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ABSTRACT 

Grid cells in the entorhinal cortex are a central component of the brain’s spatial 

navigation circuit. They are largely thought to support the continuous tracking of one’s 

position in space by integrating self-motion cues, a function called path integration. 

Analyzing the putative firing of grid cells (i.e., grid-cell-like representations) in human 

neuroimaging data, however, is a non-trivial endeavor, given the methodological 

complexity and the absence of standard software tools for this analysis. In Project A of 

this thesis, we therefore developed the Grid Code Analysis Toolbox (GridCAT), a 

MATLAB-based open-source software for the automated analysis of human grid-cell-like 

representations in functional magnetic resonance imaging (fMRI) signals, and made this 

software openly available to the neuroscience community. In Project B of this thesis, we 

then applied the GridCAT to fMRI data from young and older adults, in order to 

investigate age-related changes in grid-cell-like representations. We found that grid-cell-

like representations in the entorhinal cortex were compromised in old age, and this 

effect was mainly driven by a reduced stability of grid orientations over time. Building on 

this finding, in Project C we then investigated whether compromised grid-cell-like 

representations might be associated with path integration deficits in old age. Indeed, we 

found that individual magnitudes of grid-cell-like representations were predictive of age-

related deficits in a behavioral path integration task, in which participants had to 

navigate based on integrating body-based or visual self-motion cues. On the one hand, 

these findings demonstrate that compromised grid-cell-like representations might be a 

key mechanism to explain reduced path integration performance in old age. On the 

other hand, however, it remained to be determined whether and to what extent other 

sources of error might also contribute to path integration errors in young and older 

adults. To address this, in Project D we used a computational modeling approach in 

order to decompose path integration errors into distinct causes that can corrupt path 

integration computations. We identified internal noise in path integration computations 

and a biased gain in estimating the speed of self-motion as the main error sources 

across both young and older adults, with an increase in internal noise accounting for the 

majority of age-related path integration deficits. Together, the work in this thesis not only 

advances our understanding of the specific contributors to path integration error, it also 

helps elucidate the mechanisms that underlie age-related decline in navigational 

functions. 
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1. GENERAL INTRODUCTION 

1.1 Population aging 

According to the World Population Ageing Report (2015) of the United Nations, 

the number of people in the world older than 60 years is predicted to more than 

double its size between 2015 and 2050, and the number of people aged 80 or 

older is predicted to grow even faster and more than triple within that timeframe. 

Moreover, the number of older adults is growing faster than the number of 

people in all other age groups, leading to a progressively increasing proportion of 

older adults relative to the rest of the society (Figure 1). For example, both in 

Europe and Northern America, predictions indicate that older adults (those aged 

60 years or over) will account for more than 25% of the population by 2030. 

This development can be expected to have far reaching economic, social and 

political implications. One of the major challenges in this context will be that a 

significant proportion of older adults will have to cope with health issues, 

including normative or pathological cognitive decline. This does not only have 

consequences for the affected individuals, but might also lead to increasing costs 

for health systems, as a growing number of people with cognitive decline also 

implies an increasing demand for care as well as for services and technologies 

that help to treat age-related diseases and chronic conditions. It is therefore 

imperative for researchers to elucidate the mechanisms underlying age-related 

loss of cognitive abilities, as providing such insights is a necessary precondition 

for designing efficient interventions and therapeutic approaches to counteract 

cognitive decline in old age.  
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Figure 1: Population aging in recent years and projections for the coming 
decades 

Left: Worldwide, the number of older adults (aged 60 years or over) has increased 
substantially in recent years and this growth is expected to continue and even 
accelerate in the near future. Right: Population size relative to the year 2000, separately 
for different age groups. It is evident that the number of older adults is growing faster 
than the numbers of people in any other age group. 

Figure adapted from the United Nations’ World Population Ageing Report (2015). 
 

1.2 The aging navigational system 

Some cognitive processes that are known to decline with age, such as memory 

and executive functions, attention, or working memory, have been studied 

extensively in the past. Surprisingly, however, spatial navigation abilities 

received relatively little attention in cognitive aging research, even though the 

ability to navigate within an environment is one of the most fundamental 

behaviors in both humans and animals. In fact, spatial navigation abilities are 

necessary for successful functioning in everyday life and impairments in 

navigational functions can have severe consequences for individuals, such as 

impaired mobility, reduced social participation, and isolation. 



 

 GENERAL INTRODUCTION 13 

Spatial navigation is a particularly complex behavior that involves a multitude of 

cognitive functions and computations, such as storage and recall of information 

and integration of a variety of sensory and proprioceptive stimuli. In general, 

spatial navigation can be based on processing environmental cues or self-motion 

cues (Gallistel, 1990). Environmental cues are usually static and comprise stable 

objects in the environment, such as landmarks (i.e., salient features of the 

environment) or boundaries. Such environmental cues can be used to determine 

one’s position and orientation within an environment. By contrast, self-motion 

cues are usually dynamic and comprise optic flow (i.e., the pattern of apparent 

motion of objects, surfaces and edges) arising from visual perception, as well as 

body-based cues derived from proprioceptive and vestibular information, and 

motor efference copies that are produced during movement (Etienne & Jeffery, 

2004). After being processed in the sensory systems, these cues are integrated 

in brainstem nuclei and cortical structures (i.e., the medial superior temporal area 

“MST”) to allow an estimation of angular and linear movement velocity (Bassett & 

Taube, 2001; Biazoli et al., 2006; Britten, 2008; Clark et al., 2012; Cullen, 2012; 

Butler & Taube, 2015). Consequently, self-motion information from body-based 

cues and optic flow enables the continuous tracking of one’s position and 

orientation during movement, a function called path integration (Mittelstaedt & 

Mittelstaedt, 1980). 

Together, environmental cues and self-motion cues can inform both allocentric 

and egocentric reference frames (for a review, see Colombo et al., 2017). An 

allocentric reference frame involves spatial information about the position of 

objects within the environment relative to each other. Locations are described in 

object-to-object relationships independently of the navigator’s point of view. An 

egocentric reference frame, on the other hand, involves spatial information about 

the navigator’s position within the environment, and locations are described in 

self-to-object relationships that are encoded relative to the navigator.  

It is widely known that aging has deleterious consequences on spatial navigation 

abilities, as some of the key regions within the brain’s spatial navigation circuit 

are particularly vulnerable to neurodegenerative processes, both in normal and 
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pathological aging (Lester et al., 2017). As illustrated in Figure 2, these key 

regions include for example the entorhinal cortex and the hippocampus, which 

are both known to be amongst the earliest regions in which pathological forms of 

proteins, such as amyloid-β plaques and tau in neurofibrillary tangles, 

accumulate during normal aging as well as during the development of 

Alzheimer’s disease (Braak & Del Tredici, 2015; Mufson et al., 2016; Jagust, 

2018). 

 

 

Figure 2: Key regions of the brain’s navigation circuit are particularly vulnerable 
to age-related neurodegeneration 

Some of the brain’s key regions for navigation (green) are particularly vulnerable to 
neurodegenerative processes during aging, such as an increased accumulation of 
harmful amyloid-β and tau proteins. For example, increased tau deposition is already 
seen in the entorhinal cortex of cognitively normal older adults (bottom left), and 
pathological tau and amyloid-β deposition in several brain regions, including those of the 
brain’s navigation circuit, are known as hallmark lesions of Alzheimer’s disease (bottom 
right). 

Figure (top panel) adapted from Vann et al. (2009). Figure (bottom panel) adapted from 
Jagust (2018). 
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Consequently, numerous studies demonstrated deficits of older adults in a 

variety of spatial navigation tasks and with respect to a broad range of specific 

navigational functions. For example, in route navigation tasks, which are widely 

used to test spatial navigation abilities in humans, studies have demonstrated 

age-related deficits in route learning and wayfinding (Wilkniss et al., 1997; Moffat 

et al., 2001; Head & Isom, 2010; Wiener et al., 2012). 

Another task that revealed spatial navigation deficits in older adults is the Morris 

Water Maze task. In its original form, this task is used extensively in rodents, to 

test their ability to locate a hidden platform in a sparse environment that is visible 

in its entirety with little or no movement (Morris, 1984). In a virtual analogue of 

the task that was designed to test humans, older adults showed navigational 

deficits in the form of reduced accuracy, slower learning rates, and a less 

accurate representation of the environment when asked to reproduce a map 

after testing (Moffat & Resnick, 2002; Daugherty et al., 2015), indicating that 

older adults have difficulties with formation and retrieval of long-term memory 

traces about an environment’s spatial layout. 

Several studies also revealed age-related difficulties related to the use of 

landmarks. Specifically, older adults showed difficulties in memorizing correct 

sequences of encountered landmarks during navigation (Wilkniss et al., 1997; 

Head & Isom, 2010; Wiener et al., 2012), reduced ability to retrace a recently 

traveled route based on encountered landmarks (Liu et al., 2011; Wiener et al., 

2012), and less accurate binding of directional knowledge to landmarks (Head & 

Isom, 2010; Liu et al., 2011; Wiener et al., 2012; Zhong & Moffat, 2016). 

Moreover, a number of studies demonstrated that intrinsic self-motion-related 

computations such as path integration are impaired in old age (Mahmood et al., 

2009; Adamo et al., 2012; Harris & Wolbers, 2012; Bates & Wolbers, 2014). As 

path integration abilities are a main focus of this thesis, a more detailed 

discussion of research on path integration including findings regarding age-

related path integration deficits will be provided in subsequent sections (see 

Section 1.4). 
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In sum, these results give an exemplary overview over age-related navigational 

deficits in humans. Together with numerous further studies that are not 

discussed here in more detail, they provide abundant evidence for a progressive 

age-related loss of a wide range of spatial navigation abilities both in humans 

and animals (for a review, see Lester et al., 2017). But despite all of these 

findings, little is known about the neuronal mechanisms underlying this decline. 

1.2.1 The brain’s spatial representation system 

Recent breakthroughs in understanding how the mammalian brain forms spatial 

representations of the environment on a neuronal level, led to a deeper 

understanding of navigational mechanisms and therefore provide an opportunity 

to investigate specific age-related neuronal changes in the navigation network. 

Prominent candidates that could mechanistically contribute to age-related 

navigational deficits are functionally classified neurons that show spatially 

modulated firing properties, and are therefore thought to form the brain’s spatial 

representation system (Moser et al., 2008). 

First evidence for the existence of such neurons was the discovery of so-called 

place cells in the rat hippocampus (O’Keefe & Dostrovsky, 1971). The firing of 

these place cells is tuned to the animal’s location within an environment (Figure 

3). While the firing of a single place cell is increased at a specific environmental 

location, different place cells are tuned to different locations covering the whole 

environment. Following this discovery, neurons with similar firing properties have 

also been found in other mammalian species, including mice (McHugh et al., 

1996), bats (Ulanovsky & Moss, 2007), nonhuman primates (Feigenbaum & 

Rolls, 1991), and humans (Ekstrom et al., 2003). 
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Figure 3: Place cell firing pattern 

When an animal is navigating within an environment, a place cell fires whenever the 
animal enters a particular place in its environment; this place is known as the place field. 
Left: A square environment shown from top-down perspective. Firing locations (red 
dots) of a typical place cell are superimposed on the animal’s trajectory (black lines) in 
the environment. Right: A different way to illustrate the firing pattern of a place cell is 
the so-called “rate map”. In such a rate map, warmer colors indicate increased cell firing 
at a particular location of the environment (red indicates maximum firing, dark blue 
indicates zero).   

Figure adapted from Moser et al. (2015). 
 

 

Similar to place cells, the firing of so-called grid cells is also modulated by an 

animal’s location within the environment. A grid cell, however, does not only 

show increased firing in one but multiple locations across the environment. 

These multiple firing fields show a remarkably regular organization, forming 

tessellating equilateral triangles that effectively “tile” the world’s navigable 

surface in a hexagonal lattice (Figure 4). The equally spaced and repetitive firing 

means that, for each firing field of a grid cell, the six adjacent fields are arranged 

in 60° intervals, creating a six-fold symmetry. Originally, grid cells have been 

discovered in the medial entorhinal cortex of rats (Hafting et al., 2005). Later 

studies have also provided evidence for grid cells in other brain regions (i.e., 

subiculum, pre- and parasubiculum), and in different mammalian species, 

including bats (Yartsev et al., 2011), non-human primates (Killian et al., 2012) 

and humans (Jacobs et al., 2013). The firing patterns of different grid cells can 

differ in several ways (Figure 5), such as their spatial scale (distance between 

two neighboring firing fields), orientation (angular tilt relative to an external 

reference axis in the environment), and phase (displacement in Cartesian 

coordinates relative to an external reference point in the environment). While the 
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phase of grid cells appears to randomly vary across different cells, there is 

evidence that the firing patterns of neighboring grid cells are more similar in 

terms of their orientation and spatial scale relative to grid cells located further 

apart (Hafting et al., 2005); distal cells, however, can still show coherence in the 

orientation of their grids, even though their spatial scales may differ (Barry et al., 

2007). The spatial scale has been shown to change depending on the cell’s 

specific anatomical location, with a monotonically increasing scale from 

dorsomedial to ventrolateral locations of the medial entorhinal cortex in rats 

(Hafting et al., 2005). In addition, it has been shown that grid cells are often 

modulated by the animal’s heading direction (Sargolini et al., 2006) and velocity 

(Kropff et al., 2015). Importantly, the work of Doeller et al. (2010) provided first 

evidence that the putative firing of grid cells (i.e., grid-cell-like representations) 

can be detected also with a neuroimaging approach in humans using functional 

magnetic resonance imaging (fMRI). As the method of measuring grid-cell-like 

representations in humans is a major focus of this thesis, the specifics of this 

method will be discussed in more detail in subsequent sections (see Section 1.3 

and Section 2.2).  

 

       

Figure 4: Grid cell firing pattern 

When an animal is navigating within an environment, the firing locations (i.e., firing 
fields) of a grid cell show a remarkably regular organization, forming tessellating 
equilateral triangles that effectively “tile” the world’s navigable surface in a hexagonal 
lattice. Left: A square environment shown from top-down perspective. Firing locations 
(red dots) of a typical grid cell are superimposed on the animal’s trajectory (black lines) 
in the environment. Right: Rate map of the same grid cell’s firing pattern, illustrating the 
typical regular organization of the grid cell’s firing fields (red indicates maximum firing, 
dark blue indicates zero). 

Figure adapted from Moser et al. (2015). 
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Figure 5: Properties of grid cell firing patterns 

Schematic representations of grid cell firing patterns in a circular environment from top-
down perspective. Top panel: Schematic representation of two grid cell firing patterns 
(Cell 1 - green vs. Cell 2 - orange). The firing patterns of different grid cells can differ in 
several ways, such as their phase (displacement in Cartesian coordinates relative to an 
external reference point in the environment), scale (distance between two neighboring 
firing fields), and orientation (angular tilt relative to an external reference axis in the 
environment). Bottom panel: There is evidence that the firing pattern of neighboring 
grid cells (e.g., Cell 1 - red, Cell 2 - blue, Cell 3 - green) are similar in terms of their 
orientation (φ), even though their phase and spatial scale may differ (Hafting et al., 
2005; Barry et al., 2007). Colored crosses indicate centers of grid cell firing fields. 

Figure (bottom panel) adapted from Hafting et al. (2005). 
 

 

Another important spatially modulated type of neuron has been found to fire 

depending on an animal’s heading direction (Figure 6). Specifically, these so-

called head direction cells show increased firing whenever an animal is facing a 

particular orientation (i.e., the cell’s “preferred direction”) within the environment. 

Head direction cells have been found in a network of brain structures, including 

the pre- and parasubiculum, thalamic nuclei, mammillary bodies, retrosplenial 

cortex and entorhinal cortex of rodents (Taube, 2007). Moreover, a recent 
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neuroimaging study also provided evidence for similar head direction coding in 

humans (Shine et al., 2016). 

 

 

Figure 6: Head direction cell firing 

While navigating within an environment, a head direction cell increases its firing rate 
whenever the animal’s head is pointing in the cell’s “preferred direction”. The schematic 
example shows the firing rate of four different cells (Cell 1 - 4). For example, Cell 1 (red) 
fires, whenever the animal faces “North” (90°) in the local environment, while Cell 2 
(grey) shows increased firing whenever the animal faces “West” (180°). 

Figure adapted from Sharp et al. (2001). 
 

 

Together with several other functionally classified types of neurons, such as 

speed cells (which change their firing rate depending on running speed; Kropff et 

al., 2015) and border cells (which fire in relation to the distance and direction of 

environmental boundaries; Solstad et al., 2008; Lever et al., 2009) the spatially 

modulated firing of place-, grid-, and head direction cells is thought to collectively 

provide the neuronal basis for computations of spatial navigation functions. 

1.2.2 Age-related changes in neuronal representations of 
space 

To date, little is known about whether and how firing properties of spatially tuned 

cells are changing in old age. In the case of head direction cells, no single 

human or animal study has investigated age-related changes in the head 

direction cell system so far.  
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Some evidence was provided for age-related changes in place cell firing: In 

young rats, place cell firing has been described as consistent across multiple 

exposures to the same environment, and distinct environments are expected to 

evoke different place cell firing patterns (O’Keefe & Conway, 1978; Thompson & 

Best, 1990). Old rats, however, have been reported to occasionally change their 

place cell firing pattern and generate new and distinct patterns for a familiar 

environment (Barnes et al., 1997; Schimanski et al., 2013), suggesting an 

inability to represent an identical environment as one and the same place. On 

the contrary, when old rats are exposed to different environments, they have 

been reported to show similar place cell firing patterns across these 

environments, indicating a deficit in appropriately updating their place cell 

representation to changes in the environment (Wilson et al., 2006).  

Moreover, previous studies reported age-related deficits in so-called experience-

dependent place field plasticity, a plasticity mechanism based on which the firing 

fields of hippocampal place cells increase in size from an initial exposure to 

repeated traversals of a route (Mehta et al., 1997, 2000; Shen et al., 1997). Due 

to expanded place fields, this mechanism leads to increased overlap of adjacent 

firing fields of different place cells along a traveled route, resulting in longer 

concurrent firing periods of place cells that code for adjacent locations. 

Consequently, this mechanism is thought to link locations together and to enable 

a sequential learning of traversed locations along a route. Deficits in place field 

expansion plasticity, as seen in old animals, could therefore explain age-related 

deficits in storing spatial sequences. 

Direct evidence for age-related changes of grid cell firing characteristics is 

scarce. Several findings, however, suggest that the grid cell system could be 

compromised in old age: First, the entorhinal cortex is known to be particularly 

vulnerable to neurodegenerative processes during both healthy and pathological 

aging. For example, Gomez-Isla et al. (1996) reported that the number of 

entorhinal cortex neurons is strongly reduced in Alzheimer’s patients, already at 

very early stages of the disease. Neuroimaging studies using fMRI also showed 

profound entorhinal cortex volume decrease in patients with Alzheimer’s disease 
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or Mild Cognitive Impairment (MCI; a condition hypothesized to be prodromal to 

Alzheimer’s disease; Du et al., 2001; Pennanen et al., 2004). Moreover, Fjell et 

al. (2014) investigated cortical thickness of healthy older adults and Alzheimer’s 

patients both cross-sectionally and longitudinally, and demonstrated that 

accelerated cortical thinning in the entorhinal cortex does not uniquely signify 

pathological neurodegenerative processes but can be part of healthy aging. 

Together, these studies highlight the vulnerability of the entorhinal cortex to age-

related neurodegeneration. As grid cells have been shown to be primarily located 

in the entorhinal cortex, it is likely that these neurodegenerative processes also 

affect the functioning of the grid cell system. 

Second, it is known that the entorhinal cortex is one of the major sources of 

excitatory input to all hippocampal subfields via the perforant pathway (Witter et 

al., 2000), and previous work provided evidence for coordinated temporal 

dynamics of entorhinal grid cells and hippocampal place cells (Fyhn et al., 2007). 

A series of theoretical studies further suggested that the firing pattern of 

hippocampal place cells could be generated by combining grid firing patterns 

with different spatial scales (O’Keefe & Burgess, 2005; Fuhs & Touretzky, 2006; 

Solstad et al., 2006; Rolls et al., 2006; Hayman & Jeffery, 2008; Molter & 

Yamaguchi, 2008; de Almeida et al., 2009; Si & Treves, 2009; Hasselmo, 2009; 

Savelli & Knierim, 2010; Monaco & Abbott, 2011; Lyttle et al., 2013), and the 

study of Brun et al. (2008) demonstrated impaired place cell firing due to 

entorhinal cortex lesions. Together, these findings imply that place cell firing 

might – at least to some extent – be driven by input from the grid cell system. 

Consequently, the structural and functional interconnections between the 

hippocampal place cell and the entorhinal grid cell system suggest that 

alterations seen in the firing of hippocampal place cells of old animals (as 

discussed above) could also be represented in the grid cell system and that age-

related changes in place cell firing may be even driven by compromised input 

from grid cells. 

Third, Fu et al. (2017) investigated entorhinal grid cell function in a transgenic 

mouse model of Alzheimer’s diseases expressing mutant human tau pathology. 
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They found that tau pathology not only induced spatial memory deficits but was 

also accompanied by deficits in grid cell function, such as reduced firing rates, 

reduced periodicity and altered network activity of entorhinal grid cells in old 

mice. 

In sum, while none of these studies directly investigated whether healthy human 

aging is associated with changes in the firing characteristics of grid cells, they 

nevertheless give rise to the idea that age-related neurodegenerative processes 

might also impair the entorhinal cortex and entorhinal grid cell function in healthy 

older adults, which in turn might be linked to spatial navigation deficits in old age. 

1.3 Investigating grid cell function in humans 

Investigating grid cells in humans is a non-trivial endeavor. One approach that 

provides an opportunity to use experimental methods analogous to those 

routinely used in behavioral neuroscience (i.e., recording directly from neurons) 

is to use intracranial recordings in humans. Surgically implanting electrodes into 

the human brain, however, is only done in rare and exceptional cases, such as in 

patients with drug-resistant epilepsy. Consequently, only a limited number of 

research institutions worldwide have the opportunity to apply this method in order 

to directly identify grid cell firing in humans, and therefore such studies are 

scarce and often comprise only small sample sizes. Jacobs et al. (2013) directly 

recorded from cells in the entorhinal cortex of patients with intractable epilepsy 

as they completed an object-place memory task requiring them to navigate a 

virtual environment. Consistent with the rat electrophysiology, there was 

evidence of cells with a six-fold symmetry in their firing rate, demonstrating that 

the grid cell appears to be preserved across different mammalian species, 

including humans. 

fMRI is commonly used to investigate the neural correlates of higher-order 

cognitive processes in large samples of healthy subjects, and this method has 

been applied to the study of grid-cell-like representations in healthy human 

subjects (Doeller et al., 2010). Although fMRI is able only to detect changes in 
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signal over thousands of neurons, several properties of grid cell firing suggested 

it would be possible to detect grid-cell-like representations in the blood 

oxygenation level dependent (BOLD) response at the macroscopic level: First, 

as described earlier, even though grid cells are arranged topographically, the 

grid orientation of distal cells may still be coherent (Barry et al., 2007). Second, 

the firing rate of a subpopulation of grid cells, known as “conjunctive grid cells”, is 

further modulated by the animal’s movement direction in the environment. 

Specifically, similar to head direction cells, the firing rate of conjunctive grid cells 

is increased when the animal travels in the cell’s “preferred” direction relative to 

other travel directions (Sargolini et al., 2006). Furthermore, the preferred firing 

direction of conjunctive grid cells is aligned with the main axes of the grid 

(Doeller et al., 2010). Together, these differences in the dynamics of grid cell 

firing could be reflected in a six-fold sinusoidal pattern observable in the BOLD 

response (i.e., grid-cell-like representations) when participants performed 

translations either aligned or misaligned with the grid’s axes (Figure 7). Using an 

object-place memory task in a virtual environment, Doeller et al. (2010) found 

exactly this pattern of data in several brain regions, including the entorhinal 

cortex. Consistent with the results of rodent electrophysiology, the BOLD signal 

showed a six-fold symmetry, with greater activity associated for translations in 

which the travel direction was aligned with the mean grid orientation, compared 

to when the travel path was misaligned with a grid axis (the precise methods for 

estimating the mean grid orientation, and testing the model, are described in 

detail in Section 2.2 of this thesis). This study, therefore, was critical in 

demonstrating that fMRI could be used to study grid-cell-like representations in 

humans. 

Despite increasing interest in the role of grid cells in human cognition, there 

remain relatively few studies investigating human grid-cell-like representations so 

far, perhaps due to the complex analysis methods, which are not included in 

standard fMRI analysis packages and require a range of skills, including 

advanced computer programming, and knowledge of specific mathematical 

techniques.  
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Figure 7: The analysis logic for measuring grid-cell-like representations in human 
fMRI signals 

Top left: Rate map of a typical grid cell firing pattern in a square environment (shown 
from top-down perspective). The firing pattern shows a specific orientation (φ) relative to 
an external reference axis in the environment. Top right: Movement directions within 
the environment can be categorized either as aligned (green) or misaligned (grey) with 
the grid cell’s firing orientation φ. Bottom: The red curve shows the expected pattern of 
the BOLD signal amplitude modulated by movement direction relative to φ. High signal 
peaks are expected for movements aligned with φ or a 60° multiple of φ (green sectors). 

Figure adapted from Doeller et al. (2010). 
 

 

Nevertheless, the identification of human grid-cell-like representations using 

fMRI has already generated a number of promising new research questions. For 

example, the measurement of grid-cell-like representations has been shown to 

have potential clinical applications with reduced grid-cell-like representation 

magnitudes evident in those at increased genetic risk of Alzheimer’s disease 

(Kunz et al., 2015). Furthermore, although there appear to be commonalities in 
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the neural mechanisms supporting navigation across diverse species, the study 

of grid-cell-like representations in fMRI has demonstrated that these spatial 

codes may be used more flexibly in humans (Horner et al., 2016). Specifically, 

Horner et al. found evidence of the sinusoidal pattern in the BOLD response 

when participants imagined navigation in a virtual environment, despite the 

absence of visual input. Constantinescu et al. (2016) demonstrated that recently 

acquired conceptual knowledge is organized using the same six-fold spatial 

symmetry. Most recently, two studies demonstrated that grid-cell-like 

representations are involved also in the encoding of visual space and potentially 

contribute to memory-guided viewing behavior (Julian et al., 2018; Nau et al., 

2018). In humans, therefore, grid-cell-like representations may be used more 

abstractly in service of higher-order cognitive processes beyond pure spatial 

navigation.  

1.4 Path integration 

Ever since their discovery, grid cells were thought to provide a metric for space 

and therefore play a key role in navigational computations. Specifically, given 

their periodic hexagonal firing pattern together with observations that their firing 

is modulated by both heading direction and running speed (Fyhn et al., 2004; 

Hafting et al., 2005; Sargolini et al., 2006), grid cells could, theoretically, enable 

the integration of self-motion information about distance, orientation, and speed 

during movement. An extensive body of both theoretical and mathematical 

models therefore postulated that grid cells would provide the neuronal basis for 

path integration computations, i.e., allow for keeping track of one’s position in the 

environment based on the continuous integration of self-motion information, such 

as body-based cues and optic flow (Fuhs & Touretzky, 2006; McNaughton et al., 

2006; Burgess et al., 2007; Guanella et al., 2007; Hasselmo, 2008; Burak & 

Fiete, 2009; Giocomo et al., 2011; Zilli, 2012; Widloski & Fiete, 2014). 

This hypothesis received indirect support from studies in rodents with brain 

lesions identifying the entorhinal cortex as a key region for path integration 
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(Parron & Save, 2004; Van Cauter et al., 2013; Jacob et al., 2017). In addition, 

self-motion information was shown to be conveyed to the rodent’s medial 

entorhinal cortex (i.e., the grid cell’s predominant location) via multiple pathways 

involving cortical areas and subcortical structures (Rochefort et al., 2013; Hitier 

et al., 2014; Jacob et al., 2014). Direct empirical evidence for the involvement of 

grid cells in path integration computations, however, is scarce. Most recently, Gil 

et al. (2018) showed that the disruption of grid cell firing by removing NMDA 

glutamate receptors from the retro-hippocampal region leads to impaired path 

integration performance in mice, and therefore provided first experimental 

evidence supporting the hypothesis that grid cell function is linked to path 

integration abilities. 

In humans, a specific task that is commonly used to study path integration 

abilities is the so-called triangle completion task (Loomis et al., 1993). In this 

task, participants are led along two segments of an imaginary triangular path, 

before they are asked to “complete the triangle” by returning to the origin of the 

path. Path integration performance can then be quantified by measuring how 

accurately they could re-locate the path’s origin. Previous studies applied this 

task in various versions, such as blindfolding participants and restricting them to 

body-based cues only (e.g., Allen et al., 2004; Adamo et al., 2012), moving them 

in a wheelchair so that only vestibular cues could be used (e.g., Allen et al., 

2004), or using navigation in virtual environments that allows for visual but not 

body-based cues to be integrated (e.g., Mahmood et al., 2009; Adamo et al., 

2012; Harris & Wolbers, 2012). 

1.4.1 Age-related path integration deficits 

As described before, it is known that aging has deleterious consequences on 

path integration abilities and that older adults often show relatively strong 

difficulties in path integration tasks. For example, studies have demonstrated 

age-related path integration deficits in the triangle completion task when only 

body-based, vestibular, or visual information could be used (Allen et al., 2004; 

Mahmood et al., 2009; Adamo et al., 2012; Harris & Wolbers, 2012). Moreover, 
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older adults showed lower path integration performance even when additional 

landmark information was available (Harris & Wolbers, 2012; Bates & Wolbers, 

2014). Similarly, older adults have been reported to be less accurate in 

reproducing traveled distances and rotations, respectively (Mahmood et al., 

2009; Adamo et al., 2012; Harris & Wolbers, 2012). 

Despite this clear evidence for path integration deficits in old age, little is known 

about the underlying sources and neuronal mechanisms of this decline. Given 

the particular vulnerability of the entorhinal cortex to neurodegenerative 

processes during aging, and the presumed importance of entorhinal grid cells for 

path integration and navigational computations, one could hypothesize that 

compromised grid cell function underlies impaired path integration performance 

in old age. Therefore, investigating the association between path integration 

abilities and grid cell function, or human grid-cell-like representations, may reveal 

whether changes in the aging grid cell system can provide a mechanistic 

explanation for age-related path integration deficits. 

1.4.2 Computational models of path integration 

Computational modeling provides another approach to study the specific 

contributors to path integration error, in order to understand the causes of inter-

individual variability in path integration performance as well as age-related path 

integration deficits. A computational model describes path integration 

computations in mathematical terms, including the effects of different sources of 

error that may theoretically impact on path integration performance.  

Previous work characterized human path integration behavior often by response 

compression or regression to the mean, for example an overshooting for small 

and an undershooting for larger distances. To explain this behavior, the encoding 

error model (Fujita et al., 1993) incorporated systematic errors in encoding 

distances and turns, in the computation of the homeward trajectory and in the 

execution of the motor response. Results from triangle completion experiments 

suggested that performance could be best described by individual encoding 

functions that assumed a fixed gain and intercept for the processing of self-
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motion cues, while response computation and motor execution had little 

contribution (Fujita et al., 1993). However, the model could not well approximate 

performance when more complex paths involving several turns or crossing 

segments were used. 

Another class of models has postulated that a “leaky” integrator might be 

responsible for path integration errors (Lappe et al., 2007, 2011), and identified a 

greater leak in older adults as a potential source of age-related path integration 

deficits (Harris & Wolbers, 2012). Leaky path integration proposes that humans 

continuously track a state variable, such as the current distance from the starting 

point, and this variable is updated with every step of the movement. However, 

because the integration is leaky, some small percentage of the state variable’s 

value is deducted in every step. These models can successfully explain 

underestimation effects when subjects have to indicate the distance to start 

following visual movement along straight or curved outbound paths (Lappe et al., 

2007, 2011). 

While both encoding error and leaky integrator models assume fixed parameters 

across an experiment, Petzschner and colleagues have suggested that path 

integration errors could be the result of a system that dynamically incorporates 

knowledge about prior experience into the current estimate of displacement 

(Petzschner & Glasauer, 2011; Petzschner et al., 2015). Specifically, the 

observed behavior could reflect the fusion of a noisy displacement estimate with 

an experience-dependent prior expectation, which is dynamically updated in the 

course of an experiment. With this approach, it is possible to not only explain 

regression to the mean but also range effects, because the behavior for a given 

trial type can vary depending on the characteristics of the preceding trials. 
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1.5 Aims of this thesis 

First, this thesis focuses on the analysis method for measuring grid-cell-like 

representations in human fMRI signals, and on the development of an open 

source software tool for this analysis. Applying this software, we then 

investigated whether grid-cell-like representations are compromised in old age. 

Moreover, we tested whether magnitudes of grid-cell-like representations are 

associated with individual path integration abilities, and whether compromised 

grid-cell-like representations might serve as a mechanistic explanation for age-

related path integration deficits. Finally, we used a computational modeling 

approach in order to disentangle and characterize the different contributors to 

path integration errors in young and older adults. 

Within this thesis, these topics are addressed in four separate research projects 

(Projects A-D). 

1.5.1 Project A: The Grid Code Analysis Toolbox (GridCAT) 

Given the methodological complexity of investigating grid-cell-like 

representations in humans, Project A aimed to lay the methodological foundation 

and to implement a software for this analysis that can be used for further 

research projects within the lab and also shared with other researchers from the 

field. In this project, we have therefore developed the MATLAB-based open-

source Grid Code Analysis Toolbox (GridCAT), which performs an automated 

analysis of grid-cell-like representations in fMRI data. Moreover, the current 

literature in the field of fMRI research on grid-cell-like representations is 

reviewed, with a particular focus on the different analysis options that have been 

implemented. Key features of the GridCAT are demonstrated via analysis of an 

example dataset, which is also provided online together with a detailed manual, 

so that users can replicate the results presented here, and explore the 

GridCAT’s functionality. By making the GridCAT available to the wider 

neuroscience community, we believe that it will prove invaluable in elucidating 

the role of grid codes in higher-order cognitive processes. 
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1.5.2 Project B: Grid-cell-like representations in old age 

The development of the GridCAT provided the methodological framework to 

analyze grid-cell-like representations in human fMRI data. Applying this 

framework, Project B then aimed to investigate grid-cell-like representations in 

healthy young and older adults. Specifically, we tested whether the magnitude of 

grid-cell-like representations was reduced in older as compared to young adults, 

and whether properties of grid-cell-like representations (such as their spatial or 

temporal stability) were different between age groups. Moreover, as cognitive 

aging is known to be accompanied by many behavioral and neurophysiological 

changes, we tested whether age differences in confounding factors, such as 

fMRI signal quality, task performance, entorhinal cortex volume, or movement 

artifacts during fMRI scanning, could serve as alternative explanations for any 

potential age-related differences in grid-cell-like representations. 

1.5.3 Project C: Compromised grid-cell-like representations 
as a mechanistic explanation for age-related path 
integration deficits 

Both theoretical assumptions and computational models have long suggested a 

link between grid cells and path integration abilities (Fuhs & Touretzky, 2006; 

McNaughton et al., 2006; Burgess et al., 2007; Guanella et al., 2007; Hasselmo, 

2008; Burak & Fiete, 2009; Giocomo et al., 2011; Zilli, 2012; Widloski & Fiete, 

2014). Empirical evidence for this hypothesis, however, is scarce. In Project C, 

we investigated whether performance in a path integration task was associated 

with grid-cell-like representations, both in young and older adults. This should, on 

the one hand, provide further support for the hypothesis that grid cells underlie 

path integration computations. On the other hand, linking path integration 

performance with grid-cell-like representations in older adults should reveal 

whether impairments in grid-cell-like representations might provide a mechanistic 

explanation for age-related path integration deficits. 
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1.5.4 Project D: Sources of path integration error in young 
and older adults 

After Project C established the association between grid-cell-like representations 

and age-related path integration deficits, in Project D we investigated whether 

and which other sources of error might also contribute to path integration errors 

in both young and older adults. We combined tests of path integration 

performance in subjects of different ages with a novel computational model, 

which allowed us to decompose path integration errors into distinct sources – 

including leak, noise, biases, and reporting errors – that can corrupt path 

integration computations. Characterizing the impact of these individual sources 

of error aimed not only to advance our understanding of the specific contributors 

to path integration error, but also uncover the mechanisms that could underlie 

age-related decline in navigational functions. 
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2. PROJECT A 

The Grid Code Analysis Toolbox (GridCAT) 

The output of this project has been previously published as an Open Access 

article in the journal “Frontiers in Neuroinformatics” (Stangl et al., 2017). While all 

results presented here stay unchanged to the original publication, some 

paragraphs, figures, and corresponding figure captions have been edited, in 

order to meet the structure, scope, and formatting standards of this thesis.  

When publishing this article, we used the term “grid code” to describe the 

putative signature of grid cell firing in fMRI signals, as the term “grid-cell-like 

representations” was not established in the literature at this time. Therefore, the 

term “grid code” can be seen as analogous to the term “grid-cell-like 

representations”  that is used throughout the rest of this thesis. 

2.1 Project introduction 

Identifying the neural mechanisms supporting spatial navigation remains a key 

goal for neuroscience. In recent years, significant progress has been made with 

the discovery of the grid cell in the rat medial entorhinal cortex, a neuron 

exhibiting firing properties that could provide a spatial metric underlying 

navigational functions such as path integration (Hafting et al., 2005). Grid cells 

have been found subsequently in a diverse range of mammalian species (for a 

review, see Rowland et al., 2016), and, more recently, the putative signature of 

grid cell firing, which we refer to as the grid code throughout this project, has 

been identified also in healthy human subjects using fMRI (Doeller et al., 2010; 

Kunz et al., 2015; Constantinescu et al., 2016; Horner et al., 2016). Given the 

increasing interest in the role of grid cells in human cognition, and the absence of 

standard analysis tools to examine grid codes in fMRI, we have developed the 

Grid Code Analysis Toolbox (GridCAT), which generates grid code metrics from 
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functional neuroimaging data. The GridCAT is openly available at the 

Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) and can 

be downloaded from: http://www.nitrc.org/projects/gridcat 

Grid code analyses are distinctly non-trivial, requiring a range of skills, including 

advanced computer programming, and knowledge of specific mathematical 

techniques (e.g., quadrature filter techniques). Not all cognitive neuroscientists 

who wish to examine cognitive processes related to grid cell firing in humans 

possess these skills. To cater for these researchers, the GridCAT provides a 

simple graphical user interface (Figure 8), meaning that the user is not required 

to work directly with the source code. Moreover, given that no standard analysis 

package offers the necessary algorithms to detect grid codes in fMRI data, even 

researchers who are capable of reproducing all necessary analysis steps may 

find it a demanding and time-consuming task to write the source code required 

for this type of analysis. The GridCAT addresses these issues by performing 

automatically all steps in the grid code analysis pipeline (as summarized in 

Figure 9). By removing the need to develop source code independently, the 

toolbox opens up this exciting research area to the wider neuroscience 

community, and saves researchers time, allowing them to address novel 

research questions regarding the role of grid cells in human cognition. 

A further aim of this project is to provide, for the first time, a comprehensive 

overview of the different analysis strategies that have been used to date. By 

synthesizing these different approaches, we hope to inform researchers who are 

new to the field about the different possible ways in which the fMRI data can be 

modeled to assess grid code metrics. Finally, by making a number of analysis 

options available in the toolbox, the GridCAT will also help to standardize 

analyses across the research community, making data analysis pipelines more 

comparable across different labs, and stimulating discussion in this exciting and 

rapidly developing research area. 
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Figure 8: The graphical user interface (GUI) of the GridCAT 

A grid code analysis can be carried out via the GUI by specifying data, parameters, and 
settings, depending on the individual experimental design and research question. The 
GUI offers all analysis options of the grid code analysis pipeline as well as a set of 
additional tools to generate grid code metrics, visualize results, and export the resulting 
data. A detailed explanation of all GUI options and how to use all functions of the 
GridCAT via the GUI, is provided in the GridCAT user manual that is distributed along 
with the open-source code. Please note that the visual appearance of the GUI might 
differ between operating systems and versions of MATLAB. 
 

 

The GridCAT allows users to input easily their study design and performs all 

analyses to estimate the grid code in functional images and generates 

automatically grid code metrics. Results can be visualized using built-in plotting 

functions, and the data can be exported for further analyses depending on the 

user’s needs. It requires only a basic MATLAB installation (i.e., no additional 

Mathworks toolboxes are required), SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), 

and it is compatible with Windows, Linux, and Mac OS. A detailed manual (see 
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Appendix 1) guides users through all steps of a grid code analysis and an 

example dataset is provided with the GridCAT to explore its functionality. 

 

 

Figure 9: Grid code analysis pipeline 

All that is required to perform a grid code analysis are functional brain images (which, 
depending on the user’s wishes, may have undergone standard fMRI data 
preprocessing such as smoothing etc.) together with a file detailing events of interest 
during the fMRI time course and their corresponding timing information. The GridCAT 
partitions these data into an estimation dataset and a test dataset, offering multiple 
options as to how to split the data depending on the experimental design and the user’s 
needs. Using the estimation dataset, the GridCAT then estimates voxel-wise grid 
orientations of the grid code in a first general linear model (GLM1). As a result, voxel-
wise grid orientations are stored and can be plotted using the GridCAT’s specific plotting 
options to visualize grid code stability both within and between voxels, or can be 
exported in several formats for further analysis such as group level analyses, statistical 
testing, or voxel-wise multivariate analysis methods. Moreover, within any region of 
interest (ROI), the GridCAT can calculate an ROI-specific mean grid orientation, 
providing that the mask image (e.g., anatomically or functionally defined) and functional 
data are registered to one another. Finally, in a second general linear model (GLM2) the 
GridCAT allows events in the test dataset to be modeled with respect to their alignment 
with the ROI-specific mean grid orientation, in order to quantify the grid code response 
magnitude individually for all brain voxels or averaged over voxels within an ROI. All 
results and grid code metrics can be exported for further use with statistical and 
neuroimaging analysis tools of the researcher’s choice. 
 

 

Although there are similarities across fMRI studies in the methods used to 

estimate grid code metrics, there is as yet no standard analysis pipeline. 

Because of this, the GridCAT has been designed to be flexible in 

accommodating a number of different analysis options; decisions regarding a 
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researcher’s own pipeline will depend upon paradigm-specifics and the research 

question of interest. We note that a recent grid code study examined the neural 

signal associated with imagined trajectories in the environment (Bellmund et al., 

2016). We do not discuss this experiment here, however, because, rather than 

the mass univariate method commonly used in the study of grid codes, they used 

multivariate representational similarity analysis, for which there are already 

several toolboxes available (Nili et al., 2014; Oosterhof et al., 2016). In the 

following section, we review extant methods for deriving grid codes in fMRI, and 

highlight differences in analysis approaches. The aim of this review is to inform 

the GridCAT user of the different analysis options that have been used 

previously, and that are available in the toolbox, rather than to provide a critique 

as to best practice for deriving grid code metrics. 

2.2 Grid code analysis 

Although analysis pipelines for the examination of grid codes using fMRI differ in 

several aspects (see Sections 2.2.1 - 2.2.8), the overall procedure is relatively 

similar. First, events of interest for the grid code analysis (i.e., so-called “grid 

events”) are specified in the time course of the imaging data. Second, the 

imaging data are then partitioned into estimation and test datasets. Third, a 

general linear model (GLM) is fit to the estimation dataset to estimate voxel-wise 

orientations of the grid code (i.e., GLM1 – see Section 2.2.4). Fourth, these 

voxel-wise orientation values are then averaged over voxels in a region of 

interest (ROI) to generate a mean grid orientation used for a second GLM in 

which grid events of the test dataset are modeled with respect to their alignment 

with the mean grid orientation (i.e., GLM2 – see Section 2.2.6). Finally, grid code 

metrics are computed, such as the magnitude of grid code response as well as 

measures of between- or within-voxel orientation coherence of the grid code (see 

Section 2.2.7). In the following sections, we provide more information regarding 

these individual steps of the grid code analysis pipeline (see also Figure 9 for a 

comprehensive overview). 
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2.2.1 Functional image preprocessing for grid code 
analysis 

The GridCAT is agnostic with regards to the nature of the preprocessing carried 

out on functional images prior to the grid code analysis. For example, the 

analysis can be conducted using a participant’s normalized, and smoothed, 

functional images (Doeller et al., 2010; Constantinescu et al., 2016; Horner et al., 

2016). Alternatively, one could work in the individual subject’s native functional 

space (Kunz et al., 2015). Motivations for normalizing to standard space prior to 

analysis include the desire to examine group-level, cluster-statistics (e.g., 

Constantinescu et al., 2016), whereas researchers concerned about spatial 

distortions or interpolation errors in their data resulting from normalization to a 

standard template might choose to perform the grid code analysis in the 

participant’s native space. fMRI preprocessing can be carried out in the 

researcher’s neuroimaging analysis package of choice. 

2.2.2 Specifying grid events 

Before the grid code can be estimated, it is necessary to specify grid events 

within the fMRI time course. For example, grid events could comprise periods of 

translational movement (e.g., Doeller et al., 2010; Kunz et al., 2015; Horner et 

al., 2016) within a virtual environment. For each grid event, an angle relative to a 

nominal 0° reference point (e.g., a fixed landmark in the virtual environment) is 

then defined, resulting in the “grid event angle”. More details as to how grid 

events are defined for use in the GridCAT analysis pipeline are provided in the 

GridCAT manual (see Appendix 1). 

2.2.3 Partitioning the grid code data into estimation and 
test sets 

Given that the functional data are labeled either as estimation or test data, 

researchers must decide how to perform this partition. One method is to split the 

data run-wise into odd and even runs (Doeller et al., 2010; Kunz et al., 2015), 

performing the estimation in the odd runs and testing in the even ones (or vice-
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versa). Alternatively, one could split the data into a number of temporal bins, and 

perform the same analysis on these odd/even bins (Horner et al., 2016). As well 

as offering these data partitioning methods, the GridCAT also provides options to 

separate grid events within each scanning run into odd and even events, or to 

split each scanning run into two halves so that estimation and test are calculated 

on the first and second halves of runs, respectively. Furthermore, if these default 

partitioning options are not suitable for a particular experiment, bespoke 

partitioning schemes can be specified in the GridCAT event-table (which is 

described in detail in the GridCAT manual), allowing the user to specify whether 

a particular grid event should be assigned either to the estimation or test dataset.  

2.2.4 Estimating grid orientations in the BOLD signal 

For the estimation data (GLM1), the grid event angle is used to create two 

parametric regressors for the grid events, using sin(αt*6) and cos(αt*6), 

respectively, where αt represents the grid event angle. The multiplication term 

(*6) used in the calculation of these two regressors transforms the grid event 

angle into 60° space, mirroring the hexagonal symmetry observed in grid cell 

firing. By including these parametric regressors in the general linear model, 

voxels with time courses showing modulation of their signal according to six 

evenly spaced 60° intervals would have parameter estimates (i.e., beta weights 

that have been estimated for a regressor in the GLM, with higher parameter 

estimates indicating a better model fit) with high absolute amplitudes. When 

calculating GLM1, the GridCAT allows users to include additional regressors 

(e.g., nuisance regressors, such as movement parameters), add time and 

dispersion derivatives of the hemodynamic response function (HRF), and change 

modeling parameters (e.g., high-pass filtering, microtime onset and resolution, 

masking threshold), depending on the individual experimental design (Figure 

10). More details about these options can be found in the GridCAT manual (see 

Appendix 1). 
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Figure 10: GridCAT dialog window to adapt GLM settings 

Before calculating a GLM with the GridCAT, users can and add time and dispersion 
derivatives of the hemodynamic response function (HRF), and adapt model settings 
(microtime onset, microtime resolution, masking threshold, high-pass filters) via a dialog 
window. 
 

 

Voxel-wise grid orientations resulting from GLM1 can be visualized using the 

GridCAT’s specific plotting options, and different grid code metrics such as grid 

code stability both within voxels (e.g., over time) and between voxels (e.g., 

coherence of grid orientations within an ROI) can be calculated (see Section 

2.2.7). Plots can be saved in different file-formats, so that users can 

subsequently load them into any image processing software and adapt their 

visual appearance, depending on individual needs. For further analysis such as 

group level analyses, statistical testing, or multivariate analysis methods on 

voxel-wise grid orientations, these data can be exported in several formats (e.g., 

as a data vector, or as a 3D NIfTI image). 

Following GLM1, the GridCAT can then calculate the mean grid orientation 

across all voxels in an ROI. To compute the mean grid orientation, the beta 

estimates (β1 and β2) associated with the two parametric regressors are each 

averaged over all voxels in the ROI, and the resulting two values submitted to: 

arctan[mean(β1)/mean(β2)]/6. Once the mean grid orientation has been 

calculated, this value can be used to categorize individual grid event angles in 
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the test data (GLM2) to determine the magnitude of the grid code response. For 

example, grid event angles could be classified either as aligned or misaligned 

with the mean grid orientation (see Section 2.2.6). 

2.2.5 ROI selection 

As described above, the mean grid orientation can be calculated in any chosen 

ROI, providing that the mask and functional data are registered to one another. 

Popular choices of ROI include anatomical masks, such as the entorhinal cortex 

(Doeller et al., 2010; Kunz et al., 2015; Horner et al., 2016), however it is 

possible also to input to the GridCAT a functionally-defined mask from an 

orthogonal contrast (e.g., Constantinescu et al., 2016), or localizer dataset.   

2.2.6 Quantifying the magnitude of the grid code response 

The greatest degree of heterogeneity in analysis pipelines of fMRI grid code 

studies stems from how the grid code is quantified, or the choice of grid code 

metric. This relates, in part, to the research question of interest, and we outline 

here the different methods that have been used thus far in the published 

literature. It is worth noting that these methods are not mutually exclusive, and a 

researcher may want to use a combination of different approaches to test a 

number of different hypotheses. 

In the following sections (2.2.6.1 and 2.2.6.2), we describe different methods to 

set-up GLM2 where grid events are modeled with respect to their alignment with 

the ROI-specific mean grid orientation. Irrespective of the method used, 

additional regressors can be added to GLM2, and modeling parameters can be 

changed depending on the individual experimental design (as described for 

GLM1). 

Following GLM2, estimates of the grid code response magnitude can be 

exported either as a 3D NIfTI image containing estimates for all individual brain 

voxels or as an average of the grid code response magnitude within an ROI, so 
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that researchers can conduct further analyses on these data using statistical or 

neuroimaging data analysis and visualization tools of their choice. 

2.2.6.1 Parametric modulation 

In the original study reporting grid codes in the fMRI signal, Doeller et al. (2010) 

fitted a parametric regressor to the grid events in the test data to examine 

whether voxels in an entorhinal cortex ROI showed evidence of a six-fold 

sinusoidal pattern of activity. The parametric regressor was calculated by taking 

each grid event angle (αt), and determining its difference from the mean grid 

orientation (φ) by calculating cos[6*(αt – φ)], which resulted in values ranging 

between “1”, for grid event angles aligned perfectly with the mean grid orientation 

(or a 60° multiple of it), and “-1” for values completely misaligned with the grid 

code phase (i.e., mean grid orientation + 30°, plus any 60° multiple of this value). 

Using cluster statistics, Doeller et al. reported voxels at the group-level showing 

modulation of their signal according to this sinusoidal function. A similar analysis 

was used in Horner et al. (2016), with the exception that they used a contrast to 

look for brain regions in which the sinusoidal model fits significantly better for one 

condition versus another (i.e., imagined navigation versus stationary periods). 

2.2.6.2 Comparing activity associated with aligned versus misaligned 
events 

It is possible also to compare parameter estimates associated with aligned 

versus misaligned grid events. For example, in a subsequent analysis, Doeller et 

al. (2010) separated grid events into two regressors comprising those 

translations aligned within 15° of a grid axis versus those more than 15° from a 

grid axis, and again showed that significantly greater activity in the entorhinal 

cortex was associated with events aligned with grid axes. This analysis strategy 

was used also by Kunz et al. (2015) who found that participants at increased 

genetic risk of Alzheimer’s disease show reduced BOLD response, relative to 

control participants, when contrasting trials “aligned > misaligned” with the grid 

axis (i.e., a reduction in the ability to detect the grid code). Constantinescu et al. 

(2016) used a variation of the aligned versus misaligned analysis by sorting the 

grid event angles into 12 different regressors, each representing a 30° bin. Six 

regressors comprised aligned trials, those events within ±15° of the mean grid 
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orientation (or a 60° multiple of it). The remaining six regressors comprised 

misaligned trials, that is events offset from the mean grid orientation by 30° (plus 

a 60° multiple of this value) ±15°, and parameter estimates were extracted for 

each regressor. 

2.2.7 Analysis of grid code stability 

The ability to detect the grid code in fMRI can be affected by the stability of the 

estimated grid orientation either between voxels within an ROI, or within voxels 

across different scanning runs and/or conditions (e.g., stability over time or 

different spatial environments, respectively). In terms of grid orientation stability 

between voxels within an ROI, if all voxels provide a different orientation value, 

then the resulting mean grid orientation would be random, and the coding of grid 

events in the test data depending on their deviation from the mean grid 

orientation would be arbitrary. To test whether there was evidence of coherence 

in the orientation of the grid code between different voxels in their entorhinal 

cortex ROI, Doeller et al. (2010) submitted all voxel orientation values to 

Rayleigh’s test for non-uniformity of circular data. Doeller et al. reported 

significant clustering of estimated orientations in around three-quarters of their 

participants. 

Alternatively, an inability to detect grid codes in the fMRI signal could result from 

instability of the estimated grid orientation within a voxel over time. Kunz et al. 

(2015) tested the stability of the grid orientation over time by extracting the 

orientation of a voxel in one half of the data and comparing this to the same 

voxel’s orientation in the second half of the data. These data were scored such 

that if the values were within ±15° of one another, then the grid orientation for the 

voxel was classified as stable. At the ROI level, the percentage of voxels 

showing stability in their estimated orientation over time could then be calculated. 

Even though participants at risk of Alzheimer’s disease showed coherence in 

grid orientation between voxels within a single scanning run, over time the 

orientation estimates for a given voxel differed. It was concluded, therefore, that 
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the reduced ability to detect grid codes in the risk group resulted from instability 

in the orientation within-, but not between-, voxels in the Alzheimer’s risk group.  

2.2.8 Control analyses 

Given that grid cells identified in rodents show a strict six-fold symmetry in their 

firing, it is necessary to test whether the best fit for the grid code analysis in fMRI 

is also a six-fold model, or whether other sinusoidal models fit the data equally 

well. In all studies published to date, the six-fold model has proven a better fit to 

estimate the orientation of the grid code in comparison to other symmetrical 

models (three-, four-, five-, seven- and eight-fold models; Doeller et al., 2010; 

Kunz et al., 2015; Constantinescu et al., 2016; Horner et al., 2016). These 

different models can be implemented in the GridCAT, allowing the user to 

examine whether the six-fold model provides a better fit to the data. 

An alternative control analysis, which can be carried out using the GridCAT, is to 

test for the grid code in regions where one would not expect to observe this 

signal (e.g., the visual cortex). Although this type of control analysis has been 

used previously (Doeller et al., 2010), it may be difficult to predict exactly where 

in the brain one would expect to see this pattern of data. For example, using an 

orthogonal localizer contrast, Constantinescu et al. (2016) found evidence of the 

sinusoidal response in a number of different regions including the ventromedial 

prefrontal cortex, and the posterior cingulate cortex. 

2.3 Analysis of example dataset 

To demonstrate some of the key features of the GridCAT, we detail here the 

analysis of functional data from an example participant who was scanned whilst 

completing a spatial navigation task. The dataset of this example participant is 

available for download, so that the complete analysis pipeline described here 

can be reproduced using the GridCAT, giving the user the opportunity to explore 
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its tools and functions. Furthermore, all necessary steps to analyze the example 

dataset are described in detail in the GridCAT manual (see Appendix 1). 

2.3.1 Methods 

The example participant was 28 years old, right handed, had normal vision and 

no history of psychiatric or neurological disorders. Informed consent was 

obtained in writing before the measurements, and the experiment received 

approval from the Ethics Committee of the University of Magdeburg. 

2.3.1.1 Spatial navigation task 

Prior to scanning, the participant was asked to navigate a square virtual space 

(160 x 160 virtual meters [vm]) using a joystick and learn the location of three 

target objects. Afterwards, the participant underwent two separate runs of fMRI 

scanning during which the participant navigated in the same virtual space. Each 

trial had the following structure: At the start, all target objects disappeared and 

an image of one of them was shown at the bottom of the screen (Figure 11). The 

participant was asked to navigate to the position of the cued target object and 

confirm their choice of location with a button-press. After the button-press, 

feedback was given to the participant via the target object appearing at its 

correct location and a smiley-face displayed on the screen that was either green 

(if the error distance between the correct location and the participant’s response 

was below 20 vm), yellow (for error distances between 20 and 30 vm), or red (for 

error distances larger than 30 vm). After each trial, the participant was 

automatically transported to a random position within the virtual space. Each 

scanning run lasted 16 minutes, and the participant was asked to complete as 

many trials as possible. 
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Figure 11: Example trial during fMRI scanning 

Prior to scanning, the participant learned the locations of three target objects in a virtual 
environment. Left: During scanning, one of the target objects was cued (e.g., a football) 
and the participant was asked to navigate to its location. Right: After the participant 
pressed a button to confirm their choice of location, the target object appeared at its 
correct location and a smiley-face provided feedback as to the accuracy of the 
response. 
 

 

2.3.1.2 Scanning parameters 

T2*-weighted functional images were acquired on a 3 Tesla Siemens Magnetom 

Prisma scanner using a partial-volume echo-planar imaging (EPI) sequence with 

the following parameters: repetition time (TR) = 1500 ms, echo time (TE) = 30 

ms, slice thickness = 2 mm, in-plane-resolution = 2 x 2 mm, number of slices = 

24, field of view = 216 mm, flip angle = 80°, slice acquisition order = interleaved. 

For manual delineation of the entorhinal cortex, a high-resolution T2-weighted 

structural image was acquired using a turbo-spin-echo (TSE) sequence with the 

following parameters: TR = 6000 ms, TE = 71 ms, slice thickness = 2 mm, in-

plane-resolution = 0.5 x 0.5 mm, number of slices = 64, field of view = 224 mm, 

flip angle = 120°, slice acquisition order = interleaved. 

2.3.1.3 Analysis pipeline 

Prior to analyses using the GridCAT, the functional images for the two runs were 

realigned and smoothed (5mm FWHM) using SPM12. Anatomical masks of the 

right and left entorhinal cortices were traced manually (following Ding et al., 

2016) on the participant’s T2-weighted image using ITK-SNAP 

(http://www.itksnap.org/), and co-registered to the EPI data. These two 

anatomical masks were used as separate ROIs for all following analyses. 
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As detailed in Section 2.2, there are a number of different ways grid codes can 

be examined in fMRI data, which are available to the GridCAT user. It is beyond 

the scope of this thesis to demonstrate all possible combinations of modeling 

options; therefore, we chose a subset of parameters for the grid code analysis 

detailed here. The first parameter relates to the way in which the mean grid 

orientation is calculated. In GLM1, the GridCAT generates an image containing 

voxel-wise grid orientations, which can then be used to determine the mean grid 

orientation for a given ROI. The mean grid orientation can be calculated by 

averaging over voxels in the ROI either within individual scanning runs, or across 

multiple runs. For example, if one predicts that the grid orientation will change 

over runs, perhaps due to an experimental manipulation that could induce grid 

cell remapping (Fyhn et al., 2007), it would be sensible to estimate the grid 

orientation within individual runs, rather than averaging across them. Although 

we did not predict that there would be any changes in grid orientation over the 

two runs in our paradigm, we demonstrate the effect of estimating the mean grid 

orientation within versus across runs.  

We examined also two different ways in which the grid events (i.e., translational 

movements within the virtual environment) can be modeled in GLM2. In one 

model, grid events were modeled using a single parametric modulator regressor 

(e.g., Doeller et al., 2010). In an alternate model, replicating the analysis of Kunz 

et al. (2015), grid events were separated into two regressors – aligned or 

misaligned with the mean grid orientation – and contrasted with one another 

(“aligned > misaligned”). The approach used by Constantinescu et al. (2016) in 

which grid events are separated into 12 different regressors comprising 30° bins 

was not used here because our paradigm allowed for free exploration of the 

environment and therefore it is possible that not all directions were sampled 

equally. In all GLMs, we included as regressors of no interest the feedback 

phase in the paradigm, head motion parameters (x, y, z, yaw, pitch, and roll) 

derived from realignment in SPM12, and the unused grid events (i.e., the grid 

events for GLM2 when fitting GLM1, and vice-versa).  
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Finally, we show how different symmetrical models (four-, five-, six-, seven-, and 

eight-fold) affect the model fit, with the prediction that the six-fold symmetrical 

model should provide the highest parameter estimates, given that this reflects 

grid cell firing symmetry. 

2.3.2 Results 

Consistent with the analysis strategy of Doeller et al. (2010), in GLM1 we found 

that the orientations of grid codes in voxels of both right and left entorhinal cortex 

showed significant non-uniformity, or clustering (see Figure 12). The GridCAT 

produces polar histogram plots, which indicate the different orientations derived 

from voxels in a given ROI, and the number of voxels sharing similar 

orientations. In these interactive plots (Figure 13), the mean grid orientation of 

all voxels within the ROI can also be calculated and plotted by the GridCAT. 

Moreover, Rayleigh’s test for non-uniformity of circular data can be carried out 

(applying code from the open-source toolbox CircStat2012a; Berens, 2009), in 

order to test whether the orientations of the grid code in voxels within an ROI 

show greater clustering than would be expected by chance. The example data 

suggest, therefore, that there is stability in grid orientation between voxels within 

the entorhinal cortex. As can be seen in Figure 12, the voxel-wise orientations 

estimated in the two separate runs were similar to one another, suggesting that 

the mean grid orientation could be calculated across both runs and used to 

categorize grid events in GLM2. If, however, these plots had indicated that the 

mean grid orientations changed over runs, the user might consider estimating 

and testing grid orientations within individual runs so that the categorization of 

grid events in GLM2, according to their alignment with the mean grid orientation, 

was more accurate. Furthermore, the GridCAT allows for the export of voxel-

wise orientation values within an ROI, in order for additional analyses and/or 

statistical tests to be conducted on these data, depending on the user’s specific 

research question. 
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Figure 12: Between-voxel coherence of grid orientations 

GridCAT polar histogram plots showing coherence of the grid orientation between 
voxels in right and left entorhinal cortex ROIs. The length of each bar indicates the 
number of voxels that share a similar grid orientation, and the blue numbers indicate the 
number of voxels represented by each ring of the polar plot. The GridCAT also allows 
the user to calculate and visualize the mean grid orientation (red arrow) for each plot 
(which is used in GLM2 to model grid events with respect to their deviation from the 
mean grid orientation). Depending on the user’s choice of model, the mean grid 
orientation can be calculated separately for run 1 (left column) and run 2 (middle 
column), or alternatively, the mean grid orientation over multiple runs (right column) can 
be calculated by averaging the parameter estimates. Furthermore, users can choose to 
carry out Rayleigh’s test for non-uniformity of circular data. Rayleigh’s test indicated that 
voxels in both the right (top row) and left (bottom row) entorhinal cortex showed 
significant clustering (i.e., coherence) in their orientations (all p < 0.00001). 
 

 

The GridCAT can test also the within-voxel stability of the grid orientation across 

different scanning runs and/or conditions. When the user inputs two different 

voxel-wise orientation images derived from GLM1, and an ROI, the toolbox 

generates a plot comprising two polar plot rings (see Figure 14). For the analysis 

presented here, each ring represents a different scanning run, and circle markers 

denote the grid orientation of individual voxels; straight lines connect grid 

orientations of the same voxel across different runs.  
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Figure 13: GridCAT dialog window for between-voxel orientation coherence 

In an interactive dialog window, the GridCAT visualizes the between-voxel coherence of 
grid orientations within an ROI in a polar histogram plot. In addition, the mean grid 
orientation of all voxels within the ROI can be calculated and displayed. Rayleigh’s test 
for non-uniformity of circular data can be carried out, in order to test for clustering of grid 
orientations. Results and underlying data (i.e., voxel-wise orientation values) can be 
exported, in order to conduct additional analyses and/or statistical tests. 
 

 

By default, the orientation of the grid code in a voxel is considered stable if the 

two values are within ±15° of one another (i.e., the same threshold used in Kunz 

et al., 2015), and the GridCAT outputs the proportion of voxels within an ROI 

surviving this threshold. The stability of individual voxels is also displayed via the 

color of the connecting line; here, the GridCAT has displayed stable voxels in 

green and unstable voxels in red. Consistent with Kunz et al. (2015), the grid 

orientation for the example participant was consistent across the two runs, such 

that 75% of voxels in the right entorhinal cortex, and 60% of voxels in the left 

entorhinal cortex, maintained a stable orientation. The GridCAT provides the 

user with several other options in an interactive plot (Figure 15), including the 
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ability to change the threshold value for stability (i.e., ±15°) if the researcher 

wishes to be more conservative or liberal with this estimate. Moreover, the user 

can specify several aesthetics of the plot, such as the colors and styles of the 

lines and markers. 

 

 

Figure 14: Within-voxel coherence of grid orientations 

GridCAT polar plots showing coherence of the grid orientation within voxels, across runs 
1 and 2, in right and left entorhinal cortex ROIs. In both the right and left entorhinal 
cortex, the majority of voxels maintained the same grid orientation (±15°) across the two 
runs; the proportion of voxels maintaining the same orientation across runs is calculated 
automatically for the user. The two black rings in each plot represent the two different 
runs (inner ring: run 1, outer ring: run 2), and the orientation of the grid code for each 
voxel is indicated with a circular marker; a line connects the orientations of each voxel. 
Green solid lines indicate voxels with stable orientations, whereas red dotted lines 
indicate voxels with unstable orientations. The GridCAT allows the user also to 
customize the plots, including the color schemes, line styles, as well as adapting the 
threshold for classifying a voxel as stable. 
 

 

For the test data in GLM2, the GridCAT allows users to model grid events either 

with a parametric modulation regressor (e.g., Doeller et al., 2010), or by 

separating grid events into trials aligned versus misaligned with the mean grid 

orientation and contrasting these values (“aligned > misaligned”; see Section 

2.2.6 for more details).  
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Figure 15: GridCAT dialog window for within-voxel orientation coherence 

The within-voxel coherence of grid orientations can be visualized by the GridCAT. The 
proportion of stable voxels within an ROI is calculated automatically, and the stability-
threshold for this calculation can be individually adapted, depending on the user’s needs 
and research questions. Moreover, the several aesthetics of the plot can be specified 
and changed, such as the colors and styles of the lines and markers. 
 

 

The two methods resulted in comparable parameter estimates in the right 

entorhinal cortex ROI, with the “aligned > misaligned” contrast method 

associated with slightly higher parameter estimates relative to the parametric 

modulator (see Figure 16). In the left entorhinal cortex, there were less obvious 

differences between methods, however the “aligned > misaligned” contrast again 

yielded the highest parameter estimate, but only when the mean average grid 

orientation was calculated using the data from both runs in GLM1. That the grid 

code metrics appear generally stronger in the right hemisphere, in terms of 

between-voxel and within-voxel grid orientation coherence, and model fit in 

GLM2, supports previous findings (Doeller et al., 2010). It is unclear from a 

theoretical viewpoint, however, why this should be the case, and requires more 
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extensive comparisons within individual subjects to determine the consistency of 

this effect. 

The control analysis tests for the fit of different symmetrical models, to examine 

whether the six-fold symmetry explains best the data. Consistent with the other 

results reported here, in right entorhinal cortex the six-fold symmetrical model 

resulted in the numerically highest parameter estimates relative to all other 

models. In the left entorhinal cortex, the six-, seven-, and eight-fold models all 

appear to fit the data equally well (Figure 16). It should be noted, however, that 

other papers reporting a better fit of the six-fold symmetrical model show effects 

at the group-level, rather than within individual subjects. Accordingly, there may 

be substantial variability in these estimates both inter-subject, as well as intra-

subject, as demonstrated here by the difference between right and left 

hemispheres. 

2.4 Discussion 

The GridCAT is an open-source toolbox allowing researchers to examine the 

putative firing of grid cells (i.e., the grid code) in human fMRI data. The GridCAT 

provides a simple and user-friendly GUI, and accompanying open-source code, 

for the analysis of fMRI data, so that the user can conduct the entire grid code 

analysis pipeline. In order to learn and understand the functionality of the 

GridCAT, a detailed manual is provided to guide the user through all analysis 

steps, and the user can also follow the instructions to analyze an example 

dataset and reproduce the results presented here. Furthermore, example scripts 

are provided for those who do not want to use the GUI, but rather use and 

modify the existing open-source code of the GridCAT. The Support section of 

NITRC also provides a platform for discussion of issues relating to the toolbox, 

as well as the opportunity for users to submit any requests or report errors 

regarding the GridCAT. 
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Figure 16: Parameter estimates from GLM2 associated with grid events using 
different model designs and grid code symmetries 

In the right entorhinal cortex, the six-fold symmetrical model provided the best model fit, 
both for the “aligned > misaligned” contrast and for the single parametric modulation 
regressor. Calculating the mean grid orientation over two runs, versus using separate 
mean grid orientations for each run, made little difference to the parameter estimates. In 
the left entorhinal cortex, the effect of generating the mean grid orientation over multiple 
runs versus separate single runs was more variable and other symmetrical models 
provided equally good model fits for this hemisphere. All bars show the mean parameter 
estimate averaged over all voxels within the right and left entorhinal cortex, respectively. 
 

 

Despite the great deal of research into grid cells using non-human animal 

species (for an overview see Rowland et al., 2016), there remain very few 

studies examining grid codes in human fMRI. Given that this cellular mechanism 

is now purported to support more than just pure spatial navigation behavior 

(Constantinescu et al., 2016; Julian et al., 2018; Nau et al., 2018), researchers 

now face the exciting challenge of elucidating exactly what role the grid code 

may play in other cognitive domains. 

In humans, the architecture of grid cells is unknown, and it remains unclear 

whether there are multiple different grid codes (derived from the fMRI signal) that 

represent different types of information across the brain. For example, in terms of 

spatial navigation, in rodents there is evidence that grid cells are arranged in 
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different modules, with neurons within a module sharing a similar firing 

amplitude, preferred orientation, and spatial scale (Stensola et al., 2012). 

Although we can only study changes in signal at the macroscopic-level using 

fMRI, analysis of higher resolution imaging data, which would be supported also 

by the GridCAT, may reveal heterogeneity of the grid code within a single ROI 

(reflecting these different properties of grid cell modules). Furthermore, voxels 

showing a sinusoidal pattern in the BOLD signal have been identified across the 

brain in human fMRI studies (e.g., Constantinescu et al., 2016). It is unclear 

whether this activity in different brain regions reflects the same underlying 

process, or different types of information. Future studies in humans using 

different experimental paradigms and different imaging resolutions will help to 

elucidate whether the grid code is homogenous across the brain, or shows 

functional specialization. 

Reproducing the grid code analyses from previous studies is a time-consuming 

and non-trivial endeavor that involves advanced computer programming and 

mathematical skills. The GridCAT, therefore, opens up this cutting-edge research 

area to researchers less comfortable with programming by allowing users to 

analyze data using a GUI. Because the open-source code for the GridCAT is 

available in the download, it can be adapted and extended as desired by the 

user. To do this, the user would need to be competent in MATLAB programming 

skills (either in MATLAB’s proprietary programming language, or in other 

MATLAB-compatible programming languages such as C or Fortran), have a 

MATLAB license, and download the freely available SPM12 toolbox 

(http://www.fil.ion.ucl.ac.uk/spm/). Extensively commented example scripts are 

delivered with the GridCAT’s open-source code that show how functions and 

algorithms are programmatically called in the course of the grid code analysis 

pipeline. Furthermore, they also demonstrate how new functions and algorithms 

can be added to the GridCAT. 

Relative to other standard fMRI analysis software packages, the unique 

contribution of the GridCAT is that it provides the algorithms necessary to detect 

the grid code in the BOLD signal, and that it synthesizes analysis pipelines that 
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have been used previously. Specifically, these include different ways in which 

the data can be partitioned for GLM1 and GLM2, using either the GridCAT’s 

automated, or a user-defined partitioning scheme. The GridCAT then 

automatically estimates voxel-wise orientations of the grid code from the BOLD 

signal. Using these orientation values, the magnitude of grid code response can 

be calculated, as well as grid code metrics such as within- and between-voxel 

orientation coherence. Results can be visualized by using specific plotting tools 

offered by the GridCAT. Furthermore, it offers the option to statistically test for 

non-uniformity or clustering of voxel-wise grid orientation data, which has been 

used in previous grid code publications but is not commonly included in standard 

statistical software packages. Moreover, all data generated by the GridCAT can 

be exported using its data export tools, providing flexibility in terms of further 

statistical testing, comparisons, and visualization, depending on the individual 

research questions and the researcher’s needs. 

As noted above, although it is beyond the scope of this project to compare the 

results of all different model selection parameters, we believe that this is an 

important goal for the field so that researchers will have a better idea as to the 

factors that aid detection of these signals in fMRI data. By making all of these 

options available to the user, and the wider neuroscience community, the 

GridCAT has provided the first step in achieving this goal and has the potential to 

accelerate grid code research in humans. 

2.5 License statement 

The GridCAT is openly available at the Neuroimaging Informatics Tools and 

Resources Clearinghouse (NITRC) and can be downloaded from: 

http://www.nitrc.org/projects/gridcat 

The GridCAT is free software and can be redistributed and/or modified under the 

terms of the GNU General Public License as published by the Free Software 

Foundation, either version 3 of the License, or (at your option) any later version. 
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A copy of the GNU General Public License is distributed along with the GridCAT, 

or can be found online at: http://www.gnu.org/licenses/ 
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3. PROJECT B 

Grid-cell-like representations in old age 

The output of this project has been previously published as an Open Access 

article (together with output from Project C) in the journal “Current Biology” 

(Stangl et al., 2018). While all results presented here stay unchanged to the 

original publication, some paragraphs, figures, and corresponding figure captions 

have been edited, in order to meet the structure, scope, and formatting 

standards of this thesis. Moreover, this thesis contains some additional figures 

and paragraphs that were not included in the original publication due to the 

journal’s limitations regarding text length and number of display items. 

3.1 Project introduction 

Numerous studies have reported a progressive loss in a broad range of 

navigational abilities with aging, but we have only a limited understanding of the 

neuronal mechanisms underlying this decline (Lester et al., 2017). As grid cells 

in the entorhinal cortex are a central component of the brain’s navigation circuit 

(Rowland et al., 2016), impaired grid cell firing could, theoretically, provide a 

mechanistic explanation for navigational deficits in old age. To date, however, it 

is unclear whether the firing properties of entorhinal grid cells change in the 

course of aging. 

Despite the lack of studies investigating effects of healthy aging on grid cell 

function, several related findings suggest that the grid cell system might be 

compromised in old age: First, as discussed in more detail in Section 1.2.2 of this 

thesis, it is known that the entorhinal cortex is particularly vulnerable to 

neurodegenerative processes during aging and Alzheimer’s disease (Braak & 

Braak, 1991; Gómez-Isla et al., 1996; Du et al., 2001; Pennanen et al., 2004; 

Masdeu et al., 2005; Stranahan & Mattson, 2010; Fjell et al., 2014; Khan et al., 
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2014). Given that the entorhinal cortex has been identified as the primary 

location of grid cells (Hafting et al., 2005), there is reason to believe that age-

related neurodegenerative processes also affect grid cell function. And indeed, 

Fu et al. (2017) recently found that tau pathology (indicative of Alzheimer’s 

disease) in old mice induced both spatial memory deficits and impaired grid cell 

firing. 

Second, studies have demonstrated age-related changes in the firing properties 

of hippocampal place cells (Barnes et al., 1997; Wilson et al., 2006; Schimanski 

et al., 2013). The entorhinal cortex is known to be a major input source to the 

hippocampus, and a number of theoretical studies suggested that the firing 

pattern of hippocampal place cells might be driven by input from the grid cell 

system (O’Keefe & Burgess, 2005; Fuhs & Touretzky, 2006; Solstad et al., 2006; 

Rolls et al., 2006; Hayman & Jeffery, 2008; Molter & Yamaguchi, 2008; de 

Almeida et al., 2009; Si & Treves, 2009; Hasselmo, 2009; Savelli & Knierim, 

2010; Monaco & Abbott, 2011; Lyttle et al., 2013). In fact, studies have reported 

coordinated temporal dynamics of entorhinal grid cells and hippocampal place 

cells (Fyhn et al., 2007), and impaired place cell firing due to entorhinal cortex 

lesions (Brun et al., 2008). Cumulatively, these findings indicate that grid cell 

activity – at least to some extent – is associated with or might even drive place 

cell firing, and that observed age-related impairments in place cell firing might be 

a consequence of deficient information from a compromised grid cell system that 

is fed forward from the entorhinal cortex to the hippocampus. 

In sum, the results of these studies give rise to the hypothesis that the grid cell 

system might be compromised in old age. In this project, we therefore measured 

the putative firing of grid cells (i.e., grid-cell-like representations) in young and 

older humans using fMRI, while they performed a virtual navigation task. Grid-

cell-like representation magnitudes as well as further properties of grid-cell-like 

representations, such as their spatial and temporal stability, were quantified for 

each participant individually and compared between young and older adults, in 

order to investigate whether there is evidence for age-related impairments in grid 

cell function. Moreover, we ran a series of control analyses in order to test 
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whether age-related changes in grid-cell-like representations can be explained 

by alternative and confounding factors, such as behavioral and 

neurophysiological differences between young and older adults, unrelated to grid 

cell function per se. 

3.2 Method 

3.2.1 Participants 

41 healthy humans took part in this study. The group of young adults consisted 

of 20 participants (10 woman, 10 men) aged between 19 and 30 years (M = 24.5, 

SD = 3.3 years), whereas the group of older adults consisted of 21 participants 

(11 woman, 10 men) aged between 63 and 81 years (M = 69.3, SD = 4.8 years). 

Only participants with no reported history of neurological or psychiatric disease 

and no reported motor deficits during normal walking or standing took part in this 

study. All participants reported right-handedness and had normal or corrected-to-

normal eyesight. 

Informed consent was obtained from all participants in writing before the 

measurements, and the experiment received approval from the Ethics 

Committee of the University of Magdeburg. 

Prior to the study, all participants underwent the Montreal Cognitive Assessment 

(MoCA) screening tool for mild cognitive impairment (Nasreddine et al., 2005). 

Participants who did not exceed a MoCA cut-off score of 23 (following Luis et al., 

2009) were excluded from the study and did not participate in any further 

measurements. 

3.2.2 Object-location memory task 

Grid-cell-like representations in humans, reflecting the 6-fold symmetric grid cell 

firing pattern routinely seen in electrophysiology studies, can be measured by 

fMRI during navigation in virtual environments (Doeller et al., 2010; Kunz et al., 
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2015; Horner et al., 2016). Here, participants performed an object-location 

memory task in a virtual environment (Figure 17), using an MR-compatible 

joystick (Tethyx, Current Designs, www.curdes.com). Given that older adults 

often have less experience in using computers and gaming (Kelley & Charness, 

1995), the task was designed to be relatively simple in order to allow for similar 

task performance between young and older adults. In this task, participants were 

asked to complete multiple trials in a square virtual room with the dimensions 

160 x 160 vm, in which three target objects (soccer ball, plant, trash bin) were 

placed in random locations. Each trial had the following structure: At the start, all 

target objects disappeared, and a cue image of one target object was shown at 

the bottom of the screen. Participants were asked to navigate to the position of 

the cued target object and confirm their choice of location with a button-press. 

After the button-press, the so-called “error distance” (i.e., the Euclidean distance 

between the target object’s correct location and the participant’s response) was 

calculated automatically as an indicator for the accuracy of the response (Figure 

18). Feedback was given to the participant via a smiley-face displayed on the 

screen that was either green (if the error distance between the correct location 

and the participant’s response was below 20 vm), or yellow (for error distances 

between 20 and 30 vm), or red (for error distances larger than 30 vm). If the error 

distance was larger than 20 vm, the target object reappeared and had to be 

collected, allowing for (re-)encoding of its correct location. After each trial, the 

participant was automatically transported to a random position within the virtual 

room before the next trial started. 

Participants were explicitly instructed that the main goal during the task was to 

complete as many trials as possible while attempting to always get green smiley 

face feedback (i.e., as a response to error distances below 20 vm), but not to 

focus on being as accurate as possible (i.e., avoiding to spend time on fine 

tuning of their position at presumed target locations). The order of trials was 

pseudo-randomized, but the same order was used for all participants. Movement 

speed was constantly set to 15 vm per second, and it was not possible to make 

translational and rotational movements at the same time (i.e., it was not possible 

to walk curves but just straight lines). Rotation speed was constantly set to 50 
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degrees per second. Height of the virtual camera was set to 1.7 vm. The object-

location memory task was developed using the WorldViz Vizard 5.1 Virtual 

Reality Software (WorldViz LLC, www.worldviz.com). 

 

 

Figure 17: Example trial of the object-location memory task 

First, all target objects disappeared, and a cue image of one target object was shown 
(e.g., a soccer ball). Participants navigated to the position of the cued target object and 
confirmed their choice of location with a button-press. A smiley face provided feedback 
as to the accuracy of the response. Participants were instructed to aim for green smiley 
face feedback (error distances < 20 vm), and avoid yellow smiley faces (error distances 
20 to 30 vm) or red smiley faces (error distances > 30 vm). If the error distance was 
larger than 20 vm, the target object reappeared and had to be collected, allowing for 
(re-)encoding of its correct location. After each trial, the participant was automatically 
transported to a random position within the environment before the next trial started. 
 

 

In order to learn step-by-step how to navigate a virtual environment using a 

joystick and how to perform the object-location memory task, all participants 

underwent an extensive preparatory session on a separate day before fMRI 

scanning. During the preparatory session, participants first got familiarized with 

joystick control by completing several training tasks in a different virtual 

environment. They were asked to freely navigate a virtual environment in a 

circular outdoor-arena with a diameter of 250 vm, enclosed by a wall and 

surrounded by a mountain range (see Figure 19A).  



 

64 PROJECT B: Grid-cell-like representations in old age 

 

 

Figure 18: Calculation of accuracy in the object-location memory task 

Multiple trials of the object-location memory task were performed in a virtual 
environment that had the dimensions 160 x 160 vm. In each trial, participants had to 
navigate to the location of one cued target object. Task accuracy was expressed for 
each trial by the “error distance”, which was calculated as the Euclidean distance 
between the target object’s correct location and the participant’s response. 
 

 

Then, they completed several training tasks in this environment, such as directly 

navigating to a cued object within the environment as quickly as possible (Figure 

19B), or to navigate through a labyrinth of walls to find the cued object at the end 

of the track (Figure 19C). Subsequently, participants were familiarized with the 

procedure of the object-location memory task by performing several trials in a 

parallel task version, in which the procedure was identical to the fMRI scanning 

session, but the virtual room, target objects, and object locations were different 

(Figure 19D). Multiple trials were performed in this practice version of the task, 

until both the experimenter and the participant felt confident that the task was 

fully understood and could be performed correctly. Finally, participants 

performed the object-location memory task in the actual test version of the task 

(the same one they would later navigate during the fMRI scanning-session, 

including the same target objects and object locations; see also Figure 17). To 

ensure that each participant learned the target object locations with the required 

accuracy, this learning procedure continued until a participant identified each 

target object’s location at least two times in a row with an error distance below 20 

vm, and until they had received at least eight green smiley faces in a row. On the 
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day of scanning, to ensure that participants still remembered the location of the 

target objects, they first underwent another short block of trials outside the 

scanner, until they received five green smiley faces in a row. Then, each 

participant completed four runs of fMRI scanning while performing the object-

location memory task. Each fMRI scanning run had a duration of 16 minutes. 

 

 

Figure 19: Virtual environments during preparatory session 

A: Circular arena surrounded by a mountain range from a first-person perspective (left) 
and birds-eye view (right; mountain range removed for display purposes). B: Example 
for a training task, in which participants had to navigate to a cued object within the 
environment as quickly as possible. C: Example for a training task, in which participants 
had to navigate from a starting point through a labyrinth of walls (shown left from a first-
person perspective and right from birds-eye view) to find the cued object at the end of 
the track. D: Practice version of the object-location memory task. 
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3.2.3 MRI scanning parameters 

MRI data were acquired on a 3 Tesla Siemens Magnetom Prisma scanner 

equipped with a 64-channel phased array head coil. All sequences described 

below utilized parallel imaging with a GRAPPA acceleration factor of 2. 

During the object-location memory task, T2*-weighted functional images were 

recorded with a partial volume EPI sequence with the following parameters: TR = 

1500 ms, TE = 30 ms, slice thickness = 2 mm, in-plane-resolution = 2 x 2 mm, 

number of slices = 24, field of view = 216 mm, flip angle = 80°, slice acquisition 

order = interleaved. Slices were oriented parallel to the long axis of the 

hippocampus. 

To facilitate an accurate co-registration of entorhinal cortex masks to partial 

volume EPI images, a whole brain EPI image was acquired with the following 

parameters: TR = 6000 ms, TE = 30 ms, slice thickness = 2 mm, in-plane-

resolution = 2 x 2 mm, number of slices = 84, field of view = 216 mm, flip angle = 

90°, slice acquisition order = interleaved. Slices were oriented parallel to the long 

axis of the hippocampus. 

For manual delineation of the entorhinal cortex, a high-resolution T2-weighted 

structural image was acquired using a hyper echo TSE sequence with the 

following parameters: TR = 6000 ms, TE = 71 ms, slice thickness = 2 mm, in-

plane-resolution = 0.5 x 0.5 mm, number of slices = 64, field of view = 224 mm, 

flip angle = 120°, slice acquisition order = interleaved. Slices were oriented 

orthogonal to the long axis of the hippocampus. 

A structural T1-weighted image with isotropic resolution was acquired using an 

MPRAGE sequence with the following parameters: TR = 2500 ms, TE = 2.82 ms, 

inversion time (TI) = 1100 ms, slice thickness = 1 mm, in-plane-resolution = 1 x 1 

mm, number of slices = 192, field of view = 256 mm, flip angle = 7°. 

Moreover, a gradient-multi-echo sequence was acquired, which is not discussed 

here further. 
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3.2.4 fMRI data preprocessing 

Functional images were realigned and smoothed with a 5 mm full-width-half-

maximum gaussian kernel using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). In 

order to avoid spatial distortions or interpolation errors in the data resulting from 

normalization to a standard template, we did not apply normalization but images 

were further analyzed in each participant’s native space. 

3.2.5 Correction for head movement during scanning 

Correction for head movement was performed at two levels: First, we applied the 

realignment algorithm of SPM12, which is specifically designed to account for 

head movement during fMRI scanning. This algorithm corrects for motion-related 

linear or angular displacement of scan images. Second, we included movement 

parameters for each scan volume (as calculated by the realignment algorithm) as 

regressors of no interest in every GLM that was carried out in order to calculate 

grid-cell-like representations. This approach corrects for movement-related 

signal artifacts (i.e. spin-history effects), so that other regressors in the GLM 

(e.g., like regressors testing for the 6-fold symmetric modulation) are not affected 

by movement-related changes of the BOLD signal. 

3.2.6 Entorhinal cortex region of interest masks 

Anatomical masks of the entorhinal cortex were traced manually on each 

participant’s T2-weighted image using ITK-SNAP (http://www.itksnap.org/). For 

manual delineation of the entorhinal cortex (Figure 20), we followed the 

segmentation protocol of Berron et al. (2017). After manual delineation, ROI 

mask images were created using ITK-SNAP. 

Together with the T2-weighted image, ROI mask images were co-registered to 

the participant’s EPI data. Given that the EPI images were only partial volume 

slabs (see Figure 21, blue), the process of co-registering T2 images (Figure 21, 

grayscale) to the partial volume EPI images is non-trivial, as co-registration can 

only be computed on a relatively small portion of overlapping brain tissue 
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between the two different image modalities (Figure 21, red). Co-registration was 

therefore performed via one whole brain EPI image, in order to avoid co-

registering images with little overlap of brain tissue, and consequently allow for a 

more accurate co-registration. This whole brain EPI image had similar imaging 

parameters as the partial volume EPI images, but a considerably higher TR to 

enable whole brain coverage (see Section 3.2.3). Co-registration of the T2 image 

to the partial volume EPI images included two separate steps: In a first step, the 

T2 image (together with the ROI masks) was co-registered to the whole brain 

EPI image. This co-registration step has the advantage that co-registration is 

facilitated by considerably more overlapping brain tissue between the two image 

modalities (i.e., T2 and whole brain EPI), as compared to directly co-registering 

the T2 image to the partial volume EPI images. In a second step, the whole brain 

EPI (together with the T2 image and ROI masks) was co-registered to the partial 

volume EPI images. This second co-registration step again has the advantage of 

more overlap between whole brain EPI and partial volume EPI images. 

Furthermore, whole brain EPI and partial volume EPI images share similar 

imaging parameters and therefore have widely similar properties, which also 

facilitates a more accurate co-registration. 

 

 

Figure 20: Entorhinal cortex region of interest mask 

Example mask for the bilateral entorhinal cortex (red) of one participant, shown on the 
participant’s individual T2-weighted structural image in coronal (left) and sagittal (right) 
view. 
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Figure 21: Overlap between partial volume EPI image and T2-weighted structural 
image 

Partial volume size and orientation of an EPI image (blue) shown on the T2-weighted 
structural image (grayscale) of one participant in sagittal view. Overlap between partial 
volume EPI and T2 image is shown in red. Slices of the T2 image were acquired 
orthogonal to the long axis of the hippocampus (indicated by the green dashed line), 
whereas slices of partial volume EPI images were oriented parallel to the long axis of 
the hippocampus. 
 

 

3.2.7 Analysis of grid-cell-like representations 

For the analysis of grid-cell-like representations, we used the Grid Code Analysis 

Toolbox (GridCAT) with MATLAB 2016b (The MathWorks, Natick, MA, USA). 

The MATLAB source code that was used to carry out this analysis is freely and 

openly available (Stangl et al., 2017). The analysis followed the procedure of 

Doeller et al. (2010). First, we partitioned the four fMRI scanning runs into two 

data halves, using the first half of each scanning run as the estimation dataset 

and the second half of each scanning run as test dataset (Figure 22). Then, we 

estimated voxel-wise grid orientations by fitting the estimation data to a first 

general linear model (GLM1). This model included two parametric modulation 

regressors for all translation events, using sin(αt*6) and cos(αt*6), respectively, 
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where αt represents an event’s translation direction within the virtual 

environment. We then calculated the mean grid orientation (φ) within entorhinal 

cortex voxels, by averaging the beta estimates (β1 and β2) associated with the 

two parametric modulation regressors over all voxels in the left and right 

entorhinal cortex, and submitting the resulting two values to: 

arctan[mean(β1)/mean(β2)]/6. Then, the remaining half of the data (test dataset) 

was modeled in a second general linear model (GLM2). This model included a 

parametric modulation regressor for all translation events, calculated by taking 

each event’s translation direction (αt), and determining its difference from the 

mean grid orientation (φ) by calculating cos[6*(αt – φ)]. Finally, the magnitude of 

grid-cell-like representations in the entorhinal cortex was quantified by the 

average parametric modulation regressor’s parameter estimates within 

entorhinal cortex voxels. Based on these model specifications, magnitudes of 

grid-cell-like representations are expected to be positive for changes in mean 

grid orientation of less than ±15° between data halves, or negative for changes 

of more than ±15°, given that grid orientations range from 0° to 60° and therefore 

the maximally detectable change in grid orientation is 30°. 

 

 

Figure 22: fMRI data partitioning scheme for the analysis of grid-cell-like 
representations 

fMRI data were acquired in 4 consecutive scanning runs. For the analysis of grid-cell-
like representations, data were partitioned in two data halves: an estimation dataset and 
a test dataset. The estimation dataset comprised the data from the first half of each 
scanning run and was used for estimating voxel-wise grid orientations in GLM1. The test 
dataset comprised the data from the second half of each scanning run and was used for 
testing the estimated grid orientations in GLM2 and for calculating the magnitude of grid-
cell-like representations. 
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Importantly, in both GLM1 and GLM2, only translation events but not other 

events (such as stationary periods) were parametrically modulated by 

sine/cosine regressors with respect to their translation direction, in order to 

ensure that the calculation of voxel-wise grid orientations and magnitudes of 

grid-cell-like representations was only based on modeling events during which 

participants performed translational movements in the virtual environment. 

In all GLMs, we included as regressors of no interest head motion parameters (x, 

y, z, yaw, pitch, and roll) derived from realignment in SPM12, the unused grid 

events (i.e., the parametrically modulated translation events for GLM2 when 

fitting GLM1, and vice-versa), and the feedback phase in the object-location 

memory task. Very short translation events (duration < 1 sec) were not modeled 

in the GLMs. 

3.2.8 Analysis of representational stability 

The ability to detect grid-cell-like representations in fMRI can be affected by the 

homogeneity of the estimated grid orientations across voxels within an ROI (i.e., 

spatial stability). Specifically, if all voxels within an ROI provide a different 

orientation value (i.e. high spatial instability), then the resulting mean grid 

orientation would be random, and the coding of translation events in GLM2 (in 

which translation events are modeled with respect to the deviation between their 

translation direction and the mean grid orientation), would then be arbitrary, 

resulting in a reduced grid-cell-like representation magnitude. Alternatively, an 

inability to detect grid-cell-like representation in the fMRI signal could result from 

instability of the estimated grid orientations over time (i.e., temporal stability). 

Calculation of metrics for spatial and temporal stability of each participant’s grid-

cell-like representations followed the methods described in Kunz et al. (2015) 

and Stangl et al. (2017): In order to obtain a metric of spatial stability, we 

calculated the coherence of estimated voxel-wise grid orientations between all 

entorhinal cortex voxels by submitting the orientation values to Rayleigh’s test for 

non-uniformity of circular data. Spatial stability is then statistically expressed by 

the resulting Rayleigh’s z-value (with higher z-values indicating higher spatial 
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stability). To calculate temporal stability, we first estimated voxel-wise grid 

orientations for each half of a scanning run separately. For each individual voxel, 

we then compared the orientation between first and second data half, and 

classified each voxel’s orientation as “stable” if the orientations were within ±15° 

of one another. Temporal stability is then indicated by the average proportion of 

stable voxels within the entorhinal cortex across all scanning runs. In a separate 

analysis using an alternative measure of temporal stability, we calculated the 

absolute change in grid orientation between data halves for each voxel 

separately, and then calculated the average change in orientation across all 

entorhinal cortex voxels.  

3.2.9 Control analyses 

Analyzing the behavioral data of the object-location memory task revealed that, 

relative to young adults, older adults spent more time per trial standing still and 

rotating in the virtual environment, which in turn led to a lower total duration of 

translation phases in older adults (see Section 3.3.2 for more details). Given that 

translation phases were used for the analysis of grid-cell-like representations (as 

described in Section 3.2.7), we re-analyzed grid-cell-like representations in 

young adults using only a proportion of their translation data, in order to match 

the data amount of older adults. Specifically, the amount of translation data we 

acquired from older adults was on average 80.16 percent of the data from young 

adults. Two different ways of reducing the data were implemented in two 

separate control analyses: First, we shortened each scanning run of young 

adults by discarding the last part of each run so that only 80.16 percent of 

translation data were taken into account. Second, we shortened each individual 

translation phase and modeled only the first 80.16 percent of each phase in a 

participant’s GLMs to analyze grid cell-like representations. 

Since there is evidence that task performance in fMRI studies might modulate 

age differences in brain activation (Nagel et al., 2009), we also checked whether 

accuracy in the object-location memory task had an impact on grid-cell-like 

representations. For these control analyses, task performance was quantified by 
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each participant’s average error distance across all trials in the object-location 

memory task. 

It has been shown that a reduction in entorhinal cortex volume might occur 

during both pathological and healthy aging (Fjell et al., 2014). Such a volume 

reduction in older adults could, theoretically, drive an age effect in grid-cell-like 

representations, as a reduced number of entorhinal cortex voxels might lead to a 

less reliable estimation of grid orientations and, consequently, to reduced 

temporal representational stability. We therefore checked whether entorhinal 

cortex volume might account for differences in grid-cell-like representation 

magnitudes between age groups. Entorhinal cortex volume was quantified by the 

number of entorhinal cortex voxels in each participant’s individual T2-weighted 

structural image. 

We also tested whether differences in grid-cell-like representations between 

young and older adults might be a general effect of lower fMRI signal quality in 

the entorhinal cortex of older adults. As an indicator for signal quality, we 

calculated the temporal signal-to-noise ratio (tSNR) within the entorhinal cortex 

of each participant. tSNR was quantified by the mean signal within the entorhinal 

cortex divided by the standard deviation of this signal over time. 

In order to test whether head movement during fMRI scanning might account for 

differences in grid-cell-like representation magnitudes between age groups, we 

calculated each participant’s average linear and angular displacement per scan 

volume. Motion parameters were extracted from the realignment procedure in 

SPM12, which specifically quantifies both linear and angular head movement 

during scanning. Individually for each participant, we calculated the sum of 

displacement per scan in all three linear dimensions (x + y + z) and then 

calculated the average linear displacement per scan across the fMRI time series. 

The same procedure was performed for angular displacement (yaw + pitch + 

roll). 
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3.2.10   Quantification and statistical analysis 

All statistical analyses were carried out using MATLAB 2016b and the Statistics 

and Machine Learning Toolbox for MATLAB 2016b. Correlation values, where 

given, are Pearson correlations. Error bars in figures indicate standard errors of 

the mean (SEM). Statistical analyses were performed using a significance 

threshold of p < 0.05. 

We used one-sample t-tests in order to test whether magnitudes of grid-cell-like 

representations (6-fold model) or symmetrical models with different periodicities 

(5-/7-fold) were significantly different from zero. 

In young adults, paired-sample t-tests were used to compare magnitudes of grid-

cell-like representations in the reduced translation data models versus the full 

data model. 

Group comparisons between young and older adults were carried out using two-

sample t-tests. 

3.3 Results 

3.3.1 Grid-cell-like representations in young and older 
adults 

Before fMRI scanning, all participants received extensive pre-training in a 

preparatory session to ensure that they were able to continuously retrieve all 

target object locations with an error distance below 20 vm. This procedure 

proved successful, because the average error distance across all trials during 

fMRI scanning was below 20 vm for all participants, showing that they were able 

to perform the task with the required accuracy (Figure 23). 
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Figure 23: Task accuracy in the object-location memory task 

After having learned the target object locations in the preparatory session (left panel), 
both young and older adults were able to perform the task with required accuracy during 
fMRI scanning (right panel). Blue and orange lines indicate group mean ± SEM; black 
dashed lines indicate error distance thresholds for different smiley face feedback. Plots 
show the first 30 trials of the preparatory session and 115 trials for fMRI scanning, which 
are the minimum numbers of trials that all participants completed. 
 

 

For the analysis of grid-cell-like representations, fMRI data were split in two 

halves, using the first half to estimate voxel-wise grid orientations in the bilateral 

entorhinal cortex, and then testing these orientations on the other half of the data 

in order to quantify the magnitude of each individual participant’s grid-cell-like 

representations. This procedure revealed a significant magnitude of grid-cell-like 

representations in the entorhinal cortex of young adults (Figure 24A). 

Specifically, this effect was only significant for the 6-fold symmetrical model (t19 = 

3.71, p = 0.002), whereas effects in control analyses applying symmetrical 

models with different periodicities (Figure 24B) were not significantly different 

from zero (5-fold: t19 = 0.02, p = 0.983; 7-fold: t19 = 0.23, p = 0.822). 

Furthermore, we found that the magnitude of grid-cell-like representations in 

older adults was significantly reduced compared to young adults (t39 = -2.66, p = 

0.011). In fact, we did not find any significant effect of grid-cell-like 

representations in older adults, either for the 6-fold symmetrical model (t20 = -
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0.79, p = 0.438) or for the control models testing for other periodicities (5-fold: t20 

= -0.08, p = 0.940; 7-fold: t20 = -0.62, p = 0.544). 

 

 

Figure 24: Grid-cell-like representations in the entorhinal cortex of young and 
older adults 

A: Higher magnitude of grid-cell-like representations in young relative to older adults. 
The magnitude of grid-cell-like representations in older adults was not significantly 
different from zero. B: In control analyses for different symmetrical models (5-fold/7-
fold), representational magnitudes were not significantly different from zero, either for 
young or for older adults. 

Units are parameter estimates. Error bars indicate SEM. * denotes significant effects (p 
< 0.05). 
 

 

As discussed previously (Kunz et al., 2015; Stangl et al., 2017), reduced grid-

cell-like representations in older adults could result (i) from a lack of temporal 

stability (i.e., stability of voxel-wise grid orientations over time), or (ii) from 

insufficient spatial stability (i.e., homogeneity of voxel-wise grid orientations 

across all entorhinal cortex voxels). To further specify which of these two factors 

was driving the result of reduced grid-cell-like representations, we calculated 

indicators of temporal and spatial representational stability for each participant 

and compared these between age groups. We found significantly reduced 

temporal stability of grid orientations in older adults (Figure 25A; t39 = 4.01, p < 
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0.001). This result was also confirmed by a separate analysis showing that 

changes in estimated voxel-wise grid orientations over time were significantly 

larger in older than in young adults (Figure 25B; t39 = -4.29, p < 0.001). On the 

contrary, spatial stability scores did not differ between age groups (Figure 26A; 

t39 = 0.91, p = 0.370). Given that, theoretically, the lack of a difference in spatial 

stability could result from spatial smoothing of the fMRI time series, we also 

calculated spatial stability scores for unsmoothed data, but again, we did not find 

a significant difference between age groups (Figure 26B; t39 = 0.53, p = 0.597). 

 

 

Figure 25: Temporal stability of grid-cell-like representations 

A: Lower temporal stability of grid-cell-like representations in older as compared to 
young adults. Dashed line indicates 50% chance level. Temporal stability scores were 
significantly different from chance level in young but not in older adults (young: t19 = 
4.93, p < 0.001; old: t20 = -1.55, p = 0.136). B: Also the changes in estimated voxel-wise 
grid orientations over time were significantly larger in older relative to young adults. 

Error bars indicate SEM. * denotes significant effects (p < 0.05). 
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Figure 26: Spatial stability of grid-cell-like representations 

A: Spatial stability of grid-cell-like representations in entorhinal cortex voxels was not 
significantly different between young and older adults. B: Also for unsmoothed fMRI 
data, spatial stability scores were not significantly different between young and older 
adults. 

Error bars indicate SEM. 
 

 

3.3.2 Control analyses 

Cognitive aging is accompanied by many behavioral and neurophysiological 

changes that could serve as alternative explanations for our finding of reduced 

grid-cell-like representations in older adults. For example, we found that, relative 

to young adults, older adults spent more time per trial standing still (young: 1.8 ± 

0.66 sec/trial, old: 4.91 ± 1.72 sec/trial; t39 = -7.55, p < 0.001) and rotating 

(young: 3.18 ± 0.87 sec/trial, old: 4.78 ± 1.19 sec/trial; t39 = -4.93, p < 0.001) in 

the virtual environment during the object-location memory task, presumably to 

determine their own and the target object’s location by looking around. This in 

turn led to a lower total duration of translation phases in older adults (young: 

1810 ± 123 sec, old: 1451 ± 200 sec; t39 = 6.88, p < 0.001). Consequently, the 

amount of translation data we acquired from older adults was on average 80.16 

percent of the data from young adults. Given that translation phases were used 
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for the analysis of grid-cell-like representations, we checked whether the age 

difference in grid-cell-like representations might be driven by the different 

amounts of data between age groups. We re-ran the analysis of grid-cell-like 

representations for young adults, using only 80.16 percent of their translation 

data in order to match the data of older adults. Data reduction in young adults 

was implemented in two different ways, by shortening scanning runs and 

shortening translation durations, respectively (see Section 3.2.9). The results of 

these control analyses mirrored the original results using the full dataset (Figure 

27): In both reduced datasets of young adults, we found a significant effect of 

grid-cell-like representations (shortened scanning runs: t19 = 2.53, p = 0.021; 

shortened translations: t19 = 3.25, p = 0.004) and the magnitude of grid-cell-like 

representations was not significantly different from the full dataset (shortened 

scanning runs: t19 = -0.01, p = 0.992; shortened translations: t19 = 0.46, p = 

0.653), but remained significantly higher relative to older adults (shortened 

scanning runs: t39 = -2.32, p = 0.026; shortened translations: t39 = -2.49, p = 

0.017). We therefore conclude that the difference in the amount of data did not 

drive the detected age difference in grid-cell-like representations, because this 

effect still persisted when modeling an identical amount of translation data for 

both age groups. 

Second, the average error distance in the object-location memory task was 

slightly lower for young than for older adults (young: 10.3 ± 1.8 vm, old: 12.0 ± 

2.6 vm; t39 = -2.41, p = 0.021). However, error distances and magnitudes of grid-

cell-like representations were not correlated within either of the two groups 

(young: r = -0.19, p = 0.417; old: r = -0.02, p = 0.934), and an analysis of 

covariance confirmed that magnitudes of grid-cell-like representations were still 

significantly different between age groups when controlled for individual error 

distances (F1,38 = 5.28, p = 0.027). Therefore, it is unlikely that differences in task 

accuracy were driving the age difference in grid-cell-like representations. 

Third, we did not find a difference between age groups in entorhinal cortex 

volume (see Section 3.2.9) that could potentially account for the observed 

difference in grid-cell-like representations (Figure 28A; t39 = 1.38, p = 0.177). 
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Also, there was no correlation between individual entorhinal cortex volume and 

grid-cell-like representation magnitude, either within young or older adults 

(young: r = -0.14, p = 0.554; old: r = 0.30, p = 0.186), and grid-cell-like 

representation magnitudes were significantly different between age groups in an 

analysis of covariance controlling for entorhinal cortex volume (F1,38 = 6.01, p = 

0.019). 

 

 

Figure 27: Grid-cell-like representations in young and old adults for full datasets 
versus models with reduced data 

The magnitude of grid-cell-like representations was significantly reduced for older adults 
(orange bar “Old”) as compared to young adults (blue bar “Young, Full dataset”). Re-
analyzing the data from young adults with reduced data (i.e., mirroring the amount of 
translational data from old adults) confirmed this result, irrespective of whether the 
duration of scanning runs (blue bar “Young, reduced data - scanning runs”) or whether 
the duration of individual translation events (blue bar “Young, reduced data - 
translations”) was reduced. 

Units are parameter estimates. Error bars indicate SEM. * denotes significant effects (p 
< 0.05). 
 

 

Fourth, signal quality in the entorhinal cortex could not account for differences in 

grid-cell-like representations between young and older adults, as the tSNR (see 
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Section 3.2.9) did not significantly differ between age groups (Figure 28B; t39 = 

1.63, p = 0.112), and magnitudes of grid-cell-like representations were not 

significantly correlated with tSNR within each group (young: r = 0.17, p = 0.484; 

old: r = 0.07, p = 0.776). Moreover, magnitudes of grid-cell-like representations 

remained significantly different between age groups in an analysis of covariance 

controlling for tSNR (F1,38 = 5.71, p = 0.022). 

 

 

Figure 28: Entorhinal cortex volume and signal quality 

A: Volume size of the entorhinal cortex was not significantly different between young 
and older adults. Volume size was measured by the number of entorhinal cortex voxels 
in each participant’s individual T2-weighted structural image. B: tSNR in the entorhinal 
cortex was not significantly different between young and older adults. tSNR was 
quantified by the mean signal within the entorhinal cortex divided by the standard 
deviation of this signal over time. 

Error bars indicate SEM. 
 

 

Finally, we found that, compared to young adults, older adults made more linear 

and angular head movements during fMRI scanning (Figure 29; linear: t39 = -

3.97, p < 0.001; angular: t39 = -3.26, p = 0.002; see Section 3.2.9 for more 

details). However, head movement is unlikely to account for group differences in 

grid-cell-like representations, as it did not correlate with grid-cell-like 

representation magnitudes within either of the two groups (young/linear: r = -

0.16, p = 0.496; young/angular: r = -0.05, p = 0.842; old/linear: r = -0.05, p = 
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0.829; old/angular: r = -0.01, p = 0.976), and an analysis of covariance confirmed 

that magnitudes of grid-cell-like representations were still significantly different 

between age groups when controlled for both linear and angular head movement 

(F1,38 = 6.91, p = 0.012). 

 

 

Figure 29: Head movement during fMRI scanning 

Older adults showed more linear and angular head movement during fMRI scanning. 
Head movement was quantified by mean displacement per scan volume. 

Error bars indicate SEM. * denotes significant effects (p < 0.05). 
 

 

3.4 Discussion 

In the present study, we found a significant magnitude of grid-cell-like 

representations in the entorhinal cortex of young adults. These grid-cell-like 

representations showed the typical 6-fold symmetric modulation of the BOLD 

signal that is expected from the putative firing pattern of grid cells, rather than 

other periodicities (i.e., 5-fold or 7-fold symmetric representations) that were 

tested in alternative control models. Moreover, we have demonstrated that grid-

cell-like representations in the entorhinal cortex are compromised in old age. 
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Specifically, grid-cell-like representations were less stable over time in older as 

compared to young adults. 

In further control analyses, we also tested whether the age-related difference in 

grid-cell-like representations could be driven by other confounding factors that 

might serve as alternative explanations for this finding. These control analyses, 

however, showed that our finding of reduced grid-cell-like representations in old 

age is unrelated to entorhinal cortex volume, fMRI signal quality in the entorhinal 

cortex, head movement during scanning, individual performance during the 

object-location memory task, as well as different amounts of translation data due 

to different task behavior between young and older adults. These results further 

underline the specificity of our finding of reduced grid-cell-like representations in 

old age, as it cannot be explained by these other general behavioral and 

neurophysiological changes that accompany the cognitive aging process. 

Recently, grid-cell-like representations have also been investigated in young 

adults at increased genetic risk for Alzheimer’s disease (Kunz et al., 2015). We 

note that this Alzheimer’s risk group showed a remarkably similar pattern of data 

(i.e., both reduced magnitudes of grid-cell-like representations and reduced 

temporal stability) as compared to the older adults in the present study. Thus, the 

present data suggests that impaired grid cell function is not only related to 

pathological neurodegenerative processes, but also occurs during normal 

healthy aging.  

While no previously reported study has investigated changes of the grid cell 

system in healthy old age, there is evidence that hippocampal place cells also 

show temporal instability of spatial representations in old rats (Barnes et al., 

1997; Schimanski et al., 2013). Given the strong interconnections between the 

entorhinal cortex and the hippocampus (Amaral & Witter, 1995; Zhang et al., 

2014), and previous findings showing coordinated temporal dynamics of 

entorhinal grid cells and hippocampal place cells (such as changes in grid 

orientation being linked to hippocampal remapping; Fyhn et al., 2007), reduced 

temporal stability in the firing of spatially tuned neurons may be a common 

neuronal mechanism underpinning age-related navigation deficits. 
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There is evidence that the medial entorhinal cortex receives input from the head 

direction system (Alonso & Klink, 1993; Amaral & Witter, 1995; Burgess et al., 

2007) and it has been reported that the firing of grid cells is modulated by head 

direction (Sargolini et al., 2006). In theory, it is therefore possible that 

compromised grid-cell-like representations might be driven by impairments in 

head direction signals. To date, however, no single human or animal study has 

investigated age-related changes in the head direction system; therefore, this 

remains an important goal for future studies. 

Numerous studies have reported that age-related changes in the navigation 

system primarily affect allocentric navigation, while egocentric computations are 

relatively preserved (for a review, see Colombo et al., 2017). As grid cells are 

largely thought to contribute (together with other spatially selective cell types) to 

an allocentric environmental representation in the hippocampal formation, the 

present finding of compromised grid-cell-like representations could provide a 

mechanistic explanation for age-related deficits in allocentric navigation. In the 

present study, however, we did not observe allocentric navigation deficits of 

older adults in the object-location memory task during fMRI scanning, which is 

not surprising, given that the task was designed to be simple, and participants 

were trained extensively to achieve accurate performance. Therefore, it remains 

a goal for future studies to investigate whether age-related changes in the grid 

cell system might impact on performance in other allocentric navigation tasks. 

Based on recent findings, grid-cell-like representations are thought to play a 

central role not only in spatial navigation computations but also other higher-

order cognitive processes, such as organizing conceptual knowledge 

(Constantinescu et al., 2016) or memory-guided viewing behavior (Julian et al., 

2018; Nau et al., 2018). Therefore, our finding of compromised grid-cell-like 

representations in old age implies that deficient grid cell firing might be a key 

mechanism that could mediate also other cognitive deficits in old age, beyond 

pure spatial navigation. Not only does this provide important insights into age-

related neurophysiological changes, but it also reveals the grid cell system as a 
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promising target for interventions and therapeutic approaches to counteract age-

related cognitive decline. 
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4. PROJECT C 

Compromised grid-cell-like representations 
as a mechanistic explanation 

for age-related path integration deficits 

The output of this project has been previously published as an Open Access 

article (together with output from Project B) in the journal “Current Biology” 

(Stangl et al., 2018). While all results presented here stay unchanged to the 

original publication, some paragraphs, figures, and corresponding figure captions 

have been edited, in order to meet the structure, scope, and formatting 

standards of this thesis. Moreover, this thesis contains some additional figures 

and paragraphs that were not included in the original publication due to the 

journal’s limitations regarding text length and number of display items. 

4.1 Project introduction 

After we have shown in Project B that human grid-cell-like representations are 

compromised in old age, Project C aimed to investigate whether grid-cell-like 

representations are linked to path integration performance and whether 

compromised grid-cell-like representations could potentially explain age-related 

path integration deficits. 

Path integration is a vital function in spatial navigation that enables the 

continuous tracking of one's position in space by integrating self-motion cues. 

Several previous studies reported path integration deficits in old age. For 

example, older adults showed difficulties in path integration tasks both when path 

integration was performed on self-motion cues only (Allen et al., 2004; Mahmood 

et al., 2009; Adamo et al., 2012; Harris & Wolbers, 2012), and also when 

additional landmark information was available (Harris & Wolbers, 2012; Bates & 



 

88 PROJECT C: Grid-cell-like representations and path integration 

Wolbers, 2014). Moreover, age-related deficits have been demonstrated for path 

integration tasks that required the integration of body-based or vestibular cues 

(Allen et al., 2004; Adamo et al., 2012), or when only visual cues (i.e., optic flow 

information) could be used (Mahmood et al., 2009; Adamo et al., 2012; Harris & 

Wolbers, 2012). Together, these findings suggest a general path integration 

deficit in old age, across various conditions and independent of which sensory 

modality was tested. To date, however, little is known about the underlying 

neuronal mechanism of these deficits. 

Theoretical work and computational models have long suggested a link between 

the grid cell system’s function and path integration abilities (Fuhs & Touretzky, 

2006; McNaughton et al., 2006; Burgess et al., 2007; Guanella et al., 2007; 

Hasselmo, 2008; Burak & Fiete, 2009; Giocomo et al., 2011; Zilli, 2012; Widloski 

& Fiete, 2014). Due to the regular hexagonal firing pattern of grid cells, which 

was also found to be modulated by heading direction and running speed, grid 

cells could, theoretically, integrate self-motion information about distance, 

orientation and movement speed. The grid cell system would therefore be ideally 

suited to perform the underlying neuronal computations needed for path 

integration. Moreover, studies in rodents with brain lesions have shown that the 

entorhinal cortex (i.e., the main location of grid cells) is a key region for path 

integration (Parron & Save, 2004; Van Cauter et al., 2013; Jacob et al., 2017) 

and several neuronal pathways have been described to convey self-motion 

information from sensory systems to the entorhinal cortex (Rochefort et al., 2013; 

Hitier et al., 2014; Jacob et al., 2014). While these findings further strengthen the 

idea that path integration computations are performed by the grid cell system in 

the entorhinal cortex, there is little empirical evidence for this hypothesis. Most 

recently, however, Gil et al. (2018) demonstrated that a disrupted grid cell firing 

pattern leads to impaired path integration performance in mice. 

In addition, it has been shown that the entorhinal cortex is particularly vulnerable 

to neurodegenerative processes during normal aging as well as to pathological 

processes in early stages of Alzheimer’s disease (as discussed in more detail in 

Section 1.2.2 of this thesis). Although the evidence is mixed, studies reported for 
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example a reduced number of neurons, a reduced volume, and accelerated 

cortical thinning of the entorhinal cortex in older adults (Gómez-Isla et al., 1996; 

Du et al., 2001; Pennanen et al., 2004; Fjell et al., 2014). 

Together, the vulnerability of the entorhinal cortex to age-related 

neurodegeneration, in combination with its presumed importance for path 

integration computations, may indicate that impairments in entorhinal grid cells 

are a key mechanism to explain path integration deficits in old age. 

To test this hypothesis, we re-invited the participants from Project B (in which we 

had already measured their grid-cell-like representations in an fMRI experiment) 

and assessed each participant’s individual navigation performance in a novel 

behavioral path integration task. During this path integration task, participants 

had to keep track of their own position during movement along pre-defined 

curved paths by integrating self-motion cues. The task was implemented in two 

different modalities: The “body-based” modality provided only body-based self-

motion cues during movement, whereas in the “visual” modality only visual cues 

could be used. 

Combining fMRI data from Project B with each participant’s individual path 

integration performance from Project C allowed us to investigate potential 

associations between grid-cell-like representations and path integration abilities. 

Moreover, we tested whether the path integration performance of participants 

could be predicted by their individual magnitudes of grid-cell-like representations, 

and compared the predictive value of grid-cell-like representations to a range of 

neuropsychological test scores as well as demographic variables. 

Together, these analyses should reveal whether potential impairments in grid-

cell-like representations could provide a mechanistic explanation for age-related 

path integration deficits. 
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4.2 Method 

4.2.1 Participants 

For this experiment, we re-invited the same participants that we had tested in 

Project B (“Grid-cell-like representations in old age”). The advantage of testing 

the same participants again was that they had already undergone fMRI testing 

and analysis of their grid-cell-like representations, and so we could directly 

investigate potential associations between their magnitudes of grid-cell-like 

representations and path integration abilities, without the need for further fMRI 

measurements. 

Consequently, as in Project B, 41 healthy adults took part in this study. The 

group of young adults consisted of 20 participants (10 woman, 10 men) aged 

between 19 and 30 years (M = 24.5, SD = 3.3 years), whereas the group of older 

adults consisted of 21 participants (11 woman, 10 men) aged between 63 and 81 

years (M = 69.3, SD = 4.8 years). Only participants with no reported history of 

neurological or psychiatric disease and no reported motor deficits during normal 

walking or standing took part in this study. All participants reported right-

handedness and had normal or corrected-to-normal eyesight. 

Participants also underwent neuropsychological assessment with a 

neuropsychological test battery. One participant from the group of older adults, 

however, did not complete the neuropsychological testing (see Section 4.2.4 for 

more details). 

Informed consent was obtained from all participants in writing before the 

measurements, and the experiment received approval from the Ethics 

Committee of the University of Magdeburg. 

Prior to the study, all participants underwent the Montreal Cognitive Assessment 

(MoCA) screening tool for mild cognitive impairment (Nasreddine et al., 2005). 

Participants who did not exceed a MoCA cut-off score of 23 (following Luis et al., 

2009) were excluded from the study and did not participate in any further 
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measurements. Participants also completed an image-recognition task, which is 

not discussed further in this thesis. 

4.2.2 Path integration task 

In commonly used path integration tasks for humans, such as the triangle 

completion task (Fujita et al., 1993; Harris & Wolbers, 2012), participants 

traverse a path and only estimate the distance and direction to the starting 

location at the end of the path. In the current study, however, we used a task in 

which participants were asked at three different points along the path to estimate 

the distance and direction to the path’s starting point (Figure 30). Multiple 

distance and direction judgments per path were used for two reasons: First, it 

results in a larger number of data points (i.e., participant responses) in a similar 

amount of time, enabling a more reliable estimation of path integration errors. 

Second, responses from multiple points along the path can allow for a more 

precise estimation of path integration errors. Specifically, when complex paths 

are used, a participant may become disorientated as they move along the path, 

and the chances of this occurring increase with the distance traversed. When 

only one response is collected at the end of the path, as per the traditional 

triangle completion task, the participant’s estimate would be random and not 

provide a valid quantification of path integration performance. In contrast, our 

task samples from multiple points along the path meaning that, even if the 

participant has become disorientated at the path’s end point, there are still other 

data points earlier in the path that provide more accurate estimates of path 

integration performance. 

A central assumption of our path integration task is that observers track and use 

self-motion cues to continuously update their internal estimates of position and 

orientation. However, path integration performance can also rely on a “configural 

strategy”, in which participants store the configuration of a path (i.e. segment 

lengths and turn angles) and only compute a homing response when required 

(Wiener et al., 2011). This strategy is often observed when the outbound path 

can be easily segmented into turns and distances – such as in the triangle 
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completion task – and it can induce systematic biases such as a tendency to 

regularize turns and distances to canonical values (e.g. isosceles triangles or 

right-angle turns; Sadalla & Montello, 1989). In order to eliminate these 

confounds, we therefore employed irregularly shaped paths, in which translations 

and rotations were combined into curved trajectories. In addition, we asked 

subjects to repeatedly report their internal estimates of the homing vector at 

intermediate stopping points. These strategies strongly encourage participants to 

continuously update their displacement estimates based on self-motion cues 

over the task. 

 

 

Figure 30: Behavioral path integration task 

Example path from top-down perspective. Participants started at the path’s starting point 
(green dot). There were three stopping points along each path (red dots). While walking 
along a path (curved green line), participants had to stop at each stopping point and 
estimate the direct distance and orientation to the path’s starting point (black dashed 
arrows). 
 

 

In this task, participants had to keep track of their own position during movement 

along pre-defined curved paths, while a head mounted display (HMD; Oculus Rift 

Development Kit 2, Oculus VR LLC, www.oculus.com) was positioned on the 

participant’s head, so that they could not see anything outside the HMD. The 

task was implemented in two different modalities: In the “body-based” modality 
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(Figure 31A), no visual input was shown via the HMD (like in complete 

darkness), and participants could only use body-based self-motion cues, such as 

proprioceptive and vestibular representations, as well as motor efference copies 

that are produced during movement (Etienne & Jeffery, 2004). Participants held 

a wooden stick and were guided by the experimenter along a path. At each of 

three stopping points along the path, the distance to the starting point had to be 

estimated verbally in meters and centimeters, and participants turned their body 

on the spot to indicate the orientation to the starting point, which was measured 

by the built-in gyrometer of the HMD. In the “visual” modality (Figure 31B), 

participants sat stationary on a chair, while they saw a virtual environment via the 

HMD. This virtual environment did not contain any landmark cues but only 

showed a floor texture consisting of 500 white dots on a black ground plane. 

Each dot appeared at a random position within the field of view and disappeared 

after a random duration of 1 to 3 seconds, before it reappeared at a different 

location. Consequently, these so-called “limited lifetime dots” provided optic flow 

information, while their limited lifetime prevented the use of fixed reference 

points. Automated movement along a path was shown from first-person 

perspective, and on each of three stopping points along the path, participants 

estimated the distance to the path’s starting point verbally in meters and 

centimeters, and indicated the presumed orientation by turning their view in the 

virtual environment to the left or right using a joystick. 

Prior to the task, participants received written information about the task, and 

completed several practice paths in both modalities. During the task, participants 

wore earmuffs in order to prevent them from hearing any background sounds. 

Also, they were instructed to immediately inform the experimenter if they noticed 

any external cues that could help them to orient during the task (such as hearing, 

seeing, feeling or smelling something). 

There were eight different pre-defined paths (Figure 32), and each path was 

performed two times per modality. The order of paths was pseudo-randomized, 

but the same order was used for all participants. Consequently, each participant 

completed 32 paths in total (16 paths per modality). Paths in different modalities 
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were intermixed, but there were always at least three different paths between 

two occurrences of the same path (irrespective of the modality).  

 

 

Figure 31: Body-based and visual modality of the path integration task 

A: In the “body-based” modality, the HMD showed no visual input, so that participants 
experienced only body-based cues during movement along the path. Participants held a 
wooden stick and were guided by the experimenter along the path. At each stopping 
point, the distance to the starting point had to be estimated verbally in meters and 
centimeters, and participants turned their body on the spot to indicate the orientation to 
the starting point. B: In the “visual” modality, participants sat stationary on a chair. The 
HMD showed a floor texture consisting of white “limited lifetime dots” on a black ground 
plane, which provided optic flow information while preventing use of fixed reference 
points. Automated movement along each path was shown from first-person perspective, 
and on each stopping point, participants estimated the distance to the path’s starting 
point verbally in meters and centimeters, and indicated the presumed orientation by 
turning their view in the virtual environment to the left or right using a joystick. 
 

 

Coordinates for each of the eight pre-defined paths were defined as follows: 

First, a 3-legged path was created that comprised three distances and two 

turning angles between them (Figure 33). Each distance was either 2m, 3m, 4m, 

or 5m, and each angle was either 55°, 80°, or 105° to the left or to the right. 

Various combinations of distances and angles were used, that fit into a 

rectangular area of approximately 10 x 6 meters (given by the size of the room in 

which the experiment took place). On the basis of these 3-legged paths, we then 

created curved paths without corners by using the cscvn-function of MATLAB’s 

curve fitting toolbox to calculate a natural interpolated cubic spline curve passing 
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through the turning points of the 3-legged path. Directions (left vs. right) of the 

two turning angles per path were counter-balanced between the different paths 

(Figure 32). The experimenters ensured that participants did not see the real 

physical dimensions of the room and the paths before and during the 

experiment. 

 

 

Figure 32: Layout of pre-defined paths from top-down perspective 

Overview over the eight paths that were used in the experiment. Turning directions (left 
vs. right) of the two turning angles per path were counter-balanced between the different 
paths, leading to two paths with each of the following combinations: left/left (column 1), 
left/right (column 2), right/left (column 3), right/right (column 4). Green dots indicate 
starting points, red dots indicate stopping points along the path. 
 

 

Participants completed the 32 paths in two blocks of 16 paths each. In the middle 

of each block, participants completed 4 so-called “standardization paths”, which 

were needed for data analysis in order to correct each participant’s distance 

estimate for their ability to use a correct estimate of a meter/centimeter when 

verbalizing their response (see Section 4.2.3). The procedure during a 

standardization path was similar as during a normal path, but a standardization 

path had only one starting point and one stopping point, which were connected 
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by a straight line, and participants had to estimate the distance between starting 

and stopping point. Two different distances (3m and 9m) had to be estimated 

both in body-based and visual modality, in the following order: 9m/visual, 

3m/body-based, 9m/body-based, 3m/visual. 

 

 

Figure 33: Definition of path coordinates 

Each path was created by first defining a 3-legged path (black solid lines) consisting of 
three distances (d1, d2, d3) and two turning angles between them (α1, α2). Participants 
walked along a curved version of this 3-legged path that had no corners and was 
created by a natural interpolated cubic spline curve passing through the path’s turning 
points (green line). 
 

 

After completing the task, participants filled out a form in which they were asked 

whether they noticed any external cues that could have helped them to orient 

during the task (such as hearing, seeing, feeling or smelling something), but no 

participant reported such confounding sources of information. Further, all 

participants were asked whether they had recognized that some paths were 

repetitions of each other, but no participant did. 

The path integration task was developed using the Unity game engine 5.3.5 

(Unity Technologies, www.unity3d.com). 
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4.2.3 Path integration data analysis 

At every stopping point of a path, participants had to estimate the distance to the 

path’s starting point verbally in meters and centimeters. However, due to these 

verbal estimates, the responded distance can be influenced not only by the 

participant’s path integration performance, but might also be confounded by their 

ability to use a correct estimate of a meter/centimeter when verbalizing the 

response. For example, a participant with perfect path integration performance 

might still give suboptimal answers, just because they might have a relatively 

divergent perception of what they consider to be “a meter” (which might be 

unrelated to path integration performance per se). To get a “standardized” 

measure of path integration performance, we corrected each participant’s 

responses for their individual ability to verbalize their distance estimate in 

meters/centimeters, and use their individual measure of what they perceive as a 

meter. Separately for each modality, we created an indicator of what each 

individual participant considered to be a meter by taking the responded distances 

from standardization paths (in which just a straight distance without any curves 

had to be estimated), and calculating: 

f = dcorrect / dresponse 

where dcorrect is the correct distance of the standardization path (either 3m or 

9m), dresponse is the responded distance, and f is the resulting correction factor. 

Responded distances from standardization paths of the same distance (3m vs. 

9m) and modality (body-based vs. visual) were averaged. For each participant, 

this led to two different correction factors per modality, one each for shorter 

distances (derived from the 3m standardization path) and longer distances 

(derived from the 9m standardization path). These factors were used to 

standardize the distance estimates this participant reported at normal paths: 

Whenever the participant’s response distance of a normal path was between 0m 

and 6m, the response was multiplied with the correction factor for shorter 

distances, whereas response distances larger than 6m were multiplied with the 

correction factor for longer distances. 
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At each stopping point, the responded distance (multiplied with the individual 

participant’s correction factor) and orientation was used to calculate the 

“presumed starting point”. The x and y coordinates of the presumed starting point 

according to the participant’s response were calculated by: 

xpresumedStart = xstop + dstandardized * cos(oriresponse) 

ypresumedStart = ystop + dstandardized * sin(oriresponse) 

where dstandardized is the standardized response distance, and oriresponse is the 

responded orientation. xstop and ystop are coordinates of the stopping point, 

xpresumedStart and ypresumedStart are the resulting coordinates of the presumed 

starting point. 

One method to then determine the path integration error is, to calculate the 

Euclidean distance between the presumed starting point and the path’s correct 

starting point. Throughout this thesis, we will refer to this measure of path 

integration error as “absolute path integration error” (Figure 34A). According to 

this method, each absolute path integration error reflects the error that occurred 

between the path’s starting point and the respective stopping point (i.e., at 

stopping point 1 it reflects the error between the starting point and stopping point 

1; at stopping point 2 it reflects the error between the starting point and stopping 

point 2; and so on). Accumulation of this error measure (i.e., absolute path 

integration errors) across all available stopping points, however, would lead to an 

overrepresentation of errors that occurred on early path segments (because 

these errors would be included for both earlier and later stopping points). In order 

to allow for accumulation of path integration errors across stopping points, we 

therefore also used an alternative method to calculate the path integration error, 

which we refer to as the “incremental path integration error” throughout this 

thesis: For a given stopping point, the Euclidean distance between the presumed 

starting point (according to the participant’s response at this respective stopping 

point) and the previously presumed starting point (according to the response at 

the previous stopping point) was calculated (Figure 34B). Note that the 

previously presumed starting point at stopping point 1 is the correct starting point 



 

 PROJECT C: Grid-cell-like representations and path integration 99 

of the path. Consequently, this measure of the path integration error reflects only 

the incremental error that occurred on the latest path segment before the 

stopping point, but does not include the error that occurred on earlier segments 

of the same path. More specifically, at stopping point 1 it reflects the error that 

occurred between the starting point and stopping point 1, at stopping point 2 it 

reflects the error that occurred between stopping point 1 and stopping point 2 

(not including the error between the starting point and stopping point 1), and so 

on. This method of calculating the path integration error allows, for each 

individual participant, to aggregate all error measures from all available stopping 

points, because each incremental path integration error measure includes only 

the incremental (i.e., unique) error contribution of one path segment. 

Throughout this project, the absolute path integration error was used whenever 

we report path integration errors separately for different stopping points (e.g., to 

show the increase of path integration error over the course of multiple stopping 

points, such as shown in Figure 35, left panel). The incremental path integration 

error, however, is used whenever errors are accumulated and averaged across 

all available stopping points (such as shown in Figure 35, right panel), in order to 

get a single-value estimate of each participant’s path integration performance. 

4.2.4 Neuropsychological tests 

Neuropsychological test scores of older adults were taken from a database of the 

German Center for Neurodegenerative Diseases Magdeburg. These 

neuropsychological tests were carried out within 12 months before or after 

participants took part in the path integration and fMRI experiment. One older 

adult did not complete neuropsychological testing. For this participant, only the 

magnitude of grid-cell-like representations and demographic variables (age, sex), 

but not neuropsychological test scores were used in the multiple linear 

regression analysis. For the remaining 20 older adults, the following 

neuropsychological test scores were used: Self-reported spatial abilities, 

measured by the Santa Barbara Sense of Direction scale (SBSOD; Hegarty et 

al., 2002). Spatial working memory, measured by the Corsi block-tapping task 
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(Kessels et al., 2000). Spatial attention, measured by the subtest “visual 

scanning”, and general working memory, measured by the subtest “working 

memory” of the Testbattery for Attentional Performance (TAP, Zimmermann P. & 

Fimm B., Psychologische Testsysteme, Herzogenrath, Germany). Processing 

speed, measured by the Digit Symbol Substitution Test (DSST) of the Wechsler 

Adult Intelligence Scale (WAIS-IV, Wechsler D., Pearson Assessment, San 

Antonio, TX, USA). Cognitive status, measured by the Montreal Cognitive 

Assessment (MoCA; Nasreddine et al., 2005). 

 

 

Figure 34: Calculation of path integration error 

Path integration error was calculated for each stopping point separately (error 1, error 2, 
error 3). A: For a given stopping point, the absolute path integration error was calculated 
by the Euclidean distance between the presumed starting point according to the 
participant’s response at this respective stopping point (red dashed arrows), and the 
correct starting point of the path. This measure therefore reflects the path integration 
error that occurred between the path’s starting point and the respective stopping point. 
B: For a given stopping point, the incremental path integration error was calculated by 
the Euclidean distance between the presumed starting point according to the 
participant’s response at this respective stopping point (red dashed arrows), and the 
previously presumed starting point according to the response at the previous stopping 
point. Incremental path integration errors therefore reflect only the incremental error that 
occurred on the last path segment before the stopping point, but do not include errors 
that occurred on earlier segments of the same path. Consequently, this measure allows 
for accumulation of path integration errors from all stopping points across different 
paths, in order to get a single-value estimate of each participant’s path integration 
performance. 
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4.2.5 Quantification and statistical analysis 

All statistical analyses were carried out using MATLAB 2016b and the Statistics 

and Machine Learning Toolbox for MATLAB 2016b. Correlation values, where 

given, are Pearson correlations. Error bars in figures indicate standard errors of 

the mean (SEM). Statistical analyses were performed using a significance 

threshold of p < 0.05. 

Group comparisons between young and older adults were carried out using two-

sample t-tests. 

In order to divide the group of young adults into three subgroups with low, 

middle, and high magnitudes of grid-cell-like representations, a cluster analysis 

was applied on these magnitudes, using the k-means clustering function in 

MATLAB. Centroid starting locations (seeds) were defined by the mean 

magnitude of grid-cell-like representations for the 6 lowest, the 6 middle, and the 

6 highest magnitudes of young adults, respectively. 

4.3 Results 

Relative to young adults, older adults showed a reduced path integration 

performance. In the body-based modality (Figure 35, top panel), the absolute 

path integration error was significantly higher for older adults already at the first 

stopping point (t39 = 2.69, p = 0.010), and performance was reduced also at 

stopping point 2 (t39 = 3.40, p = 0.002) and stopping point 3 (t39 = 2.19, p = 

0.035) along the path. Consequently, the incremental path integration error 

(which allows for pooling path integration errors across stopping points) was also 

significantly higher for older relative to young adults (t39 = -4.14, p < 0.001). 

Similar results were obtained also for the visual modality of the path integration 

task (Figure 35, bottom panel). Again, older adults showed a significantly higher 

incremental path integration error than young adults (t39 = -2.89, p = 0.006). It is 

evident, however, that variability between participants was higher for the visual 

relative to the body-based modality, and absolute path integration errors of older 
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adults were significantly higher only at stopping point 1 (t39 = 2.24, p = 0.031) 

and stopping point 3 (t39 = 2.68, p = 0.011), but slightly failed the statistical 

significance level at stopping point 2 (t39 = 1.88, p = 0.068). 

 

 

Figure 35: Path integration errors in young and older adults 

Older adults showed significantly higher path integration errors than young adults, both 
in the body-based and the visual modality. Top panel: In the body-based modality, older 
adults showed a higher absolute path integration error than young adults at all stopping 
points, and also incremental path integration errors (i.e., unique contributions to the path 
integration error for each stopping point) pooled across all stopping points were higher 
for older than young adults. Bottom panel: In the visual modality, older adults showed a 
higher incremental path integration error than young adults, and specifically, absolute 
path integration errors were higher for older as compared to young adults at stopping 
point 1 and stopping point 3. 

Blue and orange lines indicate group mean ± SEM. Error bars indicate SEM. * denotes 
significant effects (p < 0.05). 
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When combining data from both the fMRI measurements of Project B and the 

present path integration experiment, we found that, within the group of older 

adults, those participants with a higher magnitude of grid-cell-like representations 

showed lower path integration errors (Figure 36). This was indicated by a 

significant correlation between grid-cell-like representation magnitudes of older 

adults and their incremental path integration errors in the body-based modality (r 

= -0.54, p = 0.011). A similar pattern was found in older adults also for the visual 

modality, although this correlation did not reach statistical significance level (r = -

0.41, p = 0.065). In young adults, there was no correlation between grid-cell-like 

representation magnitudes and incremental path integration errors, either in the 

body-based (r = -0.10, p = 0.660) or the visual modality (r = -0.16, p = 0.511). 

 

 

Figure 36: Association between magnitudes of grid-cell-like representations and 
path integration errors in young and older adults 

In young adults (left), the magnitude of grid-cell-like representations was not associated 
with incremental path integration errors in either the body-based or the visual modality. 
In older adults (right), higher magnitudes of grid-cell-like representations were 
associated with lower incremental path integration errors. Path integration errors were z-
scored for display purposes. 
 

 

Moreover, we applied multiple linear regression on the data of older adults, in 

order to compare the predictive value of grid-cell-like representations to a range 

of other factors that might potentially explain variability in path integration 
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performance. In addition to grid-cell-like representations and individual 

demographic variables, this included a range of test scores from a 

neuropsychological test battery (see Section 4.2.4). Results of this regression 

analysis confirmed a significant link between grid-cell-like representations and 

both body-based as well as visual path integration performance, whereas no 

other demographic or neuropsychological factor could significantly predict path 

integration performance (Table 1). 

Table 1: Multiple linear regression to predict path integration performance of older 
adults in body-based and visual modality 

 Predictor β t p sign. 

      

Body-based modality:     

 Grid-cell-like representations 0.069 2.717 0.022 p < 0.05 

 Age -0.002 -1.137 0.282 ns. 

 Sex: male 0.023 1.784 0.105 ns. 

 Self-reported spatial abilities (SBSODa) 0.003 0.472 0.647 ns. 

 Spatial working memory (CORSIb) 0.005 1.724 0.115 ns. 

 Spatial attention (TAPc) 0.000 0.832 0.425 ns. 

 Working memory (TAPd) 0.000 -0.550 0.595 ns. 

 Processing speed (DSSTe) 0.001 1.146 0.279 ns. 

 Cognitive status (MoCAf) 0.004 1.431 0.183 ns. 

      

Visual modality:     

 Grid-cell-like representations 0.155 2.517 0.031 p < 0.05 

 Age 0.007 1.555 0.151 ns. 

 Sex: male -0.023 -0.729 0.483 ns. 

 Self-reported spatial abilities (SBSODa) 0.006 0.425 0.680 ns. 

 Spatial working memory (CORSIb) 0.012 1.559 0.150 ns. 

 Spatial attention (TAPc) 0.000 0.521 0.613 ns. 

 Working memory (TAPd) 0.000 -0.761 0.464 ns. 

 Processing speed (DSSTe) 0.000 0.116 0.910 ns. 

 Cognitive status (MoCAf) 0.009 1.280 0.229 ns. 

Path integration performance was calculated by 1 / incremental path integration error 

“ns.” denotes non-significant results 
aSanta Barbara Sense of Direction Scale 
bCorsi block-tapping test 
cTestbattery for Attentional Performance (TAP): subtest “visual scanning” 
dTestbattery for Attentional Performance (TAP): subtest “working memory” 
eDigit symbol substitution test (WAIS-IV) 
fMontreal Cognitive Assessment (MoCA) 
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Given the lack of an association between grid-cell-like representations and path 

integration performance in young adults, we wanted to carry out a more 

elaborate evaluation of this relationship and test whether an association can be 

found for a specific subgroup within the group of young adults. We therefore split 

up the group of young adults using cluster analysis to identify three subgroups of 

participants with low, middle, and high magnitudes of grid-cell-like 

representations (see Section 4.2.5). Within the group of young adults with low 

grid-cell-like representation magnitudes (n = 5), we found that their magnitudes 

of grid-cell-like representations were significantly correlated with incremental 

path integration errors in the body-based modality (r = -0.89, p = 0.045), whereas 

no correlation could be found for the group of young adults who had middle (n = 

12; r = 0.43, p = 0.159) or high (n = 3; r = 0.54, p = 0.634) magnitudes of grid-

cell-like representations. In the visual modality, the correlation values for the low 

group were also numerically stronger but failed to reach statistical significance 

(low: r = -0.59, p = 0.298; middle: r = -0.22, p = 0.490; high: r = -0.28, p = 0.820). 

Next, we investigated whether those older adults who showed high path 

integration performance, also show “normal” grid-cell-like representations (i.e., 

whether their grid-cell-like representations appear to be similar to those of young 

adults). Given the significant association between magnitudes of grid-cell-like 

representations and body-based path integration performance, we split up the 

group of older adults based on their median incremental path integration error in 

the body-based modality, and further analyzed grid-cell-like representations in 

those older adults who showed low path integration errors (n = 10). In this 

subgroup, we found a significant magnitude of grid-cell-like representations (t9 = 

3.55, p = 0.006), whereas control models testing for other periodicities were not 

significantly different from zero (5-fold: t9 = -0.78, p = 0.454; 7-fold: t9 = -0.48, p = 

0.640). Moreover, the average magnitude of grid-cell-like representations in this 

subgroup was not significantly different compared to young adults (Figure 37; t28 

= 0.06, p = 0.954). 
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Figure 37: Magnitudes of 5-/6-/7-fold symmetric representations in young adults 
versus older adults with low path integration errors 

Magnitudes of grid-cell-like (i.e., 6-fold symmetric) representations in a subgroup of 
older adults (n = 10; orange bar) who showed low incremental path integration errors 
appeared to be similar to grid-cell-like representation magnitudes of young adults (blue 
bar). Magnitudes of grid-cell-like representations were significantly different from zero for 
both young and older adults. Grey bars indicate control models testing for 5-fold and 7-
fold symmetric representations. 

Units are parameter estimates. Error bars indicate SEM. * denotes significant effects (p 
< 0.05). 
 

 

4.4 Discussion 

The results of this experiment demonstrate a modality-independent path 

integration deficit in old age. More specifically, older adults showed a deficit in 

computations of self-position, independent of whether path integration was 

based on body-based or visual self-motion cues. This is widely in line with results 

from previous studies that reported age-related path integration impairments for 

different sensory modalities (Mahmood et al., 2009; Adamo et al., 2012; Harris & 

Wolbers, 2012; Bates & Wolbers, 2014). 
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Combining the path integration data from the current project with data from 

Project B (i.e., fMRI measurements of grid-cell-like representations), we were 

able to reveal an association between grid-cell-like representation magnitudes 

and path integration abilities in older adults. This association was also confirmed 

by a multiple linear regression model, in which path integration performance in 

both body-based and visual modality could be predicted by individual 

magnitudes of grid-cell-like representations, whereas performance could not be 

significantly predicted by demographic variables and test scores of a 

neuropsychological test battery.  

While animal studies and theoretical models have long suggested that path 

integration is a key function of the grid cell system, direct empirical evidence for 

this claim is scarce (Fuhs & Touretzky, 2006; McNaughton et al., 2006; Burgess 

et al., 2007; Guanella et al., 2007; Hasselmo, 2008; Burak & Fiete, 2009; 

Giocomo et al., 2011; Zilli, 2012; Widloski & Fiete, 2014; Gil et al., 2018). Our 

data show that the magnitude of grid-cell-like representations in the human 

entorhinal cortex is linked to path integration performance in old age and 

therefore further strengthens the hypothesis that grid cell function underlies path 

integration processes. 

It is unclear, however, why we did not find an association between grid-cell-like 

representations and path integration performance in young adults. Potentially, 

this could be explained by additional processes, besides grid cell function, that 

may also contribute to path integration. For example, previous neuroimaging 

studies have demonstrated contributions of hippocampal and prefrontal 

computations (Wolbers et al., 2007; Sherrill et al., 2013; Chrastil et al., 2017). 

Variability in these processes could explain variations in path integration 

performance, when the grid cell system is intact and able to provide reliable 

positional computations (as assumed to be seen in young adults). In 

compromised grid cell systems (as more likely to be present in older adults), 

however, fundamental computations of positional information might be impaired, 

resulting in a direct relationship between the degree of impairment and path 

integration performance. To further test this assumption, we split up the group of 
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young adults into three subgroups of participants with low, middle, and high 

magnitudes of grid-cell-like representations, and found that correlations between 

magnitudes of grid-cell-like representations and path integration performance 

were higher for those participants with lower grid-cell-like representation 

magnitudes. While these results need to be treated with caution due to the small 

group sizes, they support the theoretical assumption that an association between 

grid-cell-like representations and path integration performance is only seen when 

grid-cell-like representations are compromised. 

Lastly, we investigated grid-cell-like representations in a subgroup of older adults 

and found a significant magnitude of grid-cell-like representations for those older 

adults who showed high path integration performance. We therefore conclude 

that grid-cell-like representation magnitudes in older adults exhibiting high path 

integration performance, appear to be similar to those of the young adult group.  

To sum up, we have demonstrated in this project that variation in magnitudes of 

grid-cell-like representations of older adults could explain individual differences in 

their path integration performance. On the one hand, this suggests that 

compromised grid-cell-like representations might serve as a mechanistic 

explanation for path integration deficits in old age, or potentially even for age-

related spatial navigation deficits more generally. On the other hand, this finding 

further strengthens the hypothesis that computations of self-position during 

movement rely on entorhinal grid cell function, as has been suggested previously 

(Fuhs & Touretzky, 2006; McNaughton et al., 2006; Burgess et al., 2007; 

Guanella et al., 2007; Hasselmo, 2008; Burak & Fiete, 2009; Giocomo et al., 

2011; Zilli, 2012; Widloski & Fiete, 2014). In addition, we have shown that the 

prognostic value of grid-cell-like representations for predicting path integration 

performance in older adults clearly exceeds the prognostic value of various 

standard neuropsychological tests and demographic variables. Together, these 

findings lay the foundation for future studies aiming to explore whether human 

grid-cell-like representations in the entorhinal cortex could potentially serve as a 

biomarker for integrity of the grid cell system and entorhinal cortex function. 

Since both neurophysiological changes in the entorhinal cortex (Braak & Braak, 
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1991; Gómez-Isla et al., 1996; Du et al., 2001; Pennanen et al., 2004; Masdeu et 

al., 2005; Stranahan & Mattson, 2010; Khan et al., 2014) and behavioral 

changes in navigational functions (Hort et al., 2007; Laczó et al., 2010; 

Mokrisova et al., 2016) are amongst the earliest symptoms of neurodegenerative 

processes like Alzheimer’s disease, such a prognostic measure could also 

facilitate early detection of dementia and other neurodegenerative disorders. 

Furthermore, as grid cells have been discussed to not only provide the neuronal 

basis for navigational functions but also dimensional coding in non-spatial 

domains (Constantinescu et al., 2016; Aronov et al., 2017), future investigations 

will show whether changes in the grid cell system might explain not only path 

integration or spatial navigation deficits but also age-related decline in other 

cognitive domains. 
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5. PROJECT D 

Sources of path integration error in young 
and older adults 

This project was carried out in collaboration with Ila Fiete and Ingmar 

Kanitscheider from the Department of Neuroscience, Center of Learning and 

Memory, University of Texas at Austin. While I, Matthias Stangl, was responsible 

for the experimental and empirical parts of the project, Ila Fiete and Ingmar 

Kanitscheider developed the computational model that was used to decompose 

path integration errors into components. 

5.1 Project introduction 

The results of Project C in this thesis demonstrated that compromised grid-cell-

like representations might be a key mechanism to explain path integration 

deficits in old age. Theoretically, however, path integration computations might 

be corrupted also by other potential sources of error – such as memory decay 

(leak), noise, biases, and reporting errors. Project D therefore aimed to reveal 

the specific contributors to path integration error, and to characterize their 

individual impact on path integration performance in young and older adults. 

Spatial navigation is a complex behavior that combines many computations, 

including the storage and recall of information, the integration of information from 

multiple sensory and non-sensory brain areas, planning, prediction, and decision 

making. A vital component of navigation-related computations is path integration 

– the integration over time of a self-motion estimate, in the strict sense of vector 

calculus, to maintain an updated estimate of one’s position and orientation while 

moving through space. 
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Self-motion estimates derive from a sophisticated pooling over multiple sensory 

modalities, and rely on proprioceptive and vestibular information, visual object 

and optic flow signals, as well as motor efference copies that are produced 

during movement (Etienne & Jeffery, 2004). After being processed in their 

respective low-level sensory systems, these cues are integrated in brainstem 

nuclei as well as cortical structures (i.e. area MST) to allow an overall estimation 

of angular and linear movement velocity (Bassett & Taube, 2001; Biazoli et al., 

2006; Britten, 2008; Clark et al., 2012; Cullen, 2012; Butler & Taube, 2015). In 

this work, we seek to develop a method to decompose path integration errors 

into components (cf. Brunton et al., 2013) that can shed light on the mechanisms 

that could underlie the observed errors. 

A circuit that functions as a path integrator for two-dimensional space must do 

the following: take as input the given two-dimensional velocity signal; remember 

the previous integrated state; increment the previous integrated state by adding 

to it a quantity proportional to the instantaneous velocity input. There are thus 

several natural sources of error: First, the velocity estimate might be wrong, with 

systematic bias or noise. Second, the integrator might remember its past states 

in a leaky way, so that there is a decay of information over time. Third, the 

velocity input-based increments might be summed with a scaling or gain 

prefactor that differs from the value required to match the instantaneous 

displacement. Fourth, the integrator might itself be noisy. 

These errors accrue over the course of a spatial movement trajectory, and the 

net localization error at path’s end will depend on the details of the trajectory. 

Thus, properly modeling and decomposing these errors requires iteration of a 

temporal dynamics, a statistical model that incorporates these dynamics, and 

sufficiently rich and varied spatial trajectories. One final error arises when a 

downstream neural circuit or the human experimenter attempt to obtain a 

readout of the output state of the integrator. 

Our goal in the present work is not only to make progress in understanding the 

specific contributors to path integration error, but also to reveal sources of age-

related degradation in navigation performance. Specifically, aging has 
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deleterious effects on path integration ability, with declines in the triangle 

completion task (Loomis et al., 1993) – a standard assay of path integration 

performance based on body-based, vestibular, or visual information cues (Allen 

et al., 2004; Mahmood et al., 2009; Adamo et al., 2012; Harris & Wolbers, 2012). 

Older adults are less accurate in reproducing travel distances or rotations 

(Mahmood et al., 2009; Adamo et al., 2012; Harris & Wolbers, 2012), and they 

exhibit worse path integration performance even if additional landmark 

information is available (Harris & Wolbers, 2012; Bates & Wolbers, 2014). 

Despite the sizeable body of research on losses in path integration performance 

with age, little is known about which specific aspects of the path integration 

computation or process are most affected in old age. 

Here we combine an immersive virtual reality path integration experiment with a 

novel mathematical approach to reveal the sources of path integration error. We 

characterize the different contributors to error across subjects, and study group 

differences between young and older adults. 

5.2 Method 

5.2.1 Participants 

56 healthy humans took part in this study. The group of young adults consisted 

of 30 participants (15 woman, 15 men) aged between 19 and 26 years (M = 22.0, 

SD = 2.0 years), whereas the group of older adults consisted of 26 participants 

(13 woman, 13 men) aged between 62 and 78 years (M = 69.0, SD = 4.6 years). 

Only participants with no reported history of neurological or psychiatric disease 

and no reported motor deficits during normal walking or standing took part in this 

study. All participants reported right-handedness and had normal or corrected-to-

normal eyesight. 

Informed consent was obtained from all participants in writing before the 

measurements, and the experiment received approval from the Ethics 

Committee of the University of Magdeburg. 



 

114 PROJECT D: Sources of path integration error 

Prior to the study, all participants underwent the Montreal Cognitive Assessment 

(MoCA) screening tool for mild cognitive impairment (Nasreddine et al., 2005). 

Participants who did not exceed a MoCA cut-off score of 23 (following Luis et al., 

2009) were excluded from the study and did not participate in any further 

measurements. 

5.2.2 Path integration task 

Each participant’s path integration performance was measured using a 

behavioral path integration task, in which they had to keep track of their own 

position during movement along pre-defined curved paths. In this task, 

participants were asked at four different points along the path to estimate the 

distance and direction to the path’s starting point (Figure 38). The advantages of 

using multiple distance/direction judgments per path and employing irregularly 

shaped paths, in which translations and rotations were combined into curved 

trajectories, have been discussed earlier in this thesis (please see Section 4.2.2 

for more details). 

 

  

Figure 38: Behavioral path integration task 

Example path from top-down perspective. Participants started at the path’s starting point 
(green dot). There were four stopping points along each path (red dots). While walking 
along a path (curved black line), participants had to stop at each stopping point and 
estimate the direct distance and orientation to the path’s starting point (blue arrows). 
 

 

Prior to the task, participants received written information about the task, and 

completed several practice paths. An HMD (Oculus Rift Development Kit 2, 
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Oculus VR LLC, www.oculus.com) was positioned on the participant’s head, so 

that they could not see anything outside the HMD. During the task, participants 

wore earmuffs in order to prevent them from hearing any background sounds. 

Also, they were instructed to immediately inform the experimenter if they noticed 

any external cues that could help them to orient during the task (such as hearing, 

seeing, feeling or smelling something). 

During the task, participants held a wooden stick and were guided by the 

experimenter along a path (Figure 39). At each of four stopping points along the 

path, the distance to the starting point had to be estimated verbally in meters and 

centimeters, and participants turned their body on the spot to indicate the 

orientation to the starting point, which was measured by the built-in gyrometer of 

the HMD. 

 

 

Figure 39: Path integration task procedure 

Participants held a wooden stick and were guided by the experimenter along the path. 
At each stopping point, the distance to the starting point had to be estimated verbally in 
meters and centimeters, and participants turned their body on the spot to indicate the 
orientation to the starting point. 
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Via the HMD, participants saw a virtual environment, which consisted of a 

ground plane and distant landmark cues (Figure 40). The ground plane was 

designed to provide optic flow information during movement, but did not contain 

any fixed reference points or landmark cues. The distal landmarks were 

rendered at infinity, so that participants could use them only to determine their 

heading direction but not their position or any distance information. The exact 

position of a participant was tracked throughout the task using the Vicon Motion 

Tracking System with 12 cameras of type T10 (Vicon, Oxford, UK). The 

participant’s viewpoint within the virtual environment was constantly updated 

depending on their actual position and movement, so that participants could 

actively walk around in the virtual environment. Consequently, in order to keep 

track of their own position relative to the path’s starting point, participants could 

use both body-based and visual self-motion cues to perform the path integration 

task. Specifically, body-based self-motion cues included proprioceptive and 

vestibular representations, as well as motor efference copies that are produced 

during movement, whereas visual self-motion cues included optic flow 

information from the virtual environment (Etienne & Jeffery, 2004).  

There were 10 different pre-defined paths (Figure 41). Coordinates for each path 

were defined as follows: First, a 4-legged path was created that comprised four 

distances and three turning angles between them. Each distance was either 2, 

3.5, 5, or 6.5 meters, and each angle was either 55, 80, or 105 degrees to the 

left or to the right. Various combinations of distances and angles were used, that 

fit into a rectangular area of approximately 10 x 8 meters (given by the tracking 

area and size of the room in which the experiment took place). On the basis of 

these 4-legged paths, we then created curved paths without corners by using the 

cscvn-function of MATLAB’s curve fitting toolbox to calculate a natural 

interpolated cubic spline curve passing through the turning points of the 4-legged 

path. 
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Figure 40: Virtual environments of the path integration task 

Three different virtual environments were used in the path integration task. Left panel: 
Each environment consisted of distant landmark cues that were rendered at infinity, so 
that participants could use them only to determine their heading direction but not their 
position or any distance information. Right panel: One tile of each environment’s 
ground plane. These tiles had a so-called “seamless” texture, so that multiple tiles could 
be arranged next to one another, without any visible border or transition area between 
them. They were designed to not provide any landmark cues that could be used during 
the path integration task but only to provide optic-flow information during movement. The 
ground planes were identical between the three different environments, but differed only 
in terms of their color. 
 

 

Six paths comprised a mixture of left and right turns, respectively (see Figure 41, 

path numbers 1 to 6). Two additional paths (path numbers 7 and 9) only 

comprised right turns or left turns, respectively, and these two paths were 

present also in their mirrored version (i.e., the path that had only left turns was 

present also in its mirrored version comprising only right turns, and vice-versa). 

Directions (left vs. right) of the three turning angles per path were counter-

balanced between the different paths. 

The experimenters ensured that participants did not see the real physical 

dimensions of the room and the paths before and during the experiment.  
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Figure 41: Layout of pre-defined paths from top-down perspective 

Overview over the 10 different paths that were used in the experiment. Turning 
directions (i.e., left turns “L”, vs. right turns “R”) of the three turning angles per path were 
counter-balanced between the different paths. Six paths comprised a mixture of left and 
right turns (path numbers 1 to 6). Two additional paths (path numbers 7 and 9) 
comprised only right turns or left turns, respectively, and these two paths were present 
also in their mirrored version. Green dots indicate starting points, red dots indicate 
stopping points along the path. 
 

 

Participants completed the path integration task in three blocks. Within each 

block, participants performed each of the 10 paths one time and, in addition, they 

performed the paths 1 to 6 (the ones which had both left and right turns) another 

time without stopping at the first three stopping points but only at the end of the 

path (i.e., only at stopping point 4). Consequently, each participant performed 16 

paths per block. The order of paths was pseudo-randomized, but the same order 
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was used for all participants. There were always at least three different paths 

between two occurrences of the same path. The virtual environment was 

different in each block (see Figure 40) and the order of environments was 

randomized across participants. 

After the 4th and after the 12th path of each block, participants completed three 

so-called “standardization paths”, which were needed for data analysis in order 

to correct each participant’s distance estimate for their ability to use a correct 

estimate of a meter/centimeter when verbalizing their response (see Section 

5.2.3). The procedure during a standardization path was similar as during a 

normal path, but a standardization path had only one start point and one 

stopping point, which were connected by a straight line, and participants had to 

estimate the distance between starting and stopping point. Three different 

distances had to be estimated in the following order: 10 meters, 2 meters, 6 

meters. Moreover, there were short breaks in the middle of each block and 

between blocks. Figure 42 gives an overview over the procedure for each block.  

After completing the task, participants filled out a form in which they were asked 

whether they noticed any external cues that could have helped them to orient 

during the task (such as hearing, seeing, feeling or smelling something), but no 

participant reported such confounding sources of information. Further, all 

participants were asked whether they had recognized that some paths were 

repetitions of each other, but no participant did. 

The path integration task was developed using the WorldViz Vizard 5.1 Virtual 

Reality Software (WorldViz LLC, www.worldviz.com). 

5.2.3 Path integration data analysis 

The methods to calculate absolute and incremental path integration errors for 

behavioral data analysis were identical to the methods used in Project C 

(“Compromised grid-cell-like representations as a mechanistic explanation for 

age-related path integration deficits”). Therefore, please find a detailed 

description of these methods in Section 4.2.3 of this thesis.  
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Figure 42: Experimental procedure per block 

Each participant performed three blocks of the path integration task. Each block 
consisted of 16 paths. In addition, after the 4th and 12th path of each block, participants 
performed so-called “standardization-paths” (i.e., straight lines with a length of 2m, 6m, 
and 10m), which were needed for data analysis in order to correct each participant’s 
distance estimate for their ability to use a correct estimate of a meter/centimeter when 
verbalizing their response. Moreover, there were short breaks in the middle of each 
block and between blocks. 
 

 

In contrast to Project C, however, here our standardization paths had three 

different lengths (2m, 6m, and 10m). Consequently, three different correction 

factors, one each for shorter (derived from the 2m standardization path), middle 

(derived from the 6m standardization path) and longer distances (derived from 

the 10m standardization path), were used to standardize the distance estimates 

that a participant reported at normal paths: Whenever the participant’s response 

distance of a normal path was between 0m and 4m, the response was multiplied 

with the correction factor for shorter distances, whereas response distances 
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between 4m and 8m were multiplied with the correction factor for middle 

distances, and response distances larger than 8m were multiplied with the 

correction factor for longer distances. 

5.2.4 Computational modeling 

Please note that the computational model described in this section was 

developed by Ila Fiete and Ingmar Kanitscheider from the Department of 

Neuroscience, Center of Learning and Memory, University of Texas at Austin. 

At each stopping point, participants were asked to indicate the distance and 

orientation to the starting point of the path. The square error was calculated by 

first converting the distance estimate d̂ and the angular estimate φ̂ to Cartesian 

coordinates and then comparing it to the true position of the stopping point 

relative to the starting point 𝒓𝑡𝑟𝑢𝑒 (Note that throughout this section we use bold-

faced letters to refer to two-dimensional vectors): 

error2 = |𝒓𝑡𝑟𝑢𝑒 − (
 d̂𝑐𝑜𝑠 φ̂

d̂𝑠𝑖𝑛 φ̂
)|

2

 

The path integration error is modeled to arise due to biases, leaks and noise in 

the path integration system. In the following, we distinguish between internal 

parameters, which affect the internal location estimate and are independent of 

the task, and external parameters, which affect the reporting of an internal 

location estimate and are task-dependent. Specifically, by predicting not only the 

size of the error, but also the actual estimates participants make at each 

stopping point, we aim to disentangle the following different sources of the path 

integration error: 

Internal parameters: 

 Memory decay (leak) 

 Multiplicative velocity gain 

 Additive bias 

 Internal path integration noise 
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External parameters: 

 Noise due to imperfect reporting of an internal location estimate 

We assume that participants continuously update an internal, two-dimensional 

estimate of their location �̂�(t) using proprioceptive and visual percepts of their 

walking velocity 𝐯(t) . The update process is corrupted by memory decay β , 

velocity gain α, additive bias 𝐛, and Gaussian noise with standard deviation σ0 

(where 𝛏(t) is normally-distributed Gaussian noise) according to 

Eq. (1) 

d�̂�(t)

dt
= −β�̂�(t) + α𝐯(t) + 𝐛 + σ0𝛏(t)  

The internal parameters can be interpreted as follows: 

 Memory decay β: If β > 0, the current estimate �̂�(t) will not depend on 

values 𝐯(𝐭 − 𝛕)  with τ ≫ 1/β . This forgetting of velocity history is also 

called “leaky integration”. Perfect integration corresponds to β = 0. 

 Multiplicative velocity gain α: A value α > 1 corresponds to overshooting 

of location updating given velocity   𝐯(t) , a value α < 1  corresponds to 

undershooting. Perfect integration corresponds to α = 1. 

 Additive bias 𝐛: Specifies the bias direction in which the location estimate 

gets drawn over time. Perfect integration corresponds to 𝐛 = 0.  

 Internal path integration noise σ0 : Standard deviation of zero-mean 

Gaussian noise that corrupts path integration. Perfect integration 

corresponds to σ0 = 0. 

In addition to these internal noise and bias parameters, we assume that the 

estimates of distance and angle from the current location to the starting point that 

participants report are corrupted by additional reporting noise: The distance 

estimate requires a noisy conversion of an internal estimate to a verbal number 

(Izard & Dehaene, 2008) and the angular estimate that participants report by 

turning their body to face the path’s starting point is corrupted by motor noise 
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(Schmidt et al., 1979; Jones et al., 2002; Faisal et al., 2008). Given distance d 

and angle φ between participants’ internal location estimate and the true starting 

position, we assume that the reported distances d̂ and angles φ̂ are given by 

Eq. (2) 

d̂ = exp(log(d) + σdηd)  

φ̂ = φ + σφηφ 

where σd  and σφ  are standard deviations of distance and angular noise, ηd  is 

normally-distributed distance noise, and ηφ is normally-distributed angular noise. 

The parameterization of the distance noise is chosen such that for fixed σd, the 

magnitude of the reporting error |d̂ − d| increases approximately linearly with d, 

in line with Weber’s law (Oberlin, 1936; Gaydos, 1958; Cornsweet & Teller, 

1965; Fechner, 1966; Indow & Stevens, 1966; Izard & Dehaene, 2008). We also 

find empirically that this Weber’s law-type parameterization of the distance 

reporting error captures the data better than a linear parameterization (see 

Section 5.3). 

Please see Appendix 2 for more details about the computational model used in 

this project, including model fitting, Extended Kalman Filter (EKF), and model 

comparison using the Bayesian Information Criterion (BIC). 

5.2.5 Quantification and statistical analysis 

While analyses related to the computational model were carried out by Ingmar 

Kanitscheider, analyses of the behavioral path integration data were carried out 

by Matthias Stangl, using MATLAB 2016b and the Statistics and Machine 

Learning Toolbox for MATLAB 2016b. Correlation values, where given, are 

Pearson correlations. Error bars in figures indicate SEM. Statistical analyses 

were performed using a significance threshold of p < 0.05. Group comparisons 

between young and older adults were carried out using two-sample t-tests or, in 

the case of model parameters, one-sided permutation tests. 
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5.3 Results 

Older adults showed a lower performance in the path integration task, as 

compared to young adults (Figure 43). Absolute path integration errors were 

significantly higher in older relative to young adults already at the first stopping 

point, and also at all subsequent stopping points along the path (stopping point 

#1: t55 = 2.15, p = 0.036; #2: t55 = 2.80, p = 0.007; #3: t55 = 2.64, p = 0.011; #4: 

t55 = 2.24, p = 0.029). Moreover, incremental path integration errors (pooled over 

all stopping points; see Section 5.2.3) were significantly higher for older relative 

to young adults (t55 = 3.23, p = 0.002). 

 

Figure 43: Path integration performance in young and older adults 

Left panel: Absolute path integration errors over four stopping points for young and 
older adults. Average errors per stopping point are shown for each participant separately 
by blue (young adults) and orange (older adults) dots, connected with lines between 
stopping points. It is evident that most participants showed an increase in their absolute 
path integration error with stopping points. Right top panel: On average, older adults 
showed higher absolute path integration errors than young adults at all stopping points. 
Blue and orange lines indicate group mean ± SEM. Right bottom panel: Incremental 
path integration errors were higher in older as compared to young adults. 

Error bars indicate SEM. * denotes significant effects (p < 0.05). 
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Next, we evaluated whether participants’ performance in the path integration task 

was better than random guessing. Indeed, participants’ estimates of their 

location were highly correlated with their true location (Figure 44) and shuffling 

their responses at each stopping point across trials led to a much higher square 

error (Figure 45). 

 

 

Figure 44: Participant’s location estimates versus their true location 

Each participant’s location estimate (y-axis) versus their true location (x-axis) at each of 
the four stopping points (columns), separately for x-coordinates (top row) and y-
coordinates (bottom row). The diagonal (dashed line) indicates perfect response 
(estimated location = true location). All correlation coefficients are significant (all p < 
0.00001). All units are meters.  
 

 

We then fitted a detailed computational model of participants’ responses to 

disentangle different sources of path integration error. We modeled path 

integration as a continuous update of an internal location estimate using an 

instantaneous velocity estimate that is corrupted by the following internal error 

sources: leaky integration of location, under- or overestimation of velocity, an 

additive location bias, and zero-mean Gaussian noise. In addition, we assumed 

that the participant’s reports of distance and angle from their internal location 

estimate to the origin are imperfect and corrupted by reporting noise. These 
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different error and bias parameters can be distinguished because they make 

different predictions depending on the shape of each individual trajectory.  

 

 

Figure 45: Path integration errors of young and older adults versus errors with 
shuffled responses 

It is evident that the square error of participants’ responses (dotted lines and error bars) 
is considerably lower than the square error obtained from shuffling their responses 
across trials, separately for each stopping point (solid lines). Error bars indicate group 
mean ± SEM. 
 

 

After fitting the parameters individually per participant, we compared the 

prediction of the model with the data. The model correctly reproduced the 

characteristic increase in square error with stopping points (Figure 46) and was 

predictive of the direction of errors in individual trials, averaged over participants 

of the same age group (Figure 47).  
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Figure 46: Path integration errors of young and older adults versus errors 
predicted by the model 

Square error of participants’ responses (single error bars) and square error of responses 
predicted by model (solid lines) over four stopping points. Error bars indicate group 
mean ± SEM. 
 

 

We then provided support for the detailed structure of the computational model 

by comparing it to other model variants using BIC (see Appendix 2 for more 

details). We found that both the existence and structure of the reporting noise is 

important. The default model was much better supported by the data than a 

model variant without reporting noise or a model variant with reporting noise that 

does not scale with distance to the starting point (Figure 48; Δ𝐵𝐼𝐶  ≫ 10 ). 

Similarly, the default model with parameters fitted individually for each participant 

was much better supported by the data than fitting model parameters by age 

group (Figure 49;  Δ𝐵𝐼𝐶  ≫ 10).  
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Figure 47: Single-trial path integration errors versus errors predicted by the model 

Path integration error predicted by the computational model versus participants’ actual 
error, separately for x-coordinates (top row) and y-coordinates (bottom row). The 
diagonal (dashed line) indicates perfect error prediction (predicted error = actual error). 
Error bars represent path integration errors for single trials (mean ± SEM), averaged 
over participants of the same age group (blue = young, orange = old). Solid lines 
represent the best-fitting linear regression fit. All units are meters. 
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Figure 48: Comparison between models with different types of reporting noise 

Model comparison using BIC between models with no reporting noise, constant 
reporting noise and Weber-like reporting noise. For both age groups, the model with 
Weber-like reporting noise was best supported by the data. 
 

 

 

 

 

Figure 49: Comparison between group level and individual models 

Model comparison using BIC between models that were fitted at the group level and 
models that were fitted individually for each participant. For both age groups, the model 
with individual parameters per participant was best supported by the data. 
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The computational model allowed us to assess which type of bias and noise 

parameter had the largest influence on the square error as predicted by the 

model. For this purpose, we calculated the relative influence of each parameter 

type on the predicted square error (see Appendix 2 for more details). We found 

that internal noise (50-55%) and velocity gain bias (25-26%) had the largest 

influence on the square error, followed by radial (14-15%) and angular (12-13%) 

reporting noise (Figure 50). The influences of both additive bias and memory 

leak were very small (< 3%). 

 

 

Figure 50: Impact of different error sources on path integration error 

Relative influence of each model parameter on the predicted square error. Relative 
influence measures the predicted reduction in square error by setting a parameter to its 
ideal value corresponding to noiseless and unbiased integration. Note that due to the 
nonlinearity of the model the relative influences do not have to sum to 100%, and that a 
parameter’s relative influence can be negative if the reduced square error is larger than 
the square error of the full model (see Appendix 2 for more details).  
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Finally, we compared the model parameter values between age groups. We 

found that older adults had a significantly larger additive bias (p = 0.001; one-

sided permutation test), a significantly larger internal noise parameter (p = 0.018; 

one-sided permutation test), and a larger memory decay (p = 0.035; one-sided 

permutation test) than young adults (Figure 51). However, due to the small 

overall influence of the additive bias and memory decay, comparing each 

parameter’s contribution to overall path integration error between age groups 

showed that only the internal noise (p = 0.012; one-sided permutation test) had a 

significantly higher contribution to error in older relative to young adults (Figure 

52). 

 

 

Figure 51: Comparison of model parameters between age groups 

Model parameter values, averaged over participants of the same age group, compared 
between young and older adults. * denotes significant effects in a one-sided permutation 
test (p < 0.05). 
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Figure 52: Contribution of error sources to overall error in young versus older 
adults 

Each model parameter’s contribution to the square error, averaged over participants of 
the same age group, compared between young and older adults. Only internal noise 
resulted in a significant difference in error contribution between age groups. A 
parameter’s contribution is calculated by measuring the reduction in square error when 
setting the parameter to its ideal value corresponding to unbiased, noiseless integration 
(see Appendix 2 for more details). * denotes significant effects in a one-sided 
permutation test (p < 0.05). 
 

 

5.4 Discussion 

In the present study, we used a virtual reality path integration task, in which 

young and older adults had to keep track of their own position and orientation 

using visual and body-based self-motion cues while travelling along curved path 

segments. Moreover, we developed a computational model to decompose path 

integration errors and simultaneously estimate, on a trial-to-trial basis, the 

contribution of different sources of imperfection in the sensing and integration 

processes (leaky integration, multiplicative velocity gains different from unity, 

additive velocity biases, and unbiased or zero-mean noise in either velocity 

estimation or path integration or both) to the total error. In addition to these 
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sources of accruing error in path integration, our model also included 

inaccuracies in producing an explicit report of an internal displacement estimate, 

as subjects were asked to do at each stopping point. We performed 

mathematical inference on the model using an approach based on the Extended 

Kalman Filter (see Appendix 2 for more details), which permitted us to 

disentangle the different sources of error and compare their influence on path 

integration errors across participants and between age groups. 

Previous work from Lappe and colleagues (2007, 2011) postulated that a leaky 

integration process might be responsible for path integration errors. Using a 

computational model that involved both a leaky integrator and a velocity gain 

bias, they could successfully explain underestimation effects when subjects had 

to indicate the distance to start following visual movement along straight or 

veering outbound paths. In our present model, the impact of both leak and 

velocity gain bias was relatively similar to the extent to which these two factors 

impacted on overall path integration performance in their studies. On the one 

hand, this suggests that the findings of Lappe et al. (2007, 2011) do not only 

apply to visual distance estimation based on optic flow, but also to more realistic 

path integration scenarios in with both visual and body-based cues can be used 

for path integration along more complex and diverse paths. On the other hand, 

however, using a more finely resolved computational model that includes also 

additional sources of error, we found that a leaky integrator is at most a modest 

contributor to path integration error. Instead, our model revealed that a velocity 

gain bias (i.e., under- or overestimation of movement velocity and, consequently, 

traveled distance) and noise in a person’s reporting of their internal location 

estimate, have considerably higher impact on path integration error, as 

compared to relatively little contributions of leak and an additive velocity bias. 

Most importantly, however, our model showed that path integration computations 

were mainly corrupted by internal noise (i.e., a random diffusion of estimated 

locations away from their true value) that could, theoretically, be a consequence 

of neural and synaptic noise within the brain’s path integration circuit (Compte et 

al., 2000; Brody et al., 2003; Boucheny et al., 2005; Wu et al., 2008; Burak & 

Fiete, 2012).  
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Given the large body of research suggesting that grid cells are the underlying 

neuronal source of path integration computations (Hafting et al., 2005; Fuhs & 

Touretzky, 2006; McNaughton et al., 2006; Burgess et al., 2007; Guanella et al., 

2007; Hasselmo, 2008; Burak & Fiete, 2009; Giocomo et al., 2011; Zilli, 2012; 

Widloski & Fiete, 2014; Gil et al., 2018; Stangl et al., 2018), one could 

hypothesize that the internal noise stems from noisy computations in the grid cell 

system. Similarly, noisy coding of heading direction by head direction cells, or 

noise in the vestibular system, which also conveys information about position 

and orientation of the body, might be other potential origins of internal path 

integration noise. We note, however, that our model does not allow to conclude 

whether internal noise actually originates in one of these systems, and it cannot 

distinguish whether these systems itself may be malfunctioning or whether they 

receive a noisy input signal from earlier levels along the processing stream of 

positional and velocity information. 

In line with previous studies (Mahmood et al., 2009; Adamo et al., 2012; Harris & 

Wolbers, 2012; Bates & Wolbers, 2014), the present work also shows that path 

integration performance is reduced in older as compared to young adults. 

Comparing the impact of the different contributors to path integration errors 

between young and older adults revealed a significantly higher magnitude of 

internal noise in path integration computations of older adults, whereas other 

sources of error were not significantly different between age groups. As 

discussed earlier, this might reflect a higher noise level in older adults’ velocity 

estimation, or noisier coding of self-position in spatially-tuned neurons such as 

grid cells. Most recently, we have demonstrated that grid-cell-like representations 

in the human entorhinal cortex are compromised in old age, and that this 

impairment is associated with higher path integration errors (Stangl et al., 2018). 

Furthermore, there is evidence that certain aspects of the vestibular system 

deteriorate with age (for a review, see Allen et al., 2016), and vestibular loss has 

also been shown to affect path integration performance (Glasauer et al., 2002; 

Xie et al., 2017). While these findings strengthen the idea that noise on a 

neuronal level (e.g., in the grid cell network or in the vestibular system) may be 

responsible for deficient computations of self-position in old age, it remains an 
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important goal for future studies to determine the exact factors that underlie 

increased internal noise in older adults’ path integration computations. 
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6. GENERAL DISCUSSION 

6.1 Summary 

The analysis of human grid-cell-like representations is distinctly non-trivial and 

requires knowledge not only of fMRI analysis methods in general, but also of 

advanced computer programming and specific mathematical techniques. The 

complexity of this analysis method, and the fact that it is not included in standard 

fMRI analysis packages, might explain why there remain relatively few published 

studies in the area of human grid-cell-like representation research so far, despite 

the great interest in this cutting-edge research field. In Project A, entitled “The 

Grid Code Analysis Toolbox (GridCAT)”, a detailed review of the analysis 

method for the detection and investigation of grid-cell-like representations in 

human fMRI data is provided, and different analysis strategies that were applied 

in previous publications are synthesized and discussed in detail. Moreover, 

within Project A, we have developed the MATLAB-based open-source Grid Code 

Analysis Toolbox (GridCAT) for the automated analysis of grid-cell-like 

representations in fMRI signals. The GridCAT can be used to detect grid-cell-like 

representations in the human brain, and to calculate several properties of grid-

cell-like representations, such as their spatial and temporal stability. In addition, 

the GridCAT includes several plotting and data export functions to visualize and 

further analyze these properties depending on the user’s specific research 

question. The GridCAT comes with a graphical user interface, allowing 

researchers to analyze grid-cell-like representations without the need to develop 

their own analysis code. On the one hand, this enables researchers to carry out 

analyses of grid-cell-like representations, regardless of their computer 

programming abilities. On the other hand, it saves time also for experienced 

programmers, as they do not have to develop the analysis pipeline themselves 

but can use the GridCAT’s analysis functions and tailor them to their specific 

needs by adapting the openly available source code. In order to make 
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adaptations of the source code and extensions of the GridCAT’s functionality as 

easy as possible, the toolbox also comes along with example scripts in which the 

source code is explained step-by-step. Finally, users can learn and explore the 

GridCAT’s functionality with the help of the detailed manual, and reproduce the 

results presented in Project A of this thesis by applying all analysis functions to 

an openly available example dataset. Together, reviewing the analysis method 

and developing the GridCAT in Project A not only laid the foundation for further 

projects in this thesis, but will also support other researchers to conduct 

investigations of grid-cell-like representations, helping to elucidate the role of 

grid-cell-like representations in human cognition. 

The grid cell’s main location within the brain, the entorhinal cortex, is known to 

be particularly vulnerable to age-related neurodegeneration and, theoretically, 

such neurodegenerative processes could lead to an impaired function of the grid 

cell system (as discussed in more detail in Section 1.2.2 of this thesis). To date, 

however, it is unknown whether grid cell function changes in the course of 

normal healthy aging. In Project B of this thesis, entitled “Grid-cell-like 

representations in old age”, we therefore applied the GridCAT to investigate grid-

cell-like representations in healthy and cognitively normal young and older 

adults. In line with previous studies (Doeller et al., 2010; Kunz et al., 2015), we 

found a significant magnitude of grid-cell-like representations in young adults 

while they were navigating a virtual environment in an object-location memory 

task during fMRI scanning. In older adults, however, grid-cell-like representation 

magnitudes were significantly lower than in young adults. Further analyses 

showed that this difference in grid-cell-like representation magnitudes between 

young and older adults was predominantly driven by a reduced temporal stability 

(i.e., grid orientations of grid-cell-like representations in older adults were less 

stable over time), whereas spatial stability of grid-cell-like representations (i.e., 

coherence of grid orientations across voxels) seemed to be preserved in old age. 

Control analyses confirmed that the detected grid-cell-like representations in 

young adults show the typical 6-fold symmetry that is expected from the putative 

firing of grid cells, rather than control models testing for other periodicities (i.e., 5-

fold or 7-fold symmetric representations). In further control analyses, we 
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confirmed that our finding of reduced grid-cell-like representations in older adults 

was not driven by other age-related behavioral and neurophysiological 

differences between young and older adults, such as differences in entorhinal 

cortex volume or signal quality, head movement during scanning, performance 

during the navigation task, or different data amounts between young and older 

adults that resulted from differences in task behavior. In sum, we have 

demonstrated in Project B that human grid-cell-like representations, and 

specifically their stability over time, are compromised in healthy older adults. 

Given the importance of grid cells for spatial navigation functions, such an 

impairment could, theoretically, serve as a mechanistic explanation for 

navigational deficits frequently observed in old age. 

Building on the finding of compromised grid-cell-like representations in older 

adults, we then aimed to investigate whether reduced magnitudes of grid-cell-like 

representations are associated with spatial navigation deficits. In Project C of this 

thesis, entitled “Compromised grid-cell-like representations as a mechanistic 

explanation for age-related path integration deficits”, we therefore re-invited the 

same young and older participants from Project B (in whom we had already 

analyzed their grid-cell-like representations). We asked them to perform a novel 

behavioral path integration task, in which they had to integrate self-motion cues 

during movement along pre-defined curved paths. This task was performed in 

two different modalities, allowing path integration to be based on body-based or 

visual self-motion cues only. These data enabled us to estimate each 

participant’s path integration performance, independently for the body-based and 

the visual modality. In accordance with results from previous studies (e.g., 

Mahmood et al., 2009; Adamo et al., 2012; Harris & Wolbers, 2012; Bates & 

Wolbers, 2014) we found that path integration performance was lower in older 

than in young adults, independently for both modalities, suggesting that older 

adults show a modality-independent deficit in computations of self-position. Most 

interestingly, we found an association between individual magnitudes of grid-cell-

like representations and path integration performance in older adults. 

Specifically, older adults with low grid-cell-like representation magnitudes 

showed larger errors in the path integration task. This association between grid-
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cell-like representations and path integration performance was also confirmed by 

a multiple linear regression analysis, in which path integration performance of 

older adults could be predicted by grid-cell-like representation magnitudes, but 

not by demographic factors or a range of neuropsychological test scores. These 

results provide further support for the hypothesis that grid cell function underlies 

path integration computations, as suggested previously (Fuhs & Touretzky, 

2006; McNaughton et al., 2006; Burgess et al., 2007; Guanella et al., 2007; 

Hasselmo, 2008; Burak & Fiete, 2009; Giocomo et al., 2011; Zilli, 2012; Widloski 

& Fiete, 2014). Together, the results of this project support the hypothesis that 

compromised grid-cell-like representations in the human entorhinal cortex might 

serve as a mechanistic explanation for age-related deficits in path integration.  

While compromised grid-cell-like representations could be a key mechanism in 

explaining known path integration deficits in old age, we do not know whether 

and to what extent other factors may also contribute to path integration errors in 

both young and older adults. In Project D, entitled “Sources of path integration 

error in young and older adults”, we therefore aimed to take into account also 

other potential error sources and characterized their individual impact on overall 

path integration errors. We used a path integration task in which participants of 

different ages had to keep track of their own position and orientation by 

integrating both body-based and visual self-motion cues during movement in 

virtual environments. Developing a novel computational model allowed us to 

decompose path integration errors into distinct causes, including memory decay 

(“leak”), internal noise in path integration computations, different bias-types, and 

reporting errors. Applying our computational model on the empirical data 

revealed that path integration errors (in both young and older adults) are 

explained mainly by unbiased noise that could, theoretically, be a consequence 

of noise within the brain’s path integration circuit or of noise in the velocity inputs 

delivered to the neural path integrator. Comparing the components of error in 

young and older adults revealed a significantly higher magnitude of unbiased 

noise in path integration computations of older adults, while other sources of 

error were not significantly different between age groups. In other words, the 

biggest source of error in young adults is further magnified in aging adults, while 
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the smaller sources of error are not significantly compromised with age and 

therefore seem to only play a minor role for age-related path integration deficits. 

Cumulatively, these results provide further support for the notion that noise on a 

neuronal level, which may arise from noisier coding of self-position in spatially-

tuned neurons such as grid cells, could be responsible for deficient navigational 

computations in old age. 

6.2 Limitations 

6.2.1 Limitations related to the Grid Code Analysis Toolbox 

By developing the GridCAT and making the whole output of this project 

(including a detailed description of the method, open source MATLAB code, a 

graphical user interface, and a detailed manual) freely and openly available 

online, we aimed to enable researchers worldwide to carry out analyses of 

human grid-cell-like representations with as few limitations as possible. However, 

there are still some limitations of the toolbox, which might limit its use for some 

users. 

First and foremost, the toolbox requires a MATLAB installation. Although 

research institutions and Universities often provide MATLAB for their students 

and researchers, not everyone who might be interested in carrying out analyses 

of grid-cell-like representations will also own or have access to a MATLAB 

license or will be able to buy this software. Therefore, it would be desirable in 

future to translate the toolbox to different programming languages, for which no 

license or costly software framework needs to be bought. 

Second, the GridCAT is able to only analyze the putative firing of grid cells 

during movement (be it in a virtual environment, in visual space, or in abstract 

space) on a two-dimensional (2D) plane. To date, there is no animal or human 

study that reports how the firing pattern of grid cells looks during movement in 

three-dimensional (3D) space, presumably because of the technical difficulties of 

recording from freely moving animals during 3D movements. But researchers 
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have already started to develop theoretical assumptions and models about the 

hypothesized 3D grid cell firing pattern (Jeffery et al., 2015; Stella & Treves, 

2015; Kim & Maguire, 2018). Due to the lack of knowledge about grid cell firing 

properties in 3D space, and how these might modulate the BOLD signal in fMRI 

measurements, the GridCAT is not designed to analyze data from 3D movement, 

at least not in its current version. 

Third, it is not clear how the different combinations of analysis options within the 

GridCAT impact on analysis results. Although the basic methodology for 

investigating human grid-cell-like representations in fMRI data was similar across 

previously published studies, the exact details of their analysis strategies still 

differed in several aspects. The GridCAT was designed to be flexible and to offer 

a variety of options that have been used previously or that might be potentially 

useful for future studies, but it does neither provide a systematic comparison of 

using different combinations of model parameters and analysis settings, nor a 

critique as to best practice for investigating grid-cell-like representations. 

Therefore, determining the exact factors that aid detection of human grid-cell-like 

representations in fMRI data remains to be addressed in future studies. 

Fourth, the GridCAT does not offer a representational similarity analysis (RSA) 

or multi-voxel pattern analysis (MVPA) approach to analyze grid-cell-like 

representations. Rather than the mass univariate method commonly used to 

examine grid-cell-like representations in human fMRI data, one study by 

Bellmund et al. (2016) applied MVPA to provide evidence for grid-cell-like 

representations in the entorhinal cortex during mental simulation. To date, 

however, the GridCAT does not support this analysis method, but rather offers 

some data export options in order to allow users to analyze their data with 

additional software, such as the MVPA/RSA toolboxes from Nili et al. (2014) or 

Oosterhof et al. (2016). 

6.2.2 Limitations related to our scientific findings 

There are also some limitations of our scientific findings in Projects B, C, and D, 

in which we have investigated age-related changes in grid-cell-like 
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representations as well as the sources and neuronal mechanisms underlying 

path integration errors and age-related path integration deficits. 

First, all of the results presented in this thesis stem from cross-sectional studies. 

Consequently, this work can only provide a snapshot of the differences between 

young and older adults, but it does not allow conclusions about how effects have 

developed in the past or might develop in the future. For example, we tested only 

healthy young and older adults that did not show signs of cognitive decline at the 

time of testing, based on a screening tool for mild cognitive impairment 

(Nasreddine et al., 2005). However, previous studies have reported that older 

adults might already show early symptoms of neurodegeneration (such as a 

pathological deposition of the tau protein in the entorhinal cortex) at a time 

before cognitive deficits can be detected (Braak & Del Tredici, 2015; Mufson et 

al., 2016). We therefore cannot exclude that our findings (e.g., reduced grid-cell-

like representations in the entorhinal cortex and increased in noise in path 

integration computations of older adults, as well as age-related path integration 

deficits) might – at least to some extent – be driven by a proportion of older 

adults who were affected by neurodegenerative processes already. Longitudinal 

studies or follow-up measurements with our participants would be necessary in 

order to specify whether those participants who showed reduced grid-cell-like 

representation magnitudes, increased internal path integration noise, or path 

integration deficits, will also develop pathological signs of cognitive decline or 

dementia in the future. 

Second, our investigations of grid-cell-like representations were focused on the 

entorhinal cortex but not other brain regions. Studies in rodents, bats, and 

nonhuman primates have identified the entorhinal cortex as the grid cell’s 

primary location. Nevertheless, fMRI investigations in humans provided evidence 

for grid-cell-like representations also in several other brain regions, such as 

parietal, lateral temporal, and prefrontal areas (Doeller et al., 2010; 

Constantinescu et al., 2016). Since grid-cell-like representations in the human 

entorhinal cortex have been found to be compromised in a group of young adults 

at increased genetic risk for Alzheimer’s disease (Kunz et al., 2015), we 
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prioritized this region and aimed to acquire fMRI data from the entorhinal cortex 

with relatively high spatial and temporal resolution. Due to these high-resolution 

images, however, we were able only to acquire partial volume fMRI images 

centered on the entorhinal cortex, limiting our coverage of more distant brain 

areas. But recent developments in fMRI scanning techniques, such as multiband 

sequences, might allow for high-resolution functional images of the whole brain 

and will therefore provide a more comprehensive picture of the human grid cell 

system in future studies. 

Third, when combining data from Project B and Project C of this thesis, we found 

an association between grid-cell-like representations in older but not in young 

adults. In young adults, however, we found a significant correlation between grid-

cell-like representation magnitudes and path integration performance only for a 

subgroup with low grid-cell-like representation magnitudes and only for the body-

based path integration modality. Following these findings, we hypothesized that 

an association between grid-cell-like representation magnitudes and path 

integration performance can only be seen when grid-cell-like representations are 

compromised and the grid cell system is therefore not able to provide reliable 

computations of positional information. We note, however, that this hypothesis 

remains speculative, given that these results were calculated only on a relatively 

small sample size (i.e., only five young adults showed low grid-cell-like 

representation magnitudes). Furthermore, the results were rather inconclusive, 

given that low grid-cell-like representation magnitudes in young adults were only 

correlated with path integration performance in the body-based but not in the 

visual modality. 

Fourth, we want to point out that associations between grid-cell-like 

representations and path integration performance in our study do not necessarily 

reflect a causal relationship. In our data, we found a link between grid-cell-like 

representations and path integration performance separately for two independent 

path integration modalities, through both a correlational analysis and a multiple 

linear regression analysis. Such a link seems theoretically plausible, as a large 

body of previous research suggests that grid cells would provide the neuronal 
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basis for path integration computations (Fuhs & Touretzky, 2006; McNaughton et 

al., 2006; Burgess et al., 2007; Guanella et al., 2007; Hasselmo, 2008; Burak & 

Fiete, 2009; Giocomo et al., 2011; Zilli, 2012; Widloski & Fiete, 2014; Gil et al., 

2018). Nevertheless, the correlational methods used in the present studies do 

not test causal relationships between grid-cell-like representations and path 

integration performance. Therefore, further research is needed to determine the 

precise nature of the link between grid-cell-like representations and path 

integration computations. 

Finally, while our computational path integration model supports the notion that 

noise on a neuronal level may be responsible for age-related degradation of path 

integration performance, it cannot provide evidence as to the actual origin of this 

noise. Theoretically, such internal noise can be a consequence of noise within 

the brain’s path integration circuit or of noise in the velocity inputs delivered to 

the neural path integrator (Compte et al., 2000; Brody et al., 2003; Boucheny et 

al., 2005; Wu et al., 2008; Burak & Fiete, 2012). Noise within the path integration 

circuit, in turn, might correspond to stochastic neural or synaptic processes 

within the grid cell system. Similarly, noise in sensory systems (e.g. in the visual, 

vestibular, and proprioceptive peripheries) as well as in the downstream coding 

and processing systems for the estimation of self-motion could contribute to 

noise-like errors in our model. Without an independent measurement of the 

velocity estimates of the subject, however, our model cannot distinguish between 

noise in the velocity input to the integrator versus the intrinsic operation of the 

integrator. The precise origin of internal noise in path integration computations 

therefore remains to be determined in future studies. 

6.3 Implications and future perspectives 

Implementing analyses of grid-cell-like representations in human fMRI data is a 

time-consuming and non-trivial task that requires advanced computer 

programming and mathematical skills. We have therefore developed the 

GridCAT in order to save time for researchers, and also to enable those who 
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might not possess these skills to carry out such analyses. As the GridCAT’s 

source code is open to everyone and its license allows any modification and 

extension of its functionality, new and additional features can be easily added to 

the toolbox by researchers around the world. For example, additional functions 

could be included in the toolbox to allow analyses not only by mass univariate 

approaches but also MVPA or RSA methods. Moreover, translating the open 

source code to other programming languages that are not depending on a costly 

software framework, would allow an even more widespread use of the toolbox 

and further speed-up progress in this research field. By making the GridCAT 

freely and openly available to all users, and by providing a comprehensive 

overview and synthesizing the different analysis strategies for the analysis of 

grid-cell-like representations, we hope that we can open up this exciting research 

area to the wider neuroscience community and help to address novel research 

questions regarding the role of grid cells and grid-cell-like representations in 

human cognition. 

For example, one such key question has been addressed within this thesis: Does 

aging affect grid cells and could age-related changes in grid cell function be 

associated with impairments in spatial navigation computations? The results of 

Projects B and C support the hypothesis that compromised grid-cell-like 

representations could be a key mechanism to explain path integration deficits in 

older adults. Moreover, our computational model further strengthens this notion 

based on two findings in Project D: First, the model identified internal noise in 

path integration computations as the main source of path integration error, which 

may arise from dysfunctional coding in spatially-tunes neurons such as grid cells. 

Second, the model revealed that other factors, such as memory decay, biases, 

or errors in reporting an internal location estimate, play only a minor role for path 

integration errors across individuals and in explaining age-related path 

integration deficits. 

While our computational model included a range of potential error sources that 

can corrupt path integration performance in young and old age, we do not know 

how and to what extent individual sources of error are influenced by specific 
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cognitive processes that might also be involved in path integration computations. 

For example, Petzschner and colleagues suggested that knowledge about prior 

experience could be dynamically incorporated into current estimates of 

displacement and therefore also impact on path integration performance 

(Petzschner & Glasauer, 2011; Petzschner et al., 2015). As we have isolated 

here the different sources of error and characterized their individual impact on 

overall path integration performance, our work has also laid the foundation for 

future studies to investigate the impact of additional error sources on 

navigational abilities and age-related navigational deficits, such as a-priori 

assumptions that subjects have about the world. 

Building on the findings in this thesis, another important research question for 

future studies will be: What causes compromised human grid-cell-like 

representations in the entorhinal cortex and increased internal noise in path 

integration computations of older adults? Hypothetically, reduced grid-cell-like 

representations and internal noise could be a consequence of 

neurodegenerative processes such as a pathological deposition of harmful 

amyloid-β plaques and tau in neurofibrillary tangles. Previous studies have 

shown an increased accumulation particularly of the tau protein in the entorhinal 

cortex of older adults who do not show signs of cognitive decline (Braak & Del 

Tredici, 2015; Mufson et al., 2016).  Such an accumulation of tau, in turn, can 

cause synaptic dysfunction and neuronal loss (Gómez-Isla et al., 1997; Di et al., 

2016; Bejanin et al., 2017). And indeed, Fu et al. (2017) most recently found that 

tau pathology in old mice induced impaired grid cell function. Consequently, one 

could assume that pathological tau accumulation might be the driving factor 

behind our finding of compromised human grid-cell-like representations in old 

age, which might in turn explain noisier path integration computations and higher 

path integration errors. In order to test this important hypothesis, future studies 

could combine fMRI measurements of human grid-cell-like representations with 

positron emission tomography (PET) scanning to quantify tau pathology in 

humans, and investigate the relationship between these two measures. 
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Alternatively, compromised grid-cell-like representations as well as increased 

noise in older adults' path integration computations could also be a consequence 

of dysfunctional input to grid cells, potentially from earlier levels along the 

processing stream of positional information. It has been shown that the 

entorhinal cortex receives input from the head direction system (Alonso & Klink, 

1993; Amaral & Witter, 1995; Burgess et al., 2007) and that the firing of grid cells 

is often modulated by head direction (Sargolini et al., 2006). Impaired head 

direction signal input to the grid cell system would therefore be another potential 

explanation for grid cell dysfunction and internal path integration noise. 

Theoretically, if grid cells receive deficient input from the head direction system, 

like a higher variability in directional coding, this might cause less stable and 

more variable grid cell firing, leading to noisier and less accurate path integration 

computations. As no study has yet investigated age-related changes in the head 

direction system, future studies could apply combined measurements of the 

head direction cell and the grid cell system, in order to shed light on this open 

question. 

In addition, age-related impairments in vestibular processing might also be 

related to our findings of noisier path integration computations and compromised 

grid-cell-like representations in older adults. It is known that certain aspects of 

the vestibular system deteriorate with age (for a review, see Allen et al., 2016). 

Also, previous studies suggest that the vestibular system provides critical input 

for the generation of spatial representations (Horii et al., 1994; Stackman et al., 

2002; Yoder & Taube, 2014). As vestibular signals convey information about 

position and orientation of the body, age-related impairments in the vestibular 

system could lead to noisier and imprecise coding in spatially selective cells, 

including grid cells. This might, in turn, explain results from previous studies 

showing that vestibular loss is associated with path integration deficits (Glasauer 

et al., 2002; Xie et al., 2017). Testing this hypothesis as well as a more precise 

characterization of the vestibular system’s impact on grid cell function and grid-

cell-like representations, however, awaits further investigation. 
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We note that, even though magnitudes of grid-cell-like representations were on 

average lower in older than in young adults, a proportion of older adults in our 

sample, namely those who performed well in the path integration task, showed 

normal magnitudes of grid-cell-like representations. In fact, grid-cell-like 

representation magnitudes of these older adults could not be distinguished from 

magnitudes of young adults in our sample. It is unclear, however, which factors 

distinguish those older adults with low grid-cell-like representation magnitudes 

from those in which grid-cell-like representations seem to be preserved. Future 

studies might aim to identify the factors that protect individuals from decline in 

grid-cell-like representations during aging. For example, investigating such 

protective factors in longitudinal studies with larger sample sizes might provide 

important insight into the factors that distinguish healthy older adults from those 

with navigational deficits. In turn, this would be an important step towards the 

development of efficient interventions and therapeutic approaches to counteract 

age-related decline in navigational functions. 

As of this writing, all studies on human grid-cell-like representations, including 

the studies in this thesis, have exclusively investigated healthy individuals. 

However, it might be a promising future research approach to examine grid-cell-

like representations not only in healthy individuals but also in longitudinal studies 

with groups of patients during the development of neurodegenerative disorders 

such as Alzheimer’s disease. It has been shown that the entorhinal cortex is one 

of the regions that is affected earliest by the neuropathology of Alzheimer’s 

disease (Braak & Braak, 1991; Gómez-Isla et al., 1996; Du et al., 2001; 

Pennanen et al., 2004; Masdeu et al., 2005; Stranahan & Mattson, 2010; Khan et 

al., 2014), and the study of Kunz et al. (2015) demonstrated that already healthy 

young adults at increased genetic risk of Alzheimer’s disease show changes in 

entorhinal grid-cell-like representations. It should therefore be explored whether 

grid-cell-like representations might serve as a potential biomarker for integrity of 

the grid cell system and entorhinal cortex function, as such a biomarker could aid 

early detection of Alzheimer’s disease by identifying earliest neuropathological 

changes before detectable cognitive symptoms are shown. 
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Moreover, not only the detection of neurophysiological changes, such as 

compromised grid-cell-like representations, but also tasks measuring 

navigational abilities could help to detect pathological development in early 

stages of Alzheimer’s disease. The brain’s key regions for spatial navigation, 

such as the entorhinal and perirhinal cortex, hippocampus, precuneus, and 

retrosplenial cortex, are amongst the first cortical structures that are affected by 

Alzheimer’s pathology (Braak & Braak, 1995; Pengas et al., 2010; Jagust, 2018). 

It is therefore not surprising that behavioral deficits in navigation tasks belong to 

the earliest symptoms of Alzheimer’s disease (Hort et al., 2007; Laczó et al., 

2010; Mokrisova et al., 2016). Consequently, assessing navigational abilities in 

older adults, for example with tasks measuring path integration performance, 

might facilitate early detection of neuropathological changes and predict the 

development of Alzheimer’s disease or cognitive impairments on an individual 

basis. Given the necessity to stop the progression of Alzheimer’s pathology as 

early as possible, it would be an important research goal to adopt a longitudinal 

approach and explore the clinical potential of assessing both grid-cell-like 

representations and spatial navigation abilities for an early prediction of 

Alzheimer's disease. 

Ever since their discovery, grid cells were thought to provide a metric for space 

and support spatial navigation computations. In recent years, however, several 

studies have demonstrated that grid cells and grid-cell-like representations are 

involved not only in spatial navigation computations, but also in other cognitive 

functions, including auditory processing in rats (Aronov et al., 2017), visual 

processing in humans (Julian et al., 2018; Nau et al., 2018) and non-human 

primates (Killian et al., 2012), as well as mechanisms for organizing conceptual 

knowledge in the human memory network (Constantinescu et al., 2016). 

Therefore, future investigations will show whether age-related changes in the 

grid cell system might explain not only navigational deficits in old age, but also a 

more general decline in higher-order cognitive functions beyond spatial 

navigation. 

 



 

 REFERENCES 151 

REFERENCES 

Adamo, D. E., Briceño, E. M., Sindone, J. A., Alexander, N. B., & Moffat, S. D. (2012). Age differences in 
virtual environment and real world path integration. Frontiers in Aging Neuroscience, 4, 26. 

Allen, D., Ribeiro, L., Arshad, Q., & Seemungal, B. M. (2016). Age-Related Vestibular Loss: Current 
Understanding and Future Research Directions. Frontiers in Neurology, 7, 231. 

Allen, G. L., Kirasic, K. C., Rashotte, M. A., & Haun, D. B. M. (2004). Aging and path integration skill: 
Kinesthetic and vestibular contributions to wayfinding. Perception & Psychophysics, 66, 170–179. 

Alonso, A., & Klink, R. (1993). Differential electroresponsiveness of stellate and pyramidal-like cells of 
medial entorhinal cortex layer II. Journal of Neurophysiology, 70, 128–143. 

Amaral, D., & Witter, M. (1995). The Hippocampus. In Paxinos G (Ed.), The Rat Nervous System. 2nd ed. 
(pp. 443–493). Ney York. 

Aronov, D., Nevers, R., & Tank, D. W. (2017). Mapping of a non-spatial dimension by the hippocampal-
entorhinal circuit. Nature, 543, 719–722. 

Barnes, C. A., Suster, M. S., Shen, J., & McNaughton, B. L. (1997). Multistability of cognitive maps in the 
hippocampus of old rats. Nature, 388, 272–275. 

Barry, C., Hayman, R., Burgess, N., & Jeffery, K. J. (2007). Experience-dependent rescaling of entorhinal 
grids. Nature Neuroscience, 10, 682–684. 

Bassett, J. P., & Taube, J. S. (2001). Neural correlates for angular head velocity in the rat dorsal tegmental 
nucleus. The Journal of Neuroscience, 21, 5740–5751. 

Bates, S. L., & Wolbers, T. (2014). How cognitive aging affects multisensory integration of navigational 
cues. Neurobiology of Aging, 35, 2761–2769. 

Bejanin, A., Schonhaut, D. R., La Joie, R., Kramer, J. H., Baker, S. L., Sosa, N., Ayakta, N., Cantwell, A., … 
Rabinovici, G. D. (2017). Tau pathology and neurodegeneration contribute to cognitive impairment in 
Alzheimer’s disease. Brain, 140, 3286–3300. 

Bellmund, J. L., Deuker, L., Navarro Schröder, T., & Doeller, C. F. (2016). Grid-cell representations in 
mental simulation. eLife, 5, 12897–12901. 

Berens, P. (2009). CircStat: A MATLAB Toolbox for Circular Statistics. Journal of Statistical Software, 31, 1–
21. 

Berron, D., Vieweg, P., Hochkeppler, A., Pluta, J. B., Ding, S.-L., Maass, A., Luther, A., Xie, L., … Wisse, L. 
E. M. (2017). A protocol for manual segmentation of medial temporal lobe subregions in 7Tesla MRI. 
NeuroImage: Clinical, 15, 466–482. 

Biazoli, C. E., Goto, M., Campos, A. M. P., & Canteras, N. S. (2006). The supragenual nucleus: A putative 
relay station for ascending vestibular signs to head direction cells. Brain Research, 1094, 138–148. 

Boucheny, C., Brunel, N., & Arleo, A. (2005). A continuous attractor network model without recurrent 
excitation: Maintenance and integration in the head direction cell system. Journal of Computational 
Neuroscience, 18, 205–227. 

Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta 
Neuropathologica, 82, 239–259. 

Braak, H., & Braak, E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiology 
of Aging, 16, 271–278. 

Braak, H., & Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic 
Alzheimer’s disease. Brain, 138, 2814–2833. 

Britten, K. H. (2008). Mechanisms of Self-Motion Perception. Annual Review of Neuroscience, 31, 389–410. 

Brody, C. D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: Discrete 
attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13, 
204–211. 



 

152 REFERENCES 

Brun, V. H., Leutgeb, S., Wu, H.-Q., Schwarcz, R., Witter, M. P., Moser, E. I., & Moser, M.-B. (2008). 
Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron, 57, 
290–302. 

Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013). Rats and Humans Can Optimally Accumulate 
Evidence for Decision-Making. Science, 340, 95–98. 

Burak, Y., & Fiete, I. R. (2009). Accurate Path Integration in Continuous Attractor Network Models of Grid 
Cells. PLoS Computational Biology, 5, e1000291. 

Burak, Y., & Fiete, I. R. (2012). Fundamental limits on persistent activity in networks of noisy neurons. 
Proceedings of the National Academy of Sciences, 109, 17645–17650. 

Burgess, N., Barry, C., & O’Keefe, J. (2007). An oscillatory interference model of grid cell firing. 
Hippocampus, 17, 801–812. 

Butler, W. N., & Taube, J. S. (2015). The nucleus prepositus hypoglossi contributes to head direction cell 
stability in rats. The Journal of Neuroscience, 35, 2547–2558. 

Chrastil, E. R., Sherrill, K. R., Aselcioglu, I., Hasselmo, M. E., & Stern, C. E. (2017). Individual Differences in 
Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, 
Hippocampus, and Medial Prefrontal Cortex. eNeuro, 4, 0346-16. 

Clark, B. J., Brown, J. E., & Taube, J. S. (2012). Head direction cell activity in the anterodorsal thalamus 
requires intact supragenual nuclei. Journal of Neurophysiology, 108, 2767–2784. 

Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P., & Riva, G. (2017). Egocentric 
and allocentric spatial reference frames in aging: A systematic review. Neuroscience & Biobehavioral 
Reviews, 80, 605–621. 

Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network 
dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10, 910–

923. 

Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. J. (2016). Organizing conceptual knowledge in 
humans with a gridlike code. Science, 352, 1464–1468. 

Cornsweet, T. N., & Teller, D. Y. (1965). Relation of increment thresholds to brightness and luminance. 
Journal of the Optical Society of America, 55, 1303–1308. 

Cullen, K. E. (2012). The vestibular system: Multimodal integration and encoding of self-motion for motor 
control. Trends in Neurosciences, 35, 185–196. 

Daugherty, A. M., Yuan, P., Dahle, C. L., Bender, A. R., Yang, Y., & Raz, N. (2015). Path Complexity in 
Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume. 
Cerebral Cortex, 25, 3122–3131. 

de Almeida, L., Idiart, M., & Lisman, J. E. (2009). The input-output transformation of the hippocampal 
granule cells: From grid cells to place fields. The Journal of Neuroscience, 29, 7504–7512. 

Di, J., Cohen, L. S., Corbo, C. P., Phillips, G. R., El Idrissi, A., & Alonso, A. D. (2016). Abnormal tau induces 
cognitive impairment through two different mechanisms: Synaptic dysfunction and neuronal loss. 
Scientific Reports, 6, 20833. 

Ding, S.-L., Royall, J. J., Sunkin, S. M., Ng, L., Facer, B. A. C., Lesnar, P., Guillozet-Bongaarts, A., 
McMurray, B., … Lein, E. S. (2016). Comprehensive cellular-resolution atlas of the adult human brain. 
Journal of Comparative Neurology, 524, 3127–3481. 

Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 
463, 657–661. 

Du, A. T., Schuff, N., Amend, D., Laakso, M. P., Hsu, Y. Y., Jagust, W. J., Yaffe, K., Kramer, J. H., … 
Weiner, M. W. (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild 
cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 71, 
441–447. 

Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). 
Cellular networks underlying human spatial navigation. Nature, 425, 184–188. 

Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14, 180–192. 

Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews 
Neuroscience, 9, 292–303. 



 

 REFERENCES 153 

Fechner, G. (1966). Elements of Psychophysics. (D. H. Howes, Ed.). New York City: Holt, Rinehart and 
Winston. 

Feigenbaum, J. D., & Rolls, E. T. (1991). Allocentric and egocentric spatial information processing in the 
hippocampal formation of the behaving primate. Psychobiology, 19, 21–40. 

Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Dale, A. M., … 
Alzheimer Disease Neuroimaging Initiative. (2014). Accelerating Cortical Thinning: Unique to 
Dementia or Universal in Aging? Cerebral Cortex, 24, 919–934. 

Fu, H., Rodriguez, G. A., Herman, M., Emrani, S., Nahmani, E., Barrett, G., Figueroa, H. Y., Goldberg, E., 
… Al., E. (2017). Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial 
Memory Deficits Reminiscent of Early Alzheimer’s Disease. Neuron, 93, 533–541. 

Fuhs, M. C., & Touretzky, D. S. (2006). A Spin Glass Model of Path Integration in Rat Medial Entorhinal 
Cortex. The Journal of Neuroscience, 26, 4266–4276. 

Fujita, N., Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (1993). The Encoding-Error Model of Pathway 
Completion without Vision. Geographical Analysis, 25, 295–314. 

Fyhn, M., Hafting, T., Treves, A., Moser, M.-B., & Moser, E. I. (2007). Hippocampal remapping and grid 
realignment in entorhinal cortex. Nature, 446, 190–194. 

Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., & Moser, M.-B. (2004). Spatial Representation in the 
Entorhinal Cortex. Science, 305, 1258–1264. 

Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press. 

Gaydos, H. F. (1958). Sensitivity in the Judgment of Size by Finger-Span. The American Journal of 
Psychology, 71, 557. 

Gil, M., Ancau, M., Schlesiger, M. I., Neitz, A., Allen, K., De Marco, R. J., & Monyer, H. (2018). Impaired 
path integration in mice with disrupted grid cell firing. Nature Neuroscience, 21, 81–91. 

Giocomo, L. M., Moser, M.-B., & Moser, E. I. (2011). Computational Models of Grid Cells. Neuron, 71, 589–
603. 

Glasauer, S., Amorim, M.-A., Viaud-Delmon, I., & Berthoz, A. (2002). Differential effects of labyrinthine 
dysfunction on distance and direction during blindfolded walking of a triangular path. Experimental 
Brain Research, 145, 489–497. 

Gómez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J. H., Petersen, R. C., Parisi, J. E., & Hyman, B. 
T. (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. 
Annals of Neurology, 41, 17–24. 

Gómez-Isla, T., Price, J. L., McKeel, D. W., Morris, J. C., Growdon, J. H., & Hyman, B. T. (1996). Profound 
loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. The Journal of 
Neuroscience, 16, 4491–4500. 

Guanella, A., Kiper, D., & Verschure, P. (2007). A model of grid cells based on a twisted torus topology. 
International Journal of Neural Systems, 17, 231–240. 

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a spatial map in the 
entorhinal cortex. Nature, 436, 801–806. 

Harris, M. A., & Wolbers, T. (2012). Ageing effects on path integration and landmark navigation. 
Hippocampus, 22, 1770–1780. 

Hasselmo, M. E. (2008). Grid cell mechanisms and function: Contributions of entorhinal persistent spiking 
and phase resetting. Hippocampus, 18, 1213–1229. 

Hasselmo, M. E. (2009). A model of episodic memory: Mental time travel along encoded trajectories using 
grid cells. Neurobiology of Learning and Memory, 92, 559–573. 

Hayman, R. M., & Jeffery, K. J. (2008). How heterogeneous place cell responding arises from 
homogeneous grids--a contextual gating hypothesis. Hippocampus, 18, 1301–1313. 

Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain 
Research, 209, 49–58. 

Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-
report measure of environmental spatial ability. Intelligence, 30, 425–447. 

Hitier, M., Besnard, S., & Smith, P. F. (2014). Vestibular pathways involved in cognition. Frontiers in 
Integrative Neuroscience, 8, 59. 



 

154 REFERENCES 

Horii, A., Takeda, N., Mochizuki, T., Okakura-Mochizuki, K., Yamamoto, Y., & Yamatodani, A. (1994). 
Effects of vestibular stimulation on acetylcholine release from rat hippocampus: An in vivo 
microdialysis study. Journal of Neurophysiology, 72, 605–611. 

Horner, A. J., Bisby, J. A., Zotow, E., Bush, D., & Burgess, N. (2016). Grid-like Processing of Imagined 
Navigation. Current Biology, 26, 842–847. 

Hort, J., Laczó, J., Vyhnálek, M., Bojar, M., Bures, J., & Vlcek, K. (2007). Spatial navigation deficit in 
amnestic mild cognitive impairment. Proceedings of the National Academy of Sciences, 104, 4042–

4047. 

Indow, T., & Stevens, S. S. (1966). Scaling of saturation and hue. Perception & Psychophysics, 1, 253–271. 

Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106, 1221–1247. 

Jacob, P.-Y., Gordillo-Salas, M., Facchini, J., Poucet, B., Save, E., & Sargolini, F. (2017). Medial entorhinal 
cortex and medial septum contribute to self-motion-based linear distance estimation. Brain Structure 
and Function, 222, 2727–2742. 

Jacob, P.-Y., Poucet, B., Liberge, M., Save, E., & Sargolini, F. (2014). Vestibular control of entorhinal cortex 
activity in spatial navigation. Frontiers in Integrative Neuroscience, 8, 38. 

Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J. F., Wei, X.-X., Suthana, N., Sperling, M. 
R., … Kahana, M. J. (2013). Direct recordings of grid-like neuronal activity in human spatial 
navigation. Nature Neuroscience, 16, 1188–1190. 

Jagust, W. (2018). Following the pathway to Alzheimer’s disease. Nature Neuroscience, 21, 306–308. 

Jeffery, K. J., Wilson, J. J., Casali, G., & Hayman, R. M. (2015). Neural encoding of large-scale three-
dimensional space-properties and constraints. Frontiers in Psychology, 6, 927. 

Jones, K. E., Hamilton, A. F., & Wolpert, D. M. (2002). Sources of signal-dependent noise during isometric 
force production. Journal of Neurophysiology, 88, 1533–1544. 

Julian, J. B., Keinath, A. T., Frazzetta, G., & Epstein, R. A. (2018). Human entorhinal cortex represents 
visual space using a boundary-anchored grid. Nature Neuroscience, 21, 191–194. 

Kelley, C. L., & Charness, N. (1995). Issues in training older adults to use computers. Behaviour & 
Information Technology, 14, 107–120. 

Kessels, R. P. C., van Zandvoort, M. J. E., Postma, A., Kappelle, L. J., & de Haan, E. H. F. (2000). The 
Corsi Block-Tapping Task: Standardization and Normative Data. Applied Neuropsychology, 7, 252–
258. 

Khan, U. A., Liu, L., Provenzano, F. A., Berman, D. E., Profaci, C. P., Sloan, R., Mayeux, R., Duff, K. E., & 
Small, S. A. (2014). Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in 
preclinical Alzheimer’s disease. Nature Neuroscience, 17, 304–311. 

Killian, N. J., Jutras, M. J., & Buffalo, E. A. (2012). A map of visual space in the primate entorhinal cortex. 
Nature, 491, 761–764. 

Kim, M., & Maguire, E. A. (2018). 3D grid cells in human entorhinal cortex: Theoretical and methodological 
considerations and fMRI findings. bioRxiv, 282327. 

Konishi, S., & Kitagawa, G. (2008). Information Criteria and Statistical Modeling. New York: Springer. 

Kropff, E., Carmichael, J. E., Moser, M.-B., & Moser, E. I. (2015). Speed cells in the medial entorhinal 
cortex. Nature, 523, 419–424. 

Kunz, L., Schröder, T. N., Lee, H., Montag, C., Lachmann, B., Sariyska, R., Reuter, M., Stirnberg, R., … 
Axmacher, N. (2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s 
disease. Science, 350, 430–433. 

Laczó, J., Andel, R., Vyhnalek, M., Vlcek, K., Magerova, H., Varjassyova, A., Tolar, M., & Hort, J. (2010). 
Human analogue of the morris water maze for testing subjects at risk of Alzheimer’s disease. 
Neurodegenerative Diseases, 7, 148–152. 

Lappe, M., Jenkin, M., & Harris, L. R. (2007). Travel distance estimation from visual motion by leaky path 
integration. Experimental Brain Research, 180, 35–48. 

Lappe, M., Stiels, M., Frenz, H., & Loomis, J. M. (2011). Keeping track of the distance from home by leaky 
integration along veering paths. Experimental Brain Research, 212, 81–89. 

Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A., & Wolbers, T. (2017). The Aging Navigational 
System. Neuron, 95, 1019–1035. 



 

 REFERENCES 155 

Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., & Burgess, N. (2009). Boundary Vector Cells in the 
Subiculum of the Hippocampal Formation. The Journal of Neuroscience, 29, 9771–9777. 

Liu, I., Levy, R. M., Barton, J. J. S., & Iaria, G. (2011). Age and gender differences in various topographical 
orientation strategies. Brain Research, 1410, 112–119. 

Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). 
Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of 
Experimental Psychology: General, 122, 73–91. 

Luis, C. A., Keegan, A. P., & Mullan, M. (2009). Cross validation of the Montreal Cognitive Assessment in 
community dwelling older adults residing in the Southeastern US. International Journal of Geriatric 
Psychiatry, 24, 197–201. 

Lyttle, D., Gereke, B., Lin, K. K., & Fellous, J.-M. (2013). Spatial scale and place field stability in a grid-to-
place cell model of the dorsoventral axis of the hippocampus. Hippocampus, 23, 729–744. 

Mahmood, O., Adamo, D., Briceno, E., & Moffat, S. D. (2009). Age differences in visual path integration. 
Behavioural Brain Research, 205, 88–95. 

Masdeu, J. C., Zubieta, J. L., & Arbizu, J. (2005). Neuroimaging as a marker of the onset and progression of 
Alzheimer’s disease. Journal of the Neurological Sciences, 236, 55–64. 

McHugh, T. J., Blum, K. I., Tsien, J. Z., Tonegawa, S., & Wilson, M. A. (1996). Impaired Hippocampal 
Representation of Space in CA1-Specific NMDAR1 Knockout Mice. Cell, 87, 1339–1349. 

McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M.-B. (2006). Path integration and 
the neural basis of the “cognitive map.” Nature Reviews Neuroscience, 7, 663–678. 

Mehta, M. R., Barnes, C. A., & McNaughton, B. L. (1997). Experience-dependent, asymmetric expansion of 
hippocampal place fields. Proceedings of the National Academy of Sciences, 94, 8918–8921. 

Mehta, M. R., Quirk, M. C., & Wilson, M. A. (2000). Experience-dependent asymmetric shape of 
hippocampal receptive fields. Neuron, 25, 707–715. 

Mittelstaedt, M.-L., & Mittelstaedt, H. (1980). Homing by path integration in a mammal. 
Naturwissenschaften, 67, 566–567. 

Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric 
cognitive mapping. Behavioral Neuroscience, 116, 851–859. 

Moffat, S. D., Zonderman, A. B., & Resnick, S. M. (2001). Age differences in spatial memory in a virtual 
environment navigation task. Neurobiology of Aging, 22, 787–796. 

Mokrisova, I., Laczo, J., Andel, R., Gazova, I., Vyhnalek, M., Nedelska, Z., Levcik, D., Cerman, J., … Hort, 
J. (2016). Real-space path integration is impaired in Alzheimer’s disease and mild cognitive 
impairment. Behavioural Brain Research, 307, 150–158. 

Molter, C., & Yamaguchi, Y. (2008). Impact of temporal coding of presynaptic entorhinal cortex grid cells on 
the formation of hippocampal place fields. Neural Networks, 21, 303–310. 

Monaco, J. D., & Abbott, L. F. (2011). Modular realignment of entorhinal grid cell activity as a basis for 
hippocampal remapping. The Journal of Neuroscience, 31, 9414–9425. 

Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal 
of Neuroscience Methods, 11, 47–60. 

Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place Cells, Grid Cells, and the Brain’s Spatial 
Representation System. Annual Review of Neuroscience, 31, 69–89. 

Moser, M.-B., Rowland, D. C., & Moser, E. I. (2015). Place Cells, Grid Cells, and Memory. Cold Spring 
Harbor Perspectives in Biology, 7, a021808. 

Mufson, E. J., Malek-Ahmadi, M., Perez, S. E., & Chen, K. (2016). Braak staging, plaque pathology, and 
APOE status in elderly persons without cognitive impairment. Neurobiology of Aging, 37, 147–153. 

Nagel, I. E., Preuschhof, C., Li, S.-C., Nyberg, L., Backman, L., Lindenberger, U., & Heekeren, H. R. (2009). 
Performance level modulates adult age differences in brain activation during spatial working memory. 
Proceedings of the National Academy of Sciences, 106, 22552–22557. 

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., 
& Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild 
Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695–699. 



 

156 REFERENCES 

Nau, M., Navarro Schröder, T., Bellmund, J. L. S., & Doeller, C. F. (2018). Hexadirectional coding of visual 
space in human entorhinal cortex. Nature Neuroscience, 21, 188–190. 

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., Kriegeskorte, N., Alivisatos, A., Chun, M., … 
Müller, K. (2014). A Toolbox for Representational Similarity Analysis. PLoS Computational Biology, 
10, e1003553. 

O’Keefe, J., & Burgess, N. (2005). Dual phase and rate coding in hippocampal place cells: Theoretical 
significance and relationship to entorhinal grid cells. Hippocampus, 15, 853–866. 

O’Keefe, J., & Conway, D. H. (1978). Hippocampal place units in the freely moving rat: Why they fire where 
they fire. Experimental Brain Research, 31, 573–590. 

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit 
activity in the freely-moving rat. Brain Research, 34, 171–175. 

Oberlin, K. W. (1936). Variation in intensive sensitivity to lifted weights. Journal of Experimental Psychology, 
19, 438–455. 

Oosterhof, N. N., Connolly, A. C., & Haxby, J. V. (2016). CoSMoMVPA: Multi-Modal Multivariate Pattern 
Analysis of Neuroimaging Data in Matlab/GNU Octave. Frontiers in Neuroinformatics, 10, 27. 

Parron, C., & Save, E. (2004). Evidence for entorhinal and parietal cortices involvement in path integration 
in the rat. Experimental Brain Research, 159, 349–359. 

Pavliotis, G. A. (2014). Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and 
Langevin Equations. New York: Springer. 

Pengas, G., Hodges, J. R., Watson, P., & Nestor, P. J. (2010). Focal posterior cingulate atrophy in incipient 
Alzheimer’s disease. Neurobiology of Aging, 31, 25–33. 

Pennanen, C., Kivipelto, M., Tuomainen, S., Hartikainen, P., Hänninen, T., Laakso, M. P., Hallikainen, M., 
Vanhanen, M., … Soininen, H. (2004). Hippocampus and entorhinal cortex in mild cognitive 
impairment and early AD. Neurobiology of Aging, 25, 303–310. 

Petzschner, F. H., & Glasauer, S. (2011). Iterative Bayesian Estimation as an Explanation for Range and 
Regression Effects: A Study on Human Path Integration. The Journal of Neuroscience, 31, 17220–
17229. 

Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation. 
Trends in Cognitive Sciences, 19, 285–293. 

Rochefort, C., Lefort, J., & Rondi-Reig, L. (2013). The cerebellum: A new key structure in the navigation 
system. Frontiers in Neural Circuits, 7, 35. 

Rolls, E. T., Stringer, S. M., & Elliot, T. (2006). Entorhinal cortex grid cells can map to hippocampal place 
cells by competitive learning. Network, 17, 447–465. 

Rowland, D. C., Roudi, Y., Moser, M.-B., & Moser, E. I. (2016). Ten Years of Grid Cells. Annual Review of 
Neuroscience, 39, 19–40. 

Sadalla, E. K., & Montello, D. R. (1989). Remembering Changes in Direction. Environment and Behavior, 
21, 346–363. 

Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L., Witter, M. P., Moser, M.-B., & Moser, E. I. (2006). 
Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science, 312, 758–
762. 

Savelli, F., & Knierim, J. J. (2010). Hebbian analysis of the transformation of medial entorhinal grid-cell 
inputs to hippocampal place fields. Journal of Neurophysiology, 103, 3167–3183. 

Schimanski, L. A., Lipa, P., & Barnes, C. A. (2013). Tracking the Course of Hippocampal Representations 
during Learning: When Is the Map Required? The Journal of Neuroscience, 33, 3094–3106. 

Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn, J. T. (1979). Motor-output variability: A 
theory for the accuracy of rapid motor acts. Psychological Review, 47, 415–451. 

Sharp, P. E., Blair, H. T., & Cho, J. (2001). The anatomical and computational basis of the rat head-direction 
cell signal. Trends in Neurosciences, 24, 289–294. 

Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E., & Weaver, K. L. (1997). The effect of aging on 
experience-dependent plasticity of hippocampal place cells. The Journal of Neuroscience, 17, 6769–
6782. 



 

 REFERENCES 157 

Sherrill, K. R., Erdem, U. M., Ross, R. S., Brown, T. I., Hasselmo, M. E., & Stern, C. E. (2013). 
Hippocampus and Retrosplenial Cortex Combine Path Integration Signals for Successful Navigation. 
The Journal of Neuroscience, 33, 19304–19313. 

Shine, J. P., Valdés-Herrera, J. P., Hegarty, M., & Wolbers, T. (2016). The Human Retrosplenial Cortex and 
Thalamus Code Head Direction in a Global Reference Frame. The Journal of Neuroscience, 36, 
6371–6381. 

Si, B., & Treves, A. (2009). The role of competitive learning in the generation of DG fields from EC inputs. 
Cognitive Neurodynamics, 3, 177–187. 

Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B., & Moser, E. I. (2008). Representation of Geometric 
Borders in the Entorhinal Cortex. Science, 322, 1865–1868. 

Solstad, T., Moser, E. I., & Einevoll, G. T. (2006). From grid cells to place cells: A mathematical model. 
Hippocampus, 16, 1026–1031. 

Stackman, R. W., Clark, A. S., & Taube, J. S. (2002). Hippocampal spatial representations require 
vestibular input. Hippocampus, 12, 291–303. 

Stangl, M., Achtzehn, J., Huber, K., Dietrich, C., Tempelmann, C., & Wolbers, T. (2018). Compromised 
Grid-Cell-like Representations in Old Age as a Key Mechanism to Explain Age-Related Navigational 
Deficits. Current Biology, 28, 1108–1115. 

Stangl, M., Shine, J., & Wolbers, T. (2017). The GridCAT: A Toolbox for Automated Analysis of Human Grid 
Cell Codes in fMRI. Frontiers in Neuroinformatics, 11, 47. 

Stella, F., & Treves, A. (2015). The self-organization of grid cells in 3D. eLife, 4, e05913. 

Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.-B., & Moser, E. I. (2012). The entorhinal grid 
map is discretized. Nature, 492, 72–78. 

Stranahan, A. M., & Mattson, M. P. (2010). Selective vulnerability of neurons in layer II of the entorhinal 
cortex during aging and Alzheimer’s disease. Neural Plasticity, 2010, 108190. 

Taube, J. S. (2007). The head direction signal: Origins and sensory-motor integration. Annual Review of 
Neuroscience, 30, 181–207. 

Thompson, L. T., & Best, P. J. (1990). Long-term stability of the place-field activity of single units recorded 
from the dorsal hippocampus of freely behaving rats. Brain Research, 509, 299–308. 

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. Cambridge, MA: MIT Press. 

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the Theory of the Brownian Motion. Physical Review, 36, 
823–841. 

Ulanovsky, N., & Moss, C. F. (2007). Hippocampal cellular and network activity in freely moving 
echolocating bats. Nature Neuroscience, 10, 224–233. 

United Nations, Department of Economic and Social Affairs, Population Division (2015). World Population 
Ageing 2015. ST/ESA/SER.A/390. 

Van Cauter, T., Camon, J., Alvernhe, A., Elduayen, C., Sargolini, F., & Save, E. (2013). Distinct Roles of 
Medial and Lateral Entorhinal Cortex in Spatial Cognition. Cerebral Cortex, 23, 451–459. 

Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature 
Reviews Neuroscience, 10, 792–802. 

Widloski, J., & Fiete, I. (2014). How Does the Brain Solve the Computational Problems of Spatial 
Navigation? In Space,Time and Memory in the Hippocampal Formation (pp. 373–407). Vienna: 
Springer. 

Wiener, J. M., Berthoz, A., & Wolbers, T. (2011). Dissociable cognitive mechanisms underlying human path 
integration. Experimental Brain Research, 208, 61–71. 

Wiener, J. M., Kmecova, H., & de Condappa, O. (2012). Route repetition and route retracing: Effects of 
cognitive aging. Frontiers in Aging Neuroscience, 4, 7. 

Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., & Manning, C. A. (1997). Age-related differences in 
an ecologically based study of route learning. Psychology and Aging, 12, 372–375. 

Wilson, I. A., Gallagher, M., Eichenbaum, H., & Tanila, H. (2006). Neurocognitive aging: Prior memories 
hinder new hippocampal encoding. Trends in Neurosciences, 29, 662–670. 



 

158 REFERENCES 

Witter, M. P., Naber, P. A., van Haeften, T., Machielsen, W. C. M., Rombouts, S. A. R. B., Barkhof, F., 
Scheltens, P., & Lopes da Silva, F. H. (2000). Cortico-hippocampal communication by way of parallel 
parahippocampal-subicular pathways. Hippocampus, 10, 398–410. 

Wolbers, T., Wiener, J. M., Mallot, H. A., & Büchel, C. (2007). Differential Recruitment of the Hippocampus, 
Medial Prefrontal Cortex, and the Human Motion Complex during Path Integration in Humans. The 
Journal of Neuroscience, 27, 9408–9416. 

Wu, S., Hamaguchi, K., & Amari, S. (2008). Dynamics and Computation of Continuous Attractors. Neural 
Computation, 20, 994–1025. 

Xie, Y., Bigelow, R. T., Frankenthaler, S. F., Studenski, S. A., Moffat, S. D., & Agrawal, Y. (2017). Vestibular 
Loss in Older Adults Is Associated with Impaired Spatial Navigation: Data from the Triangle 
Completion Task. Frontiers in Neurology, 8, 173. 

Yartsev, M. M., Witter, M. P., & Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal 
cortex of bats. Nature, 479, 103–107. 

Yoder, R. M., & Taube, J. S. (2014). The vestibular contribution to the head direction signal and navigation. 
Frontiers in Integrative Neuroscience, 8, 32. 

Zhang, S.-J., Ye, J., Couey, J. J., Witter, M., Moser, E. I., & Moser, M.-B. (2014). Functional connectivity of 
the entorhinal-hippocampal space circuit. Philosophical Transactions of the Royal Society of London 
B: Biological Sciences, 369, 20120516. 

Zhong, J. Y., & Moffat, S. D. (2016). Age-Related Differences in Associative Learning of Landmarks and 
Heading Directions in a Virtual Navigation Task. Frontiers in Aging Neuroscience, 8, 122. 

Zilli, E. A. (2012). Models of Grid Cell Spatial Firing Published 2005–2011. Frontiers in Neural Circuits, 6, 
16. 

 



 

 APPENDIX 1: The GridCAT manual 159 

APPENDIX 

Appendix 1: 
 

The GridCAT Manual 

 

 

 

We kindly ask you to cite the GridCAT in your publication, if you have used its graphical 
user interface or any part of the open-source code for your analysis. 

Reference: 
 

Stangl, M.*, Shine, J.*, & Wolbers, T. (2017). The GridCAT: A toolbox for automated 
analysis of human grid cell codes in fMRI. Frontiers in Neuroinformatics, 11:47. 
https://doi.org/10.3389/fninf.2017.00047 
[* equal contribution]  
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System Requirements 

 The GridCAT runs on Windows, Mac and Linux Systems. 

 The GridCAT was extensively tested with MATLAB versions between 2014b and 
2016b. We therefore recommend using the GridCAT with these versions, but it 
might also work fine with newer versions of MATLAB. 

 To be correctly displayed, the GridCAT requires a minimum screen resolution of 
1050 pixels width and 760 pixels height. 

 To run the GridCAT analyses, SPM12 must be installed (i.e., added to your 
MATLAB path). You can check this by typing “spm fmri” into the MATLAB 
command window. If SPM does not start, please install SPM12 following the 
instructions in the SPM manual. 

 
 
 

Install and start the GridCAT 

1. Download the GridCAT and unzip the downloaded file. 
2. Move the GridCAT directory to a permanent location on your local hard drive. 
3. Start MATLAB and change to the GridCAT directory within MATLAB. 
4. Type “install_GridCAT” into the MATLAB command window (this will 

permanently add the GridCAT to your MATLAB path). 
5. To start the GridCAT from now on, open MATLAB and type “gridcat” into the 

command window. 
 
 
 

Analyze an example dataset 

In order to test the functionality of the GridCAT, you can run a complete grid code 
analysis and try out different analysis methods on an example dataset that we have 
provided. 
In this manual, we highlight in blue italic text all steps that are necessary to analyze the 
example dataset and reproduce the results presented in the paper. 
Before you can start analyzing the example dataset, you must download it, unzip the 
downloaded file and save the unzipped data to your hard drive. The saving location on 
your hard drive will be henceforth referred to as 
   [exampleDatasetDirectory] 
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Terminology 

 GLM1, GLM2: 
The GridCAT analyses are carried out using a two-step approach. In the first step, 
grid orientations are estimated, and in the second step the estimated grid 
orientations are tested. We use the term “GLM1” for the first general linear model 
that is carried out to estimate voxel-wise grid orientations, and the term “GLM2” is 
used for the second general linear model that tests the estimated grid orientations. 

 Event: 
The term “event” is used for anything happening during the fMRI scanning runs that 
you want to include in your GLM to explain changes in the blood oxygenation level 
dependent (BOLD) response. Every single event is specified by a name, an onset, 
and duration. For example, a typical event during an fMRI run could be the 
presentation of a fixation cross, beginning at a certain time after the start of the 
scanning run (onset) and staying on the screen for a specific period of time 
(duration). 

 Grid event: 
We use the term “grid event” for events that have also an event-angle (i.e. 
directional information that is used to determine the grid orientation, quantify the 
magnitude of grid code response, etc.). For example, in a paradigm requiring 
subjects to navigate a virtual environment (e.g., like a 3D computer game) while they 
are in the scanner, a grid event might comprise a movement within the virtual 
environment that begins at a particular onset, lasts for a certain duration, and the 
movement is made in a specific direction (event-angle) in the virtual world. 

 Grid event type: 
During an experiment, there will usually be multiple repetitions of the same event 
type (e.g., multiple “translation” events that have different onsets, durations, and 
event-angles). However, a researcher may also want to compare different types of 
grid events, for example “active translation” and “passive translation”, denoting trials 
in which the participant moved through the virtual environment using a joystick 
versus those where they viewed a video of the movement. To investigate grid code 
metrics for each “grid event type” separately, the user can specify multiple grid event 
types (e.g., active and passive), and label each grid event accordingly.  
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The raw data table 

 
 
1. Specify the number of separate fMRI scanning runs by pressing the +/- buttons in 

the bottom left corner of the table. 
In the example dataset, we have 2 separate runs. 
 

2. For each run, specify functional scans, an event-table, and (optionally) an additional 
regressor file, by assigning data to the table’s cells (these steps are described in 
detail below). In order to assign data to one or multiple specific cell(s), select the 
cell(s) you want and then press the “Add content” button. To select data for all empty 
cells of the table, just click on the “Add content” button when no cell is selected. 
Data selection works with the “GridCAT Selection Dialog” (this is mostly self-
explanatory, but its functionality is explained in more detail in Appendix 1.1 of this 
manual). 
If you want to double-check the data you have assigned to one or multiple cell(s), 
select the cell(s) you want and click on the “Display content” button. Also, you can 
delete cell content by selecting cells and clicking on the “Delete content” button. 
 

a. Functional scans are a set of 3D images for each scanning run. We 
recommend using files in the .nii format. Select all files of a particular run. 
After selection, the number of selected files and the name of the first image is 
shown in the table. 
For the example dataset, in order to specify functional scans for run 1, select 
all functional scans 
   functionalScan_run1_0001.nii, 

   functionalScan_run1_0002.nii, 

   … 

from the folder 
   [exampleDatasetDirectory]/FunctionalScans/run1/ 

and do the same for run 2. After you have selected the files, the table should 
now show the number of selected functional scans and the name of the first 
scan. The example dataset consists of 640 files for each run. 
 

b. The event-table is the textfile (.txt) that contains all the information about the 
individual events within an fMRI scanning run. Detailed information about the 
specific format of an event-table as well as additional options and examples 
can be found in Appendix 1.2 of this manual. Briefly, the event-table must be 
a textfile (*.txt) in which each line defines one event. Each event comprises 
multiple columns, which can be delimited either by a semicolon, a comma, or 
a tabstopp. For each event, column 1 defines the event-name, column 2 
defines the event-onset in seconds (relative to the start of the scanning run), 
and column 3 defines the event duration in seconds. In addition, grid events 
have a 4th column in which the event-angle is defined (0 – 359 degrees).  
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To specify the event-table for run 1 or 2 of the example dataset, select the 
appropriate textfile 

   eventTable_run1.txt, or 
   eventTable_run2.txt 

from the folder 
   [exampleDatasetDirectory]/EventTables/ 

 
c. Optionally, you can load a file for each run containing additional regressors 

that you want to add to the GLM. This file can be a textfile (.txt), in which the 
number of lines corresponds to the number of functional scans, and each 
column containing a different regressor. For example, SPM automatically 
creates a textfile containing the realignment parameters resulting from the 
realignment of your functional images. These textfiles can be used directly as 
additional regressor files. Alternatively, you can specify a MATLAB file (*.mat) 
containing a matrix named R, which contains the corresponding values per 
line and column. 
For the example dataset, we provide realignment parameters that were 
generated automatically by SPM during data preprocessing. To specify 
additional regressors for run 1 or 2 of the example dataset, select the 
appropriate textfile 

   realignmentParameters_run1.txt, or 
   realignmentParameters_run2.txt 

from the folder 
   [exampleDatasetDirectory]/AdditionalRegressors/ 

They each contain 6 columns corresponding to the 6 movement dimensions 
(X/Y/Z direction and yaw/pitch/roll). 

 
 
 
 

Specify GLM data directories 

 
 
Two different directories for GLM1 and GLM2 need to be selected, which will store all 
the data produced by the GridCAT. We recommend that you create new directories for 
GLM1 and GLM2, which do not contain any other data. 
After specifying a data directory, you can double-check its full path by clicking on the 
textbox next to the button. 
For the example dataset, you can create a directory 
   [exampleDatasetDirectory]/GridCAT_data/GLM1/ 

and select it as GLM1 data directory, and repeat this for GLM2. 
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Specify scanning parameters and model settings 

 
 
1. Specify the Interscan-Interval (TR) in seconds, which is the time between acquiring a 

plane of one volume and the same plane in the next volume. 
For the example dataset, the data was acquired with an interscan-interval of 1.5 
seconds. 
 

2. You can also change advanced scanning parameters and model settings 
(microtime-resolution, microtime-onset, high-pass-filter, and the addition of time and 
dispersion HRF derivatives), used by SPM during the fitting of the GLM. In many 
cases, it won’t be necessary to change the default settings. However, if you want to 
change these parameters, you can find more information about them in Appendix 
1.3 of this manual. 
In order to reproduce the presented results for the example dataset, do not change 
the advanced scanning parameters and model settings. 

 
 
 
 

Specify grid code symmetry 

 
 
For standard analyses, specify that you want to check for “Grid-cell-like symmetry” (6-
fold), since grid-cell-like representations are expected to show a 6-fold symmetrical 
pattern. However, other symmetry values can be used to carry out control analyses in 
order to show that effects are strongest for the 6-fold but not other (e.g. 4,5,7,8)-fold 
symmetries. 
The results presented for the example dataset are generated by running separate 
analyses with the GridCAT checking for 4/5/6/7/8-fold symmetry, respectively. 
 
 
 
 

Specify and compute GLM1 
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1. Here, you specify which events should be used to calculate GLM1. It is necessary to 
partition your dataset into two: one to estimate the voxel-wise grid orientation 
(GLM1) and a separate one to test the estimated orientations (GLM2). Thus, if you 
select the first half of grid events per run to estimate grid orientations in GLM1, you 
would usually select the second half of grid events per run for use in GLM2. When 
choosing the events for GLM1, the GridCAT will automatically set the unused grid 
events in GLM1 as the events to be used for testing the estimated grid orientation in 
GLM2. However, you can change this later when you specify settings for GLM2. 
In order to reproduce the presented results for the example dataset, select to use 
the first half of grid events per run for GLM1. 
 

2. Specify whether you want to keep unused grid events in the model or not. For 
example, if you have selected only the first half of grid events per run for GLM1, the 
second half of grid events per run can either be completely excluded from GLM1, or 
they can be included without their corresponding event-angles (meaning that these 
events will not contribute to the estimation of grid orientations). 
In order to reproduce the presented results for the example dataset, select to keep 
unused events in the model. 
 

3. Specify and estimate GLM1. During GLM1 specification, the GridCAT generates and 
displays a design matrix and saves all model specifications in the GLM1 data 
directory. During the estimation process, the parameter estimates (beta images) are 

generated for every regressor, including the two grid event regressors (sin and cos) 

that parametrically model grid events using sin(t*6) and cos(t*6) with respect to 

their grid event angle t. Furthermore, images containing the estimated voxel-wise 
grid orientations are generated. You can select to carry out both specification and 
estimation together, or separately. 
 

4. Press “Compute GLM” to start the calculation process for GLM1. The GridCAT starts 
with all the GLM1 calculations, which will take a while. Parameter estimates for each 
regressor are calculated and voxel-wise grid orientations are estimated. Moreover, 
an indicator for the strength of the grid-like activation (which might be interpreted as 

the “firing-amplitude”) is also calculated by √β𝑠𝑖𝑛
2 + β𝑐𝑜𝑠

2 using the parameter 

estimates of the two grid event regressors (sin and cos). 
After all the GLM1 calculations have finished, the newly generated data (e.g. beta-
images for all regressors, voxel-wise grid orientation images, etc.) are stored in the 
GLM1 data directory. 
To estimate voxel-wise grid orientations in the example dataset, compute GLM1 
(specification & estimation) now. 
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Specify and compute GLM2 

 
 
1. After estimating voxel-wise grid orientations using GLM1, you may want to test the 

estimated orientations in GLM2. For this purpose, you have to define a region of 
interest (ROI) within the brain that you want to use to calculate a mean grid 
orientation across multiple voxels. For example, if you want to calculate the mean 
grid orientation within an anatomical region like the entorhinal cortex, you need to 
specify an ROI mask, which contains the information about where the entorhinal 
cortex is located in this particular subject. It is necessary, therefore, to specify a ROI 
mask image, which is aligned/coregistered with your functional scans, and contains 
binary information about your ROI (i.e., all voxels containing “1” belong to your ROI, 
all voxels containing “0” do not belong to your ROI). 
After specifying a ROI mask image, you can double-check its full path by clicking on 
the textbox next to the button. 
With the example dataset, we provide ROI mask images for the entorhinal cortex 
(both right and left hemisphere) of our example participant. These ROI masks have 
been created by manually delineating the entorhinal cortex on an anatomical image 
using ITK-SNAP (http://www.itksnap.org). Select one of these ROI masks 

   ROImask_entorhinalCortex_LH.nii, or 
   ROImask_entorhinalCortex_RH.nii 

from the directory 
   [exampleDatasetDirectory]/ROI_masks/ 

to reproduce the presented results. 
 

2. In GLM1, the voxel-wise grid orientation is estimated for each run individually. 
However, when testing the estimated grid orientation in GLM2, you can use either 
individual mean grid orientations per run, or a mean grid orientation averaged across 
all runs. In experiments where you would expect different grid orientations for 
individual runs, we recommend not averaging the grid orientation across runs. 
In the example dataset, we have no reason to assume that the mean grid orientation 
would change between runs, so we can choose to average the mean grid orientation 
across runs. 
 

3. When calculating the mean grid orientation across all voxels within the ROI, it is 
possible to use the indicator of “firing-amplitude” (i.e., a measure of grid-like 
activation that has been calculated during GLM1 computations) per voxel. Selecting 
this option, the GridCAT assigns different weights to individual voxels, depending on 
the voxel’s “firing-amplitude”. If you do not select this option, all voxels are weighted 
equally. 
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In order to reproduce the presented results for the example dataset, select 
amplitude-based weighting of voxels. 
 

4. There are several ways to include regressors for grid events in GLM2. 
In order to reproduce the presented results for the example dataset, select either a 
parametric modulation regressor or aligned / misaligned regressors (1 each). 
Including multiple aligned / misaligned regressors does not seem to be reasonable 
here, as the number of grid events in our example dataset is quite small for this kind 
of analysis. This analysis would be more appropriate with a larger number of grid 
events or if results are averaged across multiple participants. 
 

a. Parametric modulation regressor: Grid events can be modelled using 
parametric modulation that serves as a measure of alignment between the 
mean grid orientation and the event-angle of an individual event. One grid 
event regressor and the corresponding parametric modulation value (ranging 
from -1 to 1) will be included in the GLM2. 
 

b. Aligned/misaligned regressors (1 each): Grid events can be assigned either 
to a regressor for “aligned” or for “misaligned” events. An event is assigned 
to the “aligned” regressor if its event-angle lies within +/- 15 degrees of the 
mean grid orientation (or a 60 degree multiple of this value), or otherwise to 
the “misaligned” regressor. 
 

c. Aligned/misaligned regressors (multiple): Based on our model’s assumptions 
of grid-cell-like symmetry, we expect higher peaks in signal amplitude for an 
event if the offset between its event-angle and the mean grid orientation is 0 
or a multiple of 60 degrees (i.e., 0/60/120/180/240/300 degrees), or lower 
peaks for an offset of 30 degrees plus a multiple of 60 degrees (i.e., 
30/90/150/210/270/330 degrees). Analogous peaks would be expected when 
testing for other symmetry values (e.g. for 4-fold symmetry, higher peaks are 
expected with 0/90/180/270 offset, and lower peaks are expected with 
45/135/225/315 degrees). 
When using this option, multiple regressors, one for each orientation for 
which a signal peak (high or low) is expected, will be added to the model, 
and each grid event will be assigned to the appropriate regressor. 
 

5. Specify, which events should be used to calculate GLM2. Usually, you would use the 
other half of the data that has not been used in GLM1 to estimate voxel-wise grid 
orientations. For example, if you have used the first half of grid events per run to 
estimate grid orientations in GLM1, you would now select to use the second half of 
grid events per run for GLM2. 
In order to reproduce the presented results for the example dataset, select the 
second half of grid events per run. 
 

6. Specify whether you want to keep unused grid events in the model or not. 
In order to reproduce the presented results for the example dataset, select to keep 
unused events in the model. 
 

  



 

 APPENDIX 1: The GridCAT manual 169 

7. Specify and/or estimate GLM2 (this will generate and visualize the design matrix, 
save all model specifications, generate parameter estimates for each regressor, 
etc.). 
To test the estimated grid orientations in the example dataset, compute GLM2 
(specification & estimation) now. 
 
The GridCAT automatically creates a default set of contrasts between regressors, 
which can be used to derive grid code metrics such as the magnitude of grid code 
response. How these contrasts are created mathematically depends on how you 
have selected to model grid events in GLM2 (using a parametric modulation, or one 
aligned/misaligned regressor each, or multiple aligned/misaligned regressors): 
 

a. If grid events are modelled using parametric modulation: 
t-contrasts for single runs are created by multiplying the parameter estimates 
for a grid event type’s parametric modulation regressor by 1, whereas all 
other regressors’ parameter estimates are multiplied by 0. Furthermore, if the 
same grid event type is present in multiple runs, a combined t-contrast 
across all of these runs is created by multiplying the grid event type’s 
parameter estimates of each run by 1, whereas all other regressors’ 
parameter estimates are multiplied by 0.  
 

b. If grid events are modelled using one regressor each for “aligned” and 
“misaligned” events: 
t-contrasts for single runs are created by multiplying the parameter estimates 
for the “aligned” grid event regressor by 1, whereas the parameter estimates 
for the “misaligned” grid event regressor is multiplied by -1 and all other 
regressors’ parameter estimates are multiplied by 0. Furthermore, if the same 
grid event type is present in multiple runs, combined t-contrasts across all of 
these runs are created by multiplying the grid event type’s parameter 
estimates for the “aligned” regressors of each run by 1, whereas the 
“misaligned” regressors’ parameter estimates are multiplied with -1; all other 
regressors’ parameter estimates are multiplied by 0. 
 

c. If grid events are modelled using multiple “aligned” and “misaligned” 
regressors: 
A separate t-contrast is created for each individual orientation at which a 
signal peak is expected. For example, based on our assumption of grid-cell-
like (6-fold) symmetry, higher signal peaks are expected for 
0/60/120/180/240/300 degrees and lower peaks for 30/90/150/210/270/330 
degree offset between an event-angle and the mean grid orientation. Each t-
contrast is created by multiplying the parameter estimates for a specific 
peak-orientation by 1, whereas all other regressors’ parameter estimates are 
multiplied by 0. Again, if the same grid event type is present in multiple runs, 
a combined t-contrast across all of these runs is created for each peak-
orientation by multiplying a peak-orientation’s parameter estimates of each 
run by 1, whereas all other regressors’ parameter estimates are multiplied by 
0. 
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Tools and grid code metrics 

 
 
1. The GridCAT offers a set of tools and grid code metrics that generate and help 

visualize data and results. As these tools access data from the GLM data directories, 
it is necessary to have specified data directories for GLM1 and GLM2, respectively. 
Moreover, some tools require you select one or multiple ROI mask(s) for which 
output is generated or visualized. After specifying one or multiple ROI mask(s), you 
can double-check their full path by clicking on the textbox next to the button. 
 

a. Display design 
This tool accesses data from the GLM1 and GLM2 data directories, and 
allows you to review a model design by showing the design matrix generated 
by SPM when GLM1 or GLM2 is specified.  
 

b. Plot between-voxel orientation coherence within ROI 
This tool allows you to visualize the coherence of voxel-wise grid orientations 
within an ROI. It therefore uses voxel-wise grid orientation data from the 
GLM1 data directory. In the course of GLM1 calculations, the GridCAT has 
created images containing voxel-wise grid orientations for each grid event 
type and run, respectively, and saved them in the GLM1 data directory 
(named ‘voxelwiseOri_eventName_runNr_deg.nii’). In order to plot the 
coherence of voxel-wise grid orientations within an ROI for a specific grid 
event type and scanning run, specify your ROI mask image, and select the 
corresponding voxel-wise grid orientation image you are interested in. 
Selecting multiple ROI mask and/or multiple voxel-wise grid orientation 
images at the same time is possible, and will lead to separate independent 
plots for each image and ROI, respectively. The resulting polar histogram 
plots display the coherence of the grid orientation between voxels in the 
selected ROIs. The length of each bar indicates the number of voxels that 
share a similar grid orientation, and the numbers next to the rings indicate 
the number of voxels represented by each ring of the polar plot. Moreover, 
the plot displays the number of voxels within the ROI as well as the number 
of NaN (“not-a-number”) voxels, for which a grid orientation could not be 
estimated. By changing the plot settings and pressing the “Redraw” button, a 
number of additional features can be added: The mean grid orientation 
across all voxels can be visualized by arrows (with and/or without using 
amplitude-based weighting of individual voxels). Furthermore, Rayleigh’s test 
for non-uniformity of the voxel-wise grid orientations within the ROI can be 
computed, which serves as a measure of between-voxel orientation 
coherence. The Rayleigh test is carried out using the CircStat 2012a toolbox 
(https://philippberens.wordpress.com/code/circstats/). Voxel-wise grid 
orientations within the ROI can be exported, to enable the user to carry out 
further analyses and/or statistical tests on these data, depending on the 
specific research question of interest (such as testing for systematic changes 
of grid orientations between conditions, or applying corrections for 
smoothness of the data, etc.).  
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In order to plot between-voxel orientation coherence in the left and right 
entorhinal cortex for the example dataset, select one or both of these ROI 
masks 

   ROImask_entorhinalCortex_LH.nii, and/or 
   ROImask_entorhinalCortex_RH.nii 

from the directory 
   [exampleDatasetDirectory]/ROI_masks/ 

and select one or multiple of the images containing voxel-wise grid 
orientations in the GLM1 data directory, e.g.: 
   voxelwiseGridOri_translation_run1_deg.nii 

 
c. Plot within-voxel orientation coherence within ROI 

This tool allows you to visualize the voxel-wise coherence of grid orientations 
between two different conditions within an ROI. For example, different 
conditions could be two different runs, or two different grid event types. This 
tool accesses voxel-wise grid orientation data from the GLM1 data directory. 
Specify your ROI masks, and select two images containing voxel-wise grid 
orientations that you want to compare (i.e., select one or multiple images for 
different grid event types and runs, respectively). The tool will visualize and 
calculate the proportion of stable voxels between the two images within all 
voxels of the ROI. The two black rings in each plot represent the two different 
conditions, and each voxel’s grid orientation is indicated with a circular 
marker; a line connects the orientations of each voxel. Whether a voxel’s 
orientation is deemed “stable” depends on whether its estimated orientation 
differs by more than a given threshold, which is initially set to +/- 15 degrees 
for 6-fold symmetry analysis (analogous for other symmetry values). This 
threshold, however, as well as the visual appearance of the plot can be 
changed manually by adapting the settings in the plot and pressing the 
“Redraw” button.  
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Independent calculations are performed for each ROI mask image that you 
have selected. 
In order to plot within-voxel orientation coherence in the left and/or right 
entorhinal cortex between run 1 and run 2 for the example participant, select 
one or both of these ROI masks 

   ROImask_entorhinalCortex_LH.nii, and/or 
   ROImask_entorhinalCortex_RH.nii 

from the directory 
   [exampleDatasetDirectory]/ROI_masks/ 

and select the following images containing voxel-wise grid orientations in the 
GLM1 data directory: 

   voxelwiseGridOri_translation_run1_deg.nii, and 
   voxelwiseGridOri_translation_run2_deg.nii 

 
d. Output mean grid orientation within ROI 

Using this tool, you can output the mean grid orientation within an ROI. It 
therefore accesses voxel-wise grid orientation data from the specified GLM1 
data directory and calculates the mean grid orientation across all voxels 
within the specified ROI mask(s). As the mean grid orientation can be 
calculated either with or without using different weightings for individual 
voxels (i.e., “amplitude-based” weighting), this tool outputs the mean grid 
orientation for both options. Independent calculations are performed for each 
ROI mask image that you have selected.  
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e. Create custom contrasts between GLM2 regressors 

If you want to generate results for contrasts that are not specified in the 
default set of contrasts created by the GridCAT, you can specify additional t-
contrasts with this tool by combining individual regressors. This tool 
accesses data from the GLM2 data directory. In order to create a new t-
contrast, just assign a value to any GLM2 regressor you want (which will be 
used as the multiplication factor for this regressor’s parameter estimates), 
specify a contrast name and press the “OK” button. Parameter estimates of 
regressors, for which you do not specify a multiplication value, will be 
multiplied with 0. 
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f. Output magnitude of grid code response within ROI 
This tool allows you to calculate the magnitude of grid code response in one 
or multiple ROIs that you have specified by pressing the “Select ROI mask” 
button. The magnitude of the grid code response can be shown for contrasts 
that have been specified automatically by the GridCAT (the default set of 
contrasts) or for additional contrasts between GLM2 regressors that you 
have created. Here, you need to select the contrasts you want to interrogate 
and the GridCAT will display the average magnitude of grid code response 
within each ROI separately for each selected contrast. To generate this grid 
code metric, this tool accesses data from the GLM2 data directory. 
 

      
 
 
g. Export all grid code metrics 

This tool allows you to export a comprehensive list of all grid code metrics 
that can be calculated based on a given dataset, for example to allow 
statistical analysis across participants. Therefore, it accesses the specified 
GLM1 and GLM2 data directories and also requires you select specific ROI 
masks in which the grid code metrics are calculated. 
 
In order to export all grid code metrics for the example dataset, select both 
ROI masks 

   ROImask_entorhinalCortex_LH.nii, and 
   ROImask_entorhinalCortex_RH.nii 

from the directory 
   [exampleDatasetDirectory]/ROI_masks/ 

and specify a location on your local hard drive where all the output will be 
saved. 
 
All output is saved to a textfile, which is formatted in delimited text using a 
semicolon delimiter. Consequently, the output data can be used with a 
program of your choice, for example in order to carry out further analysis and 
statistical tests on the calculated grid metrics, depending on your specific 
research question. For that purpose, import the textfile into a program that is 
able to convert (semicolon-)delimited text to separate cells of data, such as 
Microsoft Excel, SPSS, or others. 
The output file includes the following grid code metrics for all specified ROI 
masks and separately for every grid event type: 

 Magnitude of grid code response: This grid code metric is calculated 
for every contrast specified in the GLM2 data directory (i.e., the default 
set of contrasts as well as those additionally created by the user). 
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 Between-voxel orientation coherence within ROI: This grid code metric 
is calculated for each run individually as well as for the average across 
all runs. Rayleigh z- and p-values are reported. 

 Within-voxel orientation coherence within ROI: This grid code metric is 
calculated and the proportion of stable voxels is reported between 
every possible pair of voxel-wise grid orientation images (i.e. all pairs of 
runs and grid event types, respectively). 

 Mean grid orientation within ROI: This grid code metric is calculated for 
all specified ROI images, for all runs and grid event types separately. 
The resulting mean grid orientation is reported for both calculation 
methods (i.e., with and without amplitude-based weighting of voxels). 

 
 
 

Save and load design parameters 

 
 
The GridCAT enables you to save all design parameters (i.e., all changes and settings 
you have made using the GridCAT’s graphical user interface), in order to load them 
again later. All information is stored in a MATLAB file (*.mat) on your local hard drive. 
Simply press the “Save design parameters” button and select a location to store the file. 
Furthermore, whenever you compute a GLM1 or GLM2, the design parameters are 
automatically stored in the GLM1/GLM2 data directory (named “GridCAT_GLM1.mat”, 
with the same naming convention for GLM2). This option allows you to restore and 
inspect the settings you have used when computing a GLM. 
In order to restore design parameters, press the “Load design parameters” button and 
select the mat-File containing the relevant design parameters. 
 
 
 

Using the example script of the GridCAT 

For those who prefer to use and modify the open-source MATLAB code of the GridCAT, 
rather than the GUI, we provide an example script, which includes all steps of a common 
grid code analysis pipeline. Detailed comments in the script will guide the user through 
necessary settings and functions in the code. The example script can be found in: 
DEMO_GridCAT_Script.m  

 

  



 

176 APPENDIX 1: The GridCAT manual 

Appendix 1.1: The GridCAT Selection Dialog 
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Appendix 1.2: The GridCAT event-table 

An event-table is a textfile (*.txt) for each fMRI scanning run, which contains all 
information about single events during this run. Each line in the event-table defines a 
single event using the following format: 
 

 
 
In addition to the three columns per event as shown above, a grid event also has a 4th 
column defining its event-angle: 
 

 
 
The following example shows an event-table from a navigation paradigm, in which the 
subject navigated a virtual environment (like in a 3D computer game). The experimental 
paradigm allowed the user to perform translational and rotational movements within the 
environment, as well as to stand still on the spot. In this event-table, translational 
movements are used as grid events. 
 

 
 
In GLM1 and GLM2, the GridCAT puts all events that are within an event-table and have 
the same name into one regressor. This is true for normal events as well as for grid 
events. Consequently, if you want to distinguish between different grid event types 
within a run, simply use different names for these events. The following example shows 
an event-table similar to the one above, but now the paradigm includes both active 
translations (“activeTransl”) and passive translations (“passiveTransl”), which should be 
used as two different types of grid event (i.e. entered as different regressors) in GLM1 
and GLM2. 
 

 
  

 name onset duration 

 name onset duration angle 

 stand 0 3.5 
 translate 3.5 4 225 
 rotate 7.5 2.25 
 translate 9.75 3.2 192.3 
 rotate 12.95 2 
 translate 14.95 7.05 4.5 
 stand 22 3.73 
    .   .   .   . 
    .   .   .   . 
    .   .   .   . 

 stand 0 2.2 
 rotate 2.2 3 
 activeTransl 5.2 4.5 359 
 stand 9.7 3 
 activeTransl 12.7 1.3 359 
 rotate 14 2.5 
 passiveTransl 16.5 5 7.5 
 rotate 21.5 4.5 
 passiveTransl 26 2.3 24 
 activeTransl 28.3 10.2 24 
    .   .   .   . 
    .   .   .   . 
    .   .   .   . 
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The GridCAT offers several different ways to partition your grid events for GLM1 and 
GLM2. However, you may wish to specify yourself which events to include in GLM1 
and/or GLM2. To do this, you can add two more columns to an event-table that specify 
whether a grid event is used in GLM1 (column 5) and/or GLM2 (column 6). If column 5 is 
set to “1” then this event will be used as a grid event in GLM1. Set column 5 to “0” if you 
do not want to use this event as a grid event in GLM1; the same method is used for 
GLM2 in column 6. 
The following example shows the content of an event-table in which there are only 
“translation” and “rotation” events. Translations are used as grid events (i.e., they also 
have an event-angle) and the event-table also specifies which grid events to use in 
GLM1 and GLM2. 
 

 
 
The GridCAT accepts tabstopps, semicolons, and commas as delimiters between 
columns. Consequently, the three following examples of event-tables all have an 
appropriate format and an identical content: 
 

 
(tabstopp-delimited) (semicolon-delimited) (comma-delimited) 
 

  

 stand 0 2 
 translation 4.3 5.3 22 1 0 
 stand 9.9 3 
 translation 16 2.1 173 1 0 
 translation 22.4 5 249.4 0 1 
 translation 28 2 156 0 1 
 stand 33.91 2.2 
 translation 38 9 97 1 0 
 translation 52.3 0.7 359 1 0 
 stand 55.2 3.7 
 translation 59.1 8 16.34 0 0 
 stand 72 2 
 translation 74.2 1.3 1.7 0 0 
 translation 75.5 5 1.7 1 1 
 translation 86 3.2 39 1 1 
 stand 91.5 8 
 translation 107.3 0.72 100 0 1 
 translation 109 4.6 66.74 1 0 
    .   .   .   .  .  . 
    .   .   .   .   .   . 
    .   .   .   .   .   . 

stand 0 3.5 
translate 3.5 4 225 
rotate 7.5 2.2 
translate 9.7 3.2 192 
rotate 12.9 2 
translate 14.9 7.1 4 
stand 22 3 

= 

stand;0;3.5 
translate;3.5;4;225 
rotate;7.5;2.2 
translate;9.7;3.2;192 
rotate;12.9;2 
translate;14.9;7.1;4 
stand;22;3 

= 

stand,0,3.5 
translate,3.5,4,225 
rotate,7.5,2.2 
translate,9.7,3.2,192 
rotate,12.9,2 
translate,14.9,7.1,4 
stand,22,3 
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Appendix 1.3: Advanced scanning parameters and model 

settings 

The following information provides only an overview of the advanced model settings that 
are used by SPM12 and can be adapted in the GridCAT. For more detailed information 
about these settings, please refer to the SPM manual. 

 
1. Microtime onset is the reference time-bin at which the regressors are resampled to 

coincide with data acquisition. If you have performed slice-timing correction, you 
must change this parameter to match the reference slice specified there. Otherwise, 
you might still want to change this if you have non-interleaved acquisition and you 
wish to sample the regressors so that they are appropriate for a slice in a particular 
part of the brain. 
 

2. Microtime resolution is the number of time-bins per scan used when building 
regressors. If you have performed slice-timing correction, change this parameter to 
match the number of slices specified there; otherwise, you would typically not need 
to change this. 
 

3. Masking threshold: By default, SPM uses a proportional threshold to identify these 
voxels that seem to carry a decent signal in them. If a voxel fails to exceed this 
threshold (e.g., voxels outside the brain), it will not contribute to the output of a 
GLM. For example, a masking threshold of 0.8 will only estimate the GLM in voxels 
whose mean value is at least 80% of the global signal. 
 

4. High-pass filter: Slow signal drifts within a period longer than the value specified 
here will be removed. Either input one single value, which will be applied for all 
runs, or input one value per run, separated by commas. 
 

5. HRF derivatives: The canonical HRF combined with time and dispersion derivatives 
comprise an “informed” basis set, as the shape of the canonical response conforms 
to the hemodynamic response that is commonly observed. The incorporation of the 
derivate terms allow for variations in subject-to-subject and voxel-to-voxel 
responses. The time derivative allows the peak response to vary by plus or minus a 
second and the dispersion derivative allows the width of the response to vary.  
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Appendix 2: 
 

Computational modeling details 

Participants report their location estimates only at stopping points between path 
segments. Before we can fit the internal and reporting noise parameters to those 
estimates we first need to integrate the stochastic differential equation (1) along 
segments, a calculation that can be performed analytically because eq. (1) describes an 
Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930; Pavliotis, 2014) Assuming 

that participants walk along a trajectory segment for time t with constant velocity 𝐯, the 
conditional distribution of the internal location estimate �̂�𝑠+1 at the stopping point s + 1 
given the estimate at the previous stopping point �̂�𝑠 is given by the Gaussian distribution 

p(�̂�𝑠+1|�̂�𝑠) = 𝒩(�̂�𝑠+1|𝛍s+1, σs+1
2 I2) 

where I2 is the two-dimensional unity matrix and mean 𝛍s+1 and variance σs+1
2  are given 

by 

Eq. (3) 

𝛍s+1 = �̂�𝑠e−βt +
a𝐯 + 𝐛

β
(1 − e−βt)  

σs+1
2 =

σ0
2

2β
(1 − e−2βt) 

This update equation for the distribution of internal estimates can also be expressed in 
terms of the true length |Δ𝐱| of the trajectory segment: 

Eq. (4) 

𝛍s+1 = �̂�𝑠e−β̃|Δ𝐱| + (α
Δ𝐱

|Δ𝐱|
+ �̃�)

1

β̃
(1 − e−β̃|Δ𝐱|)  

σs+1
2 =

σ̃0
2

2β̃
(1 − e−2β̃|Δ𝐱|) 

where we have redefined 3 of the 4 internal error parameters using the magnitude of the 
walking velocity |𝐯|: 

Eq. (5) 

β̃ =
β

|𝐯|
          �̃� =

𝐛

|𝐯|
          σ̃0

2 =
σ0

2

|𝐯|
 

Equations (3) and (4) are equivalent if the walking velocity |𝐯| is truly constant across 
trajectory segments and trials. If the walking velocity does vary, holding the transformed 
parameters (5) fixed assumes that the path integration error of the internal location 
estimate mainly depends on the traveled distance, whereas the original model (3) 
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assumes that the path integration error mainly depends on the elapsed walking time. In 
what follows, we will choose the distance model and hold the transformed parameters 
(5) fixed, in line with previous modeling of human path integration (Lappe et al., 2007, 
2011). 

 

Fitting model parameters without reporting noise 

In the following we explain how the internal error parameters 𝜃 = (�̃�, 𝛼, �̃�, �̃�0
2) and the 

reporting noise parameters  𝜅 = (𝜎𝑑
2, 𝜎𝜙

2) were fit to participants’ reports by maximizing 

the likelihood. For simplicity, consider first a model without reporting noise parameters. 
In this case the internal location estimate �̂�𝑠  can be directly expressed in terms of 

participants’ report of the distance �̂� and angle φ̂ to the starting point 𝐱start of the current 
walking trajectory: 

Eq. (6) 

 �̂�s = (
�̂� cos(φ̂)

�̂� sin(φ̂)
) +𝐱start  

Without loss of generality we will set the origin at the starting point for each trial, hence 
𝐱start = 0. The log-likelihood of the data as a function of the internal error parameters 
averaged over trials is given by 

Eq. (7) 

LLκ=0(θ) = 〈∑ log p(�̂�𝑠+1|�̂�𝑠

3

s=0

; θ)〉𝑡𝑟𝑖𝑎𝑙𝑠 = 〈∑ log 𝒩(�̂�𝑠+1| 𝛍s+1(�̂�𝑠

3

s=0

, θ), σs+1
2 (θ))〉𝑡𝑟𝑖𝑎𝑙𝑠  

where 𝛍s+1(�̂�𝑠, θ) and σs+1
2 (θ) are given by the expressions in eq. (4). We can then fit θ 

to the data by maximizing the log-likelihood numerically: 

Eq. (8) 

θML = argmaxθLLκ=0(θ)  

 

Fitting model parameters with reporting noise 

In the presence of non-zero reporting noise parameters the expression for the log-
likelihood as a function of Θ = (θ, κ) is more involved, since the relationship between the 

reported estimates �̂� and φ̂ and the internal location estimate �̂�𝑠 is both stochastic and 
non-linear. We can nevertheless make progress by rephrasing the problem in terms of 
the well-studied Extended Kalman Filter (EKF), a framework that allows to calculate the 
log-likelihood by locally linearizing the non-linearities (Thrun et al., 2005). The EKF 

framework encompasses a stochastic state transition of a hidden variable �̂�𝑠  whose 
distribution can be inferred using a noisy observation zs: 
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Eq. (9) 

�̂�𝑠+1 = f(�̂�𝑠) + Σ𝑥

1
2𝛏𝒙

 

𝐳s+1 = h(�̂�𝑠+1) + Σ𝑧

1
2𝛏𝒛 

where f and h are arbitrary non-linear functions and Σx and Σx are covariance matrices 

of Gaussian-distributed noise. In our case the state transition is linear in �̂�𝑠 and is given 
as before by eq. (4): 

Eq. (10) 

f(�̂�𝑠) = 𝛍s+1(�̂�𝑠) = �̂�𝑠e−β̃|Δ𝐱| + (α
Δ𝐱

|Δ𝐱|
+ b̃)

1

β̃
(1 − e−β̃|Δ𝐱|)  

Σx = σs+1
2 I2 =

σ̃0
2

2β̃
(1 − e−2β̃|Δ𝐱|)I2 

To derive the non-linear observation function we need to find a coordinate 
transformation such that in the transformed frame the noise is added linearly. According 
to eq. (2), the noise is added linearly in log-polar coordinates. The observation function 
h(�̂�𝑠+1)  therefore corresponds to the transformation from cartesian to log-polar 
coordinates: 

Eq. (11) 

h(�̂�𝑠+1) = (
𝑑(�̂�𝑠+1)

φ(�̂�𝑠+1)
) = (

𝑙𝑜𝑔|�̂�𝑠+1|

𝑎𝑡𝑎𝑛2((�̂�𝑠+1)2, (�̂�𝑠+1)1)
)  

Σz = (
σd

2 0

0 σφ
2 ) 

and the observation 𝐳s+1 is related to the reports �̂� and φ̂ by 

Eq. (12) 

𝐳s+1 = (
𝑙𝑜𝑔 �̂� 

φ̂
)  

The EKF framework allows calculating two important distributions using Gaussian 
approximations: the posterior distribution of the hidden variable �̂�𝑠+1  given the 

observations z1 to zs  (predictive distribution), and the posterior distribution of �̂�𝑠+1 given 
z1 to zs+1 (updated distribution). We denote the mean and covariance of these posterior 
distributions as 

Eq. (13) 

p(�̂�𝑠+1|z1, … , zs) = 𝒩(�̂�𝑠+1|𝛍s+1|s, 𝑃𝑠+1|𝑠)                    (predictive distribution)  
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p(�̂�𝑠+1|z1, . . . , zs+1)  =  𝒩(�̂�𝑠+1|𝛍s+1|s+1, 𝑃𝑠+1|𝑠+1)                    (updated distribution) 

Mean and covariance of both distributions can be calculated recursively over stopping 
points using the standard EKF update equations (Thrun et al., 2005): 

Eq. (14) 

𝛍𝑠+1|𝑠 = f(𝛍𝑠|𝑠)  

𝑃𝑠+1|𝑠 = F𝑠+1𝑃𝑠|𝑠𝐹𝑠+1
𝑇 + Σ𝑥 

Ss+1 = 𝐻𝑠+1𝑃𝑠+1|𝑠𝐻𝑠+1
𝑇 + Σz 

Ks+1 = 𝑃𝑠+1|𝑠𝐻𝑠+1
𝑇 𝑆𝑠+1

−1  

𝛍𝑠+1|𝑠+1 = 𝛍𝑠+1|𝑠 + Ks+1(𝐳s+1  −  ℎ(𝛍𝑠+1|𝑠)) 

𝑃𝑠+1|𝑠+1  =  (𝐼2  −  Ks+1𝐻𝑠+1)𝑃𝑠+1|𝑠 

where the matrices F𝑠+1  and 𝐻𝑠+1  are the Jacobian matrices of transition and 
observation function evaluated at the previous updated mean 𝛍𝑠|𝑠 and predictive mean 

𝛍𝑠+1|𝑠 respectively: 

Eq. (15) 

Fs+1 =
∂f(𝒙)

∂𝒙
|

𝐱=𝛍𝑠|𝑠

= e−β̃|Δ𝐱|𝐼2  

Hs+1 =
∂h(𝒙)

∂𝐱
|

𝐱=𝛍𝑠+1|𝑠

=
1

|𝛍𝑠+1|𝑠|2
 (

μ𝑠+1|𝑠,1 μ𝑠+1|𝑠,2

−μ𝑠+1|𝑠,2 μ𝑠+1|𝑠,1
) 

At the starting point (s = 0), we initialize 𝛍𝑠=0|𝑠=0 = 𝐱start = 0 and 𝑃𝑠=0|𝑠=0 = 0. Next, we 

calculate the predicted distribution of the next measurement zs+1  given the previous 
measurements z1 to zs by integrating out the internal estimate �̂�𝑠+1: 

Eq. (16) 

p(zs+1|z1, … , zs) = ∫ 𝑑 �̂�𝑠+1𝑝(zs+1|�̂�𝑠+1)𝑝(�̂�𝑠+1|z1, … , zs)  

= ∫ 𝑑�̂�𝑠+1  𝒩(zs+1|ℎ(�̂�𝑠+1), Σz)𝒩(�̂�𝑠+1|𝛍s+1|s, 𝑃𝑠+1|𝑠) 

≈ ∫ 𝑑�̂�𝑠+1  𝒩(zs+1|ℎ(𝛍s+1|s)  +  Hs+1(�̂�𝑠+1 − 𝛍s+1|s), Σz)𝒩(�̂�𝑠+1|𝛍s+1|s, 𝑃𝑠+1|𝑠) 

= 𝒩(zs+1|ℎ(𝛍s+1|s), Ss+1) 
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where we have used the linearization approximation of the EKF at the 3rd line. This 
allows us to express the full log-likelihood as: 

Eq. (17) 

LL(Θ) = 〈∑ log p(zs+1|z1, … , zs

3

s=0

; Θ)〉𝑡𝑟𝑖𝑎𝑙𝑠  

where the dependency on the parameters Θ is introduced through f, its Jacobian Fs+1, 
Σ𝑥  and Σz. In analogy to (8), we find the maximum likelihood (ML) estimate for Θ by 
numerically maximizing the log-likelihood: 

ΘML = argmaxΘLL(Θ) 

Numerical parameter optimization was performed using the fminunc-function of 
MATLAB’s optimization toolbox. 

 

Incorporating trials without participant responses at 

intermediate stopping points 

For a fraction of the trials, a response is not collected at intermediate stopping points, 

but only at the end of the trajectory. For these trials the observations 𝐳s+1 are missing for 
s ∈ {0,1,2} and therefore the EKF update equations (14) need to be adapted. This can 

be achieved using the infinite observation noise limit Σz  →∞, under which the predicted 
and updated posterior distributions become identical: 

𝛍𝑠+1|𝑠 = f(𝛍𝑠|𝑠)  

𝑃𝑠+1|𝑠 = F𝑠+1𝑃𝑠|𝑠𝐹𝑠+1
𝑇 + Σ𝑥 

𝛍𝑠+1|𝑠+1 = 𝛍𝑠+1|𝑠 

𝑃𝑠+1|𝑠+1  =  𝑃𝑠+1|𝑠 

For s = 3, the observation at the last stopping point 𝐳s+1 is defined, and eq. (14) can be 
used as usual.  

 

Model predictions 

We simulated participants’ responses by sampling 100 repetitions of model trajectories 
for each participant and trial from eq. (9) given the fitted parameters Θ = ΘML and the 

trajectory parameters Δ𝐱  for each segment. Each repetition generates stochastic 

observations d̂model and φ̂model via eq. (12) that can be analyzed analogously to the 
actual data. The model prediction for the square error is calculated by averaging the 
square error of the simulated data over trials and repetitions. The model prediction for 
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the bias on individual trials is calculated by averaging the simulated data over 
repetitions. 

 

Model variants 

No reporting noise: The log-likelihood is computed using eq. (7) instead of eq. (17). 

Constant reporting noise: This model assumes that the distance reporting error does not 
follow Weber’s law but is independent of the distance reporting value. For this model eq. 
(2) is replaced by 

Eq. (18) 

d̂ = d + σdηd  

φ̂ = φ + σφηφ 

The model can be fit in the same way as Weber reporting noise model, with the first 

component of the observation 𝐳s  defined as the reported distance d̂ , instead of its 

logarithm log(d̂). In this model, noise is added linearly in polar coordinates instead of 
log-polar coordinates. Therefore, eq. (12) is replaced by 

Eq. (19) 

𝐳s+1 = (
 �̂� 
φ̂

)  

and we replace the observation function h(�̂�𝑠+1) in eq. (11) by the transformation from 
cartesian to polar coordinates: 

Eq. (20) 

h(�̂�𝑠+1) = (
𝑑(�̂�𝑠+1)

φ(�̂�𝑠+1)
) = (

|�̂�𝑠+1|

𝑎𝑡𝑎𝑛2((�̂�𝑠+1)2, (�̂�𝑠+1)1)
)  

and its Jacobian Hs+1 in eq. (15) by 

Hs+1 =
∂h(𝒙)

∂𝐱
|

𝐱=𝛍𝑠+1|𝑠

=
1

|𝛍𝑠+1|𝑠|2
 (

μ𝑠+1|𝑠,1|𝛍𝑠+1|𝑠| μ𝑠+1|𝑠,2|𝛍𝑠+1|𝑠|
−μ𝑠+1|𝑠,2 μ𝑠+1|𝑠,1

) 

The rest of the calculation of the log-likelihood function is exactly the same as for the 
Weber-law reporting noise model. 

Fitting by age group: Instead of fitting model parameters individually for each participant, 
participants in each age group are constrained to have the same model parameters. 
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Model comparison using Bayesian Information Criterion 

The Bayesian Information Criterion (BIC) is a scheme to compare models with different 
numbers of parameters: models with lower BIC are preferred over models with higher 
BIC (Konishi & Kitagawa, 2008). The BIC corrects for the higher expressibility of models 
with larger number of parameters using an additive compensation term. The formula for 
the BIC is given by 

BIC =  −2 LL(Θ𝑀𝐿)  +  log(n)k 

where n is the number of observations and k is the number of parameters. The number 
of parameters for different models is given by: 

Model Number of parameters k 

Weber model, individually fit, young adults 7 x n = 210 

Weber model, individually fit, older adults 7 x n = 182 

Weber model, group-level fit 7 

Constant noise model, individually fit, young adults 7 x n = 210 

Constant noise model, individually fit, older adults 7 x n = 182 

No reporting noise model, individually fit, young adults 7 x n = 210 

No reporting noise model, individually fit, older adults 7 x n = 182 

 

Relative influence of model parameters on predicted square 

error 

The detailed computational model allows us to measure the influence of each type of 
bias and noise parameter on the square error predicted by the model. For each 
parameter type we calculated a reduced square error that is generated by setting this 
parameter type to its ideal value corresponding to unbiased, noiseless integration, while 
keeping the remaining parameters at their ML estimates: 

 error
�̃�
2  =  error2(�̃� = 0, 𝛼𝑀𝐿, �̃�𝑀𝐿 , �̃�0

2
𝑀𝐿

, 𝜎𝑑
2

𝑀𝐿
, 𝜎𝜙

2

𝑀𝐿
) 

 error𝛼
2  =  error2(�̃�𝑀𝐿, 𝛼 = 1, �̃�𝑀𝐿, �̃�0

2
𝑀𝐿

, 𝜎𝑑
2

𝑀𝐿
, 𝜎𝜙

2

𝑀𝐿
) 

 error�̃�
2  =  error2(�̃�𝑀𝐿, 𝛼𝑀𝐿 , �̃� = 0, �̃�0

2
𝑀𝐿

, 𝜎𝑑
2

𝑀𝐿
, 𝜎𝜙

2

𝑀𝐿
) 

 error�̃�0
2

2  =  error2(�̃�𝑀𝐿, 𝛼𝑀𝐿 , �̃�𝑀𝐿, �̃�0
2 = 0, 𝜎𝑑

2
𝑀𝐿

, 𝜎𝜙
2

𝑀𝐿
) 

 error
𝜎𝑑

2
2  =  error2(�̃�𝑀𝐿, 𝛼𝑀𝐿 , �̃�𝑀𝐿, �̃�0

2
𝑀𝐿

, 𝜎𝑑
2 = 0, 𝜎𝜙

2

𝑀𝐿
) 

 error
𝜎𝜙

2
2  =  error2(�̃�𝑀𝐿, 𝛼𝑀𝐿 , �̃�𝑀𝐿, �̃�0

2
𝑀𝐿

, 𝜎𝑑
2

𝑀𝐿
, 𝜎𝜙

2 = 0) 

 

The relative influence of each reduced error in percent is then calculated as: 

infli = 100
error2(ΘML) − errori

2

error2(ΘML)
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Note that the relative influence can be negative if the reduced square error is larger than 
the square error of the full model. This can be true in particular for the memory leak 

parameter �̃�: For example, a memory leak value �̃�𝑀𝐿 < 1 that draws location estimates 

towards the starting point can partly compensate for a velocity bias 𝛼𝑀𝐿 > 1 that draws 

location estimates away from the starting point. Setting �̃� = 1 while keeping 𝛼𝑀𝐿 > 1 can 
therefore lead to a larger “reduced” square error and a negative relative influence. 

Also note that due to the nonlinearity of the model the relative influences do not have to 
sum to 100%. 
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LIST OF ABBREVIATIONS 

BIC Bayesian information criterion 

BMBF German ministry of education and 

research 

BOLD blood oxygenation level dependent 

DSST digit symbol substitution test 

EKF extended Kalman filter 

EPI echo-planar imaging 

Eq equation(s) 

fMRI functional magnetic resonance 

imaging 

FWHM full width at half maximum 

GLM general linear model 

GRAPPA generalized autocalibrating partial 

parallel acquisition 

GridCAT grid code analysis toolbox 

GUI graphical user interface 

HMD head mounted display 

HRF hemodynamic response function 

M mean 

m meter(s) 

MCI mild cognitive impairment 

mm millimeter(s) 

MoCA Montreal cognitive assessment 

MPRAGE magnetization-prepared rapid 

gradient-echo 

ms millisecond(s) 

MST medial superior temporal 

MVPA multi-voxel pattern analysis 

NIfTI neuroimaging informatics technology 

initiative 

NITRC neuroimaging informatics tools and 

resources clearinghouse 

NMDA N-methyl-D-aspartate receptor 

PET positron emission tomography 

ROI region of interest 

RSA representational similarity analysis 

SBSOD Santa Barbara sense of direction 

scale 

SD standard deviation 

sec second(s) 

SEM standard error of the mean 

SPM statistical parametric mapping 

TAP testbattery for attentional 

performance 

TE echo time 

TI inversion time 

TR repetition time 

TSE turbo-spin-echo 

tSNR temporal signal-to-noise ratio 

vm virtual meter(s) 

vol volume 

WAIS Wechsler adult intelligence scale 

2D two-dimensional 

3D three-dimensional 

>> ... is much greater than ... 

Δ difference 

# number(s) 

° degree(s) 
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