
Custom UDP-Based Transport Protocol Implementation over DPDK

Dmytro Syzov, Dmitry Kachan, Kirill Karpov, Nikolai Mareev and Eduard Siemens
Future Internet Lab Anhalt, Anhalt University of Applied Sciences, Bernburger Str. 57, 06366 Köthen, Germany

{dmytro.syzov, dmitry.kachan, kirill.karpov, nikolai.mareev, eduard.siemens}@hs-anhalt.de

Keywords: High-Speed Data Transport, Packet Processing, User Space.

Abstract: As industry of information technologies evolves, demand for high speed data transmission steadily
increases. The need in it can be found in variety of different industries – from entertainment (trend for
increasing resolution of video-cast for example) to scientific research. However, there are several problems
that hinder network application capabilities. One of them is slow packet processing due to significant
overheads on system calls for simple network operations. There are hardware solutions, but from the
economical point of view, using legacy equimpent is preferable due to high cost of updating network
infrastructure. Thus, software solutions to these problems can be preferable. One of them is DPDK toolset
which gives the ability to tailor network operations to the application. RMDT is a custom transport protocol
aimed at high speed data transmission over lossy networks with high latency. The protocol is built over
standard Linux UDP sockets. Thus it is heavily reliant on the networking stack performance. The goal of
this work is to improve RMDT performance by means of DPDK in a 10G network and to assess the benefits
of such an implementation.

1 INTRODUCTION

The nature of network operations on Linux OS, with
overheads on system calls, several memory copies
during recv() and send(), results in a low
performance in cases of high speed connections.
While there are multiple solutions to increasing
packet processing rate, for example Receive Packet
Steering [1], but they are usually aimed at TCP
optimization, or maintaining many low-rate
connections. If there is a need in high speed
transmission and TCP is not fitting for cases of high
latency and lossy network, out-of-the-box options
are limited. Their functionality is also often
dependent on a specific implementation by the
manufacturer, thus making development of a widely
applicable network utilities more expensive and
harder to maintain.

DPDK [2] toolset aims at boosting packet
processing performance by giving developers access
to a low-level management of network stack. One of
the main benefits is the avoidance of user space to
kernel space switches. However it does not provide
transmission protocols to use out-of-the-box.

The common bottleneck is receive performance,
as in case of standard Linux network operations,
packets have to go through multiple memory copy

operations and additional management operations
necessary for the correct delivery to applications. In
case of DPDK, there is an opportunity to tailor these
operations specifically to the application. Having
more control over timings of various send- and
receive- related operations can improve latency,
improving performance in use cases such as
streaming. Also such control can deliver more
precise measurements of round trip time, which
consequently can improve behavior of congestion
control as standard kernel method can introduce
fluctuations in the overall time of an operation.

This work attempts to adapt internal structure of
the RMDT [3] protocol to DPDK library and to
asses the benefits of DPDK over standard Linux
approach. At this stage, the goal is to create a simple
RMDT over DPDK implementation to test the
possibility of improving its’ perormance with
DPDK. As the main measure of the efficiency in
our tests we are using the achievable data rate.
Comparison between synthetic packet generation
tests and RMDT tests can show the difference in
ratio of time spent on network operations to time
spent on custom protocol functionality, allowing an
assessment of the necessity to improve the
implementation. Thus a simple test of a clean send
and receive is to be performed as well.

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

13

2 RELATED WORK

As DPDK is a generally applicable network
development kit, there is a large amount of projects
implementing DPDK for a variety of goals. These
include using DPDK to build a light-weight TCP/IP
stack to achieve better efficiency with resource
limited systems [4] as presented in a paper by R.
Rajesh et al., building a high performance software
router [5] as presented in a paper by Z. Li. M. Miao
et al. developed and tested a self-tuning packet I/O
aimed at dynamic optimization of data rate and
latency by controlling a batch size in a high
throughput network system [6]. As can be seen, an
improvement in networking operations is in demand
by different types of applications.

3 TESTBED DESCRIPTION

All tests have been performed in 10 GE Laboratory
of Future Internet Lab Anhalt [3]. The core element
here is the WAN emulator Netropy 10G [7] that can
be used to create an emulation of WAN links with
various impairments like packet losees, delay,
reordering etc. It collects data regarding data passed
through it and is used in this work to assess the
resulting performance.

Servers, which are used in tests have following
characteristics:
 Kernel: 4.15.0-45-lowlatency.
 NIC: 82599ES 10-Gigabit SFI/SFP+ by Intel

Corporation.
 Memory: 64 GB DDR3.
 CPU: 2xIntel Xeon E5-2643 v4, 3.40GHz.

Software consists of two RMDT builds and two
synthetic tests with pure packet generation and
reception. Builds are for standard Linux networking
stack and DPDK respectively. For an interface to
UDP over DPDK, an already existing software was
used – F-Stack [8].

4 SOFTWARE DESIGN

On Figure 1 the flow chart of a basic DPDK receiver
functionality test is presented.

Here, the overall loop includes a basic, F-Stack
provided, polling interface, which is derived from
DPDK’s own polling mechanisms. Apart from basic
functionality, necessary for receiving packets via
DPDK, additional checks are added to assure that

data is received correctly. This functionality is put in
the “Corruption check” box. A test for a sender is
the same, but without polling for EPOLLIN.

Figure 1: DPDK receive loop.

On Figure 2 the basic RMDT structure for the
receiver side is presented.

Here, “Receive handler” is tasked with receive
and some basic processing for both user data and
service packets. Rest of the protocol functionality is
put into “Transport control functionality” box. That
includes tasks regarding sending service packets.
However, sender functionality is not the aim of this
work as it does not bottleneck RMDTs’ overall
performance in a point-to-point configuration with
MTU of 1500 bytes (Ethernet standard [9]) and
F-Stack is not optimized for the send process. Both
parts work concurrently with the memory buffer and
all of the stack is controlled by a master thread
which provides protocol interface to an application.
It shall be noted that to perform network operations
a context switch from user space to kernel space has
to be performed, which is one of the contention
points.

Process = True

Poll events

Run loop

Process an
unexpected
event

+

Epoll interface

While unprocessed events

If event is
EPOLLIN

Receive

F-Stack socket

Corruption check

+

-

-

End loop
+

-

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

14

Figure 2: Simplified RMDT structure.

In order to implement F-Stack into RMDT
protocol some changes to the protocols’ networking
subsystem have to be made. F-Stack requires a
separate loop function to be run on a dedicated CPU
core and that function has to be static. Thus, due to
OOP structure of RMDT, all functionality regarding
receiving and sending packets has to be moved to a
separate thread that is not a direct part of any class in
RMDT stack (a global static function).

In the modified structure, additional blocks for
send and receive loops represent separate threads
which have to run on dedicated cores and perform
receive polling and sending via DPDK (Figure 3).
These threads are separated from the overall RMDT
structure and transmit received data via Single-
Producer/Single-Consumer queues, while threads
that were handling network operations previously
are now polling said queues. Receive/send loop flow
is similar to the one presented in figure 1, but with
addition of interprocess communication after
receiving or before sendig of each batch of packets.
Here, switch to kernel space is not needed as DPDK
works fully in user space.

5 TEST RESULTS

Firstly, basic DPDK tests have been performed
without RMDT to assess the capabilities of hardware
while working with DPDK. At this stage both pure

Figure 3: RMDT over DPDK structure.

send and pure receive in a case of point-to-point data
transmission have been tested. In the simplest
configuration, presented in the previous section,
sender was able to achieve up to 6 Gbps, while
receiver was capable of achieving maximum link
capacity of 10 Gbps (unlike standard TCP/IP, which
bottlenecked at receive). However, during testing,
certain fluctuations in performance were noticed
with sending data, when the rate would drop to 5.2
Gbps or less frequently vary between 5.2 and 6
Gbps. Possible reason for this could be an additional
memory copy operations in F-Stack sending
interface. The exact cause for such behavior was not
studied in this work. Further tests with RMDT were
performed only for a DPDK-based receiver. Sender
used the standard Linux TCP/IP stack as in
multithreaded configuration it was able to achieve
10 Gbps rates, unlike the F-Stack/DPDK test.

Subsequent tests with RMDT were performed –
at first with a standard TCP/IP stack to compare it
with a DPDK-based RMDT. Standard RMDT
showed datarate of 6 Gbps. The bottleneck in such
configuration is the receiver as in a test in point-to-
multipoint configuration with two receivers, 10
Gbps datarate was achieved. In a test with DPDK-
based RMDT, peack achieved datarate was 8 Gbps,
althought it was observed to behave inconsistently,
sometimes dropping to 6 Gbps. This behavior can be

User space

Kernel space

Linux TCP/IP stack

NIC

Receive handler

Memory buffer

Transport control
 functionality

Master thread

Application

Receive handler

User space

F-Stack

Memory buffer

Transport control
 functionality

Master thread

Application

NIC

Receive loop Send loop

User space

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

15

explained by unoptimized inter-process
communication between F-Stack loop and main
RMDT threads. This can be observed by comparison
of a clean DPDK test. One of the main reasons are
additional memory copy operations. However, even
in an unoptimized state, the increase in performance
can be seen. A summary of the test results can be
seen on Figure 4.

6 CONCLUSIONS

The demand for tools providing high speed data
transmission grows, thus leading to development of
new SDKs that revise outdated approaches to
network applications as for example DPDK/F-Stack
does. In this work an attempt to modify a custom
UDP-based transport protocol to use DPDK
capabilities was made with a goal of increasing
performance in a 10G network in a point-to-point
configuration with 1500 bytes MTU.

Tests showed an increase in performance in
copmarison to standard Linux TCP/IP stack, but full
link utilization was not achieved due to the fact that
current RMDT structure does not yet fully use
DPDK capabilities.

7 FUTURE WORK

In order to continue tests with RMDT over DPDK,
significant changes have to be made to the
protocol’s structure. In particular, better memory

management should be implemented. With an
improved version additional tests in a 10G and 40G
network could be made.

Another possible continuation of this work is
developing and testing transport-related applications
that could use DPDK functionality for better
performance. Network probing algorithms, for
example, might improve with lower latency and
more stable measurements.

ACKNOWLEDGMENTS

This work has been funded by Volkswagen
Foundation for trilateral partnership between
scholars and scientists from Ukraine, Russia and
Germany within the project CloudBDT: Algorithms
and Methods for Big Data Transport in Cloud
Environments.

REFERENCES

[1] “Scaling in the Linux Networking Stack”, kernel.org,
2018 [Online]. Available: https://www.kernel.org/
doc/Documentation/networking/scaling.txt, Accessed
on: Dec 01, 2018.

[2] “Data plane development kit”, dpdk.org, 2018
[Online]. Available: https://www.dpdk.org/about/,
Accessed on: Dec 01, 2018.

[3] “Big Data Transmission | F I L A”, fila-lab.de, 2018
[Online]. Available: https://fila-lab.de/index.php/our-
work/big-data-transmission/, Accessed on: Dec 01,
2018.

Stan
da

rd
TCP/IP

, s
en

d

Stan
da

rd
TCP/IP

, re
ce

ive

F-S
tac

k,
se

nd

F-S
tac

k,
rec

eiv
e

RMDT ov
er

TCP/IP
, s

en
d

RMDT ov
er

TCP/IP
, re

ce
ive

RMDT ov
er

F-S
tac

k,
rec

eiv
e

0

2

4

6

8

10

12

Test case

D
at

ar
at

e,
 G

bp
s

Figure 4: Test results.

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

16

[4] R. Rajesh, K. B. Ramia, and M. Kulkarni,
“Integration of LwIP stack over Intel (R) DPDK for
high throughput packet delivery to applications,” in
2014 Fifth International Symposium on Electronic
System Design, 2014, pp. 130-134.

[5] Z. Li, “HPSRouter: A high performance software
router based on DPDK,” in 2018 20th International
Conference on Advanced Communication
Technology (ICACT), 2018, pp. 503-506.

[6] M. Miao, W. Cheng, F. Ren, and J. Xie, “Smart
batching: A load-sensitive self-tuning packet I/O
using dynamic batch sizing,” in 2016 IEEE 18th
International Conference on High Performance
Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE 2nd
International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2016, pp. 726-733.

[7] “Apposite Technologies Netropy WAN Emulators”,
Apposite Technologies.

[8] “F-Stack | High Performance Network Framework
Based On DPDK”, f-stack.org, 2018 [Online].
Available: http://www.f-stack.org/, Accessed on: Dec
01, 2018.

[9] C. Hornig, “A standard for the transmission of IP
datagrams over ethernet networks,” 1984.

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

17

