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Abstract

From the beginning of the software-development age, the reuse of program functional-
ity has been an essential part of the development process. Only with an efficient reuse
strategy it is possible to speed up the development. This becomes even more impor-
tant when the construction of similar programs is focused. One promising solution to
develop similar programs is based on software product lines, which allow a developer
to implement these products based on a common code base. Although the concept
of software product lines is well established nowadays, the application of product-line
mechanisms can become challenging especially in systems with a high complexity, such
as analyses that ensure a correct product-line modeling. To tackle this complexity, the
concept of multi product lines has been proposed, in which the whole system is de-
scribed by a set of software product lines with interdependencies. Thus, the reuse of
software artifacts reaches a new level. However, as the involved product lines of a multi
product line are closely coupled, the knowledge of the whole product-line dependencies
is generally needed to implement parts of the system or to analyze it. As a result, the
development of a multi product line can also be tedious and error-prone.

To avoid direct dependencies between the product lines of a multi product line, we
propose the concept of multi-level interfaces. Based on this, we aim to ease the devel-
opment of multi product lines including the analysis and evolution. This could also gain
particular importance when looking at the trend of a software ecosystem that repre-
sents a software product line of distributed organizations. For this purpose, we suggest
to use different interfaces for each level of the development process, e.g., one interface
for modeling and another interface for implementing the multi product line, whereas
the lower level depends on the upper level. As a result, the whole set of interfaces
will ensure a complete decoupling of the involved product lines so that we can ease the
implementation and the analyses of the multi product line. To explore our concept, we
specified and implemented an interface for the levels of product-line modeling as well
as implementation and investigated the effect on analysis tasks in real-world systems.
In this context, we found that the interface on the modeling level can ease the analysis
of model compositions, since the analysis result of model compositions with and with-
out the interface depends on each other. This is especially important in a scenario of
product-line evolution. Similarly, we also discovered a benefit when using an interface
on the implementation level. Here, the interface protects the developer from having to
perform a manual code analysis of reusable program artifacts. In addition, as proof of
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concept, we also investigated the behavioral level of product lines and investigate mul-
tiple ideas on how to realize such an interface. In sum, we conclude that the concept
of multi-level interfaces can be used to avoid direct dependencies between the product
lines of a multi product line and that it simplifies the analysis and evolution of the
whole system.



Zusammenfassung

Seit Beginn der Softwareentwicklung ist die Wiederverwendung von Software ein es-
sentieller Bestandteil des Entwicklungsprozesses. Nur durch eine effiziente Wiederver-
wendung kann eine Beschleunigung der Softwareentwicklung ermöglicht werden. Dieser
Aspekt ist von umso größerer Bedeutung, wenn die Entwicklung auf die Erstellung
von ähnlichen Programmen abzielt. Hierbei stellen Softwareproduktlinien eine viel-
versprechende Lösung bereit, die es einem Entwickler erlaubt, die verschiedenen Pro-
gramme basierend auf einer gemeinsamen Quellcodebasis zu entwickeln. Obwohl Soft-
wareproduktlinien heutzutage weit verbreitet und etabliert sind, können vor allem
bei komplexen Systemen hohe Herausforderungen bei der Umsetzung entstehen, wie
beispielsweise bei der Analyse der korrekten Modellierung. Um der Komplexität entge-
genzuwirken, können Multiproduktlinien verwendet werden. Bei Multiproduktlinien
handelt es sich um eine Menge von Produktlinien, die untereinander in Beziehung
stehen. Mit dem Konzept der Multiproduktlinien konnte zugleich eine neue Art der
Wiederverwendung erreicht werden, in der nicht nur einzelne Quellcodeartefakte son-
dern sogar vollständige Produktlinien verwendet werden. Jedoch besteht bei den von-
einander abhängigen Softwareproduktlinien einer Multiproduktlinie zumeist eine enge
Bindung, weshalb zur Implementierung und bei der Analyse des Gesamtsystems Detail-
wissen über alle Abhängigkeiten benötigt wird. Dieser Aspekt mindert den erwünschten
Vorteil von einer Multiproduktlinie, da beispielsweise durch das benötigte Wissen die
Implementierung erschwert wird und weiterhin fehleranfällig ist.

Um die Abhängigkeiten zwischen den Softwareproduktlinien einer Multiproduktlinie
zu vermeiden, schlagen wir die Verwendung von sogenannten Multi-Level Interfaces
vor. Die reduzierten Abhängigkeiten zielen darauf ab, die Entwicklung der Multi-
produktlinie inklusive der Analyse und Evolution zu erleichtern. Wenn man zusätzlich
noch den Trend zur Entwicklung von Software-Ökosystemen betrachtet, bei der die
Entwicklung der Softwareproduktlinien über mehrere Organisationen verteilt ist, er-
langt die Reduzierung der Abhängigkeit noch größere Bedeutung. Daher führen wir
verschiedene Schnittstellen ein, die für die jeweiligen Entwicklungsebenen einer Multi-
produktlinie bestimmt sind. Zum Beispiel handelt es sich hierbei um eine Schnitt-
stelle für die Modellierungs- und Implementierungsebene, wobei die jeweils unteren
Ebenen von den darüberliegenden Ebenen abhängig sind. Insgesamt beschreiben die
Schnittstellen somit eine allumfängliche Sicht auf eine Softwareproduktlinie, sodass
basierend auf dem Konzept der Multi-Level Interfaces die enge Bindung zwischen den
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beteiligten Softwareproduktlinien einer Multiproduktlinie reduziert werden kann. In
diesem Zusammenhang zielen wir darauf ab, die Entwicklung und die Analyse des
Gesamtsystems zu erleichtern. Um Multi-Level Interfaces genauer zu erforschen, spe-
zifizierten und implementierten wir eine Schnittstelle für die Modellierungs- sowie für
die Implementierungsebene und untersuchten die Auswirkungen auf Analysen bezo-
gen auf Realweltsysteme. In diesem Zusammenhang fanden wir heraus, dass unsere
definierte Schnittstelle für die Modellierungsebene die Analyse von Modellkompositi-
onen erleichtern kann. Dieser Aspekt ist besonders bei der Evolution von Software-
produktlinien von Bedeutung, da Analysen seltener wiederholt werden müssen. Be-
zogen auf die Schnittstelle für die Ebene der Implementierung konnten wir ähnliche
Auswirkungen feststellen. Hierbei kann die Implementierungsschnittstelle den Soft-
wareproduktlinienentwickler dabei unterstützen, geeignete Quellcodeartefakte für die
Wiederverwendung aufzudecken, ohne dass eine manuelle Analyse der Abhängigkeiten
notwendig ist. Um die Allgemeingültigkeit von Multi-Level Interfaces zu untersuchen,
betrachteten wir auch Schnittstellen die das Verhalten einer Produktlinie beschreiben.
In diesem Zusammenhang stellten wir verschiedene Ansätze auf, um eine entsprechende
Schnittstelle bereitzustellen. Anschließend untersuchen wir die Eignung der jeweili-
gen Ansätze. Insgesamt schlussfolgern wir, dass Multi-Level Interfaces helfen, direkte
Abhängigkeiten zwischen Softwareproduktlinien einer Multiproduktlinie zu vermeiden
und somit Vorteile bei der Entwicklung bezogen auf die Analyse und der Evolution des
Gesamtsystems erzielt werden können.
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Foreword

To present the concept of multi-level interfaces, the thesis shares material with sev-
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the papers Towards Modular Analysis of Multi Product Lines [Schröter et al. 2013a]
and Using Multi-Level Interfaces to Improve Analyses of Multi Product Lines [Schröter
2014]. Furthermore, as the thesis presents insights into three interface levels, i.e., mod-
eling, implementation, and behavior, the thesis also shares material with the corre-
sponding papers. In detail, for the modeling level, the thesis shares material with the
paper Feature-Model Interfaces: The Highway to Compositional Analyses of Highly-
Configurable Systems [Schröter et al. 2016]. Considering the level of implementation,
the thesis also shares material with the paper Feature-Context Interfaces: Tailored
Programming Interfaces for Software Product Lines [Schröter et al. 2014]. In addition,
further shared material of the paper Variability Hiding in Contracts for Dependent
Software Product Lines [Thüm et al. 2016] is used to describe the behavioral level and
to give an overall example for the purpose of illustration. In sum, the thesis shares
material with the following papers:
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Analysis of Multi Product Lines. In Proc. Int’l Software Product Line Con-
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Schröter, R., Siegmund, N., Thüm, T., and Saake, G. (2014). Feature-
Context Interfaces: Tailored Programming Interfaces for Software Product
Lines. In Proc. Int’l Software Product Line Conf. (SPLC), pages 102–111,
New York, NY, USA. ACM.

Schröter, R. (2014). Using Multi-Level Interfaces to Improve Analyses of
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1. Introduction

The reuse of software artifacts is a central part of the software-development process.
It allows developers to create multiple software products in a more efficient manner
compared to a product development from scratch. One popular type of software reuse
is the mechanism copy & paste as it is the fastest way to take existing functionality and
use it as base to customize the software to the developer’s needs. This kind of software
customization is also known as the clone-and-own approach [Rubin and Chechik 2013;
Rubin et al. 2013]. Afterwards, as one option, we can use branches of a version control
system to manage these similar products [Apel et al. 2013a]. Even if this mechanism
produces fast results, it is an unstructured way to reuse software artifacts that also
negatively affects the software maintainability [Apel et al. 2013a]. For instance, if
an error exists in one code artifact, it needs to be fixed in all duplicates. Therefore, a
structured procedure is needed to achieve a more efficient reuse of software artifacts. As a
consequence, several implementation paradigms, such as Object-Oriented Programming
(OOP), also focus on an improvement of software reuse [Meyer 1988]. OOP provides
several mechanisms like inheritance to efficiently reuse existing functionality. In addition
to OOP mechanisms, object-oriented design patterns were proposed to organize the
source code in a manner so that duplicated code can be reduced [Gamma et al. 1995].
However, even with OOP and design patterns, it is difficult and time-consuming to
create reusable artifacts and to tailor products to our needs. Again, the option to copy
a product and to adapt specific parts of it is often faster than restructuring the code to
enable efficient reuse.

Especially when we focus on implementing similar programs with alternative core im-
plementations, the reuse of software artifacts is essential to reduce the development
time and costs [Apel et al. 2013a; van der Linden et al. 2007]. However, even in this
scenario, it is only an appropriate procedure to use mechanism like copy & paste iff we
only focus on a few products. To overcome these limitations, software product lines
(SPLs) can be used to structure the reuse of software artifacts so that we can implement
similar programs on a common code base [Czarnecki and Eisenecker 2000]. In detail,
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using software product lines we can achieve a tailored product based on a cost-reduced,
quality-improved, and time efficient software-development process [Apel et al. 2013a].
Depending on the specific implementation strategy of the software product line, each
characteristic can be more or less shaped.1 However, all strategies of software product
lines have in common that the systems are described based on features. As several
definitions of a feature exist [Apel et al. 2013a; Kästner et al. 2011], it is necessary to
clarify our understanding of it. We consider a feature as a characteristic of a software
system that we use to describe the commonalities and differences of all products of a
product line on the modeling, implementation and behavioral level. This viewpoint is
similar to the definition of Apel et al., in which a feature is also used to manage the
variation throughout the whole software lifecycle [Apel et al. 2013a].

The size and complexity of industrial systems is growing fast (e.g., considering the
size of existing variability models in practice [Berger et al. 2013]), resulting in new
challenges for product lines. For instance, the Linux kernel, a most famous example
for a product line, consists of thousands of features (more than 11 000 features [Tartler
et al. 2012]) with complex feature-dependencies. This complexity leads to challenges
regarding the correctness of feature dependencies on the modeling, implementation and
behavioral level. In this context, it is hard to find contradicting feature dependencies
which can result in incorrect and undesired products. Even if automated analyses
exist, which are able to detect inconsistencies (e.g., using sat-based analyses [Mendonça
et al. 2009b]), the analyses suffer from the number of features. In particular, if an
analysis is based on numerous satisfiability checks, a delay through every satisfiability
check becomes significant. Unfortunately, the defined dependency between features
and, thus, the satisfiability checks, are also needed in analyses of other development
levels. For instance, it directly influence type checking (e.g.,[Czarnecki and Pietroszek
2006; Thaker et al. 2007]) for the implementation level as well as model checking (e.g.,
[Classen et al. 2010; Lauenroth et al. 2009]) when verifying the behavioral level. Another
example that directly suffers from the complexity, is the implementation task, in which
it is more difficult for a developer to find reusable code-artifacts from other features.
Thus, it is difficult to avoid dangling references during the implementation of a product
line.

A general concept to solve huge and highly complex problems is divide and conquer.
This means, the problem is divided into several pieces that are easier to solve, and
the partial solutions are combined to solve the complex problem. In the context of
product lines this concept complies with the approach of multi product lines (MPLs),
which represents an arbitrary composition of a set of product lines [Rosenmüller and
Siegmund 2010]. According to another definition of multi product lines by Holl et al.,
a multi product line is a set of interdependent product lines. These product lines are
still self-contained but, at the same time, the product lines can be used to describe
(ultra) large-scale systems [Holl et al. 2012]. Hence, it is possible to decentralize the

1For an overview of classic and advanced techniques for the development of software product lines,
we refer the reader to the book of Apel et al. that summarizes the advantages and drawbacks of each
implementation strategy [Apel et al. 2013a].
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development of the interdependent product lines of multi product lines and, thus, to
reuse already existing (parts of) product lines to develop (ultra) large-scale systems. In
particular, when looking at current trends of a software ecosystems the decentralization
becomes even more important. In detail, software ecosystems focus on a development
beyond the organizational boundaries [Bosch 2009; Bosch and Bosch-Sijtsema 2010;
Galindo et al. 2015]. As a result, it is possible to further decrease the development time
and costs [Bosch 2009].

Even if the concept of multi product lines is promising, the development of a multi
product line is still a difficult task. Similar to product lines, we can divide the develop-
ment process of multi product lines into several development levels that depend on each
other (e.g., the modeling level defines the features to implement). However, there is
also a close dependency between the involved product lines on each level. For instance,
taking a deeper look into the modeling level, we have to define the interdependencies
between the product lines of the multi product line. Afterwards, we need to analyze
whether the model represents our intended concept. For instance, we can check if an
assumption holds that two features always occur together (e.g., using techniques for
automated analysis [Benavides et al. 2010]). However, even if we only plan to reuse
a couple of features from another product line (i.e., features of interest), we have to
combine the models with all features and we need to analyze the whole model of the
multi product line [Schröter et al. 2013b]. Furthermore, if changes occur in feature
dependencies, independent whether a feature is of our interest, we need to repeat the
process. Similar dependencies exist on the other levels, such as the reuse of implemen-
tation artifacts (e.g., members of the Application Programming Interface (API)) from
another product line. Because of the dependencies between the involved product lines,
we need to know several details of the reused product line to find appropriate imple-
mentation artifacts for reuse. On top of the direct dependencies between the involved
product lines, dependencies between the development levels additionally compound the
problem. For instance, changes in the reused model can have an effect on the imple-
mentation artifacts that we reused on the implementation level. Thus, it is desirable
to avoid the direct dependencies between the involved product lines of a multi product
line especially when looking at software ecosystems with the focus on a development
beyond organizational boundaries.

In this thesis, we propose multi-level interfaces as a concept to avoid direct dependen-
cies between the involved product lines on each development level of a multi product
line. Using multi-level interfaces, we aim to improve the analysis and evolution of the
multi product line on each development level. For this purpose, we want to introduce
interfaces for the modeling, implementation and behavioral level of a multi product
line. The multi-level interfaces should be hierarchical, that is, interfaces on lower levels
depend on the interfaces on the upper levels. As a result, we aim to get a holistic view
on a product line, in which the details of a specific development level are hidden from
the user’s perspective. Thus, based on this thesis, we want to answer the following,
global research questions to achieve our goals:
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GRQ1: How can we represent the interfaces of the development levels of a multi
product line?
For each interface of our multi-level interfaces regarding the modeling, implemen-
tation and behavioral level it is necessary to find a suitable representation of the
specific interface so that also the dependencies to the upper levels are considered.

GRQ2: Is it possible to generate the interfaces of the development levels of a
multi product line?
If we found a suitable representation for each interface, the question arises whether
it is possible to generate the specific interface. Otherwise, manual effort is needed
to create the interface, which reduces possible advantages of the interface.

GRQ3: Can we use multi-level interfaces to improve the analysis and/or evolution
of multi product lines?
Based on the proposed interfaces, we want to investigate the benefits when using
multi-level interfaces. Therefore, we need to take a look at each interface in detail.

To answer our research questions, we present an overview of our concept of multi-level
interfaces with detailed goals for each interface level (cf. Chapter 3). In this context,
we also introduce one hypothesis for each interface that we want to investigate to
answer our third research question. Afterwards, we consider each interface in detail.
First, we refine our initial concept for the specific interface using our initial view that
we proposed with the holistic concept of multi-level interfaces [Schröter 2014; Schröter
et al. 2013a]. Second, the concept of the specific interface is integrated into an evaluation
environment. For instance, for the concept on the modeling and implementation level,
we use FeatureIDE as it represents an Integrated Development Environment (IDE) for
product lines [Meinicke et al. 2017; Thüm et al. 2014b]. Third, we use the specific
interface integration to evaluate the concept regarding the corresponding hypothesis.
For this purpose, we mainly use quantitative evaluations that are partly based on real-
world case studies to compare the specific analysis of our concept with the state-of-
the-art techniques. Afterwards, we discuss the outcome and threats to validity for the
specific interface. In sum, we make the following contribution:

⇒ We introduce an interface for the modeling level of multi product lines that we
call a feature-model interface. Based on this, we show how to achieve advantages
regarding feature-model analyses in case of evolution.

⇒ We introduce the variable interface as an interface for the implementation level
of multi product lines. We show how we can improve the support for the im-
plementation of a multi product line so that it is easier to identify reusable code
artifacts.

⇒ We introduce different strategies to define an interface for the description of the
behavioral level of a multi product line. Using these strategies as behavioral
product-line interface, we show how we can reduce the effort for the product-line
verification.



5

⇒ We illustrate the general concept of multi-level interfaces based on different levels
that depend on each other. In detail, we show how the variable interface depends
on the feature-model interface and that the behavioral product-line interface de-
pends on the information given by both upper levels.

Thesis Outline

To present the concept of multi-level interfaces and to illustrate the outcome of this
thesis, we decided to structure the thesis according to the different interface levels that
are based on each other. Therefore, the core of the thesis is formed by three main
chapters that present interfaces for the modeling, implementation and behavior level
of the (multi) product-line development. In addition, in our background and overview
chapter, we present necessary information for the subsequent main chapters and give
insights to their relations. Finally, we present related work, give a conclusion, and an
overview of future work. The rest of this thesis is structured as follows:

Chapter 2: This chapter presents basic background knowledge for this thesis. The
chapter is divided in two main parts. First, we present background information
about software product lines (see Section 2.1). Second, in Section 2.2, we reuse the
knowledge about software product lines to describe multi product lines. In general,
both sections take a look at concepts for modeling and implementation, whereas
the section of software product lines also presents some insights of specification
techniques.

Chapter 3: This chapter presents an overview of the ideas of multi-level interfaces.
In contrast to the corresponding interface chapters, in which each interface is
described in detail, this overview chapter focuses on the description of the de-
pendencies between the interfaces. In addition, we present how to analyze the
benefits when using our interface levels and we introduce our hypotheses that we
use to investigate our interfaces in the subsequent chapters.

Chapter 4: Here, we introduce the feature-model interface as the first interface of our
concept of multi-level interfaces. We start with a presentation of a formal de-
scription of this interface. Afterwards, we describe dependencies between model
analyses, which are based on direct model dependencies and dependencies to the
proposed interfaces. To investigate the benefits when using this interface for model
analyses, we use a real-world application for the evaluation.

Chapter 5: As the second interface of multi-level interfaces, we introduce variable inter-
faces for the level of implementation of multi product lines. We show how to use
this interface to support the implementation of software product lines and multi
product lines. Furthermore, for the purpose of evaluation, we compare the results
with state-of-the-art approaches that can be used to support the implementation
of (multi) product lines.

Chapter 6: As a proof of concept for our multi-level interfaces, this chapter introduces
the behavioral product-line interface. Here, we present different strategies to
implement this interface and show how to use this interface to avoid direct depen-
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dencies. Afterwards, we use these different strategies to compare the suitability
as a behavioral product-line interface.

Chapter 7: We use this chapter to present related work for the overall concept. We also
present related work for each interface and work that consider similar goals (e.g.,
information hiding).

Chapter 8: In this chapter, we present a summary and the conclusion for this thesis. In
addition, we present research directions for future work that would have exceeded
the scope of this thesis.



2. Background -
How to Develop (Multi) Product Lines

In this chapter, we introduce fundamentals that are required to comprehend the subse-
quent chapters. As we investigate techniques to ease the development and evolution of
multi product lines, also called dependent product lines, we start with an introduction
of product lines that are used as basic concept. In detail, we give insights into the de-
velopment cycle of product lines and present how we can model, implement, and verify
a single product line. Afterwards, we take a look into multi product lines and present a
straight-forward development of these dependent product lines. Indeed, we do not aim
to give a complete overview of all existing techniques but concentrate on techniques
that we need for the description of the subsequent chapters.

2.1 Development of Single Product Lines

In this section, we give an overview regarding the development of software product lines
(called product lines for simplicity). In general, a product line is a set of products (also
called variants) from one specific domain (i.e., the products are developed for a similar
aim) that shares a set of common features developed on a common code base [Clements
and Northrop 2001]. Even if the term feature is well known in the domain of software
product lines, the meaning partly differs [Apel et al. 2013a; Kästner et al. 2011]. In
detail, a feature is often considered as a coarse-grain concern that we want to include
into several products of this specific domain. By contrast, a feature can also be a very
fine-grained option for specific products. However, all the different views on features
have in common that a customer can chose a set of combinable features to achieve a
product customized to their specific needs. From the viewpoint of the developer, the
concept of software product lines has also several advantages. For instance, as a software
product line is based on a common code base, we can improve the time to market as
well as for maintenance of similar products and, thus, we can save money [Pohl et al.
2005].
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In the following, we give deeper insights into the development of product lines. In detail,
in Section 2.1.1, we present the concept of feature models, which is the common used
technique for the modeling of product lines. Furthermore, we present implementation
techniques of software product lines using feature-oriented programming and preproces-
sors in Section 2.1.2. Afterwards, in Section 2.1.3, we present fundamentals according
to the behavioral level and, thus, we show details on the specification and verification
of products and product lines.

2.1.1 Variability Modeling of Product Lines

Variability modeling is used to define the commonalities and differences of the product
line’s products. For this purpose, several variability modeling approaches were proposed
such as feature modeling [Kang et al. 1990], decision modeling [Schmid et al. 2011], and
orthogonal variability modeling [Pohl et al. 2005]. Several advantages and drawbacks
exists for all approaches, for instance, decision modeling focuses on the differences of
the products whereas the feature modeling approach takes also the commonalities into
account [Czarnecki et al. 2012]. However, as the feature-modeling approach is commonly
used for the variability modeling [Berger et al. 2013; Chen and Ali Babar 2011], we also
used the concept for our investigation. In the following, we present insights into this
variability modeling approach.

As already described, feature models are commonly used to describe features and their
dependencies of a product line to ensure valid products. Besides other representations,
Kang et al. introduced a graphical representation of the feature model as tree structure
with additional cross-tree constraints, called feature diagram, in which all features are
represented as tree elements [Kang et al. 1990]. The tree structure itself represents first
dependencies. For instance, the selection of a child feature forces that also the parent
feature has to be included into the products of the product line. Furthermore, the root
feature of a feature diagram is included in all products of the product line. However, the
representation of feature diagrams in several works differs (cf. [Batory 2005; Czarnecki
and Eisenecker 2000; Czarnecki et al. 2005; Czarnecki and W ↪asowski 2007; Kang et al.
1990]) and, thus, it is essential to specify further dependencies so that the meaning and
comprehension is unique between the reader and us (cf. by a legend). In this thesis, we
use the representation of feature diagrams that is used in FeatureIDE [Meinicke et al.
2017; Thüm et al. 2014b], a plug-in for the development of software product lines. Thus,
we allow the subsequent dependencies:

Mandatory: A child feature is marked as mandatory if it is included in all
products, in which the parent feature is included. In FeatureIDE, it is only allowed
to use the mandatory dependency in and groups.

Optional: A child feature is marked as optional if the user can freely decide
whether the feature should be included in a product. In FeatureIDE, it is only
allowed to use the optional dependency in and groups.
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And Group: The and group allows us to define multiple child features in which
all features are either mandatory or optional features.

Or Group: The or group allows us to define multiple child features whereas
at least one feature needs to be included in a product if the parent feature is
included.

Alternative Group: The alternative group allows us to define multiple child
features whereas exactly one child needs to be included in a product if the parent
feature is included.

However, it is not possible in each scenario to represent all feature dependencies inside
of this tree structure. Therefore, it is also possible to add further cross-tree constraints,
in which we can define additional relations as arbitrary propositional formulas.

Feature Model by Example

In Figure 2.1(a), we present a small example of a feature model from the domain of
bank software. In detail, we depict the feature model of a product line BankAccount
that we use as running example allover the thesis. However, we use this example as it
was also used in several other theses and papers [Thüm 2015; Thüm et al. 2014; Thüm
et al. 2012] and it is a common case study for studies on product-line verification, which
is also part of this thesis. To improve the illustration of our approaches for the concept
of multi-level interfaces, we adapted the initial product line BankAccount . Therefore,
we now introduce each feature and their relations and we reuse the product line to
present our complete concept of multi-level interfaces.

The adapted product line BankAccount consists of nine features and, thus, we have
to describe the dependencies between these features using the feature model. As de-
scribed above, the root feature BankAccount is included in each product of the product
line. Furthermore, the root feature has five optional subfeatures, DailyLimit , Interest ,
Overdraft , CreditWorthiness , and feature Lock . Therefore, the user can freely decide
whether one of these features should be included in the final product. In this scenario,
the feature DailyLimit should realize that a customer of this bank account can only
withdraw a specific amount of money per day. Similarly, the feature Overdraft allows
a customer to withdraw a specific amount of money even if this money is not available
on the bank account. Furthermore, the feature Interest has to provide functionality
to calculate the interest of this account and feature CreditWorthiness needs to check
whether the costumer’s behavior is conform to the credit conditions. Finally, the op-
tional feature Lock can be used to provide lock functionality that controls the access
to this account. However, if we choose feature Lock we also have to choose exactly
one of its alternative subfeatures, feature SimpleLock or TimeUnitLock . Even if both
features control the access to the account, the feature SimpleLock should provide an
API to allow or deny the access, whereas the feature TimeUnitLock denies the access
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(a) Feature diagram of product line BankAccount (b) Feature-model
formalization for product

line BankAccount

Figure 2.1: Feature model MBankAccount = (FBankAccount,PBankAccount) (highlighted
characters of the feature diagram are used to represent FBankAccount and PBankAccount).

for a specific amount of time. Because of the relations from the feature model, we also
know that if we choose one of the subfeatures we also have to select the parent feature
to achieve a valid product. This is also the case for our last feature of the product line
BankAccount , called feature InterestEstimation. It is an optional subfeature of feature
Interest , provides functionality to predict the interest of the next year, and forces that
also the feature Interest and the root feature BankAccount needs to be included in a
product if this feature is part of the product. Besides this relation inside of the tree
structure, the feature model also provides a cross-tree constraint represented as propo-
sitional formula. Using the highlighted characters, the constraint can be represented
as follows L → ((¬S ∧ U) ∨ (S ∧ ¬U)). However, this constraint is identical to the
dependencies given in the tree-structure of feature Lock and its subfeatures. Therefore,
we only included this formula for the purpose of illustration of cross-tree constraints
and, thus, we will remove it in all remaining representations.

The represented feature model with the described feature relations of product line
BankAccount results in 72 different feature combinations, called configurations. How-
ever, some of the presented features are under construction or are only used to structure
the feature model and, thus, do not contain real functionality. In detail, feature Lock
does not contain functionality, as it is only used for structural reasons. Furthermore,
the feature TimeUnitLock is under construction and needs further time for the func-
tional completion. As a result, we marked both features as so called abstract features
(cf. Figure 2.1, features with dashed border lines) [Thüm et al. 2011a]. By contrast, all
other features are concrete features and provide real functionality. However, because of
these abstract features, the real number of products that present different functionality
is 48.

Formalization and Logical Representation of Feature-Models

So far, we used feature diagrams to represent the relations between features. However,
it is also possible to list all valid feature combinations to present the set of products
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or to use propositional formulas or textual representations to describe the relations in
a feature model [Batory 2005]. In particular, the descriptions, proofs, and computa-
tions of this thesis are based on a special formalization and on the representation as
propositional formulas.

Especially for our proof that we present in Chapter 4, we need to formalize a feature
model. In detail, we use the set of all valid configurations and define a feature model
as follows:

Definition 1. A feature model according to Definition 1 of [Schröter et al. 2016]:

A feature model Mx is a tuple (Fx ,Px ), where
(a) Fx is a set of features, and
(b) Px is a set of products with Px ⊆ 2Fx .

To exemplify our formalization, we use our running example of the product line Bank -
Account . In detail, we use the highlighted character of Figure 2.1(a) in Figure 2.1(b)
to illustrate the definition of feature modelMBankAccount with the tuple FBankAccount and
PBankAccount . As the set of valid products is too large for the visual representation (i.e.,
72 different feature combinations), we only present a subset in which we include all prod-
ucts that simultaneously consist of the features Interest (I ), InterestEstimation (E ),
and Overdraft (O).

We can use the introduced formalization of feature models for our proofs regarding the
dependencies of feature-model analysis results. However, for an evaluation or execution
of feature-model analysis, this formalization is not suitable. By contrast, for the purpose
of feature-model analyses, we use the feature-model representation as propositional
formula. In this context, Batory described the dependencies between feature diagrams
and their logic [Batory 2005] and Czarnecki and W ↪asowski have shown that it is possible
to transform the feature diagram into propositional formulas and back again [Czarnecki
and W ↪asowski 2007]. In the following, we use this knowledge to transfer feature diagram
of Figure 2.1 into propositional logic.

Root Feature: B (1.1)

Child-Parent: ∧D → B ∧ I → B ∧O → B ∧W → B ∧ L→ B (1.2)

∧ E → I ∧ S → L ∧ U → L (1.3)

Alternative Group: ∧ L→ ((¬S ∧ U) ∨ (S ∧ ¬U)) (1.4)

Cross-Tree Constraint: ∧ L→ ((¬S ∧ U) ∨ (S ∧ ¬U)) (1.5)

The resulting propositional formula includes all feature relations of the tree structure
and the additional cross-tree constraint of the feature model BankAccount . In detail,
the formula describes the child-parent relation that forces the selection of the parent
feature if a child feature is selected. Furthermore, we can see that the root feature
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is included in all products and the necessity to select feature SimpleLock or feature
TimeUnitLock if feature Lock is selected. Of course, it is also possible to transform all
other relations of a tree-structure that we not used in our example (i.e., or groups). In
detail, if an imaginary feature x is a mandatory subfeature of feature y , we will add the
relation y → x so that we force the selection of x if y is selected. Furthermore, similar
to the relation of an alternative group, we could add an or group. If we assume that the
described alternative group is an or group, we would add L→ (S ∨U) to this formula.
However, besides the described transformation of the feature model’s tree structure, we
finally add all existing cross-tree constraints to this formula.

Even if we structured the propositional formula to improve the readability, it is not
obvious which feature combinations fulfill the formula and, thus, lead to a valid prod-
uct. However, as mentioned above, the purpose of the representation as propositional
formula is to analyze the feature model to get advanced information or detect inconsis-
tencies [Benavides et al. 2010]. As we want to improve the analysis of feature models
in an evolution scenario of multi product lines, we now present different feature-model
analyses and use our formalization of feature models to formally define them.

Feature-Model Analyses

To ensure the correctness of feature models, or to investigate whether the desired ex-
pressiveness and products exist, or to get advanced information, we need to analyze
feature models. In particular, if a feature model consists of hundreds or thousands of
features, like industrial systems show [Berger et al. 2013], feature-model analyses are
essential. In this thesis, we present some proofs regarding the relation of analysis results
for specific feature-model analyses (see Chapter 4 for more details). For this purpose,
we formalize five of the commonly used analyses for feature models. However, for the
application of an analysis, we also use the straight-forward concept. In detail, the fea-
ture model is transformed to a specific representation (e.g., propositional formulas that
we described in the last paragraph) and a corresponding solver is used for the analysis
execution [Benavides et al. 2010].

First of all, we consider the analysis of void feature models. A feature model is void
iff it does not represent a product [Batory 2005; Benavides et al. 2010; Kang et al.
1990]. In detail, it exists a contradiction inside of the feature model so that no feature
combination leads to a valid product. Therefore, the analysis is used to detect such
contradictions as early as possible [Batory 2005; Benavides et al. 2010; Kang et al. 1990;
Trinidad et al. 2008]. Here, we use our feature-model formalization (cf. Definition 1) to
define the analysis of void feature models. According to Definition 2, we assume that
an universe of all feature models exists. As a result, we consider each feature model
Mx of this universe M as void if the set of products Px is empty. The result is a
new set of feature models in which all feature models are void. Considering feature
model BankAccount , we get the conclusion that this feature model is not part of all
void feature models of the universe.
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Definition 2. Analysis of void feature models according to Definition 2 of [Schröter
et al. 2016]:

Let Mx = (Fx ,Px ) be a feature model and M the set of all feature models of
the universe, then

void = {Mx ∈M | Px = ∅} (2.1)

In our second formalization of feature-model analyses, we consider the analysis of core
features. A core feature is a feature that is included in all products of a product
line [Benavides et al. 2010; Trinidad and Ruiz-Cortés 2009]. In particular, the analysis
is used to determine the features that we should implement first [Benavides et al. 2010;
Trinidad et al. 2004]. This means, we can use the knowledge of core features to create
an implementation priority list for all features. In Definition 3, we define a function core
that uses the feature modelMx as input and determines the intersection of the sets of
all products Px to achieve the core features. Again, we consider our running example
to illustrate the application of function core. If we use feature model MBankAccount as
input, we get the set {BankAccount} of core features as result.

Definition 3. Analysis of core features according to Definition 2 of [Schröter et al.
2016]:

Let Mx = (Fx ,Px ) be a feature model and M the set of all feature models of
the universe, then

core(Mx ) =
⋂
p∈Px

p (3.1)

The analysis of dead features represents our third formalization. In detail, if we consider
a non-void feature model, a dead feature is a feature that is not included in any product
of the specific product line [Benavides et al. 2010; Kang et al. 1990]. Therefore, similar
to the analysis of void feature models, the analysis is used to detect contradictions
in the feature model [Hemakumar 2008]. Thus, using this analysis, we don’t waste
time to implement a feature that we cannot use for any product line’s product. In
Definition 4, we define function dead with the feature modelMx as input to determine
the dead features. In detail, the function determines the union of all features given in all
products Px and computes the difference to set of feature Fx . If we use feature model
BankAccount as input for function dead , we get an empty set as result. However, if we
assume that the constraint Lock → SimpleLock as further cross-tree constraint exists,
we achieve the set {TimeUnitLock} as result. Assuming this additional dependency, it
exists no product in which the feature TimeUnitLock is included.
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Definition 4. Analysis of dead features according to Definition 2 of [Schröter et al.
2016]:

Let Mx = (Fx ,Px ) be a feature model and M the set of all feature models of
the universe, then

dead(Mx ) = Fx \
⋃
p∈Px

p (4.1)

Our fourth formalization considers the analysis of partial configurations. First of all, a
partial configuration of a feature modelMx is a tuple of selected feature FS and dese-
lected feature FD , whereas FS ∪FD ⊆ Fx and FS ∩FD = ∅. By contrast, we consider a
configuration, in which additionally the union of selected and deselected features results
in the set of all features, as full configuration (i.e., FS ∪ FD = Fx ) [Benavides et al.
2010]. Based on this definition, the analysis of partial configurations determines whether
a partial configuration fulfills all relations of the corresponding feature model [Batory
2005; Benavides et al. 2010; Kang et al. 1990]. In Definition 5, we define a function
pConf that determines for a given feature model Mx the set of all tuples of selected
and deselected features that fulfill the relations of features given by the feature model.
To illustrate the application of function pConf , we use our feature model BankAccount .
As a result, we can conclude that the configuration ({B}, {D, I,O,W,L,E, S, U}) is a
valid full configuration of the feature model MBankAccount as this tuple is part of the
result set and, thus, fulfills all feature-model relations. In addition, the configuration
({L}, {S}) is also a valid configuration and part of the result set of function pConf .
However, by contrast to our first example, this is only a partial configuration. Further-
more, as the configuration ({B, S}, {L}) contains a contradiction, the configuration is
not part of the result set of function pConf with feature model MBankAccount as input.

Definition 5. Analysis of partial configurations according to Definition 2 of [Schröter
et al. 2016]:

Let Mx = (Fx ,Px ) be a feature model and M the set of all feature models of
the universe, then

pConf (Mx ) = {(FS ,FD) | ∃p ∈ Px : FS ⊆ p ∧ FD ⊆ Fx \ p} (5.1)

Finally, we consider the formalization of the analysis atomic sets. In detail, an atomic
set is a non-empty set of features that is completely included or completely absent in all
product line’s products. Therefore, we can replace the features of an atomic set by one
single feature of this set (e.g., considering a propositional formula) and, thus, atomic
sets can reduce the complexity of other feature-model analyses [Benavides et al. 2010;
Segura 2008; Zhang et al. 2004]. However, the first idea of a set of features that can be
considered as unit, is based on a mandatory parent-child dependency [Benavides et al.
2010; Zhang et al. 2004]. Therefore, several implementations of an atomic set analysis
only consider this kind of dependencies. By contrast, similar to Durán et al. [Durán
et al. 2017], we consider a set of features as an atomic set if our initial condition holds, in
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which the set is always completely included in a product or completely absent. Because
of cross-tree constraints, this can also result in an atomic set of features that are far
away from each other considering the tree structure. Therefore, in Definition 6, we
formalize the analysis of atomic sets using function aSet that uses a feature modelMx

as input and returns a set of atomic feature sets as output (this formalization is similar
to the definition of atomic sets given by [Durán et al. 2017]). To ease the definition
of aSet , we use a second function aSub that determines all atomic subsets of a feature
model Mx . In detail, the result of function aSub is a set of feature sets whereas a set
of features can be simultaneously a subset of another set. Therefore, the function aSet
removes all these subsets from the result of function aSub so that only atomic supersets
are presented as result. For instance, considering our feature model BankAccount , we
get the result, that only sets of single features are returned as atomic sets. However, if
we again assume an additional cross-tree constraint Lock → SimpleLock , we get another
result. Here, the function aSub presents the set {{L, S}, {L}, {S}, ...} as output. After
the application of function aSet , only the superset {L, S} and the single sets of the
other features still remain.

Definition 6. Analysis of atomic sets according to Definition 2 of [Schröter et al.
2016]:

Let Mx = (Fx ,Px ) be a feature model and M the set of all feature models of
the universe, then

aSet(Mx ) = {p ∈ aSub(Mx ) | ∀q ∈ aSub(Mx ) : p 6⊂ q} (6.1)

aSub(Mx ) = {q | q 6= ∅,Px 6= ∅, ∀p ∈ Px : q ⊆ p ∨ q ⊆ Fx \ p} (6.2)

Even if it is not part of our formalization but used in several subsequent descriptions,
we have to consider the analysis of false-optional features. However, several definitions
of a false-optional feature exist. For instance, considering the description of Benavides
et al., a false-optional feature is a feature that is included in all products of the product
line even if it is not modeled as a mandatory feature [Benavides et al. 2010]. Using this
definition, the set of all false-optional features of a product line is a subset of all core
features of the same product line. By contrast, we consider a false-optional feature as a
feature that is modeled as optional in the feature diagram but it also has a mandatory
relation to the parent feature [Meinicke et al. 2017]. As result, the false-optional feature
is not automatically a core feature. However, both definitions have in common that
a specific feature combination without the false-optional feature but with the parent
feature is indicated even if this feature combination is not possible. Therefore, the
analysis is used to avoid such problems. As our feature-model formalization does not
include information about the graphical structure of the feature model (i.e., the feature
diagram), it is not possible to formalize this analysis based on it. Nevertheless, it is
possible to determine the false-optional features of a feature model using the represen-
tation as propositional formula. Using this representation and our running example
of product line BankAccount , we get an empty set of false-option features as result.
However, if we assume that the constraint Overdraft → InterestEstimation exists, we
get a set with the features Interest and InterestEstimation as result.
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Figure 2.2: Feature model BankAccount that represents two products, a product
with feature BankAccount and a second product with the features BankAccount and
DailyLimit .

2.1.2 Implementation of Product Lines

Based on the feature models given in the last section, we know the features and
their dependencies that we want to implement. For the implementation itself, we
have the choice between several composition-based and annotation-based techniques.
Whereas composition-based techniques modularize the feature code, the annotation-
based techniques map code artifacts to the features (i.e., using ifdef directives) [Apel
et al. 2013a]. Even if we exemplify our concept using the composition-based technique
feature-oriented programming, we also briefly introduce annotation-based techniques
as we also want to discuss their application with our concept. For the illustration of
the different implementation techniques, we use an excerpt of our running example of
product line BankAccount .

In Figure 2.2, we present a slightly different feature model of our product line Bank -
Account , in which we marked all features as abstract that we plan to implement later. As
result, we start with the implementation of the features BankAccount and DailyLimit .
Therefore, the current feature model allows us to create two products one with feature
BankAccount and one with feature BankAccount and feature DailyLimit . We depict
the source code of both products in Figure 2.3.

In the following, we present different implementation techniques that allow us to gener-
ate products with the same behavior as given in Figure 2.3. As preprocessors are com-
monly known in industry, we start with an implementation based on the preprocessor
Antenna [Pleumann et al. 2011]. Afterwards, we introduce feature-oriented program-
ming that is used in our running example for the concept of multi-level interface.

Preprocessor

In this section, we illustrate the application of preprocessors for the implementation
of software product lines. For the concept of preprocessors, a developer maps variable
code artifacts to features using annotations (i.e., #ifdef feature). In general, the anno-
tations can consist of arbitrary propositional formulas. However, often the annotation
corresponds to a specific feature or the negation of it. In a preprocessing step of the
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1public class Account {
2 int balance = 0;
3
4 boolean update(int x) {
5 int newBalance = balance + x;
6 if (newBalance < getOverdraftLimit())
7 return false;
8 balance = newBalance;
9 return true;

10 }
11
12 int getOverdraftLimit() {return 0;}
13}

(a) Product based on feature BankAccount

14public class Account {
15 int balance = 0;
16 final static int DAILY_LIMIT = −1000;
17 int withdraw = 0;
18
19 boolean update(int x) {
20 int newWithdraw = withdraw;
21 if (x < 0) {
22 newWithdraw += x;
23 if (newWithdraw < DAILY_LIMIT)
24 return false;
25 }
26
27 int newBalance = balance + x;
28 if (newBalance < getOverdraftLimit())
29 return false;
30 balance = newBalance;
31
32 withdraw = newWithdraw;
33 return true;
34 }
35
36 int getOverdraftLimit() {return 0;}
37}

(b) Product based on feature BankAccount
and feature DailyLimit

Figure 2.3: Two products of the product line BankAccount .

1public class Account {
2 int balance = 0;
3 //#if DailyLimit
4//@ final static int DAILY_LIMIT = −1000;
5//@ int withdraw = 0;
6 //#endif
7
8 boolean update(int x) {
9 //#if DailyLimit

10//@ int newWithdraw = withdraw;
11//@ if (x < 0) {
12//@ newWithdraw += x;
13//@ if (newWithdraw < DAILY_LIMIT)
14//@ return false;
15//@ }
16 //#endif
17
18 int newBalance = balance + x;
19 if (newBalance < getOverdraftLimit())
20 return false;
21 balance = newBalance;
22
23 //#if DailyLimit
24//@ withdraw = newWithdraw;
25 //#endif
26 return true;
27 }
28
29 int getOverdraftLimit() {return 0;}
30}

Figure 2.4: Preprocessor-based implementation of product line BankAccount using An-
tenna.
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compiler, the preprocessor analyzes the annotations and removes code artifacts that
lead to a formula with a false statement. As a result, the final compiled program only
consists of code artifacts that lead to a true statement and, thus, the products only
include features of our interest.

As our running example of product line BankAccount is based on Java, we use the
preprocessor Antenna [Pleumann et al. 2011] for the illustration of the concept. There-
fore, in Figure 2.4, we start with the code of our second BankAccount product (cf.
Figure 2.3(b)) and add preprocessor annotations to mark the code corresponding to
feature DailyLimit as variable. In detail, we create an #ifdef annotation (cf. Line 3)
with feature DailyLimit , which marks that the variable code begins on this position.
Furthermore, we set an #endif annotation to finalize the variable block (cf. Line 6).
Afterwards, we create two other blocks that surround the source code of the feature
DailyLimit (cf. Lines 9–16 and Lines 23–25). If we then apply the preprocessor Antenna
without feature DailyLimit , the source code belonging to this feature is automatically
converted to a Java comment. As a result, the Java compiler only considers the un-
commented source code.

Feature-Oriented Programming

By contrast to preprocessors, feature-oriented programming is a composition-based
technique that allows us to separate the source code of features in dedicated feature
modules [Batory et al. 2004; Prehofer 1997]. In detail, we can define several classes
with members (e.g., methods, fields) in a feature module that corresponds to a specific
feature. During the generation of a product, we can use the approach of superimpo-
sition [Apel et al. 2009, 2013b]. In detail, this means that all classes with identical
names are recursively superimposed so that the final class contains all members of all
input classes. If a member consists in several feature modules, rules exist to decide how
to superimpose the content. For instance, we can use special keywords in methods to
call the identical method defined in another feature module (e.g., keyword original in
FeatureHouse [Apel et al. 2009, 2013b]).

To exemplify the concept, we use FeatureHouse, a language-independent composer
for feature-oriented programming [Apel et al. 2009, 2013b], to implement product
line BankAccount . In Figure 2.5, we depict the feature modules BankAccount and
DailyLimit . In detail, the feature module BankAccount defines the class Account with
the field balance and the methods update and getOverdraftLimit. The feature mod-
ule DailyLimit defines the final field DAILY_LIMIT and the field withdraw. However,
the feature module also defines the method update as a refinement of other feature
modules. In our scenario, the method update of feature module DailyLimit refines the
method update of feature module BankAccount and, thus, calls the initial functionality
of this function using the keyword original (cf. Line 25).

As we use feature-oriented programming to exemplify our concept of multi-level inter-
faces, we also need a formalization of the product’s generation process (i.e., of a specific
product-line’s product). For the feature-module composition, we need to consider all



2.1. Development of Single Product Lines 19

1public class Account {
2 int balance = 0;
3
4 boolean update(int x) {
5 int newBalance = balance + x;
6 if (newBalance < getOverdraftLimit())
7 return false;
8 balance = newBalance;
9 return true;

10 }
11
12 int getOverdraftLimit() {return 0;}
13}

(a) Feature module of feature BankAccount

14class Account {
15 final static int DAILY_LIMIT = −1000;
16 int withdraw = 0;
17
18 boolean update(int x) {
19 int newWithdraw = withdraw;
20 if (x < 0) {
21 newWithdraw += x;
22 if (newWithdraw < DAILY_LIMIT)
23 return false;
24 }
25 if (!original(x))
26 return false;
27 withdraw = newWithdraw;
28 return true;
29 }
30}

(b) Feature module of feature DailyLimit

Figure 2.5: Implementation of product line BankAccount using feature-oriented pro-
gramming.

implementation units according to the selected features FS of a specific product p ∈ P .
For this purpose, we adapt the definition of Apel et al. [Apel et al. 2013c] and define
the composition of the implementation units as given in the Definition 7.

Definition 7. Feature-Module Composition (adapted definition of [Apel et al. 2013c]):

Let Mx = (Fx,Px) be a feature model, f1...fn ∈ FS all selected features of
a specific product p ∈ Px, impl(f) the implementation unit of the feature f ,
and impl(p) the composition of product p. Furthermore, • is the composition
operator with I × I → I defined over the set of all implementation units. We
define the feature-module composition as follows:

impl(p) = impl(f1 ) • ... • impl(fn)

2.1.3 Specification and Verification of Product Lines

To investigate whether our concept of multi-level interfaces can also be applied to further
concepts than modeling and implementation, we want to make a proof of concept on
a further level. In detail, we decide to also investigate specification and verification
techniques for product-lines that are used to ensure the correctness of product-line’s
products. For this purpose, we now introduce basics for the specification and verification
of object-oriented programs. Afterwards, we show how to use these techniques in the
context of product lines.

Program Verification in General

To create reliable object-oriented programs, we can use design by contract [Meyer 1988,
1992]. Based on design by contract, it is possible to assign preconditions (i.e., requires
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1class Account {
2 //@ invariant balance >= getOverdraftLimit();
3 int balance = 0;
4 //@ ensures balance == 0;
5 Account() { }
6 //@ requires x != 0;
7 //@ ensures (\result ==> balance == \old(balance) + x) &&
8 //@ (!\result ==> balance == \old(balance));
9 boolean update(int x) {

10 if (balance + x < getOverdraftLimit())
11 return false;
12 balance += x;
13 return true;
14 }
15 //@ ensures \result == 0;
16 /∗@ pure @∗/ int getOverdraftLimit() {return 0;}
17}

Figure 2.6: Product BankAccount based on feature BankAccount with JML specifica-
tions.

clauses) and postconditions (i.e., ensures clauses) to methods. In detail, these condi-
tions define valid states of the program, whereas the precondition needs to hold before
and the postcondition after the method is executed [Hatcliff et al. 2012]. Furthermore,
it is also possible to define invariants that additionally define the state of objects and
classes. These are global constraints that also need to be hold when methods are exe-
cuted or fields are changed. Based on such a specification, it is possible to use different
kinds of languages and tools to verify the program correctness. In Java for instance, we
can use the Java Modeling Language (JML) to specify the programs behavior. Using
deductive verification, the Java code and the annotations of JML are translated into a
specific logic that is subsequently used to prove that the program behaves according to
the specification for each input value [Beckert et al. 2007].

In Figure 2.6, we depict a bank account product in which only feature BankAccount
is included. Using JML, we specify the behavior of this product. In detail, we add
the postcondition ensures balance == 0 to the constructor of class Account so that
it is ensured that the field balance is initialized with 0 (cf. Line 4). Furthermore,
for the purpose of illustration, we add a precondition to method update so that the
input value needs to be dissimilar to 0 (cf. Line 6). In addition, the postcondition
of method update ensures that the account’s balance is changed to the input if the
method returns true and otherwise that the balance is constant (cf. Lines 7–8). The
postcondition of method getOverdraftLimit() simply ensures that the method re-
turns 0 in all executions (cf. Line 15). The additional keyword pure illustrates that
the method is side-effect free [Beckert et al. 2007] and, thus, it allows us to use this
method in specifications (cf. Line 16). This is necessary as we use this method in the
invariant balance >= getOverdraftLimit() in which we define that the balance has
to be greater or equal to this overdraft limit during all state changes (cf. Line 2). After
the specification of the product’s behavior, we can use concepts and tools for deductive
verification, such as the theorem prover KeY [Beckert et al. 2007].
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1class Account {
2 //@ ensures \result == −5000;
3 /∗@ pure @∗/ int getOverdraftLimit(){ return −5000; }
4}

5class Account {
6 //@ invariant withdraw >= DAILY_LIMIT;
7 final static int DAILY_LIMIT = −1000;
8 int withdraw = 0;
9 //@ requires \original;

10 //@ ensures \original;
11 //@ ensures !\result ==> withdraw == \old(withdraw);
12 //@ ensures \result ==> withdraw <= \old(withdraw);
13 boolean update(int x) {
14 int newWithdraw = withdraw;
15 if (x < 0) {
16 newWithdraw += x;
17 if (newWithdraw < DAILY_LIMIT) return false;
18 }
19 if (!original(x)) return false;
20 withdraw = newWithdraw;
21 return true;
22 }
23}

Figure 2.7: Feature modules Overdraft and DailyLimit with JML specifications.

Program Verification for Product-Line’s Products

In general, it is possible to create a product-line’s product and to specify and verify
this product afterwards. However, as a product line can result in thousands or millions
of products, this task is cumbersome and error-prone as many specifications will be
identical. Therefore, additional concepts are needed to specify and verify product lines
in an efficient manner. In this context, we consider feature-oriented contracts that
were introduced for the paradigm of feature-oriented programming and allow us to
generate the specification similar to the source code [Thüm 2015]. However, the concept
only reduces the specification effort for each product and, thus, we need an additional
technique to reduce the verification effort of the whole product line. For this purpose,
variability encoding can be used [von Rhein et al. 2016]. In the following, we introduce
both techniques and use the product line BankAccount as running example for the
purpose of illustration.

Feature-oriented contracts are contracts introduced for the paradigm of feature-oriented
programming that allow us to compose a product specification similar to the composi-
tion of source code [Thüm 2015; Thüm et al. 2012]. In detail, feature-oriented contracts
are contracts for feature modules represented as an extended version of design by con-
tract that allows a developer to refine existing specifications of other feature modules
(e.g., using the keyword original). Using the partial specification as input, we can
generate a specific product specification during the product composition. The result is
a product with a specification based on a common specification language that can be
used as input for state-of-the-art tools for deductive verification, such as KeY [Beckert
et al. 2007].
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1class Account {
2 //@ invariant balance >= getOverdraftLimit();
3 int balance = 0;
4 //@ invariant withdraw >= DAILY_LIMIT;
5 final static int DAILY_LIMIT = −1000;
6 int withdraw = 0;
7
8 //@ ensures balance == 0;
9 Account() { }

10
11 //@ requires x != 0;
12 //@ ensures (\result ==> balance == \old(balance) + x) &&
13 //@ (!\result ==> balance == \old(balance));
14 boolean update_BankAccount(int x) {
15 if (balance + x < getOverdraftLimit())
16 return false;
17 balance += x;
18 return true;
19 }
20
21 //@ requires x != 0;
22 //@ ensures (!\result ==> balance == \old(balance)) &&
23 //@ (\result ==> balance == \old(balance) + x);
24 //@ ensures (!\result ==> withdraw == \old(withdraw)) &&
25 //@ (\result ==> withdraw <= \old(withdraw));
26 boolean update(int x) {
27 int newWithdraw = withdraw;
28 if (x < 0) {
29 newWithdraw += x;
30 if (newWithdraw < DAILY_LIMIT) return false;
31 }
32 if (!update_BankAccount(x)) return false;
33 withdraw = newWithdraw;
34 return true;
35 }
36
37 //@ ensures \result == −5000;
38 /∗@ pure @∗/ int getOverdraftLimit() { return −5000; }
39}

Figure 2.8: Generated source code with JML specifications for product BankAccount
based on the features BankAccount , DailyLimit , and Overdraft .

To illustrate the concept of feature-oriented contracts, we use the product line BankAc-
count that we specified by the extended version of JML [Thüm 2015]. By contrast to the
previous examples, we use a product-line version, in which also the feature Overdraft
is implemented (cf. concrete features of Figure 2.9). In Figure 2.7, we present the
feature modules DailyLimit , and Overdraft with feature-oriented contracts. As the
contracts of the feature module BankAccount are identical to product BankAccount
depicted in Figure 2.6, we focus on the other feature modules. In feature module
Overdraft , we completely override the contract of feature module BankAccount and
define a postcondition, in which we ensure the return value of -5000 (cf. Line 2). By
contrast, in feature module DailyLimit , we refine the JML postcondition of method
update. In detail, we use the keyword original to refer to the contract definition of
feature module BankAccount (cf. Lines 9–10). In addition, we add further constraints
so that the state of field withdraw is lower or equal than the state before the method



2.1. Development of Single Product Lines 23

Figure 2.9: Feature model BankAccount that represents four products, one product with
feature BankAccount and three other products in which also the features DailyLimit
or/and Overdraft are included.

was executed, otherwise the contract ensures that the state of the field is constant (cf.
Lines 11–12). Furthermore, we define another invariant that ensures that the state
of the field withdraw is never below the daily limit that is allowed to withdraw (cf.
Line 6). Based on this common code base with feature-oriented contracts, we can
generate a BankAccount product with plain JML contracts. In Figure 2.8, we depict
the BankAccount product with the features BankAccount and DailyLimit . Here, the
keyword original was replaced by the contract of feature module BankAccount (cf.
Lines 21–25). Thus, the contracts of method update consist of all incoming contracts
of all feature modules and can be verified in a state-of-the-art fashion.

As illustrated above, feature-oriented contracts can be used to specify a product-line’s
behavior and to generate plain JML annotations that can be used for the product’s
verification. However, the previous concept does not reduce the verification effort as
each product has to be verified separately. By contrast, a desired verification strategy
is able to verify the complete product line without an additional verification of each
product. For this purpose, we can use variability encoding that can also be applied
to feature-oriented contracts. In detail, variability encoding is used to transform the
compile-time variability into run-time variability [von Rhein et al. 2016]. As a result,
the product line is represented in one product called metaproduct that includes the
functionality of all product-line’s products. To control the behavior of this metaproduct,
the metaproduct introduces new fields that represent the features of the feature model
which are used to define branches with different behavior according to the feature
definitions. At the same time, we can also apply variability encoding to feature-oriented
contracts to encode the variability of specifications into this metaproduct [Thüm et al.
2014; Thüm et al. 2012]. This allows us to use state-of-the-art tool support for product
verifications. As a result, we can verify all products of the product line in one step.

For the purpose of illustration, we apply variability encoding to our product line
BankAccount (cf. Figure 2.9) and present the results in Figure 2.10. For each concrete
feature, we introduce a field in the new created class FM that represents the product-
line’s features (cf. Line 2). The values of these fields are used to control the run-time
behavior according to a specific product of the product line. For instance, method
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1class FM {
2 static boolean bankAccount, dailyLimit, overdraft;
3}

4class Account {
5 //@ invariant FM.bankAccount && (!FM.dailyLimit || FM.bankAccount) &&
6 //@ (!FM.overdraft || FM.bankAccount);
7
8 //@ invariant balance >= getOverdraftLimit();
9 int balance = 0;

10
11 //@ ensures balance == 0;
12 Account() { }
13
14 //@ invariant FM.dailyLimit ==> withdraw >= DAILY_LIMIT;
15 final static int DAILY_LIMIT = −1000;
16 int withdraw = 0;
17
18 //@ requires x != 0;
19 //@ ensures (!\result ==> balance == \old(balance)) &&
20 //@ (\result ==> balance == \old(balance) + x);
21 //@ ensures FM.dailyLimit ==> ((!\result ==> withdraw == \old(withdraw)) &&
22 //@ (\result ==> withdraw <= \old(withdraw)));
23 boolean update(int x) {
24 if (!FM.dailyLimit) return update_BankAccount(x);
25 int newWithdraw = withdraw;
26 if (x < 0) {
27 newWithdraw += x;
28 if (newWithdraw < DAILY_LIMIT) return false;
29 }
30 if (!update_BankAccount(x)) return false;
31 withdraw = newWithdraw;
32 return true;
33 }
34 boolean update_BankAccount(int x) { /∗[...]∗/ }
35
36 //@ ensures (!FM.overdraft ==> \result == 0);
37 //@ ensures (FM.overdraft ==> \result == −5000);
38 int /∗@ pure @∗/ getOverdraftLimit(){
39 if (!FM.overdraft) return 0;
40 return −5000;
41 }
42}

Figure 2.10: Variability encoding for class Account of product line BankAccount .

getOverdraftLimit was initially introduced in the feature modules BankAccount and
Overdraft . Variability encoding either combines method definition of feature modules
by inlining or it renames methods so that they can be referred by the other methods
with initially the same name. For method getOverdraftLimit, inlining is used (cf.
Lines 38–41). Thus, the method returns 0 if the field overdraft of feature model FM
is false (cf. Line 39), or it returns -5000 otherwise (cf. Line 40). By contrast, for the
variability encoding of method update, the method of feature module BankAccount is
represented in a method named update_BankAccount. Thus, depending on the value
of field dailyLimit, the method update returns the result of method update with-
out feature DailyLimit (cf. Line 24), or the result based on the features DailyLimit
and BankAccount (Lines 25–32). Similar to the variable method definitions, we handle
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variable fields. In detail, if a field is instantiated with different values in the feature
modules, the initialization in the metaproduct depends on a variable of class FM.

If we take a look at the variable encoding of the contracts, the concept is similar to the
source code encoding. First of all, an additional invariant is created in which all valid
feature combinations are described using a logical representation of the feature model
(cf. Lines 5–6). This ensures that we only prove valid products and that invalid prod-
ucts do not affect the results in a negative fashion. Furthermore, variability encoding
combines variable contracts using dependencies to the feature variables of class FM. For
instance, in the postcondition of method update, the keyword original is replaced by
the postcondition of feature module BankAccount (cf. Lines 19–20), whereas the op-
tional postcondition of feature module DailyLimit depends on the variable dailyLimit

of class FM (cf. Lines 21–22). As method getOverdraftLimit uses overriding, the post-
condition depends on the field overdraft (cf. Lines 36–37). If the state of the field is
true, the contract ensures a value of -5000 as return value, otherwise it ensures the
value 0. Similarly, variability encoding handles invariants. In detail, as the invariant
withdraw >= DAILY_LIMIT should only be available if feature DailyLimit is active, the
invariant in the metaproduct depends on the field dailyLimit of class FM (cf. Line 14).
In sum, using the resulting metaproduct including the feature-oriented contracts, it is
possible to verify the complete product line including all represented products in one
verification process.

2.2 Development of Multi Product Lines

In this section, we introduce the concept of multi product lines, which are also called
dependent product lines [Rosenmüller et al. 2008; Thüm et al. 2016]. Whereas the
idea of product lines is to optimize the reuse of software artifacts from one specific
domain, multi product lines optimize the reuse of already existing product lines, partly
from multiple domains, in one huge variable system. Therefore, Holl et al. define a
multi product line as a set of self-contained product lines with interdependencies that
together describe a large-scale system [Holl et al. 2012]. As a result, it is also possible to
decentralize the development of the underlying product lines. In particular, considering
the concept of software ecosystems, the development can also be realized beyond the
organizational boundaries to further reduce the development time and costs [Bosch
2009; Bosch and Bosch-Sijtsema 2010]. From another viewpoint, the concept of multi
product lines tackles the reuse problem that no single product of a product line fulfills
at the same time all requirements for a reuse in different products of another product
line. Therefore, the selection of features in one product line can force a specific selection
of features in another product line [Galindo et al. 2015]. As a result, the multi product
line can have complex dependencies that we have to describe through the modeling,
consider in the implementation, and specification of the multi product line.

In the following, we take a look on variability modeling in the context of multi product
lines and focus on the specific concepts on which this thesis is based on. Afterwards,
we give insights on how to implement a multi product line.
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2.2.1 Variability Modeling of Multi Product Lines

As mentioned above, a multi product line is a set of software product lines that depend
on each other. Thus, by contrast to the modeling of software product lines, in which we
describe the dependencies between features, the modeling of a multi product line needs
to describe the dependencies between different product lines. Even if the dependencies
between product lines are also based on the description of feature dependencies, the
feature-model complexity is increased, hard to completely understand, and to manage.
Thus, the modeling strategy using feature models is insufficient in the scenario of multi
product lines.

To overcome the limitations of feature models regarding large-scale and ultra large-scale
systems, several concepts were proposed that mainly focus on the usage of multiple
feature models with interdependencies to manage the complexity and the configuration
of these variable systems [Acher et al. 2013a; Classen et al. 2011; Damiani et al. 2014;
Reiser and Weber 2006; Rosenmüller et al. 2011; Rosenmüller et al. 2008]. In detail, fea-
ture-model dependencies were analyzed, described, formalized and often used as input
for the definition of textual languages that can be used to describe the dependent feature
models. For instance, Reiser and Weber introduced the concept of multi-level feature
trees to handle similar feature models of the automotive domain using a reference feature
model and multiple referring feature models in which relations to the reference model
exist (e.g., a mapping of a specific feature) [Reiser and Weber 2006]. This allows the
designer to reduce the complexity of the reference model, as not the complete variability
is included in this feature model. By contrast, other modeling approaches, such as
the concept of Rosenmüller et al., focus on a separation of different functionalities to
multiple (parts of) feature models [Rosenmüller et al. 2011; Rosenmüller et al. 2008].
As the concepts of Rosenmüller et al. are the starting point of our work, we use this
background section to focus on these techniques.

Rosenmüller et al. use a comparison to OOP to describe the interdependencies of pro-
duct lines [Rosenmüller et al. 2008]. As one outcome, Rosenmüller et al. compare a
product line with an object-oriented class that can also have multiple instances. By
aggregation, we can use these instances inside of other product lines and it is possi-
ble to utilize uses-relationships between the involved product-line instances. Similar
to OOP, we can define a name for a product-line instance to describe relations that
only correspond to this instance. In addition, according to Rosenmüller et al. it is
also possible to use inheritance for feature models to specialize it. This mechanism is
comparable with staged configuration [Czarnecki et al. 2005], in which a feature model
is preconfigured to reduce the variability of the system. In sum, the comparison with
OOP comes with several advantages that can help to comprehend the relations between
the different product lines. For instance, as for OOP several modeling techniques exist,
we also can reuse these techniques to ease the comprehension of relations in product
lines. Thus, Rosenmüller et al. suggest to use UML class diagrams to describe the
dependencies between the involved product lines [Rosenmüller et al. 2008].
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Modeling of Multi Product Lines by Example

To illustrate the concepts of Rosenmüller et al., we use an extended version of our
running example with product line BankAccount . In detail, we plan to reuse the func-
tionality of product line BankAccount in a second product line that realizes a bank
application. The resulting (multi) product line BankApplication should allow us, for
instance, to manage different bank accounts, or to transfer money from one bank ac-
count to another. In addition, it should be possible to log operations or errors so that
subsequent tracing is possible. Before we can start to focus on the running example of
the (multi) product line BankApplication with all dependencies to other product lines,
we need to introduce the features of product line BankApplication (without all features
of reused product lines) and their functionality. Furthermore, we introduce a product
line List that can be used for logging. Afterwards, we focus on the dependencies of prod-
uct line BankApplication to the other feature models and possible interdependencies of
features.

In Figure 2.11, we depict the feature model of product line BankApplication. As men-
tioned above, the feature BankApplication controls the main functionality and manages
different bank accounts. Feature Transaction provides functionality to transfer money
from one bank account to another. In addition, the features Permission, Read , and
Complete provide functionality to control the permission of the managed accounts. If
the feature Complete is included in a product, it is also necessary to include feature
Transaction. Therefore, the dependency Complete → Transaction is added as cross-tree
constraint to the feature model. By contrast, in Figure 2.12, we introduce the features
of a product line List . In detail, product line List provides the features Synchronize,
Sort , QuickSort , MergeSort , InsertionSort for a synchronized and ordered list that can
be used for different purposes depending on the specific reuse scenario. In our running
example, we could use the functionality of product line List to log operations and errors.

The described feature model of the product line BankApplication only considers func-
tionality to update bank accounts without a description of the underlying bank-account
or logging functionality. To realize the desired bank-account functionality, two options
exist. On the one hand, it is possible to design the functionality for a bank account from
scratch. This would result in huge effort, in which we have to extend the feature model
and need to implement, specify and verify the underlying source code. On the other
hand, we can reuse functionality of an existing product line that already provides this
functionality. Thus, we can profit from the already existing dependencies of the feature
model, and the implementation. The result is a multi product line, in which we have to
describe the dependencies between the features of the product line BankApplication and
the product line BankAccount . Afterwards, we can focus on the implementation and
the specification of the multi product line BankApplication. Similarly, we can treat the
extension to introduce the functionality of logging. For this purpose, we also have the
choice between the two options of reimplementation or reuse. Here, we decide to reuse
the existing functionality from product line List that provides the needed functionality
(cf. Figure 2.12).
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Figure 2.11: Feature model of product line BankApplication.

Figure 2.12: Feature model of product line List .

Using the concepts of Rosenmüller et al., we can focus on the second option, in which
we reuse the functionality of already existing product lines [Rosenmüller et al. 2008].
To describe the dependencies between the involved product lines, we use a kind of
class diagrams that we depict in Figure 2.13. In this figure, we represent each product
line by a class. In detail, the class representation of product line BankApplication
reuses the classes BankAccount and SynchronizedList based on aggregation. The class
SynchronizedList is a pre-configured product line of product line List (cf. Figure 2.12)
to ensure that the list can be used to log errors. Therefore, we use inheritance and
specialize the subclass SynchronizedList so that the feature Synchronize is selected.
Similarly, other pre-configurations are possible that we can use inside of the involved
product lines or completely other product lines. Additionally, we also use aggregation
to indicate that the product line BankApplication uses an instance of product line
BankAccount .

To reduce the complexity of our descriptions regarding multi-level interfaces, we only
use a small excerpt of the described running example. In detail, in this thesis we
focus on the dependencies between the (multi) product line BankApplication and the
product line BankAccount and neglect further features and corresponding dependencies
(i.e., constraints) to the product line List (cf. Figure 2.13).

Feature-Model Analyses for Multi Product Lines

To ensure correct dependencies and to uncover unintended behavior of the product-line
combinations, it is necessary to analyze the complete model of the multi product line.
In detail, it is necessary to take a look at all constraints of the multi product line,
i.e., constraints because of the tree structure, the intra-model constraints and the inter-
model constraints. An intra-model constraint is a constraint that only uses features of
the same feature model, without dependencies to features of another feature model. By
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Figure 2.13: Product-line dependencies described by a class diagram.

Figure 2.14: Transformation of dependent feature models to one complete feature model
(e.g., using aggregation).

contrast, an inter-model constraint is a constraint that uses features of multiple feature
models of the multi product line to describe the dependencies. Thus, similar to ordinary
product lines, it is important to know whether a combination of features represents at
least one valid product.

To consider the correctness of the modeling of a multi product line, the thesis focuses
on the improvement of automated analyses that we already presented in the context
of ordinary product lines (e.g., the analysis of dead features, cf. Section 2.1.1). In
this context, we and others already reused analysis techniques for product lines [Acher
et al. 2013a; Schröter et al. 2013b] for multi product lines. Our idea behind can be
described as follows. First, we combine all feature-model artifacts of the multi product
line to one complete feature model (cf. Figure 2.14, for the analysis process the logical
representation of Section 2.1.1 is used). Second, we analyze the complete feature model
in an ordinary manner as known from feature models of product lines (cf. paragraph
Feature-Model Analysis Section 2.1.1). For instance, we use the complete feature model
to check whether the feature combinations of the multi product line represent at least
one product (cf. Definition 2).

In general, it is possible to reuse all presented analysis techniques of this thesis (cf.
paragraph Feature-Model Analysis Section 2.1.1) to investigate the correctness of mul-
ti product lines. However, in previous work, we have shown that the result of some
analysis techniques needs to be considered carefully. For instance, if inheritance is used
to pre-configure product lines, features automatically become dead or false-optional
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(cf. Definition 4). As a consequence, the corresponding analysis also determines these
features as dead and false-optional even if the reason for this anomaly was a desired con-
figuration [Schröter et al. 2013b]. In detail, if we consider the feature dependencies of
the product line QuickSortList (cf. Figure 2.13), we use inheritance to pre-configure
the feature model so that feature QuickSort is selected. Using the corresponding
analysis, we detect the feature QuickSort as false-optional feature and the features
MergeSort and InsertionSort as dead features. To overcome the misleading analysis
results, we proposed the analyses dependent-false-optional feature and dependent-dead
features [Schröter et al. 2013b]. These analyses are adapted versions of the correspond-
ing analyses false-optional feature and dead feature for ordinary feature models and
respect desired configuration options of multi product lines. Considering our example
of multi product line QuickSortList , the analyses result in an empty list of dependent-
false-optional features and dependent-dead features.

2.2.2 Implementation of Multi Product Lines

In Section 2.1.2, we gave an excerpt of multiple techniques to implement single product
lines based on annotation-based and composition-based approaches. As the implemen-
tation techniques (e.g., preprocessors such as Antenna [Pleumann et al. 2011], FOP [Ba-
tory et al. 2004; Prehofer 1997], AOP [Kiczales et al. 1997], DOP [Damiani et al. 2014;
Schaefer et al. 2010]) and programming languages (e.g., C++, Java) for product lines
are diverse, the combination of product lines to form a multi product line can become a
complex task. In detail, multiple programming techniques and languages can be used to
implement the single product-line systems. However, the complexity of the implemen-
tation task of a multi product line not only depends on the implementation techniques
and languages but also on the kind of product-line dependencies, such as inheritance
and aggregation. In this section, we present some details about this problem and the
resulting variety of solutions. In this context, we isolate the relevant techniques that
are focused in this thesis.

Multi Product Lines Based on Multiple Programming Languages

As described above, it is a hard task to implement a multi product line as the depen-
dent product lines can be implemented in different programming languages and with
different implementation techniques. Here, we take a look at the problem when using
different programming languages. Considering ordinary programs without variability,
the problem of combining different programming languages is well known and comes
with several challenges and pitfalls, such as pitfalls regarding refactorings [Schink et al.
2016]. In general, the combination of languages can be cumbersome (i.e., integration of
C++ in Java). Thus, it is obvious that a combination of product lines based on different
programming languages is in general a more complex task as product lines based on
the same programming language. Consequently, the combination of multiple program-
ming languages with corresponding interactions is a separate research area that we do
not focus in this thesis. In detail, we present our concepts regarding the implementa-
tion of multi product lines using dependent product lines that are based on the same
programming language (i.e., Java).
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Multi Product Lines Based on Multiple Implementation Techniques

Even if we use the same programming language for product lines, it is not ensured
that the product lines can be easily combined to form a multi product line. Be-
cause of the variety of implementation techniques (i.e., annotation-based approaches
and composition-based approaches) and possible interactions of the involved product
lines (i.e., dependencies of inheritance or aggregation), diverse combinations of imple-
mentations are possible. However, not all combinations are feasible. In the following,
we consider examples for inheritance and aggregation.

As an example for inheritance, we consider product line List (cf. Figure 2.12) that we
plan to extend by a new sort algorithm. On the modeling level, this is an easy task,
in which we create a new product line ExtendedList that uses inheritance to inherit
all modeling characteristics of the already existing product line List . Afterwards, we
add a new feature to product line ExtendedList that represents the new sort algorithm.
By contrast, on the implementation level, the realization of the new feature depends
on the implementation technique and the code structure of the underlying product
line with its corresponding characteristic. For instance, if product line List is based
on an annotation-based approach, it also depends on the source-code location of the
existing algorithm whether it is difficult to implement this alternative sort algorithm in
a separate product line. Furthermore, if the product line List is based on a composition-
based approach, such as AOP [Kiczales et al. 1997], FOP [Batory et al. 2004; Prehofer
1997], or DOP [Damiani et al. 2014; Schaefer et al. 2010] several solutions exist to
create this new sort feature in the separate product line ExtendedList . For instance, if
AOP is used to implement product line ExtendedList , we can easily define a pointcut
to implement a new behavior of the sort algorithm of the already existing product line
List . Since the pointcut can be used to reference a particular operation in the source
code, it does not matter if the sorting was separated in a dedicated method or whether
it was included in other source-code artifacts. Similar extensions are possible if FOP
or DOP is used. However, for FOP it is necessary that the sorting was separated in a
respective method. Based on this, we can define a new sort algorithm that overrides
the sort algorithm of the original product line List . If such a method does not exist,
it is not possible to override the behavior without a refactoring inside of the original
product line List .

By contrast to inheritance, the mechanism of aggregation enables a more flexible com-
bination of implementation mechanisms. As illustration, we use our running exam-
ple of multi product line BankApplication with product line BankAccount . On the
modeling level, the multi product line BankApplication instantiates the product line
BankAccount to reuse the corresponding functionality of the product line BankAccount
(cf. left side of Figure 2.14). On the implementation level, we can consider the product
line BankAccount as a library that provides reusable functional artifacts that we can
use in the multi product line BankApplication. This allows us to treat the product
line as an ordinary library of the specific programming language that we can use in an
ordinary manner. However, the developer needs to be aware of the variability of the
library as not all API members, such as classes, methods, and fields are available in all
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feature-combinations of the reused product line BankAccount (for more details, we refer
the reader to Chapter 3 and Chapter 5). In sum, the mechanism of aggregation that
uses libraries on the implementation level results in an advantage for the developer as
the implementation mechanism behind the reused product line can be hidden. Thus, it
does not matter for the developer of the multi product line BankApplication whether
the product line BankAccount is based on an annotation-based or composition-based
approach.

The previous example of aggregation is based on a single instantiation of the product
line BankAccount inside of the multi product line BankApplication. By contrast, it is
also possible that more than one instance of a specific product line with different con-
figurations is used inside of another product line. This complicates the reuse scenario
on the implementation level as it is not possible to include a library in different vari-
ants at the same time. Rosenmüller et al. consider this problem and presents several
approaches to solve this problem on the implementation level [Rosenmüller et al. 2010].
One solution is based on a namespace concept, in which each product-line instance
can be addressed by a unique qualified name. Thus, if more than one product-line
instance is reused in another product line, the instances need to be refactored so that
the namespace is unique again.

Focused Language and Implementation Technique

In this thesis, we focus on multi product lines that are based on aggregation and, thus,
we consider the reuse of a product-line variant as library inside of another product line.
Even if it is possible to reuse a product line as library with variable artifacts inside of
other product-line implementations, it is still a challenging task to implement a multi
product line without compile-time errors. Since, it exists a direct dependency between
the involved product lines so that changes in the underlying product line directly influ-
ence the source code of product lines that depend on this implementation.

2.3 Summary

In this chapter, we presented background information that are necessary to follow our
explanations regarding the concept of multi-level interfaces. In a first part, we described
the procedure on how to develop a software product line. Therefore, we considered
the concept of feature models that can be used to describe the dependencies between
the features of a product line. Afterwards, we gave an excerpt on implementation
mechanisms for a software product line and illustrated how to verify the system based
on design by contract. In a second part, we gave an overview of concepts to develop a
multi product line. In this context, we mainly focused on the concepts of Rosenmüller
et al. as these concepts represent the base of our investigations. In detail, we presented
how to model and analyze the dependencies between the involved product lines of the
multi product line using ordinary feature models. Afterwards, we gave an excerpt how to
implement multi product lines and how the implementation depends on the underlying
implementation concepts of the involved product lines.
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For the purpose of illustration, we used our running example of the product line
BankAccount that we partly extended according to the specific exemplification. To
illustrate the concept of multi product lines, we extended the running example using
(multi) product line BankApplication that we will also use as an example in the re-
maining thesis. In detail, in the next chapter, we use the background information and
the running example to present an overview of our multi-level interfaces. Afterwards,
we use our running example to consider each level of our multi-level interfaces in detail.
In addition to the description of the main concepts on which this thesis is based on,
we describe further techniques for product lines and multi product lines in our related
work chapter.
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3. An Overview -
The Concept of Multi-Level Interfaces

The chapter presents an overview of our concept of multi-level inter-
faces. It shares material with papers Towards Modular Analysis of
Multi Product Lines [Schröter et al. 2013a] and Using Multi-Level In-
terfaces to Improve Analyses of Multi Product Lines [Schröter 2014]
that present the initial idea of this concept. In addition, it shares
material with the paper Variability Hiding in Contracts for Depen-
dent Software Product Lines [Thüm et al. 2016] to describe possible
benefits when using each interface.

In this thesis, we propose a general approach to ease the development and analyses of
multi product lines using the concept of interfaces. In detail, we propose interfaces on
multiple levels to achieve benefits during the development, analyses, and evolution of
multi product lines. Therefore, we refine our initial ideas (cf. descriptions of [Schröter
et al. 2013a]) so that we ease the development of a multi product line. First, we give
an overview of our main concept using our running example. Second, we introduce
our hypotheses regarding each interface level that we use in the subsequent chapters to
investigate our interface levels.

3.1 An Introduction of Multi-Level Interfaces

In the previous chapter, we used the example of the (multi) product line BankApplication
and product line BankAccount for the purpose of illustration. In BankApplication, all
dependent and used product lines are known from the point of view of the product line
BankApplication. This means, that we as developer of product line BankApplication
have dependencies to all artifacts (modeling, implementation and specification) of all
dependent product lines even if not all these parts are of our interest. This can com-
plicate the comprehension and development of the multi product line and hinders an
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Figure 3.1: Interfaces for the reuse of SPLs in MPLs (adapted version of [Schröter et al.
2013a]).

efficient evolution as we have to reanalyze the multi product line even if the changed
feature is not of our interest.

To overcome the drawback that comes with direct dependencies between dependent
product lines, we introduce the concept of multi-level interfaces. In detail, we define the
(1) variability-model interface, (2) syntactical (product-line) interface, and (3) behavioral
(product-line) interface. Assuming an already existing product line (e.g., product line
BankAccount) with a variability model, a feature-based implementation and specifica-
tion that we want to reuse in another product line (e.g., product line BankApplication),
we can describe the interfaces as follows. The variability-model interface is a reduced
variability model that only consists of the features that we need in our reuse scenario
but it is still conform to the underlying variability model of the already existing product
line. The syntactical interface depends on the upper-level interface (i.e., the variability
model) and, thus, it only consists of implementation artifacts (e.g., API members) of
the underlying product line that are available when the features of interest are used.
In addition, the behavioral product-line interface depends on all upper-level interfaces
and presents specifications regarding the behavior of available implementation artifacts
of the upper-level interface (i.e., the syntactical interface). In Figure 3.1, we give an
overview of our concept of multi-level interfaces. Using these interfaces, we aim to focus
on artifacts of a particular level that have dependencies to other artifacts of involved
product lines of the multi product line. All other artifacts should be hidden by the
interface of the specific level.

In the subsequent sections, we give a brief overview of the main ideas regarding our
concept of multi-level interfaces. By contrast, we present details on each interface in the
following chapters, and give details on their functionality, advantages, and generation
strategies. In detail, Chapter 4 focuses on the feature-model interfaces, Chapter 5 on
feature-context interfaces, and Chapter 6 on behavioral product-line interfaces.

3.2 The Feature-Model Interface as Variability-

Model Interface

The feature-model interface is a realization of the originally introduced conceptual idea
of variability-model interfaces [Schröter et al. 2013a]. A variability-model interface is
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Figure 3.2: Feature-model interface for the product line BankAccount as used in product
line BankApplication.

itself a variability model and it is used to define an agreement between two involved
product lines of a multi product line [Schröter et al. 2013a]. This means, a developer
of a specific product line who wants to use another product line needs to define the
artifacts of interest that are needed in the reuse scenario. For feature-model interfaces,
the artifacts of interest are the features that should be reused [Schröter et al. 2016].
Therefore, a developer needs to define all features that are needed in a specific reuse
scenario inside of a multi product line.

Running Example

For instance, let us consider the reuse scenario of multi product line BankApplication. In
this scenario, the original feature model BankAccount consists of nine different features
(cf. Figure 2.1) but besides the root feature, only the features DailyLimit , Interest , and
SimpleLock are of our interest for a reuse in a multi product line with BankApplication.
Thus, we plan to create a feature-model interface as an agreement so that we have the
guarantee that these features exist with the given dependencies. At the same time, we
consider the other features, such as feature Overdraft and feature InterestEstimation,
as not relevant and, thus, it doesn’t matter whether these features are included in
the final product. In Figure 3.2, we present the feature-model interface that is used
as an agreement between both product lines, in which only our relevant features exist.
Using the feature-model interface instead of the original feature model BankApplication,
we are able to reduce the feature-model complexity. As a result, the complexity of
combinations with other feature models like BankApplication is also reduced. Therefore,
we expect a significant performance improvement of feature-model analyses regarding
combined feature models if we use dependencies to the feature-model interface instead
of direct dependencies to the original feature model of the product line BankAccount .
In particular, we also expect that it is not necessary to reanalyze the multi product line
BankApplication and product line BankAccount for all evolutional changes of product
line BankAccount .

3.3 The Variable Interface as Syntactical Interface

The variable interface is based on our ideas according to the proposed syntactical
(product-line) interface [Schröter et al. 2013a]. The syntactical interface represents
an API with variability information [Schröter et al. 2013a]. In detail, the interface con-
sists of signatures, such as classes, methods, and fields that are accessible by different
configurations of a specific product line. As all interfaces of our concept of multi product
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VIBankAccount = {
(class Account ,{B ,D , I ,O ,W ,E , S}),

(Account .calculateInterest() : int ,{I }),
(Account .credit(int) : boolean,{W }),
(Account .estimatedInterest(int) : int ,{E}),
(Account .getOverdraftLimit() : int ,{B ,O}),
(Account .isLocked() : boolean,{S}),
(Account .lock() : void ,{S}),
(Account .unlock() : void ,{S}),
(Account .undoUpdate(int) : boolean,{B ,D}),
(Account .update(int) : boolean,{B ,D}),
...

}

Figure 3.3: Variable interface of product line BankAccount (excerpt of class Account

without fields).

lines are based on each other, we only consider configurations that are defined in the
modeling agreement represented by the feature-model interface. As a result, the syn-
tactical interface is also an agreement between the involved product lines, in which the
API members that we can reuse are well defined. However, we present the variable in-
terface as one specific implementation of the syntactical interface [Schröter et al. 2014].
The variable interface was designed for product lines based on the programming lan-
guage Java with Feature-Oriented Programming (FOP) as implementation paradigm.
It provides all necessary information as proposed by our concept of syntactical inter-
faces. Based on this, we are also able to provide feature-context interfaces that provide
a special and non-variable view to the variable interface according to a specific im-
plementation context (i.e., in the context of FOP, a specific feature that we currently
implement). As a result, using the feature-context interface, it is easier for the devel-
oper to comprehend the source code and, thus, to implement the product line in a more
efficient way.

Running Example

For the purpose of illustration, we take a look at our running example of the multi prod-
uct line BankApplication with product line BankAccount . In this scenario, the prod-
uct line BankApplication needs to call functionality of the product line BankAccount .
Therefore, the developer needs to know which API members can be called without
compile-time errors. For this purpose the developer also needs to know the dependen-
cies inside of the product line BankAccount and all dependencies to the product line
BankApplication. To get support for this problem, we provide the variable interface
VI and the feature-context interface that was designed for the programming language
Java with FOP. First of all, we generate the variable interface, in which all information
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VIBankAccount = {
(class Account ,{B ,D , I , S}),

(Account .calculateInterest() : int ,{I }),
(Account .getOverdraftLimit() : int ,{B}),
(Account .isLocked() : boolean,{S}),
(Account .lock() : void ,{S}),
(Account .unlock() : void ,{S}),
(Account .undoUpdate(int) : boolean,{B ,D}),
(Account .update(int) : boolean,{B ,D}),
...

}

Figure 3.4: Filtered variable interface of product line BankAccount (excerpt of class
Account without fields).

of the API members and their accessibility are included. The initial variable interface
includes all variability information with all features that we can filter according to the
features of interest given by the feature-model interface. Afterwards, we can use this
variable interface to generate a feature-context interface to tailor the set of accessible
API members to the current implementation context (i.e., the feature).

In Figure 3.3, we present the initial variable interface of product line BankAccount
that was created using the corresponding code base of product line BankAccount . The
variable interface itself is an array with the information about all product-line API
members with additional information. In detail, for each API member, we get the in-
formation about features, in which the specific API member is defined (cf. highlighted
characters of features given in Figure 2.1). For instance, the class Account is defined in
all concrete features of the product line BankAccount . By contrast, the class member
Account.update is only defined in the features BankAccount (B), and DailyLimit (D).
According to the features of interest given in the feature-model interface (cf. Figure 3.2),
we can now filter the variable interface so that only API members of our interest are
represented. Whereas multiple filtering techniques are possible, we present the result of
our simple filtering technique (cf. Figure 3.4). As result of the simple filtering, we only
present members that are defined in the features of interest. All other members, like
member Account.credit of feature CreditWorthiness , were removed. However, other
filtering techniques are possible and we will discuss these approaches in the correspond-
ing chapter (see Section 5.3).

The feature-context interface is based on the variable interface and has further advan-
tages according to the product-line development. In detail, the feature-context interface
is able to support the developer during the maintenance and development process of
a product line giving a list of accessible API members that can be used in a specific
development task. By contrast to the variable interface, the feature-context interface
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FCITransaction = {
class Account ,

Account .getOverdraftLimit : int ,
Account .isLocked() : boolean,
Account .lock() : void ,
Account .unlock() : void ,
Account .undoUpdate(int) : boolean,
Account .update(int) : boolean,
...

}

Figure 3.5: Feature-context interface of product line BankAccount for feature
Transaction of product line BankApplication (excerpt of class Account without fields
based on the simple variable interface VIBankAccount).

presents a non-variable view to the variable interface. This means, the interface does
not contain variability information, it only consists of a list of accessible API mem-
bers. For instance, assuming that a developer wants to reuse API members of the
product line BankAccount inside of code artifacts of the feature Transaction of product
line BankApplication. For this purpose, we can generate a feature-context interface in
which all accessible API members of the product line BankAccount are represented. In
Figure 3.5, we present the resulting feature-context interface for the feature Transaction
according to elements of product line BankAccount . As we can see, the feature-context
interface is only a list of members that can be safely called from code artifacts of feature
Transaction in product line BankApplication. This means, it presents only API mem-
bers that are accessible in all products in which also the feature Transaction is included.
As result, the API member Account.calculateInterest is not included because this
member is only accessible if feature Transaction forces the selection of feature Interest .

3.4 The Behavioral Product-Line Interface

As a proof of concept to investigate whether it is possible to extend our multi-level inter-
face to further levels as modeling and implementation, we also introduce the behavioral
(product-line) interface. The behavioral interface is the third interface of our multi-level
interfaces (cf. Figure 3.1) and provides specifications about the behavior of methods be-
hind this interface. Like the variable interface, the behavioral product-line interface also
depends on the interfaces from the upper levels. Thus, the behavioral product-line in-
terface is based on the variable interface as well as the feature-model interface and
specifies the behavior of each available method [Schröter et al. 2013a]. Afterwards, we
can use these interface specifications to verify the behavior of the product line that is
supposed to use this interface. Using this behavioral product-line interface, we assume
that it is possible to enable a modular verification so that it is not necessary to consider
the specification of the whole multi product line.



3.4. The Behavioral Product-Line Interface 41

1class Account {
2 //further source code of the metaproduct
3
4 //@ ensures !FM.overdraft ==> \result == 0;
5 //@ ensures FM.overdraft ==> \result == −5000;
6 int /∗@ pure @∗/ getOverdraftLimit(){
7 if (!FM.overdraft) return 0;
8 return −5000;
9 }

10}

(a) Method getOverdraftLimit in the metaproduct of product line BankAccount .

11class Account {
12 //further source code of the metaproduct
13
14 //@ ensures (\result == −5000) || (\result == 0);
15 int /∗@ pure @∗/ getOverdraftLimit(){
16 if (!FM.overdraft) return 0;
17 return −5000;
18 }
19}

(b) Method getOverdraftLimit with a simplified postcondition after the application
of strategy hidden configuration.

Figure 3.6: Method getOverdraftLimit of class Account represented in the metaprod-
uct before and after the application of the strategy hidden configuration.

For the specification of the behavioral product-line interface, we only consider API
members of the variable interface and the specification should only include dependencies
to features that are represented in the feature-model interface. In theory, the concept
of the behavioral product-line interface is a general concept that in practice depends
on the implementation language and the used product-line paradigm. For our proof
of concept, we use the technique of design by contract [Meyer 1988, 1992] for the
programming language Java with FOP [Thüm et al. 2012] (for more details, we refer
the reader to Chapter 6).

Running Example

We use our running example of the multi product line BankApplication with product
line BankAccount to illustrate the idea of behavioral product-line interfaces. In detail,
we take a look at the method getOverdraftLimit as it is still a method of the filtered
variable interface and it is part of our features of interest (cf. Figure 3.2 and Figure 3.4).
The method itself exists in the original product line BankAccount in two different
features, in feature BankAccount with return value 0 and in feature Overdraft with
return value -5 000. However, the feature Overdraft is not part of the features of interest
and, thus, not included in the filtered variable interface (cf. Figure 3.4). As a result, we
also need to remove the feature from the contracts of the metaproduct (for more details
on metaproducts, we refer the reader to Section 2.1.3) to create a behavioral product-
line interface. Therefore, the task is to get a suitable representation of the original
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contracts according to method getOverdraftLimit so that the behavioral product-line
interface can be used for correctness proofs of product line BankApplication instead of
the original product line BankAccount .

It is possible to generate an initial behavioral product-line interface based on the existing
code and contracts of the product line BankAccount . Therefore, we have to consider all
contracts according to the method getOverdraftLimit using the metaproduct of the
product line BankAccount . In Figure 3.6(a), we present the contract of the metaproduct
for the method getOverdraftLimit. In detail, if we take a look at the ensures clauses,
we can see that the method result depends on the feature Overdraft so that 0 will be
ensured without and -5 000 with the feature Overdraft . However, the feature Overdraft
is not of our interest and, thus, not a member of the feature-model interface. Therefore,
we have to remove feature Overdraft from the specification. In Chapter 6, we present
several strategies to create a behavioral product-line interface in which the result is a
contract without feature Overdraft . Here, we use the strategy hidden configuration to
adapt the specification. In Figure 3.6(b), we present the result of the application of this
strategy, in which the new contract specifies that the method returns either 0 or -5 000.
Afterwards, we can use this contract to verify methods of product line BankApplication
that call the method getOverdraftLimit.

3.5 Analyzing the Benefits of Multi-Level Interfaces
Based on the previous introduction of our multi-level interfaces, we give an overview of
the potential benefits. Therefore, we summarize our goals that we aim to achieve with
our concept of multi-level interfaces and present potential benefits for each interface.
Afterwards, we give details on benefits in the case of product-line evolution. Finally,
we introduce hypotheses for each interface that we want to investigate in the remaining
thesis.

In general, using multi-level interfaces, we aim to avoid direct dependencies between
product lines. As result, we want to ease the analyses and the evolution of the multi
product line. For this purpose, we take a look into the detailed goals for each interface
level.

Considering the variability-model interface, the goal for the feature-model analysis is to
focus on features that we are interested in. All other features can be neglected. Thus,
the product line behind the variability-model interface can be analyzed solely if the
developer is interested in the results, but only the variability-model interface is needed
to analyze the variability model that reuses functionality of the hidden product line. For
instance, in our multi product line BankApplication, we can solely analyze the feature
model BankAccount . Using the concept of the feature-model interface, we can focus on
the features of interest and we can analyze the feature-model composition consisting of
product line BankApplication and the feature-model interface (cf. Figure 3.2) without
the knowledge of the complete feature model of product line BankAccount .

The goal of the syntactical interface is to modularize the product-line implementation
due to a presentation of specific implementation artifacts (e.g., methods or fields) that
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can be reused in the (multi) product line. For this purpose, the variable interface sum-
marizes all existing implementation artifacts that can be used in a specific product line
when the features of the upper-level variability-model interface are selected. Further-
more, the variable interface additionally presents variability information to reason about
a correct usage of all these implementation artifacts. Based on this, we also propose to
use a non-variable view to the variability-model interface that only presents all safely
accessible implementation artifacts. As a result, using the variable interface and the
non-variable view to its artifacts, we aim to ease the product-line development through
user support. For instance, for the concept of FOP, we propose the corresponding va-
riable interface and the feature-context interface as non-variable view. Based on this,
the developer of product line BankApplication gets an overview of all safely accessible
members that can be reused in the current developed feature module. In detail, the
developer of the feature module Transaction gets an overview of safely accessible mem-
bers for this feature module, whereas the method update is part of it (cf. Figure 3.5).
As a result, the usage of method update does not lead to a compile-time error.

The goal of the behavioral product-line interface is to ease the verification effort of
multi product lines due to modularization. Considering the concept of design by con-
tract, the behavioral product-line interface only focuses on features that are available
in the variability-model interface. As a result, a product line that wants to reuse the
corresponding features can use the behavioral product-line interface for the own veri-
fication in which all dependencies to other features are hidden. For instance, we can
solely verify the product line BankAccount . In an optimal case, we can use product line
BankAccount to generate a behavioral product-line interface tailored to the features
that are available in the feature-model interface so that it is not necessary to reverify
the behavioral product-line interface. However, even if it is necessary to reverify the
behavioral product-line interface, we can use the interface to verify the product line
BankApplication without the knowledge of the complete contracts that exist in the
product line BankAccount . Nevertheless, it is an open question whether a behavioral
product-line interface can reduce the verification effort of a multi product line.

By contrast to the benefits through the initial development of multi product lines, we
also assume potential benefits for the evolution of multi product lines when using multi-
level interfaces. We already presented potential benefits of the behavioral product-line
interface regarding the product-line evolution [Thüm et al. 2016] that we now extend
to all interfaces of our multi-level interfaces. We use our running example to illustrate
the benefits for each interface. Four different scenarios exist for the evolution of a multi
product line that we want to illustrate in detail. In this context we assume that we
are interested in the analysis results of the product line BankAccount and the multi
product line BankApplication.

Case 1. Changes on a specific development level of product line BankAccount do
not require to change the corresponding interface:
• If changes occur in the feature model, we have to reanalyze the feature model

BankAccount ;



44 3. An Overview - The Concept of Multi-Level Interfaces

• Regarding changes on the syntactical level, the variable interface of product
line BankAccount needs to be updated;
• Changes on the product-line behavior force the reverification of product line

BankAccount .

Case 2. Changes on a specific development level of product line BankAccount
require to change the corresponding interface:
• Changes regarding the feature model force to reanalyze the feature model

BankAccount . In addition, it is necessary to renew the feature-model inter-
face and the feature-model composition with product line BankApplication
and to reanalyze it;
• If changes on the syntactical level occur, we need to update the variable inter-

face of product line BankAccount , to apply the filtering techniques to the fea-
tures of interest, and to analyze the impact on product line BankApplication;
• For changes on the product-line behavior, product line BankAccount needs to

be reverified and the behavioral product-line interface is generated to reverify
product line BankApplication.

Case 3. Changes on a specific development level of product line BankApplication
do not require to change the corresponding interface:
• If the changes occur on the feature model, we have to reanalyze the feature-

model composition of product line BankApplication based on the feature-
model interface;
• Changes on the syntactical level force to update the variable interface of

product line BankApplication;
• For changes on the product-line behavior, it is necessary to reverify product

line BankApplication using the behavioral product-line interface.

Case 4. Changes on a specific development level of product line BankApplication
require to change the corresponding interface:
• If the changes are required on the modeling level, we have to regenerate the

feature-model interface, update and reanalyze the feature-model composition;
• Required changes on the syntactical level force us to refilter the variable in-

terface of product line BankAccount and to update the variable interface of
product line BankApplication;
• For required changes on the product-line behavior, we have to generate the

behavioral product-line interface to reverify product line BankApplication.

In summary, only Case 2 forces us to renew all artifacts and, thus, to reapply the
corresponding modularization concept. In all other evolution scenarios of the multi
product line it is possible to achieve benefits using our interface concept compared to
concepts that use direct product-line dependencies.
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Introducing Hypotheses to Investigate the Potential Benefits

As illustrated above, we assume a huge amount of potential benefits when using the
concept of multi-level interfaces. However, to concretize our investigations described in
this thesis and to answer our global research questions, we formulate one hypothesis for
each interface of our concept. According to these interfaces, we organize the evaluation
and corresponding discussions of each interface that we present in the following chapters.

Hypothesis 1. Potential of Variability-Model Interfaces according to Hypothesis H1
of [Schröter 2014]:

The variability-model interface enables a performance improvement of auto-
mated analyses on variability models in evolving Multi Product Lines (MPLs).

Hypothesis 2. Potential of Syntactical Product-Line Interfaces according to Hypoth-
esis H2 of [Schröter 2014]:

The syntactical product-line interface helps to detect reusable code artifacts and
reduces the development time compared to state-of-the-art techniques.

Hypothesis 3. Potential of Behavioral Product-Line Interfaces according to Hypoth-
esis H3 of [Schröter 2014]:

The behavioral product-line interface based on design by contract enables a
time-efficient modular analysis to detect violations in MPLs using verification
techniques.

3.6 Summary
In this chapter, we presented the conceptual idea and gave an overview of our concept of
multi-level interfaces. We introduced the idea of each interface and gave details on how
the interfaces are interconnected, and how they can be used. Afterwards, we gave an
overview of goals for each interface and present potential benefits when using our multi-
level interfaces in cases of evolution. To enable a clear investigation and discussion of
our concept, we formalize one hypothesis for each interface based on the summarized
potential benefits.

In the following three chapters, we introduce the conceptual details for each interface of
our multi-level interfaces. In detail, in Chapter 4, we introduce details of the variability-
model interface. Using the feature-model interface as realization of the variability-model
interface, we show relations between the results of feature-model analyses for multi
product lines with and without feature-model interfaces. Based on this theoretical
reflection, we start an evaluation of the feature-model interface and investigate our Hy-
pothesis 1. Similarly, Chapter 5 investigates the syntactical interface. In detail, we use
the variable interface as representation of the syntactical interface and use this proposed
concept with the concept of feature-context interfaces to investigate Hypothesis 2. In
Chapter 6, we use the behavioral product-line interface as proof of concept, in which
we plan to investigate whether our concept of multi-level interface can also be applied
to advanced concepts. Thus, we present different ideas how a behavioral product-line
interface can look like. According to Hypothesis 3, we investigate the potential for each
idea.
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4. The Variability-Model Interface -
The First Level of Multi-Level
Interfaces

The chapter about variability-model interfaces shares material with
two papers. First, it shares material with the overview paper Towards
Modular Analysis of Multi Product Lines [Schröter et al. 2013a], which
describes the initial ideas of an interface for variability models. Sec-
ond, we refined our initial ideas of a variability-model interface in the
paper Feature-Model Interfaces: The Highway to Compositional Anal-
yses of Highly-Configurable Systems [Schröter et al. 2016]. In this
paper and in the corresponding technical report, we present proofs
of analysis-result relations and present resulting benefits based on a
real-world evaluation.

In this chapter, we take a look at the first interface of our multi-level interface concept
(cf. Chapter 3) that we use to avoid direct dependencies on the modeling level of multi
product lines. In detail, we consider the general concept of our variability-model inter-
face and the facility to ease the analysis of dependent feature models, especially in cases
of evolution. To present more conceptual details, we exemplify the ideas by introducing
a feature-model interface as a special kind of a variability-model interface for feature
models. However, the feature-model interface (resp. the variability-model interface) is
the first and the most important interface of our multi-level interface concept on which
all other interfaces depend directly. This means, all other interfaces take the informa-
tion given by the feature-model interface for the purpose of creation or further usage
of the specific interface. Therefore, we take special attention to this interface and we
pick up this topic in all of the remaining chapters and show how these interfaces are
connected.
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The chapter is structured as follows. First, as the feature-model composition is essential
to enforce the analysis advantages of our concept regarding feature-model interfaces, we
respectively present a formalization of feature-model compositions. In this context, we
also formalize the feature-model interface and present properties about the interaction
of feature-model composition and feature-model interfaces. Second, considering selected
analyses (cf. Definition 2–6), we look at the detailed advantages of feature-model inter-
faces and prove analysis-result relations between feature-model compositions with and
without feature-model interfaces. Third, we investigate the practical relevance of our
theoretical investigation by using a real-world case study with two application scenarios.
Finally, we discuss our evaluation results and summarize our ideas.

4.1 Feature-Model Composition Meets Interfaces

In the introduction and background chapter, we have seen that the state-of-the-art pro-
cedure to analyze dependent feature models results in huge effort and recomputations
especially in the case of evolution. However, before we can start to discuss and prove
how we can benefit using feature-model interfaces with feature-model composition, we
need to formalize the concepts. We start with a formalization of feature-model compo-
sition followed by the formalization of the feature-model interface. Afterwards, we give
a detailed look at the properties resulting from a combination of both concepts that are
essential for our proofs presented in the next section.

4.1.1 Concept of Feature-Model Composition

Feature-model composition enables to combine multiple feature models in different man-
ners [Acher et al. 2010, 2013b; Bošković et al. 2011; Classen et al. 2011; Rosenmüller
et al. 2008], such as inclusion or aggregation. The result is a new feature model in which
the artifacts of all input feature models are combined according to the used composition
concept. Afterwards, we can use the combined feature model to analyze whether all de-
pendencies correspond to our intention (see also Section 2.2.1, paragraph Feature-Model
Analyses for Multi Product Lines). In this thesis, we use the concept of aggregation for
feature-model composition as it was introduced for the variability-modeling language
Velvet [Rosenmüller et al. 2011; Rosenmüller et al. 2008; Schröter et al. 2013b]. As
a reminder, the aggregation mechanism of Velvet allows a developer to instantiate a
feature model inside of another feature model and to add additional inter-model depen-
dencies subsequently. However, the authors do not present a formal description of this
composition mechanism. As a formalization is needed for our proofs in the remaining
thesis, we formalize this feature-model composition.

To illustrate the mechanism, we use our running example of the product line Bank -
Application (cf. Figure 2.11). In detail, we combine the feature model BankApplication
with the feature model BankAccount (cf. Figure 2.1) using the root feature of product
line BankApplication as starting point for this aggregation. In addition, we also plan to
include the inter-model constraint Transaction → SimpleLock as dependency between
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both models (cf. Figure 2.14). In our formalization, we use the additional feature model
MC to describe these dependencies.

According to the aggregation mechanism used by the modeling language Velvet [Rosen-
müller et al. 2011] (see Section 2.2.1 for more details), we formalize feature-model com-
position as follows:

Definition 8. Feature-model composition according to Definition 3 of [Schröter et al.
2016]:

Let Mx = (Fx ,Px ), My = (Fy ,Py), and MC = (FC ,PC ) be feature models
with FC ⊆ Fx ∪ Fy . We define the function composition ◦ using Mx ,My ,
and MC with infix notation ◦MC

based on the join function • and function R
to achieve the composed feature model Mx/y :

Mx/y = ◦(Mx ,My ,MC ) =Mx ◦MC
My =

(Mx • R(My)) •MC (8.1)

R(My) = R((Fy ,Py)) = (Fy ,Py ∪ {∅}) (8.2)

Mx •My = (Fx ,Px ) • (Fy ,Py) =

(Fx ∪ Fy , {p ∪ q | p ∈ Px , q ∈ Py , p ∩ Fy = q ∩ Fx}) (8.3)

The composition function ◦ computes a combined feature model using the function R
(remove core property) and the function • (join). In the following, we take a look at
each function:

R The function R is used to remove the core property of a feature model. In detail,
the function takes a feature model as input and creates a new feature model as
output. The resulting feature model consists of the same set of features and the
set of products additionally includes the empty product. Thus, the empty product
is also a valid product of this new feature model.

• The join function represents the core functionality of our composition function ◦
and takes two feature models as input to produce a combined feature model as
output. Therefore, the function • acts as a join function known from relational
algebra [Codd 1970] and the result depends on comparative criteria. In our case,
the result depends on the comparison of p∩Fy = q∩Fx. Thus, we can group the
behavior of the function accordingly:

1 In this scenario, the set of features of the input feature models are not dis-
joint. As a result, the function ◦ combines all products that fulfill the
comparative criteria.

× In this case, the set of features of the input feature models are disjoint. As
a result, our comparative criteria also evaluates to true since both sides of
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the formula are equal to the empty set (p ∩ Fy = q ∩ Fx = ∅). As a result,
the function ◦ represents a cross product that is also known from relational
algebra and, thus, it combines all products from the first with all products
from the second feature model.

◦ The composition function uses three feature models as input (cf. Equation 8.1).
The feature modelsMx andMy are the feature models that we want to combine
and a third feature model Mc is used to describe additional constraints that are
necessary for the combination of the other input feature models (Mx , My). In
detail, feature model Mc consists of a parent-child constraint, which describes
the place for the inclusion ofMy intoMx , and user-defined cross-tree constraints
for the feature-model combination. Using this input, the function ◦ creates
a new combination of the feature models Mx and My with additional (cross-
tree) constraints given by Mc (i.e., Mc consists of all inter-model constraints).
However, to instantiate feature model My into feature model Mx , we need to
remove the core property of feature model My . Otherwise, there will be no
opportunity to create a product, in which no feature of the instantiated feature
modelMy is included. This is in contrast to the idea of feature-model instances,
which should enable an optional inclusion of the instance. Therefore, we apply
function R to the feature modelMy to remove this property. Afterwards, we can
use function • to combine the feature models Mx and My . First, we create the
cross product of both feature models (×, Mx • R(My)). Since not all resulting
products are of our interest, we secondly use the function • to only result in
products in which the additional (cross-tree) constraints of feature model Mc

also hold (1, (. . .) •MC).

Running Example

Using our running example of the product line BankApplication, in which we want
to reuse product line BankAccount , we now investigate the application of function ◦
(cf. Figure 4.1). In this scenario, we plan to instantiate the product line BankAccount
below the feature BankApplication of the corresponding product line. Furthermore, we
plan to add the cross-tree constraint Transaction → SimpleLock so that the feature
SimpleLock is available in all products in which the feature Transaction is included.
This ensures that the locking functionality can be used by the transaction feature.

For the instantiation of the feature model BankAccount and the additional cross-tree
constraint, we create the feature model Mc with the set of features Fc and the set of
products Pc. In detail, the set of features Fc consists of the features BankAccount and
SimpleLock from the product line BankAccount , and the features BankApplication and
Transaction from the product line BankApplication (Fc = {A,B , S ,T}). These four
features are needed to describe the dependencies between both product lines. However,
as we defined a feature model with M = (F,P) whereas F is the set of features and
P a set of products, we also need the set of products for the feature model Mc. For
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Figure 4.1: Feature-model composition using the feature models of the product lines
BankApplication and BankAccount as input (according to [Schröter et al. 2016]). Fea-
ture model MC is used to describe inter-model constraints.

this purpose, we have to convert the intended constraints into a product representation,
such that Mc is completely defined and can be used as input for the function ◦ . In
detail, we convert the constraints to the propositional formula B → A ∧ T → S and
determine all valid feature combinations. As a result, we get the set of products Pc as
depicted in Figure 4.1.

Using the feature modelsMBankApplication ,MBankAccount , andMc, we collected all input
values for the application of function ◦ . First, we use the function R and apply
it to feature model MBankAccount to add the empty set to the set of valid products
(PBankAccoupnt ∪ {∅}). Second, we create all product combinations of the feature
models MBankApplication and MBankAccount with the empty set (i.e., R(MBankAccount))
using the function • (i.e., as cross product×). In Figure 4.1, we present the intermediate
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result of this computation as feature model MBankApplication/BankAccount . Third, we use
the function • with the intermediate result and the feature model Mc to remove all
products of the feature modelMBankApplication/BankAccount that are not compatible to the
constraints that we described using feature model Mc (see function •, 1). We depict
the final feature modelMBankApplication/BankAccount in Figure 4.1 and highlight the set of
resulting products.

4.1.2 Concept of Feature-Model Interfaces

Now, we define the feature-model interface as first interface of our concept for multi-
level interfaces. As all interfaces of our concept, the feature-model interface also aims
to remove the direct dependencies between dependent product lines and focuses on the
artifacts of interest (i.e., features). As a result, it should be possible to use the interface
instead of the original feature model for the purpose of modeling and analyses in a multi-
product-line scenario (i.e., in combination with feature-model composition). Thus, the
interface acts as a placeholder and we use the hidden product line in a productive
system.

During the investigation of our ideas regarding the concept of feature-model interfaces,
the question arises how to create such an interface. Since the feature-model inter-
face should be exchangeable with the original product line (i.e., like a placeholder), a
simple deletion of a feature from the feature model is not possible. For instance, if
we consider the feature diagram for product line BankAccount and we want to remove
feature Interest , it is not clear how to connect the remaining feature InterestEstimation
with the root feature. Furthermore, if we take a look at the representation of a feature
model as propositional formula the situation is also not clear [Krieter et al. 2016a].
Considering the propositional formula R ∧ (A → R) ∧ (B → A) that represents a
small feature model, in which R is the root feature, A is a subfeature of R, and B
a subfeature of A. In this propositional formula, we want to remove feature B but a
syntactical removal leads to wrong results. In detail, a syntactical removal leads to a
representation, in which only the product {R,A} exists and, thus, the product {R} is
not represented anymore.

By contrast to the previous consideration, we use the ideas presented with abstract
features [Thüm et al. 2011a] and feature-model slicing [Acher et al. 2011] to create a
feature-model interface with a reduced set of features and stable feature dependencies.
Based on this, we show how to use the resulting feature-model interface in combina-
tion with feature-model composition to achieve benefits for the feature-model analysis.
Therefore, we prove a set of analysis-result relations between a feature-model compo-
sition based on the feature-model interface and a composition based on the original
feature model.
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For the purpose of illustration, we take a look at our running example and define
the feature-model interface afterwards. In detail, we plan to reuse the product line
BankAccount inside of the product line BankApplication. In this context, we are in-
terested in several features of product line BankAccount because they are needed to
fulfill the functionality of the product line BankApplication or they are of our special
interest due to the represented functionality. In detail, we are interested in the features
BankAccount , Interest , SimpleLock , and DailyLimit (cf. Figure 3.2). Thus, we plan
to remove all other features to create our feature-model interface. However, at the
same time we need a feature-model interface in which the represented products are also
compatible to the original feature model. This means, all combinations of features that
represent a product in the feature-model interface also need to represent a product in
the original feature model. For this purpose, we define the feature-model interface as
follows:

Definition 9. Feature-model interface according to Definition 4 of [Schröter et al.
2016]:

A feature model MInt = (FInt , PInt) is an interface of feature model Mx =
(Fx ,Px ) denoted as MInt �Mx , if and only if the following conditions hold:

(a) FInt ⊆ Fx and
(b) PInt = {p ∩ FInt | p ∈ Px}.

Resulting from the definition of a feature-model interface, the feature-model interface
is itself a feature model. Therefore, we can use this interface as a placeholder for the
original feature model in a feature-model composition. Furthermore, the definition leads
to some properties that are relevant for our proofs in the remaining thesis. First, for each
feature modelMx and a set of features that represent the features of interest, it exists
exactly one feature-model interface (i.e., it exists exactly one semantic representation
even if there are multiple graphical representations as feature diagram [Czarnecki and
W ↪asowski 2007]). Second, each product of the feature-model interfaceMInt is a subset
(not necessarily a strict subset) of a product from the original feature model and contains
only features from FInt. Third, the other way around also holds. This means, each
product in the feature modelMx is a super set of at least one product in feature model
MInt . In Corollary 10, we summarize these properties as follows:

Corollary 10. According to Corollary 5 of [Schröter et al. 2016]:

∀p ∈ PInt∃q ∈ Px : p = q ∩ FInt

∀q ∈ Px∃p ∈ PInt : p = q ∩ FInt
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Figure 4.2: Application of function S using the feature model MBankAccount and the
features E , L,O , U , W as input. (The formal definition of the feature model uses level
order for the representation of features).

Besides our definition of the feature-model interface and the subsequent properties,
we also need to define a function that allows us to generate a feature-model interface
based on an input feature model. In detail, we define function S (slice, which is similar
to the respective operator proposed by Acher et al. [Acher et al. 2011]) as base for
our proofs regarding the comparison of analysis-result relations between feature-mod-
el compositions with and without the feature-model interfaces. For this purpose, we
define the function S that removes all features that are not of our interest from an input
feature model:

Definition 11. Function S according to the Definition 6 of [Schröter et al. 2016]:

We define a function S that takes a feature model Mx = (Fx ,Px ) and a set of
features FR as input and returns a feature model MInt with MInt �Mx .

MInt = S (Mx ,FR) = (Fx \ FR, {p \ FR | p ∈ Px})

Running Example

To exemplify the application of function S , we use our product line BankAccount with
the feature modelMBankAccount . As we are interested in the features BankAccount (B),
DailyLimit (D), Interest (I ), and SimpleLock (S ), we initialize the set of features FR

with the complementary set of features according to FBankAccount. In detail, we define
the set of features that we want to remove with FR = FBankAccount \ {B,D, I, S} =
{E,L,O, U,W}. We depict the result of the application of function S with the described
input values in Figure 4.2.
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4.1.3 An Overview of Algebraic Properties

In this section, we investigate multiple properties of function S and prove their cor-
rectness. In detail, we take a look at the interactions of function S with function •,
and function R. Furthermore, we prove that the set of features FR can act as a right
identity element for function S .

Right Identity Element FR

First of all, we prove that the set of features FR acts as a right identity element if
FR shares no features with the input feature model Mx (i.e., Fx ∩ FR = ∅). As a
consequence, the input and output feature model will be identical (S(Mx,FR) =Mx).

Lemma 12. Right identity element according to Lemma 7 of [Schröter et al. 2016]:

LetMx = (Fx ,Px ) be a feature model and FR a set of features with Fx ∩FR =
∅, then S (Mx ,FR) =Mx .

Proof.

As the intersection of Fx and FR is the empty set, there will be no feature
that is removed from the set Fx . The result is the identical feature set Fx .
Similarly, the intersection between each product and the set of features FR is
also empty and, thus, each product will be the same as before.

S ((Fx ,Px ),FR) = ((Fx \ FR), {p \ FR | p ∈ Px}) (12.1)

= (Fx ,Px ) =Mx (12.2)

Distributivity of the Functions S and •

In our second proof, we investigate the property of distributivity when using function
S in combination with function •. As a consequence, it does not matter in which order
we apply both functions as the result will be identical.

Lemma 13. Distributivity of the functions S and • according to Lemma 8 of [Schröter
et al. 2016]2:

Let Mx = (Fx ,Px ), My = (Fy ,Py) be feature models and FR a set of features
with Fx ∩ Fy ∩ FR = ∅, then

S (Mx •My ,FR) = S (Mx ,FR) • S (My ,FR).

2The Lemma 13 and the Lemma 8 of [Schröter et al. 2016] differ in one important detail. Because
of some advice from readers, we added a missing premise. Thank you for the feedback.
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Proof.

In general, we separate the application of the function S on each part of the
composed feature model so that we can apply function • later on.

S ((Fx ,Px ) • (Fy ,Py),FR) (13.1)

= (Fz ,Pz ) (13.2)

= ((Fx ∪ Fy) \ FR,Pz ) (13.3)

= ((Fx \ FR) ∪ (Fy \ FR),Pz ) (13.4)
Next, without loss of generality, we introduce the sets r and s to represent the
results of function S, which are then used as input for function •.

= (Fz , {(p ∪ q) \ FR |
p ∈ Px , q ∈ Py , p ∩ Fy = q ∩ Fx}) (13.5)

= (Fz , {(p \ FR) ∪ (q \ FR) |
p ∈ Px , q ∈ Py , p ∩ Fy = q ∩ Fx}) (13.6)

(Definition 9) = (Fz , {r ∪ s | r ∈ {p \ FR | p ∈ Px},
s ∈ {q \ FR | q ∈ Py},
r ∩ Fy = s ∩ Fx}) (13.7)

(Definition 8) = S (Mx ,FR) • S (My ,FR) (13.8)

Distributivity of the Functions S and R

The third property focuses on the distributivity of function S and function R. Similar
to the previous property, this leads to the consequence that the order in which we apply
both functions does not influence the result.

Lemma 14. Distributivity of the functions S and R according to Lemma 9 of [Schröter
et al. 2016]:

Let Mx = (Fx ,Px ) be a feature model and FR a set of features, then
S (R(Mx ),FR) = R(S (Mx ,FR)).

Proof.

Function R adds the empty set to the set of products. To prove the interaction
of R with S , it is necessary to extract this empty set from the input feature
model of S .

S (R(Mx ),FR) = (Fx \ FR, {p \ FR | p ∈ (Px ∪ {∅})}) (14.1)

= (Fx \ FR, {p \ FR | p ∈ Px} ∪ {∅}}) (14.2)

= R((Fx \ FR, {p \ FR | p ∈ Px})) (14.3)

= R(S (Mx ,FR)) (14.4)
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4.1.4 Interface Dependencies of Feature-Model Compositions

In this section, we consider the interface dependency between feature models and inves-
tigate the interaction between the functions S and ◦. An interface dependency between
two feature models exists, if we can apply function S with a specific set of features
FR on the first feature model to achieve the second feature model. Based on this, we
prove that a feature-model composition based on a feature-model interface has also
an interface dependency to a feature-model composition that is based on the feature
model from which the feature-model interface was created. Especially this interface
dependency is essential for our proofs of analysis-result relations of multiple analyses
presented in the next section.

Before we start to prove the described dependency, we take a look at a more concrete
example. Therefore, we assume that we plan to reuse parts of a feature model My in
a second feature model Mx . Without the proposed interface concept, we would use
the function ◦ to combine both feature models accordingly (Mx ◦MC

My = Mx/y).
However, using the concept of feature-model interfaces, we can focus on the features
of interest during this composition. Therefore, we create a feature-model interface
MInt that only consists of the features of interest. As both feature models depend
on each other, we consider the relation as interface dependency (i.e., MInt � My).
Afterwards, we can use the resulting feature-model interface (MInt) for our feature-
model composition with feature model Mx (Mx ◦MC

MInt = Mx/Int). The resulting
feature-model compositionMx/Int is again a feature-model interface of the composition
with the original feature modelMy (i.e.,Mx/Int �Mx/y). Therefore, the feature-mod-
el interfaceMx/Int has the same properties as an ordinary feature-model interface that
is not based on a composition.

In Lemma 15, we prove the described dependency:

Lemma 15. Interface dependency of feature-model compositions according to
Lemma 10 of [Schröter et al. 2016] :

Let Mx/y = Mx ◦MC
My , Mx/Int = Mx ◦MC

MInt be composed feature
models based on the modelsMx = (Fx ,Px ),My = (Fy ,Py),MC = (FC ,PC ),
MInt = S (My , FR) with FR ∩ Fx = FR ∩ FC = ∅, then: Mx/Int �Mx/y .
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Proof.

Given the algebraic properties of the function S and the definition of our com-
position function ◦MC

, the following relations hold:
Mx/y � S (Mx/y ,FR) (15.1)

= S (Mx ◦MC
My ,FR) (15.2)

(Equation 8.1) = S ((Mx • R(My)) •MC ,FR) (15.3)
(Lemma 13) = (S (Mx ,FR) • S (R(My),FR)) • S (MC ,FR) (15.4)
(Lemma 12) = (Mx • S (R(My),FR)) •MC (15.5)
(Lemma 14) = (Mx • R(S (My ,FR))) •MC (15.6)

(Definition 11) = (Mx • R(MInt))) •MC (15.7)
(Equation 8.1) =Mx ◦MC

MInt (15.8)

=Mx/Int (15.9)

Running Example

To illustrate the interface dependency in a feature-model composition, we use our run-
ning example of feature model BankAccount and feature model BankApplication. First
of all, we can create the feature-model interface MInt using the function S with the
feature modelMBankAccount and the complementary set of features of interest (i.e., com-
plementary set of BankAccount , DailyLimit , Interest , and SimpleLock) as input. As a
result, an interface dependency between the feature-model interfaceMInt and the input
feature model MBankAccount exists (i.e., MInt � MBankAccount). We depict this depen-
dency in the upper part of Figure 4.3. Afterwards, we can use the original feature model
MBankAccount or the feature-model interface MInt with feature model MBankApplication

as input for the feature-model composition. If we consider the resulting feature mo-
dels, it also exists an interface dependency between the composed feature models (i.e.,
MBankApplication/Int � MBankApplication/BankAccount , cf. lower part of Figure 4.3). However,
according to Lemma 15, the application of function S on the composed feature model
MBankApplication/BankAccount has the same effect as an application of function S on the
feature model MBankAccount and a subsequent feature-model composition with feature
model MBankApplication (i.e., we assume the same features of interest).

4.2 Relation of Analysis Results With and Without

Interfaces

In this section, we investigate the theoretical potential using feature-model interfaces
to ease the analysis of feature-model compositions. For this purpose, we prove analysis-
result relations of different feature-model analyses by comparing analysis results of
composed feature models with and without feature-model interfaces (i.e., we assume an
interface dependency between the composed feature models). In detail, we prove the
analysis-result relations of the analyses void feature model, core features, dead features,
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Figure 4.3: Interface dependency of feature models and feature-model compositions
according to Lemma 15.

valid partial configurations, and atomic sets (see also Section 2.1.1, paragraph Feature-
Model Analyses).

The subsequent proofs are based on the presented properties of the Section 4.1.3 and
Section 4.1.4. As a result of these investigations, we consider a feature-model composi-
tion based on a feature-model interface as a new ordinary feature-model interface. In
detail, using Lemma 15, we know that it is sufficient to prove analysis-result relations
between a feature modelMy and a feature modelMInt as the same relations also hold
for a composition based on these feature models (i.e., the relations also hold for feature
model Mx/Int and feature model Mx/y). However, we will prove these relations in
detail and, therefore, we use the following premises:

Premise 1. According to Premise 1 of [Schröter et al. 2016]:

Let My = (Fy,Py) be a feature model and MInt = S(My,FR) = (FInt,PInt)
its feature-model interface (i.e., MInt �My).

Premise 2. According to Premise 2 of [Schröter et al. 2016]:
LetMx/y =Mx ◦MC

My ,Mx/Int =Mx ◦MC
MInt be composed feature models

based on the feature modelsMx = (Fx ,Px ),My = (Fy ,Py),MC = (FC ,PC ),
MInt = S (My ,FR) with FR ∩ Fx = FR ∩ FC = ∅.

4.2.1 Void Feature Model

In our first proof, we consider the analysis of void feature models that is used to deter-
mine whether a feature model describes at least one product (cf. Section 2.1.1, Defini-
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tion 2). In detail, we prove the analysis-result relation that a feature-model interface is
void iff the corresponding feature model with an interface dependency is also void.

In Theorem 16 based on the Premise 1, we prove that a feature model MInt is a void
feature model if and only if the feature model My is a void feature model.

Theorem 16. Void feature model analysis-result relation according to Theorem 11
of [Schröter et al. 2016]:

My ∈ void ⇔MInt ∈ void

Proof.

With Corollary 10, the following equivalences hold:
My ∈ void ⇔ Py = ∅ (16.1)

(Corollary 10)⇔ PInt = ∅ (16.2)

⇔MInt ∈ void (16.3)

In our second proof, we use the knowledge of Theorem 16 to prove that the same
analysis-result relation also holds for feature-model compositions with and without a
feature-model interface. To prove this relation, we also use the property of Lemma 15 in
which we proved that a feature-model composition based on a feature-model interface
also results in a feature-model interface compared to the feature-model composition
with the corresponding feature model.

We prove the described relation of the composed feature models Mx/Int and Mx/y in
Theorem 17 that is based on Premise 2.

Theorem 17. Void feature model analysis-result relation for composed feature models
according to Theorem 12 of [Schröter et al. 2016]:

Mx/y ∈ void ⇔Mx/Int ∈ void

Proof.

From Lemma 15 and Theorem 16, we infer that the same analysis-result rela-
tion is also valid for Mx/Int and Mx/y .

4.2.2 Core Features

Similar to the analysis-result relations of void feature models, we now prove such rela-
tions for the analysis core features. As described in Section 2.1.1 using Definition 3, a
core feature is a feature that is available in each product of the product line [Benavides
et al. 2010; Trinidad and Ruiz-Cortés 2009]. However, we prove that a feature of a fea-
ture-model interface is a core feature iff this feature is a core feature of a corresponding
feature model with an interface dependency.

In Theorem 18, we prove based on Premise 1 that a feature f ∈ FInt is a core feature
of a feature-model interface MInt if and only if the feature is a core feature of feature
model My .
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Theorem 18. Core features analysis-result relation according to Theorem 13 of
[Schröter et al. 2016]:

core(My) ∩ FInt = core(MInt)

Proof.

With Definition 9, the following equation holds:

core(MInt) =
⋂

p∈PInt

p (18.1)

(Definition 9) =
⋂

p′∈Py

(p ′ ∩ FInt) (18.2)

= (
⋂

p′∈Py

p ′) ∩ FInt (18.3)

= core(My) ∩ FInt (18.4)

Using Theorem 18, we can conclude that a core feature of a feature-model interface
MInt is also a core feature of the feature model My . Furthermore, the other direction
also holds. Thus, if a feature f is a core feature of the feature model My and at the
same time a feature of the feature-model interface, then the feature f is also a core
feature of this interface. This conclusion can be summarized as follows [Schröter et al.
2016]:

f ∈ core(MInt)⇒ f ∈ core(My)

f ∈ core(My) ∩ FInt ⇒ f ∈ core(MInt)

The second proof for the analysis core features also considers analysis-result relations
of feature-model compositions with and without a feature-model interface. For this
purpose, we use the knowledge of Theorem 18 and the property given in Lemma 15 to
prove that this relation also holds for feature-model compositions.

In Theorem 19, we prove the analysis-result relation for the feature-model compositions
Mx/Int and Mx/y using Premise 2.

Theorem 19. Core features analysis-result relation for composed feature models ac-
cording to Theorem 14 of [Schröter et al. 2016]:

core(Mx/y) ∩ Fx/Int = core(Mx/Int)

Proof.

From Lemma 15 and Theorem 18, we infer that the same analysis-result rela-
tion is also valid for Mx/Int and Mx/y .
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4.2.3 Dead Features

In this section, we consider the analysis-result relation for the analysis dead features
according to the Definition 4 of Section 2.1.1. To repeat, a dead feature is a feature
that is not included in any product of the product line [Benavides et al. 2010; Kang
et al. 1990]. Thus, we prove that a dead feature of a feature-model interface is also a
dead feature of the corresponding feature model and that also the other way around
holds if an interface dependency exists.

In compliance with Premise 1, we prove in Theorem 20 that a feature f ∈ FInt is a dead
feature of the feature-model interfaceMInt iff the feature f is a dead feature of feature
model My .

Theorem 20. Dead features analysis-result relation according to Theorem 15 of
[Schröter et al. 2016]:

dead(My) ∩ FInt = dead(MInt)

Proof.

Based on Definition 9, the following equations hold:

dead(MInt) = FInt \
⋃

p∈PInt

p (20.1)

(Definition 9) = (Fy ∩ FInt) \ (
⋃

p′∈Py

(p ′ ∩ FInt)) (20.2)

= (Fy ∩ FInt) \ ((
⋃

p′∈Py

p ′) ∩ FInt) (20.3)

= (Fy \
⋃

p′∈Py

p ′) ∩ FInt (20.4)

= dead(My) ∩ FInt (20.5)

As conclusion of Theorem 20, we know that a feature f ∈ FInt is a dead feature of the
feature model My if the feature is a dead feature of the feature-model interface MInt .
Furthermore, we also conclude that all dead features of the feature modelMy that are
also part of the feature-model interfaceMInt are also dead features of the feature-model
interface. We summarize this conclusion as follows [Schröter et al. 2016]:

f ∈ dead(MInt)⇒ f ∈ dead(My)

f ∈ dead(My) ∩ FInt ⇒ f ∈ dead(MInt)

Similar to the previous analysis investigation, we take a look at the analysis-result
relation with respect to feature-model compositions. For this purpose, we use the
knowledge of Theorem 20 and Lemma 15 to prove that the same analysis-result relation
also holds for a feature-model composition with and without a feature-model interface.

Based on Premise 2, we prove in Theorem 21 that the analysis-result relation also holds
for the results of the feature-model compositions Mx/Int and Mx/y .



4.2. Relation of Analysis Results With and Without Interfaces 63

Theorem 21. Dead features analysis-result relation for composed feature models
according to Theorem 16 of [Schröter et al. 2016]:

dead(Mx/y) ∩ Fx/Int = dead(Mx/Int)

Proof.

From Lemma 15 and Theorem 20, we infer that the same analysis-result rela-
tion is also valid for Mx/Int and Mx/y .

4.2.4 Valid Partial Configurations

In this section, we investigate the analysis-result relation of the analysis partial config-
uration. In Section 2.1.1 with Definition 5, we defined a partial configuration as a tuple
of selected and deselected features that is conform to the feature-model dependencies
and, thus, valid. According to this definition, we prove that a valid partial configuration
of the feature-model interface is also a valid partial configuration of a feature model
My and the other way around if My is compatible to this interface.

Based on Premise 1, we prove in Theorem 22 that a configuration C = (FS, FD) with
FS ⊆ FInt and FD ⊆ FInt is a valid partial configuration of the feature-model interface
MInt if and only if C is a valid partial configuration of feature model My .

Theorem 22. Partial configurations analysis-result relation according to Theorem 17
of [Schröter et al. 2016]:

pConf (MInt) = {(FS ∩ FInt ,FD ∩ FInt) | (FS ,FD) ∈ pConf (My)}

Proof.

With Definition 9, the following equation holds:
pConf (MInt)

(Definition 5) = {(FS ,FD) | ∃p ∈ PInt : FS ⊆ p ∧ FD ⊆ FInt \ p} (22.1)
(Corollary 10) = {(FS ,FD) | ∃q ∈ Py :

FS ⊆ q ∩ FInt ∧
FD ⊆ FInt \ (q ∩ FInt)} (22.2)

(FInt ⊆ Fy ) = {(FS ,FD) | ∃q ∈ Py :

FS ⊆ q ∩ FInt ∧
FD ⊆ (Fy ∩ FInt) \ (q ∩ FInt)} (22.3)

= {(FS ,FD) | ∃q ∈ Py :

FS ⊆ q ∩ FInt ∧
FD ⊆ (Fy \ q) ∩ FInt} (22.4)

= {(FS ∩ FInt ,FD ∩ FInt) | ∃q ∈ Py :

FS ⊆ q ∧ FD ⊆ Fy \ q} (22.5)
(Definition 5) = {(FS ∩ FInt ,FD ∩ FInt) | (FS ,FD) ∈ pConf (My)} (22.6)
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Based on Theorem 22, we can conclude that all valid partial configurations of feature
model MInt are also valid partial configurations of feature model My . Furthermore,
we also know that an intersection of all selected features FS and deselected features FD

with the set of features FInt of all valid partial configurations of My also results in a
valid partial configuration of feature model MInt . We summarize these conclusions as
follows [Schröter et al. 2016]:

(FS,FD) ∈ pConf(MInt)⇒ (FS,FD) ∈ pConf(My)

(FS,FD) ∈ pConf(My)⇒ (FS ∩ FInt,FD ∩ FInt) ∈ pConf(MInt)

Again, we use Theorem 22 and Lemma 15 to prove that the identical analysis-result
relation of composed feature models with and without feature-model interfaces also
exists.

In detail, we use Premise 2, to prove in Theorem 23 that a configuration with FS ⊆
Fx/Int and FD ⊆ Fx/Int is a valid configuration of the feature-model compositionMx/Int

if and only if it is also a valid configuration of the feature-model composition Mx/y .

Theorem 23. Partial configurations analysis-result relation for composed feature mod-
els according to Theorem 18 of [Schröter et al. 2016]:

pConf (Mx/Int) = {(FS ∩ Fx/Int ,FD ∩ Fx/Int) | (FS ,FD) ∈ pConf (Mx/y)}

Proof.

From Lemma 15 and Theorem 22, we infer that the same analysis-result rela-
tion is also valid for Mx/Int and Mx/y .

4.2.5 Atomic Sets

Our last analysis-result relation considers the analysis of atomic sets. According to our
Definition 6 of Section 2.1.1, an atomic set is a set of features that completely occurs or
is completely absent in each product of a product line. For our proofs, we consider the
analysis-result relation of an atomic subset which can also be a subset of another atomic
(sub)set (cf. Definition 6). Therefore, we prove that an atomic subset of a feature-model
interface is also an atomic subset of a feature model with an interface dependency.

For our Theorem 24, we base on Premise 1 and prove that a set of features A ∩ FInt

with A ⊆ Fy is an atomic subset of the feature-model interfaceMInt iff A is an atomic
subset of the feature model My .

Theorem 24. Atomic sets analysis-result relation according to Theorem 19 of [Schröter
et al. 2016]:

aSub(MInt) = {q ∩ FInt | q ∈ aSub(My), q ∩ FInt 6= ∅}



4.3. Evaluation: The Feature-Model Interfaces in Practice 65

Proof.

With Definition 9, the following equation holds:
aSub(MInt)

(Definition 6) = {q | q 6= ∅,PInt 6= ∅,
∀p ∈ PInt : (q ⊆ p) ∨ (q ⊆ FInt \ p)} (24.1)

(Corollary 10) = {q | Py 6= ∅, q 6= ∅,
∀p ∈ Py : (q ⊆ p ∩ FInt) ∨

(q ⊆ (Fy \ p) ∩ FInt)} (24.2)

= {q ∩ FInt | Py 6= ∅, q 6= ∅, q ∩ FInt 6= ∅,
∀p ∈ Py : (q ⊆ p) ∨ (q ⊆ Fy \ p)} (24.3)

(Definition 6) = {q ∩ FInt | q ∈ aSub(My), q ∩ FInt 6= ∅} (24.4)

As conclusion of Theorem 24, we know that an atomic set of the feature-model inter-
face MInt is also an atomic set (or a subset of an atomic set) of feature modelMy . In
addition, we also know that an atomic set of the feature modelMy intersected with FInt

also results in an atomic set of the feature-model interface MInt . We can summarize
our conclusion as follows [Schröter et al. 2016]:

A ∈ aSub(MInt)⇒ A ∈ aSub(My)

A ∈ aSub(My)⇒ (A ∩ FInt) ∈ aSub(MInt)

Using the knowledge of Theorem 24 and Lemma 15, we take a look into the analysis-
result relation of composed feature models with and without a feature-model inter-
face. Thus, we also prove that the relation of Theorem 24 also holds for feature-model
compositions.

In Theorem 25 that is based on Premise 2, we prove that a set of features A ∩ Fx/Int

is an atomic subset with A ⊆ Fx/y of the feature model Mx/Int if and only if A is an
atomic subset of the feature model Mx/y .

Theorem 25. Atomic sets analysis-result relation for composed feature models ac-
cording to Theorem 20 of [Schröter et al. 2016]:

aSub(Mx/Int) = {q ∩ Fx/Int | q ∈ aSub(Mx/y), q ∩ Fx/Int 6= ∅}

Proof.

From Lemma 15 and Theorem 24, we infer that the same analysis-result rela-
tion is also valid for Mx/Int and Mx/y .

4.3 Evaluation: The Feature-Model Interfaces in

Practice

In this section, we take a look at the practical application of feature-model interfaces.
In detail, we investigate our Hypothesis 1 and explore how feature-model interfaces can
be used to ease automated analyses of evolving multi product lines.
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To investigate Hypothesis 1, first, we describe an application scenario and, second, we
define research questions that we want to answer in our experiment.

Application Scenario

In our application scenario, we are interested in the benefits of our concept regard-
ing the analysis of the feature-model composition MBankApplication with the feature-
model interface MInt (i.e., MBankApplication/Int) that we created from feature model
BankAccount . In addition, we assume that the feature model BankAccount changes
several times. However, not all of these changes require a recomputation of a specific
analysis as the new version of the feature model BankAccount can also be compati-
ble to the already used feature-model interface in our feature-model composition (e.g.,
MInt � MBankAccount ,V2 ). Therefore, the question arises how often a new version of
the feature model BankAccount is incompatible to the used feature-model interface
MInt (e.g.,MInt 6� MBankAccount ,V<VersionNumber>). Only in this case, we have to create
a new version of the feature-model interface MInt and a new version of our feature-
model composition with MBankApplication that also leads to a necessary recomputation
of all analyses (cf. Case 2 of Section 3.5). In all other cases, in which the new ver-
sion of the MBankAccount is still compatible to the feature-model interface MInt (i.e.,
MInt �MBankAccount ,V<VersionNumber>), we can reduce computational effort as a recom-
putation would present the identical results.

Research Questions

According to the described application scenario, we now consider research questions
to investigate our Hypothesis 1. In detail, we consider the research questions from
our corresponding paper, in which we introduced the concept of feature-model inter-
faces [Schröter et al. 2016].

Research Question 1: How small can feature-model interfaces get compared
to their corresponding feature models?

This research question is directly related to our application scenario. In general,
smaller feature models with less complexity are easier to analyze than huge feature
models. Even if the process of automated analysis is in general very time efficient,
the performance depends on the analysis and how often we need to execute this
analysis. Therefore, even small analysis improvements can have an impact to
specific scenarios. In addition, a smaller feature model with less complexity can
ease the comprehension and the manual analysis by a developer. Therefore, we
analyze the relation between the size of feature-model compositions with and
without feature-model interfaces.

Research Question 2: How often does a feature-model interface become
incompatible to an evolved feature model?
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The result of this question directly influences the success of feature-model inter-
faces for our application scenario. In detail, we only reduce computational effort
for feature-model compositions if the evolved feature model is still compatible to
the corresponding feature-model interface (cf. Case 1 of Section 3.5). Otherwise,
we have to recompute the complete analysis using a new feature-model composi-
tion with a new feature-model interface that is compatible to the evolved feature
model (cf. Case 2 of Section 3.5).

Research Question 3: Is it possible to achieve performance benefits using
compositional analysis for atomic sets compared to an analysis of the com-
plete feature model?

Even if our Hypothesis 1 focuses on evolving multi product lines, we take a look at
further potential of feature-model interfaces regarding the analysis of composed
feature models. Therefore, we compare the feature-model analysis of atomic sets
with and without feature-model interfaces whereas we are focusing on analy-
sis results regarding our features of interest. To illustrate the scenario, we use
our running example. Without feature-model interfaces, we assume to create a
feature-model composition of multi product lineMBankApplication/BankAccount . How-
ever, during the analysis of this feature model, we are only interested in results
regarding our features of interest. Therefore, we apply a specific feature-mod-
el analysis on the whole feature model of the multi product line and filter the
result according to our features of interest. By contrast, using our concept of fea-
ture-model interfaces with feature-model composition and the knowledge of the
proved analysis-result dependencies, we can use the feature-model composition of
MBankApplication/Int as input for the specific analysis to achieve the same results.
According to this research question, we want to investigate whether this procedure
can result in performance benefits for the specific analysis.

In the following, we introduce the details of our experiment design including an intro-
duction of the subject system. Afterwards, we discuss the results of our experiments
regarding our application scenario and present threats to validity.

4.3.1 Experiment Design

In this section, we present the experiment design to answer the research questions
defined in the last section. Before we give details about the design itself, we present
facts of our subject system that we use to answer all research questions.

Subject System

An experiment according to the presented research questions has high requirements
regarding the subject system. For instance, the system needs to consist of different
feature models (i.e., one feature model that instantiates further feature models that we
call submodels to ease the following description) for which we also need to know how to
compose them. Furthermore, we need information about evolutionary changes of the
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instantiated submodels to adjust our application scenario. For these reasons, it was
hard to find an appropriate subject system. However, we found a subject system that
in most cases fits our needs.

As subject, we use a real-world feature model that comes from the automotive domain
describing hardware and software artifacts. We have access to four different snapshots
of an obfuscated version of this feature model (i.e., each feature has a unique ID over
all snapshots). Depending on the specific snapshot, the feature model consists of more
than 40 submodels. For instance, the first snapshot consists of 14,010 features, 666
constraints, and 44 submodels. By contrast, our last snapshot has 18,616 features,
1,616 constraints, and 46 submodels. To reproduce our results and to allow other
researchers to use these snapshots for their own interests, we make them available in
FeatureIDE’s example wizard [Meinicke et al. 2017; Thüm et al. 2014b].

Experiment

As described above, our subject system is one huge feature model from which we need
the initial submodels for our experiment. For this purpose, we also get the information
about the original root features of these submodels. This allows us to reproduce the
original feature models (i.e., submodels) and to use them for our experiment. In detail,
we execute the feature model extraction process in two steps. First, we search for the
specific location of each root feature in the complete feature model and create a new
feature model with a copy of this feature and all sub features (constraints are ignored for
now). Second, we investigate the existing constraints of the complete feature model and
classify each constraint to either an intra-model constraint or an inter-model constraint.
Afterwards, we copy all intra-model constraints into the corresponding feature models
(i.e., submodels). In addition, we save all inter-model constraints as we need them to
recompose the complete feature model.

As our research questions focus on the evaluation of the size and compatibility of the
submodels to the corresponding feature-model interfaces, we also need to generate fea-
ture-model interfaces. For this purpose, we have to identify the features of interest
according to each submodel. As the complete feature model is presented in an obfus-
cated way, it is not possible to use domain knowledge for the identification of features
of interest. For this reason, we use the information given by the inter-model constraints
(including the parent-child relationships between the root features of the submodels and
the root model) to identify the features that we want to include in the feature-model
interfaces. In detail, the features of the inter-model constraints are the features that
represent the minimal degree of a possible feature-model interface as these features are
at least necessary to describe the dependencies between all submodels and the root
model. Thus, we use the information about the inter-model constraints to generate
the feature-model interfaces for each submodel and snapshot. Afterwards, we use the
information to determine the relation of the feature-model size (i.e., RQ1) and whether
the submodel of a new snapshot is compatible to the feature-model interface of previ-
ous snapshot (i.e., RQ2). In addition, we use the analysis of atomic sets, as it is an
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analysis with an exponential complexity [Durán et al. 2017], to investigate our third re-
search question. In detail, we execute the analysis with and without our feature-model
interfaces and determine the time that is needed to identify all atomic sets regarding
our reduced feature-model composition with the features of interest. First, we use the
complete feature model of the first snapshot and determine all atomic sets and filter
the results according to the features of interest. Second, as comparison, we determine
the complete time that is needed to (1) create all interfaces of the submodels, (2) to
recompose the reduced feature model using the feature-model interfaces, and (3) to
apply the analysis of atomic sets.

For the generation of the feature-model interfaces, it is necessary to use a scalable algo-
rithm that allows us to remove a high percentage of features from a feature model. In
our test runs, we realized that our algorithm, which we primary used for the removal of
abstract features [Thüm et al. 2011a], does not scale well for this purpose. Therefore,
we analyzed the properties of the algorithm and found several options for an optimiza-
tion. For instance, as the features are always removed stepwise, we use a heuristic to
optimize the order. However, the details of this algorithm are out of the scope of this
thesis. We refer the reader to the work of Krieter et al. to get more insights in the algo-
rithm’s details [Krieter et al. 2016a,b]. The algorithm itself is available in FeatureIDE
v3.0 [Meinicke et al. 2017; Thüm et al. 2014b].

4.3.2 Experiment Results and Discussion

In this section, we present the results of the experiments according to our research
questions.
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Figure 4.4: Each boxplot represents the percentage of features in the feature-model
interface compared to the corresponding feature model of our subject system.

Results of Research Question 1

In Figure 4.4, we present the results of our evaluation regarding the first research ques-
tion. In detail, we determine the percentage of features that exist in each feature-model
interface with respect to the number of features in the corresponding feature model.
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For instance, in the first snapshot exists one feature model (i.e., a submodel) with 7,800
features whereas the corresponding feature-model interface only consists of the root
feature (i.e., the percentage of the number of features is less than 1). Furthermore, to
ease the representation, we remove all submodels that only consist of the root feature.
Afterwards, we use boxplots to represent these values for each snapshot.3

The first boxplot illustrates the results for the first snapshot of the automotive feature
model. The median of this boxplot is below 1.4 % and, thus, we know that the half
of all values are less than this value. Furthermore, we can see that further 25 % of
the feature-model interfaces (i.e., upper border of the box) have also less or equal than
5 % of features relative to the corresponding feature model. The highest value for the
first snapshot is about 50%. However, for all other snapshots, the relation between
the number of features of the feature-model interface and the corresponding feature
model looks similar. In detail, the median of all boxplots is less than 3.3 % and also the
next 25 % of feature-model interfaces consist of less than 6.7 % of features. In sum, we
can conclude that the difference between the size of a feature-model interface and the
corresponding feature model is significant.

Results of Research Question 2

To answer the second research question, we investigate the compatibility of a new
feature-model version to the feature-model interface of the previous snapshot (i.e.,
MInt ,Vx � MFM ,Vx+1 ). We illustrate the results in Figure 4.5. In detail, if a sub-
model (i.e., feature model) changes, three different results are possible. First, the new
feature-model version is compatible to the feature-model interface of the previous snap-
shot (brown). Second, the new feature-model version is incompatible (light green).
Third, we find out that the feature-model version is incompatible because of missing
domain knowledge (yellow). To be precise, in the third case (i.e., the yellow case), the
feature-model interface is not compatible anymore since the features of interest changed
although these features were also available in the previous snapshot. However, with do-
main knowledge it could be possible to know that these features are of our interest.
As a result of this knowledge, the feature model would be compatible. Therefore, we
differentiate this incompatibility with an additional case (yellow).

Our first bar of Figure 4.5 presents the compatibility from the first to the second snap-
shot. In sum, there are 44 of comparable feature models. However, out of these 44
submodels, 19 feature models have been changed. Therefore, we use these 19 fea-
ture models for the classification according to our three cases. As a result, 16 feature
models are compatible (brown), one is incompatible (light green), and two are incom-
patible because of the missing domain knowledge (yellow). If we take a look at the
other snapshots, the situation differs. The second bar represents the compatibility of
feature-model interfaces from the second snapshot to feature models of the third snap-
shot. In this scenario, only 14 feature models have been changed, whereas 7 are still

3As we used R for the graphical representation, we also want to note that we used the default
settings for the boxplots. Thus, the whiskers are equal or less than 1.5 times away from the box.
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Figure 4.5: Each barplot represents the changes between two snapshots and shows the
percentage of compatible interfaces ( ), incompatible interface (minimality) ( ), and
incompatible interfaces ( ) in our subject system.

compatible to the corresponding feature-model interface of the previous snapshot. Fur-
thermore, 6 feature models are incompatible to the feature-model interface and only
one is incompatible because of domain knowledge. Also the last bar that represents the
compatibility of feature-model interfaces from the third snapshot to feature models of
the fourth snapshot, looks completely different in comparison to the others. Here, only
13 feature models have been changed. Our investigation shows that 3 feature models
are compatible (brown), only one is incompatible (light green), and 9 are incompatible
because of missing domain knowledge (yellow). Using the information given by this
bar, we can conclude that domain knowledge is very important to create a significant
feature-model interface. In sum, our experiment shows that a new version of a feature
model is compatible in more than the half of all cases. In addition, another 25 % of all
feature models were only incompatible because of missing domain knowledge. Even if
we assume that not all of these cases will lead to a compatible interface using domain
knowledge, we suppose to increase the compatible cases.

Results of Research Question 3

In addition to our investigations regarding Hypothesis 1, we also examined the potential
of feature-model interfaces with feature-model composition regarding the analysis of
composed feature models. In detail, we focused on an analysis to determine all atomic
sets of the reduced feature model of the first snapshot (i.e., we are only interested
in atomic sets, in which the features of interest are considered). Using the complete
feature-model composition as input for the analysis of atomic sets and a subsequent
filtering according to the features of interest (the time of the filtering is negligible), the
computation takes more than 50 hours. By contrast, the computation of atomic sets
regarding the reduced feature model based on a feature-model composition with the fea-
ture-model interfaces, the computations take less than 5 seconds. This time includes the
computation of the feature-model interface, the reconstruction of the reduced feature
model, and the execution of the atomic-set analysis. Even if it is also possible to
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optimize the internal behavior of the atomic-set algorithm, we decided to consider the
algorithm as a black box. Since, an optimization is out of scope of our evaluation and
we only focused on an investigation of our third research question. However, based
on this comparison, we can confirm that feature-model interfaces with feature-model
composition can lead to performance benefits when executing feature-model analyses.

General Conclusion

As described above, our application scenario focuses on the reduction of effort for au-
tomated analysis especially in the case of feature-model evolution (cf. Hypothesis 1).
Using the results of our first research question, we can conclude that feature-model
interfaces are able to significantly reduce the size of composed feature models. Thus,
if we repeat an analysis several times (e.g., because of feature-model evolution, or a
more complex analysis such as product-line type checking), we can also save compu-
tational effort for feature-model analyses that need in general less time. However, the
main benefit of feature-model interfaces exists for feature-model evolution. In detail,
using the results of our second research question, we can see that a new version of a
feature model does not lead to a new feature-model interface in more than 50 % of all
cases. Thus, it is not necessary to re-execute a specific analysis as the result will be the
same as before. In addition to the investigation regarding the benefit of feature-mod-
el interfaces in evolved feature-model compositions, we also considered the potential
of feature-model interfaces in cases of an ordinary feature-model analysis. Using the
analysis of atomic sets, we were able to show that feature-model interfaces with feature-
model composition can lead to performance benefits when we focus on results regarding
our features of interest.

4.3.3 Threats to Validity

In this section, we discuss the threats to validity of our evaluation results. Again, we
differentiate between the external an internal validity.

External Validity. To consider the external threats to validity, we take a look at the
generalizability of our evaluation results. Indeed, our results strongly depend on our
subject system from the automotive domain. In detail, it depends on our analyzed fea-
ture model with the information about the root features of the submodels. In addition,
it also depends on the selected features of interest as we need this information to create
the feature-model interfaces. Because of these dependencies, it is difficult to generalize
the results or to predict the outcome of an evaluation regarding other multi product li-
nes. Thus, it is necessary to extend the evaluation to further snapshots, feature models,
and domains to generalize the results. However, for our evaluation we had no influence
on the selected feature model and snapshots to minimize the effect of this threat to
validity.

During the evaluation of the subject system, we got the impression that the feature
model was extracted from a very early state of the development process. In detail,
the first snapshot is based on 14 000 features, whereas the fourth snapshot is based



4.3. Evaluation: The Feature-Model Interfaces in Practice 73

on 18 616 features. We assume that subsequent snapshots present results with less
differences in features and their dependencies so that also the result of our evaluation
differs. Therefore, further evaluations are needed to get more insights in the subject
system and the impact on the compatibility of feature-model interfaces regarding their
underlying submodels.

To create the feature-model interfaces, we used an automated extraction process, in
which we analyzed the inter-model constraints of the feature-model composition to de-
termine features of interest. This procedure leads to a minimal feature-model interface
that only consists of features that are necessary to ensure the already existing inter-
model constraints. One reason for this procedure was the missing domain knowledge
that is necessary to create meaningful feature-model interfaces. Furthermore, we re-
ceived the different versions of the feature model in an obfuscated way so that it was
not possible for us to infer the meaning of a specific feature. As result, we considered
the analysis of inter-model constraints as an appropriate procedure to find features of
interest.

Internal Validity. According to the internal validity, we now consider our activities.
To generate our feature-model interfaces, we used our prototypical implementation of an
algorithm that was able to create the interfaces in a scalable manner. The prototypical
implementation represents an internal threat because of possible undetected errors.
Therefore, we used a state-of-the-art algorithm [Thüm et al. 2011a] to compare the
results and to ensure the correctness. In detail, even if it was not possible to use this
state-of-the-art algorithm to handle huge feature models as needed in our evaluation,
we used a set of smaller feature models to compare the results of the algorithms and,
thus to ensure the correctness of our prototypical implementation.

Furthermore, the choice of features of interest directly influences the size, representation,
and compatibility of feature-model interfaces and, thus, also our evaluation result. As
already described, we used an automated extraction process that leads to minimal fea-
ture-model interfaces. However, we are aware that a refactoring of cross-tree constraints
is able to decrease the number of features of interest and the size feature-model inter-
faces. For instance, assuming the inter-model cross-tree constraint A→ B ∧C whereas
the features A and B are part of the same and feature C from another feature model.
Based on our extraction process, we can determine the features of interest for the feature
model with the features A and B whereas both features are included. By contrast, using
a refactoring, we can separate this inter-model constraint into the constraints A → B
and A→ C. As a result, only the constraint A→ C is now an inter-model constraint,
whereas the constraint A→ B represents an intra-model constraint. Thus, if we use our
automated extraction process, only the feature A is a feature of our interest. Indeed,
the approach with such a refactoring can lead to better evaluation results. Nevertheless,
we made the decision that we use the extraction process without the refactoring, as it
may harm the readability.
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4.4 Summary

In this chapter, we introduced the feature-model interface as first interface of our multi-
level interface concept. As we described, the feature-model interface is an ordinary
feature model with a subset of features in relation to an already existing feature model
that we planned to use in another product line. Therefore, the feature-model interface
hides all other features that are not required in the context of the multi product line.
However, the feature-model interface is the most important interface of our concept of
multi-level interfaces as it also restricts the reuse and the visibility of the artifacts in
the interfaces below.

According to Hypothesis 1, we investigated the potential of the feature-model inter-
face (i.e., feature-model interface as representation of a variability-model interface) in
theory and practice. For the theory part, we proved dependencies between analysis
results of feature-model composition with and without a feature-model interface. As a
result of these proofs, we found out that it is possible to exchange the feature-model
interface with the original feature model (and vice versa) and it is not necessary to
reanalyze the feature-model composition if only the features of interest are focused.
Thus, in theory, we can use this property to reduce the computational effort during the
automated analyses of composed feature models when using feature-model interfaces.
In detail, we proved this relation for the analysis of void feature models, core features,
dead features, partial configurations, and atomic sets.

Based on our proofs of analysis-result relations for feature-model compositions with
and without feature-model interfaces, we also investigated how this can be used to
safe computational effort during feature-model evolution in practice. Using a real-
world feature model from the automotive domain, we investigated the advantages for
the automated analyses regarding the feature-model compositions with feature-model
interfaces. In detail, not all changes of a feature model, which we used behind a feature-
model interface, forced a change of the feature-model interface. Thus, a re-execution of
a specific analysis was not necessary as the result would be the same. However, in our
real-world example, it was possible to prevent the re-execution of automated analysis
in more than 50 % of all cases.



5. The Syntactical Interface -
The Second Level of Multi-Level
Interfaces

This chapter shares material with the paper Towards Modular Anal-
ysis of Multi Product Lines, in which we introduced our first ideas
of a variable interface as syntactical product-line interface [Schröter
et al. 2013a]. Furthermore, the chapter shares material with the pa-
per Feature-Context Interfaces: Tailored Programming Interfaces for
Software Product Lines, in which we described our main concept of
feature-context interfaces [Schröter et al. 2014].

In this chapter, we focus on the syntactical interface of our multi-level interfaces to
avoid direct dependencies on this level of the product-line development. It is the sec-
ond interface of our concept and depends on the variability-model interface (or rather
the feature-model interface) that we defined in the previous chapter. In detail, the
syntactical interface is a collection of API members (i.e., methods and fields) with vari-
ability information that are available in the selected features of the variability-model
interface (i.e., features of interest). Whereas the manual search for safely accessible
API members for an implementation context can be a challenging task, the syntactical
interface can be used to give an overview of it. To be more precise, the implementation
context is defined by the product-line artifact that is currently implemented, changed,
or maintained (e.g., a specific feature when using FOP for the implementation). Search-
ing for accessible members of other implementation artifacts (e.g., features from another
product line), which we can call from this implementation context to reuse its function-
ality, is tedious. By contrast, based on the syntactical interface, it is possible to create a
non-variable interface through filtering techniques so that a developer gets an overview
of all safely accessible members tailored to the current implementation context.
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As the previous description of the syntactical interface is an abstract description that
can be used for different languages and implementation techniques for product lines, we
want to exemplify the strategy using one specific scenario. In detail, similar to the fea-
ture-model interface, we want to illustrate the concept using our running example of the
multi product line BankApplication that uses product line BankAccount . Therefore, our
interface for product line BankAccount depends on the information given by the feature-
model interface (see Chapter 4), the programming language Java, and the implemen-
tation technique FOP (see Section 2.1.2). Focused on FOP and Java, we implemented
the variable interface as an instance of the syntactical interface and the feature-context
interface as an instance of the non-variable view to this interface. Thus, during the
implementation of a specific feature for multi product line BankApplication, we assume
that the feature-model interface, and the variable interface of product line BankAccount
exist. For instance, if a developer wants to implement the feature Transaction, we can
use the interfaces to automatically compute safely accessible API members that we can
use for the development. In detail, the implementation context of this (multi) product
line based on FOP is automatically given by the feature Transaction and we can use
the information of the context, the feature-model interface, and the variable interface
to compute the feature-context interface that presents a non-variable to all safely ac-
cessible API members. As result, the developer does not need the detailed information
of product line BankAccount to implement features of product line BankApplication.

Even if the main idea of a variable interface and a subsequent feature-context interface
is a result of the multi-level interface concept and focuses on multi product lines, the
concept is also applicable to a single product line [Schröter et al. 2014]. This chapter
focuses on both scenarios, in which the feature-context interface is used for the devel-
opment of product lines and multi product lines. Therefore, the chapter is structured
as follows. In Section 5.1, we start with a presentation of state-of-the-art strategies to
identify accessible code members of a (multi) product line. In Section 5.2, we present
our main idea and the generation strategy for a variable interface and discuss advan-
tages and drawbacks for the product-line development. Afterwards, we discuss the
application of the variable interface in different scenarios, such as multi product lines.
To this end, in Section 5.3, we present filtering techniques for the variable interface
to tailor it to the specific needs of each application scenario. Furthermore, we define
feature-context interfaces in Section 5.4 and give details about their application in sin-
gle as well as in multi product lines. Using several case studies, we also investigate the
potential of feature-context interfaces as development support for (multi) product lines
in Section 5.5. Finally, in Section 5.6, we summarize the chapter.

5.1 Finding Reusable Implementation Artifacts

Implementing product lines is an error-prone task as reusable artifacts (e.g., methods
and fields) for the current implementation task need to be identified. For instance, if we
use artifacts that are not available in all valid feature-combinations, the implementation
can lead to compile-time errors. The task becomes even harder when considering multi
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product lines as the systems complexity is increased. Therefore, we use this section to
give an overview of state-of-the-art approaches that can be used to identify accessible
implementation artifacts for product lines implemented with FOP. On the one hand, the
considered approaches are based on our own experiences when implementing product
lines. On the other hand, we consider straight-forward approaches that can be used for
the identification.

To support the developer during an implementation or maintenance task of a product
line, it is necessary to identify accessible members (i.e., methods and fields) accord-
ing to an implementation context. In the case of a product line written with FOP,
the implementation context is represented by the feature module that the developer
implements, changes, or maintains. Thus, the implementation context corresponds to
a single feature from the set of all features F. Therefore, we call the implementation
context for FOP feature context FC , whereas FC ∈ F holds.4 Furthermore, to ease
the comparison of the state-of-the-art approaches, we investigate whether the specific
approach is applicable to the concept of multi product lines. Additionally, we introduce
the criteria of soundness and completeness in Definition 26 to evaluate their usage in
product lines and multi product lines.

Definition 26. Completeness and soundness according to [Schröter et al. 2014]:

• Completeness: An approach is complete if it contains all members of an
SPL that are safely accessible for each feature context.
• Soundness: An approach is sound if it contains only members that are

safely accessible for each feature context.

In detail, an unsound approach presents API members that can lead to compile-time
errors. As a result, the developer cannot rely on the outcomes of an unsound approach.
Furthermore, an incomplete approach presents not all members that are safely acces-
sible. Therefore, an incomplete approach can restrict the reusability of accessible API
members. In addition to these criteria that are mainly introduced to evaluate state-of-
the-art approaches for product lines, we also want to discuss the applicability of each
approach regarding its usage in the application scenario of multi product lines. In an
optimal case, the approach should be complete, sound and applicable for multi product
lines at the same time. In the following, we use these criteria to investigate approaches
that we call feature module, minimal variant, and always available.

5.1.1 Approach 1: Feature Module

In practice, especially for students that are beginners in the area of product lines writ-
ten in FOP, the feature module that is currently implemented is used to identify safely
accessible members. This observation is based on our experience regarding our lectures
on product lines. Here, students are often careful in using calls to API members of other

4If we take another implementation paradigm (cf. Section 2.1.2), the implementation context can
be more complex. For instance, the implementation context of preprocessors can be an arbitrary
propositional formula that is based on all defined features.
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feature modules and start to search for an appropriate API member in the feature mod-
ule that is currently implemented. Therefore, if we search for accessible API members
according to the feature context FC with the approach feature module, we collect all
API members of the corresponding feature module impl(FC) (cf. Definition 7).

For instance, we assume that we plan to extend, maintain, or implement the feature
Transaction of the product line BankApplication (cf. Figure 2.14). For this case, the fea-
ture context is represented by the feature Transaction (i.e., FC = Transaction). Using
the feature module as source to get accessible code artifacts (i.e., impl(Transaction)),
we get the methods lock and transfer from the product line BankApplication as the
result.

In sum, the approach feature module is sound as it only collects API members from the
feature module that also represents the feature context. However, the approach feature
module ignores all API members of the other feature modules, even if the usage of the
feature module directly implies the other (e.g., a child feature implies the parent fea-
ture). For instance, if we want to implement feature InterestEstimation (cf. Figure 2.1),
it is obvious that we can also access all API members of the parent feature Interest
and of the root feature BankAccount . Furthermore, if we take a look at our application
scenario of a multi product line, this approach does not help to detect accessible mem-
bers of a reused product line. For instance, if we implement feature Transaction, the
approach only collects API members of this feature from product line BankApplication
and ignores all other features from this and the reused product lines.

5.1.2 Approach 2: Minimal Variant

The second approach uses a specific variant p of the product line to collect accessible API
members according to a feature context (i.e., impl(p), cf. Definition 7). The approach is
similar to an existing implementation of FeatureIDE [Meinicke et al. 2017; Thüm et al.
2014b]. In detail, FeatureIDE uses the currently active configuration to create a variant
in the background of the Eclipse IDE. Afterwards, the variant is used to present an
outline to the developer. Here, we consider an adapted version of this idea. In detail,
we use a full configuration, in which the feature context FC and a minimized number
of additional features are selected. As we use the resulting variant to collect accessible
API members for the feature context, we call the approach minimal variant.

Similar to our previous strategy, we take a look at our example of product line Bank -
Application with the feature context Transaction. To get information about accessible
API members using the approach minimal variant, we need access to the whole multi
product line including the source code of product line BankAccount . Based on this
assumption, we have to create a configuration of this multi product line in which the
feature Transaction is selected. Furthermore, we have to select a minimal set of other
features so that we get a valid configuration of this multi product line. In detail, we have
to select the feature BankApplication from the product line BankApplication, and the
features SimpleLock , Lock and BankAccount from the reused product line BankAccount



5.1. Finding Reusable Implementation Artifacts 79

(cf. Figure 2.14). Based on this full configuration, we create a product-line variant and
get an overview of all API members that are included in this variant.

Our previous example shows that this approach can be used to get an overview of acces-
sible API members from a specific feature context. However, it is possible that multiple
variants with a minimal set of features exist and, thus, the decision for one or the
other variant influences the result of accessible API members. For instance, assuming
that the constraint Transaction → Lock exists instead of the constraint Transaction
→ SimpleLock (cf. Figure 2.14). Then, the decision of selecting feature SimpleLock
instead of TimeUnitLock (i.e., the abstract feature without code artifacts) influences
the API members that are present in the resulting variant. In detail, because of the
selection of feature SimpleLock , the method lock is included in the resulting set of API
members. However, this method only exists in variants where feature SimpleLock is
also included and, thus, the method is not always safely accessible from our feature
context Transaction.

Based on our previous example, we can see that the set of features we have to select for
the approach minimal variant is ambiguous. Therefore, the result of this approach is
partly random so that we classify the approach as unsound. Nevertheless, one specific
case exists in which the approach can present sound results. In detail, if we assume
that we have the information about all variants of a selected feature context, we can
compare the members of each variant with all others. If the sets of API members of all
these variants are identical, the approach presents a sound result. However, if only one
variant presents an API member that is not included in all the others and we randomly
pick this variant, the result is unsound. Considering the completeness criteria, we can
conclude that the approach is complete as it presents all accessible API members for a
specific feature context. In addition, the application of this approach for multi product
lines is also possible but with limitations. In detail, we have to keep in mind that
multi product lines are in general more complex and, thus, the described problem of
soundness is increased. Furthermore, if not all features of the reused product line are
of our interest, it is hard to filter the members we are interested in.

5.1.3 Approach 3: Always Available

The approach always available is our third approach. By contrast to the previous ones,
the approach is not based on the feature context. Instead, we use information of the
feature model (i.e., information about the core features, see Definition 3) for the com-
putation of safely accessible members. The approach also comes from our experiences
with students’ behavior when searching for safely accessible API members (i.e., search-
ing for sound results). In detail, core features are included in all products [Benavides
et al. 2010; Trinidad and Ruiz-Cortés 2009] and, thus, also their API members are
accessible in all products and all features (cf. Feature-Model Analyses of Section 2.1.1
and Definition 3).

Again, we take a look at our example of the product line BankApplication with the
feature context Transaction. For the approach always available the feature context is
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not relevant, as the computation is based on the core features. Therefore, we neglect
the feature context. Using the composed feature model of product line BankApplication
with product line BankAccount (cf. Figure 2.14), we determine the core features of this
multi product line. As a result, we only get the feature BankApplication. Afterwards,
we collect all API members defined in this feature to get an overview of safely accessible
API members that can be used in our feature context Transaction.

Since the approach is independent of the feature context, we have advantages and
drawbacks at the same time. On the one hand, it is not necessary to recompute the set
of API members for each feature context and, thus, we can reduce computational effort.
Furthermore, as the core features are part of all products, the outcome is sound. On
the other hand, the result is not tailored to the feature context so that the approach is
not able to present complete results in all cases (i.e., it only presents complete results
for core features). In addition to the application to product lines, the approach is also
applicable to multi product lines. However, similar to the approach feature module, we
have some limitations for multi product lines. In detail, it could be that no feature of
the reused product line is a core feature. As a result, we get no information about API
members defined in the reused product line.

5.1.4 Discussion - How an Optimal Approach Looks Like

As we can conclude from the previous investigation, there is no approach that is com-
plete and sound at the same time. Furthermore, there is no approach that can be used
for multi product lines without limitations. Therefore, all these approaches are not
suitable to create an overview of safely accessible API members for product lines and
multi product lines, as the results hinder the implementation or cause compile-time
errors. In Table 5.1, we summarize the results regarding the soundness, completeness,
and the ability to apply the approaches to multi product lines.

Focusing on the ability to create a sound and complete overview of accessible API mem-
bers in product lines, we can summarize the results as follows. The approaches feature
module and always available are sound and, thus, prevent developers from introducing
compile-time errors. However, at the same time the approaches are incomplete and
hinder an optimal usage of reusable members. In contrast, a minimal variant presents
all members that can be reused (i.e., it is complete) but at the same time it also presents
unsound members which can result in compile-time errors. In contrast to our investi-
gated approaches, a developer is interested in an approach that is sound and complete
at the same time.

Besides the application of these approaches for product lines, we also consider their ap-
plication to multi product lines. As a result of our investigations, we can conclude that
the approach feature module cannot be used to get information of accessible API mem-
bers from a reused product line. The reason is, that this approach can only present API
members from the current feature context. For instance, if we are interested in acces-
sible members for the feature context Transaction of product line BankApplication, we
get no information about members from the product line BankAccount . Furthermore,
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Approaches Complete Sound Application to
Multi Product

Lines

Feature Module X
Minimal Variant X (X)
Always Available X (X)

Table 5.1: An overview of the classification of state-of-the-art approaches regarding their
facility to present safely accessible members when implementing a (multi) product line
(checkmarks in brackets illustrate limitations).

the approaches minimal variant and always available are able to present accessible
members from reused product lines but only in certain cases. However, for the ap-
proach minimal variant, this is only the case if the feature context implies a selection of
a feature from the reused product line. In contrast, for the approach always available, a
feature of the reused product line has to be a core feature in the multi product line. In
sum, there is no approach with suitable results that we can use in the context of multi
product lines to get safely accessible API members.

Even if the application of the approaches would be suitable for multi product lines, all
the approaches use the direct dependencies to a reused product line to get information
about accessible API members. Thus, the approaches are not compatible to our concept
of multi-level interfaces. Therefore, we propose the concept of a variable interface as
syntactical interface, in which we collect all API members of a reused product line with
variability information. Based on this variable interface, we also propose the feature-
context interface, that is a non-variable view tailored to a feature context to solve the
problem of finding safely accessible API members in multi product lines and single
product lines.

5.2 The Variable Interface
In the last section, we illustrated that it is a hard task to identify safely accessible
API members for a feature context in a product line and in a scenario of a multi
product line. In detail, as a developer, we need to know all the dependencies inside
of the (multi) product line, even if we are not the domain experts. Therefore, we now
introduce the variable interface to ease this task by showing an API with additional
variability information for each API member. In the following, we take a look at the
definition of a variable interface, present an algorithm to create the variable interface,
and we use our running example to demonstrate how to use it. Afterwards, we give an
overview of advantages and drawbacks when using the variable interface regarding the
implementation of a (multi) product line.

5.2.1 Definition of the Variable Interface

The variable interface is a list of all product line’s API members (i.e., classes, methods,
and fields) with additional variability information for each member. In detail, each API
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member of the variable interface is represented by a unique signature with a presence
condition that describes under which condition the API member is accessible. As we
use FOP for the implementation of our running example, the presence condition is a
disjunction of all features, in which the API member is contained in the corresponding
feature module. Therefore, we use a simple list to represent the presence condition for
API members in FOP. Because of these characteristics, we call the representation a
variable interface.

To investigate the variable interface and its facilities to support the developer during
the implementation of a (multi) product line, we need to formalize the variable interface
VI . We start with a formalization of the set of all API members AM (i.e., all classes,
methods, and fields) of a product line, as it is a base element of VI ’s definition. In
Definition 27, we define the set of all members AM as the union of all signatures that
we extracted from each feature module of the product line using function sig . In detail,
function sig uses the implementation of a feature module impl(fi) with fi ∈ F to return
a set of all member’s signatures of this feature module (cf. Definition 7).

Definition 27. Set of all signatures according to [Schröter et al. 2014]:

AM = sig(impl(f1 )) ∪ ... ∪ sig(impl(fn))

In Definition 28, we use the set of all members AM to formalize the variable interface
VI . In detail, the variable interface is defined as a set of tuples (m,Fm). Here, m is one
specific signature of an API member of the set AM, and Fm is the set of all features in
which the member m is defined.

Definition 28. The variable interface according to [Schröter et al. 2014]:

VI = {(m,Fm) | m ∈ AM,Fm ⊆ F}

5.2.2 Generating the Variable Interface for FOP

For the generation of the variable interface VI , we provide the corresponding algorithm
CreateVariableInterface in Figure 5.1 (cf. Lines 1–9). We create a set, denoted
as VI , that represents the variable interface initialized with an empty set (cf. Line 2).
Afterwards, we consider the implementation artifacts of each feature fi (cf. Lines 3–
8). In detail, we use the corresponding feature module of feature fi (i.e., impl(fi)) and
determine all contained API members using function sig (cf. Line 4). For each member
m, we investigate if we have to create a new tuple for VI or if it is necessary to update the
presence condition of an existing tuple by feature fi . For this purpose, we determine the
presence condition of the current member m using algorithm GetFeatures (cf. Line 5,
and Lines 10–14). If the presence condition returned by algorithm GetFeatures is
an empty set, we know that a new tuple needs to be created. For that reason, we create
a new tuple using member m and the empty set Fm and add this tuple to the variable
interface (cf. Line 7). However, in both cases in which the tuple was newly created
or only accessed, we subsequently add the current feature fi to the presence condition
Fm (cf. Line 8). Afterwards, we repeat the procedure for each member of each feature
module to determine the complete variable interface VI .
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1: function CreateVariableInterface(F)
2: VI := ∅
3: for fi ∈ F do
4: for m ∈ sig(impl(fi)) do
5: Fm := GetFeatures(VI ,m)
6: if (Fm = ∅) then
7: VI := VI ∪ {(m,Fm)}
8: Fm := Fm ∪ {fi}
9: return VI

10: function GetFeatures(VI , min)
11: for (m,Fm) ∈ VI do
12: if (GetFirstElement((m,Fm)) = min) then
13: return GetSecondElement((m,Fm))

14: return ∅

Figure 5.1: Algorithm CreateVariableInterface to create the variable interface VI .

Running Example

Using our running example of the product line BankAccount that should be reused
in the product line BankApplication, we illustrate the application of our algorithm.
Starting with the feature module of feature BankAccount as it is the root feature,
we found the class Account, as first API member. Since the variable interface VI
is empty, the algorithm GetFeatures also results in an empty set. Therefore, the
algorithm creates a new tuple (Line 7) and adds the presence condition with feature
BankAccount (B) to the set Fm (Line 8). Similar to the class Account, new tuples
are created for all API members of the feature module BankAccount (e.g., method
update) because all members have to be initialized. Afterwards, we consider feature
module DailyLimit . In this case, we also find a definition of the class Account. For this
member, the algorithm GetFeatures returns a non-empty set of presence conditions
in which the feature BankAccount is already included. Therefore, we add the feature
DailyLimit (D) to this set and continue with the next member. If all API members of
all feature modules were considered, we get the final variable interface and, thus, we
return VI . In Figure 5.2, we present the variable interface to illustrate the outcome of
algorithm CreateVariableInterface.

5.3 Filtering According to the Features of Interest

In the previous section, we have shown how to create a variable interface VI that we
want to use as syntactical interface. This variable interface is a complete interface which
contains all members of a product line with a corresponding presence condition for each
API member. For this reason, the variable interface also contains API members that
are only available in hidden features compared to the feature-model interface (i.e., the
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VIBankAccount = {
(class Account ,{B ,D , I ,O ,W ,E , S}),

(Account .calculateInterest() : int ,{I }),
(Account .credit(int) : boolean,{W }),
(Account .estimatedInterest(int) : int ,{E}),
(Account .getOverdraftLimit() : int ,{B ,O}),
(Account .isLocked() : boolean,{S}),
(Account .lock() : void ,{S}),
(Account .unlock() : void ,{S}),
(Account .undoUpdate(int) : boolean,{B ,D}),
(Account .update(int) : boolean,{B ,D}),
...

}

Figure 5.2: Variable interface of product line BankAccount (excerpt of class Account

without fields).

members are available in features that are not of our interest). Thus, the presented va-
riable interface VI with all API members is in contrast to our initial idea of a syntactical
interface as it is not tailored to the features of interest defined by the feature-model
interface (cf. Chapter 3). Furthermore, even if we use the variable interface to identify
accessible code members, it is still a big effort to identify safely accessible API mem-
bers that we can use in a specific feature context. Therefore, we now investigate two
filtering techniques that can be used to tailor the variable interface to the features of
interest that are given by the feature-model interface. In detail, we start with a simple
technique with several limitations and present an advanced technique afterwards.

5.3.1 Simple Filtering According to the Features of Interest

In this section, we present a simple filtering technique for the variable interface VI . In
detail, it allows us to filter the variable interface to API members that are present if we
consider the features of interest from the feature-model interface. We introduce the cor-
responding algorithm, illustrate the results using our running example, and investigate
the advantages and disadvantages of this filtering technique.

The simple filtering technique creates a new and reduced variable interface in which
only API members of the features of interest are included (i.e. features of the feature-
model interface). In Figure 5.3, we present the algorithm CreateVIntSimple for our
simple filtering technique. The algorithm takes the complete variable interface VI and
the features of interest FInt as input and returns a filtered variable interface. To this
end, the algorithm starts to create a new empty set to initialize the simple variable
interface VISimple (cf. Line 2). Afterwards, we consider for each tuple (cf. Lines 3–6) if
the presence condition contains a feature of interest (cf. Line 4). In the positive case,
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1: function CreateVIntSimple(VI ,FInt)
2: VISimple := ∅ // Init simple variable interface
3: for (m,Fm) ∈ VI do
4: if (GetSecondElement((m,Fm)) ∩ FInt) 6= ∅)) then
5: FSimple := GetSecondElement((m,Fm)) ∩ FInt

6: VISimple := VISimple ∪ (GetFirstElement((m,Fm)),FSimple)

7: return VISimple

Figure 5.3: Simple filtering technique for the variable interface that creates a new
variable interface VISimple in which only members of the features of interest are included.

we create a new presence condition that only consists of features of interest (cf. Line 5)
and create a new tuple as the new entry that we add to our simple variable interface
VISimple (cf. Line 6). After the consideration of all tuples, we return the new filtered
variable interface (cf. Line 7).

VIBankAccount = {
(class Account ,{B ,D , I , S}),

(Account .calculateInterest() : int ,{I }),
(Account .getOverdraftLimit() : int ,{B}),
(Account .isLocked() : boolean,{S}),
(Account .lock() : void ,{S}),
(Account .unlock() : void ,{S}),
(Account .undoUpdate(int) : boolean,{B ,D}),
(Account .update(int) : boolean,{B ,D}),
...

}

Figure 5.4: Simple filtered variable interface of product line BankAccount .

Running Example

Using our running example, we apply the simple filtering to our variable interface
VI of product line BankAccount . First, we determine the variable interface VI using
the algorithm CreateVariableInterface with the set all features of product line
BankAccount as input to create the variable interface of Figure 5.2. Afterwards, de-
pending on the product line in which the BankAccount should be reused, we filter the
resulting set using the set of features from the feature-model interface (i.e., the features
of interest). In our case, the relevant features are BankAccount (B), DailyLimit (D),
Interest (I ), and SimpleLock (S ). Therefore, we use the algorithm CreateVIntSim-
ple with the features of interest and the complete variable interface as input. Then,
we consider each member of the interface in a stepwise manner starting with the class
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Account. This class is defined in at least one of our features of interest (i.e., in this
case each feature of interest is part of the presence condition) and, thus, it has also be a
part of the reduced variable interface VISimple . Therefore, we use the existing presence
condition of class Account Fm and the set of features of interest FInt and create the
intersection. The resulting set represents the new presence condition for class Account
of our filtered variable interface. Thus, we create a new entry for the simple variable
interface VISimple using the class Account (i.e., represented as m) and the new presence
condition FSimple . Afterwards, we continue with all other entries of the variable inter-
face VI and create new entries for the simple variable interface VISimple if it is necessary.
In Figure 5.4, we depict the result of algorithm CreateVIntSimple.

Discussion

The simple filtering technique is an easy-to-use mechanism to filter an existing variable
interface to the specific needs of a multi product line. The advantage of the technique is
the simplicity and the minimal effort to create it. Furthermore, the technique noticeable
reduces the number of API members (i.e., depending on the number of features of
interest). This can have a positive effect on the usability as a large number of entries in
the interface can be overwhelming for the user. Apart from this positive effect in theory,
we also consider the reduced number of entries as a problem. For instance, if the set of
features of interest only contains one feature, which is on the lower levels of the tree,
e.g., on a leaf node, then we only consider API members of this single feature. However,
because of the dependencies in the feature model, we know that all API members of
the hidden parent feature are also part of each product in which the feature of interest
is included. But in the simple variable interface VISimple this information is missing.

5.3.2 Advanced Filtering Using Feature-Model Dependencies

By contrast to the simple filtering technique, the advanced filtering technique also allows
us to use API members of hidden features that are accessible if the features of interest
are used. All other API members with no dependencies to the features of interest are
removed. To this end, the technique also takes indirect dependencies to other features
into account using the information of the feature model P

R
O

PM (i.e., the feature model
represented as propositional formula). As a result, the number of API members of the
variable interface VIAdv is greater or equal compared to the variable interface VISimple

and it is less or equal to the number of API members in the complete variable interface
VI . In the following, we present the main idea behind this technique, give an algorithm
for the interface generation, and exemplify the technique using our running example.
Afterwards, we discuss advantages and drawbacks of the advanced filtering technique.

The filtered variable interface created by the advanced filtering technique results in a
new variable interface VIAdv in which all API members of the features of interest and
members of other dependent features (i.e., according to the feature model) are included.
To this end, we only remove entries of API members that are completely independent
from the features of interest (i.e., independent from the features of the feature-model
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interface). In detail, we execute two tasks to apply the advanced filtering on a given
variable interface VI .

• We extend the presence condition of the API members so that the dependencies to
the features of interest are also represented by the member’s presence condition.
For this reason, we consider each feature of interest as a feature context FC and
are interested in all dependent members from this point of view. As a reminder,
we denote the feature context FC for FOP as one feature in the set of all features
F (FC ∈ F) for which we currently implement, maintain or extend the corre-
sponding feature module. Thus, if we consider a feature of interest as a feature
context, we assume that we currently work on the corresponding feature module
and we search for safely accessible API members for this point of view. Using
this information about safely accessible API members for the specific feature of
interest, we can update the presence condition of these API members by adding
the feature context FC to the corresponding presence condition. Looking at this
intermediate result of the interface, it seems that the specific API is defined in
the feature of interest.

• We filter the intermediate result by the simple filtering technique. As the presence
condition of each API member was extended, the simple filtering removes equal or
less API members compared to a simple filtering without the extended presence
condition.

As it is essential to determine the safely accessible API members for a feature context
(resp. feature of interest) to apply our advanced filtering technique, we now present a
note on how to determine these API members.

An Excursus on Determining Safely Accessible API Members for a Feature
Context

The investigation of state-of-the-art approaches in Section 5.1 has shown that no ex-
isting approach is able to present safely accessible API members that are sound and
complete at the same time. Before we implement our ideas, we need to formally define
the set of safely accessible API members AMAcc for a given feature context.

Definition 29. Safely accessible API members AMAcc for a feature context FC ac-
cording to [Schröter et al. 2014]:

AMAcc = {m | ( P
R

O
PMFC |= Constraintm), (m, Fm) ∈ VI} (29.1)

where: P
R

O
PMFC = P

R
O

PM∧FC (29.2)

Constraintm = (
∨

f ∈Fm

f ) | (m,Fm) ∈ VI (29.3)



88 5. The Syntactical Interface - The Second Level of Multi-Level Interfaces

To define the set of safely accessible membersAMAcc, we evaluate the presence condition
of each API member m according to the feature model P

R
O

PM and the feature context FC .
For this purpose, we use propositional formulas to represent all the components. In
Definition 29, we present the complete formalization of the set AMAcc with secondary
conditions. To ease the comprehension, we start to investigate the secondary conditions.
First, we need a propositional formula that describes all valid configurations in which
the feature context FC is included (i.e., a propositional formula of the feature model
with the partial configuration ({FC}, ∅), see also Section 2.1.1). For this purpose, we use
the conjunction of the feature model’s propositional formula P

R
O

PM and the propositional
variable that corresponds to the feature context to create the propositional formula

P
R

O
PMFC (cf. Equation 29.2). Second, we need to transform the presence condition of our

representation Fm as propositional formula Constraintm. As mentioned earlier, for
product lines written with FOP, this is the disjunction of all features in which the
specific member is defined (cf. Equation 29.3). Based on these secondary conditions,
we can define the set AMAcc of safely accessible API members for the feature context
FC (cf. Equation 29.1). In detail, we check for each tuple in (m, Fm) of VI whether the
implication of the partial configuration P

R
O

PMFC and the presence condition is a tautology
( P

R
O

PMFC → Constraintm). In other words, we investigate if the propositional formula

P
R

O
PMFC ensures that at least one feature of the presence condition is included in each

valid variant of the partial configuration. If this is the case, the API member is safely
accessible from feature context FC and, thus, we add this feature to the set AMAcc.

Algorithm for the Advanced Filtering of the Variable Interface

For the application of the advanced filtering technique, we create a new algorithm
CreateVIntAdvanced and depict the corresponding pseudo code in Figure 5.5. The
algorithm uses the variable interface VI , the features of interest FInt , and the feature
model P

R
O

PM as input and returns the new advanced variable interface VIAdv . First, we
create a copy of the variable interface VI and initialize an advanced variable interface
VIAdv with this copy (cf. Line 2). Afterwards, we consider all features of interest, i.e., all
features of our feature-model interface (cf. Lines 3–8). In detail, we consider each feature
of interest as feature context and, thus, we create the corresponding set of accessible
API members using algorithm GetAccessibleMembersFromFeature (cf. Line 4).
Afterwards, we check for each entry in the advanced variable interface VIAdv if the
corresponding member m is also part of the resulting set of accessible members (cf.
Lines 5–8). If the member is also part of the current set of accessible members (cf.
Line 6), we know that from the point of view of the feature context FC (i.e., fInt), the
member is also accessible. Therefore, we can add the current feature context to the
presence condition (cf. Line 8). After updating all presence conditions of all entries in
the advanced variable interface VIAdv , we can use the algorithm CreateVIntSimple
to remove all entries in which the presence condition does not contain a feature of
interest (cf. Line 9) and return the new variable interface VIAdv .

In the second part of Figure 5.5, we present algorithm GetAccessibleMembers-
FromFeature (cf. Lines 10–18) that is used in our previous description for the ad-
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vanced filtering of the variable interface VIAdv . The algorithm uses the variable interface
VI , a feature of interest fInt , and the feature model P

R
O

PM as input to determine the safely
accessible members from the viewpoint of feature fInt . As first step, we initialize the
result variable AM, with an empty set (cf. Line 11). In detail, AM is used to store the
accessible API members. Afterward, we create a propositional formula that represents
the partial configuration of the feature model P

R
O

PM with feature fInt (cf. Line 12). Using
the propositional formula of the partial configuration, we consider each tuple of the
variable interface VI step by step and check whether the API member is accessible from
the feature fInt (cf. Lines 13–17). In detail, we create the propositional formula of the
presence condition Constraintm for the API member m (cf. Line 14). Then, we check
whether the implication of the partial configuration P

R
O

PMf and the presence condition of
the API member m is a tautology. For this reason, we create a propositional formula

P
R

O
PMm for the API member m that represents this implication (cf. Line 15). If P

R
O

PMm is a
tautology, we know that the member is always accessible from feature fInt (cf. Line 16).
Consequently, the member is added to the set of accessible members AM (cf. Line 17).
After considering all tuples of the variable interface VI , we finally return the set of
safely accessible members AM (cf. Line 18).

1: function CreateVIntAdvanced(VI ,FInt , P
R

O
PM)

2: VIAdv := VI
3: for fInt ∈ FInt do
4: AMAcc := GetAccessibleMembersFromFeature(VI ,fInt , P

R
O

PM)
5: for (m,Fm) ∈ VIAdv do
6: if (GetFirstElement((m,Fm)) ∈ AMAcc) then
7: Fm := GetSecondElement((m,Fm))
8: Fm := Fm ∪ {fInt}
9: return CreateVIntSimple(VIAdv ,FInt)

10: function GetAccessibleMembersFromFeature(VI ,fInt , P
R

O
PM)

11: AM := ∅
12: P

R
O

PMf := P
R

O
PM∧ fInt

13: for (m,Fm) ∈ VI do
14: Constraintm := (

∨
f ∈GetSecondElement((m,Fm )) f )

15: P
R

O
PMm := P

R
O

PMf → Constraintm
16: if (!isSatisfiable(¬ P

R
O

PMm)) then
17: AM := AM ∪ {m}
18: return AM

Figure 5.5: Advanced filtering technique for the variable interface that creates a new
variable interface VIAdv in which members of the features of interest and members of
dependent features are included.
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Running Example

We illustrate our algorithm using our running example of product line BankAccount .
In this case, we assume that the variable interface VI of the complete product line
already exists (cf. Figure 5.2). Furthermore, we plan to use product line BankAccount
in the multi product line BankApplication and, thus, we know that the features Bank -
Account (B), DailyLimit (D), Interest (I ) and SimpleLock (S ) are the features of
interest. Based on this information and the feature model P

R
O

PM of the product line
BankAccount , we create the corresponding advanced variable interface VIAdv . In detail,
we start to create a copy of the input variable interface VI . Afterwards, we take a look
at all features of interest. We start with feature BankAccount and assume that this is
the current feature context FC . In detail, we determine all accessible members from the
viewpoint of feature BankAccount using algorithm GetAccessibleMembersFrom-
Feature (cf. Figure 5.5, Line 4). Afterwards, we update the presence condition of
all resulting members (e.g., method update) in the variable interface VIAdv so that
also the current feature context BankAccount is included in the presence condition (cf.
Lines 5–8). In the case of feature BankAccount , the presence condition of all accessible
members already contains the feature BankAccount (B) and, thus, the presence condi-
tion does not change (cf. Figure 5.2). As next feature of interest, we consider feature
SimpleLock . Again, we determine all accessible API members from this point of view.
As the result, we also get the safely accessible API members update, undoUpdate, and
getOverdraftLimit. However, the original presence condition of these API members
does not contain feature SimpleLock (S ) (cf. Figure 5.2). To this end, we update the
corresponding presence conditions by feature SimpleLock and continue with the next
feature of interest. In Figure 5.6, we present the intermediate result of the advanced
filtering. Now, we can use the simple filtering to remove unnecessary API members (cf.
Line 18). The final outcome of the advanced filtering is depicted in Figure 5.7.

In the previous description, we also used the algorithm GetAccessibleMembers-
FromFeature to get safely accessible API members from the viewpoint of a given
feature. The algorithm is an essential part of our algorithm. Therefore, we also ex-
emplify the algorithm using our running example of product line BankAccount . In
detail, we use the variable interface VI (cf. Figure 5.2), the feature DailyLimit (D), and
the feature model (cf. Figure 2.1) represented as propositional formula P

R
O

PMBankAccount of
product line BankAccount as input. As the result of this input, we want to determine
the safely accessible API members from the viewpoint of feature DailyLimit . As start-
ing point, we create the set AM to store the corresponding API members. Afterwards,
we create a new propositional formula P

R
O

PMf that represents a partial configuration of

P
R

O
PMBankAccount in which the feature DailyLimit (D) is selected (cf. Figure 5.5, Line 15).

To determine accessible API members, we then consider all tuples of the variable in-
terface VI (cf. Figure 5.2). For the purpose of illustration, we now consider the tuple
(Account .update(int) : boolean,{B ,D}). We transform the presence condition {B ,D}
to the propositional formula Constraintm using a disjunction of all contained features
(i.e., B ∨ D). Then, we create a new propositional formula P

R
O

PMm to check whether the
partial configuration P

R
O

PMf always ensures that one of the features BankAccount (B), or
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VIBankAccount = {
(class Account ,{B ,D , I ,O ,W ,E , S}),

(Account .calculateInterest() : int ,{I }),
(Account .credit(int) : boolean,{W }),
(Account .estimatedInterest(int) : int ,{E}),
(Account .getOverdraftLimit() : int ,{B ,D , I ,O , S}),
(Account .isLocked() : boolean,{S}),
(Account .lock() : void ,{S}),
(Account .unlock() : void ,{S}),
(Account .undoUpdate(int) : boolean,{B ,D , I , S}),
(Account .update(int) : boolean,{B ,D , I , S}),
...

}

Figure 5.6: Intermediate result (without a final filtering with the simple filtering tech-
nique) for the computation of the variable interface VIAdv using the advanced filtering
technique according to product line BankAccount with our features of interest.

VIBankAccount = {
(class Account ,{B ,D , I , S}),

(Account .calculateInterest() : int ,{I }),
(Account .getOverdraftLimit() : int ,{B ,D , I , S}),
(Account .isLocked() : boolean,{S}),
(Account .lock() : void ,{S}),
(Account .unlock() : void ,{S}),
(Account .undoUpdate(int) : boolean,{B ,D , I , S}),
(Account .update(int) : boolean,{B ,D , I , S}),
...

}

Figure 5.7: Final result of the variable interface VIAdv using the advanced filtering
technique according to product line BankAccount with our features of interest.

DailyLimit (D) also exists in each resulting variant. In the case of method update, the
implication is a tautology and, thus, we know that the method is safely accessible from
feature BankAccount . Therefore, we add this method to the set AM and continue with
the next tuple. If all tuples were considered, the algorithm returns the final set AM
that we depict in Figure 5.8.
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AMFC=BankAccount = {
class Account ,

getOverdraftLimit() : int ,
Account .undoUpdate(int) : boolean,
Account .update(int) : boolean,
...

}

Figure 5.8: Result of the computation of all accessible members using algorithm Ge-
tAccessibleMembersFromFeature with the variable interface of product line
BankAccount VIBankAccount , feature DailyLimit and the corresponding feature model

P
R

O
PM as input.

Discussion

The advanced filtering technique is an automatic technique to filter the variable inter-
face to all API members that are accessible if the features of interest are used. This also
includes API members that are not directly defined in the features of interest and, thus,
it contains members of hidden features. Like the simple technique that we described
in the previous section, the advanced technique does not induce manual effort for the
developer to create a tailored variable interface. By contrast, the advanced filtering
technique only neglects API members from the complete variable interface that are
completely optional. As the result, the number of API members in the variable inter-
face VIAdv is equal or bigger compared to the variable interface VISimple . Indeed the
increased number of API members in the variable interface makes the interface less
comprehensible. However, compared to the variable interface VISimple , in which only
members of the features of interest are included, the variable interface VIAdv presents
all accessible API members of the underlying product line and, thus, also API members
that are not directly included in the features of interest. For instance, if we assume
that the feature SimpleLock is the only feature of interest, the member update is not
accessible with the simple technique even though it is essential for a bank account. By
contrast, the advanced technique also presents the method update because it can be
used if the feature SimpleLock is used.

5.4 Feature-Context Interfaces

In the previous section, we introduced the variable interface VI as a basic concept for
a syntactical interface according to our multi-level interfaces. Using different filtering
techniques, we also discussed the application of the variable interface to ease the im-
plementation of the product line. However, even if each filtered variant of the variable
interface is able to support the developer during the implementation step of the multi
product line, there is still a remaining manual effort to find API members for a specific
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implementation task. Thus, it is still necessary for a developer to understand the de-
pendencies from the multi product line to this interface and to conclude from existing
presence conditions whether an API member is accessible. Therefore, we now introduce
the concept of feature-context interfaces to overcome this limitation. Afterwards, we
present application scenarios in a single and a multi product line.

A feature-context interface is a non-variable view on the variable interface to get an
overview of safely accessible API members for a given feature context FC . As a re-
sult, the feature-context interface is a plain set of API members that does not contain
any variability information. For instance, if we maintain, extend, or implement feature
SimpleLock of product line BankAccount , SimpleLock is the feature context and we
get the information that method update and other API members are accessible in this
situation. However, we already described the idea of a feature-context interface and we
also described how to create it. In detail, we used the idea of feature-context interfaces
to introduce the details of the advanced filtering technique for the variable interface
and presented a corresponding note as explanation. In Definition 29, we described the
idea of the feature-context interface and we also introduced the algorithm to create
a feature-context interface for a feature context. We used it to create our advanced
variable interface VIAdv . This means, we can use the algorithm GetAccessibleMem-
bersFromFeature (see Figure 5.5) and apply it to the feature context FC . In the
following, we explain the application of feature-context interfaces for a single and a
multi product line.

5.4.1 Feature-Context Interfaces of a Single Product Line

Before we take a look at the main application of feature-context interfaces inside of a
multi product line, we give an overview of an application for a single product line. As we
stated above, the feature-context interface can be considered as a filter on the variable
interface VI . So far we only introduced the variable interface VI in the context of a
multi product line in which we want to get an overview of all reusable API members.
Nevertheless, the variable interface VI can also be used for single product lines. As a
consequence, the concept of the variable interface and the feature-context interface is
also applicable to a single product line to achieve an overview of safely accessible API
members for a given feature context.

Running Example

To illustrate the application, we use our running example and consider the product
line BankAccount as a standalone product line without dependencies to other product
lines. Furthermore, we assume that we plan to maintain, extend, or implement feature
InterestEstimation. To get an overview of safely accessible API members from the
viewpoint of feature InterestEstimation, we have to execute two steps. First, we create
the unfiltered variable interface VI using algorithm CreateVariableInterface (see
Figure 5.1) with the set of all features of product line BankAccount as input. Second,
we create the feature-context interface FCIInterestEstimation . Therefore, we use algorithm
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GetAccessibleMembersFromFeature (see Figure 5.5) with the variable inter-
face VI , the feature InterestEstimation as the feature context, and the feature model

P
R

O
PMBankAccount as input. As a result, we get an overview of all safely accessible API

members that can be used to implement feature InterestEstimation. For instance, the
class Account is included in the feature-context interface as it is a member of all feature
modules. In addition, the method estimatedInterest is defined in the feature module
InterestEstimation and, thus, it is also part of corresponding feature-context interface.
However, we also get the information that, besides others, the method update as part
of the core feature BankAccount and calculateInterest defined in the parent feature
Interest are accessible from feature context InterestEstimation.

5.4.2 Feature-Context Interfaces of a Reused Product Line

In the previous section, we have seen how to benefit from the feature-context interface
in single product lines. Now we present insights into the application of feature-context
interfaces in the context of multi product lines. Here, we investigate how to create a
feature-context interface that presents the accessible API members of a reused product
line.

In our multi product line scenario, a product line PLD (i.e., the dependent product line)
reuses a second product line PLR (i.e., the reused product line) and is interested in the
safely accessible members of product line PLR. We assume that a variable interface VI
(or a respective variable interface VISimple or VIAdv) of the product line PLR already
exists and that we have no information about the implementation details behind this
variable interface. Furthermore, we assume that we currently maintain, extend, or im-
plement a feature f of product line PLD in which we plan to reuse members of product
line PLR (i.e., members of the corresponding variable interface VI ). Consequently, fea-
ture f represents the feature context for which we have to determine the feature-context
interface. To calculate the feature-context interface of f , we can also use the algorithm
GetAccessibleMembersFromFeature (see Figure 5.5). But in comparison to our
previous applications in single product lines, we have to use different parameters. Of
course, we use the variable interface VI of product line PLR as input, but the feature
context is from the product line PLD and also the feature model P

R
O

PM is different. In
detail, P

R
O

PM needs to be the composed feature model based on product line PLD and the
feature-model interface of product line PLR (i.e., P

R
O

PMPLD/PLR
, see Chapter 4 for more

details). Using these parameters, the algorithm GetAccessibleMembersFromFea-
ture determines all accessible members from product line PLR that we can use in the
feature context f .

Running Example

Using our running example, we demonstrate the application of feature-context inter-
faces for reused product lines. We use feature Transaction as the feature context from
product line BankApplication and we are interested in all API members that we can
use from the interface of product line BankAccount . Consequently, we use the already
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existing VIAdv of product line BankAccount (cf. Figure 5.7), the feature Transaction,
and a composed feature model as input to apply algorithm GetAccessibleMembers-
FromFeature. In detail, the used feature model is a composition based on feature
model BankApplication with the feature-model interface of product line BankAccount
(i.e., P

R
O

PMBankApplication/Int). In Figure 5.9, we present the result of this computation. Be-
sides the API members of the core feature BankAccount , the result also presents API
members of the feature SimpleLock . The reason for this result is the inter-model con-
straint Transaction → SimpleLock so that all the API members of feature SimpleLock
are also part of the feature-context interface.

FCITransaction = {
class Account ,

Account .getOverdraftLimit : int ,
Account .isLocked() : boolean,
Account .lock() : void ,
Account .unlock() : void ,
Account .undoUpdate(int) : boolean,
Account .update(int) : boolean,
...

}

Figure 5.9: Feature-context interface of product line BankAccount for feature
Transaction of product line BankApplication (excerpt of class Account without fields
based on the advanced variable interface VIBankAccount).

5.4.3 Complete Feature-Context Interfaces of a MPL

Similar to feature-context interfaces for single product lines, developers of multi product
lines also want to get a complete overview of all safely accessible API members. By
contrast, the previous application of feature-context interfaces for multi product lines
only considers API members of the reused product line. To this end, we now take a look
at a second application scenario of feature-context interfaces for multi product lines.

As mentioned above, if we maintain a product line PLD , we want to know all accessible
API members of a reused product line PLR but also all API members of the product line
PLD . For this purpose it is not enough to create a variable interface VI of the product
line PLR, we also need a variable interface VID of the product line PLD . Thus, we use the
algorithm CreateVariableInterface (see Figure 5.1) with a set of features, which
represents all features defined in product line PLD , as input to achieve the variable
interface VID . Afterwards, we can combine the variable interfaces VID and VIR. If
we assume that each API member is represented by the full-qualified name and that
the namespaces of both product lines are disjoint, we can use a union to combine
both variable interfaces. As the result, we have one variable interface VIPLD/PLR

that
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represents all API members of the product line PLD and of the product line PLR. Thus,
we can use algorithm GetAccessibleMembersFromFeature (see Figure 5.5) to
create the feature-context interface for the feature context FC= f . In detail, we again
use the composed feature model of product line PLD with the feature-model interface
of product line PLR, the feature f , and the combined variable interface VIPLD/PLR

as
input. The result is a feature-context interface with all accessible API members of the
product line PLD and product line PLR for the feature context f .

VIBankApplication/BankAccount = {
(class Account ,{B ,D , I , S}),

(Account .calculateInterest() : int ,{I }),
(Account .getOverdraftLimit() : int ,{B ,D , I , S}),
(Account .isLocked() : boolean,{S}),
(Account .lock() : void ,{S}),
(Account .unlock() : void ,{S}),
(Account .undoUpdate(int) : boolean,{B ,D , I , S}),
(Account .update(int) : boolean,{B ,D , I , S}),

(class Transaction,{T}),
(Transaction.transfer(Account ,Account , int) : boolean,{T}),
(Transaction.lock(Account ,Account) : boolean,{T}),
...

}

Figure 5.10: Excerpt of the combined variable interface VIBankApplication/BankAccount .

Running Example

To illustrate how to achieve an overview of safely accessible API members of all parts
of a multi product line, we use our running example. In detail, we currently maintain
feature Transaction. Therefore, this feature represents the feature context and we need
an overview of all API members that we can use from product line BankApplication
and product line BankAccount . Assuming an existing variable interface VIBankAccount of
product line BankAccount (i.e., based on the simple or advanced filtering), we only have
to determine the variable interface of product line BankApplication. For this purpose,
we use algorithm CreateVariableInterface (see Figure 5.1) with a set of the two
concrete features, feature BankApplication and Transaction. As the result, we get a
variable interface VIBankApplication in which only the API members of these two features
are included. Furthermore, as we know that the full-qualified name of all API mem-
bers is disjoint, we can combine the variable interfaces VIBankApplication and VIBankAccount

by a union. In Figure 5.10, we depict an excerpt of the combined variable interface
VIBankApplication/BankAccount that we use to create the feature-context interface for the
feature Transaction. Afterwards, we use algorithm GetAccessibleMembersFrom-
Feature with the variable interface VIBankApplication/BankAccount , the feature Transaction,
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and the composed feature model of product line BankApplication and the feature-model
interface as input (i.e., P

R
O

PMBankApplication/Int). We achieve the feature-context interface for
the feature context Transaction, in which all accessible API members of both product
lines are included. We depict an excerpt of the result in Figure 5.11. In addition to our
example of the previous section (cf. Figure 5.9), several additional API members are
included in this feature-context interface. For instance, the method transfer is an API
member of the product line BankApplication and, thus, the method is only part of the
feature-context interface if we determine the interface based on the complete variable
interface VIBankApplication/BankAccount .

FCITransaction = {
class Account ,

Account .getOverdraftLimit : int ,
Account .isLocked() : boolean,
Account .lock() : void ,
Account .unlock() : void ,
Account .undoUpdate(int) : boolean,
Account .update(int) : boolean,

class Transaction,
Transaction.transfer(Account ,Account , int) : boolean,
Transaction.lock(Account ,Account) : boolean,
...

}

Figure 5.11: Excerpt of the feature-context interface for feature Transaction
of multi product line BankApplication using the combined variable interface
VIBankApplication/BankAccount .

5.5 Evaluation: The Feature-Context Interface in

Practice

In this section, we investigate Hypothesis 2 and want to find out whether the varia-
ble interface, as representative of the syntactical interface, can help the developer to
detect reusable implementation artifacts. For this purpose, we examine the potential
of feature-context interfaces that are based on the variable interface to detect safely
accessible API members of a product line. In detail, to investigate the potential of
feature-context interfaces for the development of product lines as well as multi pro-
duct lines, we performed a quantitative evaluation. As feature-context interfaces at
the same time support the development of product lines as well as multi product lines,
it is possible to evaluate both of them. However, in Section 5.4, we illustrated that
the application of feature-context interfaces is similar in both scenarios. Therefore and
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because of the fact that more single product lines are freely accessible and well-known
from other evaluations, we decided to investigate only single product lines.

For the quantitative evaluation, we are interested in showing that feature-context in-
terfaces are useful in supporting the product-line development. For this purpose, we
investigate whether state-of-the-art techniques also present unsound (i.e., minimal vari-
ant) or incomplete (i.e., always available, feature module) results in practice, so that
we can underline the necessity of feature-context interfaces. Furthermore, we want to
know in which scenarios feature-context interfaces achieve their full potential compared
to the state-of-the-art approaches. To this end, we investigate two questions:

(a) Do state-of-the-art approaches present incomplete or unsound results for existing
product lines?

(b) If existing product lines present incomplete and unsound results, how evident are
the errors for the developer?

In the following, we explain our experiment design. Afterwards, we present the experi-
ment results and the threats to validity.

5.5.1 Experiment Design

In the following, we present details to our experiment design. In detail, we introduce
our subject systems, present details to our experiment and implementation.

Subject Systems

Our study is based on publicly available subjects (cf. Table 5.2). We selected these
subjects because of multiple reasons, (a) their implementation language and paradigm,
(b) their differences in structure and size, (c) their syntactical correctness, and (d) since
they are commonly used for evaluations. To be more specific:

(a) Our concept of feature-context interfaces was designed for product lines written in
Java with the paradigm of FOP (see Section 2.1.2 for more details). Furthermore,
our implementation is based on the tool FeatureHouse (see next subsection for
more details). As a result, all systems are based on these concepts.

(b) The investigated subjects have different sizes regarding the number of features and
products. Furthermore, to ensure the domain-independent results, the subjects
are also from different domains.

(c) To ensure the correct generation of the results for each state-of-the-art approach
and the feature-context interfaces, we only used subjects without compile-time
errors.

(d) We only used subjects that were used in previous case studies by other re-
searches [Apel et al. 2013b; Kolesnikov et al. 2013; Thüm et al. 2011a]. As a
result, many readers will be familiar with these subjects.
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Product Line Features Products Unique Classes
(Alternative Features)

DesktopSearcher 22 (8) 462 21
GameOfLife 23 (2) 65 21
GPL 38 (15) 156 16
GraphLib 6 (0) 16 5
Notepad 15 (4) 512 8
PKJab 12 (0) 48 51
TankWar PC 37 (7) 87 360 21
ZipMe 17 (0) 24 31

Table 5.2: Overview of all subjects for the quantitative evaluation of feature-context
interfaces.

In Table 5.2, we give an overview of the subjects we selected based on these criteria.
In detail, we investigate the search engine DesktopSearcher, two games (GameOfLife
and TankWar PC ), two graph libraries (GPL and GraphLib), a simple text editor
(Notepad), the chat client PKJab, and the compression library ZipMe.

Experiment

To answer our questions, we investigate the existing state-of-the-art approaches and
our concept of feature-context interfaces when considering a typical implementation
scenario of a developer. In detail, we assume that a developer wants to implement,
maintain, or extend a specific feature, such as the feature InterestEstimation of our
running example. Based on this assumption, we determine the incomplete and unsound
results (question (a)) and the frequency of potential errors (question (b)) and compare
the respective results. In the following, we present the detailed experiment procedure.

Question (a): Incomplete and Unsound Results. To investigate question (a),
we consider each feature step by step as feature context. For each feature context,
we determine all API members that each state-of-the-art approach presents to the
developer. In detail, we determine the accessible API members given by the approaches
feature module, minimal variant, always available, and our feature-context interface.
For the purpose of the visualization and to ease the comparison, we also determine the
number of API members of the variable interface. We use this value to scale the number
of accessible API members given by each state-of-the-art approach.

Whereas the approaches feature module, always available, and the feature-context in-
terface generate one specific result for each feature context, the results of the approach
minimal variant depend on the concrete variant, that is used for the generation. How-
ever, if multiple minimal variants exist for a feature context, we determine all these
variants and determine the set of accessible members. For a fair comparison with the
other approaches, for each feature context, we chose the variant with the minimum
number of members.
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Question (b): Potential Errors. Similar to the previous question, for each ap-
proach, we also determine accessible API members so that we can count the resulting
potential errors for question (b). Whereas the first question only considers the number
of API members that are represented by each approach, this research question counts
errors based on a comparison of the signatures. In detail, we investigate each API mem-
ber of the respective state-of-the-art approach and search for the corresponding member
in the feature-context interface. Based on the knowledge that the feature-context inter-
face contains all safely accessible API members, not more or less, this comparison helps
to detect potential errors caused by the state-of-the-art approaches. On the one hand,
if an API member exists in the state-of-the-art approach but not in the feature-context
interface, we count it as an error that can lead to compile-time errors (i.e., the result
is unsound). This will happen for the approach minimal variant (cf. Section 5.1). On
the other hand, if an API member exists in the feature-context interface but not in the
state-of-the-art approach, we count it as an error that reduces the reuse potential of
the product line (i.e., the result is incomplete). As we know from Section 5.1, the ap-
proaches always available and feature module present these incomplete results. Again,
to ease the comparison, we scale all results to the number of API members represented
in the variable interface as it is the total number of API members of the product li-
ne. Thus, this number of API members represents the theoretical number of potential
errors.

Similar to what we discussed for question (a), the exceptional case that multiple minimal
variants can exist forces us to modify the way in which we count errors for the approach
minimal variant. Specifically, we consider all minimal variants of a feature context to
detect the number of potential errors.

Implementation Details

To evaluate the concept of feature-context interfaces and to provide the approach to
the community, we implemented feature-context interfaces in FeatureIDE [Meinicke
et al. 2017; Thüm et al. 2014b]. In the following, we present some details of this
implementation.

As FeatureIDE provides the necessary tool support and the most examples for product
lines written in Java with FeatureHouse, we also implemented feature-context interfaces
for FeatureHouse product lines. In detail, FeatureHouse is a composer for FOP that can
be used for multiple languages [Apel et al. 2009, 2013b]. The composition mechanism of
FeatureHouse relies on grammar rules, so that only one additional keyword is needed to
implement FOP product lines in Java. In detail, using the keyword original, we can
call an already existing implementation of this method from another feature module.
To collect the API members of FeatureHouse product lines, we use a second tool, called
Fuji [Apel et al. 2012; Kolesnikov et al. 2013]. Fuji is a compiler and type checker
and allows us to perform a type safe comparison of the API members of each feature
module. Based on the information given by Fuji, we create a variable interface and
store it inside of FeatureIDE. As FeatureIDE is an IDE that provides advanced tool



5.5. Evaluation: The Feature-Context Interface in Practice 101

Figure 5.12: Feature-context outline for class Account of product line BankAccount and
feature SimpleLock .

Feature Feature-Context Minimal Feature Always
Context Interface Variant Module Available

BasicGraph 12 (0.41) 12 (0.41) 12 (0.41) 12 (0.41)
Color 17 (0.59) 17 (0.59) 8 (0.28) 12 (0.41)
PrintHeader 15 (0.52) 15 (0.52) 5 (0.17) 12 (0.41)
Recursive 15 (0.52) 15 (0.52) 5 (0.17) 12 (0.41)
Weight 18 (0.62) 18 (0.62) 8 (0.28) 12 (0.41)

Table 5.3: Number of accessible members for each state-of-the-art approach considering
product line GraphLib. The numbers in brackets are the scaled values with respect to
the variable interface VI with 29 members that we use for the purpose of illustration
represented in Figure 5.13.

support for the implementation of product lines [Meinicke et al. 2017; Thüm et al.
2014b], the feature context is automatically given by the file that is currently opened in
the editor of the Eclipse IDE. Using this information and the stored variable interface,
FeatureIDE generates the corresponding feature-context interface on the fly, so that the
information is available in the IDE’s outline (cf. Figure 5.12) or as content assist. In
contrast, for our evaluation, we assigned our desired feature context automatically and
stored the corresponding feature-context interface in FeatureIDE.

To enable a fair and correct comparison of our feature-context interface to the state-of-
the-art approaches, we also used Fuji to collect the API members for the approaches
feature module, always available, and minimal variant.

5.5.2 Experiment Results and Discussion

First, we present the accessible members for each approach as result for question (a).
Second, we present the results regarding question (b) and give an insight into the
potential errors of each state-of-the-art approach.

Question (a): Incomplete and Unsound Results. In Figure 5.13, we present the
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Figure 5.13: Overview of the amount of accessible members for the state-of-the-art
approaches and the feature-context interface relative to the variable interface.

results of our investigation regarding the incompleteness and unsoundness of state-of-
the-art approaches compared to feature-context interfaces. To ease the comprehension
of the graphical representation, we first want to take a look at the data behind this
representation. For this purpose, we use the product line GraphLib, as it is the smallest
product line of our investigation. We present the corresponding data in Table 5.3. In
detail, we consider each concrete feature of the product line as the feature context and
collect the corresponding number of API members for the feature-context interface, the
minimal variant, and the feature module. Furthermore, even though it is independent of
the feature context, we also consider the API members for the approach always available.
To ease the representation, we use the number of API members in the variable interface
VI (in this case 29 members) to scale all collected values. We use boxplots to illustrate
the distribution of the results regarding the approaches feature-context interface, min-
imal variant, and feature module (cf. Figure 5.13). To illustrate the distribution of the
different values, we use boxplots5 for the representation of the approaches feature-con-
text interface, minimal variant, and feature module (cf. Figure 5.13). As the number of
members of the variable interface and the approach always available are constant, we
use a horizontal line for the purpose of representation.

We now present the plain results shown in Figure 5.13 that we will discuss in the
next section. The variable interface of the product line GraphLib consists of 29 API
members (orange line) but the approach always available only presents 41 % of these
API members (red line). Furthermore, the number of API members that are accessible

5As we used R (http://www.r-project.org/) for the representation of our results, we also used
the default settings for boxplots. In detail, the black line of each boxplot represents the median of all
input values. The box itself depicts 50 % and the whiskers are extended up to 1.5 times to the extreme
points of the input values. If further values outside of these whiskers exist, the points are represented
as outliers.

http://www.r-project.org/
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Figure 5.14: Potential errors for each state-of-the-art approach in comparison with the
results of our feature-context interface. The results are scaled to the number of members
in the variable interface.

using the approach feature module (lime-green box) are always equal or less than the
number of API members of the approach always available. However, we can also see that
the number of accessible API members using the approaches minimal variant (yellow
box) and the feature-context interface (red box) are equal and noticeably larger than
the number of API members given by the approach always available.

Besides the detailed outcomes of the product line GraphLib, we take a look at the
general results of all product lines. Equal to the results of product line GraphLib, the
product lines ZipMe and PKJab also present the same number of members for the
approaches minimal variant and our feature-context interface. We observe similar re-
sults for the product line TankWar PC . However, we see notable differences between
the approaches feature-context interface and the minimal variant for the product li-
nes DesktopSearcher and GPL whereas the results for GameOfLife and Notepad only
present marginal advantages for the feature-context interface. Furthermore, the feature-
context interface presents noticeably more API members in all cases than the approach
always available and feature module.

To get some insights into the reasons of the similar results for the approaches feature-
context interface and minimal variant, we take a look into the feature dependencies.
Therefore, we also present the number of alternative features for each product line in
Table 5.2. As a result, we found out that exactly the product lines with no alterna-
tive features (i.e., GraphLib, PKJab, ZipMe) present no differences in the approaches
minimal variant and our feature-context interface. In addition, also the product line
GameOfLife with only two alternative features presents almost identical results for both
approaches.
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Feature Context Minimal Variant Feature Module Always Available

BasicGraph 0 (0.00) 0 (0.00) 0 (0.00)
Color 0 (0.00) 9 (0.31) 5 (0.17)
PrintHeader 0 (0.00) 10 (0.34) 3 (0.10)
Recursive 0 (0.00) 10 (0.34) 3 (0.10)
Weight 0 (0.00) 10 (0.34) 6 (0.21)

Table 5.4: Amount of errors of the product line GraphLib for each state-of-the-art
approach based on a comparison of the accessible API members with our feature-con-
text interfaces. The number in parentheses represents the values scaled to the number
of members given in the variable interface.

Question (b): Potential Errors. In this section, we take a look at the results for
question (b), the number of potential errors that can occur when using the state-of-
the-art approaches. To this end, we use the same product lines as for question (a) with
another viewpoint to the data behind them.

In Figure 5.14, we present the results for the investigation of potential errors. To
ease comprehension, we also take a look at the details of product line GraphLib. In
Table 5.4, we present the errors that a developer might make when applying the state-
of-the-art approaches for each feature. This means, we compute the results for the
feature-context interface, and the other state-of-the-art approaches for each concrete
feature. Afterwards, we compare each API member of a state-of-the-art approach with
each API member of the feature-context interface. If we cannot detect a corresponding
member during this comparison, we count it as an error. For instance, the approach
feature module for feature Color results in 9 missing API members compared to the
feature-context interface and, thus, we count 9 errors. Similarly, we count 5 errors for
the approach always available. In both scenarios, the missing API members reduce
the reuse potential of this product line. However, if we compare the API members of
the minimal variant with the API members of our feature-context interface, we detect
no differences in all the features. Thus, in the case of the product line GraphLib, the
approach minimal variant does not lead to any errors. Coming back to Figure 5.14,
we use the feature-context interface as the base line (value 0) and scale all detected
errors to the number of API members in the variable interface and use boxplots for the
representation of these values.

If we take a look at the general outcome of this investigation, we can see similar results
as for question (a). In detail, we can see that the approach minimal variant does
not cause compile-time errors for the product lines ZipMe, PKJab, and GraphLib.
However, for all other product lines, several compile-time errors are possible. Especially
the product lines GPL and DesktopSearcher with a high amount of potential errors
probably result in compile-time errors. We assume that these high values are the
result of alternative dependencies in the feature model. Indeed the product line GPL
has 15 (39 %) alternative features and the product line DesktopSearcher has 8 (36 %)
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alternative features, whereas the percentage of alternative features for all other product
lines is much lower.

Besides the outcome for the minimal variant, the outcome for the other approaches
is also interesting. In Figure 5.14, we can see that also the approach always available
produces a lot of errors and, thus, it also reduces the reuse potential of the product
lines. Nevertheless, the approach always available seems to be more useful than the
approach feature module, as this approach frequently creates a higher error rate.

Discussion

We now discuss the implications of our results for each approach and give suggestions
in which scenario which approach is appropriate.

Feature Module. First of all, we take a look at the sound approach feature module.
The quantitative evaluation has shown that the approach feature module presents only
a small subset of all safely accessible API members. Thus, we have also seen that
this behavior results in a huge amount of errors that reduces the reuse potential of
the product line. In practice, we do not recommend to use this approach to find API
members for the maintenance of a single product line. In the context of a multi product
line, this approach is completely unable to identify any accessible members of a reused
product line (cf. Section 5.1).

Always Available. Similar to the approach feature module, we also classified the
approach always available as sound. However, compared to the approach feature module,
this approach presents noticeably more accessible API members and, thus, we prefer
the usage instead of the approach feature module. In addition, even if the approach
always available also leads to a huge amount of errors that is often higher compared
to the results of the approach minimal variant, we suggest to use the approach always
available instead. This has two reasons. First, errors that reduce the reuse opportunities
are less problematic than compile-time errors. Second, the approach is independent
from a feature context and, thus, it is sufficient to compute it once per product line.
Furthermore, in contrast to the approach feature module, we can also use this approach
in the context of multi product lines to find safely accessible members of a reused
product line.

Minimal Variant. Apart from the sound state-of-the-art approaches, we also inves-
tigated the complete approach minimal variant. Even if the approach presents partly
the same results as the feature-context interface (i.e., without errors), we cannot rec-
ommend to use this approach to find safely accessible members. This has also multiple
reasons. First, this approach can lead to compile-time errors and, thus, the developer
needs additional effort to fix them. Second, we cannot predict in which cases the ap-
proach minimal variant presents good or bad results. Even if we know that alternative
features are one reason of undesired results, it is not obvious for each feature model that
a feature is an alternative feature. For instance, if the feature is an alternative feature
because of cross-tree constraints, it is possible that a developer is not able to detect this
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feature dependency without tool support. Third, we know from other experiments that
alternative features in feature models are not the exception [Thüm et al. 2009]. Thus,
the probability of compile-time errors using the approach minimal variant is increased.
Therefore, we cannot recommend to use this approach to find safely accessible API
members, neither in single product lines nor in multi product lines.

Feature-Context Interface. With our evaluation we have shown that all state-of-
the-art approaches can lead to compile-time errors or that they reduce the reuse poten-
tial of a product line. As the feature-context interface always presents the complete set
of safely accessible API members that can be used in an implementation, maintenance,
or development step, we recommend to use feature-context interfaces to solve these
tasks. For the case of a single product line, we have to determine the variable interface
and the feature-context interface on the fly, as the feature context and the implemen-
tation artifacts will change continuously as the developer shifts his/her focus from one
feature to another and adds, removes, or changes functionality. However, especially in
the case of multi product lines (cf. Section 5.4.2), in which the program artifacts of
a reused product line are stable, we recommend to use feature-context interfaces. In
detail, in a scenario in which we plan to reuse another product line, we can precom-
pute the variable interface so that it is only necessary to compute the feature-context
interface according to a feature context on the fly.

General Results. According to our investigation of Hypothesis 2 we found out that
the variable interface in combination with the feature-context interface can help the
developer to detect reusable implementation artifacts. In detail, the variable interface
can help to get an overview of all API members of all features so that we can find
the appropriate API member for a maintenance task more efficiently as with state-of-
the-art approaches. However, only in combination with feature-context interfaces, we
get the real potential of the variable interface to find safely accessible API members
for a maintenance or development task. Even if this evaluation focused on a single
product line, the application of the variable interface with feature-context interfaces in
a multi product line is similar. Furthermore, the variable interface is more important
in a scenario of multi product lines. For this application scenario, we also presented
filtering techniques so that the variable interface only contains API members that we
can use in combination with our features of interest (i.e., features of the feature-model
interface). All other features are hidden from the developer’s perspective.

5.5.3 Threats to Validity

We now discuss internal and external threats to validity.

External Validity. For the discussion of the external validity, we consider the gener-
alizability of our evaluation results. Of course, we only used product lines written in
Java with FOP, which reduces the result’s generalizability according to other languages
and paradigms. However, to ensure that our results are generalizable for our use case,
we used a set of different systems from multiple domains and with different sizes. Fur-
thermore, we used product lines that were also used in other papers for the purpose of
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evaluation (cf. [Apel et al. 2013b; Kolesnikov et al. 2013; Thüm et al. 2011a]). Thus, we
assume that we investigated a set of product lines that are accepted by the product-line
community.

Internal Validity. To discuss the internal validity, we take a look into the activities
that we used to minimize the probability of systematic errors. One critical aspect could
be an already existing compile-time error in the investigated product lines. These errors
can influence the collection and comparison of API members, and, thus we decided to
only use product lines without compile-time errors for our evaluation. Another critical
aspect addresses the correct collection and comparison of API members. For these tasks,
a string comparison or an ad-hoc parser implementation can be error-prone and, thus,
we used Fuji for this purpose. In detail, Fuji is a Java compiler and a type checker for
feature-oriented programming [Apel et al. 2012; Kolesnikov et al. 2013]. To this end, we
rely on Fuji for the collection and comparison of fields and methods. However, we also
want to clarify that we do not use the common part of the Java-field and Java-method
signature for our comparison. For instance, in Java, a method signature only consists
of the method name and the parameter list. In contrast, we also have to compare the
return type of the method since different features can use different return types.

5.6 Summary

In this chapter, we considered the syntactical interface as second interface of our concept
of multi-level interfaces. In contrast to the variability-model interface for the model-
ing level of multi product lines, the syntactical interface can be used to support the
implementation of multi product lines. In detail, the syntactical interface presents an
overview of all API members that a developer can reuse from a product line in another
product line. To investigate the concept, we implemented a syntactical interface for
product lines based on the programing language Java with the paradigm of FOP. We
called the result a variable interface that presents all API members of a product line
with additional variability information. Depending on the application scenario, we can
filter the variable interface accordingly. For this purpose, we introduced two filter ap-
proaches that allow us to create a tailored variable interface according to the features
of interest given by the feature-model interface. As the filtering result, the developer
gets an overview of all accessible API members of a product line he/she can reuse.

Indeed, the filtered variable interface hides all API members that a developer cannot
reuse and, thus, it can ease the development of a multi product line. However, as
the variable interface also contains variability information, it is still a manual effort to
identify safely accessible API members for a specific implementation task. Therefore,
we also introduced the feature-context interface that is a non-variable view on the
variable interface tailored to the current needs of the developer. Besides the usage
of this approach for multi product lines, it can also be used for single product lines.
Even if some state-of-the-art approaches exist to identify accessible API members for
an implementation task, we discussed that only feature-context interfaces are able to
present a complete view on safely accessible API members.
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To investigate whether the variable interface and the subsequent feature-context in-
terfaces can help to develop (multi) product lines in practice (cf. Hypothesis 2), we
also performed an evaluation. In detail, we compared the API members given by the
feature-context interfaces with the results of the state-of-the-art approaches. As the
result, we found that only feature-context interfaces are able to present a sound and
complete overview of safely accessible API members. In contrast, the usage of presented
API members given by state-of-the-art approaches can lead to compile-time errors or
to a reduced reuse potential of a product line.



6. The Behavioral Interface -
The Third Level of Multi-Level
Interfaces

The chapter about behavioral product-line interfaces shares material
with our overview paper Towards Modular Analysis of Multi Product
Lines [Schröter et al. 2013a]. In this paper, we present the behavioral
interface as part of our concept of multi-level interfaces. Based on
these initial ideas, we extend and improve the concept in our paper
on Variability Hiding in Contracts for Dependent Software Product
Lines [Thüm et al. 2016]. Therefore, the chapter also shares mate-
rial with this investigation and evaluation of behavioral product-line
interfaces.

In this chapter, we consider the behavioral (product-line) interface as proof of con-
cept regarding the multi-level interfaces and investigate whether it is possible to extend
the multi-level interfaces to further levels, such as the specification and verification of
multi product lines. In detail, we now consider the behavioral product-line interface
that can be used to ensure a correct communication between dependent product lines.
Therefore, the behavioral product-line interface is an agreement on the behavior of
interacting elements (e.g., API members) between two product lines, whereas the con-
crete implementation and not required features of the reused product line are hidden
(cf. a feature-model interface that only presents features of our interest). This infor-
mation can be used to verify the behavior of the product line that aims to reuse it.
Since each interface on a lower level of our concept of multi-level interfaces depends on
the interfaces of the upper levels, our behavioral product-line interface depends on the
concrete implementations of the variability model interface and the syntactical product-
line interface. As a result, the behavioral product-line interface only considers elements
that are represented in these upper-level interfaces. Thus, the behavioral product-line
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interface also aims to remove the direct dependencies between the dependent product
lines and to ease the verification and evolution of the multi product line.

In the previous chapters, we exemplified the variability model interface by the feature-
model interface and the syntactical product-line interface using the variable interface
with the feature-context interface. Therefore, our behavioral product-line interface de-
pends on these concrete implementations of our upper-level interfaces. In detail, the
behavioral product-line interface needs to define the behavior of the API members given
by the variable interface that again only presents members according to the features
of interest represented in the feature-model interface. For the specification of the be-
havior of API members, we use feature-oriented contracts (cf. Section 2.1.3 for a brief
overview, or the thesis by Thüm for more details [Thüm 2015]), because the concrete
implementation of our previous interface (i.e., variable interface) is based on FOP. Us-
ing this concrete scenario, we investigate our Hypothesis 3 and want to know whether
the behavioral product-line interface enables a time-efficient modular analysis to detect
violations in multi product lines using verification techniques.

To illustrate the dependencies of the behavioral product-line interface to the other
interfaces, we take a look at our running example. In detail, we are interested in
the features BankAccount (B), DailyLimit (D), Interest (I ), and SimpleLock (S ) of
product line BankAccount , as they are needed to implement the features of the product
line BankApplication. Therefore, the feature-model interface consists of these features
and the variable interface with the feature-context interfaces only presents members
that are available if we use these features (cf. Chapter 5). As a result, the behavioral
product-line interfaces need to define feature-oriented contracts for members given in
the filtered variable interface so that it is possible to verify the correct behavior of
methods in the product line BankApplication (i.e., to verify method transfer) without
further information about the hidden product line BankAccount .

The chapter is structured as follows. First, we give an overview of a straight-forward
verification of multi product lines using design by contract. Second, we discuss different
strategies that we can use to achieve a behavioral product-line interface. Third, we
investigate the verification effort for the multi product line BankApplication using our
introduced strategies for a behavioral product-line interface between the product lines
BankApplication and BankAccount . Finally, we summarize our findings.

6.1 Specification and Verification Based on Feature-

Oriented Contracts

In this section, we illustrate how to specify and verify multi product lines in a straight-
forward manner based on feature-oriented contracts [Thüm 2015] and variability en-
coding [von Rhein et al. 2016] and consider the problems of this application strategy.
In general, the specification and verification process of a multi product line can be per-
formed in a similar manner as for a single product line. Therefore, we recapitulate our
illustration of Section 2.1.3 and give a brief summary on how to specify and verify a
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product line. Afterwards, we consider the application of this procedure in a scenario of
a multi product line using our running example of product line BankApplication with
product line BankAccount .

As described in more detail in Section 2.1.3, it is possible to use an extended version of
design by contract and variability encoding to ease the specification and verification of
a product line. In detail, we use feature-oriented contracts as an extension of design by
contract for FOP that allows a developer to refine existing specifications (e.g., using the
keyword original) [Thüm 2015; Thüm et al. 2012]. Afterwards, we can use variabil-
ity encoding in which the compile-time variability is translated into run-time variabil-
ity [von Rhein et al. 2016]. As a result, the product line is represented in one product
called metaproduct that includes the functionality of all product-line’s products. At
the same time, we can also use variability encoding to translate the feature-oriented
contracts into this metaproduct so that a method contract considers all desired feature
selections [Thüm et al. 2014; Thüm et al. 2012]. Since the outcome is a regular JML
expression, we can use state-of-the-art tool support for product verifications. To ensure
that only valid feature combinations are verified (i.e., all other can lead to errors), the
dependencies given in the feature model are additionally represented as an invariant in
each class. The invariant demands the feature dependencies to hold, before and after
each method execution. Thus, if we use the resulting metaproduct for the purpose of
verification, we can verify all valid products of the product line in one step.

Similar to the verification process of a single product line, we can also apply the same
concept to multi product lines. Therefore, we need to consider the multi product
line as one single product line, in which we have access to all variability information,
implementation artifacts, and contracts. As a result, we can generate a metaproduct
that encodes the complete variability of the composed product lines. Afterwards, we can
use state-of-the-art tool support for the program verification. However, this procedure
is inefficient, as it is necessary to reapply the process if one of the involved product lines
changes. Therefore, it doesn’t matter if a product-line adaption occurs in the source
code, in the contracts, or even in a feature model. In all of these cases, it is necessary
to execute the verification process again.

Running Example

Using our running example, we illustrate the verification process of a multi product line.
In Figure 6.1, we present an excerpt of our product line BankApplication. In detail, we
depict the method transfer of the class Transaction that is used to transfer money
from one account of product line BankAccount to another. To ensure the correctness,
the method also defines contracts. In these contracts, the requires clauses cause
the source and destination account to be not null and not equal (cf. Lines 1, 2).
Furthermore, the ensures clauses make sure that the amount of money is removed
from the source and added to the destination if the transfer was successful. Otherwise,
it ensures that the balance of both accounts is equal to the state before the method
execution was started (cf. Lines 3–6).
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1/∗@ requires dest != null && src != null;
2 requires src != dest;
3 ensures \result ==> (\old(dest.balance) + amount == dest.balance);
4 ensures \result ==> (\old(src.balance) − amount == src.balance);
5 ensures !\result ==> (\old(dst.balance) == dst.balance);
6 ensures !\result ==> (\old(src.balance) == src.balance); @∗/
7boolean transfer(Account src, Account dest, int amount) {
8 if (!lock(src, dest)) return false;
9 try {

10 if (amount <= 0) return false;
11 if (!src.update(−amount)) return false;
12 if (!dest.update(amount)) {
13 src.undoUpdate(−amount);
14 return false;
15 }
16 return true;
17 } finally { src.unLock(); dest.unLock(); }
18}

Figure 6.1: Method transfer of class Transaction from the product line Bank -
Application with contracts.

To verify the method transfer of product line BankApplication, we have to create the
metaproduct. However, the method’s behavior depends on the selection of features of
the product line BankAccount . For instance, the method transfer calls the method
update (cf. Lines 11, 12) that is implemented in the class Account of the product
line BankAccount . Depending on the feature selection, the method update can have
a different behavior and, thus, different contracts that also have an impact on the
method transfer. To verify the correctness of all possible products for the dependent
product line BankApplication, we need to create the metaproduct of the composed
product lines. For this purpose, we also need to describe all feature dependencies
in a JML invariant so that we only verify valid products. Therefore, we define all
feature variables (i.e., FBankApplicationt/BankAccount) in a separate class FM (cf. Figure 6.2,
Lines 1–3) and use these variables in all classes of the multi product line to describe
the run-time variability and the specifications (e.g., the invariant). For instance, the
class invariant of class Transaction represents the complete feature dependencies of the
composed feature model (i.e., logical representation of the composed feature model with
all features - P

R
O

PMBankApplication/BankAccount). In Figure 6.2, we present parts of this invariant
(cf. Lines 5–7). In detail, Line 5 causes the feature BankApplication to be always
available, whereas the subsequent line ensures the child-parent implication between the
features BankAccount and BankApplication (cf. Line 6). However, the most significant
dependency for the dependent product line is given in Line 7, as it describes the inter-
model dependency between the features Transaction and SimpleLock . In sum, using
this invariant, the metaproduct encodes the complete dependencies of the composed
product lines. Afterwards, we can use the state-of-the-art tool support to verify the
method’s correctness.

In summary, the described verification process of method transfer of the multi product
line BankApplication needs access to all dependencies of the complete feature-model
composition with all feature modules and contracts of product line BankApplication
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1public class FM {
2 public static boolean bankApplication, transaction, bankAccount, simpleLock [, ...];
3}

4public class Transaction{
5/∗@ invariant FM.bankApplication &&
6 (FM.bankApplication || !FM.bankAccount) [&& ...]
7 (FM.simpleLock || !FM.transaction) [&& ...];@∗/
8
9 /∗@ [contracts of method transfer cf. Figure 6.1] @∗/

10 boolean transfer(Account src, Account dest, int amount) {
11 //implementation of method transfer cf. Figure 6.1
12 }
13}

Figure 6.2: Method transfer of class Transaction from the product line Bank -
Application and an invariant that represents the feature dependency of the complete
feature-model composition.

and product line BankAccount . As we are only interested in reusing parts of the product
line BankAccount , this is an undesired effort. In detail, the method transfer needs
the knowledge of contracts from all methods that are called (e.g., method update) for
the verification. However, these contracts are based on features that are not of our
interest. We assume that this leads to more effort in the verification and can also result
in drawbacks regarding the verification performance. Therefore, we propose to use our
concept of multi-level interfaces with the behavioral product-line interface to focus on
the features of interest and to reduce the verification effort.

6.2 Strategies for the Representation of the Behav-

ioral Interface

In this section, we give an overview of the different strategies to achieve a behavioral
product-line interface. In detail, we assume that the initial product line BankAccount
is based on FOP with feature-oriented contracts and that the feature-model interface
already exists. Based on this assumption, each strategy aims to create the metaproduct
in a way that only features of interest from our feature-model interface are used in the
implementation and contracts. We only investigate strategies that, in theory, allow
us to automatically generate the behavioral product-line interface in future because
manually created interfaces result in too much effort and mitigate a possibly reduced
verification time. As each concept comes with limitations, we present benefits and
drawbacks of each strategy and investigate their applicability in our running example.
In the following, we present the strategies false configuration, true configuration, and
hidden configuration.

6.2.1 False Configuration

The first strategy is called false configuration, as we bind each feature that is not in the
feature-model interface to false. Therefore, it is similar to a feature-model configura-
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1class Account {
2 //@ requires daysLeft >= 0;
3 //@ ensures calculateInterest() >= 0 ==> \result >= interest;
4 /∗@ pure @∗/ int estimatedInterest(int daysLeft) {
5 return interest + daysLeft ∗ calculateInterest();
6 }
7}

(a) Method estimatedInterest in feature module InterestEstimation.

8class Account {
9 //further source code of the metaproduct

10
11 //@ requires FM.interestestimation && daysLeft >= 0;
12 //@ ensures calculateInterest() >= 0 ==> \result >= interest;
13 /∗@ pure @∗/ int estimatedInterest(int daysLeft) {
14 return interest + daysLeft ∗ calculateInterest();
15 }
16}

(b) Method estimatedInterest in the metaproduct of product line BankAccount .

Figure 6.3: Method estimatedInterest of class Account of product line BankAccount
with contracts from the feature module InterestEstimation and of the metaproduct of
product line BankAccount .

tion (cf. Section 2.1.1), in which we deselect all features that are not in our focus (i.e.,
features that are not part of our features of interest). Based on this idea, we create a
metaproduct of the product line and, thus, transform the compile-time into run-time
variability with these features only. In detail, compared to an ordinary metaproduct
(cf. Section 2.1.3), the resulting metaproduct of the strategy false configuration con-
tains adaptions in the source code and the contracts. The source-code adaptions result
in unreachable and, thus, ignored branches, as the replacement of the corresponding
features with false automatically removes the alternative behavior. In addition, the
strategy also adapts invariants, pre- and postconditions in which features exist that
are not of our interest. A subsequent simplification of all contracts can lead to a false
evaluation of a method’s precondition and, thus, we can remove the complete method
as it will not be allowed to access it.

To illustrate the strategy false configuration, we use our running example of product
line BankAccount . In Figure 6.3(a), we depict the method estimatedInterest of the
feature module InterestEstimation with feature-oriented contracts. As described in the
precondition, a valid execution of the method requires that the parameter daysLeft is
positive. Based on this condition, the method ensures that, if the calculated interest
is positive, the result will be greater than the value stored in the field interest. If
we create the metaproduct of this product line, the contract will be automatically
transformed so that the precondition also requires that the feature interestEstimation
is true (cf. Line 11 of Figure 6.3(b)). However, using the strategy false configuration,
the feature interestEstimation will be set to false and, thus, the complete precondition
can never become true. As a result, it is not allowed to call this method.
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Even if it is possible to apply this strategy to our running example, the strategy
false configuration is not applicable to all scenarios. In fact, if the features that we
want to remove from the contract lead to a contradiction according to the feature-
model dependencies, the application of the strategy is not possible. For our running
example, the set of features that are not of our interest do not lead to a contradiction of
the feature-model dependencies given in the invariant. However, if we assume to focus
on feature InterestEstimation but not on feature Interest , it is necessary to replace fea-
ture Interest with false. According to the feature-model dependencies, we also need to
replace feature InterestEstimation by false to be conform to the feature-model depen-
dencies. Hence, this replacement contradicts our assumption in which we are interested
in feature InterestEstimation. Thus, it is not possible to remove an arbitrary set of
features using the strategy false configuration.

6.2.2 True Configuration

Our second strategy named true configuration is similar to false configuration but binds
the corresponding features to true. In detail, we also use this configuration to create
a metaproduct. The compile-time variability is transformed to run-time variability, in
which the branches of features that are not of our interest are automatically activated in
this resulting metaproduct. Furthermore, all occurrences of these features in contracts
or invariants are replaced by true and simplified.

For the purpose of illustration, we use our product line BankAccount . Here, we are inter-
ested in the root feature BankAccount , and in the optional features DailyLimit , Interest ,
and SimpleLock . Using the strategy true configuration, we bind all other features of
the metaproduct to true. Even if this is possible for our running example, it leads
to some special characteristics. First, if we would bind the feature InterestEstimation
to true, the feature is included in all products. As a result, the feature Interest as
parent feature of InterestEstimation has to be also bound to true, to be compatible to
the feature-model dependencies. Therefore, the feature Interest acts as mandatory fea-
ture and, thus, it reduces the variability. Second, a complex problem is the alternative
group below feature Lock . In this scenario, we have to bind the feature TimeUnitLock
to true and, thus, it is not allowed to select the feature of interest SimpleLock . In a final
product-line implementation, this is a contradiction and would prohibit an application
of the strategy true configuration to our running example. Fortunately, it exists only
a plan to implement the features Lock and TimeUnitLock in future (cf. Figure 2.1(a)
of Section 2.1.1) and, thus, both features are abstract features without code artifacts.
This characteristic directly influences the representation of the invariant, in which the
feature dependencies are described. In detail, as the invariant needs to describe de-
pendencies of concrete features (i.e., with code artifacts), there is no reference to the
features Lock and TimeUnitLock . Therefore, at the running example of product line
BankAccount , it is still possible to apply the strategy true configuration and bind all
concrete features to true.

In sum, the application of the strategy true configuration is restricted. Even in our
small running example, the application of the strategy is only possible with some limi-
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tations as the feature Interest will be mandatory and reduces the intended variability.
Nevertheless, it is a simple strategy to remove features from contracts and invariants
to create a behavioral product-line interface.

6.2.3 Hidden Configuration

The third strategy to create a behavioral product-line interface is called hidden con-
figuration. In contrast to the previous strategies, the strategy hidden configuration
does not bind features that are not of our interest, the strategy considers both cases
(i.e., true and false). Therefore, the strategy is called hidden configuration, as it
covers existing variability of the product line but it does not remove the conditions
of contracts. The strategy hidden configuration is the most complex strategy of our
investigation. In detail, we have to create the metaproduct and need to transform all
pre- and postconditions so that both cases, true and false, are considered. In contrast
to the other strategies, in which a feature is bound to true or false so that also the
source code is affected (cf. removed branches of the other strategies), the strategy
hidden configuration does not change the method body. However, it is necessary to
treat the pre- and postcondition in a different manner, as we will show in the following.

As the adaption of the postcondition for the strategy hidden configuration is similar
to the creation of the feature-model interface (cf. Chapter 4), we start to consider the
postcondition first. In detail, the ensures clauses of the metaproduct represent the
different results of the method with and without a specific feature that we want to
remove from the condition. Therefore, we want to keep this information but want to
remove the dependency to the specific feature. To achieve this outcome, we use the
same principle as for the generation of the feature-model interface. First, we combine
all ensures clauses so that we have a condition that represents the complete output
behavior. Second, we duplicate the resulting formula of the ensures clause and replace
all occurrences of the specific feature in the first formula with true and in the second
formula with false. Third, we connect both formulas by a disjunction. Thus, the
resulting formula ensures a specific output behavior of the method if the feature is true
and also if the feature is false. After this procedure, we can simplify the formula and
we can repeat this procedure to remove a second feature that is also not of our interest.

As the precondition of a method exists to specify under which input condition the
output represented in the ensures clause can be ensured, we have to fulfill both possible
selections (i.e., true and false). As a consequence, we also duplicate the existing
formulas and replace the feature with true in the first and with false in the second
formula. In contrast to the postcondition, we combine both formulas by a conjunction
to create a new precondition. Without this conjunction, it is possible to choose a
product in which the precondition is violated. To remove another feature from this
precondition, we repeat the procedure.

To illustrate the application of the strategy hidden configuration, we use our run-
ning example of the product line BankAccount . In detail, we plan to remove fea-
ture Overdraft , as it is not of our interest. In Figure 6.4(a),(b), we present method
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getOverdraftLimit of class Account and the postcondition’s transformation. In de-
tail, Figure 6.4(a) presents the result of the first step in which we combined the two
existing postconditions (cf. Figure 2.10) to one postcondition. Afterwards, we duplicate
the formula and replace all occurrences of overdraft with true in the first and false in
the second part of the formula. The resulting formulas are combined by a disjunction
(cf. comments of Lines 14–15). The final result of the transformation is represented as
a simplification of this formula, in which the feature Overdraft is completely removed.
As a result, the postcondition does not depend on the feature Overdraft and, thus, it
is ensured that the method returns either -5000 or 0.

In summary, the strategy hidden configuration fits best to our needs of a behavioral
product-line interface, as it hides the variability and does not bind it. Thus, several
problems of the other strategies, such as the necessary selection of features that are
not of our interest (see strategy true configuration), are not possible. However, the
conjunction in the precondition can lead to formulas that are not satisfiable. In our
running example this situation does not occur, as it is only a problem if the specific
method is called. In addition, as we will also discuss in the evaluation, the postcondition
can be too weak to verify callers of the method. For this case, we can choose another
strategy or we can add further features of interest.

6.3 Evaluation: The Interface Strategies as Behav-

ioral Interface in Practice

In this section, we present the evaluation of our strategies for a behavioral product-line
interface. In detail, we want to investigate Hypothesis 3 and, thus, we plan to compare
the verification effort of a multi product line with each of our proposed interface strate-
gies and without an interface. According to Hypothesis 3, we are especially interested in
performance benefits and want to determine and compare the time for each verification.

Besides the investigation of the time-efficiency of the verification process, a second goal
of our evaluation is to find out, whether a strategy is appropriate for an implementa-
tion of a generation strategy. In detail, we assume that it is possible to generate the
specification of each strategy in a way that it is not necessary to verify the interface in
future. However, in this evaluation, we use a manual transformation into our interface
strategies. If we find out that an interface presents promising results regarding the
verification effort, we can spend more effort in an automatic generation strategy and in
proofs for their correctness.

For the purpose of illustration, we take a look at our running example. Using a manual
transformation, we can create an interface for each strategy of product line BankAccount
that is reused from product line BankApplication. Based on these implementations, we
are interested into the verification effort for product line BankApplication in four dif-
ferent scenarios. First, using the complete information of contracts in the metaproduct
of product line BankAccount . Second, using the simplified metaproduct and contracts
of each strategy from the interfaces of product line BankAccount .
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1class Account {
2 //further source code of the metaproduct
3
4 //@ ensures !FM.overdraft ==> \result == 0 && FM.overdraft ==> \result == −5000;
5 int /∗@ pure @∗/ getOverdraftLimit(){
6 if (!FM.overdraft) return 0;
7 return −5000;
8 }
9}

(a) Method getOverdraftLimit with combined postconditions in the metaproduct of
product line BankAccount .

10class Account {
11 //further source code of the metaproduct
12
13 //intermediate result of the strategy hidden configuration:
14 // ((!true || \result == −5000) && (true || \result == 0)) ||
15 // ((!false || \result == −5000) && (false || \result == 0));
16
17 //final result of the strategy hidden configuration with a simplified postcondition:
18 //@ ensures (\result == −5000) || (\result == 0);
19 int /∗@ pure @∗/ getOverdraftLimit(){
20 if (!FM.overdraft) return 0;
21 return −5000;
22 }
23}

(b) Method getOverdraftLimit with a simplified postcondition after the application
of strategy hidden configuration.

Figure 6.4: Method getOverdraftLimit of class Account represented in the metaprod-
uct before and after the application of the strategy hidden configuration.

In the following, we present our experiment design and results. Afterwards, we present
open challenges for future work.

6.3.1 Experiment Design

In this section, we introduce our subject system and present details on the experiment
design for the investigation of our strategies for a behavioral product-line interface.

Subject System

According to our experiment idea, we want to investigate the verification effort of a multi
product line in different scenarios. As the specification of an object-oriented system and
especially of product lines and multi product lines is a complex task, we use a special
variant of the product line BankApplication with an already existing specification for our
evaluation. Furthermore, the product line was used in multiple studies and, thus, it is
already known in the community [Thüm 2015; Thüm et al. 2014]. However, in contrast
to our running example, the original product line BankApplication is not a multi product
line but a single product line. In a first step of the experiment, we decomposed this
single product line into a representation that is similar to our running example so that
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the product line BankApplication reuses the product line BankAccount . Basically, the
resulting product lines of the decomposition (i.e., BankAccount and BankApplication)
are in parts different to our running example. First, the product line BankAccount
holds an additional concrete and optional feature named Logging that allows us to log
all changes of the bank account and, thus, the feature refines already existing methods
of the class Account. Second, the dependency between both product lines is different.
In the investigated scenario, the bank account is part of all applications. For this reason,
the root feature BankAccount is mandatory and not optional as in all other descriptions.
Finally, the product line BankApplication also holds implementation artifacts for the
features BankAccount , DailyLimit , and Interest .

Experiment Execution

The experiment is designed as follows. First, we decompose the product line Bank -
Application into the two dependent product lines (i.e., product line BankApplication
and product line BankAccount , see also the description above). As a result, the prod-
uct line BankAccount contains the implementation artifacts and refinements of class
Account, whereas product line BankApplication contains the classes Transaction and
Application. The reason for this kind of decomposition is based on the used theo-
rem prover KeY and the knowledge that existing proofs retain their validity [Beckert
et al. 2007]. Second, we manually create the interfaces for product line BankAccount
(i.e., using the strategies false, true, and hidden configuration). Third, we use KeY
for our proofs. We start to prove the correctness of product line BankAccount using
the original contract definition. Furthermore, we also prove the correctness of all three
interfaces against the implementation of product line BankAccount . This allows us to
ensure the correctness of these interfaces. In future, these proofs based on KeY are
not necessarily needed if we can prove that the interface generation does not break any
existing proofs. Then, we verify product line BankApplication using the contracts of
each interface strategy. Finally, we verify the product line BankApplication using the
original contracts of product line BankAccount . For the execution of all proofs, we
configure KeY so that method treatment is based on contracts. In contrast, if method
treatment allows inlining instead, the proofs also depend on the implementation of
called methods. However, this is not compatible to our interface concept and we rely
on the contracts instead. For all verifications, we used a notebook with Intel Core i7
(2.4GHz), 8 GB RAM, and Windows 7, to determine the number of nodes, the time,
and the needed proofs. Furthermore, as the strategies true and false configuration bind
the variability, we also consider the number of products for which the specific proof
ensures the correctness.

6.3.2 Experiment Results and Discussion

Based on the decomposition of product line BankApplication with the classes BankAp-
plication and Transaction, and the product line BankAccount with the class Ac-

count, we start our experiment and use this section to present our results. First,
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Interface Strategies

Contracts of False True Hidden
BankAccount Configuration Configuration Configuration

Nodes 296,961 37,134 242,699 38,460
Time (min) 13.6 1.95 15.9 1.44
Proofs 18 14 18 14
Products 96 8 4 96

Table 6.1: Verification effort of product line BankAccount and each interface strategy.

we present the results of the verification of product line BankAccount and each in-
terface strategy. Second, we present the verification effort of the multi product line
BankApplication using the original contracts of product line BankAccount and the con-
tracts of each interface strategy. Afterwards, we discuss our results.

Verification Results of Product Line BankAccount and all Interfaces

In Table 6.1, we present the result of our experiment regarding the product line Bank -
Account and its behavioral product-line interfaces. The verification of the product line
BankAccount with original contracts needs 296,962 nodes, 13.6 minutes and 18 proofs.
If we compare these results with the interface strategies, we can see that all strategies
are able to reduce the number of nodes to close the proofs. Furthermore, the strategies
false and hidden configuration significantly reduce the number of proofs and the time
that is necessary for each proof. The number of proofs is reduced as we removed all
methods with a false precondition. Since it is not allowed to call these methods, a proof
of the method correctness would be useless. In contrast to the other interface strategies,
the strategy true configuration does not reduce the number of proofs and the time of
the proofs is also slightly increased. We also present the number of products for which
each strategy ensures the correct behavior. In detail, the original contracts ensure the
correct behavior of 96 products. Using the strategy hidden configuration, we also can
ensure the correct behavior of 96 products, whereas the adaption of the metaproduct
for the strategies false and true configuration only ensures the correctness of 8 and 4
products.

Verification of Product Line BankApplication

Using the contracts of product line BankAccount , we now verify the product line
BankApplication. In Table 6.2, we present the verification effort of product line Bank -
Application using the original contracts of product line BankAccount and the different
interface strategies. First, we investigate the verification with the original contracts, in
which KeY needs 95,292 nodes, and 5.37 minutes for all 11 proofs. Second, we also ver-
ified all methods of product line BankApplication using our interface strategies. Thus,
the number of proofs is identical in all the verifications. Furthermore, all strategies
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Interface Strategies

Contracts of False True Hidden
BankApplication Configuration Configuration Configuration

Nodes 95,292 27,016 53,983 21,393
Time (min) 5.37 0.770 2.20 0.585
Proofs 11 11 11 11
Products 144 12 6 144

Table 6.2: Verification effort of product line BankApplication using the original con-
tracts of product line BankAccount and the contracts of each interface strategy.

significantly reduce the time and the necessary nodes for the verification. The strategy
hidden configuration presents the best results. In detail, the time is reduced by 89%
and the number of nodes by 78%. At the same time the strategy hidden configuration
allows us to ensure the correct behavior of all 144 products that we can also prove using
the original contracts of product line BankAccount . However, the strategies false and
the strategy true configuration also present significant improvements regarding the time
and necessary nodes for all 11 proofs. In contrast to the strategy hidden configuration,
these strategies cannot ensure the correct behavior of all 144 products. In detail, the
strategy false configuration can be used to prove the correct behavior of 12 products
whereas the strategy true configuration can only be used to investigate 6 products.

Discussion

To investigate Hypothesis 3, we verified the multi product line BankApplication that
we decomposed from an already existing case study of a single product line for bank
accounts into our dependent product lines. In detail, our investigation considered three
different strategies for a behavioral product-line interface and we found that each of
these strategies allows us to save time when verifying the product line BankApplication.

For the experiment, we assumed that the interfaces are correct by construction (i.e.,
constructed from a verified product line) and it is not necessary to verify them. As
it is an open question if it is possible to prove this assumption, we reverified each
interface strategy to ensure their correctness. However, we found, that even if our
assumption is wrong, it is also possible to reverify the behavioral product-line interface
in an appropriate time. Thus, even with these additional proofs, we can also save time
for the verification of the multi product line BankApplication.

For the verification of multi product line BankApplication, we found that the stra-
tegy hidden configuration presents the best results compared to a verification using
the original contracts of product line BankAccount . But also the strategies false and
true configuration present significant improvements in time and needed nodes to close
the proofs. However, the strategy true configuration presents the worst results. The
reason for this characteristic is due to the variability binding. In detail, the strategy
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true configuration includes the contracts of all features that we removed from the fea-
ture-model interface. Therefore, the complexity of the contracts will be increased and,
thus, the verifications based on these contracts can lead to a time-consuming task. In
contrast, the strategy hidden configuration seems to be the optimal solution for the
representation of a behavioral product-line interface. However, in a special case the
preconditions of this strategy can be too strong and the postcondition too weak. Al-
though this is not the case in our subject system, we are confident that this situation can
happen in other product lines. As a solution, it is possible to switch to another strategy.
In contrast, we suggest to add additional features to the interface as the other strategies
are based on the drawback of variability binding. Furthermore, another drawback is
that the other strategies cannot verify all products of the multi product line.

As mentioned above, the strategy hidden configuration fits best to our concept of multi-
level interfaces. In contrast to the strategies false and true configuration, it does not
bind variability; it hides variability like the feature-model interface and the feature-con-
text interface. At the same time the strategy leads to the best results in our experiment.
To achieve the full potential of this strategy, we need to provide an algorithm to auto-
matically derive the interface. If it is also possible to prove that this generated interface
does not break already existing proofs, we can save the time that is necessary to reverify
the interface. However, this is part of future work.

6.3.3 Open Challenges

We identified several challenges when analyzing the strategies of variability hiding for
contracts. In the following, we discuss the challenges regarding class invariants, framing
conditions, and alternative values.6

Class Invariants

In our experiment, we focused on method contracts for the specification and verification
of the involved product lines. If several contracts of methods are identical, it is also
possible to use class invariants to describe the desired conditions. As a result, the
conditions of the class invariants need to hold before and after a method is executed.
This can save time for the specification, as the condition needs to be described only
once. Furthermore, the concept of invariants supports subtyping so that the invariant
of a subtype needs to fulfill the condition of the supertype.

Considering class invariants, the question arises whether our strategies are also appli-
cable to this kind of specifications. For the strategies false and true configuration, it is
straight forward to apply the specific strategy. To illustrate the effect, we use a simple
example of a feature f that introduces a class invariant inv . Furthermore, we assume
that the feature f is not part of the feature-model interface and, thus, we want to re-
move the feature from the invariant. Using variability encoding, this definition results

6In addition to these challenges regarding our strategies, we also experimented with Java interfaces
and abstract classes to achieve variability hiding. For more details, we refer the reader to the description
of our corresponding paper [Thüm et al. 2016].



6.3. Evaluation: The Interface Strategies as Behavioral Interface in Practice 123

in an invariant f → inv , so that the invariant has only an impact if the feature f is
chosen. Applying strategy false configuration leads to false → inv which is a tautology.
Therefore, the invariant inv has no effect and can be removed. In contrast, if we apply
strategy true configuration, we replace f by true and, thus, the invariant is available
in all configurations.

In contrast to the strategies true and false configuration, the application of the strat-
egy hidden configuration to invariants is more complicated. At the moment, we have
no elegant solution for the strategy hidden configuration. As a simple solution, we
removed each invariant in our subject system and included the conditions into each
pre- and postcondition. To get the same starting point for all strategies, we used this
transformation for all experiments. As illustration of the application of the strategy
hidden configuration, we assume that a method meth with a precondition φ and a
postcondition ψ in our metaproduct exists and, for simplicity, that feature f is not
part of both conditions. Before we can apply the strategy hidden configuration, we
include the invariant into the pre- and postcondition. The result is φ ∧ (f → inv) and
ψ ∧ (f → inv). Afterwards, we can apply the strategy hidden configuration, which leads
to φ ∧ inv as pre- and ψ as postcondition. As the result of the simplification, the invari-
ant is included in the pre- but not in the postcondition and, thus, verification problems
can occur. For instance, if we have two method calls to the same method, it is possible
that the precondition for the second call is violated since the postcondition of the first
call does not ensure the condition of the invariant. Even if this was no problem in our
experiment, a possible solution for this problem is to add the feature f to the interface.
However, this would increase our interfaces and hinders evolution.

Framing Conditions

Our experiment is based on method contracts that describe under which condition
we can call a method and what the method ensures as a result. In addition, it is
also common to use framing conditions to specify which fields a method is allowed to
change. However, if we want to remove a feature to create one of our interfaces, it
can happen that we also have to remove a field that is used in a framing condition.
How often this case occurs depends on the strategy that we use for our variable inter-
face (cf. Section 5.3). Thus, if the variable interface presents only members that were
introduced in the features of the feature-model interface (cf. simple filtering) this case is
more likely. Using the advanced filtering strategy, the probability to remove such a field
reference is decreased. Nevertheless, it is possible that a situation occurs in which we
have to remove a field and we are not sure about the consequences for the verification.
In future, we have to analyze whether problems can occur. However, a similar scenario
also exists in single systems. For instance, it is possible that a subclass changes an
already existing framing condition. In this case, data groups are used [Leino 1998]. It
is an open question, whether data groups are also applicable in our scenario.
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Alternative Values

In our experiment, we focused on method contracts. Besides the mentioned problems
and limitations in this area, we also identified problems with alternative field defini-
tions. For instance, the feature DailyLimit introduces a field DAILY_LIMIT to store
the limit of one day that we can withdraw. The field is initialized with -1000. Now
we assume to introduce another feature ExtendedDailyLimit that overwrites this daily
limit so that the field is initialized with -2000. As a result, the initialization of the field
in our metaproduct depends on the selection of feature ExtendedDailyLimit . There-
fore, it is not possible to remove the feature ExtendedDailyLimit . One solution of this
problem is a transformation of each field access to an access using a getter method. We
know that similar problems exist during the verification of alternative types in product
lines [Kästner et al. 2012a; Thüm et al. 2014]. In this scenario, a field is typically du-
plicated and renamed so that two unique fields exist [von Rhein et al. 2016]. In future
work, we have to investigate whether this strategy is also a solution for the problem of
alternative field initializations in our use case.

6.4 Summary

In this chapter, we introduced the behavioral product-line interface. The behavioral
product-line interface is a behavior agreement of interacting elements of two product
lines and it is based on all upper-level interfaces, i.e., the feature-model interface and the
variable interface. Similar to the upper-level interfaces, we exemplified our behavioral
product-line interface for product lines based on FOP written in Java. Therefore, we
used JML and variability encryption for the product line and the interface specification.
Similar to the interfaces of the other levels, the idea of the behavioral product-line
interface is to hide unnecessary details (i.e., specification artifacts of hidden features)
of a product line that we plan to reuse.

We used the behavioral product-line interface as proof of concept to investigate whether
our concept of multi-level interfaces can be applied to further levels as modeling and
implementation. Therefore, we introduced multiple strategies to achieve a behavioral
product-line interface. In detail, the strategies true and false configuration bind the
variability of all features that we plan to hide. In contrast to these strategies, the
strategy hidden configuration hides variability by considering both cases in which a
feature is considered as true or false. The procedure is similar to the generation
strategy of the feature-model interface.

As all of the introduced strategies yield advantages and drawbacks, we investigated the
practicability of all three strategies. According to Hypothesis 3, we examined whether
each strategy can be used to improve the performance of verifications in multi product
lines. As a result, we found that all strategies can reduce the verification effort, whereas
the strategy hidden configuration presents the best results. However, we assumed that
it is possible to create an interface automatically, so that it is not necessary to reverify
the interface against the implementation. It is part of future work to prove that the
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interfaces are correct by construction. Furthermore, based on our subject system, we
identified some limitations regarding framing conditions, alternative values, and class
invariants so that future work is required.

In sum, we have shown that our concept of multi-level interfaces is applicable to ad-
vanced concepts, such as the specification of the product line’s behavior. However, we
think that it is possible to extend our concept of multi-level interface to further concepts.
For instance, we also presented a further idea in the proposal of multi-level interfaces,
in which we suggest to apply the concept to non-functional properties [Schröter et al.
2013a]. However, this is an option for future work.
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7. Related Work

With the concept of multi-level interfaces, we cover multiple research areas that deal
with the modeling, implementation, and with the verification of product lines and multi
product lines. As a consequence, this chapter also presents related work to each of these
research areas. To ease the overview, the chapter is structured as follows. First, we
present concepts that are related to our overall concept of multi-level interfaces, i.e., we
present concepts that consider multiple development levels at the same time. Second,
we take a look at concepts that are related to our construction mechanisms behind each
interface level of our multi-level interfaces. Third, we consider related work that aims
to achieve similar goals as our concept.

7.1 Related Work for the Overall Concept

In this section, we present related work for the overall concept of multi product lines that
focus on multiple levels of the development. To be more precise, multi product lines
as system of interdependent product lines describe a flexible approach that address
the problem of combining reusable software artifacts to our needs. In this context,
we proposed multi-level interfaces to ease the development process of multi product
lines and to improve the encapsulation of the interdependent product lines. However,
further concepts with another perspective on the problem of combining variable software
artifacts exist, that we present in the following.

As also described in the introduction chapter of this thesis, the efficient development of
software systems is based on different concepts regarding the reuse of software artifacts.
For instance, software components and modules also represent such reusable software
artifacts on different levels of granularity that we can reuse in multiple systems. In
this context, we want to highlight the Koala components of van Ommering et al. since
the concept also allows the user to combine a system of hierarchical components in a
flexible manner [van Ommering et al. 2000]. The concept of Koala component is based
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on a definition of requires and provides interfaces that guarantee a correct combina-
tion of the involved components. Furthermore, the concept also provides a variability
mechanism in which a configuration is used to define the applied connections of alter-
native subcomponents. If possible, the configuration is used at compile-time and the
components are connected based on static binding. Besides the static binding, Koala
components also support a dynamic binding that is realized based on switches. How-
ever, the interfaces on the implementation level are static whereas the concept of multi
product lines allows us to define variable implementation interfaces for which we can
use our multi-level interfaces.

In addition, the work of Reiser et al. is a more general view on the management of
hierarchical components [Reiser et al. 2009]. By contrast to the Koala components,
Reiser et al. use feature models to describe the variability of a components and sub-
components. Thus, the public variability of the component’s feature model is mapped
to the internal structure such as implementation artifacts but also subcomponents. In
this context, Reiser et al. introduce several patterns to handle variability of internal
components, such as propagation of the variability to the upper-level component or di-
rect binding of the variability. As a result, the concept also supports variability hiding
as the internal variability is not public in all cases. By contrast, in the context of multi-
level interfaces, we are not interested in direct binding and we only propagate features
that are relevant in the context of the multi product line. Thus, during a concrete
instantiation of an underlying product line, some configuration decisions are still open
and, depending on the stakeholder, it is possible to configure the underlying product
line to the given needs.

A concept for the development of multi product lines that considers the modeling as well
as the implementation of underlying product lines was proposed by Damiani et al. for
the composition-based approach Delta-Oriented Programming (DOP) [Damiani et al.
2014]. The concept is an extension of DeltaJ to support multi product lines that
was designed for product line written in Java for the paradigm of DOP. Similar to
a product line based on DOP, a multi product line consists of a code base and a
declaration that was extended for the needs of dependent product lines. For instance,
the declaration was extended by an import mechanism that enables the user to import
another product line, (de)select specific features or add further cross-tree constraints.
On the implementation level, for instance, it is possible to rename classes so that the
reused product line is compatible to the context of the multi product line. By contrast
to this extension of DeltaJ in which the dependent product lines are closely coupled,
we focused on the avoidance of direct dependencies between the different product lines
of the multi product line. Furthermore, even if we used FOP for our description and
evaluation, we focused on a general concept that we can use for multiple implementation
techniques from composition as well as annotation-based approaches.

Another related concept to our multi-level interfaces for multi product lines is the
variability-aware module system. In detail, the variability-aware module system of Käst-
ner et al. also focuses on modules that can be type checked in isolation but in addition,
the systems allows variable interfaces in between [Kästner et al. 2012b]. Thus, the
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concept of Kästner et al. allows us to define variability inside of modules and on its
interfaces and at the same time it ensures that the well-typedness of modules holds
during its composition. Therefore, the structure of this module system is similar to our
focused concept of multi product lines since the module is comparable to one product
line and the whole system to multi product lines. Furthermore, the variability-aware
module system not only considers the implementation of modules but also configura-
tion options. However, by contrast to the described variability of these module systems
in which the complete variability of the modules is represented in their interfaces, our
concept of multi-level interfaces only focuses on artifacts of interest. In detail, feature-
model interfaces additionally hide variability that is not of our interest and we use this
information on the implementation level to also hide implementation artifacts that are
subsequently not applicable. In addition, if we also consider the extended concept of the
variable interface with our feature-context interfaces, we also provide an overview of all
members that are safely accessible in a specific implementation context. Last but not
least, with our concept of multi-level interfaces, we also focused on a support of further
development levels of product lines, such as the behavior level using our behavioral
product-line interfaces.

7.2 Related Work for the Interface Construction

In this section, we present related work regarding the construction mechanism of the
different interface levels. Therefore, we structure the section according to our multi-level
interfaces.

Related Work for the Construction of Feature-Model Interfaces and Feature-
Model Compositions

In this section, we consider related work for the concept of feature-model interfaces. As
our proofs regarding the analysis results of automated analyses for feature models are
based on a combination of feature-model interfaces and feature-model composition, we
also consider related work for the composition of feature models.

As already mentioned in Chapter 4, for the construction of feature-model interfaces,
we can use the concept of feature-model slicing and the algorithm to remove abstract
features from a feature model. In detail, Thüm et al. define an abstract feature as
a special kind of feature that can be used to structure other features of the feature
model without an impact on the implementation level [Thüm et al. 2011a]. As result,
product-line configurations that only differ in the selection of abstract features represent
the same implementation and, thus, the same products. To determine the set of product
line’s products with different implementations, Thüm et al. present an algorithm to
remove abstract features from the logical representation of feature models. With this
feature-model adaption it is possible to use the state-of-the-art analysis number of
products to determine the set of different products. By contrast, the algorithm of fea-
ture-model slicing is similar but it completely focuses on another application. In detail,
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Acher et al. proposed the slice operator to investigate the potential regarding feature-
model decomposition [Acher et al. 2011]. The slice operator takes a feature model as
input to create a new feature model with unchanged feature dependencies that only
consists of features of interest [Acher et al. 2011]. With function S , we used a similar
definition as given by the slice operator to create our feature-model interfaces. Based
on this function, we presented our proofs regarding analysis-result relation between
feature-model compositions with and without these interfaces.

In theory, we can use both algorithms of Acher et al. and Thüm et al. to create our fea-
ture-model interfaces. Nevertheless, because of problems regarding the scalability when
creating feature-model interfaces, we designed a new algorithm. Krieter et al. present
details of our new algorithm and investigate advantages and drawbacks of underlying
concepts [Krieter et al. 2016a,b]. In addition, the paper of Krieter et al. also presents
an extended evaluation to get insights into appropriate application scenarios of each
concept.

As feature-model composition is a central part to describe multi product lines, we also
needed a clear definition of it to present our proofs regarding the dependencies of analy-
sis results. In general, the mechanism of feature-model compositions are often described
in connection with modeling languages for multi product lines, such as Familiar [Acher
et al. 2013a], Velvet [Rosenmüller et al. 2011; Schröter et al. 2013b], TVL [Classen
et al. 2011], and VSL [Abele et al. 2010]. In this context, Eichelberger and Schmid
present an overview of modeling languages for multi product lines including a compar-
ison regarding their support for composition, modularity, and evolution [Eichelberger
and Schmid 2013].

By contrast to this general view on the facilities of modeling languages, Acher et al.
investigate different composition operators including their advantages and drawbacks
of possible implementations [Acher et al. 2013b]. According to the purpose of a stake-
holder, multiple strategies of composition operators exist to combine the configuration
of similar feature models. For instance, one option is to create a feature model that
represents the union of the configurations of the input feature models, another option
is to represent the intersection [Acher et al. 2013b]. However, the paper mainly fo-
cuses on a composition of similar feature models using merge strategies, whereas the
described composition of this thesis mainly focuses on a combination of different mod-
els. In addition to the mentioned paper, the thesis of Acher identifies three different
kinds of feature-model compositions, insert, aggregate, and merge that were integrated
in Familiar [Acher 2011; Acher et al. 2013a]. The operator aggregate allows the user
to combine feature models below a synthetic root and to add new cross-tree constraint
between them, whereas the insert operator inserts a complete feature model below a
feature of another feature model using a user-defined connection. By contrast, our in-
vestigations regarding the feature-model composition and our resulting definition were
influenced by the composition introduced with the modeling language Velvet [Rosen-
müller et al. 2011]. If we compare our definition of the feature-model composition with
the operators of Familiar, we can consider it as an operator that somehow combines the
facilities of Familiar’s operators aggregate and merge.
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Related Work for the Construction of the Variable Interface and Feature-
Context Interfaces

In this section, we take a look into related work regarding techniques that we used to
create the variable interface and the feature-context interfaces.

Even if the ideas of a syntactical product-line interface are more general, we mainly
focused on a concrete implementation of this concept. In detail, we proposed the va-
riable interface as syntactical interface for the implementation of product lines that
are based on FOP and considered how to create feature-context interfaces to identify
safely accessible API members. To be more precise, our implementation and evaluation
considered FOP product lines based on the composer FeatureHouse [Apel et al. 2009,
2013b]. In detail, to collect the API members of the variable interface, we used Fuji as
corresponding type checker [Apel et al. 2012; Kolesnikov et al. 2013] for product lines
written with FeatureHouse. If we want to use our concept for other composers, lan-
guages or implementation types, two options exist. We can write an own mechanism to
collect the necessary data or, if available, we need to extract the data from a correspond-
ing type checker. However, if a type checker for our purposes exists, depends on the
kind of product-line implementation (i.e., annotation-based or composition-based) as
well as on the concrete realization (e.g., the composer) and on the supported language.
For instance, the type checker Fuji is a type checker for the composition-based imple-
mentation technique of FOP and supports product-lines written in Java [Apel et al.
2012; Kolesnikov et al. 2013]. Even if the composer FeatureHouse supports further
languages for FOP, the type checker Fuji is limited to the language Java. Neverthe-
less, some other composition-based implementation techniques exist that also provide
approaches for the efficient type checking that we could use to extend our support
for feature-context interfaces. For instance, Schaefer et al. present an approach for
the efficient type checking of product lines based on DOP [Schaefer et al. 2011]. Be-
sides the composition-based product lines, it is also possible to extend our approach
to annotation-based implementation techniques. In this context, we can use a corre-
sponding type checker to create an extension of our feature-context interfaces. For this
purpose, we could use the type checker introduced by Kästner et al. that supports type
checks for annotation-based product lines written in Java using preprocessors [Kästner
et al. 2012a].

Related Work for the Construction of the Behavioral Interfaces

To complete the overview of related work regarding the construction of multi-level
interfaces, we also briefly describe the underlying mechanisms that can be used to
create a behavioral product-line interface.

The thesis presents three strategies that we can use to construct a behavioral product-
line interface. Whereas the strategy false and strategy true configuration are straight
forward, the creation process for the strategy hidden configuration is more complex.
However, the construction process of this strategy is based on the same mechanisms
as we presented for the feature-model interface. In detail, it is also possible to use
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the mechanisms to remove abstract features [Thüm et al. 2011a] or the concept of fea-
ture-model slicing [Acher et al. 2011] to create this kind of a behavioral product-line
interface. For more details, we refer the reader to the corresponding paragraph in the
beginning of this section.

7.3 Related Work Considering Similar Goals

As our concept of multi-level interfaces also aims to support multiple properties, we use
this section to present related work that also aims to achieve these goals. In detail, we
take a look at concepts for information hiding and evolution and consider product-line
analyses.

7.3.1 Information Hiding and Evolution

Information hiding is one the main goals that we addressed with our concept of multi-
level interfaces. However, for each of the considered levels of the product-line develop-
ment exists related work that directly or indirectly focuses on this property. Considering
the modeling level of product lines, several views were proposed to ease the configu-
ration process for the developer [Hubaux et al. 2010; Mannion et al. 2009; Schroeter
et al. 2012]. In general, the views present an excerpt of an underlying feature model
that is customized to the needs of the developer, so that the decision process during a
configuration is simplified. In contrast to these view concepts, the concept of feature-
model interfaces does not only hide variability of one underlying model; we can use
the feature-model interface as a representation of multiple compatible feature models.
Furthermore, Dhungana et al. propose the concept of model fragments that represents
parts of variability models, which can be merged to one system [Dhungana et al. 2010].
In this context, some of the internals of model fragments are public whereas other are
private and, thus, hidden to other model fragments. In contrast to our concept of
feature-model interfaces, the concept mainly considers consistency checks between the
models and the represented system, whereas we focused on an investigation of auto-
mated analysis of the composed models especially for feature models.

Considering the part of product-line implementation, several techniques exist to sup-
port information hiding. For instance, Kästner et al. propose the Colored Integrated
Development Environment (CIDE) that was developed to support the implementation
of annotation based product lines [Kästner et al. 2008a]. For the purpose of advanced
implementation support, CIDE also provides multiple views that present a subset of
all implementation units [Kästner et al. 2008b]. In detail, Kästner et al. present three
views: the feature view for feature-specific code, the variant view that considers the code
for a variant, and the realization view that presents code of a specific feature including
additional code of dependent code units. However, the realization view only considers
additional code units that need to be available for a valid code structure, whereas the
feature-context interface also considers further code units according to the feature de-
pendencies. In addition, Apel et al. propose access modifier for the paradigm of FOP
to customize the access to implementation units [Apel et al. 2012]. In this context, the
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authors introduce the modifiers, feature, subsequent, and program. Although the con-
cept allows us to hide implementation units, it does not focus on a view that presents
safely accessible members. By contrast, this concept presents access modifiers similar
to access modifiers of programming languages to encapsulate functionalities. Thus, the
concept of feature-context interfaces and the access modifiers are orthogonal. There-
fore, it is possible to tailor the safely accessible API members of the feature-context
interface using these access modifiers.

Besides the mentioned aims of multi-level interface for information hiding, our concept
also focuses on a support for evolution. To investigate the evolution of plugin-based
systems, Acher et al. presented a process to extract and compare different versions of
feature models from plugin-based systems [Acher et al. 2014]. For this purpose, Acher
et al. use the slice and the aggregate operator of Familiar [Acher et al. 2013a] to extract
and create feature models for the different versions of an investigated plug-in system.
A subsequent comparison of these feature models allows a user to draw conclusions
about the impact of evolutionary changes. In addition, as already mentioned in the
Section 7.3.1, the concept of model fragments of Dhungana et al. also focuses on the
support of evolution [Dhungana et al. 2010]. In detail, the authors create a merge
history so that the maintenance of the system and the process for a fragment’s re-
merge can benefit from information of previous versions. In addition to the mentioned
approaches, Vierhauser et al. propose an approach to check the consistency of evolving
variability models including the consistency to the code base [Vierhauser et al. 2010].
The approach focuses on the support of step-wise changes regarding the variability-
model dependencies, in which the user is interested in immediate feedback regarding
inconsistencies. By contrast to these concepts, our investigation of multi-level interfaces
with the concept of feature-model interfaces and feature-model composition focuses on
a product-line evolution that prevents a user from reanalyzing the whole multi product
line. Thus, our main focus is to stabilize the analysis process so that an evolved product
line does not necessary lead to changes in the whole multi product line.

7.3.2 Product-Line Analyses

As the concept of multi-level interfaces simplifies multiple analyses on different levels
of the product-line development, this section considers related work according to each
level. To classify the approaches, we start this section with a brief overview of general
concepts on product-line analyses. Afterwards, we consider related work for each level
of our multi-level interfaces.

General Concepts to Analyze Product Lines

In general, multiple approaches were proposed to scale the product-line analyses that
can be applied to different levels of the product-line development. To get an overview,
Thüm et al. summarize these approaches to general concepts and present an overview of
representative approaches [Thüm et al. 2014a]. In theory, three main analysis concepts
with different advantages and disadvantages exist, feature-based, product-based, and
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family-based. Whereas feature-based and product-based concepts focus on the analysis
of each feature or rather each product in isolation, the family-based approach focuses
on the analyses of the whole product line. For this purpose, the family-based concepts
use the feature dependencies as input for the specific analysis approach. However,
as mentioned, these general concepts can be used on different levels. For instance,
considering the analyses of the implementation level, Kolesnikov et al. compares the
usage of each concept regarding the area of type checking for product lines written with
FOP [Kolesnikov et al. 2013].

Analyses for the Modeling Level

As Kang et al. proposed feature models, they also mentioned that it is necessary to an-
alyze the described feature dependencies to ensure the feature-model correctness [Kang
et al. 1990]. In this context, the authors also present first feature-model analyses, such
as the analysis of void feature models. Since this starting point, several authors pro-
posed additional analyses to avoid anomalies or to create statistics. Benavides et al.
present an overview of existing feature-model analyses and refer to implementations
and tool support [Benavides et al. 2010]. We used some of these analyses for the evalu-
ation of conceptual parts of multi-level interfaces and described analysis dependencies
between feature-model compositions with and without feature-model interfaces.

In the context of tool support for feature-model analysis, Mendonça et al. clarified that,
even if the feature-model analysis represents a np-complete problem, the analyses scales
well for the domain of feature models [Mendonça et al. 2009b]. Thus, the tool support
for feature-model analyses and configuration is in general based on satisfiability solvers
or binary decision diagrams [Acher et al. 2013a; Benavides et al. 2007; Mendonça et al.
2009a; Thüm et al. 2014b]. Tools like FeatureIDE [Thüm et al. 2014b] allow us to
identify anomalies or to collect statistics for the feature models. However, even if a sat-
isfiability check for a feature model, in general, presents results in an appropriate time,
the concrete complexity depends on the specific analysis (cf. the analysis of atomic sets)
and on the complexity of the feature model. In this context, feature-model interfaces
can help us to focus on the features of interest for feature-model compositions and are
able to prevent us from reanalyzing feature-model compositions in some cases. However,
the concept of feature-model interfaces does not change the underlying analyses so that
the concepts can be integrated in the existing tool support.

As already described in the background chapter, besides feature modeling, other con-
cepts for variability modeling exist, such as decision modeling [Schmid et al. 2011], and
orthogonal variability modeling [Pohl et al. 2005]. In the context of ecosystems, Galindo
et al. propose a concept to configure multiple variability models based on different vari-
ability modeling approaches [Galindo et al. 2015]. For this purpose, the authors present
insights on how to extend the tool invar to further variability models and how to de-
scribe and check their inter-model constraints. Therefore the different variability types
are mapped to invar types. However, we assume that this kind of a mapping between
variability models can also be used in our approach to support product lines based on
other variability-model approaches.
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Analyses for the Implementation Level

Based on type checking during the compilation of a program it is possible to detect
errors in early states of the product implementation [Pierce 2002]. In general, it is
also possible to use existing type checker to investigate product line’s products. This
means, we are able to create a specific product and to apply a type-checker on it. As
described above, this is a product-based approach that does not scale for thousands
of possible products. By contrast, family-based type checkers focus on a type check
for the whole product line so that a subsequent check of a product line’s product is
superfluous. In this context, Kästner et al. presents an efficient approach for family-
based type checking of annotation-based product lines to type check a corresponding
product line as whole [Kästner et al. 2012a]. In a similar manner, efficient approaches
exist for the type checking of product lines implemented based on FOP [Apel et al. 2010;
Kolesnikov et al. 2013], and DOP [Schaefer et al. 2011]. In addition to these concepts,
Kästner et al. present a variability-aware module system that allows the developer to
implement variable modules with variable interfaces in between [Kästner et al. 2012b].
The concept of Kästner et al. also supports type checks of each module in isolation.
Thus, it is not necessary to combine the modules for the purpose of type checking. By
contrast to these concepts, we introduced the variable interface as part of our multi-
level interfaces and combined it with the concept of feature-context interfaces so that
we are able to detect errors a priori. Thus, the concept of the variable interface with
feature-context interfaces is able to support the developer during the implementation
task so that it is possible to prevent the developer from type conflicts.

Another concept to support the implementation task of product lines was presented by
Ribeiro et al. with emergent interfaces [Ribeiro et al. 2010]. In detail, an emergent
interface focuses on the maintenance of annotation-based product lines and presents
information of and for other features by presenting artifacts that are provided and
required. The concept is based on dataflow analyses and it, similar to our feature-con-
text interfaces, helps to ease the error-prone development step of product lines. Based
on the concept of emergent interfaces, Thüm et al. present an extended version of these
interfaces with additional contract information [Thüm et al. 2016]. For instance, based
on existing method contracts, it is possible to extract the range in which a value of a
method parameter is valid. This information is used to extend the emergent interfaces
to emergent contract interfaces. As a result, if such an information is available, it is
not necessary for the developer to extract this important information manually so that
time and effort can be saved. However, as mentioned above, the concepts mainly focus
on annotation-based product lines, whereas our concept was introduced for the concept
of FOP. Nevertheless, in future work, it is possible to generalize our concept to other
composition-based approaches or implementation paradigms.

Analyses for the Behavioral Level

As mentioned above, the analysis of product lines can be associated to family-based,
product-based, and feature-based strategies as well as combinations thereof [Thüm et al.
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2014a]. In particular, if we consider analyses for the behavioral level, the most concepts
are based on these strategies. Therefore, we briefly consider proposed concepts and
structure the following paragraphs accordingly.

First, we consider optimized product-based strategies. In this context, Bruns et al.
proposed a delta-oriented slicing that also aims to reduce the effort for deductive veri-
fication [Bruns et al. 2011]. The concept of DOP uses deltas to describe the difference
between two products. In this context, the algorithm of delta-oriented slicing identifies
the proofs that are affected by the deltas of two input products. Using the resulting
information as input, the concept of Bruns et al. focuses on a reuse of existing parts of
proofs from the first product so that it is only necessary to partly reanalyze the second
product. In addition to this approach, Hähnle et al. proposed abstract method calls to
also improve the product-based strategy [Hähnle et al. 2013]. The concept was intro-
duced for DOP and it also focuses on a reuse of already existing proofs. In detail, the
concept introduces abstract contracts to explicitly separate the contract in a reusable
abstract and in a concrete part.

By contrast to the product-based strategies, Damiani et al. proposed a feature-product-
based strategy for the purpose of product-line verification [Damiani et al. 2012]. In de-
tail, a feature-product-based strategy is a mixture of the feature-based and a product-
based strategy. This means, some properties are checked features-based, whereas other
properties needs to be checked using the product-based strategy as a feature-based anal-
ysis is not sufficient [Thüm et al. 2014a]. Considering the concept of Damiani et al., this
strategy can be transformed as follows. First, the deltas are verified in isolation based
on symbolic assumptions. Afterwards, during the product generation, these assump-
tions are replaced by instances so that already verified aspects are efficiently reused in
the context of the product verification. Another feature-product-based approach was
proposed by Thüm et al. based on proof compositions [Thüm et al. 2011b]. Here, the
idea is to use composed Coq proof scripts of features (i.e., partial proofs) to verify the
individual products.

Another mixture of the general analyses strategies is the feature-family-based strategy.
In this context, the feature-based strategy is applied first, followed by the application
of a family-based strategy for all artifacts that we cannot analyze in isolation. One
representative of this strategy in the context of behavior analyses, is the concept of
Hähnle and Schaefer. The authors proposed a form of the Liskov principle that can
be applied to DOP [Hähnle and Schaefer 2012]. In detail, the Liskov principle can be
used to modularize the verification in the context of OOP based on inheritance rela-
tions [Liskov and Wing 1994]. For the purpose of applying the concept to DOP [Hähnle
and Schaefer 2012], the authors propose to adapt the concept to verify the core and
each delta of the DOP product line in isolation. Afterwards, it should be possible to
conclude to verification results for the complete product line.
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In sum, if we consider the described analysis strategies, multi product lines are not
explicitly focused. Therefore, there is no evaluation regarding multi product lines and,
thus, it is not clear to which extend the approaches are applicable in this area. Fur-
thermore, most of these strategies for the analysis of the behavioral level are based on
the generated products. As a result, the concepts are not applicable to huge product
lines as the generation and verification of all products is almost infeasible.
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8. Conclusion and Future Work

The reuse of software artifacts is a central part of the software-development process.
Especially when we focus on the development of similar programs tailored to the needs
of different customers, the reuse of software artifacts is inevitable to achieve an efficient
development process. In this context, software product lines provide mechanisms to
develop similar programs from a common code base and, thus, to improve the reuse
between products. Nevertheless, even if software product lines are well-established, the
growing complexity of current systems results in new challenges, for instance, to ensure
a correct development or to analyze the whole system. To overcome these challenges,
the concept of multi product lines, which describes a set of interdependent product
lines, provides new techniques to lift the reuse to another level. As a result, besides the
reuse of individual software artifacts, we can also reuse entire product lines. However,
direct dependencies between the product lines of a multi product line exist that can
hinder the distributed development and extension of the underlying product line. For
instance, if one product line of a multi product line is changed (e.g., the modeling or
implementation), it needs to be checked whether these changes have an impact on other
product lines that also leads to a necessary adaption.

To avoid direct dependencies between the product lines of a multi product line and to
ease product-line analyses and evolution, we proposed the concept of multi-level inter-
faces. Thus, the thesis focused on the presentation of the holistic concept of multi-level
interfaces with its underlying interface levels that depend on each other. In detail, we
introduced and refined multiple interfaces to avoid direct dependencies during the mod-
eling, the implementation, and the specification of the behavior between the involved
product lines. For each level, we also defined one hypothesis for each interface that we
used in our evaluations to investigate our global research questions:

GRQ1: How can we represent the interfaces of the development levels of a multi
product line?
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GRQ2: Is it possible to generate the interfaces of the development levels of a
multi product line?
GRQ3: Can we use multi-level interfaces to improve the analysis and/or evolution
of multi product lines?

In the following, we consider the answers of our global research questions and present
our contributions:

1. We defined feature-model interfaces to avoid the direct dependencies between the
involved product lines on the modeling level of multi product lines. The fea-
ture-model interface is itself a feature model that only consists of the features
that are relevant in the context of the multi product line (cf. GRQ1). Based on
this definition, we proved how to profit from this interface during the analysis of
composed feature models in the context of multi product lines. We found that
concepts exist that allows us to generate our feature-model interface (cf. GRQ2).
However, because of scalability problems we designed a new algorithm for our
evaluation even if the algorithm itself was out of scope of this thesis. Based on
this, we investigated research question GRQ3 regarding the modeling level. In
detail, we evaluated the potential of feature-model interface in combination with
feature-model composition to ease the automated analysis using a three-month
snapshot of a real-world product line. As one result, feature-model interfaces are
able to prevent the re-execution of automated analysis during evolution in more
than half of all considered cases.

2. We defined the variable interface as an interface to encapsulate the variability on
the implementation level of the involved product lines. In detail, we used a list of
all product line’s API members with additional variability information (i.e., using
presence conditions) that we filtered to the features of interest according to the
upper modeling level (cf. GRQ1). We also showed how to automatically generate
this interface, as a manual creation is not suitable (cf. GRQ2). In addition, based
on the concept of a variable interface, we proposed the concept of feature-con-
text interfaces as a non-variable view on reusable API members. To investigate
our global research question GRQ3, we integrated tool support into FeatureIDE
and compared our feature-context interfaces with state-of-the-art approaches to
identify accessible API members in real-world product lines. Our findings show
that only feature-context interfaces provide an overview of all safely accessible
API members whereas all other approaches present unsound or incomplete results.
Thus, the variable interface in combination with the feature-context interfaces is
able to ease the implementation of (multi) product lines so that a developer does
not need to manually analyze existing feature and code dependencies.

3. As proof for the extensibility of our holistic concept of multi-level interfaces, we
also considered the behavioral level of the product-line development. In detail,
based on feature-oriented contracts, we presented three strategies to encapsulate
the specification of the different product lines of a multi product line (cf. GRQ1).
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Using a small example of a multi product line that is based on two product
lines, we investigated the application of each strategy to answer research question
GRQ3. In this context, we defined the feature-oriented contracts with FeatureIDE
and applied the program verification with KeY. As a result, we found that the
strategies are able to reduce the verification effort. However, even if we focused
on concepts that allow us to automatically generate the interfaces in future (cf.
GRQ2), we created the interfaces manually. Thus, it is an open question whether
we can ensure that the interfaces are correct by construction and, thus, further
research in this direction is necessary. Nevertheless, this investigation of concepts
for the behavioral product-line interface approves the extensibility of multi-level
interfaces.

4. We illustrated the holistic concept of multi-level interfaces showing the relation-
ship of each interface level to the corresponding upper levels. This illustration
also relates to research question GRQ1 as it was essential to find interface rep-
resentations that are able to consider the relations to the upper interface levels.
However, with our feature-model interface, the variable interface, and the strate-
gies of the behavioral product-line interface, we found a suitable representation
for each interface level that also considers these relations. Even if we created
the behavioral product-line interface manually, we already found solutions for the
generation of the feature-model interface and the variable interface. Thus, we can
answer the research question GRQ2 partially. In addition, we also presented four
cases of evolution for multi product lines when using multi-level interfaces and
gave an overview of the effects on the whole system. Based on this, we can also
answer the research question GRQ3 regarding evolution in a general scope. We
found that only in one of the cases, in which changes in a reused product line are
not compatible to the specific interface, we are forced to reanalyze the level of the
multi product line.

In sum, we conclude that multi-level interfaces help to avoid direct dependencies be-
tween product lines of a multi product line. As a result, it is possible to use a specific
interface of our multi-level interface to ease corresponding analyses and evolution. For
instance, using feature-model interfaces, we can reduce the complexity of feature-mod-
el compositions. Here, we proved that he automated analysis based on feature-model
compositions with and without a feature-model interface depends on each other so that
we can conclude from one analysis result to the other. In this context, we also showed
that feature-model interfaces can be used to ease the analyses during feature model
evolution as it can prevent us from reanalyzing the complete feature-model composi-
tion (i.e., if the new feature model is also compatible to the feature-model interface).
In addition, using feature-context interfaces, we can reduce the effort for the manual
analysis of a product-line, in which the developer searches for reusable implementation
artifacts. In this context, feature-context interfaces are able to present safely acces-
sible API members and, thus, prevent developers from type errors and optimize the
efficient source-code reuse. To complement our investigation, we used the behavioral
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product-line interface as a proof of concept for the extensibility of multi-level interfaces,
in which we also identified the potential for the analysis process of the correct behavior
of product-line’s products. Therefore, the concept of multi-level interface complies with
our initial goals to avoid direct dependencies between product lines and to ease the
analyses and evolution of the whole system of multi product lines.

Future Work

We identified several options for future work. First of all, we consider future work for
the presented interfaces and give a brief outlook on possible extensions. Second, we
present further concepts for future work including an extension for our holistic concept
of multi-level interfaces.

As one interface of our concept of multi-level interfaces, we proposed feature-model
interfaces. In this context, we presented several proofs regarding the analysis results
of feature-model compositions with and without feature-model interfaces according to
a set of state-of-the-art feature-model analyses. In this thesis, we mainly focused on
automated analyses that are most popular in the community. However, Benavides et al.
summarized further analyses [Benavides et al. 2010] so that it is possible to extend our
proofs by some of these analyses in future work. In addition, we investigated feature-
model interfaces by analyzing a real-world multi product line. Unfortunately, we had
only access to four snapshots of a very early state of this multi product line so that in
future work an extended evaluation would be desirable.

Regarding the variable interface and the feature-context interfaces, we illustrated that
we can use feature-context interfaces to identify safely accessible API members for the
development of product lines and multi product lines. We evaluated the concept on
an ordinary product line to illustrate its advantages. We also applied a user study to
compare the state-of-the-art mechanisms with our feature-context interfaces for the
task of identifying safely accessible API members. Unfortunately, the small number of
participants does not allow us to yield usable conclusions. Thus, in future work it is
a desired option to reapply the user study in order to gain additional insights into the
real potential of the variable interface with feature-context interfaces. Furthermore, our
current tool integration for feature-context interfaces in FeatureIDE only supports the
development of product lines but not multi product lines. Therefore, tool support for
multi product lines is still an open task for future work.

As a proof of concept for our multi-level interfaces, we also considered the behavioral
level regarding the development of multi product lines. In this context, we proposed
three strategies to realize the behavioral product-line interface. For our evaluation, we
created hand-written behavioral product-line interfaces so that it was possible for us to
find an appropriate strategy. Even if the strategy of a hidden configuration presented
the best results for a behavioral product-line interface, the task to automatically gen-
erate the interface is still open. In future work, it is possible to extend our tool support
to provide mechanism for the generation of the behavioral product-line interface. Fur-
thermore, to ensure the correctness of the interfaces for the evaluation, we additionally
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verified each interface. This step is not necessarily needed, if it is possible to prove
that the interface is correct by construction. However, such a proof is an open task for
future work, in which it needs to be ensured that an interface generation based on a
verified product line does not break existing proofs.

Besides the open tasks for future work regarding each presented level of the multi-level
interfaces, it is also possible to extend the holistic concept by new interface levels. For
instance, the originally proposed idea of multi-level interfaces also includes an interface
for non-functional properties [Schröter et al. 2013a]. In detail, non-functional proper-
ties, such as performance or footprint, can be affected when we (de)select a specific
feature [Siegmund et al. 2011]. The estimation of a feature dependency to a non-
functional property could be a complex task because we also need detailed knowledge
about the feature interactions of the underlying product lines. An interface for this
level, in which these properties are described, can be used to encapsulate these estima-
tions for the whole multi product line. In future work, someone can refine these ideas so
that it is possible to develop further tool support based on it. Furthermore, the current
tool support for the proposed levels of modeling and implementation is tailored to the
needs of our evaluations (e.g., the feature-context interface is tailored to a scenario of
single product lines). Thus, an improved and extended implementations is needed to
ease the development of multi product lines in practice and to enable further advanced
evaluations based on multiple complex multi product lines.
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Kästner, C., Ostermann, K., and Erdweg, S. (2012b). A Variability-Aware Module
System. In Proc. Conf. Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), pages 773–792, New York, NY, USA. ACM.
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