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Kurzfassung 

Die Kristallisation ist ein wichtiges Verfahren zur Trennung und Aufreinigung chiraler 

Substanzen. Für die Entwicklung eines Kristallisationsprozesses ist jedoch eine 

detaillierte Kenntnis über die zugrundeliegenden Fest/Flüssig-Phasengleichgewichte von 

essentieller Bedeutung. Insbesondere in frühen Stadien der Prozessentwicklung können 

computerbasierte Methoden helfen, die dafür benötigten substanzspezifischen Daten zu 

generieren, um langwierige und stoffintensive Experimente zu ergänzen und zukünftig 

möglicherweise sogar zu ersetzen.  

In dieser Arbeit wurden rechnergestützte Methoden allein und in Kombination mit 

Experimenten verwendet, um die nötigen stoffspezifischen Energiebeiträge zur 

Ermittlung der freien Lösungsenergie zu berechnen. Dafür wurden zwei thermo-

dynamisch konsistente Wege entwickelt, der Schmelzzyklus und der Sublimationszyklus, 

mittels derer die Löslichkeiten organischer Kristalle berechnet werden können. In beiden 

Zyklen werden die Unterschiede zwischen chiralen Kristallen aufgelöst. Sie sind ferner 

in der Lage, sowohl reine als auch gemischte Lösungsmittelsysteme zu beschreiben und 

sind nicht auf verdünnte Lösungen beschränkt. In dieser Arbeit wurde untersucht, ob 

Löslichkeitsvorhersagen unter Verwendung moderner quantenchemischer Methoden für 

die Entwicklung von Kristallisationsprozessen anwendbar sind. Weiterhin wurde 

analysiert, welchen Einfluss Phasenübergangsenergien und deren thermische 

Korrekturbeiträge sowie Wechselwirkungen in der Lösung auf die Berechnung absoluter 

und relativer Löslichkeiten chiraler Substanzen haben.  

Exakte Gitterenergien sind sowohl zur Berechnung von absoluten Sublimationsenergien 

als auch von Energieunterschieden zwischen verschiedenen chiralen Kristallen 

erforderlich. Wenn diese mittels periodischer Dichtefunktionaltheorie (DFT) berechnet 

werden, hängt die Genauigkeit maßgeblich von der Wahl des Dichtefunktionals, der 

Größe des Basissatzes und der Dispersionskorrektur ab. Es konnte weiterhin gezeigt 

werden, dass die präzise Berechnung thermischer Korrekturen zu den elektrostatischen 

Energien gleichermaßen wichtig und zudem stark methodenabhängig ist. Obwohl sie in 

der Literatur oft vernachlässigt werden, tragen thermische Korrekturen zu 

Energieunterschieden zwischen dem Enantiomer und der racemischen Verbindung bei. 

Diese werden durch Wärmekapazitätsunterschiede zwischen den beiden chiralen 

Kristallen hervorgerufen, welche auf Unterschiede in Molekül- und Gitterschwingungen 

zurückzuführen sind. Zum Teil sind diese mittels Raman-Spektroskopie nachweisbar. Die 

Rechengenauigkeit hängt dabei stark von der Flexibilität des Moleküls und der 

Anordnung im Kristall (Packung) ab. Mit dem Sublimationszyklus konnten freie 

Lösungsenergien mit nahezu chemischer Genauigkeit bestimmt werden (1 kcal·mol-1).  

Er bietet somit eine vielversprechende Alternative zum häufiger verwendeten 

Schmelzzyklus, für den substanzspezifische experimentelle Daten benötigt werden. 

Dennoch sind beide Zyklen noch nicht zuverlässig genug quantifizierbar, um in der 

frühen Prozessentwicklung Anwendung finden zu können. Dahingegen können präzise 

berechnete Energieunterschiede schon jetzt die Entwicklung von Trennverfahren von 

Enantiomeren unterstützen, indem sie zur Abschätzung der eutektischen 

Zusammensetzung der Lösung verwendet werden.  
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Abstract 

Crystallization is an important separation process which is in particular attractive for 

chiral substances. Detailed knowledge on the underlying solid-liquid phase equilibria 

(SLE) is essential for the design of any crystallization process. Particularly in early stages 

of process development computational methods can supplement, or possibly replace 

tedious and material intensive experiments. For example, they can be used to generate 

substance-specific information which are required for solubility prediction.  

Motivated by the above, this thesis uses a joint computational and experimental approach 

in order to evaluate the numerous energy contributions required for determining solid-

liquid phase equilibria. A consistent computational framework is derived for calculating 

mole fraction solubilities of organic molecular crystals via the so-called melt cycle and 

the sublimation cycle. Both cycles can quantify the influence of the crystal structure on 

the solubility. They are further capable of handling pure as well as mixed organic solvent 

systems and are not restricted to infinite dilution. It was investigated whether solubility 

predictions using state-of-the-art quantum chemistry methods are applicable for 

crystallization process design. It was further analysed, to what extent calculated absolute 

and relative solubilities of chiral crystals are affected by phase transition energies and 

their thermal contributions as well as molecular interactions in solution.  

For calculating absolute sublimation energies and differences between chiral crystals 

precise lattice energies are required. When determined by periodic density functional 

theory (DFT), calculations mainly depend on the choice of the density functional, the size 

of the basis set and the dispersion correction. It was further shown, that an accurate 

calculation of thermal corrections to the electrostatic energies are equally important and 

that their computation is strongly method-dependent. Even though they are often 

neglected, thermal corrections contribute to energy differences between the enantiomer 

and the racemic compound. They are related to heat capacity differences between the two 

chiral crystals which are evoked by differences in molecular and lattice vibrations. In 

parts, those are detectable experimentally by Raman spectroscopy. A precise calculation 

of heat capacity differences is dependent on the flexibility of the molecule and on the 

crystal packing. Finally, solution Gibbs energies can be calculated close to chemical 

accuracy (1·kcal mol-1) via the suggested sublimation cycle. It therefore competes well 

against the more commonly used melt cycle which requires substance specific 

experiments. However, both thermodynamic cycles are not reliable enough to be used for 

solubility prediction for an early stage crystallization process design. Nevertheless, 

precise sublimation Gibbs energy differences can already be used to support 

enantioseparation process design by estimating the eutectic composition in solution.   
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1 Introduction 

 

1.1 Crystallization for purification and enantioseparation 

Crystallization processes are one option of many separation and purification process 

strategies. Nowadays, the organic chemical industry is based to roughly 95 % on crude 

oil and natural gas products1 and rectification processes are commonly used for their 

separation and purification. However, most fine chemicals which are often applied as 

starting chemicals for pharmaceuticals, agrochemicals and life science products2 are solid 

at environmental conditions.3 Hence, for the production of these low-volume, high-value 

products separation processes such as chromatography, membrane processes, liquid-

liquid extraction and crystallization are preferable. Especially many active ingredients 

(such as pharmaceuticals) have high molar masses and form a crystalline solid under 

environmental conditions which is why a crystallization process is often the final step in 

the downstream process section. Furthermore, pharmaceuticals are often sensitive to 

elevated temperatures which makes the low temperature crystallization processes a 

preferable process option.  

Besides their application to the separation and purification of speciality chemicals, 

crystallization processes are regarded as a cost-efficient way to separate enantiomers 

because of rather modest requirements in terms of technical equipment. In the 

pharmaceutical industry, the resolution of enantiomers by the formation of diastereomeric 

salts is still the most common way to separate a 50:50 (racemic) mixture of enantiomers 

and is thus called “classical resolution”.4 Besides that kinetically driven preferential 

crystallization processes are capable of “breaking the symmetry” and hence producing 

pure enantiomers from a racemic mixture. Furthermore, thermodynamically based 

enantioseparation can be used to generate pure enantiomers from a mixture which is 

enriched by one of the enantiomers.5 All crystallization-based separation methods rely 

strongly on knowledge about the specific underlying solid-liquid phase equilibria and 

consequently on the solution thermodynamics of the target molecules. 

 

1.2 Solution thermodynamics 

A general description of solution thermodynamics includes details on the crystalline solid 

phases and on the composition of the liquid phase(s) and thus on the solubilities of the 

specific crystalline solid. The characteristics of these phases and their compositions are a 

function of temperature and the solvent system which results in a complex system with 

many unknown molecule-dependent parameters. A merely experimental determination of 

all unknown quantities is a tedious and substance, as well as equipment intensive 

procedure. As a consequence, it is expensive and should be accompanied or possibly 

replaced by computational methods. 

A rather rigorous way to address this issue computationally is the field of solubility 
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prediction, which is the focus of this work. It is desirable to use a limited amount of 

experimental input for calculating solubilities or to solely apply computational methods 

which do not require substance specific experimental inputs. Solubility prediction is of 

interest in numerous fields for the chemical industry, such as pharmacy, drug and 

agrochemical design.6 Applications within these fields are mainly focused on aqueous 

solubility and generally assume the solution to be infinitely diluted. For example, 

Quantitative Structure-Property Relationships (QSPR)7 and data mining are capable to 

predict the solubility with limited input parameters but often lack physical insight.8 

However, a better understanding of physics for solid-liquid phase equilibria in order to 

develop molecular modelling methodologies has been defined as the most important 

research in the field of crystallization process design.9 It has been shown that purely 

theoretical methods - where the only information needed is the experimental crystal 

structure - are capable of achieving slightly worse but promising levels of accuracy in 

comparison to empiric methods.10 When integrated with computational methods to 

predict the crystal structure11 knowing only the molecular structure a solely 

computational way becomes achievable.  

In contrast to solubility prediction in the frame of drug design in the pharmaceutical 

industry, its application for crystallization processes should not be limited to aqueous 

media. Furthermore, for a cost-efficient crystallization process with high productivities, 

solid-liquid phase equilibria with high saturation concentrations are favourable. Hence, 

besides water as a solvent there is a broad spectrum of solvent systems which includes all 

classes of pure organic solvents as well as mixed organic-organic and mixed aqueous-

organic solvent systems, where the choice in solvent may be of interest for enhancing the 

solubility or to find an anti-solvent that lowers the solubility disproportionally strong. 

These issues will be addressed in this work by studying various organic non-electrolyte 

systems while focussing on the field of solubility prediction for enantioseparation by 

crystallization.  

 

1.3 Structure of the thesis 

Chapter 2 (“Theory and Computational Methods”) delivers the general thermodynamics 

of solid-liquid phase equilibria (SLE) and its specifics for modelling SLE of chiral 

molecules. Two thermodynamic approaches to calculate solubilities of crystalline organic 

substances are presented, the melt cycle and the sublimation cycle. The theoretical 

background for modelling molecular interactions in the crystalline solid and in solution 

as well as specifics on their computational implementation are presented.   

Chapter 3 (“Experimental Methods”) introduces all measurement methods that are used 

for a broad experimental investigation of the phase transition thermochemistry of three 

chiral molecules.   

Chapter 4 (“Results and Discussion”) contains all experimental and computational results 

of this work. The first part of chapter 4 (section 4.1 and 4.2) evaluates the accuracy of the 

melt and the sublimation cycle for two well studied model substances. Subsequently, the 

accuracy of state-of-the art electronic structure methods to calculate the dominant energy 
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contribution within the sublimation cycle, the lattice energy, is studied. In a second part 

of chapter 4 (section 4.3) the melting and sublimation phase transition is studied for three 

chiral representatives using experiment and theory; namely lactide, naproxen and 

3chloromandelic acid. The absolute sublimation energies and energy differences between 

the enantiopure and corresponding racemic crystals are calculated and compared to 

experiment. The relative energies are subsequently used in section 4.5 to approximate the 

solution behaviour of mixtures of chiral molecules which have been determined as well 

experimentally. In a third part of Chapter 4 (section 4.4 and 4.6) the two thermodynamic 

cycles are used to calculate solubilities and their temperature dependency for selected 

chiral molecules which have been measured in a variety of pure and mixed solvent 

systems.  

Chapter 5 (“Conclusion and Outlook”) summarizes the main findings and suggests 

directions for future research.  

The Appendix contains selected computational details and primary experimental data. 
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2 Theory and Computational Methods 

 

This chapter presents the thermodynamic background of solid-liquid phase equilibria 

(SLE) and its specifics when modelling chiral system (section 2.1 and 2.2). The field of 

application is the design of crystallization processes for purification and enantio-

separation. Two thermodynamic approaches to calculate solubilities of organic crystals 

are presented, the melt cycle and the sublimation cycle (section 2.3 to 2.5). The theoretical 

background for modelling molecular interactions in the crystalline solid using ab-inito 

quantum chemistry methods are presented (see section 2.6). Method specific compu-

tational details which have been used throughout this work are given in section 2.7. 

 

2.1 Chirality and enantioseparation 

A large number of molecules are chiral which means they exist in two constitutionally 

identical isomeric forms that are non-superimposable mirror images of one another. The 

two opposite counterparts are called enantiomers. They are commonly labelled according 

to their ability to rotate polarized light by (+) vs. (-) or by (D) vs. (L) for dextro- and levo- 

or by the molecular configuration around the chiral centre with (S) vs. (R) which stands 

for sinister and rectus.12 On the one hand, all proteins and enzymes as well as their 

building blocks, amino acids, are chiral (except glycine). On the other hand, many fine 

chemicals such as pharmaceuticals, agrochemicals, flavours and fragrance are chiral as 

well. For example, 56% of the currently used drugs are chiral molecules.13 Stereoisomers 

can have different effects on receptors in the human body which results in different 

pharmacological and toxicological properties of the two enantiomers of a drug molecule. 

One example is naproxen (see Figure 2.1) which is an example case of a chiral molecules 

within this work. Only the (S)-enantiomer of naproxen is used as a nonsteroidal anti-

inflammatory drug while (R)-naproxen does not exhibit the wanted effects14 but is 

suspected to act as liver toxin15. 

 

Figure 2.1: The two enantiomers of naproxen. (left) (S)-naproxen which is used a nonsteroidal 

anti-inflammatory drug and (right) the pharmacologically unwanted (R)-naproxen. The 

asymmetric carbon molecule - the chiral centre - on the propionic acid side chain is marked. 

 

Until recently, roughly 90 % of all chiral pharmaceuticals are still marketed as 

“racemates” which consist of an equimolar mixture of the two enantiomers.13 Racemates 

are denoted with the prefix (±)- or rac- (or racem-) or by (RS) which is used within this 

work.16 Nowadays the U.S. Food and Drug Administration (FDA) requires that drugs 

have to be distributed as pure enantiomers or the mixture has to be proven to be 
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harmless.17 Hence, most newly introduced drugs today are single enantiomers rather than 

racemic mixtures.18  

Enantiomers have the same molecular structures and thus identical physical and chemical 

properties in an achiral environment which aggravates their separation. Pure enantiomers 

can be provided by preferentially synthesizing one of the enantiomers in an asymmetric 

synthesis19. On the other hand, a racemic or slightly enriched synthesis mixture can be as 

well separated in a downstream process. Focussing on post synthesis processes, 

frequently applied methods to separate enantiomers are chromatography, crystallization 

and membrane processes.5 Further process options are available but less common because 

of a smaller field of application like preferential sublimation20 which requires the crystal 

to sublimate at process relevant conditions.  

Enantioseparation by crystallization is a downstream process option which is highly 

selective and comparably cheap on industrial scale as it requires only basic technical 

equipment.21 It exploits the high selectivity when the crystalline solid that contains only 

one enantiomer is formed from a solution that consists of a mixture of both enantiomers. 

It is of special relevance if a product is marked as a solid and a crystallization or 

precipitation step is required anyhow as a final process step.5 Furthermore, pharma-

ceuticals are often sensitive to elevated temperatures and hence decompose above their 

melting temperature which mostly ranges in between 50 °C to 250 °C22. For these 

temperature sensitive molecules low temperature crystallization processes are the 

preferable process option. 

 

2.1.1 Classification of chiral substances 

For the design of a crystallization process in order to separate enantiomers it is of 

fundamental importance to elaborate what types of crystalline phases the pure 

enantiomers and their mixtures form. As shown in Figure 2.2, chiral substances are 

typically divided into three distinct classes: conglomerates, racemic compound-forming 

systems and solid solutions (pseudoracemates). Roughly 90 % of all chiral substances 

form a racemic compound which contains both enantiomers in an equimolar ratio within 

the crystal structure.23 However, there are molecular compounds with other 

stoichiometric ratios.24, 25 In contrast to that around 10 % of all chiral molecules form a 

mechanical mixture of the enantiopure crystals, a so-called conglomerate (Figure 2.2 a). 

Both cases form a minimum melting temperature in the binary system and a maximum 

solubility at a given T in the TPD, the so-called eutectic composition xeu. In rare cases 

molecules within the enantiopure crystal can be substituted by the counter-enantiomer in 

an ordered or disordered manner affecting the crystal structure. As indicated in Figure 2.2 

(c) the melting temperature and hence the solubility of such solid-solutions can be either 

lowered or increased by the counter enantiomer; in the ideal case it is a constant (straight 

line). The thermochemistry of chiral substances can be complicated by featuring 

characteristics of more than one of the three distinct classes as shown for example in the 

case of malic acid.26 There are as well systems that form a metastable conglomerate while 

thermodynamically belonging to the class of compound-forming systems.27  
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Figure 2.2: Illustrations of solid-liquid phase diagrams of the three most common classes of chiral 

systems: (a) conglomerates, (b) racemic compounds and (c) solid solutions or pseudo racemates; 

(bottom) binary melt phase diagram (top) ternary solution phase diagram –TPD. The number of 

coexisting phases is labelled in roman numbers. The eutectic composition is denoted by xeu. 

 

Structural clarification of a chiral system can be done by investigating the binary solvent 

free system using a combination of caloric measurements (DSC) and X-ray diffraction 

(XRPD or single crystal XRD). For unravelling the TPD solubility, measurements are 

combined with diffraction methods of equilibrated crystalline solid. The phase behaviour 

and hence the type of chiral system are often the same in the melt and in solution but there 

are as well exceptions. The hydrochloric salt of histidine for example forms a 

conglomerate in the binary system and a racemic compound in presence of water.23 

Even though polymorphism (the ability of a given compound to crystallize in more than 

one crystal form) is less frequently observed for chiral molecules28, structural clarification 

and, hence, the generation of the binary melt and ternary solution phase diagrams can be 

further complicated by polymorphism or the formation of solvates. Polymorphs can be 

either formed exclusively when crystallized from the melt or they can be solvent mediated 

and hence appear only in the TPD. Statistically, one out of three organic molecules in the 

Cambridge Structural Database (CSD) are polymorphic.28 In any case the crystalline solid 

phase plays a crucial role for SLE and thus has to be characterized with case. The 

following section presents specifics about the characterization and classification of 

organic crystals. 

 

2.1.2 Crystal structure 

A perfect crystal can be described as a system that is build up by a periodic arrangement 

of a specific well-defined entity, the unit cell. The unit cell is defined as the smallest 

material portion which can be parallelly displaced in three dimensions to form the 
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crystal.16 The unit cell is characterized by the length of the cell vectors a, b and c as well 

as the angles between the cell vectors α, β and γ (see Figure 2.3).29 

 

Figure 2.3: Unit cell (or primitive cell) and unit cell parameters, where a, b and c are the cell 

vectors and α, β and γ the angles between the cell vectors. 

 

Crystal structures are grouped into one of the 14 Bravais lattices containing seven main 

crystal systems which differ in the way the cell vectors and angles are organized. The 

simplest crystal system is the cubic system where a = b = c and α = β = γ = 90°. In the 

most complex triclinic crystal system all lattice vectors differ in length and there is no 

vector at a right angle to another vector. Additionally, to the Bravais lattice groups the 

internal symmetry of the molecules within the unit cell is captured by its space group. 

There are exactly 230 space groups that can describe the three-dimensional symmetry of 

crystals. Roughly 85 % of all organic crystals organize in a monoclinic, orthorhombic or 

triclinic crystal system which form in 70 % of all cases a P21/c (30 %), P1, P21, C2/c, 

P212121 and Pbca space group.30 Inorganic crystals, on the other hand, mostly (~66 %) 

organize in one of the three other crystal systems, which are tetragonal, trigonal / 

hexagonal and cubic.30 Another characteristic quantity of a crystal structure is the number 

of molecules, Z, or the number of independent molecules, Z’, within the unit cell. In  

88 % of the cases Z’ is smaller or equal to one31 while the absolute number, Z, can be 

significantly larger. 

Information about crystals structures, like its unit cell parameters, atomic coordinates and 

internal symmetry, is most commonly obtained from single-crystal X-ray 

crystallography.32 Besides an experimental determination of the most thermodynamically 

stable crystal structure and experimental screening of possible polymorphs and solvates 

computational methods have been developed in the last decades. So-called crystal 

structure prediction (CSP) methods deliver computational counterparts to predict the most 

stable crystalline structure and possible polymorphic crystal forms from the structural 

formula only.11 Significant progress has been made in the last years to predict the 

molecular structure of small rather rigid molecules33 but the methods are nowadays as 

well capable to handle larger, more flexible molecules as well as salts and hydrates34. 

Experimental as well as computational investigation are related to one specific 

temperature. Computations are performed for the static crystal at zero Kelvin. As well 

experiments are most accurately performed below room temperature.35 However, 

temperature and pressure can have several effects on the crystal structure. On the one 

hand a specific molecule can pack in multiple ways into a crystalline, which is called 



Theory and Computational Methods 8 

 

polymorphism, where one specific crystal structure is stable only in a certain temperature 

and pressure range.32 On the other hand the unit cell parameters (and hence the volume) 

of one specific crystal structure are functions of temperature and pressure. The 

temperature dependency of the density (reciprocal of specific volume) has been shown to 

be approximately a linear function with a slope of in between 0.15–0.35 mg cm-3 K-1 for 

most organic moelcules.35 This aggravates a comparison of experimental data and 

computations which are commonly performed using quantum chemistry methods and 

thus for the static crystal at 0 K. Furthermore, the thermal expansion effects the 

temperature-dependent thermochemistry of crystals by effecting the heat capacity of the 

crystal.36  

 

2.1.3 Enantioseparation by crystallization 

Conglomerates can be separated from a racemic mixture by preferential crystallization. 

This kinetically driven resolution of a racemic mixture has been advanced over the last 

decade21 and was applied as well for continuous process strategies37, 38. Unfortunately, 

these process strategies are not directly transferable to racemic compound-forming 

systems but concepts have been developed to separate their enantiomeric enriched 

solutions.39,40 There are other process strategies which exploit the solution 

thermodynamics of mixtures of enantiomers to separate enantiomerically enriched 

solutions. For example, a shift of the eutectic composition with temperature and/or the 

solvent can be exploited to separate enantiomers of a racemic compound-forming 

system.41 Besides that industry relies on the availability of a chiral agent that can form 

diastereomeric salts and thus on a separation of the racemic mixtures by “classical 

resolution”.4  

This work focuses on the most common class of chiral molecules, the racemic compound-

forming systems. The thermodynamic feasibility and yield of a crystallization process 

depends on the solubilities of pure enantiomers, the racemic compound and their mixtures 

and thus on the ternary phase diagram. Of special importance is the solubility and 

enantiomeric composition of the eutectic mixture, the eutectic composition xeu, which 

confines the area where pure enantiomer can be crystallized. The illustration in Figure 2.2 

(b) shows the TPD of a racemic compound-forming system containing two symmetric 

eutectic compositions, xeu, which are the points of maximum solubility at a certain T. In 

contrast to conglomerate type systems (Figure 2.2 a), the enantiomeric ratio at the eutectic 

lies in between the racemic mixture and that of the pure enantiomer. In the binary solvent 

free system, the eutectic composition is often regarded as an invariant point. However, it 

can depend on pressure as shown for binary mixtures of achiral organic substances.42 

Within the TPD, it depends on the solubility behaviour of the enantiomer and the racemic 

compound and their mixtures. As a consequence, it is not an invariant point but instead is 

a function of temperature and the solvent.43, 44 

For an infinitely diluted system, the solubility is independent from the number of 

dissolved molecules and hence as well from the enantiomeric ratio in solution. Industrial 

crystallization processes, however, are preferably operated at high solution 
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concentrations to enable high productivities. In concentrated solutions solute-solute 

interactions can evoke non-ideal solution behaviour within the TPD. Two particularly 

non-ideal TPD are shown in Figure 2.4 including guaifenesin45 and mandelic acid46. Both 

systems exhibit a strong increase in solubility when both enantiomers are present in 

solution. Hence, for an accurate description of solid-liquid equilibria such effects have to 

be incorporated within the model framework. 

 

Figure 2.4: Two examples of the ternary solution phase diagram of mixtures of enantiomers that 

both exhibit strong deviations to an ideal solution. (left) TPD of the conglomerate forming system 

guaifenesin45 in water. (right) TPD of the racemic compound-forming system mandelic acid46 in 

water. 

 

2.2 Thermodynamics of solid-liquid phase equilibria (SLE) 

There are three fundamental thermodynamic states of matter (phases) that are relevant for 

modelling the solid-liquid phase equilibria (SLE): the gas phase (g), liquid phase (l) and 

solid phase (s). For a given composition, the number and types of phases depend on the 

temperature and pressure of the system and are usually plotted in a phase diagram. Figure 

2.5 (left) shows the temperature vs. pressure phase p-T-diagram of a single component 

system where the straight lines are the phase boundaries between two phases which are 

functions of temperature and pressure.  

For solid-liquid phase equilibria, the melting line represents the phase boundary. If the 

melting temperature is assumed to be independent of pressure the melting line is a vertical 

line in the p-T-diagram. The binary system which corresponds to the SLE of a crystalline 

solid and a solvent is depicted in Figure 2.5 (right) at one specified pressure. The melting 

line is split up into the solidus line and the liquidus line. In between these two-phase 

boundaries one solid phase and one liquid phase are in equilibrium. The liquidus line 

represents the temperature dependency of the higher melting component A within the 

lower melting component B (in this case referred to as the solvent) and is named 

“solubility line” throughout this work. 

The solubility of a solute in a designated solvent is defined as the analytical composition 
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of a saturated solution and is expressed in terms of the proportion of that solute in the 

solution. Hereby, a saturated solution is regarded as a solution which is in thermodynamic 

equilibrium with un-dissolved solute at specified values of the temperature and pressure.47 

 

Figure 2.5: (left) Schematic single component p-T-diagram which shows the dependency of the 

melting, sublimation and vaporization phase transition on temperature and pressure. (right) The 

binary melt phase diagram of mixtures of two arbitrary components A and B. TI
 and TII are two 

choices of temperatures on the liquidus line which refer to two different saturation concentrations 

(solubilities) of A in B, xI
A and xII

A. 

 

Hence, the solubility of an organic molecule depends on the chemical structure of the 

solute and the solvent as well as on the temperature. In rare cases it is as well a function 

of pressure which is neglected throughout this work. It is of relevance for exceptionally 

high pressures and special cases like highly diluted solutions of carbonates, alkaline 

earths and heavy metals in water48 but it can have an effect on the melting temperature of 

a solvent free system26. The solubility is commonly quantified by the mole fraction, the 

mass fraction, molality, mole ratio, mass of the solute per volume of the solvent etc. In 

this work the solubility of the solute, i, is expressed as either the mole fraction, xi, or mass 

fraction, wi, of the solute in a solvent (eq. (1)). Hereby, n and m are the amount of 

substance and the mass of the constituents i…N, respectively. A solution is called an 

infinite dilution or dilute solution if the sum of the mole fractions of solutes is small 

compared with unity.16 

+ +

= =
+ + + + + +1 1... ...

i i
i i

i i N i i N

n m
x or w

n n n m m m
 (1) 

 

2.2.1 Fundamental thermodynamics for modelling SLE 

Following nomenclature conventions from IUPAC (International Union of Pure and 

Applied Chemistry), throughout this work capital letters represent molar quantities (e.g 

the Enthalpy H). In a closed system with more than one phase, each phase can be treated 

as an open system that can exchange energy as well as matter via the phase boundaries. 
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The fundamental equation of the Gibbs energy of an open system relates the Gibbs free 

energy, G, to the enthalpy, H, and entropy S (ni = amount of substance of component i,  

n = the total amount of substance, T = temperature and p = pressure)49 

( )= − = , , ...i NnG nH nTS f T p n n  (2) 

A system consisting of i…N components and π…Π phases is in thermodynamic 

equilibrium if the relevant variables of state, T, p and ni, are constant in each phase. Hence, 

a system that is in equilibrium has to re-establish equilibrium in the case one of those 

variables of state is changed. The relation between the variables of state during a change 

of a persisting thermodynamic equilibrium is described by the Gibbs-Duhem relation, eq. 

(3), which has to be valid for each phase π at equilibrium.50 

1

0
N

i i

i

S dT V dP x d     
=

− + =  (3) 

Eq. (3) uses the definition of the chemical potential μ
i
𝜋 = f (T, p, 𝑥𝑖…𝑥𝑁) of component i 

in within phase π. The chemical potential is defined as the partial molar Gibbs free energy 

and is related to the activity aπ
i , the effective concentration, of a compound in a certain 

phase (see eq. (4)).  

( )0

, ,

ln        with         , ,

j i

i i i i i i i i

i P T n

G
Z RT a a x T p x

n



      



 
= = = + = 

 
  (4) 

Hereby, μ
i
0 is the chemical potential of that species under some defined set of standard 

conditions and is commonly related to the pure component in the same state of matter. 

The activity coefficient, γi, is a dimensionless quantity which describes the deviation of 

the real system from an ideal mixture. It lumps all non-ideal molecular interactions of 

component i in the mixture into one quantity that is a function of temperature, pressure 

and composition. The difference between the chemical potential of a real system (eq. (4)) 

and that of an ideal system under the same conditions is called the excess chemical 

potential. It is equal to the partial molar excess Gibbs free energy as shown in eq. (5). 

lnE E

i i iG RT  = =  (5) 

The excess chemical potential is closely related to the pseudo-chemical potential, 𝜇𝑖
∗, 

which has been introduced by Ben-Naim51 and which is frequently used in computational 

chemistry. The pseudo-chemical potential is defined as the change in the Gibbs energy 

for the process of placing component i at some fixed position in the phase with a fixed 

temperature, pressure and composition.51 For modelling of mixtures it has the advantage 

that it can be calculated at any molar concentration within the solution. As a consequence, 

it is not restricted to infinite dilution. Like the excess chemical potential, it is the chemical 

potential in solution minus the ideal entropic contribution (see eq. (6)).52 It is thus only 

different from the excess chemical potential if the internal partition function of the 

molecule is affected by the phase transfer.53  

,*   lni i iRT x  = −  (6) 
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The total differential of the chemical potentials (eq. (7)) is needed to derive the 

dependency of the phase equilibrium to the variables of state and thus the thermodynamic 

relation for modelling solid-liquid phase equilibria with π = s, l. The three parts represent 

the thermal, mechanical and chemical potential, respectively. 

1

.

N
i

i i i j

j j T P

d S dT V dP d
x


     




 

−  
= − + +  

  
  (7) 

The total differential of the chemical potential combined with the Gibbs-Duhem relation 

(eq. (3)) can be used for deriving the dependency of temperature, T, and composition, xi, 

of a binary system (A and B) with two coexisting phases (s and l) at thermodynamic 

equilibrium.50, 54 For SLE this results in eq. (8) where [xA
s (HA

l − HA
s ) + (1-xA

s )(HB
l −

HB
s )] is the solution enthalpy ΔHsol of A.  

( )
( ) ( ) ( )( ) ,1 1

s l l
A A i

l ll s l s s l s
A i T pA A A A A B B

T x xdT

dx xx x H H x H H

−  
=  

 − − + − −   

 (8) 

There are several variants of SLE which are relevant for modelling solubilities of chiral 

molecules and their mixtures. In the following, two selected variants are derived which 

are most relevant for modelling SLE of chiral compound-forming systems.  

 

2.2.2 SLE of a binary or pseudo-binary system 

The simplest case of a binary SLE is set up by two components which are both present in 

the liquid phase (Al and Sl) but where only one component (As) is present in the 

equilibrated solid phase (see Figure 2.6). This type of SLE perfectly describes the 

solubility of a single component crystalline solid which is in contact with a solvent. In a 

more complex form Sl can be a representative for a solvent mixture Sl
i…Sl

N of N 

constituents within a pseudo-binary system. 

 

Figure 2.6: Illustration of a binary, two phase solid-liquid equilibria (SLE) - The dissolution of a 

component A in a second compound S which stays in the liquid phase (e.g. a solvent). 

 

The solubility of a single component solute can be either derived via the fundamental 

equation of two binary coexisting phases (eq. (8)) or directly from the necessary 

conditions of a thermodynamic equilibrium which needs the thermal, mechanical and 

chemical potential to be identical in both phases.51 Neglecting the influences of pressure 

and assuming that the temperature in all phases is identical the necessary condition for 

thermodynamic equilibrium of one solid (s) and one liquid (l) phase is given by eq. (9).  
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 =( , , ) ( , , )s s l l
i i i iT p x T p x  (9) 

In combination with the definition of the chemical potential from eq. (4) one gets a 

relation of the molar concentration of compound i in the liquid phase, the solubility xi, to 

the difference in the chemical potential of compound i in the pure solid phase and the 

liquid phase that is saturated with compound i, the pseudo-chemical potential μ
i
𝑙,∗ which 

has been defined previously in eq. (6). 

,*

,ln l l s

i i i sol iRT x G − = − =   (10) 

The difference in chemical potential of compound i in the pure solid phase and the 

saturated liquid phase is defined as the partial molar Gibbs free energy of solution, ΔGsol,i. 

It includes all interactions of the solute with the solution and thus as well non-ideal 

solution quantities. Equation (10) will be used in this work for the calculation of the 

solubility, xi, of single component solids which are commonly referred to as simple 

eutectic systems.  

 

2.2.3 SLE of a ternary or pseudo-ternary system 

There are two possible multicomponent systems that are of relevance for modelling solid-

liquid phase equilibria systems that contain two components in one liquid phase but only 

two components in the solid phase(s). The two variants are illustrated in Figure 2.7. The 

two SLE models are capable to describe the ternary solution phase diagram of chiral 

compound-forming systems. 

 

Figure 2.7: (left) Illustration of a ternary solid-liquid equilibria (SLE) - The solution contains one 

or more solvents Si
l which stay only in the liquid phase and two solutes (Al and Bl) that (a) 

crystallize into two solid phases (As or Bs) or (b) into a molecular compound (ABs). (right) 

Illustration of a TPD of a chiral compound-forming system. Grey shaded areas within the TPD 

correspond to the two SLE variants (a) and (b).  

 

The two variants in Figure 2.7 (left) are sufficient to describe the ternary solution phase 

diagram (TPD) of chiral compound-forming system. Hereby, A and B represent the two 
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enantiomers (R) and (S) and AB represents the racemic compound (RS) (Figure 2.7 (left)). 

System (a) in Figure 2.7 can be described in a similar way as binary two phase SLE 

(Figure 2.6). Thus, eq. (10) can be equivalently used but the pseudo-chemical potential 

of component i is now a function of the concentration of both solutes (Al and Bl). A system 

referring to type (b) in Figure 2.7 requires a model for the crystallization or dissolution 

of compound AB. The formation or dissociation of AB can be modelled analogous to a 

chemical reaction where νi is the stoichiometric coefficient (see eq. (11)). 

A BA B AB +   (11) 

The solid-liquid phase equilibria of a stoichiometric compound-forming system is 

commonly derived via the fundamental equation of two binary coexisting phases (eq. (8)) 

by adjusting the molar concentrations within the solid phase with the stoichiometry of the 

dissociation reaction of eq. (11). If one mole of compound AB is formed by υA and υB 

mole of component A and B, respectively, the molar concentrations within the solid phase 

are:50 

,    1 s sA B
A A

A B A B

x x
 

   
= − =

+ +
 (12) 

Combining the above formulated stoichiometry with the fundamental equation of two 

binary coexisting phases (eq. (8)) and the definition of the pseudo chemical potential (eq. 

(6)) gives the general equation of the solid-liquid phase equilibria of a stoichiometric 

molecular compound which is equivalent to the equation of proposed by Prigogine and 

Defay54. 

, ln

A Bl l

A B
sol AB s s

A B

x x
G RT

x x

     
  = −    
     

 (13) 

The molecular compound of a chiral system nearly exclusively consists of an equimolar 

“racemic” mixture of the two enantiomers (see Figure 2.7, right). If we assume that 1 mol 

of racemic compound (AB = RS) is formed by ½ mol of each enantiomer (A = R and B = 

S) the resulting stoichiometric constants are υR = υS = 0.5. Furthermore, both the solid and 

the liquid phase can be expressed as binary mixtures of R and S. Hence, eq. (13) can be 

reformulated with xl
R = (1-xl

S) and xs
S = xs

R = 0.5 as the solid phase comprises racemic 

mixture of both enantiomers. This results in a relation between the molar concentration 

of S and the Gibbs free energy of solution of compound RS which is equivalent to the 

equation derived by Prigogine and Defay54 and which will be used in this work for 

modelling mixtures of chiral compound-forming systems. 

( )
( )

( ), 2

1
2 ln ln 4 1

0.5·0.5

l l

R R l l

sol RS R R

x x
G RT RT x x

−
 = − = − −  (14) 

At the racemic (50:50) mixture xR = xS = 0.5·xRS where xRS represents the total solubility 

of the racemic compound. This way, equation eq. (14) can be reformulated and coincides 

with the equation (10) which has been formulated for a single solute SLE. 
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,ln l

RS sol RSRT x G− =   (15) 

 

2.2.4 Thermodynamic description of the eutectic composition 

Regarding racemic compound-forming systems, the design of an enantioselective 

crystallization process not only depends on the solubility of the pure enantiomer and 

racemic compound (eqs. (10) and (15)). It requires knowledge on the complete ternary 

phase diagram (Figure 2.7) and hence on the SLE of mixtures of the two enantiomers in 

solution (see eq. (14)). The width of the region where either a pure enantiomer or the pure 

racemic compound can be crystallized by thermodynamic control (marked in grey) is 

defined by the eutectic composition.44 Consequently, the eutectic composition is a key 

information which is required for crystallization process design of racemic compound-

forming systems. The eutectic composition and the enantiomeric excess ee are defined by 

or

eu eu eu

S S R

eu eu eu eu eu

S R S R

x x x
x ee

x x x x

−
= =

+ +
  (16) 

xeu is the maximum in solubility of the ternary system and its composition is a function 

of temperature and the solvent.44, 55 Variations of the eutectic composition with 

temperature can be potentially used for enantioseparation. The productivity of such a 

process is defined by the magnitude of the shift and the eutectic composition itself.44 In 

this section, a thermodynamic model is derived which relates the difference in Gibbs free 

energy of solution between the racemic compound and the enantiomer, ΔRS-SΔGsol, to the 

eutectic composition. It will be used in the following sections to predict xeu with different 

thermodynamic approaches to model ΔRS-SΔGsol. 

At the eutectic point, three phases are in equilibrium with each other, the pure solid 

enantiomer in excess, the solid racemic compound and the liquid phase with the eutectic 

composition. Assuming an excess of the (S) enantiomer and using the common definition 

which refers 1 mol of racemic compound to ½ mol of each enantiomer the phase equilibria 

are defined by: 

,

,

equil. 1:

1 1
equil. 2:

2 2

crystal sol S solution

crystal sol RS solution solution

S G S

RS G S R

  →

  → +

  (17) 

The solubility of a pure enantiomer and a racemic compound-forming system are 

described by eqs. (10) and (14) which are summarized below: 

,

,

enantiomer:                     ln

racemic compound:        ln 4 2

S sol S

R S sol RS

RT x G

RT x x G

= −

= − 
  (18) 

As illustrated in Figure 2.8, the phase equilibria that are present at the eutectic system can 

be established for the solid enantiomer (equil. 1b) as well as for the solid racemic 

compound (equil. 2b) which are in equilibrium with the same liquid phase.  
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Figure 2.8: Illustration of the TPD of a racemic compound. The phase equilibria are shown which 

are relevant for the derivation of a thermodynamic model relating the eutectic composition to the 

difference in Gibbs free energy of solution between the racemic compound and the enantiomer. 

 

Via equation (18) the four phase equilibria within Figure 2.8 are formulated: 

,

,

equil. 1a: ln

equil. 1b: ln

S sol S

eu eu

S sol S

RT x G

RT x G

= −

= −

       

,

,

equil. 2a: ln

equil. 2b: ln 4 2

RS sol RS

eu eu eu

R S sol RS

RT x G

RT x x G

= −

= − 
  (19) 

Equil. 2a in eq. (19) implies that the liquid phase in equilibrium with the pure racemic 

compound has a known composition of xS = xR = 0.5·xRS. Assuming an infinitely diluted 

system, the Gibbs free energy of solution of the enantiomer and the racemic compound 

within eq. (19) are the same for the eutectic system and for the pure system: 

, ,

, ,

eu

sol S sol S

eu

sol RS sol RS

G G

G G

 = 

 = 
  (20) 

Combining eq. (19) and (20) two equations can be derived that relate the solubility of 

each enantiomer at the eutectic system to the solubilities of the pure systems: 

2

4

eu

S S

eu RS

R

S

x x

x
x

x

=

=
  (21) 

Using the definition of the eutectic composition and the enantiomeric excess ee (eq. (16)) 

in combination with equation (21) forms a relation between the solubility ratio α = xRS/xS 

and the eutectic composition or the enantiomeric excess: 
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  (22) 

Equation (22) is equivalent to a model that was proposed in literature55 to estimate the 

eutectic composition from measured solubility ratios α = xRS/xS. Finally, we can combine 

equation (22) and (19) to relate the solubility ratio α to the difference in Gibbs free energy 

between the racemic compound and the enantiomer, ∆RS-S∆Gsol: 

( )
2

1 1

1 1 4
1 1 4exp 2 RS S solRS S

eu
Gx x

RT

x
−

=
 +

+ −

=
 
 
 

 
 (23) 

In case of no enantiomeric excess, xeu = 0.5 and the corresponding relative solubility 

αmin=2. The Gibbs free energy of solution difference is then ∆RS-S∆Gsol = -RT ln(2). This 

corresponds to an ideal conglomerate, a mechanical mixture of both enantiopure crystals. 

An alternative derivation56, using a reference state of a mole of molecules, independent 

of chirality, leads to to eq. (24). In that case xeu = 0.5 is related to ∆RS-S∆Gsol = 0. 

2

1 1

1
1 exp 2

eu

RS S sol

x
G

RT

 −

= =
 +  

+ − 
 

 
 (24) 

 

2.2.5 Temperature dependence of solid-liquid equilibria 

The solubility of organic crystalline substances always increases with increasing 

temperature. There are some salts, however, whose solubility in water does not change or 

even decreases with increasing temperature. The temperature dependence of the solubility 

can be described by the enthalpy of solution, ΔHsol, via the Van’t Hoff equation: 

( )
ln

1/

l

solHx

T R


= −


 (25) 

Eq. (25) is frequently used to extract ΔHsol from solubility measurements using a linear 

relation between the logarithmic mole fraction solubility and the inverse absolute 

temperature (in Kelvin). However, it was shown that a temperature and concentration 

independent solution enthalpy is often not valid, if solution temperatures are close to the 

melting temperature or if saturation concentrations are high.57-59 Besides determining the 

solution enthalpy indirectly from the temperature dependence of the molar solubility, it 

can be determined by isothermal solution calorimetry methods with high accuracy.60 If 

operated precisely, these methods are capable of quantifying influences of temperature 

and solution concentration on the solution enthalpy of organic non-electrolytes.61-63 

Solution calorimetry is a common method in pharmaceutical science to investigate 

polymorphism and molecular interactions in solution.64 
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2.3 Solubility prediction 

In early stages of crystallization process design, for example in pharmaceutical 

development65-67, the amount of substance available for experimental work is limited. In 

consequence, rather than intensively determining solid-liquid phase diagrams through 

direct solubility measurements, computational methods can be used to support or possibly 

replace experimental investigations. Popular and fast computational methods which are 

commonly used in industry are empirical Quantitative Structure–Property Relationship 

(QSPR)7 methods. . Those however lack in physical insight and are often limited to water 

as a solvent.68, 69 Most other approaches are based on computing the Gibbs free energy of 

solution, ∆Gsol, in order to predict solid-liquid phase equilibria via eq. (10).70 In this 

section two thermodynamic approaches for calculating ∆Gsol are presented which require 

a limited amount of substance-specific experimental data or ultimately rely exclusively 

on first-principle computational methods. 

 

2.3.1 Thermodynamic cycles for solubility prediction 

Before introducing the specific thermodynamic approaches to determine the Gibbs free 

energy of solution which have been applied in this work, the conceptual approach of so-

called “thermodynamic cycles” is elaborated. Analogously to the Hess’ Law of constant 

heat (enthalpy) summation, a so-called Bordwell thermodynamic cycle71 can be 

constructed in order to make a specific Gibbs free energy difference accessible - e.g.  

∆Gsol from eq. (10). In the following, the term thermodynamic cycle will be used when 

referring to a Bordwell type thermodynamic cycle. A conceptual illustration of a 

thermodynamic cycle is depicted in Figure 2.9. Two exemplary ways are set up in order 

to bypass a non-accessible (or hard-to-reach) transition between two distinct states S1 and 

S2 by introducing a limited amount of intermediate state I1-I5. These intermediate states 

should be either easily and precisely accessible by experiment or by computational 

methods. 

 

Figure 2.9: Conceptual illustration of a thermodynamic cycle which is constructed in order to 

detour the transition from the state S1 to S2 via intermediate states, I, by introducing a distinct set 

of auxiliary transition quantities, qi, that in sum describe the seeked quantity, Q. 

 

https://en.wikipedia.org/wiki/Gibbs_free_energy
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For the description of any thermodynamic quantity, qi, is accompanied by the addition of 

uncertainties of determining the auxiliary quantities, δqi, which contributes to the total 

uncertainty δQ. As every uncertainty δqi is assumed to be uncorrelated, we can describe 

the total uncertainty by the square root of the sum of squares of the uncertainties of the N 

auxiliary quantities: 

( ) ( ) ( )
2 2 2

1 i NQ q q q   = ++ ++  (26) 

For solubility prediction, the Gibbs free energy of solution has to be modelled in order to 

access solubilities via eqs. (10) and (14). Two thermodynamic pathways have been 

proposed in literature in order to access the Gibbs free energy of solution, ΔGsol.
72 Both 

concepts are illustrated in Figure 2.10. In the upper cycle, which will be referred to as the 

melt cycle, the solution free energy is approximated by the free energy difference when 

transferring a molecule from the solid crystal via the super-cooled melt into the solution. 

The lower cycle, which will be called the sublimation cycle, describes ΔGsol by the energy 

differences needed to transfer one molecule from the crystal to the gas phase and 

subsequently into the solution.  

 

Figure 2.10: Illustration of two thermodynamic cycles to describe the free energy of solution, 

Gsol. The melt cycle (top) relies on the free energy of melting, Gmelt, and on the partial molar 

free energy of mixing, GE. The sublimation cycle uses the free energies of sublimation, Gsubl, 

and the solvation free energy, Gsolv. Both cycles rely on specific solvent/molecule properties 

(indicated in red). 

 

More specifically, the melt cycle relates the solution Gibbs free energy, ΔGsol, by the 

Gibbs free energy of melting, ΔGmelt, and the excess Gibbs free energy of mixing the 

supercooled melt with a solvent, ΔGi
E. 

E

sol meltG G G =  +   (27) 

Variants of the melt cycle are used by classical solubility prediction methods such as the 
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general solubility equation (GSE)73-75 and other QSPR methods7, 76. The popular GSE for 

example relates the aqueous solubility to the melting temperature and the case specific 

octanol-water partition coefficient and is frequently used to calculate drug solubilities. It 

empirically correlates ΔGmelt to the melting temperature and ΔGE to the octanol-water 

partition coefficient. 

The sublimation cycle alternatively uses an energetically less direct route via the gas 

phase by expressing ΔGsol by the Gibbs free energy of sublimation, ΔGsubl, and the Gibbs 

free energy of solvation, ΔGsolv, of component i: 

sol subl solvG G G =  +   (28) 

The sublimation cycle was suggested by Grant and Higuchi72 and first evaluated by 

Palmer et al.10, 77 for predicting the aqueous solubility of organic molecules. For 

exclusively predicting the solubility, the sublimation cycle appears to be favourable as it 

uses the most computationally accessible solid-state quantity that can be derived directly 

from the crystal structure, the lattice energy. 

Both thermodynamic cycles (Figure 2.10) incorporate thermodynamic quantities (melting 

or sublimation free energy) that are related to the crystalline solid and are specific 

quantities of one crystal structure (see section 2.1.2). As a result, they are capable to 

model solubility differences of polymorphs or chiral crystals. The two thermodynamic 

cycles are discussed in more detail in the following sections. The relevant energy 

quantities are specified and their experimental and/or computational determination are 

presented. 

 

2.4 Melt cycle 

The melt cycle requires the determination of the Gibbs free energy of melting, ΔGmelt, 

which is related to the melting temperature and melting enthalpy. An exclusively 

computational determination of these melting thermodynamics is still not precise enough 

for solubility prediction78, 79 or limited to group contribution methods that cannot 

distinguish between polymorphs or chiral molecules.76, 80, 81 Hence, this work focuses on 

the experimental investigation of, ΔGmelt, which is limited to substances that do not 

decompose or sublimate before or during melting.  

 

2.4.1 Melting 

The Gibbs free energy of melting, ΔGmelt, is comprised of the melting enthalpy, ΔHmelt, 

and the melting entropy, ΔSmelt.  

melt melt meltG H T S =  −   (29) 

The melting enthalpy is accessible by experiment at melting temperature using 

calorimetric methods like differential scanning calorimetry (DSC). The free energy 

difference between the melt phase and the crystalline solid is zero per definition at 
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thermodynamic equilibrium, ΔGmelt = 0. Hence, at melting temperature the entropy of 

melting can be obtained via the melting enthalpy and the melting temperature, 

∆Smelt = ∆Hmelt Tmelt⁄ . Based on the above, the free energy of melting that can be 

calculated merely from the melting enthalpy and melting temperature: 

( )1 /melt melt meltG H T T =  −  (30) 

However, the melting thermodynamic functions, ΔHmelt and ΔSmelt, are functions of 

temperature and have to be corrected from the melting point to a given temperature, such 

as the solution temperature Tsol, as illustrated in Figure 2.11.  

 

Figure 2.11: Scheme of the melt cycle which relates the Gibbs free energy of solution to the Gibbs 

energy of melting and the excess Gibbs energy of mixing (eq. (27)). It is experimentally accessible 

only when the decomposition (or sublimation) temperature is above the melting temperature. 

Solvent dependent properties are indicated in red. 

 

Integrals of the heat capacity differences, ΔCP
𝑙−𝑠 = CP

𝑙 − CP
𝑠
, between the supercooled 

melt (l) and the solid (s) from Tmelt to Tref = Tsol add thermal corrections to the measured 

values determined at melting temperature: 

( ) ( ) ( )Δ
sol

melt

T

l s

melt sol melt melt P

T

H T H T C T dT−=  +   (31) 

( ) ( )
( )Δsol

melt

T l s

P

melt sol melt melt

T

C T
S T S T dT

T

−

 =  +   (32) 

Hence, the higher the melting temperature and the larger the difference in heat capacity 

between the crystal and the melt the larger the thermal corrections. Combining eq. (29) 

with eq. (31) and (32) results the general expression of the free energy of melting: 

Δ
1 Δ

melt melt

T T l s
l smelt P

melt P

melt T T

H CT
G C dt T dt

RT T t

−
− 

 = − − + − 
 

   (33) 

In literature thermal corrections are often neglected. In the most simplified case this 
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results in the equation of Schröder and van Laar which gives the “ideal” solubility of a 

single solute SLE if additionally the excess Gibbs free energy of mixing is set to zero 

(ΔGE = 0):49 

( )ln 1 /melt
melt

H
x T T

RT


= − −  (34) 

For a racemic compound the equivalent to the Schröder van Laar equation is the equation 

of Prigogine and Defay:54 

( ) ( )
2

ln 4 1 1 /melt
melt

H
x x T T

RT


− = − −  (35) 

However, it has been shown that thermal corrections can influence melting free energies 

and subsequently the logarithmic solubility significantly by δln xi = 0.5 to 1.7 and thus 

should not be neglected for solubility prediction.82 Several methods are proposed in the 

literature to incorporate temperature corrections which rely on different amounts of 

experimental input.59, 82, 83 The crudest methods do not require direct measurements but 

use an empirical temperature independent value for heat capacity difference. For 

example, the average ΔCP
𝑙−𝑠

 of 117 organic molecules can be used which was shown to 

be ΔCP
𝑙−𝑠

 = 84 J·mol-1K-1 but has a large standard deviation of 57 J·mol-1K-1.83 A further 

temperature independent empirical simplification is to approximate the heat capacity 

difference by the entropy of melting, ΔCP
𝑙−𝑠

 = ∆Smelt = ∆Hmelt / ∆Tmelt.
49 Experimentally 

costlier are substance specific measurements of heat capacity difference (for example at 

melting temperature) which are in its simplest form assumed to be temperature-

independent.59 An experimentally more demanding method requires experimental heat 

capacities of the crystal from reference temperature to melting temperature and 

measurements of the heat capacity of the melt above and if accessible below melting 

temperature. However, heat capacities of the supercooled melt are often not accessible 

due to recrystallization. Alternatively, they can be linearly extrapolated from Tmelt to Tref 

in order to approximate a temperature-dependent heat capacity difference. Any of the 

before described way to model ΔCP
𝑙−𝑠

 can be used within eq. (33) to calculate temperature 

corrected Gibbs free energy of melting. 

 

2.4.2 Mixing 

In order to allow the solution to exhibit non-ideal behaviour and hence the solubility to 

be affected by the solvent and by the number of dissolved molecules (concentration 

dependence), the excess Gibbs free energy of mixing, ∆G
E

, is introduced: 

lnE

iG RT  =  (36) 

The activity coefficient, γ, which has been defined earlier in eq. (4) incorporates all 

deviations from the ideal solution. As a consequence, it is a function of temperature and 

composition of the solution. Most activity coefficient based thermodynamic methods, so-

called gE-models, are used in combination with the simplified description of the free 
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energy of melting of eq. (34) which neglects the contribution of the heat capacity 

difference. Further information on available gE-models are given later on in section 2.7.3. 

According to the melt cycle (27) the enthalpic solution non-idealities, the excess 

enthalpies HE, are related to the solution and melting enthalpies. More precisely, the 

excess enthalpies of the solution describe the difference between the solution enthalpy at 

Tref and the corrected melting enthalpy at Tref according to eq. (37). Like the excess Gibbs 

free energy of mixing HE is related to the activity coefficient and thus is a function of the 

temperature and the solution concentration. 

Δ  Δ E

sol meltH H H= +   (37) 

 

2.5 Sublimation cycle 

The sublimation cycle in eq. (28) substitutes the melting thermodynamic quantities by 

introducing the gaseous state. This is based on the idea that the separated molecule (ideal 

gas) and the perfect crystal are two idealized thermodynamic states that are 

computationally well accessible using ab-initio quantum chemistry methods84-86. As a 

result, it offers an option for calculating solubility using solely computational methods. 

However, the sublimation thermodynamic quantities are as well accessible experi-

mentally with high accuracy from sublimation vapor pressures.87 Experimental data is 

required as reference quantities for predictive methods to work out sources of the 

computational errors. The experimental and computational routes are illustrated in Figure 

2.12. 

 

Figure 2.12: Illustration of the sublimation cycle which describes the Gibbs free energy of 

solution, ΔGsol, with the Gibbs free energy of sublimation, ΔGsubl, and solvation, ΔGsolv, (eq. (28)). 

The red area indicates the accessibility of ΔGsubl by experiment and the light blue area indicates 

the route via the lattice energy, Elatt, that is accessible by ab initio quantum chemistry. Solvent-

dependent properties are indicated in red. 
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Both routes thermodynamically connect the Gibbs free energy of solution, ΔGsol, with the 

free energy of sublimation, ΔGsubl, and the Gibbs free energy of solvation, ΔGsolv. The 

experimental route is limited to cases where the sublimation temperature is below 

decomposition temperature.  

 

2.5.1 Sublimation 

The highest temperature a crystalline solid can sublimate is the triple point temperature, 

Ttp, which is equal to the melting temperature if the melting of the crystal is independent 

of the pressure (see Figure 2.5). This temperature defines the limit for an experimental 

investigation if the specific substance does not decompose before. Experimentally, the 

Gibbs free energy of sublimation, ΔGsubl, is directly accessible via the sublimation vapor 

pressure of a crystalline solid:88  

( )0/i sublRTln p p G− =   (38) 

Hereby, pi is the absolute vapor pressure of substance i and p0 is the reference pressure 

which is defined as 1 bar throughout this work. ΔGsubl is comprised of the sublimation 

enthalpy ΔHsubl, and the sublimation entropy ΔSsubl.  

subl subl sublG H T S =  −   (39) 

Analogously to the connection of solution enthalpy to the temperature dependency of the 

solubility via the Van’t Hoff relation (see eq. (25)), the sublimation enthalpy is related to 

the temperature dependence of the vapor pressures. It is accessible via the so-called Clausius–

Clapeyron equation88: 

,

2

ln subl ii
Hp

T RT


= −


 (40) 

Due to the low vapor pressures of organic crystalline substances, sublimation 

measurements are usually performed at elevated temperatures as indicated in Figure 2.12 

(light red area). Hence, the extracted sublimation enthalpy should be corrected to a 

reference temperature in order to ensure comparability between various experimental 

data.82, 87 Similar to melting enthalpies (see eq. (31)) Kirchhoff’s law can be used to adjust 

the heat of sublimation to the desired temperature. Assuming that sublimation is determined 

at the triple point (tp), ΔHsubl can be adjusted according to eq. (41) if no solid-solid phase 

transition occurs within that temperature range.88 

( ) ( ) ( ), ,

tp

ref
subl i subl

T
s g

ref tp P P
T

iT T C C dTH H + −=   (41) 

There are simplified empirical methods to determine ΔCP
𝑔−𝑠

=CP
𝑔

− CP
𝑠
 which are 

molecule-independent: ΔCP
𝑔−𝑠

 =2R (~9.6 J·mol-1K-1) or ΔCP
𝑔−𝑠

 =6R (~28.9 J·mol-1K-1).82 

An experimental dataset of 117 molecules suggests ΔCP
𝑔−𝑠

 to be 32.7±45.5 J mol-1 K-1. 83 

Besides that, measured solid-state heat capacity and calculated ideal gas heat capacities can 

be combined to approximate a substance-specific ΔCP
𝑔−𝑠

.87  

In contrast to an experimental determination at elevated temperatures, the sublimation 
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thermodynamics are computationally accessible via the static crystal at zero Kelvin (see 

blue area in Figure 2.12). At zero Kelvin, the equivalent to the sublimation free energy is 

the lattice energy, Elatt, which is the energy needed for breaking up the static crystal 

lattice. More specifically, it is defined as the energy difference between a static perfect 

infinite crystal (ideal static solid – iss) and its related ideal static gas (isg) phase of 

infinitely separated molecules in their lowest energy conformation both at 0 K: 

iss
isg

latt inter intra

E
E E E E

Z
= − = +  (42) 

Where Eisg is the energy of the static separated molecule (ideal static gas), Eiss is the 

energy of the ideal static solid crystal and Z is the number of molecules within the unit 

cell. The lattice energy can be separated into two contributions.89 The dominant 

contribution is the intermolecular energy, Einter, which includes all electrostatic as well as 

polarization, dispersion and repulsion contribution (see Figure 2.13). They all depend on 

intermolecular distances and hence on the crystal packing.90 ΔEintra is the difference in 

energy for a single molecule in the crystal conformation and in its lowest energy 

conformation in the ideal gas. ΔEintra is zero for rigid molecules and typically in the order 

of a few kJ·mol-1 unless intramolecular hydrogen bonding is involved.11  

Advance in computer technology enables a fast and reliable calculation of the lattice 

energy and lattice vibrations of an organic compound.91 Nowadays, Elatt can be calculated 

with increasing accuracy with DFT shown for benzene, which has been computed with 

an accuracy of better than 1 kJ mol-1.86 Recent benchmarks of larger sets of molecules 

show an increase in accuracy of better92, 93 or equal85 to 4.9 kJ∙mol-1 which is the statistical 

uncertainty of measurements of ΔHsubl
94. Hence, the precision of computational methods 

is converging to the level of relatively small polymorphic or enantiopure/racemic energy 

differences. For example, the lattice energy differences between observed polymorphs 

are usually less than 4 kJ∙mol-1 (80% of the cases)28, which is in the same range as the 

energy difference between homochiral and racemic crystals95. 

Besides the lattice energy, various thermal corrections contribute to the Gibbs free energy 

of sublimation. They are required to close the large gap between the ideal static states and 

a real system at solution temperature as illustrated in Figure 2.12. Corrections include 

enthalpy and entropy terms, ΔHcorr and ΔSsubl, which all contribute to ΔGsubl as shown in 

eq. (43). Following the concept of absolute entropy, the entropy contribution to the 

sublimation free energy is not labelled as an entropy correction but as an absolute value 

(ΔScorr = ΔSsubl) within eq. (43).  

subl latt corr latt corr sublG E G E H T S = − +  = − +  − 
 (43) 

Thermal corrections are comprised of contributions of zero-point vibrational energy and 

thermal corrections between zero Kelvin and reference temperature (see Figure 2.12). The 

zero-point vibrational energy is the lowest energy a quantum mechanical system can have. 

It describes the energy gap between an idealized static thermodynamic state to a system 

at zero Kelvin. Hence, the difference in zero-point energy between the crystal and the gas, 

∆EZPE = EZPE
g

 −  EZPE
s , shifts energy difference between the idealized static solid (iss) 
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and the ideal static gas (isg) to an energy difference between the crystalline solid (s) and 

the ideal gas (g) at zero Kelvin. The difference in heat capacity on the other hand, 

ΔCP
𝑔−𝑠

=CP
𝑔

− CP
𝑠
, levitates the energy difference between the gas and the solid from zero 

K to the reference temperature by introducing an enthalpy correction, ΔHcorr, and the 

sublimation entropy, ΔSsubl, as shown in eq. (44). 

( ) ( )
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' '
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T

g s g s
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H E E C T dT−
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C T
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−

=


 = 

 

(44) 

Unlike for the thermal corrections to the experimental sublimation enthalpies (see eq. 

(41)), in eq. (44) ΔCP
𝑔−𝑠

 are required for a significantly larger temperature range. Yet still, 

there is a substance independent method to approximate ΔHcorr by -2RT within the so-

called 2RT-approximation96. However, there is no equivalent simplified method for 

determining ΔSsubl. Therefore, calculated (or measured) solid-state heat capacities and 

calculated ideal gas heat capacities have to be acquired.87 Computations require details 

on the molecular and lattice vibrational frequencies97. Further details on the computation 

of thermal corrections to the lattice energies are given in more detail in section 2.6.5. 

 

2.5.2 Solvation 

The Gibbs free energy of solvation is needed to transfer the gas phase molecule into the 

solution after its sublimation from the crystal structure to close the sublimation cycle 

(Figure 2.12). It is defined as the change in Gibbs free energy when a molecule (or an 

ion) is transferred from a vacuum (the ideal gas) into a solvent and is required at solution 

temperature. It can be computed as the difference between the chemical potential of 

component i in the solution, μ
i
l, and its chemical potential in the ideal gas, μ

i

ig
: 

l ig

solv i iG   = −   (45) 

According to the sublimation cycle in eq. (28) the solvation enthalpy ΔHsolv which is the 

heat that is released when transferring the molecule from the gas phase into solution is 

related to the solution and sublimation enthalpies. More precisely, the solvation 

enthalpies is the difference between the solution enthalpy at Tsol and the corrected melting 

enthalpy at Tsol according to eq. (46). Like the excess Gibbs free energy of solvation, 

ΔGsolv it is related to the activity coefficient and thus is a function of the temperature and 

the solution concentration. 

Δ  Δ Δsol subl solvH H H= +   (46) 
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2.5.3 Standard states for sublimation and solvation thermodynamics 

There are two commonly used standard states which use different sublimation and 

solvation free energies and result in different units for the calculated solubilities. Both 

approaches are introduced in the following while one standard state system is chosen 

which is used throughout this work. 

Computations of solvation free energies are often quoted in the Ben-Naim standard state51 

(suffix *) which refers to 1 mol of gas that is solvated in 1 litre of solvent. Alternatively, 

the gas phase is related to 1 bar of ideal gas which is solvated in 1 mol of solvent  

(suffix 0). The solvation free energies of the two different reference states can be 

converted into one another with knowledge with the molar volume of the solvent (or the 

solution), Vl, and of the ideal gas, Vig: 

* 0 ln
ig

solv solv l

V
G G RT

V

 
 =  −  

 
 (47) 

Experimental sublimation free energies are commonly referred to 1 mol of substance that 

is transferred to 1 bar or 1 atm of ideal gas. Hence, for an application within the 

sublimation cycle the bar/mol standard state (suffix 0) directly leads to a mole fraction 

solubility, xi, while mol/l standard state (suffix *) results in a mol/l solubility, Si, and 

needs the Gibbs free energy of sublimation to be converted using the molar volumes of 

the crystal and the gas, Vs and Vig, via eq. (48). 

* 0 ln
s

subl subl ig

V
G G RT

V

 
 =  −  

 
 (48) 

In this work, the bar/mol standard state system (suffix 0) is used for the solvation and 

sublimation free energies. It results in the wanted mole fraction solubility (see eq. (1)) 

without the need of unit conversions requiring molar volumes of the crystal when 

choosing the mol/l reference state77. Furthermore, the bar/mol reference state is the 

standard reference state within the COSMO-RS model which is used in this work for 

calculating ΔGsolv as discussed later in section 2.6.6 and 2.7.2. 

 

2.6 Modelling molecular interactions 

All interactions in atoms and molecules are fundamentally electric in nature.90 To be able 

to differentiate between intermolecular forces they are commonly divided into different 

classes. Figure 2.13 illustrates the commonly used classification of non-covalent 

molecular interactions, dividing them into Coulombic (often referred to as electrostatic) 

interactions which incorporate the undistorted and directed interaction energies and van 

der Waals (vdW) interactions which originate from induction and dispersion. The various 

intermolecular potentials differ in strength and their dependency on the distance of the 

contributing charges. Ion-Ion interactions for example are strong and long-range 

interaction energies while vdW interactions deplete quickly with intermolecular distances 

and are weak in comparison. Hydrogen bonds are strong and directed dipole-dipole 
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interactions where the proton acceptor and proton donator only have a very short distance. 

They play an exclusively important role for modelling interactions the crystal lattice as 

well in solution. More detailed information on intermolecular forces and modelling 

approaches can be found refs. 90, 98. 

 

Figure 2.13: Classification of non-covalent molecular interactions. The coloured clouds 

schematically illustrate intermolecular interactions based on interactions of electron densities 

which were adapted from ref. 99. 

 

2.6.1 Density Functional Theory (DFT) 

This section provides a brief insight into the theory behind quantum chemistry methods 

based on Density Functional Theory (DFT), focussing on those methods that have been 

used within this work. The interested reader is referred to additional literature for a more 

detailed representation.100-102 

Electronic structure calculations – such as DFT – are frequently used to determine the 

lowest-energy state of a many-electron system (e.g. a molecule), the so-called ground 

state. For that, they try to solve the time independent, non-relativistic Schrödinger 

equation shown in eq. (49) in a numerically efficient way.100 

ˆ ( ... ) ( ... )i N i NH r r E r r =   (49) 

Ĥ, the Hamiltonian, is the quantum mechanical operator and ri is the coordinate of an 

electron i of a system containing N elections. The Hamiltonian is constructed to extract 

the energies from a system that is described by Ψ, the wave function. Ĥ consists of a sum 

of three terms, the kinetic energy, the interaction energy with the external potential and 

the electron-electron interaction energy. Methods that provide solutions of eq. (49) 

without the need of experimental data are called ab initio methods. Born-Oppenheimer 
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introduced an important simplification which states that firstly the motion of the nuclei 

and electrons can be separated and that secondly the relatively small velocity of the nuclei 

can be neglected in contrast to the motion of the electrons which reduces the complexity 

of the Hamiltonian and which made the Schrödinger equation accessible.  

Two commonly used methods make use of the Born-Oppenheimer approximation by 

treating only the electrons as quantum mechanical objects. The so-called Hartree-Fock 

(HF) theory uses this assumption by averaging all electron-electron interactions.100 

Alternatively, the electron distribution can be described by its probability density which 

is related to the square of the wave function (Ψ2). The basic theorem of Density Functional 

Theory (DFT) has been proposed by Hohenberg and Kohn103 which states that the ground 

state electronic energy is directly correlated to the electron density and depends on only 

three spatial coordinates. Besides it theoretical accessibility it can be determined as well 

experimentally (see Figure 2.14) and hence is not merely a theoretical concept. 

 

Figure 2.14: Comparison of an electron density map of m-nitrophenol that has been determined 

(left) experimentally by high-resolution X-ray diffraction and (right) computationally via Density 

Functional Theory.104 

 

2.6.2 Density functionals  

After Kohn-Sham proposed an approach in which the fully-interacting system is replaced 

by a system of non-interacting electrons it became obvious that there is a need to construct 

exchange-correlation functionals that are capable to model interactions between 

electrons.102 The most well-known exchange-correlation functionals belong to the class 

of Local Density Approximation (LDA), Generalized Gradient Approximation (GGA), 

Meta-GGA and Hybrid Functionals. Until now, numerous exchange-correlation function 

have been proposed while most well known and most used functionals belong to the 

GGA, meta-GGA and Hybrid class.105 Hybrid functionals mix LDA and GGA functionals 

with some part of Hartree-Fock exchange in a given ratio or by fitting the parameters to 

experimental data which makes them a semi-empirical method. The most well-known 

hybrid functional is the B3-LYP functional. Selected functionals that are used in this work 

are summarized and classified within Table 2.1.  
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Table 2.1: Summary of the exchange-correlation density functionals that have been used in this 

work. The corresponding literature referring to the respective functional can be found here105. 

Class Functionals 

GGA B-LYP, B-P86, PBE, 

B97-D (semi-empirical) 

Meta-GGA M06 

Hybrid B3-LYP 

 

A major drawback of DFT methods is related to their difficulties to accurately model the 

rather week vdW interactions (see Figure 2.13). Especially the long range attractive 

interaction tail of the London dispersion interactions are difficult for most functionals.106 

This is especially relevant for the computation of crystal structures, so-called periodic 

DFT methods (see subsequent section 2.6.4). Within a crystal, the molecules are closely 

packed and intermolecular interactions are in some cases dominated by van der Waals 

forces (e.g. naphthalene). To overcome this inherent limits of DFT methods, corrections 

terms, so-called dispersion corrections, are frequently used, which add an empirical 

correction term.106, 107 Besides that, methods have been proposed that are parameterized 

by ab initio methods without the incorporation of experimental data.108 It has been shown 

that the dispersion correction sometimes account for errors of up to 80 % depending on 

the functional used in weakly bound systems.109 Hence, their precise incorporation is one 

of the key challenges in the development of new density functionals.102 

 

2.6.3 Basis sets 

All density functionals require a computational efficient framework to calculate the 

electronic wave function. Basis sets are used in quantum chemistry methods in order to 

approximate the wave function by a set of known functions which can be efficiently 

solved numerically. More specifically, a basis set is comprised of so-called basis 

functions using linear combinations of those to model the molecular orbitals of a system. 

This is not necessarily an approximation if the basis set is complete which would require 

an infinite number of basis functions. Hence, for practical applications the choice of the 

basis set is always a balance between accuracy and computational cost. Generally 

speaking, the smaller the basis set, the poorer is the resulting representation of the wave 

function. Most commonly a linear combination of atomic orbitals on each nucleus 

(LCAO), more specifically Gaussian-type orbitals (GTO), are used as they allow 

computationally efficient implementations of electronic structure calculations.110 Within 

this work mainly GTO type basis functions are used. However, especially for the 

description of this three-dimensional systems, such as molecular crystals, plane-wave 

(PW) type basis functions111, 112 or a hybrid of the Gaussian and plane-wave scheme113 

are used. 

The smallest GTO type basis set for electronic structure calculations of a molecule 

contains just one function for each occupied orbital of each nucleus. For example, for 
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hydrogen the minimum basis (Single Zeta, SZ) set would require a single s-function 

representing the 1s orbital whereas at least four basis functions for carbon, oxygen and 

nitrogen (one s- and a set of p-orbitals). A better description of the wave function is 

obtained when taking twice as many basis functions as the minimal basis set that each 

can be fully optimized as done in a Double Zeta (DZ) basis set. Increasing the number of 

basis functions allows the electron distribution to be different in different directions which 

is for example important for chemical bonding. As chemical bonding and non-covalent 

intermolecular interactions occurs predominantly between valence electrons it is 

computationally more efficient to use the Double Zeta method only for the valence 

orbitals which is done by the so-called Split-Valence (SV) basis set. Adding more than 

two basis functions for each valence orbital leads to often used triple (TZV) and 

quadruple-zeta (QZV) basis sets. Additional flexibility can be built into the system to 

account for strong direction-dependent electron distribution by adding an additional 

higher orbital basis function which is denoted as Polarization Function. This leads to one 

of the most common basis sets, the SVP (Split Valence Double-Zeta plus Polarization) 

and the TZVP (Split Valence Triple-Zeta plus Polarization) basis set.  

 

2.6.4 Modelling molecular interactions in the crystal 

Especially in the field of solid-state chemistry, DFT has wide applications for the 

computation of structural, chemical, optical, spectroscopic, vibrational and 

thermodynamic properties.84 This section focuses on the application of periodic DFT for 

modelling molecular interactions in a crystal in order to determine its lattice energy. More 

in-depth information are given in literature84, 114. 

To be able to calculate the electronic ground state and energy of a crystalline solid using 

DFT the symmetry and periodicity of a crystal structure can be exploited to reduce the 

computational cost. As introduced before a crystal structure can be described by its unit 

cell (see Figure 2.3). It is characterized by the length of the cell vectors a, b and c as well 

as the angles between the cell vectors α, β and γ. For periodic calculations a commonly 

used mathematical simplification is the concept of reciprocal space. Hereby, the unit cell 

vectors (a, b and c) are converted to forming a reciprocal lattice, which is named the 1st 

Brillouin zone. It is defined as the most symmetric unit cell (the Wigner-Seitz cell) for 

the reciprocal lattice.29 

The periodicity of crystals can then be exploited by applying Bloch’s theorem which 

expresses the wave function as a periodic Bloch function whose wave vector is 

constructed from the centre of the reciprocal lattice. Integrals over the Brillouin zone are 

approximated numerically, with so-called Bloch wave functions and sampled on a 

discrete mesh of wave vectors often referred to as k-points.84 The Bloch wave function 

(also called Bloch state or Bloch function) represents the wave function for an electron in 

the periodically-repeating environment, e.g. the crystal, while the k-points represent the 

points where the system is evaluated.115 The higher the number of k-points the better the 

approximated integral over the entire unit cell. In practice, the Brillouin zone can be 

constructed by considering a finite and relatively small number of k-points.90 An 

https://en.wikipedia.org/wiki/Wavefunction
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important k-point is the gamma point (Γ-point) where k = 0, which is the centre point of 

the 1st Brillouin zone. An important quantity which determines the complexity and time 

needed to calculate the lattice energy of an organic crystal is the number of independent 

molecules within the unit cell, Z’. In 88 % of the cases molecular crystals incorporate 

only one independent molecule in the unit cell (Z’ ≤ 1) while the cases where Z’ ≥ 2 is 

rare and accounts to less than 1 % of the crystals in the Cambridge Crystal Database 

(CSD).31 However, if internal symmetry within the unit cell cannot be exploited by a 

computational method the total number of molecules, Z, defines the number molecules 

within the unit cell which is often significantly larger then Z’.  

 

2.6.5 Thermal corrections to the lattice energies 

Calculating electronic energies of a single molecule or of molecular crystals using above 

introduced DFT and periodic DFT methods gives the ground-state energies of 

hypothetical non-vibrating (static) molecules at zero Kelvin. This is a result of the 

underlying assumption that the atomic nuclei are static.100 As discussed before (see Figure 

2.12), in order to model solid-liquid phase equilibria via the sublimation cycle lattice, 

energies obtained from the static molecular interaction energies have to be adjusted to 

solution temperatures (hence to around 298 K). Of relevance are the gas phase as well as 

solid phase enthalpy and entropy contributions. In order to incorporate temperature and 

thus enthalpy and entropy corrections to the ground state energies statistical mechanics is 

applied to the quantum mechanical systems.116 Besides calculating the total energies of a 

system, DFT methods can be used to calculate the second derivatives of these energies. 

The second derivatives give the molecular Hessian matrix which enable the calculation 

of vibrational frequencies within the harmonic approximation. Vibrational frequencies 

can subsequently be used to calculate the vibrational part of the partition function which 

is required for calculating the thermodynamic functions at temperatures other than 0 K. 

This will be discussed in more detail in the following. 

 

Gas phase contributions 

Excluding electronic excitations, thermal stimulation of a static ground state of an isolated 

molecule results in translational, rotational and vibrational motions of the molecule. The 

resulting thermodynamic functions are accessible via the molecular partition function, Q, 

which originates from statistical thermodynamics. Given the partition function the 

temperature-dependent heat capacities of the separated molecule (ideal gas) and its 

general thermodynamic functions can be calculated:117 

( ) ( )TlnPC T RT Q R
T


= +


 (50) 

( )
ln

  ln
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S T R R Q RT
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
= + +


 (51) 
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where R is the ideal gas constant. A simplified way to model the partition function is to 

use the so-called Rigid Rotor Harmonic Oscillator (RRHO) approximation. First of all, it 

assumes that the translational, rotational and vibrational motions are decoupled. 

Secondly, the vibrational contributions to the thermodynamic functions are calculated as 

summations over all vibrational frequencies which are assumed to be harmonic. The 

molecular vibrational frequencies are accessible from the second derivative (Hessian 

matrix) of the ground state energies. Each molecule has 3N-6 harmonic vibrational 

frequencies where N specifies the number of atoms within the molecule. All parts of the 

partition function and the resulting thermodynamic functions are summarized in Table 

2.2 according to literature117. 

 

Table 2.2: Classical approximation of the translational, rotational and vibrational parts of the 

partition function Q and the resulting thermodynamic functions CP, S(T) and H(T)-H(0) of an 

ideal gas according to eqs. (50) to (52) and ref. 117. 
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* For a linear molecule the expressions change slightly as a result of rotational symmetry. 

 

Thermal excitations are dependent on temperature and are zero at zero Kelvin. However, 

in classical quantum mechanics an oscillator is always in motion and has a residual 

Energy at zero Kelvin, the zero-point vibrational energy (ZPE). The ZPE is not accessible 
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by caloric measurements but can be calculated from measured or calculated vibrational 

frequencies of the molecules. Within the RRHO approximation the ZPE in the gas phase 

equals one-half the sum of the 3N-6 harmonic vibrational frequencies:117 

3 6

2

N
g

ZPE i

i

h
E 

−

=   (53) 

 

Crystalline phase contributions 

Molecular motions within the crystal can be divided into two types. Similarly, as for 

molecules in the ideal gas, molecules within the crystal can be thermally exited which 

results in molecular vibrations. However, as they are packed within a crystal lattice 

molecular motions are limited to only vibrations while translational and rotational 

movements are inhibited. It is often assumed that the vibrational motions of each 

molecule are independent of the surrounding molecules. This would lead to the same 

molecular vibrational thermodynamic functions as for a separated molecule (see Table 

2.2). However, besides the motions of each molecule the molecules within the lattice can 

uniformly oscillate at a specific frequency resulting in lattice vibrations. These 

vibrational modes are often called phonon modes. A phonon is a quantum mechanical 

description of such a vibrational motion of the lattice. Phonon modes can be divided into 

optical and acoustic modes where acoustic modes relate to motions that are in phase 

within the unit cell while optical modes to out of phase motions. There are models that 

assume the phonon modes to be independent from the molecular modes and others that 

allow interactions between the molecular and lattice vibrations. Within this work both 

assumptions are compared for chiral molecular crystals and are introduced later on in 

section 2.7.2 along with further computational details. 

 

Thermal corrections to the lattice energy 

According to eq. (44), the resulting overall thermal enthalpy and entropy corrections 

(ΔHcorr and ΔScorr) to the lattice energy are related to the difference between the 

aforementioned gas phase contributions and those of the crystalline solid. In the costliest 

form, all thermal enthalpy and entropy contributions are determined independently for 

the ideal gas and the crystalline solid. Hereby, the solid-state heat capacities between zero 

Kelvin and reference temperature can either be determined experimentally or by 

computational methods. Together with the ideal gas thermodynamic functions (see Table 

2.2) the overall thermal corrections are accessible via eq. (44). However, frequently 

assumptions are made in order to reduce the computational effort. If molecular and lattice 

vibrations are assumed to be decoupled, the molecular (zero-point and thermal) 

vibrational energy contributions, ∆Evib
mol , are identical in the crystal and for the separated 

(ideal gas) molecule.  

As a consequence, they cancel out which results in a simplified expression of the overall 

vibrational contributions (∆Evib
g-s = ∆Evib

mol+ ∆Evib
latt) and finally of ΔHcorr: 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Vibration
https://en.wikipedia.org/wiki/Lattice_model_%28physics%29
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4latt

corr vibH E RT = − +
 

(54) 

where ∆Evib
latt is the total (thermal and zero-point) vibrational energy which is related to 

lattice vibrations. This expression can be further simplified resulting in a simple molecule 

independent model, the so-called 2RT-approximation101. This requires on the one hand to 

neglect all remaining zero-point vibrational energy differences between the crystal and 

the gas. Secondly, the temperature is assumed to be high enough to treat intermolecular 

vibrations as if they were at the high-temperature limit. Together, this gives a ∆Evib
latt of 

6R. Hence, the overall thermal correction enthalpy correction is given by the 2RT-

approximation: 

2subl lattH E RT = − −
 (55) 

Entropy contributions to the sublimation free energy, TΔSsubl, is not accessible by an 

equivalent simplified expression such as the 2RT-approximation. As a consequence, 

vibrational frequencies within the separated molecule and the crystal lattice have to be 

modelled explicitly. 

 

2.6.6 Modelling molecular interactions in solution 

The two thermodynamic cycles shown in Figure 2.10 both incorporate molecular 

interaction energies between the solute molecules and the solution in a different way. 

Within the melt cycle parts of solution process (the liquefaction) are incorporated within 

the Gibbs free energy of melting which can be independently used to model “ideal” 

solutions via the equation of Schröder and van Laar, eq. (34).49 Deviations to an ideal 

solution are added via the activity coefficient and thus the excess Gibbs energy of mixing 

ΔGE (see eq. (5)). ΔGE can be approximated by a thermodynamic model of the activity 

coefficient, a so-called gE-model118, 119. Famous representatives are the NRTL, 

UNIQUAC and the PC-SAFT model.49, 120 These methods however require substance 

specific experimental solubilities to which their internal parameters are correlated to. 

There are as well methods that do not rely on solubility measurements of the specific 

substance but instead have been calibrated with a set of molecular interactions energies 

which are not necessarily solubilities. These models are commonly called predictive  

gE-models. The UNIFAC model for example approximates interactions of the solvated 

molecule with the solution by interactions between the various functional groups of the 

solute and the solvent. Thus, it relies on a set of binary interaction energies between the 

various functional groups. The COSMO-RS121 model and the subsequently published 

comparable COSMO-SAC122 model use the partial charges of the molecular surface of 

the solute and solvent molecule to calculate their intermolecular interaction energies. 

Hereby, the surface charges which are obtained from the polarizable continuum model 

(PCM123) COSMO124 are divided into segments with a specific partial charge. The binary 

interaction between these segments give the excess chemical potential in solution and 

hence the activity coefficient.  
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Figure 2.15: Computational approaches to model the Gibbs free energy of solvation, ΔGsolv. 

Explicit models treat the solvent by individual solvent molecules while implicit models 

approximate the solvent as a continuum. Many computational models are restricted to infinite 

dilutions. The COSMO-RS model uses statistical thermodynamics to model non-dilute solutions. 

 

Within the sublimation cycle the transition from the gas phase into solution, the Gibbs 

free energy of solvation, incorporates the solvent specific interaction energies (see eq. 

(28)). Computational ways to model the solvation free energy can be split up into explicit 

and implicit models which differentiate mostly in the way the solvent is implemented. In 

contrary to an explicit description of the solvent by a cluster of independently modelled 

solvent molecules, implicit models express the solvent as a continuous field with no 

explicit solvent coordinates (see Figure 2.15). The main contributions are (1) the 

cavitation energy, ΔGcav, which is the energy needed to form a hole in the solvent for the 

dissolved molecule; (2) the isotropic as well as anisotropic fixed charge electrostatic 

interaction energies (e.g. dipole-dipole interactions and hydrogen bonds) and the van der 

Waals interaction energies, ΔGvdW, and ΔGES, originating from induction and 

polarization; (3) the reorientation energy due to relaxation of the solute and solvent 

molecules, ΔGrelax, which possibly change ΔGvdW, and ΔGES.
125 State of the art explicit 

and implicit solvation models are summarized in a recently published overview.70  

 

The COSMO-RS solvation model 

In this work the COSMO-RS model121 is used for modelling molecular interactions in 

solution. It is beneficial as it enables the calculation of the solvation terms from both 

thermodynamic cycles, ΔGE and ΔGsolv (see Figure 2.10). As a consequence, it allows a 
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consistent evaluation of both thermodynamic cycles. In the following the theoretical 

background of the COSMO-RS model is briefly given. Additional information can be 

found in ref. 52.  

The so-called Conductor-like Screening Model for Real Solvents (COSMO-RS) 

combines the implicit COSMO model124 with statistical thermodynamics of pairwise 

interacting surface segments from the computed COSMO cavity. It is hereby assumed 

that the surfaces are in close contact and that 3D geometry information can be neglected. 

It incorporates eight empirical model as well as element specific parameters, a radius 

constant and a dispersion constant for H, C, N, O and Cl, which are correlated against 

experimental data. For parameterization free energy of hydration data as well as 

experimental vapor pressures and the partition coefficients for octanol/water, 

benzene/water, hexane/water, and diethyl ether/water have been used.126 Hence, 

COSMO-RS can be classified as an extended continuum model which approximates the 

transition from a polarized continuum to the concentrated saturated solution (step IV to 

VI in Figure 2.15) using a parameterized statistical thermodynamics model. In order to 

account for conformational variation in solution the interaction energies of various 

molecular conformations can be weighted according to a Boltzmann distribution. It 

should be mentioned that the different conformers are weighted according to their 

chemical potential in solution and not their ground state ideal gas energies. Hence, the 

weighting is affected by the molar concentration of the solute in solution and hence as 

well by solute-solute interactions. The accuracy of COSMO-RS to model solvation free 

energies for small and medium sized molecules is around 2.1 kJ mol-1 when using the 

TZVPD-FINE parameterization.127 128 In the standard case the free energy of solvation is 

calculated assuming an infinitely diluted system. There are some limitations for 

applications of the COSMO-RS model as well as most above mentioned predictive gE-

models and implicit solvation models. Due to the neglect of explicit solvent coordinates 

they cannot distinguish between enantiomers. Hence, strong interactions between one 

enantiomer and the counter enantiomer caused by the three-dimensional geometry cannot 

be resolved. However, there are some suggestions to incorporate three-dimensional 

contact information into implicit polarized continuum solvation models that in principle 

should be able to resolve interactions of enantiomers.128, 129 

To be able to evaluate computed solvation energies (ΔGsolv or ΔGE) experimental 

reference data is required. Experimentally determined ΔGsolv are rare and often restricted 

to solvation in water (hydration).130 Solvation free energies can be calculated from either 

Henry's law constants which is the partition coefficient between an infinitely diluted 

solution and the gas phase. Alternatively, it can be recursively calculated from vapor 

pressures and solubilities and hence the Gibbs free energy of sublimation and solution, 

respectively, using eq. (28).130 In the same way experimental ΔGE can be recursively 

calculated via eq. (27) the Gibbs energy of melting and solution. If ΔGsolv or ΔGE are 

recursively determined from measured solubilities they are related to the saturated 

solution and are thus not necessarily equal to calculations at infinite dilution (see Figure 

2.15). 
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2.7 Computational details 

The previous section 2.6 provided the theoretical background to the computational 

methods use in this work. In this section general details to the computational methods are 

summarized. If required, additional details are given directly in the related subsections of 

Chapter 4 “Results and Discussion”.  

 

2.7.1 Gas phase energies and vibrations 

If no three-dimensional information on the molecular structure was available 2D 

representations of the molecular structure have been used, so-called SMILES (Simplified 

Molecular-Input Line-Entry System)131. The isolated (ideal gas phase) molecular 

structures were geometry optimized using TURBOMOLE (V6.5-V7.1)132. Def2-type 

basis sets by Weigand and Ahlrichs133 and in most cases the B-P86134, 135 and PBE136 

density functional have been used. They have been corrected (if not further specified) 

with the ‘D3’137 dispersion correction. Calculations have been accelerated using the 

resolution of identity approximation138. Harmonic molecular vibrations were calculated 

on top of the optimized structures in the RRHO approximation using the aoforce-module 

in TURBOMOLE. If imaginary frequencies were obtained the molecular structure was 

re-optimized. The thermodynamic functions have been calculated using the freeh-module 

as implemented in TURBOMOLE. This uses the harmonic vibrational frequencies from 

the aoforce-module for evaluating the ideal gas thermodynamic functions via the RRHO 

approximation according to Table 2.2. 

 

2.7.2 Crystal lattice energies and vibrational frequencies 

Lattice energies, Elatt, have been determined via eq. (42). Elatt requires the calculation of 

the ideal gas energies, Eisg, and the average energy of a molecule within the unit cell, 

Eiss/N, where N is the total number of molecules in the unit cell (see Figure 2.3). It is 

essential that both energies are calculated in the same level of theory. Sublimation 

thermodynamics at temperature other than 0 K (ΔHsubl, ΔSsubl and ΔGsubl) additionally 

incorporate thermal corrections according to eqs. (43) and (44). They require the 

calculations of molecular and lattice vibrational frequencies. In the following, all 

computational methods that have been used in this work are presented.  

 

The riper framework 

For the computation of lattice energies, Elatt, periodic DFT calculations are performed 

using the riper module within TURBOMOLE software package (V7.1)139. The riper 

module is an implementation of Kohn-Sham DFT using Gaussian-type basis functions 

that can compute periodic systems in three dimensions. A detailed description of its 

implementation is provided in refs 140, 141. Experimental unit cell geometries were taken 

from literature and are not computationally optimized. For the periodic DFT calculations 
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as well as the corresponding ideal gas energies def2-type basis sets by Weigand and 

Aldrichs133 and the B-P86134, 135 and PBE136 density functionals have been. They have 

been corrected (if not further specified) with the “D3”137 dispersion correction. Dispersion 

corrections are especially relevant for the computation of crystalline solid state structures 

and lattice energies.142 Thermal corrections to the ground state energies cannot be 

calculated within the riper framework. 

 

The mol model 

All energies within the mol model have been determined within a collaboration with 

Professor Sarah L. Price, Rebecca Hylton and Jan Gerit Brandenburg from the Physical 

Chemistry Section at University College in London. Additional information on the 

computational method is given in the electronic supplementary information of ref. 41. 

lattice energies have been determined using the CrystalOptimizer algorithm143 which 

refines the crystal structure by a distributed multipole model for the intermolecular 

electrostatic forces while allowing any torsion angles that have been determined to be 

flexible to change in response to the crystal packing forces to minimize the lattice energy. 

The intramolecular energies, ΔEintra, (eq. (42)) were evaluated using Gaussian 09144. The 

charge densities are subsequently analysed by GDMA to give the distributed 

multipoles.145, 146 Those are used in combination with an empiric model for the repulsion-

dispersion term in order to calculate the intermolecular lattice energy, Einter, (eq. (42)) 

using DMACRYS.89 Temperature effects to the static crystal lattice were calculated from 

the Γ-point k =0 phonon modes147 using the DMACRYS89 model. The isolated molecular 

vibrations were calculated at the PBE/def2-TZVP level of theory using the D3 dispersion 

correction137 as described in section 2.7.1. As the molecular vibrations and lattice 

vibrations are treated to be independent, a combination of a Debye-Einstein model can be 

used to model the Helmholtz free energy of the system.148 As thermal expansion is 

neglected the same model directly gives the thermal Gibbs energy contributions of the 

crystal by eq. (56). 
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Within eq. (56) the i = 3 ... 6Z-3 (Z is the number of molecules within the unit cell) optic 

frequencies, ωE,i, are modelled with an Einstein model as well as the j = 3 … 6N-3 (N is 

the number of atoms in the molecule) molecular vibrational frequencies, υi. A Debye 

model is used to account for the acoustic modes by using one extrapolated Debye cut-off 

frequency, ωD. The last part of eq. (56) is the Debye function which is integrated from 0 

to ℏwD/kT. As molecular and lattice vibrations are decoupled, the zero-point energy 

difference between the gas and the solid, ΔEZPE, can be calculated from optic lattice 

vibrational frequencies (ωE,i) and the Debye cut-off frequency, ωD, via (57):148  
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Eq. (56) together with eq. (57) and the ideal gas translational and rotational enthalpy and 

entropy contributions from Table 2.2 gives the overall Gibbs energy correction, ΔGcorr, 

to the lattice energy within eq. (43) according to eq. (58) (N = number of molecules in 

the unit cell; NA = Avogadro number).  

( )Δ Δ Δ /ig ig

corr ZPE A B trans rot vib AG E N k T T S S G N N= − + − + −  (58) 

The isochoric heat capacities can be separately calculated via eq. (59) where ωi comprises 

all optic lattice (ωE,i) and all molecular vibrational frequencies (υi) while (ωD) is the 

extrapolated Debye cut-off frequency.149 
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 (59) 

 

The crys model 

All energies within the mol model have been determined within a collaboration with 

Professor Sarah L. Price, Rebecca Hylton and Jan Gerit Brandenburg from the Physical 

Chemistry Section at University College London. A more detailed description is given in 

the ESI of ref.150. 

The computations were conducted with a developer version of the CRYSTAL14 program. 
151 which can exploit full point and space group symmetry of the unit cell.152 The semi-

empirical HF-3c153, 154 method is used in combination with the “D3-BJ”137, 155 dispersion 

correction while basis set superposition errors are and basis set incompleteness effects are 

corrected by gCP156, 157 and SRB153, respectively. Vibrational frequencies from HF-3c are 

globally scaled by 0.86 as common for Hartree-Fock methods and recommended in 

literature.153 Heat capacity calculations require integration over all phonons using the 

phonon density of states F(ω) and a numerical integration over the Brillouin zone at each 

temperature:  
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The zero-point energy of a molecule in the crystal is given by eq. (61). 
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Within the cry the Gibbs free energy of the crystalline solid is related to the phonon 

density of states by equation eq. (62) (N = number of molecules in the unit cell; NA = 

Avogadro number). 
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Eq. (62) together with zero-point energies of the ideal gas and of the crystal (eqs. (53) 

and (61)), as well as the ideal gas enthalpy and entropy contributions from Table 2.2 gives 

the overall free energy correction, ΔGcorr, to the lattice energy by eq. (63):   

( )Δ ig s ig ig s

corr ZPE ZPEG E E H TS G= − + + −  (63) 

 

The mixed “exp/theory” model 

In order to replace computed solid-state heat capacities with experimental CP,exp
𝑠 , a mixed 

“exp/theory” model can be constructed. This combines numerical integrations of the 

experimental solid-state heat capacities with calculated gas phase heat capacities (see 

section 2.7.1) to quantify the heat capacity corrections within eq. (44). For integrating 

experimental solid-state heat capacities they were extrapolated from the lowest 

measurement point to 0 K using Debye’s cubic law, CP = A·T3. Finally, the heat capacities 

are integrated numerically from 0 K to 298 K using spline functions using MATLAB 

(Mathworks®). The “exp/theory” method has to be combined with calculated zero-point 

energies as well as lattice energies to calculate ΔGsubl.  

This has been done within section 4.3 where the “exp/theory” method is combined with 

the aforementioned ѱmol and ѱcrys in order to evaluate experimental heat capacities of 

lactide, naproxen and 3ClMA. In case of naproxen and 3ClMA experimental heat 

capacities are not completely available in the full temperature range. To close the 

temperature gap between the (later discussed) low temperature DHPC measurements and 

high temperature DSC measurements, the heat capacity data was linearly interpolated 

between 200 K and 300 K. Finally, the heat capacities were integrated numerically from 

0 K to 298 K. The resulting enthalpy was subtracted from the thermal corrections of the 

ideal gas which gives a heat capacity related thermal correction Hth and T∆Ssubl. They 
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were combined with the ѱmol and ѱcrys zero-point energies to calculate sublimation 

thermal corrections according to eq. (44). When further combined with the lattice 

energies, the sublimation enthalpies and sublimation free energies of the ѱmol (exp/theory) 

and ѱcrys (exp/theory) method can be calculated according to eq. (43). 

 

Calculation of sublimation thermodynamic from experimental solubilities 

As an alternative “experimental” reference quantity, sublimation enthalpies were 

calculated from experimental solubility data via the sublimation cycle (see (28))). This 

results in a sublimation Gibbs energy of ∆Gsubl,solub = -RT ln xexp – ∆Gsolv and a sublimation 

enthalpy of ∆Hsubl,solub = -RT ln xexp – ∆Gsolv + T∆Ssubl. The entropy of sublimation is 

obtained from integrals of the experimental solid state and calculated ideal gas CP/T from 

0 K to 298 K. As a consequence, they are equivalent to the sublimation entropy of the 

aforementioned “exp/theory” method. The Gibbs free energy of solvation ∆Gsolv was 

calculated with the COSMO-RS model as described in the following section 2.7.3. 

 

2.7.3 Solution thermodynamics 

This section gives computational details for calculating ΔGE and ΔGsolv with the 

COSMORS model. The theoretical framework has been described before in section 2.6.6. 

The excess Gibbs free energy of mixing (see (36)) and the Gibbs free energy of solvation 

(see (45)) were calculated using the COSMO-RS121, 126 model within the COSMOthermX 

program (version C30_1301) from COSMOlogic GmbH & Co KG. In all cases the 

BP_TZVPD_FINE_HB2012_C30_1301 (TZVPD-FINE) parameterization was used. 

The TZVPD-FINE method is based on a COSMO single-point calculation in 

TURBOMOLE (V6.5)139 , using the B-P86/def2-TZVPD level of theory on top of a 

COSMO calculation using the B-P86/def-TZVP level of theory. This works solvation free 

energies ΔGsolv are calculated in the bar/mol reference state system (see section 2.5.3). In 

case the molecular structure of the solute is flexible, energy contributions of selected low 

energy conformations are weighted according to a Boltzmann distribution (eq. (64)); 

where E is the ground-state COSMO energy of the molecule j which is part of the 

conformational ensemble k. As the chemical potential of j in solution, μj
l, contributes to 

the weighted overall chemical potential of j, πj
l, the solution concentration as well as the 

solvent affects the conformational weighting. 
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(64) 

Conformational treatment is of special importance if there are multiple molecular 

conformations within a small energy window that have significantly different surface 

partial charges (e.g. if intramolecular hydrogen bonding occurs). An iterative procedure 
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has been used to calculate the energy differences between an infinite solution and a 

concentrated solution. Hereby, the concentration of the solute in the solution is at first 

calculated using the Gibbs energy solvation at infinite dilution, ΔGsolv,inf. In a second step 

the solvent composition is adjusted according to the calculated fractions from the previous 

step. As a result, the subsequently calculated solvation terms incorporate binary surface 

interactions energies between the solute and the solute, so-called solute-solute 

interactions. These steps are repeated until the calculated mole fractions in solution 

converge. This iterative procedure is implemented within the COSMOthermX program 

(version C30_1301) for the calculation of the activity coefficient and thus ΔGE and has 

been separately adapted for the computation of ΔGsolv. 

 

2.7.4 Implementation of the sublimation and melt cycle 

Within this section, a general implementation routine of the two thermodynamic cycles 

is presented. As discussed within section 2.7.3, the solvent specific thermodynamic 

quantities of the two cycles, The Gibbs energy of solvation ∆Gsolv as well as the excess 

Gibbs energy of mixing ΔGE, are both calculated within the COSMO-RS framework. 

However, in contrast to the melt cycle which relies on the experimental determination of 

the melting temperature and enthalpy by e.g. DSC (see section 3.2.5) the sublimation 

cycle is based on an exclusively theoretical approach. It combines periodic DFT and 

calculated molecular and lattice vibrations (see section 2.7.2) in order to calculate ∆Gsubl 

using exclusively first-principle methods. A flow chart of both thermodynamic cycles is 

illustrated within Figure 2.16.  

The sublimation cycle is accessible using two input quantities, the molecular structure 

and the unit cell parameters of the crystal structure. Molecular structures are available 

from the Simplified Molecular-Input Line-Entry System (SMILES)131 which are 

2Drepresentations of the molecular structure. Unit cell dimensions of the crystal structure 

and the atomic coordinates of the molecules within the unit cell are taken from 

experimental Crystallographic Information Files (CIF) which originate from experiment. 

The main steps from determining the solubility from these input parameters via the 

sublimation cycle is marked in blue in Figure 2.16.  

The ground state energy, Eisg, of the lowest energy molecular conformation is determined 

within a conformational screening. Depending on the number of rotatable bonds this can 

be laborious process. Together with the total energy of the optimized crystal unit cell, Eiss, 

the lattice energy, Elatt, is calculated via eq. (42). To calculate the effect of temperature to 

the ground state energies, solid-state heat capacities have to be calculated via the lattice 

and molecular vibrational frequencies, alternatively, they can be determined by 

experiment. For determining the ideal gas thermal energies, the molecular vibrational 

frequencies can be used within the RRHO approximation (see Table 2.2). Several 

methods have been used in this work to calculate the ground state energies and 

thermodynamic functions which are presented in section 2.7.2. Summarized, the ideal gas 

and crystalline solid thermal corrections within eq. (44) together with the lattice energy 

give the sublimation free energy, ΔGsubl, via eq. (43).  
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The melt cycle takes significantly less steps to access the Gibbs energy of melting, ΔGmelt. 

It uses the melting properties, Tmelt and ΔHmelt, which can be determined by DSC, in case 

enough crystalline sample substance is available which does not decompose before 

melting. ΔGmelt (Tmelt) can be optionally corrected to solution temperature using eq. (33). 

This requires the heat capacity differences between the solid and the melt to be 

experimentally determined or approximated by an empiric model60, 83, 84. 

For both thermodynamic cycles the COMSO-RS model is used to calculate the solvation 

thermodynamics. Selected low energy molecular conformations are weighted according 

to eq. (64). If available solvent molecular structures and surface charge distributions can 

be taken from the COSMOtherm data base. The solvation free energy, ΔGsolv, and the 

excess free energy of mixing, ΔGE, are first calculated at infinite dilution using the 

COMSO-RS model. They are subsequently combined with the aforementioned ΔGsubl 

and ΔGmelt, to calculate solution free energy, ΔGsol, via the sublimation and melt cycle via 

eqs. (27) and (28), respectively. Consequently, the solubility can be calculated via eqs. 

(10) or (13). Concentration dependency of the solvent specific terms, ∆Gsolv and ΔGE, can 

be calculated by an iterative procedure as described in section 2.7.3.  

The two thermodynamic cycles have been investigated in detail for two non-chiral model 

substances as well as three representatives of chiral compound forming systems. All 

results are presented and discussed in the following chapter 4 “Results and Discussion”. 
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Figure 2.16: Illustration of the computational implementation of the melt as well as the 

sublimation cycle for solubility calculation.  
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3 Experimental Methods 

 

This chapter provides detailed insight into the experimental methods that have been used 

within this work. Field of application is the experimental investigation of the phase 

transition thermochemistry of the three chiral molecules lactide, naproxen and 

3chloromandelic acid. Furthermore, specifics on origin and purity of the materials which 

have been used w the experiments are briefly given. If required, additional case specific 

experimental details are given directly in the respective subsections of Chapter 4 

(“Results and Discussion”).  

 

3.1 Materials 

Samples of (S)-lactide, (S,S)-3,6-Dimethyl-1,4-dioxan-2,5-dion, and (RS)-lactide, (S,S-

R,R)-3,6-Dimethyl-1,4-dioxan-2,5-dion, were obtained from Purac Biochem with a purity 

of > 99.5 % and were used without further purification.  

(S)-naproxen, (S)-(+)-2-(6-Methoxy-2-naphthyl)propionic acid, and (RS)-naproxen, 

(RS)-(±)-2-(6-Methoxy-2-naphthyl)propionic acid, were purchased from TCI-Europe 

with specified purities of 99 % and 98 %.  

(RS)-3ClMA, (RS)-3-chloromandelic acid, has been purchased from Alfa Aesar (purity > 

97 %). (R)-3ClMA, (R)-(-)-3-chloromandelic acid was purchased from Sigma Aldrich 

(purity > 97 %) and further purified by recrystallization from water.  

(R)- and (RS)-mandelic acid were purchased from Merck with a specified purity > 99 % 

and used without further treatment. 

 

3.2 Experimental details 

3.2.1 Measurements of the solubility and the eutectic composition 

Solubilities, xi, and the eutectic composition in solution, xeu, were measured by means of 

a classical isothermal method. The experimental setup consisted of a tempered jacketed 

vessel which was filled with water and a Pt-100 resistance thermometer with a resolution 

of 0.01 K for ensuring stable equilibrium temperatures. A vial with a stirred (magnetic 

stirrer) suspension of 5 to 10 ml was equilibrated within the jacketed vessel at a constant 

temperature (±0.1 K) for 48 h up to 72 h. A minimum of two samples of 1-2 ml of solid 

free solution were taken using a syringe and a filter (PET - membrane, pore size 45 μm) 

for determination of the saturation concentration.  

The solid phases in equilibrium with the solution were analysed by XRPD for structural 

clarification (see section 3.2.3). When measuring the eutectic composition in solution, 

XRPD was further used in order to examine if both the enantiopure and racemic crystals 

were present in the precipitate. 
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The extracted solution samples were dried at ambient condition and optionally for 3-5 h 

in a vacuum oven. Solubilities were calculated from the weight of the solution and the 

weight of the sample after drying via eq. (1) or by calibrated HPLC in cases where 

solubilities were low. When measuring the eutectic composition, the enantiomeric ratio 

of mixtures of the two enantiomers has been determined by HPLC method. Further details 

are given in the subsequent section 3.2.2. 

 

3.2.2 Characterization of liquid phases 

High-performance liquid chromatography (HPLC) has been used to either quantify 

absolute solution compositions in case of low solubilities or to determine the enantiomeric 

ratio for investigating the enantiomeric purity and when measuring the eutectic 

composition.   

For the chiral discrimination of naproxen a Chiralpak AD-H column (Chiral 

Technologies) was used in combination with mobile phase consisting of n-

Hexane/IPA/TFA in a ratio of 80:20:0.1. The flow rate was 1 ml/min and the temperature 

25°C. For naproxen HPLC has been used in order to determine enantiomeric ratios in the 

frame of measuring the eutectic composition and further when measuring absolute 

solubilities. Therefore, solution concentration was linearly correlated against the peak 

area as shown within Figure 3.1. 

 

Figure 3.1: Calibration of the concentration of (S)- and (R)-naproxen in solution using HPLC. 

 

For lactide HPLC has been used in order to determine the enantiomeric purity or in the 

frame of measuring the eutectic composition. The enantiomeric ratio has been determined 

from the concentration dependence of the peak areas within the chromatograms. A 

Chirobiotic T column (Daicel Corporation) has been used along with a mobile phase 

containing a 80/20 vol% mixture of methanol and ethyl acetate as well as 1% 

triethylammonium acetate as buffering agent for adjusting a pH-value of 4.02. The flow 

rate was 0.5 ml·min-1 and the temperature 20 °C.  
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3.2.3 Characterization of solid phases 

Crystal forms have been analysed by X-ray powder diffraction (XRPD) in an X’Pert Pro 

apparatus (PANanalytical GmbH, Germany) using CuK-α radiation and scanning 

diffraction angles (2θ) from 3-40° with as step size of 0.017° and a duration of 50s. 

Solid-state Raman analysis of the powdered crystals was performed with a commercial 

MultiRAM spectrometer from Bruker, Germany. The system employs a laser beam at 

1064 nm. If not further specified, the laser was operated at 500 mW and the analyses were 

carried out at ambient temperature averaging over 32 scans with a spectral resolution of 

1 cm-1 between 10 cm-1 and 3500 cm-1. 

 

3.2.4 Solution enthalpy 

The solution enthalpy measurements were carried out in a C80 calorimeter from Setaram 

Instrumentation (France). The device consists of two measurement chambers which are 

both surrounded by a Calvet-type sensor which has been calibrated calorically from the 

manufacturer using the Joule-effect method. Two identical standard membrane mixing 

cells have been used for the reaction and reference side. Both measurement cells consist 

of two chambers which are separated by a 0.05 mm thick Teflon membrane. Weighted 

crystalline solid was placed into the lower chamber of the reaction cell. The upper 

chamber of both the reaction and reference cell was filled with the solvent in the same 

amount. The sample and the solvent were weighted with a balance with an accuracy of 

±0.01 mg.  

After an initial equilibration period of around 2 h both Teflon membranes were pierced 

through simultaneously and the solution was stirred by hand for around 3 min on both 

sides. To ensure complete dissolution the cells were stirred a second time after another 5 

min. If no thermal reaction was detected complete dissolution was assumed. Additionally, 

the vessels were checked after the experiment for non-dissolved substance. The 

differential heat-flux was recorded as a function of time and integrated to give the heat 

change during mixing. The thermal effect of the stirring was determined to be smaller 

than 0.1 kJ∙mol-1 and was neglected in the following. Figure 3.2 depicts a characteristic 

thermal response for the dissolution of the enantiopure and racemic crystalline solid of 

lactide in toluene. The caloric measurements are performed for final concentrations which 

are significantly lower than saturation concentration but large enough to give an accurate 

heat response. To obtain the solution enthalpy at infinite dilution, ΔHsol,inf, several 

measurements at different concentrations are performed which are then linearly 

extrapolated to infinite dilution (x = 0) using a linear least squares regression. 

Concentrations were changed by varying the amount of dissolved solute while keeping 

the amount of solvent constant in all measurements. The accuracy of the system was 

tested with KCl (Merck, purity > 99.99%) in deionized water at 30°C. Measurements 

were performed in triplicate and gave a solution enthalpy of 16.34±0.33 kJ∙mol-1 which 

is in agreement with data from literature158 which is ΔHsol,inf  (303.15 K) = 16.42 kJ∙mol-

1. Furthermore, it has been shown before that solution enthalpies of organic crystals can 

be measured within the C80 calorimeter with high accuracy.63 
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Figure 3.2: Caloric measurement of the dissolution of 30mg of (L)-lactide (left) and (DL)-lactide 

(right) in 2000 mg of toluene. 

 

3.2.5 Melting properties 

Thermodynamics of fusion were measured using a Setaram DSC 131. Temperature and 

enthalpy calibration are regularly performed on this device using indium, tin, and lead 

reference material. Samples with typical masses of ~10 mg (±10 μg) were weighed into 

Al-pans (30 μl, purchased from Setaram), closed with a lid, and heated with a constant 

heating rate of 0.5 to 2 K·min-1 while purging with highly pure helium (99.999 Vol. %) 

at a constant flow rate of 35 mL min-1.  

Melting temperatures have been determined from the extrapolated initial (onset) 

temperature which is determined from the intersection of the tangent of the peak with the 

extrapolated baseline using the accompanying software from Setaram. Melting enthalpies 

have been determined from the integrated areas of the melting peaks using either a linear 

integration routine or a sigmoid integration routine in case of a shift of the baseline before 

and after melting. For measuring the binary melt phase diagram of mixtures of two 

enantiomers the corresponding solidus temperatures were determined via the onset 

temperature while the liquidus temperatures (see Figure 2.6) were determined from the 

maximum peak temperature. More detailed information on the determination of the 

binary melt phase diagram of chiral substances is given in ref. 159. 

 

3.2.6 Sublimation thermodynamics 

Sublimation vapor pressures were measured in the frame of a collaboration with Prof. 

Sergey P. Verevkin and Vladimir N. Emel̀yanenko from the Physical Chemistry 

department of the University of Rostock. Vapor pressures were measured using the 

transpiration method, which was described before in literature.160, 161 About 0.5 g of solid 

sample was dissolved in acetonitrile and mixed with small glass beads in a glass beaker. 

The solvent was slowly evaporated while stirring producing uniformly covered glass 

beads with crystalline solid. A well-defined nitrogen gas stream was passed through a 

https://pubs.acs.org/author/Emelyanenko%2C+Vladimir+N
https://pubs.acs.org/author/Emelyanenko%2C+Vladimir+N
https://pubs.acs.org/author/Emelyanenko%2C+Vladimir+N
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thermostated (±0.1 K) U-shaped saturator filled with the glass beads and the sublimated 

material was collected in a cold trap. The amount of condensed sample was determined 

by weighing with microbalances of 0.1 mg resolution. The absolute vapor pressure pi of 

substance i was calculated from the amount of the product collected within a definite 

period of time per Volume V = VN2 + Vi at temperature T using ideal gas law (pi V= mi R 

T). Uncertainties of absolute vapor pressures measured by the transpiration method were 

estimated to in between 1% and 3% as described in detail in literature.161  

Additionally, enthalpies of sublimation were measured in the same collaboration by TGA 

with a Perkin Elmer Pyris 6 calorimeter. Before TGA measurement about 70 mg of a 

sample was melted and cooled inside a platinum crucible and analysed by FT-IR to ensure 

that the sample did not decompose. Isothermal TGA curves were measured just below 

melting temperature at a nitrogen flow rate of 200 mL·min-1 using the same crucible with 

the recrystallized sample. Measurements of the mass loss rate were performed in a few 

consequent series of steps of increasing and decreasing temperature. The detailed 

procedure was described elsewhere.162 

 

3.2.7 Heat capacities 

Low-temperature heat capacities of the crystalline solid were measured by means of direct 

heat pulse calorimetry (DHPC) from 2 to 200 K. A commercially available relaxation 

calorimeter has been used in cooperation with Prof. Cornelius Krellner and Natalija van 

Well from the Institute of theoretical Physics at the Goethe-University in Frankfurt, the 

Physical Property Measurement System (PPMS) from Quantum Design. The PPMS 

provides a high-vacuum environment, around 10-8 bar. For the measurement the sample 

powder is pressed to a pellet and placed on a 3 mm x 3 mm measurement platform. 

Thermal grease (Apiezon® N) is used to enhance thermal coupling between the pellet 

and the platform as described in literature.163 Figure 3.3 (left) shows the pressed pellet and 

the measurement platform of the PPMS system. The platform has a weak thermal link 

with known thermal resistance to a constant heat sink. Further technical details of the 

system are given in detail elsewhere.164 

The temperature response of a discrete heat pulse of heating and subsequent relaxation is 

evaluated using an analytical curve-fitting procedure which includes two time constants, 

τ1 and τ2.
165 In the case of ideal thermal coupling τ2 becomes zero. In all cases however, 

thermal coupling is slightly less than 100 % and both time constants are used in the fitting 

procedure. An example response from a discrete heat pulse is depicted within Figure 3.3 

(right). One experiment comprises an ‘addenda run’ where only the platform and the 

thermal grease is measure and a second ‘sample run’ where the heat capacity of the whole 

ensemble is observed. The net heat capacity of the sample is then given by the difference 

between both measurements.  
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Figure 3.3 (left) Pressed tablet of the crystalline sample on the measurement platform of the 

PPMS. (right) Temperature response of the system from a discrete heat pulse consisting of heating 

and subsequent relaxation. 

 

Heat capacities above room temperature were measured using a DSC 111 calorimeter 

from Setaram which operates with a Tian-Calvet sensor.166 Temperature calibration was 

conducted using indium, tin and lead as reference material. Since the Calvet detector was 

absolutely calibrated calorically by Joule effect, the heat capacity was not measured 

against a reference material. The calorimetric resolution of the instrument is 0.4 μW, and 

the detection limit 5–15 μW. Measurements were performed using the temperature step 

method while purging with highly pure helium at a flow rate of 35 ml·min-1. Samples 

with typical masses of 60 to 80 mg (±10 μg) were weighted into aluminium crucibles 

(150 μl, purchased from Setaram) and closed with an aluminium lid. The heat capacity 

measurements were performed at 10 K temperature steps, a heating rate of 5 K min-1 and 

subsequent equilibration time of 600 s. One experiment comprises two consecutive runs 

measuring the empty crucible (blank run) and subsequently the crucible containing the 

sample (sample run). The net heat capacity of the sample is then calculated from the 

difference between both measurements using the accompanying software from Setaram. 

A typical measurement routine is depicted within Figure 3.4 showing the blank run, the 

sample run, the temperature of the sample during the sample run and the resulting heat 

capacities. Sapphire and benzoic acid were used as calibration standards. Average 

deviations to published data were 1.4% for sapphire167 and 2.6% for benzoic acid168.  



Experimental Methods 52 

 

 

Figure 3.4: Experimental routine of the high temperature heat capacity measurements using the 

step-wise method. Exemplarily, measurement results for crystalline (RS)-mandelic acid are 

shown. 
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4 Results and Discussion 

 

This chapter comprises all experimental and computational results. In each sub-section 

results are first presented and discussed and subsequently summarized to draw 

conclusions. Parts of the computational work has been compiled within a cooperation 

with Prof. Sarah L. Price, Dr. Rebecca Hylton and Dr. Jan Gerit Brandenburg from the 

Physical Chemistry Section at University College London. In the course of this project, 

low-temperature heat capacities have been measured at the Institute of theoretical Physics 

at the Goethe-University in Frankfurt in cooperation with Prof. Cornelius Krellner and 

Dr. Natalija van Well. Furthermore, measurements of the sublimation thermodynamics 

have been conducted at the Physical Chemistry department at University of Rostock in 

cooperation with Prof. Sergey P. Verevkin and Dr. Vladimir N. Emel’yanenko. All results 

that were published beforehand in the frame of this work can be found in refs.41, 44, 150, 169, 

170. 

In section 4.1 and 4.2 the melt and the sublimation cycle are used for solubility prediction 

of two well-studied model substances, naphthalene and benzoic acid. Subsequently, the 

accuracy of state-of-the art electronic structure methods to calculate the dominant energy 

contribution within the sublimation cycle, the lattice energy, is evaluated.   

In section 4.3 the melting and sublimation phase transition is studied for chiral lactide, 

naproxen and 3ClMA using experiment and theory. The numerous energy contributions 

to Gibbs free energy of sublimation are calculated using ab-inito quantum chemistry 

methods. Calculations are accompanied by broad experimental investigations of the 

melting properties, the sublimation vapor pressures and sublimation enthalpies as well as 

the solid-state heat capacities of the racemic compound and the enantiomer.   

In section 4.4 and 4.6 the two thermodynamic approaches are used to calculate 

solubilities and their temperature dependence for the three chiral molecules in a variety 

of pure and mixed solvent systems. Furthermore, the energy differences between the 

enantiomer and the racemic compound are used in section 4.5 to estimate the eutectic 

composition in solution and its temperature dependence. All calculations are compared 

to experimentally determined solubilities, the solution enthalpies as well as the specific 

eutectic composition in solution.  

 

4.1 Solubility prediction of non-chiral model substances 

Within this section, the melt and the sublimation cycle (eqs. (27) and (28)) are evaluated 

for their applicability to calculate solubilities of two well-studied reference substances, 

namely naphthalene and benzoic acid, in a variety of organic solvents. Main focus is to 

compare the accuracy of the two thermodynamic cycles and to evaluate relevance and 

accessibility of the various energy contributions to the solution free energy.  
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4.1.1 Experimental reference data 

To be able to assess the sources of computational errors, experimental thermodynamic 

reference quantities are required. For naphthalene as well as benzoic acid a wide range of 

and reliable experimental data on solubilities, melting and sublimation as well on solid 

state heat capacities is available in literature.  

The Gibbs free energy of sublimation, ΔGsubl, has been calculated for naphthalene and 

benzoic acid from published experimental sublimation vapor pressures from refs. 171, 172 

via eq. (38). These are recommended averaged values of several independent studies and 

both give particularly reliable ΔGsubl with an uncertainty of ± 0.1 kJ·mol-1 (see Table 4.1). 

Experimental sublimation enthalpies have been studied extensively for both naphthalene 

and benzoic acid resulting in approximately 50 published values for both molecules 

between 1925 until today.173 However, the sublimation enthalpy is function of 

temperature and the various literature data173 was determined at different temperatures or 

even lacks in information about this essential detail. For this work the ten most recent 

fully specified sublimation enthalpies from ref. 173 have been extrapolated to 298 K via 

eq. (41) using experimental solid state heat capacities168, 174 and calculated ideal gas heat 

capacities using a mixed “exp/theory” method as introduced in section 2.7.2. Further 

details on the calculation of the ideal gas thermodynamics are given in the subsequent 

section where they are used for correcting the calculated lattice energies from zero Kelvin 

to 298 K (see Table 4.3). Obviously, the sublimation free energies are more reliable in 

terms of the experimental error compared to the sublimation enthalpies making ΔGsubl an 

especially reliable experimental reference quantity. 

 

Table 4.1: Experimental melting and sublimation thermodynamic quantities. Averaged 

sublimation enthalpies have been taken from ref.173. Sublimation free energies have been 

determined from experimental sublimation vapor pressures from refs. 171, 172 via eq. (38). 

 
ΔHsubl TΔSsubl

a ΔGsubl
b Tmelt ΔHmelt ΔGmelt

c 

 kJ·mol-1 kJ·mol-1 kJ·mol-1 K kJ·mol-1 kJ·mol-1 

naphthalene 
73.0 

(± 1.7) 

50.4 

(± 1.7) 

22.6 

(± 0.1) 

354.0 

(± 1.0) 

19.0 

(± 0.4) 

3.0 

(± 0.1) 

benzoic acid 
90.6 

(± 2.9) 

56.3 

(± 2.9) 

34.3 

(± 0.1) 

395.0 

(± 0.7) 

17.4 

(± 1.2) 

4.3 

(± 0.1) 

a calculated via ΔGsubl = ΔHsubl - TΔSsubl where T = 298.15 K. 
b calculated according to eq. (38) via ΔGsubl = -RT ln (p/p0) where T = 298.15 K and p0 = 1 bar. 
c calculated according to eq. (30) via ΔGmelt = ΔHmelt (1- T/Tmelt) where T = 298.15 K. 

 

Additionally, Table 4.1 contains the melting temperatures and enthalpies which are 

required in order to calculate the Gibbs free energy of melting via eq. (30). Precise 

experimental data from various sources is available in literature173. An average value of 

the ten most recent fully specified values has been taken for this work. 

Reliable experimental solubilities are available for both substances in a large variety of 
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pure and mixed organic solvent systems from the IUPAC Solubility Data Series a series 

of reviews containing published data for solubilities of gases, liquids and solids in liquids 

or solids.175 Unfortunately, most experimental solubility data lack information on the 

specific polymorphic form which is in equilibrium for a given solvent and temperature. 

They have been assumed to belong to a single experimental structure which is introduced 

later in Figure 4.2. 

For a comprehensive examination of the accuracy of the COSMO-RS model to determine 

the excess Gibbs free energy of mixing, ΔGE, and the solvation free energy, ΔGsolv, a set 

of pure solvents with different polarity have been chosen. Mole fraction solubilities 

according to eq. (1) have been taken for both substances from refs. 176, 177. In cases where 

more than one data point is available, an averaged value was taken. Aqueous solubilities 

have been taken from refs. 178, 179 as they are missing within the large solubility data series. 

The experimental solubilities are summarized in Table 4.2, sorted by the polarity of the 

specific solvent which is expressed by the dielectric constant. They cover a broad 

spectrum ranging from xi = 1.6∙10-6 up to xi = 0.5.  

 

Table 4.2: Mole fraction solubilities, xi, according to eq. (1) from literature of naphthalene176 and 

benzoic acid177 in various organic solvents with different polarity - expressed by the dielectric 

constant. 

Name Molecular 

structure 

Dielectric 

constant180 

Mole fraction 

solubility of 

naphthalene 

Mole fraction 

solubility of  

benzoic acid 

Heptane 
 

1.9 0.081 0.012 

Cyclohexane 

 

2.0 0.149 0.011 

Benzene 
 

2.3 0.297 0.073 

1-octanol 
 

10.3 0.126 0.199 

2-propanol 

 

18.3 0.045 0.194 

1-butanol 
 

17.8 0.066 0.202 

1-propanol 
 

20.1 0.0461 0.180 

Propanone 

 

21.0 0.226 0.196 

Ethanol  24.6 0.034 0.183 
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Methanol  32.6 0.023 0.163 

Dimethyl-

formide 

 

47 0.281 0.491 

Water  78.5 4.1∙10-6 1.6∙10-6 

 

4.1.2 Lattice energies and thermal correction 

Within this section the determination of the sublimation free energy from periodic DFT 

in combination with the mixed “exp/theory” method is discussed. The resulting ΔGsubl are 

subsequently used for predicting solubilities via the sublimation cycle. As lattice energies 

are calculated by DFT for the static crystal lattice and the static ideal gas, zero-point 

energy as well as thermal enthalpy and entropy corrections are required and will be 

discussed first. Assuming that the vibrational lattice and molecular modes are decoupled 

the zero-point energy difference between the crystal and the gas, ∆EZPE
 , can be derived 

from the lattice frequencies as molecular vibrations cancel out. Experimental vibrational 

lattice frequencies, νi, from literature147, 181 were used to calculate the zero-point energy 

contribution by ∆EZPE
 =EZPE

g
− EZPE

s =- h 2⁄ ∑ νi. The obtained ∆EZPE
  (see Table 4.3) is 

in excellent agreement with published calculated values for naphthalene147 and benzoic 

acid182. 

 

Figure 4.1: Temperature-dependent solid state (experiment183 - ○; calculations via the 

“exp/theory”-method - straight line) and calculated ideal gas (dashed line) (a) heat capacities CP 

and (b) CP/T as well as the corresponding thermodynamic (c) enthalpy and (d) entropy functions 

of naphthalene. 
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Thermal enthalpies, entropies and Gibbs energies are related to the integrals of the heat 

capacities in the specific state of matter. Integrals of CP from zero Kelvin give the 

enthalpy while thermal entropies are related to integrals of CP/T. Within the mixed 

“exp/theory” method the experimental solid state heat capacities from literature168, 183 

were interpolated using while ideal gas heat capacities and thermodynamic functions have 

been calculated via the RRHO (Table 2.2) as described in section 2.7.1 using the def2-

TZVP-BP86-D3 level of theory for calculating the harmonic vibrational frequencies. This 

is exemplarily shown in Figure 4.1 for the crystalline solid and ideal gas of naphthalene 

in the whole temperature range from 0 K to 298 K. 

Integrals of the experimental solid state168, 174 and calculated ideal gas heat capacities 

between zero Kelvin and 298 K were combined with the ∆EZPE to give the final thermal 

enthalpy correction, Hcorr, and the sublimation entropy, TΔSsubl, via eq. (44) which are 

summarized in Table 4.3 for both molecules. There are only minor differences of the 

calculated Hcorr to the 4.9 kJ·mol-1 of the frequently used 2RT-approximation (see eq. 

(55)). The calculated sublimation entropies via the mixed “exp/theory” method are in 

good agreement with the primary experimental data from measured vapor pressures 

(Table 4.1) with absolute deviations of 3.3 and 0.4 kJ·mol-1 for naphthalene and benzoic 

acid, respectively. However, when used to calculate solubilities these relatively small 

errors can affect the predictions accuracy due to the exponential relation within eq. (10). 

 

Table 4.3: Summary of all zero-point, thermal enthalpy and entropy corrections which are 

required to calculate the sublimation free energy, ΔGsubl, via eq. (44).  

 
 

Naphthalene Benzoic acid 

1 ∆EZPE 2.30a 2.75a 

2 Hig ± stdev 20.67 ± 0.30b 21.41 ± 0.29b 

3 ∫ CP,exp dT 24.79c 24.03c 

4 Hcorr
 -6.42 ± 0.30d -5.37 ± 0.29d 

5 TSig ± stdev 102.91 ± 0.57b 106.09 ± 0.51b 

6 ∫ (CP,exp/T) dT 49.44c 49.34c 

7 TΔSsubl 53.47 ± 0.27e 56.74 ± 0.23e 

a Calculated from experimental lattice vibrational frequencies
147, 181

 via ∆EZPE= − h 2⁄ ∑ νi. b Average of 

BP86-, B3LYP- and MO6-def2-TZVP method together with the standard deviation.c Calculated from 

integrals of the solid-state heat capacities168, 174. d Sum of 1, 2 and 3 according to eq. (44). e Sum of 5 and 

6 according to eq. (44). 

 

Lattice energies have been determined via eq. (42). Geometry optimizations of the ideal 

gas molecules as well as of crystalline solid have been performed within the 

TURBOMOLE software package (V7.1)139. Further details are given in section 2.7.2. 

Calculations have been performed using three GGA type density functionals, B-P86134, 

135, BLYP135, 184 and PBE136 as well as the semi-empirical GGA-type B97-D185. They are 
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combined with various Gaussian def2-type basis sets by Weigand and Ahlrichs133 and the 

D3 dispersion correction by Grimme et al.137. A k-point sampling was performed from k 

= 1 to k = 21 using uniform k-points in all three dimensions and no significant change for 

k > 3 was observed in test runs for benzoic acid and naphthalene (see Table 7.22 in the 

appendix). Hence, lattice energies have been calculated using a uniform k-points mesh of 

k = 3x3x3 for all calculations. 

Lattice energies have been calculated for the experimental crystal structures. They contain 

the necessary information of the dimensions of the unit cell as well as starting atomic 

coordinates for the periodic DFT calculations. Two representatives of crystal structures 

of benzoic acid and naphthalene, NAPHTA04186 and BENZAC02187, have been used (see 

Figure 4.2). Details on the unit cell dimensions are given in Appendix Table 7.16. 

 

Figure 4.2: Crystal structures of (left) naphthalene – NAPHTA04186 and (right) benzoic acid – 

BENZAC02187. 

 

The molecular crystals differ in the type of molecular interactions that dominate. In case 

of benzoic acid cyclic hydrogen-bonds between the carboxylic acid groups form strong 

dimer structures.96 In contrary, naphthalene forms a layered structure which is dominated 

by van der Waals interactions.188  

Sublimation free energies can be determined via eq. (43) from calculated lattice energies 

when combined with thermal and entropy corrections from Table 4.3. Figure 4.3 (a) and 

(b) show the absolute deviations of the calculations from the experiment summarized in 

Table 4.1. All calculations overestimate the sublimation Gibbs energies in comparison to 

experiment. For both substances (NAPHTA04186 and BENZAC02187) there is a drastic 

increase in accuracy when using the split valence triple-zeta (TZV) basis set (def2-TZVP) 

over the smaller split valence double-zeta (SV) one (def2-SVP). An inclusion of a second 

polarization term for all hydrogen atoms does not change the overall quality of the 

calculation. This trend is consistent for all three functionals and slightly larger for benzoic 

acid. It is related to the strong anisotropic electrostatic interactions of the hydrogen bonds 

between the valence electrons of the carboxyl groups which are more likely to be affected 

by basis set superposition errors (BSSE).189 This issue will be discussed in more detail 

later on in section 4.2 for a larger set of molecular crystals.  

For both molecules, the PBE and the semi-empirical B97-D functional perform best 

whereas the BLYP functional leads to the largest deviation from experiment. In case of 

the weakly bound naphthalene, the differences between the functionals are significantly 

larger than for the hydrogen-bonded benzoic acid. Even though for naphthalene the PBE 

functional performs best, the semi-empirical B97-D functional gives the best overall 

performance whereas the BLYP functional leads to the largest deviations to experiment. 
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For def2-TZVP/B97-D3 deviations are 2.9 kJ mol-1 for naphthalene and 1.6 kJ mol-1 for 

benzoic acid. Based on the above, the B97-D method in combination with a def2-TZVP 

basis set will be used in the following for solubility predictions. 

 

Figure 4.3: Differences in the calculated sublimation Gibbs energies and experiment from Table 

4.1 of (a) naphthalene (NAPHTA04) and (b) benzoic acid (BENZAC02). ΔGsubl,calc combines 

calculated lattice energies with thermal corrections from Table 4.3. For Elatt BLYP (■), B-P86 

(▲), PBE (◆) and B97 (○) were used in combination with the “D3” dispersion correction def2-

type basis sets with increasing size from left to right. 

 

As the unit cell geometry is not optimized, the quality of the result is depending on the 

experimental unit cell parameters. Lattice energies of two structurally related 

experimental unit cell geometries for naphthalene (NAPHTA04186 and NAPHTA23190) 

as well as benzoic acid (BENZAC01191 and BENZAC02187) give energy difference that 

are smaller than 1.5 kJ mol-1. Further details are given in Appendix Figure 7.2. These 

rather minor differences can be minimized when optimizing the unit cell parameters in 

addition to the molecular geometries. A combined optimization of the unit cell and 

molecular geometries, however, significantly increases computational times. 

 

4.1.3 Solubility prediction 

The experimental melting free energies, ΔGmelt, from Table 4.1 and calculated 

sublimation free energies, ΔGsubl, from Figure 4.3 (“exp/theory” + def2-TZVP/B97-D) 

were combined with the solvent specific excess Gibbs free energy of mixing, GE, and the 

Gibbs free energy of solvation, ΔGsolv in order to calculate ΔGsol via eqs. (27) and (28), 

respectively. The resulting ΔGsol from both thermodynamic cycles were used to calculate 

mole fraction solubilities from Table 4.2 via eq. (10). ΔGE and ΔGsolv have been both 

determined using the COSMO-RS121, 126 model in combination with the TZVPD-FINE 

parameterization. For both cycles an iterative procedure was applied in order to calculate 

ΔGE and ΔGsolv at saturation concentration (see Figure 2.16). Further information on the 

calculation of the solvation terms with COSMO-RS are given within section 2.7.3. 
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Results and discussion 

Figure 4.4 (left) compares the experimental solubilities, ln xi, to calculations via the two 

thermodynamic cycles. The melt cycle gives slightly better results for both substances 

however seem to systematically overestimate the solubilities. It has an error of RMSE = 

0.57 and 2.13 (in lnx – units) for naphthalene and benzoic acid, respectively. In 

comparison, the sublimation cycle has an overall error of RMSE = 1.78 and 2.84 (in lnx 

– units) for naphthalene and benzoic acid, respectively. The sublimation cycle 

systematically underestimates the solubilities which is in parts due to the overestimation 

of the sublimation Gibbs energies (see Figure 4.3). Calculations errors affect the final 

mole fraction solubilities xi significantly more if solubilities are large due to the 

exponential relation between the free energy of solution and xi (see Figure 4.4, right). 

 

Figure 4.4: Calculated mole fraction solubilities, (left) ln(xi) and (right) xi, via the two 

thermodynamic cycles (Figure 2.10) for naphthalene (blue symbols) and benzoic acid (orange 

symbols) in a variety of organic solvents with varying polarity (see Table 4.2). The melt cycle 

(▲) is compared to the sublimation cycle (○). The coloured horizontal lines corresponds to the 

SVL equation (eq. (34)) representing the solvent-independent “ideal” solubility. 

 

In order to evaluate error sources, “experimental” solvation quantities, ΔGsolv,exp and 

ΔGE
exp, have been recalculated from the experimental solubilities in Table 4.2 and the 

experimental melting and solvation Gibbs energies from Table 4.1 via the two 

thermodynamic cycles (eqs. (27) and (28)). They are compared to the calculated solvation 

terms within Figure 4.5. For most of the cases ΔGsolv is larger compared to ΔGE due to the 

cavitation energy, ΔGcav, the energy needed to form space in the solvent for the dissolved 

molecule (see Figure 2.15). Both ΔGsolv and ΔGE are accurately modelled by the COMSO-

RS model for naphthalene while errors for benzoic acid are larger and systematically 

underestimate the solvation free energies. The benzoic acid results are significantly worse 

than the suggested 2.1 kJ mol-1 accuracy of COSMO-RS in combination with the TZVPD-

FINE parameterization.127 Especially for the unipolar solvents deviations between 

calculations and experiment are large by to 10 kJ mol-1. Benzoic acid dissociates in water 

which is not explicitly included in the model resulting in a large computational error when 

calculating the solubility in water. It can be summarized that errors within the sublimation 

cycle for naphthalene are mainly related to the calculation of ΔGsubl while for benzoic 
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acid the solvation terms are responsible for most of the deviations in Figure 4.4.  

 

Figure 4.5: Calculated COSMO-RS solvation free energies, ΔGsolv, and the excess free energies 

of mixing, GE, for the sublimation and melt cycle, respectively: (left) naphthalene; (right) benzoic 

acid. Light grey bars are the free energies at infinite dilution and the black bars energy 

contributions due to solute-solute interactions. The final free energies at saturation concentration 

(black ●) are compared to the experimental values (red ●) which are obtained from recalculating 

ΔGsolv,exp via experimental ΔGsol,exp (Table 4.2) and ΔGsubl,exp (Table 4.1). 

 

Both solvation quantities are comprised by concentration-independent terms, ΔGsolv,inf 

and ΔGE
inf, as well as energy contributions that incorporate solute-solute interactions (see 

Figure 4.5). ΔGsolv,inf and ΔGE
inf are significantly larger than the concentration-dependent 

counterparts for both substances. As suspected, the latter are larger for systems with high 

solubilities, such as propanone and DMF. As a consequence, the concentration-dependent 

terms are larger for the melt cycle which overestimates most of the solubilities (see Figure 

4.4). For naphthalene, concentration-dependent terms are mostly smaller than 0.6 kJ·mol-

1 even in cases where solubilities are large but for benzoic acid they can be significantly 

larger and vary between -3 and 4 kJ·mol-1. The hydrogen bonding capability of the 

benzoic acid carboxylic acid group is responsible for the strong association energies at 

high solubilities. The overall accuracy for calculating the solvation Gibbs energy is only 

slightly improved if concentration-dependent terms are included. Within the melt cycle 

concentration effects are larger due to the larger solubilities but only improve the overall 

calculations for benzoic acid while for naphthalene slightly less accurate ΔGE are 
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calculated. Hence statistically, the modelling of concentration-dependent solvation terms 

does not significantly improve the overall calculations accuracy.  

Figure 4.6 compares all major absolute energy contributions to ΔGsol when calculated via 

the sublimation cycle. The solvation free energy is solvent-depending and varies, for the 

solvents from Table 4.2, between 8 and 17 kJ·mol-1 for naphthalene and between 19 and 

32 kJ·mol-1 for benzoic acid. For both substances the lattice energy is the dominant energy 

contribution while the entropy correction is the second largest term. Hence, thermal 

enthalpy and entropy corrections and solvation make up around 40 to 50 percent of the 

total absolute energies. In summary, an accurate determination of the sublimation free 

energy is especially relevant for predicting solubilities via the sublimation cycle. Within 

the following section the accuracy of state-of-the-art methods to calculate the major 

energy contribution to ΔGsubl, the lattice energy, is discussed for a benchmark set of 

molecular crystals.85 

 

Figure 4.6: Absolute energy contributions to the free energy of solution within the sublimation 

cycle. For ΔGsolv an energy range is given which corresponds to the solvation in various solvents 

(Table 4.2). 

 

4.1.4 Conclusions 

Calculations of lattice energies consequently of sublimation Gibbs energies are more 

accurate using the larger def2-TZVP basis set due to effects of basis set superposition 

errors (BSSE) when using def2-SVP (see Figure 4.3). The sublimation cycle has an 

overall accuracy of RMSE = 1.8 to 2.8 (ln x-units) when used for solubility prediction of 

naphthalene and benzoic acid, respectively (see Figure 4.4 a). This is only slightly worse 

in comparison to the melt cycle results. The modelling of concentration-dependent 

solvation terms does not significantly improve the overall calculations accuracy. 

However, the absolute mole fraction solubilities, xi, from both cycles are not accurate 

enough to be used for crystallization process design due to the summation of errors and 

the exponential relation between ΔGsol and xi (see Figure 4.4 b). Errors in the naphthalene 

calculations are mainly related to the calculation of ΔGsubl while for benzoic acid the 

solvation terms are responsible for most of the computational errors (see Figure 4.5). The 

main energy contribution within the sublimation cycle is the lattice energy but thermal 

corrections as well as solvation make up around 40 to 50 percent of the total energies (see 

Figure 4.6). Hence, combining periodic DFT and the COSMO-RS model within the 

sublimation cycle provides a consistent framework for calculating mole fraction 

solubilities. Moreover, its accuracy is comparable to the melt cycle which requires 

substance specific experimental melting parameters.  
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4.2 Lattice energies of organic molecular crystals 

The lattice energy has been identified as being the dominant energy contribution to the 

solution free energy of naphthalene and benzoic acid (see Figure 4.6). Within this section, 

the accuracy of state-of-the-art methods to calculate lattice energies of organic molecular 

crystals is evaluated and compared to own calculations using a consistent framework to 

model the separated ideal gas molecules and periodic crystal. 

 

Figure 4.7: Molecular structures of the molecules within the X23 benchmark set for non-covalent 

interactions in solids suggested by Otero-de-la-Roza et. al.85 and extended Reilly et. al.97. The 

molecular structures are classified by the dominant intermolecular interactions within the crystal. 

 

A set of well-studied molecular crystals is used in order to generate a reliable framework 

for evaluating the accuracy of computations. The set of molecules is bases on the “C21” 

benchmark set by Otero-de-la-Roza et. al.85 which has been suggested for studying non-

covalent interactions in solids of 21 crystal structures, including one polymorphic system 

(α- and β-oxalic acid). The C21 set was extended to include hexamine (HXMTAM09192) 

and succinic acid (SUCACB02193) by Reilly et. al.97 and subsequently named “X23”. The 
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X23 benchmark set consists of rather small and rigid molecules which are depicted in 

Figure 4.7. The various molecules are classified into systems that are dominated by 

hydrogen bonding or van der Waals interactions in the solid state. 

 

4.2.1 Lattice energy calculations 

Lattice energies of the full X23 benchmark set have been calculated and compared to 

recalculated “experimental” values that have been extracted from experimental 

sublimation enthalpies. “Experimental” lattice energies, Elatt,exp, can be extracted from 

measured sublimation enthalpies via eq. (44) using calculated thermal and zero-point 

energies. For parts of the molecular crystals from the X23 set, which are solid at room 

temperature, the suggested thermal corrections from literature85, 97, 194 can be compared to 

the frequently used molecule independent 2RT-approxmation (eq. (55)) which reveals 

significant differences with an overall RMSE of 2.5 kJ mol-1 (see Figure 4.8). 

 

 

Figure 4.8: Calculated thermal contributions ΔHcorr to the sublimation energy at 298 K for selected 

crystals of the X23 benchmark set that are solid at 298 K. Corrections in the harmonic 

approximation from different electronic structure methods are given: PBE-XDM (open triangles 
85), PBE-TS (filled squares 97), and DFTB3-D3 (filled circles 194) and compared to the 2RT-

approximation (horizontal line). For six systems more demanding calculations which include 

anharmonic contributions have been performed (filled stars 97). 

 

Based on the above, the average of the suggested thermal corrections from the three 

studies85, 97, 194 have been used to extract Elatt,exp from the experimental sublimation 

enthalpies while the standard deviation between the three ΔHcorr values gives the 

uncertainty of Elatt,exp. The final values and their corresponding uncertainty are 

summarized in Appendix Table 7.23. 

For the computation of lattice energies, Elatt, periodic DFT calculations have been 
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performed using the riper140, 141 module in TURBOMOLE software package (V7.1)139 as 

described in section 2.7.2. For all calculations, the def2-type basis sets by Weigand and 

Ahlrichs 133 have been used in varying size in combination with the PBE136 density 

functional and the “D3”137 dispersion correction. If possible, all calculations were 

performed with m3 grid size, which has been increased to m5 in case of convergence 

issues. As space group symmetry options cannot be exploited within the riper framework, 

computational effort is directly related to the size of the molecules, as well as the total 

number of molecules, Z, within the unit cell. The number of molecules within the crystal 

structures vary in between 2 ≤ Z ≤ 8 which significantly scales the computational time of 

the periodic calculations in comparison to that of the single gas phase molecules. Lattice 

energies have been calculated via eq. (42) from the ground state energies of the 22 

molecular structures in the gas phase and energies of the 23 distinct crystal structures. For 

succinic acid, the lowest energy conformation has been used for lattice energy 

calculations as suggested in literature.97 The experimental unit cell parameters are 

summarized in Table 7.18 in the appendix and remain unchanged during the calculations 

while molecular coordinates within the unit cell are optimized. This work’s calculation 

results are summarized in Figure 4.9 and compared to Elatt,exp. For anthracene, the standard 

TZP basis set was used to avoid convergence difficulties with the too diffuse triple-zeta 

valence basis sets.  

A major influencing variable on the quality of the computed lattice energies is the choice 

of the dispersion model. In Figure 4.9 (top), calculations from ref. 85 using the uncorrected 

PBE functional are compared to this works def2-TZVP / PBE-D3 results. Obviously, the 

uncorrected PBE functional underestimates the binding energies drastically. They are 

smaller for crystals which are dominated by H-bonding interactions and especially large 

for crystals that are dominated by van der Waals interactions.  

Figure 4.9 (bottom) compares the absolute deviations to the “experimental” lattice 

energies of this works PBE-D3 results. There is a clear increase in accuracy when using 

the larger basis set in comparison to the def2-SVP results. This is consistent with the 

previously discussed calculations of benzoic acid and naphthalene (see Figure 4.3) where 

the most significant difference in accuracy for modelling the crystal binding energies was 

between the def2-SVP and def2-TZVP results. Furthermore, there is a clear tendency of 

the lower size def2-SVP basis set to overestimate binding energies of the predominantly 

hydrogen bonded crystals while differences are smaller if van der Waals interactions 

prevail (see Figure 4.9, bottom). The strong dependence on the size of the basis set to 

accurately model hydrogen bonding interactions is consistent with previous findings.156, 

195 These accuracy issues of the small basis set have been assigned to superposition errors 

when using small basis sets (BSSE) which are more severe for crystals that are dominated 

by hydrogen bonding interactions.189 
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Figure 4.9: Calculated lattice energies for molecules from the X23 benchmark. PBE-D3 results 

are compared with experimental values and (top) results from uncorrected PBE calculations 

according to literature87, and (bottom) an average computational value from various methods in 

literature85, 97, 194, 196.  The light grey area indicates the standard deviation of the literature values 

(see Table 7.24). The dark grey area indicates the uncertainty in calculating Elatt,exp from 

experimental sublimation enthalpies via eq. (43). 

 

Figure 4.9 (bottom) further compares this works results to the “average computation” 

value which has been determined from several dispersion corrected electronic structure 

methods to calculate lattice energies from literature85, 97, 194, 196. The light grey area 

indicates the standard deviation between the 12 different methods. Primary data for the 

average computational value is given in Table 7.24 in the appendix. This work’s def2-

TZVP method gives binding energies that are comparable to the literature results (def2-

TZVP / PBE-D3: RMSE = 10.6 kJ·mol-1; Average literature: RMSE = 8.6 kJ·mol-1) and 
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mostly within the standard deviation of those methods (grey shaded area). Deviations of 

this work’s def2-TZVP method can, on one hand, be evoked by the combination of the 

PBE functional and the D3 dispersion correction. On the other hand, the non-complete 

basis set def2-TZVP can be responsible for parts of the deviations to experiment. Errors 

caused by missing geometry optimizations of the unit cell are suspected to contribute only 

minor to the absolute error as shown before for naphthalene and benzoic acid (see section 

4.1.2). Hence, further calculations with a def2-QZVP basis set could improve the overall 

accuracy. 

The various electronic structure methods tend to overestimate the binding energies. 

Especially for crystals that are predominantly dominated either by hydrogen bonding or 

van der Waals interactions, deviations to experiment are large and calculated binding 

energies are too large. To amplify this common calculation scheme, the result of the 

EPBE0+MBD36 method from literature, which gives the best overall representation of 

Elatt,exp is shown Figure 4.9 (top).  

Even though the EPBE0+MBD method has an overall accuracy of RMSE = 5.8 kJ mol-1, 

it produces a similar substance-dependent trend compared to the other computational 

methods. In order to be able to work out sources of the computational errors we compared 

the computational errors of the various methods for each substance to the density of the 

related crystal. Figure 4.10 plots the calculations error over the density for each of the 23 

substances of the benchmark set which ranges from 0.8 g·cm-1 to 2.0 g·cm-1. The density 

has been calculated from published97 volumes of the unit cell, V, the molar Mass of the 

molecule, M, the number of molecules in the unit cell, Z, and the Avogadro number via 

ρcryst = Z x M / (V x NA). Computational errors in Figure 4.10 appear to be not directly 

correlated to the density of the crystal for any of the computational method shown. Even 

though density is a characteristic value of one specific crystal packing, crystals with 

different crystal structures can have the same density.  

 

Figure 4.10: Dependence of the absolute computational errors of the lattice energy calculations 

of the X23 benchmark set in comparison to the density of the molecular crystals. This works def2-

TZVP / PBE-D3 results are compared to the average literature values85, 97 and results of the 

method with the lowest RMSE to experiment (EPBE0+MBD97). 
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Thus, the conclusion that computational errors are less dependent on the density of 

crystals then on the types of interactions within, is not directly transferrable to the crystal 

structure in general. 

Based on the above considerations, it can be suspected that the dominant parts of the 

errors when calculating the absolute binding energies are more likely to be connected to 

the specific molecular structure and the types of binding energies (H-binding and van der 

Waals interactions) that are present in the crystal (see Figure 4.9) rather than to the density 

of the crystal. This could be of advantage for calculations of energy differences between 

polymorphs or different types of chiral crystals – for example an enantiopure crystal and 

a racemic compound. Absolute errors that are connected to molecular specific binding 

energies potentially cancel out when aiming for energy differences as both chiral crystals 

contain the same molecules. This is studied in section 4.3 for three chiral model 

substances.  

 

4.2.2 Benchmark set for calculation of sublimation Gibbs energies 

Besides lattice energies, thermal and zero-point energy contributions are needed for 

modelling sublimation free energies. Thermal corrections are related to the integrals of 

the solid state and ideal gas heat capacities from zero Kelvin to reference temperature via 

eqs. (43) and (44). The previously introduced X23 benchmark set of molecular crystals 

has been designed in order to test the accuracy of electronic structure methods for 

calculating the total non-covalent binding energies to determine Elatt (see Figure 4.9). 

Less frequently, thermal enthalpy corrections, ΔHcorr, to the lattice energy have been 

studied (see Figure 4.8). Information on the sublimation entropies which are required for 

determining ΔGsubl are missing. In order to extend the X23 benchmark set for evaluating 

all energy contributions to ΔGsubl it is useful to exclude those substances that are liquid 

(acetic acid benzene and formamide) or gaseous (ammonia and CO2) at environmental 

conditions and are thus irrelevant for modelling phase equilibria such as SLE at 298 K.  

Hence, experimental data was gathered for the remaining 18 molecular crystals. 

Sublimation enthalpies were taken from the original publications85, 97 of the X23 

benchmark set and have been used without further adjustments of the X23 benchmark set 

and were used without further adjustments with the exception of cytosine which was 

taken from ref. 197. Sublimation free energies haven been calculated via eq. (38) from 

published sublimation vapor pressures from various literature sources. They are 

summarized together with ΔHsubl and TΔSsubl in Table 4.4. TΔSsubl was calculated from 

the sublimation enthalpies and free energies via eq. (39). Wherever possible experimental 

uncertainties are given. Those are generally smaller for ΔGsubl in comparison to ΔHsubl as 

the free energies are related by logarithm to the experimental vapor pressures. 

Sublimation free energy values within the reduced set of molecular crystals span from 13 

kJ·mol-1 (triazine and 1,3,5-trioxane) up to 90 kJ·mol-1 (cytosine).  
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Table 4.4: Experimental sublimation enthalpies, entropies and free energies at 298 K of selected 

molecular crystals from the X23-benchmark set that are solid at environmental conditions. 

Substance 
ΔHsubl

a TΔSsubl
b ΔGsubl 

kJ mol-1 kJ mol-1 kJ mol-1 reference 

Anthracene 101.9 55.8 46.1 ± 0.5 198 

Naphthalene 71.3 48.7 22.6 ± 0.1 198 

Adamantane 58.4 37.0 21.4 199 

Hexamine 75.8 40.5 35.3 200 

Pyrazine 56.3 45.9 10.4 201 

Pyrazole 72.4 51.6 20.8 202 

1,4-cyclohexanedione 81.1 52.9 28.2 200 

Triazine 55.7 42.5 13.2 200 

1,3,5-trioxane 56.3 42.7 13.6 200 

Cytosine 156.4197 65.7 90.7 197 

Imidazole 81.4 49.7 31.7 202 

Uracil 129.2 58.8 70.4 ± 0.2 203 

Cyanamide 75.5 46.9 28.6 200 

Ethylcarbamate 78.7 53.7 25.0 ± 0.5 204  

Oxalic acid (a) 93.7 55.1 38.6 ± 0.6 205-207 

Oxalic acid (b) 93.6 55.6 38.0 207 

Succinic Acid 123.1 70.3 52.8 ± 1.3 200, 205, 208 

Urea 93.8 48.4 45.4 ± 0.2 206, 209 
a. Taken from refs. 85, 97 except for cytosine which was taken from ref. 197. 

b. Calculated via ΔGsubl = ΔHsubl - TΔSsubl. 

 

As discussed before, the sublimation enthalpy consists of the lattice energy as well as 

thermal corrections. Figure 4.11 compares all energy contributions when calculating 

ΔGsubl via eq. (43). The “experimental” lattice energies, Elatt,exp, have been used as 

discussed before, which are based on recalculations from the sublimation enthalpies using 

the average of the suggested thermal corrections, ΔHcorr, from the three studies86, 98, 196 

(primary data in Appendix Table 7.23). For all substances the lattice energy is the 

dominant energy contribution to the Gibbs free energy of sublimation. However, the heat 

capacity related thermal enthalpy corrections and especially the sublimation entropy are 

responsible for a relevant part accounting for 39±4 % of the sum of all energy 

contributions. Ab-initio quantum chemistry methods have been shown to be capable to 

determine the sublimation entropy, TΔSsubl, with accuracies of around 9 kJ·mol-1 resulting 

in an overall accuracy for calculating ΔGsubl of around 17 kJ·mol-1.210 Thus, precise 

methods for determining the thermal corrections are a key requirement for the 

applicability of the sublimation cycle for solubility prediction. As a consequence, two 

distinct methods are used in the next section to calculate the thermochemistry of chiral 

molecules. The two methods differ particularly in the way thermal corrections are 

modelled.  
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Figure 4.11: Energy contributions to the ΔGsubl for selected molecules from the X23-benchmark 

set that are solid at 298 K. 

 

4.2.3 Conclusions 

This work’s def2-TZVP / PBE-D3 method has an overall accuracy of around 10 kJ·mol1 

but there are some methods in literature that are close to the chemical accuracy limit of 

4.2 kJ·mol-1 (see Figure 4.9). Even though, the def2-TZVP is superior to the def2-SVP 

basis set parts of the remaining errors of this work’s calculations are likely to be caused 

by the non-complete triple-zeta basis set. Influenced by the missing optimizations of the 

unit cell were comparatively small. The accuracy of state-of-the art electronic structure 

methods for determining the lattice energy was shown to be strongly dependent on the 

types of prevalent intermolecular interactions within the crystal. There were no obvious 

correlations between the calculations error and the density of the crystal (see Figure 4.10). 

As a consequence, errors are related to the type of intermolecular interaction (H-bonding 

and van der Waals interactions) that is dominating in the crystal rather than to the density 

of packing and the specific crystal structure. Molecule specific errors potentially cancel 

out when aiming for energy differences, e.g. between an enantiomer and the racemic 

compound. This is studied for three representatives of chiral substances in the following 

section 4.3.  

Finally, a modified set of molecular crystals was suggested which can be used in order to 

test computational methods to calculate ΔGsubl rather than merely Elatt or ΔHsubl (see Table 

4.4). Thermal corrections are shown to contribute by around 40 percent to the absolute 

energy contributions to ΔGsubl. As a consequence, two distinct methods are used in the 

next section to calculate the thermochemistry of chiral molecules which differ particularly 

in the way thermal corrections are modelled.  
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4.3 Phase transition thermodynamics of chiral molecules 

Within this section the melting and sublimation thermochemistry of a diverse set of chiral 

compound-forming systems are evaluated by means of experimental and computational 

methods. The molecular structures of the three molecules are depicted in Figure 4.12. 

They incorporate an almost rigid molecule, lactide, a molecule with intermediate 

flexibility, naproxen, and the fully conformational flexible 3-chloromandelic acid 

(3ClMA). 

 

Figure 4.12: Molecular structures of the three representative chiral molecules: (a) 3,6-dimethyl-

1,4-dioxane-2,5-dione (lactide C6H8O4), (b) naproxen C14H14O3, (c) 3-chloromandelic acid 

(3ClMA, C8H7O3Cl). Relevant flexible torsion angles are marked. 

 

The lactides are internal cyclic esters of lactic acid, and the racemic compound is used in 

the preparation of polylactide, a biologically decomposable polymer which is used, 

among others, for medical applications211. Naproxen is marketed in the enantiopure form 

as a non-steroidal anti-inflammatory drug as only (S)-naproxen has the desired effects. 14, 

15 3-chloromandelic acid (3ClMA) is used as an intermediate for pharmaceutical products 

and a resolving agent and has complex polymorphic crystallization behaviour.212, 213 

Experimental sublimation and melting thermodynamics41 as well as studies on the 

polymorphic behaviour of naproxen214, 215 have been reported before. Solubility data and 

a shift of the eutectic composition with temperature in certain solvent systems have been 

reported for lactide and 3-chloromandelic acid.212, 213, 216 

The three molecules represent prototypes of frequently occurring organic crystalline 

racemic compound-forming systems. In the following, the phase transition 

thermochemistry which is relevant for calculating solubilities via the melt and the 

sublimation cycle is investigated for the enantiomer as well as the racemic compounds. 

This includes experimental investigations of the melting thermodynamics as well as 

combined experimental and computational studies of the sublimation thermodynamics 

the three chiral systems. Furthermore, a detailed experimental as well as computational 

investigation of the solid-state heat capacities have been conducted which is relevant for 

adjusting the measured and calculated thermodynamic phase transition quantities to one 

common reference temperature. 

 

4.3.1 Structural clarification 

This section provides information on the crystalline solid form of the three pairs of chiral 

crystals of lactide, naproxen and 3ClMA. Information on the origin and purity of the 

Ф1

Ф3Ф2 Ф1
Ф2

Ф3

Ф4
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crystalline substance that have been used throughout this work is given in section 3.1 

“Materials”. 

Structures of (S)- and (RS)-lactide relate to the published NAHNOZ217 (Z=3, Z=12, 

P212121) and BICVIS218 (Z=1, Z=4 P21/c) crystal structures. The (S)- and (RS)-

naproxen crystal forms which have been investigated after recrystallization of the 

purchased substance are identical with the computed patterns of the COYRUD219 (Z=1, 

Z=2, P21) and PAPTUX215 (Z=1, Z=8, Pbca), respectively.  

For 3-chloromandelic acid (3ClMA) five polymorphic forms of each the enantiopure and 

racemic crystals have been found by experiment.212 The commercial substance of (RS)-

3ClMA contained a mixture of two polymorphic forms, form 2220 and form 3212. The 

metastable form could be completely transformed into the stable form 3 (FIZPEL03, 

Z’=1, Z=4, P21/c) by recrystallization in water and subsequent equilibration of the stirred 

suspension for more than 24h. Recrystallized (R)-3ClMA was confirmed by PXRD to 

correspond to 3ClMA (S)-form 1212 (TUYBIA, Z=2, Z=4, P21, with a 2:1 disorder in the 

phenyl ring orientation). To model this disordered crystal, the two disorder components 

can be modelled separately and the results combined in a 2:1 ratio. 

The experimental crystal structures of the enantiomer and racemic compound of lactide, 

naproxen and 3ClMA are depicted within Figure 4.13. They significantly differentiate, 

regarding the size of the unit cell which comprise two up to 12 molecules, as well as the 

types of molecular interactions within. The lactide crystals are dominated by isotropic 

and rather weak vdW-interactions whereas the two 3ClMA crystals form strong hydrogen 

bonding motifs.212 Naproxen structures, on one hand, exhibit weak vdW-type C-H·π 

interactions between the naphthalene rings and, on the other hand, strong hydrogen 

bonding interactions between the carboxylic acid groups.215 

 

Figure 4.13: Experimental crystal structures of the enantiomer and racemic compound of lactide, 

naproxen and 3ClMA. 
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The XRPD-patterns of the three pairs of enantiopure and racemic crystalline substances 

are summarized in Figure 4.14. They have been measured by XRPD as described in 

section 3.2.3. Comparing the experimental and theoretical XRD-patterns which have been 

calculated via Mercury CSD 2.4 (Build RC5) confirms the aforementioned crystal 

structures as single polymorphs. XRPD measurements have been performed at room 

temperature while calculations refer to structures at much lower temperatures. This 

explains slight shifts in some cases. 

 

Figure 4.14: Experimental and computed XRPD-patterns of the crystal forms of (S)- and (RS)-

lactide (NAHNOZ217 and BICVIS218), (S)- and (RS)-naproxen crystal forms (COYRUD219 and 

PAPTUX215) and (S)- and (RS)-3ClMA (TUYBIA and FIZPEL03)212. 
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4.3.2 Melting thermodynamics 

The melting thermodynamics of the three chiral molecules are investigated for structural 

clarification of binary mixtures of the two chiral species as well as in order to precisely 

determine melting temperatures and melting enthalpies. The latter are used later on within 

the melt cycle for calculating solubilities. Detailed information on the experimental 

procedures for measuring melting thermodynamics, as well as, the binary melt phase 

diagram, is given in section 3.2.5. 

 

Pure compound melting properties 

Melting temperatures and enthalpies of the pure enantiomer and racemic compound of 

lactide, naproxen and 3ClMA are summarized in Table 4.5. They are used in the following 

for calculating ideal solubilities via ΔGmelt and the ideal binary melt phase diagram via 

the SVL and PD equation, eqs. (34) and (35) respectively. 

 

Table 4.5: Experimental melting temperatures and enthalpies. The Gibbs free energies of melting 

are calculated from ∆Gmelt = ∆Hmelt – T∙∆Hmelt / Tmelt, with T = 298.15 K. 

Compounds source Tmelt ΔHmelt ΔGmelt 

   - Tmelt 298 K 

unit  K kJ mol-1 kJ mol-1 

(RS)-lactide this work 397.6 ± 0.4 25.3 ± 1.8 6.3 

 221 397.1 24.7 6.2 

(S)-lactide this work 369.2 ± 1.0 14.2 ± 1.0 2.7 

 221 366.6 16.9 3.2 

Δ(RS-S) this work 28.4 ± 1.1 11.1 ± 2.1 3.6 

 221 30.5 7.8 3.0 

eutectic mixture this work 
363.3 ± 1.8 

(xeu = 83.5 %) 
12.8 ± 0.2  

(RS)-naproxen this work41 429.0 32.8 ± 0.2 10.0 

(S)-naproxen this work41 429.2 31.6 ± 0.1 9.6 

Δ(RS-S) this work41 -0.2 1.2 ± 0.3 0.4 

eutectic mixture this work 
419.6 ± 0.5 

(xeu = 87.5 %) 
28.7 ± 0.2  

(RS)-3ClMA 222 391.1 27.9 6.6 

 223 395.4 28.0 6.9 

(R)-3ClMA 222 376.4 22.6 4.7 

 223 383.8 26.2 6.4 

Δ(RS-R) 222 13.7 5.3 1.9 

 223 11.6 1,8 0.5 

eutectic mixture 222 
368.3 

(xeu = 84 %) 
18.6  
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For lactide and 3ClMA the racemic compound melts at a higher temperature than the 

enantiomer. For naproxen both melting temperatures are identical. Additionally, as well 

the melting enthalpy and consequently the Gibbs free energy of melting are larger for the 

racemic form which makes is more stable and results, in the ideal case, in a lower 

solubility for the racemic compound. For lactide, this work’s measurements are in good 

agreement with literature221. For naproxen the averaged values from ref. 41 indicate a good 

reliability of the melting thermodynamic quantities. For 3ClMA however, disagreements 

between two literature sources222, 223 result in a difference in ΔGmelt of 1.8 kJ mol-1 which 

would result in large deviations when used for calculating ideal solubilities. As a 

consequence, a careful experimental evaluation of the melting thermodynamic quantities 

is important as errors can lead to significant deviations of the predicted solubilities. 

Possible sources of errors are impurities of other substances or polymorphs of the same 

substance as well as decomposition or sublimation and/or vaporization during melting. 

The melting temperatures of the three chiral substances are in the medium to lower range 

of common drug-like substances as shown in Figure 4.15. Most drug-like compounds22 

have a melting point of around 80°C to 200°C but can spread between 30°C and 300°C. 

This is relevant to know as melting enthalpies and entropies are temperature-dependent 

quantities as thermal corrections to ΔHmelt and TΔSmelt are related to the integral of the 

heat capacity difference between solution temperatures and melting. The thermal 

correction terms are scaled by the temperature difference to the melting temperature. 

Effects of the melting temperature to the Gibbs free energy of melting at 298 K according 

to eq. (33) if a temperature-independent heat capacity difference of ∆Cp = 84 ± 57  

J·mol-1K-1 is assumed, as suggested in literature83, is shown in Figure 4.15. For melting 

temperatures of larger than 150 °C the resulting thermal corrections, ΔGcorr, are larger 

than 2 kJ·mol-1 and, thus, are relevant when utilizing the melt cycle for solubility 

prediction. 

 

Figure 4.15: Distribution of melting temperatures of the 276 organic drug-like compounds plotted 

in a 10 K resolution as suggested by Bergström et. al.224. The range of the melting temperatures 

of lactide (blue), naproxen (green) and 3ClMA (red) is indicated. The solid line corresponds to 

the free energy corrections to the Gibbs free energy of melting at 298 K via eq. (33) assuming the 

temperature independent heat capacity difference of ∆Cp = 84 ± 57 J·mol-1K-1 (solid line) from 

ref. 83. The dashed lines show the influence ε∆Cp = ± (57/2) J·mol-1K-1 on ∆Gcorr. 
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Binary melt phase diagrams of lactide, naproxen and 3ClMA 

Determinations of the melting temperatures of the pure enantiomer and racemic 

compound as well as their mixtures are used in combination with X-ray diffraction in 

order to classify the chiral substance into one of the three major classes of chiral 

molecules via their respective binary melting phase diagram (see Figure 2.2). In the 

following, the binary melt phase diagram of lactide, naproxen and 3ClMA are presented 

and discussed.  

For 3ClMA detailed information is available from previous studies222, 225. The binary melt 

phase diagram of 3ClMA (see Figure 4.16) is complicated by the formation of a 

metastable form of (R) as well as (RS)-3ClMA.222 This work’s crystal forms correspond 

to the higher melting enantiopure and racemic forms as shown in Figure 4.14. 

 

Figure 4.16: Binary melt phase diagram of polymorphic 3ClMA as suggested in ref. 222. 

 

The binary melting phase diagram of lactide is depicted in Figure 4.17. Published data225 

has been extended with additional measurements within this work that agree well with 

one another and confirm a racemic compound-forming system. Furthermore, no 

indication for the formation of polymorphic forms or any signs of miscibility in the solid 

state have been found. At first sight, measurements seem to correlate well with the ideal 

phase behaviour from the SVL and PD equation using the pure component data from 

Table 4.5. However, there are deviations of the eutectic composition; the eutectic 

temperature is found Teu = 90.1 ± 1.8 °C. As the two melting peaks of the solidus and 

liquidus line are hardly distinguishable close to the eutectic composition even at low 

heating rates, an additional experimental method has been used to locate the eutectic 

composition. A mixture of (S)- and (RS)-lactide close to the expected eutectic 

composition has been heated above melting temperature and cooled down from the 

homogeneous melt to 91°C which is slightly above the melting temperature of the 

eutectic. The suspension has been kept at that temperature for around 5 minutes before 

two samples of the melt have been taken. Measurements via HPLC gave an enantiomeric 

ratio of xeu = 83.5 ± 0.2 % which is significantly different as for the ideal system (see 

Figure 4.17) but agrees well with the previous suggested value225 of xeu = 84 %. The 

extracted samples were additionally measured after solidifaction via DSC and one sharp 
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single melting peak confirmed the eutectic composition which is marked in Figure 4.17 

in red. 

 

Figure 4.17: Binary melt phase diagram of lactide. Circles correspond to this works result while 

triangles have been taken from literature225 (Open symbols - solidus line; solid symbols - liquidus 

line). The eutectic point is marked in red (Dashed lines - guide to the eye; Straight lines - 

calculations via the SVL and PD equation using melting properties from Table 4.5). 

 

In case of naproxen melting temperatures of mixtures of the two enantiomers have been 

studied before suggesting the presence of an ordinary racemic compound-forming 

system.215 Additional measurements have been performed in this work to complement 

previous findings. Slight modifications of the standard measurement procedure from 

section 3.2.5 have been conducted which are given in more detail here.  

 

Figure 4.18: Binary melt phase diagram of naproxen: (left) first run of the recrystallized mixture 

from acetone; (right) second run after recrystallization from the melt. Open circles represent the 

solidus line and solid circles correspond to the liquidus line. The eutectic point is marked in red. 

Dashed lines are a guide to the eye. Straight are the calculations via the SVL and PD equation 

using the melting properties from Table 4.5. 

 

This work’s measurements give a eutectic temperature of Teu = 146.4 ± 0.5 °C which is 

in good agreement with earlier findings (Teu = 145.5 ± 0.5 °C)215. The eutectic 

composition was found215 to be close to the ideal value which can be calculated with the 
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SVL and PD equation, xeu,id = 80.5 %. This work’s results, however, suggest the eutectic 

composition to be significantly closer to the pure enantiomer side, xeu = 87.5 %, as marked 

in Figure 4.18 in red. Furthermore, the results of both runs suggest a more complex 

melting behaviour of the mixtures in between concentrations of the eutectic point and the 

racemic mixture as well as close to pure (S)-naproxen. In the first run (Figure 4.18, left) 

the eutectic melting peak (solidus line) disappears at concentrations of xS ≤ 0.65. At the 

same time the melting peak corresponding to the liquidus line exhibits a shoulder. The 

inflection point has been evaluated via the first derivative of the thermal response 

unveiling a lense-shaped solidus line. The effect is more pronounced in the second run 

after recrystallization from the melt (Figure 4.18, right). This indicates the formation of 

partial solid-solutions at concentrations of xS ≤ 0.75 and if recrystallized from the melt as 

well close to pure (S)-naproxen. 

For additional information XRPD measurements have been performed of the samples 

once after recrystallization from acetone (Figure 4.19) and a second time after 

recrystallization from the melt (Figure 4.20). Figure 4.19 shows the XRPD patterns of 

selected mixtures after recrystallization from acetone. While the XPRD pattern of the xS 

= 75 % mixture contains peaks of both (S)- and (RS)-naproxen and suggesting a 

mechanical mixture of both chiral crystals the pattern of the xS = 60 % mixture only 

contains peaks of (RS)-naproxen. In between the 16 ° and 26 ° some of the peaks of the 

xS = 60 % mixture are shifted compared to those of the pure racemic molecular crystal 

(blue arrows in Figure 4.19, b). At the same time the dominant peaks 2Theta < 16 ° are 

identical between the two mixtures and pure (RS)-naproxen indicating the dissolution of 

excess (S)-enantiomer within the crystal structure of (RS)-naproxen. These findings are 

consistent with the disappearing eutectic melting peak for mixtures of xS < 70 % (see 

Figure 4.18, left). After recrystallization from the melt certain shifts of (RS)-naproxen, 

peaks become more pronounced (see Figure 4.20). Furthermore, the concentration range 

where partial solid solutions appear broadens by covering as well the xS = 75 % mixture 

which prior formed a mechanical mixture before melting (Figure 4.19). 

Close to pure (S)-naproxen (xS = 0.98) a similar behaviour can be observed. While the 

recrystallized mixture from acetone clearly shows a mechanical mixture of the 

enantiopure and racemic crystals (see Figure 4.19), (R)-naproxen is able to crystallise 

within the crystal structure of (S)-naproxen when recrystallised from the melt. Most peaks 

of the xS = 0.98 mixture in Figure 4.20 are identical to the ones of the pure enantiomer 

while certain peaks are merged or shifted after crystallisation form the melt (marked with 

red arrows in Figure 4.20, b). This is consistent with the melting temperatures from the 

DSC measurement where the eutectic melting peak of the xS = 0.98 mixture disappears 

only in the second run and thus after recrystallisation from the melt (see Figure 4.18). 
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Figure 4.19: (a) The full XRPD-patterns and (b) a close-up of mixtures of (S)- and (RS)-naproxen 

after recrystallization from acetone in comparison to the pure components. Red arrows highlight 

selected peaks of (S)-naproxen while blue arrows those of (RS)-naproxen.  

 

Figure 4.20: (a) The full XRPD-patterns and (b) a close-up of mixtures of (S)- and (RS)-naproxen 

after recrystallization from the melt in comparison to the pure components. Red arrows highlight 

relevant peaks of (S)-naproxen while blue arrows those of (RS)-naproxen. 
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In summary, the formation of a partial solid-solution close to the racemic compound and 

the pure enantiomer is more likely to occur when recrystallised from the melt and is more 

pronounced for mixtures close to the racemic compound. However, as well certain 

mixtures that have been recrystallised from solution (acetone) are as well able to form 

solid-solutions close to the racemic mixture. As a consequence, care should be taken when 

studying the solution behaviour of mixtures of (S) and (R)-naproxen. Furthermore, the 

purification of (RS)- and possibly as well (S)-naproxen by recrystallisation could 

potentially be complicated by miscibility in the solid phase close to the pure substances. 

 

4.3.3 Heat capacities from room temperature to the melt 

Heat capacities for the two chiral species of lactide, naproxen and 3ClMA where 

measured by DSC from room temperature until above the melting temperature. They are 

used in the following sections to adjust measurements of the melting enthalpy, entropy 

and Gibbs free energy from melting temperature (see Table 4.5) to one reference 

temperature, e.g. to solution temperature, via eqs. (31) - (33). They are further required 

in order to adjust experimental sublimation thermodynamics to one reference temperature 

as measurements are commonly performed at elevated temperatures (see Figure 2.12). 

 

Experimental details 

Heat capacities above room temperature were measured by DSC as described in section 

3.2.7. A minimum of four measurements were carried out for each crystalline form using 

typical masses of 60 to 80 mg (±10 μg). The lactide measurements had an average relative 

deviation of 0.08 % for the racemate and 0.25 % for the enantiomer. For naproxen, the 

average relative deviation was 0.4 % for the racemate and 1.2 % for the enantiomer; for 

3ClMA the average relative deviation was around 0.7 % for both compounds. To support 

the experimental high temperature 3ClMA heat capacities additional DSC measurements 

of the related (R)- and (RS)-mandelic acid molecules were performed in between 298 K 

and 370 K using the same measurement procedure. The relative deviation of three 

independent measurement series was 0.2% (R)- and (RS)-mandelic acid. 

 

Results and discussion 

Measurement results of the heat capacities of (S)- and (RS)-lactide, (S)- and 

(RS)naproxen as well as (R)- and (RS)-3ClMA from room temperature to above melting 

temperature are summarized in Figure 4.21 (a-c). The experimental uncertainty is 

displayed with black bars but is most of the time smaller than the symbols. Primary data 

is summarized in Appendix (Table 7.1 to Table 7.4).  
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Figure 4.21: Experimental heat capacities of (a) (S)- and (RS)-lactide, (b) (S)- and (RS)-naproxen 

and (c) (R)- and (RS)-3ClMA from room temperature to above melting temperature. In addition, 

solid-state heat capacities of (d) (R)- and (RS)-mandelic acid are shown. Full circles (●) 

correspond to the enantiomers and open circles (○) to the racemic compounds. 

 

This work’s result of lactide (Figure 4.21 a) is in good agreement with literature221, 226 

with deviations of 2 to 3 % and thus within the 1 %-5 % accuracy of DSC227 heat capacity 

measurements. Heat capacities of the two solid forms are indistinguishable by eye but 

there are small differences in the melt phase which have a smaller temperature 

dependency in comparison to the crystalline solid.  

In case of naproxen, slightly different experimental heat capacities have been reported in 

literature for temperatures above 90°C.82 Literature values are around 5 % smaller when 

compared to this work’s (S)-naproxen (Figure 4.21 b). As details on the sample are 

missing82, the reported data is not further discussed in this work. Temperature dependency 

of the heat capacities of the melt and the solid are, unlike for the lactides, very similar.  

3ClMA is the only substance studied where heat capacities of the solid racemate and 

enantiomer differ significantly. To strengthen these findings additional measurement of 

the related (S)- and (RS)-mandelic acid (see Figure 4.21 d) have been performed which 

give similar results. Even though it has been suggested that 3ClMA decomposes at  

92 °C222, caloric measurements of the melt could be performed. Furthermore, the 

subcooled melt of 3ClMA could be measured as recrystallization from the melt has been 

found to be kinetically hindered. Hence, one measurement series of the subcooled melt 

between room temperature and 360 K for the enantiomer has been performed. Unrealistic 

large heat capacities in between 340 K and 350 K (not shown in Figure 4.21 c as they are 

out of scale) indicate an additional slow phase transition in between 330 K and 360 K 

which is possibly related to vitrification from the subcooled melt into an amorphous form.  
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Table 4.6: Heat capacities of the solid and molten enantiomer and racemic compound and their 

differences for lactide, naproxen and 3ClMA. Given values correspond to the linear regression of 

the primary measurement data using eq. (65). Thermal corrections between melting temperature 

and 298 K have been determined via eqs. (31) and (32) using ΔCP
𝑙−𝑠 at Tmelt. Heat capacities and 

entropies are given in J mol-1K-1 while enthalpies and Gibbs free energies are given in kJ mol-1. 

Compounds CP
𝑠   CP

𝑙   ΔCP
𝑙−𝑠 ΔHcorr  ΔScorr  ΔGcorr  

  298 K Tmelt Tmelt Tmelt 298 K 298 K 298 K 

(S)-lactide 189.0 225.5 279.8 54.2 -5.4 -15.6 -0.7 

(S)-lactide221 181.5 219.5 317.0 97.5    

(RS)-lactide 189.3 235.4 289.7 54.3 -3.9 -11.6 -0.4 

(RS)-lactide 226 184.3 243.7 297.1 53.4    

(RS)-(S) 0.4 9.9 9.9 0.0 -1.5 -4.0 -0.3 

 2.8 24.2 -19.9 -44.1    

(S)-naproxen 295.6 412.5 482.6 70.1 -9.2 -25.5 -1.6 

(RS)-naproxen 296.9 417.8 488.9 71.1 -9.3 -25.9 -1.6 

(RS)-(S) 1.3 5.2 6.2 1.0 0.1 0.4 0.0 

(S)-3ClMA 211.1 251.0 339.6 88.6 -8.2 -24.0 -1.1 

(RS)-3ClMA 201.9 250.0 335.4 85.4 -6.7 -19.9 -0.7 

(RS)-(S) -9.2 -1.0 -4.2 -3.2 -1.6 -4.1 -0.4 

 

Detailed discussions on the heat capacity differences between the racemic and 

enantiopure crystals of all three substances can be found in section 4.3.4 together with the 

results of the low-temperature heat capacity measurements which are presented in the 

following section. The absolute molar heat capacities of the solid and the melt at 298 K 

and Tmelt are required in order to adjust melting enthalpies and entropies to the solution 

temperature. The temperature-dependent behaviour of the molar heat capacities of both 

states were assumed to be linear in between reference temperature and the melt and have 

been correlated by equation (65):  

/PC A B T K= + 
 

(65) 

The resulting heat capacities of the crystalline solid and liquid melt are summarized in 

Table 4.6. Heat capacity differences between the solid and the melt, ΔCP
𝑙−𝑠

, at melting 

temperature have been used to determine the thermal corrections that are required to 

adjust melting enthalpies and entropies from melting temperature to 298 K. ΔCP‘s are in 

good agreement with literature226 for (RS)-lactide while there are significant differences 

for (S)-lactide221. The measured ΔCP
𝑙−𝑠

 of the four molecules are in between 54 to 88 J 

mol-1K-1 which agrees with an average ∆Cp value for 117 organic molecules83 of ΔCP
𝑙−𝑠

 = 

84 ± 57 J·mol-1K-1. The resulting thermal corrections are summarized in Table 4.6 and 

can be used to calculate the corrected melting enthalpies, entropies and Gibbs free 

energies when combined with the melting properties of Table 4.5. Influences of the 

thermal corrections are small for lactide, around -1 kJ·mol-1 for 3ClMA but especially 

significant for naproxen which hast the highest melting temperature where ΔGcorr = -1.6 

kJ·mol-1. For 3ClMA and naproxen thermal corrections lower the Gibbs energies of 
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melting by around 17 % compared to the ΔGmelt at melting temperature. Hence, they are 

of relevance for both substances when calculating solubilities via the melt cycle. 

 

4.3.4 Low-temperature heat capacities 

In addition, the high temperature heat capacities discussed before, low-temperature heat 

capacities for the two chiral crystals of lactide, naproxen and 3ClMA where measured by 

direct heat pulse calorimetry (DHPC) from cryogenic temperatures (from ~1.8 K) until 

200 Kelvin. They are essential in order to correct calculations of the lattice energy, which 

are usually performed for the static lattice at 0 K, to room temperature via the sublimation 

cycle (see Figure 2.12 and eqs. (43) - (44)). In comparison to this works experimental 

investigations, calculations using two different computational approaches have been 

performed. In a first approximation, molecular vibrations are assumed to be the same in 

the gas and in the solid phase. This approximation is computationally less demanding 

since the separated rigid-body lattice modes can be computationally efficient modelled 

for the crystal and electronic structure calculations are only required for the isolated 

molecule only.147, 228 This will be referred to as the separated model, mol. Within the 

second model the crystal packing can modify both molecular and phonon modes.229 

Calculating the coupled vibrational modes requires the use of periodic electronic structure 

calculations of the whole crystal. This method will be referred to as the electronic 

model,crys. Further computational details on the mol and crys model are given in section 

2.7.2. 

 

Experimental details 

Low-temperature heat capacities for enantiopure and racemic naproxen and 3ClMA 

crystals were measured by means of direct heat pulse calorimetry (DHPC) from 2 K to  

200 K. A commercially available relaxation calorimeter has been used the Physical 

Property Measurement System (PPMS) from Quantum Design. The measurement method 

is described in section 3.2.7. Experiments were performed at 42 temperature points 

between 2 K and 200 K including three replicates at each temperature. Naproxen heat 

capacities were measured in samples of (S)-naproxen and (RS)-naproxen with sample 

masses of 3.16±0.01 mg and 2.80±0.01 mg, respectively. Heat capacities of 3ClMA were 

measured in samples of (R)-3ClMA and (RS)-3ClMA with sample masses of 3.02±0.01 

mg and 1.99±0.01 mg, respectively. For both substances relative deviations between the 

three consecutive measurements are smaller than 1% for temperatures below 50 K and 

smaller than 0.5% for temperatures between 50 K and 200 K. Heat capacities of lactide 

could not be measured in the PPMS due to the high vapor pressures of lactide230 and thus 

possible sublimation within the low-pressure environment. Instead, published 

experimental data for (S)-lactide and (RS)-lactide measured in an adiabatic low-

temperature calorimeter have been taken from literature.221, 226  
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Results and discussion 

Figure 4.22 (a-c) shows the measurement results of the temperature-dependent heat 

capacities of both chiral species of lactide, naproxen and 3ClMA. Primary experimental 

data is given in Appendix (Table 7.5 and Table 7.6). The low-temperature heat capacities 

are complemented by the before discussed DSC results (see Figure 4.21) of the crystalline 

solids. For all substances the heat capacities follow Debye’s cubic law (CP~A·T3) at very 

low temperatures then increase linearly for temperatures greater than 100 K. Naproxen 

has a significantly larger heat capacity than 3ClMA and lactide, reflecting the larger 

number of atoms per molecule, though the specific heat of the molecular crystals are all 

in the range of 1-1.3 J·g-1K-1 at 298 K.  

Figure 4.22 also contains calculated temperature-dependent heat capacities from the mol 

method. The heat capacities are calculated via a hybrid Einstein-Debye model (eq. (59)) 

using computed molecular and lattice vibrational frequencies. Contributions of the 

lattice and molecular vibrational frequencies are independently displayed for all six 

crystalline solids which in sum give the total calculated isobaric heat capacity, as thermal 

expansion is neglected. The calculations nicely reproduce the temperature dependence 

up to 300 K and also display the differences in magnitude between the different organic 

molecules. Calculated heat capacities of the crys model where molecular and lattice 

vibrations are not decoupled are very similar to those of mol model and thus not 

additionally displayed in Figure 4.22. Further information and numeric values of both 

computational methodscan be found in ref. 150. Furthermore, the mol and crys heat 

capacities are compared in detail when discussing heat capacity differences between the 

enantiomer and the racemate in the following section 4.3.5.  

With increasing temperature, the calculations appear to systematically underestimate the 

heat capacities. This is consistent with a recent study where experimental solid state heat 

capacities for small molecule crystals were underestimated in 85% of the cases.231 At 

temperatures above 150 K the lattice modes are almost completely saturated resulting in 

final values of CP,lattice
s

 = 49.4 – 49.6 kJ mol-1K-1. This is close to the assumption of mode 

saturation in the 2RT-correction (eq. (55)) which is CP,lattice
s

 = 6 R = 49.9 kJ mol-1K-1. 

Hence, only the molecular vibrations are responsible for the temperature dependency at 

elevated temperatures.  
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Figure 4.22: Experimental (exp) heat capacities at constant pressure (∆CP
s ) compared with 

calculated heat capacities at constant volume (∆CV
s ) by the mol model (calc) of the racemic (RS) 

and enantiopure (S) crystalline solid of (a) lactide, also including additional data from 

references221, 226, (b) naproxen with inclusion of experiments for an unspecified form of 

naproxen82 and (c) 3-chloromandelic acid. Experimental errors are too small to be visible in this 

plot but are given in Appendix (Table 7.1 to Table 7.6). 
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However, the systematic underestimation of the high temperature heat capacities might 

be as well partially attributed the experimental results as there is a systematic gap between 

the low temperature DHCP and the high temperature DSC measurements. For DHCP 

measurements, thermal coupling between the sample and the measuring platform is 

essential. However, for measurements of naproxen and 3ClMA thermal coupling never 

fell below 90% which has to be guaranteed for a DHCP measurement in a PPMS 

system.232 Benzoic acid has been used as a test substance in order to investigate systematic 

errors in DHCP results and only a slight underestimation at room temperature compared 

to literature data could be observed. There is a general trend of PPMS measurements on 

small powdered samples to slightly underestimate heat capacities.233 Simultaneously, the 

DSC measurement method tends to slightly overestimate heat capacities of the test 

measurements with benzoic acid and sapphire. It can be summarized that both effects 

could cause a systematic error in experimental methods when extrapolating the low 

temperature results to high temperature and vice versa. The systematic gap between the 

DHCP and DSC measurements is in total around 4 % and hence still within the range of 

precision for heat capacity measurements.227 This deviation is most apparent at high 

temperature and also detectable for lactide data from literature221, 226. Hence, the 

systematic experimental error contributes to differences between experiment and theory 

but is unlikely to be responsible for the entire calculations error. 

Another reason for an underestimation of the calculations is the neglect of thermal 

expansion within eq. (59). Even though thermal expansion can be neglected at low 

temperatures, in the high temperature region the neglect of thermal expansion can make 

an error of order 20 J mol-1 K-1. This would lower the calculated heat capacity by roughly 

~ 5 %. As a consequence, it could account for much of the underestimation of the 

calculations heat capacities.150 This is consistent with a recent computational study on 

acetic acid and imidazole which concluded that zero-point energy and thermal expansion 

can affect the final free energy corrections by a few kJ mol-1.234  

 

4.3.5 Heat capacity differences 

In this section the heat capacity differences between the racemic and enantiopure 

substances, ∆RS-SC
P

s
, are discussed as they affect the difference in Gibbs free energy of 

sublimation between both chiral species, ∆RS-S∆Gsubl, and thus as well the eutectic 

composition (see eq. (23)). Figure 4.23 shows the experimental and computed heat 

capacity differences between the enantiopure and racemic crystals for the three 

substances between 2 K and 200 K. Below 100 K, experimental ∆RS-SC
P

s
 are between -1 

and 3 kJ mol-1 K-1 and differ markedly between the three molecules. Even the sign of the 

heat capacity differences is temperature-dependent, with 3ClMA showing the largest 

differences from +3 kJ mol-1 K-1 at ~20 K to -4 kJ mol-1 K-1 at T > 150 K. The heat 

capacities for naproxen above 100 K have significant error bars which may be attributed 

to a loss in thermal coupling.232 For all substances the calculated heat capacities 

qualitatively reproduce the differences between enantiomer and racemate at the lowest 

temperatures. 
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Figure 4.23: Low temperature heat capacity differences, ∆RS-SC
P
s , between racemic compound 

and the enantiomer for the three chiral molecules. Experimental results are shown with 

experimental uncertainty (dots) and compared with calculated values from the ѱcrys (solid lines) 

and the ѱmol method (dashed lines).  

 

The high temperature heat capacity differences in the range of 300-370 K are shown in 

Figure 4.24. They correspond to the experimental DSC measurement which have been 

extrapolated using linear correlations (see Figure 4.21) to obtain the capacity differences 

at 298 K which are given in Table 4.7. Differences are pronounced only for 3ClMA. The 

heat capacity of the enantiomer at 298 K is 9.2±2.2 J·mol-1·K-1 which is 4.5% larger than 

that of the racemic crystal. A significant heat capacity difference has been reported in 

literature as well for the structurally related mandelic acid.235 In order to confirm these 

findings and to compare them to the 3ClMA results measurement for (RS)- and (R)-

mandelic acid have been repeated in this work (see Figure 4.21) using the same DSC 

method as for the other substances. This work’s results are in good agreement with the 

previous results235 and give a slightly smaller heat capacity difference at 360 K as shown 

in Table 4.7. The heat capacity difference between enantiopure and racemate changes 

with temperature for mandelic acid and is less severe at 298 K in comparison to the 

temperature independent heat capacity difference of 3ClMA (see Figure 4.24). The sign 

and magnitude is comparable between mandelic acid and 3ClMA. For lactide and 

naproxen, the heat capacity differences at room temperature are within experimental 

uncertainty. In case of lactide, the heat capacity of (RS)-lactide is only 0.6±0.6  

J·mol-1K-1 larger than that of the enantiomer, which is smaller than the published value 

of 2.8±0.3 J·mol-1K-1.221, 226 The heat capacity differences of naproxen at room 

temperature are 1.3±4.9 J·mol-1K-1 and within experimental uncertainty. 
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Figure 4.24: Experimental high temperature heat capacity differences, ∆RS-SCP, between the 

racemic and enantiopure crystals. Computational results via the ѱcrys method are given by 

dashed lines in the same colour while results via the ѱmol method are approximately zero for all 

substances (black straight line). 

 

The computed harmonic rigid-molecule calculations (ѱmol method) in Figure 4.24 all 

asymptotically approach zero for all compounds. The ѱcrys calculations show a difference 

in the heat capacities at process-relevant temperatures for naproxen which is independent 

of temperature. However, the overall effect of including the coupling between the 

molecular and lattice modes is relatively small. Clearly none of the two computational 

approaches is able to reproduce the heat capacity differences adequately. One reason 

might be the neglect of thermal expansion to the temperature dependency of the heat 

capacities of the enantiopure and racemic crystal. As they depend on the crystal structure 

they can affect as well the differences between the enantiomer and the racemate. 

However, it was recently shown for a large set of polymorphs, that the impact of thermal 

expansion on Gibbs energy differences is small in comparison to the effect of vibrational 

differences.236 

Heat capacity differences are no rarity as shown in Table 4.7 where this work’s 

measurements of lactide, naproxen, 3ClMA and mandelic acid are compared to literature 

data of several examples of chiral molecules. Literature data predominantly consists of 

studies of chiral amino acids which are zwitterionic in the solid state. Set aside both 

results from Leclercq et. al.235, heat capacity differences are below 10 J·mol-1K-1. Usually 

the enantiopure crystal has the higher heat capacity, but for the lactide, naproxen and m-

chloro-phenylhydracrylic acid, the racemic compound has the higher heat capacity 

compared to the enantiomer. The gathered data poses a challenge to computational 

methods as they have been shown in this work to fail to accurately (or at all in case of the 

separated ѱmol method) compute high temperature heat capacity differences. A precise 

calculation of these differences from zero Kelvin to process relevant temperatures 

however is essential for the calculation of free energy differences between the enantiomer 

and the racemic compound and, thus, for enantioseparation process design. 
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Table 4.7: Compilation of heat capacity differences between the racemic compound (rac) and the 

enantiopure (ep) crystals, ΔRS-SCP = CP,rac - CP,ep , from this work and literature. 

 
 T 

/ K 

CP,ep (ep) 

/ J∙mol-1∙K-1 

CP,rac (rac) 

/ J∙mol-1∙K-1 

∆𝑅𝑆−𝑆C
P
 

/ J∙mol-1∙K-1 

Lactide this work41 298.15 189.0±0.5 189.6±0.2 0.6±0.5 

Lactide 221, 226 298.15 181.5±0.1 184.3±0.4 2.8±0.4 

Naproxen This 

work41 

298.15 295.6±4.6 296.9±1.4 1.3±4.8 

3ClMA this work41 298.15 211.1±1.6 201.9±1.5 -9.2±2.2 

Mandelic acid this work41 
298.15 186.9±0.4 182.3±0.8 -4.6±0.9 

360 225.4±0.4 216.6±0.8 -8.8±0.9 

Mandelic acid 235 360 225.1±0.8 210.6±2.9 -14.1±3.0 

Phenylglycine 237 298.15 179.1±0.1 177.7±0.1 -1.4±0.1 

Valine 238 298.15 167.9±0.1 167.3±0.1 -0.6±0.1 

Serine 239 298.15 134.9±0.1 130.3±0.1 -4.6±0.1 

Alanine 240 298.15 122.3 121.6 -0.7 

Cysteine 241, 242 273.15 142.4±0.1 135.6±0.1 -6.8±0.1 

Erythro- 

phenylglyceric acid 
235 350 279.7±3.3 251.0±5.4 -36.7±6.3 

m-Chloro-

phenylhydracrylic acid 
235 305 222.6±2.1 224.7±0.8 2.1±2.3 

 

Analysis of the origin of heat capacity differences 

The absolute heat capacities are related to the integral of all vibrational movements of the 

molecules within the unit cell. The separated mol model assumes that the lattice modes 

are sufficiently separated from the molecular modes and thus are decoupled in the 

Einstein-Debye model in eq. (59). However, Figure 4.25 shows that some of the 

calculated molecular and lattice vibrational frequencies are similar in magnitude, which 

can affect one another. Even for the “rigid” lactide, there are some ring bending modes 

that are of similar frequencies to the lattice modes. For naproxen, the low frequency 

molecular modes correspond to rotations of the propionic acid side chain and bending of 

the naphthyl group. The low frequency molecular modes of 3ClMA are rotations of the 

flexible alpha-hydroxy acid sidechain and out-of-plane vibrations of the chlorine atom. 

The low frequency lattice modes determine the heat capacities at low temperatures. As a 

consequence, a coupling can affect the heat capacity differences in that temperature range 

(see Figure 4.23). Numeric values have of the molecular and lattice vibrations within the 

ѱmol and ѱcrys can be found in ref. 150. 
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Figure 4.25: Comparison of the rigid-molecule lattice frequencies of the model mol model for the 

enantiopure and racemic crystals of lactide, 3ClMA and naproxen with their molecular low 

frequency modes.  

 

All three molecules pack differently in the racemic and enantiopure structures (see Figure 

4.13). This affects the lowest frequency modes which have been shown to be very 

sensitive to the choice of the computational method.41 One source of errors comes from 

assuming that the molecule is rigid. Thus, the results of ѱmol and ѱcrys are more consistent 

for the more rigid lactide, which has comparably isotropic and weak intermolecular 

interactions.  

For the high temperature heat capacities, only the high frequency molecular modes are 

relevant, as the low frequency lattice modes have become saturated. Only the electronic 

ѱcrys calculations give small differences in the high frequency modes that lead to a small 

difference in heat capacities at process-relevant temperatures for naproxen and 3ClMA, 

but none for lactide (Figure 4.24). This can be experimentally resolved by the solid-state 

Raman spectra which can be distinct for polymorphs243 and, thus, as well for the 

enantiomer and the racemic compound. Differences between the spectra of the 

enantiomer and the racemate are related to differences in vibrational frequencies of the 

crystal which can be responsible for differences in heat capacities. Solid-state Raman 

spectra were measured for enantiopure and racemic crystals of the three substances and 

are shown in Figure 4.26.  

For naproxen and 3ClMA there are detectable differences between the crystal forms, in 

particular at higher frequencies i.e. the C=O around 1600-1800 cm-1 and O-H around 

3000 cm-1. On the contrary, for lactide the enantiopure and racemic crystals display an 

almost identical Raman spectrum. Such differences in the higher frequency molecular 

modes between the racemic and enantiopure crystals are one reason for the heat capacity 

differences at high temperatures shown in Figure 4.24. Thus, Raman spectra can be used 

to test whether heat capacity differences at high temperatures are likely before applying 

the costlier calorimetric measurements. 

0 50 100 150 200 250

Frequency  / cm-1

(S)-Lactide (RS)-Lactide Lactide (molecular)
(S)-Naproxen (RS)-Naproxen Naproxen (molecular)
(S)-3ClMA (RS)-3ClMA 3ClMA (molecular)

side chain rotation chlorine bending

ring bending

side chain rotation + naphthyl group bending
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Figure 4.26: Overlay of the solid-state Raman spectra of the racemic and enantiopure species 

of the three compounds showing the relevant regions between 0-1800 cm-1 and 2700-3150 cm-

1. The inset illustrates the different hydrogen bonding motifs, responsible for the changes in the 

spectra at higher “molecular” frequencies i.e. the C=O around 1600-1800 cm-1 and O-H around 

3000 cm-1. 

 

4.3.6 Sublimation Thermodynamics  

In this section the sublimation thermodynamics of the three chiral model substances 

(Figure 4.12) are discussed. Experimental data is compared to calculations using ab-initio 

quantum chemistry methods. The Gibbs free energies of sublimation from experiment 

and computations are subsequently used in section 4.4 and 4.5 to calculate absolute and 

relative solubilities via the sublimation cycle, respectively.  
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Experimental sublimation thermodynamics 

Sublimation enthalpies and Gibbs free energies are directly correlated to the sublimation 

vapor pressures via eq. (38) which are accessible by experiment. Experimental vapor 

pressures are available for enantiopure and racemic lacide in literature230. For naproxen, 

they have been determined in the frame of this work using the transpiration method 

according to section 3.2.6. For 3ClMA measurements have been conducted with the same 

experimental method. Unfortunately, measurements failed due to decomposition of the 

samples before sublimation. 

 

Figure 4.27: Experimental vapor pressures as a function of the reciprocal temperature of (●) the 

enantiomer and (○) the racemic compound of (left) lacide230 and (right) naproxen41. This works 

naproxen results are compared to measurements of (▲) (S)-naproxen from literature244. 

 

For lactide, the vapor pressures of the racemic compound and the enantiomer differ 

significantly with the racemic compound having significantly larger vapor pressures. On 

the contrary, the absolute vapor pressures of (RS)- and (S)-naproxen (Figure 4.27, right) 

are very similar. However, they are still distinguishable especially at low temperatures 

where vapor pressures of the enantiomer are slightly higher in comparison to the racemic 

compound. Absolute vapor pressures from literature of (S)-naproxen244 are substantially 

larger in comparison to this work’s results but their temperature dependencies are 

comparable. Absolute vapor pressures pi were correlated according to literature160 via eq. 

(66). 

Δ
ln ln

1 Pa · 298 

g s

i P
p Ca b T

R R T R K

−
   

= + +   
    

(66) 

where a and b are two adjustable parameters. The heat capacity differences between the 

gaseous and the crystalline phase ΔCP
g−s

 for lactide and naproxen have been taken from 

literature41, 230 where they have been determined at 298 K from the experimental solid-

state heat capacities and calculated ideal gas heat capacities. The heat capacity differences 



Results and Discussion 93 

 

at 298 K are summarized in Table 4.8 together with the sublimation thermodynamic 

functions. They are qualitatively in agreement with a suggested averaged heat capacity 

difference of 117 molecules which was shown83 to be ΔCP
g−s

 = 32.7 ± 45.7 J mol-1 K-1. 

Gibbs free energies of sublimation are accessible via eq. (38) when referring the 

sublimation vapor pressures to a reference pressure of p0 = 1 bar. Sublimation enthalpies 

have been taken from the dependency of ln pi to the reciprocal temperature, 1/T, according 

to the Clausius-Clapeyron equation. They have been extrapolated using ΔCP
g−s

 according 

to eq. (41). The resulting sublimation enthalpies, entropies and Gibbs free energies of 

lactide and naproxen are summarized in Table 4.8. Apart from their derivation from the 

experimental transpiration vapor pressures, ΔHsubl have been additionally determined 

experimentally by thermogravimetry (TGA) for the naproxens. The TGA results are in a 

good agreement with the results of the transpiration method. In Table 4.8 a mean average 

ΔHsubl (298 K) has been determined for the enantiomer and the racemate as discussed in 

more detail in literature41.  

 

Table 4.8: Experimental vapor pressures and sublimation enthalpies of lactide and naproxen at 

298.15 K. The free energy of sublimation at T = 298.15 K was calculated by ∆Gsubl = - RT 

ln(p298K/p0), where p0 = 1 bar. Values in brackets have been derived from experimental solubilities 

at 298 K as described in section 2.7.2.  

 
ln(p298K/p0)   

g s

PΔC −
 ∆Hsubl T∆Ssubl

a ∆Gsubl 

 - kJ mol-1 K-1 kJ mol-1 kJ mol-1 kJ mol-1 

(RS)-lactide230 -14.10 ± 0.03 28.4 91.6 ± 0.4 

(93.4) 

56.6 

(56.5) 

35.0 ± 0.1 

(36.8) 

(S)-lactide230 -13.21 ± 0.03 28.4 86.3 ± 0.4 

(91.8) 

53.5 

(57.1) 

32.8 ± 0.1 

(34.7) 

(RS-S) -0.9 ± 0.04  5.3 ± 0.6 

(1.6) 

3.1 

(-0.5) 

2.20 ± 0.1 

(2.1) 

(RS)-

naproxen41 

-25.26 ± 0.04 41.9 135.3 ± 1.3 

(133.5) 

72.7 

(69.8) 

62.6 ± 0.1 

(63.7) 

(S)-naproxen41 -24.28 ± 0.02 40.0 129.1 ± 0.9 

(133.2) 

68.9 

(70.5) 

60.2 ± 0.0 

(62.7) 

(S)-naproxen244 -23.7 - 128.3 ± 1.5 69.8 58.5 

(RS-S) -1.0 ± 0.04  6.2 ± 1.6 

(0.2) 

3.8 

(-0.7) 

2.41 ± 0.1 

(1.0) 

(RS)-3ClMA n.a - (155.1) (65.8) (49.3) 

(S)-3ClMA n.a - (113.8) (66.1) (47.7) 

(RS-S) n.a - (1.3) (-0.3) (1.6) 

a calculated from ∆Gsubl = ∆Hsubl - T∆Ssubl, where T = 298.15 K. 

 

Vapor pressure measurements of 3ClMA are not available due to decomposition before 

sublimation. As an alternative, experimental “reference” quantity sublimation enthalpies 

were calculated from experimental solubility data for all six crystals via the sublimation 

cycle (Figure 2.12) and thus via ∆Gsubl,solub = -RT ln xexp – ∆Gsolv and ∆Hsubl,solub = -RT ln 

xexp – ∆Gsolv + T∆Ssubl. Further details on the calculation of sublimation thermodynamics 
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from solubilities are given in section 2.7.2. The primary solubility data and resulting 

“experimental” sublimation free energies are summarized in Table 7.7 in the appendix. 

Further information on the calculation of the solvation free energies is given later in 

section 4.4 where they are used for solubility prediction. The sublimation free energies 

and sublimation enthalpies for lactide and naproxen that have been estimated from 

experimental solubilities are in good agreement with those from experimental vapor 

pressures. Based on the above, they are used in the following as an “experimental” 

reference for 3ClMA where direct sublimation data is missing.  

 

Calculated sublimation thermodynamics 

In this section, calculated sublimation thermodynamic quantities (∆Hsubl, T∆Ssubl and 

∆Gsubl) are discussed and compared to experimental reference data from Table 4.8. 

Calculated lattice energies, Elatt, were combined with the calculated zero-point vibrational 

energies (EZPE) as well as the calculated heat capacity corrections within the atomistic 

(ψmol) and electronic (ψcrys) model in order to determine the sublimation thermodynamics 

at 298 K. Detailed information on the computational mol and crys methods are 

summarized in section 2.7.2. Both methods have been previously used for calculating the 

solid-state heat capacities (see Figure 4.22). The experimental solid-state heat capacities 

were evaluated within the mixed “exp/theory” model. They are combined with calculated 

ideal gas heat capacities of the mol method as well as the lattice energies and zero-point 

energies of the mol and crys methods resulting in the so-called mol (exp/theory) and 

crys (exp/theory) method. Further details of the integration of the experimental solid-

state heat capacities and their combination with the exclusively computational mol and 

crys methods are given in section 2.7.2. 

The final computational results of the absolute sublimation (a) enthalpies and (b) Gibbs 

free energies using the pure computational methods (mol and crys) and the mixed 

“exp/theory” methods are depicted in Figure 4.28. Selected data is given in Table 4.9 

while all primary data is summarized in Table 7.19 in the appendix. Computations are 

compared to experiments41, 230 and for 3ClMA to the recalculated values from 

experimental solubilities as discussed before in Table 4.8. For all molecules, absolute 

sublimation enthalpies depend strongly on the method used to calculate lattice energies 

which is the dominant quantity while thermal corrections Hcorr play a minor role (see 

Figure 4.28a). The mol method gives worse enthalpies (RMSE = 10.1 kJ mol-1) than the 

more sophisticated electronic method (RMSE = 5.2 kJ mol-1) whose accuracies are close 

to the uncertainties of sublimation experiments (4.9 kJ mol-1)94 (see Table 4.9). The 

utilization of experimental heat capacities only marginally improves the calculations for 

the atomistic (RMSE = 9.6 kJ mol-1) as well as the electronic method (RMSE = 5.1 kJ 

mol-1). 
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Figure 4.28: Calculated (a) Sublimation enthalpies, ∆Hsubl, and (b) Gibbs free energies of 

sublimation, ∆Gsubl, in comparison to the experimental data from Table 4.8 (blue = lactide230; 

green = naproxen41; red = 3ClMA – as 3ClMA decomposes estimations from experimental 

solubilities are used). The calculations are based on the pure crys and mol method and when 

combined with experimental solid-state heat capacities on the so-called mixed “exp/theory” 

methods. 

 

The importance of a more complete model to determine the thermal corrections over the 

widely used 2RT-approximation becomes obvious in Figure 4.29 (a) where all absolute 

thermal corrections are summarized. Recently, this approximation has been queried for a 

set of smaller sized molecular crystals85, 97, 194 where different calculations of ΔHcorr vary 

in between 1 to up to 9 kJ mol-1 and deviations to the 2RT-approximation are in the order 

of a few kJ mol-1 (see Figure 4.8). The literature data indicates that method related 

differences are largest in cases where vdW-interactions or H-bonding dominate in the 

crystal. However, there is a clear correlation between the differences in the thermal 

corrections with the molecular flexibility and packing in racemic and enantiopure crystal 

structures. The interactions in the crystals of rigid lactide are dominated by isotropic 

vdW-interactions. As a consequence, the crys and mol calculations seem to be 

independent to the method used and results are close to the 2RT-approximation. However, 

for naproxen and 3ClMA the different hydrogen bonding in the two crystals and 

increasing vibrational flexibility lead to larger differences in thermal corrections. For 

3ClMA the largest deviations are observed and differences to the harmonic 

approximation are up to 4 kJ mol-1 while Naproxen results are somewhat in between the 

two extreme cases. In both cases the deviations come from the zero-point energies and 

thermal energies to a similar extent and hence do not only depend on the heat capacities 
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of the crystal. Based that it can be concluded that thermal corrections appear to be rather 

dependent on the complexity, on the molecules, and of the crystal packing, and is most 

apparent for the flexible 3ClMA.  

 

Figure 4.29: (a) Thermal enthalpy corrections, ΔHcorr, and (b) sublimation entropies, TΔSsubl, of 

the racemic and enantiopure crystals. The calculations are based on the pure crys and mol method 

and when combined with experimental solid-state heat capacities on the so-called mixed 

“exp/theory” methods. 

 

In order to calculate the sublimation free energies of Figure 4.28 (b), besides the 

sublimation enthalpies, the sublimation entropies, TΔSsubl, are required. The latter are 

summarized Figure 4.29 (b) and compared to experimental data from vapor pressure 

measurements from Table 4.8. The electronic (crys) method gives slightly better results 

in comparison to the atomistic (mol) method except for lactide. However, deviations are 

above 7 kJ·mol-1 and thus significantly worse than the integrals from experimental solid-

state heat capacities. Surprisingly, the integrals of the computed ideal gas and 

experimental solid-state heat capacities are not able to resolve the difference between the 

enantiomer and the racemate. 
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Table 4.9: Calculated absolute sublimation enthalpies, entropies and Gibbs free energies and 

energy differences between the racemic and enantiopure crystal ΔRS-S of lactide, naproxen and 

3ClMA in comparison to the experimental reference values from Table 4.8. All values are in 

kJ·mol-1. 

Method lactide naproxen 3ClMA RMSE 

 (RS) (S) ΔRS-S (RS) (S) ΔRS-S (RS) (S) ΔRS-S abs. 

Sublimation enthalpy ΔHsubl 

mol 81.1 77.5 3.5 128.3 120.1 8.2 105.2 99.9 5.3 7.9 

crys 85.2 82.2 2.9 130.3 128.7 1.7 122.0 119.5 2.5 3.6 

mol 

(exp/theory) 
80.7 77.3 3.3 128.8 121.1 7.7 106.9 100.7 6.2 7.6 

crys 

(exp/theory) 
84.2 81.5 2.7 129.4 127.3 2.1 120.8 117.3 3.5 3.3 

experiment 91.6 86.3 5.3 135.3 129.1 6.2 (115.1) (113.8) -  

Sublimation entropy TΔSsubl 

mol 51.6 52.7 -1.2 59.8 58.6 1.1 57.0 57.9 -0.9 8.6 

crys 47.9 51.9 -4.0 62.3 65.4 -3.1 63.2 64.6 -1.4 7.1 

“exp/theory” 56.5 57.1 -0.5 69.8 70.5 -0.7 65.8 66.1 -0.3 2.4 

experiment 56.6 53.5 3.1 72.7 68.9 3.8 - - -  

Sublimation Gibbs energy ΔGsubl 

mol 29.5 24.8 4.7 68.5 61.5 7.0 48.2 42.0 6.2 5.2 

crys 37.3 30.4 6.9 68.0 63.2 4.8 58.8 54.8 4.0 5.6 

mol 

(exp/theory) 
24.1 20.3 3.9 59.1 50.6 8.4 41.1 34.5 6.6 

10.

2 

crys 

(exp/theory) 
27.7 24.5 3.3 59.7 56.8 2.8 55.0 51.2 3.8 5.6 

experiment 35.0 32.8 2.2 62.6 60.2 2.4 (49.3) (47.7) (1.6) - 

 

Calculations of the final sublimation free energies, ΔGsubl, (see Figure 4.28, b) give 

similar accuracies in comparison to the sublimation enthalpies. The atomistic method is 

comparably accurate (RMSE = 5.2 kJ mol-1) than the more sophisticated electronic 

method (RMSE = 5.6 kJ mol-1), even though it was less accurate for calculating ΔHsubl 

and TΔSsubl. Combining the atomistic results with experimental solid-state heat capacities 

within the mol (exp/theory) method drastically increases deviations to experiment 

(RSME = 10.2 kJ mol-1). As the sublimation entropies, T∆Ssubl, from the vapor pressure 

measurements (Figure 4.29, b) and from the “exp/theory” method are in good agreement 

for lactide and naproxen with an overall RMSE of 2.4 kJ mol-1 (Table 4.9) the calculation 

errors are more likely to come from the atomistic lattice and zero-point energies. As a 

result, the surprisingly accurate mol-results for ΔGsubl can only be explained by a 

fortunate compensation of errors. 

Besides the absolute energies, the energy differences between the racemic and 

enantiopure crystal (ΔRS-SE = ERS - ES) are of great importance for enantioseparation 

process design as they can be related to the eutectic composition of chiral mixtures in 

solution (see section 2.2.4 and eq. (23)). Figure 4.30 shows the calculated sublimation (a) 

enthalpy and (b) Gibbs energy differences, ΔRS-SHsubl and ΔRS-SGsubl, for the three 
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molecules in comparison to experiment. Only the sublimation Gibbs energy differences, 

which have been estimated from experimental solubilities via the sublimation cycle, are 

accurate enough for lactide and naproxen so that they can be used as an alternative 

experimental reference for 3ClMA.  

 

Figure 4.30: Energy differences between the racemic and enantiopure crystal. (a) Sublimation 

enthalpy differences, ΔRS-S∆Hsubl, and (b) Gibbs free energies differences, ΔRS-S∆Gsubl, using 

calculated and experimental solid state heat capacities in comparison to the experimental data 

from Table 4.8 (blue = lactide230; green = naproxen41; red = 3ClMA – as 3ClMA decomposes 

estimations from experimental solubilities are used). The calculations are based on the pure crys 

and mol method and, when combined with experimental solid-state heat capacities, on the so-

called mixed “exp/theory” methods. 

 

Similar to the absolute quantities (see Figure 4.28), enthalpy and free energy differences 

are in most cases dominated by the lattice energies. The variation between the 

computational methods depends markedly on the flexibility of the molecule. The lactides 

show the smallest dependence on the computational model (Figure 4.30) and also have 

almost complete cancellation of the thermal corrections (Figure 4.29, a). The thermal 

contributions have a major effect on the relative enthalpies of sublimation for 3ClMA, 

whereas the non-cancelling errors in calculation of the lattice energy dominates for 

naproxen. Nevertheless, for both 3ClMA and naproxen, there is a significant difference 

between the thermal contributions up to ∆RS-SHcorr = 2.3 kJ mol-1, calculated from the 

experimental and computed heat capacities which equally come from the zero-point 

energies and thermal energies. Generally, the atomistic model shows less discrimination. 

Thus, the thermal contributions are significant, considering that enthalpy differences are 

below 6 kJ mol-1 for lactide and naproxen and probably as well for 3ClMA.   
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Similar results are obtained for the differences in sublimation free energies where 

experimental values are significantly smaller in comparison to the enthalpy differences 

(Figure 4.30, b). While the lattice energies of the mol method overestimate the free 

energy differences significantly for naproxen and 3ClMA, the ∆RS-SElatt of the crys 

method surprisingly reproduces the experimental free energy differences. However, 

adding the zero-point energies, thermal enthalpies and entropy corrections changes the 

∆RS-S∆Gsubl on average by 1.6 ± 1.5 kJ·mol-1 up to 4.1 kJ·mol-1. The method dependent 

variation of the various energy contributions to ∆RS-S∆Gsubl is illustrated additionally in 

Figure 4.31 for the pure ѱmol, ѱcrys method and the combined “exp/theory” (ѱcrys) method. 

Regarding the small free energy differences of around 2 kJ·mol-1, it is important to 

precisely determine the thermal correction for all three molecules. Especially if the free 

energy differences are used to calculate relative solubilities via the sublimation cycle 

since those are related exponentially (see eq. (23)).  

 

Figure 4.31: Share of the absolute energy contributions to the difference in Gibbs free energy of 

sublimation for lactide, naproxen and 3ClMA in percent. Calculations results of the mol and crys 

model and of the combined “exp/theory” (crys) method are compared. Total enthalpy correction 

ΔHcorr is comprised of the zero-point energies ΔEZPE and thermal heat capacity corrections Hth.  

 

4.3.7 Conclusions 

Lactide has been confirmed to belong to the class of simple racemic compound-forming 

systems (see Figure 4.17), whereas naproxen exhibits a more complex binary melting 

behaviour (see Figure 4.18). Combined DSC and XRPD analysis suggest the formation 

partial solid-solutions at concentrations close to (RS)-naproxen when crystallized from 

acetone (see Figure 4.19) and additionally close to (S)-naproxen if crystallized from the 

melt (see Figure 4.20). A presence of solvent mediated solid-solutions can lead to 

difficulties for enantiopurification by crystallization. 
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Thermal corrections are shown to affect ΔGmelt for up to 1.6 kJ·mol-1 in case of naproxen 

and are thus not negligible when used for solubility prediction (see Table 4.6). Within the 

sublimation cycle zero-point, as well as thermal enthalpy and entropy (see Figure 4.29), 

correction can make up to 40 % of the total energy contributions to ΔGsubl, due to the 

large temperature gap between 0 K and reference temperature (Table 4.9). Calculated heat 

capacities systematically underestimate the measured high temperature CP,s. The 

underestimation of computational methods is consistent with literature results and partly 

due to a neglect in thermal expansion of the crystal structure (see Figure 4.22). Overall, 

the crys method gives significantly better results of the sublimation enthalpies in 

comparison to the mol method. However, both methods are close to chemical accuracy 

for calculating ΔGsubl (see Table 4.9). The surprisingly accurate mol results for ΔGsubl 

have been explained by a fortunate compensation of errors which mostly comes from the 

calculations of the lattice energies as well as the sublimation entropies. 

At low temperatures there are detectable heat capacity differences between the racemate 

and the enantiomer in the DHCP experiments for all three molecules (see Figure 4.23). 

The high temperature DSC experiments show however only a significant ΔCP for 3ClMA, 

which has been identified as well for the closely related mandelic acid (see Figure 4.24). 

Experimental data from literature shows that heat capacity differences are no rarity (see 

Table 4.7). This poses a challenge to computational methods as they have been shown in 

this work to fail to accurately compute high temperature heat capacity differences even if 

molecular and lattice vibrational frequencies are allowed to interact. The low frequency 

lattice modes determine the ΔCP at low temperatures while for the high temperature heat 

capacities, only the high frequency molecular modes are relevant. Differences between 

the high frequency modes for naproxen and 3ClMA have been experimentally determined 

by Raman spectroscopy (see Figure 4.26) which can thus help to identify possible heat 

capacity differences at high temperatures. Zero-point energies as well as thermal 

enthalpies and entropies contribute on average by 1.6 ± 1.5 kJ·mol-1 and up to 4.1 kJ·mol-

1 to the resulting free energy differences between the racemic and enantiopure crystals. 

The magnitude and method dependence appear to be related on the complexity on the 

molecules and of the crystal packing. 
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4.4 Solubility prediction of chiral model substances 

Within this section, the phase transition thermodynamics from the previous section are 

combined with solvation terms from COSMO-RS in order to calculate solubilities via the 

melt and the sublimation cycle (eqs. (27) and (28)). Calculations of the solubility of the 

enantiomer, as well as the racemic compound of the three chiral model substances, 

lactide, naproxen and 3ClMA, are compared to experiment. The accuracy of the 

calculations via two thermodynamic cycles, the melt cycle and the sublimation cycle 

(Figure 2.10), are evaluated for solubility prediction in pure and mixed solvent system. 

 

Experimental and computational details 

In order to evaluate the subsequent calculations, solubilities have been gathered from 

literature and, if not available, determined in the frame of this work. Available solubility 

data of racemic and enantiopure lactide225 has been extended in the frame of this work by 

means of isothermal solubility method (see section 3.2.1 for details). For naproxen, 

solubilities have been determined experimentally for both crystals in a variety of organic 

solvents. For 3ClMA, solubilities of both crystals have been studied thoroughly before225 

and thus have been used within this work. The primary experimental data is summarized 

in Table 7.7 in the appendix. 

The melt cycle uses the Gibbs free energies of melting of Table 4.5 in combination with 

the thermal free energy corrections from Table 4.6 in order to determine the corrected 

ΔGmelt at 298 K (see eq. (33)). The sublimation cycle uses the Gibbs free energy of 

sublimation ΔGsubl from Table 4.9 that has been determined via the ѱcrys or ѱmol method. 

ΔGmelt and ΔGsubl are combined with computed excess Gibbs free energy of mixing, ΔGE, 

and the Gibbs free energy of solvation, ΔGsolv in order to calculate ΔGsol via eqs. (27) and 

(28), respectively. ΔGE and ΔGsolv have both been computed with the COSMO-RS model. 

Details on the theory behind COSMO-RS is given in section 2.6.6. All calculations have 

been performed at infinite dilution using the TZVPD-FINE parameterization. Further 

information on the computational details can be found in section 2.7.3. For the flexible 

naproxen and 3ClMA, several molecular conformations have been used which were 

treated with a Poisson-Boltzmann weighting as implemented in the COSMO-RS model. 

As lactide has a rigid molecular structure, only one conformation was used. All 

conformations that have been used are shown in Figure 4.32. The resulting ΔGsol from both 

thermodynamic cycles are used to calculate mole fraction solubilities via eq. (10). 
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Figure 4.32: Molecular conformations of lactide, naproxen and 3ClMA that have been used for 

calculating solvation free energies and excess Gibbs free energies of mixing with the COSMO-

RS model. The energy differences, ΔE, correspond to the difference in energy to the lowest energy 

conformation. 

 

4.4.1 Solubility prediction 

Figure 4.33 shows the calculation results of lnxi via (a) the sublimation cycle and (b) the 

melt cycle in comparison to experiment. The Root-mean-square errors (RMSE) between 

calculations and experiment are given in Table 4.10. Calculations via the sublimation 

cycle using the mol and crys method in combination with COSMO-RS (mol+COSMO-RS 

and crys+COSMO-RS) are generally in good agreement with experiment. The overall 

accuracy of the ѱcrys+COSMO-RS method is slightly better compared to the ѱmol+COSMO-RS 

method with a RMSE of 1.9 and 2.6 in ln x-units, respectively (see Table 4.10). Both ab-

initio methods are more precise than calculations via the melt cycle if “ideal” solubility 

is assumed. In that case ΔGsol is approximated by the solvent independent experimental 

ΔGmelt (see Table 4.10) resulting in the simple form of the SVL equation (see eq. (34)). If 

the solvent specific solution non-idealities within ΔGE are calculated by COSMO-RS and 

added to ΔGmelt, the overall accuracy of the melt cycle is clearly increased (see Table 

4.10). However, this is mostly due to a significantly better representation of the naproxen-

heptane and 3ClMA-water system (marked with arrows within Figure 4.33) while the 

other systems are less effected.  

 

Table 4.10: Accuracy of the calculated ΔGsol and logarithmic mole fraction solubilities, ln xi, via 

the sublimation and the melt cycle. 

RMSE Sublimation cycle Melt cycle 

ψmol 

(+COSMO-

RS) 

ψcrys 

(+COSMO-

RS) 

ΔGsolv
a  

(COSMO-

RS) 

SVL 

(ideal) 

COSMO-RS 

kJ·mol-1 6.3 4.8 2.1 8.1 4.3 (3.3)b 

ln x 2.6 1.9 - 3.3 1.7 (1.3)b 

a. RMSE of the calculated solvation Gibbs energies of lactide and naproxen via COSMO-RS. 

b. Calculated using the temperature corrected ΔGmelt from Table 4.5 and Table 4.6. Values in brackets use 

the uncorrected ΔGmelt from Table 4.5. 
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Interestingly, the addition of thermal corrections to ΔGmelt does not improve the melt cycle 

calculations, but instead slightly lowers the overall accuracy (see values in brackets in 

Table 4.10). As a consequence, even if solution non-idealities are determined by 

COSMO-RS the accuracy of the melt cycle for calculating ΔGsol (RMSE = 4.3 kJ·mol-1)  

is still comparable to that of the sublimation cycle in case the crys+COSMO-RS method is 

used (RMSE = 4.8 kJ·mol-1). 

 

Figure 4.33: Calculated absolute solubilities of racemic and enantiopure lactide (blue), naproxen 

(green) and 3ClMA (red) in various organic solvent systems using (a) the sublimation cycle in 

combination with (Δ) the mol+COSMO-RS and (○) the crys+COSMO-RS method. Calculations of 

naproxen in heptane and 3ClMA in water are marked with arrows (b) Calculations assuming via 

(Δ) the SVL equation (eq. (34)) assuming “ideal” solubility and via (○) via the melt cycle 

combining ΔGmelt and the solvent specific ΔGE from COSMO-RS. Calculations of naproxen in 

heptane and 3ClMA in water are marked with arrows. 

 

In order to evaluate sources of computational errors, the accuracy of the COSMO-RS 

model for calculating the solvation Gibbs energies have been determined. For that 

purpose, experimental solvation Gibbs energies, ΔGsolv,exp, have been recalculated from 

the experimental solubilities and experimental sublimation Gibbs energies, ΔGsubl,exp, via 

ΔGsolv,exp = -RT·ln xi,exp - ΔGsubl,exp. This is only possible for lactide and naproxen where 

experimental sublimation Gibbs energies, ΔGsubl,exp, are available (see Table 4.8). The 
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extracted ΔGsolv,exp for lactide and naproxen in each of the studied solvent systems is 

summarized in Appendix (Table 7.7). The overall accuracy of the COSMO-RS model for 

calculating solvation free energies of lactide and naproxen is 2.1 kJ∙mol-1 (see Table 4.10). 

This is in agreement with literature245 where the COSMO-RS model was evaluated for a 

large benchmark set of small and medium sized molecules. As a consequence, within the 

ѱcrys+COSMO-RS method calculations of the sublimation and solvation are equally 

contributing to the overall computational error. Within the ѱmol+COSMO-RS method, the 

computational error when calculating sublimation Gibbs energies prevails. 

The magnitude of each energy contribution within the sublimation cycle is shown in 

Figure 4.34 (top). Exemplarily, the results for the solubility of the enantiopure crystals of 

lactide, naproxen and 3ClMA in toluene are compared. For all three substances the lattice 

energy is responsible for around half of the sum of all energy contributions which are 

largest for naproxen. Thermal enthalpy contributions only take a minor part within the 

sum of all energies while the entropy corrections to the static lattice are the second largest 

contributions which are around double the magnitude as the solvation free energies. The 

solvent specific energy contribution within the melt cycle, ΔGE, is significantly smaller 

in comparison to the solvation free energy within the sublimation cycle. Nevertheless, it 

takes the largest share of the sum of all energies within the melt cycle (Figure 4.34, 

bottom), due to the significantly smaller energy contributions. The total energies are more 

than 10 times larger within the sublimation cycle. Based on the above, the good 

performance of the sublimation cycle (Figure 4.33 and Table 4.10) is surprising as the 

significantly larger energies are more prone to errors when adding all energy 

contributions.  

 

Figure 4.34: Absolute energy contributions to the Gibbs free energy of solution via (top) the 

sublimation cycle using the crys+COSMO-RS model and (bottom) the melt cycle in combination with 

COSMO-RS. Exemplarily, the dissolution of lactide, naproxen and 3ClMA toluene is shown. The 

sum, Σ, of the absolute energies is given on the right. 
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In summary, the results of the mol+COSMO-RS and crys+COSMO-RS methods are promising, 

considering that both methods do not require substance specific experimental input data. 

Furthermore, the results are an improvement when compared to other solubility prediction 

methods from literature using first-principle calculations.10 Around 40 % of the 

solubilities from the ѱcrys+COSMO-RS are within the ±0.5log(x) limits which has been 

suggested as within a recent solubility challenge246. Secondly, the ѱcrys+COSMO-RS model is 

not restricted to aqueous solution but can handle a large range of organic solvent systems. 

Besides that, the reliability is still not high enough so that any of the proposed method 

can be used for solubility predictions early stage crystallization process design. 

 

4.4.2 Solubility calculations in mixed solvent systems 

The solubility behaviour in mixed solvent systems is in particular relevant for 

crystallization process design. The addition of a second solvent, a co-solvent, can be used 

to enhance solubility or to significantly lower the solubility of a certain target substance. 

A co-solvent that over-proportionally lowers the solubility of a target substance is often 

referred to as an “anti-solvent”.  

Both thermodynamic cycles have been used to calculate solubilities in mixed solvent 

systems. In order to be able to evaluate the performance of the computational methods, a 

broad experimental study of the solubility of both chiral species of lactide and naproxen 

in a variety of mixed solvent systems was conducted. Solubilities have been measured 

according to the isothermal method presented in section 3.2.1. Primary experimental data 

is summarized in Appendix (Table 7.8 and Table 7.9). Calculations via the melt cycle use 

the corrected ΔGmelt from Table 4.5 and Table 4.6 in combination with ΔGE from 

COSMO-RS has been used. For the sublimation cycle the crys+COSMO-RS method because 

of its comparatively better performance compared to the mol+COSMO-RS method (see Table 

4.10). Furthermore, the experimental sublimation free energies, ΔGsubl,exp, from Table 4.8 

have been used in combination with ΔGsolv from COSMO-RS to calculate solubilities. As 

measurements for naproxen have been performed at 30°C the solid-state thermodynamic 

parameters (ΔGmelt and ΔGsubl) have been adjusted to 303 K. More details on the 

temperature adjustments of ΔGsubl (crys) is given in a later section 4.6.1 when discussing 

temperature-dependent solubility behaviour.   

Figure 4.35 compares this work’s measurements and calculations of the enantiopure (left) 

and racemic forms (right) of lactide at 25°C and naproxen at 30°C in mixtures of ethanol 

and toluene. For both substances, the experimental solubility is significantly increased in 

mixtures of the two solvents in comparison to the pure solvent systems. The maximum 

solubility is obtained for lactide in a 20/80 wt% EtOH/Toluene mixture and for naproxen 

in between 20/80 and 40/60 wt% EtOH/Toluene mixture. For naproxen there is an up to 

16-fold increase in solubility in comparison to pure toluene. The trend is qualitatively 

reproduced by the two thermodynamic cycles but the absolute solubilities vary 

considerably between the various methods. There is a systematic overestimation of 

solvation contributions in ethanol by the COSMO-RS model which is more pronounced 

for lactide.  
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Figure 4.35: (red ●) Experimental solubilities of the enantiomer and the racemic compound of 

lactide (25°C) and naproxen (30°C) in mixtures of ethanol and toluene. Calculations via (◆) the 

melt cycle uses temperature corrected ΔGmelt in combination with ΔGE from COSMO-RS; (Δ) the 

sublimation cycle in combination with the crys+COSMO-RS method; (▲) the sublimation cycle in 

combination with ΔGsubl,exp from Table 4.8 and ΔGsolv from COSMO-RS 

 

Calculations using the exclusively computational crys+COSMO-RS method systematically 

underestimate the solubilities. This is most likely due to an overestimation of the 

sublimation free energies (see Table 4.9). Only for (S)-lactide the crys+COSMO-RS and the 

melt cycle deliver nearly identical results. In contrary to the crys+COSMO-RS method, the 

melt cycle overestimates the solubilities in most cases. As a consequence, there is not a 

clear advantage of the melt cycle over the sublimation cycle, especially if experimental 

sublimation free energies are used. 

Further experimental and computational investigations have been conducted for (S)- and 

(RS)-naproxen in mixtures of ethanol with acetonitrile (ACN) and with water as shown 

in Figure 4.36. The experimental solubility of naproxen in mixtures of ethanol with ACN 

follows a similar trend as for the previously discussed ethanol-toluene mixtures. The 

solubility is significantly increased within solvent mixtures and is at the maximum at 

around 60 wt% ethanol. In contrary to that water acts as an anti-solvent by lowering the 

solubility over-proportionally. 
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Figure 4.36: (red ●) Experimental solubilities of (S)-naproxen, (RS)-naproxen in binary solvent 

mixtures of ethanol and acetonitrile as well as ethanol and water each at 30°C. Calculations via (

◆) the melt cycle using uncorrected ΔGmelt from Table 4.5 and ΔGE from COSMO-RS; (Δ) the 

sublimation cycle in combination with the crys+COSMO-RS method; (▲) the sublimation cycle in 

combination with ΔGsubl,exp from Table 4.8 and ΔGsolv from COSMO-RS. 

 

Both non-linear solubility trends are captured qualitatively well by both cycles. In all 

cases the sublimation cycle in combination with experimental sublimation free energies 

gives the best results. Computational results of the melt cycle systematically overestimate 

the solubilities. Similar to the ethanol-toluene mixture (Figure 4.35), the ψcrys+COSMO-RS 

method underestimates the experiment. This is most likely due to the overestimation of 

the sublimation free energy of both (S)- and (RS)-naproxen by 3 and 5.4 kJ·mol-1, 

respectively (see Table 4.9).  

In summary, it can be concluded that the sublimation cycle provides a promising 

alternative to the melt cycle which performs comparably well for the studied systems. 

Best results are obtained if experimental Gibbs sublimation energies are used while ΔGsubl 

from crys+COSMO-RS leads to systematic underestimations. The non-linear co-solvent 

behaviour within the mixed solvent systems is qualitatively captured in all cases. The 

absolute mole fraction solubilities, however, are not reliable enough for crystallization 

process design. 
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4.4.3 Conclusions 

There is no clear advantage of the melt cycle over the sublimation cycle when using 

experimental melting and sublimation free energies (see Figure 4.33 and Table 4.10). The 

combined crys+COSMO-RS method gives better results in comparison to the mol+COSMO-RS 

method. Around 40 % of the solubilities from the crys+COSMO-RS are within the ±0.5log(x) 

limits which has been suggested as within a recent solubility challenge246. The overall 

computational error of the crys+COSMO-RS is equally caused by errors in the calculation of 

the sublimation and solvation thermodynamics. Within the crys+COSMO-RS errors in the 

calculation of ΔGsubl prevail. These are promising results regarding that crys+COSMO-RS is 

exclusively based on first-principle methods and does not rely on substance specific 

primary experimental data.  

Solubilities of the two chiral crystals have been additionally measured within a variety of 

mixed organic solvent systems for naproxen and lactide. Both thermodynamic cycles are 

able to qualitatively reproduce the non-linear co-solvent behaviour (see Figure 4.35 and 

Figure 4.36). However, due to an overestimation of ΔGsubl by the crys+COSMO-RS method, 

solubilities are systematically. 

In summary, even though the absolute sublimation thermochemistry can be calculated 

with chemical accuracy by periodic DFT solubility predictions via the sublimation cycle 

are not yet reliable enough for crystallization process design. 

 

4.5 Determination of the eutectic composition in solution 

For chiral compound forming systems, the eutectic composition, xeu, within the ternary 

solution phase diagram (see Figure 2.2) is the key parameter for chiral separation. It can 

depend on temperature, the nature of the solvent or both.43, 44, 150 In this section, the two 

thermodynamic cycles are used to predict xeu for lactide, naproxen and 3ClMA in solution 

using the phase transition thermodynamics from section 4.3. Experimental data of the 

eutectic composition of lactide44 and 3ClMA216, 222, 223 has been taken from literature as 

sufficient reliable data is available. For naproxen measurements have been performed 

within pure and mixed solvent systems using experimental methods according to section 

3.2.1. Besides focusing on the absolute value of the eutectic composition at 298 K, its 

variation of xeu with temperature and/or the solvent, the eutectic shift Δxeu = 𝑓 (T, solvent), 

is crucial for enantioseparation by crystallization. The eutectic shift with temperature is 

evaluated in this section using theory and experiment. Furthermore, the influence of the 

solvent on xeu is discussed.  

 

4.5.1 Method evaluation 

It was suggested before that the eutectic composition is related to the ratio between the 

mole fraction solubility of the racemic compound and that of the enantiomer.43, 55 Based 

on this approach a general model was constructed in this work (see eq. (23) in section 
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2.2.4) that relates the eutectic composition to the difference in Gibbs free energy of 

solution between the racemic compound and the enantiomer ΔRS-SΔGsol. Eq. (23) can be 

solved by the two thermodynamic cycles which approximate ΔRS-SΔGsol with ΔRS-SΔGmelt 

or ΔRS-SΔGsubl. Based on the same principle slightly different model was established in 

the literature56 that uses lattice energy difference instead of the difference in solution free 

energy (see eq. (24)).  

 

Figure 4.37: The experimental eutectic composition at 298 K for several amino acids in water 

plotted against the free energy difference (ΔRS-SΔGsol) from ref. 55 and the lattice energy difference 

(ΔRS-SElatt) from ref. 56. This work’s eutectic estimation model (thick line, eq. (23)) is compared to 

an alternative model by de la Otero Roza et al.56 (dashed line, eq. (24)). Open symbols represent 

the systems evaluated in both studies.  

 

The two slightly different models (eq. (23) and (24)) have been used in their original 

work55, 56 for estimating the eutectic composition of several amino acids in water. The 

results of the two models are compared in Figure 4.37 where xeu is plotted against the 

(free) energy differences between the racemate and the enantiomer (solid line: eq. (23); 

dashed line: eq. (24)). On one hand, the difference in Gibbs free energy of solution which 

which was calculated from the experimental relative solubility from ref.55 via ΔRS-SΔGsol 

= RT ln(xRS/xS) is plotted against xeu (blue circles). On the other hand, xeu is plotted against 

the lattice energy difference from ref.56. Primary data of the systems that have been 

evaluated in both studies55, 56 are summarized in Table 4.11. Figure 4.37 clearly shows 

that the thermodynamic model of eqs. (23) correctly correlates the experimental xeu to 

ΔRS-SΔGsol and thus to the experimental solubility ratios. There is a constant energy 

difference between the two models of RT∙ln(2) which is - 1.72 kJ mol-1 at 298 K. This 

results in a major difference between the two models. For eq. (24) xeu = 0.5 which 

corresponds to an ideal conglomerate is obtained for a system with a lattice energy 

difference of ΔRS-SElatt = 0 while eq. (23) requires energy difference of ΔRS-SΔGsol = - 1.72 

kJ·mol-1 (at 298 K). There is a negative free energy difference for alanine and valine (see 

Table 4.11 column 3). Such a system could not be handled within the model of eq. (24). 

Based on the superior representation the experimental relative solubility data, eq. (23) 

will be used in the following for eutectic estimations using the two thermodynamic cycles. 
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Table 4.11: Systems examined in two studies55, 56 for the estimation of xeu in water from (free) 

energy differences between the racemic compound and the enantiomer at 298 K. ΔRS-SΔGsol is 

obtained from the relative solubilities (columns 3 and 4) via eq. (22) and (23) and ΔRS-SElatt are the 

calculated lattice energy differences from literature.56 

Substance xRS,exp
55

 

% 

xS,exp
55

 

% 

ΔRS-SΔGsol,exp 

kJ mol-1 

ΔRS-SElatt
56

 

kJ mol-1 

(4-3) 

kJ mol-1 

ΔRS-SΔGcorr 

kJ mol-1 

xeu,exp
55, 56

 

% 

 1 2 3 4 5 6 7 

serine 0.86 6.37 4.95 17.22 12.3 -1.79* 99.5 

histidine 0.18 0.47 2.39 4.21 1.81 - 96.9 

leucine 0.14 0.32 2.11 3.97 1.97 - 94.0 

alanine 3.41 3.34 -0.05 2.02 2.07 - 80.2 

valine 1.13 0.92 -0.52 1.81 2.32 0.70* 72.3 ± 

0.2 

*calculated from the integral of the experimental solid-state heat capacities of serine239 and valine238. 

 

There are two cases within Table 4.11 where experimental solid-state heat capacities are 

available (serine239 and valine238) between 5 K and 298 K for the racemic compound and 

the enantiomer. Integrals over ΔRS-SCP,s and ΔRS-SCP,s/T according to eq. (44) can be 

calculated in order to determine a ΔRS-SΔGcorr which are 1.79 and 0.7 kJ·mol-1 for serine 

and valine, respectively. This indicates that thermal corrections to the lattice energy are 

required in order to accurately calculate xeu via the sublimation cycle. This is discussed 

in more detail for lactide, naproxen and 3ClMA in the following section. 

 

4.5.2 Eutectic composition – experiment and calculation 

This section compares estimations of the eutectic composition of lactide, naproxen and 

3ClMA in solution to experiment. Table 4.12 summarizes all measurements of the 

eutectic composition of lactide, naproxen and 3ClMA which have been partially taken 

from literature44, 216, 222, 223 and, for the sake of completeness, determined in the frame of 

this work for naproxen. For all substances xeu is in the range of 85 % to 95 % and there 

are some smaller deviations depending on the solvent used. For example, for lactide xeu 

in ethyl acetate and isopropanol is around 93 % while 95 % in ethanol and acetone. For 

naproxen solvent specific deviations are smaller and within the experimental uncertainty. 

Largest differences are found for 3ClMA between water (xeu = 90 % which drastically 

reduces at higher temperatures) and unpolar toluene (xeu = 93 %) 

  

https://www.dict.cc/englisch-deutsch/for.html
https://www.dict.cc/englisch-deutsch/for.html
https://www.dict.cc/englisch-deutsch/the.html
https://www.dict.cc/englisch-deutsch/the.html
https://www.dict.cc/englisch-deutsch/sake.html
https://www.dict.cc/englisch-deutsch/sake.html
https://www.dict.cc/englisch-deutsch/of.html
https://www.dict.cc/englisch-deutsch/of.html
https://www.dict.cc/englisch-deutsch/completeness.html
https://www.dict.cc/englisch-deutsch/completeness.html
https://www.dict.cc/englisch-deutsch/completeness.html
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Table 4.12. Experimental eutectic composition of lactide, naproxen and 3ClMA in various solvent 

systems and temperatures. The maximum and minimum values at 25°C for each substance are 

highlighted in bold. 

Substance Solvent Temperature / °C xeu,exp / % Literature 

Lactide 

Toluene 5 to 45 94 44 

Isopropanol 25 to 45 93.4 44 

Acetone 5 to 35 95 44 

Ethanol 5 to 45 (25) 97.1 to 93.6 (95.0) 44 

Ethyl acetate 15 to 45 (25) 95.8 to 90.2 (93.2) 44 

Naproxen 

Ethanol 15 to 45 (25) 90.5 to 88.9 (90.1) This study 

Toluene 15 to 45 (25) 90.5 to 88.7 (89.9) This study 

EtOH/ACN 

50/50 wt/wt 

10 to 40 (25) 90.9 to 89.1 (90.0) This study 

3ClMA 

Toluene 40 to 80 91 216 

Toluene/EA 

80/20 v/v 

25 to 45 91.3 to 92.6 216 

water  5 to 25 (25) 89.4 to 89.1 (89.1) 216 

water 5 to 50 90 to 84 222 

water / IPA 

90/10 wt/wt 

20 to 40 0.88 to 0.85 223 

 

As discussed before, eq. (23) is used for estimating xeu. It is further assumed that the 

solvation is identical for the two enantiomers. In this case, the difference in excess Gibbs 

free energy of mixing, ΔRS-SG
E, and the Gibbs free energy of solvation, ΔRS-SΔGsolv, 

cancels out. As a consequence, xeu can be estimated from different approximations of the 

melting and sublimation energy differences ΔRS-SΔGmelt and ΔRS-SΔGsubl, respectively.  

Figure 4.38 compares the maximum (solid line) and minimum (dashed line) values of the 

experimental xeu at 298 K from Table 4.12 with the estimations via the two 

thermodynamic cycles (Figure 2.10) in combination with eq. (23). The “pure” ѱmol and 

the ѱcrys model are evaluated along with experimental solid-state heat capacities, Cp,exp, 

in the frame of the “exp/theory" model using data from Table 4.9 (see section 2.7.2 for 

details). Experimental estimates based on the sublimation cycle (Table 4.8) are compared 

to those using the difference in Gibbs free energy of melting. Thermal corrections to  

ΔRS-SΔGmelt are within 0 to -0.4 kJ·mol-1 (Table 4.6) and thus negligible, uncorrected 

measurements have been taken from Table 4.5. 

The accuracy the sublimation results cycle varies considerably and is dominated by 

uncertainties in lattice energy differences. They systematically overestimate the eutectic 

composition in comparison to experiment. This is consistent with previous findings for 

amino acids in water56 (see Figure 4.37). The enthalpy correction, Hcorr, only contributes 

significantly to xeu in the case of 3ClMA, but combined with the entropic differences the 

effects add up accounting for up to 4 kJ·mol-1 to ∆RS-S∆Gsubl and thus effect the eutectic 

composition for all three substances (see Table 4.9 for primary data). The combination of 

electronic structure calculations and experimental thermal corrections within the 

“exp/theory” (ѱcrys) model, ∆RS-S∆Gsubl,exp/theory, gives the best estimates of xeu in case 
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thermal corrections are regarded. These results correlate well with results using 

experimental sublimation free energies from vapor pressure measurements,  

∆RS-S∆Gsubl,exp
41, 230. However, the pure lattice energies of the ψcrys model give the best 

overall accuracies which questions their precision as thermal corrections cannot be 

neglected for all three molecules.  

The results for xeu using the melt cycle and hence the difference in the free energy of 

melting, ∆RS-S∆Gmelt, are comparable to the sublimation cycle for lactide only. However, 

for naproxen, where both the racemic and enantiopure crystals have almost the same 

melting temperature and enthalpies, the melt cycle significantly underestimates the 

energy difference and hence the eutectic composition. 

 

Figure 4.38: Estimation of the eutectic composition via eq. (24) using different ways to obtain 

∆RS-S∆Gsol. Calculations of ∆RS-S∆Gsubl with the ψmol and ψcrys model are compared to eutectic 

estimations using experimental sublimation and melting enthalpies and free energies as well as 

free energy differences that have been determined from experimental solubilities, ∆RS-S∆Gsubl,solub 

(see Appendix, Table 7.7). The coloured lines correspond to the maximum (solid line) and 

minimum (dashed line) values of xeu measured in various solvent systems at 298 K (Table 4.12). 
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Estimates of xeu are slightly more accurate when using free energy differences from 

measured solubilities of the enantiomer and the racemate, ∆RS-S∆Gsol. They are equivalent 

to the recalculated sublimation free energies, ∆RS-S∆Gsubl,solub, from Table 4.8. The values 

from solubility measurements agree with the experimental value derived from vapor 

pressure which differ only by 0.1 kJ mol-1 for lactide and 1.4 kJ mol-1 for naproxen. 

However, they depend on the nature of the solvent system and vary between 0.06-0.23 kJ 

mol-1 which is indicated by error bars in Figure 4.38. The solvent effect is in the same 

order of magnitude as the experimental variation of xeu different solvents at 298 K for 

lactide while it is overestimating for naproxen and 3ClMA (see Table 4.12). This indicates 

that there is a solvent effect on the eutectic composition, and that the solutions of the three 

molecules involved are not ideal. 

The relatively good performance of the sublimation cycle suggests that predictions of xeu 

via the difference in sublimation free energy can be used as a guidance for the design of 

enantioseparation processes. However, energy differences have to be calculated precisely 

and thermal corrections should not be neglected. In case energy differences are very large, 

the eutectic composition is likely to large and close to the pure enantiomer. If energy 

differences are small thermal corrections play a crucial role as in this range the 

thermodynamic model of eq. (23) is sensitive to errors. As a consequence, changes of the 

energy difference with temperature are more likely to affect xeu which in could be 

exploited for separating enantiomers by a two-step crystallization process.44 The variation 

of the eutectic composition with temperature and the solvent is discussed in more detail 

in the following section. 

 

4.5.3 Variations of the eutectic composition 

A variation of the eutectic composition (eutectic shift), Δxeu, is of interest for separating 

enantiomers by crystallization. A two-step process has been suggested in literature which 

exploits a shift of the eutectic composition when changing the temperature or solvent 

system.44, 216 Hereby, the productivity depends on the position of the eutectic and the 

magnitude of the shift.44 According to eq. (23) a variation of the eutectic composition is 

related to a change in the Gibbs energy of solution difference between the enantiomer and 

the racemate, ∆RS-S∆Gsol (see eq. (67)). Consequently, is a function of temperature and the 

solvent. 
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 (67) 

The eutectic shift can be computationally estimated if ∆RS-S∆Gsol is described by either 

one of the two thermodynamic cycles (see Figure 2.10). Consequently, if the 

solventdepending terms are assumed to be identical for the enantiomer and the racemic 

compound, Δxeu can be estimated by via the sublimation cycle by ∆RS-S∆Gsubl. According 

to eqs. (43) and (44) a temperature variation of ∆RS-S∆Gsubl is related to the temperature 

dependence of the solid-state heat capacity difference between the racemic and 
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enantiopure crystal, ΔRS-SCP (T). In the following, experimentally determined eutectic 

shifts with temperature are compared to calculations using this work’s experimental heat 

capacity differences (see Figure 4.24).  

Literature results of the eutectic shift of lactide and 3ClMA have been summarized before 

in Table 4.12 along with this works results for naproxen. The naproxen results are 

additionally summarized in Figure 4.39. All primary experimental data on this work’s 

measurements are given in Appendix (Table 7.14).   

 

Figure 4.39: Eutectic composition of chiral naproxen in several pure solvents and binary solvent 

mixtures in between 10 °C and 45 °C. 

 

For naproxen, there is a noticeable shift of xeu in the temperature range of 10 °C and 45 

°C which seems to be nearly independent to the solvent system (see Figure 4.39). The 

binary melt phase diagram suggested the formation of partial solid-solutions close to the 

pure enantiomer and the racemic compound (see section 4.3.2). This was obtained when 

mixtures of (S)- and (R)-naproxen crystallized from the melt as well as from acetone 

solution (see Figure 4.18). The XRPD patterns of the separated equilibrated solid phase 

from the measurements of the eutectic composition of naproxen show the presence of a 

mixture of both crystals (enantiomer and racemate) (see Appendix, Figure 7.1).   

However, close-ups of parts of the spectra (see Figure 4.40) reveal slight shifts of one 

reflection ~23° for some of the studied mixed solvent systems. It has been previously 

shown in section 4.3.2 that these shifts are evoked by the formation of partial 

solidsolutions when crystallized from the melt (see Figure 4.20) as well as from acetone 

solutions (see Figure 4.19). Effects of the partial solid-solutions on the spectra within 

Figure 4.40 are small and difficult to identify. In any case the formation of partial 

solidsolutions of naproxen appears to have no significant effect on the experimental 

eutectic composition and its shift with temperature (Figure 4.39). However, parts of the 

experimental uncertainties can potentially be attributed to that.  
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Figure 4.40: Extract of the XRPD pattern of the equilibrated solid phase from measurements of 

the eutectic composition reveals mixtures of (S)- and (RS)-naproxen. One peak is marked, which 

is shifted in some cases indicating the formation of partial solid-solutions within the racemic 

crystal.  

 

In summary, a shift of xeu with temperature (eutectic shift Δxeu) has been estimated for all 

three substances (see Table 4.12). As discussed before, in theory those are related, 

according to eq. (67), to temperature integrals of the solid-state heat capacity difference 

between the racemic and enantiopure crystal, ∆RS-SCP(T)dT. Hence, integrals of this 

work’s high temperature DSC heat capacity measurements (Figure 4.24) were used to 

calculate the change of ∆RS-S∆Gsubl within a temperature range of 20 K. This results in a 

ΔT1-T2∆RS-S∆Gsubl which can subsequently used to calculate Δxeu(T) via eq. (67).   

There is a small temperature effect on the Gibbs free energy sublimation differences for 

all three substances resulting in a ΔT1-T2∆RS-S∆Gsubl which is large enough to affect the 

eutectic composition. These calculated shifts are shown in Figure 4.41 in comparison to 

experimental data (see Table 4.12). Primary data on ΔT1-T2∆RS-S∆Gsubl and the resulting 

eutectic shifts with temperature are given in Appendix Table 7.21. For all three molecules 

the estimations capture the trend from the experiments which shows a decreasing xeu with 

temperature for lactide and naproxen and an increasing xeu for 3ClMA. Those shifts of 

the eutectic cannot be estimated by any of the computationally methods (ѱmol or ѱcrys) 

since they are not able to give a temperature-dependent heat capacity difference in this 

range of temperature (see Figure 4.24).  
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Figure 4.41: The shift of the eutectic composition with temperature, ∆xeu,calc(T2-T1), (T1 = 298 K 

to T2 = 318 K) compared to (●) experimentally determined eutectic shifts, ∆xeu,exp (T2-T1). The 

eutectic shift is calculated for lactide in EA, 3ClMA in Toluene/EA mixture (80w%/20w%) and 

for naproxen in ethanol (see Table 4.12 for details). The variation of the eutectic shift of naproxen 

in several solvent systems is indicated by a green shaded area. 

 

Hence, shifts of the eutectic composition with temperature can arise from differences in 

the heat capacities at process relevant temperatures. Those require a difference in the 

higher frequency “molecular modes” which are visible in the Raman spectra of the two 

crystals (see Figure 4.26). Besides that, Δxeu(T) can be as well evoked by a different 

thermal expansion of the enantiopure and racemic crystal which was neglected within this 

work’s ѱmol and ѱcrys calculations.  

The challenge of modelling the eutectic shift is closely related to the exponential 

sensitivity of ΔRS-SΔGsubl and xeu over a small energy range. The examples studied all 

show similarly high values of xeu. However, the same variety of changes of xeu in different 

solvent systems and the presence and absence of a eutectic shift is found for chiral systems 

having lower eutectic compositions. These systems should in principle be more sensitive 

to a change in the free energy difference due to a change in the heat capacity difference 

or solvent effects. For example, even though propranolol hydrochloride has a very low 

eutectic composition of xeu = 55 % it does not vary with temperature within two different 

solvents.5 On the other hand for xeu of 2ClMA, an isomer of this works 3ClMA which has 

a significantly smaller eutectic composition as 3ClMA, varies in different solvent247. 

Affected by its low eutectic composition it even forms a metastable conglomerate from 

both melts and solutions. In contrast to 2- and 3-ClMA, the eutectic composition of 

mandelic acid is stable at xeu = 69 % and shows no variation in numerous solvents and 

temperatures.5 This is especially surprising as mandelic acid has a difference in heat 

capacity between the racemic and enantiopure crystal which is dependent on temperature 

which has been shown in this work (see Figure 4.24) and in literature235. This has to be 

explained by a cancellation of different effects. Thus, for explanation of the mandelic acid 

examples and cases where very large shifts of the eutectic composition temperature have 

been found (e.g. from 0.94 to 0.85 between 1 and 60 °C for methionine in water248) a 

reliable prediction method will require great accuracy in all contributions including 

effects of the solvent. 

As a consequence, further experimental studies have been performed for naproxen to 
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further study the solvent effect on xeu. Therefore, xeu was measured in a variety of solvent 

mixtures at one temperature (303 K). All primary data is summarized in Appendix (Table 

7.15). It has been shown before (Figure 4.35 and Figure 4.36) that for mixtures of ethanol 

with toluene, acetonitrile and ethyl acetate show a maximum solubility in the binary 

mixture of the solvents. Water however works as an anti-solvent and decreases the 

solubility drastically (see Figure 4.36). The eutectic composition was measured within 

the same solvent mixtures. In all the cases the addition of a second solvent to ethanol only 

slightly effects the eutectic composition with changes of xeu below Δxeu = 1 %. Based on 

the above, it can be summarized that the eutectic composition and its shift with 

temperature of naproxen in solution mostly related to solid-state properties only 

(difference in lattice energies and thermal corrections).  

 

Figure 4.42: Eutectic composition of naproxen in solution with binary solvent mixtures of ethanol 

with toluene, acetonitrile, ethyl acetate and water. 

 

However, it was shown before that the eutectic composition and its temperature 

dependence ∆xeu(T) is not a solid-state property alone.44 In that case accurate prediction 

models will have to consider the difference in solvation free energies in the racemic and 

enantiopure solution. This implies consideration of the non-ideality of the solution in 

terms of the specific molecule and its solvent as well as solute-solute interactions between 

the two enantiomers in solution. The influence of solute-solute interactions on the 

temperature dependency of the absolute as well as relative solubility between the 

racemate and enantiomer is evaluated in the following section 4.6 for lactide as well as 

naproxen. 
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4.5.4 Conclusions 

The two thermodynamic cycles have been used to calculate the eutectic composition of 

lactide, naproxen and 3ClMA at 298 K via a rather simple thermodynamic approach 

which uses approximations of the solution free energy difference (see eq. (23)). Best 

results are obtained when the ѱcrys electronic structure calculations (Elatt and ΔEZPE) and 

thermal corrections within the “exp/theory” (ѱcrys) model are combined (Figure 4.38). 

However, the pure lattice energy differences of the ѱcrys model give surprisingly good 

estimated of xeu even though thermal corrections are relevant for all three molecules (see 

Figure 4.30). The comparatively good performance of the sublimation cycle suggests that 

predictions of xeu via the difference in sublimation free energy can be used as a guidance 

for the design of enantioseparation processes. Two general statements can be formulated:   

(1) A large energy difference is related to a eutectic composition close to the pure 

enantiomer. On the contrary, if energy differences are small, xeu is likely to be closer to 

the racemate.   

(2) For small energy differences thermal corrections play a crucial role, because the 

thermodynamic model of eq. (23) is sensitive to errors.  

It was shown, that temperature-dependent heat capacity differences between the 

enantiomer and the racemic compound ΔRS-SCP are shown to be able to stimulate shifts of 

the eutectic composition with temperature, Δxeu (see eq. (67)). For all three substances 

there is a small temperature effect of ΔRS-SCP on the Gibbs free energy sublimation which 

is large enough to affect the eutectic composition (see Figure 4.41). All computational 

methods, however, fail to reproduce experimental temperature-dependent ΔRS-SCP at 

temperatures relevant for modelling SLE (see Figure 4.24). Besides the mentioned 

solidstate effects, influences of the solvent were experimentally investigated for naproxen 

in various solvent mixtures. Experimental studies indicate that Δxeu of naproxen is almost 

independent of the solvent and furthermore not noticeably affected by the formation of 

solid-solutions (see Figure 4.39 and Figure 4.41). This supports the hypothesis that ∆xeu 

for naproxen is exclusively a solid-state property. However, there are many cases in 

literature where ∆xeu is affected by the solvent and thus not a solid-state property alone. 

For example, there is an influence of the solvent on the temperature dependency of Δxeu 

for lactide (Table 4.12). This is investigated in more detail in the following section 0, 

along with the general temperature dependence of absolute and relative solubilities of 

chiral substances. 

 

4.6 Temperature dependence of the absolute and relative solubility 

 

For a crystallization process a given target substance should have a high solubility in 

order to enable high productivities. Additionally, in case crystallization is conducted by 

temperature variation (cooling crystallization), a strong temperature dependency of the 

solubility is required for achieving high yields. According to eq. (25) the temperature 

dependency of the solubility is characterized by its solution enthalpy. In a concentrated 
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solution, besides concentration-independent interactions (solute-solvent) as well 

concentration-dependent interactions (solute-solute) affect the solubility and its 

temperature dependence.  

Within this section at first the accuracy of the two thermodynamic cycles to calculate the 

solution enthalpies was evaluated for chiral lactide and naproxen. In order to work out 

error sources, computations were compared results from a broad experimental 

investigation of solubilities in a variety of pure and mixed solvent systems at different 

temperatures. In a second part solvent-independent transfer energies (melting and 

sublimation) as well as solvent-solute and solute-solute interaction energies on the 

solution enthalpies were examined in detail. It was investigated, whether solute-solute 

interactions in solution affect the absolute as well as the relative temperature-dependent 

solubilities. 

 

4.6.1 Temperature-dependent melting and sublimation free energies 

For calculating temperature-dependent solubilities of naproxen and lactide, the solvent 

independent ΔGmelt (T) and ΔGsubl (T) within the melt and the sublimation cycle are 

required, respectively. They are evaluated within this section for the temperature range in 

which solubilities were measured. 

Melting enthalpies and temperatures from Table 4.5 have been used in combination with 

thermal corrections, in order to determine a temperature-dependent ΔGmelt (T). Therefore, 

ΔHmelt and ΔSmelt have been corrected from melting to solution temperature using the heat 

capacity difference between the melt and the solid ΔCP
l-s

=CP
l
-CP

s
 from Table 4.6, 

according to eq. (33). The experimental heat capacities from Table 4.6 can either be 

assumed to be temperature-independent, or they can be determined from the temperature-

dependent solid state as well as the linearly extrapolated heat capacities of the melt. In 

order to account for the uncertainties within the two correction methods the average of 

the two methods has been used while their difference is regarded as an experimental error. 

For the sublimation cycle, the ѱcrys method has been used to calculate the temperature-

dependent sublimation free energies ΔGsubl (T). The sublimation enthalpies and entropies 

at 298 K from Table 4.9 have been adjusted to the various solution temperatures by using 

the ideal gas and solid-state heat capacities from the ѱcrys method according to section 

2.7.2. As an experimental counterpart, an experimental ΔGsubl,exp (T) has been determined 

directly from the experimental vapor pressures of lactide230 and naproxen (see Figure 

4.27). For that purpose, vapor pressures have been extrapolated from measurement 

temperature (naproxen: 390 K and 420 K; lactide: 320 K and 380 K) to solution 

temperature (283 to 318 K) using eq. (66). The temperature-dependent experimental 

sublimation free energies are compared to the computations from the ѱcrys method in 

Figure 4.43. 
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Figure 4.43: Temperature-dependent sublimation Gibbs energies for (a) lactide and (b) naproxen 

from (●) experimental vapor pressures41, 230 and (▲) calculations using the ѱcrys method. Solid 

symbols and lines correspond to the enantiomer and open symbols and dashed lines to the racemic 

compound.  

 

Calculations of ΔGsubl (T) using the ѱcrys method are generally in good agreement to 

experiment. There are larger differences for the racemic crystals. This is consistent with 

the comparably large differences between the calculated and experimental sublimation 

enthalpies for (RS)-lactide and (RS)-naproxen (see Table 4.9).  

 

4.6.2 Solution enthalpies of lactide and naproxen 

Temperature-dependent solubilities have been measured by means of isothermal 

solubility method according section 3.2.1. They have been performed for both chiral 

species of lactide as well as naproxen within a temperature range of 10 to 45 °C in a 

variety of pure and mixed solvent systems. All numeric values of the experimental mole 

fraction solubilities are summarized in Appendix (Table 7.10 and Table 7.11). 

Calculations have been performed by combining the free energies of melting and 

sublimation from the previous section 4.6.1 with the solvent specific ΔGE (T) and  

ΔGsolv (T) from the COSMO-RS model. The TZVPD-Fine parameterization has been used 

for all calculations. For rigid lactide, only one molecular conformation was considered. 

For naproxen, the four conformations according to Figure 4.32 have been weighted within 

a Boltzmann distribution according to eq. (64). For both cycles, calculations have been 

performed at infinite dilution, as well as at saturation concentrations. Additional 

information on the COSMO-RS model and its application within the two thermodynamic 

cycles is given in section 2.7.4. 

The experimental apparent solution enthalpies, ΔHsol, as well as the computational 

solution enthalpies at infinite dilution and at saturation concentration, ΔHsol,inf and ΔHsol, 

have been extracted from the experimental and calculated solubilities. According to Van’t 

Hoff (see eq. (25)) the apparent solution enthalpy is related to the slope (ΔHsol = -R·slope) 

of the temperature dependency of ln xi over the reciprocal temperature, 1/T. In order to 
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minimize numerical issues when extracting ΔHsol via eq. (25) the computations have been 

performed at the same temperatures as the experimental values. The resulting ΔHsol are 

summarized in Appendix (Table 7.10 and Table 7.11) along with the primary 

experimental mole fraction solubilities. 

Figure 4.44 compares the calculations via the sublimation and melt cycle to the 

experimental solution enthalpies. The overall accuracy expressed as the root-mean-square 

error (RMSE) between the calculations and the experiment is 9.3 kJ·mol-1 for the melt 

cycle in case solute-solute interactions are considered and 10.7 kJ·mol-1 if infinite dilution 

is assumed. On the other hand, the sublimation cycle predicts the solution enthalpy with 

a RMSE of 6.5 kJ·mol-1 and in case solute-solute interactions are neglected with a RMSE 

of 8.1 kJ·mol-1. Thus, the sublimation cycle calculations of the solution enthalpies are 

slightly more accurate in comparison to the melt cycle results. For both thermodynamic 

cycles the accuracy is improved if the concentration dependence of solvation terms is 

considered. Furthermore, there is a tendency that the melt cycle underestimates the 

solution enthalpy (see Figure 4.44).  

 

Figure 4.44: Calculated versus experimental apparent solution enthalpies for naproxen (green 

symbols) and lactide (blue symbols) in a variety of pure and mixed solvent systems. Calculations 

via the melt cycle (□) and the sublimation cycle (Δ) use the temperature-dependent experimental 

melting and calculated sublimation free energies of the ѱcrys method as well as the solvent specific 

ΔGE and ΔGsolv from the COSMO-RS model. 

 

In order to evaluate error sources, the accuracy of the COSMO-RS model to model HE 

and ΔHsolv was evaluated. Therefore, “experimental” HE
exp and ΔHsolv,exp have been 

recalculated from the experimental solution enthalpies as well as the experimental 

melting and sublimation enthalpies according to eqs. (37) and (46), respectively. The 

corrected ΔHmelt (298 K) according to Table 4.5 and Table 4.6 as well as ΔHsubl (298 K) 

from Table 4.8 were used, as 298 K is approximately the average temperature of the 

experimental solubilities. The calculations of HE and ΔHsolv are compared to the 

experimental values within Figure 4.45 (a) and (b), respectively. While the excess 

enthalpies take positive as well as negative values the solvation enthalpies are exclusively 

negative and significantly larger in size. The RMSE of the ΔHsolv,calc is 7.2 kJ·mol-1 which 

is slightly larger than the overall computational error for ΔHsol (6.5 kJ·mol-1). Sublimation 

enthalpies are calculated with an accuracy of RMSE of 3.6 kJ·mol-1 by the ѱcrys method 
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(see Table 4.9). Hence, the largest part of the overall computational error for calculating 

ΔHsol via the sublimation cycle is most likely attributed to the computation of the 

solvation energies using COSMO-RS. Within the melt cycle, all errors are related to the 

calculations of HE
calc as the solubilities are calculated using the same experimental 

melting properties as for recalculating of HE
exp. Consequently, the overall RMSE of the 

melt cycle is the same as of the calculated excess enthalpies (RMSE = 9.3 kJ·mol-1). 

 

Figure 4.45: Calculated versus experimental (a) excess enthalpies and (b) solvation enthalpies for 

naproxen (green symbols) and lactide (blue symbols). 

 

Additionally, methodical uncertainties can arise when extracting the apparent solution 

enthalpies from the experimental and calculated solubilities via the Van’t Hoff equation. 

The Van’t Hoff solution enthalpy incorporates changes of the activity coefficient of the 

solute with temperature but neglects the change in activity with concentration at constant 

temperature.59 Hence, it is comparable but not necessarily equal to the true enthalpy of 

solution at saturation concentration. Especially for larger temperature ranges the 

temperature dependency of ln xi can exhibit a distinct non-linear behaviour which the 

Van’t Hoff equation is only in parts able to account for.57 However, within the systems at 

hand there are no cases with a pronounced non-linear behaviour of ln x over 1/T. Effects 

of solution non-idealities on the temperature dependence of the absolute as well as relative 

solubilities are discussed in more detail in the following parts. 

 

4.6.3 Analysis of energy contributions to the solution enthalpies 

Within this section the various energy contributions to the solution enthalpies and thus to 

the temperature dependency of the solubilities are examined for lactide and naproxen. 

Experimental and calculated solution enthalpies at infinite dilution and at saturation 

concentration are systematically compared. This makes it possible to extract the various 

solvent independent and solvent specific contributions to ΔHsol.   

As discussed before ΔHsol has been determined from the experimental as well as 

calculated solubilities via the equation of Van’t Hoff (see eq. (25)). Calculations have 

been performed at infinite dilution to obtain ΔHsol,inf or at saturation concentration to 

obtain ΔHsol. As experimental counterpart to the calculated solution enthalpies at infinite 
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dilution, calorimetric dissolution measurements have been performed in order to extract 

and experimental ΔHsol,inf. This is discussed in the following section. They are 

subsequently used in order to quantify and evaluate solvent specific interaction in 

solution. 

 

Solution calorimetry 

Dissolution enthalpies were measured for the diluted system by solution calorimetry 

according to section 3.2.4 in order to extract experimental solution enthalpies at infinite 

dilution. Within this section measurements of ΔHsol,inf are presented and discussed. All 

primary data on the caloric dissolution measurements and the final ΔHsol,inf are 

summarized in Appendix (Table 7.12 and Table 7.13).  

Caloric measurements of the dissolution the diluted solution have been performed at 30 

°C. Three to four measurements at varying concentrations have been performed for each 

compound and solvent in order to extrapolate a ΔHsol,inf at x = 0 for (S)- and (RS)- lactide 

as well as (S)- and (RS)-naproxen. On the one hand, sufficient amount of substance is 

required within the caloric measurements in order to get a reliable thermal response. On 

the other hand, the final solution concentrations should be significantly lower, in 

comparison to saturation concentrations (solubility line), to obtain solution enthalpies for 

the diluted system. As a consequence, it is beneficial if saturation concentrations are high. 

In order to perform experiments sufficiently far away from the solubility line. 

 

Figure 4.46: Caloric measurements of the dissolution of different amounts of (S)- and (RS)-lactide 

in toluene at Tref = 303 K. Linear extrapolations to x = 0 give the solution enthalpy at infinite 

dilution ∆Hsol,inf. 

 

For lactide, calorimetric investigations have been performed for the diluted toluene 

system. The results of the dissolution of (S)- and (RS)-lactide in toluene at T = 303 K are 

presented in Figure 4.46. Due to the more stable crystal structure, the racemic compound 

has larger solution enthalpies. Additionally, the dissolution enthalpies of (RS)-lactide 

show a significantly larger concentration dependency. This could be due to the lower 

solubility of the racemic compound in comparison to the enantiomer. Thus, the caloric 

measurements have been evaluated once only for the linear part until 0.6 mol% and a 

second time for the whole concentration range. The difference between the two 
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extrapolated values at x = 0 is incorporated to the overall experimental uncertainty of 

ΔHsol,inf. For (S)-lactide saturation concentrations at 303 K are 4.1 mol% and thus far from 

the solution concentrations in the dissolution experiments (see x-axis in Figure 4.46). 

However, even though the measurements are linearly extrapolated to x = 0 it is likely that 

the final ΔHsol,inf incorporate parts of the concentration-dependent excess enthalpies.  

For chiral naproxen, measurements have been performed in pure ethanol and in solvent 

mixtures of ethanol with toluene (20/80 wt% EtOH/Toluene), with water (75/25 wt% 

EtOH/H2O) and with acetonitrile (50/50 wt% EtOH/ACN). The results are summarized 

in Figure 4.47.  

 

Figure 4.47: Caloric measurements of the dissolution of different amounts of (●) (S)- and (○) 

(RS)-naproxen in pure and mixed solvent systems at Tref = 303 K. Linear extrapolations to x = 0 

give the solution enthalpy at infinite dilution ∆Hsol,inf. 

 

All experiments have been performed for concentrations far below saturation 

concentrations. Within all solvent systems a linear behaviour of the concentration 

dependency was assumed. The extrapolations to x = 0 are used in the following as 

experimental solution enthalpies at infinite dilution, ΔHsol,inf. The experimental 

uncertainties from the linear least squares regression appear to be larger for the racemic 

crystal which is possibly due to the lower saturation concentrations and thus slower 

dissolution kinetics. 
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Temperature-dependent solubilities of chiral lactide 

Figure 4.48 compares the experimental and calculated solubilities for lactide in ethanol 

as well as toluene between 10 and 45 °C. In all cases, (RS)-lactide has a significantly 

lower solubility than (S)-lactide. Thus, differences between the calculations at infinite 

dilution and saturation concentration are less obvious for the racemic system and only 

affect the solubilities at elevated temperatures. On the contrary, the calculated solubilities 

of (S)-lactide in ethanol and toluene are significantly affected by solute-solute interactions 

within both thermodynamic cycles due to higher saturation concentrations compared to 

(RS)-lactide. As a consequence, concentration dependent solute-solute interactions affect 

as well the relative solubilities between the enantiomer and the racemic compound. 

 

Figure 4.48 (○,●) Experimental solubilities, ln x, of lactide in ethanol and toluene as a function of 

the reciprocal temperature, 1/T, in comparison to calculations via the (left) melt cycle and (right) 

sublimation cycle. Calculation at (Δ,▲) infinite dilution and (□,■) at saturation concentration are 

displayed. Open symbols and dashed lines correspond to (RS)-lactide and solid symbols and solid 

lines to (S)-lactide. 

 

For a quantitative evaluation, solution enthalpies have been extracted from the 

experimental and calculated solubilities in Figure 4.48 via the Van’t Hoff method. The 

absolute values, as well as their differences, are summarized together with the 

experimental ΔHsol,inf and the temperature corrected ΔHmelt in Table 4.13. They are 

compared against the experimental ΔHsol,inf from solution calorimetry (see Figure 4.47) 

and the temperature corrected ΔHmelt in order to evaluate the solvent effect on the solution 

enthalpies. 
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Table 4.13: Melting enthalpies of (S)- and (RS)-lactide and their differences Δ(RS-S) in 

comparison to ΔHsol,inf as well as ΔHsol in ethanol and toluene from calculations and experiment. 

Solvent solute Melt Cycle Sublimation Cyclea Experiment 

  ΔHsol,inf ΔHsol ΔHsol,inf ΔHsol ΔHmelt 

(30 °C) 

ΔHsol,inf
b

 

(30 °C) 

ΔHsol 

ethanol (S) 14.7 23.8 20.9 (29.7) 33.6 (47.4) 10.5±0.2 n.a. 40.2 

(RS) 23.9 27.5 23.9 (27.5) 25.2 (42.4) 19.5±0.7 n.a. 35.6 

Δ(RS-S) 9.3 3.6 2.9 (5.4) -8.3 (-4.8) 9.0±0.5 - -4.7 

toluene (S) 16.2 26.1 22.9 (31.7) 69.1 (49.7) 10.5±0.2 21.8±0.2 25.2 

(RS) 25.6 28.2 25.9 (37.1) 26.9 (42.3) 19.5±0.7 24.7±1.0 24.5 

Δ(RS-S) 9.4 2.1 2.9 (5.4) -42.2 (-7.4) 9.0±0.5 2.9±1.0 -0.7 

a. Values in bracket correspond to calculation using ΔGsubl,exp instead of ΔGsubl,calc (ѱcrys) (see Figure 

4.43) in combination with ΔGsolv from COSMO-RS 

b. ΔHsol,inf determined by solution calorimetry for the diluted system according to section 3.2.4.  

 

There are two main conclusions that can be extracted from the experimental results in 

toluene. For the sake of clarity, they are additionally illustrated in Figure 4.49. On one 

hand, the absolute solid-liquid phase transition enthalpies steadily increase from the 

solvent free system via the diluted solution to saturation concentration for both (S)- and 

(RS)-lactide. On the contrary, the enthalpy differences Δ(RS-S) decrease significantly 

from ΔRS-SΔHmelt = 10.5 kJ·mol-1 to ΔRS-SΔHsol = -0.7 kJ·mol-1. The solution calorimetry 

measurements for the diluted systems give an enthalpy difference ΔRS-SΔHsol,inf of 2.6 

kJ·mol-1 which is in between ΔRS-SΔHmelt and ΔRS-SΔHsol. Based on the above, it can be 

concluded that concentration-dependent solution non-idealities contribute to the solution 

enthalpies of lactide in toluene.  

 

Figure 4.49: Melting enthalpies corrected to 30 °C (ΔHmelt) in comparison to the calorimetrically 

determined solution enthalpies at infinite dilution (ΔHsol,inf), as well as Van’t Hoff solution 

enthalpies (ΔHsol) in toluene; (black bars) (S)-lactide, (white bars) (RS)-lactide; differences  

Δ(RS-S) (red bars). 

 

This has been qualitatively observed as well in the calculations (see Table 4.13). Within 

both cycles, the calculated solution enthalpies are larger at saturation concentration in 

comparison to the infinite dilution. Conversely, the differences decrease and, in case of 
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the sublimation cycle, even switch sign due to solute-solute interactions in solution. The 

effect of solute-solute interactions on the solution enthalpy differences between (S)- and 

(RS)-lactide is slightly more severe in ethanol where experimental ΔRS-SΔHsol = -4.7 

kJ·mol-1 (see Table 4.13). T This trend is well captured by the calculations via the 

sublimation cycle and can be clearly attributed to modelling of solute-solute interactions 

in solution. The calculated saturation concentrations from the melt cycle are smaller than 

those of the sublimation cycle (see Figure 4.48). As a consequence, the enthalpy 

difference is affected slightly less and changes from 9.3 to 3.6 kJ·mol-1. 

As discussed before, the calorimetric measurements in toluene are likely to incorporate 

parts of the concentration effects. In theory, the solution enthalpy differences for the 

infinite dilution should be equal to the melting enthalpy differences as the studied solvents 

are achiral. There are other possible explanations for the rather large differences between 

the melting and dissolution enthalpy differences. For example, measurement errors of the 

experimentally determined melting enthalpies could be responsible for parts of the 

differences. This work’s uncorrected melting enthalpy differences are ΔRS-SΔHmelt (Tmelt) 

= 11 kJ·mol-1 and thus slightly larger than the 8 kJ·mol-1 from literature221 (see Table 4.5). 

Additionally, the thermal corrections slightly decrease the enthalpy differences from 11 

kJ·mol-1 at Tmelt to 9.0±0.5 kJ·mol-1 at Tref. Yet, the accumulated uncertainties are not the 

only explanation for the large difference between ΔRS-SΔHmelt and ΔRS-SΔHsol,inf. Thus, 

despite several possible sources of error, there is strong evidence that solute-solute 

interactions affect the solution enthalpy of lactide in toluene as well as in ethanol. 

 

Figure 4.50: COSMO-RS calculations of the concentration and temperature dependency of the 

Gibbs energy difference between saturation concentration and infinite dilution, ΔGconc, for lactide 

in ethanol and toluene. The three lines represent calculations at 15, 30 and 45 °C for each solvent. 

 

In theory, solute-solute effects in solution require that the solvent specific terms are a 

function of the solution concentration. Within the COSMO-RS model the concentration 

dependency of the excess Gibbs free energy of mixing, ΔGE, as well as the Gibbs free 

energy of solvation ΔGsolv is incorporated within the chemical potential in solution (see 

2.7.3). The chemical potential of the solute in solution is a function of the activity 

coefficient in solution. Thus, the absolute concentration dependent Gibbs energy 

contribution to ΔGE and ΔGsolv is related to the difference between the chemical potential 



Results and Discussion 128 

 

of the solute i at saturation concentration and at infinite dilution ΔGconc = RT·ln (γi / γi,inf). 

The COSMO-RS results of ΔGconc for lactide in ethanol and toluene are depicted in Figure 

4.50. Within both solvents ΔGconc is significantly affected by the solution concentration 

while effects of the temperature are rather small. This strengthens the suspicion that 

concentration-dependent solute-solute interactions are responsible for the above 

discussed effects on the solution enthalpies. 

In summary, within both solvent systems the calculated temperature dependence of the 

solubilities is affected by solute-solute interactions which could be qualitatively validated 

for toluene by experiment using solution calorimetry. The strong solute-solute 

interactions within the saturated ethanol solution which influences the relative solubility 

of (S)- and (RS)-lactide could be one source for the comparably large shift of the eutectic 

concentration with temperature that has been observed225 in ethanol (see Table 4.12). 

However, such a shift has not been detected within the lactide-toluene system. This is 

surprising as the overall solubility of lactide in toluene is slightly larger in comparison to 

ethanol. This can only be explained by a cancellation of the various effects or an incorrect 

description of the solution interactions of lactide in toluene.   

 

Temperature-dependent solubilities of chiral naproxen 

Temperature-dependent solubilities have been studied for naproxen in pure toluene, 

ethanol and in a 20/80 wt% mixture of ethanol and toluene. The experimental and 

calculated solubilities are depicted in Figure 4.51. For all solvent systems the sublimation 

cycle significantly underestimates the absolute solubilities of the two chiral crystals. This 

is due to an overestimation of sublimation Gibbs energies by the ѱcrys method, especially 

for (RS)-naproxen (see Table 4.9). As a consequence, differences between the 

calculations at infinite dilution and at saturation concentration rather small in comparison 

to the melt cycle results. However, even though the melt cycle calculates significantly 

larger solubilities, the calculations at infinite dilution and at saturation concentration are 

hardly distinguishable at the scale in Figure 4.51. As a consequence, for both 

computational methods only the calculations at saturation concentration are displayed. 

 

Figure 4.51: Solubilities, ln x, of naproxen in toluene, ethanol and in 20/20 wt% ethanol/toluene 

mixture as a function of the reciprocal temperature 1/T. (○,●) Experimental results are compared 

to calculations via the (□,■) melt and the (Δ,▲) sublimation cycle. Open symbols and dashed 

lines correspond to (RS)-naproxen and solid symbols and solid lines to (S)-naproxen. 
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The strong overestimation of the free energy difference between the racemic compound 

and the enantiomer by the ѱcrys method results in an overestimation of the calculated 

solubility differences. On the contrary, the melt cycle is not able to resolve the 

experimental solubility difference between (S)- and (RS)-naproxen due to the very similar 

melting behaviour of the two chiral crystals (see Table 4.5). In case solubility differences 

are small, the relative solubilities should be affected less by concentration-dependent 

effects. 

For a quantitative evaluation, solution enthalpies have been extracted from the 

experimental and calculated solubilities in Figure 4.51 via the Van’t Hoff method. The 

absolute values as well as their differences are summarized together with the experimental 

ΔHsol,inf and the temperature corrected ΔHmelt in Table 4.14. They are compared against 

the experimental ΔHsol,inf from solution calorimetry (see Figure 4.48) and the temperature 

corrected ΔHmelt, in order to evaluate the solvent effect on the solution enthalpies. 

Previously, when studying the absolute solubilities of naproxen within the toluene-

ethanol system (see Figure 4.35 in section 4.4.2), it was shown that the SLE of both chiral 

crystals of naproxen exhibit a strong non-linear solubility behaviour. The highest 

solubility occurs in between 20/80 and 40/60 wt% of ethanol/toluene mixture. Conversely 

to the absolute solubilities, the solution enthalpy is largest within pure toluene and 

smallest for the 20/80 wt% ethanol/toluene solvent mixture (see Table 4.14). Nonetheless, 

the significant increase in solubility within the solvent mixture seems not to evoke 

concentration-dependent effects in solution that noticeably change the solution 

enthalpies. 

 

Table 4.14: Melting enthalpies of (S)- and (RS)-naproxen and their differences Δ(RS-S) in 

comparison to ΔHsol,inf as well as ΔHsol in ethanol, toluene and mixtures of both from calculations 

and experiment. 

Solvent Solute Melt Cycle Sublimation Cyclea Experimentb 

  ΔHsol,inf ΔHsol ΔHsol,inf ΔHsol ΔHmelt 

(30 °C) 

ΔHsol,inf 

(30 °C) 

ΔHsol 

Toluene 

(S) 42.2 47.7 49.4 (56.4) 49.8 (58.5) 23.2±0.4 n.a. 36.6 

(RS) 42.4 47.8 51.0 (64.9) 51.1 (66.0) 23.4±0.4 n.a. 46.3 

Δ(RS-S) 0.2 0.0 1.7 (8.5) 1.3 (7.4) 0.2±0.4 - 9.7 

Etoh/Tol 

(20/80) 

(S) 17.9 14.9 24.8 (31.9) 24.2 (29.6) 23.2±0.4 19.7±0.3 18.6 

(RS) 18.0 15.3 26.5 (40.4) 26.4 (39.0) 23.4±0.4 21.6±1.3 19.8 

Δ(RS-S) 0.2 0.4 1.7 (8.5) 2.2 (9.5) 0.2±0.4 1.9±1.3 1.2 

Ethanol 

(S) 17.1 16.1 24.2 (31.3) 24.0 (30.3) 23.2±0.4 22.7±0.5 29.7 

(RS) 17.3 16.5 25.9 (39.8) 25.9 (39.1) 23.4±0.4 24.6±0.2 31.3 

Δ(RS-S) 0.2 0.4 1.7 (8.5) 1.9 (8.8) 0.2±0.4 1.9±0.5 1.6 

a. Values in bracket correspond to calculation using ΔGsubl,exp instead of ΔGsubl,calc (ѱcrys) (see Figure 

4.43) in combination with ΔGsolv from COSMO-RS 

b. ΔHsol,inf determined by solution calorimetry for the diluted system according to 3.2.4. 
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Besides the absolute values, relative solubilities and their temperature dependence are of 

importance as they are related to the eutectic composition in solution (see eq. (23)). 

Hence, the influence of solute-solute interactions in solution on the temperature 

dependence of the relative solubilities is discussed in the following. For that purpose, in 

addition to previously evaluated toluene-ethanol solvent systems, temperature-dependent 

solubilities have been measured in mixtures of ethanol and acetonitrile (50/50 wt%) as 

well as ethanol and water (75/25 wt%). They have been used to extract the apparent Van’t 

Hoff solution enthalpies ΔHsol. Furthermore, solution enthalpies at infinite dilution have 

been determined by solution calorimetry (see Figure 4.47).   

Figure 4.52 shows the various experimental ΔRS-SΔHsol and ΔRS-SΔHsol,inf for naproxen in 

comparison to calculations at infinite dilution and at saturation concentration. As 

previously discussed in section 4.4.2, acetonitrile increases the solubility of naproxen 

drastically while water acts as anti-solvent. Despite the significant changes of the absolute 

solubilities there are no significant effects of the solution concentration on the 

experimental solution enthalpy differences. This is consistent with the calculations from 

both thermodynamic cycles which give a constant enthalpy difference at infinite dilution 

and some small concentration effects within the calculations at saturation concentration. 

Those are largest within the solvent system with the highest solubilities (ethanol/toluene 

and ethanol/ACN). This is consistent to experiment and thus likely due to the fact that the 

solvation shell is getting less dense with increasing solution temperature and, thus, 

solution concentrations. Within the 50/50 wt% EtOH/ACN mixture one naproxen 

molecules is surrounded by 40 solvent molecuels at 10 °C and only 17 solvent molecules 

at 40 °C. However, differences are small and within the experimental uncertainty of 

determining ΔRS-SΔHsol and ΔRS-SΔHsol,inf. 

 

Figure 4.52: Solution enthalpy difference ΔRS-SΔHsol between (RS)- and (S)-naproxen in ethanol, 

a 80/20 wt% ethanol/toluene solvent mixture, a 50/50 wt% ethanol/ACN solvent mixture and a 

75/25 wt% ethanol/water solvent mixture. (red ○,●) experiment and calculations via the (grey 

□,■) melt and the (black Δ,▲) sublimation cycle. Open symbols and dashed lines correspond to 

the infinite dilution whereas solid symbols and solid lines to saturation concentration. 

 

In summary, the concentration effects on the absolute solution enthalpies and the 

differences between the enantiomer and the racemic compound are rather small within 

the studied solvent systems for naproxen in comparison to lactide systems (see Table 

4.13). This is consistent with the previously described solvent independent eutectic 
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composition for naproxen (see Figure 4.41). As a consequence, this substantiate the 

suspicion that the shift of the eutectic composition of naproxen in solution is merely 

evoked by temperature-dependent solid-state properties. 

 

4.6.4 Conclusions 

The two thermodynamic cycles have been used to calculate the solution enthalpies for 

chiral lactide and naproxen in a variety of pure and mixed solvent systems. Calculations 

are compared to experimental solubilities which have been measured in the frame of this 

work (see Figure 4.44). The of the sublimation cycle using sublimation free energies from 

the ѱcrys method has been shown to be slightly more accurate than the melt cycle results. 

For both approaches the consideration of solute-solute interactions slightly enhances the 

calculations accuracy. 

Concentration-dependent effects are especially relevant for lactide in toluene as well as 

in ethanol (see Table 4.13). The calculation results suggest that solute-solute interactions 

in solution affect the absolute as well as relative solution behaviour of lactide in both 

systems (see Figure 4.50). This is qualitatively in agreement with experimental findings. 

Experimentally, the apparent solution enthalpies were compared to caloric dissolution 

experiments for the diluted solution (see Table 4.13 and Figure 4.49).  

Even in cases where experimental saturation concentrations of naproxen and lactide are 

comparable, the solution enthalpy difference between (S)- and (RS)-naproxen is not 

affected by concentration-dependent interactions in solution (Figure 4.52). This is 

consistent with the solvent-independent shift of the eutectic composition (see Figure 

4.41). This is thus rather evoked by temperature-dependent solid-state properties alone. 

For lactide, however, a comparably large shift of the eutectic concentration with 

temperature has been observed in ethanol225 which is consistent with the strong solute-

solute interactions energy contributions to the solution enthalpy differences.   
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5 Conclusiones and Outlook 

 

In this work, a consistent framework was derived and tested for calculating absolute mole 

fraction solubilities of organic molecular crystals via the so-called melt cycle and the so-

called sublimation cycle. These two approaches aim to reduce labour and substance 

intensive experimental work. In fact, the sublimation cycle relies exclusively on first-

principle computational methods. Both cycles can resolve the influence of the crystal 

structure and thus can distinguish between polymorphs and chiral crystals. Furthermore, 

they are capable of handling pure as well as mixed organic solvent systems and are not 

restricted to infinite solution. This thesis used a joint computational and experimental 

approach to evaluate the energy contributions required for calculating solid-liquid phase 

equilibria via the two thermodynamic cycles. We focused on three representatives of 

chiral compound forming systems; namely lactide, naproxen and 3-chloromandelic acid 

(3ClMA).  

The melting and sublimation thermochemistry of chiral lactide, naproxen and 3ClMA 

have been studied by means of experimental and computational methods. It was shown 

that measurement uncertainties of the melting thermodynamics (Tmelt and ΔHmelt) can be 

large enough to noticeably affect ΔGmelt. Furthermore, thermal corrections affect ΔGmelt 

by up to 1.6 kJ·mol-1 in case of naproxen. Both influences are not negligible if ΔGmelt is 

used for solubility prediction within the melt cycle. Detailed experimental studies of the 

melting behaviour were carried out for structural clarification. In case of lactide, the 

determined binary melting phase diagram confirms the presence of a simple racemic 

compound-forming system. However, the binary melting behaviour of naproxen was 

found to be complicated by the formation of partial solid-solutions. This has been 

observed when samples were crystallized from the melt as well as from acetone solutions. 

Consequently, it can be concluded that for structural clarification measurements of the 

binary melt phase diagram are important. They can reveal substance specific phase 

behaviour which can also complicate the ternary solution phase diagram.  

The accuracy of state-of-the-art periodic DFT was determined by the density functional, 

the size of the basis and as the choice of the dispersion correction. A consistent framework 

was used to model the separated ideal gas molecules and periodic crystal combining GGA 

type density functionals and atom-centered Gaussian type basis sets (riper framework). 

Its accuracy was tested with a frequently used benchmark set of molecular crystals (X23). 

This works def2-TZVP/PBE-D3 method has an overall accuracy of around 10 kJ·mol-1. 

However, there are some methods in literature that give lattice energies close to chemical 

accuracy (4.2 kJ·mol-1). Thermal corrections are of great importance when calculating 

sublimation Gibbs energies, ΔGsubl. Even though lattice energies make up the largest part 

of the absolute energy contributions to ΔGsubl, thermal corrections are responsible for 

around 40 percent. They incorporate zero-point energies as well as integrals of the 

solidstate and ideal gas heat capacities between 0 K and reference temperature. They have 

been calculated using two distinct computational methods (mol and crys) for three 

representatives of chiral compound forming systems: lactide, naproxen and  
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3-chloromandelic acid. A broad experimental investigation of the solid-state heat 

capacities of these three systems reveals that calculations from both methods 

systematically underestimate experimental solid-state heat capacities at high 

temperatures. This is partly due to measurement uncertainties and the neglect of thermal 

expansion of the crystal. Still, both the mol and crys method calculate ΔGsubl close to 

chemical accuracy. Overall, computational errors are mostly related to the calculation of 

Elatt and ΔSsubl. In both cases calculations are strongly method-dependent. Thus, a 

modified benchmark set of molecular crystals has been suggested which can be used to 

test computational methods to calculate ΔGsubl rather than Elatt or ΔHsubl. 

The accuracy of calculating Elatt is strongly dependent on the types of prevalent 

intermolecular interactions within the crystal. The crystal density and thus its packing 

plays a less significant role. This can be exploited when aiming for energy differences 

between enantiopure and racemic crystals as molecule specific errors potentially cancel 

out. However, experimental solid-state heat capacities reveal heat capacity differences 

ΔRS-SCP between the racemate and the enantiomer. If large enough, they can affect the 

sublimation Gibbs energy difference ΔRS-SΔGsubl. Experimental ΔCP are observed within 

the low temperature PPMS measurements and in some cases also at high temperatures. 

Computational methods qualitatively reproduce the low temperature ΔCP. However, even 

if interactions of molecular and lattice vibrations are coupled (crys method), theory fails 

to quantitatively reproduce the high temperature ΔCP. Those are related to differences 

between the high frequency modes which are detectable by Raman spectroscopy. In sum, 

thermal corrections contribute by 20 to 80% to the absolute energy contributions to  

ΔRS-SΔGsubl (on average by 1.6 ± 1.5 kJ·mol-1 and up to 4.1 kJ·mol-1). The magnitude and 

their method-depending variation is affected by the flexibility of the molecular structure 

and the crystal packing. Therefore, when modelling the thermochemistry of molecular 

crystals at ambient temperature, it is not always justified to simplify ΔRS-SΔGsubl by 

considering solely the lattice energy difference.  

Solubility predictions via melt and sublimation thermodynamic cycle have been at first 

performed and evaluated for two non-chiral model substances and finally applied for both 

chiral species of lactide, naproxen and 3ClMA. Hereby, absolute solubilities of the 

enantiomer and the racemic compound and their temperature dependence were studied 

within pure and mixed solvent systems. The crys+COSMO-RS gives slightly more accurate 

absolute solubilities in comparison to the cmol+COSMO-RS method. The overall accuracy of 

the sublimation cycle in combination with the crys+COSMO-RS method is comparable to 

that of the melt cycle. Around 40 % of the solubilities from crys+COSMO-RS are within the 

±0.5log(x) limits which have been suggested as within a recent solubility challenge246. 

Experimental solubilities in the studied mixed solvent systems exhibit a strong non-linear 

behaviour. This was qualitatively well described by all calculations. The lattice energy 

has been identified as being the dominant energy contribution to ΔGsol but thermal 

corrections and solvation make up around 40 to 50 % of the sum of the absolute energies. 

The computational error within the crys+COSMO-RS method for calculating ΔGsol (RMSE = 

4.8 kJ·mol-1) equally comes from ΔGsubl and ΔGsolv. Additionally, the temperature 

dependence of the solubilities was investigated by experiment and computation. For a 
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quantitative comparison, solution enthalpies, ΔHsol, have been extracted from the 

temperature-dependent solubilities of chiral lactide and naproxen in a variety of pure and 

mixed solvent systems. The accuracy of the sublimation cycle in combination with the 

ѱcrys+CSOMO-RS method to calculate ΔHsol was slightly better in comparison to the melt 

cycle calculations. Concentration-dependent effects are especially relevant for lactide in 

toluene as well as in ethanol while less significant for the naproxen solutions. Overall, 

these are considered promising results for the sublimation cycle keeping in mind that the 

ѱcrys+COSMO-RS is exclusively based on firstprinciple methods. It therefore does not rely on 

substance specific primary experimental data compared to the melt cycle which requires 

melting properties from experiment. Nevertheless, it must be stated that both 

thermodynamic cycles are still not reliable enough to be used for accurate solubility 

prediction required in an early stage crystallization process design.  

Estimation methods of the eutectic composition xeu use the melting and sublimation 

phase transition energy differences between the racemic compound and the enantiomer. 

A rather simple thermodynamic model from literature has been modified so that it can be 

solved consistently within both thermodynamic cycles. Calculations carried out were 

accompanied by broad experimental investigations of xeu and its variation with 

temperature and solvent Δxeu. The previously discussed model-dependent variation of the 

lattice energy differences as well as differences in thermal corrections are recognizable 

again when they are used for estimating xeu. The combination of electronic structure 

calculations and experimental CP,s within the “exp/theory” (ѱcrys) model gives the most 

reliable estimates of xeu. The good performance of the sublimation cycle in comparison 

to the performance of the melt cycle suggests that it can be used for predicting xeu in 

solution as a valuable guidance during early stage enantioseparation process design. 

However, the applied computational methods still have some limitations. They fail to 

reproduce experimentally observed temperature dependence of ΔRS-SCP. Those require a 

differences in the higher frequency “molecular modes” which can be detected by solidsate 

Raman spectroscopy. The experimental ΔRS-SCP are shown to be large enough to change 

the Gibbs energy difference ΔRS-SΔG which can evoke important shifts of the eutectic 

composition with temperature. However, shifts of xeu with temperature are in many cases 

influenced also by the solvent and thus are not a solid-state property alone. In such cases 

predictive models will have to consider the difference in solvation free energies in the 

racemic and enantiopure solution. This aspect has been studied in this thesis in detail for 

naproxen and lactide. A combined experimental investigation of the temperature and 

solvent dependence of xeu indicates that shifts for naproxen are merely a solid-state 

property and thus evoked by temperature-dependent ΔRS-SCP. In contrast, for lactide the 

solvent system plays an important role. Lactide shows a comparatively large shift of xeu 

with temperature in ethanol.225 This is consistent with the strong solute-solute interactions 

which affect the absolute as well as relative solution behaviour. This has been identified 

by a combined experimental and computational analysis of solution enthalpy differences 

at infinite dilution and at saturation concentration. In general, the combined investigation 

of ΔRS-SCP and of solution effects on ∆xeu(T) provides a valuable methodology to 

investigate the physiochemical roots of the eutectic shift.  
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Outlook 

The reported results suggest further study of the effect of thermal corrections on the 

sublimation thermodynamics. A modified benchmark set of molecular crystals has been 

suggested. Besides a combined treatment of the molecular and lattice vibrations, a more 

complete model of the thermal corrections should be used to quantify effects of the 

thermal expansion of the crystal. A potential theoretical framework for this purpose is the 

quasi-harmonic approximation.234 Precise Gibbs energy differences and their temperature 

dependence should be used to further study the physio-chemical origin of the eutectic 

shift with temperature. It would be of value to investigate if there is a correlation between 

the magnitude of the energy differences between the enantiopure and racemic crystal and 

the variability of the eutectic composition in solution. Based on eq. (23) a small value of 

ΔRS-SΔGsubl should result in a eutectic composition with a low enantiomeric excess, which 

is more likely to be affected by changes of ΔRS-SCP with temperature. For example, 

2ClMA, an isomer of this works 3ClMA, has a eutectic composition close to the racemic 

mixture that is solvent-depending247. 

Another promising area of future work is the combination of the sublimation cycle with 

crystal structure prediction methods11 in order to establish solubility prediction tools that 

are exclusively based on information on the molecular structures. Within this work the 

initial crystal structure still originates from experimental investigations. In future, the 

applicability of explicit solvation methods which consider the 3D molecular structure 

should be evaluated for chiral systems. Even though force-field based methods are not 

yet precise enough to calculate absolute solvation energies they are capable to calculate 

solvation energy differences.249, 250 Explicit methods should be further applied to model 

solution non-idealities which can be related to general solute-solute interactions or 

evoked by the chirality of the molecules.



Literature 136 

 

6 Literature 

 

1. Cefic, European Chemistry for Growth. Cefic - The European Chemical Industry 

Council: www.cefic.org, 2013. 

2. Pollak, P., Fine Chemicals: The Industry and the Business. 2nd ed.; John Wiley 

& Sons, Inc.: 2011. 

3. Cybulski, A.; Moulijn, J. A.; Sharma, M. M.; Sheldon, R. A., Fine Chemicals 

Manufacture Technology and Engineering. Elsevier Science: Amsterdam, 2001. 

4. Murakami, H., From Racemates to Single Enantiomers - Chiral Synthetic Drugs 

over the last 20 Years. Top Curr Chem 2007, 269, 273-99. 

5. Lorenz, H.; Seidel-Morgenstern, A., Processes To Separate Enantiomers. 

Angewandte Chemie-International Edition 2014, 53 (5), 1218-1250. 

6. Jorgensen, W. L.; Duffy, E. M., Prediction of drug solubility from structure. 

Advanced Drug Delivery Reviews 2002, 54 (3), 355 - 366. 

7. Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; 

Dobchev, D. A., Quantitative Correlation of Physical and Chemical Properties with 

Chemical Structure: Utility for Prediction. Chemical Reviews 2010, 110 (10), 5714-5789. 

8. McDonagh, J. L.; Nath, N.; De Ferrari, L.; van Mourik, T.; Mitchell, J. B. O., 

Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous 

Solubility of Crystalline Druglike Molecules. Journal of Chemical Information and 

Modeling 2014, 54 (3), 844-856. 

9. Adler, S., Vision 2020: 2000 separations roadmap. Published by the Center for 

Waste Reduction Technologies of the AIChE in cooperation with the U.S. Dept. of 

Energy, Office of Industrial Technologies: 2000. 

10. Palmer, D. S.; McDonagh, J. L.; Mitchell, J. B. O.; van Mourik, T.; Fedorov, M. 

V., First-Principles Calculation of the Intrinsic Aqueous Solubility of Crystalline 

Druglike Molecules. Journal of Chemical Theory and Computation 2012, 8 (9), 3322-

3337. 

11. Price, S. L., Predicting crystal structures of organic compounds. Chem Soc Rev 

2014, 43 (7), 2098-2111. 

12. Cross, L. C.; Klyne, W., Rules for the Nomenclature of Organic Chemistry: 

Section E: Stereochemistry (Recommendations 1974). Elsevier Science: 2013. 

13. Nguyen, L. A.; He, H.; Pham-Huy, C., Chiral Drugs: An Overview. International 

Journal of Biomedical Science : IJBS 2006, 2 (2), 85-100. 

14. Wei, Y.; Wang, S.; Chao, J.; Wang, S.; Dong, C.; Shuang, S.; Paau, M. C.; Choi, 

M. M. F., An Evidence for the Chiral Discrimination of Naproxen Enantiomers: A 

Combined Experimental and Theoretical Study. The Journal of Physical Chemistry C 

2011, 115 (10), 4033-4040. 

15. Caron, G.; Tseng, W.-M.; Kazlauskas, R. J., Kinetic resolutions concentrate the 

minor enantiomer and aid measurement of high enantiomeric purity. Tetrahedron: 

Asymmetry 1994, 5 (1), 83 - 92. 

16. McNaught, A. D.; Wilkinson, A., IUPAC. Compendium of Chemical 



Literature 137 

 

 

Terminology. Blackwell Scientific Publications: Oxford, 1997. 

17. FDA'S policy statement for the development of new stereoisomeric drugs. 

Chirality 1992, 4 (5), 338--340. 

18. Agranat, I.; Caner, H.; Caldwell, J., Putting chirality to work: the strategy of chiral 

switches. Nat Rev Drug Discov 2002, 1 (10), 753-768. 

19. Christmann, M.; Bräse, S., Asymmetric Synthesis: The Essentials. Wiley: 

Weinheim, 2007. 

20. Soloshonok, V. A.; Ueki, H.; Yasumoto, M.; Mekala, S.; Hirschi, J. S.; Singleton, 

D. A., Phenomenon of Optical Self-Purification of Chiral Non-Racemic Compounds. 

Journal of the American Chemical Society 2007, 129 (40), 12112-12113. 

21. Eicke, M. Process Strategies for Batch Preferential Crystallization. Shaker Verlag 

Aachen, 2016. 

22. Bergström, C. A. S.; Norinder, U.; Luthman, K.; Artursson, P., Molecular 

Descriptors Influencing Melting Point and Their Role in Classification of Solid Drugs. 

Journal of Chemical Information and Computer Sciences 2003, 43 (4), 1177-1185. 

23. Jaques, J.; Collet, A.; Wilen, S., Enantiomers, Racemates, and Resolutions. Wiley 

and Sons Inc.: New York, 1981. 

24. Tabora, J. E.; Corry, J.; Osifchin, R.; Lepore, J. V.; Davidson, O.; Thien, M. P., 

Identification and characterization of an anomalous racemate. Fluid Phase Equilibria 

2007, 258 (2), 140-147. 

25. Kotelnikova, E. N.; Isakov, A. I.; Lorenz, H., Non-equimolar discrete compounds 

in binary chiral systems of organic substances. Crystengcomm 2017, 19 (14), 1851-1869. 

26. Isakov, A. I.; Kotelnikova, E. N.; Lorenz, H., Non-Equimolar Discrete Phases 

Formed in the System of Malic Acid Enantiomers. Chemical Engineering & Technology 

2015, 38 (6), 1047-1052. 

27. Lorenz, H.; von Langermann, J.; Sadiq, G.; Seaton, C. C.; Davey, R. J.; Seidel-

Morgenstern, A., The Phase Behavior and Crystallization of 2-Chloromandelic Acid: The 

Crystal Structure of the Pure Enantiomer and the Behavior of Its Metastable 

Conglomerate. Crystal Growth \& Design 2011, 11 (5), 1549-1556. 

28. Cruz-Cabeza, A. J.; Reutzel-Edens, S. M.; Bernstein, J., Facts and fictions about 

polymorphism. Chemical Society Reviews 2015, 44 (23), 8619-8635. 

29. Ibach, H.; Lüth, H., Solid-State Physics - An Introduction to Principles of 

Materials Science. 4 ed.; Springer-Verlag: Berlin, 2009. 

30. Mighell, A. D.; Ondik, H. M.; Molino, B. B., Crystal Data Space-Group Tables. J 

Phys Chem Ref Data 1977, 6 (3), 675-829. 

31. Brock, C. P., High-Z ' structures of organic molecules: their diversity and 

organizing principles. Acta Crystallogr B 2016, 72, 807-821. 

32. Brittain, H. G., Polymorphism in pharmaceutical solids. Informa Healthcare 

USA: New York, NY, 2016. 

33. Day, G. M.; Cooper, T. G.; Cruz-Cabeza, A. J.; Hejczyk, K. E.; Ammon, H. L.; 

Boerrigter, S. X. M.; Tan, J. S.; Della Valle, R. G.; Venuti, E.; Jose, J.; Gadre, S. R.; 

Desiraju, G. R.; Thakur, T. S.; van Eijck, B. P.; Facelli, J. C.; Bazterra, V. E.; Ferraro, M. 

B.; Hofmann, D. W. M.; Neumann, M. A.; Leusen, F. J. J.; Kendrick, J.; Price, S. L.; 

Misquitta, A. J.; Karamertzanis, P. G.; Welch, G. W. A.; Scheraga, H. A.; Arnautova, Y. 



Literature 138 

 

A.; Schmidt, M. U.; van de Streek, J.; Wolf, A. K.; Schweizer, B., Significant progress in 

predicting the crystal structures of small organic molecules - a report on the fourth blind 

test. Acta Crystallographica Section B 2009, 65 (2), 107-125. 

34. Reilly, A. M.; Cooper, R. I.; Adjiman, C. S.; Bhattacharya, S.; Boese, A. D.; 

Brandenburg, J. G.; Bygrave, P. J.; Bylsma, R.; Campbell, J. E.; Car, R.; Case, D. H.; 

Chadha, R.; Cole, J. C.; Cosburn, K.; Cuppen, H. M.; Curtis, F.; Day, G. M.; DiStasio, R. 

A.; Dzyabchenko, A.; van Eijck, B. P.; Elking, D. M.; van den Ende, J. A.; Facelli, J. C.; 

Ferraro, M. B.; Fusti-Molnar, L.; Gatsiou, C. A.; Gee, T. S.; de Gelder, R.; Ghiringhelli, 

L. M.; Goto, H.; Grimme, S.; Guo, R.; Hofmann, D. W. M.; Hoja, J.; Hylton, R. K.; 

Iuzzolino, L.; Jankiewicz, W.; de Jong, D. T.; Kendrick, J.; de Klerk, N. J. J.; Ko, H. Y.; 

Kuleshova, L. N.; Li, X. Y.; Lohani, S.; Leusen, F. J. J.; Lund, A. M.; Lv, J.; Ma, Y. M.; 

Marom, N.; Masunov, A. E.; McCabe, P.; McMahon, D. P.; Meekes, H.; Metz, M. P.; 

Misquitta, A. J.; Mohamed, S.; Monserrat, B.; Needs, R. J.; Neumann, M. A.; Nyman, J.; 

Obata, S.; Oberhofer, H.; Oganov, A. R.; Orendt, A. M.; Pagola, G. I.; Pantelides, C. C.; 

Pickard, C. J.; Podeszwa, R.; Price, L. S.; Price, S. L.; Pulido, A.; Read, M. G.; Reuter, 

K.; Schneider, E.; Schober, C.; Shields, G. P.; Singh, P.; Sugden, I. J.; Szalewicz, K.; 

Taylor, C. R.; Tkatchenko, A.; Tuckerman, M. E.; Vacarro, F.; Vasileiadis, M.; Vazquez-

Mayagoitia, A.; Vogt, L.; Wang, Y. C.; Watson, R. E.; de Wijs, G. A.; Yang, J.; Zhu, Q.; 

Groom, C. R., Report on the sixth blind test of organic crystal structure prediction 

methods. Acta Crystallographica Section B-Structural Science Crystal Engineering and 

Materials 2016, 72, 439-459. 

35. Sun, C., Thermal Expansion of Organic Crystals and Precision of Calculated 

Crystal Density: A Survey of Cambridge Crystal Database. Journal of Pharmaceutical 

Sciences 2007, 96 (5), 1043 - 1052. 

36. Bondi, A., Thermal Properties of Molecular Crystals. I. Heat Capacity and 

Thermal Expansion. Journal of Applied Physics 1966, 37 (13), 4643-4647. 

37. Galan, K.; Eicke, M. J.; Elsner, M. P.; Lorenz, H.; Seidel-Morgenstern, A., 

Continuous Preferential Crystallization of Chiral Molecules in Single and Coupled 

Mixed-Suspension Mixed-Product-Removal Crystallizers. Crystal Growth \& Design 

2015, 15 (4), 1808-1818. 

38. Binev, D.; Seidel-Morgenstern, A.; Lorenz, H., Continuous Separation of Isomers 

in Fluidized Bed Crystallizers. Crystal Growth \& Design 2016, 16 (3), 1409-1419. 

39. Lu, Y.; Wang, X.; Ching, C. B., Application of Preferential Crystallization for 

Different Types of Racemic Compounds. Industrial \& Engineering Chemistry Research 

2009, 48 (15), 7266-7275. 

40. Lorenz, H.; Polenske, D.; Seidel-Morgenstern, A., Application of preferential 

crystallization to resolve racemic compounds in a hybrid process. Chirality 2006, 18 (10), 

828--840. 

41. Buchholz, H.; Emel'yanenko, V. N.; Lorenz, H.; Verevkin, S. P., An Examination 

of the Phase Transition Thermodynamics of (S)- and (RS)-Naproxen as a Basis for the 

Design of Enantioselective Crystallization Processes. Journal of Pharmaceutical 

Sciences 2016, 105 (5), 1676-1683. 

42. Piotr, M.; João, A. P. C.; Urszula, D., High pressure (solid+liquid) equilibria of n-

alkane mixtures: experimental results, correlation and prediction. Fluid Phase Equilibria 

2005, 230 (1), 72 - 80. 

43. Wang, Y. L.; LoBrutto, R.; Wenslow, R. W.; Santos, I., Eutectic composition of 

a chiral mixture containing a racemic compound. Organic Process Research & 



Literature 139 

 

 

Development 2005, 9 (5), 670-676. 

44. Lorenz, H.; Le Minh, T.; Kaemmerer, H.; Buchholz, H.; Seidel-Morgenstern, A., 

Exploitation of shifts of eutectic compositions in crystallization-based enantioseparation. 

Chemical Engineering Research & Design 2013, 91 (10), 1890-1902. 

45. Fayzullin, R. R.; Lorenz, H.; Bredikhina, Z. A.; Bredikhin, A. A.; Seidel-

Morgenstern, A., Solubility and Some Crystallization Properties of Conglomerate 

Forming Chiral Drug Guaifenesin in Water. Journal of Pharmaceutical Sciences 2014, 

103 (10), 3176--3182. 

46. Lorenz, H.; Sapoundjiev, D.; Seidel-Morgenstern, A., Enantiomeric mandelic acid 

system-melting point phase diagram and solubility in water. Journal of Chemical and 

Engineering Data 2002, 47 (5), 1280-1284. 

47. Freiser, H.; Nancollas, G. H., IUPAC Compendium of Analytical Nomenclature. 

2 ed.; Blackwell Scientific Publications: Oxford, 1987. 

48. Gibson, R. E., On the effect of pressure on the solubility of solids in liquids. 

American Journal of Science 1938, 35, 49-69. 

49. Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo de, E. G., Molecular 

Thermodynamics of Fluid-Phase Equilibira. 3 ed.; Prentice Hall PTR: Upper Saddle 

River, New Jersey, 1999. 

50. Haase, R., Thermodynamik der Mischphasen. Springer Berlin: Heidelberg, 1956. 

51. Ben-Naim, A., Solvation Thermodynamics. Plenum Press: New York, NY, 1987. 

52. Klamt, A., COSMO-RS: From Quantum Chemistry to Fluid Phase 

Thermodynamics and Drug Design. 1 ed.; Elsevier: Amsterdam, 2005. 

53. Ploetz, E. A.; Smith, P. E., Local Fluctuations in Solution: Theory and 

Applications. Advances in Chemical Physics, Vol 153 2013, 153, 311-372. 

54. Prigogine, I.; Defay, R., Chemical Thermodynamics. John Wiley & Sons Inc.: 

New York, 1962. 

55. Klussmann, M.; White, A. J. R.; Armstrong, A.; Blackmond, D. G., 

Rationalization and prediction of solution enantiomeric excess in ternary phase systems. 

Angew Chem Int Edit 2006, 45 (47), 7985-7989. 

56. Otero-de-la-Roza, A.; Cao, B. H.; Price, I. K.; Hein, J. E.; Johnson, E. R., 

Predicting the Relative Solubilities of Racemic and Enantiopure Crystals by Density-

Functional Theory. Angewandte Chemie-International Edition 2014, 53 (30), 7879-7882. 

57. Grant, D. J. W.; Mehdizadeh, M.; Chow, A. H. L.; Fairbrother, J. E., Non-linear 

van't Hoff solubility-temperature plots and their pharmaceutical interpretation. 

International Journal of Pharmaceutics 1984, 18 (1-2), 25-38. 

58. Krug, R. R.; Hunter, W. G.; Grieger, R. A., Enthalpy-entropy compensation. 2. 

Separation of the chemical from the statistical effect. The Journal of Physical Chemistry 

1976, 80 (21), 2341-2351. 

59. Nordstrom, F. L.; Rasmuson, A. C., Determination of the activity of a molecular 

solute in saturated solution. J Chem Thermodyn 2008, 40 (12), 1684-1692. 

60. Solomonov, B. N.; Novikov, V. B., Solution calorimetry of organic 

nonelectrolytes as a tool for investigation of intermolecular interactions. Journal of 

Physical Organic Chemistry 2008, 21 (1), 2-13. 



Literature 140 

 

61. Ivanov, E. V.; Batov, D. V., Temperature-dependent behavior of enthalpies and 

heat capacities of solution in water for thiourea and its N,N′-dimethylsubstituted 

derivative. Thermochimica Acta 2013, 558, 10 - 15. 

62. Kustov, A. V.; Smirnova, N. L., Standard Enthalpies and Heat Capacities of 

Solution of Urea and Tetramethylurea in Water. Journal of Chemical & Engineering Data 

2010, 55 (9), 3055-3058. 

63. Dallos, A.; Hajós-Szikszay, É.; Liszi, J., Enthalpies of solution and crystallization 

ofL-ascorbic acid in aqueous solution. The Journal of Chemical Thermodynamics 1998, 

30 (2), 263-270. 

64. O'Neill, M. A. A.; Gaisford, S., Application and use of isothermal calorimetry in 

pharmaceutical development. International Journal of Pharmaceutics 2011, 417 (1-2), 

83-93. 

65. Chen, J.; Sarma, B.; Evans, J. M. B.; Myerson, A. S., Pharmaceutical 

Crystallization. Crystal Growth & Design 2011, 11 (4), 887-895. 

66. Lee, A. Y.; Erdemir, D.; Myerson, A. S., Crystal Polymorphism in Chemical 

Process Development. Annual Review of Chemical and Biomolecular Engineering, Vol 2 

2011, 2, 259-280. 

67. Elder, D. P.; Patterson, J. E.; Holm, R., The solid-state continuum: a perspective 

on the interrelationships between different solid-state forms in drug substance and drug 

product. Journal of Pharmacy and Pharmacology 2015, 67 (6), 757-772. 

68. Abramov, Y. A., Major Source of Error in QSPR Prediction of Intrinsic 

Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions? Molecular 

Pharmaceutics 2015, 12, 2126−2141. 

69. Docherty, R.; Pencheva, K.; Abramov, Y. A., Low solubility in drug development: 

de-convoluting the relative importance of solvation and crystal packing. Journal of 

Pharmacy and Pharmacology 2015, 67 (6), 847-856. 

70. Skyner, R. E.; McDonagh, J. L.; Groom, C. R.; van Mourik, T.; Mitchell, J. B. O., 

A review of methods for the calculation of solution free energies and the modelling of 

systems in solution. Phys. Chem. Chem. Phys. 2015, 17, 6174. 

71. Bordwell, F. G., Equilibrium acidities in dimethyl sulfoxide solution. Accounts of 

Chemical Research 2002, 21 (12), 456-463. 

72. Grant, D. J. W.; Higuchi, T., Solubility Behavior of Organic Compounds. John 

Wiley and Sons: New York, 1990. 

73. Chu, K. A.; Yalkowsky, S. H., Predicting Aqueous Solubility: The Role of 

Crystallinity. Curr Drug Metab 2009, 10 (10), 1184-1191. 

74. Ran, Y. Q.; Jain, N.; Yalkowsky, S. H., Prediction of aqueous solubility of organic 

compounds by the general solubility equation (GSE). J Chem Inf Comp Sci 2001, 41 (5), 

1208-1217. 

75. Yalkowsky, S. H.; Wu, M., Estimation of the Ideal Solubility (Crystal-Liquid 

Fugacity Ratio) of Organic Compounds. Journal of Pharmaceutical Sciences 2010, 99 

(3), 1100-1106. 

76. Hughes, L. D.; Palmer, D. S.; Nigsch, F.; Mitchell, J. B. O., Why Are Some 

Properties More Difficult To Predict than Others? A Study of QSPR Models of Solubility, 

Melting Point, and Log P. Journal of Chemical Information and Modeling 2008, 48 (1), 

220-232. 



Literature 141 

 

 

77. Palmer, D. S.; Llinàs, A.; Morao, I.; Day, G. M.; Goodman, J. M.; Glen, R. C.; 

Mitchell, J. B. O., Predicting Intrinsic Aqueous Solubility by a Thermodynamic Cycle. 

Molecular Pharmaceutics 2008, 5 (2), 266-279. 

78. Tetko, I. V.; Sushko, Y.; Novotarskyi, S.; Patiny, L.; Kondratov, I.; Petrenko, A. 

E.; Charochkina, L.; Asiri, A. M., How Accurately Can We Predict the Melting Points of 

Drug-like Compounds? Journal of Chemical Information and Modeling 2014, 54 (12), 

3320-3329. 

79. Zhang, Y.; Edward, J. M., A comparison of methods for melting point calculation 

using molecular dynamics simulations. The Journal of Chemical Physics 2012, 136 (14), 

144116. 

80. Gharagheizi, F.; Salehi, G. R., Prediction of enthalpy of fusion of pure compounds 

using an Artificial Neural Network-Group Contribution method. Thermochimica Acta 

2011, 521 (1-2), 37-40. 

81. Gharagheizi, F.; Gohar, M. R. S.; Vayeghan, M. G., A quantitative structure–

property relationship for determination of enthalpy of fusion of pure compounds. J Therm 

Anal Calorim 2011, 109 (1), 501-506. 

82. Neau, S. H.; Bhandarkar, S. V.; Hellmuth, E. W., Differential Molar Heat 

Capactities to Test Ideal Solubility Estimations. Pharmaceutical Research 1997, 14 (5), 

601-605. 

83. Chickos, J. S.; Hosseini, S.; Hesse, D. G.; Liebman, J. F., Heat capacity 

corrections to a standard state: a comparison of new and some literature methods for 

organic liquids and solids. Structural Chemistry 1993, 4 (4), 271-278. 

84. Hasnip, P. J.; Refson, K.; Probert, M. I. J.; Yates, J. R.; Clark, S. J.; Pickard, C. 

J., Density functional theory in the solid state. Phil. Trans. R. Soc. A 2014, 372, 20130270. 

85. Otero-de-la-Roza, A.; Johnson, E. R., A benchmark for non-covalent interactions 

in solids. J Chem Phys 2012, 137 (5), 054103. 

86. Yang, J.; Hu, W. F.; Usvyat, D.; Matthews, D.; Schutz, M.; Chan, G. K. L., Ab 

initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole 

accuracy. Science 2014, 345 (6197), 640-643. 

87. William Acree Jr. and James, S. C., Phase Transition Enthalpy Measurements of 

Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion 

Enthalpies From 1880 to 2010. Journal of Physical and Chemical Reference Data 2010, 

39 (4), 043101. 

88. Griesser, U. J.; Szelagiewicz, M.; Hofmeier, U. C.; Pitt, C.; Cianferani, S., Vapor 

Pressure and Heat of Sublimation of Crystal Polymorphs. Journal of Thermal Analysis 

and Calorimetry 1999, 57 (1), 45-60. 

89. Price, S. L.; Leslie, M.; Welch, G. W. A.; Habgood, M.; Price, L. S.; 

Karamertzanis, P. G.; Day, G. M., Modelling organic crystal structures using distributed 

multipole and polarizability-based model intermolecular potentials. Physical Chemistry 

Chemical Physics 2010, 12 (30), 8478-8490. 

90. Gavezzotti, A., Moleczular Aggregation - Structure Analysis and Molecular 

Simulation of Crystals and Liquids. Oxford University Press: Oxford NewYork, 2007. 

91. Gavezzotti, A., Computational contributions to crystal engineering. 

CrystEngComm 2008, 10, 367-367. 

92. Moellmann, J.; Grimme, S., DFT-D3 Study of Some Molecular Crystals. J Phys 



Literature 142 

 

Chem C 2014, 118 (14), 7615-7621. 

93. Reilly, A. M.; Tkatchenko, A., Seamless and Accurate Modeling of Organic 

Molecular Materials. J Phys Chem Lett 2013, 4 (6), 1028-1033. 

94. Chickos, J. S., Enthalpies of Sublimation after a Century of Measurement: A View 

as Seen through the Eyes of a Collector. Netsu Sokutei 2003, 30 (3), 116-124. 

95. Gavezzotti, A.; Rizzato, S., Are Racemic Crystals Favored over Homochiral 

Crystals by Higher Stability or by Kinetics? Insights from Comparative Studies of 

Crystalline Stereoisomers. Journal of Organic Chemistry 2014, 79, 4809-4816. 

96. Gavezzotti, A., Molecular Aggregation - Structure Analysis and Molecular 

Simulation of Crystals and Liquids. Oxford University Press: Oxford NewYork, 2007. 

97. Reilly, A. M.; Tkatchenko, A., Understanding the role of vibrations, exact 

exchange, and many-body van der Waals interactions in the cohesive properties of 

molecular crystals. Journal of Chemical Physics 2013, 139 (2), 024705-024705. 

98. Maitland, G. C.; Rigby, M.; Smith, E. B.; Wakeham, W. A., Intermolecular 

Forces - their origin and determination. Oxford University Press: 1981. 

99. Hoja, J.; Reilly, A. M.; Tkatchenko, A., First-principles modeling of molecular 

crystals: structures and stabilities, temperature and pressure. Wiley Interdisciplinary 

Reviews: Computational Molecular Science 2017, 7 (1), e1294. 

100. Jensen, F., Introduction to Computational Chemistry. 2 ed.; John Wiley & Sons 

Ltd: The Atrium, Southern Gate, Chichester, 2007. 

101. Gavezzotti, A., Computational contributions to crystal engineering. 

CrystEngComm 2008. 

102. Cohen, A. J.; Mori-Sánchez, P.; Yang, W., Challenges for Density Functional 

Theory. Chemical Reviews 2012, 112 (1), 289-320. 

103. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 

136 (3B), B864-B871. 

104. Drissi, M.; Benhalima, N.; Megrouss, Y.; Rachida, R.; Chouaih, A.; Hamzaoui, 

F., Theoretical and Experimental Electrostatic Potential around the m-Nitrophenol 

Molecule. Molecules 2015, 20 (3), 4042-4054. 

105. Marques, M. A. L.; Oliveira, M. J. T.; Burnus, T., Libxc: A library of exchange 

and correlation functionals for density functional theory. Computer Physics 

Communications 2012, 183 (10), 2272-2281. 

106. Grimme, S., Density functional theory with London dispersion corrections. Wiley 

Interdisciplinary Reviews: Computational Molecular Science 2011, 1 (2), 211-228. 

107. Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C., Dispersion-

Corrected Mean-Field Electronic Structure Methods. Chemical Reviews 2016, 116 (9), 

5105-5154. 

108. Hermann, J.; DiStasio, R. A.; Tkatchenko, A., First-Principles Models for van der 

Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. 

Chemical Reviews 2017, 117 (6), 4714-4758. 

109. Johnson, E. R.; Mackie, I. D.; DiLabio, G. A., Dispersion interactions in density-

functional theory. Journal of Physical Organic Chemistry 2009, 22 (12), 1127-1135. 

110. Jensen, F., Atomic orbital basis sets. Wiley Interdisciplinary Reviews: 



Literature 143 

 

 

Computational Molecular Science 2013, 3 (3), 273--295. 

111. Hafner, J., Ab-initio simulations of materials using VASP: Density-functional 

theory and beyond. Journal of Computational Chemistry 2008, 29 (13), 2044-2078. 

112. Blaha, P.; Schwarz, K.; Sorantin, P.; Trickey, S. B., Full-potential, linearized 

augmented plane wave programs for crystalline systems. Computer Physics 

Communications 1990, 59 (2), 399-415. 

113. Lippert, B. G.; Parrinello, J. H.; Michele, A hybrid Gaussian and plane wave 

density functional scheme. Molecular Physics 1997, 92 (3), 477-488. 

114. Dovesi, R.; Civalleri, B.; Orlando, R.; Roetti, C.; Saunders, V. R., Ab inito 

quantum simulation in solid state chemistry. In Reviews in Computational Chemistry, 

Lipkowitz, K. B.; Larter, R.; Cundari, T. R., Eds. John Wiley & Sons: Hoboken, New 

Jersey, 2005; Vol. 21. 

115. Kittel, C., Introduction to Solid State Physics. Wiley: New York, 1996. 

116. Löwdin, P.-O., On the state of the art of quantum chemistry. International Journal 

of Quantum Chemistry 1986, 29 (5), 1651-1683. 

117. Irikura, K. K.; Frurip, D. J., Computational Thermochemistry: Prediction and 

Estimation of Molecular Thermodynamics. American Chemical Society: Washington 

DC, 1998. 

118. Diedrichs, A.; Gmehling, J., Solubility Calculation of Active Pharmaceutical 

Ingredients in Alkanes, Alcohols, Water and their Mixtures Using Various Activity 

Coefficient Models. Ind Eng Chem Res 2011, 50 (3), 1757-1769. 

119. Chen, C.-C.; Mathias, P. M., Applied thermodynamics for process modeling. 

AIChE Journal 2002, 48 (2), 194-200. 

120. Gross, J.; Sadowski, G., Perturbed-Chain SAFT:  An Equation of State Based on 

a Perturbation Theory for Chain Molecules. Industrial \& Engineering Chemistry 

Research 2001, 40 (4), 1244-1260. 

121. Klamt, A., Conductor-Like Screening Model for Real Solvents - a New Approach 

to the Quantitative Calculation of Solvation Phenomena. J Phys Chem-Us 1995, 99 (7), 

2224-2235. 

122. Xiong, R. C.; Sandler, S. I.; Burnett, R. I., An Improvement to COSMO-SAC for 

Predicting Thermodynamic Properties. Industrial & Engineering Chemistry Research 

2014, 53 (19), 8265-8278. 

123. Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation 

Models. Chemical Reviews 2005, 105 (8), 2999-3094. 

124. Klamt, A.; Schüürmann, G., COSMO: a new approach to dielectric screening in 

solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., 

Perkin  Trans. 1993, 2. 

125. Ashcraft, R. W.; Raman, S.; Green, W. H., Ab Initio Aqueous Thermochemistry:  

Application to the Oxidation of Hydroxylamine in Nitric Acid Solution. The Journal of 

Physical Chemistry B 2007, 111 (41), 11968-11983. 

126. Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W., Refinement and 

Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 

5074-5085. 

127. Reinisch, J.; Klamt, A., Prediction of free energies of hydration with COSMO-RS 



Literature 144 

 

on the SAMPL4 data set. Journal of Computer-Aided Molecular Design 2014, 28 (3), 

169-173. 

128. Bronneberg, R.; Pfennig, A., MOQUAC, a new expression for the excess Gibbs 

energy based on molecular orientations. Fluid Phase Equilibria 2013, 338, 63 - 77. 

129. Gutiérrez-Sevillano, J. J.; Leonhard, K.; van der Eerden, J. P. J. M.; Vlugt, T. J. 

H.; Krooshof, G. J. P., COSMO-3D: Incorporating Three-Dimensional Contact 

Information into the COSMO-SAC Model. Industrial \& Engineering Chemistry 

Research 2015, 54 (7), 2214-2226. 

130. Mobley, D. L.; Wymer, K. L.; Lim, N. M.; Guthrie, J. P., Blind prediction of 

solvation free energies from the SAMPL4 challenge. Journal of Computer-Aided 

Molecular Design 2014, 28 (3), 135-150. 

131. Weininger, D., SMILES, a chemical language and information system. 1. 

Introduction to methodology and encoding rules. Journal of Chemical Information and 

Computer Sciences 1988, 28 (1), 31-36. 

132. Turbomole; GmbH, TURBOMOLE V7.1 2016, a development of University of 

Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, 

since 2007; available from http://www.turbomole.com. Turbomole GmbH: Karlsruhe, 

2016. 

133. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence 

and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. 

Physical Chemistry Chemical Physics 2005, 7 (18), 3297. 

134. Perdew, J. P., Density-functional approximation for the correlation energy of the 

inhomogeneous electron gas. Phys. Rev. B 1986, 33 (12), 8822-8824. 

135. Becke, A. D., Density-functional exchange-energy approximation with correct 

asymptotic behavior. Phys. Rev. A 1988, 38 (6), 3098-3100. 

136. Joachim Paier and Robin Hirschl and Martijn Marsman and Georg, K., The 

Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set 

using a plane-wave basis set. The Journal of Chemical Physics 2005, 122 (23), 234102. 

137. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio 

parametrization of density functional dispersion correction (DFT-D) for the 94 elements 

H-Pu. J Chem Phys 2010, 132 (15), 154104. 

138. Sierka, M.; Hogekamp, A.; Ahlrichs, R., Fast evaluation of the Coulomb potential 

for electron densities using multipole accelerated resolution of identity approximation. J 

Chem Phys 2003, 118 (20), 9136-9148. 

139. TURBOMOLE V7.0 2015 a development of University of Karlsruhe and 

Forschungszentrum Karlsruhe GmbH, -., TURBOMOLE GmbH, since 2007 available 

from http://www.turbomole.com. 

140. Burow, A. M.; Sierka, M.; Mohamed, F., Resolution of identity approximation for 

the Coulomb term in molecular and periodic systems. The Journal of Chemical Physics 

2009, 131 (21), 214101. 

141. Łazarski, R.; Burow, A. M.; Sierka, M., Density Functional Theory for Molecular 

and Periodic Systems Using Density Fitting and Continuous Fast Multipole Methods. 

Journal of Chemical Theory and Computation 2015, 11 (7), 3029-3041. 

142. Hasnip, P. J.; Refson, K.; Probert, M. I. J.; Yates, J. R.; Clark, S. J.; Pickard, C. 

J., Density functional theory in the solid state. Philosophical Transactions of the Royal 

http://www.turbomole.com/
http://www.turbomole.com/


Literature 145 

 

 

Society A: Mathematical, Physical and Engineering Sciences 2014, 372 (2011), 

20130270-20130270. 

143. Kazantsev, A. V.; Karamertzanis, P. G.; Adjiman, C. S.; Pantelides, C. C., 

Efficient Handling of Molecular Flexibility in Lattice Energy Minimization of Organic 

Crystals. Journal of Chemical Theory and Computation 2011, 7 (6), 1998-2016. 

144. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; 

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, 

H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; 

Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, 

M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; 

Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; 

Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, 

J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. 

E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; 

Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; 

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; 

Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; 

Fox, D. J. Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009. 

145. Stone, A. J., Distributed multipole analysis: Stability for large basis sets. Journal 

of Chemical Theory and Computation 2005, 1 (6), 1128-1132. 

146. Stone, A. J. GDMA: A Program for Performing Distributed Multipole Analysis of 

Wave Functions Calculated Using the Gaussian Program System, 2.2; University of 

Cambridge: Cambridge, United Kingdom, 2010. 

147. Day, G. M.; Price, S. L.; Leslie, M., Atomistic calculations of phonon frequencies 

and thermodynamic quantities for crystals of rigid organic molecules. Journal of Physical 

Chemistry B 2003, 107 (39), 10919-10933. 

148. Anghel, A. T.; Day, G. M.; Price, S. L., A study of the known and hypothetical 

crystal structures of pyridine: why are there four molecules in the asymmetric unit cell? 

CrystEngComm 2002, 4 (62), 348-355. 

149. Day, G. M.; Price, S. L., A nonempirical anisotropic atom-atom model potential 

for chlorobenzene crystals. Journal of the American Chemical Society 2003, 125 (52), 

16434-16443. 

150. Buchholz, H. K.; Hylton, R. K.; Brandenburg, J. G.; Seidel-Morgenstern, A.; 

Lorenz, H.; Stein, M.; Price, S. L., Thermochemistry of Racemic and Enantiopure 

Organic Crystals for Predicting Enantiomer Separation. Crystal Growth & Design 2017, 

17 (9), 4676-4686. 

151. Dovesi, R.; Orlando, R.; Erba, A.; Zicovich-Wilson, C. M.; Civalleri, B.; Casassa, 

S.; Maschio, L.; Ferrabone, M.; De La Pierre, M.; D'Arco, P.; Noel, Y.; Causa, M.; Rerat, 

M.; Kirtman, B., CRYSTAL14: A Program for the Ab Initio Investigation of Crystalline 

Solids. Int J Quantum Chem 2014, 114 (19), 1287-1317. 

152. Orlando, R.; De La Pierre, M.; Zicovich-Wilson, C. M.; Erba, A.; Dovesi, R., On 

the full exploitation of symmetry in periodic (as well as molecular) self-consistent-field 

ab initio calculations. J Chem Phys 2014, 141 (10), 104-108. 

153. Sure, R.; Grimme, S., Corrected small basis set Hartree-Fock method for large 

systems. Journal of Computational Chemistry 2013, 34 (19), 1672-1685. 

154. Brandenburg, J. G.; Grimme, S., Dispersion corrected hartree-fock and density 



Literature 146 

 

functional theory for organic crystal structure prediction. Top Curr Chem 2014, 345, 1-

23. 

155. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion 

corrected density functional theory. Journal of Computational Chemistry 2011, 32 (7), 

1456-1465. 

156. Brandenburg, J. G.; Alessio, M.; Civalleri, B.; Peintinger, M. F.; Bredow, T.; 

Grimme, S., Geometrical Correction for the Inter- and Intramolecular Basis Set 

Superposition Error in Periodic Density Functional Theory Calculations. The Journal of 

Physical Chemistry A 2013, 117 (38), 9282-9292. 

157. Kruse, H.; Grimme, S., A geometrical correction for the inter- and intra-molecular 

basis set superposition error in Hartree-Fock and density functional theory calculations 

for large systems. The Journal of Chemical Physics 2012, 136 (15), 154101. 

158. Sanahuja, A.; Cesari, E., Heat of Solution of Kcl in Water at 303.15 K. 

Thermochimica Acta 1985, 85 (Apr), 163-166. 

159. Lorenz, H., Solubility and Solution Equilibria in Crystallization. In 

Crystallization: Basic Concepts and Industrial Applications, Beckmann, W., Ed. Wiley-

VCH: Weinheim, 2013; pp 35-74. 

160. Verevkin, S. P.; Emel’yanenko, V. N., Transpiration method: Vapor pressures and 

enthalpies of vaporization of some low-boiling esters. Fluid Phase Equilibria 2008, 266 

(1–2), 64 - 75. 

161. Verevkin, S. P.; Sazonova, A. Y.; Emel’yanenko, V. N.; Zaitsau, D. H.; 

Varfolomeev, M. A.; Solomonov, B. N.; Zherikova, K. V., Thermochemistry of Halogen-

Substituted Methylbenzenes. Journal of Chemical & Engineering Data 2015, 60 (1), 89-

103. 

162. Verevkin, S. P.; Ralys, R. V.; Zaitsau, D. H.; Emel'yanenko, V. N. S., C., Express 

thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile 

molecular and ionic compounds. Thermochimica Acta 2012, 538, 55 - 62. 

163. Kennedy, C. A.; Stancescu, M.; Marriott, R. A.; White, M. A., Recommendations 

for accurate heat capacity measurements using a Quantum Design physical property 

measurement system. Cryogenics 2007, 47 (2), 107-112. 

164. Lashley, J. C.; Hundley, M. F.; Migliori, A.; Sarrao, J. L.; Pagliuso, P. G.; Darling, 

T. W.; Jaime, M.; Cooley, J. C.; Hults, W. L.; Morales, L.; Thoma, D. J.; Smith, J. L.; 

Boerio-Goates, J.; Woodfield, B. F.; Stewart, G. R.; Fisher, R. A.; Phillips, N. E., Critical 

examination of heat capacity measurements made on a Quantum Design physical 

property measurement system. Cryogenics 2003, 43 (6), 369-378. 

165. Hwang, J. S.; Lin, K. J.; Tien, C., Measurement of heat capacity by fitting the 

whole temperature response of a heat-pulse calorimeter. Rev Sci Instrum 1997, 68 (1), 

94–101. 

166. Le Parlouër, P., Simultaneous TG-DSC: a new technique for thermal analysis. 

Thermochimica Acta 1987, 121, 307-322. 

167. Ditmars, D. A.; Ishihara, S.; Chang, S. S.; Bernstein, G., Measurement of the 

relative enthalpy of pure a-Al2O3 (NBS heat capacity and enthalpy Standard Reference 

Material No. 720) from 273 to 1173. Journal of Research of the National Bureau of 

Stondards 1982, 87, 159-163. 

168. Robie, R. A.; Hemingway, B., Apparatus and Methods for Low Temperature Heat 



Literature 147 

 

 

Capacity Measurements. The Heat Capacity of Standard Benzoic Acid. Geological 

Survey Professional Paper 1972, 755. 

169. Buchholz, H.; Seidel-Morgenstern, A.; Lorenz, H., A Contribution to the Solution 

Thermodynamics of Chiral Lactide. Chemical Engineering & Technology 2017, 40 (7), 

1268-1275. 

170. Buchholz, H. K.; Stein, M., Accurate lattice energies of organic molecular crystals 

from periodic turbomole calculations. Journal of Computational Chemistry 2018. 

171. De Kruif, C. G.; Blok, J. G., The vapour pressure of benzoic acid. Journal of 

Chemical Thermodynamics 1982, 14 (3), 201-206. 

172. Ruzicka, K.; Fulem, M.; Ruzicka, V., Recommended vapor pressure of solid 

naphthalene. Journal of Chemical and Engineering Data 2005, 50 (6), 1956-1970. 

173. Acree, W.; Chickos, J. S., Phase Transition Enthalpy Measurements of Organic 

and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and 

Fusion Enthalpies from 1880 to 2015. Part 2. C11–C192. Journal of Physical and 

Chemical Reference Data 2017, 46 (1), 013104. 

174. Chirico, R. D.; Knipmeyer, S. E.; Steele, W. V., Heat capacities, enthalpy 

increments, and derived thermodynamic functions for naphthalene between the 

temperatures 5K and 440K. The Journal of Chemical Thermodynamics 2002, 34 (11), 

1873-1884. 

175. Gamsjäger, H.; Lorimer John, W.; Salomon, M.; Shaw David, G.; Tomkins 

Reginald, P. T., The IUPAC-NIST Solubility Data Series: A guide to preparation and use 

of compilations and evaluations (IUPAC Technical Report). In Pure and Applied 

Chemistry, 2010; Vol. 82, pp 1137--1159. 

176. Acree, W. E., IUPAC-NIST Solubility Data Series. 98. Solubility of Polycyclic 

Aromatic Hydrocarbons in Pure and Organic Solvent Mixtures: Revised and Updated. 

Part 1. Binary Solvent Mixtures. Journal of Physical and Chemical Reference Data 2013, 

42 (1). 

177. Acree, W. E., IUPAC-NIST Solubility Data Series. 99. Solubility of Benzoic Acid 

and Substituted Benzoic Acids in Both Neat Organic Solvents and Organic Solvent 

Mixtures. Journal of Physical and Chemical Reference Data 2013, 42 (3). 

178. Dickhut, R. M.; Andren, A. W.; Armstrong, D. E., Naphthalene Solubility in 

Selected Organic Solvent-Water Mixtures. Journal of Chemical and Engineering Data 

1989, 34 (4), 438-443. 

179. Yalkowsky, S. H., Handbook of Aqueous Solubility Data. CRC Press: Boca Raton, 

FL, 2003. 

180. Maryott, A. A.; Smith, E. R. Table of dielectric constants of pure liquids; National 

Bureau of Standards: Gaithersbur, MD, 1951. 

181. Li, R.; Zeitler, J. A.; Tomerini, D.; Parrott, E. P. J.; Gladden, L. F.; Day, G. M., A 

study into the effect of subtle structural details and disorder on the terahertz spectrum of 

crystalline benzoic acid. Physical Chemistry Chemical Physics 2010, 12 (20), 5329-5340. 

182. Cysewski, P., Pressure-imposed changes of benzoic acid crystals. Journal of 

Molecular Modeling 2015, 21 (4), 83. 

183. McCullough, J. P.; Finke, H. L.; Messerly, J. F.; Todd, S. S.; Kincheloe, T. C.; 

Waddington, G., The Low-Temperature Thermodynamic Properties of Naphthalene, l-

Methylnaphthalene, 2-Methylnaphthalene, 1,2,3,4-Tetrahydronaphthalene,trans-



Literature 148 

 

Decahydronaphthalene and cis-Decahydronaphthalene. The Journal of Physical 

Chemistry 1957, 61 (8), 1105-1116. 

184. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-

energy formula into a functional of the electron density. Physical Review B 1988, 37 (2), 

785-789. 

185. Grimme, S., Semiempirical GGA-type density functional constructed with a long-

range dispersion correction. Journal of Computational Chemistry 2006, 27 (15), 1787-

1799. 

186. Ponomarev, V. I.; Filipenko, O. S.; Atovmyan, L. O., Crystal and Molecular 

Structure of Naphthalene at -150 degrees. Kristallografiya 1976, 21 (2), 392-394. 

187. Feld, R.; Lehmann, M. S.; Muir, K. W.; Speakman, J. C., The crystal structure of 

Benzoic Acid: a redetermination with X-rays at room temperature; a summary of neutron-

diffraction work at temperatures down to 5 K. Zeitschrift für Kristallographie - 

Crystalline Materials 1981, 157, 215. 

188. Fedorov, I. A.; Zhuravlev, Y. N.; Berveno, V. P., Electronic structure and 

chemical bond in naphthalene and anthracene. Physical Chemistry Chemical Physics 

2011, 13 (13), 5679-5686. 

189. Sure, R.; Brandenburg, J. G.; Grimme, S., Small Atomic Orbital Basis Set First-

Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A 

Critical Analysis of Error Sources. ChemistryOpen 2016, 5 (2), 94-109. 

190. Capelli, S. C.; Albinati, A.; Mason, S. A.; Willis, B. T. M., Molecular Motion in 

Crystalline Naphthalene:  Analysis of Multi-Temperature X-Ray and Neutron Diffraction 

Data. The Journal of Physical Chemistry A 2006, 110 (41), 11695-11703. 

191. Bruno, G.; Randaccio, L., A refinement of the benzoic acid structure at room 

temperature. Acta Crystallographica Section B 1980, 36 (7), 1711-1712. 

192. Kampermann, S. P.; Ruble, J. R.; Craven, B. M., The Charge-Density Distribution 

in  Hexamethylenetetramine at 120 K. Acta Crystallographica Section B-Structural 

Science 1994, 50, 737-741. 

193. Leviel, J. L.; Auvert, G.; Savariault, J. M., Hydrogen-Bon Studies - A Neutron-

Diffraction Study of the Structures of Succinic Acid at 300 and 77 K. Acta 

Crystallographica Section B-Structural Science 1981, 37 (DEC), 2185-2189. 

194. Brandenburg, J. G.; Grimme, S., Accurate Modeling of Organic Molecular 

Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). J Phys 

Chem Lett 2014, 5 (11), 1785-1789. 

195. Riley, K. E.; Op't Holt, B. T.; Merz, K. M., Critical Assessment of the 

Performance of Density Functional Methods for Several Atomic and Molecular 

Properties. Journal of Chemical Theory and Computation 2007, 3 (2), 407-433. 

196. Bučko, T.; Lebègue, S.; Gould, T.; Ángyán, J. G., Many-body dispersion 

corrections for periodic systems: an efficient reciprocal space implementation. Journal of 

Physics: Condensed Matter 2016, 28 (4), 045201. 

197. Emel'yanenko, V. N.; Zaitsau, D. H.; Shoifet, E.; Meurer, F.; Verevkin, S. P.; 

Schick, C.; Held, C., Benchmark Thermochemistry for Biologically Relevant Adenine 

and Cytosine. A Combined Experimental and Theoretical Study. Journal of Physical 

Chemistry A 2015, 119 (37), 9680-9691. 

198. Sonnefeld, W. J.; Zoller, W. H.; May, W. E., Dynamic Coupled-Column Liquid-



Literature 149 

 

 

Chromatrographic Determination of Ambient-Temperature Vapor-Pressures of 

Polynuclear Aromatic-Hydrocarbons. Analytical Chemistry 1983, 55 (2), 275-280. 

199. Bazyleva, A. B.; Blokhin, A. V.; Kabo, G. J.; Charapennikau, M. B.; 

Emel'yanenko, V. N.; Verevkin, S. P.; Diky, V., Thermodynamic Properties of 

Adamantane Revisited. Journal of Physical Chemistry B 2011, 115 (33), 10064-10072. 

200. De Wit, H. G. M.; Van Miltenburg, J. C.; De Kruif, C. G., Thermodynamic 

properties of molecular organic crystals containing nitrogen, oxygen, and sulphur 1. 

Vapour pressures and enthalpies of sublimation. The Journal of Chemical 

Thermodynamics 1983, 15 (7), 651-663. 

201. Verevkin, S. P.; Emel'yanenko, V. N.; Notario, R.; Roux, M. V.; Chickos, J. S.; 

Liebman, J. F., Rediscovering the Wheel. Thermochemical Analysis of Energetics of the 

Aromatic Diazines. Journal of Physical Chemistry Letters 2012, 3 (23), 3454-3459. 

202. Jimenez, P.; Roux, M. V.; Turrion, C.; Gomis, F., Thermochemical Properties of 

N-Heterocyclic Compounds 1. Enthalpies of Combustion, Vapor-Pressures and 

Enthalpies of Sublimation, and Enthalpies of Formation of Pyrazole, Imadizole, Indazole 

and Benzimidazole. Journal of Chemical Thermodynamics 1987, 19 (9), 985-992. 

203. Brunetti, B.; Piacente, V.; Portalone, G., Sublimation enthalpies of some methyl 

derivatives of uracil from vapor pressure measurements. Journal of Chemical and 

Engineering Data 2000, 45 (2), 242-246. 

204. Davies, M.; Jones, A. H., Lattice Energies of some N-Methyl Amides and of some 

Carbamates. Transactions of the Faraday Society 1959, 55 (8), 1329-1332. 

205. Booth, A. M.; Markus, T.; McFiggans, G.; Percival, C. J.; McGillen, M. R.; 

Topping, D. O., Design and construction of a simple Knudsen Effusion Mass 

Spectrometer (KEMS) system for vapour pressure measurements of low volatility 

organics. Atmospheric Measurement Techniques 2009, 2 (2), 355-361. 

206. Dewit, H. G. M.; Bouwstra, J. A.; Blok, J. G.; Dekruif, C. G., Vapor-Pressures 

and Lattice Energies of Oxalic-Acid, Mesotartaric Acid, Phloroglucinol, Myoinositol, 

and their Hydrates. Journal of Chemical Physics 1983, 78 (3), 1470-1475. 

207. Bradley, R. S.; Cotson, S., The Vapor Pressure and Lattice Energy of Hydrogen-

Bonded Crystals. 2. Alpha-Anhydrous and Beta-Anhydrous Oxalic Acid and Tetragonal 

Pentaerythritol. Journal of the Chemical Society 1953,  (JUN), 1684-1688. 

208. Cappa, C. D.; Lovejoy, E. R.; Ravishankara, A. R., Determination of evaporation 

rates and vapor pressures of very low volatility compounds: A study of the C-4-C-10 and 

C-12 dicarboxylic acids. Journal of Physical Chemistry A 2007, 111 (16), 3099-3109. 

209. Emel'yanenko, V. N.; Kabo, G. J.; Verevkin, S. P., Measurement and prediction 

of thermochemical properties: Improved increments for the estimation of enthalpies of 

sublimation and standard enthalpies of formation of alkyl derivatives of urea. Journal of 

Chemical and Engineering Data 2006, 51 (1), 79-87. 

210. McDonagh, J. L.; Palmer, D. S.; Mourik, T. v.; Mitchell, J. B. O., Are the 

Sublimation Thermodynamics of Organic Molecules Predictable? Journal of Chemical 

Information and Modeling 2016, 56 (11), 2162-2179. 

211. Ouchi, T.; Ohya, Y., Design of lactide copolymers as biomaterials. Journal of 

Polymer Science Part A: Polymer Chemistry 2004, 42 (3), 453-462. 

212. Hylton, R. K.; Tizzard, G. J.; Threlfall, T. L.; Ellis, A. L.; Coles, S. J.; Seaton, C. 

C.; Schulze, E.; Lorenz, H.; Seidel-Morgenstern, A.; Stein, M.; Price, S. L., Are the 



Literature 150 

 

Crystal Structures of Enantiopure and Racemic Mandelic Acids Determined by Kinetics 

or Thermodynamics? Journal of the American Chemical Society 2015, 137 (34), 11095-

11104. 

213. Le Minh, T.; Langermann, J. v.; Lorenz, H.; Seidel-Morgenstern, A., 

Enantiomeric 3-Chloromandelic Acid System: Binary Melting Point Phase Diagram, 

Ternary Solubility Phase Diagrams and Polymorphism. Journal of Pharmaceutical 

Sciences 2010, 99 (9), 4084-4095. 

214. Braun, D. E.; McMahon, J. A.; Koztecki, L. H.; Price, S. L.; Reutzel-Edens, S. 

M., Contrasting Polymorphism of Related Small Molecule Drugs Correlated and Guided 

by the Computed Crystal Energy Landscape. Crystal Growth & Design 2014, 14 (4), 

2056-2072. 

215. Braun, D. E.; Ardid-Candel, M.; D'Oria, E.; Karamertzanis, P. G.; Arlin, J. B.; 

Florence, A. J.; Jones, A. G.; Price, S. L., Racemic Naproxen: A Multidisciplinary 

Structural and Thermodynamic Comparison with the Enantiopure Form. Crystal Growth 

& Design 2011, 11 (12), 5659-5669. 

216. Le Minh, T.; Lorenz, H.; Seidel-Morgenstern, A., Enantioselective Crystallization 

Exploiting the Shift of Eutectic Compositions in Solid-Liquid Phase Diagrams. Chemical 

Engineering & Technology 2012, 35 (6), 1003-1008. 

217. Belen'kaya, B. G.; Bel'skii, V. K.; Dement'ev, A. I.; Sakharova, V. I.; Chernikova, 

N. Y., Crystal and Molecular Structures of Glycolide and Lactide: Association through 

CH...O Hydrogen Bonds. Crystallography Reports 1997, 42 (3), 449-452. 

218. van Hummel, G. J.; Harkema, S.; Kohn, F. E.; Feijen, J., Structure of 3,6-

dimethyl-1,4-dioxane-2,5-dione [D-,D-(L-,L-)lactide]. Acta Crystallographica Section B 

Structural Crystallography and Crystal Chemistry 1982, 38 (5), 1679-1681. 

219. Ravikumar, K.; Rajan, S. S.; Pattabhi, V., Structure of Naproxen, C14h14o3. Acta 

Crystallogr C 1985, 41 (Feb), 280-282. 

220. Coles, S. J.; Threlfall, T. L.; Tizzard, G. J., The Same but Different: Isostructural 

Polymorphs and the Case of 3-Chloromandelic Acid. Crystal Growth & Design 2014, 14 

(4), 1623-1628. 

221. Lebedev, B. V.; Kulagina, T. G.; Kiparisova, E. G., The thermodynamic 

properties of L-lactide in the temperature range 0-430 K. Zhurnal Fizicheskoi Khimii 

1999, 73 (4), 609-616. 

222. Le Minh, T.; Von Langermann, J.; Lorenz, H.; Seidel-Morgenstern, A., 

Enantiomeric 3-Chloromandelic Acid System: Binary Melting Point Phase Diagram, 

Ternary Solubility Phase Diagrams and Polymorphism. Journal of Pharmaceutical 

Sciences 2010, 99 (9), 4084-4095. 

223. Zhang, Y.; Ray, A.; Rohani, S., Measurement and prediction of phase diagrams 

of the enantiomeric 3-chloromandelic acid system. Chemical Engineering Science 2009, 

64 (2), 192-197. 

224. Bergström, C. A. S. a. N. U. a. L. K. a. A. P., Molecular Descriptors Influencing 

Melting Point and Their Role in Classification of Solid Drugs. Journal of Chemical 

Information and Computer Sciences 2003, 43 (4), 1177-1185. 

225. Le Minh, T. Designing crystallization based-enantiomeric separation for chiral 

compound-forming systems in consideration of polymorphism and solvate formation. 

PhD Thesis, Dr. Hut, München, 2014. 



Literature 151 

 

 

226. Kalugina, T. G.; Lebedev, Y. G.; Lyudvig, Y. B.; Barskaya, I. G., 

Thermodynamics of dl-Lactide, Polylactide and Polymerization of dl-Lactide in the range 

of 0-430 K. Polymer Science U.S.S.R. 1982, 24 (7), 1702-1708. 

227. de Barros, T. M. V. R.; Santos, R. C.; Fernandes, A. C.; da Piedade, M. E. M., 

Accuracy and precision of heat capacity measurements using a heat flux differential 

scanning calorimeter. Thermochimica Acta 1995, 269-270, 51-60. 

228. Nyman, J.; Day, G. M., Static and lattice vibrational energy differences between 

polymorphs. Crystengcomm 2015, 17 (28), 5154-5165. 

229. Abdulla, M.; Refson, K.; Friend, R. H.; Haynes, P. D., A first-principles study of 

the vibrational properties of crystalline tetracene under pressure. J Phys-Condens Mat 

2015, 27 (37). 

230. Emel'yanenko, V. N.; Verevkin, S. P.; Pimerzin, A. A., The thermodynamic 

properties of DL- and L-lactides. Russ J Phys Chem a+ 2009, 83 (12), 2013-2021. 

231. Červinka, C.; Fulem, M.; Stoffel, R. P.; Dronskowski, R., Thermodynamic 

Properties of Molecular Crystals Calculated within the Quasi-Harmonic Approximation. 

The Journal of Physical Chemistry A 2016, 120 (12), 2022-2034. 

232. Quantum Design, S. V. R., San Diego, CA 92121. 

233. Dachs, E.; Benisek, A., A sample-saving method for heat capacity measurements 

on powders using relaxation calorimetry. Cryogenics 2011, 51 (8), 460-464. 

234. Heit, Y. N.; Beran, G. J. O., How important is thermal expansion for predicting 

molecular crystal structures and thermochemistry at finite temperatures? Acta 

Crystallographica Section B Structural Science, Crystal Engineering and Materials 

2016, 72 (4), 514-529. 

235. Leclercq, M.; Collet, A.; Jacques, J., Etude des Melanges d'Antipodes Optiques - 

XII. Tetrahedron 1976, 32, 821-828. 

236. Nyman, J.; Day, G. M., Modelling temperature-dependent properties of 

polymorphic organic molecular crystals. Phys. Chem. Chem. Phys. 2016, 18 (45), 31132-

31143. 

237. Paukov, I. E.; Kovalevskaya, Y. A.; Boldyreva, E. V., Low-temperature heat 

capacity of L- and DL-phenylglycines. J Therm Anal Calorim 2012, 108 (3), 1311-1316. 

238. Paukov, I. E.; Kovalevskaya, Y. A.; Boldyreva, E. V., Low-temperature 

thermodynamic properties of L- and DL-valines. Journal of Thermal Analysis and 

Calorimetry 2013, 111 (1), 905-910. 

239. Drebushchak, V. A.; Kovalevskaya, Y. A.; Paukov, I. E.; Boldyreva, E. V., Heat 

capacity of D- and DL-serine in a temperature range of 5.5 to 300 K. J Therm Anal 

Calorim 2007, 89 (2), 649-654. 

240. Makhatadze, G. I., Heat capacities of amino acids, peptides and proteins. 

Biophysical Chemistry 1998, 71 (2-3), 133-156. 

241. Paukov, I. E.; Kovalevskaya, Y. A.; Boldyreva, E. V., Low-temperature 

thermodynamic properties of L-cysteine. J Therm Anal Calorim 2008, 93 (2), 423-428. 

242. Paukov, I. E.; Kovalevskaya, Y. A.; Boldyreva, E. V., Low-temperature 

thermodynamic properties of dl-cysteine. J Therm Anal Calorim 2010, 100 (1), 295-301. 

243. Donahue, M.; Botonjic-Sehic, E.; Wells, D.; Brown, C. W., Understanding 

Infrared and Raman Spectra of Pharmaceutical Polymorphs. American Pharmaceutical 



Literature 152 

 

Review 2011, 14 (2). 

244. Perlovich, G. L.; Kurkov, S. V.; Kinchin, A. N.; Bauer-Brandl, A., 

Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other 

NSAIDs. European Journal of Pharmaceutics and Biopharmaceutics 2004, 57 (2), 411-

420. 

245. Klamt, A.; Mennucci, B.; Tomasi, J.; Barone, V.; Curutchet, C.; Orozco, M.; 

Luque, F. J., On the Performance of Continuum Solvation Methods. A Comment on 

“Universal Approaches to Solvation Modeling”. Accounts of Chemical Research 2009, 

42, 489-492. 

246. Hopfinger, A. J.; Esposito, E. X.; Llinas, A.; Glen, R. C.; Goodman, J. M., 

Findings of the Challenge To Predict Aqueous Solubility. Journal of Chemical 

Information and Modeling 2009, 49 (1), 1-5. 

247. Gilks, S. E.; Davey, R. J.; Mughal, R. K.; Sadiq, G.; Black, L., Crystallization of 

2-Chloromandelic Acid: Solubility, Formation of the Metastable Conglomerate, and Use 

of a Nonaqueous Emulsion To Prepare an Enantiomerically Enriched Product. Crystal 

Growth & Design 2013, 13 (10), 4323-4329. 

248. Polenske, D.; Lorenz, H., Solubility and Metastable Zone Width of the Methionine 

Enantiomers and Their Mixtures in Water. Journal of Chemical & Engineering Data, 

2009, 54 (8), 2277–2280. 

249. Paluch, A. S.; Parameswaran, S.; Liu, S.; Kolavennu, A.; Mobley, D. L., 

Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, 

and caffeine in binary water/ethanol mixtures via molecular simulation. Journal of 

Chemical Physics 2015, 142 (4). 

250. Liu, S.; Cao, S.; Hoang, K.; Young, K. L.; Paluch, A. S.; Mobley, D. L., Using 

MD Simulations To Calculate How Solvents Modulate Solubility. Journal of Chemical 

Theory and Computation 2016, 12 (4), 1930-1941. 

251. Furche, F.; Ahlrichs, R.; Hattig, C.; Klopper, W.; Sierka, M.; Weigend, F., 

Turbomole. Wiley Interdisciplinary Reviews-Computational Molecular Science 2014, 4 

(2), 91-100. 

 

 



Appendix 153 

 

7 Appendix 

 

7.1 Primary experimental data 

 

7.1.1 Heat capacities at high temperatures (DSC) 

 

Table 7.1: Experimental high temperature (DSC) heat capacities of lactide. 

(S)-lactide (RS)-lactide 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

Heat capacities of the crystalline solid 

298.2 189.0  298.2 289.6  

297.3 187.4 0.3 298.8 190.2 0.2 

304.4 193.4 0.5 308.8 194.2 0.2 

311.4 194.8 0.6 318.8 200.2 0.3 

318.4 201.3 0.7 328.8 204.6 0.1 

325.3 203.3 0.5 338.8 206.5 0.1 

332.3 206.3 0.5 348.8 213.5 0.0 

339.3 208.6 0.6 358.8 215.9 0.2 

346.3 212.8 0.7 368.8 223.1 0.2 

353.3 218.7 0.2 378.8 228.1 0.2 

Heat capacities of the melt 

380.0 282.3 0.7 408.7 291.1 3.2 

390.0 288.4 0.8 418.7 293.1 2.2 

398.8 291.6 0.4 428.8 294.1 3.0 

408.7 297.0 -    

418.7 296.3 -    

428.7 301.9 -    

 

Table 7.2: Experimental high temperature (DSC) heat capacities of naproxen. 

(S)-naproxen (RS)-naproxen 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

Heat capacities of the crystalline solid 

298.2 295.6  298.2 296.9  

298.4 296.3 4.1 298.4 297.4 1.6 
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307.8 303.2 3.1 307.8 304.9 1.6 

317.0 314.3 3.7 317.1 316.8 1.5 

326.3 320.7 3.2 326.3 322.9 1.5 

335.6 329.7 4.9 335.6 331.0 1.7 

344.9 335.2 4.1 344.9 338.1 1.5 

354.2 346.4 3.7 354.2 349.5 1.4 

363.5 353.5 3.9 363.5 356.8 1.4 

372.7 362.1 5.7 372.7 366.2 1.5 

382.0 366.7 5.3 382.0 372.2 1.0 

391.3 379.5 5.0 391.3 383.5 1.5 

400.6 389.6 6.7 400.6 393.0 1.0 

Heat capacities of the melt 

436.7 490.8 0.7 436.6 488.3 1.4 

442.4 504.4 1.2 442.2 497.9 1.3 

448.1 509.3 0.8 447.7 505.2 0.8 

453.8 509.7 1.2 452.1 501.7 2.0 

465.2 519.1 0.6 453.8 504.6 0.5 

   461.7 516.9 1.1 

   465.2 516.0 0.2 

   470.9 526.8 1.0 

   480.0 534.4 0.5 

   489.2 541.4 0.4 

 

Table 7.3: Experimental high temperature (DSC) heat capacities of 3-chloromandelic acid 

(3ClMA). 

(R)-3ClMA (RS)-3ClMA 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

Heat capacities of the crystalline solid 

298.2 211.1  298.2 201.9  

305.1 216.2 1.4 298.4 202.2 1.2 

312.6 218.9 1.6 307.6 206.6 1.2 

320.1 220.2 1.7 316.7 211.8 1.2 

327.6 225.1 1.6 325.9 216.6 1.3 

335.1 229.8 1.7 335.1 220.2 1.7 

342.6 233.8 1.7 344.2 225.9 1.6 

350 238.2 1.8 351.7 229.5 1.8 

357.6 241.8 1.5 360.9 233.8 1.4 

   370.1 239.9 1.7 

Heat capacities of the melt 

297.5 309.1 - 360.1 331.5 1.4 

305.1 314.0 - 369.6 333.9 - 

320.1 329.4 - 379.1 333.7 1.0 
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350.0 657.4 - 388.8 333.8 0.0 

357.6 334.7 - 396.3 334.6 4.7 

365.1 330.9 - 400.1 338.6 3.0 

386.3 343.6 4.6 407.6 335.8 2.1 

391.3 349.9 2.2 411.3 344.1 2.1 

396.3 349.8 1.7 417.2 340.3 2.3 

401.3 348.8 3.2 428.8 341.1 - 

406.3 343.8 3.7    

411.3 345.6 6.3    

 

Table 7.4: Experimental high temperature (DSC) heat capacities of mandelic acid. 

(S)-mandelic acid (RS)-mandelic acid 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

Heat capacities of the crystalline solid 

298.2 187.0  298.2 182.4  

298.7 186.9 0.7 298.7 182.2 0.6 

306.7 192.8 0.5 306.7 187.3 0.8 

314.7 197.4 0.4 314.7 192.4 0.1 

322.7 202.2 0.2 322.7 196.4 0.9 

330.7 207.4 0.4 330.7 199.7 1.0 

338.7 211.7 0.3 338.7 204.7 0.9 

346.7 216.9 0.2 346.7 208.4 0.2 

354.7 221.6 0.5 354.7 213.9 1.1 

362.7 226.9 0.5 362.7 218.6 1.1 

370.7 232.6 0.7 370.7 222.5 1.0 

 

7.1.2 Solid-state heat capacities at low temperatures (DHCP) 

 

Table 7.5: Experimental low temperature (DHCP) heat capacities of naproxen. 

(S)-naproxen (RS)-naproxen 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

1.83 0.03 0.00 1.82 0.04 0.00 

2.94 0.11 0.00 2.93 0.14 0.00 

4.04 0.28 0.00 4.02 0.34 0.00 

5.13 0.58 0.00 5.11 0.69 0.00 

6.21 1.05 0.01 6.18 1.20 0.00 

7.29 1.70 0.00 7.26 1.88 0.00 

8.36 2.51 0.01 8.33 2.70 0.00 



Appendix 156 

 

9.43 3.48 0.03 9.39 3.65 0.01 

10.48 4.57 0.01 10.44 4.69 0.01 

11.55 5.84 0.02 11.52 5.86 0.02 

12.64 7.15 0.02 12.61 7.16 0.02 

13.70 8.59 0.03 13.67 8.48 0.02 

14.80 10.16 0.03 14.76 10.00 0.05 

15.89 11.71 0.04 15.87 11.40 0.02 

16.99 13.38 0.03 16.94 12.84 0.06 

18.08 15.08 0.10 18.04 14.51 0.03 

19.19 16.63 0.02 19.12 16.00 0.04 

20.31 18.34 0.05 20.23 17.62 0.01 

28.25 30.36 0.07 28.15 29.42 0.02 

36.20 41.82 0.02 36.01 41.64 0.08 

44.12 52.72 0.01 43.99 52.48 0.32 

52.05 62.68 0.25 51.89 62.67 0.28 

59.81 71.98 0.05 59.65 71.94 0.18 

67.68 80.50 0.01 67.46 81.09 0.21 

75.52 88.71 0.04 75.32 89.56 0.30 

83.38 96.22 0.47 83.18 97.53 0.29 

91.31 103.50 0.47 91.13 104.96 0.39 

99.22 110.43 0.45 99.06 111.88 0.23 

107.14 117.25 0.33 106.90 119.31 0.21 

115.05 123.76 0.02 114.80 126.01 0.21 

122.91 130.27 0.06 122.66 133.11 0.52 

130.74 136.46 0.54 130.51 139.82 0.54 

138.62 142.56 0.51 138.43 145.84 0.11 

146.49 148.78 0.33 146.29 152.20 0.10 

154.39 154.37 0.59 154.19 158.74 0.47 

162.25 160.46 0.15 162.10 165.16 0.84 

170.22 166.40 0.73 169.98 170.91 1.70 

178.05 172.75 0.13 177.89 178.23 0.65 

185.93 178.46 0.15 185.74 184.44 1.92 

193.76 184.66 0.48 193.57 190.82 1.55 

201.61 190.72 0.48 201.34 198.48 0.05 

 

Table 7.6: Experimental low temperature (DHCP) heat capacities of 3-chloromandelic acid 

(3ClMA). 

(R)-3ClMA (RS)-3ClMA 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

T  

/ K 

CP,exp  

/ J∙mol-1∙K-1 

Abs dev. 

/ J∙mol-1∙K-1 

1.83 0.02 0.00 1.83 0.04 0.00 

2.94 0.09 0.00 2.93 0.18 0.00 

4.04 0.25 0.00 4.03 0.50 0.01 

5.14 0.56 0.00 5.12 1.05 0.01 

6.23 1.01 0.02 6.20 1.81 0.00 
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7.30 1.61 0.02 7.28 2.74 0.02 

8.37 2.34 0.00 8.35 3.78 0.00 

9.44 3.17 0.02 9.43 4.94 0.02 

10.50 4.10 0.01 10.50 6.11 0.03 

11.57 5.13 0.04 11.58 7.40 0.05 

12.65 6.28 0.00 12.66 8.78 0.01 

13.72 7.44 0.02 13.71 10.16 0.01 

14.86 8.78 0.01 14.84 11.62 0.01 

15.92 10.08 0.01 15.91 12.97 0.01 

17.03 11.38 0.14 16.99 14.41 0.02 

18.12 12.79 0.01 18.09 15.78 0.03 

19.19 14.16 0.01 19.18 17.20 0.01 

20.28 15.50 0.04 20.27 18.60 0.02 

28.20 25.62 0.08 28.18 28.46 0.02 

36.07 35.27 0.12 36.13 36.77 0.11 

43.95 43.32 0.06 44.01 44.40 0.06 

51.84 50.66 0.04 51.92 51.36 0.08 

59.73 57.26 0.02 59.75 57.40 0.01 

67.61 63.42 0.15 67.63 63.05 0.11 

75.52 69.08 0.11 75.54 68.04 0.08 

83.42 74.21 0.11 83.46 72.68 0.04 

91.31 79.36 0.02 91.34 77.47 0.04 

99.19 84.29 0.11 99.23 81.98 0.05 

107.07 89.20 0.19 107.12 86.57 0.08 

114.96 93.76 0.08 115.02 90.99 0.12 

122.83 98.40 0.19 122.87 95.19 0.09 

130.70 102.86 0.05 130.75 99.65 0.06 

138.60 107.18 0.13 138.66 104.26 0.06 

146.48 111.44 0.20 146.56 108.05 0.17 

154.36 116.12 0.16 154.43 112.67 0.20 

162.24 119.85 0.05 162.30 117.12 0.26 

170.12 124.48 0.58 170.18 120.82 0.12 

178.00 128.70 0.12 178.08 125.13 0.44 

185.86 133.40 0.14 185.93 129.72 0.34 

193.67 137.77 0.28 193.78 133.53 0.18 

201.48 141.69 0.26 201.56 138.03 0.27 
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7.1.3 Solubilities in pure solvents 

 

Table 7.7: (1) Experimental solubilities (mole fraction) and (3) ∆Gsol at 298 K, (4) experimental 

∆Gsolv and (5) calculated ∆Gsolv via the COMSO-RS model. Furthermore, recalculations of the 

sublimation free energies ∆Gsubl,sol from the experimental solution free energies and calculated 

solvation free energies (∆Gsubl,sol = ∆Gsol - ∆Gsolv,inf). 

   
xexp 

 

refs 

 

∆Gsol 

(-RT ln x) 

∆Gsolv 

(exp) 

∆Gsolv 

(inf) 

∆Gsubl.sol  

 

    / molar  / kJ mol-1 / kJ mol-1 / kJ mol-1 / kJ mol-1 

Lactide   1 2 3 4 5 6 

Toluene 
S 0.034  8.35 -24.4 -24.66 33.01 

RS 0.013  10.68 -24.3 -24.66 35.34 

Acetone 
S 0.293 225 3.04 -29.7 -31.13 34.17 

RS 0.144 225 4.81 -30.2 -31.13 35.94 

2-propanol 
S 0.021 225 9.53 -23.2 -26.43 35.96 

RS 0.010 225 11.50 -23.46 -26.43 37.93 

Ethanol 
S 0.028  8.83 -23.9 -26.89 35.72 

RS 0.011  11.18 -23.8 -26.89 38.07 

Ethyl 

acetate 

S 0.191 225 4.11 -28.7 -26.72 30.83 

RS 0.082 225 6.21 -28.9 -26.72 32.93 

Average 
S      33.94±2.66 

RS      36.04±1.89 

           

Naproxen   1 2 3  4 5 

Ethanol 
S 0.015  10.48 -49.8 -50.53 61.00 

RS 0.010  11.45 -51.2 -50.53 61.97 

Heptane 

S 
5.3E-

05  
24.41 

-35.8 

-35.53 59.95 

RS 
3.0E-

05  
25.79 

-36.8 

-35.53 61.33 

ACN 
S 0.0065  12.49 -47.7 -50.32 62.82 

RS 0.0045  13.37 -49.2 -50.32 63.70 

Ethyl 

actetate 

S 0.026  9.05 -51.2 -55.12 64.17 

RS 0.018  9.95 .52.7 -55.12 65.07 

Average 
S      61.98±1.63 

RS      63.02±1.47 

           

3ClMA   1 2 3  4 5 

water 
R 0.0003 225 20.39 n.a. -26.44 46.83 

RS 0.0001 225 22.08 n.a. -26.44 48.51 

Tol/EA  

(80/20 

wt%) 

R 0.050 225 7.43 n.a. -41.11 48.54 

RS 0.027 225 8.98 n.a. -41.11 50.09 

Average 
R      47.68±0.85 

RS      49.30±0.79 
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7.1.4 Solubilities in solvent mixtures 

 

Table 7.8: Mole fraction solubility, xi, of lactide in mixtures of ethanol and toluene at 25 °C 

EtOH  

/ wt  

(S)-lactide  

/ xi  

err  

  

(RS)-lactide  

/ xi  

err  

  

0  0.0368  0.0024  0.0141  0.0003  

0.2  0.0848  0.0057  0.0289  0.0003  

0.4  0.0748  0.0020  0.0264  0.0003  

0.6  0.0587  0.0023  0.0209  0.0016  

0.8  0.0419  0.0025  0.0163  0.0003  

1  0.0258  0.0014  0.0110  0.0007  

 

Table 7.9: Mole fraction solubility, xi, of naproxen in mixtures of ethanol and toluene, water and 

acetonitrile at 30 °C.  

EtOH 

/ wt 

(S)-naproxen 

/ xi 

err 

 

(RS)-naproxen 

/ xi 

err 

 

Mixtures of ethanol and toluene  

0 0.0040 0.0000 0.0019 0.0000 

0.2 0.0495 0.0003 0.0352 0.0001 

0.4 0.0559 0.0002 0.0381 0.0004 

0.6 0.0459 0.0009 0.0314 0.0004 

0.6 0.0319 0.0004 0.0209 0.0001 

1 0.0170 0.0004 0.0111 0.0005 

Mixtures of ethanol and water  

0 - - - - 

0.1 0.0001 0.0001 0.0000 0.0000 

0.5 0.0015 0.0000 0.0012 0.0000 

0.75 0.0081 0.0001 0.0053 0.0001 

1 0.0170 0.0004 0.0111 0.0005 

Mixtures of ethanol and acetonitrile (ACN)  

0 0.0074 0.0000 0.0053 0.0000 

0.25 0.0276 0.0001 0.0195 0.0001 

0.5 0.0402 0.0001 0.0286 0.0001 

0.75 0.0396 0.0000 0.0269 0.0000 

1 0.0170 0.0004 0.0111 0.0005 
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7.1.5 Solubilities at varying temperatures 

 

Table 7.10: Temperature variation of the mole fraction solubility, xi, of lactide in pure ethanol 

and toluene. The apparent solution enthalpies, ΔHsol, are additionally given.  

Temp 

/ °C 

(S)-naproxen 

/ xi 

err 

 

Temp 

/ °C 

(RS)-naproxen 

/ xi 

err 

 

Ethanol      

15 0.0168 - 15 0.0061 - 

25 0.0263 0.0003 25 0.0104 - 

35 0.0462 - 35 0.0175 0.0175 

45 0.0912 0.0045 45 0.0297 0.0297 

10 0.0129 - 10 0.0055 0.0055 

40 0.0591 - 40 0.0193 0.0193 

ΔHsol / kJ∙mol-1 40.2 2.2  35.6 2.4 

Toluene      

10 0.0200 - 10 0.0083 - 

15.5 0.0238 - 25 0.0138 - 

25 0.0359 - 15 0.0089 - 

25 0.0331 - 25 0.0130 - 

40 0.0510 - 35 0.0188 - 

40 0.0614 - 40 0.0216 - 

ΔHsol / kJ∙mol-1 25.6 2.0  24.8 1.3 

 

Table 7.11: Temperature variation of the mole fraction solubility, xi, of naproxen in pure ethanol 

and toluene as well as in mixtures of ethanol and toluene, water and acetonitrile. The apparent 

solution enthalpies, ΔHsol, are additionally given. 

Temp 

/ °C 

(S)-naproxen 

/ xi 

err 

 

(RS)-naproxen 

/ xi 

err 

 

Toluene     

15 0.0019 0.0000 0.0008 0.0000 

25 0.0032 0.0001 0.0013 0.0001 

30 0.0040 0.0000 0.0019 0.0000 

35 0.0048 0.0000 0.0024 0.0001 

45 0.0084 0.0003 0.0050 0.0003 

ΔHsol / kJ∙mol-1 36.6 1.6 46.3 2.9 

Ethanol     

15 0.0101 0.0000 0.0065 0.0000 

25 0.0146 0.0000 0.0099 0.0001 

30 0.0170 0.0004 0.0111 0.0005 

35 0.0217 0.0002 0.0147 0.0001 

45 0.0324 0.0008 0.0225 0.0002 

ΔHsol / kJ∙mol-1 29.7 1.5 31.3 2.0 

20/80 wt% ethanol/ toluene    

10 0.0281 0.0001 0.0201 0.0009 

20 0.0371 0.0006 0.0262 0.0005 
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30 0.0495 0.0003 0.0352 0.0001 

40 0.0592 0.0000 0.0445 0.0000 

ΔHsol / kJ∙mol-1 18.6 1.0 19.8 0.5 

75/25 wt% ethanol water    

10 0.0035 0.0000 0.0023 0.0000 

20 0.0052 0.0000 0.0034 0.0000 

30 0.0081 0.0001 0.0053 0.0001 

35 0.0107 0.0001 0.0072 0.0000 

40 0.0135 0.0001 0.0100 0.0005 

ΔHsol / kJ∙mol-1 33.0 1.6 35.2 3.0 

50/50 wt% ethanol/acetonitrile    

10 0.0241 0.0004 0.0156 0.0008 

20 0.0312 0.0002 0.0207 0.0004 

30 0.0402 0.0001 0.0286 0.0001 

40 0.0554 0.0001 0.0390 0.0001 

ΔHsol / kJ∙mol-1 20.2 1.2 22.6 0.8 

 

7.1.6 Solution calorimetry 

 

Table 7.12: Caloric measurements of the dissolution of (S)- and (RS)-lactide in toluene and the 

extrapolated solution enthalpies at infinite dilution (x = 0), ΔHsol,inf.   

(S)-lactide  (RS)-lactide  

x 

mol/mol  

H  

/ kJ/mol  

x 

mol/mol  

H  

/ kJ/mol  

0.0034  21.56  0.0034  23.71  

0.0050  21.83  0.0062  23.53  

0.0080  21.56  0.0095  22.27  

0.0096  21.49  0.0110  21.85  

  ΔHsol,inf  

21.8±0.2  
  

ΔHsol,inf  

24.7±1.0  

 

Table 7.13: Caloric measurements of the dissolution of (S)- and (RS)-naproxen in toluene and the 

extrapolated solution enthalpies at infinite dilution (x = 0), ΔHsol,inf.  

(S)-naproxen  (RS)-naproxen  

x 

mol/mol  

H  

/ kJ/mol  

x 

mol/mol  

H  

/ kJ/mol  

Ethanol (30°C)  

0.0010  22.88  0.0010  24.71  

0.0015  23.73  0.0020  24.57  

0.0020  23.35  0.0030  24.75  

0.0030  23.86    

  ΔHsol,inf  

22.7±0.5  
  

ΔHsol,inf  

24.6±0.2  
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20/80 wt% ethanol/toluene (30°C)  

0.0018 19.78 0.0036 21.52 

0.0036 19.57 0.0054 22.05 

0.0054 19.77 0.0061 22.54 

  0.0073 21.51 

 
ΔHsol,inf 

19.7±0.3 
 

ΔHsol,inf 

21.6±1.3 

75/25 wt% ethanol/water (30°C)  

0.00085  32.57  0.00076  36.77  

0.00127 31.92 0.00102  36.37 

0.00169 31.68 0.00127 37.04  

 
ΔHsol,inf  

33.4±0.4  
  

ΔHsol,inf  

36.2±1.3  

50/50 wt% ethanol/acetonitrile (30°C)  

0.0009  17.90  0.0014  22.46  

0.0019  18.19  0.0019  20.36  

0.0028  17.88  0.0028  20.72  

0.0038  17.56  0.0038  20.71  

  ΔHsol,inf  

18.2±0.3  
  

ΔHsol,inf  

22.3±1.4  

  

7.1.7 Eutectic composition in solution 

 

Table 7.14: Temperature variation of the eutectic composition (eutectic shift), Δxeu, of naproxen 

in pure ethanol and toluene as well as in mixtures of ethanol with toluene, water and acetonitrile.  

Temp  

/ °C 

xeu err 

Toluene 

15 90.4 0.0 

25 89.8 0.0 

30 89.2 0.0 

35 89.2 0.0 

45 88.7 0.1 

Ethanol 

15 90.5 0.0 

25 90.0 0.1 

30 89.7 0.0 

35 89.4 0.0 

45 88.9 0.1 

20/80 wt% 

ethanol/toluene 

10 90.9 0.0 

20 90.4 0.1 
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30 90.0 0.0 

40 89.3 0.1 

75/25 wt% 

ethanol/water 

10 90.9 0.0 

20 90.3 0.1 

30 89.9 0.1 

35 89.1 0.0 

40 90.9 0.0 

50/50 wt% 

ethanol/acetonitrile 

10 91.2 0.0 

20 90.5 0.0 

30 89.9 0.2 

40 89.3 0.0 

 

Table 7.15: Variation of the eutectic composition as a function of the solvent composition 

(eutectic shift), Δxeu, for naproxen in mixtures of ethanol with toluene, water and acetonitrile at 

30 °C. 

EtOH 

/ wt % 

xeu err 

ethanol / toluene mixtures 

0 89.8 0.0 

0.2 89.6 0.0 

0.4 - - 

0.6 - - 

0.8 89.7 0.0 

1 89.7 0.0 

ethanol / water mixtures 

0  - 

0.1 88.9 0.1 

0.3 89.2 0.0 

0.5 89.6 0.0 

0.75 89.7 0.1 

1 89.7 0.0 

Ethanol / ACN mixtures 

0 89.3 0.0 

0.25 89.8 0.0 

0.50 89.9 0.2 

0.75 89.8 0.0 

1 89.7 0.1 
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Figure 7.1: XRPD patterns of mixtures of (S)- and (RS)-naproxen. Samples correspond to the 

equilibrated solid phases from the isothermal solubility measurements for determining the 

eutectic composition in Table 7.15. 

 

7.2 Primary computational data 

 

7.2.1 Unit cell dimensions 

 

Table 7.16: Specification of the unit cell of the two naphthalene (NAPHTA04 and NAPHTA23) 

and benzoic acid (BENZAC01 and BENZAC02) crystals. 

  Length of lattice vectors Lattice angles Z 

    Å bohr   [°] [-] 

NAPHTA04
186

 a 8.098 15.303 alpha 90   

  b 5.953 11.249 beta 124.4 2 

  c 8.652 16.350 gamma 90   

NAPHTA23
190

 a 8.085 15.278 alpha 90   

  b 5.938 11.221 beta 124.7 2 

  c 8.633 16.314 gamma 90   

BENZAC01
191

 a 5.510 10.412 alpha 90   
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  b 5.157 9.745 beta 97.41 2 

  c 21.973 41.523 gamma 90   

BENZAC02187 a 5.4996 10.393 alpha 90   

  b 5.1283 9.691 beta 97.37 2 

  c 21.950 41.479 gamma 90   

 

Table 7.17: Specification of the unit cells of the enantiopure crystal and the corresponding racemic 

compound of lactide. naproxen and 3ClMA. 

  Length of lattice vectors Lattice angles Z 

    Å bohr   [°] [-] 

BICVIS218 a 8.046 15.205 alpha 90   

 (RS)-lactide b 9.081 17.161 beta 103.06 4 

  c 9.711 18.351 gamma 90   

NAHNOZ217 a 9.2439 17.468 alpha 90   

 (S)-lactide b 13.467 25.449 beta 90 12 

  c 16.669 31.500 gamma 90   

PAPTUX215 a 25.830 48.812 alpha 90   

 (RS)-naproxen b 15.494 29.279 beta 90 8 

  c 5.947 11.237 gamma 90   

COYRUD219 a 13.375 25.275 alpha 90   

 (S)-naproxen b 5.793 10.947 beta 93.91 2 

  c 7.914 14.955 gamma 90   

FIZPEL03212 a 8.675 16.393 alpha 90   

 (RS)-3ClMA b 8.9404 16.895 beta 90.99 4 

  c 10.7831 20.377 gamma 90   

TUYBIA212 a 8.316 15.715 alpha 90   

 (S)-3ClMA b 11.855 22.403 beta 93.82 4 

  c 8.4526 15.973 gamma 90   

 

Table 7.18: Specification of the unit cell of the molecular crystals within the X23-benchmark set 

according to refs. 85. 97. 

  Length of lattice vectors Lattice angles Z 

    Å   [°] [-] 

anthracene a 84.144 alpha 90   

  b 59.903 beta 125.293 2 

  c 110.953 gamma 90   

urea a 5.565 alpha 90   

  b 5.565 beta 90 2 
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  c 4.684 gamma 90   

oxalic acid (a) a 6.548 alpha 90   

  b 7.844 beta 90 4 

  c 6.086 gamma 90   

oxalic acid (b) a 5.33 alpha 90   

  b 6.015 beta 115.83 2 

  c 5.436 gamma 90   

CO2 a 5.624 alpha 90   

  b 5.624 beta 90 4 

  c 5.624 gamma 90   

ethylcarbamate a 5.051 alpha 101.37   

  b 7.011 beta 104.58 2 

  c 7.543 gamma 76.65   

pyracine a 9.325 alpha 90   

  b 5.85 beta 90 2 

  c 3.733 gamma 90   

1.4-cyclohexanedione a 6.65 alpha 90   

  b 6.21 beta 99.82 2 

  c 6.87 gamma 90   

acetic acid a 13.151 alpha 90   

  b 3.923 beta 90 4 

  c 5.762 gamma 90   

adamantane a 6.639 alpha 90   

  b 6.639 beta 90 2 

  c 8.918 gamma 90   

ammonia a 51.305 alpha 90   

  b 51.305 beta 90 4 

  c 51.305 gamma 90   

benzene a 7.39 alpha 90   

  b 9.42 beta 90 4 

  c 6.81 gamma 90   

cyanamide a 6.856 alpha 90   

  b 6.628 beta 90 8 

  c 9.147 gamma 90   

cytosine a 13.044 alpha 90   

  b 9.496 beta 90 4 

  c 3.814 gamma 90   

formamide a 3.604 alpha 90   

  b 9.041 beta 100.5 4 

  c 6.994 gamma 90   

pyrazole a 8.19 alpha 90   

  b 12.588 beta 90 8 

  c 6.773 gamma 90   

hexamine a 6.954 alpha 90   

  b 6.954 beta 90 2 

  c 6.954 gamma 90   

succinic acid a 5.466 alpha 90   

  b 8.740 beta 91.7 2 
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  c 5.108 gamma 90   

triazine a 9.647 alpha 90   

  b 9.647 beta 90 6 

  c 7.281 gamma 120   

trioxane a 9.32 alpha 90   

  b 9.32 beta 90 6 

  c 8.196 gamma 120   

imidazole a 7.582 alpha 90  

 b 5.371 beta 119.0 4 

 c 9.790 gamma 90  

uracil a 11.938 alpha 90   

  b 12.376 beta 120.9 4 

  c 3.655 gamma 90   

naphthalene a 8.085 alpha 90   

  b 5.938 beta 124.7 2 

  c 8.633 gamma 90   

 

7.2.2 Sublimation thermodynamics of lactide. naproxen and 3ClMA 

 

Table 7.19: Thermodynamics of lactide. naproxen and 3ClMA evaluated at 298.15 K. 

Lattice energy and thermal corrections (main manuscript)    

  Lactide  Naproxen  3ClMA    

  RS  S  RS-S  RS  S  RS-S  RS  S  RS-S  

Lattice Energy: Elatt / kJ mol-1    

Separated (Ψmol)  -86.17  -82.64  -3.53  -133.48  -125.41  -8.07  -110.40  -105.11  -5.28  

Electronic (Ψcrys)  -90.1  -87.25  -2.85  -135.71  -134.26  -1.45  -127.43  -126.20  -1.23  

Zero Point Energy ( )g s

ZPE ZPEE E−  / kJ mol-1  
  

Separated (Ψmol)  -2.40  -2.59  0.19  -2.83  -2.76  -0.07  -2.90  -2.95  0.05  

Electronic (Ψcrys)  -2.75  -2.99  0.24  -4.45  -5.39  0.94  -6.04  -7.38  1.34  

Heat capacity correction to enthalpy: ( ) ( )( )
0

T

g s

P P

T

C T C T dT
=

  −  / kJ mol-1  

  

Separated (Ψmol)  -2.72  -2.55  -0.17  -2.37  -2.55  0.18  -2.31  -2.25  -0.06  

Electronic (Ψcrys)  -2.18  -2.02  -0.16  -0.92  -0.21  -0.71  0.60  0.65  -0.05  

Experimental  -3.11  -2.73  -0.37  -1.84  -1.55  -0.29  -0.61  -1.52  0.91  
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Entropic correction: ( ) ( )( )
0

T

g s

subl P P

T

T S T C T T C T T dT
=

     = −  / kJ mol-1  
  

Separated (Ψmol)  51.55  52.72  -1.17  59.78  58.64  1.14  57.00  57.93  -0.94  

Electronic (Ψcrys)  47.88  51.85  -3.97  62.30  65.44  -3.14  63.19  64.62  -1.43  

Experimental  56.53  57.07  -0.54  69.76  70.50  -0.74  65.80  66.14  -0.33  

summarized sublimation thermodynamic quantities   

  Lactide  Naproxen  3ClMA   

  RS  S  RS-S    RS  S  RS-S    RS  

Sublimation enthalpies: ( ) ( ) ( )( )
0

T

g s g s

subl latt ZPE ZPE P P

T

H E E E C T C T dT
=

   = − − − + −  / kJ mol-1  
 

Separated (Ψmol)  81.05  77.5  3.55  128.28  120.1  8.18  105.19  99.91  5.27  

Electronic (Ψcrys)  85.17  82.24  2.93  130.34  128.66  1.68  121.99  119.47  2.52  

Exp/Separated  80.66  77.32  3.35  128.81  121.1  7.71  106.89  100.64  6.24  

Exp/ Electronic  84.24  81.53  2.72  129.42  127.32  2.1  120.78  117.3  3.48  

Thermal correction: ( ) ( ) ( )( )
0

T

g s g s

ZPE ZPE P P

T

E E C T C T dT
=

  − + −  / kJ mol-1  
 

Separated (Ψmol)  -5.12  -5.14  0.02  -5.2  -5.31  0.11  -5.21  -5.2  -0.01  

Electronic (Ψcrys)  -4.93  -5.01  0.08  -5.37  -5.6  0.23  -5.44  -6.73  1.29  

Exp/Separated  -5.51  -5.32  -0.18  -4.67  -4.31  -0.36  -3.51  -4.47  0.96  

Exp/ Electronic  -5.86  -5.72  -0.13  -6.29  -6.94  0.65  -6.65  -8.9  2.25  

Gibbs free energies: subl subl sublG H T S =  −  / kJ mol-1   

Separated (Ψmol)  29.5  24.78  4.72  68.5  61.46  7.04  48.19  41.98  6.21  

Electronic (Ψcrys)  37.29  30.39  6.9  68.04  63.22  4.82  58.8  54.85  3.95  

Exp/Separated  24.13  20.25  3.89  59.05  50.6  8.45  41.09  34.5  6.57  

Exp/ Electronic  27.71  24.46  3.26  59.66  56.82  2.84  54.98  51.16  3.81  

Gibbs free energy corrections: corr corr sublG H T S =  −   / kJ mol-1   

Separated (Ψmol)  -56.67  -57.86  1.19  -64.98  -63.95  -1.03  -62.21  -63.13  0.93  

Electronic (Ψcrys)  -52.81  -56.86  4.05  -67.67  -71.04  3.37  -68.63  -71.35  2.72  

Exp/Separated  -62.04  -62.39  0.36  -74.43  -74.81  0.38  -69.31  -70.61  1.29  
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Exp/ Electronic  -62.39  -62.79  0.41  -76.05  -77.44  1.39  -72.45  -75.04  2.58  

 

7.2.3 Temperature variation of the sublimation Gibbs energy 

 

Table 7.20: Gibbs free energy of sublimation at temperatures between 283 K and 318 K. 

Experimental values are compared to computations using the ѱcrys method.  

T  (RS)-lactide  (S)-lactide  (RS)-naproxen  (S)-naproxen  

  Experiment    

283.15  39.7  33.0  71.2  66.5  

288.15  38.9  32.1  70.1  65.4  

293.15  38.2  31.3  69.1  64.3  

298.15  37.3  30.4  68.0  63.2  

303.15  36.5  29.5  67.0  62.1  

308.15  35.7  28.7  65.0  61.0  

313.15  34.9  27.8  64.9  59.9  

318.15  34.1  26.9  63.9  58.8  

  Computation (ѱcrys)   

283.15  38.05  35.70  66.80  64.07  

288.15  37.02  34.72  65.43  62.80  

293.15  35.99  33.74  64.06  61.54  

298.15  34.95  32.76  62.69  60.27  

303.15  33.92  31.79  61.32  59.01  

308.15  32.89  30.81  59.96  57.74  

313.15  31.87  29.84  58.59  56.48  

318.15  30.84  28.87  57.23  55.22  

 

7.2.4 Estimation of the eutectic composition 

 

Table 7.21: Free energy differences ∆T2-T1∆RS-S∆Gsubl,obtained from integrating experimental heat 

capacity differences (see Figure 4.24) between the racemic and enantiopure crystals from T1= 

298.15 K to T2= 318.15 K, and its effect on the eutectic composition in solution, ∆xeu,calc(T2-T1), 

compared to experimentally determined eutectic shifts, ∆xeu,exp (T2-T1). The eutectic shift is 

calculated from the maximum and minimum experimental xeu,exp in various solvent systems from 

literature44. 216. 222. 223 for lactide and naproxen and measured in this work for 3ClMA. 

 Unit Lactide 

max / min 

Naproxen 

max / min 

3ClMA 

max / min 

xeu.exp (T1)* mol% 93.2 / 95.0 89.9 / 90.3 89.1 / 91.3 

∆RS-S∆G (T1)** kJ·mol-1 1.49 / 1.93 0.99 / 1.05 0.99 / 1.30 

∆T2-T1∆RS-S∆Gsubl kJ·mol-1 0.02 -0.06 0.16 
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∆T2-T1xeu.exp* mol% 0 / -3.0 -1.2 0 to 1.3 

∆T2-T1xeu.calc*** mol% -0.4 / -0.41 -0.9 / -0.9 0.6 / 0.5 

*Experimental eutectic composition. xeu.exp. at 298.15 K and its dependence on temperature ∆xeu (T2-T1) 

of lactide. naproxen (determined in this work) and 3ClMA in a variety of solvent systems44. 216. 222. 223 (see 

Table 4.12 for details). 

**∆RS-S∆Gsubl(T1) calculated from the maximum and minimum xeu.exp (T1). 

 

7.2.5 Lattice energies for benzoic acid and naphthalene 

 

Table 7.22: k-point sampling for a selected crystal structure of benzoic acid and naphthalene 

(BENZAC01191 and NAPHTA04186). 

Crystal Method k-point 

mesh 

Elatt 

/ kJ mol-1 

NAPHTA04 
def2-TZVP 

PBE-D3 

1x1x1 -95.1 

3x3x3 -84.1 

5x5x5 -84.1 

7x7x7 -84.1 

21x21x21 -84.1 

BENZAC01 
def2-TZVP 

PBE-D3 

1x1x1 -153.0 

3x3x3 -108.9 

5x5x5 -108.9 

7x7x7 -108.9 

21x21x21 -108.9 

 

  

Figure 7.2: Lattice energy differences between different crystal structures of (a) naphthalene 

(NAPHTA04 and NAPHTA23) and (b) benzoic acid (BENZAC01 and BENZAC02), 

respectively. Details on the unit cell dimensions are given in Table 7.16.  
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7.2.6 Lattice energies for the X23 benchmark 

 

Table 7.23: Calculated lattice energies. -Elatt. of the X23 benchmark set using the “riper” module 

within TURBOMOLE251 version 7.1132 and a k-point mesh of 3x3x3. The experimental lattice 

energy represents the average value of refs. 85. 97. All energies are in kJ·mol-1. 

 
PBE-D3 

def2-SVP 

PBE-D3 

def2-TZVP 
-Elatt.exp err  

Anthracene  128.84  112.19a  106.9  5.0  

Naphthalene  97.17  83.94  79.1  2.2  

Benzene  68.19  58.41  50.9  0.6  

Adamantane  87.59  79.33  65.7  2.9  

Hexamine  129.91  99.19  84.0  2.2  

Pyrazine  91.21  70.00  62.8  1.6  

Pyrazole  107.06  86.28  77.5  0.5  

14-cyclohexanedione  135.82  100.11  87.4  0.9  

CO2  41.52  27.27  29.1  1.4  

Triazine  87.48  65.08  61.6  0.8  

Trioxane  107.48  70.89  63.7  1.9  

Cytosine  213.45  170.14  168.9  0.7  

Imidazole  120.41  97.48  88.0  2.4  

Uracil  186.12  146.20  135.0  1.5  

Acetic acid  113.61  82.60  72.5  0.5  

Ammonia  70.03  50.74  36.5  1.3  

Cyanamide  118.27  96.00  80.3  1.2  

Ethylcarbamate  131.37  97.75  85.2  0.9  

Formamide  118.22  89.47  79.0  0.2  

Oxalic acid (α)  148.33  102.60  98.2  1.8  

Oxalic acid (β)  151.30  105.19  97.8  2.6  

Δα-β  -2.96  -2.59  -0.49  1.5  

Succinic acid  201.58  145.24  126.7  3.6  

Urea  153.33  117.58  101.2  1.3  

a Calculated with the TZP basis set due to convergence issues with the larger def2-TZVP basis set. 

 



 

 

Table 7.24: Determination of an average calculations value from literature. denoted as “average calculation”. and its standard deviation. σ. for the 

lattice energies of the X23 benchmark from refs. 85. 97. Hexamine and succinic acid have only been studied in ref.97. All energies are in kJ·mol-1. 

Substances 
B86b 

XDM 

PBE 

D 

PBE 

TS 

PBE 

XDM 

vdW 

DF1 

vdW 

DF2 

EPBE 

+TS 

EPBE0 

+TS 

EPBE 

+MBD 

EPBE0 

+MBD 

DFTB3 

D3 

“average 

calculation” 

σ 

Anthracene 101.23 106.22 135.46 96.29 116.98 108.55 134.4 133.5 121.8 119.1 112.2  116.0  13.3  

Naphthalene 75.74 80.4 100.53 72.24 88.06 81.44 99.9 98.4 87.4 85.4 71.6  85.0  10.2  

Benzene 51.23 56.32 66.51 49.49 59.94 55.87 66.3 62 55 51 56.0  57.0  5.7  

Adamantane 72.8 83.94 108.92 69.83 82.56 79.48 108 105 81 78.6 81.1  85.9  13.5  

Hexamine - - - - - - 114.9 109.8 86.9 83.4 70.8  92.6  16.7  

Pyrazine 59.66 64.47 74.9 58.48 69.09 67.75 76.2 72 67.3 63 55.9  65.9  6.4  

Pyrazole 75.99 83.65 87.69 75.76 79.4 79.18 88.5 83.1 82.8 77.6 59.3  79.6  7.6  

14-cyclohexanedione 85.81 97.32 107.22 84.64 104.39 103.33 105.9 101.2 92.2 88.2 100.7  97.0  8.0  

CO2 21.55 24.37 25.72 22.63 35.76 33.81 25.2 24.4 21.7 21.2 23.1  25.2  4.7  

Triazine 54.73 61.2 67.98 53.93 68.38 66.5 68.9 65.6 58.7 55.7 51.7  60.9  6.3  

Trioxane 57.95 67.23 75.78 57.34 77.64 79.31 75.9 72 62.4 59.3 65.2  67.8  8.0  

Cytosine 151.25 163.83 172.82 150.25 153.92 157.53 172.6 167.9 170 164.5 147.1  161.2  9.0  

Imidazole 87.54 94.46 100.76 87.32 89.99 89.58 101.9 96.3 97.1 91.4 104.7  94.5  5.7  

Uracil 130.42 138.21 150.21 130.19 137.31 140.01 149 144.6 145.9 140.4 148.7  141.3  6.7  

Acetic acid 71.76 77.6 83.66 72.52 77.38 78.1 82.6 79 78.3 74.6 77.8  77.7  3.5  

Ammonia 38.56 46.23 44.03 39.15 37.47 40.31 45.4 42.4 42.9 40.2 32.2  41.0  3.9  

Cyanamide 87.24 92.43 94.1 87.75 84.58 88.4 94.3 88.8 94.3 88.8 66.4  88.4  7.7  

Ethylcarbamate 83.76 92.82 99.49 84.18 95.96 95.92 99.2 94 92.1 87.1 96.4  92.8  5.3  

Formamide 77.95 84.12 86.79 78.65 79.22 82.56 86.3 84 82.8 80.7 76.9  82.0  3.3  

Oxalic acid (α) 111.28 119.65 125.17 112.12 120.25 125.43 100.7 98.5 98.1 95.7 114.3  110.1  11.1  

Oxalic acid (β) 113.81 122.95 128.2 114.99 120.77 124.7 104.3 100.1 98.6 94.8 112.3  111.4  11.3  

Succinic acid - - - - - - 147.1 143.4 138.7 135.3 139.9  140.6  4.1  

Urea 101.91 112.02 112.62 102.51 101.93 108.28 113.1 111.4 111.2 109.7 113.7  109.5  4.9  
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