)
F#0,P

and, furthermore, the space R™ \ {0} is decomposed into a disjoint union of the relative
interiors of normal cones at faces of P

R\ {0} = |4 relint(Np). (2.29)
Fefaces(P)
F+£0,P
Then for each point on the line segment s we can uniquely define a normal cone in which
relative interior it is. On this way we obtain s separated into convex parts since a relative
interior of normal cone is convex. This mean that the intersection this line segment with
every relative interior of the normal cone will be a (one-point or longer) interval.

Let the relative interior of normal cones of faces G; € Cp(P), i = 1,..., k, separate
the line segment s into parts in the following way

relint(Ng, ) N's = [y, v1),
relint(Ng,) N's = y1,
relint(Ng,) N s (?Jl, Y2),
relint(Ng,) N's =
relint(Ng,) N's (92, Ys),

relint(Ng,_,) N's =y,
relint(Nz) N's = relint(Ng, ) N's = (yi, y]
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what implies by Lemma that

NG2 gNGla NGQgNG'g
Ng, € Ng;,  Ng, € Ng;,

NGk71 - Nkazﬂ NGkA - NGk'

From Ng, € Ng, and Ng, C Ng, follows Gy C G2 and G5 C G, respectively.
Similarly, since Ng, € Ng,_, and Ng, € Ng, , we have G;_1 C G;, Giy1 C G for
i=3,...,k—1. Thus we obtain the sequence F = Gy, Gy, ..., G = F of faces of U(P)
with x € Gy, 7 € Gy and G; NGy, # O for i =1,...,k — 1 what complete the proof.

[

Theorem 2.3.10. For a polytope P C R"™ the complement of the undominated set in the
boundary of P is (path-)connected.

Proof. Suppose that the complement of the undominated set in the boundary of polytope
P bd(P)\ U(P) is not (path-) connected. Then there are two points p and p from the
complement such that there is no path connecting p to p in bd(P) \ U(P).

Since p, p do not belong to the undominated set U(P) then there are two points
q, ¢ € Pwith g <p, ¢ <pandq#p, ¢§#p Wecan assume that ¢§ ¢ U(P). If ¢
would be from the undominated set U(P) then we can take as ¢ the point from the half
way between ¢ and p which is not p and less than or equal to the point p, also from the
polytope P and not from the undominated set U(P).

For a point = € P and a nonzero vector w € R™ \ {0} we define
I(x,w) =2+ \w (2.30)

with A := max{\ € R : z+ \w € P} the point at which we leave the polytope P when we
go from x in the direction w. Then for the vectors v :=p—¢>0and v:=p— ¢ > 0 we
can assume that I'(q,v) = p and I'(g,v) = p. This means that if we go from the point ¢ in
the direction v we leave the polytope at the point p. If ¢ ¢ relint(P) and I'(¢,v) =p' # p
then we can consider p’ instead of p since there is a path from p’ to p in bd(P) \ U(P)
and the point p’ ¢ U(P) because of ¢ < p/. The similar argumentation we can make for
the case I'(q, ) = p.

Choose a continuous curve parameterized from 0 to 1
a:[0,1] = P, «(]0,1]) C relint(P) (2.31)

with «(0) = ¢ and «a(1) = ¢. Consider I'(a(t),v), t € [0,1] which defines a continuous
curve in bd(P) \ U(P) connecting p to I'(¢,v). This curve lies on the boundary by the
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definition of the function I and outside of the undominated set since all points of «(t)
are less than or equal to the points of the curve I'(«(t),v) and

for t=0 I'(a(0),v)=1I(q,v)=p¢U(P),
for t=1 I'(a(l),v)=1I(q,v)¢ U(P).

Now consider the curve I'(q, (1 — t)v + tv), t € [0,1] defines a continuous curve in
bd(P) \ U(P) connecting I'(¢,v) to p. That is we stay in the point ¢ and change the
direction v to ©. The curve I'(q, (1 —t)v+1t0), t € [0, 1] goes again through the boundary
but not through the undominated set since p € bd(P) and G ¢ bd(P), see Figure 2.5

p=1I(q,v

(1 —t)v+tv)

0>0

Figure 2.5: The sketch for the proof of Theorem [2.3.10

Thus we have a connection between p and p on the boundary of the polytope P
which is outside the undominated set U(P) what contradicts our assumption. [

Remark 2.3.11. For a polytope P C R™, n < 3 the undominated set U(P) is contractible
(simply connected).

2.3.3 Pure Complex

A finite non-empty collection of polyhedra P in R" is said to be a polyhedral complex if
(1) for all P € P each face of P is also in P, and

(2) for any two polyhedra P;, P, € P we have that P; N P, is a face of each of P; and P.
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If all polyhedra in P are polytopes then P is a polytopal complex. If all faces of P
are simplices then P is a simplicial complex. A complex P is called pure if all facets of P
are of the same dimension (see Figure and Figure .

Figure 2.6: A pure complex.

Figure 2.7: A complexes that are not pure.

Observation 2.3.12. The undominated set is a pure complex for every polytope P C R2.

Proof. The proof follows from the fact that the undominated set is connected set

(see Theorem [2.3.9)). O

Remark 2.3.13. Note that this statement is not true in general. For example, in R3

we have a polytope with the undominated set whose inclusion wise maximal faces are a
triangle and an edge (see Figure @)

Figure 2.8: Example of the undominated set
of a three-dimensional polytope that is not a pure complex.
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2.4 Three-Dimensional Examples
of Undominated Complexes

The structure of the undominated complex of a polytope is not known in the general
case. However, from Corollary we have that the undominated complexes are con-
tractible. While their topological structure is rather simple we provide in this section some
three-dimensional examples which show that their geometry can nevertheless look quite
complicated. In order to obtain more information about the structure of the undominated
complex we consider also the intersection of the normal cones at the undominated faces
of a polytope P C R? with the hyperplane

H=(1,-1)={xeR*: (1,x) = —1}. (2.32)

For each face F' of a polytope P C R™ we say that Np(P) N R%, is the negative
part of the normal cone to P at face F. By Lemma the undominated complex of
a polytope P C R"™ contains those faces F' of P such that the normal cone Ng(P) has a
non-empty intersection with the negative orthant R”,. Thus, we consider only faces of a
polytope P which belong to the undominated complex of P.

Let us consider the reqular dodecahedron placed into R? such that its undominated
complex consists of three edges {1,2}, {2,3}, {4,2} and four vertices {1}, {2}, {3}, {4},
see Figure[2.9) For this polytope, the intersection of the negative parts of the normal cones
at the undominated faces with the hyperplane H=(1, —1) is four triangles corresponding to
each vertex and three segments corresponding to each edge of the undominated complex,
see Figure [2.10f We use the following notation for the unit vectors

e; =(1,0,0), ea = (0,1,0), e3 = (0,0,1). (2.33)

— 1T

Figure 2.9: Regular dodecahedron  Figure 2.10: Intersection of H=(1, —1) with
and its undominated complex. the negative parts of the normal cones at the
undominated faces of the dodecahedron.
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Example 2.4.1 (Truncated cuboctahedron).
Consider the truncated cuboctahedron with its undominated complex, see Figure|2.11. The

intersection of the hyperplane H=(1,—1) with the negative parts of the normal cones at
the undominated faces of this polytope is shown in Figure [2.13.

g
N

Figure 2.11: Truncated cuboctahedron Figure 2.12: Intersection of the negative parts
and its undominated complex. of the normal cones at the undominated faces of
the truncated cuboctahedron with H=(1, —1).

Example 2.4.2 (Elongated Pentagonal Cupola, or Johnson Solid 20).
Consider the elongated pentagonal cupola (Johnson solid 20) with its undominated com-

plex, see Figure . The intersection of the hyperplane H=(1, —1) with the negative parts
of the normal cones at the undominated faces of this polytope is shown in Figure|2.14).

Figure 2.13: Johnson solid 20 Figure 2.14: Intersection of the negative parts
and its undominated complex. of the normal cones at the undominated faces
of the Johnson solid 20 with H=(1, —1).
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Example 2.4.3 (Gyroelongated Square Cupola, or Johnson Solid 23).

Consider the gyroelongated square cupola (Johnson solid 23) with its undominated com-
plex, see Figure . The intersection of the hyperplane H=(1, —1) with the negative parts
of the normal cones at the undominated faces of this polytope is shown in Figure[2.16,

Figure 2.15: Johnson solid 23 Figure 2.16: Intersection of the negative parts
and its undominated complex. of the normal cones at the undominated faces
of the Johnson solid 23 with H=(1, —1).

Example 2.4.4. Consider a polytope P, C Ri with its undominated complex as in Fig-
ure . The intersection of the hyperplane H=(1,—1) with the negative parts of the
normal cones at the undominated faces of Py is shown in Figure[2.18

1 —cs

Figure 2.17: Polytope P, C R3 Figure 2.18: Intersection of the negative parts
and its undominated comp_leX.Jr of the normal cones at the undominated faces
of P; with the hyperplane H=(1, —1).
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Example 2.4.5. Consider a polytope P, C R3 with its undominated complex as in Fig-

ure . The intersection of the hyperplane H=(1,—1) with the negative parts of the
normal cones at the undominated faces of Py is shown in Figure[2.20.

4-
2
1
3 v
5) —E€3
Figure 2.19: Polytope P, C R? Figure 2.20: Intersection of the negative parts
and its undominated Com_plex. of the normal cones at the undominated faces

of P, with the hyperplane H=(1, —1).
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Chapter 3

Undominated Complexes
of Cut Polytopes

In this chapter, we present the main results of our work. We start by a definition of the
cut polytope and by presenting the description of the dominant for the s-t-cut polytope.
Then, in Section [3.3], we define the S-n-cut polytope for the complete undirected graph K,
and provide characterizations of the combinatorial structures of the undominated com-

plexes for the cases S = {1}, S = {1,2} and S = {1,2,3} in Sections [3.4] and [3.6

respectively. We finish this chapter by considering the general case. We find some faces
of the undominated complex of S-n-cut polytope with S = [¢], £ =4,...,n — 1. We also
propose a conjecture for the combinatorial structures of the undominated complexes of the
[€]-n-cut polytope for general £, for which a partial proof is given by the main contribution.

3.1 Cut Polytope

In this section and further below we consider only the case of an undirected graph unless
otherwise specified.

For a graph G = (V, E) the cut defined by S C V is

0(5) = {5} € E: [{i, i} n S| =1} (3.1)

A cut §6(S) in G is called a proper cut of G if ) # S G V. Then the cut polytope
P..:(G) C R¥ is the convex hull of the set of characteristic vectors of all edge sets of
proper cuts of G, i.e.

Pout(G) = conv{x(6(5)) € {0,1}7 : 0 £S5 SV} (3.2)

where the vector x(8(S)) € {0,1}* for some @ # S G V is defined by x(6(5))e = 1
for e € 6(5) and x(6(5))e = 0 for e € E\ §(S). Here, G = K,, = ([n], E,) with
[n] :={1,2,...,n}, will always be the complete undirected graph on n nodes. The cut
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polytope for the complete graph K, has 2"~! — 1 vertices and its dimension is |E| = (%).

For example, consider the complete graph K3 = ([3], F3) on three nodes {1,2,3}.
For this graph we have four different proper cuts. Let (z12, %13, Z23) be the order of the
coordinates where z;; corresponds to the edge between nodes ¢ and j. Then the set of
characteristic vectors of all proper cuts of Kj is

{(0,1,1), (1,0,1), (1,1,0) }. (3.3)

Figure shows that the cut polytope P.,(K3) for the complete graph K3 is a triangle,
the two-dimensional polyhedron with three facets.

X23

(0,1,1)

Figure 3.1: Complete graph K3 and P, (K3).

Fiorini et al. [I3] have shown that there is no polynomial-size extended formula-
tion for the cut polytope. The currently best known lower-bound is 1.5" (Kaibel and
Weltge [17]). Note that the correlation polytope, called also Boolean quadric polytope,
and the cut polytope are linearly isomorphic according to de Simone [10].

3.2 Dominant of the s-t-Cut Polytope

Let G = (V, E) be an undirected graph and s, t € V| s # t. An s-t-cut of G is a cut
5(S) of G with s € S and t ¢ S. Then the convex hull of the set of characteristic vectors
of edge sets of all s-t-cuts in G is the s-t-cut polytope Ps_; .i(G) of the graph G. This

polytope is hard to describe on the contrary to its dominant since finding a maximum-size
s-t-cut in G is NP-hard (see Schrijver [27], Theorem 75.1).

For the dominant of the s-t-cut polytope Ps_; .s(G) of a graph G we have
D(Psft cut(G)) = Psft cut(G> + RE (34)
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Let G be the complete undirected graph on n nodes, i.e. G = K,, = ([n], E},). Let
s,t € [n] and ¢ : E, — RY". Consider the following linear formulation of the minimum
s-t-cut problem which involves a variable z; ; for each edge {i,j} € E:

minimize Yo T
{i,j}€En
subject to: T =1 .1)
Tk + -Tj,k Z ZCi’j VZ, j, ke Vn, 2) (35)

iF g i Fk JFEE
x>0 .3)

Theorem 3.2.1. Let z* be an optimal solution for the problem (3.5) with ¢ € Rf”. Then,
the optimal value of the linear program (3.5)) is equal to the minimum capacity of an s-t
cut, 1.e.,

(¢, ") = min{(c,z) : © = x(0(9)), {s,t} € (S), S C V,.}. (3.6)
Proof. We clearly have

(e, z") <min{{c,x) : x = x(0(5)),{s,t} € §(5), S C V,,} (3.7)
since all z € {z : & = x(6(5)), {s,t} € 6(5), S C V,} satisfy the system (3.51)-(3.53).

To prove the feasibility of the inverse inequality we construct from the undirected
x4 a4

graph K, the directed graph K, = (V,,, E,) by replacing each edge e € E, by two an-

tiparallel arcs both with the same capacity as e. The capacity of a cut in the directed

graph is the same as the capacity of the corresponding cut in the undirected graph. In
<

the new graph K, we consider a s-t flow f with the maximum value and decompose it

into m s-t-paths py, ..., pm, e, f = > Aux(py) where A\, >0, € [m]. We can assume
pn=1
that there are no cycles in the decomposition.
Let (s, (1)), ((1), (2)), ..., (u(k), t) be the sequence of arcs forming p,. We may

assume that p, is a simple path, i.e., u(l) # s, t for [ € [k] and pu(a) # p(5) for all «,
B € [k], a # 8. Using the metric constrains ([3.52) we have for each s-t-path p,, u € [m]

* * * * 1)
xs,u(l) + x/.z(l),,u,(Q) + ...+ :Eu(k)’t Z l's’t = 1. (38)
Thus, \,, > , for each p € [m] what implies that  »_  fi 27, > > Ay, due
(ZJ )EPL {i,j}€En p=1
to
m
PORATIEEDS W ETED DD DR
{i’j}EEn {ivj}GEn I3 (i,j)Gp,L p=1 (Zj Sm (39)
- Z )‘Pu Z 1‘2] 2 Z /\Pu
p=1 (4,9)€pp p=1
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Therefore,
fij<cij

(c,x*) = Z CijTi; > Z fmxijZZ)\pu. (3.10)
pn=1

{i.j}€En {i.j}€En
By the Max-Flow-Min-Cut Theorem the value of the maximum s-t flow f is equal
to the minimum capacity over all s-t-cuts, i.e.

value(f) = Z)\pu = min{(c,z) : © = x(6(9)), {s,t} € 6(5), S CV,} (3.11)

what together with implies
(e, ") > min{{(c,x) : x = x(0(9)), {s,t} € 6(5), S C V,}. (3.12)
O

Remark 3.2.2. From Theorem and Observation[2.1.4] it follows that the dominant
of the s-t-cut polytope Py cii(Ky,) for the complete graph K, is equal to the dominant of

the polytope described by (3.5.1)-(5.5.3), i.e.,
D(Psft cut(Kn)) = D(Qs,t(Kn)) (313>
where
Qss(K,) = {x € RF" : x satisfies 1) — 3)} (3.14)
Moreover, by Corollary [2.2.5] their undominated sets are equal as well.

Example 3.2.3. Consider the complete graph Kz = ([3], E3). The 1-3-cut polytope of the
graph Ks is the convex hull of two vectors

P13 cu(K3) = conv{(1,0,1),(0,1,1)}. (3.15)
From (3.14) and (3.9.1)-(3.5.3) it follows that Q13(K3) is described by (5.16.1)-(5.16.4)

and by the nonnegativity conditions, i.e.

Q173(K3) = {($1Q,$1g,$23) Z 0: T3 = 1, 3.16/.1
T12 + T13 Z 23, 3.16/.2
T12 + Tao3 Z 13, 3.16[.3
T13 + Xo3 Z T12 } 3.1614

The dominants of Pi_3qu(K3) and Q13(K3) are shown in Figure and Figure
respectively. As we can see Py_3 qt(K3) and Q1 3(K3) have the same dominant and hence
the same undominated set which in this case is single one-dimensional polytope described
by the following system

(3.16)

— —— N

T3 =1
Ti2t+xo3 = 1
T2 <1
12 >0

(3.17)
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X23

D(P1—3 cmﬁ)

__________________>

D(Q13(K3))

Figure 3.3: The dominant of Q) 35(K3) (in red).

3.3 S-n-Cut Polytope for the complete graph K,

Let K, = (|n], ) be the complete undirected graph on n nodes. An S-n-cut of G with
0#£SCln—1]isacut §(W) with W € V(S) where

V(S)={WC[n—-1:WnS#0}. (3.18)
We define the S-n-cut polytope Ps(K,) as

Ps(K,) := conv{x(6(W)) : W € V(S)}. (3.19)
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Example 3.3.1.
o Py (K,) is the 1-n-cut polytope, the polytope of all cuts that separate 1 from n;
o P2y (k) is the polytope of all cuts that separate 1 from n or 2 from n;
o P, 11(K,) is the cut polytope for the undirected complete graph on n nodes.

For s € [n — 1] let Iy be the set of all s-n-paths in the complete graph K,
I's:={yC E,:visa sn-path} (3.20)
and let F, be the set of all s-n-flows in K,
F; := ccone{x(y) : v € I's}. (3.21)

Then for f € Fj the value of a flow f we define as value(f) := f(d(n)) with f = > A, x(7)
vel's
with A, > 0 what implies that value(f) = > A,.

v€els

The following theorem was proved by Ford and Fulkerson [14], but nevertheless we
provide our proof for the sake of completeness.

Theorem 3.3.2 (Undirected version of Max-Flow Min-Cut Theorem).
Let K,, = ([n], E,,) be the complete undirected graph on n nodes, s € [n — 1] and ¢ € RE".
Then

max{value(f): f € Fs, f < c} =min{c(6(W)):se€ W C [n— 1]}. (3.22)
Proof. Let §(W), s € W C [n — 1] be an s-n-cut of K,, with minimum capacity, i.e.

c(6(W)) = min{c(§(W)) : s € W C [n — 1]} (3.23)

Let f = > X\ix(7:) € Fs be an s-n-flow with f < ¢ and m s-n-paths 71, 7o, ..., Ym € s
i=1

and \; > 0, 7 € [m]. For each path ~;, i € [m] we choose one edge e,, from 6(IW). Then

we have

value(f) =Y A< ) DoM< D) ce=c6(W)). (3.24)
i=1 ecs(W) ve{ﬂe/z;izef[zm]}: ecs(W)

Hence, the maximum value of an s-n-flow subject to ¢ is at most the minimum capacity
of an s-n-cut.

x4 Axd
Consider a directed graph K, = ([n], E,) constructed from the undirected graph
K, = ([n], E,) by replacing each edge e € E, by two antiparallel arcs e, ¢ both with the
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And
same capacity as e. The capacity of a cut in the directed graph K, is the same as the
capacity of the corresponding cut in the undirected graph K,,. By the Max-Flow-Min-Cut

Theorem [1.1.3) there is an s-n flow f of value ¢(5(1)) in K n- It could be that this flow
of value ¢(6(W)) uses an edge in both ways, for example some edge e € E,. In this
case we change the flow function f by setting the smaller value min{ f<, f2} to zero and
subtracting that amount from the larger value max{ f<, f-}, i.e.

fo = fp —min{fe, f2},
fg = fg - min{f%a f?}

what does not change the flow value, see Figure (3.4}

(3.25)

f2

e O\

Y — @

\/
fe=1re— I Je 0
7w N . e N
® ® o O e Q@
\/ \/

0 fe=Ff— 12

4
Figure 3.4: Transformation of the flow f in K, in the case of using an edge in both ways.

Thus we have a flow of value ¢(§(1W)) which does not use antiparallel arcs. This flow can
be decomposed into s-n-paths and cycles. We can assume that there are no cycles in the
decomposition. Those path can be projected back on undirected edges of the graph K,.
Since every edge is used only in one way then the condition on capacities was respected
on each edge. O

Lemma 3.3.3. For W € V(S) holds

min{c(§(W)) : W € V(S)} = c(6(W)) (3.26)
if and only if for all s € S there exists f, € Fy with f, < ¢ and value(f,) > c¢(6(W)).
Proof. The proof follows from Theorem [3.3.2 O

Consequently, Lemma implies
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Corollary 3.3.4. For all W € V(S) we have c¢(6(W)) > 1 if and only if for all s € S
there exists fs € Fy such that fs < ¢ and value(f;) > 1.

Observation 3.3.5. Let S C [n—1], S # (). A vector x € RE» is a vertex of the dominant
of Ps(Ky,) if and only if x = x(6(W)) for some S-n-cut 6(W), W € V(S) of K,.

Proof. Let G = (V, E) be an undirected graph with s, n € V. For the dominant of
P, cut(G) Skutella and Weber showed that a vector x is a vertex of D(Ps_,,—u(G)) if
and only if x = x(0(W)) for some s-n-cut 6(W) (see Skutella and Weber [30], Observation
1). The polytope Ps(K,,) is the convex hull of all s-n-cuts with s € S. Thus characteristic
vectors of s-n-cuts, s € S are vertices of D(Ps(K,)). O

Theorem 3.3.6. For ) # S C [n — 1] the dominant of the S-n-cut polytope Ps(K,) is
equal to the dominant of a polytope Q(S) C RY™ if and only if

(1) x(6(W)) € Q(S) for all W € V(S) and
(2) for all x € Q(S) holds:

if fs € Fs with value(fs) > 1 forall s€ S

then <7, 1’) > 1 with ?(6) = max{fs(e) 18 E S}’ ecE,. (3'27)

Proof. Let Q(S) C R¥" be a polytope such that both conditions (1) and (2) are satisfied.
The inclusion D(Ps(K,)) € D(Q(S)) holds since Ps(K,,) C Q(S) by (1).

To prove the reverse inclusion it is enough to show that for every ¢ & an with
c(6(W))>1 for all W € V(S) (3.28)
we have that (c,z) > 1 for all x € Q(5).

From ({3.28)) by Corollary it follows that

for all s € S 3Jfs € Fy such that f; < cand value(f;) > 1. (3.29)

Then by the condition (2) we have
(f,z) >1 forall x € Q(9). (3.30)

Since f < ¢ and Q(S) C R then
(c,x) > 1 for all x € Q(S5). (3.31)

Now let us have Q(S) € R such that D(Q(S)) = D(Ps(K,)). By Observa-
tion x(0(W)), W e V(S) is a vertex of D(Ps(K,)). Then x(6(W)), W € V(S) is
also a vertex of D(Q(S)) what implies that x(5(1V)) € Q(S) for all W € V(5S).

Let x € Q(S) then x € D(Q(S)) and thereby z € D(Ps(K,)) since the dominants
are equal. Thus there is a convex combination of S-n-cuts y € Ps(K,,) such that x > y.
By Corollary and Theorem we have that holds for all S-n-cuts from the
convex combination and thereby for y. This implies that also holds for x since

(f,x) > (f,y) what completes the proof. O
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3.4 Undominated Complex of the 1-n-Cut Polytope

Proposition 3.4.1. For the complete graph on n nodes K,, = ([n], E,)
conv{x(d([k])) : k € [n — 1]} (3.32)
is a face of the undominated complex of the 1-n-cut polytope Py (Ky).

Proof. To prove this statement we find some ¢ € R such that for all 1 € S* C [n — 1]
we have

min{c(6(S)): 1 €S C [n—1]} = ¢(6(S7)) (3.33)
if and only if S* = [k] for some k € [n — 1] (see the proof of Lemma [2.3.1)).

Let ¢ € RY be defined as follows:

Cl’j:n—l for j=2,...,n;
Caj = ! for =3 n;
271_(n_1)(n_2) J =951
1
c3; = for j=4,....,n;
T (n=2)(n-3) (3.34)
Cn—2j = ! N for j=n—-1,n
T i (n—-3)n—(n-2) 3-2 6 SRR
B 1 1
e i (mn—2)n—(n—-1) 2-1 2
k 1
Remark 3.4.2. Forallk € [n—1] and j =k +1,...,n we have Y_ ¢; ; = —
i=1 -
Proof. Let k € [n — 1]. From the definition of ¢ € R”;, see (3.34)), we infer
1
;= for y=k+1,... ith k£ > 1. .
Ch.j = = D) =) or j +1,...,n wi > (3.35)
Hence, from (3.34)) and (3.35)) we deduce
k L, ! SR !
Cij =
~ " (n-1) (n-1)(n-2) (n—(k—=1))(n —k)
R N SR S
n—-1 n—-1 n—-2 n—-2 n-3 (3.36)
1 1 1 1
(n=(k=2) (=>(k=-1)) O-FE=1) (n-Fk
1
Cn—k
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Lemma 3.4.3. Let ¢ € RYy be defined by (3.34). Then c(5([k])) = 1 holds for all
ke n—1].

Proof. Let k € [n — 1], then

Z chj _ n . Zcz - Remarkl (337>

Jj=k+1 =1 i=1
]

Lemma 3.4.4. Let w € RY, € [n — 1] and Wy, Wy be subsets of [n — 1] such that
we WinNWy and

1 =w(6(Wy)) =w(d(Ws)) = min{w(d(W)): p € W C [n—1]}. (3.38)
Then we have Wi, C Wy or Wy C Wh.
Proof. Let us define six subsets of the set FE,, as follows:

A={{i,jlebE,: ieWinNWy, je W\ (WinWs)},

B:={{i,j} € E,: ie Wi\ (WinW,), j€[n]\ (W UW,)},

C:={{i,j} €E,: icWo\ (WinNW,), j€[n]\ (W UW,},

D:={{i,j} e E,: iecWinNWy, jeWy\ (WinNnWs)},

E={{ijleE,: iecWinW,, je€n]\ (W UW,y},

Fi={{i,j} € E,: i€ Wi \(WinNWa), j € Wy \ (Wi N W)}
see Figure [3.5]

(3.39)

The cut function is submodular since w > 0 (see Schrijver [28], Chapter 44), that is
w(O(Whr N W) +w(6(Wy UWs)) < w(6(Wh)) + w(6(Wa)). (3.40)
Then for a, b, ¢, d, e and f defined as follows

a:=w(A), d:=w(D),
b:=w(B), e:=w(F), (3.41)
c:=w(C), f:=w(F),
w > 0 implies
(a+e+d)+(b+e+c)<(d+e+f+b)+(at+e+ f+c) (3.42)

and by it follows that
wO(WinWsy)) =(a+e+d) >1, wo(Wy))=(d+e+ f+0b) =1, 343
wEWLUWe)) = (b+e+¢)>1, w(d(Ws)) = (a+e+ f+c)=1. '
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Wi
@ Wi N Wy
A
D ‘{ /F B
\><'/
C
®
W-
: ]
Figure 3.5: Representation of the vertex set [n]
in the proof of Lemma [3.4.4]
Thus from (3.42)) and (3.43) we have
at+e+d=1,
Tete=2 Llastrhe e (3.44)
d+e+ f+b=1, b=a+ f,

at+e+ f+c=1,

Due to w > 0, however, f can be 0 if and only if F' is the empty set. Thus, we have
Wl \ (Wl N Wg) = @ or W2 \ (Wl N Wz) = @ what implies Wl g Wg or W2 Q Wl. ]

Continuing the proof of Proposition [3.4.1]we construct from the undirected graph K,
g x4
the directed graph K,, = ([n], E,) by replacing each edge {i,j} € E, by two antiparallel
<~ <~
arcs (4,7), (j,7). In the new graph K, we construct a 1-n flow f: F,, — R with

f’i,j = Ci,j fOI' Z < j,

fij =0 fori>j. (3.45)
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In order to see that f indeed is a 1-n-flow observe that for each k € [n] \ {1,n} we have

. 1 1
5OUt (L)) = ' 325 k). _
160 = 3 0 B g - i
. (3.46)
, — 7 1
S (k) = : Remag .
f(8"(K)) ;C,k n—k+1
Hence both conditions of the definition of a flow are satisfied, i.e.
i >0 for each (i, j) € En, 347
f(0°(k)) = f(6™(k)) for each k € [n]\ {1,n}.
The value of this flow f is equal to 1 due to
value(f) = (5" (1)) = e(3([1))) "= EE L, (3.48)
For each S C [n — 1] with 1 € S we thus have (due to ¢ > 0)
1< f(07(8)) < e(6(5)), (3.49)

hence Lemma [3.4.3shows that 6([k]) is c-minimal among the 1-n-cuts for each k € [n—1].

Now suppose that for some S* C [n — 1] with 1 € S* the cut 6(S*) is c-minimal. By
Lemma we thus have S* C [|S*|] or [|S*|] € S* hence S* = [|.S*|].
O

Proposition 3.4.5. The face in Proposition is a (n — 2)-dimensional simplez.

Proof. Let IC:= {[k] : k € [n—1]}. The face (3.32)) in Proposition has n — 1 vertices
due to

Kl = |{[K :keln—1]}=n—1. (3.50)

Now we show that these n — 1 vertices are affinely independent and hence the face is
(n — 2)-dimensional.

Let O} be a submatrix of the cut-incidence matrix of IC (see (1.10))) formed by columns

corresponding to the edges e 2, €23, ..., e,—1, With an additional all ones column, i.e.
€12 €23 €n—1,n
1] 1 0 0 0 1
, 2] 0 1 0 0o 1
.. 0 0 0 1
m—1 10 0 0 11
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As we have rank(©}.) = n — 1 linear independence of rows of O} implies affine indepen-
dence of rows of the cut-incidence matrix of . Thus, vertices of the face in Proposi-
tion [3.4.1] are affinely independent. O

Remark 3.4.6. Because of the symmetry, for each permutation o : [n] — [n] with
o(l)=1,0(n)=n

conv{x(d(o([k]))) : k € [n — 1]} (3.52)
is also a (n — 2)-dimensional face of the undominated complex of the 1-n-cut polytope.

Since all faces in Remark have n — 1 vertices none of them is contained in any
other. Now we show that any other face is contained in one of these faces.

Let W C 2"~ such that {x(5(W)) : W € W} is the set of vertices of some face
of the undominated complex of Pyy(K,). Then there is ¢ € RY; with minimum 1-n-cut
value 1 such that ¢(6(W)) =1 if and only if W € W.

By Lemma [3.4.4] all W € W are nested. Let A be the largest set of them, i.e.
A = W such that W € W and |W| = max{|W| : W € W}. We number the elements
in A, A={a; = 1,as,...,a.4} and define A; := {a; = 1,a9,...,ar}, I € [|A]] such that
W C{A, Ay, ..., Ajqy = A}. As AC [n — 1] = o([n — 1]) we have that W is a subset of
some {o([k]) : k € [n — 1]} what complete the proof of the main result of this section:

Theorem 3.4.7. The undominated complex for the 1-n-cut polytope Ppy(Ky) C R(2)
for the complete graph on n nodes is a pure simplicial complex of dimension n — 2 whose

facets are described in Remark[3.4.0,

Remark 3.4.8. Thus the undominated complex for the 1-n-cut polytope Py (K,) C R(%)
for the complete graph on n nodes consists (n — 2)! facets which are (n — 2)-dimensional.

Proof. We have (n —2)! possibilities to order elements in the set [n — 1] such that the first

element remains to be 1. Thus we have (n — 2)! different sets of 1-n-cuts what implies
that the undominated complex of Ppy(K,) has (n — 2)! different facets. O

3.5 Undominated Complex of the [2]-n-Cut Polytope

Making similar reasoning as in the previous section for the 1-n-cut polytope for the com-
plete graph on n nodes K, = ([n], E,) we obtain the result for the [2]-n-cut polytope for
K, which will be presented in this section.

Let us introduce some notations used in the current section.
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Let the set [n — 1] :== {1,2,...,n — 1} be partitioned into three parts A, B and V'

such that they are all pairwise disjoint

A= {al = 1,&2, v 76”.4\}7
B:={bi =2,by,...,bp},
V= {/017/027 s 7U|V|}7

see Figure [3.6] We define the sets A;, By and V; as follows:

AI = {a1:17a27"'7a1}7 IGHAH
BI ::{b1:27b27"'7b1}7 IGHBH
Vi = {vr,v9,..., 01}, Ie[|V]

Let M be the set of the following sets:
M={A;: T €[|A|]}u{B;: T €]|B]}

U{AUB}U{AUBUV;: T€[V]}

Figure 3.6: Representation of the vertex set [n]

in the proof of Proposition [3.5.1}

(3.53)

(3.54)

(3.55)

Proposition 3.5.1. For each partition of the vertex set [n — 1] into three parts A, B and

V' such that they are all pairwise disjoint and defined as in (3.53)), see Fz’gure

conv{x(6(M)): M € M}

(3.56)

where M is defined by (3.55)), is a face of the undominated complex of the [2]-n-cut

polytope Py (Ky) for the complete graph on n nodes K, = ([n], E,).

Proof. We first define some ¢ € RZ such that for all M* C [n — 1] with M* N {1,2} # 0

min{c(6(M)): M C [n—1], M N{1,2} # 0} = c(6(M™))

holds if and only if M* € M (see the proof of Lemma [2.3.1)).
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Let ¢ € RY; be defined as follows:

. _ PR}
for a;, a; € A co; =4 2277

for b;, bj € B: Coib; = 2. 97—’

for vy, v; €V i cyp, = — . 1< 7,

55 g gy 0> b
fOl" a/i E A, b] E B : Caibj - Cagbj7 Z — 1,

CaibQJ j - ]'7

1
2v7+1 . 9. 9|A|-i’

1> 1
for a; € A, v, €V i cop, = ’

iUy

(3.58)

Canvn s 1=

Cb2”w’ j =1.

1
21VI+1 . 9. olA[=é”
Cagns 1= 1.

1> 1
for a, € A:  con = ’

1
. > 1
for by € B, v, €V ¢y, = {27+1.2.23]7 J ;

1
- g>1
for b; € B: ¢y = { 2VIFL. 2. 2181757 7=
Choyns ]: 1.
1
for v, €V cpn= CYOIAER

Lemma 3.5.2. Let ¢ € RZy be defined by (3.58). Then the value c(5(M*)) of the cut
d(M*) is equal to one for all M* € M where M is defined by (3.55)).

Proof. Consider all four possible cases for a set M* € M.
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Case 1: M* = Aj for I € [|A]].

I |B| 1|V I

E E Calb + E E Calv,Y + E Ca;n + E g Cala] .

2 1 j=1 'L 1 =1 i=1 j=I+1 (359)
~~ 4 ~~ W—’
1 Y2 3 I

In view of the definition of ¢ € RZ;, see (3.58)), we calculate each term on the right-hand
side of equation (|3.59)).

I |B| |B] I |B|
Z1 = E Cai = Ca1by + E Ca;by + E Calb + E E CaZ

i=1 j=1 1=2 j=2

|B| I |B|

= Casby + E Ca;bs + § Cazb + § § Cal
1=2 j=2
I
1 1

~ 93 . 9/A-2 . 9|B|-2 + — 93 . 9lA|—i . 9|B|-2

1B I |B]

+223 \A| 2. 9|B]- ]+ZZQ3 |A| i . 9IBl—j

|B| 1B

1 3.60
W 1+22221+2222j+2222122223 ( )

I |B|
1 1

ol-1, 2|B|71 ol-1

OIAFIBI-T  — gl

I V] [V] I Vi V] 1 V|
DD ICTED S 3) UNES SERND 3) B

i=1 =1 i=2 =1 =2 =1

v 1V (3.61)
_szH 2 9lA|-2 22 L. 2 olAl=i

1=2 "y—
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V] 1 _
; 1 1—5 22 121
2IA|227(1+2222) 2\AI'_' 1-1 ERIE TR
(3.62)
oI-1, (2|V| _ 1) ol-1 oI-1
- QIAHV] T QlA] T QARIV]
I I I
= Z Ca;n = Cain + Z Cain = Cagn + Z Ca;in
i=1 =2 =2
1 ! 1
T oVIHL. 9. 92 + — oIVI+1 . 9 . 9[A[—i (3.63)
1 22 1 _9l-1 9l-1
__ Z y 142 _ |
21Vl . 214 22 2|V| QIA\ 22 1—2 2lV I+ 4]
I 4] A I 4] |A] I 4]
Bi=D D Caay = D Caey F Y D Caay = D Conay T Y D Cauey
i=1 j=I+1 j=I+1 i=2 j=I+1 j=I+1 i=2 j=I+1
|A] I 4] |A]| 1
D OE SO ID P RS oF 1 (55 35 I L
j=I+1 i=2 j=I+1 j:I+1
1 Iy 22 1—2i1\ (Ml _q)y.o-t ol
IR 22 1—2 ) 2M-T.ol-t T gl
Thus for equation (3.59) with I € [|A|] we have
217 217 -1 -1 2[
c(6(Ar)) = { {—\QA +\§ +1—- =1 (3.65)
= gar  giar T g v 4]

Case 22 M* = By for I € [|B]|]. Due to the symmetry of ¢ the equation ¢(6(By)) = 1
follows from Case 1 by exchanging A and B (and nodes 1 and 2).

Case 3: M*= AU B.

lA] 1B
o(5(AU B)) = e(5(Auw)) + el6(Biay) ~ 23 D (3.66)

i=1 j=1
The first two terms both evaluate to one (Cases 1 and 2). The third term on the right-
hand side of equation ([3.66]) is a particular case of 3; with I = |A| from Case 1. Thus we

have
olA|-1

¢(0(AUB)) =14+1-2%50 =1, (3.67)
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Case 4: M*=AUBUV; for I € [|V]].

c(0(AUBUV))) =c(6(AU B))

Al 1 IB| I I |V
- E Ca;vy, — E Chjv., + E Cv»yn + E E Coyvg - (368>
i=1 v=1 =1 yv=1 v=1 B=I+1
NS ~ o N ~~ RH
5 e X7 ¥s

Calculating each term on the right-hand side of equation (3.68]) we obtain

[Al 1 Al 1 Al 1
E5 = Z Z Cav, = Z Cay v, + Z Z Ca;v, = Z Casv., + Z Z Ca;v,
i=1 y=1 1=2 y=1 =2 y=1
I Al 1
- Z 2v+1L . 2|A| 7 T Z Z v+l . 2|A|—i
v=1 =2 y=1
|A] _ 1 2 1 _ olAl-1 (3.69)
; 11— 22 1 — 24l
2\A|227 1+2222 :W'_d—%'(l 212 )
4=t 2f—1) 1 1
- AT T gt
Bl 1 |B| 1 |B 1
26 = Z Z ij”’v Z Cblv«, + Z Z Cp, iUy Z Cbgl),Y + Z Z Cp, U~y
j=1 =1 7j=2 =1 j=2 ~v=1
Bl 1
- Z .. 2\3\ RO M. 9. Q\B\ =
j=2 y=1
1 <1 7] 11 92 1 olBI-1 (3.70)
Sl |! 2222 - "1_5'(”?'T)
=
2BI- (2l —1) 1 1
- 9IBI+1 T 5 gt

I I
1 1 1 2- (1 — 21) 2l 1
_ — v — . =
Coyn = Z 92.9Vl—y — 9lV|+1 22 T 9VI+1 1—-292 oIV - (3'71>

1 v=1 y=1

I
Y=
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3.5. UNDOMINATED COMPLEX OF THE [2]-N-CUT POLYTOPE

Vi I V] \%
R S S = 22522”
v=1 p=I+1 v=1 p=I+1 B=I+1 v=1
(3.72)
11 Do o20-2h) o1 o1 1 olod
5.2]'—1—1' 1_% . 1_2 e 2[ — 2|V| = —y——zl‘/' .
Then in view of (3.67) and (3.69)-(3.72)) expression (3.68]) can be written as
11 11 2l A
C(d(AUBUVI)):l_(ﬁ_ﬁ)_(5_21+1)+/jvl
(3.73)
oL rA 202 1
tioor T v Tl T = b
[

Continuing the proof of PrOposmon 3.5.1| we construct from the undirected graph
K, the directed graph K = ([n], E ») by replacing each edge e E E, by two antiparallel

arcs. In the new graph K we construct two flows: a 1-n flow f’: E — R, see Figure 3.
with

/ o . . .
asa; = Caja; fOT aj,a; € A with i <,

tia; =0 for a;,a; € A with i > j,

Jow, =10 for all b;,b; € B,

(lzib]- 1= Cqp; foralla; € A, b; € B,

fl;jai = forall a; € A, b; € B,
;wj 1= Cy;  for vy, v €V owith i <,
;ivj =0 for v;,v; € V with ¢ > j,
ai, = Caw, foralla; € A v, €V,
/ R
yas = for all a; € A, vy €V, (3.74)

fo,0, = Cbp, forallbj € B, v, €V,
= forallb; € B, v, €V,

’l)rybj

on ‘= Cam foralla; € A,

' =0 for all a; € A,

na;

féjn = cpn  forall b; € B,
by, =0 for all b; € B,

évn = Cpn forallv, €V,
/ P
vy = for all v, € V,
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1A B

\

]

|
\
\ v/

Nt
®

x4
Figure 3.7: Sketch of arcs (u,w) € E, with f, > 0.

<~
and a 2-n flow f”: E, — R, see Figure , where

" oo=0 for all a;,a; € A,

a;a;

fé;bj = cpp; for by, b; € B with i < j,
b, =0 for b;,b; € B with i > j,
"= 0 for all a; € A, b; € B,

a;b;
" _

fbjaz‘ = Cagb, for all a; € A, bj € B,

" R . . .
vy = Copy  for v, v; € Vowith i < j,

;;vj =0 for v;,v; € V with ¢ > j,

v, ‘= Cam, foralla; € A, vy, €V,

;=0 for all a; € A, v, €V, (3.75)
fg;v7 = Cpe, forallbj € B, v, €V,

;’ij =0 for all b; € B, vy, €V,

wn ‘= Ca;n  forall a; € A,
e =10 for all a; € A,

na;

égn =y, forall by € B,
"o=0 for all b; € B,

nbj

"o
v = Coyp  forall v, €V,

=0 for all v, € V.

8
<

First we consider the 1-n flow f’ : E, — R and check the flow conservation law: the

amount of flow entering a vertex a; € A\ {a; = 1}, b; € B and v, € V should be equal

to the amount of flow leaving a; € A\ {a; = 1}, b; € B and v, € V, respectively.
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A B|

\

\ l
\I¥

Nt/
®

x4
Figure 3.8: Sketch of arcs (u,w) € E,, with f;/ >0

In view of (3.74) for f’ we have for each a; € A\ {a; = 1}

1B 14 |A]
6out Z Calb + Z CalvA, + Cam + Z Cazaj
Jj=t+1
|B] 14 |A]
= Caq;by + Z Cazb + Z Calv,Y + Ca;in + Z Cala]
Jj=i+1
IBI \VI |A]
= Ca;by + Z Ca,b + Z Caﬂ)—Y + Ca;in + Z cala]
Jj=i+1
|B|
1 1
= 93.9JA-i . 9|B[-2 + 22 23 . 2lAl=i . 2|B|=j
]:
14 |A]
1 1 1
T Z v+l .9 . 9lAl-i + 2lVI+1 . 9 . 9lA|—i . Z 2.9j—i
y=1 j=i+1
B v (3.76)
1 1 : 1 1
_ — J _
T 9JAl—i . 9|Bl+1 L+ 22 Z 2 + oIA|—i+2 Z 2v
Jj=2 v=1
1 1 A
+ 2IVI+1 . 9 . 9lA[—i + 91—i 92
J=i+1
B 1 - 922. (1 — 2!BI=1) 1 1 1—5%
EE T EEE ST 1-2 olal-i+2 3 1 1
N 1 P B A=
2lVI+1 . 9. 9|A|—i o1—i  9i+1 1— %
21511 1 1 1
= — + — — — + —
2|A|—i . 9|B|+1 2| Al—i+2 9| A|—i+2+|V| 2IVI+1 . 9. 9lA|-i
1 1 1 2 1 1
+ ===+ — — T =

9 9lAl-itl 9 T 9lAl-i+2  9lA[-i+1 92’
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and for each a; € A\ {a; = 1}

[y

1—

i—1 i—1
f’((;m(ai)) = Caza; = Caya; T Z Caza; = Caga; T Z Caja,
j=2 j=2

7j=1

i—1

i—1
1 1 1 1 ,
— — _ J
_2_2i—2+222,2i—j T i1 <1+22 222) (3.77)
‘7:

j=

1 1 22.(1—-272)\ 1
e - 1 —_— = —.
2%1('%% 1-2 ) 2

Note that, from the definition of ¢ € ng, see (3.58)), we have ¢, . = cp, .. Thus, it

suffices to calculate f'(6°%(b;)) and f'(6"(b;)) for j > 2 due to f'(6°“(b1)) = f'(6°“*(b2))
and f'(6™(br)) = f'(0" (b2))-

Thus for each b; € B we obtain
14 14 1 1

1( sout _ —
F(67(bs)) = Z Chjoy T Con = Z 27+ .9 . 9IB|—j T 2IVI+1. 9. 9IB|—j

=1 =1

Vi

1 1 1
= 9Bl-j+2 Z > T oV . 5. 9IBIg

y=1
3.78
R T (378)
~9IBl=j+2 9 1_% oIV I+|B|—j+2
1 1 1 1
T QB IR | B | giBie
A |A] |A] |A]
f/((sln(b])) = anibj = Calbj + anibj = Ca2bj + Z Caibj
i=1 =2 =2
|A]
1 1
- 93 . 9|A|-2 . 9|B|—j + Zz 923 . 9lA|—i . 9|B|—j
, L (3.79)
~ 93 . 9lA|-2 . 9|B]—j 1+ 22 ZQ 2
1 1 2%(1 -2 24—t 1
= QAL . 9IBlj < T 1-2 ) ~ QA IH[BI-j  2IBlj+2°
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For each v, € V' we have

Vi Vi 1 1
/[ sout _ —
(67 (vy)) = Z Coyv; T Coyn = Z 9. 9i—y T 2.9lVI—y
i=vy+1 i=y+1
V| 1
1 1 1 1 1 1—5w= 1
21—y Z 2 T gV T i gt 1-1 9o (380)
1=v+1 2
B 1 1 1 - 1
T3 3V e T Y
A 1A |B| y—1
PO =3 o + 3 + S
i=1 j=1 i=1
|A] |B -1
= Cayv, + Z Ca;v, + Cbyv, + Z Chv, + Z Cuvy
=2 j=2 i=1
|A] |B| y—1
= Casyu, + Z Ca;v, + Chyv. + Z Chjvy + Z Co;vy
=2 j=2 i=1
|A]
1 1
= ovii.g.gA 2 T z_; o719 . 9lAl—i
|B] -1
1 1 1
T 2v+1.9.9|B|-2 * ZQ 27+l .9 . 9IBl—j + Zl 2. 271 (3.81)
J= =
1 |A] |B]

. 1 1 ‘ 1=

- - _ T . . J 1
= 1+22;2 + i 1+22222 +27+1z;2
1= 1= 1=

1 1 22.(1— 2471
= (14 —-
20+l 22 1-2

1 1 22-(1—2B=h I 2-(1—-27h
+—— (14 = :
27+B| 22 1-2 27+1 1-2

gll=1glBl=1 o=l g 1 1 1 1

1
oA TorE T T T T e Tem Ty T T g

Hence, both conditions of the definition of a flow are satisfied for our 1-n flow f’, i.e.

<>
fl>0 for each e € E,,,

, (3.82)
(6" (v)) = f'(6"™(v)) for each v € [n]\ {1,n}.
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The value of this flow f’ is equal to 1 due to:
value(f') = f/(6°(1)) = F(6°"(a1)) = ¢(8(Ay)) "B, (3.83)

<>
Now consider the 2-n flow f” : E,, — R and check again the flow conservation law:
the amount of flow entering a vertex a; € A, b; € B\ {b; = 2} and v, € V should be
equal to the amount of flow leaving a; € A, b; € B\ {b; = 2} and v, € V, respectively.

Note that, from the definition of ¢ € RZ3, see (3.58)), we have c,, » = Cqy.. Thus, it
suffices to calculate f”(6°“(a;)) and f”(6™(a;)) for i > 2 due to f”(6°“*(ay)) = f"(6°“(as))
and f"(6""(ar)) = f"(0" (az)).

Thus, in view of (3.75) for f” we have for each a; € A, i > 2
14 V]

1 1
// out
(0 Z Cajvy T Can = Z 1. 9. g T VL. . QA

14

1 1 1
) Z 2 T oIVI+1 . 9 . 9|A|—i

_ 1 5 (—-gm) 1
~ 9JAl-i42 1 — % 2UV|+2+|A|—i

1 1 1 1
= Atz _WJ&HVI +2M/+/2+|A|7i = oA[—i+2’
|B] |B| |B]

// m E : E : E :
5 Ca;b; = Ca;by + Ca;b;Ca;bo + Ca;b;
j=2 j=2

|B|

1 1
=95 oAl 9B 2 T 2 < 28 21— 2181
]:

” (3.85)

1 .
= 93 . 9Al-i . 9IB|-2 1+ 922 Z 2

=2

1 (1 1 22(1—2“3'1)) 21B1-1 1

~ 9lA[-igIB[+1 + 2 1_9 T QMA[=iH[BIFL  9lAl—it2”

For each b; € B\ {by = 2} we obtain
|A] V] |B|

f”(éOUt(b ) Z cazb —I— Z Cyp. U~y + Cb]n + Z Cb b;
i=j+1
1A v 15| (3.86)

= Cayb, +anzb +Zcbvw+cbn+ Z Ch;b;

1=j+1
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|A| V] |B|
= Cagb; +anlb +Zcb vy T Chm + Z Ch;b;
i=j+1
B ! 4] ]
T 95l 9B T 255 gl glET
Vi |B]
1 1 1
+ Z 27+1 .9 . 9|B|-j T 2lVI+1 .9 .9IB|-j + Z . i—j
=1 i=j+1
1 |A] Vi
- 9A|+1 . 9|B|—j 22 Z 2 2|B| Jj+2 Z %
1 1 L
T OVIFT g olB— T 915 2
i=j+1
B 1 e 22. (1 — 211 1 1 1— 55
T 9JA[+1+[B|—j + 92 1_9 + olBl-j+2 9 1 _ %
. 1 L1 -
oVI+1 .9 . 9IBl=3 = 21— 9j+1 1 — %
2l 1 1 1
- 9IBl=j . 9lA[+1 t 9lBl-j+2  9|Bl-j+2+[V] + olVI+1.9.9|B|—j
n 1 1 1 2 1 1

5 T 9Bl 3 T omEe

and for each b; € B\ {b; = 2}

j—1
E Chib; = Cbyb; T E Ch;b,
=2

// 5’LTL

oIB[—j+1 _ 9

j—1
= Cpyb,; T g Ch;b;
=2

1 | 1 12
:2-2j—2+z;2-2j—i:2j—1 ”?2;2>

1=

2,(1_2j—2)> ;

1 1+1 2
- 91 922 1-—2

For each v, € V' we have

Vi Vi

1

f// 5out

1
Z Cuv; + Coyn = Z 9. 9i—

i=y+1 i=y+1

23

> T 5 v

(3.87)

(3.88)

(3.89)
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14 1
217 HQZ 2.92lVl=y — 9l—y  9y+1 1_% 9. 9Vl
i=y
1 1 1 1 (3.90)
I R e
' |A] |B 7-1
f//((szn(v,y)) — Z Caz.v,Y + Z ij”’Y + Z CUi”Ufy
i=1 j=1 i=1
|A] |B 7-1
= Cayv, + Z Ca;v, =+ Chy v, + Z Chjvy + Z Cu;vy
i=2 j=2 i=1
|A] |B y-1
= Cayv, + Z Ca;v, + Chyvs + Z Chv, + Z Co;vy
=2 j=2 i=1
4|
1 1
- 27+1 .9 . 9|A|-2 + ZQ 2v+1 .9 . 9|Al—i
1=
1B -1
1 1 1 3.91
¥ _ ST g (3:91)
27+1 .9 . 9|B|-2 ‘227+1.2.2|B|y .12.271
Jj= i=

1 1A 1 1 &L 1 =

_ - 1 . J 1

= v (1T 22 .222 g | 1 222 o 22
1= J= 1=

1 1 22.(1— 2471
= (14 —-
204l 22 1-2

(e L B0y sy

B\ T 1-2 T T

e L | 1 1 1 1

1
Tl TrB T Ty T T T Ty T T g

Hence, both conditions of the definition of a flow are satisfied for f”, i.e.

>0 for each e € gn, 399
P (0)) — f1(57 (1)) for each v € [n] \ {2, 1) (3.92)

The value of this flow f” is equal to 1 due to:
value(f) = f"(8°(2)) = f(5™(b1)) = e(8(By)) “ 2B, (3.93)
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3.5. UNDOMINATED COMPLEX OF THE [2]-N-CUT POLYTOPE

For each M C [n — 1] with 1 € M or 2 € M we thus have (due to ¢ > 0)
1< f/(07(M)) < e(6(M)), (3.94)

L < f1(6(M)) < c(6(M)), (3.95)

respectively.
Hence Lemma shows that §(M*) is c-minimal among the [2]-n-cuts for each M* € M.

Now we show that all other [2]-n-cuts are not c-minimal. Before we continue the
proof, we prove two auxiliary Lemmas [3.5.3| and [3.5.4] which will be used later.

Lemma 3.5.3. Let w € RZy and Wy, Wy be subsets of [n — 1] such that 1 € Wy \ Wy,
2€ W, \ Wy and

1 =w(0(Wy)) =w(6(W3)) = min{w(6(W)): W C[n—1], Wn{1,2} #0}. (3.96)

Then w(6(Wy N W3)) =0, i.e., Wi N Wy = 0.

Proof. Let us define six subsets of the set F,, as follows:
A={{i,j} € E,: ieWinNWsy, jeW;\ (WynNnWsy)},
B:={{i,jleE,: iecW\(WinWy), j€V\ (W UW,},
C={{i,j} €eE,: icWo\(WinNW,), jeV\(W,UWsy},
D:={{i,j} e E,: ieWinWs,, jeWy\ (WynNWsy)},
E={{ijlebE,:iecWinW,, jeV\ (W UWy},
F={{ij}eE,: ieW,\(WinW,), je€Wy\ (W, nW,)}.

(3.97)

see Figure 3.9, For simplicity we introduce notations for the w-value of the cuts defined
by A, B, C, D, F and F as follows:

a:=w(A), d:=w(D),
b:=w(B), e:=w(F), (3.98)
c:=w(C), f:=w(F).
Then, in view of it holds that
w(@Wi\We))=(a+f+b)>1, wo(W))=(d+e+f+b) =1,
w(@Wue\Wy))=Wd+f+c)>1, wo(Ws))=(a+e+ f+c)=1

Therefore

(3.99)

a+b+2f+c+d>2=a+b+c+d+2f+2e (3.100)

what implies that e < 0 and thereby e = 0. Due to w > 0 e can be 0 only if F is the
empty set, i.e. W, NWy = 0.
m
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Wy
Wi N Wy @
A
D \{ /F B
~ | /

N\
/

®

W,

Figure 3.9: Representation of the vertex set [n]
in the proof of Lemma [3.5.3

Lemma 3.5.4. Let X1 S X5 & ... & X C[n — 1] with [ X; 1 \ Xi| =1, i € [k —1] and
X, CY C Xy such that for alli € [k] either X; CY orY C X;. Then there exists i € [k]
such that Y = X;.

Proof. Let ¢* :=max{i: X; CY}. If i* =k then Y = Xj.
If o* < k then X« Q Y since ¢* is the maximum index such that X, C Y. Hence
Y C X;+,1 must be satisfied. Thus we have X CY C X« ;. Because of | X;11 \ X;| =1

either Y = XZ* orY g Xi*+1‘
O

We continue the proof of Proposition [3.5.1
Let W C [n — 1] such that W N {1,2} # 0 and W ¢ M with ¢(5(W)) = 1.

Case 1: 1 € W, 2 ¢ W. On the one hand by Lemma [3.44 W C AUBor AUBCW
(where the latter is impossible due to 2 € B\ W) since ¢(6(W)) = ¢(6(AU B)) =1
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3.5. UNDOMINATED COMPLEX OF THE [2]-N-CUT POLYTOPE

with 1 € W and 1 € AU B. On the other hand by Lemma W N B = ( since
c(0(W))=¢(6(B)) =1withle W\ Band2e€ B\W. Thus W C A.

As we have {1} = A1 G Ay G ... G Ay = A with A1\ A = 1 for all i € [|A] — 1]

{1} €W C A by Lemma implies W € {A;,..., A4} (note that for each i we have

A; CW or W C A; by Lemma [3.4.4).

Case 2: 2 € W, 1 ¢ W. Similarly to case 1 we obtain W € {B,..., B/}

Case 3: 1,2 € W. On the one hand by Lemma [3.4.4W C A (impossible due to 2 € W\ A)

or A C W holds due to ¢(6(W)) = ¢(6(A)) =1 with1 e W, 1 € A and W C B (impos-

sible due to 1 € W\ B) or B C W holds due to ¢(6(W)) = ¢(6(B)) = 1 with 2 € W,

2 ¢ B. Thus we have AUB C W.

By the definition of A, B, V and A;, By, Vi, I € [|[V]], see (3.53)-(3.54), we have
AUBSAUBUVIGAUBUVLSG...SAUBUVy =AUBUV (3.101)

with [(AUBU V1) \ (AUBUYV;)| =1 for all i € [|[V| —1]. Then, as we have

AUBCW CAUBUV =[n—1]

Lemma [3.5.4| implies W € {AUB, AUBUV,,...,AUBUVjy} (note that for each i we
have AUBUV, CW or W C AU BUYV, by Lemma (3.4.4).

Thereby all cuts 6(W) such that W C [n — 1] with W N {1,2} # 0 and W ¢ M are

not c-minimal. ]

Proposition 3.5.5. The faces in Proposition are (n — 1)-dimensional simplices.

Proof. Each face in Proposition has n vertices since for M defined by we have
M| =|Al+|B|+1+|V|=n—-1+1=n. (3.102)

Now we show that these n vertices are affinely independent and hence all those faces are
(n — 1)-dimensional simplices.

Let ©’y, be a submatrix of the cut-incidence matrix of M (see (1.10])) formed by columns

corresponding to the edges €a; a0, -y €ajs_jaia Capapns Cbibas -5 Cbp_ibyps Chyppm
€orwar s Cop_ptvyy Cvpypm (see Figure 3.10) with an additional unit column, i.e.,
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O~ ++-0-®
O+ -0-0

:
;
Y%

Figure 3.10: Sketch of the n — 1 chosen edges used
to create the matrix ©'y, in the proof of Proposition [3.5.5]

€ayay -+ Cajam by --- Ehgn Cvrwy --- Eyyym
Ay 1 0 0 0 0 0 0 11
0 0 : : : : L
Apal 0 0 1 0 0 0 0 1
B; 0 0 1 0 0 0 0 1
0 0 : : S OIL
CIVES
Bp, 0 0 0 0 1 0 0 1
AUB 0 0 1 0 0 1 0 0 1| IIL
AUBUW 0 0 1 0 0 1 1 0 0 1
: 0 0 S| IV.
AUBUVy L 0 0 1 0 0 1 0 0 1 1

Performing following elementary row operations:

1. multiply the row III by (—1) and add that result to each row of IV to get new rows
IV/;

2. multiply the sum of the last rows of I and II by (—1) and add that result to the row
IIT to get a new row IIT';
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3.5. UNDOMINATED COMPLEX OF THE [2]-N-CUT POLYTOPE

3. add the row IIT’ to each row of I and II

the n x n-matrix ©’,, takes the following form:

rt 0 0 0 ... 0 0 ... 0 07
0 . 0 ¢ . . .
0 0 1 0 0 0 0 O
0 01 0 0 O 0 O

0 0
0 0 0 0 1 O 0 O
0o 0 0 0 0 0 O 0 -1
0 0 0 01 0 0 O
L0 -0
LO 0 0 0 0 0 1 0

As we have rank(©',,) = n linear independence of rows of ©',, implies affine independence
of rows of the cut-incidence matrix of M. Thus, we have for each face in Proposition [3.5.1]
that its vertices are affinely independent.

O

Since all faces in Proposition have n vertices none of them is contained in any
other. Now we show that any further face contains in one of these faces.

Let W C 21 such that {x(6(W)) : W € W} is the set of vertices of some face
of the undominated complex of Pyj(K,). Then there is ¢ € RE; with minimum [2]-n-cut

value 1 such that ¢(6(W)) =1 if and only if W € W. Let

Wy ={WeW: 1eW, 2¢ W},
Wy = {WEW: 2¢e W, 1§§W}, (3.103)
Wia SZ{WEWI 1,2€W}

By Lemma [3.4.4] all W € W, are nested. Let A be the largest set of them, i.e.
A := W such that W € W, and |[W| = max{|W|: W € W;}. We number the elements
in A, A= {a1 = 1,a9,...,a4} and define A; := {a1 = 1,a0,...,a;}, I € [|A]] such that
Wi C {A1, Ay, ..., Aja}. Similarly, by Lemma [3.4.4[all W € W, are nested. Let B be the
largest set of them, i.e. B := W such that W € W, and |W| = max{|W|: W € W,}. We
number the elements in B, B = {by = 2,by,...,bp} and define B; := {b; = 2,b,,...,0s},
I € [|B|] such that W, C {By, Bs, ..., Bp|}.
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By Lemma[3.4.4 A C W for all W € Wiy and B C W for all W € W5 what implies
that AUB C W for all W € Wy,. We choose V = [n — 1]\ (AU B). By Lemma [3.4.4]
all W € Wiy are nested. Thus, we can number the elements in V' such that for each
W € Wis there is some I € [|[V|] with W = AU BUV; where V; = {vq,...,vs}.

Thereby it is shown that WV is a subset of some M, as in (3.55)), what complete the
proof of the main result of this section:

Theorem 3.5.6. The undominated complex for the [2]-n-cut polytope Py (k) C R(%)
for the complete graph on n nodes is a pure simplicial complex of dimension n — 1 whose
facets are described in Proposition|3.5.1).

Remark 3.5.7. Thus the undominated complex for the [2]-n-cut polytope Py (K,) consists

of w facets which are (n — 1)-dimensional.

Proof. We have @ different sets of [2]-n cuts what implies that the undominated
(n—1)!
2

complex of Pyj(K,) has different facets. It follows from the fact that there are

2

(n—3)! > (™,?) possibilities to partition the set [n — 1] of n — 1 elements into three parts
k=1

as in (3.55): (n — 3)! possibilities to order the elements in [n — 1] \ {1,2} and in each of

these cases we have ("5?) + ("7?) possibilities to partition the elements into three parts.
Thus, as a result we have ("%1)' different sets of [2]-n cuts due to:

o (n—=2)!  (n—2)
("_3)!;( ¢ )_(n_3>!<2!(n—4)!+1!(n—3)!)

:(n—3)!<(n_2)2(n_3> _|_(n_2)) — (n_1>!.

3.6 Undominated Complex of the [3]-n-Cut Polytope

Making similar reasoning as in the two previous sections [3.4] and [3.5] for the 1-n-cut poly-
tope and for the [2]-n-cut polytope, respectively, we obtain the result for the [3]-n-cut
polytope for the complete graph on n nodes which will be presented in this section.

Let us introduce some notations used in the current section.

Let the set [n — 1] := {1,2,...,n — 1} be partitioned into five parts A7, v € [3] and
VA X € [2] such that they are all pairwise disjoint

AT ={a{ =7, a3, ..., al ), v €],

. L X (3.105)
VA = A{of, v, v 1 A€ (2],
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see Figure [3.11] We define the sets AL, v € [3] and V}, X € [2] as follows:

Al ={a] =~v,4a3,...,a}}, €A
(3.106)
‘/[)\ = {'Ui\a Ug\v ) U;\}a I'e HV)\H

Note that, A, | = A7 for all v € [3] and VA

) = V> for all \ € [2].

Let M be the set of the following sets:
M= {Ab: Te A YU{AZ: Te (A2 yU{Ad: Ie[lAY)}
u{AtuAyu{AtuA2uVvi: Te|[VYu{atuAa?uviuA®l  (3.107)
u{AtuAZ2uviuAuVvE: Te|V?)}

Al A? A3

\ ‘Y !

Figure 3.11: Representation of the vertex set [n]
in the proof of Proposition [3.6.1}

Proposition 3.6.1. For each partition of the vertex set [n — 1] into five parts A, v € [3]
and Vi, X € [2] such that they are all pairwise disjoint and defined as in (3.105), see

Figure[3.11]
conv{x(6(M)): M € M} (3.108)

where M is defined by (3.107)), is a face of the undominated complex of the [3|-n-cut
polytope Py (Ky) for the complete graph on n nodes K, = ([n], E,).

Proof. We first define some ¢ € RZ such that for all M* C [n — 1] with M* N [3] # 0

min{c(6(M)): M C[n— 1], M N[3] # 0} = c(6(M™)) (3.109)
holds if and only if M* € M (see the proof of Lemma [2.3.1]).
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Let ¢ € RZ; be defined as follows:

1 S

. 1<i<j,

for a, a}EA7,*y€[3}:ca;/a?: 2.2 J
Caga;/v Z:]-v
A LA A _ 1 o
for Ui,vjEV,)\E[2].cU?U?:2.2j - 1< J;

) ) 23 . 2‘A1|7i . 2‘A2|*j’ Z’ .] > ]'7

1 1 ) .

for aiEA,ajEA e Catad, i=1,
J

Calg2 j = 1;

az. a27

1
23 . 9lA7[=i . oIV 9. 9lA3|—j"’

cagagh = ]-7

1, 7 >1,
for a] € A7,y € [2],a} € A”: CaYa? =

Ca?a?? J= 17

iy . 1
Colpl 7= 1;
Qg Uy )

1
9B+1 . 9IVE+1 . 9. 9|AY|—3’

for a] € A7,y € 2], vjeV?: Catez = -
Cav?s =1
3

1
23 . 9|V =y . 9]A3|-a’

a>1
for a> € A®, vi evl: Cagul = ’
Ca%v#7 o = 1;

1
92B+1 .9 . 9|A3-a’

a>1
for a € A®, 0/23 eV?: ey, ’

1
-, 1>1 .
for a’:iy € A777 € [2]7 'Ui, S Vl D Cyrpl = {Q’YJrl .2 . 9lAY[=i? t ’ (3 110)

ca%vf_ﬂ a = ]-u

1
B T 9B+1. 9. 9Vi[—

for viEVl, 1’/23 cV?: ¢,
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1

-, 1> 1
for a] € AV,v € [2]: cprp, = ( 2IVEIHL .2V 9 94T >4
Ca;na 1= 1,
L >1
(6]
for a3 € A%: cgs, = { 2V2H1. 2. 9l4%—a” ’
Ca3n> o = 17

(3.111)

1
9IV2+1 .9 . 9[V|—y’

1 1. _
for v, €V D Cutn =

1
2 2. _
for vz € V7 Cotn = 5 575"

Lemma 3.6.2. Let ¢ € R be defined by (3.110)-(3.111). Then the cut §(M*) has value
one for all M* € M where /\/l 1s defined by |n)

Proof. Consider all seven possible cases for a set M* € M.

Case 1: M* = Al for I € [|AY].

1147 VY 1A%
= Cataz + D D Caty + DD Cala
DD caa+ Zﬁ Cal
=1 j=1 i=1 y=1 \z 1 a=1
1 Yo X3
i Lo (3.112)
220 v2+20a1n+2 D Cola
i=1 y=1 =1 j=I+1
N’ \w—/
24 35 Y6

In view of the definition of ¢ € R>0, see (|3.110)-(3.111]), we calculate each term of the
right-hand side of equation (3.112]).

I A% I | A2] I |A?
E1 = E E aza? = % % E ala? + § Cala2 + E § Ca%a?
=1 j=1 =2 j=2 1=2 j=2
I |A?] I |A?
1=2 7j=2 1=2 j=2
I
1 1

T 93 . 9lAl[—2 . 9[A%[—2 + Z 93 . 9[AT|—i . 9|A%[—2
=2
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|A2 I |A2
+ZQ3 2|A1| 2. 9[A2[—j +Z§; 23 . 2|A1| i.9lA%—j
1=2 j
|A?| |A?|

1 Z Z
= QAT 1+2222 22223 22222222]
1 1< &
= SATHAT T (1 + 55D 2Z> I+ Z 2 (3.114)
=2

B 1 R Y 1 — 2141
B R T R T T

ol-1 2\A2|71 ol-1

O olATH| A2 -1 - oAl
I |V V1| vy v -
Zza a1v1+zzc vl = av1+ZZC%%
=1 y=1 y=1 =2 y=1 =1 pr
V] I |V
— Z v+l . 9. 2|A1\ ) + Z Z TSN 2‘141 —
1=2 ’yf
1
Vi 1 9i 1 1-— 2“,1‘ . 92 1 _ 9l-1 (3.115)
|A1|22’y +222 |A1\ 5 1_% . +§ﬁ
oI-1 <2|V1\ _ 1) oi-1 S
T ARV T QAT T ATV
I A3 - e
. Z anlad = Cafap T ZC a3t Z Cala3 T Z anlas
=1 a=1 o
‘AS I |A3
LIRS SAFED SES ) SN
B 12 - (3.116)
! 1

T 93 . 9lAl[—2 . 9[VI[. 9. 9lA%-2 + Z 93 . 9lAT[—i . 9[V1] . 9 . 9|43 2

| 43| 1 I A3 1
+223 9|A=2 . 9|V1| . 9 . 9]A3|~ a+ZZ 23 . 9|At|=i . 9|V . 9. 9|A3|-«
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|A3 |A3
1

= g (1T Z 2t 5 ZQ& 2 Z 2% Zza

1 1< 1 &
= QAT VA (1 Ty Z 21) e >

=2 a=2
(3.117)
1 22 1201 22 1 — o
— QlATHVIHAT] (H?' 1-2 ) SRR
ol-1, 2|A3|—1 ol-1
~ QIATHVIHAT] T QAT+ VI
I V2 \& I v V2| v
=D D z—Z Cag DD Cal 2—2 Caz + DD Cate
i=1 y=1 =2 y=1 =2 y=1
\& 1 I V2 1
- Z v+l . 9IVE+1 . 9 . 9|AY-2 + z;z 27+l L 9Vl L 9 . 9|AL|—i
7=1 i=2 =1
V2| I
1 1 1 :
- g L (145 2
AL+ V141 Z ( 2 )
1 1
1 5 (1= o57) 92 1 _9l-1
— .2 2 N T
2IAY+ V41 1 22 1-2
2
S (2-1) g oi-1
QAN VIV T oA HVI+1 B AV V241
I I
5= ) Caln = Can+ D Caln = Can + ) Caln
=1 =2 =2
1
1 1
T QIVIHL . 9IVIHL . 9 . 9JAT[-2 + Z 9IV2[+1 . 9IVI[T1 .9 . 9lAl—i
=2
(3.119)

I
1 1 )
= QAT VI VI (1 Ty Z : )

1 22 121 211
= QATHVIHVIF1 L+ 2 1_9 = QAT HVIFVI+T
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1 |AY |AY] 1 |AY
Vo= D Calad= D, Calal D D Calal
i=1 j=I+1 j=I+1 i=2 j=I+1
|AY] oA Al oA
=D Gt D w= D gt D 3o
j=I+1 =2 j=I+1 j=I+1 =2 j=I+1
A1) I ; - (3.120)
1 1 ; 1 1=ga= 22 1201
:2Z§<1+§ZZ>:2‘2I+1' I E e e
j=I+1 i=2 2
(2|A1\—I _ 1) . 2[—1 2[
T T 9lA-T.9I-1  _ © oA’

Thus for expression ([3.112)) with I € [|A'|] we have

((A1 1/1/ 217/ I-1 +\21\1 \21\1
= g1 T g 2|A1|+N 2\A1|+|‘7*H»\ 2|A1\+IV*H»\

%WWWJFWVIWJF b= =1

Case 2: M* = A? for I € [|A?%|]. Due to the symmetry of ¢ the equation c¢(6(4%)) = 1
follows from Case 1 by exchanging A' and A? (and nodes 1 and 2).

Case 3: M* = A3 for I € [|A3]].

I |AY I |A?] I v
=20 o T2 D 2+ZZC a5}
a=1 i=1 a 1 5=1 z 1 =1
N——— ~— — )
7 38 Y9
- LA (3.122)
+ZZ av2+zca3n+zz a;?a;"
i=1 y=1 i=1 j=I+1
~—_———— R/—/
Y10 211 Y12
Calculating each term on the right-hand side of equation we obtain
T |A1 |A1 I IAl
27—22 Cagal = Cad 1+Z Ca3a 1—1—2 1—1—22 Ca3.al
a=1 =1 |A1 ) IAl a=2 =2 (3123)
_Ca§a2+z Ca3a 1—1—20 1—|—ZZ Ca3a}
a=2 (=2
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1 I

_ 1
T 98 A2 Vil gL g A E | ZQ 23 . 9lAT[=2  9[VI] . 9. 9|A%|-a

|A] 1 1 |AY 1
" 2; 25 QAT Vi g giA 2 Z; z; 93 . 9[AT[—i . 9[VI[ . 9 . 9[A%—a

|A1 |A1
1 « T « T
= STV 1+22 ZQ t 5 ZQ +22 ZQ 2 ZQ
. L Y (3.124)
= ATV AT 1+ 72 a) 1+ —= 22 Z ot
a=2

1 22 12l 22 121
= S (LT 1+55-
QIATFVITH A% 22 1-2 22 1-2

ol-1, 2|A1\—1 912
= QIATHVI[H[A3] — oVI[+A3["

I |A? I | A2 I |A?
=22 = Gt D 2+Zc @+ DD Cugar
a=1 j=1 a=2 j=2
|A2 I |A2
i+ Yo PO DT
a=2 j=2
I
1 1
T 93.9[A%2 . 9[VI[. 9. 9lA%[-2 + Z 23 . 9lA%[=2  9Vl] . 9. 9]A3|-«
|A2] 1 I ]A?] 1
+Z223.2|A2j.2vl| . 9]A3|— 2+ZZ 93 . 9lA2—j . 9[V1] . 9 . 9|A3|—a
Jj= a=2 j=2

1

= g | 1t Z2a T ZQ] o Z2a22 ZQJ

1 1< ]
_ _ 04 J
= g (Lo > 1+ 5 22

_ 1 AR e W U e
= g \L e T TR T

ol-1, 2\A2|—1 oI-2
T MAFIVIHA] T VI 67
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1 VY [V 1 VY [V 1 VY
=D D =D Can t DD Cau =D Caguy T DD Catu
i=1 y=1 y=1 =2 y=1 y=1 =2 y=1
v I |V
= g g Y g

23 . 9|Vl—y . 9|A3|-2 23 . 9Vl—y . 9|A3|—i
=1 i=2 =1

V1)
X
2|v1|+\A3|+1 Z 2 (1 T3 22 ) (3.126)

B 1 ) 1— 2V . 22 12!
B R R e a R TR g

2l-1. <2|V1‘ — 1) oI-1 oI-1

2V L|+|A3] T 9|43 N 2VE|+[A3]”
1 V2 V2| 1 V2 V2| I V2
ZED I IEFED SIIFED 3) DETED LD ) MF
i=1 v=1 i=2 y=1 i=2 y=1
|V2 T |V2
- Z 27+1 . 2|A3| 2 - Z Z 2v+1 . 2\A3|—i
=2 y=1
[v2| 1 L 3.127
) " Lo 2 12 (3.127)
2|A3\227 +222 2|A3\ 2 11 e T

2

ol-1, <2|V2‘ — 1) ol-1 ol-1
ol oIV 9lA3 ~ V2443

I 1 1
Y= E Cad3n = Ca?n + E Ca3n = cagn + E Cadn
a=1 a=2 a=2

— S 2 3
R I (5.128)
1
1 1~ 1 22 12l ol-1
= VIR (1 T2 222 ) = QVIRA (1 T T ) = VAT
I A7 A% 1A% A% 1A%
S 5D SYTPED SYSPED 5B SRRRID SURRD b SEERITEY
i=1 j=I+1 j=I+1 i=2 j=I+1 j=I+1 i=2 j=I+1
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3.6. UNDOMINATED COMPLEX OF THE [3]-N-CUT POLYTOPE

47 1oAY 4
D I I YR 1 (PR )
j=I+1 i=2 j=I+1 j=I+1 (3.130)
Ly L logmm 2 12 @ opoort
I TE S 22 1-2 )  2k®r.ol-t T lAdr
Thus for expression ([3.122)) with I € [|A3|] we have
2]—2 2[—2 -1 2[—1
3\ —
(0(AY)) = S g + guN, - e
-1 -1 -1 I (3.131)
Case 4: M* = AU A%
A 142)
c(6(A" U A%)) = e(3(Aly)) + e(6(Afiz)) =2 D caree (3.132)
i=1 j=1

The first two terms both evaluate to one (Cases 1 and 2). The third term on the right-

hand side of equation (3.132)) is a particular case of ¥y with I = |A!| from Case 1. Thus
we have

9lAt|-1
Case 5: M* = A'UA2U V! for T € [|[V!]].
|AY 1 I 147
c(6(A"UAUV)) = c(6(A"UA%) =D ) carn chm
i=1 y=1 7 1 j=1
1 S14
43 v P (3.134)
+zzca3vl+zz%;+zcvln+z >
oclvl v=1 g=1 v=1 Bg=I+1
~~ ~~ H/_/
Y15 Y16 Y17 Y18

In view of the definition of ¢ € R>0, see (|3.110)-(3.111]), we calculate each term of the
right-hand side of equation (3.134)).

1 |AY I |A| A
213 - E E Cazlv}/ = E Ca%v}/ + E Cazlv}/ = E Ca%v}/ + § Caq}v%
y=1 i=1 y=1 =2 y=1 y=1 1=2 y=1
1 (3.135)
I [AY] T
- 2.2
Z 27+1 . 9. 2|A1| 2 27+l . 9. 2|A1| i
=1 i=2 y=1
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|AY| 1 2 All-1
; 1 1—5 22 1— 241
2|A1\ZQ'Y 1+2222 —2\A1|'§' _%'<1+§' 1—2
(3.136)
A O D |
9[AT[+1 T 9 oI+1”
1A% I |A2| I 42|
Su=D D = Caut DD =D Cut D) Cau
~y=1 j=1 ~y=1 j=2 =1 v=1 Jj=2 y=1
|42 1
- Z 27+1 . 2|A2\ 2 + Z Z 27+1 . 2\A2| j
i (3.137)

Z 14+ — ZQJ __lj 1_‘_2_2.%
2IA2I 27 22 22 11 2 1-2

oIt (2f —1) 1 1
TR T g ol
|43 1 I |43 1 I |A3] T
D D) ITTE SISEES 3) SIS SRS 3) Bt
a=1 y=1 y=1 a=2 y=1 y=1 a=2 y=1
1A% 1
_223 2\v1| DR +222 2 2|v1| S 94T a
a=2 7
|

2|V1\+|A3\+1 22 1+ 5 Z 2 (3.138)

1 1—2f 92 1 — A%t
Ty T \M e T

2Rt —1) ol

OIVIHAS  — gVI+I
I |v? I |v? 1 I V2|
Do =D D Cuz = Z 3 v = s 2.2 Z 5
y=1 B=1 y=1 -
1 1
1 2-a-2) 3¢ <1 B m) @ -nEv 1) (3.139)
oviy2 = 1 _9 1-1 - QIVI+ V21

L B |
T OoIVIHL  QIVIHVEL
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1

1 I
1 1
— — — Y
Y7 = ZCU%" - Z oIVZH1 .9 . 9[Vi—y — 9IVI+|[V2[+2 Z 2
y=1 7=1

v=1
3.140
o 2.(1-20)  21—1 (3.140)
T olVIVER2 T 1 9 oIVIHVEHL
v v 1 T
EISZZ Cv#v}gzz 9.96— 9 Z _/BZQ7
v=1 p=I+1 v=1 p=I+1 =I+1 y=1
1 1 (3.141)
1 g (=g 2-(1-20)  2T—1 271 L2
2 —3 T1—2 T2 T Vi T T ol v
Then, in view of (3.133) and (3.135))-(3.141)) for expression (3.134)) we deduce
1 1 1 1 {—1 {—1
cBAUA2UVY) =1—[=——) - (= +\2\1 +\2\1
9~ oI+ 9 ort1 ) T oWIRL T gVt
of 1 2y N
_M+|V2|+1 +M+\V2|+1 - ol 9V (3.142)
=1-2- L 2- L 1 L _ 1
R + BYEE) +1- or — L
Case 6: M* = A'UA2U VU A3,
c(0(ATU AUV UA?)) = ¢(6(AT U AU Vi)
|A3] |AY] |A3] |A?| |A3] [V 1A% [V |43
=D D Caw T DD = DD Cu +ZZ z +Z%3n (3.143)
3111 /algl 117— zl'yl
51,9 2?;0 Z‘gl Z?2,2 Y23
In this case Y9, ..., Yoz are equal to Xy, ..., 31y with I = |A3| from Case 3, respectively.
Using ([3.123))-(3.130)) and (3.142)) with I = |V!| from Case 3 we obtain
) ) . . 9143~ 9143 — A%-1 9lA3|—
COATVATU VI UAT) =1 = S ~ oweas — g, T am eA
M1 ~glA%= 1431 9l A7) (3.144)
TN L R R P '
=2—-1=1.

71



CHAPTER 3. UNDOMINATED COMPLEXES OF CUT POLYTOPES

Case 7: M*=A'UA2UVIUASUVE for I € [|V?]].

|AY T
c(0(A'UAPUVIUATUVY)) = c(6(ANU AUV UAY) =Y cae
=1 y=
o
o4
42 1 43 g Vi P (3.145)
=D can cha3v2—zzcvm+20v2n+z PBERE
j=1 y=1 a=1 y=1 7—1,81 y=1 g=I+1
Vv ~ Vv ' V
o5 Y26 Yo7 Yog Y29

Calculating each term on the right-hand side of equation (|3.145)) we obtain

|[AY T |AY] T I |AY] T
e 3) S z EDICEES ML I 2
i=1 y=1 =2 y=1 =2 y=1
|AY 1
- Z 2v+1 . |V1H—1 2. 9|AY -2 + ZZ ov+1 . |V1|+1 9. 9|A—i
i=2 y=1
1 ! 1 &
~ QIATHVIFL Z 27 1+ 22 Z 2 (3.146)
1 11— L2 1 — 2t
T oMATHIVIHL T2 1 Ty T
e O R 1
QAL+VI[+I+1  — 9Vi+2  9[VI+I+2’
A% 1 I |A2] |A2]
S DICEED WAL ) DR z 30 s
Jj=1~=1 =1 Jj=2 =1 j=2 =1
I 1 |42 1
- Zl 27+1 . 9|Vi+1 L 9 . 9|A%[-2 - Z Z 27+1 . 2|V1|+1 2. 9|A%|—j (3'147)
= =2 y=1
I \AQ

1
— J
~ QIATHIVIHT Z 2y 1+ 5 22 Z 2
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B 1 1 1_2% . 92 1 _ 9lA%-1
SOV g oL\ Tt T g

2|A2|—1 . (21 . 1) 1 1 (3148)
T T OIAHVIFI+L  9IVit2 | 9Vi4l+2
|43 1 |43 1 |A3] V2
S B RS DIETES 3 WES EFED 3) DL
a=1 y=1 a=2 y=1 a=2 y=1
I |A%] T
Z 2+l . 9. 2|A3| 2 + Z Z 27+1 . 2|A3\7a
a=2 y=1
B 1 I 1 | A3 yo 1 _ 2% ) 92 1 _ 2|A3|—1 (3149)
_2A3lz;2_v 222 2\A3| 2 1-1 Ty T g
’Y:
%=1 (2l —1) 1 1
T oA.of T g aIfr
Vi o1 Vo1 1 [V I 4
Vor =D Cug ZZW o = g 2 S 5
=1 p=1 ~y=1 B=1
1 2-(1=2V'h 1.(1-4%) @Vi-1n@el-1)
- oIVi+2 1-9 ’ 1 % - QIVI+I+1 (3.150)
oVii_1 oVi_1 1 1 1 1
T OWIHL  oVIFIfl 9 9VI+l  9Ifl + QIVI[+I+1"
1 1 1 2-(1-20) 21-1
. 96 — . =
Yo = ZC o Z 2.9IV?-8 2|V2|+1 Z T 9IV2+1 1—-2 21V?| '<3_151)
1|V 1|V 1 1 \& 12
_ _ _ _ v
Vo= D et =) D 5o =5 Do 35 02
v=1 B=I+1 v=1 B=I+1 =I+1 7=1
11 l-gmm o2.0-2) 20-1 2l-1 (3.152)
2 2t 14 1-2 2 21Vl
1 2l
N 2l 2IV?
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Then, in view of (3.144)) and (3.146|)-(3.152)) we deduce for expression ((3.145|)

1 1 1 1
c(O(AtU A2uViuABuv?))=1-— + — +
(o 7)) OWIN T oW THI+2 oI T oW T[4 I+2 (3.153)
1 1 1 1 1 1 ‘21\— 1 1 {—1

_§+ oI+1 WN oI+1 oW T|+I+1 + 2|V‘2\+1_§_ OIVE_ ~ L
O

Continuing the proof of Prop031t10n 3.6.1|we construct from the undirected graph K,

the directed graph K = ([n], E ») by replacing each edge e € E,, by two antiparallel arcs.

<
In the new graph K we construct three flows: a 1-n flow f': E,, — R, see Figure [3.12]
with

for al,aj € A with i < j,

1,1 1
17 J
fha =0 forai,a-EA1 with ¢ > j,
1%
f;?a? =0 for all a7, a? € A?,
fé}(@ = Cala? for all a} € A!, 3 € A2
f;?a% =0 for all a} € A', a? € A?,
le;gv; = Cyly1 for vf,vj € V' with i < j,
fz/;}vjl. =0 for v}, v; € V with i > j,
fégz@ = caryy foralla; € A, vj € V1
fz,ga} =0 for all aj € A', v) € V!,
fc/@q;% 1= C2u for all a? € A2, vi e Vi, s
fz’)%a? =0 for all a? c A2 v% evh (3.154)
— 3
f;fa;’ =0 for all a?,a} € A
;g% =0 for all a € A%, vl € V!,
way = Cayoy for all al € A% vl eVl
;%ag = Calqy for all af € A, a) € A%
Vol = for all a} € A', a € A3,
fz’)lgvj2 = Oy for v7,v? € V? with i < j,
fll)zgng =0 for v7,v? € V? with i > j,
a/,?a3 = Cq2q3 for all ai € A%, al € A%
lype =0 for all af € A%, a) € A%,
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f;}ug 1= Corz for all a; € A, v3 € V?,
le;ga} =0 for all a; € A', v € V?,
fé?”?s 1= Cg2,2 for all al € A* v e V2,
fz/;g@ =0 for all a2 € A%, vj € V?,

;gvg = g,z for all al € A% vj e V?,
lezgag =0 for all a) € A%, v3 € V?,
fé;yg = cy,2  for all vy eV vz eV?
fz’)%% =0 for all v} € V!, v3 € V2,
f;%n i=cu,  forall aj € A, (3.155)
fli:=0 for all a} € A, '
f‘%" = Ca2n for all a7 € A%,
fT/La? =0 for all a3 € A2,
fz’)%n = Cyln for all v; eVl

R for all v; eVl

!

A= for all a3 € A?

a3n ‘= Cadn or all a;, € )

3= for all a3 € A3,

fz’)%n = Cy2n for all v3 € V2,
f;w2 =0 for all v% e Ve
5

x4
Figure 3.12: Sketch of arcs (u,w) € E, with f; , > 0.
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>
a 2-n flow f”: E, — R, see Figure [3.13, with

" o 1,1 1
atal = 0 for all a;,a; € A%,
Yy o i=Cu2e2 for a2 a? € A? withi < j
a?a? A [ REad] I
g2 =0 for a7, a? € A* with i > j,
795
Vo =0 for all a} € A', a7 € A?,
i%j
1 = Cala? for all aj € A, a? € A%,
St
M =Gty for wf v € VEwith g <,
i Vj i V5
M= 0 for vj,v; € V! with i > j,
i Y5
[ i=cpm  forall al € Al vl e V1
a; Uy el v
M= 0 for all a} € A', v} € V1,
e
" . 2 2 1 1
fa?v}y = Ca2ot for all a; € A®, v, € |74
Yoo = for all af € A%, v} € V',
v
" L 3 .3 3
ata? "= 0 for all a3, a;j € A”,
dror =0 for all al € A®, vl € V',
way = Cayoy for all al € A% vl e V1 : |
: 3.156
s = Catay forall aj € A', ag € A2,
= for all a} € A', a3 € A3,
Vs = Ca2qs forall a? € A% af € A%,
e i%
N o= for all a? € A%, a} € A®,
adj
o= for vZ,v? € V2 with i < j
v?vf T U?’U? i Vg w I
V2 =0 for v7,v? € V* with i > j,
i Y5
_ 1o g1 .2 2
C’L’%U; = carz foralla; € A, vz € V7,
— 1o ogl .2 2
f;’%a% =0 for all a; € A*, v € V=,
" - 2 2 2 2
f‘j’?‘“% = Ca2e3 for all a;- € A2, Ug € VQ,
fvgaf =0 for all a5 € A%, v € V7,
zlzlgug 1= Cgg,2 for all al € A%, v e V2,
fly s =0 for all al € A%, v € V?,
BT
fll)/%v[% 1=y, for all vy eV vg e V3
f;%v% =0 for all v} € V', v3 € V2,
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f;’%n 1= Cq,  forall al € AY
fri=0 for all a} € A,

(2
f;’?n = Ca2n for all a? € A%
fl.=0 for all a? € A2,
J
cVvt,
c Vi,

" —

fv%n = Cylp for all v
"
nol -

(3.157)

M= cus, forall ad € A3,

adn o o
"o 3 3
nad = for all a;, € A°,

" i=c,, forallvie V2

VN vgn B

"o 2 2
fm% =0 for all vz € V=

N\

AS
ol

x4
Figure 3.13: Sketch of arcs (u,w) € E, with f , > 0.

<~
and a 3-n flow [ : FE,, — R, see Figure [3.14, with

" =0 forall al, ajl- € Al

i %
/5,2 =0 forall a7, a? € A%,
i

", =0 forallal € Al, a? € A%

j
V=0 forall aj € AY, af € A%, -
" =0 forall v;,v; € V1

=0 foralla} € Al Ué evy,
" =0 forallal €A, vi eV,

77



CHAPTER 3. UNDOMINATED COMPLEXES OF CUT POLYTOPES

"

nad, *

f/// .

2 .
vgn

f/// .
2 .
nvﬁ

@

|
o

for

for

for

for

for
for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for
for

for

for

2
all U3

all v%
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€ A% vl eV
c A? U}, eV,

€ A3 with i < j,
€ A3 with i > J,

c A3 v
c A3 v

e Al @@
e Al a®
c A% a

3
«
2 3
€A a;

€ V2% withi < j,
€ V? with i > j,

c Al, v3
€ Al, v3
€ A% vj
€ A%, v3
€ A% 3
€ A%, v3
eVl vg,
eV, vg
c Al
c Al
c A2,
c A%,
eVt
evh

3
3 ¢ A3,

€ A3,

eV,
e V2

c Vvt
e Vi,
€ A3,
€ A3,
€ A3,
c A3,

c V2,
c Ve,
eV,
c V2,
eV,
c V2,
c V2,
cV?

(3.159)
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Al/ A? A3
l \\ /\
Nl

vvgi/
1/
\@/

Figure 3.14: Sketch of arcs (u,w) € E with f” > 0.

First we consider the 1-n flow f’ : En — R and check the flow conservation law:
the amount of flow entering a vertex a; € A"\ {a; = 1}, a] € A% a) € A, v} € V!
and v3 € V? should be equal to the amount of flow leaving a; € A"\ {a; = 1}, a} € A?,
al € A%, v} € V! and v} € V?, respectively.

Note that, from the definition of ¢ € ng, see .223—3.232, we have ¢,y , = ¢q3 .
for all v € [3]. Thus, it suffices to calculate f'(0°**(a;)) and f'(6"(aj])) for j > 2 due to
f1(0(a})) = f'(6°"(a3)) and f'(6™(a])) = f'(6"(a3)) for all v € [3].

In view of (3.154)-(3.155)) for f’ we have for each a} € A\ {a] = 1}

|A?| V! |43 \& |AY|
tr 1
F0™al) => e, z+§ Cal 1+§ aas+§ Cato? + Catn T Y, Calat
j=1 Jj=i+1
|A2] v \Agl
+ § Ca 1 2 + Callv% + Ca%a? + § Callag
’y:]_ a=2
|V2 |A]
+ E C, 111}% + Caln + E Cala al (3.160)
Jj=i+1
\A2 [V | A7
:Cl2+g C, 2—|—E Clvl+c 3—|—E a
|V2 |A]
+ § Ca1v2 + Caln + E Cazlajl
Jj=t+1
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|42 V']

1 1 1
T 93 9lATi . 9[AZ[—2 + z; 23 . 9lAt—i . 9|A%|—j + 2 v+ . 9. 9A|—i
J= Y=

|47
1 1
+ 23 . 9lAt[—i . 9IVI[ . 9. 9|A%[-2 + ZZ 23 . 2lAt =i 9V . 9. 2|A% |~
V2| |At]
1 1 1
_%;;2@”-%VW”-2-2M1%'%mv%ﬂ.mVLH.Q-mAW*+ §:12.mﬂ
= Jj=i+
|A2] \&
1 1 . 1 1
_ _ J - R
T 9Al[+|A%—i+1 1+ 92 Z 2 + oA —i+2 Z 27
j=2 =1
| A3 V2|
1 1 ; 1 1
+ QAT VI +[A3[—it2 L+ 922 Z 2+ AT [+[VI]|—i+3 Z 928
a=2 Bs=1
1
1 1 2
T ARV s T 5im 24 95
j=i+l
B 1 . 22(1 _ 2|A2|—1) 1 11— ﬁ (3161)
~ AT |\ T T (1 —g) ATy T 1
| 22(1 — 2l4%-1) 1 11— g
+ 1 1 3|4 1 + + 1 14 "5
QA [+|V1[+]A3|—i+2 22(1 — 2) WAL+ VI —i+3 9 1— %
1 1 1 -
+ — 4+ —
QMAMHIVIHVZI=i+3 T g1=i " g+l 1 _ 1

9/A%|-1 1 1 9lA3|-1
= 1 57 T 1, (1 - 1 > + 1 1 3,
1A +[A%|—i+1 © 9lAt[—i42 2(V1 QA +[V]+]A3]—i+2

1 1 1 1 1 1 1
TomEmvis T v ) T o eveas Ty \ LT g

1 1 1 1 1
= ofAT—it2 +M\—i+2 N 2|A1\+|Vm+ 2|A1|+|Vﬂ>i\+3\+ oAl [+[VIT=i+3.

1 1 1 1 1
_Q&MWWM%Q+Q&MWWM%&+§_Emﬁg:5’

and for each a} € A\ {a] = 1}

i1 i—1 il
i 1
F0™ (@) = Y catar = Caar + D Catat = Catal + ) ot (3.162)
j=1 7j=2 Jj=2
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i—1 1 1 =
_ — J
_2+j;2.2z’—j T 9i-1 <1+22j;2>

1 1 22.(1—-272)\ 1
— 14— .2 === J)_Z
2i-1 < T T > 2’

For each a? € A%, j > 2 we obtain

| A®] v V2|
t
167 E Ca2a3 + E Ca2vl + E Ca2v? + Ca2n

51

147 V1] V2|

= Ca?a:{’ + E CaQag + § Ca?'u,lY + E Ca242 + Ca?n
a=2 y=1 B=1
‘AS |V1 ‘VQ

02 g—l— E Ca2a3 + E Ca2v1 + E Cazvz + Cu2p
a; j

|42

B 1 1
T 93 . 9]A%|—j . 9[V1] . 9. 9]A3|-2 + 2_:2 23 . 9|A2|—j . 9Vl . 9. 9|A3|~a

‘V1| 1 ‘V2| .
+ Zl 27+l . 9. 2|A2‘—j - ; 926+1 . 2|V1|+1 .9 2|A2\—j
V= =

1
21V2[+1 . 9|Vi+1 . 9. 9|A%[—j

B 1 - 22(1 — 214%1-1)y
oA e \ LT T 1o

VY

+

V2|

1 1 1 1 1
T oA > o T oAV 13 > 58 T IRV Ve 43
1 =1

’y:
3|_ 1 1
B 2|A [—1 N 1 ' 5(1 _2|V1|)
QIAZ|+H[V+|A3|—j+2 © 9|A%|—j+2 1— %
1 1
i 1 5(1 - 2\V2|) 1
QIA2|+[VH—j+3 1— % QIA2|+|[VH+VZ]—j+3

- 1 1 1
= SATVI 48 T oA 42 \ * T o]

1 1 1
T I (1 - 2|v2|) T RV

81

(3.163)

(3.164)



CHAPTER 3. UNDOMINATED COMPLEXES OF CUT POLYTOPES

1 1 1
= SRRV 43 T pAfte | BrEmvi—j+2
1 1 1 B 1 (3.165)
T SR8 QAR VITTVR—as T QAR VTR —Sas | QAT 12
|AY| |AY |AL|
FI6"(03) =Ytz = Cataz + Y Cataz = Caaz + Y Cata2
=1 =2 =2
|A]
1 1
= 23 . 9|AY—2 . 9|A2|—j + 2; 93 . 9|Al—i . 9]A2|—j
TAI (3.166)
1 ’L
= QATHAZ 41 22 Z 2
1 22(1 — 21411y oAt 1
= QATHAZ 41 L+ 22(1—2) T QIATHAZ[—j+1  9lA?—j+2
For each v} € V' we have
[V |A3| [v2|
f’(é"“t(vb) = Z Colpl + ansv1 + ZC v2 + Coln
i=vy+1
v |A3 V2|
= D Gl T+ D oy + ZC a3 T Cutn
1=7+1
V1 |A3| (V2]
= Z Colo} —l—Ca3U1 +an3v1 —i—ZC 02 —O—Cv%n
i=vy+1
1 3
B V- 1 1 |A®] 1
- Z 2. 9i—y + 23 . 9|Vi—y . 9]|A3|-2 + Z 23 . 9|Vi|—y . 9]|A3|~a
i=y+1 a=2
V2|
1 1
’ ,82; 9B8+1 .9 . 9[Vi—y * 2IV2+1 .9 . 9IVi—y
V4 |A3|
1 1 1 1 .
- 21—y Z E - 2V +]A3[—v+1 1+ ﬁ Z 2
i=vy+1 a=2
\&
1 1 1
T le 2 T g
(3.167)
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1 1 B
I i S 1 (1 L 202 1))

T 91— 1-1 2AVHH| A% —y+1 22(1—2)

1 3 (1= 5v7) 1

+ VI[—+2 1 — % UV H[V2|—y+2

1 1 2lA4%-1
T 9 Vil + OIVI+]|A3|—y+1

L, 1
o 1T ava ) T oo
1 1 1
o 5 _Q,W’W—’y-‘rl +/2Hff|—'y+2
1 1 1 1
T T T v T VIV T Y

(3.168)

|A| |A2|

f/(ém(v'ly)) anlvl + ZCC@U% + ZC vlvl

=1
|AL| |A2] -1

= Calol + E Calvl +Ca§v}y+ E Ca?v}/—{- E Colol
j=2

=1

A |A?] -1
= Cq} 1+ E Calvl +Ca§v1+ E C 1+ E Colol
1
i=1

1
1 4] 1

= lg. gt Z 20+1 . 2. 2lAl =

|A?|
1 1 1
27+1 2 .9lA2|-2 +sz+1 2. 91425 +ZQ 2y—i (3.169)

1 |A1 |A2 y—1
_ i J (
T 9JAl+y L+ 92 Z 2 |A2|+v 22 Z 2 27+1 2
=1

1 1 221 —24%1
_ —_— ]_ —|— —_—
214+ 22 1-2

1 (1 1 22(1—2|A2l—1)>+1 2(1 — 27°1)

+

1A%+ 22 1-2 o+l 19

olAl=1  gA%-1  o9y=1 1 1 1
oA T T T T o :%{Jr%éfr 2 % D)
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For each a3 € A3 o > 2 we have

(V2] \&l 1 1
out —
(8 an3v2 T Cagn = Bz_:l 9B .9 9l a T oVIIL. 5. oA a

V2]

1 1 1
= QA% —at2 21 28 + oIVI[+1 . 9. 9lA%—a
= (3.170)

1 1 1= oy 1

= —2|A3|—a+2 5 1 — % 9IV2|+|A3|—a+2

1 1 1 1
= QA etz T GATIVIat? | ATV at2 | oA at2’

‘Al |A2 |V1
F(6™(a2)) = Z Calas + Z Catay + Z Catot

A |A2| V'

= Cala3 + E Cala +c a2ad + E Ca2a + E Ca3 vl

‘Al |A2 |V1
= Calad T E Calad T Ca2a3 T E Ca2a3 + E Cadvl

1
1 4] 1

= 93 glAl2 Vil . 5. oA —a T 2; 95 olA—i . VIl 5. oA

2
1 4] 1

23 . 9l4%|=2 . 9|V1] . 9. 2]A%—a + Z; 23 . 21A%|=j . oIV . 2. QlA? |«
j:

+

y L BTy
v . LA

1 i
+ 55 OV giAa — pATE A ez | LT 5 2.2
y=1

1 IA2 V']
N
+ QIAZ[H[VI[+]A3—at2 22 22 \V1|+\A3| a+3 Z 2

B 1 Lo 12— 1A=
= AV A ez \ 1T 2T 1

1 1 2%(1 — 2l4%-1
. (H_. ( )

AZ[+|V1]+]A3|—a+2 922 1—-2
1 2(1 -2V
T OV A T 1 -9
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9lAt-1 91A%|-1 2V —1)
= ATV ar2 T AV AT etz T gVIH A at2

3.172
) . (3.172)

1 1
T (A3 —a+3 +W|A3\—a+3 + 9[A3|—at+2  OWAF[A3[—a+2 ~ 9lA3[—a+2’

and for each v[% € V2 we obtain

1/ sout [, 2 _ _
f(67%(vg)) = ';lcv;‘%vf T Cugn = ,;1 5. 918 T 3. o0p
=P+ 1=+
1 \&

! 1 1 11 2\V21|—B 1
21-8 Z 2i + 9.9lVI—B — 91-B 9B+l | iy + 5 oV B (3.173)

1, 1 1 1 L 1
o\l T ovrs ) T o aveE T 5 T s T sl g

|A] |A2| |A3| v -1
/(ST 2
/ (5“1(1}5)) = E Callv% + § C v3 + E Cal CH] + § C + § Cy2 v3
i=1 : = =1
|A] \A2
= Cal,v2 + E Ca1v2 + Ca2U2 —+ E Ca?v
43| \Vl B-1
+ Cadv} + E Ca30? + E Col + E Co2o?
=1
1| \A?
= Ca1v2 + E Ca1v2 + Ca2v2 + E C“?”%
|A5 \Vl Bs—1

+ Cage + Z Cage + Zc g + Z oot (3.174)

|AY]

- 1

= 951 gVl g glA2 T Z_; S+ gIVI[+1 . 9. 9l AT—i
2

X 14

1
T 26+1 . 9|Vi+1 . 9. 9lA?|-2 T 22 264+1 . 9IVi+1 . 9. 9]A2|—j
j:

3
1 | A%

1
9268+1 .9 . 9|A3|-2 + Z 28+1 .9 . 9|43 -a

_I_

V]

+ZQ,8+1 2. 2\V1| W+ZQ 281
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. ] |AL| 1 1 |A%|
= g (L1 5 2.2 |+ g |1 g2 2.
i=2 7=2
| A3 v p-1

|
1 1 1 1 .
N _ @ - Y 7
tomr (Ll g Y g 22
a=2 =1

i=1

1 22(1—2At-t
= s | L T ez ( )
QI AT[H[VI[+B+1 22 1—2

1 o120 21A4%I-1)
tommve Lt T 10 (3.175)

1 1 22(1 -2
+ s (Lt
214%[+5 2? 1-2

1 21 =2V 1 2(1—207)
oVIl+B+2 T 19 + 26+1 1 _9

+

9lAt|-1 9/A%|-1 ol4%=1 oIVl _ 1 98-1_1
= SAIVIAT T QR VIAT T gl @E T ovinAr T 9B

1 1 1 1 1 1 1
:zme+QMWH+WN*waQWWH*5_%:5

Hence, both conditions of the definition of a flow are satisfied for our 1-n flow f’, i.e.

fl>0 for each e € E‘n, (3.176)
(6% (v)) = f'(6™(v)) for each v € [n] \ {1,n}.
The value of this flow [ is equal to 1 due to
/ 1/ cout out/ .1 1yy Lemma
value(f') = f'(67(1)) = f(07(a1)) = c(8(A})) © ="""1 (3.177)

Now consider the 2-n flow f” : Zjn — R and check again the flow conservation law:
the amount of flow entering a vertex aj € A', ¢ € A%\ {a} = 2}, a} € A% vl € V!
and v} € V? should be equal to the amount of flow leaving a; € A', a7 € A%\ {a} = 2},
a € A3, vi € V! and v% € V2, respectively.

Note that, from the definition of ¢ € ]ng, see ([3.223)-(3.232), we have c,1 . = ¢34

for all v € [3]. Thus, it suffices to calculate f”(6°*(a})) and fr(6™(a])) for j > 2 due to
f(07(aq)) = f"(6""(a3)) and f"(6™(af)) = f"(6"(a3)) for all v € [3].
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In view of (3.156)-(3.157)) for f” we have for each a} € A!
|4 V' V2|
FOHaD) = 2ot + Dy g+ Dt ot
B=1
|42 V] V2|

_Ca1a3+z Calal +Z avl+zca1v2+ca1n
8=1

|A3 ‘Vl |V2

= C,1 g—l— E Ca1a3 + E Ca1U1 + E Ca1v2 + Cuip,
1 1

|42

1 1

R AR N Zz 53 IAT—i . 9V . 5. 914 -a

Vi 1 V2| 1
T 2 o7+1 .9 . 9At—i + ; 2B+1 . 9IVI+1 . 9 . 9[Al|—i
= =1

1
2IV2[+1 . 9|Vi+1 . 9. 9|AL|—i

+

1
1 22(1 — 2lA4%-1) 1 U
~ QIATHVI[H AT —i+2 <1 + 22(1 —2) + 9[AT[—i+2 Z 27

=1

V2|

1 1 1
+ ST 2 55 T g
5=1

2‘A3|71 1 %(1 - 2|\1/1\)
= QAEVIHA 2 T A T ] o I

1 5 (1= 5vp) 1

+ SIATFVI—it3 - 1 % QAT [VI[+[VZ[—i+3

B 1 1 1 1
T 9AN+[VI]—i+3 + QAT —i+2 oIV

1 1 1
T AT (1 N 2|v2|) T A VIEVE s
B 1 1 1
~ ATV s T gIAT e | ATV
1 1 1

(3.178)

1

+247ér1—MX/1|Jrﬂ;+:’, - 2\A1|+IV1I+M+ QAT+ VIV —ik3
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u M°>
[\]
O
k»w
||
M°>
Q
k»m

|A2]
” 5m ZC a2 =
A
1 1
= oAt | P Z (3.179)

B 1 . 22(1— 2~y oMt
T QlAlH[A%|—it1 ’ + 22(1 _ 2) T OQlANH[A%|—i+1 T 9[AT|—i42”

For each a} € A?\ {ai = 2} we have

[AY] Vi |A3] \& |A2|
" te 2
f (50u (aj)) = § 2 + § vl + § Ca2a3 + § Ca2112 + ca2n + E ]2 a?
=1 i=j+1
|A] Vi |A3| [v2| |A2|
= % 2 —|— C 2 —+ E Cy 2 vl + Ca2a§ —+ C 2a3 + E Cazvz + Cu2, t+ E Cy242
a; 3 3 3%
a=2 i=j4+1
|A| v |A3| V2| |A2|
= %2—1—5 C, 2—1—5 C2v1—|—c 3—1—5 C2a3—|—g Cy2 2—|—Ca2n—|— Cy242
J J 7t
i=j+1
|At] Vi

1 1 1
- 23 . 9|AY=2 . 9|A%|—j * 22 23 . 9|Al =i . 9]A?|—j + Zl v+l .9 . 9|A%—j
1= Y=

|A%|
1 1 (3.180)
+ 23 . 21A%—j . 9[V] . 9. 9|A3|-2 + 22 23 . 9142|=5 . 9|V . 2. 9|A%—a

V2| |A%]

1 1
+ ; 984+1 . 9IVi+1 . 9, 9]|A2|—j t oIV2[+1 . 9IVH+1 . 9 . 9|A2|—j * Z 2. 2t—J
=1

i=j+1
|AY| \&
1 1 z. 1 1
= g | e LY e Ly
i= y=
|A3| (V2|
1 . 1 1
+ 9 A2[+[VI]+]A3]—j+2 1+ 922 Z 2 + OIAZ[+[VI[—j+3 26
a=2 =1
2
1 1 2
T VIV T 51 2i
i=j+1
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B 1 ' 22(1 — 214'I-1) 1 11— 5o
Bl STy R I R g

1 L 20 214%-1) 1 11— 5o
M e e e T ) R B e T R
1 11 =g
TRV gy g -]
2, 1 1 2 (3.181)
= QATHAT 1 T glAT ez | <1 - 2|v1|) 1 VAT 2 '

1 1 1 L, 1
T rs \ T g | T gmmrvin e s T \ T amE

1 1 1 1 1
= S 12 T ol ia | QAR VL. T AR Va9l AR Vs,
1 1 1 1 1
T SIEAVITIVE a3 T LB 1 T 5 g o

and for each a? € A%\ {af = 2}

j—1 j—1 j—1
F1(0™(a3) = Y aza = Cazaz + Y Cazaz = Cagaz + ) Caza2
i—1 i—2 =2
1 1 1 1,
T . 0i2 Zz 2i—i i1 (1+2_2222
i= j=
1 122 (1—22)\ 22 1
p— - 1 + —_— p— T = —
91 22 1-2 21~ 9
(3.182)
For each v} € V' we have
|V1 |A3 ‘VQ
P = 5 et S + S
i=y+1
Vi |A3] V2
= > Cuto, + Ca + Z Cayot + Z Coped + Cutn (3.183)
i=y+1
|V1 ‘AS |V2
:chv—i—c 1+ansvl+Zc 2+Cv,1yn
1=y+1
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| A3
1 1 1
- 421 9. iy + 23 . 9|Vi—y . 9]A3|-2 + Z 23 . 9|Vi|—y . 9]|A3|-a

V2|

1 1
" ; 95+1 .. 9VI— | QVIFT . 5. 9V

V! |A%|

1 1 1 1 .
=5 2 3 v | 2l
a=2

i=vy+1

V2|

1 1 1
+ ST 2 37 + v
B=1

(3.184)

1z (1= gois) L 22w
P AT\ T2 g

1 31— 57) 1

+ VL |—v+2 ’ 1 — % VL[V —y+2

1 1 214%1-1 1 L 1
=5 T oI T VIl T ot rz \ * o ) T oAV te

1 1 1 1 1 1 1
=T oWt T o T o T VIRV T VIV T g

|AL| |A2?] y—1
(6™ (v g Cyl 1—1—50 —i—E Colol
=1
|A] |A2] -1
= Ca%fu,lY + E Calyl + Ca%vl + E ca?v,lY + Cvzlv,lY
=2 7=2 =1
|A] |A2| y—1
= Cqlyl T E Calyl + Ca%v% + § Ca?v% + Cvllv%
=2 Jj=2 i=1
" (3.185)

1
T iig. A z; 271 . Q. 9|4l

1 |A2] 1 L
+27+1 2. 2\A2| 2+227+1 2. 2|A2\ —j +22 9y—i

1 1 A ‘ 1 IA2 -l
— - § i E J E i
T 9lAl+y 1+ 922 2+ 9| AZ|+y 1+ 55 22 2 27—&-1 2
1=2

=1
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1 1 221 -2
214+ 2? 1-2

1 (1 1 22(1—2A2l—1)> 1 201-27Y)

n (3.186)

STEEE T 1—2 t o 1—2

I e s B | /1 B
SO TR T Ty T T Fa T FAa Ty T g g

for each a € A3 a > 2 we obtain

2 2
V= V= 1 1

1 sout( 3 _ —
JHO" ) = ;Caivé T Cagn = ﬂz_:l 21 9 g/« T QVI g gl a

LA 1
= Stz 2 35 + gvIATarE
B=1
1 (3.187)
B 1 1 1= go 1
T oA —at2 9 _ % 9IVZ[H[A%—at2

1 | 1 1
= QM ar2 | ST at2 V7 | SPARE A | oAt

|AY] A2 V]

f”(éi"(ai)) an1a3 + ZC 243 T+ ZC 30l

i=1
|AY| | A2 |4

= Calad + E Calad —|—Ca2a3 + E Cazas + E Ca3 vl

|A!| 42| V']

:C1a3 —I—Z 143 +Ca2a3 +Z a3 +Z a3U1

|At]

(3.188)

B 1 1
T 93.9[Al-2 . 9|Vl . 9. 9]A%-a + ZQ 23 . lAt—i . 9|V] . 9. 9|43«

2
|A*| 1

1
+ 23 . 214%=2 . 9|Vl . 9. 9]A%—a + 22 23 . 214%—j . 9|V . 9. 9|A%—a
J:

v X
* Zl 55 oVi— . glA—a
'Y:
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) LA
= samviraarz | 1t 52 Z 2
1=2
. L v
- Y
+ 9A2[+|V1]+|A3|—a+2 22 Z 2 2|V1|+\A3|—o<+3 Z 2
v=1

B 1 - 22(1 — 21411y
T OIANHVI[+[A3[—at2 + 22 1-9

1 1 221 — 24171 (3.189)
- 1+ = -
A2V ] A3 —a+t2 22 1—-9
1 2(1 — 2V
+ .
OVI+[A%[—a+3 1—2
9lAt-1 9lA%|-1 oV 1

_|_

= QATVIAT et T QA VI ATtz | QI at2

1 1 1 1 1
= TN at3 | It | QA at2 | SpPTIAY etz | giAf-at2’

for each vg € V? we have

11/ cout [, 2 _ _
) = > Cozo2 T Cu2n = > 5. 9B " 5 9V A
i=B+1 i=p+1
|V2\ 1
1 1 1 1 1 1= V2= 5 1
T 91-8 ';1 E + 9. 9IV2—8 ~ 91-p ' 28+1 ’ 1 — % + 9.9V2-8 (3'190)
1=+

_1f 1 1 1 1~ 1
“o\!Tavrs ) o T o g T R g

|AL| |A?] |A3] [V -1
”5m EC 2—|—EC 2—|—Eca32—|—gc +Ecvv
= =1
|AY| 1A%
= Catuz F ) Catz +Ca2z + ) a2z (3.191)
i=2 j=2
|A%| V! B-1
+ Ca‘;’v2 + § Cy3 v% + § Cv,lyvﬁ + CUE’U%
a=2 y=1 i=1
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|AT] 42| |A%] V' B-1

= Caév?j + E C, ! 2 —}—Ca2,U2 + E Ca%z + Ca3v2 + E Ca3 v 2 + E CU}/U + CU?U%
=2

= =1

|AY]

B 1 1
C 9B+ 9IVI+1 L 9. 9lAY-2 + ZZ 2B+1 . 9IVI+1 . 9. gAY~

1 4] 1

+ 28+1 . 9IVE+1 . 9 . 9]A2|-2 + 22 264+1 . 9IVi+1 . 9 . 9]|A2|—j
J:

|A°|

1 1
T om g gma T ZQ 26+1. 2. 9l4%—a

v
+22ﬂ+1 2. 2\V1| ¥ +ZQ Qﬁ i
1 |A] 1 1 |A2|
e il i - - — j 3.192
T QAN [V +B+1 1+ 22 Z 2+ A2 |+|V1+5+1 1+ 22 ZQJ ( )
i=2 j=2
1 1 | A3 1 [V
- _ (07 'y 7
+ 9|A3[+8 L+ 22 2322 2|V1|+6+2 Z; + 25+1 22
a= Y=

S N (e ) I PR Ly
TR \ T TR gy ) TR T T )

1 (1 L2 2A3|—1)> 1 2(1— 2V 2(1 —20-1)

+ ST wi1—9) | tavmee T 1-3 Tama—g)

B 9lAt-1 9lA?%|-1 olA%|-1 oV _ 1 9B-1_1
= SATvVITerT T g vian T oms T oy T o8

1 1 1 1 1 1 1
= oV T gaaviee TN T 9aN oAVl g gﬁ )
Hence, both conditions of the definition of a flow are satisfied for our 2-n flow f”, i.e

<~
fI'>0 for each e € E,,, (3.193)
(6% (v)) = f"(6™(v)) for each v € [n] \ {2,n}.
The value of this flow f” is equal to 1 due to

value(f") = f/(8°"(2)) = f"(5"(a})) = e(3(A3)) "2 ET2 (3.194)
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e
Now consider the 3-n flow f” : E, — R and check again the flow conservation

law: the amount of flow entering a vertex a; € A', aj € A% a} € A*\ {a} = 3},

v; € V! and v € V? should be equal to the amount of flow leaving a; € A, a7 € A%,
a; € A%\ {af =3}, v} € V! and vj € V?, respectively.

Note that, from the definition of ¢ € ]ng, see (13.223))-(3.232), we have c,7, = c 7.,
for all v € [3]. Thus, it suffices to calculate f”(6°(a})) and f”(6"*(a})) for j > 2 due to
f(6°"(a)) = f" (6" (a3)) and f"(6™ (7)) = f" (0" (a3)) for all v € [3].

In view of (3.158)-(3.159)) for f” we have for each a} € A, i > 2

F(67(af)) = D catez + Catn

V2|

1 1
- ; 2B+1 . 9IVE+1 . 9 . 9|AY—i + oIV +1 . 9|Vi[4+1 . 9 . 9|At—i

V2

I T | 1

= ST D 35 T g
s=1

(3.195)
1 3(1— 57 1
T oMV Ty 1 IATHVI+[VZ]=i+3
1 ( 1 ) 1
= SIAL VI3 1- > + 1 1 2,
QA +V—i+3 21V2| QA+ V+[V2]|—it3
B 1 1 1 B 1
T olATH V=43 ANV [+[V2]—i+3 +WI+IWH+3 T AN V—i+3”
' |A%| |A%| |A%|
f///((sm(a}»:Z Cala3 = Cal 3+Z 1a3 = Cql 3+Za
a=1
3
B 1 | A% 1
= 23 . 2|A1|—i . 2|V1\ .9 2|A3\_2 + aZZQ 23, 2|A1|—i . 2\V1| 9. 2\A3|—a
1
1 |A3 (3.196)
= QAT VI[+]A%—it2 22 Z 2

1 22(1 — 214°I-1) 21A%I-1 1
T OIATH VI AT i2 1+ 22(1 — 2) = QIATFVIHAS[—it2 — Q[AT[—it|VI[+3’

94



3.6. UNDOMINATED COMPLEX OF THE [3]-N-CUT POLYTOPE

for each a? € A?, j > 2 we obtain

\&
PN = 3 s +
2|
B 1 1
o — 2B8+1 . 9IVH+1 . 9 . 9]A?|—j + 2IVZ+1 . 9|Vi+1 . 9 . 9|A%|—j
2
o 'i L, 1
T 9AZ[H[VI]—j+3 26 A2V +[V2—j+3
QA2+ V| —j 5:12 A2 [+|VE+]VZ]|—j (3‘197)
B 1 5 (1= 5v) 1
= oIAZ[F VI 43 1 — % Q1A2|+|VE+[V2|—j+3
B 1 1 1
= o rs \ LT o ) T a1
B 1 1 1 B 1
= QA48 T8 VA3 QAT+
2 2
| 43| | 43| | 43|
”/ (5m Z Ca2a3 = Ca2a3 + Z Ca2a3 = Ca2a3 + Z Ca2a3
3
- 1 | A% 1
©93.9[A%—j .9Vl 9. 9|A3|-2 T Z 23 . 91A2%]—j . 9Vl . 9. 9lA3|-a
1 2
J— (0%
T 9JA2[H| VI +]A3|—j42 Z 2 <3'198)
B Y O s i)
 QlAZ VA3 —j+2 22 1—2
B 2\A3|—1 _ 1
QIAZHVH AR 2 9AZ[+[V—j+3”
for each v}y € V! we have
(V2] (V2| 1 1
" out _
f(o ZC 3 T Coln = ; 268+1 .9 . 9Vi—y * oIV2+1.9 . 9[Vi|—y
V2|
1 1 1
= v BZ % T g
=1
(3.199)
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1 5 (1= ) 1

S oVimez T g1 QIVI+V2 72

1 . 1

= iz \ T v ) T o (3.200)
1 1 1 1

— — + =
OIVI—+2 — PPFIVI—+2 | RARVI Itz | gVt

| 143 |43 |43
fm(am(vfly» = Z Cadvl = Cai"v,ly + Z Ca3wl = Z Ca3vl
a=1 a=2 =2
|A%|
1 1
T 93 .2V . glA%-2 + ZQ 23 . oIV =y . 2/4%—a
1 " (3.201)
= oA | Ty Z 2

B 1 L 202Dy o
= QIVI[HAS[—r+1 + 22(1 — 2) T OIVIH[A3[—y+1 T 9Vi[—+2”

For each a € A%\ {a} = 3} we have

|A1 ‘AQ |V1
f/// (5om E Calad + E Ca2a3 + E Ca3 vl
\& \A3
—|— C.3 v + Cu3, + C,3 43
a (I n a a
i=a+1
|A1 ‘A2 IVl
= Calag + E alad + CaZa3 + E a 243 + E Ca3 vl
3.202
v ‘A3 (3.202)
+ E Ca32+ca3n—|— E Ca3 a3
i=a+1
|A1 ‘A2 IVl
= Cala3 T E ala3 1 CaZa3 T E a2a}, + E Cad v}
\&l \A3
—|— C,3 v + cCu3, + C.3 43
a, G/ n a (1
i=a+1
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|A]

B 1 1
T 93, 9]Al-2, 9|Vl . 9. 9]|43|-a T z_; 923 . 9|Al[=i . 9|V . 9. 9|A3|—a

2
1 4] 1

T 23 . 9lA4%|=2 . 9|V . 9. 2]A%—a + z; 23 . 914%|=j . IV . 9. 2|43 —a
]:

V' 1 V2| 1
+ 21 23 . oIV =y . 243 —a * ; 268+1 .9 . 9|A%—a
Y= =

1 2
+ 21V2+1 . 9. 2lA4%—a + Z 2. 9i-a
i=a+1
] A1 ] 42|
_ _ ( — J
= A | 1T 3 22|+ S A arz | LT 5 2.2
i=2 j=2
v V2| | A3
1 1 1 1 1 1
- - Y - - —_
+ 9IVI[+[A3[—a+3 22 + 9[A3|—a+2 Z 98 + 9V2[+[A3|—a+2 + ol-a 9i
v=1 B=1 i=a+1
B 1 - 22(1 — 2l4'-1) (3.203)
= ATV a2 \ T2 T 19
1 L] 22(1 — 214°1-1)
VI \ T2 T [ g
1 2(1 — 2V 1 11— gy
+ VIHA—at3 | _9 T 9[A3—at2 9 1 _ %
. 1 PR T e
9IV2|4|A3|—a+2 2l—a  9a+l 1 — %
9lAt -1 9l4%|-1 IVl _q

~ QIATHVIH[ AT a2 + Q1A+ VIH[A%—at2 © OV +[A%|—a+t2

1 1 1 1 1
+ 9[A3—a+t2 ~ 9[V2[+][A%[—at2 + 9V2[+[A3|—a+2 + 9 9lA%—atl
1 1 1 1
T oV A3]—a+3 +WA3|—0¢+3 + olA3|—ark2  oPFTH A3 —a+2
1 1 1 1 1 1

Tt AT T T el | g et | g A el o
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and for each a? € A®\ {a} = 3} we have

a—1 a—1 a—1
n(ging 3 _ — —
f (6 (a’a>> - § Cag’ag - Cai"ag + § Caf’ag - Ca%aa + E Ca?ag
=1 =2 =2

a—1
1 1 1
= — - = 1 _ 21
5. 902 " ZZQ 9.9a—i _ 9.9a-2 ( + E : ) (3.204)
1 (1 1 22(1— 2“)) 902

22 1-2 20-1 9’

"y sout(, 2 _ =
J7(0% (vg)) = %:lcv;‘év? T Cugn = ,ZB:I 5. 918 T 3. oVp
=P+ 1=p+
1 \&

! ! S S et = 1
T Z 2i + OIVI =B+l — 918 9B+l | —1 - 9IVZ[—B+1 (3.205)

1 1 1 1 1 1
o\ T ovrs | Tavera T g T o Ea T oA o

|A] |A2| |A3| Vi -1
neging, 2 _
f (5 (U,B)) - § Ca%v% + § 2 + E a3 2 + E Cv,lyv?, + E Cvag
=1 = i=1
|A] \A2|
- Ca1v2 + E Ca%vg + Ca%vé + E Ca?v%
i=2 =2
42 V1) 51
+ Ca342 + E Ca3 v% + § Cv}/v?} + cva%
a=2 y=1 i=1
|AL] |A2|
= Ca1v2 + E Ca1v2 + Ca2v2 + E C“?”% (3206)
|A3| |V1| -1
+ Cang + E a3 2 + E CU}/U% + Cy2y
|At]

B 1

C 9B+ L QIVEIHL . 9. 9lAt-2 + Z 2B+1 . 9IVH+1 . 9 . 9|A|—i
=2

1 |A%|

1
+ 28+1 . 9[Vi+1 . 9 . 9]|A%[-2 + 22 2B8+1 . 9IVi+1 . 9. 9|A2|—j
J:
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1 | A% 1 V! 1 S
T 264+1 .9 . 9|A3|-2 + Z 26+1 .9 . 9|43~ * z; 264+1 .9 . 9|Vi|—y T z; 2 .98~
(0% Y= 1=

=2

X | ' |1

o i J
= gamviee | 1T 5 2.2+ e | 1T 5 22
i—2 =2

1 1 |43 1 V'] 1 B—1
- _ « - Y 7
o (1 222" |+ g 212 g D2
] v=1 =1

=2

IS Y PN Ll 1 (), 20—y
TR \ - T o) ) TR T T -

1 22(1 — 2M4%1-1)y 1 201 =2V 1 2(1—2°1)
— 11 . + .
214346 22(1 — 2) oVIFA+2 12 28+1 1—2

_|_

B 9lAt|-1 9lA?%|-1 9lA%|=1 o[V _ 1 9B-1_ 1
= SAVITATT T QAR VIR T ol AE T oA T T 9P

1 1 1 1 1 1 l 1
~ oW Tpt2 +/24/V"/|+ﬁ+2 T 25%1\—‘_ 28N oW T[++1 T 9 %}i 9
(3.207)
Hence both conditions of the definition of a flow are satisfied for our 3-n flow f”, i.e.

>0 for each e € En, (3.208)
f (64 (v)) = f"(6™(v)) for each v € [n] \ {3,n}. .

The value of this flow f” is equal to 1 due to
value(f") = f(57(3)) = /(6" (a)) = e(5(A})) 22 1 (3.209)

For each M C [n—1] with 1 € M or 2 € M or 3 € M we thus have (due to ¢ > 0)

1< f/(67(M)) < e(8(M)), (3.210)
N 1< [0 (M) < e(0(M)), (3.211)
N 1< f(E(M)) < o(0(M)), (3.212)
respectively.

Hence Lemma shows that §(M™*) is c-minimal among the [3]-n-cuts for each M* € M.
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Now we show that all other [3]-n-cuts are not c-minimal.
Let W C [n — 1] such that W N [3] # 0, W ¢ M and c¢(§(W)) = 1.

Case 1: 1 € W, 2,3 ¢ W. On the one hand by Lemma[3.4.4] W C A'UA% or AlUA2C W
(where the latter is impossible due to 2 € A? \ W) since c(6(W)) = c(§(A' U A%)) =1
with 1 € W and 1 € A' U A%, On the other hand by Lemma W N A? = () since
c(6(W)) =c(6(A%) =1 with 1 € W\ A% and 2 € A2\ W. Thus W C A’

Aswehave {1} = A1 G A3 G ... G Al = A" with |A}, \ Aj| = 1 for all i € [|A"] — 1]
and {1} C W C A! Lemma implies W € {4],... ,A‘1A1|} (note that for each ¢ we
have A} C W or W C A} by Lemma [3.4.4)).

Case 2: 2€ W, 1,3 ¢ W. Similarly to case 1 we obtain W € {A7,..., A% }.

Case 3: 3€ W, 1,2 ¢ W. On the one hand by Lemma[3.4.4 W C A'U A2U VU 4% or
A'UA2UVTUA3 C W (where the latter is impossible due to 1 € A\ W, 2 € A2\ W) since
c(6(W)) = c(6(AUA2UVIUA3)) =1 with3 e W, 3 e A'UA?UVTU A3 On the other
hand by Lemma [3.5.3 W N (A' U A2U V1) = 0 since c¢(6(W)) = c(0(A'UA2UVY)) =1
with 2 € (AU A2UVH\W,3e W\ (A'UA?2U V). Thus W C A3

As we have {3} = A7 G A3 G ... G Alys = A® with |A}, \ Af| =1 for all i € [|4°] — 1]
and {3} C W C A3 Lemma implies W € {A7,..., A},5} (note that for each i we
have A? C W or W C A? by Lemma |3.4.4)).

Case 4: 1,2 € W, 3 ¢ W. On the one hand by Lemma W C A' (impossible
due to 1 € A'\ W) or A* C W since c(§(W)) = ¢(d(A')) =1 with 1 € W, 1 € A' and
W C A? (impossible due to 2 € A2\ W) or A? C W since c¢(6(W)) = ¢(6(A?)) = 1 with
2 € W, 2¢c A% By the definition of A! and A2, see , AN A? = (). Thus we have
AtUA2CW.

By Lemma WC A UA2UVIUAS or ALUA2UVIU A3 C W (where the latter is
impossible due to 3 € A3\ W) since ¢(6(W)) = c(6(A'UA2UVIUA%)) =1 withle W
and 1 € AU A2U VU A® . By Lemma[3.5.3| W N A3 = § since ¢(§(W)) = c(0(A%)) =1
with 1 € W\ A% and 3 € A3\ W. Thus W C A'u AUV

By the definition of A', A% and V', V! T € [|[V!]], see (3.105)-(3.106]), we have

AlUA?C A UA UV CATUAPUY, C L

21
GCAUA UV, =AtuA2uV! (3.213)

with (AT U A2 U V) \ (AU A%)] = 1 and [(A' UAZU VL) \ (A" UA2U VD) = 1 for
all i € [|[V —1]. Then, as we have AU A2 C W C A' U A2 U V! Lemma im-
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plies W e {A'U A, AU AUV, ... A" UA? UV, } (note that for each ¢ we have
AYUA2UVICWor W C AU A2U V! by Lemma [3.4.4)).

Case 5: 1,3 € W, 2 ¢ W. By Lemma Wn(A'UA2U V) = 0 since ¢(6(W)) =
c(6(Atu A2 U VYY) =1 with2 € (AlUA2UVH\ W and 3 € W\ (At U A2U VY,
contradicting 1 € W N A%

Case 6: 2,3 € W, 1 ¢ W. Similarly to case 5 we obtain a contradiction to 2 € W N A=2.

Case 7: 1,2,3 € W. On the one hand by Lemma m W C A' (impossible due to
2 € W\ AY) or A' C W holds due to c(6(W)) = c¢(6(AY)) =1 with 1 € W, 1 € A,
W C A? (impossible due to 1 € W\ A%) or A> C W holds due to c(§(W)) = ¢(6(A?)) =1
with 2 € W, 2 € A?2 and W C A? (impossible due to 1 € W\ A3) or A3 C W holds due
to c(8(W)) = ¢(6(A?)) =1 with 3 € W, 3 € A3 Hence we have A' U A2 U 4> C W.

Let W, == W and W, := A' U A2U V!, By Lemma m Wy € W, (impossible due

to 3 € Wy \ Wy) or Wy C W holds due to ¢(6(W7)) = ¢(6(Ws)) =1 with 1 € Wy, 1 € Wh.
Thus A'UA2UVIUASCW.

By the definition of A A2, A3 and V!, V2 V2, I € [|V?]], see (3.105)-(3.106)), we have

AluA?UVTUA CA UA UV UA UV C A U AUV UAP UV S

CAUAUVIUA UV, =AluA?uViuA>uV? (3.214)
with [(A'UA2UVIUABUVE)\ (AlUA2UTVIU A?)| =1 and
(A'uA2uViuAuVE)\ (Al UV TUA UV =1
for all i € [|V?| — 1]. Then, as we have
AtuA2uviuAdcwcA uA2uViuAPUuUVEi=[n—1]
Lemma [3.5.4] implies
We{AlUAUVIUA®, AluAuViuAUVE, L AlUAP UV U AUV )

(note that for each i we have A'UA2UVIUAPUVZC Wor W C AlUA2UVIUASUV?
by Lemma |3.4.4)).

Thereby all cuts (W) with W C [n—1], WN[3] # 0 and W ¢ M are not c-minimal. [
Proposition 3.6.3. The faces in Proposition are n-dimenstonal simplices.
Proof. Each face in Proposition has n + 1 vertices since for M defined by (3.107)

we have

M| =AY+ A+ 1+ [V + A+ 14+ |V =n—-1+2=n+1. (3.215)
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Now we show that these n + 1 vertices are affinely independent and hence all those faces
are n-dimensional simplices.

Let ©’y, be a submatrix of the cut-incidence matrix of M (see (1.10])) formed by columns

corresponding to the edges e,1 41, ..., Calyy polyy Calyomr Caladr --or Ca2, a2,
eafA2|,n7 61}%,1}%7 R €U\1V1|—1’U\1V1|’ evllvl‘,nv ea‘;’,aga R 6a|3A3|71’a?A3|, eang)‘,nv 6a|2A2‘,a‘3A3‘7
€2 02y ey €2 02 €2 . (see Figure [3.15)) with an additional all ones column.
e V-1 v2| v2p
\ \ \
\ \ \
ol oo
/ \
]
\
\
Q
/
\ ]
\
\
1
|
Figure 3.15: Sketch of the n chosen edges used
to create the matrix @’y in the proof of Proposition [3.6.3]
Hence, ©'y, is a (n + 1) x (n + 1)-matrix whose rows correspond Ay, ..., Al Af,
A|2A2|, Atu Az, AtuA2uVvE, L, Atu A2 UVI‘lﬂl’ A3 Ang‘,
A'UA2UVIU A3, AluA2uViUASUVE, .., AtuA?uVt UA?’UVH%Q‘, respectively,
ie. O, =
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€01

eaha% PR €a|1A1‘7n ea%,a% PR €a|2A2‘7n 6,0%7,[]% PP ev‘l‘/an Ga?a% “ e ea?A3|7n ea‘2A2‘7a‘3A3‘ 6’0%,7}% PR €,U|2V2‘7n
o1 0 0 0 0 0 0 0 0 0 0 0
, 0 0 . ) ) . ) . ) ) )
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1. : : 0 0 : : : : 0
0 0 0 0 1 0 0 0 0 1 0 0
I1I. 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 1 1 0 0 0 0 1 0 0
V. : : : : : : 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
\Y% : 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
VI. 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0
VII. : : : : : : : : : : : : 0 0
L 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1

HdOLATOd LND-N-[¢] HHL 40 XATdINOD AALVNIINOANN ‘9°€



CHAPTER 3. UNDOMINATED COMPLEXES OF CUT POLYTOPES

Performing following elementary row operations:
1. multiply the row III by (—1) and add that result to each row of IV to get new rows
1%
2. multiply the row VI by (—1) and add that result to each row of VII to get new rows
VIT;

3. multiply the sum of the last rows of I and II by (—1) and add that result to the row
IIT to get a new row IIT';

4. add the row III' to each row of I, II, V and to the row VI to get new rows I', II', V’
and VI';

5. multiply the sum of the last rows of I, II', IV" and V' by (—1) and add that result
to the row VI’ to get a row VI”;

6. multiply the row VI” by 1/2 and add that result to the last rows of II" and V'
the (n 4+ 1) x (n + 1)-matrix O’ takes the form:

1 0 00 ... 000 ... 00 ....0 0 0 ... 0 07
0o .o S S L .
o 0 10 ... 000 ... 000 ....0 0 0 ... 0 0
0 01 0 0 0 0 0 0 0 0 0 0

0 0 : 0

0 00 0 1 0 0 0 0 0 0 0 0

0O 0 0 0 0 0 O 0 0 0 0 0 0 -1

0 0 0 01 0 0 0 0 0 0 0 0

0 0

0 0 0 00 0 1 0 0 0 0 0 0

0 0 0 0 0 01 0 0 0 0 0 0
0 0 0

0 0 0 0 0 00 0 1 0 0 0 0

0 0 0 00 0 00 0 0 -2 0 0 0

0 0 0 0 0 0 0 0O 0 1 0 0 0
: 0 0

) 0 0 0 0 0 0 0 0 0 0 1 0
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As we have rank(©’,) = n + 1 linear independence of rows of ©',, implies affine in-
dependence of rows of the cut-incidence matrix of M. Thus, we have for each face in
Proposition that its vertices are affinely independent. O

Since all faces in Proposition [3.6.1] have n 4 1 vertices none of them is contained in
any other. Now we show that any further face is contained in one of these faces.

Let W C 2=1 such that {x(6(W)) : W € W} is the set of vertices of some face
of the undominated complex of P(K,). Then there is ¢ € RE; with minimum [3]-n-cut
value 1 such that ¢(6(W)) = 1 if and only if W € W. Let

Wy ={WeW: 1eW, 2,3¢ W},

Wo = {WeW: 2eW, 1,3¢ W),

Wy = {WeW: 3eW, 1,2¢ W}, (3.216)
Wi = {WeW: 1,2 W, 3¢ W),
Wias :={W eW: 1,2,3 e W}

By Lemma all W € W, are nested. Let A' be the largest set of them,
ie. A' := W such that W € W, and |W| = max{|W]| : W € W;}. We number
the elements in A', A' = {a; = L ag,...,a/,} and define A; := {a; = L.a3,...,ar},
I € [|AY] such that Wy C {A], AL, ... ,A‘1A1|}. Similarly, by Lemma all We W,
are nested. Let A? be the largest set of them, i.e. A% := W such that W € W, and
|W| = max{|W|: W € W,}. We number the elements in A?, A? = {a} = 2, a3, ...,a‘zA2|}
and define A? := {af = 2,43, ..., a7}, I € [|A?[] such that Wy C {A7, A3, ..., A%, }. Sim-
ilarly, by Lemma all W € Ws are nested. Let A% be the largest set of them, i.e.
A3 := W such that W € Wj and |[W| = max{|W|: W € Ws}. We number the elements
in A%, A3 = {a3 = 3, a3, ...,af’A3|} and define A? := {a} = 3,4a3,...,a3}, I € [|A3|] such that
Wy C{A7 A3, Al )

By Lemma AL C W for all W € Wiy and A2 C W for all W € Wy,
what implies that A' U A2 C W for all W € W;,. By Lemma all W e Wi,
are nested. Let V' be the largest set of them, i.e. V' := W such that W € W, and
W] = max{|W| : W € Wiy}. We choose V! = V' \ (A' U A%) and number the ele-
ments in V', V1 = {vj,..., 0} and define V' := {vf,..., v}, I € [[V']] such that
Wiy C{ATUA?UVE AT U A2 UV, AN U A2 U V) )

By Lemma AYUA2UVEC W for all W € Wigz and A C W for all W € Wias
what implies that A' U A2 U VU A2 C W for all W € W,a3. We choose V2 =
n—1]\ (AU A2 U VU A3). By Lemma all W € Wio3 are nested. Thus we
can number the elements in V2 such that for each W € W3 there is some I € [|[V?|] with
W =A'UA?U VU A*UVE where VP = {v},...,v}}.

Thereby it is shown that WV is a subset of some M, as in (3.107), what complete
the proof of the main result of this section:
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Theorem 3.6.4. The undominated complex of the [3]-n-cut polytope Pig)(K,) C R(2) for
the complete graph on n nodes is a pure simplicial complex of dimension n whose facets
are described in Proposition |5.6. 1.

Remark 3.6.5. Thus the undominated complex for the [3]-n-cut polytope Pg(K,) C R(%)
for the complete graph on n nodes consists of ("2;42)!(712 — 9n + 32) facets which are n-
dimensional.

4
Proof. We have (n—4)! >~ (™.?) possibilities to partition the set [n— 1] of n— 1 elements
k=1
into five parts as in (3.107)): (n —4)! possibilities to order the elements in [n— 1]\ {1, 2, 3}
4

and in each of these cases Y (™. %) possibilities to partition the elements into four parts.

Thus, as a result we have (n —4)! >~ (") different sets of [3]-n cuts due to:
S m=3)!  (n=3! (=3 (n-3)
(”_4”;( )= =4 (4!(n— B m—6 2 —5) (n—4)!)
= - 0" - - 5)0 - 6)
+A(n—4)(n—5)+12(n —4) +24) (3:217)
(n—3)! 2
=51 (n—2)(n* —9n + 32)
_ 2_42)!(712 —9n + 32). 0

3.7 Undominated Complex of the [£]-n-Cut Polytope

Generalizing the result from Section for the [3]-n-cut polytope for the complete graph
K, = ([n], E,) we obtain the result for the [¢]-n-cut polytope, £ € [n— 1] for the complete
graph K, which will be presented in this section.

Let us introduce some notations used in the current section.

Let the set [n — 1] :={1,2,...,n — 1} be partitioned into 2§ — 1 parts A7, v € [{]
and VA, \ € [€ — 1] such that they are all pairwise disjoint

AT i={al =7v,0a3, ..., a/p )}, v E[
A . ) (3.218)
V = {7.]17 /1.]2, ey /U‘V/\|}7 )\ € [5 - 1]
see Figure [3.16f We define the sets A7, v € [(] and V}, X € [€ — 1] as follows:
Al ={a]l =v,a3,...,a}}, T€[A
1= > 1} [1A™]] (3.219)

VA o= {u}, vy, 07} Ie[[V]
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3.7. UNDOMINATED COMPLEX OF THE [{]-N-CUT POLYTOPE

Note that, AIVA”I = A7 for all v € [¢] and VI{\/*\ = VA forall X € [¢—1].

Let M be the set of the following sets:
M={A;: Te[A }u{A]: Te[|A*]ru{atuAa®}
u{AtuA2uVi: Te[|[VYYyu{4dd: Te[A%]}
u{A'uA2uvViudu{AtuA2uViuAuVE: 1€V} (3.220)
U{A}: Te[AY]}y u{atuAuViuA*uviudtl u...
U{AtuUAZUVIUAUVEU. UASUVET s T e [VETY) )

@ ] [@ ® ] ®
Al A? A3 AS
| 1 )

)

Figure 3.16: Representation of the vertex set [n]
in the proof of Proposition [3.7.1]

Proposition 3.7.1. For each partition of the vertex set [n — 1] into 26 — 1 parts A7,
v € €] and V*, X € [€ — 1] such that they are all pairwise disjoint and defined as in

(13.218]), see Figure
conv{x(0(M)) : M € M}, (3.221)

where M is defined by (3.220)), is a face of the undominated complex of the [&]-n-cut
polytope Py (K,) for the complete graph on n nodes K, = ([n], E,).

Proof. We first define some ¢ € RZ; such that for all M* C [n — 1] with M*N[n—1] # 0
min{c(§(M)): M Cn—1,MNn—1] #0} = c(6(M")) (3.222)
holds if and only if M* € M.
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Let ¢ € RZ; be defined as follows:

for a}, aj € A7, v € [¢]:

1
— 1I<i<y
Cala? = 2 .20’ ! I (3223)
o ca%a}a 1=1;
for v}, v} € VA, A e [ —1]:
1 .
Codd = 5o 1<i<y; (3.224)
for a} € A, a] € A7, X, v € [¢] with A <
( 1
, o A>14,5>1
y—2
23 . 2MAN=i L 9lAT=j T 2IVFit
. k=A—1
) , A=1,v>2,4,j5>1
Cprgr 1= 23 2043 =i 21A47=j [T 2IVFI+1 (3.225)
v k=1
1 .
93 . 9|AN—i . 9|AT[—5” )\:1,’7:2, Z?]>1
Cadas 1=1
275
\C“?“g’ g=1
for v} € V?, v €V, A vy €[§—1] with A <
1
pout , 7> A+ 1,
- "
ey =4 27T 120 (3.226)
1
ot .. oAl T AtL
for aj € A7, v € [¢], v} € VA, X e [€ — 1] with v > A+ 2:
1
, 1 >1,
Carep i= 4 2279 - 20A7I=0 TT 2lVEIH1 (3.227)
e k=X
CadpXs 1= 1;
27
for a] € A7,y e [¢], v} € VM, X e [€—1] with v = A+ 2:
! > 1
. -1 ,
Curph = 4 23 - 21A47[=i . 2IVAI=j (3.228)
n Ca;v%) Z = ]"
J
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for aj € A7, v € [¢], v} € VA, A e [ — 1] with y = A+ 1:

1
)= 2L AT
J

v . 1
C,7 .\ 1= 1;
a2Uj7 ’

1> 1,
Ca'_y

for a] € A7,y e [¢], v} € VA, e [€—1] with v < A+ 1:

r 1 »
A—1 oy >1, 0> 1,
2i+1 .9 . 9|AY|—i H 9IVE|+1
k=~—1
- 1 ;=1L A>10i>1,
Ca?U; T 2j+1 .92, 2|A'y\7i H 2‘vk‘+1
k=1
1 \ .
2j+1 .9 . 9lA7][—=i’ y=1, A=1,1>1,
\Cagv;‘a 7 = ]_’

for a] € A7, v € [¢]:

1 o1
-1 , b > 9
=32 A |—i H 2IVE[+1
a/n f= 1
Cagnu 1= ]-a
for v} € V}, A e[¢—1]: |
97
Cfl)]).\’n, = 5—1—'
H 2|VE|+1

k=X

(3.229)

(3.230)

(3.231)

(3.232)

Lemma 3.7.2. Let c € ng be defined by (3.223)-(3.232)). Then the cut §(M*) has value

one for all M* € M where M is defined by (3.220)).

Proof. For brevity, we introduce the following notations:

I

CA?n - ;Ca?nv Y € [5]7 Ie HA’yl]?
Ji

CVf‘n = Z Codns A€ [f - 1]7 Ie HV)\Hv
]I |AY|

CA}\A’Y - Zl A lcaf‘ajﬂ >‘7’7 € [5]7 A #77 Ie HA)\|]7
i=1j=
AN 1

Cansy = 2 3 s A1 €18 A £, TE 0],
v

C(VI)‘V’Y = Z:l . lcvf‘vza )‘:7 € [5_ 1]7 A 7é Y, I € Hv)\Ha
i=1 j=
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VA 1
C’V>‘VI“7 = Z chl v] 7'7 S [5_ 1]7 )‘7&77 Ie HV7”7

=1 j=
I |V
Cagvr 1= 2, 2. Capps v €l A€ le— 1] T[], (3.234)

=1 5=
A7 1

C’A’YV>‘ = Z Z a:’vj/\ﬂ [5]7 A€ [6_ 1]7 I'e HV)\H

=1 j=
Consider all possible cases for a set M* € M.

Case 1: M* = A] for I € [|A"]] and v € [¢].

1 |AY]
( Z Z Ca”a”‘i_ZCA)‘A”‘i_ Z CA’YAA
=1 j=I+1 A=v+1
~~ d R ——
> ? > (3.235)
=)
+ Z Cayvr +Carver + Cyry.
A=1
7

First, we reproduce the results obtained in Appendix [B] for the terms on the right-hand
side of equation (3.235)). From Lemma we have

17_

v—1
2y = ; C'AAAI,’ = 2|A7| Z CAAAW
23: Z CA’I‘/A,\ = W Z CA)‘A’Y

A=y+1 A=v+1 (3236)
(B:11) 1
Carantr = 5 Vi 1<y <§
1
CA1A2 == 5
Lemma implies
( -3 2[ ¥—3
Z CA'IY‘/)\ = 2‘147‘ Z (CA/\-Q—QA'y - 20AA+1A'7),
A=1 A=1
C(A’IYV'Y_2 2\A’Y\ ( 2|V’y 2) 2< 7 S 5
Y4 ol-1 (3.237)
Cagvas = \m\ ( oIV= 1) l<y<¢
£-2 -
Z CA’IYV)‘ Z‘A’Y‘ Z (CAWA/\-H - QOA'yA/\+2)
\ A=y
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3.7. UNDOMINATED COMPLEX OF THE [{]-N-CUT POLYTOPE

From (3.64)), see the proof of Lemma [3.5.2) we obtain

2[
D= Y ciay =1 = orm (3.238)
i=1 j=I+1
Thus, using the relations (|3.236[)-(3.238|) equation (3.235)) with v > 2 takes the form
7V —
C((;(AI)) = Z‘A’Y‘ 2|AW| ZCAAA’Y 2|A7| Z CAAA’Y

A=7+1

2[ 73 2[—1 1
+ o[A7] AZ_;(CAH?AW —2C pr147) + Y] (1 - W)

oI-1 1 of 2
2 (1 g5hen) + 5 S o =20
A=y

+ CA}/ngl + CA}fn

2 ol X
:1—% 2|AW|ZCAAA7 2|A7| Z Car av

A=y+1

2[— 2[—1 1
2\A’Y ZCA)‘A’Y - 2|A’Y| ZCA/\A'Y Z(A” - 2|A’y‘ ' 2\VW*2|

2[7/ 9l-1 ol ol € (3239)
T T g 2|m T Z Cavr = 25557 > Caw
A=7+1 A=7+2

+ Carver + Cayy
21—1 1 21—1 1
oA 9V T 9lAv[ T gVl

2! 2!
+ o (Carar — Cagar +2C4-140) + oA (2C 47 a1 — Cpo a¢)

+ CA}’V§*1 + CA}/n

2]—1 -1 1 2[
=1 _?/T_a\ + : /1f
T olvi2|  9lAT]  9[VTiL 2. 9[V1=2[+1

1
+ oA 2: 9 ol Cayae + Caryer + Cayy

=1—

Lemma [5.0.6l
=1—Cyyae + Chyver + Cpoyy = L.
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For expression ([3.235)) with v = 2 we deduce

e(8(AD) =1~ gy + g Catae + gy D Coear + 3 (1 - 2|v1|)
A=3

ol &—
Z CA2A)\+1 - QCAQAA+2> + CA%ngl + CA%n

T o

=2
217V 21—1 1

2[
‘f‘WZCAZAA 2|A2 ZCAQAA—}_OAQVf 1—|—CA2
A=3

(3.240)

9l-1 1 9l 9l
=1l= g gy t2 2\A2|CA2A3 b

M 3o~ Cagac  Cagven + Cago

Lemma [B.0.6l

_1_OA2A5+CA2V§ 1+CA2 - ]_

s Cazas + Cazyer + Cyz,

and for expression (|3.235|) with v = 1 we obtain

2[ 2 I £-2
c(§(A)) =1— s + 5 Z Cona + oo Z Caianet — 20 41 4242)

+ Catyer + Car,

21 21 21 £-1
:1_2|A1| 2|A1|ZCA1A>\+2|A1\ ZCAlAA

2[

£
QWZCAMA + Catyer + Car, (3.241)
A=3

2! 2! 21
:1_W+2.W.OA1A2_2‘A1|

2! 2!
= 1= g T 2 g -~ Capas + Capver + g

Lemma [5.0.0l
— 1 - OA}AE + CA}ngl + CA}n — 1

Carae + Caryer + Cyry
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Case 2: M* = AU A2
(6 (AU A%)) = c(6(AY)) + c(6(A%)) — 2C 41 22 (3.242)

The first two terms both evaluate to one (Case 1 with I = |A'| and I = | A?|, respectively).
For the third term on the right hand side of equation ([3.242]) it follows from Lemmam

1
that C 142 = 5 Thus, for the cut 6(A' U A?) we have

(6 (A" U A%)) =2-2-5=1 (3.243)
k+1
Case 3: M* = |J A"U U Vifor 1 <k<¢&—1.
y=1 A=1
k k—1 k k—1
c(o(M ( (U ’YUUV)‘>> _ZCAHIAW_ZCAHIV’\
=1 A=1 y=1 A=1
¢ o1 (3.244)
Z Ak+1 AY —|— Z CAk+1v>\ + OAk+1n
=k+ A=k
Applying Lemma B.0.7| to (3.244]) we have
( M* - 1 - Z OA’“‘HA"/ Z CAk+1V’7 + Z C’Ak+1A’7
y=k+2
s
. (3.245)
+ Z Cyrrryy +C gty
=k
=

e

Let us reproduce the results obtained in Appendix [B| for the terms on the right-hand side

of equation (3.245)). Lemma implies

k—2 k—2
Z CAk-o—lv»y - Z (CA’Y+2A’€+1 — ZCA’Y‘HA’“'H)a
v=1 r=1
s
1
CAk+1vk—1 - 5 2|Vk 1‘
; (3.246)
OAk+1vk - 5 (]_ 2|Vk|)
6 £—1 €2
Z C gkt~ Z (OAk+1A>\+1 - 2CA1€+1A/\+2) + Cprs1ye—1
y=k+1 y=k+1
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From Lemma [B.0.2] we have

1
=5 v 1<rse-1l (3.247)

Thus, using relations (|3.246))-((3.247]) equation (|3.245)) takes the form

CA’YA"H—I

k k—2
(6(M*) =1=> Carriar — Y (Carezpers — 2Carm14001) — Carsryis
_ 7:1
£ £-2
+ Z Cuartr gy + Cprvryn + Z (CAI@+1A>\+1 - QCAk+1A)\+2) + Cyrrrye—1 + Cyrti,
y=k+2 y=k+1
k—1
— 1 - ZOAwAqul ZCA’YA’“+1 —|— 2ZOA«/AI€+1 OAk+1vk 1
'y—l ¥=3 y=2
-1
+ Z Cartiay + Cyprrryn + Z Cyrrigy — 2 Z Carri gy + Cyprriye— + Cyrrry,
y=k+2 ~=k+2 y=k+3

=1—Cuigrt1 — 2C g5 gir1 + C 2 girr — Cyrrryr—1 + 20 g111 ght2

—C 146 + Curriyr + Cpriry, +C ges1ye—1
=0 by Lemma

B.
1 — Curgrimt — 2C g gior1 + Copagrtn — Cprriyr—1 + 2C g011 gir2 + Cyrrrys

L 1 L, __1 ,. 1 L1
=2 e g Mg g Ty g

., - 1 1 R B R
- .QIV’H\_§+Q/QIV’HI+2.2M+§—2.2 LT

k+1 k—
Case 4: M* = |J A"U U VAuVFfor1<k<&—1and I € [|VE].
y=1 A=1
k+1 k+1
57 i@
3.248
- (3.248)
=k+2 A=k+1 z 1 j=M+1
So Sto o
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First, we reproduce the results obtained in Appendix [B| for the terms on the right-hand

side of equation (3.248|). Lemma implies

CVIkTL
From Lemma [B.0.2] we have

1

Cargrrr = 3 VI

1
9. 9IVE[+1 | 9[VEFL417

CAk+1Ak+3 -

Using Lemma we deduce

k—1 k2
28 — E Cv)\vlk — E Cv)\vlk + kaflvlk
A—1 A=1

1) = 1 1
= (1 — ?) 2 (CAA+2Ak+1 — 2CAA+1Ak+1) + B (1 — §> (1

A=1

-2

= 2(21 - 1)0Ak+1n7 ke [6 - 1]

1<k<¢

kels—1]

-1
210 = Z Cypvr = Cypyrn + Z Cypva + Cypyen

A=k+1 A=k+2

2l —1 1 ; 2
frd 2‘Vk|+1 (1 - 2|vk+1|> + (2 - 1) Z (QCAIH»IA/\Jrl — 4CA1€+1A>\+2)

A=k+2

+ 2(21 - 1) (CAkJ,-lA{ - CAk+1n)

From Lemma [B.0.5 we obtain

k k
1 1 1
Y = Zcmvﬁ + CAkHv}v = (1 - y) Z Carartr + 5 (1 — §> ,

7=1

1

3 3
29 = CAk+2VIk + Z OA'YVIk = (21 - ]_) . W —|— 2(2] - 1) Z OAkJrlAw.

y=k+3

From (3.64)), see the proof of Lemma [3.5.2) we have

I |V

21122 Z Cvi_cvé_v—l—%_

i=1 j=M+1
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oVE| ”

y=k+3

1
~ S

(3.249)

(3.250)

(3.251)

(3.252)

(3.253)

(3.254)

(3.255)
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Thus, using relations (|3.249)-(|3.255)) equation (|3.248]) takes the form
* 1
C((;(M )):1— ].—— ZCA»YA]ﬁq—— 1—?

b2 1 1 1
1—— Z CA/\+2Ak+1_2OA>‘+1Ak+1)_2 1—? 1—W

=1

1 -1 1
+ (21 - 1)W - 1 Z CAkJrlA’y W (1 - W)
y=k+3
£-2
+ (2] - 1) Z (ZOAk+1AA+1 - 4CAk+1A>\+2> + 2(21 - 1) (CAk+1A§ - OAk+1n>
A=k+2
1 271

1
+2(2 - 1)CAk+1n+1 - ? - W

k
1 1
— 1 - (1 - —> ZCA’YA’“JA —7—\6‘\2—[\2— <1 - §> ZCAAAkJrl
A=3
1 1 1 1
(1 - _) E:CAAA'H-1 —‘—\C‘\;Q‘F 5 (1 - ?) 9VF-1|

2! — 2l A 21
_'_Wk'% — 1 Z CAk+1A’Y Wk‘_i_l 2‘Vk|+l i 2|vk+1|

y=k+3
3
of — 1) Z Cartir — 4(21 -1) Z Cyrtiar + Q(QI — 1)C g1 46
A=k+3 A=k+4
1 2 —
—M+M+&i— 2
1 1 1
202" — 1)(2C C 2 -1 202" — 1)C
+2(2° = 1)(2Car+1 4043 — Cprrige) — SIVFITL . o[VEH] +2(2° = 1)Carr ¢
- 9T | 9 . 9lVF1+1 51 1= 91 ) ovk—1]| +2/2H7“'“T+1 _OIVAELLT
s 202" =D Cnae =
22 e - ST g T 22 e
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Continuing the proof of Proposition |3.7.1] we construct from the undirected graph
s <~
K, the directed graph K, = ([n], E,) by replacing each edge e € E,, by two antiparallel
<~ <~

arcs. In the new graph K, we construct a y-n flow f : E,, — R for each v € [¢], see
Figures [3.1743.21] with

fayay = cqpay forall aj,aj € A7 with i < j,

fayay =0 for all a},aj € AY with i > j,

faix%x_ =0 for all a},ay € A* with A € [¢]\ {~},

forar = copn foralla] € A7, ay € A* with A € [¢]\ {~},
fa;aj =0 for all a] € A, a} € A* with X € [§]\ {7},

Jrap =0 for all a;‘ e A a € AP with A\ < B < v,
fop =0 for all a} € A, a] € A% with A < 8 < 7,

for all a} € A, a] € A% with A <y < B <&,
foralla?EA’\, al € AP with A\ < v < B <&,

1

;ﬁ
S
S
Il
o
h\gy
S

ra

&
LR Sy
)
<>
I
(e

for all a} € A, a] € A% withy < A < B <&,

(3

forallaj‘GA’\, afeAﬁwith7<)\<B§f,

- a

;n
S
Il
o
sgy
Y

(3.256)

&
S e
)
s>
I
=)

foror =0 for all v}, v} € V* with A <y —1,

ig
foror i=cpan for allv;\,v;\ev)‘ withe<j, v—=1<A<E-1
i g ]
fv?v]* =0 forallv;\,vje‘/)‘withi>j,7—1§)\§§—1
2 =0 forallv?EVA,vfeVﬂwith)\<5<’y—1

J

for all v} € VX0 e VA with A< B <y —1

N
S S
I
=)

forys =, for allv;\EV)‘,vfeVﬁ with A<y—-1<p<E-1
Jpor =0 forallv;\EV)‘,vfGVBWith)\<7—1§ﬁ§§—1

Frags = Cpye forallv} e VAol e VAwithy —1<A<B<E—1
1] T 7]

fopn =0 for all v} € VA, 0/ € VP withy —1< A< g <1
]
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Jaror = Corpr forall a] € A7, v]’-\ € V* with X € [€ — 1],
forar =0 for all a] € A7, 03\ € V* with A € [€ — 1],

R , forallal € A%, v} e VA withy —1<A<E-1, B<A+1
firgs =0 foralla € A%, v} € VA withy —1<A<E—1, B<A+1

Jpr =0 for all a) € A, v} eVrwithy —1<A<E-1, B> A +1
Firgs = Cpge foralla) € A%, v} € VAwithy —1<A<E—1 B>A+1

=0 for all a; € A%, v} € V> with B € [¢{]\ {7}, A <71, (3.257)
5:=0 for all a] € A%, v} € VA with A<y —1, B <7
B B forallaﬁeAB,U?EV)‘with)\<7—1,7<5§§

i

%

f.5:=0 for all a’ € A? with 8 € [¢],

fp, =c.p, forall a’ € AP with B € €],
forn = cppn forall v} € VA with A € [€ — 1],
fm,ix =0 for all vi)‘ € V* with \ € € —1].

For each v € [¢] we consider the y-n-flow f : En — R and check the flow conserva-
tion law: the amount of flow entering a vertex a] € A7\ {a] =7}, a} € AN X € [¢]\ {7}
and v} € V*, X € [£—1] should be equal to the amount of flow leaving a] € A"\ {a] =7},
ay € A A e [f\ {7} and v} € V*, X € [€ — 1], respectively.

For brevity, we introduce the following notations

1A%

Oaf‘AB = an?‘aﬁ’ >\76 S [6]7 A 7é 67 S HA)\H

)

Covr =3 s BELE A [E—1], i € (|47
(3.258)
Coon = 3 Cours BELE Aele—1] i€V

Cv;vﬁ = ZCUA%@, )\75 S [5 - 1]7 A 7£ 57 (S HV/\H
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Note that, from the definition of ¢ € ng, see —, we have Cadwe = Cad s
for all A € [{] what implies that C,, = C,y, for all A\ € [¢]. Thus, it suffices to
calculate f(6°%(a})) and f(6™(a})) for 4 > 2 due to f(6°“(a})) = f(6°“*(a})) and
f(0™(ay)) = f(0™(az)) for all X € [¢].

1. In view of ([3.256)-(3.257) we have for each a] € A7\ {a] = 7}, see Figure [3.17]

y—1
F(87(a])) = Corr + Z Coy > +ZC e
3:1 A y+1
i; 5; 5;
£-2 |A7| (3259)
+ Z Oa:/Vk +CaZV'5*1 + Cazn + Z Ca?a;’a
A=y j=it+1
S——r —
Y15 Y16
Ak, k< 5 A7 Ak y < k<€
J
Vi, jele—1]

Q)

<>
Figure 3.17: Sketch of arcs (u,w) € E,, with f,,, >0
for the vertices from A”.

First, we reproduce the results obtained in Appendix [C] for the terms on the right-

hand side of equation (3.259)). Lemma implies

v—1 1 v—1
Y= Caw = gy 2 O
A=1 A=1
(3.260)
1
213— Z C’YAAZW Z CA’YA/\
A=v+1 A=y+1
From Lemma we have
1 &
215 = Z CaZVA == W Z(CA’YA*'H - 2CA’YA/\+2) (3261)
=Yy )\:’y
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( 73 1 ¥—3
Z C 'Yv>\ = W Z (CA>\+2A’Y - 2OA)‘+1AW)7
A=1
1
E14 Ca;Yny—l = W <]_ - ﬁ) s 1< Y S f (3262)
1 1
| Cavae :W<1_W>’ 2<y<é

For the last term on the right-hand side of equation (|3.259) we deduce

|A7] |AY] 1 1 |A7] 1
Y16 = Z Cala] = Z 9.9 9l 24 9j
j=i+1 Jj=i+1 Jj=i+1
. (3.263)
1L legdm 1 1)1 1
T o9l-i 9itl 1 _ % 9 T oA | T 9 glA—ifl’

In view of (3.260))-(3.263)) equation (3.259)) takes the form

ou 1 - 1
F0°(al)) = 5 ZHZCAAAW S Z Conin
A=y+1
+ g 2 (Cavven = 2Cavea0) + grrs (1= g
A=1
-2
1 1 1
+ 21AY|—i+2 (1 N 2|Vv2|) 9lAY[—i+1 Z(CA"/AHI - QCA”/A/\-!—?)
A=y

1 1
+Caver + Caqnt 5~ S

-1

y—1
! ((7A1Av +'j£:(jAXA7 + j{: (jAvAA +_jz:(jAAAV

2\A’Y\—z+1
A—=2 A= 'y+1 A—=3

(3.264)

_ZZCAAA’Y—F Z CA’YAA 2 Z OA"/A)‘> ﬁ

A=v+1 A=7+2
1 1 1 1 1
T oA —ir1 \ v + o[Vi—2| + Capvet + Corn + 9 9lA—irl

1
= S (Casar — Cazar + 2047147 + 2C 47 4741 — Cpo )

1 1 1 1
+ + Oa:/v&fl + Caln + 5

—9lAv—i+1 \ 9[vr-i] T 9vr2]
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1 2 1
= 2|A"/‘—’L ; 2 V’Y—2| 2 . 2“/7_1' - 2|AW|—’L+1 CA’yAg
1 1 o 1
~ g g ¥ g )+ Caver e+ g (3.265)

1 emma ]-
_—C“/Ag—l—c"/vg 1+Cawn—|—§L 2

Calculating the amount of flow f entering a] € A7\ {a] = 7}, see Figure we deduce

1—1 i—1 i—1
Y _ _ —
FOO™@]) =t = Cajar + D Cata? = Cajad + ) Calal

1—1 i—1
147 + L _ 411 <1+l 2J’> (3.266)
. 2

1 1 22.(1—2¢2 2i=2 1

22 1-2

2. For each a} € A*, i > 2 with v < X\ < £ we have due to (3.256)-(3.257), see Figure m,

£-2
out
f(5 ( Z C a} AP + Z C a)Ve +C adVE-1 +Ca>\n (3.267)
B=A+1 B=A—1
7 S
5m C + C
Z a A? Z Ve (3.268)
1o 20

First, we reproduce the results obtained in Appendix [C] for the terms on the right-

hand side of equations (3.267)), (3.268)) with i € [|A*|], i > 2. Lemma implies

1
X7 = Z Caras = oIAN—it1 Z Caras,

B=A+1 =2+1

A—1 1 A—1
i = 3 Corw = g 3 Cao
B=1 B=1
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AR k< ) AN AR N < k<€
/\

Vi j<A—2 Vid-1<j<é-1

©

<
Figure 3.18: Sketch of ingoing and outgoing arcs (u,w) € E, with f,,, >0
for the vertices from A*, v < A < &.

From Lemma we have

) _

Z Caf‘\/ﬁ = 2|A>‘|—z+ Z (C(AAAﬁ*‘1 - 2CtA)‘Aﬁ'*‘Q)a
Yigq = p=

Ca?+1V>‘ 2|A>\+1‘_Z+2 (1 ‘VA| )

(3.270)

Oaf‘+2V>‘ 2‘A/\+2‘ 12 (1 2‘V/\|)

220 < A—3 1

Z Caf\vﬁ = W Z (CAB+2AX - 2CAB+1A)\).
— B=1

In view of (3.269)-(3.270) we deduce for equations (3.267)) and ((3.268)):

¢
1 1 1
out ( A o
F0°(a7) = Sy > Coras + Sz <1—W)
B=X+1

£-2
Z(CA)\AB+1 - QCA,\A5+2) + Caf\vgfl + Carn

ot (2 Cont 3 Con=2 3

=A+1 =A+1 B=A+2

1

+ 9] AM—i+1

1 1
T ol AN —i+2 (1 - 2|VA—1|) + Caver + Can

1 1 1
= m (QCAAAMA - CA/\AE) + m (1 - W)

1 1
+ Capver + o T QAT 9 VAL glAN =il Canas

(3.271)
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+ olAN—it2  olAM=Ti2 9V + Capver + Caap
1 Lemma 1 (3272)
= _Caf‘Ag + Oa;‘V5*1 + Caf‘n + m = W’ < é’

1 1 1 1
out / E\\ __ o _ _
f((5 (ai)) T 9JAS|—i+2 (1 2|v5—1> + 9. 9AL[—i  QIVETL 41 T 9|AN—it2” A=¢ (3,273)

A1 A—3
1

A 1
f((sm(ai‘)) = m Z CA»BAA + m Z(CAB'*‘QAA — 20A5+1A>\)
p=1

1 LN_ 1 (. o
+ g L g ) = g | G + 2 Cavas
B=2

A—1 A—2
1 1
+ E Cusar — 2 E CAﬂA/\> -+ AN it2 <1 — 2|V>‘2|> (3.274)
B=3 B=2

1 1 1
= S (Cagax — Cazan + 20 0-100) + SIAN—ir2 (1 - 2|v>\2|>

1 2 1 13— 1
_WZ . 9lvVA—241 + olAN—it2 ~ olAM=ii2  9[VA-2 T glAN—it2’

3. For each a} € A* i > 2 with A < v we obtain due to (3.256)-(3.257)), see Figure

¢ (2
f(67"(a})) = Z Caras + Z Carve +Cavenr + Cam, (3.275)
B=7+1 f=r-1 .

Let us reproduce the results obtained in Appendix [C] for the terms on the right-hand side

of equations ([3.275)) and (3.276) with i € [|A*]], i > 2. Lemma implies

13 13
1
221 = E Caz?‘ArB = Z‘A/\|,i+1 § CAAABJ
B=7+1 B=7+1 (3.277)

1

g G

Ca;\ A —

From Lemma we have
-2 1 -2
Sw= Y Coys = oA D (Caraser = 2C 4 4p+2). (3.278)

B=y-1 B=y-1
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AN A ARy <k <€

Q)

<~
Figure 3.19: Sketch of ingoing and outgoing arcs (u,w) € E, with f, ., >0
for the vertices from A* \ < 7.

In view of (3.277)-(3.278) equations ([3.275]) and (3.276|) take the form

3 -2
1 1
f((;out(af‘)) A it E Caras + SN itT E (Caras+r — 20 4x g5+2)
f=r+1 p=r-1

+C a)vE-1 + Cadn

2|A’\\ i+1 ( Z CAAAﬂ—i_ZCAAAB_Q Z CAAAﬁ)

B=7+1 B=v+1
+ Oaf‘V5*1 + Caf‘n
1

= —2|A>‘\7i+l (CAAA’Y — CAAAg) —+ Cag‘\/f*l + Caf‘n

1 1
= Caixvsf1 + Coan — oA Carge + QAN i1 Carav

1
= Cajvﬁfl + Carn — Ca?AE + ST Carav
Lemma [C.0.4] 1 C
- 2‘A>‘|7Z+1 AAA’Y7
1

f((;m(a?)) = Caf‘A"f = m . OAAAV'

4. For each vj-‘ €V}, A <~ —1 we have due to (3.256)-(3.257)), see Figure m,

£—2
F(6 (0 Z Coas + Z Coavs +Coayet + Cyan,
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A Ay <k <€
|~

7
,)
VAT Viiy—1<j<¢é-1

N
®

x4
Figure 3.20: Sketch of ingoing and outgoing arcs (u, w) € E,, with f,,, >0
for the vertices from V*, A < v — 1.

First, we reproduce the results obtained in Appendix [C] for the terms on the right-hand

side of equations (3.281]) and (|3.282). It follows from Lemma that

§-2 £—2
Y4 = Z Cv?vﬂ =2 Z (Cart1go401 — 20 prv14842), A <y —2
B=y—1 B=~—1
C,UZ}\V§,1 = 2i(CAA+1A£ — Caiy), (3.283)

1 1
Ov;\\/)n% - m (]. — W) .

From Lemma we have

3 3
Yoy = Z Cras =2’ Z Carvigs,

Pt Pt (3.284)
CU?AW = 2" Cppripn.
Using Lemma we obtain for ((3.232))
B 1 B 1
Cvg\n a A ¢! k a 5 VEk|+1
2.2VM=i [T 2Vt o . o[V | 2k§+1(| [+1)
o k= (3.285)
A B
-— = B,

S
1
ng(l I+1)

If A\ <~ —2 then in view of ([3.283)-(3.285) equations (3.281]) and (3.282)) take the form

3 §-2
F(8% (v))) = 2° Z Cariigs + 2 Z (Carsrgp+1 — 2C ga+1 p5+2)
Pt P (3.286)

+ Qi(CA,\HAg — CAA+1n> + QiCAA+1n
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&—-1
<Z CAA+1A[3+ZCA>\+1AB—2 Z CAMrlAB) +20A>\+1A§

B=y+1 B= B=r+1 (3.287)

- QzCA)\+1A'y - QZCAA+1A5 + 2’LCA>\+1A§ - QZCA)\+1A'77

FE™(©) = Cpar = 2" Corran,s (3.288)
respectively.

If A =~ — 2 equations (3.281)) and (3.282)) take the form

£-2

f((SOUt( — QZ Z CA’y—lAﬁ +C'y 2 V-1 +2 Z OA’*/ 1 AB+1 _QCA’Y 1Aﬂ+2)
f=r+1 B=n

+ Qi(OAw—lAg — CAw—ln) + 2iCA'y—1n

3 §-1 £
=9 ( Z Cyuv-148 + Z Cyrv-148 — 2 Z CA71A5>

p=y+1 p=y+1 =42
+ . 1 L) reic
VY =2]—i+2 2|V Av-LAS (3289)
1

=2- 21'014«/71Aw+1 — 2i0A7—1A§ +

T 9[ViZ[mit2 9V 2014
2.9 1 1
T 9 oVITRHL . 9V I+l + olVi—2[—i+2  9VIZ[—it2 . 9V ]|
T 2.2Vl

= 2'Cpv-147,

f<5m(%)\)) = CUZ*QAv = 2" Cyr1.47, (3.290)

respectively.

5. For each v} € VA with A > v — 1, A € [ — 1] we have due to (3.256)-(3.257)), see
Figure [3.21]

[V
5out ZO’\AB—FZCAVB—FC —I—ZC,\A
=242 =A+1 J=i+1 Y (3'291)
g ~ —
S Yoe a7
F(6™ (v Z Coras +Cop arer + Z Cppvs + Z Copop - (3.292)
\ ——— W—’ H’_/
S Sog 230
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AR B < A+1 AR N +2<k<¢
/
Vo
Vi j <A v Vi d<j<é—1
|

|
®

<
Figure 3.21: Sketch of ingoing and outgoing arcs (u,w) € E,, with f,,, >0
for the vertices from VA A >~ —1, A € [¢ — 1].

Let us reproduce the results obtained in Appendix [C| for the terms on the right-hand side

of equations (3.291)) and (3.292)). It follows from Lemma that

(. R
Ui)‘V/\+1 - 2|V)‘|fi+2 - 2|V,\+1| )
26 E CM‘VB =2 Z (CA/\+1AB+1 - QCAA+1AB+2>,
p=x+2 " B=A+2
L vav&l = Qi(CAA+1A§ — CA)\+1n>, (3293)
( L L A<
CUZ_)\VA—l :ﬁ ].—W , 1< _5—1
E29 A—2 1 A—2
Z CU.)‘VB — —Z (CAB+2A)\+1 - 20A6+1A/\+1),
= 2" 5o
From Lemma we have
3 A 3
Yo = Z CvﬁAﬁ =2 Z Cgrt148,
B=A+2 B=A+2
1
Cvg‘AkJrl — ﬁ’ (3294)

A A
Z 1 Z
228 == Cv?Aﬁ = E CABAA-H.
p=1 p=1
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From the definition of ¢ € ng, see (|3.224]), we obtain

[V [V 1 1 V2| 1
227_26? :'Z 9.9i—i 91— L4 9
Jj=1+1 Jj=i+1 j=i+1
. (3.295)
11 (=go) 1 1
T o9l-i  9itl 1 _% T 9 9[VA[—i+l’
i—1 i—1 1 1 i—1
_ _ _ J
230 - CU])\U? - Z 92.9i—j 9i+1 Z 2
j=1 j=1 j=1
‘ ‘ (3.296)
1 2-(1—22‘1)_22_1—1_1 1
- Qitl 1-2 2 2 2

In view of ((3.285)) and ([3.293))-(3.295) equations (3.291)) and (3.292) take the form

3
ou A 1 1
f(5 t(”z)\)) =2 Z CYAA‘HAf8 + 2|VA|—Z'+2 (1 - 2|v>\+1|)

B=A+2
£-2
+2° Z (CAA+1A/3+1 - QCAA+1A,8+2) + 2I<CAA+1A§ - CA>\+1n)
B=A+2
i 1 1
+ 2°Cyrir,, + 5 T oAt (3.207)
( Z Cyrvia8 + Z Cyrtigs — 2 Z CA>\+1AB>
=42 =X+3 =A+4
1 1 i . 4
T oV ire <1 B 2Iw+1|) +2'C g1 pe — 2C i + 2T
1 1

9 9IVA—itl

= 2. Cyriigrez +2- QiCAAHAAH —M+m

1 1 1 1
+ 5 B 2VA[—it+1 * VA |—i+2 o OIVA|—i42 , 9|V A+
2 2-2 IR (3.298)
s 2IVM 2T VAT T 9 ﬁw“
1 1
* 2IV*I—\N<%_QJJM—/¢+2 VA T A<E-1
2! 1 1 1
teoE—1\\ _ B B
FEM@T ) = gvemm ty — e~y A=l (3.299)
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A—2

) 1
f<5m< 21 Z Cus s + — 2 T + E CA/BHAA+1 - QCAB“AA“)
B=1

1 ] 1 1 1
+ 9i+1 o 9[vA-] + 9 90
1 A A A—1
= o5 (; Cusartr + éOAﬁAM& — 2;014;314»»-1) (3300)

1 1 1 1
+/ﬁ+1 +2€+1 VATt + 9 i
1 1

1
= E(QWJF 20 parir — Coaparin) — VATt T g

1 1 1 1 1

T i 9VAIHL  9[VATItitl T 9 9o

Hence, both conditions of the definition of a flow are satisfied for f, i.e.

fe>0 . for each e € ??n, (3.301)
f(6°" (v)) = f(6"(v)) for each v € [n]\ {,n}.

The value of this flow f is equal to 1 due to
value(f) = f(8°(7)) = f(8°(a])) = e(6(A7)) "2 BE2 (3.302)
For each M C [n — 1] with [{] € M we thus have (due to ¢ > 0)
1< f(0™(M)) < c(6(M)), (3.303)
hence Lemma[3.5.2)shows that §(M*) is c-minimal among the [{]-n-cuts for each M* € M.

Now we show that all others [{]-n-cuts are not c-minimal.

Let W C [n — 1] such that WN[¢] # 0, W ¢ M and ¢(§(W)) = 1.

A A2
Case 1: WnN[] =\ pg Wiorall pe [(]\{\. Let W := [JA'U |J V’ and
i=1 =1

)
U At U U V7. On the one hand by Lemma [3.4.4 W C W; or W; C W since

i=1 j=1
c(6(W)) = ¢(6(Wh)) = 1 with A € W, A € Wy. On the other hand by Lemma [3.5.3]
WNWy = 0 since c(§(W)) = c(6(Wy)) = 1 with up € Wo\W, A € W\ W,. Thus W C A*.

Aswehave {\} = A} G A3 & ... G A}, = A* with |AZJr1 \A}M =1 for all i € [|[A* — 1]
and {\} C W C A* Lemma 1rnphes W e {A},.. |AA|}
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Case 2: W = [k] C [¢]. Let Wy := A*, u € [k] and Wy := U AU U V3. On the one

hand by Lemma W C Wy or Wy C W since ¢(§(W)) = ((5(W1)) =1 with p e W
and u € Wy for all p € [k]. On the other hand by Lemma 3.4.4 W C Wy or Wy C W

k k2
since c¢(6(W)) = c(6(Ws)) =1 with 1 € W and 1 € W,. Thus | |J A°U U Vj> cw.
i=1

k—
Let W' = U AU U V7. On the one hand by Lemma [3.4.4 W C W' or W C W since

=1

c(o(W)) = (5(W’)) =1 with1 € W and 1 € W’. On the other hand by Lemma [3.5.3]
W N AR = () since 0(5(W)) c(6(AM)) =1 with 1 € W\ A and k+ 1 € AM\ W,

Thus W C UA’U UVJ

=1 7j=1
By the definition of A, A% I € [|AY], i € [k] and V7, V{, T € [|[V7]], j € [k — 1],

see. —, we have
k k—2 k k—2 k k—2
JaulJv c UAZ'UUVJ'UV{H clJauvlJvwuwtc. ..
i=1 j=1 i=1 j i=1 j:l

(3.304)
A—2 k—1
i k1 i j
UA UUV]UVWJ—UA ulJv?
=1 =1 -1 j=1
ko k-2 koo k=2
with || J AU U ViUV |\ [UAUU V|| =1and
i=1 Jj=1 i=1 j=1
k2
|(UAZUUV’UV;'111> (UA’UUWUV’“ 1) = (3.305)
=1 7j=1
ko k=2 koo k-1
for all i € [|[VE~1| — 1]. Then, as we have |JA'U | VICW C | Alu | V/
i=1 j=1 i=1 j=1

Lemma implies
k k-2 k k-2 k 2
i j i j k-1 i k-1
W%{UAUUW,UAUUWU%,.“,UAUUWUW“}
i=1 j=1 i=1 j=1 i=1 j=1

Case 3: [WN[¢]| > 1, W # [k] for all k € [¢]. Let o, € W with f <« and & € [¢] \ W
weooopm2
with & < a and p := max{5,a}. Let us define W’ := [ J AU |J V7 then by Lemma [3.5.3

i=1 j=1
W W' =0 since c(§(W)) = c(6(W')) =1 with « € W\ W and & € W\ W. On the
other hand by Lemma W CW or W C W since 8 € Wand 8 € W’. Thus W = 0.

Thereby all cuts 6(W) with W C [n — 1], WN[£] # 0 and W ¢ M are not minimal. [
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The above proposition [3.7.1] provide the combinatorial structure for a part of the
faces of the undominated complex for the [{]-n-cut polytope Pg(K,,) for the complete
graph on n nodes. Based on the results obtained in the previous sections [3.4H3.7, we
propose a conjecture for the complete description of the combinatorial structure of the
undominated complex of the [¢]-n-cut polytope for the complete graph on n nodes.

Conjecture 3.7.3. The undominated complex of the [£]-n-cut polytope Pe(K,) C R(%)
for the complete graph on n nodes is a pure simplicial complex of dimension n + & — 3
whose facets are described by

conv{x(6(M)): M € M} (3.306)
for all M C 2" generated by Algorithm .

Algorithm 3.7.4.
Finding the vertex set of a facet of the undominated complex for Py (/).

Input:  Finite sets [n — 1] ={1,2,...,n— 1}, n > 2 and [¢] ={1,2,...,&}, { <n.
Output : A set M C 2"~ such that conv{x(6(M)) : M € M} is a facet of Pg(K,).

1: Set V= [n—1]\[€].

2 Set Mmer = {{1},{2},... . {¢}}.
3 Set M := M™me*,

4: while V # () do

5: Choose M, M? € M™ma=,

6 Choose V!, V2 CV with VINnV2=10
7: orderings V* = {v, vy, .., vy} with Vi i= {vg,v3,. .., vp},
8 V2= {v},03, ... vf ) with V2= {0}, 03,... 07}

9: Set V.=V \ (VIUV?).

10: Set M™a7 .= Mma=\ (MU M?*)U{M'UVIU MUV

11: Set M := MU{M'UV} : T € [[VHJU{M?*UV? : T € [|V?|]Ju{M'UVIUM?UV?}.
12: end

Remark 3.7.5. For the case £ = 1, £ = 2 and £ = 3 we proved Conjecture |3.7.5 in
Theorem|[3.4.7, Theorem[3.5.6 and Theorem|[3.6.4], respectively. To prove Conjecture[3.7.5
for general £ it should be found for each M generated by Algorithm some ¢ € Rf’é
such that for all M* C [n — 1] with M* N [§] # 0

min{c(§(M)) : M C [n—1], M N {1,2} # 0} = c(6(M*)) (3.307)
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holds if and only if M* € M. In the proof of Proposition|3.7.1 we presented the function
ceE ng for M with the structure as in (3.220)) (see Figure . For the other cases of
M it is still an open problem to construct such a function ¢ € ng.

Remark 3.7.6. In the particular case considered in Proposition the notation used
for the structure of M defined by (3.220) differs from the notation used for a set M
computed by Algorithm|(3.7.4. In (3.220)), there are A}, I € [|AY|] and AY that would have
been written similar to Algorithm (3.7.4) as A] = {v} U V; with Vi = {a3,a3,...,a]} and
AV = {7} UV withV ={a3,a3,...,aly,} for all v € [¢], respectively.

Example 3.7.7. Consider the [{]-n-cut polytope for the complete graph on n nodes with
& = 6. Figure [3.25 illustrates one of the possible variants of the set M generated by

Algorithm for P (Ky).

A set M C 2»71 generated by Algorithm is a maximal laminar family of
non-empty subsets of [n — 1] with singleton sets {1}, {2}, ..., {¢{}. A family of sets F is
said to be laminar if FyNFy =0 or F; C F, or F, C F, for all Iy, F, € F, i.e., alaminar
family F is a family of sets with no pair of intersecting sets, see Figure |3.22,

Figure 3.22: A sample laminar family with two singleton sets.
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Figure 3.23: Representation of a set M generated by Algorithm for P (k).
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Appendix A

A.1 Undominated Complex of a polytope in R®
(Using polymake)

In this section will be presented the program code of finding the undominated complex
of a polytope P C R? which is given as a convex hull of a finite number of vertices, i.e.

P = conv(V) = conv{vy, vy, ..., v, } C R®.

The function UndomComplex 3D(P) is written in Polymake/Per]l programming lan-
guage. It computes undominated complex U.(P) of the given polytope P C R? and
visualizes it. For more information about this language, we refer by the following link

https://polymake.org/doku.php/tutorial/start.

A.1.1 Structure of the function UndomComplex 3D

The function UndomComplex 3D has the following structure.
Input: a polytope P C R? as a convex hull of a finite number of vertices v;,vs,. . .,v, € R3.

Output: an array of the size three, where
e the first element is an array of the vertices belonging to U.(P);
e the second element is an array of the edges belonging to U.(P);
e the third element is an array of the facets belonging to U.(P).

Note that, each edge and each facet is represented as a set of vertices.
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A.1.2 Description of the function UndomComplex 3D
The function UndomComplex 3D(P) works as follows:

First, the function computes all vertices of the undominated complex of P. By Lemma|2.3.1
a vertex v; of P belongs to the undominated complex of P if and only if the normal cone
of the polytope P at the vertex v; has a non-empty intersection with the negative octant
R?,. The function produces a normal cone N, (P) of P at each vertex v;, i € [n] and
chooses v; with N,,,(P) NR%, # 0.

The second step is to compute all edges of the undominated complex of P. By Lemmal[2.3.]]
an edge e of P belongs to the undominated complex of P if and only if the normal cone
of the polytope P at the edge e has a non-empty intersection with the negative octant
R?,. The function computes a normal cone of the polytope P at each edge e = {v;,v;},
i, j € [n], i # j as an intersection of normal cones at endpoints v;, v; of the edge e and

chooses e with N.(P) NR%, # 0.

Finally, the function computes all facets of the undominated complex of P. By Lemmal2.3.1
a facet of P belongs to the undominated complex of P if and only if the normal cone of
the polytope P at the facet intersects the negative octant R, i.e., all coordinates of the
outer normal vector to the facet are negative. The function chooses facets with negative
outer normal vector.

A.1.3 Manual of the function UndomComplex 3D
Step 1: Launch polymake and enter
prefer("threejs");

It leads to visualization of a polytope P in a browser tab (a browser must support
javascript, e.g. Google Chrome, Internet Explorer, Opera, Mozilla Firefox etc.)

Step 2: Define a polytope P as the convex hull of a finite point set, for example

$my_polytope = new Polytope(POINTS=>[
(1,0,0,11,[1,-0.2,1,1],[1,0,1,0],[1,0.8,0,0],
(1,1,0,1],[1,1,1,1],[1,1,1,0]11);

Note that, Polymake uses homogeneous coordinates what implies the additional coor-

dinate g = 1. For more on the construction of a polytope, we refer by the following
link

https://polymake.org/doku.php/tutorial/apps_polytope.

Step 3: Call the script ”UndomComplex 3D” with the code provided in section and
pass the polytope P as an argument, for example
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Q@array_of_undominated_faces=
script("path_to_the_script/UndomComplex 3D", $my_polytope);

It prints out all faces of the undominated complex of P and visualizes it. Vertices, edges
and facets of the undominated complex are stored separately in

Q@array_of_undominated_faces.

Thus, the function UndomComplex 3D returns for the polytope P defined above in
Step 2 the following result

UNDOMINATED COMPLEX:
Vertices: {0 1 2 3%}

Edges:
{0 1}
{0 2}
{1 2}
{0 3}
{2 3%}

Facets:
{0 1 2}
{0 2 3}

with the visualization in a browser as in Figure

Ue(P)

0

Figure A.1: Visualization of the polytope P and its undominated complex U, (P)
computed by the function UndomComplex 3D.
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A.1.4 Program code of the function UndomComplex 3D

use application ’polytope’;
package threejs;

package ppl;

package Polymake: :User;

#polytope:
my $f_pol = $_[0];
my $set_vert = new Set();

my @facets = $f_pol -> FACETS;
my @vert_in_f = $f_pol -> VERTICES_IN_FACETS;
my @edges = $f_pol -> GRAPH -> EDGES;

#arrays of vertices, edges aund facets of the undominated complex:

my Qundom_vertex_arr = new Array < Set >(1);
my Qundom_edges_arr = new Array < Set >($f_pol -> N_EDGES);
my @undom_facets_arr = new Array < Set >($f_pol -> N_FACETS);

my $1 = 0; my $j = 0; my $k = 0;
my $arr_i = O;

#computes vertices of the undominated complex:
my $R_ = new Cone ( INEQUALITIES => [ [-1, O, 0], [0, -1, O],
for ($i = 0; $i < $f_pol -> N_VERTICES; $i++)
{
my $cone_of_v = new Cone ( normal_cone($f_pol, $i, 1) );
my $inter = intersection($R_, $cone_of_v);
if ($inter -> DIM == 3)
{
my $t_set = new Set($i);
$set_vert += $t_set;
}

}
print "\nUNDOMINATED COMPLEX:\n";

print "Vertices: ", $set_vert, "\n";
$undom_vertex_arr[0] [0] = $set_vert;

print "Edges:\n";
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#computes edges of the undominated complex:
for ($i = 0; $i < $f_pol -> N_EDGES; $i++)
{
my $t_edge = $set_vert * $edges[0] [$i];
if ($t_edge -> size() == 2)
{
my $v = new Cone (normal_cone ($f_pol, $t_edge —> front(), 1) );
my $u = new Cone (normal_cone ($f_pol, $t_edge -> back(), 1) );
my $v_u = intersection($v, $u);
my $inter = intersection($v_u, $R_);
if ($inter -> DIM == 2)
{
print $t_edge, "\n";
$undom_edges_arr[0] [$arr_i] = $t_edge;
$arr_i++;
}
}
}

#makes array of edges of the undominated complex:

my Qundom_edges_arrl = new Array < Set >($arr_i);

for ($1i = 0; $i < $arr_i; $i++)

{
$undom_edges_arr1[0] [$i] = $undom_edges_arr[0] [$i];
+

print "Facets:\n";

#computes facets of the undominated complex:
$f_pol ->VISUAL( VertexColor => sub

{
$i = shift;
if ($set_vert -> contains($i) == 1)
{
new RGB(255, 255, 0);
}
else
{
new RGB(255, 0, 0);
}
},

VertexThickness => 3,
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FacetColor => sub
{
$j = shift;
if ($facets[0] [$j]1[1] > 0 && $facets[0][$j1[2] > O && $facets[0][$jI1[3] > 0)
{
print $vert_in_£[0][$j], "\n";
$undom_facets_arr[0] [$arr_i] = $vert_in_£[0] [$j];

$arr_i++;
return new RGB(255, 255, 0);
+
else
{
new RGB(0, 255, 0);
+
b

#makes array of facets of the undominated complex:

my Qundom_facets_arrl = new Array < Set >($arr_i);

for ($i = 0; $i < $arr_i; $i++)

{
$undom_facets_arr1[0] [$i] = $undom_facets_arr[0] [$i];
+

#creates array of undominated faces as a list of vertices, edges and facets:
my @undom_faces_arr = new Array < Array < Set > >(3);

$undom_faces_arr[0] [0] $undom_vertex_arr[0];

$undom_faces_arr[0] [1] $undom_edges_arr1[0];

$undom_faces_arr[0] [2] $undom_facets_arr1[0];

return Qundom_faces_arr;
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In this chapter, we provide the proofs of the auxiliary results which were used in the proof

of Lemma B.7.2
Lemma B.0.1. Let c € RY be defined by (3.223)-(3.232) and

1 1
CA}’n = angn, I e [|A’YH and CVf‘n = ZCUE\"’ I e HV)‘H
i1 j=1

Then, for all v € [£] and X\ € [§ — 1], the equations

2]
Cagn = gy - Caomy LE[IA7]]

Chap =2+ (2" = 1) Cariny, 1€ [[V]

hold, where
1
Cam =Carn =~
> (IVF+1)
2k:771
Proof. Let v € [£]. For the first term of (B.1]), we have
I I I
CA’IY?’L = Z caZn = Ca'lyn + Z ca;’n = Ca;n + Z Ca;’n
i=1 =2 =2

-1
2. 9]A7-2 . 51‘[ 9|VE[+1 i=2 9 . 9|AV|—i . g1‘[ 9|VE[+1

k=y—1 k1
1 I 1
g £—1 | . —I'_ ) (l -
VE+L i= Vk|+1
2'2|AW|_2'2’“§‘1( " ’ 2.2|Aw—i.2k:;_1 I+

1 1 <
= = (1 t 5 ZT)
> (IVE+1) i=2

2. 2|AW|—2 . Qk=v-1
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1 1 22.(1-2h
- = e T
Z (IVE+1) -

2. 9A7[=2 | Qk=vy-1
211 2! 1

-1 o 9]A7] T e
2 (VFI+1) 2 (VK1)

2 . 2|A’Y|_2 . Qk:')’_l 2k:'y—1

(B.5)

From the definition of A" and A}, I € [|A7]], see (3.218)-(3.219), we have A7 = Arm' for
all v € [¢]. Thus, we deduce

2147 1
Carn = CA?A’H” - e-1 =
S (VR T vk (B.6)
21A7| . gk Ok=7-1

what implies that C' A7n can be written as

2[
OA’Y

in = g7+ Caomy 1 € [|A7]. (B.7)

Let A € [£ — 1]. Calculating the second term of (B.1)) we obtain

I ; I ; I
97 Y 1 ,
CVIA'n = ch]}\n = H— = — ) = Py ; Z 2]
j=1 j=1 9IVF|+1 j=1 22} (IVF|+1) ng(w [+1) j=1
=X (B.8)
1 2.(1-2f 2
= — . g_ 2 ) — 7( ) - 2 (2 ) CA/\+1n
> (IVFI+1) N Z (IV¥]+1)
=\ k=
O
Lemma B.0.2. Let c € ]R o be defined by (]3.223 m m and
7 A7 |[AX T
Copar =D Y Coar LENA] and Cargy =) cpars TE[A). (BY)
=1 j=1 i=1 j=1
Then, for all 1 < X\ <~ <&, the equations
2! 2!
Cayar = G Carars 1€ [|AM] and Couy = g Caran, L€ [|A7] (B.10)
hold, where
( 1
— , A>1 y>2
> (VE+D
2. 2k=X
CA)\A’Y = CA‘)‘A)\‘AV = CAQA% )\ _ 1’ v > 2 (B].l)
1
= A=1~v=2
\ 27 Y /7




Proof. Let 1 < A <~ < &. For the first term of we obtain

I |A7] I |A7] I A7
Capar = D22 Caday = Cajal + D_Carad T D Capay + DD Cda

i=1 j=1 i=2 j=2 i=2 j=2

I |A7] 1 |AY]

= Cagay T D + D+ DD

i=2 =2 i=2 j=2

I
1 1

- y—2 + Z y—2
93 . 9|4 -2, 9]AY|-2 H 9VE[+1 i=2 93 . 9|AX—i , 9|AV[-2 H 2IVE[+1
k=X—1 k=XA-1
|A7] 1 I A7) 1
2 = 2.2 =
j=2 93 . 94> =2 . 9|A7|—j H 2IVE[4+1 i=2 j=2 93 . 9[|A*—i . 9|AV|—j H 2IVE+1
k=X—1 k=X—1

1

—2

k
93 . 9lAN-2 . 9[AV|-2 2k:§,l(|v +1)

2

|47 |A7] (B.12)

x 1+2222Z+2222j+2222’+2222j

|A7|

1
1 1 i
- 2 1+§E 2 1—’_225 2]
> (VF+D i=2
23 . 9lAN=2 . 9|AV[=2 | k=31

1

5
923 . 9|AN =2 . 9|AV|-2 2k—2— (V1)

« (14 1 22.(1—27h - 1 22(1 —2A7I=h
22 1-2 22 1-2

oI-1, 2|A'V|—1 ol

y—2 y—2 :
> (IVFI+D) > (IVF+1)
=A—1 =A—1

23 . 9[AN—=2 ., 9[AV[-2 ., 9k 21AM L 9. 9k

Due to the symmetry of ¢ it follows from (B.12)) by exchanging A” and A* that the second
term of takes the form

21
Caray = — . (B.13)
> (VR
2|A“/\ . Qk=x—1
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From the definition of A" and A}, I € [|A7]], see (3.218)-(3.219), we have A7 = A|7m| for

all v € [¢]. Thus, we deduce

2147 1
Coar = CA)‘ A A7 = =2 = =2
N > (IVFI+1) (IVFl+1)
1AM L 9. Qk=x-1 9 . Qk=x-1
what implies that the terms of can be written as
2! 2!

CA;\A’y = Q‘A’\| CAAA’Y, I S HA)\H and CAAA}/ = CAAA’M I € HA’YH

2lAv|
Similarly to the case A > 1 we obtain due to the definition of ¢, see (3.225|),

1 1

Cpigy = v a—— >2 and Cyiyge = 5
k

9. ka::l(lv +D
what implies

Cpigy = Cpegqr forall 2< v < €.

Lemma B.0.3. Let c € RY; be defined by (3.223 (3-223)-(3-232), A\, v € £ — 1] and
VA 1 I |V
Cyoavr =D e, s TE(VI] and Cypyy = DD e ays T e[V
=1 j=1 =1 j=1

1. For v > A+ 1 we have

1
C(VAVI’y - (1 - _) . (CAM_QAAH'I -2 CAA‘HA'Y'H)? v < 5 -1

s
CVI)‘VW = (21 — 1) : (2 Ot gy — 4+ CAA+1A7+2), vy<€—1
Cyayer =2+ (21— 1)+ (Cprrge — Coeny), 7 =€~ 1

2. For v = A+ 1 we have
1 1 1
CVAV;’ - 5 <]_ - §> (]_ - m) ,

1 1
_ I
Cvpve = (2" — Vg (1 - W) :

Proof. 1. Let £ —1 >~ > A+ 1. Then, for the first term of (B.18) we deduce

VAl 1 VAT VA 1

1 1
Cowp =D e =20 — =2 =
i=1 j=1 i=1 j=1 2j=i+1 ] 9IVE[+1 i=1 j=1 9j—itl | 21;3 (|VF|+1)
k=X
A
I B P 2. (1-2V) 11—
S v 4 225_ Sy -2 1-3
9. 2=A ==t 9. W=

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)



1 VA 1 1 IV 1
:<1__)._< >:(1__). ~
2[ =1 2[ y—1 y—1
> ([VE[+1) > (IVk+1) S (VE+1)
k=2 Qk=x

UVA+L | Qk=x+1

. | 9 (B.22)
=(1- o7 : A—1 a gt
> (VE[+1) > ([VFI+1)
9. Qh=xt1 2 . Qk=x
1
! (1 - ?) ‘ (CAA+2Aw+1 -2 C’AM'lAV“)‘

For the second term of (B.18]) we obtain

1 V7 1 V7 1 V7 1
Crpra = DD ey =D 0~ = 2.2 -
i=1 j=1 i=1 j=1 9j—i+1 [ 9IVF|+1 i=1 j=1 it . ka:: (IV*]+1)
k=X
S S e L B T O ) B ()
S v 2 2 Sy 172 13
D . Qk=x =1 =1 2 . Qk=x
(B.23)
1 1
=2 -1 | — — - =
SISV S v
2 4
=@ -1) -
v 5 (VF+1)
9. Qb= RN
Applying (B.3)) and (B.11]) to (B.23) we infer for the second term of (B.18])
CVIAVV = (21 — 1) : (QCAA+1A~/+1 — 4CA>\+1AW+2)a v < f -1
(B.24)
CVIXngl =2 (21 - 1) . (CAAJrlAg - CA>\+1n)7 Y= f —1
2. Let £ — 1>~ =X+ 1. Then, for the first term of (B.18) we have
VAT VAT V2
Cong = 33 g = S0 g5 g = g 2.2 Z 5 (B2
i=1 j=1 i=1 j=1 =
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122V é(l—%»_(l 1) (2" 1)

TV 12 -1 U 2r) v
B 1 1 1 ) (B.26)
T2\ 2 U 2
For the second term of (B.18]) we deduce
I |V I v I [V |
OVI)\V’Y - Z ZCU?”] - Z Z 2j+1.9. 2|V/\\ i 2|V’\\+2 Z Z
=1 j=1 =1 j=1 i= (BQ?)
Cov2 12 1— % B 2Vl +1 oWV )
O

Remark B.0.4. Setting [ = |V?*| in the case v > A+ 1 of Lemma we obtain

CV/\V’Y = CAA+2A7+1 — 2CA>\+2A'\/+2 — QCA/\J,-lA»y-H + 4CA>\+1A’Y+2> v < f -1 (B28)

CVAV§71 = CAA+2A§ — ZOAAHAé — CA)\+2n + QOAA+1n, Y= § -1 <B29)
Proof. From the definition of V* and V', I € [[V}]], see (3.218)-(3.219)), we have
VA = VV*I for all A € [¢ — 1]. Thus, setting I = |V*| in (B.23)) we deduce
2 4
OV)\V"{ == (2"/)\‘ — 1) . — — 5
k
S oSV o BV
9. 9IV*| 9. 9IV*|
B i = (V)
COIVAHL | 9r=x 2. 2IVAHL | k=311
22 2o (B.30)
2 4
S R
9. Qk=r k=2
B 1 2 2 4
B 5 vEe - > (VR - (VR i > (VA1)
9. Qk=2+1 D . Qk=2+1 9. Yk=xr . Qk=x

In view of (B.3)), (B.11)) and (B.30) the term Cyy~ can be written as

Carr2 491 — 20 pr2 gv+2 — 20 1 gy + 4C gav1 442, vy<€—1 (B31)

CVAV“/ =

CvAvg—l - OAA+2A§ - 2CA)‘+1A5 - CA)\+2n + QCAA+1n, ’7 - £ - ]_
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Lemma B.0.5. Let c € RY; be defined by (3.223)-(3.232), v € [¢], A € [¢ — 1] and

I |V} |AY] T

Capvr =D Y oo LE(A] and Caoyp =D Y e, L[V (B33)

=1 j=1 =1 j5=1

1. For v < A+ 1 we have

2]
CA’IYV/\ = W . (CA”YA)"H —2- CAWA)‘+2)7 A< g -1
2]
Cayver = o (Cavae = Cam), A=E-1 (B.34)
1
Cavp = (1 — §> Oy, ASE-1

2. For v = A+ 1 we have

2/-1 1
Cagvr = g (1 N 2|VA|> ’

(B.35)
1 1
CAWVIA - 5 . (]_ — ?)
3. For vy = X+ 2 we have
21-1 1

Cagvr = gy - (1—m>7

(B.36)
1
_ (ol
CA’YVIA = (2 — 1) . W
4. For v > X+ 2 we have
2[
CA}‘/A — W . (CA>\+2A'Y -2 CA>\+1A’Y)7
(B.37)
CAVVI’\ - 2(21 - 1) . OA>\+1A7-
Proof. 1. Let 1 <y < A+ 1. Then, for the first term of (B.33) we obtain
V2 V| |V VA 1|V
S ) EEED SERTD D) DAL, RS 3) 2ot
=1 j=1 =2 j=1 =2 j=1
e Y (B.38)

1 1
=D 2.2
j=1 9j+1 .9 . 9]A7|-2 H 9|VE[+1 i=2 j=1 9j+1.9.9[A7|-i H 9|VE[+1
k=~vy—1 k=y—1
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VA 1oV
1 1
- Z b3l (VH+Y i Z ~ S vE
=1 9j . 9lAY| . k=7 =2 j=1 95 . QIAY|—i+2 . 9r=7"1

[V I

1 1 1 .
— . Sy — 1+ § 2
AZI (VEI+1) =1 2 ( 2% )
2|AW| . Qk=y-1

Yo gV -3
oI-1 1 (B.39)
- v . (1 - W)

2|A7| . Qk=v—1

2! 1 1
= 9[A7] : 1 - A1
(|[VF|+1) > (VE+D)
9. Pk=v-1 Q\VA|+1 . Qk=y-1
2f 1 2
oA A1 - X
> (VE+D) > (VE+1)
2. 2k=v-1 2 . 2k=n-1

Applying (B.3)) and (B.11)) to (B.38)-(B.39)) we infer for the first term of (B.33])

2[

CA}V)‘ - W : (CAWA)\Jrl -2 CAVA)\Jr?)y A < 5 —1 <B40)
2[

Cayver = gy (Conas = Can), A =€ =1 (B.41)

For the second term of (B.33]) we have

A7 1 A7 1 I A1
CAWVI* = E E Cavd = E CaJuv + E E Caur = E Cagw) + E E Cav)
i=1 j=1 i=2 j=1 j=1 i=2 j=1

A7) T

I
1 1
> 2.2 (B.42)
j=1 9j+1 .9 . 9]A7|-2 H 9|VE[+1 i=2 j=1 9j+1 .9 . 9|AY|—i H 2IVE[+1
k=~—1 k=~v—1

|AY
vk Zi : S vE
! 25 . QAT L Qk=y-1 =2 5=1 27 . AT |=i42 . Yr=y-1

I
AMN

J
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1 L1 1 i

k . 3
- 7;7 (VE+1) 55 —2
_ 1 3(1—r) (1+ 22(1—2m'1)>
N ovieny 13 22(1—2)
9|AY| . Qk=y—1
(B.43)
2lA7-1 ( 1
= a1 A\ 1=5F
2[
> (VE+1)

AV . Qk=v-1

1 1 1
(1__1) . — ! (1__I> CAWAM'L
2 S (Ve 2
9. k=1

Similarly to the case v > 1 we obtain due to the definition of ¢, see (3.230)), that equations

in (B.34) hold for v = 1.

2. Let v = A+ 1. Then, for the first term of (B.33)) we deduce

|V V| V2 V2| 1|V
Cagvr = 22 o = X ety + 22wy = 2y 2 2
i=1 j=1 i=2 j=1 i=2 j=1
Iv)\ I Iv)\
- Z 9i+1 . 9. 2|m| 7 T ZZ 9i+1 . 9. 2|m|—z
B.44
- . . 3(L=5957) L 20 -2 (B4
QW\ Z TR G2 Z 2IA“'\ -1 Ty
2I-1 1
N
For the second term of (B.33]) we obtain
[AY] 1 I A7) 1 I [AY] 1
Canvp =D D oy = D gy + 2D aqr = D_Cagr + 2 D
i=1 j=1 j=1 i=2 j=1 j=1 =2 j=1 (B.A5)
VSl '

_ZQJ—H 2. 2|A7| 2+ZZ 2]+1 2. 2|A“f|—z
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|A7] 1

1 1 1—24) 22(1 — 2lA"1-1)
— (1 2| = 22 (1
| T2 Z - T T ea g

ok oY
Cool U 2r) T2\ 2

3. Let v = XA+ 2. Then, for the first term of (B.33)) we have

2|m

HMN

I |V [VA I |V [V I |V
Coapn =D —Zc Dt DD —Zc 2D Can)
i=1 j=1 i=2 j=1 i=2 j=1
[V IV
= Z S s
23 . 2|A”| =2, 9|VA—j 23 . Q\AWI i, 9IVA—j
=2 j=1

[V

1 2(1 — 27y (1 1 22.(1— 21—1))

T oA oV T 19 T 1—2

oI-1 (2|VA\ —1) ol-1 <1 1 )

T ol T oA T g T\ T T 9

For the second term of (B.33]) we obtain

[AY] T |AY] 1 |A”]
CA”YVI)‘ = E E Cay v = E Ca”v)‘ + E E Cao) = E CaJv + E Co
] J K]
i=1 j=1 i=2 j=1 j=1 i=2 j=1
I A7 T
=2 1 2.2 1
23 . 9|A7|=2 . 9|V*|—j 23 . 9|AY|=i . 9|VA|—j
J=1 i=2 j=1
|A7]

I
1 . ;
 olAvF1 . 9|V 'ZQJ 1 + 922 22
i=1

B 1 2(1 —21) e 22. (1 — 214711
T QAL oV T 1 =2 T 1-2
_2\A’Y|—1.(21_1)_(1_ ) 1

T 9| VA QIVA+1"
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4. Let v > A + 2. Calculating the first term of (B.33]) we arrive at

I |V VA 1 v [V 1|V
Cagv =D ey = D ey + ZZC:;=Z ) T2 D Ca)

i=1 j=1 j=1 =2 j=1 j=1 =2 j=1

[V I |V

1

-y )Y

v v=2
Jj=1 92—j . 9|A7|-2 H 9|VE[+1 i=2 j=1 92—j . 9|AV|—i H 9IVE[+1

— k=)
VA . IV .
- Z S vE i Z Z v
J=1 22—j . 9|AV[=2 . QK=n =2 =1 922—j . 9|A7[—i . Qr=n
. |v*|
Z (IVF+1) =1
21471 . 28= (B.49)
B 1 2(1 — 2" (1+ 1 22(1—21—1)>
_ . = . S
o0 12 .
of-1. 92V — 1)  2f 2lV2 1
B Sy 2| Sy S ove
21A7[ . Qk=x Qk=x Qk=x
o 1 )
2147l () i2(|w|+1>
9. Yk=x+1 RN
2!
— W . (CAAJFQAW —2'CAA+1Aw).

For the second term of (B.33]) we obtain

|AY] 1 I [AY] T |A7]
CA’YVA - § § ca]v])‘ - E Ca?vj-‘ + § E :ca;’vj‘ = § :Cagv])‘ + E :CaZv])‘
i=1 j=1 j=1 i=2 j=1 j=1 i=2 j=1

I 1 1
= 2 2.0 2 (B.50)

j=1 92—j . 9|A7|-2 H 2IVEl+1 i=2 j=1 92—j . 9|AY|—i H 2IVE[4+1
k=X k=X

I 1 A7 1 1
- Z i (VH+1) " Z Z S vE
T=l g2 glanl-2 L 9= =2 051 59 5 olar-i . oi
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1 ! 1A
- ~—2 'sz’ 1+§'222
k . .
RPN S = P
- 1

L 2(1-2) (1 1

22(1 o 2|A'Y|—1)
1—2 Ty )

A _

glar] g VY

1-2
_2WiRtog2f — )

(B.51)
1
- :(21—1)'?
gl . g5 g VD
2
— (21 —1)-

- 2.(21—1)-CAA+1A7.
([V*I+1)
2 . Qk=x

O
Lemma B.0.6. Let c € ng be defined by (3.223))-(3.232). Then, for all v € [ — 1] and
I € [|AY|] we have

Cayn — Cayas + Cayyer =0,

(B.52)
where C gy, Cayae and Cprye-r are defined in (B.1)), and (B.33)), respectively.
Proof. Let v € [ — 1] and I € [|A"]]. From Lemma we have

2[
Carn oI Cavn (B.53)
It follows from Lemma [B.0.2] that
21
CA}Aé = W 'CAwAé- (B54)
Thus, in view of (B.53)), (B.54]) and (B.41]) we obtain
CA}*n — CA;YAi + CA}/Vfﬂ
o1 o1 (B.55)
= ‘CAwn—W‘ 7A€‘|‘W' YAE 'CA’YnZO-

]
Lemma B.0.7. Let ¢ € ]ng be defined by (3.223))-(3.232)). Then, for 1 < k < & we have

(B.56)
where A7, v € [€] and V*, X € [€ — 1] are defined by (3.218).
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Proof. For brevity, we introduce the following notations:

|A7Y] |AY| |AY
CA“/n = Zl Cazna S [5] CA‘/AA = Zl Zl Ca'yaM e A€ [6]7 Y 7& A
1= =17
V| VA V7
CV*n:ZlCu}m}‘e[g_l] Cyayn 3—212%1; ANy €eE—1], A £~y
j= i=1j
V[V

CA’Y\/)\ = Z Z Cazv?‘v S [5]7 A€ [5_ 1]

i=1 j=1 J

Then, for the left-hand side of equation (B.56|) we have

c<5<Omquh>) ZCAvn—FiSZIme—i—Z Y Cumn

v=1 A=1 ’y 1 A=k y=1 A=k+1
VvV 4 TV
¥ 3o 33
k—1 k-1 £—-1 k—1 13
+ E Cyx, + Cyayy + E E Carya
A=1 A=1 y=k A=1 y=k+1
W Vv Vv -
P 35 36

Using equations (B.2)) from Lemma we obtain

k k—1
E1 + E4 = Z C(A“Vn + Z(CAW+271 - 2C(AAY‘Hn)

’y*l y=1
k+1
= Z OA“/n + Z CA“/n 2 Z CA’YTL = C1141 OA2n + CAk+1n
y=3
@ Carn — Caip + Cyirry = Cpriny,.

From Lemma we have for v € [£], A € [€ — 1] that
Cprryr = CAVA’Y\VA =Cyrarn —2-Chyoppre i v < A+1,

CA“/V/\ = OAIWAV\V/\ = CA/\‘*'QA“% -2 CA/\‘HAW if v > A+ 2.

Thus, for the second term of the right-hand side of (B.58)) we deduce

kE £-2
ZZ CAA/AA-H -2 CAA/AAJ,-Q —i—ZCAwVE 1
v=1 A=k
k

—Z Z OAWA)‘_QZ Z CAVA)\—I'_ZCAWV& 1
«,_1>\ k+1 v=1 A=k+2

:ZCAMHI ZCAvAﬁ Z Z CAWAA+ZCAVV5 1
y=1 y=1 A\=k+2
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Calculating the sixth term of the right-hand side of (B.58)) we obtain

k-1 & k=2 £
55 3 con =8 3 ot 3 G
A=1 y=k+1 —17= y=k+1
k-2 £
= Z (CA,\+2AA, — 2CA/\+1AW> + Z Caryr-1 4+ Cyrriyr—
—k+1 y=k+2

k-1 &
Carar — 2 Z Z Carar + Z CAkJrlAW - 2OA’CAW) + C gty (B 62)
1

A=3 y=k+ A=2 y=k+1 y=k+2
£ £ k-1 &
= C1A’“A”Y - E CAQA’Y - E E CAAAV
y=k+1 y=k+1 A=2 y=k+1

3 3
+ Z Curtigy — 2 Z Carar + Carsiye—1.

For the fifth term of (B.58) we deduce

k—1 &-1 k—2 -2 £—2 k-2
25 - CVxV'y - Z Z CV/\V’Y + Z Ckal‘/'y + Ckalvgfl + Z Cvxvgfl
A=1 y=k A=1 v=k y=k A=1
k—2 -2 &2 k—2
= ZC‘/Avv + Cyr—ryr + Z Cyr—1yy + Cye—1ye-1 + ZC\/A‘/g 1
A=1 y—k N=k+1 A—=1
k—2 §-2
Remark (204 (Carizavir — 2 Cynizgnie — 2 - Cparigrir + 4 - Cyavi goi2)
A=1 v=k
£-2
+ Cyr—yr + Z (CAk+1A7+1 —2-Cyrrigrrz —2-Cpe g + 4 - CAkAny,-Q)
y=k+1 (B63)
+ Cprvige — 2 - Cyrge — Cpriry, + 2 Cyry,
k—2
+ Z(OAM'QAf —2-Cptrge — Cyriz, +2- CAA+1n>
A=1

k &— k-1 &-1
B 5D SRS b SRCUEE) b SRcHt
A=3 y=k+1 A=3 y=k-+2 A=2 y=k+1

+ 42 Z Caogr + Cyr-ryr + Z Cart1gy — 2 Z C k41 4+

A=2 y=k+2 y=k+2 y=k+3
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-1
—2 Z Cyrar +4 Z Curav + Carriqe — 2 - Cprpge — Curiy,

y=k+2 y=k+3

k k—1 k k—1
+2‘0Akn+ZCA)\A§ _QZCA)\Aﬁ —ZOAAn—‘rQZOAAn
A=3 A=2 A=3 A=2

k £—-1 k—1
:Z CAAA’Y+2 Z CAQA“/_Q Z CA’CA’Y—FZZCAAAE
A=3 y=k+1 y=k+2 y=k+2 A=2
(B.64)
—QZCAAAIH-I—'— Z Curtigy — 2 Z Cartigy — 2 Z C Ak 4~
y=k+2 y=k+3 y=k+2
£
+4 Z Carar + Cyr—ryr + Cyrrrige — 2 - Cprpge — Cyrrry, + 2 - Cyry,
y=k+3
k k—1 k k—1
—i—ZCAAAg — QZCAAAé — ZCAML"‘QZCAML
A=3 A=2 A=3 A=2
In view of (B.60))-(B.64)) equation (B.58)) takes the form
k k—1 k k k 13
5 (U Aul VA)> = Cymrry+ Y Cararrn — D Carge— > > Caan
y=1 A=1 y=1 y=1 v=1 A\=k+2
k
DICHISD S DENES I DENEED 2o
=1 A=k+1 A=3 y=k+1 y=k+2
k—1 k—1 -1
—2 Z C gk av _’_QZCAAAE — QZCAAAkH + Cyr—1yr + Z C g1 44
y=k+2 y=k+2
: \- : B.65
-2 Z Carrigy — 2 Z Curar +4 Z Carar + C a1 ge — 2C g1 ¢ ( ) )
y=k+3 y=k+2 y=k+3

k k—1 k k—1
—M+2 ° OAkn_}_ZCA)‘A& _QZCA)‘Aﬁ - ZCAAn+2ZOA>\n
A=3 A=2 A=3 A=2

£ £ k-1 ¢ £
+ Z CAkA'y_ Z CAQAW—Z Z CAAA»y—i— Z CAk+1A'y

y=k+1 y=k+1 A=2 y=k+1 y=k+2

£
-2 Z Carar + Carriyea

y=k+2
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k &—1 £-1 k—1 k—1
:ZCA’YAHl_ Z CAQA'y—l- Z CA’“AV_ZCA’YAf_ZOA’YAkJrl
v=1 y=2 y=2

y=k+1 y=k+1

+ Camopies + Cak gt + Cprrairz — Corge + Carrranee + O

k 3
~2Cx7e = Caiae = Capac + ) Convert = ) Carar + Cararrs

y=1 y=k+2

3
— 2C gk g2 — 2C gk gbr2 + 2Cq772¢ + Z Cuzpr + Cprriyr—1 — Choahss

k42
k—1

+ Cyr—ryr + 2C g5, + Z Curp + Caz,y — Cysy
A=2

k-1
= Cyrgrr1 + Cpigrrr + Cuage — Cpogrrr + Curgrrr — Clyrge — E C v a¢
y=1

k k—1
+ ZCAWV&_I + Cyrgrrr + Cyrrrgrore — Cp2 e + ZCAWA& + Cyk gr41
y=1 y=2
- B.66
— AC gk gir2 + 2C g5 g6 + Cprvrye—1 + Cyrypr—1 + Z Carn ( ’ )
y=1
= 4C gk gpt1 — 4C gr grv2 4+ 2C g141 g1r2 + Cyrrryr—1 + Cyryr—
k k k
2 Cion = 3 Canac + 3 Caovens
y=1 y=1 y=1
=0 by Ler\nrma
B 4 4
T 9 9VEIHL 9 VR I[H[VE42
2 VI —1Evt—1) 1 1
+ k + k k—1 +511- olVk—1|
2. 2lVFI+1 2. 2lVFL L glVE 2 21VEY
2. 2IVFI 1 p olVETH L olVEIQIVETH _ olVR _ oVETY 1 4 oIV HgIVE _ olVF|
- 9 . QIVE[ . 9[VFT]
9. 9lVFl  olVFY
. 9lVE L gvETL] L
0
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Appendix C

In this chapter, we present four auxiliary lemmas, which were used in the proof of Propo-

sition . Note that, from the definition of ¢ € ng, see (13.223)-(3.232)), we have
Carp = Cay . forall A € [€]. Thus, in Lemmas |C.O.1| and |C.O.3| it suffices to calculate C, ,

for i > 2.
Lemma C.0.1. Let c € ng be defined by (3.223))-(3.232)) and

1A%

Coayppi= E C \ 8.
ai 14ﬁ a;‘a?
Jj=1

Then, fori € [|AM], i > 2 and \, 8 € [£], X # B we have

Cyrap

Ca?Aﬂ = 2‘AA|_7:+17 )\ < /B
CABA)\
Caf‘AB = Q\A’\|fi+1’ A> ﬁ

Proof. Let A\, 3 € [¢(] and i € [|[AY]], i > 2.

If A < 8 then calculating expression (C.1)) we obtain

48] 48| 48]
Carar = Q_ Cara? = Cpad + > :Cagaf = Caraf T > :Caf‘a?
=1 =2 j=2
| AP
1 1

= +Z

B
23 . 9lAM—i . 9|A8|-2 I1 olVEI+1  j=2 93, 9|A*—i , 9|AP|—j I1 2IVE[+1

k=X-1 k=XA-1
|45
1 1 .
- 52 1+ 22 Z 2
> (IVF+D) =2

93 . 9|A* =i . 9|AP|=2 | 9k=X"1
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1 22.(1- 2|Aﬁ|1))

= . ]_ + —_
B=2 2 _
" > (VE) ( 2 1-=2
23 . 9lAN—i . 9]AB|-2 . Qk=x-1

ol 49]-1 ] ] (C4)
N 2 k B 21 AN —i+1 . = k .
93 . 9|AN—i , 9|Af|-2 Qk:%zl(lv I+ 9. 219:%:71(“/ I+
Now, let A > 5. Then, we deduce for expression ((C.1|)
|A7| A7 |A7]
Copas = anfai = Cafar T anfa? = Cogar T 2 Gl
J=1 7j=2 7j=2
|A7|
1 1
- A2 + Z A2
23 . 214°%1=2 . glAM—i T 2lVF+1  j=2 23. A% =j . lAM=i TT 2V*l+1
k=B—1 k=B—1
|A7|
1 1 .
= e Tt o552 2 (C.5)
, > (IVFH+1) j=2
23 . 9|AB|=2 | 9|AN—i | Qk=p-1
1 1 22.(1— 247171y
- = b7 1-2
, > (IVFE+D)
93 . 9|AB|=2 . 9|AN =i . Qk=F—1
2171 1 1
= A—2 . = 2|AA|—i+1 ’ A—2 i :
23 . 9lAf|—=2 . 9|AN—i . Qk:zﬂz—l(‘v s 2. 2k:5—1(|v I+
Equation (B.11]) from Lemma implies that (C.1]) can be written as
Caras
Caf\Aﬁ = i‘—,A'7 A< /6
7 2|A ‘ Z+1
C (C.6)
AB A
Caras = QNN =it A>pB
m
Lemma C.0.2. Let c € Ry be defined by (3.223)-(3.232), A, B € [€ — 1] and
14
s = 3 e €[V (1)
j=1
1. For B> A+ 1 we have
Cvaﬁ = Qi(CAAﬂAﬁH — QCA)\+1A,[3+2), 6 < f —1
(C.8)

Cvi)‘ngl - 2i(CA>\+1A§ — CAA+1n>7 5 - f - 1
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2. For =X+ 1 we have
1 1
C,Ui)\‘/g = Cvi)‘VA*l = W ]. - W . (Cg)

3. For = X—1 we have

1 1
Cv;\\/ﬁ = Oyixvxﬂ = T (1 — 2|VX1|> . (C.10)

4. For p < X —1 we have

1
Cv;\VB - §<CAB+2A>\+1 — 2CAﬁ+1AA+1). (Cll)

Proof. Let A\, B € [£ — 1].

1. Let 8 > A+ 1. Then, we deduce for expression (|C.7)

V7 V7

1 idd |
Copve = Z Copo? = Z B—1 - Z -1
j=1 —

=1 2i=i+1 T] Q(VFE+1) =1 it . 2k:A(IV’“Hl)

k=)
. B .
o ol 9 31— 5vmp)
=D DE = S B (C.12)
VA 5T VD ;
B 9i 9i B 9i 9. 9i
Sy Sy S v S (VA1)
2. Yk=r 2. 9IVA| . 9K=x =) 9. Yk=a

Applying (B.3]) and (B.11)) to (C.12)) we infer

C’U?Vﬂ = Zi(CAA+1A6+1 — QCAA+1A,8+2), b < E—1

| (C.13)
Cvi)\vgfl — 21<CA>‘+1A5 - CA)\+1n), /B — € -1
2. If B =X+ 1 then we obtain
IVAJrlI IVAJrlI 1 1 ‘V>‘+l| 1
” ” ” (C.14)

o1 slmge) 1
T oIVA—it2 1_1 T oIV —i+2 olvA+1] |
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3. If 5 =X —1 then we have

Vil Vi Vi
c 1 1 .
Ay A-1 — C \— = - - =
vpVATL Z vy e Z i+l .9 . 9[VA~l—j — 9i . 9[VAi-1[+2 Z
j=1 j=1 Jj=1

B 1 2(1 -2 1 . 1
T i 9[VA142 1-92 T 9itl gyl )

4. Let 8 < XA — 1. Then, expression (C.7)) takes the form

(C.15)

VA VP Al

| i 1
CU?V,B = chfv{\ = Z - Z A=l
j=1

A—1
j=1 2i=j+1 2(VFI+1)  j=1 i1 . 2Igﬁ(lV [+1)

k=5

B
_ 1 %2]‘ _ 1 2(1 — 27
N v S Ny 12
9i+1 . 916 Qi+1 . 9k=5 (C.16)

olV7I 1 2V 1

A-1 A—1 A—1
o X (VF+D o X (VF+D X (VR
i . Qk=p i . Qk=p i . Qk=p

1 1 1) 1

A1 A1 - E(
, (IVF|+1) o 2 (VR

21-1—1 . Qk=p+1 2t . Qk=p

Casra gt — 2CAB+1A>\+1>.

Lemma C.0.3. Let c € RZy be defined by (3.223)-(3.232)), B € [¢€], A € [¢ — 1] and

[V |AB|
Covr =D s 1€ [A7i =2 and Cppo = e jEV (CAT)
j=1 i=1

1. For 8 < X\ we have

1
Caﬁv,\ :W'(CA,BAMA —QCABAAJrz), >\<£—1
1
Cpverr = grmrmn (Casas = Cam), A=€-1 (C.18)
1
Copas = 57 Canarn
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2. For =X+ 1 we have

1 1
Caprr = Carnivr = giasmirans (1 - W) ’

! (C.19)
CU;A/B - Cv;‘AA""l - ﬁ
3. For = \+ 2 we have
1 1
OﬁVA:CA-HVA:W' (1——)\>,
a; a; —142 14
2l 1 | 21V2| (C.20)
CU])-‘AB = Cv;-‘AA+2 = SV —j+2°

4. For > XA+ 2 we have

1
CafVA = AP (Cprt248 — 2+ Cpriigs), (C21)

Cv;‘AB - 2jCA>\+1AB.
Proof. Let B €[] and A € [€ — 1].

1. Let § < A. Then, we have for the first term of ((C.17))

V| V|

1
=Tt =2
=1 95+1 .9 . 9|AP|—i H 2IVE[+1
k=p—1

VA

V] 1 1 1
:Z = A—1 22_7

- (V|41 S ([VE+1) o
=t 2i+1 .9 . 9[AP|—i . 9k zﬁ: (Ve 9|AB|—i+2 Qk:%—l(l =1

1 31— 5ox)

A—1 1— 1
> (VE+D 2
i

2|AB|—i+2 . 9k

- (1~ 5v)
5 ve) 21V

AP —i+2 . Qk=p5-

(C.22)

a 1
T 9AP—i+1

y’_‘

—1
k k
K A

1 2

24Tl " (vE S (VET1)
9. 9rFt1
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Applying (B.3]) and (B.11)) to (C.22)) we infer

1

CafV/\ — m . (CA,BA)\+1 - 2 . CAﬁAA+2), /\ < 5 — ]_ (023)
1
Casver = g - (Casae = Casn), A=E -1 (C.24)

Calculating the second term of (C.17]) we arrive at

48] 48] 48]
Copar = DGy = Cagup + 2 Oty = Cap T 2
=1 =2 1=2
1A%
1 1

- A—1 + Z A—1
2j+1 .9 . 9|AB|-2 H 9VE|+1 i=2 9j+1 .9 . 9|AB|—i H 9IVE|+1

k=p-1 k=p—1
8
1 |AP] 1
- 55l VEk|+1 * . V|41
2j+1.9. 2|Aﬁ|—2 . 219:%:71(‘ +1) =2 2j+1.9. 2|Aﬁ|—i . Qk:/g,l(‘ +1)
- A1 1+ 5 Z 2"
. > (VE+D i—2
OIAPI+j . Qr=p-1
B 1 1 22.(1—24%1°1)
- A—1 1+ 2_2 : 1_9
: > (IVF+1)
QAP +j . Qr=5-1
2\A5\71 1 1
- A=l - ) = gOAﬁAHI
, > (VFI+D) . > (IVEI+D)
2148+ . k=51 9j+1 . Qk=p-1
2. If B = A+ 1 then we have for the first term of (C.17)
Ca?Jer)\ = Zl Cajﬂvj’-‘ = Zl 2j+1 .9 . 9lA M| —i = QAT —i+2 Zl 2_]
" " = (C.26)

B 1 %(1 - 2\\1A|) . 1 1 1
o2 1 _% = ATt o )
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For the second term of (C.17)) with 5= A+ 1 we deduce

‘AA+1| ‘AA+1| \A>‘+1\
C@Axﬂ = Z C A+ = Cai\+lv)_\ + Z C A+ A = Ca;\+lv)_\ + Z Ca_A+1UJ>_\
g J J K J J [
i=1 i=2 i=2
A+1
- 1 |AMH 1
©9j+1.9.9|AMT|-2 + 2; 2j+1 .9 . 9|AM|—i
|A>\+1| 9 |A>‘+1|—1 (C27)
B 1 ] 1 oi | 1 1 1 2*(1-2 )
=~y (Ve LY S (e 1
PI |
- 2|A/\+1|+j = 2j+1'
3. If B = A+ 2 then we obtain for the first term of (C.17))
V2| 1% 1 1 V2|
_ _ — J
Oaf‘+2V’\ — Zlca?JrQ’U;\ - Zl 23 . 2|A>\+2|—i . 2|V>‘|—j - 23 . 2|A>‘+2|—i . 2|V>‘| Zl 2
J= J= J=
B 1 2(1 2"y 1 2V —1) (C.28)
T 3. oAl g T 2. gl g ‘
B 1 1
- 2|A>‘+2|—i+2 1- 2|v>\| .
For the second term of (C.17) with = A + 2 we have
|AM2] |AM 2] 1A%
CU])\AAH = Z Can? = Ca?+2ng + Z Caf‘”v; = Ca§+21}? + an;\ﬂv?
i=1 i=2 =2
|A7]
1 1
- 93 . 9[AM2]|=2 9|V |—j + z_; 93 . 9|AM2|—i  9|VA|—j
|AM+2]
1 1 ;
T QAR VA=) 1+5 Z 2 (C.29)
i=2
S S O U SCEL S
TN 9[VA—g 22 1—2

o121 1

QAL L9V = 9VA 42
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4. Let f > A+ 2. Then, the first term of (C.17) takes the form

V2| V2| 1 [V 1
Caka - Z Cafv? - Z B—2 - Z B—2 .
j=1 j=1 92—j . 9|Af|—i I1 oIVEl+1 =1 92— . Ol AP|—i | 21&(\\/ [+1)
k=X
(VA VA
_ 1 S o 1 201 =2V
BiQ V41 4 Bi2 VE+1 1—2
gasisa | g VEHD 5T gt isa | g VY
2V —1) 1 2V 1
- v T AT | A viy S avee
QlAB|—i+1 . 2kz::)\(| I+ 2k§)\(‘ I+ 2kz::A(| I+
1 1 2
= - — -
2 T (vee (Ve
2 . 2k::k+l k=X
1
= W(CAM"QAE - 2CAA+1AB).
For the second term of (C.17]) we deduce
147) 147) 147
Coras = ; Cafor = Cafor T — Cafwd = Cafud T ; Cafv)
8
) . 147) .
N f-2 * f-2
22—j . 9|AP|-2 H 2IVE[+1 i=2 92—j . 9|AP|—i H 21VE[+1
k=X k=X
8
1 & 1
- 2k * 2 vk
g2-i . g2 oS =200 s o BT
1A%
1 1 o,
- 52 ]. + 2—2 Z 2
> (JVFI+1) =2

21AB|=j . 9k=x

1 1 22(1 — 24711
- = e 15
X (VD)

A8 =i . 9%
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1 1 22(1 — 214711
B = e 15
> (VE+1)

2lAB|=j . Qr=x
(C.32)
2\A5\71

=20 Cyrrigs

1
ﬂfuvwﬂ) v
2AP|—j . Qk= 91=3 . Qk=x

]

Lemma C.0.4. Let c € RYy be defined by (3.223 . Then, for all p € [ — 1] and
i € [|AP]], i > 2 we have
C Bn — Ca[_iAg + Ca@vf,l — 0 (033)

where C' of A6 and C Wfye are defined in and (C.17)), respectively.

Proof. Let g € [ — 1] and i € [|A°]], i > 2. Applying (B.3)) to (3.231) we deduce

1 1 Casn
ot = - _ - = (C.34)
9 . 9lAB|—i I1 9IVF|+1 > (IVF+1)

2|A5\—i+1 . Qk=p—1

From Lemma we have

af A€ = ST (C.35)

Thus, in view of (C.34)), (C.35) and (C.24) we obtain

Casr™ Ky ac \Q&’Aé Cag™ _
& By — Cang + CaiBVg 1 W' i1 2|AB|\‘L 2|A5|\L W| il . (C36)

165



APPENDIX C.

166



Bibliography

1]

[10]

Francisco Barahona. On cuts and matchings in planar graphs. Mathematical Pro-
gramming, 60(1, Ser. A): 53-68, 1993.

Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Mathematical
Programming, 36(2): 157-173, 1986.

Robert D. Carr, Goran Konjevod, Greg Little, Venkatesh Natarajan, and Ojas
Parekh. Compacting cuts: a new linear formulation for minimum cut. SODA, pages
43-52, 2007.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formulations
in combinatorial optimization. A Quarterly Journal of Operations Research, 8(1):1—
48, 2010.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming.
Springer-Verlag, 2014.

Michele Conforti, Samuel Fiorini, and Kanstantsin Pashkovich. Cut dominants and
forbidden minors. SIAM J. Discrete Math., Vol. 30, No. 3, pages 1571-1589, 2015.

Michele Conforti, Giovanni Rinaldi, and Laurence Wolsey. On the cut polyhedron.
Technical Report 5, CORE, Université catholique de Louvain, 2000.

George Bernard Dantzig and Delbert Ray Fulkerson. On the max-flow min-cut the-
orem of networks. In: Linear Inequalities and Related Systems (H.W. Kuhn, A.W.
Tucker, eds.), Princeton University Press, pages 215-221, Princeton, 1956.

Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics. Algorithms
and Combinatorics, Vol. 15. Springer, Heidelberg, 2010.

Caterina De Simone. The cut polytope and the Boolean quadric polytope. Discrete
Math., 79: 71-75, 1990.

167



BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]
[16]

[21]

22]
[23]

[24]

[25]

Peter Elias, Amiel Feinstein, and Caulin Shannon. Note on maximum flow through
a network. IRE Transactions on Information Theory, IT-2, pages 117-119, 1956.

Samuel Fiorini, Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis. Com-
binatorial bounds on nonnegative rank and extended formulation. ArXiv e-prints,
2012.

Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald
de Wolf. Linear vs. semidefinite extended formulations: exponential separation and
strong lower bounds. STOC 2012, 2012.

Lester Randolph Ford and Delbert Ray Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics 8, pages 399-404, 1956.

Andrés Frank. On a theorem of mader. Discrete Mathematics, 101(1-3):49-57, 1992.

Branko Griinbaum. Convex polytopes. Volume 221 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, second edition, 2003. Prepared and with a preface
by Volker Kaibel, Victor Klee and Giinter M. Ziegler.

Volker Kaibel and Stefan Weltge. A Short Proof that the Extension Complexity of
the Correlation Polytope Grows Exponentially. Discrete & Computational Geometry,
53(2):396-401, 2015.

David R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47:46-76,
2000.

David R. Karger and Clifford Stein. A new approach to the minimum cut problem.
Journal of the ACM, 43(4):601-640, 1996. Preliminary portions appeared in SODA
1992 and STOC 1993.

Bernhard Korte and Jens. Vygen. Combinatorial Optimization. Theory and Algo-
rithms. Algorithms and Combinatorics 21 Springer-Verlag, Berlin, 2012.

Laszlo Lovész. Combinatorial Problems and Exercises. North-Holland, Amsterdam,
1979.

Hermann Minkowski. Geometrie der Zahlen. Erste Lieferung. Teubner, Leipzig, 1896.

Ezra Miller and Bernd Sturmfels. Combinatorial Commutative Algebra. Springer-
Verlag, 2005.

Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multi-
graphs and capacitated graphs. SIJDM: SIAM Journal on Diskrete Mathematics,
5: 54-66, 1992.

Kanstantsin Pashkovich. Extended Formulations for Combinatorial Polytopes. PhD
thesis, Otto-von-Guericke-University Magdeburg, 2012.

168



BIBLIOGRAPHY

2]

[27]

28]

[29]

[30]

Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience
Series in Discrete Mathematics. John Wiley & Sons Ltd., Chichester, 1986.

Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A,
volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.

Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B,
volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.

Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. C,
volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.

Martin Skutella and Alexia Weber. On the dominant of the s-t-cut polytope: vertices,
facets, and adjacency. Springer and Mathematical Programming, Series B, 124:441—
454, 2010.

Mechtild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4): 585-591, 1997.

Josef Stoer and Christoph Witzgall. Convexity and Optimization in Finite Dimen-
sions I. Die Grundlehren der mathematischen Wissenschaften, Band 163, Springer-
Verlag, Berlin Heidelberg, 1970.

Arie Tamir. Polynomial formulations of min-cut problems. Unpublished manuscript,
1994.

Hermann Weyl. The elementary theory of convex polyhedra. Contributions to the
Theory of Games, Volume I, edited by H. W. Kuhn and A. W. Tucker, Princeton
University Press, pages 3—18, 1952.

Giinter M. Ziegler. Lectures on polytopes. Volume 152 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1995.

169



	Abstract
	Zusammenfassung
	Introduction
	Preliminaries
	Basic facts of Convex Geometry
	Basic facts of Combinatorial Optimization

	Small Linear Formulation for the Minimum Cut Problem

	Undominated Sets and General Geometrical Properties
	Dominants of Polyhedra
	Undominated Set
	General Geometrical Properties of Undominated Set
	Contractibility
	Connectedness
	Pure Complex

	Three-Dimensional Examples of Undominated Complexes

	Undominated Complexes of Cut Polytopes
	Cut Polytope
	Dominant of the s-t-Cut Polytope
	S-n-Cut Polytope for the complete graph Kn
	Undominated Complex of the 1-n-Cut Polytope
	Undominated Complex of the [2]-n-Cut Polytope
	Undominated Complex of the [3]-n-Cut Polytope
	Undominated Complex of the []-n-Cut Polytope

	Appendices
	Appendix 
	Undominated Complex for a polytope in R3 (Using polymake)
	Structure of the function UndomComplex 3D
	Description of the function UndomComplex 3D
	Manual of the function UndomComplex 3D
	Program code of the function UndomComplex 3D


	Appendix 
	Appendix 
	Bibliography

