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1. Introduction

1.1 Host-parasite coevolution 

The appearance of a novel parasite can be devastating to host populations. Following an 

initial reduction in population size, selection is expected to favour the evolution and 

maintenance of parasite resistance in the host (Fries, et al., 2006). The typically shorter life 

cycle and faster rate of reproduction in parasites could leave the host at an evolutionary 

disadvantage; with the rate of evolution for parasite counter-defences exceeding that of host 

defences (Hamilton, et al., 1990). However sexual reproduction and epistatic interactions in 

the host can help balance the relationship by increasing the rate at which new genotype 

combinations can be created within a population (Maynard Smith, 1971; Hamilton, et al., 

1990; Wilfert, et al., 2007; Kidner & Moritz, 2013). 

While the selective pressures and genetic variation driving the evolution of host defences are 

expected to vary across a host species range (Büchler, et al., 2015; Thompson, 2005). Similar 

adaptations often evolve in response to the same pressure; despite different geographic and 

genetic origins (Locke, 2016; Oddie, et al., 2017). A promising model system for better 

understanding the independent evolution of a resistance trait between geographically isolated 

and varied host populations is the interaction between the honey bee (A. mellifera) and its 

brood parasitic mite Varroa destructor. 

1.2 Varroa destructor 

Originally a parasite of the Asian honey bee (Apis cerana), Varroa switched host to A. 

mellifera sometime during the early 20th Century (Oldroyd, 1999). Varroa is highly virulent 

on A. mellifera and many colonies die within three years of an initial infestation 

(Beaurepaire, et al., 2015; Rosenkranz, et al., 2010). 
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Varroa females infest honey bee larval cells shortly before capping. Five hours post-capping, 

the mother mite consumes her first haemolymph meal, from the pupa, and initiates oogenesis 

a few hours later (Garrido & Rosenkranz, 2004). If the Varroa mother fails to initiate 

oogenesis in this narrow time window, she will remain infertile for the duration of the 

honeybee pupation (Frey, et al., 2013). Ovary activation can be induced using cuticular 

hydrocarbon and haemolymph-based cues from the pre-pupae. This suggests a compound, 

received from the pupa during the mother mite’s first blood meal, is necessary for the 

successful reproduction of Varroa (Aumeier, et al., 2002; Frey, et al., 2013). Therefore, a 

change in these cues could provide a pathway to the inhibition of mite reproduction.  

 

Upon hatching, the offspring feed on the pupae and mate in the cell; this is the only time in 

their lives when Varroa will mate (Donze & Guerin, 1997; Kanbar & Engels, 2005; 

Rosenkranz, et al., 2010). Mature, mated female mites leave the cell with the eclosing bee 

while the male and any immature female mites desiccate in the cell (Donze & Guerin, 1997; 

Rosenkranz, et al., 2010). This creates a close relationship between pupation time and Varroa 

fitness which means mother mites will only initiate oogenesis if they infest the cell when the 

correct larval cues are present. If the conditions become sub-optimal, the mother mite can 

suspend oogenesis (Nazzi & M, 1996; Frey, et al., 2013). 

 

1.3 The evolution of host defences 

Under natural evolutionary and ecological conditions, the introduction of a novel, highly 

virulent parasite is expected to lead to the rapid evolution of resistance traits in the host 

population. This is expected to occur through a collapse and bottleneck in the host 

population, resulting in a reduction in the virulence of the parasite and a more stable host-
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parasite relationship (Locke & Fries, 2011; Fries, et al., 2006). However, in the case of A. 

mellifera and Varroa, the host’s economic importance has changed the expected evolutionary 

trajectory of the parasite (Rosenkranz, et al., 2010). In Europe, the high density of managed 

colonies and relatively low frequency of feral colonies (Kohl & Rutschmann, 2018) means 

that the vast majority of honey bee colonies are treated with acaricides; removing the 

selective pressure for the evolution of Varroa-resistance (Fries & Bommarco, 2007). This 

means that other selective pressures, such as local environmental adaptations, are stronger 

drivers of evolution in European A. mellifera populations than Varroa resistance (Büchler, et 

al., 2015). However, a strong selective pressure for local adaptation on acaricide-treated 

honey bee colonies means that, when colonies are left untreated, the genetic variation from 

which resistance traits can evolve should differ between locations (Kefuss, et al., 2004; Fries, 

et al., 2006; Le Conte, et al., 2007; Wallberg, et al., 2014; Büchler, et al., 2015; Oddie, et al., 

2017). 

1.4 Variation and similarities in the evolution of Varroa resistance 

In cases where populations of European A. mellifera have been managed less, and not treated 

with acaricides, host resistance has evolved in under a decade (Fries, et al., 2006; 

Rosenkranz, et al., 2010; Locke & Fries, 2011; Kefuss, et al., 2015; Locke, 2016; Oddie, et 

al., 2017). Despite different genetic backgrounds, the independently-evolved resistance traits 

in Varroa-resistant honey bee populations are superficially very similar (Fries, et al., 2006; 

Le Conte, et al., 2007; Wallberg, et al., 2014; Locke, 2016; Oddie, et al., 2017). One of the 

most common resistance traits in European populations of A. mellifera is the inhibition of 

Varroa reproduction; a trait which is also shared with Varroa’s original host: A. cerana 

(Oldroyd, 1999; Kefuss, et al., 2004; Fries, et al., 2006; Le Conte, et al., 2007; Oddie, et al., 

2017). 
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This thesis will focus on the inhibition of Varroa reproduction in the drone brood of A. 

mellifera. The longer pupation time of drone brood means that Varroa is able to produce 

more offspring which increases its population growth rate as well as the chance that a colony 

does not survive the winter (Rosenkranz, et al., 2010; van Dooremalen, et al., 2012). Despite 

being a relatively simple trait, the inhibition of Varroa reproduction appears to differ between 

host populations in which it has evolved (Le Conte, et al., 2007; Locke & Fries, 2011; Kurze, 

et al., 2016; Oddie, et al., 2017). This raises the possibility that there could be multiple 

mechanisms by which host populations can independently evolve the resistance trait. 

 

Using Next-Generation sequencing, I explored the genomic basis for the independent 

evolution of the host-induced non-reproduction of Varroa in two resistant populations: One 

from Gotland, Sweden (Chapter 2) and one from Toulouse, France (Chapter 3). However, 

due to the identification of several misplaced scaffolds in the Apis mellifera 4.5 reference 

genome assembly (Elsik, et al., 2014), it was first necessary to construct a de novo genetic 

map (Chapter 1) before running analyses on Varroa-resistance in these populations. 
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Abstract 

Current Next-Generation Sequencing platforms are limited in the length of reads they are able to 

produce; requiring the correct order to be determined algorithmically. While assembly algorithims 

can present a potential error-source, genetic pedigree data can be used to identify recombination 

events and, as recombination events are rare locally, test the order of sequences within a genome 

assembly. We use high-resolution population genomic data, from 80 brother drones, to test and 

compare the assembly quality of the three most recent reference genome assemblies for the western 

honey bee (Apis mellifera). As a model organism, there are several reference genomes available for 

A. mellifera with estimated recombination rates ranging from 19 cM/Mb to 37 cM/Mb. We identify 

variation in quality between A. mellifera reference genome assemblies with estimated 

recombination rates much higher than previous estimates. After performing de novo genetic map 

constructions, the estimated recombination rates become much closer to previous de novo map 

constructions. While internal marker order within scaffolds remained stable, at least 20% of 

scaffolds in the current A. mellifera 4.5 reference genome are mis-aligned. Our results provide an 

explanation for the large degree of variation in estimated recombination rates between Apis 

mellifera genome assemblies. That estimated recombination rates in our de novo assemblies are 

similar to previous estimates for the A. mellifera 4.5 reference genome assembly, which did not 

calculate recombination events across scaffold boundaries, supports our conclusion that mis-aligned 

scaffolds are the source of very high estimates of recombination rate in A. mellifera 4.5 genome 

assembly. 
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Introduction 

The prevalence of reference genomes (Collins et al., 2003; Nygaard and Wurm, 2015; Matasci et 

al., 2014; Grigoriev et al., 2013) makes sequencing a sub-sample of a genome more feasible for a 

wider range of experiments. Large volumes of genomic data can now be generated, aligned to a 

reference genome, and filtered for features of interest (Conlon et al., 2017; Wallberg et al., 2014; 

McCormack et al., 2013). The process is both less labour intensive than screening and amplifying 

individual loci using Polymerase Chain Reactions (PCR) (McCormack et al., 2013; Beaurepaire et 

al., 2017; Conlon et al., 2016; Behrens et al., 2011; Solignac et al., 2007) and less computationally 

intensive than de novo genome assembly (Nygaard and Wurm, 2015; Conlon et al., 2017). 

However, downstream processing of the results relies on the assumption that the reference genome 

is correct. The short read-lengths produced by current Next Generation Sequencing (NGS) 

platforms and the prevalence of repeat regions means that reference genomes are made up of 

distinct scaffolds rather than contiguous chromosome-length sequences. These are assembled 

algorithmically into chromosomes (Elsik et al., 2014), presenting a potential for errors due to low 

complexity regions in genomes (Nygaard and Wurm, 2015). 

 

The error rate, in the algorithmic assembly of a reference genome, can be reduced by pairing it with 

population genetic data or experimental crosses (Solignac et al., 2007; Artemov et al., 2017; Beye 

et al., 2006; Weinstock et al., 2006; Roesti et al., 2013; Utsunomiya et al., 2016; Zeng et al., 2017). 

Using SNP or microsatellite markers to identify recombination events, a genetic map can be created 

for the genome. The decay of linkage disequilibrium with increased physical distance can then be 

used to identify incorrectly-located regions within the reference genome and estimate their true 

location (Utsunomiya et al., 2016). 
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As one of the first species identified for Whole Genome Sequencing (WGS) (Weinstock et al., 

2006), the western honey bee (Apis mellifera) has four available reference genome assemblies with 

both de novo and reference-genome-based genetic maps (Table 1) (Solignac et al., 2007; Elsik et 

al., 2014; Beye et al., 2006). As F2 crosses using haploid drones can be analysed, this makes it an 

excellent candidate model system for testing the reproducibility of genomic assemblies. While 

previous genetic maps, constructed de novo based on recombination frequency between marker 

positions in the scaffolds of the reference genome, have consistently reported a recombination rate 

of 19-22 cM/Mb (Table 1.), the most recent version of the genome (Amel_4.5) (Elsik et al., 2014) 

has provided estimates with much higher variability (Table 1.). In producing this genome, new 

scaffolds were formed through merging existing scaffolds or filling intra-scaffold gaps (Elsik et al., 

2014). These new scaffolds were then anchored to the previous reference genome assembly (Elsik 

et al., 2014), which was itself anchored using a microsatellite-based map (Solignac et al., 2007; 

Beye et al., 2006; Weinstock et al., 2006). This raises the possibility that large increases in 

recombination rate seen in genetic maps constructed using Amel_4.5 genome assembly are due to 

assembly errors rather than genuine recombination events. 

 

Given its importance as a model organism, we seek to test the variation in quality among the three 

most recent genome assemblies for A. mellifera. The haplodiploid sex determination, found in A. 

mellifera and throughout the hymenoptera, greatly simplifies the task of identifying recombination 

events as drones possess only one allele per locus: removing any ambiguities associated with 

heterozygosity. This, combined with a wide range of available genetic data, means A. mellifera is 

unusually well suited for a study of this kind. 

 

Methods  
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Sampling and DNA analyses 

We sampled 80 A. mellifera drone offspring from a hybrid queen (Behrens et al., 2011), extracting 

DNA with a phenol/chloroform protocol (Garnery et al., 1991). The resulting extracts were assessed 

using a Nanodrop 1000 spectrophotometer (peqlab). The 80 specimens were split into three 

sequencing runs: one run of 16 specimens and two runs of 32 specimens. Library preparation was 

conducted using the RESTseq method (Stolle and Moritz, 2013) and individually barcoded drone 

samples underwent single-end sequencing using an IonTorrent Personal Genome Machine (Thermo 

Fisher). 

 

SNP identification 

Sequencing quality was checked using FastQC (Andrews, 2010) before barcodes and poor-quality 

sequences, with a phred score lower than 20, trimmed with cutadapt (Martin, 2011). After 

trimming, reads shorter than 25bp were discarded. The resulting sequences were mapped to the Apis 

mellifera 4.5 (downloaded from NCBI), 4.0 and 3.0 (downloaded from BeeBase) genome 

assemblies (Elsik et al., 2014; Weinstock et al., 2006; Kitts et al., 2016; Elsik et al., 2015) using the 

“MEM” algorithm and default parameters of the Burrows-Wheeler Aligner (BWA) (Li and Durbin, 

2010). The mapped reads were aligned to the reference genomes, skipping indels, with SAMtools’ 

mpileup function (Li et al., 2009). Variant loci were then identified using the multi-allelic and rare-

variant caller in BCFtools’ call function (Li, 2011). 

 

Defining of the Phase 

The phase for each locus in a linkage group was determined by using an algorithm written in R (R 

Core Team, 2017). Detailed methods and the phasing script are found in Additional Files 4 and 5. 
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Briefly, the algorithm is based on the fact that recombination events are rare locally when using 

high density markers such as SNPs produced by RESTseq. 

 

By identifying a shared locus between datasets, we were able to use this as an anchor point, 

allowing multiple datasets to be phased and then combined. Starting at the anchor point, each 

marker matching the reference genome was assigned the phase “A” and each marker different to it 

was assigned phase “B”. To overcome the problem that the expression (matching or different to the 

reference genome) could switch without the phase switching as well, we used precedents for each of 

the phases. A precedent for phase “A” would be a match in the expression of the current marker and 

the previous marker in the same individual. In case of a mismatch this would be a precedent for 

phase “B”. This was done for each linkage group. After working through all the linkage groups, 

multiple datasets could be merged by the position in the genome. 

 

Map construction 

Data were filtered using the phasing script, to remove any markers with a distribution greater than 

70:30 and a density under 50%, then with r/qtl (R Core Team, 2017; Broman et al., 2003), to 

remove duplicate markers and individuals with under 1000 markers. Using the ASMap package in 

R (R Core Team, 2017; Taylor and Butler, 2017), recombination events and genetic distances were 

calculated for marker orders based on the reference genome assemblies before de novo map 

constructions were performed. Optimal marker order within a linkage group was determined by 

minimising the number of crossovers and genetic distances were calculated using the Kosambi map 

function. Due to changes in the marker order, phasing was checked and manually adjusted before 

re-running the de novo map construction. We then compared the physical location of incorrectly-

placed regions to the reference genome structure. 
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Results 

Genotyping results 

Sequencing generated 16,838,258 reads across our 80 samples. Many more reads mapped to the 

Amel_4.5 reference genome than the earlier versions while average read length and GC% remained 

constant across all three (Table 2.). After filtering in R (R Core Team, 2017), our datasets 

contained: 49 individuals with 1456 unique markers and 92% coverage for the 3.0 genome 

assembly; 48 individuals with 1556 unique markers and 92% coverage for the 4.0 genome assembly 

and 78 individuals with 2879 unique markers and 77% coverage for the 4.5 genome assembly. 

 

Map construction 

Based on marker order in the reference genome, we calculated initial recombination rates of 42.2 

cM/Mb, 38.5 cM/Mb and 98.1 cM/Mb for the 3.0, 4.0 and 4.5 refererence genome assemblies 

respectively. These are much higher than previous estimates (Table 1.). We identified high genetic 

linkage between physically distant markers with multiple recombination events between them, a 

sign of potential assembly errors, in all genome assemblies (Additional file 1), however, these are 

much more common in the 4.5 genome assembly (Additional file 1; Additional file 2); as evidenced 

by its recombination rate being more than double that of 3.0 or 4.0 (Table 1). 

 

Having performed de novo genetic map constructions, the recombination rate and linkage between 

physically distant markers for each assembly decreases greatly (Table 1.; Additional file 1; 

Additional file 2). By comparing marker position in the genome assembly to the de novo assembly, 

we can see that much of the decrease has come from re-orientation of large regions within linkage 

groups rather than a total rearrangement of markers (Figure 1 A, B, C). The estimated 
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recombination rates for the new assemblies are 22.8cM/Mb and 22.6cM/Mb for the 3.0 and 4.0 

genome assemblies respectively and 44cM/Mb for the 4.5 genome assembly. The estimated 

recombination rate for the de novo assemblies using markers from the 4.0 and 3.0 assemblies are 

very close to earlier estimates using de novo constructions (Table 1.). While the estimate for 

markers from the 4.5 genome assembly is higher than has previously been estimated (Table 1.), this 

may be a result of the high number of mis-placed and mis-orientated scaffolds affecting the phasing 

method used (additional files 4 and 5). 

 

Relation to scaffold order 

We identified 72 large and clearly misplaced or inverted regions within the current Apis mellifera 

4.5 reference genome assembly (Figure 1 C; Additional file 3). Of these, 71 contained all the 

markers on a scaffold suggesting an error during genome construction. For the one region, which 

did not contain all the markers on a scaffold, there was still a large amount of variation in placement 

between the scaffold’s remaining markers suggesting a degree of error in the construction and that 

the entire scaffold is also incorrectly placed. 

 

Discussion 

We compared genome construction quality among the three most recent versions of the Apis 

mellifera genome assembly using high-density SNP-based linkage maps. After performing de novo 

map constructions, we found the linkage between adjacent markers increased greatly while the 

number of recombination events decreased. As linkage is expected to decrease with increasing 

physical distance (Utsunomiya et al., 2016), this supports our re-ordering of markers in the de novo 

map construction. For Apis mellifera 3.0 and 4.0, the two most well-constructed genome assemblies 

in our analysis, this results in recombination rates of 22.8cM/Mb and 22.6cM/Mb, highly similar to 
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the 22.0cM/Mb reported in a previous de novo assembly (Solignac et al., 2007). While the 

estimated recombination rate for the Apis mellifera 4.5 genome assembly is higher (44cM/Mb), 

much of this difference could be explained by the misplacement or misorientation of at least 20% of 

scaffolds in the Amel_4.5 reference genome and the effect this would have on the phasing method 

used. 

 

Despite being the current representative genome for A. mellifera, the Amel_4.5 (Elsik et al., 2014) 

genome assembly contained the largest regions of misplaced scaffolds in our analysis; a result, 

which could cause problems for the 120 studies citing it in Web of Science (Clarivate Analytics). 

Although the earlier genome assemblies may also contain misplaced or aligned scaffolds, the short 

length of these means the physical distance may not be enough for linkage to decay between the 

two adjacent scaffolds. The merging of shorter scaffolds and filling of gaps from previous 

assemblies, without the subsequent generation of a new genetic map, likely introduced errors in the 

assembly and contributes to our identification of such a high number of mis-placed and mis-aligned 

scaffolds. 

 

While A. mellifera does appear to have one of the highest recombination rates of any eukaryote 

(Solignac et al., 2007; Beye et al., 2006; Weinstock et al., 2006; Liu et al., 2015), the very high 

estimates associated with the Amel_4.5 genome assembly (Liu et al., 2015) are likely biased by 

poor scaffold placement rather than representing genuine recombination events. Indeed, when 

studies do report recombination frequencies under 30 cM/Mb for the Amel_4.5 genome assembly 

(Table 1.), they have either ignored multiple recombination events between markers (Liu et al., 

2015) or did not estimate recombination events between scaffolds (Wallberg et al., 2015): 

supporting our conclusion that misplaced scaffolds are artificially increasing the estimated 
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recombination rate. Further evidence can be found from the production of the Apis cerana reference 

genome assembly (Park et al., 2015), where the Amel_4.5 reference genome was used to test the 

accuracy of the construction. While synteny data were only published for Chromosome 3, 

comparison of a region with seeming genomic rearrangement between the two species (Park et al, 

2015) to our own data (Figure 1C, Additional file 3) reveals that we identify a scaffold inversion in 

that region on Chromosome 3. 

 

Although there appears to be a larger degree of error in the Amel_4.5 genome assembly than earlier 

genome assemblies, when this is known and corrected for, it should still be considered the best 

option for read-mapping. This is evidenced by the increased sequence lengths and number of 

anchored scaffolds in Amel_4.5 allowing us to map more sequences to the genome and generate an 

increased total number of markers as well as an increased number of markers per individual (Table 

2.). In future, it is possible that new sequencing technologies, such as the long reads generated by 

PacBio (Rhoads and Au, 2015), or advances in assembly methods such as Hi-C (Belton et al., 

2012), could help to bridge the gaps between scaffolds and further improve the genome assembly. 

 

Conclusions 

The generation of reference genomes is accelerating rapidly. On the 31st of December 2017, 5983 

(for 5075 unique species) eukaryotic genome assemblies were stored in the NCBI genome assembly 

database (Kitts et al., 2016). 1345 (22.5%) of these assemblies were added in 2017, at an average 

rate of over 112 per month; compared to a total of 50 (<1%) genome assembiles added in the first 

five years and 403 (7%) in the first decade of this millennium (Kitts et al., 2016). While the rapid 

rise and proliferation of genomic data will benefit research, our results show that even well-resolved 

assemblies cannot be relied on fully and that high-density linkage maps generated using NGS can 
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be invaluable in testing assembly quality. The variation we find between reference genome 

assemblies also highlights the difficulties that come with comparing results to those generated using 

different genome assemblies. 

 

While the availabilty of reference data does make genome-level studies cheaper and more feasible 

for a wide range of studies (Collins et al., 2003; Nygaard and Wurm, 2015; McCormack et al., 

2013), caution should be excercised when using them and the placement of scaffolds should, if 

possible, be confirmed experimentally (Solignac et al., 2007; Artemov et al., 2017; Beye et al., 

2006; Weinstock et al., 2006; Roesti et al., 2013; Utsunomiya et al., 2016; Zeng et al., 2017). This 

would not only provide more reliable results for a single study but, by maximising the accuracy of 

each iteration of a reference genome assembly, should make comparisons between iterations more 

feasible than currently appears possible for A. mellifera. 
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Figure legends 

Figure 1. 

Comparison of marker order in the genome assembly vs the de novo map construction for (A) 

Amel_3.0 (n = 1456), (B) Amel_4.0 (n = 1556) and (C) Amel_4.5 (n = 2879). 
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Tables with legends 

Table 1. 

Paper Data-type Genome 
assembly 
version 

Recombination 
rate (cM/Mb) 

Beye et al., 2006 Microsatellite 2.0 19.0 
Solignac et al., 2007 Microsatellite de novo 22.0 
Wahlberg et al., 2015 SNP 4.5 26.0 
Liu et al., 2015 SNP 4.5 37.0 
Liu et al., 2015 – ignoring 
multiple recombination events 

SNP 4.5 24.5 

Conlon et al. – 3.0 SNP 3.0 42.2 
Conlon et al. – de novo SNP 3.0 22.8 
Conlon et al. – 4.0 SNP 4.0 38.5 
Conlon et al. – de novo SNP 4.0 22.6 
Conlon et al. – 4.5 SNP 4.5 98.1 
Conlon et al. – de novo SNP 4.5 44.0 
Comparison of recombination rate estimates, for previous de novo and reference-genome-based 

genetic maps, to our estimates. 

Table 2. 

Mapping statistics for the three reference genome assemblies. 

Additional files 

Additional file 1. 

Conlon_et_al_SupMat1_Recombination_fractions_for_all_assemblies.pdf 

Assembly
Reads	
mapped

Average	
read	length GC%

Number	of	
SNPs

3.0 11,876,551 154 44 465,991
4.0 11,976,915 154 44 471,754
4.5 15,049,559 155 44 533,863
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Additional file 2. 

Conlon_et_al_SupMat2_Log10_Recombination_Events.pdf 

Additional file 3. 

Conlon_et_al_SupMat3_Location_of_misaligned_scaffolds.pdf 

Additional file 4. 

Conlon_et_al_SupMat4_PhaseHaploid_Instructions_and_pseudocode.pdf 

Additional file 5. 

Conlon_et_al_SupMat5_PhaseHaploid_script.pdf 
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Summary 

The brood-parasitic mite Varroa destructor devastates colonies of the honey bee (Apis mellifera). 

Varroa population size is a significant predictor of colony death. However, resistance can evolve 

rapidly. A common trait among resistant colonies is the inhibition of Varroa reproduction in pupal 

cells but the mechanism has not been identified. Using resistant and susceptible haploid drone 

offspring of a single queen in a high-density genome wide association analysis, we show that an 

ecdysone-induced gene is significantly linked to resistance in our mapping population. Different 

ecdysone-related genes are present at resistance loci, from a lower-resolution study, in a different 

population. Ecdysone both triggers pupation in the bee and initiates reproduction in Varroa. The 

Varroa genome lacks a complete pathway for ecdysone biosynthesis but active ecdysone analogues 

initiate ovary action. If Varroa co-opts ecdysone ingested from the pupae to initiate its own 

reproduction, modifications to this pathway in resistant pupae could physiologically inhibit the 

parasites reproduction. 

Article 

The transition to a parasitic lifestyle is often accompanied by a reduction in overall or functional 

genome size 1, 2. While Acari can exhibit a loss of function in some metabolic pathways 3, 4, this is 

not always accompanied by a reduction in genome size 5. The brood parasitic mite Varroa 

destructor is an excellent example of this. Varroa possesses a much larger genome than many 

insects, including its host: Apis mellifera 6, 5. However, Varroa also exhibits reduced metabolic 

pathways when compared to other Acari and Arthropods 3, 4. One of these functionally reduced 

pathways, the ecdysone biosynthesis pathway, is important for the initiation of a female mite’s 

reproductive cycle 7, 4 
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Varroa completes its entire reproductive cycle within the pupal cells of A. mellifera 8. A Varroa 

mother lays one male and up to four female eggs, which develop sequentially at 30-hour intervals, 

inside the sealed pupal cell8. The Varroa mother, and her developing offspring, will feed on the 

haemolymph of the developing pupae; reducing the bee’s adult lifespan and making it less able to 

forage and support the colony 9. The reduction in lifespan of Varroa-parasitised pupae translates 

into negative fitness consequences for the colony as a whole with Varroa population size in the 

autumn acting as a significant predictor of colony overwinter mortality 10. Although the widespread 

use of acaricides can reduce colony mortality, it rapidly selects for the evolution of acaricide 

resistant Varroa while removing the selective pressure for the evolution of Varroa-resistance in A. 

mellifera 11, 12, 13. However, when populations of A. mellifera are left untreated with acaricides, 

Varroa resistance can evolve rapidly 14, 15, 16, 17. 

Despite different geographic and genetic origins, host-induced inhibition of Varroa reproduction is 

a shared trait of many Varroa-resistant A. mellifera populations across the globe as well as the 

original host A. cerana 18, 8, 19, 20, 17, 21, 22. The reduced reproduction of Varroa appears to make an 

important contribution to the survival of untreated colonies and contributes to colony overwinter 

survival by reducing Varroa population size in the autumn 10, 17. In some resistant populations, it 

has been shown that the reduced reproduction of Varroa is a genetic, heritable, trait of the host 

pupae 20, 22. While it is yet to be shown exactly how a honey bee pupa is capable of inducing its 

parasite not to reproduce 23, experimental manipulations show Varroa will suspend reproduction 

when the conditions inside the cell are not optimal 24. This suggests the induction of non-

reproduction may not be a classical immune response but an act of physiological manipulation by 

the pupa. 
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 We investigated the genomic basis for the host-induced non-reproduction of Varroa. We screened 

the haploid drone offspring of queens in a resistant population in search of a ~50% rate of non-

reproduction of Varroa. This is indicative of single-gene control inherited from a heterozygous 

mother queen. The unusually high recombination rate in A. mellifera (19 cM/MB) 6 means that, 

even with a relatively small sample size, we were able to identify genomic regions and 

physiological pathways are linked to the resistance trait. 

Colony screening 

We collected 69 infested pupae with 46% of mites in singly-infested cells not reproducing. This was 

not significantly different from a Medelian 1:1 segregation expected under single locus control (X2 

= 0.010, df = 1, p = 0.920). 

Sequencing 

After mapping and filtering to remove individuals with low coverage, markers with <90% genotype 

coverage, a sequencing depth outside of 15-50 reads per individual and an allelic distribution 

greater than 35-65%, gave us a dataset containing 45 individuals (19 Resistant, 26 Susceptible) and 

112,976 SNPs for the Fst analysis. We identified 29022 unique SNPs to be used in the QTL 

analysis. 

Candidate locus identification 

The presence of a single locus for resistance was supported by our identification of one peak from 

7.42-7.45 Mbp on Chromosome 15 in the Fixation Index (FST) analysis (Figure 1; SNPs = 20; Mean 

FST = 0.338). The peak is 2.27 Mbp from a QTL peak identified in the Gotland population of 

Varroa-resistant A. mellifera (Figure 2) 22. QTL analysis identified one significant locus, and no 
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significant interactions, (LOD = 4.21, df = 1, p = 0.029, phenotype explained = 40%) ranging from 

7.42-7.53 Mbp on Chromosome 15 and overlapping with the FST peak (Extended data figure 1). In 

total, the overlapping FST and 1.5 LOD window contained 74 SNPs and 14 INDELs. 

Candidate gene identification 

The analytical power of using the haploid honey bee drones and very high recombination rate 6 

allowed us to narrow our resistant locus down to 10 functional SNPs in 4 genes across a 43 Kb 

window which result in a non-synonymous change in the amino acid sequence (Table 1). With 10-

20% of Varroa expected not to reproduce regardless of host genotype 25, 26, there is an unavoidable 

10-20% error rate in the identification of resistant pupae. This is reflected in our data (Figure 3) and

means that 40% is likely to be an underestimation of the percentage of the phenotype explained. 

The presence of Mblk-1 as the best-segregating gene at the significant locus suggests a potential 

pathway for resistance in the Toulouse population of Varroa-resistant A. mellifera. The regulation 

of metamorphosis by conserved regions of Mblk-1 is conserved across both holo- and hemi-

metabolous insects 27. With Varroa being experimentally shown to suspend reproduction when 

pupal cues, related to the initiation of morphogenesis, are not optimal 24, a change in the action of 

Mblk-1 could therefore induce Varroa to suspend reproduction. A similar, albeit less clear, 

mechanism has been suggested for reduced Varroa reproduction in a resistant honey bee population 

from the island of Gotland, Sweden 22. 

In the early stages of pupation, the prepupae releases a pulse of ecdysteorid hormones, including 

ecdysone, which serve to initiate morphogenesis 28. Ecdysone and its derivatives also act as a trigger 

for vitellogenesis in the Acari 7, 4, 29. In the Gotland population of Varroa-resistant honey bees, 
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cytochrome P450 18a1 (Cyp18a1) and cytochrome P450 306a1 (phm) are both linked to the host-

induced inhibition of Varroa reproduction 22. Both genes are involved in the ecdysone biosynthesis 

pathway and Cyp18a1 is involved in lowering the titre of ecdysone during the transition from 

prepupa to pupa 30. This suggests the regulation of ecdysone-linked genes could represent a 

common pathway for the inhibition of Varroa reproduction across independently-evolved 

populations. Fascinatingly, although Varroa shows increased expression of genes involved in the 

production of ecdysone when initiating reproduction 4, 29, the pathway is incomplete with only three 

of the seven genes from the ecdysone biosynthetic pathway present in the V. destructor genome 5, 4. 

Functional forms of ecdysone are capable of ingestion by Varroa 31; suggesting the reduced number 

of genes may be an adaptation of the mite to its parasitc lifestyle and missing compounds are 

acquired through its haemolymph diet 4. This raises the possibility that the pulse of prepupal 

ecdysteroids is not a signal but a necessary physiological component for the successful initation of 

reproduction in V. destructor. A change in the regulation of genes involved in the production of or 

induced by ecdysone could reduce the amount available for ingestion by Varroa rendering it 

incapable of initiating oogenesis. In this sense, the host-induced inhibition of Varroa reproduction 

may represent a case of the host wresting back control of its extended phenotype; preventing its 

cooption by the parasite and increasing its own fitness. 

The inhibition of Varroa reproduction appears to play an important role in colony survival for the 

Toulouse and other Varroa-resistant populations 19, 17, 22, 20. While inhibition in the Toulouse and 

Gotland resistant populations may be linked to the manipulation of Varroa using the ecdysone 

signalling cascade, they achieve the same result using different methods 22. This raises the 

possibility that the ecdysone pathway represents a common link for the inhibition of Varroa 
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reproduction in independently-evolved resistant populations and the cooption of prepupal 

 ecdysteroids may be an important physiological trigger for the initiation of Varroa reproduction. 
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Table legends 

Table 1. 

The ten SNPs causing in changes in the amino acid sequence with their genomic position, bases, 

gene name and amino acid change. 

Figure legends 

Figure 1. 

Genome-wide comparision of SNP Fst between susceptible and resistant pupae. The suggestive line 

was calculated as the 99.99th percentile. The suggestive region, at the 99.99th percentile, has a 
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maximum Fst of 0.391. SNP windows which overlap the QTL in the Toulouse population are 

highlighted in green. 

Figure 2. 

Fst, calculated using 20 SNP windows, on Chromosome 15. The maximum Fst for the Toulouse 

population was 0.391. SNP windows which overlap the QTL in the Toulouse population are 

highlighted in green, the QTL in the Gotland population is highlighted with a red box. The 

maximum Fst in the Gotland QTL region was 0.04. 

Figure 3. 

The proportion of reproducing and non-reproducing Varroa for each allele at the QTL peak. 

Materials and Methods 

Colony screening 

Colony screening took place from May-June 2017 near the village of Le Born, Haute Garonne, 

France (43°54'N 1°32'E). Drone brood cells from the white-eyed pupal stage onwards were opened 

and phenotyped based on the number of Varroa offspring. Cells in which it was not possible to 

unambiguously phenotype Varroa reproduction were excluded from further analyses. Varroa was 

considered to have successfully reproduced if it produced at least one daughter and one son while 

reproduction was considered unsuccessful if the mite produced no offspring or only sons20,25. We 

identified one colony in which ~50% of Varroa-infested cells did not reproduce and performed a 

Chi-Squared goodness-of-fit test to identify whether the distribution of successful vs unsuccessfully 

reproducing mites was significantly different to 50:50. The pupae and mature mites were stored 

together in 96% ethanol at -80°C for genetic analysis. 
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DNA extraction, sequencing and genotyping 

DNA was extracted from the thorax of Varroa-infested brother-drone pupae using a 

phenol/chloroform extraction 32. The resulting extracts were assessed using a Nanodrop 1000 

spectrophotometer (peqlab) and underwent 20X, 150bp, paired-end sequencing on Illumina HiSeq 

with Novogene (Hong Kong). 

Variant loci calling and analysis 

DNA sequences were mapped to the scaffolds of Apis mellifera 4.5 reference genome 33 using the 

BWA “MEM” algorithm 34. Variant loci were identified using Picard 35and GATK 36, 37. Base 

quality score recalibration, indel realignment, duplicate removal and SNP and INDEL discovery 

and genotyping was performed for all samples simultaneously using standard hard filtering 

parameters following GATK best practices 38, 39. SNPs and Indels were called into separate files for 

further analyses. 

SNPs and INDELs were filtered to remove loci with fewer than 90% genotyped individuals and 

where the allelic distribution was greater than 35-65%. FST was then calculated using a window of 

10-20 SNPs with a maximum window size of 50,000 bp using popgenwindows 40.  FST values were

analysed in R 41 using the qqman package 42. The threshold for suggestive loci was calculated as the 

99.99th percentile of FST. 

The filtered SNPs were phased using the R script PhaseHaploid (B.H.C., Oertelt, E., R.F.A.M., J.R. 

Increasing recombination rate estimates result from decreasing assembly accuracy in honey bee 

(Apis mellifera) reference genome updates, J. Hered., manuscript in review) and a genetic map 
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constructed using the Rqtl and ASMap packages 43, 44, 41. Unique genotypes then underwent single- 

and multi-locus qtl analyses to identify loci and interactions linked to resistance. QTL size was then 

estimated using the 1.5 LOD score. 

Candidate SNP and gene analysis 

The peak regions from the FST and QTL analyses were used to create a list of candidate SNPs and 

genes from the A. mellifera Official Gene Set v3.2. SNPeff 45 was used to identify which SNPs 

created a change in the amino acid sequence. The functions of genes in which a SNP changed the 

amino acid sequence were analysed further using the KEGG 46, Gene Ontology 47, 48 and UniProt 49 

databases. 

Data availability 

Sequence data has been deposited in the Sequence Read Archive (SRA) of the National Centre for 

Biotechnology Information (NCBI) under the BioProject accession number: PRJNA473430. 
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Figure 1.
Genome-wide comparision of SNP Fst between susceptible and resistant pupae. 
The suggestive line was calculated as the 99.99th percentile. The suggestive re-
gion, at the 99.99th percentile, has a maximum Fst of 0.391. SNP windows which 
overlap the QTL in the Toulouse population are highlighted in green.
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Figure 2.
Fst, calculated using 20 SNP windows, on Chromosome 15. The maximum Fst for the 
Toulouse population was 0.391. SNP windows which overlap the QTL in the Toulouse 
population are highlighted in green, the QTL in the Gotland population is highlighted 
with a red box. The maximum Fst in the Gotland QTL region was 0.04.
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Figure 3.
The proportion of reproducing and non-reproduc-
ing Varroa for each allele at the QTL peak.
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Table 1.
The ten SNPs causing in changes in the amino acid sequence with their genomic position, bases, gene 
name and amino acid change.

SNP Position (Mbp) Resistant Allele Susceptible Allele Gene_Name Amino Acid Change
A47891 7.422888 G C GB50180 Gly -> Ala
A47893 7.422989 C T GB50180 His -> Tyr
A47894 7.427533 C T GB50181 Leu -> Phe
A47895 7.427599 T C GB50181 Ala -> Pro
A47896 7.427876 G A GB50181 Glu -> Lys
A47897 7.429057 A T GB50049 Val -> Asp
A47904 7.454459 A G MBLK-1 Asn -> Thr
A47906 7.454648 T C MBLK-1 Gln -> Arg
A47912 7.464915 A G MBLK-1 Leu -> Pro
A47914 7.465954 A G MBLK-1 Asn -> Thr

40



5. Conclusion

This thesis sought to explore the genomic basis for the host-inhibition of Varroa reproduction 

in independently-evolved resistant populations of A. mellifera. With Varroa population size 

in the autumn acting as a significant predictor of overwintering colony death (van 

Dooremalen, et al., 2012), a reduction in Varroa reproductive success is expected to reduce 

population sizes in the autumn and contribute to colony survival. Although both the original 

host (A. cerana) and many resistant populations of A. mellifera exhibit elevated rates of non-

reproduction compared to susceptible colonies (Oldroyd, 1999; Kefuss, et al., 2004; Fries, et 

al., 2006; Le Conte, et al., 2007; Oddie, et al., 2017), the mechanism by which they achieve 

this appears to differ slightly between independently-evolved populations (Kurze, et al., 

2016). 

Aided by the identification, and correction for, multiple misplaced and mis-orientated 

scaffolds in the A. mellifera 4.5 reference genome assembly (Elsik, et al., 2014), the results of 

the studies on the Gotland and Toulouse populations support the suggestion that the 

mechanism of resistance differs between populations. Although a resistance locus on 

Chromosome 15 was identified in both populations, the distance between these two loci (2.27 

Mbp) means linkage breaks down and they appear to represent two separate resistance loci. 

However, despite possessing different resistance loci, both populations may use the same 

physiological pathway to inhibit resistance. 

5. 1 Varroa reproductive physiology

There is a body of experimental evidence to suggest that Varroa requires a kairomonal cue 

from the cuticle and the haemolymph of the pupa before it will initiate oogenesis (Garrido & 

Rosenkranz, 2004; Aumeier, et al., 2002; Rosenkranz, et al., 2010; Frey, et al., 2013) and that 

41



it will suspend oogenesis if the conditions are suboptimal (Frey, et al., 2013). The results 

from the studies on the Toulouse and Gotland populations provides strong evidence that this 

cue could be linked to the steroid hormone ecdysone. In both populations, significant loci 

contained genes linked to the ecdysone pathway (Figure 1). 

A pulse of ecdysteroids, including ecdysone and its derivatives, acts as a conserved trigger 

for metamorphosis in insect prepupae (Lee, et al., 2000; Takayanagi-Kiya, et al., 2017). With 

the Varroa mother feeding on the haemolymph of the prepupae before initiating reproduction 

(Rosenkranz, et al., 2010), the presence of ecdysone-linked genes, and the elevated titres in 

prepupae (Lee, et al., 2000) suggests this could act as a trigger for the initiation of Varroa 

reproduction. Ecdysone not only play an important role in the initiation of metamorphosis, 

they have also been shown to be important for the initiation of reproduction in Varroa and 

PHM

CYP18A1

Ecdysone

Ecdysone

A

B

Mblk-1

PHM

NVD SAD

SAD

Figure 1. 
The role of ecdysone (red and 
white) and genes linked to the 
inhibition of Varroa 
reproduction in the Gotland 
(yellow and blue) and Toulouse 
(white and blur) resistant 
populations in hormone 
biosynthesis (A) and ecdysone-
induced apoptosis (B). 
Ecdysone biosynthesis genes 
(other than Phm) missing in the 
Varroa genome (Nvd and Sad) 
are outlined in orange. 
Modified from KEGG 
(Kanehisa, et al., 2015). 
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other Acari (Cabrera, et al., 2015; Roe, et al., 2008). With the Varroa genome possessing a 

reduced ecdysone biosynthesis pathway compared to other Acari (Grbić, et al., 2011; 

Cabrera, et al., 2015), and with ecdysone analogues capable of ingestion in a functional form 

by Varroa (Cabrera, et al., 2017), it is possible that Varroa co-opts the prepupal ecdysone 

pulse to initiate its own reproduction. This could explain the lack of a complete pathway for 

ecdysone biosynthesis in the Varroa genome (Cabrera, et al., 2015). 

 

A Varroa mother’s fitness is tightly linked to the pupation time of the bee (Rosenkranz, et al., 

2010). The mother possesses a finite amount of sperms and eggs and her diploid daughter 

mites will only mate with haploid sons in the natal cell (Rosenkranz, et al., 2010). This 

provides a very strong selective pressure to lay eggs only when there is enough time for them 

to develop and mate before the bee ecloses. Should Varroa require ecdysone from the 

prepupal pulse to initiate oogenesis, this would biologically prevent the mother from wasting 

her finite sperms and eggs if the timing for reproduction is not optimal. However, this also 

suggests that minor alterations in the ecdysone pathway could prevent Varroa from 

successfully reproducing despite the timing being optimal. That the four loci identified across 

the genomes of the Gotland and Toulouse populations do not overlap, suggests that, although 

they may be linked to the same physiological pathway, there are multiple ways in which the 

inhibition of Varroa reproduction can evolve. 

 

5.2 The evolution of resistance 

That resistance loci appear to differ between the Gotland and Toulouse populations is perhaps 

unsurprising. The differences between the Nordic and Mediterranean climates means both 

populations of bees and mites will have been exposed to very different ecological conditions 

(Calis, et al., 1999; Büchler, et al., 2015). Historically, the previous use of acaricide 
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treatments, as well as their still widespread use in the area surrounding the Toulouse 

population, means the pressure to adapt to the local conditions is likely to have outweighed 

that for Varroa resistance traits (Fries & Bommarco, 2007; Büchler, et al., 2015). With 

differences in the initial genetic variation for selection to act on, it is fascinating that the same 

method of resistance has evolved so many times in so many different locations (Fries, et al., 

2006; Le Conte, et al., 2007; Wallberg, et al., 2014; Locke, 2016; Oddie, et al., 2017).  

5.3 Consequences for apiculture 

The capability of A. mellifera to evolve effective defences to Varroa, when the conditions are 

allowed, highlights the importance of evolutionary thinking in agriculture. Selection for local 

adaptation, and the presence of Varroa susceptible genetic material in surrounding treated 

populations, raises issues for attempts to transfer or breed from resistant populations in 

different environments. However, the repeated evolution of Varroa-resistance from differing 

genetic stocks suggests that, if selection is not inhibited with acaricide treatments, most 

European honey bee populations could develop resistance. The development of commercially 

viable breeding protocols (Kefuss, et al., 2015) means this could be possible without 

unsustainable levels of colony losses. An increase in the density of resistance populations 

could lead to the migration of resistance genes between populations. This increase in variance 

may contribute to the development of a balanced host-parasite relationship by reducing the 

likelihood of Varroa developing resistance to a single trait. 
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Heatmap plotting the pair-wise recombination fractions against the LOD linkage score for the (A) 
Amel_3.0 ( n = 1556), (B) Amel_4.0 (n = 1556) and (C) Amel_4.5 (n = 2879) genome assemblies 
and the (D) de novo 3.0 (n = 1456), (E) de novo 4.0 (n = 1556) and (F) de novo 4.5 (n = 2879) maps. 
Yellow represents high genetic linkage and a low recombination rate between two markers while blue 
represents low genetic linkage and a high recombination rate between two markers.
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Assembly Chromosome Upper region (Mbp) Lower region (Mbp) Upper Marker Lower Marker Scaffold Entire Scaffold (Y/N) Inverted or misplaced

4.5 1 17.79 16.12 A212 A184 29 Y Inverted

4.5 1 18.14 18.12 A216 A213 30 Y Inverted

4.5 1 18.73 18.37 A224 A217 31 Y Inverted

4.5 1 24.67 22.62 A362 A293 37 Y Inverted

4.5 1 29.79 28.56 A482 A444 43 Y Inverted

4.5 2 15.49 12.54 A783 A711 20 Y Misplaced

4.5 2 8.42 7.47 A647 A574 15 Y Inverted

4.5 2 10.21 8.72 A702 A657 17 Y Inverted

4.5 3 6.12 4.12 A910 A834 8 Y Inverted

4.5 3 11.4 10.73 A1017 A1034 15 Y Inverted

4.5 4 5.42 5.02 A1140 A1130 8 Y Misplaced

4.5 4 4.96 4.76 A129 A1127 7 Y Misplaced

4.5 4 4.19 3.79 A1126 A1123 6 Y Misplaced

4.5 4 1.73 2.98 A1118 A1082 5 Y Misplaced

4.5 4 0.78 0.78 A1079 A1079 3 Y Misplaced

4.5 4 1.2 0.93 A1081 A1080 4 Y Inverted and misplaced

4.5 4 0.47 0.13 A1078 A1075 1 Y Misplaced

4.5 4 5.65 7.4 A1155 A1142 9 Y Inverted

4.5 4 8.19 7.94 A1159 A1156 10 Y Inverted

4.5 4 11.58 9.38 A1207 A1167 13 Y Inverted

4.5 4 12.2 11.9 A2108 A1223 16 Y Inverted

4.5 5 8.56 7.65 A1359 A1327 12 Y Inverted

4.5 5 11.95 9.36 A1412 A1374 14 Y Inverted

4.5 7 6.26 5.42 A1698 A1692 17 Y Inverted

4.5 7 10.45 8.36 A1791 A1737 21 Y Inverted

4.5 8 8.58 7.17 A1957 A1917 9 Y Inverted

4.5 8 12.38 11.62 A2015 A1995 17 Y Inverted

4.5 9 2.96 2.82 A2027 A2026 7 Y Inverted and misplaced

4.5 9 1.73 1.73 A2023 A2024 5 Y Inverted and misplaced

4.5 9 11.07 9.63 A2321 A2223 12 Inverted

Location of identified mis-aligned scaffolds in the Apis mellifera 4.5 reference genome assembly.
Additional File 3.
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Assembly Chromosome Upper region (Mbp) Lower region (Mbp) Upper Marker Lower Marker Scaffold Entire Scaffold (Y/N) Inverted or misplaced

4.5 10 12.84 6.03 A2521 A2414 23 – 29 Y Misplaced

4.5 10 4.8 0.04 A2412 A2322 1 – 18 Y Misplaced

4.5 11 14.38 13.87 A2775 A2742 20 Y Inverted

4.5 12 7.59 4.84 A2901 A2822 13 Y Inverted

4.5 12 8.91 8.23 A2935 A20910 16 Y Inverted

4.5 12 11.74 9.14 A3016 A2936 17 Y Inverted

4.5 13 2.13 1.49 A3086 A3052 4 Y Inverted

4.5 13 5.48 3.26 A3169 A3113 7 Y Inverted

4.5 14 0.56 0.36 A3284 A3280 1 Y Inverted

4.5 14 3.08 2.68 A3314 A3306 8 Y Inverted

4.5 14 8.39 7.71 A3373 A3361 14 Y Inverted

4.5 14 10.06 8.82 A3421 A3375 15 Y Inverted

4.5 16 0.24 0.01 A3640 A3642 1 Y Inverted

4.5 16 0.99 0.46 A3643 A3664 2 Y Inverted

4.5 16 4.09 2.32 A3700 A3667 4 Y Inverted

4.5 16 4.89 4.91 A3704 A3702 5 Y Inverted

4.5 16 5.74 5.49 A3724 A3716 6 N Inverted

4.5 16 7.06 6.24 A3748 A3727 9 Y Inverted
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A

B

C

Additional File 2
Log10 of recombination events between adjacent markers along the (A) Amel_3.0 (n = 
1456), (B) Amel_4.0 (n = 1556) and (C) Amel_4.5 (n = 2879) genome assemblies and 
the (D) de novo 3.0 (n = 1456), (E) de novo 4.0 (n = 1556) and (F) de novo 4.5 (n = 
2879) maps.
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D

F

E

Additional File 2
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Additional File 4. 

Methods and example for the use of R script PhaseHaploid, in phasing vcf formatted 

genotype data. 

1. Application example

1.1 Data format

The dataset should resemble the one shown in the picture in the following aspects: 
- the first line (and only the first line) should be a heading, the text in the heading is irrelevant
and may also contain empty strings
- the first column should contain the identifier for the chromosomes, it is mandatory that the
strings are the same within each chromosome
- the second column should contain the physical distance on the chromosome, if this
information is not given, the column should contain zeros
- Genotypes should be formatted as diploidß
- the other columns are irrelevant

1.2 Input 

The file should be saved as either a comma or tab delimited file. Other file formats may also 

work but were never tested. 

1.3 Using the script 

I. Run the PhaseHaploid script (Additional file 4) in R.

II. Run one of the following functions and set the parameters:

a) phase(data, ExprBeginAtCol, DistanceCol, MinDensity, DistributionVaryBy,
IncludeC, RemoveArtifacts) 

b) phase_two(data1, data2, ExprBeginAtCol, DistanceCol, MinDensity,
DistributionVaryBy, IncludeC, RemoveArtifacts) 
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1. 4 Arguments

data datasets saved in variant call format. 

ExprBeginAtCol column of the first sample. 

DistanceCol column that carries the physical distance information. 

MinDensity a float value between 0 and 1. Used to filter out rows with low data 
density, where 0 means 'use every row' and 1 means 'use row with full 
data density only'. 

DistributionVaryBy a float value to drop rows which do not follow a 50:50 segregation. 0 
means 'only strickt 50:50 segregation' and 1 means 'no filtering by 
segregation at all'. 

IncludeC a boolean value to determine whether phase 'C' should be tried to 
include to either 'A' or 'B'. Inclusion is based on the distance to the 
nearest phase. 

RemoveArtifacts a boolean value to determine whether expressions with higher-than-one 
ploidy should be removed from the dataset. 

1.4 Output 

The script outputs a .csv file in the current working directory. 

2. Methods

2.1 Selecting the expression table

Since the VCF also stores non-genotypic annotations, it is necessary to define at which

column the expression table begins. The associated command is called ExprBeginAtCol and

demands a numeric input for the first column containing genotypic data. Additionally, it is

mandatory that the dataset has a single-line headline. As part of the VCF, this should be given

automatically. If the dataset does not have a headline, it should be inserted. The content of the

cells is irrelevant.

2.2 Filtering the dataset 

To accelerate the calculation and prevent lines with no information value from bloating the 

result, PhaseHaploid can filter rows with low data density. MinDensity sets the minimum 

proportion of missing genotypes before a row is excluded from the dataset. The default value 
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is 0.3. PhaseHaploid can also filter data by dropping lines which do not follow a 50:50 

segregation between the two phases.  DistributionVaryBy, like MinDensity, requires a value 

between 0 and 1, with 0 returning a ‘strict 50:50 distribution' and 1 returning unfiltered data. 

2.3 Phasing 

The phasing is initiated by assigning a phase to both modes ('mode' means equal/not equal to 

the reference genome) in the first row. Phasing proceeds by comparing each row to the one 

before. To do so PhaseHaploid iterates the cells and sums up all positions where the mode 

has not changed. This is necessary because the mode can switch without the phase switching 

as well. If there are more indicators that the mode has switched it will adapt for the phasing 

of the next row. The algorithm always opts for the most parsimonious solution. Each 

chromosome is phased individually. 

2.4 Inclusion of ambiguous data 

Since NGS can produce ambiguous data (“phase C”), PhaseHaploid can attempt to reconcile 

this by checking upstream and downstream of the ambiguity to identify the nearest 

determined phase. The ambiguity is then assigned to this phase, as recombination events are 

expected to be rare. 

2.5 Removal of artifacts 

Due to errors or contaminations in sampling it is possible that, for a given locus, the ploidy of 

the sample is greater than one. The rows containing these data points are considered artifacts 

and removed from the dataset. This can be changed using RemoveArtifacts, for which the 

default is: TRUE. 

2.6 Estimating recombination frequency  

Useful for determining genetic distances, the script will count the crossing over events in the 

dataset. This is added in a column at the end of the table with the heading “RECOMB”, 

containing a vector of numbers indicating the amount of recombination events from the 

previous row to the actual one. 

3. Pseudocode for phasing script

3.1 Phasing one dataset
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for( 'all Linkage Groups' ){ 
'subset all rows belonging to this Linkage Group' 
'in the first line assign A or B depending on relation to reference genome' 

for( 'for all rows in this Linkage Group'){ 
# AB defines which cells get assigned which class 
'compare this line to the previous line’ 
AB = 'depending on the last rows distribution' 

'assign A or B to this row depending on AB' 
} 

} 

3.2 Phasing two datasets 

for( 'all Linkage Groups' ){ 
'subset all rows belonging to this Linkage Group'' 

'find a shared locus' 
'in the first line assign A or B depending on relation to reference genome' 

for( 'for all rows in this Linkage Group'' ){ 
# AB defines which cells get assigned which class 
'compare this line to the previous line’ 
AB = 'depending on the last rows distribution' 

'assign A or B to this row depending on AB' 
} 

'merge both datasets depending on their physical distance' 
} 

56



###########################################################################
################################	

#	Functions	

###########################################################################
################################	

#	main	
phase	=	function(data,	ExprBeginAtCol,	DistanceCol,	MinDensity=0.2,	
DistributionVaryBy=0.3,	IncludeC=T,	RemoveArtifacts=T){	

		distribution	=	rcountAB(data)	
		density	=	get_density(distribution,	length(data[1,ExprBeginAtCol	:	length(data[1,])]))	
		selection	=	data[c(1,which(((density	>	MinDensity)	&	(distribution[,1]	

<	(1	+	DistributionVaryBy))	&	(distribution[,1]		>	(1	-	
DistributionVaryBy))))),]	
		result	=	phasing(selection,	ExprBeginAtCol)	

		if(RemoveArtifacts	==	TRUE)	{result	=	remove_artifacts(result,	ExprBeginAtCol)}	
		if(IncludeC	==	TRUE)	{result	=	includeC(result,	ExprBeginAtCol,	DistanceCol)}	

		result	=	cbind(result,	cbind(get_distance(result),countrecomb(result,	ExprBeginAtCol)))	

		utils::write.table(result,	file		=	"result.csv",	row.names=FALSE,	col.names=FALSE,	sep=";")	

		return("Job	complete,	file	saved")	
}	

phase_two	=	function(data1,	data2,	ExprBeginAtCol,	DistanceCol,	MinDensity=0.2,	
DistributionVaryBy=0.3,	IncludeC=T,	RemoveArtifacts=T){	

		distribution1	=	rcountAB(data1)	
		density1	=	get_density(distribution1,	length(data1[1,ExprBeginAtCol	:	length(data1[1,])]))	
		selection1	=	data1[c(1,which(((density1	>	MinDensity)	&	(distribution1[,1]	

<	(1	+	DistributionVaryBy))	&	(distribution1[,1]		>	(1	-	
DistributionVaryBy))))),]	

		distribution2	=	rcountAB(data2)	
		density2	=	get_density(distribution2,	length(data2[1,ExprBeginAtCol	:	length(data2[1,])]))	
		selection2	=	data2[c(1,which(((density2	>	MinDensity)	&	(distribution2[,1]	

<	(1	+	DistributionVaryBy))	&	(distribution2[,1]		>	(1	-	
DistributionVaryBy))))),]	

		result	=	phasing_and_merge(selection1,	selection2,	ExprBeginAtCol)	

Additional File 5
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		if(RemoveArtifacts	==	TRUE)	{result	=	remove_artifacts(result,ExprBeginAtCol)}	
		if(IncludeC	==	TRUE)	{result	=	includeC(result,	ExprBeginAtCol,DistanceCol)}	
	
		result	=	cbind(result,	cbind(get_distance(result),countrecomb(result,	ExprBeginAtCol)))	
	
		utils::write.table(result,	file		=	"result.csv",	row.names=FALSE,	col.names=FALSE,	sep=";")	
	
		return("Job	completet,	file	saved")	
}	
	
	
#	preprocessing	
rcountAB	=	function(dataset)	{	
		#	this	function	counts	the	occurrences	of	the	2	phases	for	each	row	and	returns	a	3	column	
matrix	
		#	first	column:	the	A	to	B	ratio	
		#	second	column:	number	of	As	
		#thrid	column:	number	of	Bs	
	
	
		#	a	matrix	that	will	later	carry	the	result	
		#	three	columns	and	a	rows	depending	on	the	length	of	the	dataset	
		erg	=	matrix(0,length(as.matrix(dataset[,1])),3)	
	
		#	we	need	to	transform	the	data	frame	into	a	matrix,	because	data	frames	tend	to	behave	
strange	
		dataset	=	as.matrix(dataset)	
	
		for(i	in	1:length(dataset[,1]))	{	
				#	count	the	As	and	Bs	
				nrA		=	length(which(grepl("1/1",	dataset[i,])))	
				nrB		=	length(which(grepl("0/0",	dataset[i,])))	
	
				#	if	there	are	no	Bs	we	need	to	manually	set	the	value	of	this	row	to	catch	an	error	
				if(nrB	==	0)	{	
						erg[i,1]	=	0	
						erg[i,2]	=	nrA	
						erg[i,3]	=	nrB	
						next	
				}	
	
				erg[i,1]	=	nrA/nrB	
				erg[i,2]	=	nrA	
				erg[i,3]	=	nrB	
		}	
		return(erg)	
}	
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get_density	=	function	(dataset,	nrExpr)	{	
		#	calculates	the	density	of	markers	in	a	row	
		#	therefor	it	needs	the	result	of	the	rcountAB	function	
	
		erg	=	matrix(0,length(dataset[,1]),	1)	
		end	=	length(dataset[,1])	
		lastc	=	length(dataset[1,])	
		for	(i	in		1:end)	{	
				erg[i]=	(as.numeric(dataset[i,lastc])	+	as.numeric(dataset[i,	lastc-1]))	/	nrExpr	
		}	
		return	(erg)	
}	
	
get_distance	=	function(dataset)	{	
		#	calculates	the	distances	of	each	position	to	the	previous	position	
	
		dataset	=	as.matrix(dataset)	
		erg	=	matrix(0,length(dataset[,1]),1)	
		erg[1]	=	"DISTANCE"	
	
		NrLGs	=	length(as.character(unique(dataset[,1])))	#number	of	LGs	
	
		for(k	in	1:NrLGs)	{	
				vec	=	which(dataset[,1]	==	as.character(unique(dataset[,1])[k]))	
	
				if(length(vec)>1){	
						for(i	in	vec[-1])	{	
								erg[i,1]	=	as.numeric(dataset[i,2])	-	as.numeric(dataset[i-1,2])	
						}	
				}	
		}	
		return(erg)	
}	
	
	
#	phasing	
initialise	=	function(datarow,	colstart,	A,	B)	{	
		#	changes	all	cells	in	a	given	row	to	the	phase	it	belongs	
	
		end	=	length(datarow)	
		datarow	=	as.matrix(datarow)	
		for	(	i	in	colstart:end)	{	
				if(grepl(A,	as.character(datarow[i])))	{	
						datarow[i]	=	"A"	
						next	
				}	
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				if(grepl(B,	as.character(datarow[i])))	{	
						datarow[i]	=	"B"	
						next	
				}	
				if(grepl("[.]",	as.character(datarow[i])))	{	
						datarow[i]	=	"-"	
						next	
				}	
				if(grepl("0/1",	as.character(datarow[i])))	{	
						datarow[i]	=	"C"	
						next	
				}	
		}	
		return	(datarow)	
}	

get_phase	=	function(dataset,	row,	AB)	{	
		#	tries	to	infer	the	phase	for	a	row	
		#	to	do	this	it	compares	a	line	with	the	already	phased	previous	line	

		eq	=	0	#	the	number	of	precedents	that	the	second	line	has	the	same	AB	as	the	first	
		neq	=	0	#	the	number	of	precedents	that	the	second	line	has	NOT	the	same	AB	as	the	first	

		#	compares	the	cells	of	the	previous	row	with	the	ones	from	the	actual	row	
		#	depending	on	which	expression	we	find	either	eq	or	neq	is	increased	
		for(i	in	which(grepl(AB[1],	as.matrix(dataset[row-1,	]))))	{	
				if(grepl(AB[1],	dataset[row,	i]))	{	
						eq	=	eq	+	1	
				}	
				if(grepl(AB[2],	dataset[row,	i]))	{	
						neq	=	neq	+	1	
				}	
		}	

		if(eq	>	neq)	{	
				return(c(AB[1],AB[2]))	
		}	
		return(c(AB[2],AB[1]))	
}	

get_phase_reversed	=	function(dataset,	row,	AB)	{	
		#	does	the	same	as	the	above	function,	just	in	the	opposite	direction	

		eq	=	0	
		neq	=	0	
		for(i	in	which(grepl(AB[1],	as.matrix(dataset[row+1,	]))))	{	
				if(grepl(AB[1],	dataset[row,	i]))	{	
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						eq	=	eq	+	1	
				}	
				if(grepl(AB[2],	dataset[row,	i]))	{	
						neq	=	neq	+	1	
				}	
		}	

		if(eq	>	neq)	{	
				return(c(AB[1],AB[2]))	
		}	
		return(c(AB[2],AB[1]))	
}	

find_first_shared_loci	=	function(dataset1,	dataset2,	vec1,	vec2)	{	
		#	searches	for	the	first	shared	loci	in	the	two	datasets	
		#	gets	two	vectors	containing	all	rows	for	a	LG	and	the	datasets	
		#	it	just	checks	whether	two	positions	are	the	same	in	this	LG	
		erg	=	intersect(dataset1[vec1,2],	dataset2[vec2,2])	

		#if	there	is	no	shared	loci,	return	0	
		if(length(erg)==0)	{return(0)}	

		#	return	0	if	there	s	no	shared	locus	
		return(max(erg[1],0))	
}	

phasing_and_merge	=	function(dataset1,	dataset2,	colstart)	{	
		#	main	function	that	applies	the	other	function	on	the	datasets	
		#	merges	both	datasets	at	the	end	

		dataset1	=	as.matrix(dataset1)	
		dataset2	=	as.matrix(dataset2)	

		NrLGs	=	getLGcount(dataset1)	#	number	of	LGs	(equal	for	both	datasets)	
		#	it	is	expected,	that	the	first	row	is	a	heading	

		#	initialisation	of	the	two	intermediate	results	
		zwerg1	=	dataset1	
		zwerg2	=	dataset2	

		#	this	loop	iterates	all	the	LG	(excluding	the	first,	which	is	supposed	to	be	a	heading)	
		for(k	in	2:NrLGs){	
				#	first	we	extract	the	rows	belonging	to	a	LG	
				vec1	=	getVecOfLG(zwerg1,	k)	#	vector	of	the	given	LG	in	dataset1	
				vec2	=	getVecOfLG(zwerg2,	k)	#	vector	of	the	given	LG	in	dataset2	
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				#	now	we	look	for	the	first	shared	locus	
				#	this	will	later	be	our	anchor	point	in	the	phasing	
				start1	=	which(zwerg1[,2]	==	find_first_shared_loci(zwerg1,	zwerg2,	vec1,	vec2)	
																			&	(zwerg1[vec1[1],1]	==	unique(zwerg2[,1])[k]))	
				if(length(start1)==0)	{start1	=	vec1[1]}	
	
				start2	=	which(zwerg2[,2]	==	find_first_shared_loci(zwerg1,	zwerg2,	vec1,	vec2)	
																			&	(zwerg2[vec2[1],1]	==	unique(zwerg2[,1])[k]))	
				if(length(start2)==0)	{start2	=	vec2[1]}	
	
				#	we	started	with	A	as	1/1	and	B	as	0/0	
				#	this	variable	belongs	to	the	initialisation,	it	tells	which	value	will	be	translated	to	A	or	
rather	B	
				AB	=	c("1/1",	"0/0")	
	
				#initialising	each	LG	at	the	shared	loci	
				zwerg1[start1,	]	=	initialise(dataset1[start1,	],	colstart,	AB[1],	AB[2])	
				zwerg2[start2,	]	=	initialise(dataset2[start2,	],	colstart,	AB[1],	AB[2])	
	
				#if	the	first	loci	is	the	shared	one,	we	cant	look	up	
				if(vec1[1]	!=	start1)	{	
						AB	=	c("1/1",	"0/0")	
						for(i	in	(start1-1)	:	vec1[1]){	
								AB	=	get_phase_reversed(dataset1,	i,	AB)	
								zwerg1[i,	]	=	initialise(zwerg1[i,	],	colstart,	AB[1],	AB[2])	
						}	
				}	
	
				#if	vec1	has	just	1	entry,	we	already	dealt	with	it	
				if(length(vec1)	>	1)	{	
						end	=	vec1[length(vec1)]	
						AB	=	c("1/1",	"0/0")	
						for(i	in	(start1+1)	:	end){	
								AB	=	get_phase(dataset1,	i,	AB)	
								zwerg1[i,	]	=	initialise(zwerg1[i,	],	colstart,	AB[1],	AB[2])	
						}	
				}	
	
	
				#and	all	the	same	for	the	second	dataset	
				if(vec2[1]	!=	start2)	{	
						AB	=	c("1/1",	"0/0")	
						for(i	in	(start2-1)	:	vec2[1]){	
								AB	=	get_phase_reversed(dataset2,	i,	AB)	
								zwerg2[i,	]	=	initialise(zwerg2[i,	],	colstart,	AB[1],	AB[2])	
						}	
				}	
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				if(length(vec2)	>	1)	{	
						end	=	vec2[length(vec2)]	
						AB	=	c("1/1",	"0/0")	
						for(i	in	(start2+1)	:	end){	
								AB	=	get_phase(dataset2,	i,	AB)	
								zwerg2[i,	]	=	initialise(zwerg2[i,	],	colstart,	AB[1],	AB[2])	
						}	
				}	
		}	
	
		#	now	the	two	datasets	get	finally	merged	
		erg	=	merge_two_datasets(zwerg1,	zwerg2,	colstart)	
		return(erg)	
}	
	
phasing	=	function(dataset,	colstart)	{	
		#	main	function	that	applies	the	other	function	on	the	datasets	
	
		dataset	=	as.matrix(dataset)	
	
		NrLGs	=	getLGcount(dataset)	#	number	of	LGs	
		#	it	is	expected,	that	the	first	row	is	a	heading	
	
		#	initialisation	of	the	intermediate	result	
		zwerg	=	dataset	
	
	
		#	this	loop	iterates	all	the	LG	(excluding	the	first,	which	is	supposed	to	be	a	heading)	
		for(k	in	2:NrLGs){	
				#	first	we	extract	the	rows	belonging	to	a	LG	
				vec	=	getVecOfLG(zwerg,	k)	#	vector	of	the	given	LG	in	dataset	
	
				#	this	will	later	be	our	anchor	point	in	the	phasing	
				start	=	vec[1]	
	
				#	we	started	with	A	as	1/1	and	B	as	0/0	
				#	this	variable	belongs	to	the	initialisation,	it	tells	which	value	will	be	translated	to	A	or	
rather	B	
				AB	=	c("1/1",	"0/0")	
	
				#initialising	each	LG	at	the	shared	loci	
				zwerg[start,	]	=	initialise(dataset[start,	],	colstart,	AB[1],	AB[2])	
	
				#	the	calculation	of	'end'	boosts	the	performance	of	the	loop	
				#	otherwise	it	would	have	to	calculate	the	end	at	each	step	of	the	iteration	again	
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				end	=	vec[length(vec)]	
	
				AB	=	c("1/1",	"0/0")	
				if(start	<	end)	{	
						for(i	in	(start+1)	:	end){	
								AB	=	get_phase(dataset,	i,	AB)	
								zwerg[i,	]	=	initialise(zwerg[i,	],	colstart,	AB[1],	AB[2])	
						}	
				}	
		}	
	
		return(zwerg)	
}	
	
merge_two_datasets	=	function(dataset1,	dataset2,	ExprBeginAtCol){	
		#	merges	two	datasets	into	one	
		#	they	need	to	have	the	same	format	(start	of	expressiontable,	etc.	)	
	
		NrLGs	=	length(as.character(unique(dataset1[,1])))	#	number	of	LGs	(equal	for	both	
datasets)	
	
		#	the	first	row	of	the	result	is	the	merging	of	heading	from	the	first	and	all	the	individuals	
		#	from	the	second	dataset	
		erg	=	matrix("",length(dataset1[,1])	+	length(dataset2[,1]),	length(dataset1[1,	])	+	
length(dataset2[1,	ExprBeginAtCol:length(dataset2[1,])]))	
		erg[1,	]	=	c(dataset1[1,	],	dataset2[1,ExprBeginAtCol:length(dataset2[1,])])	
	
		#global	row-counter,	since	we	are	using	a	while-loop	
		i	=	1	
	
		#	this	loop	iterates	all	the	LG	(excluding	the	first,	which	is	supposed	to	be	a	heading)	
		for(k	in	2:NrLGs){	
	
				#	first	we	extract	the	rows	belonging	to	a	LG	
				vec1	=	which(dataset1[,1]	==	as.character(unique(dataset1[,1])[k]))	#	vector	of	the	given	
LG	in	dataset1	
				vec2	=	which(dataset2[,1]	==	as.character(unique(dataset2[,1])[k]))	#	vector	of	the	given	
LG	in	dataset2	
	
				current1	=	1	#	the	current	row	for	the	first	dataset	
				current2	=	1	#	the	current	row	for	the	second	dataset	
	
	
				#calculating	this	befor	the	loop	boosts	the	performance	
				lengthvec1	=	length(vec1)	
				lengthvec2	=	length(vec2)	
	

64



	
				#	loop	that	works	till	one	of	the	datasets	is	at	the	end	of	its	LG	
				while((current1	<=	lengthvec1)	&	(current2	<=	lengthvec2)){	
						i	=	i+1	
	
						#	first	case:	position	in	dataset1	<	pos	in	dataset2	
						if(as.numeric(dataset1[vec1[current1],2])	<	as.numeric(dataset2[vec2[current2],2]))	{	
	
								#	merge	the	two	data	frames	and	bind	them	to	the	result	
								erg[i,	]	=	c(dataset1[vec1[current1],	],	matrix("-",	1,	
length(dataset2[1,ExprBeginAtCol:length(dataset2[1,])])))	
								current1	=	current1	+	1	
								next	
						}	
	
	
						#	second	case:	position	in	dataset1	>	pos	in	dataset2	
						if(as.numeric(dataset1[vec1[current1],2])	>	as.numeric(dataset2[vec2[current2],2]))	{	
	
								#	merge	the	two	data	frames	and	bind	them	to	the	result	
								erg[i,	]	=	c(dataset2[vec2[current2],1:(ExprBeginAtCol-1)],	matrix("-",	1,	
length(dataset1[1,ExprBeginAtCol:length(dataset1[1,])])),	dataset2[vec2[current2],	
ExprBeginAtCol	:length(dataset2[1,])])	
								current2	=	current2	+	1	
								next	
						}	
	
	
						#	third	case:	position	in	dataset1	=	pos	in	dataset2	
						if(as.numeric(dataset1[vec1[current1],2])	==	as.numeric(dataset2[vec2[current2],2]))	{	
	
								#	merge	the	two	data	frames	and	bind	them	to	the	result	
								erg[i,	]	=	c(dataset1[vec1[current1],	],	dataset2[vec2[current2],	ExprBeginAtCol	
:length(dataset2[1,])])	
								current1	=	current1	+	1	
								current2	=	current2	+	1	
								next	
						}	
				}	
	
				#	bind	the	rest	of	dataset1	to	the	result	
				if(current1	<	lengthvec1)	{	
						for(j	in	current1	:	lengthvec1){	
								i	=	i	+	1	
								erg[i,	]	=	c(dataset1[vec1[j],	],	matrix("-",	1,	
length(dataset2[1,ExprBeginAtCol:length(dataset2[1,])])))	
						}	
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				}	

				#bind	the	rest	of	dataset2	to	the	result	
				if(current2	<	lengthvec2)	{	
						for(j	in	current2	:	lengthvec2){	
								i	=	i	+	1	
								erg[i,	]	=	c(dataset2[vec2[j],1:(ExprBeginAtCol-1)],	matrix("-",	1,	
length(dataset1[1,ExprBeginAtCol:length(dataset1[1,])])),	dataset2[vec2[j],	
ExprBeginAtCol:length(dataset2[1,])])	
						}	
				}	
		}	
		return	(erg)	
}	

remove_artifacts	=	function(dataset,	ExprBeginAtCol){	
		#	this	function	removes	the	artifacts	in	a	dataset,	as	artifact	counts:	
		#	each	row	which	has	cells	like	0/2,	1/2,	2/2,	0/3,	1/3,	2/3	or	3/3	in	it	

		#	change	the	dataframe	to	a	matrix	
		dataset	=	as.matrix(dataset)	
		len	=	length(dataset[1,])	

		#	result	vector,	saves	all	lines	to	delete	
		erg	=	vector("integer",	length(dataset[,1]))	
		rowcounter	=	1	

		#	iterate	the	dataset	and	save	all	lines	with	artifacts	
		end	=	length(dataset[,1])	
		for(i	in		2:end){	

				#	now	following:	"best	of	copy	paste"	by	eike	oertelt	
				#	if	we	have	at	least	one	artifact	in	a	row,	the	row	will	be	saved	and	later	deleted	
				if(TRUE	%in%	grepl("0/2",	dataset[i,	ExprBeginAtCol:len])){	
						erg[rowcounter]	=	i	
						rowcounter	=	rowcounter	+	1	
						next	
				}	

				if(TRUE	%in%	grepl("1/2",	dataset[i,	ExprBeginAtCol:len])){	
						erg[rowcounter]	=	i	
						rowcounter	=	rowcounter	+	1	
						next	
				}	

				if(TRUE	%in%	grepl("2/2",	dataset[i,	ExprBeginAtCol:len])){	
						erg[rowcounter]	=	i	
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						rowcounter	=	rowcounter	+	1	
						next	
				}	
	
				if(TRUE	%in%	grepl("0/3",	dataset[i,	ExprBeginAtCol:len])){	
						erg[rowcounter]	=	i	
						rowcounter	=	rowcounter	+	1	
						next	
				}	
	
				if(TRUE	%in%	grepl("1/3",	dataset[i,	ExprBeginAtCol:len])){	
						erg[rowcounter]	=	i	
						rowcounter	=	rowcounter	+	1	
						next	
				}	
	
				if(TRUE	%in%	grepl("2/3",	dataset[i,	ExprBeginAtCol:len])){	
						erg[rowcounter]	=	i	
						next	
				}	
	
				if(TRUE	%in%	grepl("3/3",	dataset[i,	ExprBeginAtCol:len])){	
						erg[rowcounter]	=	i	
						rowcounter	=	rowcounter	+	1	
						next	
				}	
		}	
		#break	if	no	artifacts	are	there	
		if(sum(erg)==0){return(dataset)}	
	
		dataset	=	dataset[-erg,	]	
}	
	
	
#	misc	
getLGcount	=	function(data)	{	
		#	counts	all	the	LG	in	a	dataset	
		erg	=	length(as.character(unique(data[,1])))	
		return	(erg)	
}	
	
getVecOfLG	=	function	(data,	k){	
		#return	a	vector	of	all	the	loci	belonging	to	a	LG	(k)	in	this	Dataset	
		erg	=	which(data[,1]	==	as.character(unique(data[,1])[k]))	
		return(erg)	
}	
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countrecomb	=	function(data,	ExprBeginAtCol)	{	
		#	counts	the	visual	recombination	events	in	a	row	

		#	result:	a	vec	of	the	numbers	
		erg	=	matrix(0,length(data[,1]),1)	
		erg[1]	=	"RECOMB.EVENTS"	

		#	for	each	LG	
		end1	=	getLGcount(data)	
		for(k	in	2	:	end1){	

				vec	=	getVecOfLG(data,	k)	

				if(length(vec)	>	1)	{	
						#	for	all	rows	in	this	LG	
						end2	=	length(vec)	
						for(i	in	2:end2){	

								#intermediate	result	counts	the	number	of	crossing	overs	
								zwerg	=	0	

								#	for	each	cells	in	this	row	
								end3	=	length(data[1,])	
								for(j	in	ExprBeginAtCol	:	end3){	

										#	count	recomb.events	

										#if	we	have	an	A	or	a	B	in	the	current	cell	
										if((as.character(data[vec[i],j])	==	"A")	|	(as.character(data[vec[i],j])	==	"B")){	

												#if	the	previous	cell	is	"-"	we	have	to	check	the	first	upstream	cell	that	isnt	a	"-"	

												bla	=	lookup(data,	vec,	i-1,	j)	
												if(bla	!=	0)	{	
														if(as.character(data[vec[i],j])	!=	(as.character(data[bla,j])))	{	
																zwerg	=	zwerg	+	1	

	}	
												}	
										}	
								}	
								erg[vec[i]]	=	zwerg	
						}	
				}	
		}	
		return(erg)	
}	
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lookup	=	function(data,	vec,	current,	col)	{	
		#	checks	starting	from	the	current	position	the	upstream	cells	for	their	phase	and	returns	
the	row	
		#	returns	0	if	there	is	no	A	or	B	inside	the	index	

		#current	means	the	current	position	in	the	'vec'-vector	
		ABpos	=	0	

		for(i	in	(current):1){	
				if((as.character(data[vec[i],	col])=="A")	|	(as.character(data[vec[i],	col])=="B"	)){	
						ABpos	=	vec[i]	
						break	
				}	
		}	

		return(ABpos)	
}	

lookdown	=	function(data,	vec,	current,	col)	{	
		#	checks	starting	from	the	current	position	the	downstream	cells	for	their	phase	and	
returns	the	row	
		#	returns	0	if	there	is	no	A	or	B	inside	the	index	

		ABpos	=	0	

		for(i	in	current:length(vec)){	
				if((as.character(data[vec[i],	col])=="B")	|	(as.character(data[vec[i],	col])=="A"	)){	
						ABpos	=	vec[i]	
						break	
				}	
		}	

		return(ABpos)	
}	

includeC	=	function(data,	ExprBeginAtCol,	DistanceCol)	{	
		#	we	include	the	C	by	checking	up-	and	downstrem	(inside	the	column)	

		#	for	each	LG	
		for(k	in	2:	(getLGcount(data))){	

				vec	=	getVecOfLG(data,	k)	

				if(length(vec)	>	1)	{	
						#for	each	row	
						for(i	in	1:length(vec))	{	
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								#for	each	cell	
								end	=	length(data[1,])	
								for(j	in	ExprBeginAtCol	:	end)	{	
	
										#	check	wheter	the	cell	is	a	C	
										if(grepl("C",	as.character(data[vec[i],j])))	{	
	
												#	up	and	down	give	the	row	the	first	occurance	of	an	A	or	B	in	the	dataset	
												up	=	lookup(data,	vec,	i,	j)	
												down	=	lookdown(data,	vec,	i,	j)	
	
												sumup	=	0	
												sumdown	=	0	
	
												#	if	up	==	0,	then	there	is	no	A	or	B	and	we	dont	need	to	deal	with	it	
												if(up	==	0)	{	
														sumup	=	Inf	
												}	
												else{	
														sumup	=	as.numeric(data[vec[i],	DistanceCol])	-	as.numeric(data[up,	DistanceCol])	
												}	
	
												#	if	down	==	0,	then	there	is	no	A	or	B	and	we	dont	need	to	deal	with	it	
												if(down	==	0){	
														sumdown	=	Inf	
												}	
												else{	
														sumdown	=	as.numeric(data[down,	DistanceCol])	-	as.numeric(data[vec[i],	
DistanceCol])	
												}	
	
	
												if(sumup	>	sumdown)	{	
														data[vec[i],j]	=	data[down,j]	
												}	
												if(sumup	<	sumdown)	{	
														data[vec[i],j]	=	data[up,j]	
												}	
										}	
								}	
						}	
				}	
		}	
	
		return(data)	
}	
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Extended data figure 1
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Genome-wide single-locus QTL analysis comparing pupae where the infesting Var-
roa was alive but did not produce daughters or where the mite reproduced success-
fully. The p = 0.05 significance threshold (LOD = 4.15) is shown by a solid red line. 
The highest LOD score was 4.21 (p = 0.029).
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